1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017 by Delphix. All rights reserved. 26 * Copyright 2019 OmniOS Community Edition (OmniOSce) Association. 27 */ 28 29 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 30 /* All Rights Reserved */ 31 32 /* 33 * University Copyright- Copyright (c) 1982, 1986, 1988 34 * The Regents of the University of California 35 * All Rights Reserved 36 * 37 * University Acknowledgment- Portions of this document are derived from 38 * software developed by the University of California, Berkeley, and its 39 * contributors. 40 */ 41 42 #include <sys/types.h> 43 #include <sys/thread.h> 44 #include <sys/t_lock.h> 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitmap.h> 48 #include <sys/buf.h> 49 #include <sys/cmn_err.h> 50 #include <sys/conf.h> 51 #include <sys/ddi.h> 52 #include <sys/debug.h> 53 #include <sys/dkio.h> 54 #include <sys/errno.h> 55 #include <sys/time.h> 56 #include <sys/fcntl.h> 57 #include <sys/flock.h> 58 #include <sys/file.h> 59 #include <sys/kmem.h> 60 #include <sys/mman.h> 61 #include <sys/open.h> 62 #include <sys/swap.h> 63 #include <sys/sysmacros.h> 64 #include <sys/uio.h> 65 #include <sys/vfs.h> 66 #include <sys/vfs_opreg.h> 67 #include <sys/vnode.h> 68 #include <sys/stat.h> 69 #include <sys/poll.h> 70 #include <sys/stream.h> 71 #include <sys/strsubr.h> 72 #include <sys/policy.h> 73 #include <sys/devpolicy.h> 74 75 #include <sys/proc.h> 76 #include <sys/user.h> 77 #include <sys/session.h> 78 #include <sys/vmsystm.h> 79 #include <sys/vtrace.h> 80 #include <sys/pathname.h> 81 82 #include <sys/fs/snode.h> 83 84 #include <vm/seg.h> 85 #include <vm/seg_map.h> 86 #include <vm/page.h> 87 #include <vm/pvn.h> 88 #include <vm/seg_dev.h> 89 #include <vm/seg_vn.h> 90 91 #include <fs/fs_subr.h> 92 93 #include <sys/esunddi.h> 94 #include <sys/autoconf.h> 95 #include <sys/sunndi.h> 96 #include <sys/contract/device_impl.h> 97 98 99 static int spec_open(struct vnode **, int, struct cred *, caller_context_t *); 100 static int spec_close(struct vnode *, int, int, offset_t, struct cred *, 101 caller_context_t *); 102 static int spec_read(struct vnode *, struct uio *, int, struct cred *, 103 caller_context_t *); 104 static int spec_write(struct vnode *, struct uio *, int, struct cred *, 105 caller_context_t *); 106 static int spec_ioctl(struct vnode *, int, intptr_t, int, struct cred *, int *, 107 caller_context_t *); 108 static int spec_getattr(struct vnode *, struct vattr *, int, struct cred *, 109 caller_context_t *); 110 static int spec_setattr(struct vnode *, struct vattr *, int, struct cred *, 111 caller_context_t *); 112 static int spec_access(struct vnode *, int, int, struct cred *, 113 caller_context_t *); 114 static int spec_create(struct vnode *, char *, vattr_t *, enum vcexcl, int, 115 struct vnode **, struct cred *, int, caller_context_t *, vsecattr_t *); 116 static int spec_fsync(struct vnode *, int, struct cred *, caller_context_t *); 117 static void spec_inactive(struct vnode *, struct cred *, caller_context_t *); 118 static int spec_fid(struct vnode *, struct fid *, caller_context_t *); 119 static int spec_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 120 static int spec_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 121 struct flk_callback *, struct cred *, caller_context_t *); 122 static int spec_realvp(struct vnode *, struct vnode **, caller_context_t *); 123 124 static int spec_getpage(struct vnode *, offset_t, size_t, uint_t *, page_t **, 125 size_t, struct seg *, caddr_t, enum seg_rw, struct cred *, 126 caller_context_t *); 127 static int spec_putapage(struct vnode *, page_t *, u_offset_t *, size_t *, int, 128 struct cred *); 129 static struct buf *spec_startio(struct vnode *, page_t *, u_offset_t, size_t, 130 int); 131 static int spec_getapage(struct vnode *, u_offset_t, size_t, uint_t *, 132 page_t **, size_t, struct seg *, caddr_t, enum seg_rw, struct cred *); 133 static int spec_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 134 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 135 static int spec_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 136 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 137 static int spec_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 138 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 139 140 static int spec_poll(struct vnode *, short, int, short *, struct pollhead **, 141 caller_context_t *); 142 static int spec_dump(struct vnode *, caddr_t, offset_t, offset_t, 143 caller_context_t *); 144 static int spec_pageio(struct vnode *, page_t *, u_offset_t, size_t, int, 145 cred_t *, caller_context_t *); 146 147 static int spec_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 148 caller_context_t *); 149 static int spec_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 150 caller_context_t *); 151 static int spec_pathconf(struct vnode *, int, ulong_t *, struct cred *, 152 caller_context_t *); 153 154 #define SN_HOLD(csp) { \ 155 mutex_enter(&csp->s_lock); \ 156 csp->s_count++; \ 157 mutex_exit(&csp->s_lock); \ 158 } 159 160 #define SN_RELE(csp) { \ 161 mutex_enter(&csp->s_lock); \ 162 csp->s_count--; \ 163 ASSERT((csp->s_count > 0) || (csp->s_vnode->v_stream == NULL)); \ 164 mutex_exit(&csp->s_lock); \ 165 } 166 167 #define S_ISFENCED(sp) ((VTOS((sp)->s_commonvp))->s_flag & SFENCED) 168 169 struct vnodeops *spec_vnodeops; 170 171 /* 172 * *PLEASE NOTE*: If you add new entry points to specfs, do 173 * not forget to add support for fencing. A fenced snode 174 * is indicated by the SFENCED flag in the common snode. 175 * If a snode is fenced, determine if your entry point is 176 * a configuration operation (Example: open), a detection 177 * operation (Example: gettattr), an I/O operation (Example: ioctl()) 178 * or an unconfiguration operation (Example: close). If it is 179 * a configuration or detection operation, fail the operation 180 * for a fenced snode with an ENXIO or EIO as appropriate. If 181 * it is any other operation, let it through. 182 */ 183 184 const fs_operation_def_t spec_vnodeops_template[] = { 185 VOPNAME_OPEN, { .vop_open = spec_open }, 186 VOPNAME_CLOSE, { .vop_close = spec_close }, 187 VOPNAME_READ, { .vop_read = spec_read }, 188 VOPNAME_WRITE, { .vop_write = spec_write }, 189 VOPNAME_IOCTL, { .vop_ioctl = spec_ioctl }, 190 VOPNAME_GETATTR, { .vop_getattr = spec_getattr }, 191 VOPNAME_SETATTR, { .vop_setattr = spec_setattr }, 192 VOPNAME_ACCESS, { .vop_access = spec_access }, 193 VOPNAME_CREATE, { .vop_create = spec_create }, 194 VOPNAME_FSYNC, { .vop_fsync = spec_fsync }, 195 VOPNAME_INACTIVE, { .vop_inactive = spec_inactive }, 196 VOPNAME_FID, { .vop_fid = spec_fid }, 197 VOPNAME_SEEK, { .vop_seek = spec_seek }, 198 VOPNAME_PATHCONF, { .vop_pathconf = spec_pathconf }, 199 VOPNAME_FRLOCK, { .vop_frlock = spec_frlock }, 200 VOPNAME_REALVP, { .vop_realvp = spec_realvp }, 201 VOPNAME_GETPAGE, { .vop_getpage = spec_getpage }, 202 VOPNAME_PUTPAGE, { .vop_putpage = spec_putpage }, 203 VOPNAME_MAP, { .vop_map = spec_map }, 204 VOPNAME_ADDMAP, { .vop_addmap = spec_addmap }, 205 VOPNAME_DELMAP, { .vop_delmap = spec_delmap }, 206 VOPNAME_POLL, { .vop_poll = spec_poll }, 207 VOPNAME_DUMP, { .vop_dump = spec_dump }, 208 VOPNAME_PAGEIO, { .vop_pageio = spec_pageio }, 209 VOPNAME_SETSECATTR, { .vop_setsecattr = spec_setsecattr }, 210 VOPNAME_GETSECATTR, { .vop_getsecattr = spec_getsecattr }, 211 NULL, NULL 212 }; 213 214 /* 215 * Return address of spec_vnodeops 216 */ 217 struct vnodeops * 218 spec_getvnodeops(void) 219 { 220 return (spec_vnodeops); 221 } 222 223 extern vnode_t *rconsvp; 224 225 /* 226 * Acquire the serial lock on the common snode. 227 */ 228 #define LOCK_CSP(csp) (void) spec_lockcsp(csp, 0, 1, 0) 229 #define LOCKHOLD_CSP_SIG(csp) spec_lockcsp(csp, 1, 1, 1) 230 #define SYNCHOLD_CSP_SIG(csp, intr) spec_lockcsp(csp, intr, 0, 1) 231 232 typedef enum { 233 LOOP, 234 INTR, 235 SUCCESS 236 } slock_ret_t; 237 238 /* 239 * Synchronize with active SLOCKED snode, optionally checking for a signal and 240 * optionally returning with SLOCKED set and SN_HOLD done. The 'intr' 241 * argument determines if the thread is interruptible by a signal while 242 * waiting, the function returns INTR if interrupted while there is another 243 * thread closing this snonde and LOOP if interrupted otherwise. 244 * When SUCCESS is returned the 'hold' argument determines if the open 245 * count (SN_HOLD) has been incremented and the 'setlock' argument 246 * determines if the function returns with SLOCKED set. 247 */ 248 static slock_ret_t 249 spec_lockcsp(struct snode *csp, int intr, int setlock, int hold) 250 { 251 slock_ret_t ret = SUCCESS; 252 mutex_enter(&csp->s_lock); 253 while (csp->s_flag & SLOCKED) { 254 csp->s_flag |= SWANT; 255 if (intr) { 256 if (!cv_wait_sig(&csp->s_cv, &csp->s_lock)) { 257 if (csp->s_flag & SCLOSING) 258 ret = INTR; 259 else 260 ret = LOOP; 261 mutex_exit(&csp->s_lock); 262 return (ret); /* interrupted */ 263 } 264 } else { 265 cv_wait(&csp->s_cv, &csp->s_lock); 266 } 267 } 268 if (setlock) 269 csp->s_flag |= SLOCKED; 270 if (hold) 271 csp->s_count++; /* one more open reference : SN_HOLD */ 272 mutex_exit(&csp->s_lock); 273 return (ret); /* serialized/locked */ 274 } 275 276 /* 277 * Unlock the serial lock on the common snode 278 */ 279 #define UNLOCK_CSP_LOCK_HELD(csp) \ 280 ASSERT(mutex_owned(&csp->s_lock)); \ 281 if (csp->s_flag & SWANT) \ 282 cv_broadcast(&csp->s_cv); \ 283 csp->s_flag &= ~(SWANT|SLOCKED); 284 285 #define UNLOCK_CSP(csp) \ 286 mutex_enter(&csp->s_lock); \ 287 UNLOCK_CSP_LOCK_HELD(csp); \ 288 mutex_exit(&csp->s_lock); 289 290 /* 291 * compute/return the size of the device 292 */ 293 #define SPEC_SIZE(csp) \ 294 (((csp)->s_flag & SSIZEVALID) ? (csp)->s_size : spec_size(csp)) 295 296 /* 297 * Compute and return the size. If the size in the common snode is valid then 298 * return it. If not valid then get the size from the driver and set size in 299 * the common snode. If the device has not been attached then we don't ask for 300 * an update from the driver- for non-streams SSIZEVALID stays unset until the 301 * device is attached. A stat of a mknod outside /devices (non-devfs) may 302 * report UNKNOWN_SIZE because the device may not be attached yet (SDIPSET not 303 * established in mknod until open time). An stat in /devices will report the 304 * size correctly. Specfs should always call SPEC_SIZE instead of referring 305 * directly to s_size to initialize/retrieve the size of a device. 306 * 307 * XXX There is an inconsistency between block and raw - "unknown" is 308 * UNKNOWN_SIZE for VBLK and 0 for VCHR(raw). 309 */ 310 static u_offset_t 311 spec_size(struct snode *csp) 312 { 313 struct vnode *cvp = STOV(csp); 314 u_offset_t size; 315 int plen; 316 uint32_t size32; 317 dev_t dev; 318 dev_info_t *devi; 319 major_t maj; 320 uint_t blksize; 321 int blkshift; 322 323 ASSERT((csp)->s_commonvp == cvp); /* must be common node */ 324 325 /* return cached value */ 326 mutex_enter(&csp->s_lock); 327 if (csp->s_flag & SSIZEVALID) { 328 mutex_exit(&csp->s_lock); 329 return (csp->s_size); 330 } 331 332 /* VOP_GETATTR of mknod has not had devcnt restriction applied */ 333 dev = cvp->v_rdev; 334 maj = getmajor(dev); 335 if (maj >= devcnt) { 336 /* return non-cached UNKNOWN_SIZE */ 337 mutex_exit(&csp->s_lock); 338 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 339 } 340 341 /* establish cached zero size for streams */ 342 if (STREAMSTAB(maj)) { 343 csp->s_size = 0; 344 csp->s_flag |= SSIZEVALID; 345 mutex_exit(&csp->s_lock); 346 return (0); 347 } 348 349 /* 350 * Return non-cached UNKNOWN_SIZE if not open. 351 * 352 * NB: This check is bogus, calling prop_op(9E) should be gated by 353 * attach, not open. Not having this check however opens up a new 354 * context under which a driver's prop_op(9E) could be called. Calling 355 * prop_op(9E) in this new context has been shown to expose latent 356 * driver bugs (insufficient NULL pointer checks that lead to panic). 357 * We are keeping this open check for now to avoid these panics. 358 */ 359 if (csp->s_count == 0) { 360 mutex_exit(&csp->s_lock); 361 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 362 } 363 364 /* Return non-cached UNKNOWN_SIZE if not attached. */ 365 if (((csp->s_flag & SDIPSET) == 0) || (csp->s_dip == NULL) || 366 !i_ddi_devi_attached(csp->s_dip)) { 367 mutex_exit(&csp->s_lock); 368 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 369 } 370 371 devi = csp->s_dip; 372 373 /* 374 * Established cached size obtained from the attached driver. Since we 375 * know the devinfo node, for efficiency we use cdev_prop_op directly 376 * instead of [cb]dev_[Ss]size. 377 */ 378 if (cvp->v_type == VCHR) { 379 size = 0; 380 plen = sizeof (size); 381 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 382 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 383 DDI_PROP_CONSUMER_TYPED, "Size", (caddr_t)&size, 384 &plen) != DDI_PROP_SUCCESS) { 385 plen = sizeof (size32); 386 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 387 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 388 "size", (caddr_t)&size32, &plen) == 389 DDI_PROP_SUCCESS) 390 size = size32; 391 } 392 } else { 393 size = UNKNOWN_SIZE; 394 plen = sizeof (size); 395 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 396 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 397 DDI_PROP_CONSUMER_TYPED, "Nblocks", (caddr_t)&size, 398 &plen) != DDI_PROP_SUCCESS) { 399 plen = sizeof (size32); 400 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 401 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 402 "nblocks", (caddr_t)&size32, &plen) == 403 DDI_PROP_SUCCESS) 404 size = size32; 405 } 406 407 if (size != UNKNOWN_SIZE) { 408 blksize = DEV_BSIZE; /* default */ 409 plen = sizeof (blksize); 410 411 /* try to get dev_t specific "blksize" */ 412 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 413 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 414 "blksize", (caddr_t)&blksize, &plen) != 415 DDI_PROP_SUCCESS) { 416 /* 417 * Try for dev_info node "device-blksize". 418 * If this fails then blksize will still be 419 * DEV_BSIZE default value. 420 */ 421 (void) cdev_prop_op(DDI_DEV_T_ANY, devi, 422 PROP_LEN_AND_VAL_BUF, 423 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 424 "device-blksize", (caddr_t)&blksize, &plen); 425 } 426 427 /* blksize must be a power of two */ 428 ASSERT(BIT_ONLYONESET(blksize)); 429 blkshift = highbit(blksize) - 1; 430 431 /* convert from block size to byte size */ 432 if (size < (MAXOFFSET_T >> blkshift)) 433 size = size << blkshift; 434 else 435 size = UNKNOWN_SIZE; 436 } 437 } 438 439 csp->s_size = size; 440 csp->s_flag |= SSIZEVALID; 441 442 mutex_exit(&csp->s_lock); 443 return (size); 444 } 445 446 /* 447 * This function deals with vnode substitution in the case of 448 * device cloning. 449 */ 450 static int 451 spec_clone(struct vnode **vpp, dev_t newdev, int vtype, struct stdata *stp) 452 { 453 dev_t dev = (*vpp)->v_rdev; 454 major_t maj = getmajor(dev); 455 major_t newmaj = getmajor(newdev); 456 int sysclone = (maj == clone_major); 457 int qassociate_used = 0; 458 struct snode *oldsp, *oldcsp; 459 struct snode *newsp, *newcsp; 460 struct vnode *newvp, *newcvp; 461 dev_info_t *dip; 462 queue_t *dq; 463 464 ASSERT(dev != newdev); 465 466 /* 467 * Check for cloning across different drivers. 468 * We only support this under the system provided clone driver 469 */ 470 if ((maj != newmaj) && !sysclone) { 471 cmn_err(CE_NOTE, 472 "unsupported clone open maj = %u, newmaj = %u", 473 maj, newmaj); 474 return (ENXIO); 475 } 476 477 /* old */ 478 oldsp = VTOS(*vpp); 479 oldcsp = VTOS(oldsp->s_commonvp); 480 481 /* new */ 482 newvp = makespecvp(newdev, vtype); 483 ASSERT(newvp != NULL); 484 newsp = VTOS(newvp); 485 newcvp = newsp->s_commonvp; 486 newcsp = VTOS(newcvp); 487 488 /* 489 * Clones inherit fsid, realvp, and dip. 490 * XXX realvp inherit is not occurring, does fstat of clone work? 491 */ 492 newsp->s_fsid = oldsp->s_fsid; 493 if (sysclone) { 494 newsp->s_flag |= SCLONE; 495 dip = NULL; 496 } else { 497 newsp->s_flag |= SSELFCLONE; 498 dip = oldcsp->s_dip; 499 } 500 501 /* 502 * If we cloned to an opened newdev that already has called 503 * spec_assoc_vp_with_devi (SDIPSET set) then the association is 504 * already established. 505 */ 506 if (!(newcsp->s_flag & SDIPSET)) { 507 /* 508 * Establish s_dip association for newdev. 509 * 510 * If we trusted the getinfo(9E) DDI_INFO_DEVT2INSTANCE 511 * implementation of all cloning drivers (SCLONE and SELFCLONE) 512 * we would always use e_ddi_hold_devi_by_dev(). We know that 513 * many drivers have had (still have?) problems with 514 * DDI_INFO_DEVT2INSTANCE, so we try to minimize reliance by 515 * detecting drivers that use QASSOCIATE (by looking down the 516 * stream) and setting their s_dip association to NULL. 517 */ 518 qassociate_used = 0; 519 if (stp) { 520 for (dq = stp->sd_wrq; dq; dq = dq->q_next) { 521 if (_RD(dq)->q_flag & _QASSOCIATED) { 522 qassociate_used = 1; 523 dip = NULL; 524 break; 525 } 526 } 527 } 528 529 if (dip || qassociate_used) { 530 spec_assoc_vp_with_devi(newvp, dip); 531 } else { 532 /* derive association from newdev */ 533 dip = e_ddi_hold_devi_by_dev(newdev, 0); 534 spec_assoc_vp_with_devi(newvp, dip); 535 if (dip) 536 ddi_release_devi(dip); 537 } 538 } 539 540 SN_HOLD(newcsp); 541 542 /* deal with stream stuff */ 543 if (stp != NULL) { 544 LOCK_CSP(newcsp); /* synchronize stream open/close */ 545 mutex_enter(&newcsp->s_lock); 546 newcvp->v_stream = newvp->v_stream = stp; 547 stp->sd_vnode = newcvp; 548 stp->sd_pvnode = newvp; 549 stp->sd_strtab = STREAMSTAB(newmaj); 550 mutex_exit(&newcsp->s_lock); 551 UNLOCK_CSP(newcsp); 552 } 553 554 /* substitute the vnode */ 555 SN_RELE(oldcsp); 556 VN_RELE(*vpp); 557 *vpp = newvp; 558 559 return (0); 560 } 561 562 static int 563 spec_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *cc) 564 { 565 major_t maj; 566 dev_t dev, newdev; 567 struct vnode *vp, *cvp; 568 struct snode *sp, *csp; 569 struct stdata *stp; 570 dev_info_t *dip; 571 int error, type; 572 contract_t *ct = NULL; 573 int open_returns_eintr; 574 slock_ret_t spec_locksp_ret; 575 576 577 flag &= ~FCREAT; /* paranoia */ 578 579 vp = *vpp; 580 sp = VTOS(vp); 581 ASSERT((vp->v_type == VCHR) || (vp->v_type == VBLK)); 582 if ((vp->v_type != VCHR) && (vp->v_type != VBLK)) 583 return (ENXIO); 584 585 /* 586 * If the VFS_NODEVICES bit was set for the mount, 587 * do not allow opens of special devices. 588 */ 589 if (sp->s_realvp && (sp->s_realvp->v_vfsp->vfs_flag & VFS_NODEVICES)) 590 return (ENXIO); 591 592 newdev = dev = vp->v_rdev; 593 594 /* 595 * If we are opening a node that has not had spec_assoc_vp_with_devi 596 * called against it (mknod outside /devices or a non-dacf makespecvp 597 * node) then SDIPSET will not be set. In this case we call an 598 * interface which will reconstruct the path and lookup (drive attach) 599 * through devfs (e_ddi_hold_devi_by_dev -> e_ddi_hold_devi_by_path -> 600 * devfs_lookupname). For support of broken drivers that don't call 601 * ddi_create_minor_node for all minor nodes in their instance space, 602 * we call interfaces that operates at the directory/devinfo 603 * (major/instance) level instead of to the leaf/minor node level. 604 * After finding and attaching the dip we associate it with the 605 * common specfs vnode (s_dip), which sets SDIPSET. A DL_DETACH_REQ 606 * to style-2 stream driver may set s_dip to NULL with SDIPSET set. 607 * 608 * NOTE: Although e_ddi_hold_devi_by_dev takes a dev_t argument, its 609 * implementation operates at the major/instance level since it only 610 * need to return a dip. 611 */ 612 cvp = sp->s_commonvp; 613 csp = VTOS(cvp); 614 if (!(csp->s_flag & SDIPSET)) { 615 /* try to attach, return error if we fail */ 616 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 617 return (ENXIO); 618 619 /* associate dip with the common snode s_dip */ 620 spec_assoc_vp_with_devi(vp, dip); 621 ddi_release_devi(dip); /* from e_ddi_hold_devi_by_dev */ 622 } 623 624 /* check if device fenced off */ 625 if (S_ISFENCED(sp)) 626 return (ENXIO); 627 628 #ifdef DEBUG 629 /* verify attach/open exclusion guarantee */ 630 dip = csp->s_dip; 631 ASSERT((dip == NULL) || i_ddi_devi_attached(dip)); 632 #endif /* DEBUG */ 633 634 if ((error = secpolicy_spec_open(cr, vp, flag)) != 0) 635 return (error); 636 637 /* Verify existance of open(9E) implementation. */ 638 maj = getmajor(dev); 639 if ((maj >= devcnt) || 640 (devopsp[maj]->devo_cb_ops == NULL) || 641 (devopsp[maj]->devo_cb_ops->cb_open == NULL)) 642 return (ENXIO); 643 644 /* 645 * split STREAMS vs. non-STREAMS 646 * 647 * If the device is a dual-personality device, then we might want 648 * to allow for a regular OTYP_BLK open. If however it's strictly 649 * a pure STREAMS device, the cb_open entry point will be 650 * nodev() which returns ENXIO. This does make this failure path 651 * somewhat longer, but such attempts to use OTYP_BLK with STREAMS 652 * devices should be exceedingly rare. (Most of the time they will 653 * be due to programmer error.) 654 */ 655 if ((vp->v_type == VCHR) && (STREAMSTAB(maj))) 656 goto streams_open; 657 658 not_streams: 659 /* 660 * Wait for in progress last close to complete. This guarantees 661 * to the driver writer that we will never be in the drivers 662 * open and close on the same (dev_t, otype) at the same time. 663 * Open count already incremented (SN_HOLD) on non-zero return. 664 * The wait is interruptible by a signal if the driver sets the 665 * D_OPEN_RETURNS_EINTR cb_ops(9S) cb_flag or sets the 666 * ddi-open-returns-eintr(9P) property in its driver.conf. 667 */ 668 if ((devopsp[maj]->devo_cb_ops->cb_flag & D_OPEN_RETURNS_EINTR) || 669 (devnamesp[maj].dn_flags & DN_OPEN_RETURNS_EINTR)) 670 open_returns_eintr = 1; 671 else 672 open_returns_eintr = 0; 673 while ((spec_locksp_ret = SYNCHOLD_CSP_SIG(csp, open_returns_eintr)) != 674 SUCCESS) { 675 if (spec_locksp_ret == INTR) 676 return (EINTR); 677 } 678 679 /* non streams open */ 680 type = (vp->v_type == VBLK ? OTYP_BLK : OTYP_CHR); 681 error = dev_open(&newdev, flag, type, cr); 682 683 /* deal with clone case */ 684 if (error == 0 && dev != newdev) { 685 error = spec_clone(vpp, newdev, vp->v_type, NULL); 686 /* 687 * bail on clone failure, further processing 688 * results in undefined behaviors. 689 */ 690 if (error != 0) 691 return (error); 692 sp = VTOS(*vpp); 693 csp = VTOS(sp->s_commonvp); 694 } 695 696 /* 697 * create contracts only for userland opens 698 * Successful open and cloning is done at this point. 699 */ 700 if (error == 0 && !(flag & FKLYR)) { 701 int spec_type; 702 spec_type = (STOV(csp)->v_type == VCHR) ? S_IFCHR : S_IFBLK; 703 if (contract_device_open(newdev, spec_type, NULL) != 0) { 704 error = EIO; 705 } 706 } 707 708 if (error == 0) { 709 sp->s_size = SPEC_SIZE(csp); 710 711 if ((csp->s_flag & SNEEDCLOSE) == 0) { 712 int nmaj = getmajor(newdev); 713 mutex_enter(&csp->s_lock); 714 /* successful open needs a close later */ 715 csp->s_flag |= SNEEDCLOSE; 716 717 /* 718 * Invalidate possible cached "unknown" size 719 * established by a VOP_GETATTR while open was in 720 * progress, and the driver might fail prop_op(9E). 721 */ 722 if (((cvp->v_type == VCHR) && (csp->s_size == 0)) || 723 ((cvp->v_type == VBLK) && 724 (csp->s_size == UNKNOWN_SIZE))) 725 csp->s_flag &= ~SSIZEVALID; 726 727 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_64BIT) 728 csp->s_flag |= SLOFFSET; 729 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_U64BIT) 730 csp->s_flag |= SLOFFSET | SANYOFFSET; 731 mutex_exit(&csp->s_lock); 732 } 733 return (0); 734 } 735 736 /* 737 * Open failed. If we missed a close operation because 738 * we were trying to get the device open and it is the 739 * last in progress open that is failing then call close. 740 * 741 * NOTE: Only non-streams open has this race condition. 742 */ 743 mutex_enter(&csp->s_lock); 744 csp->s_count--; /* decrement open count : SN_RELE */ 745 if ((csp->s_count == 0) && /* no outstanding open */ 746 (csp->s_mapcnt == 0) && /* no mapping */ 747 (csp->s_flag & SNEEDCLOSE)) { /* need a close */ 748 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 749 750 /* See comment in spec_close() */ 751 if (csp->s_flag & (SCLONE | SSELFCLONE)) 752 csp->s_flag &= ~SDIPSET; 753 754 csp->s_flag |= SCLOSING; 755 mutex_exit(&csp->s_lock); 756 757 ASSERT(*vpp != NULL); 758 (void) device_close(*vpp, flag, cr); 759 760 mutex_enter(&csp->s_lock); 761 csp->s_flag &= ~SCLOSING; 762 mutex_exit(&csp->s_lock); 763 } else { 764 mutex_exit(&csp->s_lock); 765 } 766 return (error); 767 768 streams_open: 769 /* 770 * Lock common snode to prevent any new clone opens on this 771 * stream while one is in progress. This is necessary since 772 * the stream currently associated with the clone device will 773 * not be part of it after the clone open completes. Unfortunately 774 * we don't know in advance if this is a clone 775 * device so we have to lock all opens. 776 * 777 * If we fail, it's because of an interrupt - EINTR return is an 778 * expected aspect of opening a stream so we don't need to check 779 * D_OPEN_RETURNS_EINTR. Open count already incremented (SN_HOLD) 780 * on non-zero return. 781 */ 782 if (LOCKHOLD_CSP_SIG(csp) != SUCCESS) 783 return (EINTR); 784 785 error = stropen(cvp, &newdev, flag, cr); 786 stp = cvp->v_stream; 787 788 /* deal with the clone case */ 789 if ((error == 0) && (dev != newdev)) { 790 vp->v_stream = cvp->v_stream = NULL; 791 UNLOCK_CSP(csp); 792 error = spec_clone(vpp, newdev, vp->v_type, stp); 793 /* 794 * bail on clone failure, further processing 795 * results in undefined behaviors. 796 */ 797 if (error != 0) 798 return (error); 799 sp = VTOS(*vpp); 800 csp = VTOS(sp->s_commonvp); 801 } else if (error == 0) { 802 vp->v_stream = stp; 803 UNLOCK_CSP(csp); 804 } 805 806 /* 807 * create contracts only for userland opens 808 * Successful open and cloning is done at this point. 809 */ 810 if (error == 0 && !(flag & FKLYR)) { 811 /* STREAM is of type S_IFCHR */ 812 if (contract_device_open(newdev, S_IFCHR, &ct) != 0) { 813 UNLOCK_CSP(csp); 814 (void) spec_close(vp, flag, 1, 0, cr, cc); 815 return (EIO); 816 } 817 } 818 819 if (error == 0) { 820 /* STREAMS devices don't have a size */ 821 sp->s_size = csp->s_size = 0; 822 823 if (!(stp->sd_flag & STRISTTY) || (flag & FNOCTTY)) 824 return (0); 825 826 /* try to allocate it as a controlling terminal */ 827 if (strctty(stp) != EINTR) 828 return (0); 829 830 /* strctty() was interrupted by a signal */ 831 if (ct) { 832 /* we only create contracts for userland opens */ 833 ASSERT(ttoproc(curthread)); 834 (void) contract_abandon(ct, ttoproc(curthread), 0); 835 } 836 (void) spec_close(vp, flag, 1, 0, cr, cc); 837 return (EINTR); 838 } 839 840 /* 841 * Deal with stropen failure. 842 * 843 * sd_flag in the stream head cannot change since the 844 * common snode is locked before the call to stropen(). 845 */ 846 if ((stp != NULL) && (stp->sd_flag & STREOPENFAIL)) { 847 /* 848 * Open failed part way through. 849 */ 850 mutex_enter(&stp->sd_lock); 851 stp->sd_flag &= ~STREOPENFAIL; 852 mutex_exit(&stp->sd_lock); 853 854 UNLOCK_CSP(csp); 855 (void) spec_close(vp, flag, 1, 0, cr, cc); 856 } else { 857 UNLOCK_CSP(csp); 858 SN_RELE(csp); 859 } 860 861 /* 862 * Resolution for STREAMS vs. regular character device: If the 863 * STREAMS open(9e) returns ENOSTR, then try an ordinary device 864 * open instead. 865 */ 866 if (error == ENOSTR) { 867 goto not_streams; 868 } 869 return (error); 870 } 871 872 /*ARGSUSED2*/ 873 static int 874 spec_close( 875 struct vnode *vp, 876 int flag, 877 int count, 878 offset_t offset, 879 struct cred *cr, 880 caller_context_t *ct) 881 { 882 struct vnode *cvp; 883 struct snode *sp, *csp; 884 enum vtype type; 885 dev_t dev; 886 int error = 0; 887 int sysclone; 888 889 if (!(flag & FKLYR)) { 890 /* this only applies to closes of devices from userland */ 891 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 892 cleanshares(vp, ttoproc(curthread)->p_pid); 893 if (vp->v_stream) 894 strclean(vp); 895 } 896 if (count > 1) 897 return (0); 898 899 /* we allow close to succeed even if device is fenced off */ 900 sp = VTOS(vp); 901 cvp = sp->s_commonvp; 902 903 dev = sp->s_dev; 904 type = vp->v_type; 905 906 ASSERT(type == VCHR || type == VBLK); 907 908 /* 909 * Prevent close/close and close/open races by serializing closes 910 * on this common snode. Clone opens are held up until after 911 * we have closed this device so the streams linkage is maintained 912 */ 913 csp = VTOS(cvp); 914 915 LOCK_CSP(csp); 916 mutex_enter(&csp->s_lock); 917 918 csp->s_count--; /* one fewer open reference : SN_RELE */ 919 sysclone = sp->s_flag & SCLONE; 920 921 /* 922 * Invalidate size on each close. 923 * 924 * XXX We do this on each close because we don't have interfaces that 925 * allow a driver to invalidate the size. Since clearing this on each 926 * close this causes property overhead we skip /dev/null and 927 * /dev/zero to avoid degrading kenbus performance. 928 */ 929 if (getmajor(dev) != mm_major) 930 csp->s_flag &= ~SSIZEVALID; 931 932 /* 933 * Only call the close routine when the last open reference through 934 * any [s, v]node goes away. This can be checked by looking at 935 * s_count on the common vnode. 936 */ 937 if ((csp->s_count == 0) && (csp->s_mapcnt == 0)) { 938 /* we don't need a close */ 939 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 940 941 /* 942 * A cloning driver may open-clone to the same dev_t that we 943 * are closing before spec_inactive destroys the common snode. 944 * If this occurs the s_dip association needs to be reevaluated. 945 * We clear SDIPSET to force reevaluation in this case. When 946 * reevaluation occurs (by spec_clone after open), if the 947 * devinfo association has changed then the old association 948 * will be released as the new association is established by 949 * spec_assoc_vp_with_devi(). 950 */ 951 if (csp->s_flag & (SCLONE | SSELFCLONE)) 952 csp->s_flag &= ~SDIPSET; 953 954 csp->s_flag |= SCLOSING; 955 mutex_exit(&csp->s_lock); 956 error = device_close(vp, flag, cr); 957 958 /* 959 * Decrement the devops held in clnopen() 960 */ 961 if (sysclone) { 962 ddi_rele_driver(getmajor(dev)); 963 } 964 mutex_enter(&csp->s_lock); 965 csp->s_flag &= ~SCLOSING; 966 } 967 968 UNLOCK_CSP_LOCK_HELD(csp); 969 mutex_exit(&csp->s_lock); 970 971 return (error); 972 } 973 974 /*ARGSUSED2*/ 975 static int 976 spec_read( 977 struct vnode *vp, 978 struct uio *uiop, 979 int ioflag, 980 struct cred *cr, 981 caller_context_t *ct) 982 { 983 int error; 984 struct snode *sp = VTOS(vp); 985 dev_t dev = sp->s_dev; 986 size_t n; 987 ulong_t on; 988 u_offset_t bdevsize; 989 offset_t maxoff; 990 offset_t off; 991 struct vnode *blkvp; 992 993 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 994 995 if (vp->v_stream) { 996 ASSERT(vp->v_type == VCHR); 997 smark(sp, SACC); 998 return (strread(vp, uiop, cr)); 999 } 1000 1001 if (uiop->uio_resid == 0) 1002 return (0); 1003 1004 /* 1005 * Plain old character devices that set D_U64BIT can have 1006 * unrestricted offsets. 1007 */ 1008 maxoff = spec_maxoffset(vp); 1009 ASSERT(maxoff != -1 || vp->v_type == VCHR); 1010 1011 if (maxoff != -1 && (uiop->uio_loffset < 0 || 1012 uiop->uio_loffset + uiop->uio_resid > maxoff)) 1013 return (EINVAL); 1014 1015 if (vp->v_type == VCHR) { 1016 smark(sp, SACC); 1017 ASSERT(vp->v_stream == NULL); 1018 return (cdev_read(dev, uiop, cr)); 1019 } 1020 1021 /* 1022 * Block device. 1023 */ 1024 error = 0; 1025 blkvp = sp->s_commonvp; 1026 bdevsize = SPEC_SIZE(VTOS(blkvp)); 1027 1028 do { 1029 caddr_t base; 1030 offset_t diff; 1031 1032 off = uiop->uio_loffset & (offset_t)MAXBMASK; 1033 on = (size_t)(uiop->uio_loffset & MAXBOFFSET); 1034 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 1035 diff = bdevsize - uiop->uio_loffset; 1036 1037 if (diff <= 0) 1038 break; 1039 if (diff < n) 1040 n = (size_t)diff; 1041 1042 if (vpm_enable) { 1043 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1044 n, uiop, 1, NULL, 0, S_READ); 1045 } else { 1046 base = segmap_getmapflt(segkmap, blkvp, 1047 (u_offset_t)(off + on), n, 1, S_READ); 1048 1049 error = uiomove(base + on, n, UIO_READ, uiop); 1050 } 1051 if (!error) { 1052 int flags = 0; 1053 /* 1054 * If we read a whole block, we won't need this 1055 * buffer again soon. 1056 */ 1057 if (n + on == MAXBSIZE) 1058 flags = SM_DONTNEED | SM_FREE; 1059 if (vpm_enable) { 1060 error = vpm_sync_pages(blkvp, off, n, flags); 1061 } else { 1062 error = segmap_release(segkmap, base, flags); 1063 } 1064 } else { 1065 if (vpm_enable) { 1066 (void) vpm_sync_pages(blkvp, off, n, 0); 1067 } else { 1068 (void) segmap_release(segkmap, base, 0); 1069 } 1070 if (bdevsize == UNKNOWN_SIZE) { 1071 error = 0; 1072 break; 1073 } 1074 } 1075 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1076 1077 return (error); 1078 } 1079 1080 /*ARGSUSED*/ 1081 static int 1082 spec_write( 1083 struct vnode *vp, 1084 struct uio *uiop, 1085 int ioflag, 1086 struct cred *cr, 1087 caller_context_t *ct) 1088 { 1089 int error; 1090 struct snode *sp = VTOS(vp); 1091 dev_t dev = sp->s_dev; 1092 size_t n; 1093 ulong_t on; 1094 u_offset_t bdevsize; 1095 offset_t maxoff; 1096 offset_t off; 1097 struct vnode *blkvp; 1098 1099 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 1100 1101 if (vp->v_stream) { 1102 ASSERT(vp->v_type == VCHR); 1103 smark(sp, SUPD); 1104 return (strwrite(vp, uiop, cr)); 1105 } 1106 1107 /* 1108 * Plain old character devices that set D_U64BIT can have 1109 * unrestricted offsets. 1110 */ 1111 maxoff = spec_maxoffset(vp); 1112 ASSERT(maxoff != -1 || vp->v_type == VCHR); 1113 1114 if (maxoff != -1 && (uiop->uio_loffset < 0 || 1115 uiop->uio_loffset + uiop->uio_resid > maxoff)) 1116 return (EINVAL); 1117 1118 if (vp->v_type == VCHR) { 1119 smark(sp, SUPD); 1120 ASSERT(vp->v_stream == NULL); 1121 return (cdev_write(dev, uiop, cr)); 1122 } 1123 1124 if (uiop->uio_resid == 0) 1125 return (0); 1126 1127 error = 0; 1128 blkvp = sp->s_commonvp; 1129 bdevsize = SPEC_SIZE(VTOS(blkvp)); 1130 1131 do { 1132 int pagecreate; 1133 int newpage; 1134 caddr_t base; 1135 offset_t diff; 1136 1137 off = uiop->uio_loffset & (offset_t)MAXBMASK; 1138 on = (ulong_t)(uiop->uio_loffset & MAXBOFFSET); 1139 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 1140 pagecreate = 0; 1141 1142 diff = bdevsize - uiop->uio_loffset; 1143 if (diff <= 0) { 1144 error = ENXIO; 1145 break; 1146 } 1147 if (diff < n) 1148 n = (size_t)diff; 1149 1150 /* 1151 * Check to see if we can skip reading in the page 1152 * and just allocate the memory. We can do this 1153 * if we are going to rewrite the entire mapping 1154 * or if we are going to write to end of the device 1155 * from the beginning of the mapping. 1156 */ 1157 if (n == MAXBSIZE || (on == 0 && (off + n) == bdevsize)) 1158 pagecreate = 1; 1159 1160 newpage = 0; 1161 1162 /* 1163 * Touch the page and fault it in if it is not in core 1164 * before segmap_getmapflt or vpm_data_copy can lock it. 1165 * This is to avoid the deadlock if the buffer is mapped 1166 * to the same file through mmap which we want to write. 1167 */ 1168 uio_prefaultpages((long)n, uiop); 1169 1170 if (vpm_enable) { 1171 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1172 n, uiop, !pagecreate, NULL, 0, S_WRITE); 1173 } else { 1174 base = segmap_getmapflt(segkmap, blkvp, 1175 (u_offset_t)(off + on), n, !pagecreate, S_WRITE); 1176 1177 /* 1178 * segmap_pagecreate() returns 1 if it calls 1179 * page_create_va() to allocate any pages. 1180 */ 1181 1182 if (pagecreate) 1183 newpage = segmap_pagecreate(segkmap, base + on, 1184 n, 0); 1185 1186 error = uiomove(base + on, n, UIO_WRITE, uiop); 1187 } 1188 1189 if (!vpm_enable && pagecreate && 1190 uiop->uio_loffset < 1191 P2ROUNDUP_TYPED(off + on + n, PAGESIZE, offset_t)) { 1192 /* 1193 * We created pages w/o initializing them completely, 1194 * thus we need to zero the part that wasn't set up. 1195 * This can happen if we write to the end of the device 1196 * or if we had some sort of error during the uiomove. 1197 */ 1198 long nzero; 1199 offset_t nmoved; 1200 1201 nmoved = (uiop->uio_loffset - (off + on)); 1202 if (nmoved < 0 || nmoved > n) { 1203 panic("spec_write: nmoved bogus"); 1204 /*NOTREACHED*/ 1205 } 1206 nzero = (long)P2ROUNDUP(on + n, PAGESIZE) - 1207 (on + nmoved); 1208 if (nzero < 0 || (on + nmoved + nzero > MAXBSIZE)) { 1209 panic("spec_write: nzero bogus"); 1210 /*NOTREACHED*/ 1211 } 1212 (void) kzero(base + on + nmoved, (size_t)nzero); 1213 } 1214 1215 /* 1216 * Unlock the pages which have been allocated by 1217 * page_create_va() in segmap_pagecreate(). 1218 */ 1219 if (!vpm_enable && newpage) 1220 segmap_pageunlock(segkmap, base + on, 1221 (size_t)n, S_WRITE); 1222 1223 if (error == 0) { 1224 int flags = 0; 1225 1226 /* 1227 * Force write back for synchronous write cases. 1228 */ 1229 if (ioflag & (FSYNC|FDSYNC)) 1230 flags = SM_WRITE; 1231 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1232 /* 1233 * Have written a whole block. 1234 * Start an asynchronous write and 1235 * mark the buffer to indicate that 1236 * it won't be needed again soon. 1237 * Push swap files here, since it 1238 * won't happen anywhere else. 1239 */ 1240 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1241 } 1242 smark(sp, SUPD|SCHG); 1243 if (vpm_enable) { 1244 error = vpm_sync_pages(blkvp, off, n, flags); 1245 } else { 1246 error = segmap_release(segkmap, base, flags); 1247 } 1248 } else { 1249 if (vpm_enable) { 1250 (void) vpm_sync_pages(blkvp, off, n, SM_INVAL); 1251 } else { 1252 (void) segmap_release(segkmap, base, SM_INVAL); 1253 } 1254 } 1255 1256 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1257 1258 return (error); 1259 } 1260 1261 /*ARGSUSED6*/ 1262 static int 1263 spec_ioctl(struct vnode *vp, int cmd, intptr_t arg, int mode, struct cred *cr, 1264 int *rvalp, caller_context_t *ct) 1265 { 1266 struct snode *sp; 1267 dev_t dev; 1268 int error; 1269 1270 if (vp->v_type != VCHR) 1271 return (ENOTTY); 1272 1273 /* 1274 * allow ioctls() to go through even for fenced snodes, as they 1275 * may include unconfiguration operation - for example popping of 1276 * streams modules. 1277 */ 1278 1279 sp = VTOS(vp); 1280 dev = sp->s_dev; 1281 if (vp->v_stream) { 1282 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); 1283 } else { 1284 error = cdev_ioctl(dev, cmd, arg, mode, cr, rvalp); 1285 } 1286 return (error); 1287 } 1288 1289 static int 1290 spec_getattr( 1291 struct vnode *vp, 1292 struct vattr *vap, 1293 int flags, 1294 struct cred *cr, 1295 caller_context_t *ct) 1296 { 1297 int error; 1298 struct snode *sp; 1299 struct vnode *realvp; 1300 1301 /* With ATTR_COMM we will not get attributes from realvp */ 1302 if (flags & ATTR_COMM) { 1303 sp = VTOS(vp); 1304 vp = sp->s_commonvp; 1305 } 1306 sp = VTOS(vp); 1307 1308 /* we want stat() to fail with ENXIO if the device is fenced off */ 1309 if (S_ISFENCED(sp)) 1310 return (ENXIO); 1311 1312 realvp = sp->s_realvp; 1313 1314 if (realvp == NULL) { 1315 static int snode_shift = 0; 1316 1317 /* 1318 * Calculate the amount of bitshift to a snode pointer which 1319 * will still keep it unique. See below. 1320 */ 1321 if (snode_shift == 0) 1322 snode_shift = highbit(sizeof (struct snode)); 1323 ASSERT(snode_shift > 0); 1324 1325 /* 1326 * No real vnode behind this one. Fill in the fields 1327 * from the snode. 1328 * 1329 * This code should be refined to return only the 1330 * attributes asked for instead of all of them. 1331 */ 1332 vap->va_type = vp->v_type; 1333 vap->va_mode = 0; 1334 vap->va_uid = vap->va_gid = 0; 1335 vap->va_fsid = sp->s_fsid; 1336 1337 /* 1338 * If the va_nodeid is > MAX_USHORT, then i386 stats might 1339 * fail. So we shift down the snode pointer to try and get 1340 * the most uniqueness into 16-bits. 1341 */ 1342 vap->va_nodeid = ((ino64_t)(uintptr_t)sp >> snode_shift) & 1343 0xFFFF; 1344 vap->va_nlink = 0; 1345 vap->va_rdev = sp->s_dev; 1346 1347 /* 1348 * va_nblocks is the number of 512 byte blocks used to store 1349 * the mknod for the device, not the number of blocks on the 1350 * device itself. This is typically zero since the mknod is 1351 * represented directly in the inode itself. 1352 */ 1353 vap->va_nblocks = 0; 1354 } else { 1355 error = VOP_GETATTR(realvp, vap, flags, cr, ct); 1356 if (error != 0) 1357 return (error); 1358 } 1359 1360 /* set the size from the snode */ 1361 vap->va_size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1362 vap->va_blksize = MAXBSIZE; 1363 1364 mutex_enter(&sp->s_lock); 1365 vap->va_atime.tv_sec = sp->s_atime; 1366 vap->va_mtime.tv_sec = sp->s_mtime; 1367 vap->va_ctime.tv_sec = sp->s_ctime; 1368 mutex_exit(&sp->s_lock); 1369 1370 vap->va_atime.tv_nsec = 0; 1371 vap->va_mtime.tv_nsec = 0; 1372 vap->va_ctime.tv_nsec = 0; 1373 vap->va_seq = 0; 1374 1375 return (0); 1376 } 1377 1378 static int 1379 spec_setattr( 1380 struct vnode *vp, 1381 struct vattr *vap, 1382 int flags, 1383 struct cred *cr, 1384 caller_context_t *ct) 1385 { 1386 struct snode *sp = VTOS(vp); 1387 struct vnode *realvp; 1388 int error; 1389 1390 /* fail with ENXIO if the device is fenced off */ 1391 if (S_ISFENCED(sp)) 1392 return (ENXIO); 1393 1394 if (vp->v_type == VCHR && vp->v_stream && (vap->va_mask & AT_SIZE)) { 1395 /* 1396 * 1135080: O_TRUNC should have no effect on 1397 * named pipes and terminal devices. 1398 */ 1399 ASSERT(vap->va_mask == AT_SIZE); 1400 return (0); 1401 } 1402 1403 if ((realvp = sp->s_realvp) == NULL) 1404 error = 0; /* no real vnode to update */ 1405 else 1406 error = VOP_SETATTR(realvp, vap, flags, cr, ct); 1407 if (error == 0) { 1408 /* 1409 * If times were changed, update snode. 1410 */ 1411 mutex_enter(&sp->s_lock); 1412 if (vap->va_mask & AT_ATIME) 1413 sp->s_atime = vap->va_atime.tv_sec; 1414 if (vap->va_mask & AT_MTIME) { 1415 sp->s_mtime = vap->va_mtime.tv_sec; 1416 sp->s_ctime = gethrestime_sec(); 1417 } 1418 mutex_exit(&sp->s_lock); 1419 } 1420 return (error); 1421 } 1422 1423 static int 1424 spec_access( 1425 struct vnode *vp, 1426 int mode, 1427 int flags, 1428 struct cred *cr, 1429 caller_context_t *ct) 1430 { 1431 struct vnode *realvp; 1432 struct snode *sp = VTOS(vp); 1433 1434 /* fail with ENXIO if the device is fenced off */ 1435 if (S_ISFENCED(sp)) 1436 return (ENXIO); 1437 1438 if ((realvp = sp->s_realvp) != NULL) 1439 return (VOP_ACCESS(realvp, mode, flags, cr, ct)); 1440 else 1441 return (0); /* Allow all access. */ 1442 } 1443 1444 /* 1445 * This can be called if creat or an open with O_CREAT is done on the root 1446 * of a lofs mount where the mounted entity is a special file. 1447 */ 1448 /*ARGSUSED*/ 1449 static int 1450 spec_create( 1451 struct vnode *dvp, 1452 char *name, 1453 vattr_t *vap, 1454 enum vcexcl excl, 1455 int mode, 1456 struct vnode **vpp, 1457 struct cred *cr, 1458 int flag, 1459 caller_context_t *ct, 1460 vsecattr_t *vsecp) 1461 { 1462 int error; 1463 struct snode *sp = VTOS(dvp); 1464 1465 /* fail with ENXIO if the device is fenced off */ 1466 if (S_ISFENCED(sp)) 1467 return (ENXIO); 1468 1469 ASSERT(dvp && (dvp->v_flag & VROOT) && *name == '\0'); 1470 if (excl == NONEXCL) { 1471 if (mode && (error = spec_access(dvp, mode, 0, cr, ct))) 1472 return (error); 1473 VN_HOLD(dvp); 1474 return (0); 1475 } 1476 return (EEXIST); 1477 } 1478 1479 /* 1480 * In order to sync out the snode times without multi-client problems, 1481 * make sure the times written out are never earlier than the times 1482 * already set in the vnode. 1483 */ 1484 static int 1485 spec_fsync( 1486 struct vnode *vp, 1487 int syncflag, 1488 struct cred *cr, 1489 caller_context_t *ct) 1490 { 1491 struct snode *sp = VTOS(vp); 1492 struct vnode *realvp; 1493 struct vnode *cvp; 1494 struct vattr va, vatmp; 1495 1496 /* allow syncing even if device is fenced off */ 1497 1498 /* If times didn't change, don't flush anything. */ 1499 mutex_enter(&sp->s_lock); 1500 if ((sp->s_flag & (SACC|SUPD|SCHG)) == 0 && vp->v_type != VBLK) { 1501 mutex_exit(&sp->s_lock); 1502 return (0); 1503 } 1504 sp->s_flag &= ~(SACC|SUPD|SCHG); 1505 mutex_exit(&sp->s_lock); 1506 cvp = sp->s_commonvp; 1507 realvp = sp->s_realvp; 1508 1509 if (vp->v_type == VBLK && cvp != vp && vn_has_cached_data(cvp) && 1510 (cvp->v_flag & VISSWAP) == 0) 1511 (void) VOP_PUTPAGE(cvp, (offset_t)0, 0, 0, cr, ct); 1512 1513 /* 1514 * For devices that support it, force write cache to stable storage. 1515 * We don't need the lock to check s_flags since we can treat 1516 * SNOFLUSH as a hint. 1517 */ 1518 if ((vp->v_type == VBLK || vp->v_type == VCHR) && 1519 !(sp->s_flag & SNOFLUSH)) { 1520 int rval, rc; 1521 struct dk_callback spec_callback; 1522 1523 spec_callback.dkc_flag = FLUSH_VOLATILE; 1524 spec_callback.dkc_callback = NULL; 1525 1526 /* synchronous flush on volatile cache */ 1527 rc = cdev_ioctl(vp->v_rdev, DKIOCFLUSHWRITECACHE, 1528 (intptr_t)&spec_callback, FNATIVE|FKIOCTL, cr, &rval); 1529 1530 if (rc == ENOTSUP || rc == ENOTTY) { 1531 mutex_enter(&sp->s_lock); 1532 sp->s_flag |= SNOFLUSH; 1533 mutex_exit(&sp->s_lock); 1534 } 1535 } 1536 1537 /* 1538 * If no real vnode to update, don't flush anything. 1539 */ 1540 if (realvp == NULL) 1541 return (0); 1542 1543 vatmp.va_mask = AT_ATIME|AT_MTIME; 1544 if (VOP_GETATTR(realvp, &vatmp, 0, cr, ct) == 0) { 1545 1546 mutex_enter(&sp->s_lock); 1547 if (vatmp.va_atime.tv_sec > sp->s_atime) 1548 va.va_atime = vatmp.va_atime; 1549 else { 1550 va.va_atime.tv_sec = sp->s_atime; 1551 va.va_atime.tv_nsec = 0; 1552 } 1553 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1554 va.va_mtime = vatmp.va_mtime; 1555 else { 1556 va.va_mtime.tv_sec = sp->s_mtime; 1557 va.va_mtime.tv_nsec = 0; 1558 } 1559 mutex_exit(&sp->s_lock); 1560 1561 va.va_mask = AT_ATIME|AT_MTIME; 1562 (void) VOP_SETATTR(realvp, &va, 0, cr, ct); 1563 } 1564 (void) VOP_FSYNC(realvp, syncflag, cr, ct); 1565 return (0); 1566 } 1567 1568 /*ARGSUSED*/ 1569 static void 1570 spec_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 1571 { 1572 struct snode *sp = VTOS(vp); 1573 struct vnode *cvp; 1574 struct vnode *rvp; 1575 1576 /* 1577 * If no one has reclaimed the vnode, remove from the 1578 * cache now. 1579 */ 1580 if (vp->v_count < 1) { 1581 panic("spec_inactive: Bad v_count"); 1582 /*NOTREACHED*/ 1583 } 1584 mutex_enter(&stable_lock); 1585 1586 mutex_enter(&vp->v_lock); 1587 VN_RELE_LOCKED(vp); 1588 if (vp->v_count != 0) { 1589 mutex_exit(&vp->v_lock); 1590 mutex_exit(&stable_lock); 1591 return; 1592 } 1593 mutex_exit(&vp->v_lock); 1594 1595 sdelete(sp); 1596 mutex_exit(&stable_lock); 1597 1598 /* We are the sole owner of sp now */ 1599 cvp = sp->s_commonvp; 1600 rvp = sp->s_realvp; 1601 1602 if (rvp) { 1603 /* 1604 * If the snode times changed, then update the times 1605 * associated with the "realvp". 1606 */ 1607 if ((sp->s_flag & (SACC|SUPD|SCHG)) != 0) { 1608 1609 struct vattr va, vatmp; 1610 1611 mutex_enter(&sp->s_lock); 1612 sp->s_flag &= ~(SACC|SUPD|SCHG); 1613 mutex_exit(&sp->s_lock); 1614 vatmp.va_mask = AT_ATIME|AT_MTIME; 1615 /* 1616 * The user may not own the device, but we 1617 * want to update the attributes anyway. 1618 */ 1619 if (VOP_GETATTR(rvp, &vatmp, 0, kcred, ct) == 0) { 1620 if (vatmp.va_atime.tv_sec > sp->s_atime) 1621 va.va_atime = vatmp.va_atime; 1622 else { 1623 va.va_atime.tv_sec = sp->s_atime; 1624 va.va_atime.tv_nsec = 0; 1625 } 1626 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1627 va.va_mtime = vatmp.va_mtime; 1628 else { 1629 va.va_mtime.tv_sec = sp->s_mtime; 1630 va.va_mtime.tv_nsec = 0; 1631 } 1632 1633 va.va_mask = AT_ATIME|AT_MTIME; 1634 (void) VOP_SETATTR(rvp, &va, 0, kcred, ct); 1635 } 1636 } 1637 } 1638 ASSERT(!vn_has_cached_data(vp)); 1639 vn_invalid(vp); 1640 1641 /* if we are sharing another file systems vfs, release it */ 1642 if (vp->v_vfsp && (vp->v_vfsp != &spec_vfs)) 1643 VFS_RELE(vp->v_vfsp); 1644 1645 /* if we have a realvp, release the realvp */ 1646 if (rvp) 1647 VN_RELE(rvp); 1648 1649 /* if we have a common, release the common */ 1650 if (cvp && (cvp != vp)) { 1651 VN_RELE(cvp); 1652 #ifdef DEBUG 1653 } else if (cvp) { 1654 /* 1655 * if this is the last reference to a common vnode, any 1656 * associated stream had better have been closed 1657 */ 1658 ASSERT(cvp == vp); 1659 ASSERT(cvp->v_stream == NULL); 1660 #endif /* DEBUG */ 1661 } 1662 1663 /* 1664 * if we have a hold on a devinfo node (established by 1665 * spec_assoc_vp_with_devi), release the hold 1666 */ 1667 if (sp->s_dip) 1668 ddi_release_devi(sp->s_dip); 1669 1670 /* 1671 * If we have an associated device policy, release it. 1672 */ 1673 if (sp->s_plcy != NULL) 1674 dpfree(sp->s_plcy); 1675 1676 /* 1677 * If all holds on the devinfo node are through specfs/devfs 1678 * and we just destroyed the last specfs node associated with the 1679 * device, then the devinfo node reference count should now be 1680 * zero. We can't check this because there may be other holds 1681 * on the node from non file system sources: ddi_hold_devi_by_instance 1682 * for example. 1683 */ 1684 kmem_cache_free(snode_cache, sp); 1685 } 1686 1687 static int 1688 spec_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 1689 { 1690 struct vnode *realvp; 1691 struct snode *sp = VTOS(vp); 1692 1693 if ((realvp = sp->s_realvp) != NULL) 1694 return (VOP_FID(realvp, fidp, ct)); 1695 else 1696 return (EINVAL); 1697 } 1698 1699 /*ARGSUSED1*/ 1700 static int 1701 spec_seek( 1702 struct vnode *vp, 1703 offset_t ooff, 1704 offset_t *noffp, 1705 caller_context_t *ct) 1706 { 1707 offset_t maxoff = spec_maxoffset(vp); 1708 1709 if (maxoff == -1 || *noffp <= maxoff) 1710 return (0); 1711 else 1712 return (EINVAL); 1713 } 1714 1715 static int 1716 spec_frlock( 1717 struct vnode *vp, 1718 int cmd, 1719 struct flock64 *bfp, 1720 int flag, 1721 offset_t offset, 1722 struct flk_callback *flk_cbp, 1723 struct cred *cr, 1724 caller_context_t *ct) 1725 { 1726 struct snode *sp = VTOS(vp); 1727 struct snode *csp; 1728 1729 csp = VTOS(sp->s_commonvp); 1730 /* 1731 * If file is being mapped, disallow frlock. 1732 */ 1733 if (csp->s_mapcnt > 0) 1734 return (EAGAIN); 1735 1736 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 1737 } 1738 1739 static int 1740 spec_realvp(struct vnode *vp, struct vnode **vpp, caller_context_t *ct) 1741 { 1742 struct vnode *rvp; 1743 1744 if ((rvp = VTOS(vp)->s_realvp) != NULL) { 1745 vp = rvp; 1746 if (VOP_REALVP(vp, &rvp, ct) == 0) 1747 vp = rvp; 1748 } 1749 1750 *vpp = vp; 1751 return (0); 1752 } 1753 1754 /* 1755 * Return all the pages from [off..off + len] in block 1756 * or character device. 1757 */ 1758 /*ARGSUSED*/ 1759 static int 1760 spec_getpage( 1761 struct vnode *vp, 1762 offset_t off, 1763 size_t len, 1764 uint_t *protp, 1765 page_t *pl[], 1766 size_t plsz, 1767 struct seg *seg, 1768 caddr_t addr, 1769 enum seg_rw rw, 1770 struct cred *cr, 1771 caller_context_t *ct) 1772 { 1773 struct snode *sp = VTOS(vp); 1774 int err; 1775 1776 ASSERT(sp->s_commonvp == vp); 1777 1778 /* 1779 * XXX Given the above assertion, this might not do 1780 * what is wanted here. 1781 */ 1782 if (vp->v_flag & VNOMAP) 1783 return (ENOSYS); 1784 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_GETPAGE, 1785 "specfs getpage:vp %p off %llx len %ld snode %p", 1786 vp, off, len, sp); 1787 1788 switch (vp->v_type) { 1789 case VBLK: 1790 if (protp != NULL) 1791 *protp = PROT_ALL; 1792 1793 if (((u_offset_t)off + len) > (SPEC_SIZE(sp) + PAGEOFFSET)) 1794 return (EFAULT); /* beyond EOF */ 1795 1796 err = pvn_getpages(spec_getapage, vp, (u_offset_t)off, len, 1797 protp, pl, plsz, seg, addr, rw, cr); 1798 break; 1799 1800 case VCHR: 1801 cmn_err(CE_NOTE, "spec_getpage called for character device. " 1802 "Check any non-ON consolidation drivers"); 1803 err = 0; 1804 pl[0] = (page_t *)0; 1805 break; 1806 1807 default: 1808 panic("spec_getpage: bad v_type 0x%x", vp->v_type); 1809 /*NOTREACHED*/ 1810 } 1811 1812 return (err); 1813 } 1814 1815 extern int klustsize; /* set in machdep.c */ 1816 1817 int spec_ra = 1; 1818 int spec_lostpage; /* number of times we lost original page */ 1819 1820 /*ARGSUSED2*/ 1821 static int 1822 spec_getapage( 1823 struct vnode *vp, 1824 u_offset_t off, 1825 size_t len, 1826 uint_t *protp, 1827 page_t *pl[], 1828 size_t plsz, 1829 struct seg *seg, 1830 caddr_t addr, 1831 enum seg_rw rw, 1832 struct cred *cr) 1833 { 1834 struct snode *sp; 1835 struct buf *bp; 1836 page_t *pp, *pp2; 1837 u_offset_t io_off1, io_off2; 1838 size_t io_len1; 1839 size_t io_len2; 1840 size_t blksz; 1841 u_offset_t blkoff; 1842 int dora, err; 1843 page_t *pagefound; 1844 uint_t xlen; 1845 size_t adj_klustsize; 1846 u_offset_t size; 1847 u_offset_t tmpoff; 1848 1849 sp = VTOS(vp); 1850 TRACE_3(TR_FAC_SPECFS, TR_SPECFS_GETAPAGE, 1851 "specfs getapage:vp %p off %llx snode %p", vp, off, sp); 1852 reread: 1853 1854 err = 0; 1855 bp = NULL; 1856 pp = NULL; 1857 pp2 = NULL; 1858 1859 if (pl != NULL) 1860 pl[0] = NULL; 1861 1862 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1863 1864 if (spec_ra && sp->s_nextr == off) 1865 dora = 1; 1866 else 1867 dora = 0; 1868 1869 if (size == UNKNOWN_SIZE) { 1870 dora = 0; 1871 adj_klustsize = PAGESIZE; 1872 } else { 1873 adj_klustsize = dora ? klustsize : PAGESIZE; 1874 } 1875 1876 again: 1877 if ((pagefound = page_exists(vp, off)) == NULL) { 1878 if (rw == S_CREATE) { 1879 /* 1880 * We're allocating a swap slot and it's 1881 * associated page was not found, so allocate 1882 * and return it. 1883 */ 1884 if ((pp = page_create_va(vp, off, 1885 PAGESIZE, PG_WAIT, seg, addr)) == NULL) { 1886 panic("spec_getapage: page_create"); 1887 /*NOTREACHED*/ 1888 } 1889 io_len1 = PAGESIZE; 1890 sp->s_nextr = off + PAGESIZE; 1891 } else { 1892 /* 1893 * Need to really do disk I/O to get the page(s). 1894 */ 1895 blkoff = (off / adj_klustsize) * adj_klustsize; 1896 if (size == UNKNOWN_SIZE) { 1897 blksz = PAGESIZE; 1898 } else { 1899 if (blkoff + adj_klustsize <= size) 1900 blksz = adj_klustsize; 1901 else 1902 blksz = 1903 MIN(size - blkoff, adj_klustsize); 1904 } 1905 1906 pp = pvn_read_kluster(vp, off, seg, addr, &tmpoff, 1907 &io_len1, blkoff, blksz, 0); 1908 io_off1 = tmpoff; 1909 /* 1910 * Make sure the page didn't sneek into the 1911 * cache while we blocked in pvn_read_kluster. 1912 */ 1913 if (pp == NULL) 1914 goto again; 1915 1916 /* 1917 * Zero part of page which we are not 1918 * going to be reading from disk now. 1919 */ 1920 xlen = (uint_t)(io_len1 & PAGEOFFSET); 1921 if (xlen != 0) 1922 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 1923 1924 bp = spec_startio(vp, pp, io_off1, io_len1, 1925 pl == NULL ? (B_ASYNC | B_READ) : B_READ); 1926 sp->s_nextr = io_off1 + io_len1; 1927 } 1928 } 1929 1930 if (dora && rw != S_CREATE) { 1931 u_offset_t off2; 1932 caddr_t addr2; 1933 1934 off2 = ((off / adj_klustsize) + 1) * adj_klustsize; 1935 addr2 = addr + (off2 - off); 1936 1937 pp2 = NULL; 1938 /* 1939 * If we are past EOF then don't bother trying 1940 * with read-ahead. 1941 */ 1942 if (off2 >= size) 1943 pp2 = NULL; 1944 else { 1945 if (off2 + adj_klustsize <= size) 1946 blksz = adj_klustsize; 1947 else 1948 blksz = MIN(size - off2, adj_klustsize); 1949 1950 pp2 = pvn_read_kluster(vp, off2, seg, addr2, &tmpoff, 1951 &io_len2, off2, blksz, 1); 1952 io_off2 = tmpoff; 1953 } 1954 1955 if (pp2 != NULL) { 1956 /* 1957 * Zero part of page which we are not 1958 * going to be reading from disk now. 1959 */ 1960 xlen = (uint_t)(io_len2 & PAGEOFFSET); 1961 if (xlen != 0) 1962 pagezero(pp2->p_prev, xlen, PAGESIZE - xlen); 1963 1964 (void) spec_startio(vp, pp2, io_off2, io_len2, 1965 B_READ | B_ASYNC); 1966 } 1967 } 1968 1969 if (pl == NULL) 1970 return (err); 1971 1972 if (bp != NULL) { 1973 err = biowait(bp); 1974 pageio_done(bp); 1975 1976 if (err) { 1977 if (pp != NULL) 1978 pvn_read_done(pp, B_ERROR); 1979 return (err); 1980 } 1981 } 1982 1983 if (pagefound) { 1984 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 1985 /* 1986 * Page exists in the cache, acquire the appropriate 1987 * lock. If this fails, start all over again. 1988 */ 1989 1990 if ((pp = page_lookup(vp, off, se)) == NULL) { 1991 spec_lostpage++; 1992 goto reread; 1993 } 1994 pl[0] = pp; 1995 pl[1] = NULL; 1996 1997 sp->s_nextr = off + PAGESIZE; 1998 return (0); 1999 } 2000 2001 if (pp != NULL) 2002 pvn_plist_init(pp, pl, plsz, off, io_len1, rw); 2003 return (0); 2004 } 2005 2006 /* 2007 * Flags are composed of {B_INVAL, B_DIRTY B_FREE, B_DONTNEED, B_FORCE}. 2008 * If len == 0, do from off to EOF. 2009 * 2010 * The normal cases should be len == 0 & off == 0 (entire vp list), 2011 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 2012 * (from pageout). 2013 */ 2014 /*ARGSUSED5*/ 2015 int 2016 spec_putpage( 2017 struct vnode *vp, 2018 offset_t off, 2019 size_t len, 2020 int flags, 2021 struct cred *cr, 2022 caller_context_t *ct) 2023 { 2024 struct snode *sp = VTOS(vp); 2025 struct vnode *cvp; 2026 page_t *pp; 2027 u_offset_t io_off; 2028 size_t io_len = 0; /* for lint */ 2029 int err = 0; 2030 u_offset_t size; 2031 u_offset_t tmpoff; 2032 2033 ASSERT(vp->v_count != 0); 2034 2035 if (vp->v_flag & VNOMAP) 2036 return (ENOSYS); 2037 2038 cvp = sp->s_commonvp; 2039 size = SPEC_SIZE(VTOS(cvp)); 2040 2041 if (!vn_has_cached_data(vp) || off >= size) 2042 return (0); 2043 2044 ASSERT(vp->v_type == VBLK && cvp == vp); 2045 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTPAGE, 2046 "specfs putpage:vp %p off %llx len %ld snode %p", 2047 vp, off, len, sp); 2048 2049 if (len == 0) { 2050 /* 2051 * Search the entire vp list for pages >= off. 2052 */ 2053 err = pvn_vplist_dirty(vp, off, spec_putapage, 2054 flags, cr); 2055 } else { 2056 u_offset_t eoff; 2057 2058 /* 2059 * Loop over all offsets in the range [off...off + len] 2060 * looking for pages to deal with. We set limits so 2061 * that we kluster to klustsize boundaries. 2062 */ 2063 eoff = off + len; 2064 for (io_off = off; io_off < eoff && io_off < size; 2065 io_off += io_len) { 2066 /* 2067 * If we are not invalidating, synchronously 2068 * freeing or writing pages use the routine 2069 * page_lookup_nowait() to prevent reclaiming 2070 * them from the free list. 2071 */ 2072 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2073 pp = page_lookup(vp, io_off, 2074 (flags & (B_INVAL | B_FREE)) ? 2075 SE_EXCL : SE_SHARED); 2076 } else { 2077 pp = page_lookup_nowait(vp, io_off, 2078 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2079 } 2080 2081 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 2082 io_len = PAGESIZE; 2083 else { 2084 err = spec_putapage(vp, pp, &tmpoff, &io_len, 2085 flags, cr); 2086 io_off = tmpoff; 2087 if (err != 0) 2088 break; 2089 /* 2090 * "io_off" and "io_len" are returned as 2091 * the range of pages we actually wrote. 2092 * This allows us to skip ahead more quickly 2093 * since several pages may've been dealt 2094 * with by this iteration of the loop. 2095 */ 2096 } 2097 } 2098 } 2099 return (err); 2100 } 2101 2102 2103 /* 2104 * Write out a single page, possibly klustering adjacent 2105 * dirty pages. 2106 */ 2107 /*ARGSUSED5*/ 2108 static int 2109 spec_putapage( 2110 struct vnode *vp, 2111 page_t *pp, 2112 u_offset_t *offp, /* return value */ 2113 size_t *lenp, /* return value */ 2114 int flags, 2115 struct cred *cr) 2116 { 2117 struct snode *sp = VTOS(vp); 2118 u_offset_t io_off; 2119 size_t io_len; 2120 size_t blksz; 2121 u_offset_t blkoff; 2122 int err = 0; 2123 struct buf *bp; 2124 u_offset_t size; 2125 size_t adj_klustsize; 2126 u_offset_t tmpoff; 2127 2128 /* 2129 * Destroy read ahead value since we are really going to write. 2130 */ 2131 sp->s_nextr = 0; 2132 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 2133 2134 adj_klustsize = klustsize; 2135 2136 blkoff = (pp->p_offset / adj_klustsize) * adj_klustsize; 2137 2138 if (blkoff + adj_klustsize <= size) 2139 blksz = adj_klustsize; 2140 else 2141 blksz = size - blkoff; 2142 2143 /* 2144 * Find a kluster that fits in one contiguous chunk. 2145 */ 2146 pp = pvn_write_kluster(vp, pp, &tmpoff, &io_len, blkoff, 2147 blksz, flags); 2148 io_off = tmpoff; 2149 2150 /* 2151 * Check for page length rounding problems 2152 * XXX - Is this necessary? 2153 */ 2154 if (io_off + io_len > size) { 2155 ASSERT((io_off + io_len) - size < PAGESIZE); 2156 io_len = size - io_off; 2157 } 2158 2159 bp = spec_startio(vp, pp, io_off, io_len, B_WRITE | flags); 2160 2161 /* 2162 * Wait for i/o to complete if the request is not B_ASYNC. 2163 */ 2164 if ((flags & B_ASYNC) == 0) { 2165 err = biowait(bp); 2166 pageio_done(bp); 2167 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 2168 } 2169 2170 if (offp) 2171 *offp = io_off; 2172 if (lenp) 2173 *lenp = io_len; 2174 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTAPAGE, 2175 "specfs putapage:vp %p offp %p snode %p err %d", 2176 vp, offp, sp, err); 2177 return (err); 2178 } 2179 2180 /* 2181 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2182 */ 2183 static struct buf * 2184 spec_startio( 2185 struct vnode *vp, 2186 page_t *pp, 2187 u_offset_t io_off, 2188 size_t io_len, 2189 int flags) 2190 { 2191 struct buf *bp; 2192 2193 bp = pageio_setup(pp, io_len, vp, flags); 2194 2195 bp->b_edev = vp->v_rdev; 2196 bp->b_dev = cmpdev(vp->v_rdev); 2197 bp->b_blkno = btodt(io_off); 2198 bp->b_un.b_addr = (caddr_t)0; 2199 2200 (void) bdev_strategy(bp); 2201 2202 if (flags & B_READ) 2203 lwp_stat_update(LWP_STAT_INBLK, 1); 2204 else 2205 lwp_stat_update(LWP_STAT_OUBLK, 1); 2206 2207 return (bp); 2208 } 2209 2210 static int 2211 spec_poll( 2212 struct vnode *vp, 2213 short events, 2214 int anyyet, 2215 short *reventsp, 2216 struct pollhead **phpp, 2217 caller_context_t *ct) 2218 { 2219 dev_t dev; 2220 int error; 2221 2222 if (vp->v_type == VBLK) 2223 error = fs_poll(vp, events, anyyet, reventsp, phpp, ct); 2224 else { 2225 ASSERT(vp->v_type == VCHR); 2226 dev = vp->v_rdev; 2227 if (vp->v_stream) { 2228 ASSERT(vp->v_stream != NULL); 2229 error = strpoll(vp->v_stream, events, anyyet, 2230 reventsp, phpp); 2231 } else if (devopsp[getmajor(dev)]->devo_cb_ops->cb_chpoll) { 2232 error = cdev_poll(dev, events, anyyet, reventsp, phpp); 2233 } else { 2234 error = fs_poll(vp, events, anyyet, reventsp, phpp, ct); 2235 } 2236 } 2237 return (error); 2238 } 2239 2240 /* 2241 * This routine is called through the cdevsw[] table to handle 2242 * traditional mmap'able devices that support a d_mmap function. 2243 */ 2244 /*ARGSUSED8*/ 2245 int 2246 spec_segmap( 2247 dev_t dev, 2248 off_t off, 2249 struct as *as, 2250 caddr_t *addrp, 2251 off_t len, 2252 uint_t prot, 2253 uint_t maxprot, 2254 uint_t flags, 2255 struct cred *cred) 2256 { 2257 struct segdev_crargs dev_a; 2258 int (*mapfunc)(dev_t dev, off_t off, int prot); 2259 size_t i; 2260 int error; 2261 2262 if ((mapfunc = devopsp[getmajor(dev)]->devo_cb_ops->cb_mmap) == nodev) 2263 return (ENODEV); 2264 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_SEGMAP, 2265 "specfs segmap:dev %x as %p len %lx prot %x", 2266 dev, as, len, prot); 2267 2268 /* 2269 * Character devices that support the d_mmap 2270 * interface can only be mmap'ed shared. 2271 */ 2272 if ((flags & MAP_TYPE) != MAP_SHARED) 2273 return (EINVAL); 2274 2275 /* 2276 * Check to ensure that the entire range is 2277 * legal and we are not trying to map in 2278 * more than the device will let us. 2279 */ 2280 for (i = 0; i < len; i += PAGESIZE) { 2281 if (cdev_mmap(mapfunc, dev, off + i, maxprot) == -1) 2282 return (ENXIO); 2283 } 2284 2285 as_rangelock(as); 2286 /* Pick an address w/o worrying about any vac alignment constraints. */ 2287 error = choose_addr(as, addrp, len, off, ADDR_NOVACALIGN, flags); 2288 if (error != 0) { 2289 as_rangeunlock(as); 2290 return (error); 2291 } 2292 2293 dev_a.mapfunc = mapfunc; 2294 dev_a.dev = dev; 2295 dev_a.offset = off; 2296 dev_a.prot = (uchar_t)prot; 2297 dev_a.maxprot = (uchar_t)maxprot; 2298 dev_a.hat_flags = 0; 2299 dev_a.hat_attr = 0; 2300 dev_a.devmap_data = NULL; 2301 2302 error = as_map(as, *addrp, len, segdev_create, &dev_a); 2303 as_rangeunlock(as); 2304 return (error); 2305 } 2306 2307 int 2308 spec_char_map( 2309 dev_t dev, 2310 offset_t off, 2311 struct as *as, 2312 caddr_t *addrp, 2313 size_t len, 2314 uchar_t prot, 2315 uchar_t maxprot, 2316 uint_t flags, 2317 struct cred *cred) 2318 { 2319 int error = 0; 2320 major_t maj = getmajor(dev); 2321 int map_flag; 2322 int (*segmap)(dev_t, off_t, struct as *, 2323 caddr_t *, off_t, uint_t, uint_t, uint_t, cred_t *); 2324 int (*devmap)(dev_t, devmap_cookie_t, offset_t, 2325 size_t, size_t *, uint_t); 2326 int (*mmap)(dev_t dev, off_t off, int prot); 2327 2328 /* 2329 * Character device: let the device driver 2330 * pick the appropriate segment driver. 2331 * 2332 * 4.x compat.: allow 'NULL' cb_segmap => spec_segmap 2333 * Kindness: allow 'nulldev' cb_segmap => spec_segmap 2334 */ 2335 segmap = devopsp[maj]->devo_cb_ops->cb_segmap; 2336 if (segmap == NULL || segmap == nulldev || segmap == nodev) { 2337 mmap = devopsp[maj]->devo_cb_ops->cb_mmap; 2338 map_flag = devopsp[maj]->devo_cb_ops->cb_flag; 2339 2340 /* 2341 * Use old mmap framework if the driver has both mmap 2342 * and devmap entry points. This is to prevent the 2343 * system from calling invalid devmap entry point 2344 * for some drivers that might have put garbage in the 2345 * devmap entry point. 2346 */ 2347 if ((map_flag & D_DEVMAP) || mmap == NULL || 2348 mmap == nulldev || mmap == nodev) { 2349 devmap = devopsp[maj]->devo_cb_ops->cb_devmap; 2350 2351 /* 2352 * If driver provides devmap entry point in 2353 * cb_ops but not xx_segmap(9E), call 2354 * devmap_setup with default settings 2355 * (NULL) for callback_ops and driver 2356 * callback private data 2357 */ 2358 if (devmap == nodev || devmap == NULL || 2359 devmap == nulldev) 2360 return (ENODEV); 2361 2362 error = devmap_setup(dev, off, as, addrp, 2363 len, prot, maxprot, flags, cred); 2364 2365 return (error); 2366 } else 2367 segmap = spec_segmap; 2368 } else 2369 segmap = cdev_segmap; 2370 2371 return ((*segmap)(dev, (off_t)off, as, addrp, len, prot, 2372 maxprot, flags, cred)); 2373 } 2374 2375 /*ARGSUSED9*/ 2376 static int 2377 spec_map( 2378 struct vnode *vp, 2379 offset_t off, 2380 struct as *as, 2381 caddr_t *addrp, 2382 size_t len, 2383 uchar_t prot, 2384 uchar_t maxprot, 2385 uint_t flags, 2386 struct cred *cred, 2387 caller_context_t *ct) 2388 { 2389 int error = 0; 2390 struct snode *sp = VTOS(vp); 2391 2392 if (vp->v_flag & VNOMAP) 2393 return (ENOSYS); 2394 2395 /* fail map with ENXIO if the device is fenced off */ 2396 if (S_ISFENCED(sp)) 2397 return (ENXIO); 2398 2399 /* 2400 * If file is locked, fail mapping attempt. 2401 */ 2402 if (vn_has_flocks(vp)) 2403 return (EAGAIN); 2404 2405 if (vp->v_type == VCHR) { 2406 return (spec_char_map(vp->v_rdev, off, as, addrp, len, prot, 2407 maxprot, flags, cred)); 2408 } else if (vp->v_type == VBLK) { 2409 struct segvn_crargs vn_a; 2410 struct vnode *cvp; 2411 struct snode *sp; 2412 2413 /* 2414 * Block device, use segvn mapping to the underlying commonvp 2415 * for pages. 2416 */ 2417 if (off > spec_maxoffset(vp)) 2418 return (ENXIO); 2419 2420 sp = VTOS(vp); 2421 cvp = sp->s_commonvp; 2422 ASSERT(cvp != NULL); 2423 2424 if (off < 0 || ((offset_t)(off + len) < 0)) 2425 return (ENXIO); 2426 2427 as_rangelock(as); 2428 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 2429 if (error != 0) { 2430 as_rangeunlock(as); 2431 return (error); 2432 } 2433 2434 vn_a.vp = cvp; 2435 vn_a.offset = off; 2436 vn_a.type = flags & MAP_TYPE; 2437 vn_a.prot = (uchar_t)prot; 2438 vn_a.maxprot = (uchar_t)maxprot; 2439 vn_a.flags = flags & ~MAP_TYPE; 2440 vn_a.cred = cred; 2441 vn_a.amp = NULL; 2442 vn_a.szc = 0; 2443 vn_a.lgrp_mem_policy_flags = 0; 2444 2445 error = as_map(as, *addrp, len, segvn_create, &vn_a); 2446 as_rangeunlock(as); 2447 } else 2448 return (ENODEV); 2449 2450 return (error); 2451 } 2452 2453 /*ARGSUSED1*/ 2454 static int 2455 spec_addmap( 2456 struct vnode *vp, /* the common vnode */ 2457 offset_t off, 2458 struct as *as, 2459 caddr_t addr, 2460 size_t len, /* how many bytes to add */ 2461 uchar_t prot, 2462 uchar_t maxprot, 2463 uint_t flags, 2464 struct cred *cred, 2465 caller_context_t *ct) 2466 { 2467 int error = 0; 2468 struct snode *csp = VTOS(vp); 2469 ulong_t npages; 2470 2471 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2472 2473 /* 2474 * XXX Given the above assertion, this might not 2475 * be a particularly sensible thing to test. 2476 */ 2477 if (vp->v_flag & VNOMAP) 2478 return (ENOSYS); 2479 2480 /* fail with EIO if the device is fenced off */ 2481 if (S_ISFENCED(csp)) 2482 return (EIO); 2483 2484 npages = btopr(len); 2485 LOCK_CSP(csp); 2486 csp->s_mapcnt += npages; 2487 2488 UNLOCK_CSP(csp); 2489 return (error); 2490 } 2491 2492 /*ARGSUSED1*/ 2493 static int 2494 spec_delmap( 2495 struct vnode *vp, /* the common vnode */ 2496 offset_t off, 2497 struct as *as, 2498 caddr_t addr, 2499 size_t len, /* how many bytes to take away */ 2500 uint_t prot, 2501 uint_t maxprot, 2502 uint_t flags, 2503 struct cred *cred, 2504 caller_context_t *ct) 2505 { 2506 struct snode *csp = VTOS(vp); 2507 ulong_t npages; 2508 long mcnt; 2509 2510 /* segdev passes us the common vp */ 2511 2512 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2513 2514 /* allow delmap to succeed even if device fenced off */ 2515 2516 /* 2517 * XXX Given the above assertion, this might not 2518 * be a particularly sensible thing to test.. 2519 */ 2520 if (vp->v_flag & VNOMAP) 2521 return (ENOSYS); 2522 2523 npages = btopr(len); 2524 2525 LOCK_CSP(csp); 2526 mutex_enter(&csp->s_lock); 2527 mcnt = (csp->s_mapcnt -= npages); 2528 2529 if (mcnt == 0) { 2530 /* 2531 * Call the close routine when the last reference of any 2532 * kind through any [s, v]node goes away. The s_dip hold 2533 * on the devinfo node is released when the vnode is 2534 * destroyed. 2535 */ 2536 if (csp->s_count == 0) { 2537 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 2538 2539 /* See comment in spec_close() */ 2540 if (csp->s_flag & (SCLONE | SSELFCLONE)) 2541 csp->s_flag &= ~SDIPSET; 2542 2543 mutex_exit(&csp->s_lock); 2544 2545 (void) device_close(vp, 0, cred); 2546 } else 2547 mutex_exit(&csp->s_lock); 2548 2549 mutex_enter(&csp->s_lock); 2550 } 2551 ASSERT(mcnt >= 0); 2552 2553 UNLOCK_CSP_LOCK_HELD(csp); 2554 mutex_exit(&csp->s_lock); 2555 2556 return (0); 2557 } 2558 2559 /*ARGSUSED4*/ 2560 static int 2561 spec_dump( 2562 struct vnode *vp, 2563 caddr_t addr, 2564 offset_t bn, 2565 offset_t count, 2566 caller_context_t *ct) 2567 { 2568 /* allow dump to succeed even if device fenced off */ 2569 2570 ASSERT(vp->v_type == VBLK); 2571 return (bdev_dump(vp->v_rdev, addr, (daddr_t)bn, (int)count)); 2572 } 2573 2574 2575 /* 2576 * Do i/o on the given page list from/to vp, io_off for io_len. 2577 * Flags are composed of: 2578 * {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_READ, B_WRITE} 2579 * If B_ASYNC is not set i/o is waited for. 2580 */ 2581 /*ARGSUSED5*/ 2582 static int 2583 spec_pageio( 2584 struct vnode *vp, 2585 page_t *pp, 2586 u_offset_t io_off, 2587 size_t io_len, 2588 int flags, 2589 cred_t *cr, 2590 caller_context_t *ct) 2591 { 2592 struct buf *bp = NULL; 2593 int err = 0; 2594 2595 if (pp == NULL) 2596 return (EINVAL); 2597 2598 bp = spec_startio(vp, pp, io_off, io_len, flags); 2599 2600 /* 2601 * Wait for i/o to complete if the request is not B_ASYNC. 2602 */ 2603 if ((flags & B_ASYNC) == 0) { 2604 err = biowait(bp); 2605 pageio_done(bp); 2606 } 2607 return (err); 2608 } 2609 2610 /* 2611 * Set ACL on underlying vnode if one exists, or return ENOSYS otherwise. 2612 */ 2613 int 2614 spec_setsecattr( 2615 struct vnode *vp, 2616 vsecattr_t *vsap, 2617 int flag, 2618 struct cred *cr, 2619 caller_context_t *ct) 2620 { 2621 struct vnode *realvp; 2622 struct snode *sp = VTOS(vp); 2623 int error; 2624 2625 /* fail with ENXIO if the device is fenced off */ 2626 if (S_ISFENCED(sp)) 2627 return (ENXIO); 2628 2629 /* 2630 * The acl(2) system calls VOP_RWLOCK on the file before setting an 2631 * ACL, but since specfs does not serialize reads and writes, this 2632 * VOP does not do anything. However, some backing file systems may 2633 * expect the lock to be held before setting an ACL, so it is taken 2634 * here privately to avoid serializing specfs reads and writes. 2635 */ 2636 if ((realvp = sp->s_realvp) != NULL) { 2637 (void) VOP_RWLOCK(realvp, V_WRITELOCK_TRUE, ct); 2638 error = VOP_SETSECATTR(realvp, vsap, flag, cr, ct); 2639 (void) VOP_RWUNLOCK(realvp, V_WRITELOCK_TRUE, ct); 2640 return (error); 2641 } else 2642 return (fs_nosys()); 2643 } 2644 2645 /* 2646 * Get ACL from underlying vnode if one exists, or fabricate it from 2647 * the permissions returned by spec_getattr() otherwise. 2648 */ 2649 int 2650 spec_getsecattr( 2651 struct vnode *vp, 2652 vsecattr_t *vsap, 2653 int flag, 2654 struct cred *cr, 2655 caller_context_t *ct) 2656 { 2657 struct vnode *realvp; 2658 struct snode *sp = VTOS(vp); 2659 2660 /* fail with ENXIO if the device is fenced off */ 2661 if (S_ISFENCED(sp)) 2662 return (ENXIO); 2663 2664 if ((realvp = sp->s_realvp) != NULL) 2665 return (VOP_GETSECATTR(realvp, vsap, flag, cr, ct)); 2666 else 2667 return (fs_fab_acl(vp, vsap, flag, cr, ct)); 2668 } 2669 2670 int 2671 spec_pathconf( 2672 vnode_t *vp, 2673 int cmd, 2674 ulong_t *valp, 2675 cred_t *cr, 2676 caller_context_t *ct) 2677 { 2678 vnode_t *realvp; 2679 struct snode *sp = VTOS(vp); 2680 2681 /* fail with ENXIO if the device is fenced off */ 2682 if (S_ISFENCED(sp)) 2683 return (ENXIO); 2684 2685 if ((realvp = sp->s_realvp) != NULL) 2686 return (VOP_PATHCONF(realvp, cmd, valp, cr, ct)); 2687 else 2688 return (fs_pathconf(vp, cmd, valp, cr, ct)); 2689 } 2690