1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent, Inc. 25 * Copyright 2016 Nexenta Systems, Inc. All rights reserved. 26 * Copyright 2022 Garrett D'Amore 27 */ 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/cred.h> 36 #include <sys/kmem.h> 37 #include <sys/kmem_impl.h> 38 #include <sys/sysmacros.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/debug.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/file.h> 45 #include <sys/open.h> 46 #include <sys/user.h> 47 #include <sys/termios.h> 48 #include <sys/stream.h> 49 #include <sys/strsubr.h> 50 #include <sys/strsun.h> 51 #include <sys/suntpi.h> 52 #include <sys/ddi.h> 53 #include <sys/esunddi.h> 54 #include <sys/flock.h> 55 #include <sys/modctl.h> 56 #include <sys/vtrace.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathname.h> 59 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 #include <sys/sockio.h> 63 #include <netinet/in.h> 64 #include <sys/un.h> 65 #include <sys/strsun.h> 66 67 #include <sys/tiuser.h> 68 #define _SUN_TPI_VERSION 2 69 #include <sys/tihdr.h> 70 #include <sys/timod.h> /* TI_GETMYNAME, TI_GETPEERNAME */ 71 72 #include <c2/audit.h> 73 74 #include <inet/common.h> 75 #include <inet/ip.h> 76 #include <inet/ip6.h> 77 #include <inet/tcp.h> 78 #include <inet/udp_impl.h> 79 80 #include <sys/zone.h> 81 82 #include <fs/sockfs/sockcommon.h> 83 #include <fs/sockfs/socktpi.h> 84 #include <fs/sockfs/socktpi_impl.h> 85 86 /* 87 * Possible failures when memory can't be allocated. The documented behavior: 88 * 89 * 5.5: 4.X: XNET: 90 * accept: ENOMEM/ENOSR/EINTR - (EINTR) ENOMEM/ENOBUFS/ENOSR/ 91 * EINTR 92 * (4.X does not document EINTR but returns it) 93 * bind: ENOSR - ENOBUFS/ENOSR 94 * connect: EINTR EINTR ENOBUFS/ENOSR/EINTR 95 * getpeername: ENOMEM/ENOSR ENOBUFS (-) ENOBUFS/ENOSR 96 * getsockname: ENOMEM/ENOSR ENOBUFS (-) ENOBUFS/ENOSR 97 * (4.X getpeername and getsockname do not fail in practice) 98 * getsockopt: ENOMEM/ENOSR - ENOBUFS/ENOSR 99 * listen: - - ENOBUFS 100 * recv: ENOMEM/ENOSR/EINTR EINTR ENOBUFS/ENOMEM/ENOSR/ 101 * EINTR 102 * send: ENOMEM/ENOSR/EINTR ENOBUFS/EINTR ENOBUFS/ENOMEM/ENOSR/ 103 * EINTR 104 * setsockopt: ENOMEM/ENOSR - ENOBUFS/ENOMEM/ENOSR 105 * shutdown: ENOMEM/ENOSR - ENOBUFS/ENOSR 106 * socket: ENOMEM/ENOSR ENOBUFS ENOBUFS/ENOMEM/ENOSR 107 * socketpair: ENOMEM/ENOSR - ENOBUFS/ENOMEM/ENOSR 108 * 109 * Resolution. When allocation fails: 110 * recv: return EINTR 111 * send: return EINTR 112 * connect, accept: EINTR 113 * bind, listen, shutdown (unbind, unix_close, disconnect): sleep 114 * socket, socketpair: ENOBUFS 115 * getpeername, getsockname: sleep 116 * getsockopt, setsockopt: sleep 117 */ 118 119 #ifdef SOCK_TEST 120 /* 121 * Variables that make sockfs do something other than the standard TPI 122 * for the AF_INET transports. 123 * 124 * solisten_tpi_tcp: 125 * TCP can handle a O_T_BIND_REQ with an increased backlog even though 126 * the transport is already bound. This is needed to avoid loosing the 127 * port number should listen() do a T_UNBIND_REQ followed by a 128 * O_T_BIND_REQ. 129 * 130 * soconnect_tpi_udp: 131 * UDP and ICMP can handle a T_CONN_REQ. 132 * This is needed to make the sequence of connect(), getsockname() 133 * return the local IP address used to send packets to the connected to 134 * destination. 135 * 136 * soconnect_tpi_tcp: 137 * TCP can handle a T_CONN_REQ without seeing a O_T_BIND_REQ. 138 * Set this to non-zero to send TPI conformant messages to TCP in this 139 * respect. This is a performance optimization. 140 * 141 * soaccept_tpi_tcp: 142 * TCP can handle a T_CONN_REQ without the acceptor being bound. 143 * This is a performance optimization that has been picked up in XTI. 144 * 145 * soaccept_tpi_multioptions: 146 * When inheriting SOL_SOCKET options from the listener to the accepting 147 * socket send them as a single message for AF_INET{,6}. 148 */ 149 int solisten_tpi_tcp = 0; 150 int soconnect_tpi_udp = 0; 151 int soconnect_tpi_tcp = 0; 152 int soaccept_tpi_tcp = 0; 153 int soaccept_tpi_multioptions = 1; 154 #else /* SOCK_TEST */ 155 #define soconnect_tpi_tcp 0 156 #define soconnect_tpi_udp 0 157 #define solisten_tpi_tcp 0 158 #define soaccept_tpi_tcp 0 159 #define soaccept_tpi_multioptions 1 160 #endif /* SOCK_TEST */ 161 162 #ifdef SOCK_TEST 163 extern int do_useracc; 164 extern clock_t sock_test_timelimit; 165 #endif /* SOCK_TEST */ 166 167 extern uint32_t ucredsize; 168 169 /* 170 * Some X/Open added checks might have to be backed out to keep SunOS 4.X 171 * applications working. Turn on this flag to disable these checks. 172 */ 173 int xnet_skip_checks = 0; 174 int xnet_check_print = 0; 175 int xnet_truncate_print = 0; 176 177 static void sotpi_destroy(struct sonode *); 178 static struct sonode *sotpi_create(struct sockparams *, int, int, int, int, 179 int, int *, cred_t *cr); 180 181 static boolean_t sotpi_info_create(struct sonode *, int); 182 static void sotpi_info_init(struct sonode *); 183 static void sotpi_info_fini(struct sonode *); 184 static void sotpi_info_destroy(struct sonode *); 185 186 /* 187 * Do direct function call to the transport layer below; this would 188 * also allow the transport to utilize read-side synchronous stream 189 * interface if necessary. This is a /etc/system tunable that must 190 * not be modified on a running system. By default this is enabled 191 * for performance reasons and may be disabled for debugging purposes. 192 */ 193 boolean_t socktpi_direct = B_TRUE; 194 195 static struct kmem_cache *socktpi_cache, *socktpi_unix_cache; 196 197 extern void sigintr(k_sigset_t *, int); 198 extern void sigunintr(k_sigset_t *); 199 200 static int sotpi_unbind(struct sonode *, int); 201 202 /* TPI sockfs sonode operations */ 203 int sotpi_init(struct sonode *, struct sonode *, struct cred *, 204 int); 205 static int sotpi_accept(struct sonode *, int, struct cred *, 206 struct sonode **); 207 static int sotpi_bind(struct sonode *, struct sockaddr *, socklen_t, 208 int, struct cred *); 209 static int sotpi_listen(struct sonode *, int, struct cred *); 210 static int sotpi_connect(struct sonode *, struct sockaddr *, 211 socklen_t, int, int, struct cred *); 212 extern int sotpi_recvmsg(struct sonode *, struct nmsghdr *, 213 struct uio *, struct cred *); 214 static int sotpi_sendmsg(struct sonode *, struct nmsghdr *, 215 struct uio *, struct cred *); 216 static int sotpi_sendmblk(struct sonode *, struct nmsghdr *, int, 217 struct cred *, mblk_t **); 218 static int sosend_dgramcmsg(struct sonode *, struct sockaddr *, socklen_t, 219 struct uio *, void *, t_uscalar_t, int); 220 static int sodgram_direct(struct sonode *, struct sockaddr *, 221 socklen_t, struct uio *, int); 222 extern int sotpi_getpeername(struct sonode *, struct sockaddr *, 223 socklen_t *, boolean_t, struct cred *); 224 static int sotpi_getsockname(struct sonode *, struct sockaddr *, 225 socklen_t *, struct cred *); 226 static int sotpi_shutdown(struct sonode *, int, struct cred *); 227 extern int sotpi_getsockopt(struct sonode *, int, int, void *, 228 socklen_t *, int, struct cred *); 229 extern int sotpi_setsockopt(struct sonode *, int, int, const void *, 230 socklen_t, struct cred *); 231 static int sotpi_ioctl(struct sonode *, int, intptr_t, int, struct cred *, 232 int32_t *); 233 static int socktpi_plumbioctl(struct vnode *, int, intptr_t, int, 234 struct cred *, int32_t *); 235 static int sotpi_poll(struct sonode *, short, int, short *, 236 struct pollhead **); 237 static int sotpi_close(struct sonode *, int, struct cred *); 238 239 static int i_sotpi_info_constructor(sotpi_info_t *); 240 static void i_sotpi_info_destructor(sotpi_info_t *); 241 242 sonodeops_t sotpi_sonodeops = { 243 sotpi_init, /* sop_init */ 244 sotpi_accept, /* sop_accept */ 245 sotpi_bind, /* sop_bind */ 246 sotpi_listen, /* sop_listen */ 247 sotpi_connect, /* sop_connect */ 248 sotpi_recvmsg, /* sop_recvmsg */ 249 sotpi_sendmsg, /* sop_sendmsg */ 250 sotpi_sendmblk, /* sop_sendmblk */ 251 sotpi_getpeername, /* sop_getpeername */ 252 sotpi_getsockname, /* sop_getsockname */ 253 sotpi_shutdown, /* sop_shutdown */ 254 sotpi_getsockopt, /* sop_getsockopt */ 255 sotpi_setsockopt, /* sop_setsockopt */ 256 sotpi_ioctl, /* sop_ioctl */ 257 sotpi_poll, /* sop_poll */ 258 sotpi_close, /* sop_close */ 259 }; 260 261 /* 262 * Return a TPI socket vnode. 263 * 264 * Note that sockets assume that the driver will clone (either itself 265 * or by using the clone driver) i.e. a socket() call will always 266 * result in a new vnode being created. 267 */ 268 269 /* 270 * Common create code for socket and accept. If tso is set the values 271 * from that node is used instead of issuing a T_INFO_REQ. 272 */ 273 274 /* ARGSUSED */ 275 static struct sonode * 276 sotpi_create(struct sockparams *sp, int family, int type, int protocol, 277 int version, int sflags, int *errorp, cred_t *cr) 278 { 279 struct sonode *so; 280 kmem_cache_t *cp; 281 282 ASSERT(sp->sp_sdev_info.sd_vnode != NULL); 283 284 if (family == AF_NCA) { 285 /* 286 * The request is for an NCA socket so for NL7C use the 287 * INET domain instead and mark NL7C_AF_NCA below. 288 */ 289 family = AF_INET; 290 /* 291 * NL7C is not supported in the non-global zone, 292 * we enforce this restriction here. 293 */ 294 if (getzoneid() != GLOBAL_ZONEID) { 295 *errorp = ENOTSUP; 296 return (NULL); 297 } 298 } 299 300 /* 301 * to be compatible with old tpi socket implementation ignore 302 * sleep flag (sflags) passed in 303 */ 304 cp = (family == AF_UNIX) ? socktpi_unix_cache : socktpi_cache; 305 so = kmem_cache_alloc(cp, KM_SLEEP); 306 if (so == NULL) { 307 *errorp = ENOMEM; 308 return (NULL); 309 } 310 311 sonode_init(so, sp, family, type, protocol, &sotpi_sonodeops); 312 sotpi_info_init(so); 313 314 if (version == SOV_DEFAULT) 315 version = so_default_version; 316 317 so->so_version = (short)version; 318 *errorp = 0; 319 320 return (so); 321 } 322 323 static void 324 sotpi_destroy(struct sonode *so) 325 { 326 kmem_cache_t *cp; 327 struct sockparams *origsp; 328 329 /* 330 * If there is a new dealloc function (ie. smod_destroy_func), 331 * then it should check the correctness of the ops. 332 */ 333 334 ASSERT(so->so_ops == &sotpi_sonodeops); 335 336 origsp = SOTOTPI(so)->sti_orig_sp; 337 338 sotpi_info_fini(so); 339 340 if (so->so_state & SS_FALLBACK_COMP) { 341 /* 342 * A fallback happend, which means that a sotpi_info_t struct 343 * was allocated (as opposed to being allocated from the TPI 344 * sonode cache. Therefore we explicitly free the struct 345 * here. 346 */ 347 sotpi_info_destroy(so); 348 ASSERT(origsp != NULL); 349 350 origsp->sp_smod_info->smod_sock_destroy_func(so); 351 SOCKPARAMS_DEC_REF(origsp); 352 } else { 353 sonode_fini(so); 354 cp = (so->so_family == AF_UNIX) ? socktpi_unix_cache : 355 socktpi_cache; 356 kmem_cache_free(cp, so); 357 } 358 } 359 360 /* ARGSUSED1 */ 361 int 362 sotpi_init(struct sonode *so, struct sonode *tso, struct cred *cr, int flags) 363 { 364 major_t maj; 365 dev_t newdev; 366 struct vnode *vp; 367 int error = 0; 368 struct stdata *stp; 369 370 sotpi_info_t *sti = SOTOTPI(so); 371 372 dprint(1, ("sotpi_init()\n")); 373 374 /* 375 * over write the sleep flag passed in but that is ok 376 * as tpi socket does not honor sleep flag. 377 */ 378 flags |= FREAD|FWRITE; 379 380 /* 381 * Record in so_flag that it is a clone. 382 */ 383 if (getmajor(sti->sti_dev) == clone_major) 384 so->so_flag |= SOCLONE; 385 386 if ((so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM) && 387 (so->so_family == AF_INET || so->so_family == AF_INET6) && 388 (so->so_protocol == IPPROTO_TCP || so->so_protocol == IPPROTO_UDP || 389 so->so_protocol == IPPROTO_IP)) { 390 /* Tell tcp or udp that it's talking to sockets */ 391 flags |= SO_SOCKSTR; 392 393 /* 394 * Here we indicate to socktpi_open() our attempt to 395 * make direct calls between sockfs and transport. 396 * The final decision is left to socktpi_open(). 397 */ 398 sti->sti_direct = 1; 399 400 ASSERT(so->so_type != SOCK_DGRAM || tso == NULL); 401 if (so->so_type == SOCK_STREAM && tso != NULL) { 402 if (SOTOTPI(tso)->sti_direct) { 403 /* 404 * Inherit sti_direct from listener and pass 405 * SO_ACCEPTOR open flag to tcp, indicating 406 * that this is an accept fast-path instance. 407 */ 408 flags |= SO_ACCEPTOR; 409 } else { 410 /* 411 * sti_direct is not set on listener, meaning 412 * that the listener has been converted from 413 * a socket to a stream. Ensure that the 414 * acceptor inherits these settings. 415 */ 416 sti->sti_direct = 0; 417 flags &= ~SO_SOCKSTR; 418 } 419 } 420 } 421 422 /* 423 * Tell local transport that it is talking to sockets. 424 */ 425 if (so->so_family == AF_UNIX) { 426 flags |= SO_SOCKSTR; 427 } 428 429 vp = SOTOV(so); 430 newdev = vp->v_rdev; 431 maj = getmajor(newdev); 432 ASSERT(STREAMSTAB(maj)); 433 434 error = stropen(vp, &newdev, flags, cr); 435 436 stp = vp->v_stream; 437 if (error == 0) { 438 if (so->so_flag & SOCLONE) 439 ASSERT(newdev != vp->v_rdev); 440 mutex_enter(&so->so_lock); 441 sti->sti_dev = newdev; 442 vp->v_rdev = newdev; 443 mutex_exit(&so->so_lock); 444 445 if (stp->sd_flag & STRISTTY) { 446 /* 447 * this is a post SVR4 tty driver - a socket can not 448 * be a controlling terminal. Fail the open. 449 */ 450 (void) sotpi_close(so, flags, cr); 451 return (ENOTTY); /* XXX */ 452 } 453 454 ASSERT(stp->sd_wrq != NULL); 455 sti->sti_provinfo = tpi_findprov(stp->sd_wrq); 456 457 /* 458 * If caller is interested in doing direct function call 459 * interface to/from transport module, probe the module 460 * directly beneath the streamhead to see if it qualifies. 461 * 462 * We turn off the direct interface when qualifications fail. 463 * In the acceptor case, we simply turn off the sti_direct 464 * flag on the socket. We do the fallback after the accept 465 * has completed, before the new socket is returned to the 466 * application. 467 */ 468 if (sti->sti_direct) { 469 queue_t *tq = stp->sd_wrq->q_next; 470 471 /* 472 * sti_direct is currently supported and tested 473 * only for tcp/udp; this is the main reason to 474 * have the following assertions. 475 */ 476 ASSERT(so->so_family == AF_INET || 477 so->so_family == AF_INET6); 478 ASSERT(so->so_protocol == IPPROTO_UDP || 479 so->so_protocol == IPPROTO_TCP || 480 so->so_protocol == IPPROTO_IP); 481 ASSERT(so->so_type == SOCK_DGRAM || 482 so->so_type == SOCK_STREAM); 483 484 /* 485 * Abort direct call interface if the module directly 486 * underneath the stream head is not defined with the 487 * _D_DIRECT flag. This could happen in the tcp or 488 * udp case, when some other module is autopushed 489 * above it, or for some reasons the expected module 490 * isn't purely D_MP (which is the main requirement). 491 */ 492 if (!socktpi_direct || !(tq->q_flag & _QDIRECT) || 493 !(_OTHERQ(tq)->q_flag & _QDIRECT)) { 494 int rval; 495 496 /* Continue on without direct calls */ 497 sti->sti_direct = 0; 498 499 /* 500 * Cannot issue ioctl on fallback socket since 501 * there is no conn associated with the queue. 502 * The fallback downcall will notify the proto 503 * of the change. 504 */ 505 if (!(flags & SO_ACCEPTOR) && 506 !(flags & SO_FALLBACK)) { 507 if ((error = strioctl(vp, 508 _SIOCSOCKFALLBACK, 0, 0, K_TO_K, 509 cr, &rval)) != 0) { 510 (void) sotpi_close(so, flags, 511 cr); 512 return (error); 513 } 514 } 515 } 516 } 517 518 if (flags & SO_FALLBACK) { 519 /* 520 * The stream created does not have a conn. 521 * do stream set up after conn has been assigned 522 */ 523 return (error); 524 } 525 error = so_strinit(so, tso); 526 if (error != 0) { 527 (void) sotpi_close(so, flags, cr); 528 return (error); 529 } 530 531 /* Enable sendfile() on AF_UNIX streams */ 532 if (so->so_family == AF_UNIX && so->so_type == SOCK_STREAM) { 533 mutex_enter(&so->so_lock); 534 so->so_mode |= SM_SENDFILESUPP; 535 mutex_exit(&so->so_lock); 536 } 537 538 /* Wildcard */ 539 if (so->so_protocol != so->so_sockparams->sp_protocol) { 540 int protocol = so->so_protocol; 541 /* 542 * Issue SO_PROTOTYPE setsockopt. 543 */ 544 error = sotpi_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE, 545 &protocol, (t_uscalar_t)sizeof (protocol), cr); 546 if (error != 0) { 547 (void) sotpi_close(so, flags, cr); 548 /* 549 * Setsockopt often fails with ENOPROTOOPT but 550 * socket() should fail with 551 * EPROTONOSUPPORT/EPROTOTYPE. 552 */ 553 return (EPROTONOSUPPORT); 554 } 555 } 556 557 } else { 558 /* 559 * While the same socket can not be reopened (unlike specfs) 560 * the stream head sets STREOPENFAIL when the autopush fails. 561 */ 562 if ((stp != NULL) && 563 (stp->sd_flag & STREOPENFAIL)) { 564 /* 565 * Open failed part way through. 566 */ 567 mutex_enter(&stp->sd_lock); 568 stp->sd_flag &= ~STREOPENFAIL; 569 mutex_exit(&stp->sd_lock); 570 (void) sotpi_close(so, flags, cr); 571 return (error); 572 /*NOTREACHED*/ 573 } 574 ASSERT(stp == NULL); 575 } 576 TRACE_4(TR_FAC_SOCKFS, TR_SOCKFS_OPEN, 577 "sockfs open:maj %d vp %p so %p error %d", 578 maj, vp, so, error); 579 return (error); 580 } 581 582 /* 583 * Bind the socket to an unspecified address in sockfs only. 584 * Used for TCP/UDP transports where we know that the O_T_BIND_REQ isn't 585 * required in all cases. 586 */ 587 static void 588 so_automatic_bind(struct sonode *so) 589 { 590 sotpi_info_t *sti = SOTOTPI(so); 591 ASSERT(so->so_family == AF_INET || so->so_family == AF_INET6); 592 593 ASSERT(MUTEX_HELD(&so->so_lock)); 594 ASSERT(!(so->so_state & SS_ISBOUND)); 595 ASSERT(sti->sti_unbind_mp); 596 597 ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen); 598 bzero(sti->sti_laddr_sa, sti->sti_laddr_len); 599 sti->sti_laddr_sa->sa_family = so->so_family; 600 so->so_state |= SS_ISBOUND; 601 } 602 603 604 /* 605 * bind the socket. 606 * 607 * If the socket is already bound and none of _SOBIND_SOCKBSD or _SOBIND_XPG4_2 608 * are passed in we allow rebinding. Note that for backwards compatibility 609 * even "svr4" sockets pass in _SOBIND_SOCKBSD/SOV_SOCKBSD to sobind/bind. 610 * Thus the rebinding code is currently not executed. 611 * 612 * The constraints for rebinding are: 613 * - it is a SOCK_DGRAM, or 614 * - it is a SOCK_STREAM/SOCK_SEQPACKET that has not been connected 615 * and no listen() has been done. 616 * This rebinding code was added based on some language in the XNET book 617 * about not returning EINVAL it the protocol allows rebinding. However, 618 * this language is not present in the Posix socket draft. Thus maybe the 619 * rebinding logic should be deleted from the source. 620 * 621 * A null "name" can be used to unbind the socket if: 622 * - it is a SOCK_DGRAM, or 623 * - it is a SOCK_STREAM/SOCK_SEQPACKET that has not been connected 624 * and no listen() has been done. 625 */ 626 /* ARGSUSED */ 627 static int 628 sotpi_bindlisten(struct sonode *so, struct sockaddr *name, 629 socklen_t namelen, int backlog, int flags, struct cred *cr) 630 { 631 struct T_bind_req bind_req; 632 struct T_bind_ack *bind_ack; 633 int error = 0; 634 mblk_t *mp; 635 void *addr; 636 t_uscalar_t addrlen; 637 int unbind_on_err = 1; 638 boolean_t clear_acceptconn_on_err = B_FALSE; 639 boolean_t restore_backlog_on_err = B_FALSE; 640 int save_so_backlog = 0; 641 t_scalar_t PRIM_type = O_T_BIND_REQ; 642 boolean_t tcp_udp_xport; 643 sotpi_info_t *sti = SOTOTPI(so); 644 645 dprintso(so, 1, ("sotpi_bindlisten(%p, %p, %d, %d, 0x%x) %s\n", 646 (void *)so, (void *)name, namelen, backlog, flags, 647 pr_state(so->so_state, so->so_mode))); 648 649 tcp_udp_xport = so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM; 650 651 if (!(flags & _SOBIND_LOCK_HELD)) { 652 mutex_enter(&so->so_lock); 653 so_lock_single(so); /* Set SOLOCKED */ 654 } else { 655 ASSERT(MUTEX_HELD(&so->so_lock)); 656 ASSERT(so->so_flag & SOLOCKED); 657 } 658 659 /* 660 * Make sure that there is a preallocated unbind_req message 661 * before binding. This message allocated when the socket is 662 * created but it might be have been consumed. 663 */ 664 if (sti->sti_unbind_mp == NULL) { 665 dprintso(so, 1, ("sobind: allocating unbind_req\n")); 666 /* NOTE: holding so_lock while sleeping */ 667 sti->sti_unbind_mp = 668 soallocproto(sizeof (struct T_unbind_req), _ALLOC_SLEEP, 669 cr); 670 } 671 672 if (flags & _SOBIND_REBIND) { 673 /* 674 * Called from solisten after doing an sotpi_unbind() or 675 * potentially without the unbind (latter for AF_INET{,6}). 676 */ 677 ASSERT(name == NULL && namelen == 0); 678 679 if (so->so_family == AF_UNIX) { 680 ASSERT(sti->sti_ux_bound_vp); 681 addr = &sti->sti_ux_laddr; 682 addrlen = (t_uscalar_t)sizeof (sti->sti_ux_laddr); 683 dprintso(so, 1, ("sobind rebind UNIX: addrlen %d, " 684 "addr 0x%p, vp %p\n", 685 addrlen, 686 (void *)((struct so_ux_addr *)addr)->soua_vp, 687 (void *)sti->sti_ux_bound_vp)); 688 } else { 689 addr = sti->sti_laddr_sa; 690 addrlen = (t_uscalar_t)sti->sti_laddr_len; 691 } 692 } else if (flags & _SOBIND_UNSPEC) { 693 ASSERT(name == NULL && namelen == 0); 694 695 /* 696 * The caller checked SS_ISBOUND but not necessarily 697 * under so_lock 698 */ 699 if (so->so_state & SS_ISBOUND) { 700 /* No error */ 701 goto done; 702 } 703 704 /* Set an initial local address */ 705 switch (so->so_family) { 706 case AF_UNIX: 707 /* 708 * Use an address with same size as struct sockaddr 709 * just like BSD. 710 */ 711 sti->sti_laddr_len = 712 (socklen_t)sizeof (struct sockaddr); 713 ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen); 714 bzero(sti->sti_laddr_sa, sti->sti_laddr_len); 715 sti->sti_laddr_sa->sa_family = so->so_family; 716 717 /* 718 * Pass down an address with the implicit bind 719 * magic number and the rest all zeros. 720 * The transport will return a unique address. 721 */ 722 sti->sti_ux_laddr.soua_vp = NULL; 723 sti->sti_ux_laddr.soua_magic = SOU_MAGIC_IMPLICIT; 724 addr = &sti->sti_ux_laddr; 725 addrlen = (t_uscalar_t)sizeof (sti->sti_ux_laddr); 726 break; 727 728 case AF_INET: 729 case AF_INET6: 730 /* 731 * An unspecified bind in TPI has a NULL address. 732 * Set the address in sockfs to have the sa_family. 733 */ 734 sti->sti_laddr_len = (so->so_family == AF_INET) ? 735 (socklen_t)sizeof (sin_t) : 736 (socklen_t)sizeof (sin6_t); 737 ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen); 738 bzero(sti->sti_laddr_sa, sti->sti_laddr_len); 739 sti->sti_laddr_sa->sa_family = so->so_family; 740 addr = NULL; 741 addrlen = 0; 742 break; 743 744 default: 745 /* 746 * An unspecified bind in TPI has a NULL address. 747 * Set the address in sockfs to be zero length. 748 * 749 * Can not assume there is a sa_family for all 750 * protocol families. For example, AF_X25 does not 751 * have a family field. 752 */ 753 bzero(sti->sti_laddr_sa, sti->sti_laddr_len); 754 sti->sti_laddr_len = 0; /* XXX correct? */ 755 addr = NULL; 756 addrlen = 0; 757 break; 758 } 759 760 } else { 761 if (so->so_state & SS_ISBOUND) { 762 /* 763 * If it is ok to rebind the socket, first unbind 764 * with the transport. A rebind to the NULL address 765 * is interpreted as an unbind. 766 * Note that a bind to NULL in BSD does unbind the 767 * socket but it fails with EINVAL. 768 * Note that regular sockets set SOV_SOCKBSD i.e. 769 * _SOBIND_SOCKBSD gets set here hence no type of 770 * socket does currently allow rebinding. 771 * 772 * If the name is NULL just do an unbind. 773 */ 774 if (flags & (_SOBIND_SOCKBSD|_SOBIND_XPG4_2) && 775 name != NULL) { 776 error = EINVAL; 777 unbind_on_err = 0; 778 eprintsoline(so, error); 779 goto done; 780 } 781 if ((so->so_mode & SM_CONNREQUIRED) && 782 (so->so_state & SS_CANTREBIND)) { 783 error = EINVAL; 784 unbind_on_err = 0; 785 eprintsoline(so, error); 786 goto done; 787 } 788 error = sotpi_unbind(so, 0); 789 if (error) { 790 eprintsoline(so, error); 791 goto done; 792 } 793 ASSERT(!(so->so_state & SS_ISBOUND)); 794 if (name == NULL) { 795 so->so_state &= 796 ~(SS_ISCONNECTED|SS_ISCONNECTING); 797 goto done; 798 } 799 } 800 801 /* X/Open requires this check */ 802 if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) { 803 if (xnet_check_print) { 804 printf("sockfs: X/Open bind state check " 805 "caused EINVAL\n"); 806 } 807 error = EINVAL; 808 goto done; 809 } 810 811 switch (so->so_family) { 812 case AF_UNIX: 813 /* 814 * All AF_UNIX addresses are nul terminated 815 * when copied (copyin_name) in so the minimum 816 * length is 3 bytes. 817 */ 818 if (name == NULL || 819 (ssize_t)namelen <= sizeof (short) + 1) { 820 error = EISDIR; 821 eprintsoline(so, error); 822 goto done; 823 } 824 /* 825 * Verify so_family matches the bound family. 826 * BSD does not check this for AF_UNIX resulting 827 * in funny mknods. 828 */ 829 if (name->sa_family != so->so_family) { 830 error = EAFNOSUPPORT; 831 goto done; 832 } 833 break; 834 case AF_INET: 835 if (name == NULL) { 836 error = EINVAL; 837 eprintsoline(so, error); 838 goto done; 839 } 840 if ((size_t)namelen != sizeof (sin_t)) { 841 error = name->sa_family != so->so_family ? 842 EAFNOSUPPORT : EINVAL; 843 eprintsoline(so, error); 844 goto done; 845 } 846 if ((flags & _SOBIND_XPG4_2) && 847 (name->sa_family != so->so_family)) { 848 /* 849 * This check has to be made for X/Open 850 * sockets however application failures have 851 * been observed when it is applied to 852 * all sockets. 853 */ 854 error = EAFNOSUPPORT; 855 eprintsoline(so, error); 856 goto done; 857 } 858 /* 859 * Force a zero sa_family to match so_family. 860 * 861 * Some programs like inetd(8) don't set the 862 * family field. Other programs leave 863 * sin_family set to garbage - SunOS 4.X does 864 * not check the family field on a bind. 865 * We use the family field that 866 * was passed in to the socket() call. 867 */ 868 name->sa_family = so->so_family; 869 break; 870 871 case AF_INET6: { 872 #ifdef DEBUG 873 sin6_t *sin6 = (sin6_t *)name; 874 #endif /* DEBUG */ 875 876 if (name == NULL) { 877 error = EINVAL; 878 eprintsoline(so, error); 879 goto done; 880 } 881 if ((size_t)namelen != sizeof (sin6_t)) { 882 error = name->sa_family != so->so_family ? 883 EAFNOSUPPORT : EINVAL; 884 eprintsoline(so, error); 885 goto done; 886 } 887 if (name->sa_family != so->so_family) { 888 /* 889 * With IPv6 we require the family to match 890 * unlike in IPv4. 891 */ 892 error = EAFNOSUPPORT; 893 eprintsoline(so, error); 894 goto done; 895 } 896 #ifdef DEBUG 897 /* 898 * Verify that apps don't forget to clear 899 * sin6_scope_id etc 900 */ 901 if (sin6->sin6_scope_id != 0 && 902 !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) { 903 zcmn_err(getzoneid(), CE_WARN, 904 "bind with uninitialized sin6_scope_id " 905 "(%d) on socket. Pid = %d\n", 906 (int)sin6->sin6_scope_id, 907 (int)curproc->p_pid); 908 } 909 if (sin6->__sin6_src_id != 0) { 910 zcmn_err(getzoneid(), CE_WARN, 911 "bind with uninitialized __sin6_src_id " 912 "(%d) on socket. Pid = %d\n", 913 (int)sin6->__sin6_src_id, 914 (int)curproc->p_pid); 915 } 916 #endif /* DEBUG */ 917 break; 918 } 919 default: 920 /* 921 * Don't do any length or sa_family check to allow 922 * non-sockaddr style addresses. 923 */ 924 if (name == NULL) { 925 error = EINVAL; 926 eprintsoline(so, error); 927 goto done; 928 } 929 break; 930 } 931 932 if (namelen > (t_uscalar_t)sti->sti_laddr_maxlen) { 933 error = ENAMETOOLONG; 934 eprintsoline(so, error); 935 goto done; 936 } 937 /* 938 * Save local address. 939 */ 940 sti->sti_laddr_len = (socklen_t)namelen; 941 ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen); 942 bcopy(name, sti->sti_laddr_sa, namelen); 943 944 addr = sti->sti_laddr_sa; 945 addrlen = (t_uscalar_t)sti->sti_laddr_len; 946 switch (so->so_family) { 947 case AF_INET6: 948 case AF_INET: 949 break; 950 case AF_UNIX: { 951 struct sockaddr_un *soun = 952 (struct sockaddr_un *)sti->sti_laddr_sa; 953 struct vnode *vp, *rvp; 954 struct vattr vattr; 955 956 ASSERT(sti->sti_ux_bound_vp == NULL); 957 /* 958 * Create vnode for the specified path name. 959 * Keep vnode held with a reference in sti_ux_bound_vp. 960 * Use the vnode pointer as the address used in the 961 * bind with the transport. 962 * 963 * Use the same mode as in BSD. In particular this does 964 * not observe the umask. 965 */ 966 /* MAXPATHLEN + soun_family + nul termination */ 967 if (sti->sti_laddr_len > 968 (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) { 969 error = ENAMETOOLONG; 970 eprintsoline(so, error); 971 goto done; 972 } 973 vattr.va_type = VSOCK; 974 vattr.va_mode = 0777 & ~PTOU(curproc)->u_cmask; 975 vattr.va_mask = AT_TYPE|AT_MODE; 976 /* NOTE: holding so_lock */ 977 error = vn_create(soun->sun_path, UIO_SYSSPACE, &vattr, 978 EXCL, 0, &vp, CRMKNOD, 0, 0); 979 if (error) { 980 if (error == EEXIST) 981 error = EADDRINUSE; 982 eprintsoline(so, error); 983 goto done; 984 } 985 /* 986 * Establish pointer from the underlying filesystem 987 * vnode to the socket node. 988 * sti_ux_bound_vp and v_stream->sd_vnode form the 989 * cross-linkage between the underlying filesystem 990 * node and the socket node. 991 */ 992 993 if ((VOP_REALVP(vp, &rvp, NULL) == 0) && (vp != rvp)) { 994 VN_HOLD(rvp); 995 VN_RELE(vp); 996 vp = rvp; 997 } 998 999 ASSERT(SOTOV(so)->v_stream); 1000 mutex_enter(&vp->v_lock); 1001 vp->v_stream = SOTOV(so)->v_stream; 1002 sti->sti_ux_bound_vp = vp; 1003 mutex_exit(&vp->v_lock); 1004 1005 /* 1006 * Use the vnode pointer value as a unique address 1007 * (together with the magic number to avoid conflicts 1008 * with implicit binds) in the transport provider. 1009 */ 1010 sti->sti_ux_laddr.soua_vp = 1011 (void *)sti->sti_ux_bound_vp; 1012 sti->sti_ux_laddr.soua_magic = SOU_MAGIC_EXPLICIT; 1013 addr = &sti->sti_ux_laddr; 1014 addrlen = (t_uscalar_t)sizeof (sti->sti_ux_laddr); 1015 dprintso(so, 1, ("sobind UNIX: addrlen %d, addr %p\n", 1016 addrlen, 1017 (void *)((struct so_ux_addr *)addr)->soua_vp)); 1018 break; 1019 } 1020 } /* end switch (so->so_family) */ 1021 } 1022 1023 /* 1024 * set SS_ACCEPTCONN before sending down O_T_BIND_REQ since 1025 * the transport can start passing up T_CONN_IND messages 1026 * as soon as it receives the bind req and strsock_proto() 1027 * insists that SS_ACCEPTCONN is set when processing T_CONN_INDs. 1028 */ 1029 if (flags & _SOBIND_LISTEN) { 1030 if ((so->so_state & SS_ACCEPTCONN) == 0) 1031 clear_acceptconn_on_err = B_TRUE; 1032 save_so_backlog = so->so_backlog; 1033 restore_backlog_on_err = B_TRUE; 1034 so->so_state |= SS_ACCEPTCONN; 1035 so->so_backlog = backlog; 1036 } 1037 1038 /* 1039 * We send a T_BIND_REQ for TCP/UDP since we know it supports it, 1040 * for other transports we will send in a O_T_BIND_REQ. 1041 */ 1042 if (tcp_udp_xport && 1043 (so->so_family == AF_INET || so->so_family == AF_INET6)) 1044 PRIM_type = T_BIND_REQ; 1045 1046 bind_req.PRIM_type = PRIM_type; 1047 bind_req.ADDR_length = addrlen; 1048 bind_req.ADDR_offset = (t_scalar_t)sizeof (bind_req); 1049 bind_req.CONIND_number = backlog; 1050 /* NOTE: holding so_lock while sleeping */ 1051 mp = soallocproto2(&bind_req, sizeof (bind_req), 1052 addr, addrlen, 0, _ALLOC_SLEEP, cr); 1053 sti->sti_laddr_valid = 0; 1054 1055 /* Done using sti_laddr_sa - can drop the lock */ 1056 mutex_exit(&so->so_lock); 1057 1058 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 1059 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); 1060 if (error) { 1061 eprintsoline(so, error); 1062 mutex_enter(&so->so_lock); 1063 goto done; 1064 } 1065 1066 mutex_enter(&so->so_lock); 1067 error = sowaitprim(so, PRIM_type, T_BIND_ACK, 1068 (t_uscalar_t)sizeof (*bind_ack), &mp, 0); 1069 if (error) { 1070 eprintsoline(so, error); 1071 goto done; 1072 } 1073 ASSERT(mp); 1074 /* 1075 * Even if some TPI message (e.g. T_DISCON_IND) was received in 1076 * strsock_proto while the lock was dropped above, the bind 1077 * is allowed to complete. 1078 */ 1079 1080 /* Mark as bound. This will be undone if we detect errors below. */ 1081 if (flags & _SOBIND_NOXLATE) { 1082 ASSERT(so->so_family == AF_UNIX); 1083 sti->sti_faddr_noxlate = 1; 1084 } 1085 ASSERT(!(so->so_state & SS_ISBOUND) || (flags & _SOBIND_REBIND)); 1086 so->so_state |= SS_ISBOUND; 1087 ASSERT(sti->sti_unbind_mp); 1088 1089 /* note that we've already set SS_ACCEPTCONN above */ 1090 1091 /* 1092 * Recompute addrlen - an unspecied bind sent down an 1093 * address of length zero but we expect the appropriate length 1094 * in return. 1095 */ 1096 addrlen = (t_uscalar_t)(so->so_family == AF_UNIX ? 1097 sizeof (sti->sti_ux_laddr) : sti->sti_laddr_len); 1098 1099 bind_ack = (struct T_bind_ack *)mp->b_rptr; 1100 /* 1101 * The alignment restriction is really too strict but 1102 * we want enough alignment to inspect the fields of 1103 * a sockaddr_in. 1104 */ 1105 addr = sogetoff(mp, bind_ack->ADDR_offset, 1106 bind_ack->ADDR_length, 1107 __TPI_ALIGN_SIZE); 1108 if (addr == NULL) { 1109 freemsg(mp); 1110 error = EPROTO; 1111 eprintsoline(so, error); 1112 goto done; 1113 } 1114 if (!(flags & _SOBIND_UNSPEC)) { 1115 /* 1116 * Verify that the transport didn't return something we 1117 * did not want e.g. an address other than what we asked for. 1118 * 1119 * NOTE: These checks would go away if/when we switch to 1120 * using the new TPI (in which the transport would fail 1121 * the request instead of assigning a different address). 1122 * 1123 * NOTE2: For protocols that we don't know (i.e. any 1124 * other than AF_INET6, AF_INET and AF_UNIX), we 1125 * cannot know if the transport should be expected to 1126 * return the same address as that requested. 1127 * 1128 * NOTE3: For AF_INET and AF_INET6, TCP/UDP, we send 1129 * down a T_BIND_REQ. We use O_T_BIND_REQ for others. 1130 * 1131 * For example, in the case of netatalk it may be 1132 * inappropriate for the transport to return the 1133 * requested address (as it may have allocated a local 1134 * port number in behaviour similar to that of an 1135 * AF_INET bind request with a port number of zero). 1136 * 1137 * Given the definition of O_T_BIND_REQ, where the 1138 * transport may bind to an address other than the 1139 * requested address, it's not possible to determine 1140 * whether a returned address that differs from the 1141 * requested address is a reason to fail (because the 1142 * requested address was not available) or succeed 1143 * (because the transport allocated an appropriate 1144 * address and/or port). 1145 * 1146 * sockfs currently requires that the transport return 1147 * the requested address in the T_BIND_ACK, unless 1148 * there is code here to allow for any discrepancy. 1149 * Such code exists for AF_INET and AF_INET6. 1150 * 1151 * Netatalk chooses to return the requested address 1152 * rather than the (correct) allocated address. This 1153 * means that netatalk violates the TPI specification 1154 * (and would not function correctly if used from a 1155 * TLI application), but it does mean that it works 1156 * with sockfs. 1157 * 1158 * As noted above, using the newer XTI bind primitive 1159 * (T_BIND_REQ) in preference to O_T_BIND_REQ would 1160 * allow sockfs to be more sure about whether or not 1161 * the bind request had succeeded (as transports are 1162 * not permitted to bind to a different address than 1163 * that requested - they must return failure). 1164 * Unfortunately, support for T_BIND_REQ may not be 1165 * present in all transport implementations (netatalk, 1166 * for example, doesn't have it), making the 1167 * transition difficult. 1168 */ 1169 if (bind_ack->ADDR_length != addrlen) { 1170 /* Assumes that the requested address was in use */ 1171 freemsg(mp); 1172 error = EADDRINUSE; 1173 eprintsoline(so, error); 1174 goto done; 1175 } 1176 1177 switch (so->so_family) { 1178 case AF_INET6: 1179 case AF_INET: { 1180 sin_t *rname, *aname; 1181 1182 rname = (sin_t *)addr; 1183 aname = (sin_t *)sti->sti_laddr_sa; 1184 1185 /* 1186 * Take advantage of the alignment 1187 * of sin_port and sin6_port which fall 1188 * in the same place in their data structures. 1189 * Just use sin_port for either address family. 1190 * 1191 * This may become a problem if (heaven forbid) 1192 * there's a separate ipv6port_reserved... :-P 1193 * 1194 * Binding to port 0 has the semantics of letting 1195 * the transport bind to any port. 1196 * 1197 * If the transport is TCP or UDP since we had sent 1198 * a T_BIND_REQ we would not get a port other than 1199 * what we asked for. 1200 */ 1201 if (tcp_udp_xport) { 1202 /* 1203 * Pick up the new port number if we bound to 1204 * port 0. 1205 */ 1206 if (aname->sin_port == 0) 1207 aname->sin_port = rname->sin_port; 1208 sti->sti_laddr_valid = 1; 1209 break; 1210 } 1211 if (aname->sin_port != 0 && 1212 aname->sin_port != rname->sin_port) { 1213 freemsg(mp); 1214 error = EADDRINUSE; 1215 eprintsoline(so, error); 1216 goto done; 1217 } 1218 /* 1219 * Pick up the new port number if we bound to port 0. 1220 */ 1221 aname->sin_port = rname->sin_port; 1222 1223 /* 1224 * Unfortunately, addresses aren't _quite_ the same. 1225 */ 1226 if (so->so_family == AF_INET) { 1227 if (aname->sin_addr.s_addr != 1228 rname->sin_addr.s_addr) { 1229 freemsg(mp); 1230 error = EADDRNOTAVAIL; 1231 eprintsoline(so, error); 1232 goto done; 1233 } 1234 } else { 1235 sin6_t *rname6 = (sin6_t *)rname; 1236 sin6_t *aname6 = (sin6_t *)aname; 1237 1238 if (!IN6_ARE_ADDR_EQUAL(&aname6->sin6_addr, 1239 &rname6->sin6_addr)) { 1240 freemsg(mp); 1241 error = EADDRNOTAVAIL; 1242 eprintsoline(so, error); 1243 goto done; 1244 } 1245 } 1246 break; 1247 } 1248 case AF_UNIX: 1249 if (bcmp(addr, &sti->sti_ux_laddr, addrlen) != 0) { 1250 freemsg(mp); 1251 error = EADDRINUSE; 1252 eprintsoline(so, error); 1253 eprintso(so, 1254 ("addrlen %d, addr 0x%x, vp %p\n", 1255 addrlen, *((int *)addr), 1256 (void *)sti->sti_ux_bound_vp)); 1257 goto done; 1258 } 1259 sti->sti_laddr_valid = 1; 1260 break; 1261 default: 1262 /* 1263 * NOTE: This assumes that addresses can be 1264 * byte-compared for equivalence. 1265 */ 1266 if (bcmp(addr, sti->sti_laddr_sa, addrlen) != 0) { 1267 freemsg(mp); 1268 error = EADDRINUSE; 1269 eprintsoline(so, error); 1270 goto done; 1271 } 1272 /* 1273 * Don't mark sti_laddr_valid, as we cannot be 1274 * sure that the returned address is the real 1275 * bound address when talking to an unknown 1276 * transport. 1277 */ 1278 break; 1279 } 1280 } else { 1281 /* 1282 * Save for returned address for getsockname. 1283 * Needed for unspecific bind unless transport supports 1284 * the TI_GETMYNAME ioctl. 1285 * Do this for AF_INET{,6} even though they do, as 1286 * caching info here is much better performance than 1287 * a TPI/STREAMS trip to the transport for getsockname. 1288 * Any which can't for some reason _must_ _not_ set 1289 * sti_laddr_valid here for the caching version of 1290 * getsockname to not break; 1291 */ 1292 switch (so->so_family) { 1293 case AF_UNIX: 1294 /* 1295 * Record the address bound with the transport 1296 * for use by socketpair. 1297 */ 1298 bcopy(addr, &sti->sti_ux_laddr, addrlen); 1299 sti->sti_laddr_valid = 1; 1300 break; 1301 case AF_INET: 1302 case AF_INET6: 1303 ASSERT(sti->sti_laddr_len <= sti->sti_laddr_maxlen); 1304 bcopy(addr, sti->sti_laddr_sa, sti->sti_laddr_len); 1305 sti->sti_laddr_valid = 1; 1306 break; 1307 default: 1308 /* 1309 * Don't mark sti_laddr_valid, as we cannot be 1310 * sure that the returned address is the real 1311 * bound address when talking to an unknown 1312 * transport. 1313 */ 1314 break; 1315 } 1316 } 1317 1318 freemsg(mp); 1319 1320 done: 1321 if (error) { 1322 /* reset state & backlog to values held on entry */ 1323 if (clear_acceptconn_on_err == B_TRUE) 1324 so->so_state &= ~SS_ACCEPTCONN; 1325 if (restore_backlog_on_err == B_TRUE) 1326 so->so_backlog = save_so_backlog; 1327 1328 if (unbind_on_err && so->so_state & SS_ISBOUND) { 1329 int err; 1330 1331 err = sotpi_unbind(so, 0); 1332 /* LINTED - statement has no consequent: if */ 1333 if (err) { 1334 eprintsoline(so, error); 1335 } else { 1336 ASSERT(!(so->so_state & SS_ISBOUND)); 1337 } 1338 } 1339 } 1340 if (!(flags & _SOBIND_LOCK_HELD)) { 1341 so_unlock_single(so, SOLOCKED); 1342 mutex_exit(&so->so_lock); 1343 } else { 1344 ASSERT(MUTEX_HELD(&so->so_lock)); 1345 ASSERT(so->so_flag & SOLOCKED); 1346 } 1347 return (error); 1348 } 1349 1350 /* bind the socket */ 1351 static int 1352 sotpi_bind(struct sonode *so, struct sockaddr *name, socklen_t namelen, 1353 int flags, struct cred *cr) 1354 { 1355 if ((flags & _SOBIND_SOCKETPAIR) == 0) 1356 return (sotpi_bindlisten(so, name, namelen, 0, flags, cr)); 1357 1358 flags &= ~_SOBIND_SOCKETPAIR; 1359 return (sotpi_bindlisten(so, name, namelen, 1, flags, cr)); 1360 } 1361 1362 /* 1363 * Unbind a socket - used when bind() fails, when bind() specifies a NULL 1364 * address, or when listen needs to unbind and bind. 1365 * If the _SOUNBIND_REBIND flag is specified the addresses are retained 1366 * so that a sobind can pick them up. 1367 */ 1368 static int 1369 sotpi_unbind(struct sonode *so, int flags) 1370 { 1371 struct T_unbind_req unbind_req; 1372 int error = 0; 1373 mblk_t *mp; 1374 sotpi_info_t *sti = SOTOTPI(so); 1375 1376 dprintso(so, 1, ("sotpi_unbind(%p, 0x%x) %s\n", 1377 (void *)so, flags, pr_state(so->so_state, so->so_mode))); 1378 1379 ASSERT(MUTEX_HELD(&so->so_lock)); 1380 ASSERT(so->so_flag & SOLOCKED); 1381 1382 if (!(so->so_state & SS_ISBOUND)) { 1383 error = EINVAL; 1384 eprintsoline(so, error); 1385 goto done; 1386 } 1387 1388 mutex_exit(&so->so_lock); 1389 1390 /* 1391 * Flush the read and write side (except stream head read queue) 1392 * and send down T_UNBIND_REQ. 1393 */ 1394 (void) putnextctl1(strvp2wq(SOTOV(so)), M_FLUSH, FLUSHRW); 1395 1396 unbind_req.PRIM_type = T_UNBIND_REQ; 1397 mp = soallocproto1(&unbind_req, sizeof (unbind_req), 1398 0, _ALLOC_SLEEP, CRED()); 1399 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 1400 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); 1401 mutex_enter(&so->so_lock); 1402 if (error) { 1403 eprintsoline(so, error); 1404 goto done; 1405 } 1406 1407 error = sowaitokack(so, T_UNBIND_REQ); 1408 if (error) { 1409 eprintsoline(so, error); 1410 goto done; 1411 } 1412 1413 /* 1414 * Even if some TPI message (e.g. T_DISCON_IND) was received in 1415 * strsock_proto while the lock was dropped above, the unbind 1416 * is allowed to complete. 1417 */ 1418 if (!(flags & _SOUNBIND_REBIND)) { 1419 /* 1420 * Clear out bound address. 1421 */ 1422 vnode_t *vp; 1423 1424 if ((vp = sti->sti_ux_bound_vp) != NULL) { 1425 sti->sti_ux_bound_vp = NULL; 1426 vn_rele_stream(vp); 1427 } 1428 /* Clear out address */ 1429 sti->sti_laddr_len = 0; 1430 } 1431 so->so_state &= ~(SS_ISBOUND|SS_ACCEPTCONN); 1432 sti->sti_laddr_valid = 0; 1433 1434 done: 1435 1436 /* If the caller held the lock don't release it here */ 1437 ASSERT(MUTEX_HELD(&so->so_lock)); 1438 ASSERT(so->so_flag & SOLOCKED); 1439 1440 return (error); 1441 } 1442 1443 /* 1444 * listen on the socket. 1445 * For TPI conforming transports this has to first unbind with the transport 1446 * and then bind again using the new backlog. 1447 */ 1448 /* ARGSUSED */ 1449 int 1450 sotpi_listen(struct sonode *so, int backlog, struct cred *cr) 1451 { 1452 int error = 0; 1453 sotpi_info_t *sti = SOTOTPI(so); 1454 1455 dprintso(so, 1, ("sotpi_listen(%p, %d) %s\n", 1456 (void *)so, backlog, pr_state(so->so_state, so->so_mode))); 1457 1458 if (sti->sti_serv_type == T_CLTS) 1459 return (EOPNOTSUPP); 1460 1461 /* 1462 * If the socket is ready to accept connections already, then 1463 * return without doing anything. This avoids a problem where 1464 * a second listen() call fails if a connection is pending and 1465 * leaves the socket unbound. Only when we are not unbinding 1466 * with the transport can we safely increase the backlog. 1467 */ 1468 if (so->so_state & SS_ACCEPTCONN && 1469 !((so->so_family == AF_INET || so->so_family == AF_INET6) && 1470 /*CONSTCOND*/ 1471 !solisten_tpi_tcp)) 1472 return (0); 1473 1474 if (so->so_state & SS_ISCONNECTED) 1475 return (EINVAL); 1476 1477 mutex_enter(&so->so_lock); 1478 so_lock_single(so); /* Set SOLOCKED */ 1479 1480 /* 1481 * If the listen doesn't change the backlog we do nothing. 1482 * This avoids an EPROTO error from the transport. 1483 */ 1484 if ((so->so_state & SS_ACCEPTCONN) && 1485 so->so_backlog == backlog) 1486 goto done; 1487 1488 if (!(so->so_state & SS_ISBOUND)) { 1489 /* 1490 * Must have been explicitly bound in the UNIX domain. 1491 */ 1492 if (so->so_family == AF_UNIX) { 1493 error = EINVAL; 1494 goto done; 1495 } 1496 error = sotpi_bindlisten(so, NULL, 0, backlog, 1497 _SOBIND_UNSPEC|_SOBIND_LOCK_HELD|_SOBIND_LISTEN, cr); 1498 } else if (backlog > 0) { 1499 /* 1500 * AF_INET{,6} hack to avoid losing the port. 1501 * Assumes that all AF_INET{,6} transports can handle a 1502 * O_T_BIND_REQ with a non-zero CONIND_number when the TPI 1503 * has already bound thus it is possible to avoid the unbind. 1504 */ 1505 if (!((so->so_family == AF_INET || so->so_family == AF_INET6) && 1506 /*CONSTCOND*/ 1507 !solisten_tpi_tcp)) { 1508 error = sotpi_unbind(so, _SOUNBIND_REBIND); 1509 if (error) 1510 goto done; 1511 } 1512 error = sotpi_bindlisten(so, NULL, 0, backlog, 1513 _SOBIND_REBIND|_SOBIND_LOCK_HELD|_SOBIND_LISTEN, cr); 1514 } else { 1515 so->so_state |= SS_ACCEPTCONN; 1516 so->so_backlog = backlog; 1517 } 1518 if (error) 1519 goto done; 1520 ASSERT(so->so_state & SS_ACCEPTCONN); 1521 done: 1522 so_unlock_single(so, SOLOCKED); 1523 mutex_exit(&so->so_lock); 1524 return (error); 1525 } 1526 1527 /* 1528 * Disconnect either a specified seqno or all (-1). 1529 * The former is used on listening sockets only. 1530 * 1531 * When seqno == -1 sodisconnect could call sotpi_unbind. However, 1532 * the current use of sodisconnect(seqno == -1) is only for shutdown 1533 * so there is no point (and potentially incorrect) to unbind. 1534 */ 1535 static int 1536 sodisconnect(struct sonode *so, t_scalar_t seqno, int flags) 1537 { 1538 struct T_discon_req discon_req; 1539 int error = 0; 1540 mblk_t *mp; 1541 1542 dprintso(so, 1, ("sodisconnect(%p, %d, 0x%x) %s\n", 1543 (void *)so, seqno, flags, pr_state(so->so_state, so->so_mode))); 1544 1545 if (!(flags & _SODISCONNECT_LOCK_HELD)) { 1546 mutex_enter(&so->so_lock); 1547 so_lock_single(so); /* Set SOLOCKED */ 1548 } else { 1549 ASSERT(MUTEX_HELD(&so->so_lock)); 1550 ASSERT(so->so_flag & SOLOCKED); 1551 } 1552 1553 if (!(so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ACCEPTCONN))) { 1554 error = EINVAL; 1555 eprintsoline(so, error); 1556 goto done; 1557 } 1558 1559 mutex_exit(&so->so_lock); 1560 /* 1561 * Flush the write side (unless this is a listener) 1562 * and then send down a T_DISCON_REQ. 1563 * (Don't flush on listener since it could flush {O_}T_CONN_RES 1564 * and other messages.) 1565 */ 1566 if (!(so->so_state & SS_ACCEPTCONN)) 1567 (void) putnextctl1(strvp2wq(SOTOV(so)), M_FLUSH, FLUSHW); 1568 1569 discon_req.PRIM_type = T_DISCON_REQ; 1570 discon_req.SEQ_number = seqno; 1571 mp = soallocproto1(&discon_req, sizeof (discon_req), 1572 0, _ALLOC_SLEEP, CRED()); 1573 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 1574 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); 1575 mutex_enter(&so->so_lock); 1576 if (error) { 1577 eprintsoline(so, error); 1578 goto done; 1579 } 1580 1581 error = sowaitokack(so, T_DISCON_REQ); 1582 if (error) { 1583 eprintsoline(so, error); 1584 goto done; 1585 } 1586 /* 1587 * Even if some TPI message (e.g. T_DISCON_IND) was received in 1588 * strsock_proto while the lock was dropped above, the disconnect 1589 * is allowed to complete. However, it is not possible to 1590 * assert that SS_ISCONNECTED|SS_ISCONNECTING are set. 1591 */ 1592 so->so_state &= ~(SS_ISCONNECTED|SS_ISCONNECTING); 1593 SOTOTPI(so)->sti_laddr_valid = 0; 1594 SOTOTPI(so)->sti_faddr_valid = 0; 1595 done: 1596 if (!(flags & _SODISCONNECT_LOCK_HELD)) { 1597 so_unlock_single(so, SOLOCKED); 1598 mutex_exit(&so->so_lock); 1599 } else { 1600 /* If the caller held the lock don't release it here */ 1601 ASSERT(MUTEX_HELD(&so->so_lock)); 1602 ASSERT(so->so_flag & SOLOCKED); 1603 } 1604 return (error); 1605 } 1606 1607 /* ARGSUSED */ 1608 int 1609 sotpi_accept(struct sonode *so, int fflag, struct cred *cr, 1610 struct sonode **nsop) 1611 { 1612 struct T_conn_ind *conn_ind; 1613 struct T_conn_res *conn_res; 1614 int error = 0; 1615 mblk_t *mp, *ack_mp; 1616 struct sonode *nso; 1617 vnode_t *nvp; 1618 void *src; 1619 t_uscalar_t srclen; 1620 void *opt; 1621 t_uscalar_t optlen; 1622 t_scalar_t PRIM_type; 1623 t_scalar_t SEQ_number; 1624 size_t sinlen; 1625 sotpi_info_t *sti = SOTOTPI(so); 1626 sotpi_info_t *nsti; 1627 1628 dprintso(so, 1, ("sotpi_accept(%p, 0x%x, %p) %s\n", 1629 (void *)so, fflag, (void *)nsop, 1630 pr_state(so->so_state, so->so_mode))); 1631 1632 /* 1633 * Defer single-threading the accepting socket until 1634 * the T_CONN_IND has been received and parsed and the 1635 * new sonode has been opened. 1636 */ 1637 1638 /* Check that we are not already connected */ 1639 if ((so->so_state & SS_ACCEPTCONN) == 0) 1640 goto conn_bad; 1641 1642 if ((error = sowaitconnind(so, fflag, &mp)) != 0) 1643 goto e_bad; 1644 1645 ASSERT(mp != NULL); 1646 conn_ind = (struct T_conn_ind *)mp->b_rptr; 1647 1648 /* 1649 * Save SEQ_number for error paths. 1650 */ 1651 SEQ_number = conn_ind->SEQ_number; 1652 1653 srclen = conn_ind->SRC_length; 1654 src = sogetoff(mp, conn_ind->SRC_offset, srclen, 1); 1655 if (src == NULL) { 1656 error = EPROTO; 1657 freemsg(mp); 1658 eprintsoline(so, error); 1659 goto disconnect_unlocked; 1660 } 1661 optlen = conn_ind->OPT_length; 1662 switch (so->so_family) { 1663 case AF_INET: 1664 case AF_INET6: 1665 if ((optlen == sizeof (intptr_t)) && (sti->sti_direct != 0)) { 1666 bcopy(mp->b_rptr + conn_ind->OPT_offset, 1667 &opt, conn_ind->OPT_length); 1668 } else { 1669 /* 1670 * The transport (in this case TCP) hasn't sent up 1671 * a pointer to an instance for the accept fast-path. 1672 * Disable fast-path completely because the call to 1673 * sotpi_create() below would otherwise create an 1674 * incomplete TCP instance, which would lead to 1675 * problems when sockfs sends a normal T_CONN_RES 1676 * message down the new stream. 1677 */ 1678 if (sti->sti_direct) { 1679 int rval; 1680 /* 1681 * For consistency we inform tcp to disable 1682 * direct interface on the listener, though 1683 * we can certainly live without doing this 1684 * because no data will ever travel upstream 1685 * on the listening socket. 1686 */ 1687 sti->sti_direct = 0; 1688 (void) strioctl(SOTOV(so), _SIOCSOCKFALLBACK, 1689 0, 0, K_TO_K, cr, &rval); 1690 } 1691 opt = NULL; 1692 optlen = 0; 1693 } 1694 break; 1695 case AF_UNIX: 1696 default: 1697 if (optlen != 0) { 1698 opt = sogetoff(mp, conn_ind->OPT_offset, optlen, 1699 __TPI_ALIGN_SIZE); 1700 if (opt == NULL) { 1701 error = EPROTO; 1702 freemsg(mp); 1703 eprintsoline(so, error); 1704 goto disconnect_unlocked; 1705 } 1706 } 1707 if (so->so_family == AF_UNIX) { 1708 if (!sti->sti_faddr_noxlate) { 1709 src = NULL; 1710 srclen = 0; 1711 } 1712 /* Extract src address from options */ 1713 if (optlen != 0) 1714 so_getopt_srcaddr(opt, optlen, &src, &srclen); 1715 } 1716 break; 1717 } 1718 1719 /* 1720 * Create the new socket. 1721 */ 1722 nso = socket_newconn(so, NULL, NULL, SOCKET_SLEEP, &error); 1723 if (nso == NULL) { 1724 ASSERT(error != 0); 1725 /* 1726 * Accept can not fail with ENOBUFS. sotpi_create 1727 * sleeps waiting for memory until a signal is caught 1728 * so return EINTR. 1729 */ 1730 freemsg(mp); 1731 if (error == ENOBUFS) 1732 error = EINTR; 1733 goto e_disc_unl; 1734 } 1735 nvp = SOTOV(nso); 1736 nsti = SOTOTPI(nso); 1737 1738 #ifdef DEBUG 1739 /* 1740 * SO_DEBUG is used to trigger the dprint* and eprint* macros thus 1741 * it's inherited early to allow debugging of the accept code itself. 1742 */ 1743 nso->so_options |= so->so_options & SO_DEBUG; 1744 #endif /* DEBUG */ 1745 1746 /* 1747 * Save the SRC address from the T_CONN_IND 1748 * for getpeername to work on AF_UNIX and on transports that do not 1749 * support TI_GETPEERNAME. 1750 * 1751 * NOTE: AF_UNIX NUL termination is ensured by the sender's 1752 * copyin_name(). 1753 */ 1754 if (srclen > (t_uscalar_t)nsti->sti_faddr_maxlen) { 1755 error = EINVAL; 1756 freemsg(mp); 1757 eprintsoline(so, error); 1758 goto disconnect_vp_unlocked; 1759 } 1760 nsti->sti_faddr_len = (socklen_t)srclen; 1761 ASSERT(sti->sti_faddr_len <= sti->sti_faddr_maxlen); 1762 bcopy(src, nsti->sti_faddr_sa, srclen); 1763 nsti->sti_faddr_valid = 1; 1764 1765 /* 1766 * Record so_peercred and so_cpid from a cred in the T_CONN_IND. 1767 */ 1768 if ((DB_REF(mp) > 1) || MBLKSIZE(mp) < 1769 (sizeof (struct T_conn_res) + sizeof (intptr_t))) { 1770 cred_t *cr; 1771 pid_t cpid; 1772 1773 cr = msg_getcred(mp, &cpid); 1774 if (cr != NULL) { 1775 crhold(cr); 1776 nso->so_peercred = cr; 1777 nso->so_cpid = cpid; 1778 } 1779 freemsg(mp); 1780 1781 mp = soallocproto1(NULL, sizeof (struct T_conn_res) + 1782 sizeof (intptr_t), 0, _ALLOC_INTR, cr); 1783 if (mp == NULL) { 1784 /* 1785 * Accept can not fail with ENOBUFS. 1786 * A signal was caught so return EINTR. 1787 */ 1788 error = EINTR; 1789 eprintsoline(so, error); 1790 goto disconnect_vp_unlocked; 1791 } 1792 conn_res = (struct T_conn_res *)mp->b_rptr; 1793 } else { 1794 /* 1795 * For efficency reasons we use msg_extractcred; no crhold 1796 * needed since db_credp is cleared (i.e., we move the cred 1797 * from the message to so_peercred. 1798 */ 1799 nso->so_peercred = msg_extractcred(mp, &nso->so_cpid); 1800 1801 mp->b_rptr = DB_BASE(mp); 1802 conn_res = (struct T_conn_res *)mp->b_rptr; 1803 mp->b_wptr = mp->b_rptr + sizeof (struct T_conn_res); 1804 1805 mblk_setcred(mp, cr, curproc->p_pid); 1806 } 1807 1808 /* 1809 * New socket must be bound at least in sockfs and, except for AF_INET, 1810 * (or AF_INET6) it also has to be bound in the transport provider. 1811 * We set the local address in the sonode from the T_OK_ACK of the 1812 * T_CONN_RES. For this reason the address we bind to here isn't 1813 * important. 1814 */ 1815 if ((nso->so_family == AF_INET || nso->so_family == AF_INET6) && 1816 /*CONSTCOND*/ 1817 nso->so_type == SOCK_STREAM && !soaccept_tpi_tcp) { 1818 /* 1819 * Optimization for AF_INET{,6} transports 1820 * that can handle a T_CONN_RES without being bound. 1821 */ 1822 mutex_enter(&nso->so_lock); 1823 so_automatic_bind(nso); 1824 mutex_exit(&nso->so_lock); 1825 } else { 1826 /* Perform NULL bind with the transport provider. */ 1827 if ((error = sotpi_bind(nso, NULL, 0, _SOBIND_UNSPEC, 1828 cr)) != 0) { 1829 ASSERT(error != ENOBUFS); 1830 freemsg(mp); 1831 eprintsoline(nso, error); 1832 goto disconnect_vp_unlocked; 1833 } 1834 } 1835 1836 /* 1837 * Inherit SIOCSPGRP, SS_ASYNC before we send the {O_}T_CONN_RES 1838 * so that any data arriving on the new socket will cause the 1839 * appropriate signals to be delivered for the new socket. 1840 * 1841 * No other thread (except strsock_proto and strsock_misc) 1842 * can access the new socket thus we relax the locking. 1843 */ 1844 nso->so_pgrp = so->so_pgrp; 1845 nso->so_state |= so->so_state & SS_ASYNC; 1846 nsti->sti_faddr_noxlate = sti->sti_faddr_noxlate; 1847 1848 if (nso->so_pgrp != 0) { 1849 if ((error = so_set_events(nso, nvp, cr)) != 0) { 1850 eprintsoline(nso, error); 1851 error = 0; 1852 nso->so_pgrp = 0; 1853 } 1854 } 1855 1856 /* 1857 * Make note of the socket level options. TCP and IP level options 1858 * are already inherited. We could do all this after accept is 1859 * successful but doing it here simplifies code and no harm done 1860 * for error case. 1861 */ 1862 nso->so_options = so->so_options & (SO_DEBUG|SO_REUSEADDR|SO_KEEPALIVE| 1863 SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK| 1864 SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER); 1865 nso->so_sndbuf = so->so_sndbuf; 1866 nso->so_rcvbuf = so->so_rcvbuf; 1867 if (nso->so_options & SO_LINGER) 1868 nso->so_linger = so->so_linger; 1869 1870 /* 1871 * Note that the following sti_direct code path should be 1872 * removed once we are confident that the direct sockets 1873 * do not result in any degradation. 1874 */ 1875 if (sti->sti_direct) { 1876 1877 ASSERT(opt != NULL); 1878 1879 conn_res->OPT_length = optlen; 1880 conn_res->OPT_offset = MBLKL(mp); 1881 bcopy(&opt, mp->b_wptr, optlen); 1882 mp->b_wptr += optlen; 1883 conn_res->PRIM_type = T_CONN_RES; 1884 conn_res->ACCEPTOR_id = 0; 1885 PRIM_type = T_CONN_RES; 1886 1887 /* Send down the T_CONN_RES on acceptor STREAM */ 1888 error = kstrputmsg(SOTOV(nso), mp, NULL, 1889 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); 1890 if (error) { 1891 mutex_enter(&so->so_lock); 1892 so_lock_single(so); 1893 eprintsoline(so, error); 1894 goto disconnect_vp; 1895 } 1896 mutex_enter(&nso->so_lock); 1897 error = sowaitprim(nso, T_CONN_RES, T_OK_ACK, 1898 (t_uscalar_t)sizeof (struct T_ok_ack), &ack_mp, 0); 1899 if (error) { 1900 mutex_exit(&nso->so_lock); 1901 mutex_enter(&so->so_lock); 1902 so_lock_single(so); 1903 eprintsoline(so, error); 1904 goto disconnect_vp; 1905 } 1906 if (nso->so_family == AF_INET) { 1907 sin_t *sin; 1908 1909 sin = (sin_t *)(ack_mp->b_rptr + 1910 sizeof (struct T_ok_ack)); 1911 bcopy(sin, nsti->sti_laddr_sa, sizeof (sin_t)); 1912 nsti->sti_laddr_len = sizeof (sin_t); 1913 } else { 1914 sin6_t *sin6; 1915 1916 sin6 = (sin6_t *)(ack_mp->b_rptr + 1917 sizeof (struct T_ok_ack)); 1918 bcopy(sin6, nsti->sti_laddr_sa, sizeof (sin6_t)); 1919 nsti->sti_laddr_len = sizeof (sin6_t); 1920 } 1921 freemsg(ack_mp); 1922 1923 nso->so_state |= SS_ISCONNECTED; 1924 nso->so_proto_handle = (sock_lower_handle_t)opt; 1925 nsti->sti_laddr_valid = 1; 1926 1927 mutex_exit(&nso->so_lock); 1928 1929 /* 1930 * It's possible, through the use of autopush for example, 1931 * that the acceptor stream may not support sti_direct 1932 * semantics. If the new socket does not support sti_direct 1933 * we issue a _SIOCSOCKFALLBACK to inform the transport 1934 * as we would in the I_PUSH case. 1935 */ 1936 if (nsti->sti_direct == 0) { 1937 int rval; 1938 1939 if ((error = strioctl(SOTOV(nso), _SIOCSOCKFALLBACK, 1940 0, 0, K_TO_K, cr, &rval)) != 0) { 1941 mutex_enter(&so->so_lock); 1942 so_lock_single(so); 1943 eprintsoline(so, error); 1944 goto disconnect_vp; 1945 } 1946 } 1947 1948 /* 1949 * Pass out new socket. 1950 */ 1951 if (nsop != NULL) 1952 *nsop = nso; 1953 1954 return (0); 1955 } 1956 1957 /* 1958 * This is the non-performance case for sockets (e.g. AF_UNIX sockets) 1959 * which don't support the FireEngine accept fast-path. It is also 1960 * used when the virtual "sockmod" has been I_POP'd and I_PUSH'd 1961 * again. Neither sockfs nor TCP attempt to find out if some other 1962 * random module has been inserted in between (in which case we 1963 * should follow TLI accept behaviour). We blindly assume the worst 1964 * case and revert back to old behaviour i.e. TCP will not send us 1965 * any option (eager) and the accept should happen on the listener 1966 * queue. Any queued T_conn_ind have already got their options removed 1967 * by so_sock2_stream() when "sockmod" was I_POP'd. 1968 */ 1969 /* 1970 * Fill in the {O_}T_CONN_RES before getting SOLOCKED. 1971 */ 1972 if ((nso->so_mode & SM_ACCEPTOR_ID) == 0) { 1973 #ifdef _ILP32 1974 queue_t *q; 1975 1976 /* 1977 * Find read queue in driver 1978 * Can safely do this since we "own" nso/nvp. 1979 */ 1980 q = strvp2wq(nvp)->q_next; 1981 while (SAMESTR(q)) 1982 q = q->q_next; 1983 q = RD(q); 1984 conn_res->ACCEPTOR_id = (t_uscalar_t)q; 1985 #else 1986 conn_res->ACCEPTOR_id = (t_uscalar_t)getminor(nvp->v_rdev); 1987 #endif /* _ILP32 */ 1988 conn_res->PRIM_type = O_T_CONN_RES; 1989 PRIM_type = O_T_CONN_RES; 1990 } else { 1991 conn_res->ACCEPTOR_id = nsti->sti_acceptor_id; 1992 conn_res->PRIM_type = T_CONN_RES; 1993 PRIM_type = T_CONN_RES; 1994 } 1995 conn_res->SEQ_number = SEQ_number; 1996 conn_res->OPT_length = 0; 1997 conn_res->OPT_offset = 0; 1998 1999 mutex_enter(&so->so_lock); 2000 so_lock_single(so); /* Set SOLOCKED */ 2001 mutex_exit(&so->so_lock); 2002 2003 error = kstrputmsg(SOTOV(so), mp, NULL, 2004 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); 2005 mutex_enter(&so->so_lock); 2006 if (error) { 2007 eprintsoline(so, error); 2008 goto disconnect_vp; 2009 } 2010 error = sowaitprim(so, PRIM_type, T_OK_ACK, 2011 (t_uscalar_t)sizeof (struct T_ok_ack), &ack_mp, 0); 2012 if (error) { 2013 eprintsoline(so, error); 2014 goto disconnect_vp; 2015 } 2016 mutex_exit(&so->so_lock); 2017 /* 2018 * If there is a sin/sin6 appended onto the T_OK_ACK use 2019 * that to set the local address. If this is not present 2020 * then we zero out the address and don't set the 2021 * sti_laddr_valid bit. For AF_UNIX endpoints we copy over 2022 * the pathname from the listening socket. 2023 * In the case where this is TCP or an AF_UNIX socket the 2024 * client side may have queued data or a T_ORDREL in the 2025 * transport. Having now sent the T_CONN_RES we may receive 2026 * those queued messages at any time. Hold the acceptor 2027 * so_lock until its state and laddr are finalized. 2028 */ 2029 mutex_enter(&nso->so_lock); 2030 sinlen = (nso->so_family == AF_INET) ? sizeof (sin_t) : sizeof (sin6_t); 2031 if ((nso->so_family == AF_INET || nso->so_family == AF_INET6) && 2032 MBLKL(ack_mp) == (sizeof (struct T_ok_ack) + sinlen)) { 2033 ack_mp->b_rptr += sizeof (struct T_ok_ack); 2034 bcopy(ack_mp->b_rptr, nsti->sti_laddr_sa, sinlen); 2035 nsti->sti_laddr_len = sinlen; 2036 nsti->sti_laddr_valid = 1; 2037 } else if (nso->so_family == AF_UNIX) { 2038 ASSERT(so->so_family == AF_UNIX); 2039 nsti->sti_laddr_len = sti->sti_laddr_len; 2040 ASSERT(nsti->sti_laddr_len <= nsti->sti_laddr_maxlen); 2041 bcopy(sti->sti_laddr_sa, nsti->sti_laddr_sa, 2042 nsti->sti_laddr_len); 2043 nsti->sti_laddr_valid = 1; 2044 } else { 2045 nsti->sti_laddr_len = sti->sti_laddr_len; 2046 ASSERT(nsti->sti_laddr_len <= nsti->sti_laddr_maxlen); 2047 bzero(nsti->sti_laddr_sa, nsti->sti_addr_size); 2048 nsti->sti_laddr_sa->sa_family = nso->so_family; 2049 } 2050 nso->so_state |= SS_ISCONNECTED; 2051 mutex_exit(&nso->so_lock); 2052 2053 freemsg(ack_mp); 2054 2055 mutex_enter(&so->so_lock); 2056 so_unlock_single(so, SOLOCKED); 2057 mutex_exit(&so->so_lock); 2058 2059 /* 2060 * Pass out new socket. 2061 */ 2062 if (nsop != NULL) 2063 *nsop = nso; 2064 2065 return (0); 2066 2067 e_disc_unl: 2068 eprintsoline(so, error); 2069 goto disconnect_unlocked; 2070 2071 disconnect_vp_unlocked: 2072 (void) VOP_CLOSE(nvp, 0, 1, 0, cr, NULL); 2073 VN_RELE(nvp); 2074 disconnect_unlocked: 2075 (void) sodisconnect(so, SEQ_number, 0); 2076 return (error); 2077 2078 disconnect_vp: 2079 (void) sodisconnect(so, SEQ_number, _SODISCONNECT_LOCK_HELD); 2080 so_unlock_single(so, SOLOCKED); 2081 mutex_exit(&so->so_lock); 2082 (void) VOP_CLOSE(nvp, 0, 1, 0, cr, NULL); 2083 VN_RELE(nvp); 2084 return (error); 2085 2086 conn_bad: /* Note: SunOS 4/BSD unconditionally returns EINVAL here */ 2087 error = (so->so_type == SOCK_DGRAM || so->so_type == SOCK_RAW) 2088 ? EOPNOTSUPP : EINVAL; 2089 e_bad: 2090 eprintsoline(so, error); 2091 return (error); 2092 } 2093 2094 /* 2095 * connect a socket. 2096 * 2097 * Allow SOCK_DGRAM sockets to reconnect (by specifying a new address) and to 2098 * unconnect (by specifying a null address). 2099 */ 2100 int 2101 sotpi_connect(struct sonode *so, 2102 struct sockaddr *name, 2103 socklen_t namelen, 2104 int fflag, 2105 int flags, 2106 struct cred *cr) 2107 { 2108 struct T_conn_req conn_req; 2109 int error = 0; 2110 mblk_t *mp; 2111 void *src; 2112 socklen_t srclen; 2113 void *addr; 2114 socklen_t addrlen; 2115 boolean_t need_unlock; 2116 sotpi_info_t *sti = SOTOTPI(so); 2117 2118 dprintso(so, 1, ("sotpi_connect(%p, %p, %d, 0x%x, 0x%x) %s\n", 2119 (void *)so, (void *)name, namelen, fflag, flags, 2120 pr_state(so->so_state, so->so_mode))); 2121 2122 /* 2123 * Preallocate the T_CONN_REQ mblk before grabbing SOLOCKED to 2124 * avoid sleeping for memory with SOLOCKED held. 2125 * We know that the T_CONN_REQ can't be larger than 2 * sti_faddr_maxlen 2126 * + sizeof (struct T_opthdr). 2127 * (the AF_UNIX so_ux_addr_xlate() does not make the address 2128 * exceed sti_faddr_maxlen). 2129 */ 2130 mp = soallocproto(sizeof (struct T_conn_req) + 2131 2 * sti->sti_faddr_maxlen + sizeof (struct T_opthdr), _ALLOC_INTR, 2132 cr); 2133 if (mp == NULL) { 2134 /* 2135 * Connect can not fail with ENOBUFS. A signal was 2136 * caught so return EINTR. 2137 */ 2138 error = EINTR; 2139 eprintsoline(so, error); 2140 return (error); 2141 } 2142 2143 mutex_enter(&so->so_lock); 2144 /* 2145 * Make sure there is a preallocated T_unbind_req message 2146 * before any binding. This message is allocated when the 2147 * socket is created. Since another thread can consume 2148 * so_unbind_mp by the time we return from so_lock_single(), 2149 * we should check the availability of so_unbind_mp after 2150 * we return from so_lock_single(). 2151 */ 2152 2153 so_lock_single(so); /* Set SOLOCKED */ 2154 need_unlock = B_TRUE; 2155 2156 if (sti->sti_unbind_mp == NULL) { 2157 dprintso(so, 1, ("sotpi_connect: allocating unbind_req\n")); 2158 /* NOTE: holding so_lock while sleeping */ 2159 sti->sti_unbind_mp = 2160 soallocproto(sizeof (struct T_unbind_req), _ALLOC_INTR, cr); 2161 if (sti->sti_unbind_mp == NULL) { 2162 error = EINTR; 2163 goto done; 2164 } 2165 } 2166 2167 /* 2168 * Can't have done a listen before connecting. 2169 */ 2170 if (so->so_state & SS_ACCEPTCONN) { 2171 error = EOPNOTSUPP; 2172 goto done; 2173 } 2174 2175 /* 2176 * Must be bound with the transport 2177 */ 2178 if (!(so->so_state & SS_ISBOUND)) { 2179 if ((so->so_family == AF_INET || so->so_family == AF_INET6) && 2180 /*CONSTCOND*/ 2181 so->so_type == SOCK_STREAM && !soconnect_tpi_tcp) { 2182 /* 2183 * Optimization for AF_INET{,6} transports 2184 * that can handle a T_CONN_REQ without being bound. 2185 */ 2186 so_automatic_bind(so); 2187 } else { 2188 error = sotpi_bind(so, NULL, 0, 2189 _SOBIND_UNSPEC|_SOBIND_LOCK_HELD, cr); 2190 if (error) 2191 goto done; 2192 } 2193 ASSERT(so->so_state & SS_ISBOUND); 2194 flags |= _SOCONNECT_DID_BIND; 2195 } 2196 2197 /* 2198 * Handle a connect to a name parameter of type AF_UNSPEC like a 2199 * connect to a null address. This is the portable method to 2200 * unconnect a socket. 2201 */ 2202 if ((namelen >= sizeof (sa_family_t)) && 2203 (name->sa_family == AF_UNSPEC)) { 2204 name = NULL; 2205 namelen = 0; 2206 } 2207 2208 /* 2209 * Check that we are not already connected. 2210 * A connection-oriented socket cannot be reconnected. 2211 * A connected connection-less socket can be 2212 * - connected to a different address by a subsequent connect 2213 * - "unconnected" by a connect to the NULL address 2214 */ 2215 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) { 2216 ASSERT(!(flags & _SOCONNECT_DID_BIND)); 2217 if (so->so_mode & SM_CONNREQUIRED) { 2218 /* Connection-oriented socket */ 2219 error = so->so_state & SS_ISCONNECTED ? 2220 EISCONN : EALREADY; 2221 goto done; 2222 } 2223 /* Connection-less socket */ 2224 if (name == NULL) { 2225 /* 2226 * Remove the connected state and clear SO_DGRAM_ERRIND 2227 * since it was set when the socket was connected. 2228 * If this is UDP also send down a T_DISCON_REQ. 2229 */ 2230 int val; 2231 2232 if ((so->so_family == AF_INET || 2233 so->so_family == AF_INET6) && 2234 (so->so_type == SOCK_DGRAM || 2235 so->so_type == SOCK_RAW) && 2236 /*CONSTCOND*/ 2237 !soconnect_tpi_udp) { 2238 /* XXX What about implicitly unbinding here? */ 2239 error = sodisconnect(so, -1, 2240 _SODISCONNECT_LOCK_HELD); 2241 } else { 2242 so->so_state &= 2243 ~(SS_ISCONNECTED | SS_ISCONNECTING); 2244 sti->sti_faddr_valid = 0; 2245 sti->sti_faddr_len = 0; 2246 } 2247 2248 /* Remove SOLOCKED since setsockopt will grab it */ 2249 so_unlock_single(so, SOLOCKED); 2250 mutex_exit(&so->so_lock); 2251 2252 val = 0; 2253 (void) sotpi_setsockopt(so, SOL_SOCKET, 2254 SO_DGRAM_ERRIND, &val, (t_uscalar_t)sizeof (val), 2255 cr); 2256 2257 mutex_enter(&so->so_lock); 2258 so_lock_single(so); /* Set SOLOCKED */ 2259 goto done; 2260 } 2261 } 2262 ASSERT(so->so_state & SS_ISBOUND); 2263 2264 if (name == NULL || namelen == 0) { 2265 error = EINVAL; 2266 goto done; 2267 } 2268 /* 2269 * Mark the socket if sti_faddr_sa represents the transport level 2270 * address. 2271 */ 2272 if (flags & _SOCONNECT_NOXLATE) { 2273 struct sockaddr_ux *soaddr_ux; 2274 2275 ASSERT(so->so_family == AF_UNIX); 2276 if (namelen != sizeof (struct sockaddr_ux)) { 2277 error = EINVAL; 2278 goto done; 2279 } 2280 soaddr_ux = (struct sockaddr_ux *)name; 2281 name = (struct sockaddr *)&soaddr_ux->sou_addr; 2282 namelen = sizeof (soaddr_ux->sou_addr); 2283 sti->sti_faddr_noxlate = 1; 2284 } 2285 2286 /* 2287 * Length and family checks. 2288 */ 2289 error = so_addr_verify(so, name, namelen); 2290 if (error) 2291 goto bad; 2292 2293 /* 2294 * Save foreign address. Needed for AF_UNIX as well as 2295 * transport providers that do not support TI_GETPEERNAME. 2296 * Also used for cached foreign address for TCP and UDP. 2297 */ 2298 if (namelen > (t_uscalar_t)sti->sti_faddr_maxlen) { 2299 error = EINVAL; 2300 goto done; 2301 } 2302 sti->sti_faddr_len = (socklen_t)namelen; 2303 ASSERT(sti->sti_faddr_len <= sti->sti_faddr_maxlen); 2304 bcopy(name, sti->sti_faddr_sa, namelen); 2305 sti->sti_faddr_valid = 1; 2306 2307 if (so->so_family == AF_UNIX) { 2308 if (sti->sti_faddr_noxlate) { 2309 /* 2310 * sti_faddr is a transport-level address, so 2311 * don't pass it as an option. Do save it in 2312 * sti_ux_faddr, used for connected DG send. 2313 */ 2314 src = NULL; 2315 srclen = 0; 2316 addr = sti->sti_faddr_sa; 2317 addrlen = (t_uscalar_t)sti->sti_faddr_len; 2318 bcopy(addr, &sti->sti_ux_faddr, 2319 sizeof (sti->sti_ux_faddr)); 2320 } else { 2321 /* 2322 * Pass the sockaddr_un source address as an option 2323 * and translate the remote address. 2324 * Holding so_lock thus sti_laddr_sa can not change. 2325 */ 2326 src = sti->sti_laddr_sa; 2327 srclen = (t_uscalar_t)sti->sti_laddr_len; 2328 dprintso(so, 1, 2329 ("sotpi_connect UNIX: srclen %d, src %p\n", 2330 srclen, src)); 2331 /* 2332 * Translate the destination address into our 2333 * internal form, and save it in sti_ux_faddr. 2334 * After this call, addr==&sti->sti_ux_taddr, 2335 * and we copy that to sti->sti_ux_faddr so 2336 * we save the connected peer address. 2337 */ 2338 error = so_ux_addr_xlate(so, 2339 sti->sti_faddr_sa, (socklen_t)sti->sti_faddr_len, 2340 (flags & _SOCONNECT_XPG4_2), 2341 &addr, &addrlen); 2342 if (error) 2343 goto bad; 2344 bcopy(&sti->sti_ux_taddr, &sti->sti_ux_faddr, 2345 sizeof (sti->sti_ux_faddr)); 2346 } 2347 } else { 2348 addr = sti->sti_faddr_sa; 2349 addrlen = (t_uscalar_t)sti->sti_faddr_len; 2350 src = NULL; 2351 srclen = 0; 2352 } 2353 /* 2354 * When connecting a datagram socket we issue the SO_DGRAM_ERRIND 2355 * option which asks the transport provider to send T_UDERR_IND 2356 * messages. These T_UDERR_IND messages are used to return connected 2357 * style errors (e.g. ECONNRESET) for connected datagram sockets. 2358 * 2359 * In addition, for UDP (and SOCK_RAW AF_INET{,6} sockets) 2360 * we send down a T_CONN_REQ. This is needed to let the 2361 * transport assign a local address that is consistent with 2362 * the remote address. Applications depend on a getsockname() 2363 * after a connect() to retrieve the "source" IP address for 2364 * the connected socket. Invalidate the cached local address 2365 * to force getsockname() to enquire of the transport. 2366 */ 2367 if (!(so->so_mode & SM_CONNREQUIRED)) { 2368 /* 2369 * Datagram socket. 2370 */ 2371 int32_t val; 2372 2373 so_unlock_single(so, SOLOCKED); 2374 mutex_exit(&so->so_lock); 2375 2376 val = 1; 2377 (void) sotpi_setsockopt(so, SOL_SOCKET, SO_DGRAM_ERRIND, 2378 &val, (t_uscalar_t)sizeof (val), cr); 2379 2380 mutex_enter(&so->so_lock); 2381 so_lock_single(so); /* Set SOLOCKED */ 2382 if ((so->so_family != AF_INET && so->so_family != AF_INET6) || 2383 (so->so_type != SOCK_DGRAM && so->so_type != SOCK_RAW) || 2384 soconnect_tpi_udp) { 2385 soisconnected(so); 2386 goto done; 2387 } 2388 /* 2389 * Send down T_CONN_REQ etc. 2390 * Clear fflag to avoid returning EWOULDBLOCK. 2391 */ 2392 fflag = 0; 2393 ASSERT(so->so_family != AF_UNIX); 2394 sti->sti_laddr_valid = 0; 2395 } else if (sti->sti_laddr_len != 0) { 2396 /* 2397 * If the local address or port was "any" then it may be 2398 * changed by the transport as a result of the 2399 * connect. Invalidate the cached version if we have one. 2400 */ 2401 switch (so->so_family) { 2402 case AF_INET: 2403 ASSERT(sti->sti_laddr_len == (socklen_t)sizeof (sin_t)); 2404 if (((sin_t *)sti->sti_laddr_sa)->sin_addr.s_addr == 2405 INADDR_ANY || 2406 ((sin_t *)sti->sti_laddr_sa)->sin_port == 0) 2407 sti->sti_laddr_valid = 0; 2408 break; 2409 2410 case AF_INET6: 2411 ASSERT(sti->sti_laddr_len == 2412 (socklen_t)sizeof (sin6_t)); 2413 if (IN6_IS_ADDR_UNSPECIFIED( 2414 &((sin6_t *)sti->sti_laddr_sa) ->sin6_addr) || 2415 IN6_IS_ADDR_V4MAPPED_ANY( 2416 &((sin6_t *)sti->sti_laddr_sa)->sin6_addr) || 2417 ((sin6_t *)sti->sti_laddr_sa)->sin6_port == 0) 2418 sti->sti_laddr_valid = 0; 2419 break; 2420 2421 default: 2422 break; 2423 } 2424 } 2425 2426 /* 2427 * Check for failure of an earlier call 2428 */ 2429 if (so->so_error != 0) 2430 goto so_bad; 2431 2432 /* 2433 * Send down T_CONN_REQ. Message was allocated above. 2434 */ 2435 conn_req.PRIM_type = T_CONN_REQ; 2436 conn_req.DEST_length = addrlen; 2437 conn_req.DEST_offset = (t_scalar_t)sizeof (conn_req); 2438 if (srclen == 0) { 2439 conn_req.OPT_length = 0; 2440 conn_req.OPT_offset = 0; 2441 soappendmsg(mp, &conn_req, sizeof (conn_req)); 2442 soappendmsg(mp, addr, addrlen); 2443 } else { 2444 /* 2445 * There is a AF_UNIX sockaddr_un to include as a source 2446 * address option. 2447 */ 2448 struct T_opthdr toh; 2449 2450 toh.level = SOL_SOCKET; 2451 toh.name = SO_SRCADDR; 2452 toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr)); 2453 toh.status = 0; 2454 conn_req.OPT_length = 2455 (t_scalar_t)(sizeof (toh) + _TPI_ALIGN_TOPT(srclen)); 2456 conn_req.OPT_offset = (t_scalar_t)(sizeof (conn_req) + 2457 _TPI_ALIGN_TOPT(addrlen)); 2458 2459 soappendmsg(mp, &conn_req, sizeof (conn_req)); 2460 soappendmsg(mp, addr, addrlen); 2461 mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen; 2462 soappendmsg(mp, &toh, sizeof (toh)); 2463 soappendmsg(mp, src, srclen); 2464 mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen; 2465 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 2466 } 2467 /* 2468 * Set SS_ISCONNECTING before sending down the T_CONN_REQ 2469 * in order to have the right state when the T_CONN_CON shows up. 2470 */ 2471 soisconnecting(so); 2472 mutex_exit(&so->so_lock); 2473 2474 if (AU_AUDITING()) 2475 audit_sock(T_CONN_REQ, strvp2wq(SOTOV(so)), mp, 0); 2476 2477 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 2478 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); 2479 mp = NULL; 2480 mutex_enter(&so->so_lock); 2481 if (error != 0) 2482 goto bad; 2483 2484 if ((error = sowaitokack(so, T_CONN_REQ)) != 0) 2485 goto bad; 2486 2487 /* Allow other threads to access the socket */ 2488 so_unlock_single(so, SOLOCKED); 2489 need_unlock = B_FALSE; 2490 2491 /* 2492 * Wait until we get a T_CONN_CON or an error 2493 */ 2494 if ((error = sowaitconnected(so, fflag, 0)) != 0) { 2495 so_lock_single(so); /* Set SOLOCKED */ 2496 need_unlock = B_TRUE; 2497 } 2498 2499 done: 2500 freemsg(mp); 2501 switch (error) { 2502 case EINPROGRESS: 2503 case EALREADY: 2504 case EISCONN: 2505 case EINTR: 2506 /* Non-fatal errors */ 2507 sti->sti_laddr_valid = 0; 2508 /* FALLTHRU */ 2509 case 0: 2510 break; 2511 default: 2512 ASSERT(need_unlock); 2513 /* 2514 * Fatal errors: clear SS_ISCONNECTING in case it was set, 2515 * and invalidate local-address cache 2516 */ 2517 so->so_state &= ~SS_ISCONNECTING; 2518 sti->sti_laddr_valid = 0; 2519 /* A discon_ind might have already unbound us */ 2520 if ((flags & _SOCONNECT_DID_BIND) && 2521 (so->so_state & SS_ISBOUND)) { 2522 int err; 2523 2524 err = sotpi_unbind(so, 0); 2525 /* LINTED - statement has no conseq */ 2526 if (err) { 2527 eprintsoline(so, err); 2528 } 2529 } 2530 break; 2531 } 2532 if (need_unlock) 2533 so_unlock_single(so, SOLOCKED); 2534 mutex_exit(&so->so_lock); 2535 return (error); 2536 2537 so_bad: error = sogeterr(so, B_TRUE); 2538 bad: eprintsoline(so, error); 2539 goto done; 2540 } 2541 2542 /* ARGSUSED */ 2543 int 2544 sotpi_shutdown(struct sonode *so, int how, struct cred *cr) 2545 { 2546 struct T_ordrel_req ordrel_req; 2547 mblk_t *mp; 2548 uint_t old_state, state_change; 2549 int error = 0; 2550 sotpi_info_t *sti = SOTOTPI(so); 2551 2552 dprintso(so, 1, ("sotpi_shutdown(%p, %d) %s\n", 2553 (void *)so, how, pr_state(so->so_state, so->so_mode))); 2554 2555 mutex_enter(&so->so_lock); 2556 so_lock_single(so); /* Set SOLOCKED */ 2557 2558 /* 2559 * SunOS 4.X has no check for datagram sockets. 2560 * 5.X checks that it is connected (ENOTCONN) 2561 * X/Open requires that we check the connected state. 2562 */ 2563 if (!(so->so_state & SS_ISCONNECTED)) { 2564 if (!xnet_skip_checks) { 2565 error = ENOTCONN; 2566 if (xnet_check_print) { 2567 printf("sockfs: X/Open shutdown check " 2568 "caused ENOTCONN\n"); 2569 } 2570 } 2571 goto done; 2572 } 2573 /* 2574 * Record the current state and then perform any state changes. 2575 * Then use the difference between the old and new states to 2576 * determine which messages need to be sent. 2577 * This prevents e.g. duplicate T_ORDREL_REQ when there are 2578 * duplicate calls to shutdown(). 2579 */ 2580 old_state = so->so_state; 2581 2582 switch (how) { 2583 case 0: 2584 socantrcvmore(so); 2585 break; 2586 case 1: 2587 socantsendmore(so); 2588 break; 2589 case 2: 2590 socantsendmore(so); 2591 socantrcvmore(so); 2592 break; 2593 default: 2594 error = EINVAL; 2595 goto done; 2596 } 2597 2598 /* 2599 * Assumes that the SS_CANT* flags are never cleared in the above code. 2600 */ 2601 state_change = (so->so_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)) - 2602 (old_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)); 2603 ASSERT((state_change & ~(SS_CANTRCVMORE|SS_CANTSENDMORE)) == 0); 2604 2605 switch (state_change) { 2606 case 0: 2607 dprintso(so, 1, 2608 ("sotpi_shutdown: nothing to send in state 0x%x\n", 2609 so->so_state)); 2610 goto done; 2611 2612 case SS_CANTRCVMORE: 2613 mutex_exit(&so->so_lock); 2614 strseteof(SOTOV(so), 1); 2615 /* 2616 * strseteof takes care of read side wakeups, 2617 * pollwakeups, and signals. 2618 */ 2619 /* 2620 * Get the read lock before flushing data to avoid problems 2621 * with the T_EXDATA_IND MSG_PEEK code in sotpi_recvmsg. 2622 */ 2623 mutex_enter(&so->so_lock); 2624 (void) so_lock_read(so, 0); /* Set SOREADLOCKED */ 2625 mutex_exit(&so->so_lock); 2626 2627 /* Flush read side queue */ 2628 strflushrq(SOTOV(so), FLUSHALL); 2629 2630 mutex_enter(&so->so_lock); 2631 so_unlock_read(so); /* Clear SOREADLOCKED */ 2632 break; 2633 2634 case SS_CANTSENDMORE: 2635 mutex_exit(&so->so_lock); 2636 strsetwerror(SOTOV(so), 0, 0, sogetwrerr); 2637 mutex_enter(&so->so_lock); 2638 break; 2639 2640 case SS_CANTSENDMORE|SS_CANTRCVMORE: 2641 mutex_exit(&so->so_lock); 2642 strsetwerror(SOTOV(so), 0, 0, sogetwrerr); 2643 strseteof(SOTOV(so), 1); 2644 /* 2645 * strseteof takes care of read side wakeups, 2646 * pollwakeups, and signals. 2647 */ 2648 /* 2649 * Get the read lock before flushing data to avoid problems 2650 * with the T_EXDATA_IND MSG_PEEK code in sotpi_recvmsg. 2651 */ 2652 mutex_enter(&so->so_lock); 2653 (void) so_lock_read(so, 0); /* Set SOREADLOCKED */ 2654 mutex_exit(&so->so_lock); 2655 2656 /* Flush read side queue */ 2657 strflushrq(SOTOV(so), FLUSHALL); 2658 2659 mutex_enter(&so->so_lock); 2660 so_unlock_read(so); /* Clear SOREADLOCKED */ 2661 break; 2662 } 2663 2664 ASSERT(MUTEX_HELD(&so->so_lock)); 2665 2666 /* 2667 * If either SS_CANTSENDMORE or SS_CANTRCVMORE or both of them 2668 * was set due to this call and the new state has both of them set: 2669 * Send the AF_UNIX close indication 2670 * For T_COTS send a discon_ind 2671 * 2672 * If cantsend was set due to this call: 2673 * For T_COTSORD send an ordrel_ind 2674 * 2675 * Note that for T_CLTS there is no message sent here. 2676 */ 2677 if ((so->so_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)) == 2678 (SS_CANTRCVMORE|SS_CANTSENDMORE)) { 2679 /* 2680 * For SunOS 4.X compatibility we tell the other end 2681 * that we are unable to receive at this point. 2682 */ 2683 if (so->so_family == AF_UNIX && sti->sti_serv_type != T_CLTS) 2684 so_unix_close(so); 2685 2686 if (sti->sti_serv_type == T_COTS) 2687 error = sodisconnect(so, -1, _SODISCONNECT_LOCK_HELD); 2688 } 2689 if ((state_change & SS_CANTSENDMORE) && 2690 (sti->sti_serv_type == T_COTS_ORD)) { 2691 /* Send an orderly release */ 2692 ordrel_req.PRIM_type = T_ORDREL_REQ; 2693 2694 mutex_exit(&so->so_lock); 2695 mp = soallocproto1(&ordrel_req, sizeof (ordrel_req), 2696 0, _ALLOC_SLEEP, cr); 2697 /* 2698 * Send down the T_ORDREL_REQ even if there is flow control. 2699 * This prevents shutdown from blocking. 2700 * Note that there is no T_OK_ACK for ordrel_req. 2701 */ 2702 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 2703 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0); 2704 mutex_enter(&so->so_lock); 2705 if (error) { 2706 eprintsoline(so, error); 2707 goto done; 2708 } 2709 } 2710 2711 done: 2712 so_unlock_single(so, SOLOCKED); 2713 mutex_exit(&so->so_lock); 2714 return (error); 2715 } 2716 2717 /* 2718 * For any connected SOCK_STREAM/SOCK_SEQPACKET AF_UNIX socket we send 2719 * a zero-length T_OPTDATA_REQ with the SO_UNIX_CLOSE option to inform the peer 2720 * that we have closed. 2721 * Also, for connected AF_UNIX SOCK_DGRAM sockets we send a zero-length 2722 * T_UNITDATA_REQ containing the same option. 2723 * 2724 * For SOCK_DGRAM half-connections (somebody connected to this end 2725 * but this end is not connect) we don't know where to send any 2726 * SO_UNIX_CLOSE. 2727 * 2728 * We have to ignore stream head errors just in case there has been 2729 * a shutdown(output). 2730 * Ignore any flow control to try to get the message more quickly to the peer. 2731 * While locally ignoring flow control solves the problem when there 2732 * is only the loopback transport on the stream it would not provide 2733 * the correct AF_UNIX socket semantics when one or more modules have 2734 * been pushed. 2735 */ 2736 void 2737 so_unix_close(struct sonode *so) 2738 { 2739 struct T_opthdr toh; 2740 mblk_t *mp; 2741 sotpi_info_t *sti = SOTOTPI(so); 2742 2743 ASSERT(MUTEX_HELD(&so->so_lock)); 2744 2745 ASSERT(so->so_family == AF_UNIX); 2746 2747 if ((so->so_state & (SS_ISCONNECTED|SS_ISBOUND)) != 2748 (SS_ISCONNECTED|SS_ISBOUND)) 2749 return; 2750 2751 dprintso(so, 1, ("so_unix_close(%p) %s\n", 2752 (void *)so, pr_state(so->so_state, so->so_mode))); 2753 2754 toh.level = SOL_SOCKET; 2755 toh.name = SO_UNIX_CLOSE; 2756 2757 /* zero length + header */ 2758 toh.len = (t_uscalar_t)sizeof (struct T_opthdr); 2759 toh.status = 0; 2760 2761 if (so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) { 2762 struct T_optdata_req tdr; 2763 2764 tdr.PRIM_type = T_OPTDATA_REQ; 2765 tdr.DATA_flag = 0; 2766 2767 tdr.OPT_length = (t_scalar_t)sizeof (toh); 2768 tdr.OPT_offset = (t_scalar_t)sizeof (tdr); 2769 2770 /* NOTE: holding so_lock while sleeping */ 2771 mp = soallocproto2(&tdr, sizeof (tdr), 2772 &toh, sizeof (toh), 0, _ALLOC_SLEEP, CRED()); 2773 } else { 2774 struct T_unitdata_req tudr; 2775 void *addr; 2776 socklen_t addrlen; 2777 void *src; 2778 socklen_t srclen; 2779 struct T_opthdr toh2; 2780 t_scalar_t size; 2781 2782 /* 2783 * We know this is an AF_UNIX connected DGRAM socket. 2784 * We therefore already have the destination address 2785 * in the internal form needed for this send. This is 2786 * similar to the sosend_dgram call later in this file 2787 * when there's no user-specified destination address. 2788 */ 2789 if (sti->sti_faddr_noxlate) { 2790 /* 2791 * Already have a transport internal address. Do not 2792 * pass any (transport internal) source address. 2793 */ 2794 addr = sti->sti_faddr_sa; 2795 addrlen = (t_uscalar_t)sti->sti_faddr_len; 2796 src = NULL; 2797 srclen = 0; 2798 } else { 2799 /* 2800 * Pass the sockaddr_un source address as an option 2801 * and translate the remote address. 2802 * Holding so_lock thus sti_laddr_sa can not change. 2803 */ 2804 src = sti->sti_laddr_sa; 2805 srclen = (socklen_t)sti->sti_laddr_len; 2806 dprintso(so, 1, 2807 ("so_ux_close: srclen %d, src %p\n", 2808 srclen, src)); 2809 /* 2810 * Use the destination address saved in connect. 2811 */ 2812 addr = &sti->sti_ux_faddr; 2813 addrlen = sizeof (sti->sti_ux_faddr); 2814 } 2815 tudr.PRIM_type = T_UNITDATA_REQ; 2816 tudr.DEST_length = addrlen; 2817 tudr.DEST_offset = (t_scalar_t)sizeof (tudr); 2818 if (srclen == 0) { 2819 tudr.OPT_length = (t_scalar_t)sizeof (toh); 2820 tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) + 2821 _TPI_ALIGN_TOPT(addrlen)); 2822 2823 size = tudr.OPT_offset + tudr.OPT_length; 2824 /* NOTE: holding so_lock while sleeping */ 2825 mp = soallocproto2(&tudr, sizeof (tudr), 2826 addr, addrlen, size, _ALLOC_SLEEP, CRED()); 2827 mp->b_wptr += (_TPI_ALIGN_TOPT(addrlen) - addrlen); 2828 soappendmsg(mp, &toh, sizeof (toh)); 2829 } else { 2830 /* 2831 * There is a AF_UNIX sockaddr_un to include as a 2832 * source address option. 2833 */ 2834 tudr.OPT_length = (t_scalar_t)(2 * sizeof (toh) + 2835 _TPI_ALIGN_TOPT(srclen)); 2836 tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) + 2837 _TPI_ALIGN_TOPT(addrlen)); 2838 2839 toh2.level = SOL_SOCKET; 2840 toh2.name = SO_SRCADDR; 2841 toh2.len = (t_uscalar_t)(srclen + 2842 sizeof (struct T_opthdr)); 2843 toh2.status = 0; 2844 2845 size = tudr.OPT_offset + tudr.OPT_length; 2846 2847 /* NOTE: holding so_lock while sleeping */ 2848 mp = soallocproto2(&tudr, sizeof (tudr), 2849 addr, addrlen, size, _ALLOC_SLEEP, CRED()); 2850 mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen; 2851 soappendmsg(mp, &toh, sizeof (toh)); 2852 soappendmsg(mp, &toh2, sizeof (toh2)); 2853 soappendmsg(mp, src, srclen); 2854 mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen; 2855 } 2856 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 2857 } 2858 mutex_exit(&so->so_lock); 2859 (void) kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 2860 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0); 2861 mutex_enter(&so->so_lock); 2862 } 2863 2864 /* 2865 * Called by sotpi_recvmsg when reading a non-zero amount of data. 2866 * In addition, the caller typically verifies that there is some 2867 * potential state to clear by checking 2868 * if (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) 2869 * before calling this routine. 2870 * Note that such a check can be made without holding so_lock since 2871 * sotpi_recvmsg is single-threaded (using SOREADLOCKED) and only sotpi_recvmsg 2872 * decrements sti_oobsigcnt. 2873 * 2874 * When data is read *after* the point that all pending 2875 * oob data has been consumed the oob indication is cleared. 2876 * 2877 * This logic keeps select/poll returning POLLRDBAND and 2878 * SIOCATMARK returning true until we have read past 2879 * the mark. 2880 */ 2881 static void 2882 sorecv_update_oobstate(struct sonode *so) 2883 { 2884 sotpi_info_t *sti = SOTOTPI(so); 2885 2886 mutex_enter(&so->so_lock); 2887 ASSERT(so_verify_oobstate(so)); 2888 dprintso(so, 1, 2889 ("sorecv_update_oobstate: counts %d/%d state %s\n", 2890 sti->sti_oobsigcnt, 2891 sti->sti_oobcnt, pr_state(so->so_state, so->so_mode))); 2892 if (sti->sti_oobsigcnt == 0) { 2893 /* No more pending oob indications */ 2894 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK); 2895 freemsg(so->so_oobmsg); 2896 so->so_oobmsg = NULL; 2897 } 2898 ASSERT(so_verify_oobstate(so)); 2899 mutex_exit(&so->so_lock); 2900 } 2901 2902 /* 2903 * Receive the next message on the queue. 2904 * If msg_controllen is non-zero when called the caller is interested in 2905 * any received control info (options). 2906 * If msg_namelen is non-zero when called the caller is interested in 2907 * any received source address. 2908 * The routine returns with msg_control and msg_name pointing to 2909 * kmem_alloc'ed memory which the caller has to free. 2910 */ 2911 /* ARGSUSED */ 2912 int 2913 sotpi_recvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, 2914 struct cred *cr) 2915 { 2916 union T_primitives *tpr; 2917 mblk_t *mp; 2918 uchar_t pri; 2919 int pflag, opflag; 2920 void *control; 2921 t_uscalar_t controllen; 2922 t_uscalar_t namelen; 2923 int so_state = so->so_state; /* Snapshot */ 2924 ssize_t saved_resid; 2925 rval_t rval; 2926 int flags; 2927 clock_t timout; 2928 int error = 0; 2929 sotpi_info_t *sti = SOTOTPI(so); 2930 2931 flags = msg->msg_flags; 2932 msg->msg_flags = 0; 2933 2934 dprintso(so, 1, ("sotpi_recvmsg(%p, %p, 0x%x) state %s err %d\n", 2935 (void *)so, (void *)msg, flags, 2936 pr_state(so->so_state, so->so_mode), so->so_error)); 2937 2938 if (so->so_version == SOV_STREAM) { 2939 so_update_attrs(so, SOACC); 2940 /* The imaginary "sockmod" has been popped - act as a stream */ 2941 return (strread(SOTOV(so), uiop, cr)); 2942 } 2943 2944 /* 2945 * If we are not connected because we have never been connected 2946 * we return ENOTCONN. If we have been connected (but are no longer 2947 * connected) then SS_CANTRCVMORE is set and we let kstrgetmsg return 2948 * the EOF. 2949 * 2950 * An alternative would be to post an ENOTCONN error in stream head 2951 * (read+write) and clear it when we're connected. However, that error 2952 * would cause incorrect poll/select behavior! 2953 */ 2954 if ((so_state & (SS_ISCONNECTED|SS_CANTRCVMORE)) == 0 && 2955 (so->so_mode & SM_CONNREQUIRED)) { 2956 return (ENOTCONN); 2957 } 2958 2959 /* 2960 * Note: SunOS 4.X checks uio_resid == 0 before going to sleep (but 2961 * after checking that the read queue is empty) and returns zero. 2962 * This implementation will sleep (in kstrgetmsg) even if uio_resid 2963 * is zero. 2964 */ 2965 2966 if (flags & MSG_OOB) { 2967 /* Check that the transport supports OOB */ 2968 if (!(so->so_mode & SM_EXDATA)) 2969 return (EOPNOTSUPP); 2970 so_update_attrs(so, SOACC); 2971 return (sorecvoob(so, msg, uiop, flags, 2972 (so->so_options & SO_OOBINLINE))); 2973 } 2974 2975 so_update_attrs(so, SOACC); 2976 2977 /* 2978 * Set msg_controllen and msg_namelen to zero here to make it 2979 * simpler in the cases that no control or name is returned. 2980 */ 2981 controllen = msg->msg_controllen; 2982 namelen = msg->msg_namelen; 2983 msg->msg_controllen = 0; 2984 msg->msg_namelen = 0; 2985 2986 dprintso(so, 1, ("sotpi_recvmsg: namelen %d controllen %d\n", 2987 namelen, controllen)); 2988 2989 mutex_enter(&so->so_lock); 2990 /* 2991 * Only one reader is allowed at any given time. This is needed 2992 * for T_EXDATA handling and, in the future, MSG_WAITALL. 2993 * 2994 * This is slightly different that BSD behavior in that it fails with 2995 * EWOULDBLOCK when using nonblocking io. In BSD the read queue access 2996 * is single-threaded using sblock(), which is dropped while waiting 2997 * for data to appear. The difference shows up e.g. if one 2998 * file descriptor does not have O_NONBLOCK but a dup'ed file descriptor 2999 * does use nonblocking io and different threads are reading each 3000 * file descriptor. In BSD there would never be an EWOULDBLOCK error 3001 * in this case as long as the read queue doesn't get empty. 3002 * In this implementation the thread using nonblocking io can 3003 * get an EWOULDBLOCK error due to the blocking thread executing 3004 * e.g. in the uiomove in kstrgetmsg. 3005 * This difference is not believed to be significant. 3006 */ 3007 /* Set SOREADLOCKED */ 3008 error = so_lock_read_intr(so, 3009 uiop->uio_fmode | ((flags & MSG_DONTWAIT) ? FNONBLOCK : 0)); 3010 mutex_exit(&so->so_lock); 3011 if (error) 3012 return (error); 3013 3014 /* 3015 * Tell kstrgetmsg to not inspect the stream head errors until all 3016 * queued data has been consumed. 3017 * Use a timeout=-1 to wait forever unless MSG_DONTWAIT is set. 3018 * Also, If uio_fmode indicates nonblocking kstrgetmsg will not block. 3019 * 3020 * MSG_WAITALL only applies to M_DATA and T_DATA_IND messages and 3021 * to T_OPTDATA_IND that do not contain any user-visible control msg. 3022 * Note that MSG_WAITALL set with MSG_PEEK is a noop. 3023 */ 3024 pflag = MSG_ANY | MSG_DELAYERROR; 3025 if (flags & MSG_PEEK) { 3026 pflag |= MSG_IPEEK; 3027 flags &= ~MSG_WAITALL; 3028 } 3029 if (so->so_mode & SM_ATOMIC) 3030 pflag |= MSG_DISCARDTAIL; 3031 3032 if (flags & MSG_DONTWAIT) 3033 timout = 0; 3034 else if (so->so_rcvtimeo != 0) 3035 timout = TICK_TO_MSEC(so->so_rcvtimeo); 3036 else 3037 timout = -1; 3038 opflag = pflag; 3039 retry: 3040 saved_resid = uiop->uio_resid; 3041 pri = 0; 3042 mp = NULL; 3043 error = kstrgetmsg(SOTOV(so), &mp, uiop, &pri, &pflag, 3044 timout, &rval); 3045 if (error != 0) { 3046 /* kstrgetmsg returns ETIME when timeout expires */ 3047 if (error == ETIME) 3048 error = EWOULDBLOCK; 3049 goto out; 3050 } 3051 /* 3052 * For datagrams the MOREDATA flag is used to set MSG_TRUNC. 3053 * For non-datagrams MOREDATA is used to set MSG_EOR. 3054 */ 3055 ASSERT(!(rval.r_val1 & MORECTL)); 3056 if ((rval.r_val1 & MOREDATA) && (so->so_mode & SM_ATOMIC)) 3057 msg->msg_flags |= MSG_TRUNC; 3058 3059 if (mp == NULL) { 3060 dprintso(so, 1, ("sotpi_recvmsg: got M_DATA\n")); 3061 /* 3062 * 4.3BSD and 4.4BSD clears the mark when peeking across it. 3063 * The draft Posix socket spec states that the mark should 3064 * not be cleared when peeking. We follow the latter. 3065 */ 3066 if ((so->so_state & 3067 (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) && 3068 (uiop->uio_resid != saved_resid) && 3069 !(flags & MSG_PEEK)) { 3070 sorecv_update_oobstate(so); 3071 } 3072 3073 mutex_enter(&so->so_lock); 3074 /* Set MSG_EOR based on MOREDATA */ 3075 if (!(rval.r_val1 & MOREDATA)) { 3076 if (so->so_state & SS_SAVEDEOR) { 3077 msg->msg_flags |= MSG_EOR; 3078 so->so_state &= ~SS_SAVEDEOR; 3079 } 3080 } 3081 /* 3082 * If some data was received (i.e. not EOF) and the 3083 * read/recv* has not been satisfied wait for some more. 3084 */ 3085 if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) && 3086 uiop->uio_resid != saved_resid && uiop->uio_resid > 0) { 3087 mutex_exit(&so->so_lock); 3088 pflag = opflag | MSG_NOMARK; 3089 goto retry; 3090 } 3091 goto out_locked; 3092 } 3093 3094 /* strsock_proto has already verified length and alignment */ 3095 tpr = (union T_primitives *)mp->b_rptr; 3096 dprintso(so, 1, ("sotpi_recvmsg: type %d\n", tpr->type)); 3097 3098 switch (tpr->type) { 3099 case T_DATA_IND: { 3100 if ((so->so_state & 3101 (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) && 3102 (uiop->uio_resid != saved_resid) && 3103 !(flags & MSG_PEEK)) { 3104 sorecv_update_oobstate(so); 3105 } 3106 3107 /* 3108 * Set msg_flags to MSG_EOR based on 3109 * MORE_flag and MOREDATA. 3110 */ 3111 mutex_enter(&so->so_lock); 3112 so->so_state &= ~SS_SAVEDEOR; 3113 if (!(tpr->data_ind.MORE_flag & 1)) { 3114 if (!(rval.r_val1 & MOREDATA)) 3115 msg->msg_flags |= MSG_EOR; 3116 else 3117 so->so_state |= SS_SAVEDEOR; 3118 } 3119 freemsg(mp); 3120 /* 3121 * If some data was received (i.e. not EOF) and the 3122 * read/recv* has not been satisfied wait for some more. 3123 */ 3124 if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) && 3125 uiop->uio_resid != saved_resid && uiop->uio_resid > 0) { 3126 mutex_exit(&so->so_lock); 3127 pflag = opflag | MSG_NOMARK; 3128 goto retry; 3129 } 3130 goto out_locked; 3131 } 3132 case T_UNITDATA_IND: { 3133 void *addr; 3134 t_uscalar_t addrlen; 3135 void *abuf; 3136 t_uscalar_t optlen; 3137 void *opt; 3138 3139 if ((so->so_state & 3140 (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) && 3141 (uiop->uio_resid != saved_resid) && 3142 !(flags & MSG_PEEK)) { 3143 sorecv_update_oobstate(so); 3144 } 3145 3146 if (namelen != 0) { 3147 /* Caller wants source address */ 3148 addrlen = tpr->unitdata_ind.SRC_length; 3149 addr = sogetoff(mp, 3150 tpr->unitdata_ind.SRC_offset, 3151 addrlen, 1); 3152 if (addr == NULL) { 3153 freemsg(mp); 3154 error = EPROTO; 3155 eprintsoline(so, error); 3156 goto out; 3157 } 3158 if (so->so_family == AF_UNIX) { 3159 /* 3160 * Can not use the transport level address. 3161 * If there is a SO_SRCADDR option carrying 3162 * the socket level address it will be 3163 * extracted below. 3164 */ 3165 addr = NULL; 3166 addrlen = 0; 3167 } 3168 } 3169 optlen = tpr->unitdata_ind.OPT_length; 3170 if (optlen != 0) { 3171 t_uscalar_t ncontrollen; 3172 3173 /* 3174 * Extract any source address option. 3175 * Determine how large cmsg buffer is needed. 3176 */ 3177 opt = sogetoff(mp, 3178 tpr->unitdata_ind.OPT_offset, 3179 optlen, __TPI_ALIGN_SIZE); 3180 3181 if (opt == NULL) { 3182 freemsg(mp); 3183 error = EPROTO; 3184 eprintsoline(so, error); 3185 goto out; 3186 } 3187 if (so->so_family == AF_UNIX) 3188 so_getopt_srcaddr(opt, optlen, &addr, &addrlen); 3189 ncontrollen = so_cmsglen(mp, opt, optlen, 3190 !(flags & MSG_XPG4_2)); 3191 if (controllen != 0) 3192 controllen = ncontrollen; 3193 else if (ncontrollen != 0) 3194 msg->msg_flags |= MSG_CTRUNC; 3195 } else { 3196 controllen = 0; 3197 } 3198 3199 if (namelen != 0) { 3200 /* 3201 * Return address to caller. 3202 * Caller handles truncation if length 3203 * exceeds msg_namelen. 3204 * NOTE: AF_UNIX NUL termination is ensured by 3205 * the sender's copyin_name(). 3206 */ 3207 abuf = kmem_alloc(addrlen, KM_SLEEP); 3208 3209 bcopy(addr, abuf, addrlen); 3210 msg->msg_name = abuf; 3211 msg->msg_namelen = addrlen; 3212 } 3213 3214 if (controllen != 0) { 3215 /* 3216 * Return control msg to caller. 3217 * Caller handles truncation if length 3218 * exceeds msg_controllen. 3219 */ 3220 control = kmem_zalloc(controllen, KM_SLEEP); 3221 3222 error = so_opt2cmsg(mp, opt, optlen, flags, control, 3223 controllen); 3224 if (error) { 3225 freemsg(mp); 3226 if (msg->msg_namelen != 0) 3227 kmem_free(msg->msg_name, 3228 msg->msg_namelen); 3229 kmem_free(control, controllen); 3230 eprintsoline(so, error); 3231 goto out; 3232 } 3233 msg->msg_control = control; 3234 msg->msg_controllen = controllen; 3235 } 3236 3237 freemsg(mp); 3238 goto out; 3239 } 3240 case T_OPTDATA_IND: { 3241 struct T_optdata_req *tdr; 3242 void *opt; 3243 t_uscalar_t optlen; 3244 3245 if ((so->so_state & 3246 (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) && 3247 (uiop->uio_resid != saved_resid) && 3248 !(flags & MSG_PEEK)) { 3249 sorecv_update_oobstate(so); 3250 } 3251 3252 tdr = (struct T_optdata_req *)mp->b_rptr; 3253 optlen = tdr->OPT_length; 3254 if (optlen != 0) { 3255 t_uscalar_t ncontrollen; 3256 /* 3257 * Determine how large cmsg buffer is needed. 3258 */ 3259 opt = sogetoff(mp, 3260 tpr->optdata_ind.OPT_offset, 3261 optlen, __TPI_ALIGN_SIZE); 3262 3263 if (opt == NULL) { 3264 freemsg(mp); 3265 error = EPROTO; 3266 eprintsoline(so, error); 3267 goto out; 3268 } 3269 3270 ncontrollen = so_cmsglen(mp, opt, optlen, 3271 !(flags & MSG_XPG4_2)); 3272 if (controllen != 0) 3273 controllen = ncontrollen; 3274 else if (ncontrollen != 0) 3275 msg->msg_flags |= MSG_CTRUNC; 3276 } else { 3277 controllen = 0; 3278 } 3279 3280 if (controllen != 0) { 3281 /* 3282 * Return control msg to caller. 3283 * Caller handles truncation if length 3284 * exceeds msg_controllen. 3285 */ 3286 control = kmem_zalloc(controllen, KM_SLEEP); 3287 3288 error = so_opt2cmsg(mp, opt, optlen, flags, control, 3289 controllen); 3290 if (error) { 3291 freemsg(mp); 3292 kmem_free(control, controllen); 3293 eprintsoline(so, error); 3294 goto out; 3295 } 3296 msg->msg_control = control; 3297 msg->msg_controllen = controllen; 3298 } 3299 3300 /* 3301 * Set msg_flags to MSG_EOR based on 3302 * DATA_flag and MOREDATA. 3303 */ 3304 mutex_enter(&so->so_lock); 3305 so->so_state &= ~SS_SAVEDEOR; 3306 if (!(tpr->data_ind.MORE_flag & 1)) { 3307 if (!(rval.r_val1 & MOREDATA)) 3308 msg->msg_flags |= MSG_EOR; 3309 else 3310 so->so_state |= SS_SAVEDEOR; 3311 } 3312 freemsg(mp); 3313 /* 3314 * If some data was received (i.e. not EOF) and the 3315 * read/recv* has not been satisfied wait for some more. 3316 * Not possible to wait if control info was received. 3317 */ 3318 if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) && 3319 controllen == 0 && 3320 uiop->uio_resid != saved_resid && uiop->uio_resid > 0) { 3321 mutex_exit(&so->so_lock); 3322 pflag = opflag | MSG_NOMARK; 3323 goto retry; 3324 } 3325 goto out_locked; 3326 } 3327 case T_EXDATA_IND: { 3328 dprintso(so, 1, 3329 ("sotpi_recvmsg: EXDATA_IND counts %d/%d consumed %ld " 3330 "state %s\n", 3331 sti->sti_oobsigcnt, sti->sti_oobcnt, 3332 saved_resid - uiop->uio_resid, 3333 pr_state(so->so_state, so->so_mode))); 3334 /* 3335 * kstrgetmsg handles MSGMARK so there is nothing to 3336 * inspect in the T_EXDATA_IND. 3337 * strsock_proto makes the stream head queue the T_EXDATA_IND 3338 * as a separate message with no M_DATA component. Furthermore, 3339 * the stream head does not consolidate M_DATA messages onto 3340 * an MSGMARK'ed message ensuring that the T_EXDATA_IND 3341 * remains a message by itself. This is needed since MSGMARK 3342 * marks both the whole message as well as the last byte 3343 * of the message. 3344 */ 3345 freemsg(mp); 3346 ASSERT(uiop->uio_resid == saved_resid); /* No data */ 3347 if (flags & MSG_PEEK) { 3348 /* 3349 * Even though we are peeking we consume the 3350 * T_EXDATA_IND thereby moving the mark information 3351 * to SS_RCVATMARK. Then the oob code below will 3352 * retry the peeking kstrgetmsg. 3353 * Note that the stream head read queue is 3354 * never flushed without holding SOREADLOCKED 3355 * thus the T_EXDATA_IND can not disappear 3356 * underneath us. 3357 */ 3358 dprintso(so, 1, 3359 ("sotpi_recvmsg: consume EXDATA_IND " 3360 "counts %d/%d state %s\n", 3361 sti->sti_oobsigcnt, 3362 sti->sti_oobcnt, 3363 pr_state(so->so_state, so->so_mode))); 3364 3365 pflag = MSG_ANY | MSG_DELAYERROR; 3366 if (so->so_mode & SM_ATOMIC) 3367 pflag |= MSG_DISCARDTAIL; 3368 3369 pri = 0; 3370 mp = NULL; 3371 3372 error = kstrgetmsg(SOTOV(so), &mp, uiop, 3373 &pri, &pflag, (clock_t)-1, &rval); 3374 ASSERT(uiop->uio_resid == saved_resid); 3375 3376 if (error) { 3377 #ifdef SOCK_DEBUG 3378 if (error != EWOULDBLOCK && error != EINTR) { 3379 eprintsoline(so, error); 3380 } 3381 #endif /* SOCK_DEBUG */ 3382 goto out; 3383 } 3384 ASSERT(mp); 3385 tpr = (union T_primitives *)mp->b_rptr; 3386 ASSERT(tpr->type == T_EXDATA_IND); 3387 freemsg(mp); 3388 } /* end "if (flags & MSG_PEEK)" */ 3389 3390 /* 3391 * Decrement the number of queued and pending oob. 3392 * 3393 * SS_RCVATMARK is cleared when we read past a mark. 3394 * SS_HAVEOOBDATA is cleared when we've read past the 3395 * last mark. 3396 * SS_OOBPEND is cleared if we've read past the last 3397 * mark and no (new) SIGURG has been posted. 3398 */ 3399 mutex_enter(&so->so_lock); 3400 ASSERT(so_verify_oobstate(so)); 3401 ASSERT(sti->sti_oobsigcnt >= sti->sti_oobcnt); 3402 ASSERT(sti->sti_oobsigcnt > 0); 3403 sti->sti_oobsigcnt--; 3404 ASSERT(sti->sti_oobcnt > 0); 3405 sti->sti_oobcnt--; 3406 /* 3407 * Since the T_EXDATA_IND has been removed from the stream 3408 * head, but we have not read data past the mark, 3409 * sockfs needs to track that the socket is still at the mark. 3410 * 3411 * Since no data was received call kstrgetmsg again to wait 3412 * for data. 3413 */ 3414 so->so_state |= SS_RCVATMARK; 3415 mutex_exit(&so->so_lock); 3416 dprintso(so, 1, 3417 ("sotpi_recvmsg: retry EXDATA_IND counts %d/%d state %s\n", 3418 sti->sti_oobsigcnt, sti->sti_oobcnt, 3419 pr_state(so->so_state, so->so_mode))); 3420 pflag = opflag; 3421 goto retry; 3422 } 3423 default: 3424 cmn_err(CE_CONT, "sotpi_recvmsg: so %p prim %d mp %p\n", 3425 (void *)so, tpr->type, (void *)mp); 3426 ASSERT(0); 3427 freemsg(mp); 3428 error = EPROTO; 3429 eprintsoline(so, error); 3430 goto out; 3431 } 3432 /* NOTREACHED */ 3433 out: 3434 mutex_enter(&so->so_lock); 3435 out_locked: 3436 so_unlock_read(so); /* Clear SOREADLOCKED */ 3437 mutex_exit(&so->so_lock); 3438 return (error); 3439 } 3440 3441 /* 3442 * Sending data with options on a datagram socket. 3443 * Assumes caller has verified that SS_ISBOUND etc. are set. 3444 * 3445 * For AF_UNIX the destination address may be already in 3446 * internal form, as indicated by sti->sti_faddr_noxlate 3447 * or the MSG_SENDTO_NOXLATE flag. Otherwise we need to 3448 * translate the destination address to internal form. 3449 * 3450 * The source address is passed as an option. If passing 3451 * file descriptors, those are passed as file pointers in 3452 * another option. 3453 */ 3454 static int 3455 sosend_dgramcmsg(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3456 struct uio *uiop, void *control, t_uscalar_t controllen, int flags) 3457 { 3458 struct T_unitdata_req tudr; 3459 mblk_t *mp; 3460 int error; 3461 void *addr; 3462 socklen_t addrlen; 3463 void *src; 3464 socklen_t srclen; 3465 ssize_t len; 3466 int size; 3467 struct T_opthdr toh; 3468 struct fdbuf *fdbuf; 3469 t_uscalar_t optlen; 3470 void *fds; 3471 int fdlen; 3472 sotpi_info_t *sti = SOTOTPI(so); 3473 3474 ASSERT(name && namelen); 3475 ASSERT(control && controllen); 3476 3477 len = uiop->uio_resid; 3478 if (len > (ssize_t)sti->sti_tidu_size) { 3479 return (EMSGSIZE); 3480 } 3481 3482 if (sti->sti_faddr_noxlate == 0 && 3483 (flags & MSG_SENDTO_NOXLATE) == 0) { 3484 /* 3485 * Length and family checks. 3486 * Don't verify internal form. 3487 */ 3488 error = so_addr_verify(so, name, namelen); 3489 if (error) { 3490 eprintsoline(so, error); 3491 return (error); 3492 } 3493 } 3494 3495 if (so->so_family == AF_UNIX) { 3496 if (sti->sti_faddr_noxlate) { 3497 /* 3498 * Already have a transport internal address. Do not 3499 * pass any (transport internal) source address. 3500 */ 3501 addr = name; 3502 addrlen = namelen; 3503 src = NULL; 3504 srclen = 0; 3505 } else if (flags & MSG_SENDTO_NOXLATE) { 3506 /* 3507 * Have an internal form dest. address. 3508 * Pass the source address as usual. 3509 */ 3510 addr = name; 3511 addrlen = namelen; 3512 src = sti->sti_laddr_sa; 3513 srclen = (socklen_t)sti->sti_laddr_len; 3514 } else { 3515 /* 3516 * Pass the sockaddr_un source address as an option 3517 * and translate the remote address. 3518 * 3519 * Note that this code does not prevent sti_laddr_sa 3520 * from changing while it is being used. Thus 3521 * if an unbind+bind occurs concurrently with this 3522 * send the peer might see a partially new and a 3523 * partially old "from" address. 3524 */ 3525 src = sti->sti_laddr_sa; 3526 srclen = (socklen_t)sti->sti_laddr_len; 3527 dprintso(so, 1, 3528 ("sosend_dgramcmsg UNIX: srclen %d, src %p\n", 3529 srclen, src)); 3530 /* 3531 * The sendmsg caller specified a destination 3532 * address, which we must translate into our 3533 * internal form. addr = &sti->sti_ux_taddr 3534 */ 3535 error = so_ux_addr_xlate(so, name, namelen, 3536 (flags & MSG_XPG4_2), 3537 &addr, &addrlen); 3538 if (error) { 3539 eprintsoline(so, error); 3540 return (error); 3541 } 3542 } 3543 } else { 3544 addr = name; 3545 addrlen = namelen; 3546 src = NULL; 3547 srclen = 0; 3548 } 3549 optlen = so_optlen(control, controllen, 3550 !(flags & MSG_XPG4_2)); 3551 tudr.PRIM_type = T_UNITDATA_REQ; 3552 tudr.DEST_length = addrlen; 3553 tudr.DEST_offset = (t_scalar_t)sizeof (tudr); 3554 if (srclen != 0) 3555 tudr.OPT_length = (t_scalar_t)(optlen + sizeof (toh) + 3556 _TPI_ALIGN_TOPT(srclen)); 3557 else 3558 tudr.OPT_length = optlen; 3559 tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) + 3560 _TPI_ALIGN_TOPT(addrlen)); 3561 3562 size = tudr.OPT_offset + tudr.OPT_length; 3563 3564 /* 3565 * File descriptors only when SM_FDPASSING set. 3566 */ 3567 error = so_getfdopt(control, controllen, 3568 !(flags & MSG_XPG4_2), &fds, &fdlen); 3569 if (error) 3570 return (error); 3571 if (fdlen != -1) { 3572 if (!(so->so_mode & SM_FDPASSING)) 3573 return (EOPNOTSUPP); 3574 3575 error = fdbuf_create(fds, fdlen, &fdbuf); 3576 if (error) 3577 return (error); 3578 3579 /* 3580 * Pre-allocate enough additional space for lower level modules 3581 * to append an option (e.g. see tl_unitdata). The following 3582 * is enough extra space for the largest option we might append. 3583 */ 3584 size += sizeof (struct T_opthdr) + ucredsize; 3585 mp = fdbuf_allocmsg(size, fdbuf); 3586 } else { 3587 mp = soallocproto(size, _ALLOC_INTR, CRED()); 3588 if (mp == NULL) { 3589 /* 3590 * Caught a signal waiting for memory. 3591 * Let send* return EINTR. 3592 */ 3593 return (EINTR); 3594 } 3595 } 3596 soappendmsg(mp, &tudr, sizeof (tudr)); 3597 soappendmsg(mp, addr, addrlen); 3598 mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen; 3599 3600 if (fdlen != -1) { 3601 ASSERT(fdbuf != NULL); 3602 toh.level = SOL_SOCKET; 3603 toh.name = SO_FILEP; 3604 toh.len = fdbuf->fd_size + 3605 (t_uscalar_t)sizeof (struct T_opthdr); 3606 toh.status = 0; 3607 soappendmsg(mp, &toh, sizeof (toh)); 3608 soappendmsg(mp, fdbuf, fdbuf->fd_size); 3609 ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr)); 3610 } 3611 if (srclen != 0) { 3612 /* 3613 * There is a AF_UNIX sockaddr_un to include as a source 3614 * address option. 3615 */ 3616 toh.level = SOL_SOCKET; 3617 toh.name = SO_SRCADDR; 3618 toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr)); 3619 toh.status = 0; 3620 soappendmsg(mp, &toh, sizeof (toh)); 3621 soappendmsg(mp, src, srclen); 3622 mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen; 3623 ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr)); 3624 } 3625 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 3626 so_cmsg2opt(control, controllen, !(flags & MSG_XPG4_2), mp); 3627 /* 3628 * Normally at most 3 bytes left in the message, but we might have 3629 * allowed for extra space if we're passing fd's through. 3630 */ 3631 ASSERT(MBLKL(mp) <= (ssize_t)size); 3632 3633 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 3634 if (AU_AUDITING()) 3635 audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0); 3636 3637 error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0); 3638 #ifdef SOCK_DEBUG 3639 if (error) { 3640 eprintsoline(so, error); 3641 } 3642 #endif /* SOCK_DEBUG */ 3643 return (error); 3644 } 3645 3646 /* 3647 * Sending data with options on a connected stream socket. 3648 * Assumes caller has verified that SS_ISCONNECTED is set. 3649 */ 3650 static int 3651 sosend_svccmsg(struct sonode *so, struct uio *uiop, int more, void *control, 3652 t_uscalar_t controllen, int flags) 3653 { 3654 struct T_optdata_req tdr; 3655 mblk_t *mp; 3656 int error; 3657 ssize_t iosize; 3658 int size; 3659 struct fdbuf *fdbuf; 3660 t_uscalar_t optlen; 3661 void *fds; 3662 int fdlen; 3663 struct T_opthdr toh; 3664 sotpi_info_t *sti = SOTOTPI(so); 3665 3666 dprintso(so, 1, 3667 ("sosend_svccmsg: resid %ld bytes\n", uiop->uio_resid)); 3668 3669 /* 3670 * Has to be bound and connected. However, since no locks are 3671 * held the state could have changed after sotpi_sendmsg checked it 3672 * thus it is not possible to ASSERT on the state. 3673 */ 3674 3675 /* Options on connection-oriented only when SM_OPTDATA set. */ 3676 if (!(so->so_mode & SM_OPTDATA)) 3677 return (EOPNOTSUPP); 3678 3679 do { 3680 /* 3681 * Set the MORE flag if uio_resid does not fit in this 3682 * message or if the caller passed in "more". 3683 * Error for transports with zero tidu_size. 3684 */ 3685 tdr.PRIM_type = T_OPTDATA_REQ; 3686 iosize = sti->sti_tidu_size; 3687 if (iosize <= 0) 3688 return (EMSGSIZE); 3689 if (uiop->uio_resid > iosize) { 3690 tdr.DATA_flag = 1; 3691 } else { 3692 if (more) 3693 tdr.DATA_flag = 1; 3694 else 3695 tdr.DATA_flag = 0; 3696 iosize = uiop->uio_resid; 3697 } 3698 dprintso(so, 1, ("sosend_svccmsg: sending %d, %ld bytes\n", 3699 tdr.DATA_flag, iosize)); 3700 3701 optlen = so_optlen(control, controllen, !(flags & MSG_XPG4_2)); 3702 tdr.OPT_length = optlen; 3703 tdr.OPT_offset = (t_scalar_t)sizeof (tdr); 3704 3705 size = (int)sizeof (tdr) + optlen; 3706 /* 3707 * File descriptors only when SM_FDPASSING set. 3708 */ 3709 error = so_getfdopt(control, controllen, 3710 !(flags & MSG_XPG4_2), &fds, &fdlen); 3711 if (error) 3712 return (error); 3713 if (fdlen != -1) { 3714 if (!(so->so_mode & SM_FDPASSING)) 3715 return (EOPNOTSUPP); 3716 3717 error = fdbuf_create(fds, fdlen, &fdbuf); 3718 if (error) 3719 return (error); 3720 3721 /* 3722 * Pre-allocate enough additional space for lower level 3723 * modules to append an option (e.g. see tl_unitdata). 3724 * The following is enough extra space for the largest 3725 * option we might append. 3726 */ 3727 size += sizeof (struct T_opthdr) + ucredsize; 3728 mp = fdbuf_allocmsg(size, fdbuf); 3729 } else { 3730 mp = soallocproto(size, _ALLOC_INTR, CRED()); 3731 if (mp == NULL) { 3732 /* 3733 * Caught a signal waiting for memory. 3734 * Let send* return EINTR. 3735 */ 3736 return (EINTR); 3737 } 3738 } 3739 soappendmsg(mp, &tdr, sizeof (tdr)); 3740 3741 if (fdlen != -1) { 3742 ASSERT(fdbuf != NULL); 3743 toh.level = SOL_SOCKET; 3744 toh.name = SO_FILEP; 3745 toh.len = fdbuf->fd_size + 3746 (t_uscalar_t)sizeof (struct T_opthdr); 3747 toh.status = 0; 3748 soappendmsg(mp, &toh, sizeof (toh)); 3749 soappendmsg(mp, fdbuf, fdbuf->fd_size); 3750 ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr)); 3751 } 3752 so_cmsg2opt(control, controllen, !(flags & MSG_XPG4_2), mp); 3753 /* 3754 * Normally at most 3 bytes left in the message, but we might 3755 * have allowed for extra space if we're passing fd's through. 3756 */ 3757 ASSERT(MBLKL(mp) <= (ssize_t)size); 3758 3759 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 3760 3761 error = kstrputmsg(SOTOV(so), mp, uiop, iosize, 3762 0, MSG_BAND, 0); 3763 if (error) { 3764 eprintsoline(so, error); 3765 return (error); 3766 } 3767 control = NULL; 3768 if (uiop->uio_resid > 0) { 3769 /* 3770 * Recheck for fatal errors. Fail write even though 3771 * some data have been written. This is consistent 3772 * with strwrite semantics and BSD sockets semantics. 3773 */ 3774 if (so->so_state & SS_CANTSENDMORE) { 3775 eprintsoline(so, error); 3776 return (EPIPE); 3777 } 3778 if (so->so_error != 0) { 3779 mutex_enter(&so->so_lock); 3780 error = sogeterr(so, B_TRUE); 3781 mutex_exit(&so->so_lock); 3782 if (error != 0) { 3783 eprintsoline(so, error); 3784 return (error); 3785 } 3786 } 3787 } 3788 } while (uiop->uio_resid > 0); 3789 return (0); 3790 } 3791 3792 /* 3793 * Sending data on a datagram socket. 3794 * Assumes caller has verified that SS_ISBOUND etc. are set. 3795 * 3796 * For AF_UNIX the destination address may be already in 3797 * internal form, as indicated by sti->sti_faddr_noxlate 3798 * or the MSG_SENDTO_NOXLATE flag. Otherwise we need to 3799 * translate the destination address to internal form. 3800 * 3801 * The source address is passed as an option. 3802 */ 3803 int 3804 sosend_dgram(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3805 struct uio *uiop, int flags) 3806 { 3807 struct T_unitdata_req tudr; 3808 mblk_t *mp; 3809 int error; 3810 void *addr; 3811 socklen_t addrlen; 3812 void *src; 3813 socklen_t srclen; 3814 ssize_t len; 3815 sotpi_info_t *sti = SOTOTPI(so); 3816 3817 ASSERT(name != NULL && namelen != 0); 3818 3819 len = uiop->uio_resid; 3820 if (len > sti->sti_tidu_size) { 3821 error = EMSGSIZE; 3822 goto done; 3823 } 3824 3825 if (sti->sti_faddr_noxlate == 0 && 3826 (flags & MSG_SENDTO_NOXLATE) == 0) { 3827 /* 3828 * Length and family checks. 3829 * Don't verify internal form. 3830 */ 3831 error = so_addr_verify(so, name, namelen); 3832 if (error != 0) 3833 goto done; 3834 } 3835 3836 if (sti->sti_direct) /* Never on AF_UNIX */ 3837 return (sodgram_direct(so, name, namelen, uiop, flags)); 3838 3839 if (so->so_family == AF_UNIX) { 3840 if (sti->sti_faddr_noxlate) { 3841 /* 3842 * Already have a transport internal address. Do not 3843 * pass any (transport internal) source address. 3844 */ 3845 addr = name; 3846 addrlen = namelen; 3847 src = NULL; 3848 srclen = 0; 3849 } else if (flags & MSG_SENDTO_NOXLATE) { 3850 /* 3851 * Have an internal form dest. address. 3852 * Pass the source address as usual. 3853 */ 3854 addr = name; 3855 addrlen = namelen; 3856 src = sti->sti_laddr_sa; 3857 srclen = (socklen_t)sti->sti_laddr_len; 3858 } else { 3859 /* 3860 * Pass the sockaddr_un source address as an option 3861 * and translate the remote address. 3862 * 3863 * Note that this code does not prevent sti_laddr_sa 3864 * from changing while it is being used. Thus 3865 * if an unbind+bind occurs concurrently with this 3866 * send the peer might see a partially new and a 3867 * partially old "from" address. 3868 */ 3869 src = sti->sti_laddr_sa; 3870 srclen = (socklen_t)sti->sti_laddr_len; 3871 dprintso(so, 1, 3872 ("sosend_dgram UNIX: srclen %d, src %p\n", 3873 srclen, src)); 3874 /* 3875 * The sendmsg caller specified a destination 3876 * address, which we must translate into our 3877 * internal form. addr = &sti->sti_ux_taddr 3878 */ 3879 error = so_ux_addr_xlate(so, name, namelen, 3880 (flags & MSG_XPG4_2), 3881 &addr, &addrlen); 3882 if (error) { 3883 eprintsoline(so, error); 3884 goto done; 3885 } 3886 } 3887 } else { 3888 addr = name; 3889 addrlen = namelen; 3890 src = NULL; 3891 srclen = 0; 3892 } 3893 tudr.PRIM_type = T_UNITDATA_REQ; 3894 tudr.DEST_length = addrlen; 3895 tudr.DEST_offset = (t_scalar_t)sizeof (tudr); 3896 if (srclen == 0) { 3897 tudr.OPT_length = 0; 3898 tudr.OPT_offset = 0; 3899 3900 mp = soallocproto2(&tudr, sizeof (tudr), 3901 addr, addrlen, 0, _ALLOC_INTR, CRED()); 3902 if (mp == NULL) { 3903 /* 3904 * Caught a signal waiting for memory. 3905 * Let send* return EINTR. 3906 */ 3907 error = EINTR; 3908 goto done; 3909 } 3910 } else { 3911 /* 3912 * There is a AF_UNIX sockaddr_un to include as a source 3913 * address option. 3914 */ 3915 struct T_opthdr toh; 3916 ssize_t size; 3917 3918 tudr.OPT_length = (t_scalar_t)(sizeof (toh) + 3919 _TPI_ALIGN_TOPT(srclen)); 3920 tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) + 3921 _TPI_ALIGN_TOPT(addrlen)); 3922 3923 toh.level = SOL_SOCKET; 3924 toh.name = SO_SRCADDR; 3925 toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr)); 3926 toh.status = 0; 3927 3928 size = tudr.OPT_offset + tudr.OPT_length; 3929 mp = soallocproto2(&tudr, sizeof (tudr), 3930 addr, addrlen, size, _ALLOC_INTR, CRED()); 3931 if (mp == NULL) { 3932 /* 3933 * Caught a signal waiting for memory. 3934 * Let send* return EINTR. 3935 */ 3936 error = EINTR; 3937 goto done; 3938 } 3939 mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen; 3940 soappendmsg(mp, &toh, sizeof (toh)); 3941 soappendmsg(mp, src, srclen); 3942 mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen; 3943 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 3944 } 3945 3946 if (AU_AUDITING()) 3947 audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0); 3948 3949 error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0); 3950 done: 3951 #ifdef SOCK_DEBUG 3952 if (error) { 3953 eprintsoline(so, error); 3954 } 3955 #endif /* SOCK_DEBUG */ 3956 return (error); 3957 } 3958 3959 /* 3960 * Sending data on a connected stream socket. 3961 * Assumes caller has verified that SS_ISCONNECTED is set. 3962 */ 3963 int 3964 sosend_svc(struct sonode *so, struct uio *uiop, t_scalar_t prim, int more, 3965 int sflag) 3966 { 3967 struct T_data_req tdr; 3968 mblk_t *mp; 3969 int error; 3970 ssize_t iosize; 3971 sotpi_info_t *sti = SOTOTPI(so); 3972 3973 dprintso(so, 1, 3974 ("sosend_svc: %p, resid %ld bytes, prim %d, sflag 0x%x\n", 3975 (void *)so, uiop->uio_resid, prim, sflag)); 3976 3977 /* 3978 * Has to be bound and connected. However, since no locks are 3979 * held the state could have changed after sotpi_sendmsg checked it 3980 * thus it is not possible to ASSERT on the state. 3981 */ 3982 3983 do { 3984 /* 3985 * Set the MORE flag if uio_resid does not fit in this 3986 * message or if the caller passed in "more". 3987 * Error for transports with zero tidu_size. 3988 */ 3989 tdr.PRIM_type = prim; 3990 iosize = sti->sti_tidu_size; 3991 if (iosize <= 0) 3992 return (EMSGSIZE); 3993 if (uiop->uio_resid > iosize) { 3994 tdr.MORE_flag = 1; 3995 } else { 3996 if (more) 3997 tdr.MORE_flag = 1; 3998 else 3999 tdr.MORE_flag = 0; 4000 iosize = uiop->uio_resid; 4001 } 4002 dprintso(so, 1, ("sosend_svc: sending 0x%x %d, %ld bytes\n", 4003 prim, tdr.MORE_flag, iosize)); 4004 mp = soallocproto1(&tdr, sizeof (tdr), 0, _ALLOC_INTR, CRED()); 4005 if (mp == NULL) { 4006 /* 4007 * Caught a signal waiting for memory. 4008 * Let send* return EINTR. 4009 */ 4010 return (EINTR); 4011 } 4012 4013 error = kstrputmsg(SOTOV(so), mp, uiop, iosize, 4014 0, sflag | MSG_BAND, 0); 4015 if (error) { 4016 eprintsoline(so, error); 4017 return (error); 4018 } 4019 if (uiop->uio_resid > 0) { 4020 /* 4021 * Recheck for fatal errors. Fail write even though 4022 * some data have been written. This is consistent 4023 * with strwrite semantics and BSD sockets semantics. 4024 */ 4025 if (so->so_state & SS_CANTSENDMORE) { 4026 eprintsoline(so, error); 4027 return (EPIPE); 4028 } 4029 if (so->so_error != 0) { 4030 mutex_enter(&so->so_lock); 4031 error = sogeterr(so, B_TRUE); 4032 mutex_exit(&so->so_lock); 4033 if (error != 0) { 4034 eprintsoline(so, error); 4035 return (error); 4036 } 4037 } 4038 } 4039 } while (uiop->uio_resid > 0); 4040 return (0); 4041 } 4042 4043 /* 4044 * Check the state for errors and call the appropriate send function. 4045 * 4046 * If MSG_DONTROUTE is set (and SO_DONTROUTE isn't already set) 4047 * this function issues a setsockopt to toggle SO_DONTROUTE before and 4048 * after sending the message. 4049 * 4050 * The caller may optionally specify a destination address, for either 4051 * stream or datagram sockets. This table summarizes the cases: 4052 * 4053 * Socket type Dest. given Connected Result 4054 * ----------- ----------- --------- -------------- 4055 * Stream * Yes send to conn. addr. 4056 * Stream * No error ENOTCONN 4057 * Dgram yes * send to given addr. 4058 * Dgram no yes send to conn. addr. 4059 * Dgram no no error EDESTADDRREQ 4060 * 4061 * There are subtleties around the destination address when using 4062 * AF_UNIX datagram sockets. When the sendmsg call specifies the 4063 * destination address, it's in (struct sockaddr_un) form and we 4064 * need to translate it to our internal form (struct so_ux_addr). 4065 * 4066 * When the sendmsg call does not specify a destination address 4067 * we're using the peer address saved during sotpi_connect, and 4068 * that address is already in internal form. In this case, the 4069 * (internal only) flag MSG_SENDTO_NOXLATE is set in the flags 4070 * passed to sosend_dgram or sosend_dgramcmsg to indicate that 4071 * those functions should skip translation to internal form. 4072 * Avoiding that translation is not only more efficient, but it's 4073 * also necessary when a process does a connect on an AF_UNIX 4074 * datagram socket and then drops privileges. After the process 4075 * has dropped privileges, it may no longer be able to lookup the 4076 * the external name in the filesystem, but it should still be 4077 * able to send messages on the connected socket by leaving the 4078 * destination name unspecified. 4079 * 4080 * Yet more subtleties arise with sockets connected by socketpair(), 4081 * which puts internal form addresses in the fields where normally 4082 * the external form is found, and sets sti_faddr_noxlate=1, which 4083 * (like flag MSG_SENDTO_NOXLATE) causes the sosend_dgram functions 4084 * to skip translation of destination addresses to internal form. 4085 * However, beware that the flag sti_faddr_noxlate=1 also triggers 4086 * different behaviour almost everywhere AF_UNIX addresses appear. 4087 */ 4088 static int 4089 sotpi_sendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, 4090 struct cred *cr) 4091 { 4092 int so_state; 4093 int so_mode; 4094 int error; 4095 struct sockaddr *name; 4096 t_uscalar_t namelen; 4097 int dontroute; 4098 int flags; 4099 sotpi_info_t *sti = SOTOTPI(so); 4100 4101 dprintso(so, 1, ("sotpi_sendmsg(%p, %p, 0x%x) state %s, error %d\n", 4102 (void *)so, (void *)msg, msg->msg_flags, 4103 pr_state(so->so_state, so->so_mode), so->so_error)); 4104 4105 if (so->so_version == SOV_STREAM) { 4106 /* The imaginary "sockmod" has been popped - act as a stream */ 4107 so_update_attrs(so, SOMOD); 4108 return (strwrite(SOTOV(so), uiop, cr)); 4109 } 4110 4111 mutex_enter(&so->so_lock); 4112 so_state = so->so_state; 4113 4114 if (so_state & SS_CANTSENDMORE) { 4115 mutex_exit(&so->so_lock); 4116 return (EPIPE); 4117 } 4118 4119 if (so->so_error != 0) { 4120 error = sogeterr(so, B_TRUE); 4121 if (error != 0) { 4122 mutex_exit(&so->so_lock); 4123 return (error); 4124 } 4125 } 4126 4127 name = (struct sockaddr *)msg->msg_name; 4128 namelen = msg->msg_namelen; 4129 flags = msg->msg_flags; 4130 4131 /* 4132 * Historically, this function does not validate the flags 4133 * passed in, and any errant bits are ignored. However, 4134 * we would not want any such errant flag bits accidently 4135 * being treated as one of the internal-only flags, so 4136 * clear the internal-only flag bits. 4137 */ 4138 flags &= ~MSG_SENDTO_NOXLATE; 4139 4140 so_mode = so->so_mode; 4141 4142 if (name == NULL) { 4143 if (!(so_state & SS_ISCONNECTED)) { 4144 mutex_exit(&so->so_lock); 4145 if (so_mode & SM_CONNREQUIRED) 4146 return (ENOTCONN); 4147 else 4148 return (EDESTADDRREQ); 4149 } 4150 /* 4151 * This is a connected socket. 4152 */ 4153 if (so_mode & SM_CONNREQUIRED) { 4154 /* 4155 * This is a connected STREAM socket, 4156 * destination not specified. 4157 */ 4158 name = NULL; 4159 namelen = 0; 4160 } else { 4161 /* 4162 * Datagram send on connected socket with 4163 * the destination name not specified. 4164 * Use the peer address from connect. 4165 */ 4166 if (so->so_family == AF_UNIX) { 4167 /* 4168 * Use the (internal form) address saved 4169 * in sotpi_connect. See above. 4170 */ 4171 name = (void *)&sti->sti_ux_faddr; 4172 namelen = sizeof (sti->sti_ux_faddr); 4173 flags |= MSG_SENDTO_NOXLATE; 4174 } else { 4175 ASSERT(sti->sti_faddr_sa); 4176 name = sti->sti_faddr_sa; 4177 namelen = (t_uscalar_t)sti->sti_faddr_len; 4178 } 4179 } 4180 } else { 4181 /* 4182 * Sendmsg specifies a destination name 4183 */ 4184 if (!(so_state & SS_ISCONNECTED) && 4185 (so_mode & SM_CONNREQUIRED)) { 4186 /* i.e. TCP not connected */ 4187 mutex_exit(&so->so_lock); 4188 return (ENOTCONN); 4189 } 4190 /* 4191 * Ignore the address on connection-oriented sockets. 4192 * Just like BSD this code does not generate an error for 4193 * TCP (a CONNREQUIRED socket) when sending to an address 4194 * passed in with sendto/sendmsg. Instead the data is 4195 * delivered on the connection as if no address had been 4196 * supplied. 4197 */ 4198 if ((so_state & SS_ISCONNECTED) && 4199 !(so_mode & SM_CONNREQUIRED)) { 4200 mutex_exit(&so->so_lock); 4201 return (EISCONN); 4202 } 4203 if (!(so_state & SS_ISBOUND)) { 4204 so_lock_single(so); /* Set SOLOCKED */ 4205 error = sotpi_bind(so, NULL, 0, 4206 _SOBIND_UNSPEC|_SOBIND_LOCK_HELD, cr); 4207 so_unlock_single(so, SOLOCKED); 4208 if (error) { 4209 mutex_exit(&so->so_lock); 4210 eprintsoline(so, error); 4211 return (error); 4212 } 4213 } 4214 /* 4215 * Handle delayed datagram errors. These are only queued 4216 * when the application sets SO_DGRAM_ERRIND. 4217 * Return the error if we are sending to the address 4218 * that was returned in the last T_UDERROR_IND. 4219 * If sending to some other address discard the delayed 4220 * error indication. 4221 */ 4222 if (sti->sti_delayed_error) { 4223 struct T_uderror_ind *tudi; 4224 void *addr; 4225 t_uscalar_t addrlen; 4226 boolean_t match = B_FALSE; 4227 4228 ASSERT(sti->sti_eaddr_mp); 4229 error = sti->sti_delayed_error; 4230 sti->sti_delayed_error = 0; 4231 tudi = 4232 (struct T_uderror_ind *)sti->sti_eaddr_mp->b_rptr; 4233 addrlen = tudi->DEST_length; 4234 addr = sogetoff(sti->sti_eaddr_mp, 4235 tudi->DEST_offset, addrlen, 1); 4236 ASSERT(addr); /* Checked by strsock_proto */ 4237 switch (so->so_family) { 4238 case AF_INET: { 4239 /* Compare just IP address and port */ 4240 sin_t *sin1 = (sin_t *)name; 4241 sin_t *sin2 = (sin_t *)addr; 4242 4243 if (addrlen == sizeof (sin_t) && 4244 namelen == addrlen && 4245 sin1->sin_port == sin2->sin_port && 4246 sin1->sin_addr.s_addr == 4247 sin2->sin_addr.s_addr) 4248 match = B_TRUE; 4249 break; 4250 } 4251 case AF_INET6: { 4252 /* Compare just IP address and port. Not flow */ 4253 sin6_t *sin1 = (sin6_t *)name; 4254 sin6_t *sin2 = (sin6_t *)addr; 4255 4256 if (addrlen == sizeof (sin6_t) && 4257 namelen == addrlen && 4258 sin1->sin6_port == sin2->sin6_port && 4259 IN6_ARE_ADDR_EQUAL(&sin1->sin6_addr, 4260 &sin2->sin6_addr)) 4261 match = B_TRUE; 4262 break; 4263 } 4264 case AF_UNIX: 4265 default: 4266 if (namelen == addrlen && 4267 bcmp(name, addr, namelen) == 0) 4268 match = B_TRUE; 4269 } 4270 if (match) { 4271 freemsg(sti->sti_eaddr_mp); 4272 sti->sti_eaddr_mp = NULL; 4273 mutex_exit(&so->so_lock); 4274 #ifdef DEBUG 4275 dprintso(so, 0, 4276 ("sockfs delayed error %d for %s\n", 4277 error, 4278 pr_addr(so->so_family, name, namelen))); 4279 #endif /* DEBUG */ 4280 return (error); 4281 } 4282 freemsg(sti->sti_eaddr_mp); 4283 sti->sti_eaddr_mp = NULL; 4284 } 4285 } 4286 mutex_exit(&so->so_lock); 4287 4288 dontroute = 0; 4289 if ((flags & MSG_DONTROUTE) && !(so->so_options & SO_DONTROUTE)) { 4290 uint32_t val; 4291 4292 val = 1; 4293 error = sotpi_setsockopt(so, SOL_SOCKET, SO_DONTROUTE, 4294 &val, (t_uscalar_t)sizeof (val), cr); 4295 if (error) 4296 return (error); 4297 dontroute = 1; 4298 } 4299 4300 if ((flags & MSG_OOB) && !(so_mode & SM_EXDATA)) { 4301 error = EOPNOTSUPP; 4302 goto done; 4303 } 4304 if (msg->msg_controllen != 0) { 4305 if (!(so_mode & SM_CONNREQUIRED)) { 4306 so_update_attrs(so, SOMOD); 4307 error = sosend_dgramcmsg(so, name, namelen, uiop, 4308 msg->msg_control, msg->msg_controllen, flags); 4309 } else { 4310 if (flags & MSG_OOB) { 4311 /* Can't generate T_EXDATA_REQ with options */ 4312 error = EOPNOTSUPP; 4313 goto done; 4314 } 4315 so_update_attrs(so, SOMOD); 4316 error = sosend_svccmsg(so, uiop, 4317 !(flags & MSG_EOR), 4318 msg->msg_control, msg->msg_controllen, 4319 flags); 4320 } 4321 goto done; 4322 } 4323 4324 so_update_attrs(so, SOMOD); 4325 if (!(so_mode & SM_CONNREQUIRED)) { 4326 /* 4327 * If there is no SO_DONTROUTE to turn off return immediately 4328 * from send_dgram. This can allow tail-call optimizations. 4329 */ 4330 if (!dontroute) { 4331 return (sosend_dgram(so, name, namelen, uiop, flags)); 4332 } 4333 error = sosend_dgram(so, name, namelen, uiop, flags); 4334 } else { 4335 t_scalar_t prim; 4336 int sflag; 4337 4338 /* Ignore msg_name in the connected state */ 4339 if (flags & MSG_OOB) { 4340 prim = T_EXDATA_REQ; 4341 /* 4342 * Send down T_EXDATA_REQ even if there is flow 4343 * control for data. 4344 */ 4345 sflag = MSG_IGNFLOW; 4346 } else { 4347 if (so_mode & SM_BYTESTREAM) { 4348 /* Byte stream transport - use write */ 4349 dprintso(so, 1, ("sotpi_sendmsg: write\n")); 4350 4351 /* Send M_DATA messages */ 4352 /* 4353 * If there is no SO_DONTROUTE to turn off, 4354 * sti_direct is on, and there is no flow 4355 * control, we can take the fast path. 4356 */ 4357 if (!dontroute && sti->sti_direct != 0 && 4358 canputnext(SOTOV(so)->v_stream->sd_wrq)) { 4359 return (sostream_direct(so, uiop, 4360 NULL, cr)); 4361 } 4362 error = strwrite(SOTOV(so), uiop, cr); 4363 goto done; 4364 } 4365 prim = T_DATA_REQ; 4366 sflag = 0; 4367 } 4368 /* 4369 * If there is no SO_DONTROUTE to turn off return immediately 4370 * from sosend_svc. This can allow tail-call optimizations. 4371 */ 4372 if (!dontroute) 4373 return (sosend_svc(so, uiop, prim, 4374 !(flags & MSG_EOR), sflag)); 4375 error = sosend_svc(so, uiop, prim, 4376 !(flags & MSG_EOR), sflag); 4377 } 4378 ASSERT(dontroute); 4379 done: 4380 if (dontroute) { 4381 uint32_t val; 4382 4383 val = 0; 4384 (void) sotpi_setsockopt(so, SOL_SOCKET, SO_DONTROUTE, 4385 &val, (t_uscalar_t)sizeof (val), cr); 4386 } 4387 return (error); 4388 } 4389 4390 /* 4391 * kstrwritemp() has very similar semantics as that of strwrite(). 4392 * The main difference is it obtains mblks from the caller and also 4393 * does not do any copy as done in strwrite() from user buffers to 4394 * kernel buffers. 4395 * 4396 * Currently, this routine is used by sendfile to send data allocated 4397 * within the kernel without any copying. This interface does not use the 4398 * synchronous stream interface as synch. stream interface implies 4399 * copying. 4400 */ 4401 int 4402 kstrwritemp(struct vnode *vp, mblk_t *mp, ushort_t fmode) 4403 { 4404 struct stdata *stp; 4405 struct queue *wqp; 4406 mblk_t *newmp; 4407 char waitflag; 4408 int tempmode; 4409 int error = 0; 4410 int done = 0; 4411 struct sonode *so; 4412 boolean_t direct; 4413 4414 ASSERT(vp->v_stream); 4415 stp = vp->v_stream; 4416 4417 so = VTOSO(vp); 4418 direct = _SOTOTPI(so)->sti_direct; 4419 4420 /* 4421 * This is the sockfs direct fast path. canputnext() need 4422 * not be accurate so we don't grab the sd_lock here. If 4423 * we get flow-controlled, we grab sd_lock just before the 4424 * do..while loop below to emulate what strwrite() does. 4425 */ 4426 wqp = stp->sd_wrq; 4427 if (canputnext(wqp) && direct && 4428 !(stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { 4429 return (sostream_direct(so, NULL, mp, CRED())); 4430 } else if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 4431 /* Fast check of flags before acquiring the lock */ 4432 mutex_enter(&stp->sd_lock); 4433 error = strgeterr(stp, STWRERR|STRHUP|STPLEX, 0); 4434 mutex_exit(&stp->sd_lock); 4435 if (error != 0) { 4436 if (!(stp->sd_flag & STPLEX) && 4437 (stp->sd_wput_opt & SW_SIGPIPE)) { 4438 error = EPIPE; 4439 } 4440 return (error); 4441 } 4442 } 4443 4444 waitflag = WRITEWAIT; 4445 if (stp->sd_flag & OLDNDELAY) 4446 tempmode = fmode & ~FNDELAY; 4447 else 4448 tempmode = fmode; 4449 4450 mutex_enter(&stp->sd_lock); 4451 do { 4452 if (canputnext(wqp)) { 4453 mutex_exit(&stp->sd_lock); 4454 if (stp->sd_wputdatafunc != NULL) { 4455 newmp = (stp->sd_wputdatafunc)(vp, mp, NULL, 4456 NULL, NULL, NULL); 4457 if (newmp == NULL) { 4458 /* The caller will free mp */ 4459 return (ECOMM); 4460 } 4461 mp = newmp; 4462 } 4463 putnext(wqp, mp); 4464 return (0); 4465 } 4466 error = strwaitq(stp, waitflag, (ssize_t)0, tempmode, -1, 4467 &done); 4468 } while (error == 0 && !done); 4469 4470 mutex_exit(&stp->sd_lock); 4471 /* 4472 * EAGAIN tells the application to try again. ENOMEM 4473 * is returned only if the memory allocation size 4474 * exceeds the physical limits of the system. ENOMEM 4475 * can't be true here. 4476 */ 4477 if (error == ENOMEM) 4478 error = EAGAIN; 4479 return (error); 4480 } 4481 4482 /* ARGSUSED */ 4483 static int 4484 sotpi_sendmblk(struct sonode *so, struct nmsghdr *msg, int fflag, 4485 struct cred *cr, mblk_t **mpp) 4486 { 4487 int error; 4488 4489 switch (so->so_family) { 4490 case AF_INET: 4491 case AF_INET6: 4492 case AF_UNIX: 4493 break; 4494 default: 4495 return (EAFNOSUPPORT); 4496 4497 } 4498 4499 if (so->so_state & SS_CANTSENDMORE) 4500 return (EPIPE); 4501 4502 if (so->so_type != SOCK_STREAM) 4503 return (EOPNOTSUPP); 4504 4505 if ((so->so_state & SS_ISCONNECTED) == 0) 4506 return (ENOTCONN); 4507 4508 error = kstrwritemp(so->so_vnode, *mpp, fflag); 4509 if (error == 0) 4510 *mpp = NULL; 4511 return (error); 4512 } 4513 4514 /* 4515 * Sending data on a datagram socket. 4516 * Assumes caller has verified that SS_ISBOUND etc. are set. 4517 */ 4518 /* ARGSUSED */ 4519 static int 4520 sodgram_direct(struct sonode *so, struct sockaddr *name, 4521 socklen_t namelen, struct uio *uiop, int flags) 4522 { 4523 struct T_unitdata_req tudr; 4524 mblk_t *mp = NULL; 4525 int error = 0; 4526 void *addr; 4527 socklen_t addrlen; 4528 ssize_t len; 4529 struct stdata *stp = SOTOV(so)->v_stream; 4530 int so_state; 4531 queue_t *udp_wq; 4532 boolean_t connected; 4533 mblk_t *mpdata = NULL; 4534 sotpi_info_t *sti = SOTOTPI(so); 4535 uint32_t auditing = AU_AUDITING(); 4536 4537 ASSERT(name != NULL && namelen != 0); 4538 ASSERT(!(so->so_mode & SM_CONNREQUIRED)); 4539 ASSERT(!(so->so_mode & SM_EXDATA)); 4540 ASSERT(so->so_family == AF_INET || so->so_family == AF_INET6); 4541 ASSERT(SOTOV(so)->v_type == VSOCK); 4542 4543 /* Caller checked for proper length */ 4544 len = uiop->uio_resid; 4545 ASSERT(len <= sti->sti_tidu_size); 4546 4547 /* Length and family checks have been done by caller */ 4548 ASSERT(name->sa_family == so->so_family); 4549 ASSERT(so->so_family == AF_INET || 4550 (namelen == (socklen_t)sizeof (struct sockaddr_in6))); 4551 ASSERT(so->so_family == AF_INET6 || 4552 (namelen == (socklen_t)sizeof (struct sockaddr_in))); 4553 4554 addr = name; 4555 addrlen = namelen; 4556 4557 if (stp->sd_sidp != NULL && 4558 (error = straccess(stp, JCWRITE)) != 0) 4559 goto done; 4560 4561 so_state = so->so_state; 4562 4563 connected = so_state & SS_ISCONNECTED; 4564 if (!connected) { 4565 tudr.PRIM_type = T_UNITDATA_REQ; 4566 tudr.DEST_length = addrlen; 4567 tudr.DEST_offset = (t_scalar_t)sizeof (tudr); 4568 tudr.OPT_length = 0; 4569 tudr.OPT_offset = 0; 4570 4571 mp = soallocproto2(&tudr, sizeof (tudr), addr, addrlen, 0, 4572 _ALLOC_INTR, CRED()); 4573 if (mp == NULL) { 4574 /* 4575 * Caught a signal waiting for memory. 4576 * Let send* return EINTR. 4577 */ 4578 error = EINTR; 4579 goto done; 4580 } 4581 } 4582 4583 /* 4584 * For UDP we don't break up the copyin into smaller pieces 4585 * as in the TCP case. That means if ENOMEM is returned by 4586 * mcopyinuio() then the uio vector has not been modified at 4587 * all and we fallback to either strwrite() or kstrputmsg() 4588 * below. Note also that we never generate priority messages 4589 * from here. 4590 */ 4591 udp_wq = stp->sd_wrq->q_next; 4592 if (canput(udp_wq) && 4593 (mpdata = mcopyinuio(stp, uiop, -1, -1, &error)) != NULL) { 4594 ASSERT(DB_TYPE(mpdata) == M_DATA); 4595 ASSERT(uiop->uio_resid == 0); 4596 if (!connected) 4597 linkb(mp, mpdata); 4598 else 4599 mp = mpdata; 4600 if (auditing) 4601 audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0); 4602 4603 /* Always returns 0... */ 4604 return (udp_wput(udp_wq, mp)); 4605 } 4606 4607 ASSERT(mpdata == NULL); 4608 if (error != 0 && error != ENOMEM) { 4609 freemsg(mp); 4610 return (error); 4611 } 4612 4613 /* 4614 * For connected, let strwrite() handle the blocking case. 4615 * Otherwise we fall thru and use kstrputmsg(). 4616 */ 4617 if (connected) 4618 return (strwrite(SOTOV(so), uiop, CRED())); 4619 4620 if (auditing) 4621 audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0); 4622 4623 error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0); 4624 done: 4625 #ifdef SOCK_DEBUG 4626 if (error != 0) { 4627 eprintsoline(so, error); 4628 } 4629 #endif /* SOCK_DEBUG */ 4630 return (error); 4631 } 4632 4633 int 4634 sostream_direct(struct sonode *so, struct uio *uiop, mblk_t *mp, cred_t *cr) 4635 { 4636 struct stdata *stp = SOTOV(so)->v_stream; 4637 ssize_t iosize, rmax, maxblk; 4638 queue_t *tcp_wq = stp->sd_wrq->q_next; 4639 mblk_t *newmp; 4640 int error = 0, wflag = 0; 4641 4642 ASSERT(so->so_mode & SM_BYTESTREAM); 4643 ASSERT(SOTOV(so)->v_type == VSOCK); 4644 4645 if (stp->sd_sidp != NULL && 4646 (error = straccess(stp, JCWRITE)) != 0) 4647 return (error); 4648 4649 if (uiop == NULL) { 4650 /* 4651 * kstrwritemp() should have checked sd_flag and 4652 * flow-control before coming here. If we end up 4653 * here it means that we can simply pass down the 4654 * data to tcp. 4655 */ 4656 ASSERT(mp != NULL); 4657 if (stp->sd_wputdatafunc != NULL) { 4658 newmp = (stp->sd_wputdatafunc)(SOTOV(so), mp, NULL, 4659 NULL, NULL, NULL); 4660 if (newmp == NULL) { 4661 /* The caller will free mp */ 4662 return (ECOMM); 4663 } 4664 mp = newmp; 4665 } 4666 /* Always returns 0... */ 4667 return (tcp_wput(tcp_wq, mp)); 4668 } 4669 4670 /* Fallback to strwrite() to do proper error handling */ 4671 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX|STRDELIM|OLDNDELAY)) 4672 return (strwrite(SOTOV(so), uiop, cr)); 4673 4674 rmax = stp->sd_qn_maxpsz; 4675 ASSERT(rmax >= 0 || rmax == INFPSZ); 4676 if (rmax == 0 || uiop->uio_resid <= 0) 4677 return (0); 4678 4679 if (rmax == INFPSZ) 4680 rmax = uiop->uio_resid; 4681 4682 maxblk = stp->sd_maxblk; 4683 4684 for (;;) { 4685 iosize = MIN(uiop->uio_resid, rmax); 4686 4687 mp = mcopyinuio(stp, uiop, iosize, maxblk, &error); 4688 if (mp == NULL) { 4689 /* 4690 * Fallback to strwrite() for ENOMEM; if this 4691 * is our first time in this routine and the uio 4692 * vector has not been modified, we will end up 4693 * calling strwrite() without any flag set. 4694 */ 4695 if (error == ENOMEM) 4696 goto slow_send; 4697 else 4698 return (error); 4699 } 4700 ASSERT(uiop->uio_resid >= 0); 4701 /* 4702 * If mp is non-NULL and ENOMEM is set, it means that 4703 * mcopyinuio() was able to break down some of the user 4704 * data into one or more mblks. Send the partial data 4705 * to tcp and let the rest be handled in strwrite(). 4706 */ 4707 ASSERT(error == 0 || error == ENOMEM); 4708 if (stp->sd_wputdatafunc != NULL) { 4709 newmp = (stp->sd_wputdatafunc)(SOTOV(so), mp, NULL, 4710 NULL, NULL, NULL); 4711 if (newmp == NULL) { 4712 /* The caller will free mp */ 4713 return (ECOMM); 4714 } 4715 mp = newmp; 4716 } 4717 (void) tcp_wput(tcp_wq, mp); /* Always returns 0 anyway. */ 4718 4719 wflag |= NOINTR; 4720 4721 if (uiop->uio_resid == 0) { /* No more data; we're done */ 4722 ASSERT(error == 0); 4723 break; 4724 } else if (error == ENOMEM || !canput(tcp_wq) || (stp->sd_flag & 4725 (STWRERR|STRHUP|STPLEX|STRDELIM|OLDNDELAY))) { 4726 slow_send: 4727 /* 4728 * We were able to send down partial data using 4729 * the direct call interface, but are now relying 4730 * on strwrite() to handle the non-fastpath cases. 4731 * If the socket is blocking we will sleep in 4732 * strwaitq() until write is permitted, otherwise, 4733 * we will need to return the amount of bytes 4734 * written so far back to the app. This is the 4735 * reason why we pass NOINTR flag to strwrite() 4736 * for non-blocking socket, because we don't want 4737 * to return EAGAIN when portion of the user data 4738 * has actually been sent down. 4739 */ 4740 return (strwrite_common(SOTOV(so), uiop, cr, wflag)); 4741 } 4742 } 4743 return (0); 4744 } 4745 4746 /* 4747 * Update sti_faddr by asking the transport (unless AF_UNIX). 4748 */ 4749 /* ARGSUSED */ 4750 int 4751 sotpi_getpeername(struct sonode *so, struct sockaddr *name, socklen_t *namelen, 4752 boolean_t accept, struct cred *cr) 4753 { 4754 struct strbuf strbuf; 4755 int error = 0, res; 4756 void *addr; 4757 t_uscalar_t addrlen; 4758 k_sigset_t smask; 4759 sotpi_info_t *sti = SOTOTPI(so); 4760 4761 dprintso(so, 1, ("sotpi_getpeername(%p) %s\n", 4762 (void *)so, pr_state(so->so_state, so->so_mode))); 4763 4764 ASSERT(*namelen > 0); 4765 mutex_enter(&so->so_lock); 4766 so_lock_single(so); /* Set SOLOCKED */ 4767 4768 if (accept) { 4769 bcopy(sti->sti_faddr_sa, name, 4770 MIN(*namelen, sti->sti_faddr_len)); 4771 *namelen = sti->sti_faddr_noxlate ? 0: sti->sti_faddr_len; 4772 goto done; 4773 } 4774 4775 if (!(so->so_state & SS_ISCONNECTED)) { 4776 error = ENOTCONN; 4777 goto done; 4778 } 4779 /* Added this check for X/Open */ 4780 if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) { 4781 error = EINVAL; 4782 if (xnet_check_print) { 4783 printf("sockfs: X/Open getpeername check => EINVAL\n"); 4784 } 4785 goto done; 4786 } 4787 4788 if (sti->sti_faddr_valid) { 4789 bcopy(sti->sti_faddr_sa, name, 4790 MIN(*namelen, sti->sti_faddr_len)); 4791 *namelen = sti->sti_faddr_noxlate ? 0: sti->sti_faddr_len; 4792 goto done; 4793 } 4794 4795 #ifdef DEBUG 4796 dprintso(so, 1, ("sotpi_getpeername (local): %s\n", 4797 pr_addr(so->so_family, sti->sti_faddr_sa, 4798 (t_uscalar_t)sti->sti_faddr_len))); 4799 #endif /* DEBUG */ 4800 4801 if (so->so_family == AF_UNIX) { 4802 /* Transport has different name space - return local info */ 4803 if (sti->sti_faddr_noxlate) 4804 *namelen = 0; 4805 error = 0; 4806 goto done; 4807 } 4808 4809 ASSERT(so->so_family != AF_UNIX && sti->sti_faddr_noxlate == 0); 4810 4811 ASSERT(sti->sti_faddr_sa); 4812 /* Allocate local buffer to use with ioctl */ 4813 addrlen = (t_uscalar_t)sti->sti_faddr_maxlen; 4814 mutex_exit(&so->so_lock); 4815 addr = kmem_alloc(addrlen, KM_SLEEP); 4816 4817 /* 4818 * Issue TI_GETPEERNAME with signals masked. 4819 * Put the result in sti_faddr_sa so that getpeername works after 4820 * a shutdown(output). 4821 * If the ioctl fails (e.g. due to a ECONNRESET) the error is reposted 4822 * back to the socket. 4823 */ 4824 strbuf.buf = addr; 4825 strbuf.maxlen = addrlen; 4826 strbuf.len = 0; 4827 4828 sigintr(&smask, 0); 4829 res = 0; 4830 ASSERT(cr); 4831 error = strioctl(SOTOV(so), TI_GETPEERNAME, (intptr_t)&strbuf, 4832 0, K_TO_K, cr, &res); 4833 sigunintr(&smask); 4834 4835 mutex_enter(&so->so_lock); 4836 /* 4837 * If there is an error record the error in so_error put don't fail 4838 * the getpeername. Instead fallback on the recorded 4839 * sti->sti_faddr_sa. 4840 */ 4841 if (error) { 4842 /* 4843 * Various stream head errors can be returned to the ioctl. 4844 * However, it is impossible to determine which ones of 4845 * these are really socket level errors that were incorrectly 4846 * consumed by the ioctl. Thus this code silently ignores the 4847 * error - to code explicitly does not reinstate the error 4848 * using soseterror(). 4849 * Experiments have shows that at least this set of 4850 * errors are reported and should not be reinstated on the 4851 * socket: 4852 * EINVAL E.g. if an I_LINK was in effect when 4853 * getpeername was called. 4854 * EPIPE The ioctl error semantics prefer the write 4855 * side error over the read side error. 4856 * ENOTCONN The transport just got disconnected but 4857 * sockfs had not yet seen the T_DISCON_IND 4858 * when issuing the ioctl. 4859 */ 4860 error = 0; 4861 } else if (res == 0 && strbuf.len > 0 && 4862 (so->so_state & SS_ISCONNECTED)) { 4863 ASSERT(strbuf.len <= (int)sti->sti_faddr_maxlen); 4864 sti->sti_faddr_len = (socklen_t)strbuf.len; 4865 bcopy(addr, sti->sti_faddr_sa, sti->sti_faddr_len); 4866 sti->sti_faddr_valid = 1; 4867 4868 bcopy(addr, name, MIN(*namelen, sti->sti_faddr_len)); 4869 *namelen = sti->sti_faddr_len; 4870 } 4871 kmem_free(addr, addrlen); 4872 #ifdef DEBUG 4873 dprintso(so, 1, ("sotpi_getpeername (tp): %s\n", 4874 pr_addr(so->so_family, sti->sti_faddr_sa, 4875 (t_uscalar_t)sti->sti_faddr_len))); 4876 #endif /* DEBUG */ 4877 done: 4878 so_unlock_single(so, SOLOCKED); 4879 mutex_exit(&so->so_lock); 4880 return (error); 4881 } 4882 4883 /* 4884 * Update sti_laddr by asking the transport (unless AF_UNIX). 4885 */ 4886 int 4887 sotpi_getsockname(struct sonode *so, struct sockaddr *name, socklen_t *namelen, 4888 struct cred *cr) 4889 { 4890 struct strbuf strbuf; 4891 int error = 0, res; 4892 void *addr; 4893 t_uscalar_t addrlen; 4894 k_sigset_t smask; 4895 sotpi_info_t *sti = SOTOTPI(so); 4896 4897 dprintso(so, 1, ("sotpi_getsockname(%p) %s\n", 4898 (void *)so, pr_state(so->so_state, so->so_mode))); 4899 4900 ASSERT(*namelen > 0); 4901 mutex_enter(&so->so_lock); 4902 so_lock_single(so); /* Set SOLOCKED */ 4903 4904 #ifdef DEBUG 4905 4906 dprintso(so, 1, ("sotpi_getsockname (local): %s\n", 4907 pr_addr(so->so_family, sti->sti_laddr_sa, 4908 (t_uscalar_t)sti->sti_laddr_len))); 4909 #endif /* DEBUG */ 4910 if (sti->sti_laddr_valid) { 4911 bcopy(sti->sti_laddr_sa, name, 4912 MIN(*namelen, sti->sti_laddr_len)); 4913 *namelen = sti->sti_laddr_len; 4914 goto done; 4915 } 4916 4917 if (so->so_family == AF_UNIX) { 4918 /* 4919 * Transport has different name space - return local info. If we 4920 * have enough space, let consumers know the family. 4921 */ 4922 if (*namelen >= sizeof (sa_family_t)) { 4923 name->sa_family = AF_UNIX; 4924 *namelen = sizeof (sa_family_t); 4925 } else { 4926 *namelen = 0; 4927 } 4928 error = 0; 4929 goto done; 4930 } 4931 if (!(so->so_state & SS_ISBOUND)) { 4932 /* If not bound, then nothing to return. */ 4933 error = 0; 4934 goto done; 4935 } 4936 4937 /* Allocate local buffer to use with ioctl */ 4938 addrlen = (t_uscalar_t)sti->sti_laddr_maxlen; 4939 mutex_exit(&so->so_lock); 4940 addr = kmem_alloc(addrlen, KM_SLEEP); 4941 4942 /* 4943 * Issue TI_GETMYNAME with signals masked. 4944 * Put the result in sti_laddr_sa so that getsockname works after 4945 * a shutdown(output). 4946 * If the ioctl fails (e.g. due to a ECONNRESET) the error is reposted 4947 * back to the socket. 4948 */ 4949 strbuf.buf = addr; 4950 strbuf.maxlen = addrlen; 4951 strbuf.len = 0; 4952 4953 sigintr(&smask, 0); 4954 res = 0; 4955 ASSERT(cr); 4956 error = strioctl(SOTOV(so), TI_GETMYNAME, (intptr_t)&strbuf, 4957 0, K_TO_K, cr, &res); 4958 sigunintr(&smask); 4959 4960 mutex_enter(&so->so_lock); 4961 /* 4962 * If there is an error record the error in so_error put don't fail 4963 * the getsockname. Instead fallback on the recorded 4964 * sti->sti_laddr_sa. 4965 */ 4966 if (error) { 4967 /* 4968 * Various stream head errors can be returned to the ioctl. 4969 * However, it is impossible to determine which ones of 4970 * these are really socket level errors that were incorrectly 4971 * consumed by the ioctl. Thus this code silently ignores the 4972 * error - to code explicitly does not reinstate the error 4973 * using soseterror(). 4974 * Experiments have shows that at least this set of 4975 * errors are reported and should not be reinstated on the 4976 * socket: 4977 * EINVAL E.g. if an I_LINK was in effect when 4978 * getsockname was called. 4979 * EPIPE The ioctl error semantics prefer the write 4980 * side error over the read side error. 4981 */ 4982 error = 0; 4983 } else if (res == 0 && strbuf.len > 0 && 4984 (so->so_state & SS_ISBOUND)) { 4985 ASSERT(strbuf.len <= (int)sti->sti_laddr_maxlen); 4986 sti->sti_laddr_len = (socklen_t)strbuf.len; 4987 bcopy(addr, sti->sti_laddr_sa, sti->sti_laddr_len); 4988 sti->sti_laddr_valid = 1; 4989 4990 bcopy(addr, name, MIN(sti->sti_laddr_len, *namelen)); 4991 *namelen = sti->sti_laddr_len; 4992 } 4993 kmem_free(addr, addrlen); 4994 #ifdef DEBUG 4995 dprintso(so, 1, ("sotpi_getsockname (tp): %s\n", 4996 pr_addr(so->so_family, sti->sti_laddr_sa, 4997 (t_uscalar_t)sti->sti_laddr_len))); 4998 #endif /* DEBUG */ 4999 done: 5000 so_unlock_single(so, SOLOCKED); 5001 mutex_exit(&so->so_lock); 5002 return (error); 5003 } 5004 5005 /* 5006 * Get socket options. For SOL_SOCKET options some options are handled 5007 * by the sockfs while others use the value recorded in the sonode as a 5008 * fallback should the T_SVR4_OPTMGMT_REQ fail. 5009 * 5010 * On the return most *optlenp bytes are copied to optval. 5011 */ 5012 /* ARGSUSED */ 5013 int 5014 sotpi_getsockopt(struct sonode *so, int level, int option_name, 5015 void *optval, socklen_t *optlenp, int flags, struct cred *cr) 5016 { 5017 struct T_optmgmt_req optmgmt_req; 5018 struct T_optmgmt_ack *optmgmt_ack; 5019 struct opthdr oh; 5020 struct opthdr *opt_res; 5021 mblk_t *mp = NULL; 5022 int error = 0; 5023 void *option = NULL; /* Set if fallback value */ 5024 t_uscalar_t maxlen = *optlenp; 5025 t_uscalar_t len; 5026 uint32_t value; 5027 struct timeval tmo_val; /* used for SO_RCVTIMEO, SO_SNDTIMEO */ 5028 struct timeval32 tmo_val32; 5029 struct so_snd_bufinfo snd_bufinfo; /* used for zero copy */ 5030 5031 dprintso(so, 1, ("sotpi_getsockopt(%p, 0x%x, 0x%x, %p, %p) %s\n", 5032 (void *)so, level, option_name, optval, (void *)optlenp, 5033 pr_state(so->so_state, so->so_mode))); 5034 5035 mutex_enter(&so->so_lock); 5036 so_lock_single(so); /* Set SOLOCKED */ 5037 5038 len = (t_uscalar_t)sizeof (uint32_t); /* Default */ 5039 5040 /* 5041 * Check for SOL_SOCKET options. 5042 * Certain SOL_SOCKET options are returned directly whereas 5043 * others only provide a default (fallback) value should 5044 * the T_SVR4_OPTMGMT_REQ fail. 5045 */ 5046 if (level == SOL_SOCKET) { 5047 /* Check parameters */ 5048 switch (option_name) { 5049 case SO_TYPE: 5050 case SO_ERROR: 5051 case SO_DEBUG: 5052 case SO_ACCEPTCONN: 5053 case SO_REUSEADDR: 5054 case SO_KEEPALIVE: 5055 case SO_DONTROUTE: 5056 case SO_BROADCAST: 5057 case SO_USELOOPBACK: 5058 case SO_OOBINLINE: 5059 case SO_SNDBUF: 5060 case SO_RCVBUF: 5061 #ifdef notyet 5062 case SO_SNDLOWAT: 5063 case SO_RCVLOWAT: 5064 #endif /* notyet */ 5065 case SO_DOMAIN: 5066 case SO_DGRAM_ERRIND: 5067 case SO_PROTOCOL: 5068 if (maxlen < (t_uscalar_t)sizeof (int32_t)) { 5069 error = EINVAL; 5070 eprintsoline(so, error); 5071 goto done2; 5072 } 5073 break; 5074 case SO_RCVTIMEO: 5075 case SO_SNDTIMEO: 5076 if (get_udatamodel() == DATAMODEL_NONE || 5077 get_udatamodel() == DATAMODEL_NATIVE) { 5078 if (maxlen < sizeof (struct timeval)) { 5079 error = EINVAL; 5080 eprintsoline(so, error); 5081 goto done2; 5082 } 5083 } else { 5084 if (maxlen < sizeof (struct timeval32)) { 5085 error = EINVAL; 5086 eprintsoline(so, error); 5087 goto done2; 5088 } 5089 5090 } 5091 break; 5092 case SO_LINGER: 5093 if (maxlen < (t_uscalar_t)sizeof (struct linger)) { 5094 error = EINVAL; 5095 eprintsoline(so, error); 5096 goto done2; 5097 } 5098 break; 5099 case SO_SND_BUFINFO: 5100 if (maxlen < (t_uscalar_t) 5101 sizeof (struct so_snd_bufinfo)) { 5102 error = EINVAL; 5103 eprintsoline(so, error); 5104 goto done2; 5105 } 5106 break; 5107 } 5108 5109 switch (option_name) { 5110 case SO_TYPE: 5111 value = so->so_type; 5112 option = &value; 5113 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ 5114 5115 case SO_ERROR: 5116 value = sogeterr(so, B_TRUE); 5117 option = &value; 5118 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ 5119 5120 case SO_ACCEPTCONN: 5121 if (so->so_state & SS_ACCEPTCONN) 5122 value = SO_ACCEPTCONN; 5123 else 5124 value = 0; 5125 #ifdef DEBUG 5126 if (value) { 5127 dprintso(so, 1, 5128 ("sotpi_getsockopt: 0x%x is set\n", 5129 option_name)); 5130 } else { 5131 dprintso(so, 1, 5132 ("sotpi_getsockopt: 0x%x not set\n", 5133 option_name)); 5134 } 5135 #endif /* DEBUG */ 5136 option = &value; 5137 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ 5138 5139 case SO_DEBUG: 5140 case SO_REUSEADDR: 5141 case SO_KEEPALIVE: 5142 case SO_DONTROUTE: 5143 case SO_BROADCAST: 5144 case SO_USELOOPBACK: 5145 case SO_OOBINLINE: 5146 case SO_DGRAM_ERRIND: 5147 value = (so->so_options & option_name); 5148 #ifdef DEBUG 5149 if (value) { 5150 dprintso(so, 1, 5151 ("sotpi_getsockopt: 0x%x is set\n", 5152 option_name)); 5153 } else { 5154 dprintso(so, 1, 5155 ("sotpi_getsockopt: 0x%x not set\n", 5156 option_name)); 5157 } 5158 #endif /* DEBUG */ 5159 option = &value; 5160 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ 5161 5162 /* 5163 * The following options are only returned by sockfs when the 5164 * T_SVR4_OPTMGMT_REQ fails. 5165 */ 5166 case SO_LINGER: 5167 option = &so->so_linger; 5168 len = (t_uscalar_t)sizeof (struct linger); 5169 break; 5170 case SO_SNDBUF: { 5171 ssize_t lvalue; 5172 5173 /* 5174 * If the option has not been set then get a default 5175 * value from the read queue. This value is 5176 * returned if the transport fails 5177 * the T_SVR4_OPTMGMT_REQ. 5178 */ 5179 lvalue = so->so_sndbuf; 5180 if (lvalue == 0) { 5181 mutex_exit(&so->so_lock); 5182 (void) strqget(strvp2wq(SOTOV(so))->q_next, 5183 QHIWAT, 0, &lvalue); 5184 mutex_enter(&so->so_lock); 5185 dprintso(so, 1, 5186 ("got SO_SNDBUF %ld from q\n", lvalue)); 5187 } 5188 value = (int)lvalue; 5189 option = &value; 5190 len = (t_uscalar_t)sizeof (so->so_sndbuf); 5191 break; 5192 } 5193 case SO_RCVBUF: { 5194 ssize_t lvalue; 5195 5196 /* 5197 * If the option has not been set then get a default 5198 * value from the read queue. This value is 5199 * returned if the transport fails 5200 * the T_SVR4_OPTMGMT_REQ. 5201 * 5202 * XXX If SO_RCVBUF has been set and this is an 5203 * XPG 4.2 application then do not ask the transport 5204 * since the transport might adjust the value and not 5205 * return exactly what was set by the application. 5206 * For non-XPG 4.2 application we return the value 5207 * that the transport is actually using. 5208 */ 5209 lvalue = so->so_rcvbuf; 5210 if (lvalue == 0) { 5211 mutex_exit(&so->so_lock); 5212 (void) strqget(RD(strvp2wq(SOTOV(so))), 5213 QHIWAT, 0, &lvalue); 5214 mutex_enter(&so->so_lock); 5215 dprintso(so, 1, 5216 ("got SO_RCVBUF %ld from q\n", lvalue)); 5217 } else if (flags & _SOGETSOCKOPT_XPG4_2) { 5218 value = (int)lvalue; 5219 option = &value; 5220 goto copyout; /* skip asking transport */ 5221 } 5222 value = (int)lvalue; 5223 option = &value; 5224 len = (t_uscalar_t)sizeof (so->so_rcvbuf); 5225 break; 5226 } 5227 case SO_DOMAIN: 5228 value = so->so_family; 5229 option = &value; 5230 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ 5231 5232 case SO_PROTOCOL: 5233 value = so->so_protocol; 5234 option = &value; 5235 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ 5236 5237 #ifdef notyet 5238 /* 5239 * We do not implement the semantics of these options 5240 * thus we shouldn't implement the options either. 5241 */ 5242 case SO_SNDLOWAT: 5243 value = so->so_sndlowat; 5244 option = &value; 5245 break; 5246 case SO_RCVLOWAT: 5247 value = so->so_rcvlowat; 5248 option = &value; 5249 break; 5250 #endif /* notyet */ 5251 case SO_SNDTIMEO: 5252 case SO_RCVTIMEO: { 5253 clock_t val; 5254 5255 if (option_name == SO_RCVTIMEO) 5256 val = drv_hztousec(so->so_rcvtimeo); 5257 else 5258 val = drv_hztousec(so->so_sndtimeo); 5259 tmo_val.tv_sec = val / (1000 * 1000); 5260 tmo_val.tv_usec = val % (1000 * 1000); 5261 if (get_udatamodel() == DATAMODEL_NONE || 5262 get_udatamodel() == DATAMODEL_NATIVE) { 5263 option = &tmo_val; 5264 len = sizeof (struct timeval); 5265 } else { 5266 TIMEVAL_TO_TIMEVAL32(&tmo_val32, &tmo_val); 5267 option = &tmo_val32; 5268 len = sizeof (struct timeval32); 5269 } 5270 break; 5271 } 5272 case SO_SND_BUFINFO: { 5273 snd_bufinfo.sbi_wroff = 5274 (so->so_proto_props).sopp_wroff; 5275 snd_bufinfo.sbi_maxblk = 5276 (so->so_proto_props).sopp_maxblk; 5277 snd_bufinfo.sbi_maxpsz = 5278 (so->so_proto_props).sopp_maxpsz; 5279 snd_bufinfo.sbi_tail = 5280 (so->so_proto_props).sopp_tail; 5281 option = &snd_bufinfo; 5282 len = (t_uscalar_t)sizeof (struct so_snd_bufinfo); 5283 break; 5284 } 5285 } 5286 } 5287 5288 mutex_exit(&so->so_lock); 5289 5290 /* Send request */ 5291 optmgmt_req.PRIM_type = T_SVR4_OPTMGMT_REQ; 5292 optmgmt_req.MGMT_flags = T_CHECK; 5293 optmgmt_req.OPT_length = (t_scalar_t)(sizeof (oh) + maxlen); 5294 optmgmt_req.OPT_offset = (t_scalar_t)sizeof (optmgmt_req); 5295 5296 oh.level = level; 5297 oh.name = option_name; 5298 oh.len = maxlen; 5299 5300 mp = soallocproto3(&optmgmt_req, sizeof (optmgmt_req), 5301 &oh, sizeof (oh), NULL, maxlen, 0, _ALLOC_SLEEP, cr); 5302 /* Let option management work in the presence of data flow control */ 5303 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 5304 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0); 5305 mp = NULL; 5306 mutex_enter(&so->so_lock); 5307 if (error) { 5308 eprintsoline(so, error); 5309 goto done2; 5310 } 5311 error = sowaitprim(so, T_SVR4_OPTMGMT_REQ, T_OPTMGMT_ACK, 5312 (t_uscalar_t)(sizeof (*optmgmt_ack) + sizeof (*opt_res)), &mp, 0); 5313 if (error) { 5314 if (option != NULL) { 5315 /* We have a fallback value */ 5316 error = 0; 5317 goto copyout; 5318 } 5319 eprintsoline(so, error); 5320 goto done2; 5321 } 5322 ASSERT(mp); 5323 optmgmt_ack = (struct T_optmgmt_ack *)mp->b_rptr; 5324 opt_res = (struct opthdr *)sogetoff(mp, optmgmt_ack->OPT_offset, 5325 optmgmt_ack->OPT_length, __TPI_ALIGN_SIZE); 5326 if (opt_res == NULL) { 5327 if (option != NULL) { 5328 /* We have a fallback value */ 5329 error = 0; 5330 goto copyout; 5331 } 5332 error = EPROTO; 5333 eprintsoline(so, error); 5334 goto done; 5335 } 5336 option = &opt_res[1]; 5337 5338 /* check to ensure that the option is within bounds */ 5339 if (((uintptr_t)option + opt_res->len < (uintptr_t)option) || 5340 (uintptr_t)option + opt_res->len > (uintptr_t)mp->b_wptr) { 5341 if (option != NULL) { 5342 /* We have a fallback value */ 5343 error = 0; 5344 goto copyout; 5345 } 5346 error = EPROTO; 5347 eprintsoline(so, error); 5348 goto done; 5349 } 5350 5351 len = opt_res->len; 5352 5353 copyout: { 5354 t_uscalar_t size = MIN(len, maxlen); 5355 bcopy(option, optval, size); 5356 bcopy(&size, optlenp, sizeof (size)); 5357 } 5358 done: 5359 freemsg(mp); 5360 done2: 5361 so_unlock_single(so, SOLOCKED); 5362 mutex_exit(&so->so_lock); 5363 5364 return (error); 5365 } 5366 5367 /* 5368 * Set socket options. All options are passed down in a T_SVR4_OPTMGMT_REQ. 5369 * SOL_SOCKET options are also recorded in the sonode. A setsockopt for 5370 * SOL_SOCKET options will not fail just because the T_SVR4_OPTMGMT_REQ fails - 5371 * setsockopt has to work even if the transport does not support the option. 5372 */ 5373 /* ARGSUSED */ 5374 int 5375 sotpi_setsockopt(struct sonode *so, int level, int option_name, 5376 const void *optval, t_uscalar_t optlen, struct cred *cr) 5377 { 5378 struct T_optmgmt_req optmgmt_req; 5379 struct opthdr oh; 5380 mblk_t *mp; 5381 int error = 0; 5382 boolean_t handled = B_FALSE; 5383 5384 dprintso(so, 1, ("sotpi_setsockopt(%p, 0x%x, 0x%x, %p, %d) %s\n", 5385 (void *)so, level, option_name, optval, optlen, 5386 pr_state(so->so_state, so->so_mode))); 5387 5388 /* X/Open requires this check */ 5389 if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) { 5390 if (xnet_check_print) 5391 printf("sockfs: X/Open setsockopt check => EINVAL\n"); 5392 return (EINVAL); 5393 } 5394 5395 mutex_enter(&so->so_lock); 5396 so_lock_single(so); /* Set SOLOCKED */ 5397 mutex_exit(&so->so_lock); 5398 5399 optmgmt_req.PRIM_type = T_SVR4_OPTMGMT_REQ; 5400 optmgmt_req.MGMT_flags = T_NEGOTIATE; 5401 optmgmt_req.OPT_length = (t_scalar_t)sizeof (oh) + optlen; 5402 optmgmt_req.OPT_offset = (t_scalar_t)sizeof (optmgmt_req); 5403 5404 oh.level = level; 5405 oh.name = option_name; 5406 oh.len = optlen; 5407 5408 mp = soallocproto3(&optmgmt_req, sizeof (optmgmt_req), 5409 &oh, sizeof (oh), optval, optlen, 0, _ALLOC_SLEEP, cr); 5410 /* Let option management work in the presence of data flow control */ 5411 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 5412 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0); 5413 mp = NULL; 5414 mutex_enter(&so->so_lock); 5415 if (error) { 5416 eprintsoline(so, error); 5417 goto done2; 5418 } 5419 error = sowaitprim(so, T_SVR4_OPTMGMT_REQ, T_OPTMGMT_ACK, 5420 (t_uscalar_t)sizeof (struct T_optmgmt_ack), &mp, 0); 5421 if (error) { 5422 eprintsoline(so, error); 5423 goto done; 5424 } 5425 ASSERT(mp); 5426 /* No need to verify T_optmgmt_ack */ 5427 freemsg(mp); 5428 done: 5429 /* 5430 * Check for SOL_SOCKET options and record their values. 5431 * If we know about a SOL_SOCKET parameter and the transport 5432 * failed it with TBADOPT or TOUTSTATE (i.e. ENOPROTOOPT or 5433 * EPROTO) we let the setsockopt succeed. 5434 */ 5435 if (level == SOL_SOCKET) { 5436 /* Check parameters */ 5437 switch (option_name) { 5438 case SO_DEBUG: 5439 case SO_REUSEADDR: 5440 case SO_KEEPALIVE: 5441 case SO_DONTROUTE: 5442 case SO_BROADCAST: 5443 case SO_USELOOPBACK: 5444 case SO_OOBINLINE: 5445 case SO_SNDBUF: 5446 case SO_RCVBUF: 5447 #ifdef notyet 5448 case SO_SNDLOWAT: 5449 case SO_RCVLOWAT: 5450 #endif /* notyet */ 5451 case SO_DGRAM_ERRIND: 5452 if (optlen != (t_uscalar_t)sizeof (int32_t)) { 5453 error = EINVAL; 5454 eprintsoline(so, error); 5455 goto done2; 5456 } 5457 ASSERT(optval); 5458 handled = B_TRUE; 5459 break; 5460 case SO_SNDTIMEO: 5461 case SO_RCVTIMEO: 5462 if (get_udatamodel() == DATAMODEL_NONE || 5463 get_udatamodel() == DATAMODEL_NATIVE) { 5464 if (optlen != sizeof (struct timeval)) { 5465 error = EINVAL; 5466 eprintsoline(so, error); 5467 goto done2; 5468 } 5469 } else { 5470 if (optlen != sizeof (struct timeval32)) { 5471 error = EINVAL; 5472 eprintsoline(so, error); 5473 goto done2; 5474 } 5475 } 5476 ASSERT(optval); 5477 handled = B_TRUE; 5478 break; 5479 case SO_LINGER: 5480 if (optlen != (t_uscalar_t)sizeof (struct linger)) { 5481 error = EINVAL; 5482 eprintsoline(so, error); 5483 goto done2; 5484 } 5485 ASSERT(optval); 5486 handled = B_TRUE; 5487 break; 5488 } 5489 5490 #define intvalue (*(int32_t *)optval) 5491 5492 switch (option_name) { 5493 case SO_TYPE: 5494 case SO_ERROR: 5495 case SO_ACCEPTCONN: 5496 /* Can't be set */ 5497 error = ENOPROTOOPT; 5498 goto done2; 5499 case SO_LINGER: { 5500 struct linger *l = (struct linger *)optval; 5501 5502 so->so_linger.l_linger = l->l_linger; 5503 if (l->l_onoff) { 5504 so->so_linger.l_onoff = SO_LINGER; 5505 so->so_options |= SO_LINGER; 5506 } else { 5507 so->so_linger.l_onoff = 0; 5508 so->so_options &= ~SO_LINGER; 5509 } 5510 break; 5511 } 5512 5513 case SO_DEBUG: 5514 #ifdef SOCK_TEST 5515 if (intvalue & 2) 5516 sock_test_timelimit = 10 * hz; 5517 else 5518 sock_test_timelimit = 0; 5519 5520 if (intvalue & 4) 5521 do_useracc = 0; 5522 else 5523 do_useracc = 1; 5524 #endif /* SOCK_TEST */ 5525 /* FALLTHRU */ 5526 case SO_REUSEADDR: 5527 case SO_KEEPALIVE: 5528 case SO_DONTROUTE: 5529 case SO_BROADCAST: 5530 case SO_USELOOPBACK: 5531 case SO_OOBINLINE: 5532 case SO_DGRAM_ERRIND: 5533 if (intvalue != 0) { 5534 dprintso(so, 1, 5535 ("socket_setsockopt: setting 0x%x\n", 5536 option_name)); 5537 so->so_options |= option_name; 5538 } else { 5539 dprintso(so, 1, 5540 ("socket_setsockopt: clearing 0x%x\n", 5541 option_name)); 5542 so->so_options &= ~option_name; 5543 } 5544 break; 5545 /* 5546 * The following options are only returned by us when the 5547 * transport layer fails. 5548 * XXX XPG 4.2 applications retrieve SO_RCVBUF from sockfs 5549 * since the transport might adjust the value and not 5550 * return exactly what was set by the application. 5551 */ 5552 case SO_SNDBUF: 5553 so->so_sndbuf = intvalue; 5554 break; 5555 case SO_RCVBUF: 5556 so->so_rcvbuf = intvalue; 5557 break; 5558 case SO_RCVPSH: 5559 so->so_rcv_timer_interval = intvalue; 5560 break; 5561 #ifdef notyet 5562 /* 5563 * We do not implement the semantics of these options 5564 * thus we shouldn't implement the options either. 5565 */ 5566 case SO_SNDLOWAT: 5567 so->so_sndlowat = intvalue; 5568 break; 5569 case SO_RCVLOWAT: 5570 so->so_rcvlowat = intvalue; 5571 break; 5572 #endif /* notyet */ 5573 case SO_SNDTIMEO: 5574 case SO_RCVTIMEO: { 5575 struct timeval tl; 5576 clock_t val; 5577 5578 if (get_udatamodel() == DATAMODEL_NONE || 5579 get_udatamodel() == DATAMODEL_NATIVE) 5580 bcopy(&tl, (struct timeval *)optval, 5581 sizeof (struct timeval)); 5582 else 5583 TIMEVAL32_TO_TIMEVAL(&tl, 5584 (struct timeval32 *)optval); 5585 val = tl.tv_sec * 1000 * 1000 + tl.tv_usec; 5586 if (option_name == SO_RCVTIMEO) 5587 so->so_rcvtimeo = drv_usectohz(val); 5588 else 5589 so->so_sndtimeo = drv_usectohz(val); 5590 break; 5591 } 5592 } 5593 #undef intvalue 5594 5595 if (error) { 5596 if ((error == ENOPROTOOPT || error == EPROTO || 5597 error == EINVAL) && handled) { 5598 dprintso(so, 1, 5599 ("setsockopt: ignoring error %d for 0x%x\n", 5600 error, option_name)); 5601 error = 0; 5602 } 5603 } 5604 } 5605 done2: 5606 so_unlock_single(so, SOLOCKED); 5607 mutex_exit(&so->so_lock); 5608 return (error); 5609 } 5610 5611 /* 5612 * sotpi_close() is called when the last open reference goes away. 5613 */ 5614 /* ARGSUSED */ 5615 int 5616 sotpi_close(struct sonode *so, int flag, struct cred *cr) 5617 { 5618 struct vnode *vp = SOTOV(so); 5619 dev_t dev; 5620 int error = 0; 5621 sotpi_info_t *sti = SOTOTPI(so); 5622 5623 dprintso(so, 1, ("sotpi_close(%p, %x) %s\n", 5624 (void *)vp, flag, pr_state(so->so_state, so->so_mode))); 5625 5626 dev = sti->sti_dev; 5627 5628 ASSERT(STREAMSTAB(getmajor(dev))); 5629 5630 mutex_enter(&so->so_lock); 5631 so_lock_single(so); /* Set SOLOCKED */ 5632 5633 ASSERT(so_verify_oobstate(so)); 5634 5635 if (vp->v_stream != NULL) { 5636 vnode_t *ux_vp; 5637 5638 if (so->so_family == AF_UNIX) { 5639 /* Could avoid this when CANTSENDMORE for !dgram */ 5640 so_unix_close(so); 5641 } 5642 5643 mutex_exit(&so->so_lock); 5644 /* 5645 * Disassemble the linkage from the AF_UNIX underlying file 5646 * system vnode to this socket (by atomically clearing 5647 * v_stream in vn_rele_stream) before strclose clears sd_vnode 5648 * and frees the stream head. 5649 */ 5650 if ((ux_vp = sti->sti_ux_bound_vp) != NULL) { 5651 ASSERT(ux_vp->v_stream); 5652 sti->sti_ux_bound_vp = NULL; 5653 vn_rele_stream(ux_vp); 5654 } 5655 error = strclose(vp, flag, cr); 5656 vp->v_stream = NULL; 5657 mutex_enter(&so->so_lock); 5658 } 5659 5660 /* 5661 * Flush the T_DISCON_IND on sti_discon_ind_mp. 5662 */ 5663 so_flush_discon_ind(so); 5664 5665 so_unlock_single(so, SOLOCKED); 5666 mutex_exit(&so->so_lock); 5667 5668 /* 5669 * Needed for STREAMs. 5670 * Decrement the device driver's reference count for streams 5671 * opened via the clone dip. The driver was held in clone_open(). 5672 * The absence of clone_close() forces this asymmetry. 5673 */ 5674 if (so->so_flag & SOCLONE) 5675 ddi_rele_driver(getmajor(dev)); 5676 5677 return (error); 5678 } 5679 5680 static int 5681 sotpi_ioctl(struct sonode *so, int cmd, intptr_t arg, int mode, 5682 struct cred *cr, int32_t *rvalp) 5683 { 5684 struct vnode *vp = SOTOV(so); 5685 sotpi_info_t *sti = SOTOTPI(so); 5686 int error = 0; 5687 5688 dprintso(so, 0, ("sotpi_ioctl: cmd 0x%x, arg 0x%lx, state %s\n", 5689 cmd, arg, pr_state(so->so_state, so->so_mode))); 5690 5691 switch (cmd) { 5692 case SIOCSQPTR: 5693 /* 5694 * SIOCSQPTR is valid only when helper stream is created 5695 * by the protocol. 5696 */ 5697 case _I_INSERT: 5698 case _I_REMOVE: 5699 /* 5700 * Since there's no compelling reason to support these ioctls 5701 * on sockets, and doing so would increase the complexity 5702 * markedly, prevent it. 5703 */ 5704 return (EOPNOTSUPP); 5705 5706 case I_FIND: 5707 case I_LIST: 5708 case I_LOOK: 5709 case I_POP: 5710 case I_PUSH: 5711 /* 5712 * To prevent races and inconsistencies between the actual 5713 * state of the stream and the state according to the sonode, 5714 * we serialize all operations which modify or operate on the 5715 * list of modules on the socket's stream. 5716 */ 5717 mutex_enter(&sti->sti_plumb_lock); 5718 error = socktpi_plumbioctl(vp, cmd, arg, mode, cr, rvalp); 5719 mutex_exit(&sti->sti_plumb_lock); 5720 return (error); 5721 5722 default: 5723 if (so->so_version != SOV_STREAM) 5724 break; 5725 5726 /* 5727 * The imaginary "sockmod" has been popped; act as a stream. 5728 */ 5729 return (strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp)); 5730 } 5731 5732 ASSERT(so->so_version != SOV_STREAM); 5733 5734 /* 5735 * Process socket-specific ioctls. 5736 */ 5737 switch (cmd) { 5738 case FIONBIO: { 5739 int32_t value; 5740 5741 if (so_copyin((void *)arg, &value, sizeof (int32_t), 5742 (mode & (int)FKIOCTL))) 5743 return (EFAULT); 5744 5745 mutex_enter(&so->so_lock); 5746 if (value) { 5747 so->so_state |= SS_NDELAY; 5748 } else { 5749 so->so_state &= ~SS_NDELAY; 5750 } 5751 mutex_exit(&so->so_lock); 5752 return (0); 5753 } 5754 5755 case FIOASYNC: { 5756 int32_t value; 5757 5758 if (so_copyin((void *)arg, &value, sizeof (int32_t), 5759 (mode & (int)FKIOCTL))) 5760 return (EFAULT); 5761 5762 mutex_enter(&so->so_lock); 5763 /* 5764 * SS_ASYNC flag not already set correctly? 5765 * (!value != !(so->so_state & SS_ASYNC)) 5766 * but some engineers find that too hard to read. 5767 */ 5768 if ((value == 0 && (so->so_state & SS_ASYNC) != 0) || 5769 (value != 0 && (so->so_state & SS_ASYNC) == 0)) 5770 error = so_flip_async(so, vp, mode, cr); 5771 mutex_exit(&so->so_lock); 5772 return (error); 5773 } 5774 5775 case SIOCSPGRP: 5776 case FIOSETOWN: { 5777 pid_t pgrp; 5778 5779 if (so_copyin((void *)arg, &pgrp, sizeof (pid_t), 5780 (mode & (int)FKIOCTL))) 5781 return (EFAULT); 5782 5783 mutex_enter(&so->so_lock); 5784 dprintso(so, 1, ("setown: new %d old %d\n", pgrp, so->so_pgrp)); 5785 /* Any change? */ 5786 if (pgrp != so->so_pgrp) 5787 error = so_set_siggrp(so, vp, pgrp, mode, cr); 5788 mutex_exit(&so->so_lock); 5789 return (error); 5790 } 5791 case SIOCGPGRP: 5792 case FIOGETOWN: 5793 if (so_copyout(&so->so_pgrp, (void *)arg, 5794 sizeof (pid_t), (mode & (int)FKIOCTL))) 5795 return (EFAULT); 5796 return (0); 5797 5798 case SIOCATMARK: { 5799 int retval; 5800 uint_t so_state; 5801 5802 /* 5803 * strwaitmark has a finite timeout after which it 5804 * returns -1 if the mark state is undetermined. 5805 * In order to avoid any race between the mark state 5806 * in sockfs and the mark state in the stream head this 5807 * routine loops until the mark state can be determined 5808 * (or the urgent data indication has been removed by some 5809 * other thread). 5810 */ 5811 do { 5812 mutex_enter(&so->so_lock); 5813 so_state = so->so_state; 5814 mutex_exit(&so->so_lock); 5815 if (so_state & SS_RCVATMARK) { 5816 retval = 1; 5817 } else if (!(so_state & SS_OOBPEND)) { 5818 /* 5819 * No SIGURG has been generated -- there is no 5820 * pending or present urgent data. Thus can't 5821 * possibly be at the mark. 5822 */ 5823 retval = 0; 5824 } else { 5825 /* 5826 * Have the stream head wait until there is 5827 * either some messages on the read queue, or 5828 * STRATMARK or STRNOTATMARK gets set. The 5829 * STRNOTATMARK flag is used so that the 5830 * transport can send up a MSGNOTMARKNEXT 5831 * M_DATA to indicate that it is not 5832 * at the mark and additional data is not about 5833 * to be send upstream. 5834 * 5835 * If the mark state is undetermined this will 5836 * return -1 and we will loop rechecking the 5837 * socket state. 5838 */ 5839 retval = strwaitmark(vp); 5840 } 5841 } while (retval == -1); 5842 5843 if (so_copyout(&retval, (void *)arg, sizeof (int), 5844 (mode & (int)FKIOCTL))) 5845 return (EFAULT); 5846 return (0); 5847 } 5848 5849 case I_FDINSERT: 5850 case I_SENDFD: 5851 case I_RECVFD: 5852 case I_ATMARK: 5853 case _SIOCSOCKFALLBACK: 5854 /* 5855 * These ioctls do not apply to sockets. I_FDINSERT can be 5856 * used to send M_PROTO messages without modifying the socket 5857 * state. I_SENDFD/RECVFD should not be used for socket file 5858 * descriptor passing since they assume a twisted stream. 5859 * SIOCATMARK must be used instead of I_ATMARK. 5860 * 5861 * _SIOCSOCKFALLBACK from an application should never be 5862 * processed. It is only generated by socktpi_open() or 5863 * in response to I_POP or I_PUSH. 5864 */ 5865 #ifdef DEBUG 5866 zcmn_err(getzoneid(), CE_WARN, 5867 "Unsupported STREAMS ioctl 0x%x on socket. " 5868 "Pid = %d\n", cmd, curproc->p_pid); 5869 #endif /* DEBUG */ 5870 return (EOPNOTSUPP); 5871 5872 case _I_GETPEERCRED: 5873 if ((mode & FKIOCTL) == 0) 5874 return (EINVAL); 5875 5876 mutex_enter(&so->so_lock); 5877 if ((so->so_mode & SM_CONNREQUIRED) == 0) { 5878 error = ENOTSUP; 5879 } else if ((so->so_state & SS_ISCONNECTED) == 0) { 5880 error = ENOTCONN; 5881 } else if (so->so_peercred != NULL) { 5882 k_peercred_t *kp = (k_peercred_t *)arg; 5883 kp->pc_cr = so->so_peercred; 5884 kp->pc_cpid = so->so_cpid; 5885 crhold(so->so_peercred); 5886 } else { 5887 error = EINVAL; 5888 } 5889 mutex_exit(&so->so_lock); 5890 return (error); 5891 5892 default: 5893 /* 5894 * Do the higher-order bits of the ioctl cmd indicate 5895 * that it is an I_* streams ioctl? 5896 */ 5897 if ((cmd & 0xffffff00U) == STR && 5898 so->so_version == SOV_SOCKBSD) { 5899 #ifdef DEBUG 5900 zcmn_err(getzoneid(), CE_WARN, 5901 "Unsupported STREAMS ioctl 0x%x on socket. " 5902 "Pid = %d\n", cmd, curproc->p_pid); 5903 #endif /* DEBUG */ 5904 return (EOPNOTSUPP); 5905 } 5906 return (strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp)); 5907 } 5908 } 5909 5910 /* 5911 * Handle plumbing-related ioctls. 5912 */ 5913 static int 5914 socktpi_plumbioctl(struct vnode *vp, int cmd, intptr_t arg, int mode, 5915 struct cred *cr, int32_t *rvalp) 5916 { 5917 static const char sockmod_name[] = "sockmod"; 5918 struct sonode *so = VTOSO(vp); 5919 char mname[FMNAMESZ + 1]; 5920 int error; 5921 sotpi_info_t *sti = SOTOTPI(so); 5922 5923 ASSERT(MUTEX_HELD(&sti->sti_plumb_lock)); 5924 5925 if (so->so_version == SOV_SOCKBSD) 5926 return (EOPNOTSUPP); 5927 5928 if (so->so_version == SOV_STREAM) { 5929 /* 5930 * The imaginary "sockmod" has been popped - act as a stream. 5931 * If this is a push of sockmod then change back to a socket. 5932 */ 5933 if (cmd == I_PUSH) { 5934 error = ((mode & FKIOCTL) ? copystr : copyinstr)( 5935 (void *)arg, mname, sizeof (mname), NULL); 5936 5937 if (error == 0 && strcmp(mname, sockmod_name) == 0) { 5938 dprintso(so, 0, ("socktpi_ioctl: going to " 5939 "socket version\n")); 5940 so_stream2sock(so); 5941 return (0); 5942 } 5943 } 5944 return (strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp)); 5945 } 5946 5947 switch (cmd) { 5948 case I_PUSH: 5949 if (sti->sti_direct) { 5950 mutex_enter(&so->so_lock); 5951 so_lock_single(so); 5952 mutex_exit(&so->so_lock); 5953 5954 error = strioctl(vp, _SIOCSOCKFALLBACK, 0, 0, K_TO_K, 5955 cr, rvalp); 5956 5957 mutex_enter(&so->so_lock); 5958 if (error == 0) 5959 sti->sti_direct = 0; 5960 so_unlock_single(so, SOLOCKED); 5961 mutex_exit(&so->so_lock); 5962 5963 if (error != 0) 5964 return (error); 5965 } 5966 5967 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); 5968 if (error == 0) 5969 sti->sti_pushcnt++; 5970 return (error); 5971 5972 case I_POP: 5973 if (sti->sti_pushcnt == 0) { 5974 /* Emulate sockmod being popped */ 5975 dprintso(so, 0, 5976 ("socktpi_ioctl: going to STREAMS version\n")); 5977 return (so_sock2stream(so)); 5978 } 5979 5980 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); 5981 if (error == 0) 5982 sti->sti_pushcnt--; 5983 return (error); 5984 5985 case I_LIST: { 5986 struct str_mlist *kmlistp, *umlistp; 5987 struct str_list kstrlist; 5988 ssize_t kstrlistsize; 5989 int i, nmods; 5990 5991 STRUCT_DECL(str_list, ustrlist); 5992 STRUCT_INIT(ustrlist, mode); 5993 5994 if (arg == 0) { 5995 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); 5996 if (error == 0) 5997 (*rvalp)++; /* Add one for sockmod */ 5998 return (error); 5999 } 6000 6001 error = so_copyin((void *)arg, STRUCT_BUF(ustrlist), 6002 STRUCT_SIZE(ustrlist), mode & FKIOCTL); 6003 if (error != 0) 6004 return (error); 6005 6006 nmods = STRUCT_FGET(ustrlist, sl_nmods); 6007 if (nmods <= 0) 6008 return (EINVAL); 6009 /* 6010 * Ceiling nmods at nstrpush to prevent someone from 6011 * maliciously consuming lots of kernel memory. 6012 */ 6013 nmods = MIN(nmods, nstrpush); 6014 6015 kstrlistsize = (nmods + 1) * sizeof (struct str_mlist); 6016 kstrlist.sl_nmods = nmods; 6017 kstrlist.sl_modlist = kmem_zalloc(kstrlistsize, KM_SLEEP); 6018 6019 error = strioctl(vp, cmd, (intptr_t)&kstrlist, mode, K_TO_K, 6020 cr, rvalp); 6021 if (error != 0) 6022 goto done; 6023 6024 /* 6025 * Considering the module list as a 0-based array of sl_nmods 6026 * modules, sockmod should conceptually exist at slot 6027 * sti_pushcnt. Insert sockmod at this location by sliding all 6028 * of the module names after so_pushcnt over by one. We know 6029 * that there will be room to do this since we allocated 6030 * sl_modlist with an additional slot. 6031 */ 6032 for (i = kstrlist.sl_nmods; i > sti->sti_pushcnt; i--) 6033 kstrlist.sl_modlist[i] = kstrlist.sl_modlist[i - 1]; 6034 6035 (void) strcpy(kstrlist.sl_modlist[i].l_name, sockmod_name); 6036 kstrlist.sl_nmods++; 6037 6038 /* 6039 * Copy all of the entries out to ustrlist. 6040 */ 6041 kmlistp = kstrlist.sl_modlist; 6042 umlistp = STRUCT_FGETP(ustrlist, sl_modlist); 6043 for (i = 0; i < nmods && i < kstrlist.sl_nmods; i++) { 6044 error = so_copyout(kmlistp++, umlistp++, 6045 sizeof (struct str_mlist), mode & FKIOCTL); 6046 if (error != 0) 6047 goto done; 6048 } 6049 6050 error = so_copyout(&i, (void *)arg, sizeof (int32_t), 6051 mode & FKIOCTL); 6052 if (error == 0) 6053 *rvalp = 0; 6054 done: 6055 kmem_free(kstrlist.sl_modlist, kstrlistsize); 6056 return (error); 6057 } 6058 case I_LOOK: 6059 if (sti->sti_pushcnt == 0) { 6060 return (so_copyout(sockmod_name, (void *)arg, 6061 sizeof (sockmod_name), mode & FKIOCTL)); 6062 } 6063 return (strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp)); 6064 6065 case I_FIND: 6066 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); 6067 if (error && error != EINVAL) 6068 return (error); 6069 6070 /* if not found and string was sockmod return 1 */ 6071 if (*rvalp == 0 || error == EINVAL) { 6072 error = ((mode & FKIOCTL) ? copystr : copyinstr)( 6073 (void *)arg, mname, sizeof (mname), NULL); 6074 if (error == ENAMETOOLONG) 6075 error = EINVAL; 6076 6077 if (error == 0 && strcmp(mname, sockmod_name) == 0) 6078 *rvalp = 1; 6079 } 6080 return (error); 6081 6082 default: 6083 panic("socktpi_plumbioctl: unknown ioctl %d", cmd); 6084 break; 6085 } 6086 6087 return (0); 6088 } 6089 6090 /* 6091 * Wrapper around the streams poll routine that implements socket poll 6092 * semantics. 6093 * The sockfs never calls pollwakeup itself - the stream head take care 6094 * of all pollwakeups. Since sockfs never holds so_lock when calling the 6095 * stream head there can never be a deadlock due to holding so_lock across 6096 * pollwakeup and acquiring so_lock in this routine. 6097 * 6098 * However, since the performance of VOP_POLL is critical we avoid 6099 * acquiring so_lock here. This is based on two assumptions: 6100 * - The poll implementation holds locks to serialize the VOP_POLL call 6101 * and a pollwakeup for the same pollhead. This ensures that should 6102 * e.g. so_state change during a socktpi_poll call the pollwakeup 6103 * (which strsock_* and strrput conspire to issue) is issued after 6104 * the state change. Thus the pollwakeup will block until VOP_POLL has 6105 * returned and then wake up poll and have it call VOP_POLL again. 6106 * - The reading of so_state without holding so_lock does not result in 6107 * stale data that is older than the latest state change that has dropped 6108 * so_lock. This is ensured by the mutex_exit issuing the appropriate 6109 * memory barrier to force the data into the coherency domain. 6110 */ 6111 static int 6112 sotpi_poll( 6113 struct sonode *so, 6114 short events, 6115 int anyyet, 6116 short *reventsp, 6117 struct pollhead **phpp) 6118 { 6119 short origevents = events; 6120 struct vnode *vp = SOTOV(so); 6121 int error; 6122 int so_state = so->so_state; /* snapshot */ 6123 sotpi_info_t *sti = SOTOTPI(so); 6124 6125 dprintso(so, 0, ("socktpi_poll(%p): state %s err %d\n", 6126 (void *)vp, pr_state(so_state, so->so_mode), so->so_error)); 6127 6128 ASSERT(vp->v_type == VSOCK); 6129 ASSERT(vp->v_stream != NULL); 6130 6131 if (so->so_version == SOV_STREAM) { 6132 /* The imaginary "sockmod" has been popped - act as a stream */ 6133 return (strpoll(vp->v_stream, events, anyyet, 6134 reventsp, phpp)); 6135 } 6136 6137 if (!(so_state & SS_ISCONNECTED) && 6138 (so->so_mode & SM_CONNREQUIRED)) { 6139 /* Not connected yet - turn off write side events */ 6140 events &= ~(POLLOUT|POLLWRBAND); 6141 } 6142 /* 6143 * Check for errors without calling strpoll if the caller wants them. 6144 * In sockets the errors are represented as input/output events 6145 * and there is no need to ask the stream head for this information. 6146 */ 6147 if (so->so_error != 0 && 6148 ((POLLIN|POLLRDNORM|POLLOUT) & origevents) != 0) { 6149 *reventsp = (POLLIN|POLLRDNORM|POLLOUT) & origevents; 6150 return (0); 6151 } 6152 /* 6153 * Ignore M_PROTO only messages such as the T_EXDATA_IND messages. 6154 * These message with only an M_PROTO/M_PCPROTO part and no M_DATA 6155 * will not trigger a POLLIN event with POLLRDDATA set. 6156 * The handling of urgent data (causing POLLRDBAND) is done by 6157 * inspecting SS_OOBPEND below. 6158 */ 6159 events |= POLLRDDATA; 6160 6161 /* 6162 * After shutdown(output) a stream head write error is set. 6163 * However, we should not return output events. 6164 */ 6165 events |= POLLNOERR; 6166 error = strpoll(vp->v_stream, events, anyyet, 6167 reventsp, phpp); 6168 if (error) 6169 return (error); 6170 6171 ASSERT(!(*reventsp & POLLERR)); 6172 6173 /* 6174 * Notes on T_CONN_IND handling for sockets. 6175 * 6176 * If strpoll() returned without events, SR_POLLIN is guaranteed 6177 * to be set, ensuring any subsequent strrput() runs pollwakeup(). 6178 * 6179 * Since the so_lock is not held, soqueueconnind() may have run 6180 * and a T_CONN_IND may be waiting. We now check for any queued 6181 * T_CONN_IND msgs on sti_conn_ind_head and set appropriate events 6182 * to ensure poll returns. 6183 * 6184 * However: 6185 * If the T_CONN_IND hasn't arrived by the time strpoll() returns, 6186 * when strrput() does run for an arriving M_PROTO with T_CONN_IND 6187 * the following actions will occur; taken together they ensure the 6188 * syscall will return. 6189 * 6190 * 1. If a socket, soqueueconnind() will queue the T_CONN_IND but if 6191 * the accept() was run on a non-blocking socket sowaitconnind() 6192 * may have already returned EWOULDBLOCK, so not be waiting to 6193 * process the message. Additionally socktpi_poll() has probably 6194 * proceeded past the sti_conn_ind_head check below. 6195 * 2. strrput() runs pollwakeup()->pollnotify()->cv_signal() to wake 6196 * this thread, however that could occur before poll_common() 6197 * has entered cv_wait. 6198 * 3. pollnotify() sets T_POLLWAKE, while holding the pc_lock. 6199 * 6200 * Before proceeding to cv_wait() in poll_common() for an event, 6201 * poll_common() atomically checks for T_POLLWAKE under the pc_lock, 6202 * and if set, re-calls strpoll() to ensure the late arriving 6203 * T_CONN_IND is recognized, and pollsys() returns. 6204 */ 6205 6206 if (sti->sti_conn_ind_head != NULL) 6207 *reventsp |= (POLLIN|POLLRDNORM) & events; 6208 6209 if (so->so_state & SS_CANTRCVMORE) { 6210 *reventsp |= POLLRDHUP & events; 6211 6212 if (so->so_state & SS_CANTSENDMORE) 6213 *reventsp |= POLLHUP; 6214 } 6215 6216 if (so->so_state & SS_OOBPEND) 6217 *reventsp |= POLLRDBAND & events; 6218 6219 return (0); 6220 } 6221 6222 /*ARGSUSED*/ 6223 static int 6224 socktpi_constructor(void *buf, void *cdrarg, int kmflags) 6225 { 6226 sotpi_sonode_t *st = (sotpi_sonode_t *)buf; 6227 int error = 0; 6228 6229 error = sonode_constructor(buf, cdrarg, kmflags); 6230 if (error != 0) 6231 return (error); 6232 6233 error = i_sotpi_info_constructor(&st->st_info); 6234 if (error != 0) 6235 sonode_destructor(buf, cdrarg); 6236 6237 st->st_sonode.so_priv = &st->st_info; 6238 6239 return (error); 6240 } 6241 6242 /*ARGSUSED1*/ 6243 static void 6244 socktpi_destructor(void *buf, void *cdrarg) 6245 { 6246 sotpi_sonode_t *st = (sotpi_sonode_t *)buf; 6247 6248 ASSERT(st->st_sonode.so_priv == &st->st_info); 6249 st->st_sonode.so_priv = NULL; 6250 6251 i_sotpi_info_destructor(&st->st_info); 6252 sonode_destructor(buf, cdrarg); 6253 } 6254 6255 static int 6256 socktpi_unix_constructor(void *buf, void *cdrarg, int kmflags) 6257 { 6258 int retval; 6259 6260 if ((retval = socktpi_constructor(buf, cdrarg, kmflags)) == 0) { 6261 struct sonode *so = (struct sonode *)buf; 6262 sotpi_info_t *sti = SOTOTPI(so); 6263 6264 mutex_enter(&socklist.sl_lock); 6265 6266 sti->sti_next_so = socklist.sl_list; 6267 sti->sti_prev_so = NULL; 6268 if (sti->sti_next_so != NULL) 6269 SOTOTPI(sti->sti_next_so)->sti_prev_so = so; 6270 socklist.sl_list = so; 6271 6272 mutex_exit(&socklist.sl_lock); 6273 6274 } 6275 return (retval); 6276 } 6277 6278 static void 6279 socktpi_unix_destructor(void *buf, void *cdrarg) 6280 { 6281 struct sonode *so = (struct sonode *)buf; 6282 sotpi_info_t *sti = SOTOTPI(so); 6283 6284 mutex_enter(&socklist.sl_lock); 6285 6286 if (sti->sti_next_so != NULL) 6287 SOTOTPI(sti->sti_next_so)->sti_prev_so = sti->sti_prev_so; 6288 if (sti->sti_prev_so != NULL) 6289 SOTOTPI(sti->sti_prev_so)->sti_next_so = sti->sti_next_so; 6290 else 6291 socklist.sl_list = sti->sti_next_so; 6292 6293 mutex_exit(&socklist.sl_lock); 6294 6295 socktpi_destructor(buf, cdrarg); 6296 } 6297 6298 int 6299 socktpi_init(void) 6300 { 6301 /* 6302 * Create sonode caches. We create a special one for AF_UNIX so 6303 * that we can track them for netstat(8). 6304 */ 6305 socktpi_cache = kmem_cache_create("socktpi_cache", 6306 sizeof (struct sotpi_sonode), 0, socktpi_constructor, 6307 socktpi_destructor, NULL, NULL, NULL, 0); 6308 6309 socktpi_unix_cache = kmem_cache_create("socktpi_unix_cache", 6310 sizeof (struct sotpi_sonode), 0, socktpi_unix_constructor, 6311 socktpi_unix_destructor, NULL, NULL, NULL, 0); 6312 6313 return (0); 6314 } 6315 6316 /* 6317 * Given a non-TPI sonode, allocate and prep it to be ready for TPI. 6318 * 6319 * Caller must still update state and mode using sotpi_update_state(). 6320 */ 6321 int 6322 sotpi_convert_sonode(struct sonode *so, struct sockparams *newsp, 6323 boolean_t *direct, queue_t **qp, struct cred *cr) 6324 { 6325 sotpi_info_t *sti; 6326 struct sockparams *origsp = so->so_sockparams; 6327 sock_lower_handle_t handle = so->so_proto_handle; 6328 struct stdata *stp; 6329 struct vnode *vp; 6330 queue_t *q; 6331 int error = 0; 6332 6333 ASSERT((so->so_state & (SS_FALLBACK_PENDING|SS_FALLBACK_COMP)) == 6334 SS_FALLBACK_PENDING); 6335 ASSERT(SOCK_IS_NONSTR(so)); 6336 6337 *qp = NULL; 6338 *direct = B_FALSE; 6339 so->so_sockparams = newsp; 6340 /* 6341 * Allocate and initalize fields required by TPI. 6342 */ 6343 (void) sotpi_info_create(so, KM_SLEEP); 6344 sotpi_info_init(so); 6345 6346 if ((error = sotpi_init(so, NULL, cr, SO_FALLBACK)) != 0) { 6347 sotpi_info_fini(so); 6348 sotpi_info_destroy(so); 6349 return (error); 6350 } 6351 ASSERT(handle == so->so_proto_handle); 6352 sti = SOTOTPI(so); 6353 if (sti->sti_direct != 0) 6354 *direct = B_TRUE; 6355 6356 /* 6357 * Keep the original sp around so we can properly dispose of the 6358 * sonode when the socket is being closed. 6359 */ 6360 sti->sti_orig_sp = origsp; 6361 6362 so_basic_strinit(so); /* skips the T_CAPABILITY_REQ */ 6363 so_alloc_addr(so, so->so_max_addr_len); 6364 6365 /* 6366 * If the application has done a SIOCSPGRP, make sure the 6367 * STREAM head is aware. This needs to take place before 6368 * the protocol start sending up messages. Otherwise we 6369 * might miss to generate SIGPOLL. 6370 * 6371 * It is possible that the application will receive duplicate 6372 * signals if some were already generated for either data or 6373 * connection indications. 6374 */ 6375 if (so->so_pgrp != 0) { 6376 if (so_set_events(so, so->so_vnode, cr) != 0) 6377 so->so_pgrp = 0; 6378 } 6379 6380 /* 6381 * Determine which queue to use. 6382 */ 6383 vp = SOTOV(so); 6384 stp = vp->v_stream; 6385 ASSERT(stp != NULL); 6386 q = stp->sd_wrq->q_next; 6387 6388 /* 6389 * Skip any modules that may have been auto pushed when the device 6390 * was opened 6391 */ 6392 while (q->q_next != NULL) 6393 q = q->q_next; 6394 *qp = _RD(q); 6395 6396 /* This is now a STREAMS sockets */ 6397 so->so_not_str = B_FALSE; 6398 6399 return (error); 6400 } 6401 6402 /* 6403 * Revert a TPI sonode. It is only allowed to revert the sonode during 6404 * the fallback process. 6405 */ 6406 void 6407 sotpi_revert_sonode(struct sonode *so, struct cred *cr) 6408 { 6409 vnode_t *vp = SOTOV(so); 6410 6411 ASSERT((so->so_state & (SS_FALLBACK_PENDING|SS_FALLBACK_COMP)) == 6412 SS_FALLBACK_PENDING); 6413 ASSERT(!SOCK_IS_NONSTR(so)); 6414 ASSERT(vp->v_stream != NULL); 6415 6416 strclean(vp); 6417 (void) strclose(vp, FREAD|FWRITE|SO_FALLBACK, cr); 6418 6419 /* 6420 * Restore the original sockparams. The caller is responsible for 6421 * dropping the ref to the new sp. 6422 */ 6423 so->so_sockparams = SOTOTPI(so)->sti_orig_sp; 6424 6425 sotpi_info_fini(so); 6426 sotpi_info_destroy(so); 6427 6428 /* This is no longer a STREAMS sockets */ 6429 so->so_not_str = B_TRUE; 6430 } 6431 6432 void 6433 sotpi_update_state(struct sonode *so, struct T_capability_ack *tcap, 6434 struct sockaddr *laddr, socklen_t laddrlen, struct sockaddr *faddr, 6435 socklen_t faddrlen, short opts) 6436 { 6437 sotpi_info_t *sti = SOTOTPI(so); 6438 6439 so_proc_tcapability_ack(so, tcap); 6440 6441 so->so_options |= opts; 6442 6443 /* 6444 * Determine whether the foreign and local address are valid 6445 */ 6446 if (laddrlen != 0) { 6447 ASSERT(laddrlen <= sti->sti_laddr_maxlen); 6448 sti->sti_laddr_len = laddrlen; 6449 bcopy(laddr, sti->sti_laddr_sa, laddrlen); 6450 sti->sti_laddr_valid = (so->so_state & SS_ISBOUND); 6451 } 6452 6453 if (faddrlen != 0) { 6454 ASSERT(faddrlen <= sti->sti_faddr_maxlen); 6455 sti->sti_faddr_len = faddrlen; 6456 bcopy(faddr, sti->sti_faddr_sa, faddrlen); 6457 sti->sti_faddr_valid = (so->so_state & SS_ISCONNECTED); 6458 } 6459 6460 } 6461 6462 /* 6463 * Allocate enough space to cache the local and foreign addresses. 6464 */ 6465 void 6466 so_alloc_addr(struct sonode *so, t_uscalar_t maxlen) 6467 { 6468 sotpi_info_t *sti = SOTOTPI(so); 6469 6470 ASSERT(sti->sti_laddr_sa == NULL && sti->sti_faddr_sa == NULL); 6471 ASSERT(sti->sti_laddr_len == 0 && sti->sti_faddr_len == 0); 6472 sti->sti_laddr_maxlen = sti->sti_faddr_maxlen = 6473 P2ROUNDUP(maxlen, KMEM_ALIGN); 6474 so->so_max_addr_len = sti->sti_laddr_maxlen; 6475 sti->sti_laddr_sa = kmem_alloc(sti->sti_laddr_maxlen * 2, KM_SLEEP); 6476 sti->sti_faddr_sa = (struct sockaddr *)((caddr_t)sti->sti_laddr_sa 6477 + sti->sti_laddr_maxlen); 6478 6479 if (so->so_family == AF_UNIX) { 6480 /* 6481 * Initialize AF_UNIX related fields. 6482 */ 6483 bzero(&sti->sti_ux_laddr, sizeof (sti->sti_ux_laddr)); 6484 bzero(&sti->sti_ux_faddr, sizeof (sti->sti_ux_faddr)); 6485 } 6486 } 6487 6488 6489 sotpi_info_t * 6490 sotpi_sototpi(struct sonode *so) 6491 { 6492 sotpi_info_t *sti; 6493 6494 ASSERT(so != NULL); 6495 6496 sti = (sotpi_info_t *)so->so_priv; 6497 6498 ASSERT(sti != NULL); 6499 ASSERT(sti->sti_magic == SOTPI_INFO_MAGIC); 6500 6501 return (sti); 6502 } 6503 6504 static int 6505 i_sotpi_info_constructor(sotpi_info_t *sti) 6506 { 6507 sti->sti_magic = SOTPI_INFO_MAGIC; 6508 sti->sti_ack_mp = NULL; 6509 sti->sti_discon_ind_mp = NULL; 6510 sti->sti_ux_bound_vp = NULL; 6511 sti->sti_unbind_mp = NULL; 6512 6513 sti->sti_conn_ind_head = NULL; 6514 sti->sti_conn_ind_tail = NULL; 6515 6516 sti->sti_laddr_sa = NULL; 6517 sti->sti_faddr_sa = NULL; 6518 6519 mutex_init(&sti->sti_plumb_lock, NULL, MUTEX_DEFAULT, NULL); 6520 cv_init(&sti->sti_ack_cv, NULL, CV_DEFAULT, NULL); 6521 6522 return (0); 6523 } 6524 6525 static void 6526 i_sotpi_info_destructor(sotpi_info_t *sti) 6527 { 6528 ASSERT(sti->sti_magic == SOTPI_INFO_MAGIC); 6529 ASSERT(sti->sti_ack_mp == NULL); 6530 ASSERT(sti->sti_discon_ind_mp == NULL); 6531 ASSERT(sti->sti_ux_bound_vp == NULL); 6532 ASSERT(sti->sti_unbind_mp == NULL); 6533 6534 ASSERT(sti->sti_conn_ind_head == NULL); 6535 ASSERT(sti->sti_conn_ind_tail == NULL); 6536 6537 ASSERT(sti->sti_laddr_sa == NULL); 6538 ASSERT(sti->sti_faddr_sa == NULL); 6539 6540 mutex_destroy(&sti->sti_plumb_lock); 6541 cv_destroy(&sti->sti_ack_cv); 6542 } 6543 6544 /* 6545 * Creates and attaches TPI information to the given sonode 6546 */ 6547 static boolean_t 6548 sotpi_info_create(struct sonode *so, int kmflags) 6549 { 6550 sotpi_info_t *sti; 6551 6552 ASSERT(so->so_priv == NULL); 6553 6554 if ((sti = kmem_zalloc(sizeof (*sti), kmflags)) == NULL) 6555 return (B_FALSE); 6556 6557 if (i_sotpi_info_constructor(sti) != 0) { 6558 kmem_free(sti, sizeof (*sti)); 6559 return (B_FALSE); 6560 } 6561 6562 so->so_priv = (void *)sti; 6563 return (B_TRUE); 6564 } 6565 6566 /* 6567 * Initializes the TPI information. 6568 */ 6569 static void 6570 sotpi_info_init(struct sonode *so) 6571 { 6572 struct vnode *vp = SOTOV(so); 6573 sotpi_info_t *sti = SOTOTPI(so); 6574 time_t now; 6575 6576 sti->sti_dev = so->so_sockparams->sp_sdev_info.sd_vnode->v_rdev; 6577 vp->v_rdev = sti->sti_dev; 6578 6579 sti->sti_orig_sp = NULL; 6580 6581 sti->sti_pushcnt = 0; 6582 6583 now = gethrestime_sec(); 6584 sti->sti_atime = now; 6585 sti->sti_mtime = now; 6586 sti->sti_ctime = now; 6587 6588 sti->sti_eaddr_mp = NULL; 6589 sti->sti_delayed_error = 0; 6590 6591 sti->sti_provinfo = NULL; 6592 6593 sti->sti_oobcnt = 0; 6594 sti->sti_oobsigcnt = 0; 6595 6596 ASSERT(sti->sti_laddr_sa == NULL && sti->sti_faddr_sa == NULL); 6597 6598 sti->sti_laddr_sa = 0; 6599 sti->sti_faddr_sa = 0; 6600 sti->sti_laddr_maxlen = sti->sti_faddr_maxlen = 0; 6601 sti->sti_laddr_len = sti->sti_faddr_len = 0; 6602 6603 sti->sti_laddr_valid = 0; 6604 sti->sti_faddr_valid = 0; 6605 sti->sti_faddr_noxlate = 0; 6606 6607 sti->sti_direct = 0; 6608 6609 ASSERT(sti->sti_ack_mp == NULL); 6610 ASSERT(sti->sti_ux_bound_vp == NULL); 6611 ASSERT(sti->sti_unbind_mp == NULL); 6612 6613 ASSERT(sti->sti_conn_ind_head == NULL); 6614 ASSERT(sti->sti_conn_ind_tail == NULL); 6615 } 6616 6617 /* 6618 * Given a sonode, grab the TPI info and free any data. 6619 */ 6620 static void 6621 sotpi_info_fini(struct sonode *so) 6622 { 6623 sotpi_info_t *sti = SOTOTPI(so); 6624 mblk_t *mp; 6625 6626 ASSERT(sti->sti_discon_ind_mp == NULL); 6627 6628 if ((mp = sti->sti_conn_ind_head) != NULL) { 6629 mblk_t *mp1; 6630 6631 while (mp) { 6632 mp1 = mp->b_next; 6633 mp->b_next = NULL; 6634 freemsg(mp); 6635 mp = mp1; 6636 } 6637 sti->sti_conn_ind_head = sti->sti_conn_ind_tail = NULL; 6638 } 6639 6640 /* 6641 * Protect so->so_[lf]addr_sa so that sockfs_snapshot() can safely 6642 * indirect them. It also uses so_count as a validity test. 6643 */ 6644 mutex_enter(&so->so_lock); 6645 6646 if (sti->sti_laddr_sa) { 6647 ASSERT((caddr_t)sti->sti_faddr_sa == 6648 (caddr_t)sti->sti_laddr_sa + sti->sti_laddr_maxlen); 6649 ASSERT(sti->sti_faddr_maxlen == sti->sti_laddr_maxlen); 6650 sti->sti_laddr_valid = 0; 6651 sti->sti_faddr_valid = 0; 6652 kmem_free(sti->sti_laddr_sa, sti->sti_laddr_maxlen * 2); 6653 sti->sti_laddr_sa = NULL; 6654 sti->sti_laddr_len = sti->sti_laddr_maxlen = 0; 6655 sti->sti_faddr_sa = NULL; 6656 sti->sti_faddr_len = sti->sti_faddr_maxlen = 0; 6657 } 6658 6659 mutex_exit(&so->so_lock); 6660 6661 if ((mp = sti->sti_eaddr_mp) != NULL) { 6662 freemsg(mp); 6663 sti->sti_eaddr_mp = NULL; 6664 sti->sti_delayed_error = 0; 6665 } 6666 6667 if ((mp = sti->sti_ack_mp) != NULL) { 6668 freemsg(mp); 6669 sti->sti_ack_mp = NULL; 6670 } 6671 6672 ASSERT(sti->sti_ux_bound_vp == NULL); 6673 if ((mp = sti->sti_unbind_mp) != NULL) { 6674 freemsg(mp); 6675 sti->sti_unbind_mp = NULL; 6676 } 6677 } 6678 6679 /* 6680 * Destroys the TPI information attached to a sonode. 6681 */ 6682 static void 6683 sotpi_info_destroy(struct sonode *so) 6684 { 6685 sotpi_info_t *sti = SOTOTPI(so); 6686 6687 i_sotpi_info_destructor(sti); 6688 kmem_free(sti, sizeof (*sti)); 6689 6690 so->so_priv = NULL; 6691 } 6692 6693 /* 6694 * Create the global sotpi socket module entry. It will never be freed. 6695 */ 6696 smod_info_t * 6697 sotpi_smod_create(void) 6698 { 6699 smod_info_t *smodp; 6700 6701 smodp = kmem_zalloc(sizeof (*smodp), KM_SLEEP); 6702 smodp->smod_name = kmem_alloc(sizeof (SOTPI_SMOD_NAME), KM_SLEEP); 6703 (void) strcpy(smodp->smod_name, SOTPI_SMOD_NAME); 6704 /* 6705 * Initialize the smod_refcnt to 1 so it will never be freed. 6706 */ 6707 smodp->smod_refcnt = 1; 6708 smodp->smod_uc_version = SOCK_UC_VERSION; 6709 smodp->smod_dc_version = SOCK_DC_VERSION; 6710 smodp->smod_sock_create_func = &sotpi_create; 6711 smodp->smod_sock_destroy_func = &sotpi_destroy; 6712 return (smodp); 6713 } 6714