xref: /illumos-gate/usr/src/uts/common/fs/sockfs/socksyscalls.c (revision f17620a4f72a29025a22655ba8735ccd20ae174f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent, Inc.  All rights reserved.
25  * Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved.
26  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
28  * Copyright 2022 Garrett D'Amore
29  */
30 
31 #include <sys/types.h>
32 #include <sys/t_lock.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/conf.h>
37 #include <sys/cred.h>
38 #include <sys/kmem.h>
39 #include <sys/sysmacros.h>
40 #include <sys/vfs.h>
41 #include <sys/vnode.h>
42 #include <sys/debug.h>
43 #include <sys/errno.h>
44 #include <sys/time.h>
45 #include <sys/file.h>
46 #include <sys/user.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strsun.h>
50 #include <sys/sunddi.h>
51 #include <sys/esunddi.h>
52 #include <sys/flock.h>
53 #include <sys/modctl.h>
54 #include <sys/cmn_err.h>
55 #include <sys/vmsystm.h>
56 #include <sys/policy.h>
57 #include <sys/limits.h>
58 
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 
62 #include <sys/isa_defs.h>
63 #include <sys/inttypes.h>
64 #include <sys/systm.h>
65 #include <sys/cpuvar.h>
66 #include <sys/filio.h>
67 #include <sys/sendfile.h>
68 #include <sys/ddi.h>
69 #include <vm/seg.h>
70 #include <vm/seg_map.h>
71 #include <vm/seg_kpm.h>
72 
73 #include <fs/sockfs/sockcommon.h>
74 #include <fs/sockfs/sockfilter_impl.h>
75 #include <fs/sockfs/socktpi.h>
76 
77 #ifdef SOCK_TEST
78 int do_useracc = 1;		/* Controlled by setting SO_DEBUG to 4 */
79 #else
80 #define	do_useracc	1
81 #endif /* SOCK_TEST */
82 
83 extern int	xnet_truncate_print;
84 
85 /*
86  * Kernel component of socket creation.
87  *
88  * The socket library determines which version number to use.
89  * First the library calls this with a NULL devpath. If this fails
90  * to find a transport (using solookup) the library will look in /etc/netconfig
91  * for the appropriate transport. If one is found it will pass in the
92  * devpath for the kernel to use.
93  */
94 int
95 so_socket(int family, int type_w_flags, int protocol, char *devpath,
96     int version)
97 {
98 	struct sonode *so;
99 	vnode_t *vp;
100 	struct file *fp;
101 	int fd;
102 	int error;
103 	int type;
104 
105 	type = type_w_flags & SOCK_TYPE_MASK;
106 	type_w_flags &= ~SOCK_TYPE_MASK;
107 	if (type_w_flags & ~(SOCK_CLOEXEC|SOCK_NDELAY|SOCK_NONBLOCK))
108 		return (set_errno(EINVAL));
109 
110 	if (devpath != NULL) {
111 		char *buf;
112 		size_t kdevpathlen = 0;
113 
114 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
115 		if ((error = copyinstr(devpath, buf,
116 		    MAXPATHLEN, &kdevpathlen)) != 0) {
117 			kmem_free(buf, MAXPATHLEN);
118 			return (set_errno(error));
119 		}
120 		so = socket_create(family, type, protocol, buf, NULL,
121 		    SOCKET_SLEEP, version, CRED(), &error);
122 		kmem_free(buf, MAXPATHLEN);
123 	} else {
124 		so = socket_create(family, type, protocol, NULL, NULL,
125 		    SOCKET_SLEEP, version, CRED(), &error);
126 	}
127 	if (so == NULL)
128 		return (set_errno(error));
129 
130 	/* Allocate a file descriptor for the socket */
131 	vp = SOTOV(so);
132 	error = falloc(vp, FWRITE|FREAD, &fp, &fd);
133 	if (error != 0) {
134 		(void) socket_close(so, 0, CRED());
135 		socket_destroy(so);
136 		return (set_errno(error));
137 	}
138 
139 	/*
140 	 * Now fill in the entries that falloc reserved
141 	 */
142 	if (type_w_flags & SOCK_NDELAY) {
143 		so->so_state |= SS_NDELAY;
144 		fp->f_flag |= FNDELAY;
145 	}
146 	if (type_w_flags & SOCK_NONBLOCK) {
147 		so->so_state |= SS_NONBLOCK;
148 		fp->f_flag |= FNONBLOCK;
149 	}
150 	mutex_exit(&fp->f_tlock);
151 	setf(fd, fp);
152 	if ((type_w_flags & SOCK_CLOEXEC) != 0) {
153 		f_setfd(fd, FD_CLOEXEC);
154 	}
155 
156 	return (fd);
157 }
158 
159 /*
160  * Map from a file descriptor to a socket node.
161  * Returns with the file descriptor held i.e. the caller has to
162  * use releasef when done with the file descriptor.
163  */
164 struct sonode *
165 getsonode(int sock, int *errorp, file_t **fpp)
166 {
167 	file_t *fp;
168 	vnode_t *vp;
169 	struct sonode *so;
170 
171 	if ((fp = getf(sock)) == NULL) {
172 		*errorp = EBADF;
173 		eprintline(*errorp);
174 		return (NULL);
175 	}
176 	vp = fp->f_vnode;
177 	/* Check if it is a socket */
178 	if (vp->v_type != VSOCK) {
179 		releasef(sock);
180 		*errorp = ENOTSOCK;
181 		eprintline(*errorp);
182 		return (NULL);
183 	}
184 	/*
185 	 * Use the stream head to find the real socket vnode.
186 	 * This is needed when namefs sits above sockfs.
187 	 */
188 	if (vp->v_stream) {
189 		ASSERT(vp->v_stream->sd_vnode);
190 		vp = vp->v_stream->sd_vnode;
191 
192 		so = VTOSO(vp);
193 		if (so->so_version == SOV_STREAM) {
194 			releasef(sock);
195 			*errorp = ENOTSOCK;
196 			eprintsoline(so, *errorp);
197 			return (NULL);
198 		}
199 	} else {
200 		so = VTOSO(vp);
201 	}
202 	if (fpp)
203 		*fpp = fp;
204 	return (so);
205 }
206 
207 /*
208  * Allocate and copyin a sockaddr.
209  * Ensures NULL termination for AF_UNIX addresses by extending them
210  * with one NULL byte if need be. Verifies that the length is not
211  * excessive to prevent an application from consuming all of kernel
212  * memory. Returns NULL when an error occurred.
213  */
214 static struct sockaddr *
215 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
216     int *errorp)
217 {
218 	char	*faddr;
219 	size_t	namelen = (size_t)*namelenp;
220 
221 	ASSERT(namelen != 0);
222 	if (namelen > SO_MAXARGSIZE) {
223 		*errorp = EINVAL;
224 		eprintsoline(so, *errorp);
225 		return (NULL);
226 	}
227 
228 	faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
229 	if (copyin(name, faddr, namelen)) {
230 		kmem_free(faddr, namelen);
231 		*errorp = EFAULT;
232 		eprintsoline(so, *errorp);
233 		return (NULL);
234 	}
235 
236 	/*
237 	 * Add space for NULL termination if needed.
238 	 * Do a quick check if the last byte is NUL.
239 	 */
240 	if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
241 		/* Check if there is any NULL termination */
242 		size_t	i;
243 		int foundnull = 0;
244 
245 		for (i = sizeof (name->sa_family); i < namelen; i++) {
246 			if (faddr[i] == '\0') {
247 				foundnull = 1;
248 				break;
249 			}
250 		}
251 		if (!foundnull) {
252 			/* Add extra byte for NUL padding */
253 			char *nfaddr;
254 
255 			nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
256 			bcopy(faddr, nfaddr, namelen);
257 			kmem_free(faddr, namelen);
258 
259 			/* NUL terminate */
260 			nfaddr[namelen] = '\0';
261 			namelen++;
262 			ASSERT((socklen_t)namelen == namelen);
263 			*namelenp = (socklen_t)namelen;
264 			faddr = nfaddr;
265 		}
266 	}
267 	return ((struct sockaddr *)faddr);
268 }
269 
270 /*
271  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
272  */
273 static int
274 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr,
275     socklen_t klen)
276 {
277 	if (uaddr != NULL) {
278 		if (ulen > klen)
279 			ulen = klen;
280 
281 		if (ulen != 0) {
282 			if (copyout(kaddr, uaddr, ulen))
283 				return (EFAULT);
284 		}
285 	} else
286 		ulen = 0;
287 
288 	if (ulenp != NULL) {
289 		if (copyout(&ulen, ulenp, sizeof (ulen)))
290 			return (EFAULT);
291 	}
292 	return (0);
293 }
294 
295 /*
296  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
297  * If klen is greater than ulen it still uses the non-truncated
298  * klen to update ulenp.
299  */
300 static int
301 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr,
302     socklen_t klen)
303 {
304 	if (uaddr != NULL) {
305 		if (ulen >= klen)
306 			ulen = klen;
307 		else if (ulen != 0 && xnet_truncate_print) {
308 			printf("sockfs: truncating copyout of address using "
309 			    "XNET semantics for pid = %d. Lengths %d, %d\n",
310 			    curproc->p_pid, klen, ulen);
311 		}
312 
313 		if (ulen != 0) {
314 			if (copyout(kaddr, uaddr, ulen))
315 				return (EFAULT);
316 		} else
317 			klen = 0;
318 	} else
319 		klen = 0;
320 
321 	if (ulenp != NULL) {
322 		if (copyout(&klen, ulenp, sizeof (klen)))
323 			return (EFAULT);
324 	}
325 	return (0);
326 }
327 
328 /*
329  * The socketpair() code in libsocket creates two sockets (using
330  * the /etc/netconfig fallback if needed) before calling this routine
331  * to connect the two sockets together.
332  *
333  * For a SOCK_STREAM socketpair a listener is needed - in that case this
334  * routine will create a new file descriptor as part of accepting the
335  * connection. The library socketpair() will check if svs[2] has changed
336  * in which case it will close the changed fd.
337  *
338  * Note that this code could use the TPI feature of accepting the connection
339  * on the listening endpoint. However, that would require significant changes
340  * to soaccept.
341  */
342 int
343 so_socketpair(int sv[2])
344 {
345 	int svs[2];
346 	struct sonode *so1, *so2;
347 	int error;
348 	int orig_flags;
349 	struct sockaddr_ux *name;
350 	size_t namelen;
351 	sotpi_info_t *sti1;
352 	sotpi_info_t *sti2;
353 
354 	dprint(1, ("so_socketpair(%p)\n", (void *)sv));
355 
356 	error = useracc(sv, sizeof (svs), B_WRITE);
357 	if (error && do_useracc)
358 		return (set_errno(EFAULT));
359 
360 	if (copyin(sv, svs, sizeof (svs)))
361 		return (set_errno(EFAULT));
362 
363 	if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
364 		return (set_errno(error));
365 
366 	if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
367 		releasef(svs[0]);
368 		return (set_errno(error));
369 	}
370 
371 	if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
372 		error = EOPNOTSUPP;
373 		goto done;
374 	}
375 
376 	sti1 = SOTOTPI(so1);
377 	sti2 = SOTOTPI(so2);
378 
379 	/*
380 	 * The code below makes assumptions about the "sockfs" implementation.
381 	 * So make sure that the correct implementation is really used.
382 	 */
383 	ASSERT(so1->so_ops == &sotpi_sonodeops);
384 	ASSERT(so2->so_ops == &sotpi_sonodeops);
385 
386 	if (so1->so_type == SOCK_DGRAM) {
387 		/*
388 		 * Bind both sockets and connect them with each other.
389 		 * Need to allocate name/namelen for soconnect.
390 		 */
391 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED());
392 		if (error) {
393 			eprintsoline(so1, error);
394 			goto done;
395 		}
396 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
397 		if (error) {
398 			eprintsoline(so2, error);
399 			goto done;
400 		}
401 		namelen = sizeof (struct sockaddr_ux);
402 		name = kmem_alloc(namelen, KM_SLEEP);
403 		name->sou_family = AF_UNIX;
404 		name->sou_addr = sti2->sti_ux_laddr;
405 		error = socket_connect(so1,
406 		    (struct sockaddr *)name,
407 		    (socklen_t)namelen,
408 		    0, _SOCONNECT_NOXLATE, CRED());
409 		if (error) {
410 			kmem_free(name, namelen);
411 			eprintsoline(so1, error);
412 			goto done;
413 		}
414 		name->sou_addr = sti1->sti_ux_laddr;
415 		error = socket_connect(so2,
416 		    (struct sockaddr *)name,
417 		    (socklen_t)namelen,
418 		    0, _SOCONNECT_NOXLATE, CRED());
419 		kmem_free(name, namelen);
420 		if (error) {
421 			eprintsoline(so2, error);
422 			goto done;
423 		}
424 		releasef(svs[0]);
425 		releasef(svs[1]);
426 	} else {
427 		/*
428 		 * Bind both sockets, with so1 being a listener.
429 		 * Connect so2 to so1 - nonblocking to avoid waiting for
430 		 * soaccept to complete.
431 		 * Accept a connection on so1. Pass out the new fd as sv[0].
432 		 * The library will detect the changed fd and close
433 		 * the original one.
434 		 */
435 		struct sonode *nso;
436 		struct vnode *nvp;
437 		struct file *nfp;
438 		int nfd;
439 
440 		/*
441 		 * We could simply call socket_listen() here (which would do the
442 		 * binding automatically) if the code didn't rely on passing
443 		 * _SOBIND_NOXLATE to the TPI implementation of socket_bind().
444 		 */
445 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC|
446 		    _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR,
447 		    CRED());
448 		if (error) {
449 			eprintsoline(so1, error);
450 			goto done;
451 		}
452 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
453 		if (error) {
454 			eprintsoline(so2, error);
455 			goto done;
456 		}
457 
458 		namelen = sizeof (struct sockaddr_ux);
459 		name = kmem_alloc(namelen, KM_SLEEP);
460 		name->sou_family = AF_UNIX;
461 		name->sou_addr = sti1->sti_ux_laddr;
462 		error = socket_connect(so2,
463 		    (struct sockaddr *)name,
464 		    (socklen_t)namelen,
465 		    FNONBLOCK, _SOCONNECT_NOXLATE, CRED());
466 		kmem_free(name, namelen);
467 		if (error) {
468 			if (error != EINPROGRESS) {
469 				eprintsoline(so2, error); goto done;
470 			}
471 		}
472 
473 		error = socket_accept(so1, 0, CRED(), &nso);
474 		if (error) {
475 			eprintsoline(so1, error);
476 			goto done;
477 		}
478 
479 		/* wait for so2 being SS_CONNECTED ignoring signals */
480 		mutex_enter(&so2->so_lock);
481 		error = sowaitconnected(so2, 0, 1);
482 		mutex_exit(&so2->so_lock);
483 		if (error != 0) {
484 			(void) socket_close(nso, 0, CRED());
485 			socket_destroy(nso);
486 			eprintsoline(so2, error);
487 			goto done;
488 		}
489 
490 		nvp = SOTOV(nso);
491 		error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd);
492 		if (error != 0) {
493 			(void) socket_close(nso, 0, CRED());
494 			socket_destroy(nso);
495 			eprintsoline(nso, error);
496 			goto done;
497 		}
498 		/*
499 		 * copy over FNONBLOCK and FNDELAY flags should they exist
500 		 */
501 		if (so1->so_state & SS_NONBLOCK)
502 			nfp->f_flag |= FNONBLOCK;
503 		if (so1->so_state & SS_NDELAY)
504 			nfp->f_flag |= FNDELAY;
505 
506 		/*
507 		 * fill in the entries that falloc reserved
508 		 */
509 		mutex_exit(&nfp->f_tlock);
510 		setf(nfd, nfp);
511 
512 		/*
513 		 * get the original flags before we release
514 		 */
515 		VERIFY(f_getfd_error(svs[0], &orig_flags) == 0);
516 
517 		releasef(svs[0]);
518 		releasef(svs[1]);
519 
520 		/*
521 		 * If FD_CLOEXEC was set on the filedescriptor we're
522 		 * swapping out, we should set it on the new one too.
523 		 */
524 		if (orig_flags & FD_CLOEXEC) {
525 			f_setfd(nfd, FD_CLOEXEC);
526 		}
527 
528 		/*
529 		 * The socketpair library routine will close the original
530 		 * svs[0] when this code passes out a different file
531 		 * descriptor.
532 		 */
533 		svs[0] = nfd;
534 
535 		if (copyout(svs, sv, sizeof (svs))) {
536 			(void) closeandsetf(nfd, NULL);
537 			eprintline(EFAULT);
538 			return (set_errno(EFAULT));
539 		}
540 	}
541 	return (0);
542 
543 done:
544 	releasef(svs[0]);
545 	releasef(svs[1]);
546 	return (set_errno(error));
547 }
548 
549 int
550 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
551 {
552 	struct sonode *so;
553 	int error;
554 
555 	dprint(1, ("bind(%d, %p, %d)\n",
556 	    sock, (void *)name, namelen));
557 
558 	if ((so = getsonode(sock, &error, NULL)) == NULL)
559 		return (set_errno(error));
560 
561 	/* Allocate and copyin name */
562 	/*
563 	 * X/Open test does not expect EFAULT with NULL name and non-zero
564 	 * namelen.
565 	 */
566 	if (name != NULL && namelen != 0) {
567 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
568 		name = copyin_name(so, name, &namelen, &error);
569 		if (name == NULL) {
570 			releasef(sock);
571 			return (set_errno(error));
572 		}
573 	} else {
574 		name = NULL;
575 		namelen = 0;
576 	}
577 
578 	switch (version) {
579 	default:
580 		error = socket_bind(so, name, namelen, 0, CRED());
581 		break;
582 	case SOV_XPG4_2:
583 		error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED());
584 		break;
585 	case SOV_SOCKBSD:
586 		error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED());
587 		break;
588 	}
589 
590 	releasef(sock);
591 	if (name != NULL)
592 		kmem_free(name, (size_t)namelen);
593 
594 	if (error)
595 		return (set_errno(error));
596 	return (0);
597 }
598 
599 /* ARGSUSED2 */
600 int
601 listen(int sock, int backlog, int version)
602 {
603 	struct sonode *so;
604 	int error;
605 
606 	dprint(1, ("listen(%d, %d)\n",
607 	    sock, backlog));
608 
609 	if ((so = getsonode(sock, &error, NULL)) == NULL)
610 		return (set_errno(error));
611 
612 	error = socket_listen(so, backlog, CRED());
613 
614 	releasef(sock);
615 	if (error)
616 		return (set_errno(error));
617 	return (0);
618 }
619 
620 /*ARGSUSED3*/
621 int
622 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version,
623     int flags)
624 {
625 	struct sonode *so;
626 	file_t *fp;
627 	int error;
628 	socklen_t namelen;
629 	struct sonode *nso;
630 	struct vnode *nvp;
631 	struct file *nfp;
632 	int nfd;
633 	int ssflags;
634 	struct sockaddr *addrp;
635 	socklen_t addrlen;
636 
637 	dprint(1, ("accept(%d, %p, %p)\n",
638 	    sock, (void *)name, (void *)namelenp));
639 
640 	if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) {
641 		return (set_errno(EINVAL));
642 	}
643 
644 	/* Translate SOCK_ flags to their SS_ variant */
645 	ssflags = 0;
646 	if (flags & SOCK_NONBLOCK)
647 		ssflags |= SS_NONBLOCK;
648 	if (flags & SOCK_NDELAY)
649 		ssflags |= SS_NDELAY;
650 
651 	if ((so = getsonode(sock, &error, &fp)) == NULL)
652 		return (set_errno(error));
653 
654 	if (name != NULL) {
655 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
656 		if (copyin(namelenp, &namelen, sizeof (namelen))) {
657 			releasef(sock);
658 			return (set_errno(EFAULT));
659 		}
660 		if (namelen != 0) {
661 			error = useracc(name, (size_t)namelen, B_WRITE);
662 			if (error && do_useracc) {
663 				releasef(sock);
664 				return (set_errno(EFAULT));
665 			}
666 		} else
667 			name = NULL;
668 	} else {
669 		namelen = 0;
670 	}
671 
672 	/*
673 	 * Allocate the user fd before socket_accept() in order to
674 	 * catch EMFILE errors before calling socket_accept().
675 	 */
676 	if ((nfd = ufalloc(0)) == -1) {
677 		eprintsoline(so, EMFILE);
678 		releasef(sock);
679 		return (set_errno(EMFILE));
680 	}
681 	error = socket_accept(so, fp->f_flag, CRED(), &nso);
682 	if (error) {
683 		setf(nfd, NULL);
684 		releasef(sock);
685 		return (set_errno(error));
686 	}
687 
688 	nvp = SOTOV(nso);
689 
690 	ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
691 	if (namelen != 0) {
692 		addrlen = so->so_max_addr_len;
693 		addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP);
694 
695 		if ((error = socket_getpeername(nso, (struct sockaddr *)addrp,
696 		    &addrlen, B_TRUE, CRED())) == 0) {
697 			error = copyout_name(name, namelen, namelenp,
698 			    addrp, addrlen);
699 		} else {
700 			ASSERT(error == EINVAL || error == ENOTCONN);
701 			error = ECONNABORTED;
702 		}
703 		kmem_free(addrp, so->so_max_addr_len);
704 	}
705 
706 	if (error) {
707 		setf(nfd, NULL);
708 		(void) socket_close(nso, 0, CRED());
709 		socket_destroy(nso);
710 		releasef(sock);
711 		return (set_errno(error));
712 	}
713 	error = falloc(NULL, FWRITE|FREAD, &nfp, NULL);
714 	if (error != 0) {
715 		setf(nfd, NULL);
716 		(void) socket_close(nso, 0, CRED());
717 		socket_destroy(nso);
718 		eprintsoline(so, error);
719 		releasef(sock);
720 		return (set_errno(error));
721 	}
722 	/*
723 	 * fill in the entries that falloc reserved
724 	 */
725 	nfp->f_vnode = nvp;
726 	mutex_exit(&nfp->f_tlock);
727 	setf(nfd, nfp);
728 
729 	/*
730 	 * Act on SOCK_CLOEXEC from flags
731 	 */
732 	if (flags & SOCK_CLOEXEC) {
733 		f_setfd(nfd, FD_CLOEXEC);
734 	}
735 
736 	/*
737 	 * Copy FNDELAY and FNONBLOCK from listener to acceptor
738 	 * and from ssflags
739 	 */
740 	if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) {
741 		uint_t oflag = nfp->f_flag;
742 		int arg = 0;
743 
744 		if ((ssflags | so->so_state) & SS_NONBLOCK)
745 			arg |= FNONBLOCK;
746 		else if ((ssflags | so->so_state) & SS_NDELAY)
747 			arg |= FNDELAY;
748 
749 		/*
750 		 * This code is a simplification of the F_SETFL code in fcntl()
751 		 * Ignore any errors from VOP_SETFL.
752 		 */
753 		if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
754 		    != 0) {
755 			eprintsoline(so, error);
756 			error = 0;
757 		} else {
758 			mutex_enter(&nfp->f_tlock);
759 			nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
760 			nfp->f_flag |= arg;
761 			mutex_exit(&nfp->f_tlock);
762 		}
763 	}
764 	releasef(sock);
765 	return (nfd);
766 }
767 
768 int
769 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
770 {
771 	struct sonode *so;
772 	file_t *fp;
773 	int error;
774 
775 	dprint(1, ("connect(%d, %p, %d)\n",
776 	    sock, (void *)name, namelen));
777 
778 	if ((so = getsonode(sock, &error, &fp)) == NULL)
779 		return (set_errno(error));
780 
781 	/* Allocate and copyin name */
782 	if (namelen != 0) {
783 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
784 		name = copyin_name(so, name, &namelen, &error);
785 		if (name == NULL) {
786 			releasef(sock);
787 			return (set_errno(error));
788 		}
789 	} else
790 		name = NULL;
791 
792 	error = socket_connect(so, name, namelen, fp->f_flag,
793 	    (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED());
794 	releasef(sock);
795 	if (name)
796 		kmem_free(name, (size_t)namelen);
797 	if (error)
798 		return (set_errno(error));
799 	return (0);
800 }
801 
802 /*ARGSUSED2*/
803 int
804 shutdown(int sock, int how, int version)
805 {
806 	struct sonode *so;
807 	int error;
808 
809 	dprint(1, ("shutdown(%d, %d)\n",
810 	    sock, how));
811 
812 	if ((so = getsonode(sock, &error, NULL)) == NULL)
813 		return (set_errno(error));
814 
815 	error = socket_shutdown(so, how, CRED());
816 
817 	releasef(sock);
818 	if (error)
819 		return (set_errno(error));
820 	return (0);
821 }
822 
823 /*
824  * Common receive routine.
825  */
826 static ssize_t
827 recvit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags,
828     socklen_t *namelenp, socklen_t *controllenp, int *flagsp)
829 {
830 	struct sonode *so;
831 	file_t *fp;
832 	void *name;
833 	socklen_t namelen;
834 	void *control;
835 	socklen_t controllen, free_controllen;
836 	ssize_t len;
837 	int error;
838 
839 	if ((so = getsonode(sock, &error, &fp)) == NULL)
840 		return (set_errno(error));
841 
842 	len = uiop->uio_resid;
843 	uiop->uio_fmode = fp->f_flag;
844 	uiop->uio_extflg = UIO_COPY_CACHED;
845 
846 	name = msg->msg_name;
847 	namelen = msg->msg_namelen;
848 	control = msg->msg_control;
849 	controllen = msg->msg_controllen;
850 
851 	msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
852 	    MSG_DONTWAIT | MSG_XPG4_2);
853 
854 	error = socket_recvmsg(so, msg, uiop, CRED());
855 	if (error) {
856 		releasef(sock);
857 		return (set_errno(error));
858 	}
859 	lwp_stat_update(LWP_STAT_MSGRCV, 1);
860 	releasef(sock);
861 
862 	free_controllen = msg->msg_controllen;
863 
864 	error = copyout_name(name, namelen, namelenp,
865 	    msg->msg_name, msg->msg_namelen);
866 	if (error)
867 		goto err;
868 
869 	if (flagsp != NULL) {
870 		/*
871 		 * Clear internal flag.
872 		 */
873 		msg->msg_flags &= ~MSG_XPG4_2;
874 
875 		/*
876 		 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
877 		 * when controllen is zero and there is control data to
878 		 * copy out.
879 		 */
880 		if (controllen != 0 &&
881 		    (msg->msg_controllen > controllen || control == NULL)) {
882 			dprint(1, ("recvit: CTRUNC %d %d %p\n",
883 			    msg->msg_controllen, controllen, control));
884 
885 			msg->msg_flags |= MSG_CTRUNC;
886 		}
887 		if (copyout(&msg->msg_flags, flagsp,
888 		    sizeof (msg->msg_flags))) {
889 			error = EFAULT;
890 			goto err;
891 		}
892 	}
893 
894 	if (controllen != 0) {
895 		if (!(flags & MSG_XPG4_2)) {
896 			/*
897 			 * Good old msg_accrights can only return a multiple
898 			 * of 4 bytes.
899 			 */
900 			controllen &= ~((int)sizeof (uint32_t) - 1);
901 		}
902 
903 		if (msg->msg_controllen > controllen || control == NULL) {
904 			/*
905 			 * If the truncated part contains file descriptors,
906 			 * then they must be closed in the kernel as they
907 			 * will not be included in the data returned to
908 			 * user space. Close them now so that the header size
909 			 * can be safely adjusted prior to copyout. In case of
910 			 * an error during copyout, the remaining file
911 			 * descriptors will be closed in the error handler
912 			 * below.
913 			 */
914 			so_closefds(msg->msg_control, msg->msg_controllen,
915 			    !(flags & MSG_XPG4_2),
916 			    control == NULL ? 0 : controllen);
917 
918 			/*
919 			 * In the case of a truncated control message, the last
920 			 * cmsg header that fits into the available buffer
921 			 * space must be adjusted to reflect the actual amount
922 			 * of associated data that will be returned. This only
923 			 * needs to be done for XPG4 messages as non-XPG4
924 			 * messages are not structured (they are just a
925 			 * buffer and a length - msg_accrights(len)).
926 			 */
927 			if (control != NULL && (flags & MSG_XPG4_2)) {
928 				so_truncatecmsg(msg->msg_control,
929 				    msg->msg_controllen, controllen);
930 				msg->msg_controllen = controllen;
931 			}
932 		}
933 
934 		error = copyout_arg(control, controllen, controllenp,
935 		    msg->msg_control, msg->msg_controllen);
936 
937 		if (error)
938 			goto err;
939 
940 	}
941 	if (msg->msg_namelen != 0)
942 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
943 	if (free_controllen != 0)
944 		kmem_free(msg->msg_control, (size_t)free_controllen);
945 	return (len - uiop->uio_resid);
946 
947 err:
948 	/*
949 	 * If we fail and the control part contains file descriptors
950 	 * we have to close them. For a truncated control message, the
951 	 * descriptors which were cut off have already been closed and the
952 	 * length adjusted so that they will not be closed again.
953 	 */
954 	if (msg->msg_controllen != 0)
955 		so_closefds(msg->msg_control, msg->msg_controllen,
956 		    !(flags & MSG_XPG4_2), 0);
957 	if (msg->msg_namelen != 0)
958 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
959 	if (free_controllen != 0)
960 		kmem_free(msg->msg_control, (size_t)free_controllen);
961 	return (set_errno(error));
962 }
963 
964 /*
965  * Native system call
966  */
967 ssize_t
968 recv(int sock, void *buffer, size_t len, int flags)
969 {
970 	struct nmsghdr lmsg;
971 	struct uio auio;
972 	struct iovec aiov[1];
973 
974 	dprint(1, ("recv(%d, %p, %ld, %d)\n",
975 	    sock, buffer, len, flags));
976 
977 	if ((ssize_t)len < 0) {
978 		return (set_errno(EINVAL));
979 	}
980 
981 	aiov[0].iov_base = buffer;
982 	aiov[0].iov_len = len;
983 	auio.uio_loffset = 0;
984 	auio.uio_iov = aiov;
985 	auio.uio_iovcnt = 1;
986 	auio.uio_resid = len;
987 	auio.uio_segflg = UIO_USERSPACE;
988 	auio.uio_limit = 0;
989 
990 	lmsg.msg_namelen = 0;
991 	lmsg.msg_controllen = 0;
992 	lmsg.msg_flags = 0;
993 	return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
994 }
995 
996 ssize_t
997 recvfrom(int sock, void *buffer, size_t len, int flags, struct sockaddr *name,
998     socklen_t *namelenp)
999 {
1000 	struct nmsghdr lmsg;
1001 	struct uio auio;
1002 	struct iovec aiov[1];
1003 
1004 	dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
1005 	    sock, buffer, len, flags, (void *)name, (void *)namelenp));
1006 
1007 	if ((ssize_t)len < 0) {
1008 		return (set_errno(EINVAL));
1009 	}
1010 
1011 	aiov[0].iov_base = buffer;
1012 	aiov[0].iov_len = len;
1013 	auio.uio_loffset = 0;
1014 	auio.uio_iov = aiov;
1015 	auio.uio_iovcnt = 1;
1016 	auio.uio_resid = len;
1017 	auio.uio_segflg = UIO_USERSPACE;
1018 	auio.uio_limit = 0;
1019 
1020 	lmsg.msg_name = (char *)name;
1021 	if (namelenp != NULL) {
1022 		if (copyin(namelenp, &lmsg.msg_namelen,
1023 		    sizeof (lmsg.msg_namelen)))
1024 			return (set_errno(EFAULT));
1025 	} else {
1026 		lmsg.msg_namelen = 0;
1027 	}
1028 	lmsg.msg_controllen = 0;
1029 	lmsg.msg_flags = 0;
1030 
1031 	return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
1032 }
1033 
1034 /*
1035  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1036  * struct omsghdr or struct nmsghdr.
1037  */
1038 ssize_t
1039 recvmsg(int sock, struct nmsghdr *msg, int flags)
1040 {
1041 	STRUCT_DECL(nmsghdr, u_lmsg);
1042 	STRUCT_HANDLE(nmsghdr, umsgptr);
1043 	struct nmsghdr lmsg;
1044 	struct uio auio;
1045 	struct iovec buf[IOV_MAX_STACK], *aiov = buf;
1046 	ssize_t iovsize = 0;
1047 	int iovcnt;
1048 	ssize_t len, rval;
1049 	int i;
1050 	int *flagsp;
1051 	model_t	model;
1052 
1053 	dprint(1, ("recvmsg(%d, %p, %d)\n",
1054 	    sock, (void *)msg, flags));
1055 
1056 	model = get_udatamodel();
1057 	STRUCT_INIT(u_lmsg, model);
1058 	STRUCT_SET_HANDLE(umsgptr, model, msg);
1059 
1060 	if (flags & MSG_XPG4_2) {
1061 		if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
1062 			return (set_errno(EFAULT));
1063 		flagsp = STRUCT_FADDR(umsgptr, msg_flags);
1064 	} else {
1065 		/*
1066 		 * Assumes that nmsghdr and omsghdr are identically shaped
1067 		 * except for the added msg_flags field.
1068 		 */
1069 		if (copyin(msg, STRUCT_BUF(u_lmsg),
1070 		    SIZEOF_STRUCT(omsghdr, model)))
1071 			return (set_errno(EFAULT));
1072 		STRUCT_FSET(u_lmsg, msg_flags, 0);
1073 		flagsp = NULL;
1074 	}
1075 
1076 	/*
1077 	 * Code below us will kmem_alloc memory and hang it
1078 	 * off msg_control and msg_name fields. This forces
1079 	 * us to copy the structure to its native form.
1080 	 */
1081 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1082 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1083 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1084 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1085 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1086 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1087 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1088 
1089 	iovcnt = lmsg.msg_iovlen;
1090 
1091 	if (iovcnt <= 0 || iovcnt > IOV_MAX) {
1092 		return (set_errno(EMSGSIZE));
1093 	}
1094 
1095 	if (iovcnt > IOV_MAX_STACK) {
1096 		iovsize = iovcnt * sizeof (struct iovec);
1097 		aiov = kmem_alloc(iovsize, KM_SLEEP);
1098 	}
1099 
1100 #ifdef _SYSCALL32_IMPL
1101 	/*
1102 	 * 32-bit callers need to have their iovec expanded, while ensuring
1103 	 * that they can't move more than 2Gbytes of data in a single call.
1104 	 */
1105 	if (model == DATAMODEL_ILP32) {
1106 		struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32;
1107 		ssize_t iov32size;
1108 		ssize32_t count32;
1109 
1110 		iov32size = iovcnt * sizeof (struct iovec32);
1111 		if (iovsize != 0)
1112 			aiov32 = kmem_alloc(iov32size, KM_SLEEP);
1113 
1114 		if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) {
1115 			if (iovsize != 0) {
1116 				kmem_free(aiov32, iov32size);
1117 				kmem_free(aiov, iovsize);
1118 			}
1119 
1120 			return (set_errno(EFAULT));
1121 		}
1122 
1123 		count32 = 0;
1124 		for (i = 0; i < iovcnt; i++) {
1125 			ssize32_t iovlen32;
1126 
1127 			iovlen32 = aiov32[i].iov_len;
1128 			count32 += iovlen32;
1129 			if (iovlen32 < 0 || count32 < 0) {
1130 				if (iovsize != 0) {
1131 					kmem_free(aiov32, iov32size);
1132 					kmem_free(aiov, iovsize);
1133 				}
1134 
1135 				return (set_errno(EINVAL));
1136 			}
1137 
1138 			aiov[i].iov_len = iovlen32;
1139 			aiov[i].iov_base =
1140 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1141 		}
1142 
1143 		if (iovsize != 0)
1144 			kmem_free(aiov32, iov32size);
1145 	} else
1146 #endif /* _SYSCALL32_IMPL */
1147 	if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1148 		if (iovsize != 0)
1149 			kmem_free(aiov, iovsize);
1150 
1151 		return (set_errno(EFAULT));
1152 	}
1153 	len = 0;
1154 	for (i = 0; i < iovcnt; i++) {
1155 		ssize_t iovlen = aiov[i].iov_len;
1156 		len += iovlen;
1157 		if (iovlen < 0 || len < 0) {
1158 			if (iovsize != 0)
1159 				kmem_free(aiov, iovsize);
1160 
1161 			return (set_errno(EINVAL));
1162 		}
1163 	}
1164 	auio.uio_loffset = 0;
1165 	auio.uio_iov = aiov;
1166 	auio.uio_iovcnt = iovcnt;
1167 	auio.uio_resid = len;
1168 	auio.uio_segflg = UIO_USERSPACE;
1169 	auio.uio_limit = 0;
1170 
1171 	if (lmsg.msg_control != NULL &&
1172 	    (do_useracc == 0 ||
1173 	    useracc(lmsg.msg_control, lmsg.msg_controllen,
1174 	    B_WRITE) != 0)) {
1175 		if (iovsize != 0)
1176 			kmem_free(aiov, iovsize);
1177 
1178 		return (set_errno(EFAULT));
1179 	}
1180 
1181 	rval = recvit(sock, &lmsg, &auio, flags,
1182 	    STRUCT_FADDR(umsgptr, msg_namelen),
1183 	    STRUCT_FADDR(umsgptr, msg_controllen), flagsp);
1184 
1185 	if (iovsize != 0)
1186 		kmem_free(aiov, iovsize);
1187 
1188 	return (rval);
1189 }
1190 
1191 /*
1192  * Common send function.
1193  */
1194 static ssize_t
1195 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1196 {
1197 	struct sonode *so;
1198 	file_t *fp;
1199 	void *name;
1200 	socklen_t namelen;
1201 	void *control;
1202 	socklen_t controllen;
1203 	ssize_t len;
1204 	int error;
1205 
1206 	if ((so = getsonode(sock, &error, &fp)) == NULL)
1207 		return (set_errno(error));
1208 
1209 	uiop->uio_fmode = fp->f_flag;
1210 
1211 	if (so->so_family == AF_UNIX)
1212 		uiop->uio_extflg = UIO_COPY_CACHED;
1213 	else
1214 		uiop->uio_extflg = UIO_COPY_DEFAULT;
1215 
1216 	len = uiop->uio_resid;
1217 
1218 	/* Allocate and copyin name and control */
1219 	name = msg->msg_name;
1220 	namelen = msg->msg_namelen;
1221 	if (name != NULL && namelen != 0) {
1222 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1223 		name = copyin_name(so,
1224 		    (struct sockaddr *)name,
1225 		    &namelen, &error);
1226 		if (name == NULL)
1227 			goto done3;
1228 		/* copyin_name null terminates addresses for AF_UNIX */
1229 		msg->msg_namelen = namelen;
1230 		msg->msg_name = name;
1231 	} else {
1232 		msg->msg_name = name = NULL;
1233 		msg->msg_namelen = namelen = 0;
1234 	}
1235 
1236 	control = msg->msg_control;
1237 	controllen = msg->msg_controllen;
1238 	if ((control != NULL) && (controllen != 0)) {
1239 		/*
1240 		 * Verify that the length is not excessive to prevent
1241 		 * an application from consuming all of kernel memory.
1242 		 */
1243 		if (controllen > SO_MAXARGSIZE) {
1244 			error = EINVAL;
1245 			goto done2;
1246 		}
1247 		control = kmem_alloc(controllen, KM_SLEEP);
1248 
1249 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1250 		if (copyin(msg->msg_control, control, controllen)) {
1251 			error = EFAULT;
1252 			goto done1;
1253 		}
1254 		msg->msg_control = control;
1255 	} else {
1256 		msg->msg_control = control = NULL;
1257 		msg->msg_controllen = controllen = 0;
1258 	}
1259 
1260 	msg->msg_flags = flags;
1261 
1262 	error = socket_sendmsg(so, msg, uiop, CRED());
1263 done1:
1264 	if (control != NULL)
1265 		kmem_free(control, controllen);
1266 done2:
1267 	if (name != NULL)
1268 		kmem_free(name, namelen);
1269 done3:
1270 	if (error != 0) {
1271 		releasef(sock);
1272 		return (set_errno(error));
1273 	}
1274 	lwp_stat_update(LWP_STAT_MSGSND, 1);
1275 	releasef(sock);
1276 	return (len - uiop->uio_resid);
1277 }
1278 
1279 /*
1280  * Native system call
1281  */
1282 ssize_t
1283 send(int sock, void *buffer, size_t len, int flags)
1284 {
1285 	struct nmsghdr lmsg;
1286 	struct uio auio;
1287 	struct iovec aiov[1];
1288 
1289 	dprint(1, ("send(%d, %p, %ld, %d)\n",
1290 	    sock, buffer, len, flags));
1291 
1292 	if ((ssize_t)len < 0) {
1293 		return (set_errno(EINVAL));
1294 	}
1295 
1296 	aiov[0].iov_base = buffer;
1297 	aiov[0].iov_len = len;
1298 	auio.uio_loffset = 0;
1299 	auio.uio_iov = aiov;
1300 	auio.uio_iovcnt = 1;
1301 	auio.uio_resid = len;
1302 	auio.uio_segflg = UIO_USERSPACE;
1303 	auio.uio_limit = 0;
1304 
1305 	lmsg.msg_name = NULL;
1306 	lmsg.msg_control = NULL;
1307 	if (!(flags & MSG_XPG4_2)) {
1308 		/*
1309 		 * In order to be compatible with the libsocket/sockmod
1310 		 * implementation we set EOR for all send* calls.
1311 		 */
1312 		flags |= MSG_EOR;
1313 	}
1314 	return (sendit(sock, &lmsg, &auio, flags));
1315 }
1316 
1317 /*
1318  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1319  * struct omsghdr or struct nmsghdr.
1320  */
1321 ssize_t
1322 sendmsg(int sock, struct nmsghdr *msg, int flags)
1323 {
1324 	struct nmsghdr lmsg;
1325 	STRUCT_DECL(nmsghdr, u_lmsg);
1326 	struct uio auio;
1327 	struct iovec buf[IOV_MAX_STACK], *aiov = buf;
1328 	ssize_t iovsize = 0;
1329 	int iovcnt;
1330 	ssize_t len, rval;
1331 	int i;
1332 	model_t	model;
1333 
1334 	dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags));
1335 
1336 	model = get_udatamodel();
1337 	STRUCT_INIT(u_lmsg, model);
1338 
1339 	if (flags & MSG_XPG4_2) {
1340 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1341 		    STRUCT_SIZE(u_lmsg)))
1342 			return (set_errno(EFAULT));
1343 	} else {
1344 		/*
1345 		 * Assumes that nmsghdr and omsghdr are identically shaped
1346 		 * except for the added msg_flags field.
1347 		 */
1348 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1349 		    SIZEOF_STRUCT(omsghdr, model)))
1350 			return (set_errno(EFAULT));
1351 		/*
1352 		 * In order to be compatible with the libsocket/sockmod
1353 		 * implementation we set EOR for all send* calls.
1354 		 */
1355 		flags |= MSG_EOR;
1356 	}
1357 
1358 	/*
1359 	 * Code below us will kmem_alloc memory and hang it
1360 	 * off msg_control and msg_name fields. This forces
1361 	 * us to copy the structure to its native form.
1362 	 */
1363 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1364 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1365 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1366 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1367 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1368 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1369 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1370 
1371 	iovcnt = lmsg.msg_iovlen;
1372 
1373 	if (iovcnt <= 0 || iovcnt > IOV_MAX) {
1374 		/*
1375 		 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1376 		 * be compatible with SunOS 4.X and 4.4BSD.
1377 		 */
1378 		if (iovcnt != 0 || (flags & MSG_XPG4_2))
1379 			return (set_errno(EMSGSIZE));
1380 	}
1381 
1382 	if (iovcnt > IOV_MAX_STACK) {
1383 		iovsize = iovcnt * sizeof (struct iovec);
1384 		aiov = kmem_alloc(iovsize, KM_SLEEP);
1385 	}
1386 
1387 #ifdef _SYSCALL32_IMPL
1388 	/*
1389 	 * 32-bit callers need to have their iovec expanded, while ensuring
1390 	 * that they can't move more than 2Gbytes of data in a single call.
1391 	 */
1392 	if (model == DATAMODEL_ILP32) {
1393 		struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32;
1394 		ssize_t iov32size;
1395 		ssize32_t count32;
1396 
1397 		iov32size = iovcnt * sizeof (struct iovec32);
1398 		if (iovsize != 0)
1399 			aiov32 = kmem_alloc(iov32size, KM_SLEEP);
1400 
1401 		if (iovcnt != 0 &&
1402 		    copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) {
1403 			if (iovsize != 0) {
1404 				kmem_free(aiov32, iov32size);
1405 				kmem_free(aiov, iovsize);
1406 			}
1407 
1408 			return (set_errno(EFAULT));
1409 		}
1410 
1411 		count32 = 0;
1412 		for (i = 0; i < iovcnt; i++) {
1413 			ssize32_t iovlen32;
1414 
1415 			iovlen32 = aiov32[i].iov_len;
1416 			count32 += iovlen32;
1417 			if (iovlen32 < 0 || count32 < 0) {
1418 				if (iovsize != 0) {
1419 					kmem_free(aiov32, iov32size);
1420 					kmem_free(aiov, iovsize);
1421 				}
1422 
1423 				return (set_errno(EINVAL));
1424 			}
1425 
1426 			aiov[i].iov_len = iovlen32;
1427 			aiov[i].iov_base =
1428 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1429 		}
1430 
1431 		if (iovsize != 0)
1432 			kmem_free(aiov32, iov32size);
1433 	} else
1434 #endif /* _SYSCALL32_IMPL */
1435 	if (iovcnt != 0 &&
1436 	    copyin(lmsg.msg_iov, aiov,
1437 	    (unsigned)iovcnt * sizeof (struct iovec))) {
1438 		if (iovsize != 0)
1439 			kmem_free(aiov, iovsize);
1440 
1441 		return (set_errno(EFAULT));
1442 	}
1443 	len = 0;
1444 	for (i = 0; i < iovcnt; i++) {
1445 		ssize_t iovlen = aiov[i].iov_len;
1446 		len += iovlen;
1447 		if (iovlen < 0 || len < 0) {
1448 			if (iovsize != 0)
1449 				kmem_free(aiov, iovsize);
1450 
1451 			return (set_errno(EINVAL));
1452 		}
1453 	}
1454 	auio.uio_loffset = 0;
1455 	auio.uio_iov = aiov;
1456 	auio.uio_iovcnt = iovcnt;
1457 	auio.uio_resid = len;
1458 	auio.uio_segflg = UIO_USERSPACE;
1459 	auio.uio_limit = 0;
1460 
1461 	rval = sendit(sock, &lmsg, &auio, flags);
1462 
1463 	if (iovsize != 0)
1464 		kmem_free(aiov, iovsize);
1465 
1466 	return (rval);
1467 }
1468 
1469 ssize_t
1470 sendto(int sock, void *buffer, size_t len, int flags,
1471     struct sockaddr *name, socklen_t namelen)
1472 {
1473 	struct nmsghdr lmsg;
1474 	struct uio auio;
1475 	struct iovec aiov[1];
1476 
1477 	dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1478 	    sock, buffer, len, flags, (void *)name, namelen));
1479 
1480 	if ((ssize_t)len < 0) {
1481 		return (set_errno(EINVAL));
1482 	}
1483 
1484 	aiov[0].iov_base = buffer;
1485 	aiov[0].iov_len = len;
1486 	auio.uio_loffset = 0;
1487 	auio.uio_iov = aiov;
1488 	auio.uio_iovcnt = 1;
1489 	auio.uio_resid = len;
1490 	auio.uio_segflg = UIO_USERSPACE;
1491 	auio.uio_limit = 0;
1492 
1493 	lmsg.msg_name = (char *)name;
1494 	lmsg.msg_namelen = namelen;
1495 	lmsg.msg_control = NULL;
1496 	if (!(flags & MSG_XPG4_2)) {
1497 		/*
1498 		 * In order to be compatible with the libsocket/sockmod
1499 		 * implementation we set EOR for all send* calls.
1500 		 */
1501 		flags |= MSG_EOR;
1502 	}
1503 	return (sendit(sock, &lmsg, &auio, flags));
1504 }
1505 
1506 /*ARGSUSED3*/
1507 int
1508 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1509 {
1510 	struct sonode *so;
1511 	int error;
1512 	socklen_t namelen;
1513 	socklen_t sock_addrlen;
1514 	struct sockaddr *sock_addrp;
1515 
1516 	dprint(1, ("getpeername(%d, %p, %p)\n",
1517 	    sock, (void *)name, (void *)namelenp));
1518 
1519 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1520 		goto bad;
1521 
1522 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1523 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1524 	    (name == NULL && namelen != 0)) {
1525 		error = EFAULT;
1526 		goto rel_out;
1527 	}
1528 	sock_addrlen = so->so_max_addr_len;
1529 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1530 
1531 	if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen,
1532 	    B_FALSE, CRED())) == 0) {
1533 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1534 		error = copyout_name(name, namelen, namelenp,
1535 		    (void *)sock_addrp, sock_addrlen);
1536 	}
1537 	kmem_free(sock_addrp, so->so_max_addr_len);
1538 rel_out:
1539 	releasef(sock);
1540 bad:	return (error != 0 ? set_errno(error) : 0);
1541 }
1542 
1543 /*ARGSUSED3*/
1544 int
1545 getsockname(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1546 {
1547 	struct sonode *so;
1548 	int error;
1549 	socklen_t namelen, sock_addrlen;
1550 	struct sockaddr *sock_addrp;
1551 
1552 	dprint(1, ("getsockname(%d, %p, %p)\n",
1553 	    sock, (void *)name, (void *)namelenp));
1554 
1555 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1556 		goto bad;
1557 
1558 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1559 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1560 	    (name == NULL && namelen != 0)) {
1561 		error = EFAULT;
1562 		goto rel_out;
1563 	}
1564 
1565 	sock_addrlen = so->so_max_addr_len;
1566 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1567 	if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen,
1568 	    CRED())) == 0) {
1569 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1570 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1571 		error = copyout_name(name, namelen, namelenp,
1572 		    (void *)sock_addrp, sock_addrlen);
1573 	}
1574 	kmem_free(sock_addrp, so->so_max_addr_len);
1575 rel_out:
1576 	releasef(sock);
1577 bad:	return (error != 0 ? set_errno(error) : 0);
1578 }
1579 
1580 /*ARGSUSED5*/
1581 int
1582 getsockopt(int sock, int level, int option_name, void *option_value,
1583     socklen_t *option_lenp, int version)
1584 {
1585 	struct sonode *so;
1586 	socklen_t optlen, optlen_res;
1587 	void *optval;
1588 	int error;
1589 
1590 	dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1591 	    sock, level, option_name, option_value, (void *)option_lenp));
1592 
1593 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1594 		return (set_errno(error));
1595 
1596 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1597 	if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1598 		releasef(sock);
1599 		return (set_errno(EFAULT));
1600 	}
1601 	/*
1602 	 * Verify that the length is not excessive to prevent
1603 	 * an application from consuming all of kernel memory.
1604 	 */
1605 	if (optlen > SO_MAXARGSIZE) {
1606 		error = EINVAL;
1607 		releasef(sock);
1608 		return (set_errno(error));
1609 	}
1610 	optval = kmem_alloc(optlen, KM_SLEEP);
1611 	optlen_res = optlen;
1612 	error = socket_getsockopt(so, level, option_name, optval,
1613 	    &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2,
1614 	    CRED());
1615 	releasef(sock);
1616 	if (error) {
1617 		kmem_free(optval, optlen);
1618 		return (set_errno(error));
1619 	}
1620 	error = copyout_arg(option_value, optlen, option_lenp,
1621 	    optval, optlen_res);
1622 	kmem_free(optval, optlen);
1623 	if (error)
1624 		return (set_errno(error));
1625 	return (0);
1626 }
1627 
1628 /*ARGSUSED5*/
1629 int
1630 setsockopt(int sock, int level, int option_name, void *option_value,
1631     socklen_t option_len, int version)
1632 {
1633 	struct sonode *so;
1634 	intptr_t buffer[2];
1635 	void *optval = NULL;
1636 	int error;
1637 
1638 	dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1639 	    sock, level, option_name, option_value, option_len));
1640 
1641 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1642 		return (set_errno(error));
1643 
1644 	if (option_value != NULL) {
1645 		if (option_len != 0) {
1646 			/*
1647 			 * Verify that the length is not excessive to prevent
1648 			 * an application from consuming all of kernel memory.
1649 			 */
1650 			if (option_len > SO_MAXARGSIZE) {
1651 				error = EINVAL;
1652 				goto done2;
1653 			}
1654 			optval = option_len <= sizeof (buffer) ?
1655 			    &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1656 			ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1657 			if (copyin(option_value, optval, (size_t)option_len)) {
1658 				error = EFAULT;
1659 				goto done1;
1660 			}
1661 		}
1662 	} else
1663 		option_len = 0;
1664 
1665 	error = socket_setsockopt(so, level, option_name, optval,
1666 	    (t_uscalar_t)option_len, CRED());
1667 done1:
1668 	if (optval != buffer)
1669 		kmem_free(optval, (size_t)option_len);
1670 done2:
1671 	releasef(sock);
1672 	if (error)
1673 		return (set_errno(error));
1674 	return (0);
1675 }
1676 
1677 static int
1678 sockconf_add_sock(int family, int type, int protocol, char *name)
1679 {
1680 	int error = 0;
1681 	char *kdevpath = NULL;
1682 	char *kmodule = NULL;
1683 	char *buf = NULL;
1684 	size_t pathlen = 0;
1685 	struct sockparams *sp;
1686 
1687 	if (name == NULL)
1688 		return (EINVAL);
1689 	/*
1690 	 * Copyin the name.
1691 	 * This also makes it possible to check for too long pathnames.
1692 	 * Compress the space needed for the name before passing it
1693 	 * to soconfig - soconfig will store the string until
1694 	 * the configuration is removed.
1695 	 */
1696 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1697 	if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) {
1698 		kmem_free(buf, MAXPATHLEN);
1699 		return (error);
1700 	}
1701 	if (strncmp(buf, "/dev", strlen("/dev")) == 0) {
1702 		/* For device */
1703 		kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1704 		bcopy(buf, kdevpath, pathlen);
1705 		kdevpath[pathlen - 1] = '\0';
1706 	} else {
1707 		/* For socket module */
1708 		kmodule = kmem_alloc(pathlen, KM_SLEEP);
1709 		bcopy(buf, kmodule, pathlen);
1710 		kmodule[pathlen - 1] = '\0';
1711 		pathlen = 0;
1712 	}
1713 	kmem_free(buf, MAXPATHLEN);
1714 
1715 	/* sockparams_create frees mod name and devpath upon failure */
1716 	sp = sockparams_create(family, type, protocol, kmodule,
1717 	    kdevpath, pathlen, 0, KM_SLEEP, &error);
1718 	if (sp != NULL) {
1719 		error = sockparams_add(sp);
1720 		if (error != 0)
1721 			sockparams_destroy(sp);
1722 	}
1723 
1724 	return (error);
1725 }
1726 
1727 static int
1728 sockconf_remove_sock(int family, int type, int protocol)
1729 {
1730 	return (sockparams_delete(family, type, protocol));
1731 }
1732 
1733 static int
1734 sockconfig_remove_filter(const char *uname)
1735 {
1736 	char kname[SOF_MAXNAMELEN];
1737 	size_t len;
1738 	int error;
1739 	sof_entry_t *ent;
1740 
1741 	if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0)
1742 		return (error);
1743 
1744 	ent = sof_entry_remove_by_name(kname);
1745 	if (ent == NULL)
1746 		return (ENXIO);
1747 
1748 	mutex_enter(&ent->sofe_lock);
1749 	ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED));
1750 	if (ent->sofe_refcnt == 0) {
1751 		mutex_exit(&ent->sofe_lock);
1752 		sof_entry_free(ent);
1753 	} else {
1754 		/* let the last socket free the filter */
1755 		ent->sofe_flags |= SOFEF_CONDEMED;
1756 		mutex_exit(&ent->sofe_lock);
1757 	}
1758 
1759 	return (0);
1760 }
1761 
1762 static int
1763 sockconfig_add_filter(const char *uname, void *ufilpropp)
1764 {
1765 	struct sockconfig_filter_props filprop;
1766 	sof_entry_t *ent;
1767 	int error;
1768 	size_t tuplesz, len;
1769 	char hintbuf[SOF_MAXNAMELEN];
1770 
1771 	ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP);
1772 	mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL);
1773 
1774 	if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN,
1775 	    &len)) != 0) {
1776 		sof_entry_free(ent);
1777 		return (error);
1778 	}
1779 
1780 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1781 		if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) {
1782 			sof_entry_free(ent);
1783 			return (EFAULT);
1784 		}
1785 	}
1786 #ifdef	_SYSCALL32_IMPL
1787 	else {
1788 		struct sockconfig_filter_props32 filprop32;
1789 
1790 		if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) {
1791 			sof_entry_free(ent);
1792 			return (EFAULT);
1793 		}
1794 		filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname;
1795 		filprop.sfp_autoattach = filprop32.sfp_autoattach;
1796 		filprop.sfp_hint = filprop32.sfp_hint;
1797 		filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg;
1798 		filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt;
1799 		filprop.sfp_socktuple =
1800 		    (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple;
1801 	}
1802 #endif	/* _SYSCALL32_IMPL */
1803 
1804 	if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname,
1805 	    sizeof (ent->sofe_modname), &len)) != 0) {
1806 		sof_entry_free(ent);
1807 		return (error);
1808 	}
1809 
1810 	/*
1811 	 * A filter must specify at least one socket tuple.
1812 	 */
1813 	if (filprop.sfp_socktuple_cnt == 0 ||
1814 	    filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) {
1815 		sof_entry_free(ent);
1816 		return (EINVAL);
1817 	}
1818 	ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG;
1819 	ent->sofe_hint = filprop.sfp_hint;
1820 
1821 	/*
1822 	 * Verify the hint, and copy in the hint argument, if necessary.
1823 	 */
1824 	switch (ent->sofe_hint) {
1825 	case SOF_HINT_BEFORE:
1826 	case SOF_HINT_AFTER:
1827 		if ((error = copyinstr(filprop.sfp_hintarg, hintbuf,
1828 		    sizeof (hintbuf), &len)) != 0) {
1829 			sof_entry_free(ent);
1830 			return (error);
1831 		}
1832 		ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP);
1833 		bcopy(hintbuf, ent->sofe_hintarg, len);
1834 		/* FALLTHRU */
1835 	case SOF_HINT_TOP:
1836 	case SOF_HINT_BOTTOM:
1837 		/* hints cannot be used with programmatic filters */
1838 		if (ent->sofe_flags & SOFEF_PROG) {
1839 			sof_entry_free(ent);
1840 			return (EINVAL);
1841 		}
1842 		break;
1843 	case SOF_HINT_NONE:
1844 		break;
1845 	default:
1846 		/* bad hint value */
1847 		sof_entry_free(ent);
1848 		return (EINVAL);
1849 	}
1850 
1851 	ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt;
1852 	tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt;
1853 	ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP);
1854 
1855 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1856 		if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple,
1857 		    tuplesz)) {
1858 			sof_entry_free(ent);
1859 			return (EFAULT);
1860 		}
1861 	}
1862 #ifdef	_SYSCALL32_IMPL
1863 	else {
1864 		int i;
1865 		caddr_t data = (caddr_t)filprop.sfp_socktuple;
1866 		sof_socktuple_t	*tup = ent->sofe_socktuple;
1867 		sof_socktuple32_t tup32;
1868 
1869 		tup = ent->sofe_socktuple;
1870 		for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) {
1871 			ASSERT(tup < ent->sofe_socktuple + tuplesz);
1872 
1873 			if (copyin(data, &tup32, sizeof (tup32)) != 0) {
1874 				sof_entry_free(ent);
1875 				return (EFAULT);
1876 			}
1877 			tup->sofst_family = tup32.sofst_family;
1878 			tup->sofst_type = tup32.sofst_type;
1879 			tup->sofst_protocol = tup32.sofst_protocol;
1880 
1881 			data += sizeof (tup32);
1882 		}
1883 	}
1884 #endif	/* _SYSCALL32_IMPL */
1885 
1886 	/* Sockets can start using the filter as soon as the filter is added */
1887 	if ((error = sof_entry_add(ent)) != 0)
1888 		sof_entry_free(ent);
1889 
1890 	return (error);
1891 }
1892 
1893 /*
1894  * Socket configuration system call. It is used to add and remove
1895  * socket types.
1896  */
1897 int
1898 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
1899 {
1900 	int error = 0;
1901 
1902 	if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1903 		return (set_errno(EPERM));
1904 
1905 	switch (cmd) {
1906 	case SOCKCONFIG_ADD_SOCK:
1907 		error = sockconf_add_sock((int)(uintptr_t)arg1,
1908 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4);
1909 		break;
1910 	case SOCKCONFIG_REMOVE_SOCK:
1911 		error = sockconf_remove_sock((int)(uintptr_t)arg1,
1912 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3);
1913 		break;
1914 	case SOCKCONFIG_ADD_FILTER:
1915 		error = sockconfig_add_filter((const char *)arg1, arg2);
1916 		break;
1917 	case SOCKCONFIG_REMOVE_FILTER:
1918 		error = sockconfig_remove_filter((const char *)arg1);
1919 		break;
1920 	case SOCKCONFIG_GET_SOCKTABLE:
1921 		error = sockparams_copyout_socktable((int)(uintptr_t)arg1);
1922 		break;
1923 	default:
1924 #ifdef	DEBUG
1925 		cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd);
1926 #endif
1927 		error = EINVAL;
1928 		break;
1929 	}
1930 
1931 	if (error != 0) {
1932 		eprintline(error);
1933 		return (set_errno(error));
1934 	}
1935 	return (0);
1936 }
1937 
1938 
1939 /*
1940  * Sendfile is implemented through two schemes, direct I/O or by
1941  * caching in the filesystem page cache. We cache the input file by
1942  * default and use direct I/O only if sendfile_max_size is set
1943  * appropriately as explained below. Note that this logic is consistent
1944  * with other filesystems where caching is turned on by default
1945  * unless explicitly turned off by using the DIRECTIO ioctl.
1946  *
1947  * We choose a slightly different scheme here. One can turn off
1948  * caching by setting sendfile_max_size to 0. One can also enable
1949  * caching of files <= sendfile_max_size by setting sendfile_max_size
1950  * to an appropriate value. By default sendfile_max_size is set to the
1951  * maximum value so that all files are cached. In future, we may provide
1952  * better interfaces for caching the file.
1953  *
1954  * Sendfile through Direct I/O (Zero copy)
1955  * --------------------------------------
1956  *
1957  * As disks are normally slower than the network, we can't have a
1958  * single thread that reads the disk and writes to the network. We
1959  * need to have parallelism. This is done by having the sendfile
1960  * thread create another thread that reads from the filesystem
1961  * and queues it for network processing. In this scheme, the data
1962  * is never copied anywhere i.e it is zero copy unlike the other
1963  * scheme.
1964  *
1965  * We have a sendfile queue (snfq) where each sendfile
1966  * request (snf_req_t) is queued for processing by a thread. Number
1967  * of threads is dynamically allocated and they exit if they are idling
1968  * beyond a specified amount of time. When each request (snf_req_t) is
1969  * processed by a thread, it produces a number of mblk_t structures to
1970  * be consumed by the sendfile thread. snf_deque and snf_enque are
1971  * used for consuming and producing mblks. Size of the filesystem
1972  * read is determined by the tunable (sendfile_read_size). A single
1973  * mblk holds sendfile_read_size worth of data (except the last
1974  * read of the file) which is sent down as a whole to the network.
1975  * sendfile_read_size is set to 1 MB as this seems to be the optimal
1976  * value for the UFS filesystem backed by a striped storage array.
1977  *
1978  * Synchronisation between read (producer) and write (consumer) threads.
1979  * --------------------------------------------------------------------
1980  *
1981  * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1982  * adding and deleting items in this list. Error can happen anytime
1983  * during read or write. There could be unprocessed mblks in the
1984  * sr_ib_XXX list when a read or write error occurs. Whenever error
1985  * is encountered, we need two things to happen :
1986  *
1987  * a) One of the threads need to clean the mblks.
1988  * b) When one thread encounters an error, the other should stop.
1989  *
1990  * For (a), we don't want to penalize the reader thread as it could do
1991  * some useful work processing other requests. For (b), the error can
1992  * be detected by examining sr_read_error or sr_write_error.
1993  * sr_lock protects sr_read_error and sr_write_error. If both reader and
1994  * writer encounters error, we need to report the write error back to
1995  * the application as that's what would have happened if the operations
1996  * were done sequentially. With this in mind, following should work :
1997  *
1998  *	- Check for errors before read or write.
1999  *	- If the reader encounters error, set the error in sr_read_error.
2000  *	  Check sr_write_error, if it is set, send cv_signal as it is
2001  *	  waiting for reader to complete. If it is not set, the writer
2002  *	  is either running sinking data to the network or blocked
2003  *        because of flow control. For handling the latter case, we
2004  *	  always send a signal. In any case, it will examine sr_read_error
2005  *	  and return. sr_read_error is marked with SR_READ_DONE to tell
2006  *	  the writer that the reader is done in all the cases.
2007  *	- If the writer encounters error, set the error in sr_write_error.
2008  *	  The reader thread is either blocked because of flow control or
2009  *	  running reading data from the disk. For the former, we need to
2010  *	  wakeup the thread. Again to keep it simple, we always wake up
2011  *	  the reader thread. Then, wait for the read thread to complete
2012  *	  if it is not done yet. Cleanup and return.
2013  *
2014  * High and low water marks for the read thread.
2015  * --------------------------------------------
2016  *
2017  * If sendfile() is used to send data over a slow network, we need to
2018  * make sure that the read thread does not produce data at a faster
2019  * rate than the network. This can happen if the disk is faster than
2020  * the network. In such a case, we don't want to build a very large queue.
2021  * But we would still like to get all of the network throughput possible.
2022  * This implies that network should never block waiting for data.
2023  * As there are lot of disk throughput/network throughput combinations
2024  * possible, it is difficult to come up with an accurate number.
2025  * A typical 10K RPM disk has a max seek latency 17ms and rotational
2026  * latency of 3ms for reading a disk block. Thus, the total latency to
2027  * initiate a new read, transfer data from the disk and queue for
2028  * transmission would take about a max of 25ms. Todays max transfer rate
2029  * for network is 100MB/sec. If the thread is blocked because of flow
2030  * control, it would take 25ms to get new data ready for transmission.
2031  * We have to make sure that network is not idling, while we are initiating
2032  * new transfers. So, at 100MB/sec, to keep network busy we would need
2033  * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
2034  * We need to pick a high water mark so that the woken up thread would
2035  * do considerable work before blocking again to prevent thrashing. Currently,
2036  * we pick this to be 10 times that of the low water mark.
2037  *
2038  * Sendfile with segmap caching (One copy from page cache to mblks).
2039  * ----------------------------------------------------------------
2040  *
2041  * We use the segmap cache for caching the file, if the size of file
2042  * is <= sendfile_max_size. In this case we don't use threads as VM
2043  * is reasonably fast enough to keep up with the network. If the underlying
2044  * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
2045  * of data into segmap space, and use the virtual address from segmap
2046  * directly through desballoc() to avoid copy. Once the transport is done
2047  * with the data, the mapping will be released through segmap_release()
2048  * called by the call-back routine.
2049  *
2050  * If zero-copy is not allowed by the transport, we simply call VOP_READ()
2051  * to copy the data from the filesystem into our temporary network buffer.
2052  *
2053  * To disable caching, set sendfile_max_size to 0.
2054  */
2055 
2056 uint_t sendfile_read_size = 1024 * 1024;
2057 #define	SENDFILE_REQ_LOWAT	3 * 1024 * 1024
2058 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
2059 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
2060 struct sendfile_stats sf_stats;
2061 struct sendfile_queue *snfq;
2062 clock_t snfq_timeout;
2063 off64_t sendfile_max_size;
2064 
2065 static void snf_enque(snf_req_t *, mblk_t *);
2066 static mblk_t *snf_deque(snf_req_t *);
2067 
2068 void
2069 sendfile_init(void)
2070 {
2071 	snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
2072 
2073 	mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
2074 	cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
2075 	snfq->snfq_max_threads = max_ncpus;
2076 	snfq_timeout = SNFQ_TIMEOUT;
2077 	/* Cache all files by default. */
2078 	sendfile_max_size = MAXOFFSET_T;
2079 }
2080 
2081 /*
2082  * Queues a mblk_t for network processing.
2083  */
2084 static void
2085 snf_enque(snf_req_t *sr, mblk_t *mp)
2086 {
2087 	mp->b_next = NULL;
2088 	mutex_enter(&sr->sr_lock);
2089 	if (sr->sr_mp_head == NULL) {
2090 		sr->sr_mp_head = sr->sr_mp_tail = mp;
2091 		cv_signal(&sr->sr_cv);
2092 	} else {
2093 		sr->sr_mp_tail->b_next = mp;
2094 		sr->sr_mp_tail = mp;
2095 	}
2096 	sr->sr_qlen += MBLKL(mp);
2097 	while ((sr->sr_qlen > sr->sr_hiwat) &&
2098 	    (sr->sr_write_error == 0)) {
2099 		sf_stats.ss_full_waits++;
2100 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2101 	}
2102 	mutex_exit(&sr->sr_lock);
2103 }
2104 
2105 /*
2106  * De-queues a mblk_t for network processing.
2107  */
2108 static mblk_t *
2109 snf_deque(snf_req_t *sr)
2110 {
2111 	mblk_t *mp;
2112 
2113 	mutex_enter(&sr->sr_lock);
2114 	/*
2115 	 * If we have encountered an error on read or read is
2116 	 * completed and no more mblks, return NULL.
2117 	 * We need to check for NULL sr_mp_head also as
2118 	 * the reads could have completed and there is
2119 	 * nothing more to come.
2120 	 */
2121 	if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
2122 	    ((sr->sr_read_error & SR_READ_DONE) &&
2123 	    sr->sr_mp_head == NULL)) {
2124 		mutex_exit(&sr->sr_lock);
2125 		return (NULL);
2126 	}
2127 	/*
2128 	 * To start with neither SR_READ_DONE is marked nor
2129 	 * the error is set. When we wake up from cv_wait,
2130 	 * following are the possibilities :
2131 	 *
2132 	 *	a) sr_read_error is zero and mblks are queued.
2133 	 *	b) sr_read_error is set to SR_READ_DONE
2134 	 *	   and mblks are queued.
2135 	 *	c) sr_read_error is set to SR_READ_DONE
2136 	 *	   and no mblks.
2137 	 *	d) sr_read_error is set to some error other
2138 	 *	   than SR_READ_DONE.
2139 	 */
2140 
2141 	while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
2142 		sf_stats.ss_empty_waits++;
2143 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2144 	}
2145 	/* Handle (a) and (b) first  - the normal case. */
2146 	if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
2147 	    (sr->sr_mp_head != NULL)) {
2148 		mp = sr->sr_mp_head;
2149 		sr->sr_mp_head = mp->b_next;
2150 		sr->sr_qlen -= MBLKL(mp);
2151 		if (sr->sr_qlen < sr->sr_lowat)
2152 			cv_signal(&sr->sr_cv);
2153 		mutex_exit(&sr->sr_lock);
2154 		mp->b_next = NULL;
2155 		return (mp);
2156 	}
2157 	/* Handle (c) and (d). */
2158 	mutex_exit(&sr->sr_lock);
2159 	return (NULL);
2160 }
2161 
2162 /*
2163  * Reads data from the filesystem and queues it for network processing.
2164  */
2165 void
2166 snf_async_read(snf_req_t *sr)
2167 {
2168 	size_t iosize;
2169 	u_offset_t fileoff;
2170 	u_offset_t size;
2171 	int ret_size;
2172 	int error;
2173 	file_t *fp;
2174 	mblk_t *mp;
2175 	struct vnode *vp;
2176 	int extra = 0;
2177 	int maxblk = 0;
2178 	int wroff = 0;
2179 	struct sonode *so = NULL;
2180 
2181 	fp = sr->sr_fp;
2182 	size = sr->sr_file_size;
2183 	fileoff = sr->sr_file_off;
2184 
2185 	/*
2186 	 * Ignore the error for filesystems that doesn't support DIRECTIO.
2187 	 */
2188 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
2189 	    kcred, NULL, NULL);
2190 
2191 	vp = sr->sr_vp;
2192 	if (vp->v_type == VSOCK) {
2193 		stdata_t *stp;
2194 
2195 		/*
2196 		 * Get the extra space to insert a header and a trailer.
2197 		 */
2198 		so = VTOSO(vp);
2199 		stp = vp->v_stream;
2200 		if (stp == NULL) {
2201 			wroff = so->so_proto_props.sopp_wroff;
2202 			maxblk = so->so_proto_props.sopp_maxblk;
2203 			extra = wroff + so->so_proto_props.sopp_tail;
2204 		} else {
2205 			wroff = (int)(stp->sd_wroff);
2206 			maxblk = (int)(stp->sd_maxblk);
2207 			extra = wroff + (int)(stp->sd_tail);
2208 		}
2209 	}
2210 
2211 	while ((size != 0) && (sr->sr_write_error == 0)) {
2212 
2213 		iosize = (int)MIN(sr->sr_maxpsz, size);
2214 
2215 		/*
2216 		 * Socket filters can limit the mblk size,
2217 		 * so limit reads to maxblk if there are
2218 		 * filters present.
2219 		 */
2220 		if (vp->v_type == VSOCK &&
2221 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2222 			iosize = (int)MIN(iosize, maxblk);
2223 
2224 		if (is_system_labeled()) {
2225 			mp = allocb_cred(iosize + extra, CRED(),
2226 			    curproc->p_pid);
2227 		} else {
2228 			mp = allocb(iosize + extra, BPRI_MED);
2229 		}
2230 		if (mp == NULL) {
2231 			error = EAGAIN;
2232 			break;
2233 		}
2234 
2235 		mp->b_rptr += wroff;
2236 
2237 		ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
2238 
2239 		/* Error or Reached EOF ? */
2240 		if ((error != 0) || (ret_size == 0)) {
2241 			freeb(mp);
2242 			break;
2243 		}
2244 		mp->b_wptr = mp->b_rptr + ret_size;
2245 
2246 		snf_enque(sr, mp);
2247 		size -= ret_size;
2248 		fileoff += ret_size;
2249 	}
2250 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
2251 	    kcred, NULL, NULL);
2252 	mutex_enter(&sr->sr_lock);
2253 	sr->sr_read_error = error;
2254 	sr->sr_read_error |= SR_READ_DONE;
2255 	cv_signal(&sr->sr_cv);
2256 	mutex_exit(&sr->sr_lock);
2257 }
2258 
2259 void
2260 snf_async_thread(void)
2261 {
2262 	snf_req_t *sr;
2263 	callb_cpr_t cprinfo;
2264 	clock_t time_left = 1;
2265 
2266 	CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
2267 
2268 	mutex_enter(&snfq->snfq_lock);
2269 	for (;;) {
2270 		/*
2271 		 * If we didn't find a entry, then block until woken up
2272 		 * again and then look through the queues again.
2273 		 */
2274 		while ((sr = snfq->snfq_req_head) == NULL) {
2275 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2276 			if (time_left <= 0) {
2277 				snfq->snfq_svc_threads--;
2278 				CALLB_CPR_EXIT(&cprinfo);
2279 				thread_exit();
2280 				/* NOTREACHED */
2281 			}
2282 			snfq->snfq_idle_cnt++;
2283 
2284 			time_left = cv_reltimedwait(&snfq->snfq_cv,
2285 			    &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK);
2286 			snfq->snfq_idle_cnt--;
2287 
2288 			CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2289 		}
2290 		snfq->snfq_req_head = sr->sr_next;
2291 		snfq->snfq_req_cnt--;
2292 		mutex_exit(&snfq->snfq_lock);
2293 		snf_async_read(sr);
2294 		mutex_enter(&snfq->snfq_lock);
2295 	}
2296 }
2297 
2298 
2299 snf_req_t *
2300 create_thread(int operation, struct vnode *vp, file_t *fp,
2301     u_offset_t fileoff, u_offset_t size)
2302 {
2303 	snf_req_t *sr;
2304 	stdata_t *stp;
2305 
2306 	sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2307 
2308 	sr->sr_vp = vp;
2309 	sr->sr_fp = fp;
2310 	stp = vp->v_stream;
2311 
2312 	/*
2313 	 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2314 	 * stream might be closed before thread returns from snf_async_read.
2315 	 */
2316 	if (stp != NULL && stp->sd_qn_maxpsz > 0) {
2317 		sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2318 	} else {
2319 		sr->sr_maxpsz = MAXBSIZE;
2320 	}
2321 
2322 	sr->sr_operation = operation;
2323 	sr->sr_file_off = fileoff;
2324 	sr->sr_file_size = size;
2325 	sr->sr_hiwat = sendfile_req_hiwat;
2326 	sr->sr_lowat = sendfile_req_lowat;
2327 	mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2328 	cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2329 	/*
2330 	 * See whether we need another thread for servicing this
2331 	 * request. If there are already enough requests queued
2332 	 * for the threads, create one if not exceeding
2333 	 * snfq_max_threads.
2334 	 */
2335 	mutex_enter(&snfq->snfq_lock);
2336 	if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2337 	    snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2338 		(void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2339 		    TS_RUN, minclsyspri);
2340 		snfq->snfq_svc_threads++;
2341 	}
2342 	if (snfq->snfq_req_head == NULL) {
2343 		snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2344 		cv_signal(&snfq->snfq_cv);
2345 	} else {
2346 		snfq->snfq_req_tail->sr_next = sr;
2347 		snfq->snfq_req_tail = sr;
2348 	}
2349 	snfq->snfq_req_cnt++;
2350 	mutex_exit(&snfq->snfq_lock);
2351 	return (sr);
2352 }
2353 
2354 int
2355 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2356     ssize_t *count)
2357 {
2358 	snf_req_t *sr;
2359 	mblk_t *mp;
2360 	int iosize;
2361 	int error = 0;
2362 	short fflag;
2363 	struct vnode *vp;
2364 	int ksize;
2365 	struct nmsghdr msg;
2366 
2367 	ksize = 0;
2368 	*count = 0;
2369 	bzero(&msg, sizeof (msg));
2370 
2371 	vp = fp->f_vnode;
2372 	fflag = fp->f_flag;
2373 	if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2374 		return (EAGAIN);
2375 
2376 	/*
2377 	 * We check for read error in snf_deque. It has to check
2378 	 * for successful READ_DONE and return NULL, and we might
2379 	 * as well make an additional check there.
2380 	 */
2381 	while ((mp = snf_deque(sr)) != NULL) {
2382 
2383 		if (ISSIG(curthread, JUSTLOOKING)) {
2384 			freeb(mp);
2385 			error = EINTR;
2386 			break;
2387 		}
2388 		iosize = MBLKL(mp);
2389 
2390 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2391 
2392 		if (error != 0) {
2393 			if (mp != NULL)
2394 				freeb(mp);
2395 			break;
2396 		}
2397 		ksize += iosize;
2398 	}
2399 	*count = ksize;
2400 
2401 	mutex_enter(&sr->sr_lock);
2402 	sr->sr_write_error = error;
2403 	/* Look at the big comments on why we cv_signal here. */
2404 	cv_signal(&sr->sr_cv);
2405 
2406 	/* Wait for the reader to complete always. */
2407 	while (!(sr->sr_read_error & SR_READ_DONE)) {
2408 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2409 	}
2410 	/* If there is no write error, check for read error. */
2411 	if (error == 0)
2412 		error = (sr->sr_read_error & ~SR_READ_DONE);
2413 
2414 	if (error != 0) {
2415 		mblk_t *next_mp;
2416 
2417 		mp = sr->sr_mp_head;
2418 		while (mp != NULL) {
2419 			next_mp = mp->b_next;
2420 			mp->b_next = NULL;
2421 			freeb(mp);
2422 			mp = next_mp;
2423 		}
2424 	}
2425 	mutex_exit(&sr->sr_lock);
2426 	kmem_free(sr, sizeof (snf_req_t));
2427 	return (error);
2428 }
2429 
2430 /* Maximum no.of pages allocated by vpm for sendfile at a time */
2431 #define	SNF_VPMMAXPGS	(VPMMAXPGS/2)
2432 
2433 /*
2434  * Maximum no.of elements in the list returned by vpm, including
2435  * NULL for the last entry
2436  */
2437 #define	SNF_MAXVMAPS	(SNF_VPMMAXPGS + 1)
2438 
2439 typedef struct {
2440 	unsigned int	snfv_ref;
2441 	frtn_t		snfv_frtn;
2442 	vnode_t		*snfv_vp;
2443 	struct vmap	snfv_vml[SNF_MAXVMAPS];
2444 } snf_vmap_desbinfo;
2445 
2446 typedef struct {
2447 	frtn_t		snfi_frtn;
2448 	caddr_t		snfi_base;
2449 	uint_t		snfi_mapoff;
2450 	size_t		snfi_len;
2451 	vnode_t		*snfi_vp;
2452 } snf_smap_desbinfo;
2453 
2454 /*
2455  * The callback function used for vpm mapped mblks called when the last ref of
2456  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2457  * can be the driver too due to lazy reclaim.
2458  */
2459 void
2460 snf_vmap_desbfree(snf_vmap_desbinfo *snfv)
2461 {
2462 	ASSERT(snfv->snfv_ref != 0);
2463 	if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) {
2464 		vpm_unmap_pages(snfv->snfv_vml, S_READ);
2465 		VN_RELE(snfv->snfv_vp);
2466 		kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2467 	}
2468 }
2469 
2470 /*
2471  * The callback function used for segmap'ped mblks called when the last ref of
2472  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2473  * can be the driver too due to lazy reclaim.
2474  */
2475 void
2476 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2477 {
2478 	if (! IS_KPM_ADDR(snfi->snfi_base)) {
2479 		/*
2480 		 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2481 		 * segmap_kpm as long as the latter never falls back to
2482 		 * "use_segmap_range". (See segmap_getmapflt().)
2483 		 *
2484 		 * Using S_OTHER saves an redundant hat_setref() in
2485 		 * segmap_unlock()
2486 		 */
2487 		(void) segmap_fault(kas.a_hat, segkmap,
2488 		    (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2489 		    snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2490 		    F_SOFTUNLOCK, S_OTHER);
2491 	}
2492 	(void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2493 	VN_RELE(snfi->snfi_vp);
2494 	kmem_free(snfi, sizeof (*snfi));
2495 }
2496 
2497 /*
2498  * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk.
2499  * When segmap is used, the mblk contains a segmap slot of no more
2500  * than MAXBSIZE.
2501  *
2502  * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained
2503  * in each iteration and sent by socket_sendmblk until an error occurs or
2504  * the requested size has been transferred. An mblk is esballoca'ed from
2505  * each mapped page and a chain of these mblk is sent to the transport layer.
2506  * vpm will be called to unmap the pages when all mblks have been freed by
2507  * free_func.
2508  *
2509  * At the end of the whole sendfile() operation, we wait till the data from
2510  * the last mblk is ack'ed by the transport before returning so that the
2511  * caller of sendfile() can safely modify the file content.
2512  *
2513  * The caller of this function should make sure that total_size does not exceed
2514  * the actual file size of fvp.
2515  */
2516 int
2517 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size,
2518     ssize_t *count, boolean_t nowait)
2519 {
2520 	caddr_t base;
2521 	int mapoff;
2522 	vnode_t *vp;
2523 	mblk_t *mp = NULL;
2524 	int chain_size;
2525 	int error;
2526 	clock_t deadlk_wait;
2527 	short fflag;
2528 	int ksize;
2529 	struct vattr va;
2530 	boolean_t dowait = B_FALSE;
2531 	struct nmsghdr msg;
2532 
2533 	vp = fp->f_vnode;
2534 	fflag = fp->f_flag;
2535 	ksize = 0;
2536 	bzero(&msg, sizeof (msg));
2537 
2538 	for (;;) {
2539 		if (ISSIG(curthread, JUSTLOOKING)) {
2540 			error = EINTR;
2541 			break;
2542 		}
2543 
2544 		if (vpm_enable) {
2545 			snf_vmap_desbinfo *snfv;
2546 			mblk_t *nmp;
2547 			int mblk_size;
2548 			int maxsize;
2549 			int i;
2550 
2551 			mapoff = fileoff & PAGEOFFSET;
2552 			maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size);
2553 
2554 			snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo),
2555 			    KM_SLEEP);
2556 
2557 			/*
2558 			 * Get vpm mappings for maxsize with read access.
2559 			 * If the pages aren't available yet, we get
2560 			 * DEADLK, so wait and try again a little later using
2561 			 * an increasing wait. We might be here a long time.
2562 			 *
2563 			 * If delay_sig returns EINTR, be sure to exit and
2564 			 * pass it up to the caller.
2565 			 */
2566 			deadlk_wait = 0;
2567 			while ((error = vpm_map_pages(fvp, fileoff,
2568 			    (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml,
2569 			    SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) {
2570 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2571 				if ((error = delay_sig(deadlk_wait)) != 0) {
2572 					break;
2573 				}
2574 			}
2575 			if (error != 0) {
2576 				kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2577 				error = (error == EINTR) ? EINTR : EIO;
2578 				goto out;
2579 			}
2580 			snfv->snfv_frtn.free_func = snf_vmap_desbfree;
2581 			snfv->snfv_frtn.free_arg = (caddr_t)snfv;
2582 
2583 			/* Construct the mblk chain from the page mappings */
2584 			chain_size = 0;
2585 			for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) &&
2586 			    total_size > 0; i++) {
2587 				ASSERT(chain_size < maxsize);
2588 				mblk_size = MIN(snfv->snfv_vml[i].vs_len -
2589 				    mapoff, total_size);
2590 				nmp = esballoca(
2591 				    (uchar_t *)snfv->snfv_vml[i].vs_addr +
2592 				    mapoff, mblk_size, BPRI_HI,
2593 				    &snfv->snfv_frtn);
2594 
2595 				/*
2596 				 * We return EAGAIN after unmapping the pages
2597 				 * if we cannot allocate the the head of the
2598 				 * chain. Otherwise, we continue sending the
2599 				 * mblks constructed so far.
2600 				 */
2601 				if (nmp == NULL) {
2602 					if (i == 0) {
2603 						vpm_unmap_pages(snfv->snfv_vml,
2604 						    S_READ);
2605 						kmem_free(snfv,
2606 						    sizeof (snf_vmap_desbinfo));
2607 						error = EAGAIN;
2608 						goto out;
2609 					}
2610 					break;
2611 				}
2612 				/* Mark this dblk with the zero-copy flag */
2613 				nmp->b_datap->db_struioflag |= STRUIO_ZC;
2614 				nmp->b_wptr += mblk_size;
2615 				chain_size += mblk_size;
2616 				fileoff += mblk_size;
2617 				total_size -= mblk_size;
2618 				snfv->snfv_ref++;
2619 				mapoff = 0;
2620 				if (i > 0)
2621 					linkb(mp, nmp);
2622 				else
2623 					mp = nmp;
2624 			}
2625 			VN_HOLD(fvp);
2626 			snfv->snfv_vp = fvp;
2627 		} else {
2628 			/* vpm not supported. fallback to segmap */
2629 			snf_smap_desbinfo *snfi;
2630 
2631 			mapoff = fileoff & MAXBOFFSET;
2632 			chain_size = MAXBSIZE - mapoff;
2633 			if (chain_size > total_size)
2634 				chain_size = total_size;
2635 			/*
2636 			 * we don't forcefault because we'll call
2637 			 * segmap_fault(F_SOFTLOCK) next.
2638 			 *
2639 			 * S_READ will get the ref bit set (by either
2640 			 * segmap_getmapflt() or segmap_fault()) and page
2641 			 * shared locked.
2642 			 */
2643 			base = segmap_getmapflt(segkmap, fvp, fileoff,
2644 			    chain_size, segmap_kpm ? SM_FAULT : 0, S_READ);
2645 
2646 			snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2647 			snfi->snfi_len = (size_t)roundup(mapoff+chain_size,
2648 			    PAGESIZE)- (mapoff & PAGEMASK);
2649 			/*
2650 			 * We must call segmap_fault() even for segmap_kpm
2651 			 * because that's how error gets returned.
2652 			 * (segmap_getmapflt() never fails but segmap_fault()
2653 			 * does.)
2654 			 *
2655 			 * If the pages aren't available yet, we get
2656 			 * DEADLK, so wait and try again a little later using
2657 			 * an increasing wait. We might be here a long time.
2658 			 *
2659 			 * If delay_sig returns EINTR, be sure to exit and
2660 			 * pass it up to the caller.
2661 			 */
2662 			deadlk_wait = 0;
2663 			while ((error = FC_ERRNO(segmap_fault(kas.a_hat,
2664 			    segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base +
2665 			    mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2666 			    S_READ))) == EDEADLK) {
2667 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2668 				if ((error = delay_sig(deadlk_wait)) != 0) {
2669 					break;
2670 				}
2671 			}
2672 			if (error != 0) {
2673 				(void) segmap_release(segkmap, base, 0);
2674 				kmem_free(snfi, sizeof (*snfi));
2675 				error = (error == EINTR) ? EINTR : EIO;
2676 				goto out;
2677 			}
2678 			snfi->snfi_frtn.free_func = snf_smap_desbfree;
2679 			snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2680 			snfi->snfi_base = base;
2681 			snfi->snfi_mapoff = mapoff;
2682 			mp = esballoca((uchar_t *)base + mapoff, chain_size,
2683 			    BPRI_HI, &snfi->snfi_frtn);
2684 
2685 			if (mp == NULL) {
2686 				(void) segmap_fault(kas.a_hat, segkmap,
2687 				    (caddr_t)(uintptr_t)(((uintptr_t)base +
2688 				    mapoff) & PAGEMASK), snfi->snfi_len,
2689 				    F_SOFTUNLOCK, S_OTHER);
2690 				(void) segmap_release(segkmap, base, 0);
2691 				kmem_free(snfi, sizeof (*snfi));
2692 				freemsg(mp);
2693 				error = EAGAIN;
2694 				goto out;
2695 			}
2696 			VN_HOLD(fvp);
2697 			snfi->snfi_vp = fvp;
2698 			mp->b_wptr += chain_size;
2699 
2700 			/* Mark this dblk with the zero-copy flag */
2701 			mp->b_datap->db_struioflag |= STRUIO_ZC;
2702 			fileoff += chain_size;
2703 			total_size -= chain_size;
2704 		}
2705 
2706 		if (total_size == 0 && !nowait) {
2707 			ASSERT(!dowait);
2708 			dowait = B_TRUE;
2709 			mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2710 		}
2711 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2712 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2713 		if (error != 0) {
2714 			/*
2715 			 * mp contains the mblks that were not sent by
2716 			 * socket_sendmblk. Use its size to update *count
2717 			 */
2718 			*count = ksize + (chain_size - msgdsize(mp));
2719 			if (mp != NULL)
2720 				freemsg(mp);
2721 			return (error);
2722 		}
2723 		ksize += chain_size;
2724 		if (total_size == 0)
2725 			goto done;
2726 
2727 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2728 		va.va_mask = AT_SIZE;
2729 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2730 		if (error)
2731 			break;
2732 		/* Read as much as possible. */
2733 		if (fileoff >= va.va_size)
2734 			break;
2735 		if (total_size + fileoff > va.va_size)
2736 			total_size = va.va_size - fileoff;
2737 	}
2738 out:
2739 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2740 done:
2741 	*count = ksize;
2742 	if (dowait) {
2743 		stdata_t *stp;
2744 
2745 		stp = vp->v_stream;
2746 		if (stp == NULL) {
2747 			struct sonode *so;
2748 			so = VTOSO(vp);
2749 			error = so_zcopy_wait(so);
2750 		} else {
2751 			mutex_enter(&stp->sd_lock);
2752 			while (!(stp->sd_flag & STZCNOTIFY)) {
2753 				if (cv_wait_sig(&stp->sd_zcopy_wait,
2754 				    &stp->sd_lock) == 0) {
2755 					error = EINTR;
2756 					break;
2757 				}
2758 			}
2759 			stp->sd_flag &= ~STZCNOTIFY;
2760 			mutex_exit(&stp->sd_lock);
2761 		}
2762 	}
2763 	return (error);
2764 }
2765 
2766 int
2767 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2768     uint_t maxpsz, ssize_t *count)
2769 {
2770 	struct vnode *vp;
2771 	mblk_t *mp;
2772 	int iosize;
2773 	int extra = 0;
2774 	int error;
2775 	short fflag;
2776 	int ksize;
2777 	int ioflag;
2778 	struct uio auio;
2779 	struct iovec aiov;
2780 	struct vattr va;
2781 	int maxblk = 0;
2782 	int wroff = 0;
2783 	struct sonode *so = NULL;
2784 	struct nmsghdr msg;
2785 
2786 	vp = fp->f_vnode;
2787 	if (vp->v_type == VSOCK) {
2788 		stdata_t *stp;
2789 
2790 		/*
2791 		 * Get the extra space to insert a header and a trailer.
2792 		 */
2793 		so = VTOSO(vp);
2794 		stp = vp->v_stream;
2795 		if (stp == NULL) {
2796 			wroff = so->so_proto_props.sopp_wroff;
2797 			maxblk = so->so_proto_props.sopp_maxblk;
2798 			extra = wroff + so->so_proto_props.sopp_tail;
2799 		} else {
2800 			wroff = (int)(stp->sd_wroff);
2801 			maxblk = (int)(stp->sd_maxblk);
2802 			extra = wroff + (int)(stp->sd_tail);
2803 		}
2804 	}
2805 	bzero(&msg, sizeof (msg));
2806 	fflag = fp->f_flag;
2807 	ksize = 0;
2808 	auio.uio_iov = &aiov;
2809 	auio.uio_iovcnt = 1;
2810 	auio.uio_segflg = UIO_SYSSPACE;
2811 	auio.uio_llimit = MAXOFFSET_T;
2812 	auio.uio_fmode = fflag;
2813 	auio.uio_extflg = UIO_COPY_CACHED;
2814 	ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2815 	/* If read sync is not asked for, filter sync flags */
2816 	if ((ioflag & FRSYNC) == 0)
2817 		ioflag &= ~(FSYNC|FDSYNC);
2818 	for (;;) {
2819 		if (ISSIG(curthread, JUSTLOOKING)) {
2820 			error = EINTR;
2821 			break;
2822 		}
2823 		iosize = (int)MIN(maxpsz, size);
2824 
2825 		/*
2826 		 * Socket filters can limit the mblk size,
2827 		 * so limit reads to maxblk if there are
2828 		 * filters present.
2829 		 */
2830 		if (vp->v_type == VSOCK &&
2831 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2832 			iosize = (int)MIN(iosize, maxblk);
2833 
2834 		if (is_system_labeled()) {
2835 			mp = allocb_cred(iosize + extra, CRED(),
2836 			    curproc->p_pid);
2837 		} else {
2838 			mp = allocb(iosize + extra, BPRI_MED);
2839 		}
2840 		if (mp == NULL) {
2841 			error = EAGAIN;
2842 			break;
2843 		}
2844 
2845 		mp->b_rptr += wroff;
2846 
2847 		aiov.iov_base = (caddr_t)mp->b_rptr;
2848 		aiov.iov_len = iosize;
2849 		auio.uio_loffset = fileoff;
2850 		auio.uio_resid = iosize;
2851 
2852 		error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2853 		iosize -= auio.uio_resid;
2854 
2855 		if (error == EINTR && iosize != 0)
2856 			error = 0;
2857 
2858 		if (error != 0 || iosize == 0) {
2859 			freeb(mp);
2860 			break;
2861 		}
2862 		mp->b_wptr = mp->b_rptr + iosize;
2863 
2864 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2865 
2866 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2867 
2868 		if (error != 0) {
2869 			*count = ksize;
2870 			if (mp != NULL)
2871 				freeb(mp);
2872 			return (error);
2873 		}
2874 		ksize += iosize;
2875 		size -= iosize;
2876 		if (size == 0)
2877 			goto done;
2878 
2879 		fileoff += iosize;
2880 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2881 		va.va_mask = AT_SIZE;
2882 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2883 		if (error)
2884 			break;
2885 		/* Read as much as possible. */
2886 		if (fileoff >= va.va_size)
2887 			size = 0;
2888 		else if (size + fileoff > va.va_size)
2889 			size = va.va_size - fileoff;
2890 	}
2891 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2892 done:
2893 	*count = ksize;
2894 	return (error);
2895 }
2896 
2897 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2898 /*
2899  * Largefile support for 32 bit applications only.
2900  */
2901 int
2902 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2903     ssize32_t *count32)
2904 {
2905 	ssize32_t sfv_len;
2906 	u_offset_t sfv_off, va_size;
2907 	struct vnode *vp, *fvp, *realvp;
2908 	struct vattr va;
2909 	stdata_t *stp;
2910 	ssize_t count = 0;
2911 	int error = 0;
2912 	boolean_t dozcopy = B_FALSE;
2913 	uint_t maxpsz;
2914 
2915 	sfv_len = (ssize32_t)sfv->sfv_len;
2916 	if (sfv_len < 0) {
2917 		error = EINVAL;
2918 		goto out;
2919 	}
2920 
2921 	if (sfv_len == 0) goto out;
2922 
2923 	sfv_off = (u_offset_t)sfv->sfv_off;
2924 
2925 	/* Same checks as in pread */
2926 	if (sfv_off > MAXOFFSET_T) {
2927 		error = EINVAL;
2928 		goto out;
2929 	}
2930 	if (sfv_off + sfv_len > MAXOFFSET_T)
2931 		sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2932 
2933 	/*
2934 	 * There are no more checks on sfv_len. So, we cast it to
2935 	 * u_offset_t and share the snf_direct_io/snf_cache code between
2936 	 * 32 bit and 64 bit.
2937 	 *
2938 	 * TODO: should do nbl_need_check() like read()?
2939 	 */
2940 	if (sfv_len > sendfile_max_size) {
2941 		sf_stats.ss_file_not_cached++;
2942 		error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2943 		    &count);
2944 		goto out;
2945 	}
2946 	fvp = rfp->f_vnode;
2947 	if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2948 		fvp = realvp;
2949 	/*
2950 	 * Grab the lock as a reader to prevent the file size
2951 	 * from changing underneath.
2952 	 */
2953 	(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2954 	va.va_mask = AT_SIZE;
2955 	error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2956 	va_size = va.va_size;
2957 	if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2958 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2959 		goto out;
2960 	}
2961 	/* Read as much as possible. */
2962 	if (sfv_off + sfv_len > va_size)
2963 		sfv_len = va_size - sfv_off;
2964 
2965 	vp = fp->f_vnode;
2966 	stp = vp->v_stream;
2967 	/*
2968 	 * When the NOWAIT flag is not set, we enable zero-copy only if the
2969 	 * transfer size is large enough. This prevents performance loss
2970 	 * when the caller sends the file piece by piece.
2971 	 */
2972 	if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2973 	    (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2974 	    !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2975 		uint_t copyflag;
2976 		copyflag = stp != NULL ? stp->sd_copyflag :
2977 		    VTOSO(vp)->so_proto_props.sopp_zcopyflag;
2978 		if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2979 			int on = 1;
2980 
2981 			if (socket_setsockopt(VTOSO(vp), SOL_SOCKET,
2982 			    SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0)
2983 				dozcopy = B_TRUE;
2984 		} else {
2985 			dozcopy = copyflag & STZCVMSAFE;
2986 		}
2987 	}
2988 	if (dozcopy) {
2989 		sf_stats.ss_file_segmap++;
2990 		error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2991 		    &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2992 	} else {
2993 		if (vp->v_type == VSOCK && stp == NULL) {
2994 			sonode_t *so = VTOSO(vp);
2995 			maxpsz = so->so_proto_props.sopp_maxpsz;
2996 		} else if (stp != NULL) {
2997 			maxpsz = stp->sd_qn_maxpsz;
2998 		} else {
2999 			maxpsz = maxphys;
3000 		}
3001 
3002 		if (maxpsz == INFPSZ)
3003 			maxpsz = maxphys;
3004 		else
3005 			maxpsz = roundup(maxpsz, MAXBSIZE);
3006 		sf_stats.ss_file_cached++;
3007 		error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
3008 		    maxpsz, &count);
3009 	}
3010 out:
3011 	releasef(sfv->sfv_fd);
3012 	*count32 = (ssize32_t)count;
3013 	return (error);
3014 }
3015 #endif
3016 
3017 #ifdef _SYSCALL32_IMPL
3018 /*
3019  * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
3020  * ssize_t rather than ssize32_t; see the comments above read32 for details.
3021  */
3022 
3023 ssize_t
3024 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
3025 {
3026 	return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
3027 }
3028 
3029 ssize_t
3030 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
3031     caddr32_t name, caddr32_t namelenp)
3032 {
3033 	return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
3034 	    (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
3035 }
3036 
3037 ssize_t
3038 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
3039 {
3040 	return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
3041 }
3042 
3043 ssize_t
3044 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
3045     caddr32_t name, socklen_t namelen)
3046 {
3047 	return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
3048 	    (void *)(uintptr_t)name, namelen));
3049 }
3050 #endif	/* _SYSCALL32_IMPL */
3051 
3052 /*
3053  * Function wrappers (mostly around the sonode switch) for
3054  * backward compatibility.
3055  */
3056 
3057 int
3058 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
3059 {
3060 	return (socket_accept(so, fflag, CRED(), nsop));
3061 }
3062 
3063 int
3064 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3065     int backlog, int flags)
3066 {
3067 	int	error;
3068 
3069 	error = socket_bind(so, name, namelen, flags, CRED());
3070 	if (error == 0 && backlog != 0)
3071 		return (socket_listen(so, backlog, CRED()));
3072 
3073 	return (error);
3074 }
3075 
3076 int
3077 solisten(struct sonode *so, int backlog)
3078 {
3079 	return (socket_listen(so, backlog, CRED()));
3080 }
3081 
3082 int
3083 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3084     int fflag, int flags)
3085 {
3086 	return (socket_connect(so, name, namelen, fflag, flags, CRED()));
3087 }
3088 
3089 int
3090 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3091 {
3092 	return (socket_recvmsg(so, msg, uiop, CRED()));
3093 }
3094 
3095 int
3096 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3097 {
3098 	return (socket_sendmsg(so, msg, uiop, CRED()));
3099 }
3100 
3101 int
3102 soshutdown(struct sonode *so, int how)
3103 {
3104 	return (socket_shutdown(so, how, CRED()));
3105 }
3106 
3107 int
3108 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
3109     socklen_t *optlenp, int flags)
3110 {
3111 	return (socket_getsockopt(so, level, option_name, optval, optlenp,
3112 	    flags, CRED()));
3113 }
3114 
3115 int
3116 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
3117     t_uscalar_t optlen)
3118 {
3119 	return (socket_setsockopt(so, level, option_name, optval, optlen,
3120 	    CRED()));
3121 }
3122 
3123 /*
3124  * Because this is backward compatibility interface it only needs to be
3125  * able to handle the creation of TPI sockfs sockets.
3126  */
3127 struct sonode *
3128 socreate(struct sockparams *sp, int family, int type, int protocol, int version,
3129     int *errorp)
3130 {
3131 	struct sonode *so;
3132 
3133 	ASSERT(sp != NULL);
3134 
3135 	so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol,
3136 	    version, SOCKET_SLEEP, errorp, CRED());
3137 	if (so == NULL) {
3138 		SOCKPARAMS_DEC_REF(sp);
3139 	} else {
3140 		if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) {
3141 			/* Cannot fail, only bumps so_count */
3142 			(void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL);
3143 		} else {
3144 			socket_destroy(so);
3145 			so = NULL;
3146 		}
3147 	}
3148 	return (so);
3149 }
3150