1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 27 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 28 * Copyright 2022 Garrett D'Amore 29 */ 30 31 #include <sys/types.h> 32 #include <sys/t_lock.h> 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/buf.h> 36 #include <sys/conf.h> 37 #include <sys/cred.h> 38 #include <sys/kmem.h> 39 #include <sys/sysmacros.h> 40 #include <sys/vfs.h> 41 #include <sys/vnode.h> 42 #include <sys/debug.h> 43 #include <sys/errno.h> 44 #include <sys/time.h> 45 #include <sys/file.h> 46 #include <sys/user.h> 47 #include <sys/stream.h> 48 #include <sys/strsubr.h> 49 #include <sys/strsun.h> 50 #include <sys/sunddi.h> 51 #include <sys/esunddi.h> 52 #include <sys/flock.h> 53 #include <sys/modctl.h> 54 #include <sys/cmn_err.h> 55 #include <sys/vmsystm.h> 56 #include <sys/policy.h> 57 #include <sys/limits.h> 58 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 62 #include <sys/isa_defs.h> 63 #include <sys/inttypes.h> 64 #include <sys/systm.h> 65 #include <sys/cpuvar.h> 66 #include <sys/filio.h> 67 #include <sys/sendfile.h> 68 #include <sys/ddi.h> 69 #include <vm/seg.h> 70 #include <vm/seg_map.h> 71 #include <vm/seg_kpm.h> 72 73 #include <fs/sockfs/sockcommon.h> 74 #include <fs/sockfs/sockfilter_impl.h> 75 #include <fs/sockfs/socktpi.h> 76 77 #ifdef SOCK_TEST 78 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */ 79 #else 80 #define do_useracc 1 81 #endif /* SOCK_TEST */ 82 83 extern int xnet_truncate_print; 84 85 /* 86 * Kernel component of socket creation. 87 * 88 * The socket library determines which version number to use. 89 * First the library calls this with a NULL devpath. If this fails 90 * to find a transport (using solookup) the library will look in /etc/netconfig 91 * for the appropriate transport. If one is found it will pass in the 92 * devpath for the kernel to use. 93 */ 94 int 95 so_socket(int family, int type_w_flags, int protocol, char *devpath, 96 int version) 97 { 98 struct sonode *so; 99 vnode_t *vp; 100 struct file *fp; 101 int fd; 102 int error; 103 int type; 104 105 type = type_w_flags & SOCK_TYPE_MASK; 106 type_w_flags &= ~SOCK_TYPE_MASK; 107 if (type_w_flags & ~(SOCK_CLOEXEC|SOCK_NDELAY|SOCK_NONBLOCK)) 108 return (set_errno(EINVAL)); 109 110 if (devpath != NULL) { 111 char *buf; 112 size_t kdevpathlen = 0; 113 114 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 115 if ((error = copyinstr(devpath, buf, 116 MAXPATHLEN, &kdevpathlen)) != 0) { 117 kmem_free(buf, MAXPATHLEN); 118 return (set_errno(error)); 119 } 120 so = socket_create(family, type, protocol, buf, NULL, 121 SOCKET_SLEEP, version, CRED(), &error); 122 kmem_free(buf, MAXPATHLEN); 123 } else { 124 so = socket_create(family, type, protocol, NULL, NULL, 125 SOCKET_SLEEP, version, CRED(), &error); 126 } 127 if (so == NULL) 128 return (set_errno(error)); 129 130 /* Allocate a file descriptor for the socket */ 131 vp = SOTOV(so); 132 error = falloc(vp, FWRITE|FREAD, &fp, &fd); 133 if (error != 0) { 134 (void) socket_close(so, 0, CRED()); 135 socket_destroy(so); 136 return (set_errno(error)); 137 } 138 139 /* 140 * Now fill in the entries that falloc reserved 141 */ 142 if (type_w_flags & SOCK_NDELAY) { 143 so->so_state |= SS_NDELAY; 144 fp->f_flag |= FNDELAY; 145 } 146 if (type_w_flags & SOCK_NONBLOCK) { 147 so->so_state |= SS_NONBLOCK; 148 fp->f_flag |= FNONBLOCK; 149 } 150 mutex_exit(&fp->f_tlock); 151 setf(fd, fp); 152 if ((type_w_flags & SOCK_CLOEXEC) != 0) { 153 f_setfd(fd, FD_CLOEXEC); 154 } 155 156 return (fd); 157 } 158 159 /* 160 * Map from a file descriptor to a socket node. 161 * Returns with the file descriptor held i.e. the caller has to 162 * use releasef when done with the file descriptor. 163 */ 164 struct sonode * 165 getsonode(int sock, int *errorp, file_t **fpp) 166 { 167 file_t *fp; 168 vnode_t *vp; 169 struct sonode *so; 170 171 if ((fp = getf(sock)) == NULL) { 172 *errorp = EBADF; 173 eprintline(*errorp); 174 return (NULL); 175 } 176 vp = fp->f_vnode; 177 /* Check if it is a socket */ 178 if (vp->v_type != VSOCK) { 179 releasef(sock); 180 *errorp = ENOTSOCK; 181 eprintline(*errorp); 182 return (NULL); 183 } 184 /* 185 * Use the stream head to find the real socket vnode. 186 * This is needed when namefs sits above sockfs. 187 */ 188 if (vp->v_stream) { 189 ASSERT(vp->v_stream->sd_vnode); 190 vp = vp->v_stream->sd_vnode; 191 192 so = VTOSO(vp); 193 if (so->so_version == SOV_STREAM) { 194 releasef(sock); 195 *errorp = ENOTSOCK; 196 eprintsoline(so, *errorp); 197 return (NULL); 198 } 199 } else { 200 so = VTOSO(vp); 201 } 202 if (fpp) 203 *fpp = fp; 204 return (so); 205 } 206 207 /* 208 * Allocate and copyin a sockaddr. 209 * Ensures NULL termination for AF_UNIX addresses by extending them 210 * with one NULL byte if need be. Verifies that the length is not 211 * excessive to prevent an application from consuming all of kernel 212 * memory. Returns NULL when an error occurred. 213 */ 214 static struct sockaddr * 215 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp, 216 int *errorp) 217 { 218 char *faddr; 219 size_t namelen = (size_t)*namelenp; 220 221 ASSERT(namelen != 0); 222 if (namelen > SO_MAXARGSIZE) { 223 *errorp = EINVAL; 224 eprintsoline(so, *errorp); 225 return (NULL); 226 } 227 228 faddr = (char *)kmem_alloc(namelen, KM_SLEEP); 229 if (copyin(name, faddr, namelen)) { 230 kmem_free(faddr, namelen); 231 *errorp = EFAULT; 232 eprintsoline(so, *errorp); 233 return (NULL); 234 } 235 236 /* 237 * Add space for NULL termination if needed. 238 * Do a quick check if the last byte is NUL. 239 */ 240 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') { 241 /* Check if there is any NULL termination */ 242 size_t i; 243 int foundnull = 0; 244 245 for (i = sizeof (name->sa_family); i < namelen; i++) { 246 if (faddr[i] == '\0') { 247 foundnull = 1; 248 break; 249 } 250 } 251 if (!foundnull) { 252 /* Add extra byte for NUL padding */ 253 char *nfaddr; 254 255 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP); 256 bcopy(faddr, nfaddr, namelen); 257 kmem_free(faddr, namelen); 258 259 /* NUL terminate */ 260 nfaddr[namelen] = '\0'; 261 namelen++; 262 ASSERT((socklen_t)namelen == namelen); 263 *namelenp = (socklen_t)namelen; 264 faddr = nfaddr; 265 } 266 } 267 return ((struct sockaddr *)faddr); 268 } 269 270 /* 271 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 272 */ 273 static int 274 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr, 275 socklen_t klen) 276 { 277 if (uaddr != NULL) { 278 if (ulen > klen) 279 ulen = klen; 280 281 if (ulen != 0) { 282 if (copyout(kaddr, uaddr, ulen)) 283 return (EFAULT); 284 } 285 } else 286 ulen = 0; 287 288 if (ulenp != NULL) { 289 if (copyout(&ulen, ulenp, sizeof (ulen))) 290 return (EFAULT); 291 } 292 return (0); 293 } 294 295 /* 296 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 297 * If klen is greater than ulen it still uses the non-truncated 298 * klen to update ulenp. 299 */ 300 static int 301 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, void *kaddr, 302 socklen_t klen) 303 { 304 if (uaddr != NULL) { 305 if (ulen >= klen) 306 ulen = klen; 307 else if (ulen != 0 && xnet_truncate_print) { 308 printf("sockfs: truncating copyout of address using " 309 "XNET semantics for pid = %d. Lengths %d, %d\n", 310 curproc->p_pid, klen, ulen); 311 } 312 313 if (ulen != 0) { 314 if (copyout(kaddr, uaddr, ulen)) 315 return (EFAULT); 316 } else 317 klen = 0; 318 } else 319 klen = 0; 320 321 if (ulenp != NULL) { 322 if (copyout(&klen, ulenp, sizeof (klen))) 323 return (EFAULT); 324 } 325 return (0); 326 } 327 328 /* 329 * The socketpair() code in libsocket creates two sockets (using 330 * the /etc/netconfig fallback if needed) before calling this routine 331 * to connect the two sockets together. 332 * 333 * For a SOCK_STREAM socketpair a listener is needed - in that case this 334 * routine will create a new file descriptor as part of accepting the 335 * connection. The library socketpair() will check if svs[2] has changed 336 * in which case it will close the changed fd. 337 * 338 * Note that this code could use the TPI feature of accepting the connection 339 * on the listening endpoint. However, that would require significant changes 340 * to soaccept. 341 */ 342 int 343 so_socketpair(int sv[2]) 344 { 345 int svs[2]; 346 struct sonode *so1, *so2; 347 int error; 348 int orig_flags; 349 struct sockaddr_ux *name; 350 size_t namelen; 351 sotpi_info_t *sti1; 352 sotpi_info_t *sti2; 353 354 dprint(1, ("so_socketpair(%p)\n", (void *)sv)); 355 356 error = useracc(sv, sizeof (svs), B_WRITE); 357 if (error && do_useracc) 358 return (set_errno(EFAULT)); 359 360 if (copyin(sv, svs, sizeof (svs))) 361 return (set_errno(EFAULT)); 362 363 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL) 364 return (set_errno(error)); 365 366 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) { 367 releasef(svs[0]); 368 return (set_errno(error)); 369 } 370 371 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) { 372 error = EOPNOTSUPP; 373 goto done; 374 } 375 376 sti1 = SOTOTPI(so1); 377 sti2 = SOTOTPI(so2); 378 379 /* 380 * The code below makes assumptions about the "sockfs" implementation. 381 * So make sure that the correct implementation is really used. 382 */ 383 ASSERT(so1->so_ops == &sotpi_sonodeops); 384 ASSERT(so2->so_ops == &sotpi_sonodeops); 385 386 if (so1->so_type == SOCK_DGRAM) { 387 /* 388 * Bind both sockets and connect them with each other. 389 * Need to allocate name/namelen for soconnect. 390 */ 391 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED()); 392 if (error) { 393 eprintsoline(so1, error); 394 goto done; 395 } 396 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 397 if (error) { 398 eprintsoline(so2, error); 399 goto done; 400 } 401 namelen = sizeof (struct sockaddr_ux); 402 name = kmem_alloc(namelen, KM_SLEEP); 403 name->sou_family = AF_UNIX; 404 name->sou_addr = sti2->sti_ux_laddr; 405 error = socket_connect(so1, 406 (struct sockaddr *)name, 407 (socklen_t)namelen, 408 0, _SOCONNECT_NOXLATE, CRED()); 409 if (error) { 410 kmem_free(name, namelen); 411 eprintsoline(so1, error); 412 goto done; 413 } 414 name->sou_addr = sti1->sti_ux_laddr; 415 error = socket_connect(so2, 416 (struct sockaddr *)name, 417 (socklen_t)namelen, 418 0, _SOCONNECT_NOXLATE, CRED()); 419 kmem_free(name, namelen); 420 if (error) { 421 eprintsoline(so2, error); 422 goto done; 423 } 424 releasef(svs[0]); 425 releasef(svs[1]); 426 } else { 427 /* 428 * Bind both sockets, with so1 being a listener. 429 * Connect so2 to so1 - nonblocking to avoid waiting for 430 * soaccept to complete. 431 * Accept a connection on so1. Pass out the new fd as sv[0]. 432 * The library will detect the changed fd and close 433 * the original one. 434 */ 435 struct sonode *nso; 436 struct vnode *nvp; 437 struct file *nfp; 438 int nfd; 439 440 /* 441 * We could simply call socket_listen() here (which would do the 442 * binding automatically) if the code didn't rely on passing 443 * _SOBIND_NOXLATE to the TPI implementation of socket_bind(). 444 */ 445 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC| 446 _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR, 447 CRED()); 448 if (error) { 449 eprintsoline(so1, error); 450 goto done; 451 } 452 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 453 if (error) { 454 eprintsoline(so2, error); 455 goto done; 456 } 457 458 namelen = sizeof (struct sockaddr_ux); 459 name = kmem_alloc(namelen, KM_SLEEP); 460 name->sou_family = AF_UNIX; 461 name->sou_addr = sti1->sti_ux_laddr; 462 error = socket_connect(so2, 463 (struct sockaddr *)name, 464 (socklen_t)namelen, 465 FNONBLOCK, _SOCONNECT_NOXLATE, CRED()); 466 kmem_free(name, namelen); 467 if (error) { 468 if (error != EINPROGRESS) { 469 eprintsoline(so2, error); goto done; 470 } 471 } 472 473 error = socket_accept(so1, 0, CRED(), &nso); 474 if (error) { 475 eprintsoline(so1, error); 476 goto done; 477 } 478 479 /* wait for so2 being SS_CONNECTED ignoring signals */ 480 mutex_enter(&so2->so_lock); 481 error = sowaitconnected(so2, 0, 1); 482 mutex_exit(&so2->so_lock); 483 if (error != 0) { 484 (void) socket_close(nso, 0, CRED()); 485 socket_destroy(nso); 486 eprintsoline(so2, error); 487 goto done; 488 } 489 490 nvp = SOTOV(nso); 491 error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd); 492 if (error != 0) { 493 (void) socket_close(nso, 0, CRED()); 494 socket_destroy(nso); 495 eprintsoline(nso, error); 496 goto done; 497 } 498 /* 499 * copy over FNONBLOCK and FNDELAY flags should they exist 500 */ 501 if (so1->so_state & SS_NONBLOCK) 502 nfp->f_flag |= FNONBLOCK; 503 if (so1->so_state & SS_NDELAY) 504 nfp->f_flag |= FNDELAY; 505 506 /* 507 * fill in the entries that falloc reserved 508 */ 509 mutex_exit(&nfp->f_tlock); 510 setf(nfd, nfp); 511 512 /* 513 * get the original flags before we release 514 */ 515 VERIFY(f_getfd_error(svs[0], &orig_flags) == 0); 516 517 releasef(svs[0]); 518 releasef(svs[1]); 519 520 /* 521 * If FD_CLOEXEC was set on the filedescriptor we're 522 * swapping out, we should set it on the new one too. 523 */ 524 if (orig_flags & FD_CLOEXEC) { 525 f_setfd(nfd, FD_CLOEXEC); 526 } 527 528 /* 529 * The socketpair library routine will close the original 530 * svs[0] when this code passes out a different file 531 * descriptor. 532 */ 533 svs[0] = nfd; 534 535 if (copyout(svs, sv, sizeof (svs))) { 536 (void) closeandsetf(nfd, NULL); 537 eprintline(EFAULT); 538 return (set_errno(EFAULT)); 539 } 540 } 541 return (0); 542 543 done: 544 releasef(svs[0]); 545 releasef(svs[1]); 546 return (set_errno(error)); 547 } 548 549 int 550 bind(int sock, struct sockaddr *name, socklen_t namelen, int version) 551 { 552 struct sonode *so; 553 int error; 554 555 dprint(1, ("bind(%d, %p, %d)\n", 556 sock, (void *)name, namelen)); 557 558 if ((so = getsonode(sock, &error, NULL)) == NULL) 559 return (set_errno(error)); 560 561 /* Allocate and copyin name */ 562 /* 563 * X/Open test does not expect EFAULT with NULL name and non-zero 564 * namelen. 565 */ 566 if (name != NULL && namelen != 0) { 567 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 568 name = copyin_name(so, name, &namelen, &error); 569 if (name == NULL) { 570 releasef(sock); 571 return (set_errno(error)); 572 } 573 } else { 574 name = NULL; 575 namelen = 0; 576 } 577 578 switch (version) { 579 default: 580 error = socket_bind(so, name, namelen, 0, CRED()); 581 break; 582 case SOV_XPG4_2: 583 error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED()); 584 break; 585 case SOV_SOCKBSD: 586 error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED()); 587 break; 588 } 589 590 releasef(sock); 591 if (name != NULL) 592 kmem_free(name, (size_t)namelen); 593 594 if (error) 595 return (set_errno(error)); 596 return (0); 597 } 598 599 /* ARGSUSED2 */ 600 int 601 listen(int sock, int backlog, int version) 602 { 603 struct sonode *so; 604 int error; 605 606 dprint(1, ("listen(%d, %d)\n", 607 sock, backlog)); 608 609 if ((so = getsonode(sock, &error, NULL)) == NULL) 610 return (set_errno(error)); 611 612 error = socket_listen(so, backlog, CRED()); 613 614 releasef(sock); 615 if (error) 616 return (set_errno(error)); 617 return (0); 618 } 619 620 /*ARGSUSED3*/ 621 int 622 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version, 623 int flags) 624 { 625 struct sonode *so; 626 file_t *fp; 627 int error; 628 socklen_t namelen; 629 struct sonode *nso; 630 struct vnode *nvp; 631 struct file *nfp; 632 int nfd; 633 int ssflags; 634 struct sockaddr *addrp; 635 socklen_t addrlen; 636 637 dprint(1, ("accept(%d, %p, %p)\n", 638 sock, (void *)name, (void *)namelenp)); 639 640 if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) { 641 return (set_errno(EINVAL)); 642 } 643 644 /* Translate SOCK_ flags to their SS_ variant */ 645 ssflags = 0; 646 if (flags & SOCK_NONBLOCK) 647 ssflags |= SS_NONBLOCK; 648 if (flags & SOCK_NDELAY) 649 ssflags |= SS_NDELAY; 650 651 if ((so = getsonode(sock, &error, &fp)) == NULL) 652 return (set_errno(error)); 653 654 if (name != NULL) { 655 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 656 if (copyin(namelenp, &namelen, sizeof (namelen))) { 657 releasef(sock); 658 return (set_errno(EFAULT)); 659 } 660 if (namelen != 0) { 661 error = useracc(name, (size_t)namelen, B_WRITE); 662 if (error && do_useracc) { 663 releasef(sock); 664 return (set_errno(EFAULT)); 665 } 666 } else 667 name = NULL; 668 } else { 669 namelen = 0; 670 } 671 672 /* 673 * Allocate the user fd before socket_accept() in order to 674 * catch EMFILE errors before calling socket_accept(). 675 */ 676 if ((nfd = ufalloc(0)) == -1) { 677 eprintsoline(so, EMFILE); 678 releasef(sock); 679 return (set_errno(EMFILE)); 680 } 681 error = socket_accept(so, fp->f_flag, CRED(), &nso); 682 if (error) { 683 setf(nfd, NULL); 684 releasef(sock); 685 return (set_errno(error)); 686 } 687 688 nvp = SOTOV(nso); 689 690 ASSERT(MUTEX_NOT_HELD(&nso->so_lock)); 691 if (namelen != 0) { 692 addrlen = so->so_max_addr_len; 693 addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP); 694 695 if ((error = socket_getpeername(nso, (struct sockaddr *)addrp, 696 &addrlen, B_TRUE, CRED())) == 0) { 697 error = copyout_name(name, namelen, namelenp, 698 addrp, addrlen); 699 } else { 700 ASSERT(error == EINVAL || error == ENOTCONN); 701 error = ECONNABORTED; 702 } 703 kmem_free(addrp, so->so_max_addr_len); 704 } 705 706 if (error) { 707 setf(nfd, NULL); 708 (void) socket_close(nso, 0, CRED()); 709 socket_destroy(nso); 710 releasef(sock); 711 return (set_errno(error)); 712 } 713 error = falloc(NULL, FWRITE|FREAD, &nfp, NULL); 714 if (error != 0) { 715 setf(nfd, NULL); 716 (void) socket_close(nso, 0, CRED()); 717 socket_destroy(nso); 718 eprintsoline(so, error); 719 releasef(sock); 720 return (set_errno(error)); 721 } 722 /* 723 * fill in the entries that falloc reserved 724 */ 725 nfp->f_vnode = nvp; 726 mutex_exit(&nfp->f_tlock); 727 setf(nfd, nfp); 728 729 /* 730 * Act on SOCK_CLOEXEC from flags 731 */ 732 if (flags & SOCK_CLOEXEC) { 733 f_setfd(nfd, FD_CLOEXEC); 734 } 735 736 /* 737 * Copy FNDELAY and FNONBLOCK from listener to acceptor 738 * and from ssflags 739 */ 740 if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) { 741 uint_t oflag = nfp->f_flag; 742 int arg = 0; 743 744 if ((ssflags | so->so_state) & SS_NONBLOCK) 745 arg |= FNONBLOCK; 746 else if ((ssflags | so->so_state) & SS_NDELAY) 747 arg |= FNDELAY; 748 749 /* 750 * This code is a simplification of the F_SETFL code in fcntl() 751 * Ignore any errors from VOP_SETFL. 752 */ 753 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL)) 754 != 0) { 755 eprintsoline(so, error); 756 error = 0; 757 } else { 758 mutex_enter(&nfp->f_tlock); 759 nfp->f_flag &= ~FMASK | (FREAD|FWRITE); 760 nfp->f_flag |= arg; 761 mutex_exit(&nfp->f_tlock); 762 } 763 } 764 releasef(sock); 765 return (nfd); 766 } 767 768 int 769 connect(int sock, struct sockaddr *name, socklen_t namelen, int version) 770 { 771 struct sonode *so; 772 file_t *fp; 773 int error; 774 775 dprint(1, ("connect(%d, %p, %d)\n", 776 sock, (void *)name, namelen)); 777 778 if ((so = getsonode(sock, &error, &fp)) == NULL) 779 return (set_errno(error)); 780 781 /* Allocate and copyin name */ 782 if (namelen != 0) { 783 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 784 name = copyin_name(so, name, &namelen, &error); 785 if (name == NULL) { 786 releasef(sock); 787 return (set_errno(error)); 788 } 789 } else 790 name = NULL; 791 792 error = socket_connect(so, name, namelen, fp->f_flag, 793 (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED()); 794 releasef(sock); 795 if (name) 796 kmem_free(name, (size_t)namelen); 797 if (error) 798 return (set_errno(error)); 799 return (0); 800 } 801 802 /*ARGSUSED2*/ 803 int 804 shutdown(int sock, int how, int version) 805 { 806 struct sonode *so; 807 int error; 808 809 dprint(1, ("shutdown(%d, %d)\n", 810 sock, how)); 811 812 if ((so = getsonode(sock, &error, NULL)) == NULL) 813 return (set_errno(error)); 814 815 error = socket_shutdown(so, how, CRED()); 816 817 releasef(sock); 818 if (error) 819 return (set_errno(error)); 820 return (0); 821 } 822 823 /* 824 * Common receive routine. 825 */ 826 static ssize_t 827 recvit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags, 828 socklen_t *namelenp, socklen_t *controllenp, int *flagsp) 829 { 830 struct sonode *so; 831 file_t *fp; 832 void *name; 833 socklen_t namelen; 834 void *control; 835 socklen_t controllen, free_controllen; 836 ssize_t len; 837 int error; 838 839 if ((so = getsonode(sock, &error, &fp)) == NULL) 840 return (set_errno(error)); 841 842 len = uiop->uio_resid; 843 uiop->uio_fmode = fp->f_flag; 844 uiop->uio_extflg = UIO_COPY_CACHED; 845 846 name = msg->msg_name; 847 namelen = msg->msg_namelen; 848 control = msg->msg_control; 849 controllen = msg->msg_controllen; 850 851 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL | 852 MSG_DONTWAIT | MSG_XPG4_2); 853 854 error = socket_recvmsg(so, msg, uiop, CRED()); 855 if (error) { 856 releasef(sock); 857 return (set_errno(error)); 858 } 859 lwp_stat_update(LWP_STAT_MSGRCV, 1); 860 releasef(sock); 861 862 free_controllen = msg->msg_controllen; 863 864 error = copyout_name(name, namelen, namelenp, 865 msg->msg_name, msg->msg_namelen); 866 if (error) 867 goto err; 868 869 if (flagsp != NULL) { 870 /* 871 * Clear internal flag. 872 */ 873 msg->msg_flags &= ~MSG_XPG4_2; 874 875 /* 876 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only 877 * when controllen is zero and there is control data to 878 * copy out. 879 */ 880 if (controllen != 0 && 881 (msg->msg_controllen > controllen || control == NULL)) { 882 dprint(1, ("recvit: CTRUNC %d %d %p\n", 883 msg->msg_controllen, controllen, control)); 884 885 msg->msg_flags |= MSG_CTRUNC; 886 } 887 if (copyout(&msg->msg_flags, flagsp, 888 sizeof (msg->msg_flags))) { 889 error = EFAULT; 890 goto err; 891 } 892 } 893 894 if (controllen != 0) { 895 if (!(flags & MSG_XPG4_2)) { 896 /* 897 * Good old msg_accrights can only return a multiple 898 * of 4 bytes. 899 */ 900 controllen &= ~((int)sizeof (uint32_t) - 1); 901 } 902 903 if (msg->msg_controllen > controllen || control == NULL) { 904 /* 905 * If the truncated part contains file descriptors, 906 * then they must be closed in the kernel as they 907 * will not be included in the data returned to 908 * user space. Close them now so that the header size 909 * can be safely adjusted prior to copyout. In case of 910 * an error during copyout, the remaining file 911 * descriptors will be closed in the error handler 912 * below. 913 */ 914 so_closefds(msg->msg_control, msg->msg_controllen, 915 !(flags & MSG_XPG4_2), 916 control == NULL ? 0 : controllen); 917 918 /* 919 * In the case of a truncated control message, the last 920 * cmsg header that fits into the available buffer 921 * space must be adjusted to reflect the actual amount 922 * of associated data that will be returned. This only 923 * needs to be done for XPG4 messages as non-XPG4 924 * messages are not structured (they are just a 925 * buffer and a length - msg_accrights(len)). 926 */ 927 if (control != NULL && (flags & MSG_XPG4_2)) { 928 so_truncatecmsg(msg->msg_control, 929 msg->msg_controllen, controllen); 930 msg->msg_controllen = controllen; 931 } 932 } 933 934 error = copyout_arg(control, controllen, controllenp, 935 msg->msg_control, msg->msg_controllen); 936 937 if (error) 938 goto err; 939 940 } 941 if (msg->msg_namelen != 0) 942 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 943 if (free_controllen != 0) 944 kmem_free(msg->msg_control, (size_t)free_controllen); 945 return (len - uiop->uio_resid); 946 947 err: 948 /* 949 * If we fail and the control part contains file descriptors 950 * we have to close them. For a truncated control message, the 951 * descriptors which were cut off have already been closed and the 952 * length adjusted so that they will not be closed again. 953 */ 954 if (msg->msg_controllen != 0) 955 so_closefds(msg->msg_control, msg->msg_controllen, 956 !(flags & MSG_XPG4_2), 0); 957 if (msg->msg_namelen != 0) 958 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 959 if (free_controllen != 0) 960 kmem_free(msg->msg_control, (size_t)free_controllen); 961 return (set_errno(error)); 962 } 963 964 /* 965 * Native system call 966 */ 967 ssize_t 968 recv(int sock, void *buffer, size_t len, int flags) 969 { 970 struct nmsghdr lmsg; 971 struct uio auio; 972 struct iovec aiov[1]; 973 974 dprint(1, ("recv(%d, %p, %ld, %d)\n", 975 sock, buffer, len, flags)); 976 977 if ((ssize_t)len < 0) { 978 return (set_errno(EINVAL)); 979 } 980 981 aiov[0].iov_base = buffer; 982 aiov[0].iov_len = len; 983 auio.uio_loffset = 0; 984 auio.uio_iov = aiov; 985 auio.uio_iovcnt = 1; 986 auio.uio_resid = len; 987 auio.uio_segflg = UIO_USERSPACE; 988 auio.uio_limit = 0; 989 990 lmsg.msg_namelen = 0; 991 lmsg.msg_controllen = 0; 992 lmsg.msg_flags = 0; 993 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL)); 994 } 995 996 ssize_t 997 recvfrom(int sock, void *buffer, size_t len, int flags, struct sockaddr *name, 998 socklen_t *namelenp) 999 { 1000 struct nmsghdr lmsg; 1001 struct uio auio; 1002 struct iovec aiov[1]; 1003 1004 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n", 1005 sock, buffer, len, flags, (void *)name, (void *)namelenp)); 1006 1007 if ((ssize_t)len < 0) { 1008 return (set_errno(EINVAL)); 1009 } 1010 1011 aiov[0].iov_base = buffer; 1012 aiov[0].iov_len = len; 1013 auio.uio_loffset = 0; 1014 auio.uio_iov = aiov; 1015 auio.uio_iovcnt = 1; 1016 auio.uio_resid = len; 1017 auio.uio_segflg = UIO_USERSPACE; 1018 auio.uio_limit = 0; 1019 1020 lmsg.msg_name = (char *)name; 1021 if (namelenp != NULL) { 1022 if (copyin(namelenp, &lmsg.msg_namelen, 1023 sizeof (lmsg.msg_namelen))) 1024 return (set_errno(EFAULT)); 1025 } else { 1026 lmsg.msg_namelen = 0; 1027 } 1028 lmsg.msg_controllen = 0; 1029 lmsg.msg_flags = 0; 1030 1031 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL)); 1032 } 1033 1034 /* 1035 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1036 * struct omsghdr or struct nmsghdr. 1037 */ 1038 ssize_t 1039 recvmsg(int sock, struct nmsghdr *msg, int flags) 1040 { 1041 STRUCT_DECL(nmsghdr, u_lmsg); 1042 STRUCT_HANDLE(nmsghdr, umsgptr); 1043 struct nmsghdr lmsg; 1044 struct uio auio; 1045 struct iovec buf[IOV_MAX_STACK], *aiov = buf; 1046 ssize_t iovsize = 0; 1047 int iovcnt; 1048 ssize_t len, rval; 1049 int i; 1050 int *flagsp; 1051 model_t model; 1052 1053 dprint(1, ("recvmsg(%d, %p, %d)\n", 1054 sock, (void *)msg, flags)); 1055 1056 model = get_udatamodel(); 1057 STRUCT_INIT(u_lmsg, model); 1058 STRUCT_SET_HANDLE(umsgptr, model, msg); 1059 1060 if (flags & MSG_XPG4_2) { 1061 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg))) 1062 return (set_errno(EFAULT)); 1063 flagsp = STRUCT_FADDR(umsgptr, msg_flags); 1064 } else { 1065 /* 1066 * Assumes that nmsghdr and omsghdr are identically shaped 1067 * except for the added msg_flags field. 1068 */ 1069 if (copyin(msg, STRUCT_BUF(u_lmsg), 1070 SIZEOF_STRUCT(omsghdr, model))) 1071 return (set_errno(EFAULT)); 1072 STRUCT_FSET(u_lmsg, msg_flags, 0); 1073 flagsp = NULL; 1074 } 1075 1076 /* 1077 * Code below us will kmem_alloc memory and hang it 1078 * off msg_control and msg_name fields. This forces 1079 * us to copy the structure to its native form. 1080 */ 1081 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1082 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1083 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1084 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1085 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1086 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1087 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1088 1089 iovcnt = lmsg.msg_iovlen; 1090 1091 if (iovcnt <= 0 || iovcnt > IOV_MAX) { 1092 return (set_errno(EMSGSIZE)); 1093 } 1094 1095 if (iovcnt > IOV_MAX_STACK) { 1096 iovsize = iovcnt * sizeof (struct iovec); 1097 aiov = kmem_alloc(iovsize, KM_SLEEP); 1098 } 1099 1100 #ifdef _SYSCALL32_IMPL 1101 /* 1102 * 32-bit callers need to have their iovec expanded, while ensuring 1103 * that they can't move more than 2Gbytes of data in a single call. 1104 */ 1105 if (model == DATAMODEL_ILP32) { 1106 struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32; 1107 ssize_t iov32size; 1108 ssize32_t count32; 1109 1110 iov32size = iovcnt * sizeof (struct iovec32); 1111 if (iovsize != 0) 1112 aiov32 = kmem_alloc(iov32size, KM_SLEEP); 1113 1114 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) { 1115 if (iovsize != 0) { 1116 kmem_free(aiov32, iov32size); 1117 kmem_free(aiov, iovsize); 1118 } 1119 1120 return (set_errno(EFAULT)); 1121 } 1122 1123 count32 = 0; 1124 for (i = 0; i < iovcnt; i++) { 1125 ssize32_t iovlen32; 1126 1127 iovlen32 = aiov32[i].iov_len; 1128 count32 += iovlen32; 1129 if (iovlen32 < 0 || count32 < 0) { 1130 if (iovsize != 0) { 1131 kmem_free(aiov32, iov32size); 1132 kmem_free(aiov, iovsize); 1133 } 1134 1135 return (set_errno(EINVAL)); 1136 } 1137 1138 aiov[i].iov_len = iovlen32; 1139 aiov[i].iov_base = 1140 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1141 } 1142 1143 if (iovsize != 0) 1144 kmem_free(aiov32, iov32size); 1145 } else 1146 #endif /* _SYSCALL32_IMPL */ 1147 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) { 1148 if (iovsize != 0) 1149 kmem_free(aiov, iovsize); 1150 1151 return (set_errno(EFAULT)); 1152 } 1153 len = 0; 1154 for (i = 0; i < iovcnt; i++) { 1155 ssize_t iovlen = aiov[i].iov_len; 1156 len += iovlen; 1157 if (iovlen < 0 || len < 0) { 1158 if (iovsize != 0) 1159 kmem_free(aiov, iovsize); 1160 1161 return (set_errno(EINVAL)); 1162 } 1163 } 1164 auio.uio_loffset = 0; 1165 auio.uio_iov = aiov; 1166 auio.uio_iovcnt = iovcnt; 1167 auio.uio_resid = len; 1168 auio.uio_segflg = UIO_USERSPACE; 1169 auio.uio_limit = 0; 1170 1171 if (lmsg.msg_control != NULL && 1172 (do_useracc == 0 || 1173 useracc(lmsg.msg_control, lmsg.msg_controllen, 1174 B_WRITE) != 0)) { 1175 if (iovsize != 0) 1176 kmem_free(aiov, iovsize); 1177 1178 return (set_errno(EFAULT)); 1179 } 1180 1181 rval = recvit(sock, &lmsg, &auio, flags, 1182 STRUCT_FADDR(umsgptr, msg_namelen), 1183 STRUCT_FADDR(umsgptr, msg_controllen), flagsp); 1184 1185 if (iovsize != 0) 1186 kmem_free(aiov, iovsize); 1187 1188 return (rval); 1189 } 1190 1191 /* 1192 * Common send function. 1193 */ 1194 static ssize_t 1195 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags) 1196 { 1197 struct sonode *so; 1198 file_t *fp; 1199 void *name; 1200 socklen_t namelen; 1201 void *control; 1202 socklen_t controllen; 1203 ssize_t len; 1204 int error; 1205 1206 if ((so = getsonode(sock, &error, &fp)) == NULL) 1207 return (set_errno(error)); 1208 1209 uiop->uio_fmode = fp->f_flag; 1210 1211 if (so->so_family == AF_UNIX) 1212 uiop->uio_extflg = UIO_COPY_CACHED; 1213 else 1214 uiop->uio_extflg = UIO_COPY_DEFAULT; 1215 1216 len = uiop->uio_resid; 1217 1218 /* Allocate and copyin name and control */ 1219 name = msg->msg_name; 1220 namelen = msg->msg_namelen; 1221 if (name != NULL && namelen != 0) { 1222 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1223 name = copyin_name(so, 1224 (struct sockaddr *)name, 1225 &namelen, &error); 1226 if (name == NULL) 1227 goto done3; 1228 /* copyin_name null terminates addresses for AF_UNIX */ 1229 msg->msg_namelen = namelen; 1230 msg->msg_name = name; 1231 } else { 1232 msg->msg_name = name = NULL; 1233 msg->msg_namelen = namelen = 0; 1234 } 1235 1236 control = msg->msg_control; 1237 controllen = msg->msg_controllen; 1238 if ((control != NULL) && (controllen != 0)) { 1239 /* 1240 * Verify that the length is not excessive to prevent 1241 * an application from consuming all of kernel memory. 1242 */ 1243 if (controllen > SO_MAXARGSIZE) { 1244 error = EINVAL; 1245 goto done2; 1246 } 1247 control = kmem_alloc(controllen, KM_SLEEP); 1248 1249 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1250 if (copyin(msg->msg_control, control, controllen)) { 1251 error = EFAULT; 1252 goto done1; 1253 } 1254 msg->msg_control = control; 1255 } else { 1256 msg->msg_control = control = NULL; 1257 msg->msg_controllen = controllen = 0; 1258 } 1259 1260 msg->msg_flags = flags; 1261 1262 error = socket_sendmsg(so, msg, uiop, CRED()); 1263 done1: 1264 if (control != NULL) 1265 kmem_free(control, controllen); 1266 done2: 1267 if (name != NULL) 1268 kmem_free(name, namelen); 1269 done3: 1270 if (error != 0) { 1271 releasef(sock); 1272 return (set_errno(error)); 1273 } 1274 lwp_stat_update(LWP_STAT_MSGSND, 1); 1275 releasef(sock); 1276 return (len - uiop->uio_resid); 1277 } 1278 1279 /* 1280 * Native system call 1281 */ 1282 ssize_t 1283 send(int sock, void *buffer, size_t len, int flags) 1284 { 1285 struct nmsghdr lmsg; 1286 struct uio auio; 1287 struct iovec aiov[1]; 1288 1289 dprint(1, ("send(%d, %p, %ld, %d)\n", 1290 sock, buffer, len, flags)); 1291 1292 if ((ssize_t)len < 0) { 1293 return (set_errno(EINVAL)); 1294 } 1295 1296 aiov[0].iov_base = buffer; 1297 aiov[0].iov_len = len; 1298 auio.uio_loffset = 0; 1299 auio.uio_iov = aiov; 1300 auio.uio_iovcnt = 1; 1301 auio.uio_resid = len; 1302 auio.uio_segflg = UIO_USERSPACE; 1303 auio.uio_limit = 0; 1304 1305 lmsg.msg_name = NULL; 1306 lmsg.msg_control = NULL; 1307 if (!(flags & MSG_XPG4_2)) { 1308 /* 1309 * In order to be compatible with the libsocket/sockmod 1310 * implementation we set EOR for all send* calls. 1311 */ 1312 flags |= MSG_EOR; 1313 } 1314 return (sendit(sock, &lmsg, &auio, flags)); 1315 } 1316 1317 /* 1318 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1319 * struct omsghdr or struct nmsghdr. 1320 */ 1321 ssize_t 1322 sendmsg(int sock, struct nmsghdr *msg, int flags) 1323 { 1324 struct nmsghdr lmsg; 1325 STRUCT_DECL(nmsghdr, u_lmsg); 1326 struct uio auio; 1327 struct iovec buf[IOV_MAX_STACK], *aiov = buf; 1328 ssize_t iovsize = 0; 1329 int iovcnt; 1330 ssize_t len, rval; 1331 int i; 1332 model_t model; 1333 1334 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags)); 1335 1336 model = get_udatamodel(); 1337 STRUCT_INIT(u_lmsg, model); 1338 1339 if (flags & MSG_XPG4_2) { 1340 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1341 STRUCT_SIZE(u_lmsg))) 1342 return (set_errno(EFAULT)); 1343 } else { 1344 /* 1345 * Assumes that nmsghdr and omsghdr are identically shaped 1346 * except for the added msg_flags field. 1347 */ 1348 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1349 SIZEOF_STRUCT(omsghdr, model))) 1350 return (set_errno(EFAULT)); 1351 /* 1352 * In order to be compatible with the libsocket/sockmod 1353 * implementation we set EOR for all send* calls. 1354 */ 1355 flags |= MSG_EOR; 1356 } 1357 1358 /* 1359 * Code below us will kmem_alloc memory and hang it 1360 * off msg_control and msg_name fields. This forces 1361 * us to copy the structure to its native form. 1362 */ 1363 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1364 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1365 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1366 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1367 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1368 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1369 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1370 1371 iovcnt = lmsg.msg_iovlen; 1372 1373 if (iovcnt <= 0 || iovcnt > IOV_MAX) { 1374 /* 1375 * Unless this is XPG 4.2 we allow iovcnt == 0 to 1376 * be compatible with SunOS 4.X and 4.4BSD. 1377 */ 1378 if (iovcnt != 0 || (flags & MSG_XPG4_2)) 1379 return (set_errno(EMSGSIZE)); 1380 } 1381 1382 if (iovcnt > IOV_MAX_STACK) { 1383 iovsize = iovcnt * sizeof (struct iovec); 1384 aiov = kmem_alloc(iovsize, KM_SLEEP); 1385 } 1386 1387 #ifdef _SYSCALL32_IMPL 1388 /* 1389 * 32-bit callers need to have their iovec expanded, while ensuring 1390 * that they can't move more than 2Gbytes of data in a single call. 1391 */ 1392 if (model == DATAMODEL_ILP32) { 1393 struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32; 1394 ssize_t iov32size; 1395 ssize32_t count32; 1396 1397 iov32size = iovcnt * sizeof (struct iovec32); 1398 if (iovsize != 0) 1399 aiov32 = kmem_alloc(iov32size, KM_SLEEP); 1400 1401 if (iovcnt != 0 && 1402 copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) { 1403 if (iovsize != 0) { 1404 kmem_free(aiov32, iov32size); 1405 kmem_free(aiov, iovsize); 1406 } 1407 1408 return (set_errno(EFAULT)); 1409 } 1410 1411 count32 = 0; 1412 for (i = 0; i < iovcnt; i++) { 1413 ssize32_t iovlen32; 1414 1415 iovlen32 = aiov32[i].iov_len; 1416 count32 += iovlen32; 1417 if (iovlen32 < 0 || count32 < 0) { 1418 if (iovsize != 0) { 1419 kmem_free(aiov32, iov32size); 1420 kmem_free(aiov, iovsize); 1421 } 1422 1423 return (set_errno(EINVAL)); 1424 } 1425 1426 aiov[i].iov_len = iovlen32; 1427 aiov[i].iov_base = 1428 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1429 } 1430 1431 if (iovsize != 0) 1432 kmem_free(aiov32, iov32size); 1433 } else 1434 #endif /* _SYSCALL32_IMPL */ 1435 if (iovcnt != 0 && 1436 copyin(lmsg.msg_iov, aiov, 1437 (unsigned)iovcnt * sizeof (struct iovec))) { 1438 if (iovsize != 0) 1439 kmem_free(aiov, iovsize); 1440 1441 return (set_errno(EFAULT)); 1442 } 1443 len = 0; 1444 for (i = 0; i < iovcnt; i++) { 1445 ssize_t iovlen = aiov[i].iov_len; 1446 len += iovlen; 1447 if (iovlen < 0 || len < 0) { 1448 if (iovsize != 0) 1449 kmem_free(aiov, iovsize); 1450 1451 return (set_errno(EINVAL)); 1452 } 1453 } 1454 auio.uio_loffset = 0; 1455 auio.uio_iov = aiov; 1456 auio.uio_iovcnt = iovcnt; 1457 auio.uio_resid = len; 1458 auio.uio_segflg = UIO_USERSPACE; 1459 auio.uio_limit = 0; 1460 1461 rval = sendit(sock, &lmsg, &auio, flags); 1462 1463 if (iovsize != 0) 1464 kmem_free(aiov, iovsize); 1465 1466 return (rval); 1467 } 1468 1469 ssize_t 1470 sendto(int sock, void *buffer, size_t len, int flags, 1471 struct sockaddr *name, socklen_t namelen) 1472 { 1473 struct nmsghdr lmsg; 1474 struct uio auio; 1475 struct iovec aiov[1]; 1476 1477 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n", 1478 sock, buffer, len, flags, (void *)name, namelen)); 1479 1480 if ((ssize_t)len < 0) { 1481 return (set_errno(EINVAL)); 1482 } 1483 1484 aiov[0].iov_base = buffer; 1485 aiov[0].iov_len = len; 1486 auio.uio_loffset = 0; 1487 auio.uio_iov = aiov; 1488 auio.uio_iovcnt = 1; 1489 auio.uio_resid = len; 1490 auio.uio_segflg = UIO_USERSPACE; 1491 auio.uio_limit = 0; 1492 1493 lmsg.msg_name = (char *)name; 1494 lmsg.msg_namelen = namelen; 1495 lmsg.msg_control = NULL; 1496 if (!(flags & MSG_XPG4_2)) { 1497 /* 1498 * In order to be compatible with the libsocket/sockmod 1499 * implementation we set EOR for all send* calls. 1500 */ 1501 flags |= MSG_EOR; 1502 } 1503 return (sendit(sock, &lmsg, &auio, flags)); 1504 } 1505 1506 /*ARGSUSED3*/ 1507 int 1508 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1509 { 1510 struct sonode *so; 1511 int error; 1512 socklen_t namelen; 1513 socklen_t sock_addrlen; 1514 struct sockaddr *sock_addrp; 1515 1516 dprint(1, ("getpeername(%d, %p, %p)\n", 1517 sock, (void *)name, (void *)namelenp)); 1518 1519 if ((so = getsonode(sock, &error, NULL)) == NULL) 1520 goto bad; 1521 1522 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1523 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1524 (name == NULL && namelen != 0)) { 1525 error = EFAULT; 1526 goto rel_out; 1527 } 1528 sock_addrlen = so->so_max_addr_len; 1529 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1530 1531 if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen, 1532 B_FALSE, CRED())) == 0) { 1533 ASSERT(sock_addrlen <= so->so_max_addr_len); 1534 error = copyout_name(name, namelen, namelenp, 1535 (void *)sock_addrp, sock_addrlen); 1536 } 1537 kmem_free(sock_addrp, so->so_max_addr_len); 1538 rel_out: 1539 releasef(sock); 1540 bad: return (error != 0 ? set_errno(error) : 0); 1541 } 1542 1543 /*ARGSUSED3*/ 1544 int 1545 getsockname(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1546 { 1547 struct sonode *so; 1548 int error; 1549 socklen_t namelen, sock_addrlen; 1550 struct sockaddr *sock_addrp; 1551 1552 dprint(1, ("getsockname(%d, %p, %p)\n", 1553 sock, (void *)name, (void *)namelenp)); 1554 1555 if ((so = getsonode(sock, &error, NULL)) == NULL) 1556 goto bad; 1557 1558 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1559 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1560 (name == NULL && namelen != 0)) { 1561 error = EFAULT; 1562 goto rel_out; 1563 } 1564 1565 sock_addrlen = so->so_max_addr_len; 1566 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1567 if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen, 1568 CRED())) == 0) { 1569 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1570 ASSERT(sock_addrlen <= so->so_max_addr_len); 1571 error = copyout_name(name, namelen, namelenp, 1572 (void *)sock_addrp, sock_addrlen); 1573 } 1574 kmem_free(sock_addrp, so->so_max_addr_len); 1575 rel_out: 1576 releasef(sock); 1577 bad: return (error != 0 ? set_errno(error) : 0); 1578 } 1579 1580 /*ARGSUSED5*/ 1581 int 1582 getsockopt(int sock, int level, int option_name, void *option_value, 1583 socklen_t *option_lenp, int version) 1584 { 1585 struct sonode *so; 1586 socklen_t optlen, optlen_res; 1587 void *optval; 1588 int error; 1589 1590 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n", 1591 sock, level, option_name, option_value, (void *)option_lenp)); 1592 1593 if ((so = getsonode(sock, &error, NULL)) == NULL) 1594 return (set_errno(error)); 1595 1596 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1597 if (copyin(option_lenp, &optlen, sizeof (optlen))) { 1598 releasef(sock); 1599 return (set_errno(EFAULT)); 1600 } 1601 /* 1602 * Verify that the length is not excessive to prevent 1603 * an application from consuming all of kernel memory. 1604 */ 1605 if (optlen > SO_MAXARGSIZE) { 1606 error = EINVAL; 1607 releasef(sock); 1608 return (set_errno(error)); 1609 } 1610 optval = kmem_alloc(optlen, KM_SLEEP); 1611 optlen_res = optlen; 1612 error = socket_getsockopt(so, level, option_name, optval, 1613 &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2, 1614 CRED()); 1615 releasef(sock); 1616 if (error) { 1617 kmem_free(optval, optlen); 1618 return (set_errno(error)); 1619 } 1620 error = copyout_arg(option_value, optlen, option_lenp, 1621 optval, optlen_res); 1622 kmem_free(optval, optlen); 1623 if (error) 1624 return (set_errno(error)); 1625 return (0); 1626 } 1627 1628 /*ARGSUSED5*/ 1629 int 1630 setsockopt(int sock, int level, int option_name, void *option_value, 1631 socklen_t option_len, int version) 1632 { 1633 struct sonode *so; 1634 intptr_t buffer[2]; 1635 void *optval = NULL; 1636 int error; 1637 1638 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n", 1639 sock, level, option_name, option_value, option_len)); 1640 1641 if ((so = getsonode(sock, &error, NULL)) == NULL) 1642 return (set_errno(error)); 1643 1644 if (option_value != NULL) { 1645 if (option_len != 0) { 1646 /* 1647 * Verify that the length is not excessive to prevent 1648 * an application from consuming all of kernel memory. 1649 */ 1650 if (option_len > SO_MAXARGSIZE) { 1651 error = EINVAL; 1652 goto done2; 1653 } 1654 optval = option_len <= sizeof (buffer) ? 1655 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP); 1656 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1657 if (copyin(option_value, optval, (size_t)option_len)) { 1658 error = EFAULT; 1659 goto done1; 1660 } 1661 } 1662 } else 1663 option_len = 0; 1664 1665 error = socket_setsockopt(so, level, option_name, optval, 1666 (t_uscalar_t)option_len, CRED()); 1667 done1: 1668 if (optval != buffer) 1669 kmem_free(optval, (size_t)option_len); 1670 done2: 1671 releasef(sock); 1672 if (error) 1673 return (set_errno(error)); 1674 return (0); 1675 } 1676 1677 static int 1678 sockconf_add_sock(int family, int type, int protocol, char *name) 1679 { 1680 int error = 0; 1681 char *kdevpath = NULL; 1682 char *kmodule = NULL; 1683 char *buf = NULL; 1684 size_t pathlen = 0; 1685 struct sockparams *sp; 1686 1687 if (name == NULL) 1688 return (EINVAL); 1689 /* 1690 * Copyin the name. 1691 * This also makes it possible to check for too long pathnames. 1692 * Compress the space needed for the name before passing it 1693 * to soconfig - soconfig will store the string until 1694 * the configuration is removed. 1695 */ 1696 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1697 if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) { 1698 kmem_free(buf, MAXPATHLEN); 1699 return (error); 1700 } 1701 if (strncmp(buf, "/dev", strlen("/dev")) == 0) { 1702 /* For device */ 1703 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1704 bcopy(buf, kdevpath, pathlen); 1705 kdevpath[pathlen - 1] = '\0'; 1706 } else { 1707 /* For socket module */ 1708 kmodule = kmem_alloc(pathlen, KM_SLEEP); 1709 bcopy(buf, kmodule, pathlen); 1710 kmodule[pathlen - 1] = '\0'; 1711 pathlen = 0; 1712 } 1713 kmem_free(buf, MAXPATHLEN); 1714 1715 /* sockparams_create frees mod name and devpath upon failure */ 1716 sp = sockparams_create(family, type, protocol, kmodule, 1717 kdevpath, pathlen, 0, KM_SLEEP, &error); 1718 if (sp != NULL) { 1719 error = sockparams_add(sp); 1720 if (error != 0) 1721 sockparams_destroy(sp); 1722 } 1723 1724 return (error); 1725 } 1726 1727 static int 1728 sockconf_remove_sock(int family, int type, int protocol) 1729 { 1730 return (sockparams_delete(family, type, protocol)); 1731 } 1732 1733 static int 1734 sockconfig_remove_filter(const char *uname) 1735 { 1736 char kname[SOF_MAXNAMELEN]; 1737 size_t len; 1738 int error; 1739 sof_entry_t *ent; 1740 1741 if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0) 1742 return (error); 1743 1744 ent = sof_entry_remove_by_name(kname); 1745 if (ent == NULL) 1746 return (ENXIO); 1747 1748 mutex_enter(&ent->sofe_lock); 1749 ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED)); 1750 if (ent->sofe_refcnt == 0) { 1751 mutex_exit(&ent->sofe_lock); 1752 sof_entry_free(ent); 1753 } else { 1754 /* let the last socket free the filter */ 1755 ent->sofe_flags |= SOFEF_CONDEMED; 1756 mutex_exit(&ent->sofe_lock); 1757 } 1758 1759 return (0); 1760 } 1761 1762 static int 1763 sockconfig_add_filter(const char *uname, void *ufilpropp) 1764 { 1765 struct sockconfig_filter_props filprop; 1766 sof_entry_t *ent; 1767 int error; 1768 size_t tuplesz, len; 1769 char hintbuf[SOF_MAXNAMELEN]; 1770 1771 ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP); 1772 mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL); 1773 1774 if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN, 1775 &len)) != 0) { 1776 sof_entry_free(ent); 1777 return (error); 1778 } 1779 1780 if (get_udatamodel() == DATAMODEL_NATIVE) { 1781 if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) { 1782 sof_entry_free(ent); 1783 return (EFAULT); 1784 } 1785 } 1786 #ifdef _SYSCALL32_IMPL 1787 else { 1788 struct sockconfig_filter_props32 filprop32; 1789 1790 if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) { 1791 sof_entry_free(ent); 1792 return (EFAULT); 1793 } 1794 filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname; 1795 filprop.sfp_autoattach = filprop32.sfp_autoattach; 1796 filprop.sfp_hint = filprop32.sfp_hint; 1797 filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg; 1798 filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt; 1799 filprop.sfp_socktuple = 1800 (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple; 1801 } 1802 #endif /* _SYSCALL32_IMPL */ 1803 1804 if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname, 1805 sizeof (ent->sofe_modname), &len)) != 0) { 1806 sof_entry_free(ent); 1807 return (error); 1808 } 1809 1810 /* 1811 * A filter must specify at least one socket tuple. 1812 */ 1813 if (filprop.sfp_socktuple_cnt == 0 || 1814 filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) { 1815 sof_entry_free(ent); 1816 return (EINVAL); 1817 } 1818 ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG; 1819 ent->sofe_hint = filprop.sfp_hint; 1820 1821 /* 1822 * Verify the hint, and copy in the hint argument, if necessary. 1823 */ 1824 switch (ent->sofe_hint) { 1825 case SOF_HINT_BEFORE: 1826 case SOF_HINT_AFTER: 1827 if ((error = copyinstr(filprop.sfp_hintarg, hintbuf, 1828 sizeof (hintbuf), &len)) != 0) { 1829 sof_entry_free(ent); 1830 return (error); 1831 } 1832 ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP); 1833 bcopy(hintbuf, ent->sofe_hintarg, len); 1834 /* FALLTHRU */ 1835 case SOF_HINT_TOP: 1836 case SOF_HINT_BOTTOM: 1837 /* hints cannot be used with programmatic filters */ 1838 if (ent->sofe_flags & SOFEF_PROG) { 1839 sof_entry_free(ent); 1840 return (EINVAL); 1841 } 1842 break; 1843 case SOF_HINT_NONE: 1844 break; 1845 default: 1846 /* bad hint value */ 1847 sof_entry_free(ent); 1848 return (EINVAL); 1849 } 1850 1851 ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt; 1852 tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt; 1853 ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP); 1854 1855 if (get_udatamodel() == DATAMODEL_NATIVE) { 1856 if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple, 1857 tuplesz)) { 1858 sof_entry_free(ent); 1859 return (EFAULT); 1860 } 1861 } 1862 #ifdef _SYSCALL32_IMPL 1863 else { 1864 int i; 1865 caddr_t data = (caddr_t)filprop.sfp_socktuple; 1866 sof_socktuple_t *tup = ent->sofe_socktuple; 1867 sof_socktuple32_t tup32; 1868 1869 tup = ent->sofe_socktuple; 1870 for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) { 1871 ASSERT(tup < ent->sofe_socktuple + tuplesz); 1872 1873 if (copyin(data, &tup32, sizeof (tup32)) != 0) { 1874 sof_entry_free(ent); 1875 return (EFAULT); 1876 } 1877 tup->sofst_family = tup32.sofst_family; 1878 tup->sofst_type = tup32.sofst_type; 1879 tup->sofst_protocol = tup32.sofst_protocol; 1880 1881 data += sizeof (tup32); 1882 } 1883 } 1884 #endif /* _SYSCALL32_IMPL */ 1885 1886 /* Sockets can start using the filter as soon as the filter is added */ 1887 if ((error = sof_entry_add(ent)) != 0) 1888 sof_entry_free(ent); 1889 1890 return (error); 1891 } 1892 1893 /* 1894 * Socket configuration system call. It is used to add and remove 1895 * socket types. 1896 */ 1897 int 1898 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 1899 { 1900 int error = 0; 1901 1902 if (secpolicy_net_config(CRED(), B_FALSE) != 0) 1903 return (set_errno(EPERM)); 1904 1905 switch (cmd) { 1906 case SOCKCONFIG_ADD_SOCK: 1907 error = sockconf_add_sock((int)(uintptr_t)arg1, 1908 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4); 1909 break; 1910 case SOCKCONFIG_REMOVE_SOCK: 1911 error = sockconf_remove_sock((int)(uintptr_t)arg1, 1912 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3); 1913 break; 1914 case SOCKCONFIG_ADD_FILTER: 1915 error = sockconfig_add_filter((const char *)arg1, arg2); 1916 break; 1917 case SOCKCONFIG_REMOVE_FILTER: 1918 error = sockconfig_remove_filter((const char *)arg1); 1919 break; 1920 case SOCKCONFIG_GET_SOCKTABLE: 1921 error = sockparams_copyout_socktable((int)(uintptr_t)arg1); 1922 break; 1923 default: 1924 #ifdef DEBUG 1925 cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd); 1926 #endif 1927 error = EINVAL; 1928 break; 1929 } 1930 1931 if (error != 0) { 1932 eprintline(error); 1933 return (set_errno(error)); 1934 } 1935 return (0); 1936 } 1937 1938 1939 /* 1940 * Sendfile is implemented through two schemes, direct I/O or by 1941 * caching in the filesystem page cache. We cache the input file by 1942 * default and use direct I/O only if sendfile_max_size is set 1943 * appropriately as explained below. Note that this logic is consistent 1944 * with other filesystems where caching is turned on by default 1945 * unless explicitly turned off by using the DIRECTIO ioctl. 1946 * 1947 * We choose a slightly different scheme here. One can turn off 1948 * caching by setting sendfile_max_size to 0. One can also enable 1949 * caching of files <= sendfile_max_size by setting sendfile_max_size 1950 * to an appropriate value. By default sendfile_max_size is set to the 1951 * maximum value so that all files are cached. In future, we may provide 1952 * better interfaces for caching the file. 1953 * 1954 * Sendfile through Direct I/O (Zero copy) 1955 * -------------------------------------- 1956 * 1957 * As disks are normally slower than the network, we can't have a 1958 * single thread that reads the disk and writes to the network. We 1959 * need to have parallelism. This is done by having the sendfile 1960 * thread create another thread that reads from the filesystem 1961 * and queues it for network processing. In this scheme, the data 1962 * is never copied anywhere i.e it is zero copy unlike the other 1963 * scheme. 1964 * 1965 * We have a sendfile queue (snfq) where each sendfile 1966 * request (snf_req_t) is queued for processing by a thread. Number 1967 * of threads is dynamically allocated and they exit if they are idling 1968 * beyond a specified amount of time. When each request (snf_req_t) is 1969 * processed by a thread, it produces a number of mblk_t structures to 1970 * be consumed by the sendfile thread. snf_deque and snf_enque are 1971 * used for consuming and producing mblks. Size of the filesystem 1972 * read is determined by the tunable (sendfile_read_size). A single 1973 * mblk holds sendfile_read_size worth of data (except the last 1974 * read of the file) which is sent down as a whole to the network. 1975 * sendfile_read_size is set to 1 MB as this seems to be the optimal 1976 * value for the UFS filesystem backed by a striped storage array. 1977 * 1978 * Synchronisation between read (producer) and write (consumer) threads. 1979 * -------------------------------------------------------------------- 1980 * 1981 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while 1982 * adding and deleting items in this list. Error can happen anytime 1983 * during read or write. There could be unprocessed mblks in the 1984 * sr_ib_XXX list when a read or write error occurs. Whenever error 1985 * is encountered, we need two things to happen : 1986 * 1987 * a) One of the threads need to clean the mblks. 1988 * b) When one thread encounters an error, the other should stop. 1989 * 1990 * For (a), we don't want to penalize the reader thread as it could do 1991 * some useful work processing other requests. For (b), the error can 1992 * be detected by examining sr_read_error or sr_write_error. 1993 * sr_lock protects sr_read_error and sr_write_error. If both reader and 1994 * writer encounters error, we need to report the write error back to 1995 * the application as that's what would have happened if the operations 1996 * were done sequentially. With this in mind, following should work : 1997 * 1998 * - Check for errors before read or write. 1999 * - If the reader encounters error, set the error in sr_read_error. 2000 * Check sr_write_error, if it is set, send cv_signal as it is 2001 * waiting for reader to complete. If it is not set, the writer 2002 * is either running sinking data to the network or blocked 2003 * because of flow control. For handling the latter case, we 2004 * always send a signal. In any case, it will examine sr_read_error 2005 * and return. sr_read_error is marked with SR_READ_DONE to tell 2006 * the writer that the reader is done in all the cases. 2007 * - If the writer encounters error, set the error in sr_write_error. 2008 * The reader thread is either blocked because of flow control or 2009 * running reading data from the disk. For the former, we need to 2010 * wakeup the thread. Again to keep it simple, we always wake up 2011 * the reader thread. Then, wait for the read thread to complete 2012 * if it is not done yet. Cleanup and return. 2013 * 2014 * High and low water marks for the read thread. 2015 * -------------------------------------------- 2016 * 2017 * If sendfile() is used to send data over a slow network, we need to 2018 * make sure that the read thread does not produce data at a faster 2019 * rate than the network. This can happen if the disk is faster than 2020 * the network. In such a case, we don't want to build a very large queue. 2021 * But we would still like to get all of the network throughput possible. 2022 * This implies that network should never block waiting for data. 2023 * As there are lot of disk throughput/network throughput combinations 2024 * possible, it is difficult to come up with an accurate number. 2025 * A typical 10K RPM disk has a max seek latency 17ms and rotational 2026 * latency of 3ms for reading a disk block. Thus, the total latency to 2027 * initiate a new read, transfer data from the disk and queue for 2028 * transmission would take about a max of 25ms. Todays max transfer rate 2029 * for network is 100MB/sec. If the thread is blocked because of flow 2030 * control, it would take 25ms to get new data ready for transmission. 2031 * We have to make sure that network is not idling, while we are initiating 2032 * new transfers. So, at 100MB/sec, to keep network busy we would need 2033 * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data. 2034 * We need to pick a high water mark so that the woken up thread would 2035 * do considerable work before blocking again to prevent thrashing. Currently, 2036 * we pick this to be 10 times that of the low water mark. 2037 * 2038 * Sendfile with segmap caching (One copy from page cache to mblks). 2039 * ---------------------------------------------------------------- 2040 * 2041 * We use the segmap cache for caching the file, if the size of file 2042 * is <= sendfile_max_size. In this case we don't use threads as VM 2043 * is reasonably fast enough to keep up with the network. If the underlying 2044 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth 2045 * of data into segmap space, and use the virtual address from segmap 2046 * directly through desballoc() to avoid copy. Once the transport is done 2047 * with the data, the mapping will be released through segmap_release() 2048 * called by the call-back routine. 2049 * 2050 * If zero-copy is not allowed by the transport, we simply call VOP_READ() 2051 * to copy the data from the filesystem into our temporary network buffer. 2052 * 2053 * To disable caching, set sendfile_max_size to 0. 2054 */ 2055 2056 uint_t sendfile_read_size = 1024 * 1024; 2057 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024 2058 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT; 2059 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT; 2060 struct sendfile_stats sf_stats; 2061 struct sendfile_queue *snfq; 2062 clock_t snfq_timeout; 2063 off64_t sendfile_max_size; 2064 2065 static void snf_enque(snf_req_t *, mblk_t *); 2066 static mblk_t *snf_deque(snf_req_t *); 2067 2068 void 2069 sendfile_init(void) 2070 { 2071 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP); 2072 2073 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL); 2074 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL); 2075 snfq->snfq_max_threads = max_ncpus; 2076 snfq_timeout = SNFQ_TIMEOUT; 2077 /* Cache all files by default. */ 2078 sendfile_max_size = MAXOFFSET_T; 2079 } 2080 2081 /* 2082 * Queues a mblk_t for network processing. 2083 */ 2084 static void 2085 snf_enque(snf_req_t *sr, mblk_t *mp) 2086 { 2087 mp->b_next = NULL; 2088 mutex_enter(&sr->sr_lock); 2089 if (sr->sr_mp_head == NULL) { 2090 sr->sr_mp_head = sr->sr_mp_tail = mp; 2091 cv_signal(&sr->sr_cv); 2092 } else { 2093 sr->sr_mp_tail->b_next = mp; 2094 sr->sr_mp_tail = mp; 2095 } 2096 sr->sr_qlen += MBLKL(mp); 2097 while ((sr->sr_qlen > sr->sr_hiwat) && 2098 (sr->sr_write_error == 0)) { 2099 sf_stats.ss_full_waits++; 2100 cv_wait(&sr->sr_cv, &sr->sr_lock); 2101 } 2102 mutex_exit(&sr->sr_lock); 2103 } 2104 2105 /* 2106 * De-queues a mblk_t for network processing. 2107 */ 2108 static mblk_t * 2109 snf_deque(snf_req_t *sr) 2110 { 2111 mblk_t *mp; 2112 2113 mutex_enter(&sr->sr_lock); 2114 /* 2115 * If we have encountered an error on read or read is 2116 * completed and no more mblks, return NULL. 2117 * We need to check for NULL sr_mp_head also as 2118 * the reads could have completed and there is 2119 * nothing more to come. 2120 */ 2121 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) || 2122 ((sr->sr_read_error & SR_READ_DONE) && 2123 sr->sr_mp_head == NULL)) { 2124 mutex_exit(&sr->sr_lock); 2125 return (NULL); 2126 } 2127 /* 2128 * To start with neither SR_READ_DONE is marked nor 2129 * the error is set. When we wake up from cv_wait, 2130 * following are the possibilities : 2131 * 2132 * a) sr_read_error is zero and mblks are queued. 2133 * b) sr_read_error is set to SR_READ_DONE 2134 * and mblks are queued. 2135 * c) sr_read_error is set to SR_READ_DONE 2136 * and no mblks. 2137 * d) sr_read_error is set to some error other 2138 * than SR_READ_DONE. 2139 */ 2140 2141 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) { 2142 sf_stats.ss_empty_waits++; 2143 cv_wait(&sr->sr_cv, &sr->sr_lock); 2144 } 2145 /* Handle (a) and (b) first - the normal case. */ 2146 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) && 2147 (sr->sr_mp_head != NULL)) { 2148 mp = sr->sr_mp_head; 2149 sr->sr_mp_head = mp->b_next; 2150 sr->sr_qlen -= MBLKL(mp); 2151 if (sr->sr_qlen < sr->sr_lowat) 2152 cv_signal(&sr->sr_cv); 2153 mutex_exit(&sr->sr_lock); 2154 mp->b_next = NULL; 2155 return (mp); 2156 } 2157 /* Handle (c) and (d). */ 2158 mutex_exit(&sr->sr_lock); 2159 return (NULL); 2160 } 2161 2162 /* 2163 * Reads data from the filesystem and queues it for network processing. 2164 */ 2165 void 2166 snf_async_read(snf_req_t *sr) 2167 { 2168 size_t iosize; 2169 u_offset_t fileoff; 2170 u_offset_t size; 2171 int ret_size; 2172 int error; 2173 file_t *fp; 2174 mblk_t *mp; 2175 struct vnode *vp; 2176 int extra = 0; 2177 int maxblk = 0; 2178 int wroff = 0; 2179 struct sonode *so = NULL; 2180 2181 fp = sr->sr_fp; 2182 size = sr->sr_file_size; 2183 fileoff = sr->sr_file_off; 2184 2185 /* 2186 * Ignore the error for filesystems that doesn't support DIRECTIO. 2187 */ 2188 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0, 2189 kcred, NULL, NULL); 2190 2191 vp = sr->sr_vp; 2192 if (vp->v_type == VSOCK) { 2193 stdata_t *stp; 2194 2195 /* 2196 * Get the extra space to insert a header and a trailer. 2197 */ 2198 so = VTOSO(vp); 2199 stp = vp->v_stream; 2200 if (stp == NULL) { 2201 wroff = so->so_proto_props.sopp_wroff; 2202 maxblk = so->so_proto_props.sopp_maxblk; 2203 extra = wroff + so->so_proto_props.sopp_tail; 2204 } else { 2205 wroff = (int)(stp->sd_wroff); 2206 maxblk = (int)(stp->sd_maxblk); 2207 extra = wroff + (int)(stp->sd_tail); 2208 } 2209 } 2210 2211 while ((size != 0) && (sr->sr_write_error == 0)) { 2212 2213 iosize = (int)MIN(sr->sr_maxpsz, size); 2214 2215 /* 2216 * Socket filters can limit the mblk size, 2217 * so limit reads to maxblk if there are 2218 * filters present. 2219 */ 2220 if (vp->v_type == VSOCK && 2221 so->so_filter_active > 0 && maxblk != INFPSZ) 2222 iosize = (int)MIN(iosize, maxblk); 2223 2224 if (is_system_labeled()) { 2225 mp = allocb_cred(iosize + extra, CRED(), 2226 curproc->p_pid); 2227 } else { 2228 mp = allocb(iosize + extra, BPRI_MED); 2229 } 2230 if (mp == NULL) { 2231 error = EAGAIN; 2232 break; 2233 } 2234 2235 mp->b_rptr += wroff; 2236 2237 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize); 2238 2239 /* Error or Reached EOF ? */ 2240 if ((error != 0) || (ret_size == 0)) { 2241 freeb(mp); 2242 break; 2243 } 2244 mp->b_wptr = mp->b_rptr + ret_size; 2245 2246 snf_enque(sr, mp); 2247 size -= ret_size; 2248 fileoff += ret_size; 2249 } 2250 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0, 2251 kcred, NULL, NULL); 2252 mutex_enter(&sr->sr_lock); 2253 sr->sr_read_error = error; 2254 sr->sr_read_error |= SR_READ_DONE; 2255 cv_signal(&sr->sr_cv); 2256 mutex_exit(&sr->sr_lock); 2257 } 2258 2259 void 2260 snf_async_thread(void) 2261 { 2262 snf_req_t *sr; 2263 callb_cpr_t cprinfo; 2264 clock_t time_left = 1; 2265 2266 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq"); 2267 2268 mutex_enter(&snfq->snfq_lock); 2269 for (;;) { 2270 /* 2271 * If we didn't find a entry, then block until woken up 2272 * again and then look through the queues again. 2273 */ 2274 while ((sr = snfq->snfq_req_head) == NULL) { 2275 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2276 if (time_left <= 0) { 2277 snfq->snfq_svc_threads--; 2278 CALLB_CPR_EXIT(&cprinfo); 2279 thread_exit(); 2280 /* NOTREACHED */ 2281 } 2282 snfq->snfq_idle_cnt++; 2283 2284 time_left = cv_reltimedwait(&snfq->snfq_cv, 2285 &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK); 2286 snfq->snfq_idle_cnt--; 2287 2288 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock); 2289 } 2290 snfq->snfq_req_head = sr->sr_next; 2291 snfq->snfq_req_cnt--; 2292 mutex_exit(&snfq->snfq_lock); 2293 snf_async_read(sr); 2294 mutex_enter(&snfq->snfq_lock); 2295 } 2296 } 2297 2298 2299 snf_req_t * 2300 create_thread(int operation, struct vnode *vp, file_t *fp, 2301 u_offset_t fileoff, u_offset_t size) 2302 { 2303 snf_req_t *sr; 2304 stdata_t *stp; 2305 2306 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP); 2307 2308 sr->sr_vp = vp; 2309 sr->sr_fp = fp; 2310 stp = vp->v_stream; 2311 2312 /* 2313 * store sd_qn_maxpsz into sr_maxpsz while we have stream head. 2314 * stream might be closed before thread returns from snf_async_read. 2315 */ 2316 if (stp != NULL && stp->sd_qn_maxpsz > 0) { 2317 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz); 2318 } else { 2319 sr->sr_maxpsz = MAXBSIZE; 2320 } 2321 2322 sr->sr_operation = operation; 2323 sr->sr_file_off = fileoff; 2324 sr->sr_file_size = size; 2325 sr->sr_hiwat = sendfile_req_hiwat; 2326 sr->sr_lowat = sendfile_req_lowat; 2327 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL); 2328 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL); 2329 /* 2330 * See whether we need another thread for servicing this 2331 * request. If there are already enough requests queued 2332 * for the threads, create one if not exceeding 2333 * snfq_max_threads. 2334 */ 2335 mutex_enter(&snfq->snfq_lock); 2336 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt && 2337 snfq->snfq_svc_threads < snfq->snfq_max_threads) { 2338 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0, 2339 TS_RUN, minclsyspri); 2340 snfq->snfq_svc_threads++; 2341 } 2342 if (snfq->snfq_req_head == NULL) { 2343 snfq->snfq_req_head = snfq->snfq_req_tail = sr; 2344 cv_signal(&snfq->snfq_cv); 2345 } else { 2346 snfq->snfq_req_tail->sr_next = sr; 2347 snfq->snfq_req_tail = sr; 2348 } 2349 snfq->snfq_req_cnt++; 2350 mutex_exit(&snfq->snfq_lock); 2351 return (sr); 2352 } 2353 2354 int 2355 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size, 2356 ssize_t *count) 2357 { 2358 snf_req_t *sr; 2359 mblk_t *mp; 2360 int iosize; 2361 int error = 0; 2362 short fflag; 2363 struct vnode *vp; 2364 int ksize; 2365 struct nmsghdr msg; 2366 2367 ksize = 0; 2368 *count = 0; 2369 bzero(&msg, sizeof (msg)); 2370 2371 vp = fp->f_vnode; 2372 fflag = fp->f_flag; 2373 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL) 2374 return (EAGAIN); 2375 2376 /* 2377 * We check for read error in snf_deque. It has to check 2378 * for successful READ_DONE and return NULL, and we might 2379 * as well make an additional check there. 2380 */ 2381 while ((mp = snf_deque(sr)) != NULL) { 2382 2383 if (ISSIG(curthread, JUSTLOOKING)) { 2384 freeb(mp); 2385 error = EINTR; 2386 break; 2387 } 2388 iosize = MBLKL(mp); 2389 2390 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2391 2392 if (error != 0) { 2393 if (mp != NULL) 2394 freeb(mp); 2395 break; 2396 } 2397 ksize += iosize; 2398 } 2399 *count = ksize; 2400 2401 mutex_enter(&sr->sr_lock); 2402 sr->sr_write_error = error; 2403 /* Look at the big comments on why we cv_signal here. */ 2404 cv_signal(&sr->sr_cv); 2405 2406 /* Wait for the reader to complete always. */ 2407 while (!(sr->sr_read_error & SR_READ_DONE)) { 2408 cv_wait(&sr->sr_cv, &sr->sr_lock); 2409 } 2410 /* If there is no write error, check for read error. */ 2411 if (error == 0) 2412 error = (sr->sr_read_error & ~SR_READ_DONE); 2413 2414 if (error != 0) { 2415 mblk_t *next_mp; 2416 2417 mp = sr->sr_mp_head; 2418 while (mp != NULL) { 2419 next_mp = mp->b_next; 2420 mp->b_next = NULL; 2421 freeb(mp); 2422 mp = next_mp; 2423 } 2424 } 2425 mutex_exit(&sr->sr_lock); 2426 kmem_free(sr, sizeof (snf_req_t)); 2427 return (error); 2428 } 2429 2430 /* Maximum no.of pages allocated by vpm for sendfile at a time */ 2431 #define SNF_VPMMAXPGS (VPMMAXPGS/2) 2432 2433 /* 2434 * Maximum no.of elements in the list returned by vpm, including 2435 * NULL for the last entry 2436 */ 2437 #define SNF_MAXVMAPS (SNF_VPMMAXPGS + 1) 2438 2439 typedef struct { 2440 unsigned int snfv_ref; 2441 frtn_t snfv_frtn; 2442 vnode_t *snfv_vp; 2443 struct vmap snfv_vml[SNF_MAXVMAPS]; 2444 } snf_vmap_desbinfo; 2445 2446 typedef struct { 2447 frtn_t snfi_frtn; 2448 caddr_t snfi_base; 2449 uint_t snfi_mapoff; 2450 size_t snfi_len; 2451 vnode_t *snfi_vp; 2452 } snf_smap_desbinfo; 2453 2454 /* 2455 * The callback function used for vpm mapped mblks called when the last ref of 2456 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2457 * can be the driver too due to lazy reclaim. 2458 */ 2459 void 2460 snf_vmap_desbfree(snf_vmap_desbinfo *snfv) 2461 { 2462 ASSERT(snfv->snfv_ref != 0); 2463 if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) { 2464 vpm_unmap_pages(snfv->snfv_vml, S_READ); 2465 VN_RELE(snfv->snfv_vp); 2466 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2467 } 2468 } 2469 2470 /* 2471 * The callback function used for segmap'ped mblks called when the last ref of 2472 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2473 * can be the driver too due to lazy reclaim. 2474 */ 2475 void 2476 snf_smap_desbfree(snf_smap_desbinfo *snfi) 2477 { 2478 if (! IS_KPM_ADDR(snfi->snfi_base)) { 2479 /* 2480 * We don't need to call segmap_fault(F_SOFTUNLOCK) for 2481 * segmap_kpm as long as the latter never falls back to 2482 * "use_segmap_range". (See segmap_getmapflt().) 2483 * 2484 * Using S_OTHER saves an redundant hat_setref() in 2485 * segmap_unlock() 2486 */ 2487 (void) segmap_fault(kas.a_hat, segkmap, 2488 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base + 2489 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len, 2490 F_SOFTUNLOCK, S_OTHER); 2491 } 2492 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED); 2493 VN_RELE(snfi->snfi_vp); 2494 kmem_free(snfi, sizeof (*snfi)); 2495 } 2496 2497 /* 2498 * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk. 2499 * When segmap is used, the mblk contains a segmap slot of no more 2500 * than MAXBSIZE. 2501 * 2502 * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained 2503 * in each iteration and sent by socket_sendmblk until an error occurs or 2504 * the requested size has been transferred. An mblk is esballoca'ed from 2505 * each mapped page and a chain of these mblk is sent to the transport layer. 2506 * vpm will be called to unmap the pages when all mblks have been freed by 2507 * free_func. 2508 * 2509 * At the end of the whole sendfile() operation, we wait till the data from 2510 * the last mblk is ack'ed by the transport before returning so that the 2511 * caller of sendfile() can safely modify the file content. 2512 * 2513 * The caller of this function should make sure that total_size does not exceed 2514 * the actual file size of fvp. 2515 */ 2516 int 2517 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size, 2518 ssize_t *count, boolean_t nowait) 2519 { 2520 caddr_t base; 2521 int mapoff; 2522 vnode_t *vp; 2523 mblk_t *mp = NULL; 2524 int chain_size; 2525 int error; 2526 clock_t deadlk_wait; 2527 short fflag; 2528 int ksize; 2529 struct vattr va; 2530 boolean_t dowait = B_FALSE; 2531 struct nmsghdr msg; 2532 2533 vp = fp->f_vnode; 2534 fflag = fp->f_flag; 2535 ksize = 0; 2536 bzero(&msg, sizeof (msg)); 2537 2538 for (;;) { 2539 if (ISSIG(curthread, JUSTLOOKING)) { 2540 error = EINTR; 2541 break; 2542 } 2543 2544 if (vpm_enable) { 2545 snf_vmap_desbinfo *snfv; 2546 mblk_t *nmp; 2547 int mblk_size; 2548 int maxsize; 2549 int i; 2550 2551 mapoff = fileoff & PAGEOFFSET; 2552 maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size); 2553 2554 snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo), 2555 KM_SLEEP); 2556 2557 /* 2558 * Get vpm mappings for maxsize with read access. 2559 * If the pages aren't available yet, we get 2560 * DEADLK, so wait and try again a little later using 2561 * an increasing wait. We might be here a long time. 2562 * 2563 * If delay_sig returns EINTR, be sure to exit and 2564 * pass it up to the caller. 2565 */ 2566 deadlk_wait = 0; 2567 while ((error = vpm_map_pages(fvp, fileoff, 2568 (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml, 2569 SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) { 2570 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2571 if ((error = delay_sig(deadlk_wait)) != 0) { 2572 break; 2573 } 2574 } 2575 if (error != 0) { 2576 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2577 error = (error == EINTR) ? EINTR : EIO; 2578 goto out; 2579 } 2580 snfv->snfv_frtn.free_func = snf_vmap_desbfree; 2581 snfv->snfv_frtn.free_arg = (caddr_t)snfv; 2582 2583 /* Construct the mblk chain from the page mappings */ 2584 chain_size = 0; 2585 for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) && 2586 total_size > 0; i++) { 2587 ASSERT(chain_size < maxsize); 2588 mblk_size = MIN(snfv->snfv_vml[i].vs_len - 2589 mapoff, total_size); 2590 nmp = esballoca( 2591 (uchar_t *)snfv->snfv_vml[i].vs_addr + 2592 mapoff, mblk_size, BPRI_HI, 2593 &snfv->snfv_frtn); 2594 2595 /* 2596 * We return EAGAIN after unmapping the pages 2597 * if we cannot allocate the the head of the 2598 * chain. Otherwise, we continue sending the 2599 * mblks constructed so far. 2600 */ 2601 if (nmp == NULL) { 2602 if (i == 0) { 2603 vpm_unmap_pages(snfv->snfv_vml, 2604 S_READ); 2605 kmem_free(snfv, 2606 sizeof (snf_vmap_desbinfo)); 2607 error = EAGAIN; 2608 goto out; 2609 } 2610 break; 2611 } 2612 /* Mark this dblk with the zero-copy flag */ 2613 nmp->b_datap->db_struioflag |= STRUIO_ZC; 2614 nmp->b_wptr += mblk_size; 2615 chain_size += mblk_size; 2616 fileoff += mblk_size; 2617 total_size -= mblk_size; 2618 snfv->snfv_ref++; 2619 mapoff = 0; 2620 if (i > 0) 2621 linkb(mp, nmp); 2622 else 2623 mp = nmp; 2624 } 2625 VN_HOLD(fvp); 2626 snfv->snfv_vp = fvp; 2627 } else { 2628 /* vpm not supported. fallback to segmap */ 2629 snf_smap_desbinfo *snfi; 2630 2631 mapoff = fileoff & MAXBOFFSET; 2632 chain_size = MAXBSIZE - mapoff; 2633 if (chain_size > total_size) 2634 chain_size = total_size; 2635 /* 2636 * we don't forcefault because we'll call 2637 * segmap_fault(F_SOFTLOCK) next. 2638 * 2639 * S_READ will get the ref bit set (by either 2640 * segmap_getmapflt() or segmap_fault()) and page 2641 * shared locked. 2642 */ 2643 base = segmap_getmapflt(segkmap, fvp, fileoff, 2644 chain_size, segmap_kpm ? SM_FAULT : 0, S_READ); 2645 2646 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP); 2647 snfi->snfi_len = (size_t)roundup(mapoff+chain_size, 2648 PAGESIZE)- (mapoff & PAGEMASK); 2649 /* 2650 * We must call segmap_fault() even for segmap_kpm 2651 * because that's how error gets returned. 2652 * (segmap_getmapflt() never fails but segmap_fault() 2653 * does.) 2654 * 2655 * If the pages aren't available yet, we get 2656 * DEADLK, so wait and try again a little later using 2657 * an increasing wait. We might be here a long time. 2658 * 2659 * If delay_sig returns EINTR, be sure to exit and 2660 * pass it up to the caller. 2661 */ 2662 deadlk_wait = 0; 2663 while ((error = FC_ERRNO(segmap_fault(kas.a_hat, 2664 segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base + 2665 mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK, 2666 S_READ))) == EDEADLK) { 2667 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2668 if ((error = delay_sig(deadlk_wait)) != 0) { 2669 break; 2670 } 2671 } 2672 if (error != 0) { 2673 (void) segmap_release(segkmap, base, 0); 2674 kmem_free(snfi, sizeof (*snfi)); 2675 error = (error == EINTR) ? EINTR : EIO; 2676 goto out; 2677 } 2678 snfi->snfi_frtn.free_func = snf_smap_desbfree; 2679 snfi->snfi_frtn.free_arg = (caddr_t)snfi; 2680 snfi->snfi_base = base; 2681 snfi->snfi_mapoff = mapoff; 2682 mp = esballoca((uchar_t *)base + mapoff, chain_size, 2683 BPRI_HI, &snfi->snfi_frtn); 2684 2685 if (mp == NULL) { 2686 (void) segmap_fault(kas.a_hat, segkmap, 2687 (caddr_t)(uintptr_t)(((uintptr_t)base + 2688 mapoff) & PAGEMASK), snfi->snfi_len, 2689 F_SOFTUNLOCK, S_OTHER); 2690 (void) segmap_release(segkmap, base, 0); 2691 kmem_free(snfi, sizeof (*snfi)); 2692 freemsg(mp); 2693 error = EAGAIN; 2694 goto out; 2695 } 2696 VN_HOLD(fvp); 2697 snfi->snfi_vp = fvp; 2698 mp->b_wptr += chain_size; 2699 2700 /* Mark this dblk with the zero-copy flag */ 2701 mp->b_datap->db_struioflag |= STRUIO_ZC; 2702 fileoff += chain_size; 2703 total_size -= chain_size; 2704 } 2705 2706 if (total_size == 0 && !nowait) { 2707 ASSERT(!dowait); 2708 dowait = B_TRUE; 2709 mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 2710 } 2711 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2712 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2713 if (error != 0) { 2714 /* 2715 * mp contains the mblks that were not sent by 2716 * socket_sendmblk. Use its size to update *count 2717 */ 2718 *count = ksize + (chain_size - msgdsize(mp)); 2719 if (mp != NULL) 2720 freemsg(mp); 2721 return (error); 2722 } 2723 ksize += chain_size; 2724 if (total_size == 0) 2725 goto done; 2726 2727 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2728 va.va_mask = AT_SIZE; 2729 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2730 if (error) 2731 break; 2732 /* Read as much as possible. */ 2733 if (fileoff >= va.va_size) 2734 break; 2735 if (total_size + fileoff > va.va_size) 2736 total_size = va.va_size - fileoff; 2737 } 2738 out: 2739 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2740 done: 2741 *count = ksize; 2742 if (dowait) { 2743 stdata_t *stp; 2744 2745 stp = vp->v_stream; 2746 if (stp == NULL) { 2747 struct sonode *so; 2748 so = VTOSO(vp); 2749 error = so_zcopy_wait(so); 2750 } else { 2751 mutex_enter(&stp->sd_lock); 2752 while (!(stp->sd_flag & STZCNOTIFY)) { 2753 if (cv_wait_sig(&stp->sd_zcopy_wait, 2754 &stp->sd_lock) == 0) { 2755 error = EINTR; 2756 break; 2757 } 2758 } 2759 stp->sd_flag &= ~STZCNOTIFY; 2760 mutex_exit(&stp->sd_lock); 2761 } 2762 } 2763 return (error); 2764 } 2765 2766 int 2767 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size, 2768 uint_t maxpsz, ssize_t *count) 2769 { 2770 struct vnode *vp; 2771 mblk_t *mp; 2772 int iosize; 2773 int extra = 0; 2774 int error; 2775 short fflag; 2776 int ksize; 2777 int ioflag; 2778 struct uio auio; 2779 struct iovec aiov; 2780 struct vattr va; 2781 int maxblk = 0; 2782 int wroff = 0; 2783 struct sonode *so = NULL; 2784 struct nmsghdr msg; 2785 2786 vp = fp->f_vnode; 2787 if (vp->v_type == VSOCK) { 2788 stdata_t *stp; 2789 2790 /* 2791 * Get the extra space to insert a header and a trailer. 2792 */ 2793 so = VTOSO(vp); 2794 stp = vp->v_stream; 2795 if (stp == NULL) { 2796 wroff = so->so_proto_props.sopp_wroff; 2797 maxblk = so->so_proto_props.sopp_maxblk; 2798 extra = wroff + so->so_proto_props.sopp_tail; 2799 } else { 2800 wroff = (int)(stp->sd_wroff); 2801 maxblk = (int)(stp->sd_maxblk); 2802 extra = wroff + (int)(stp->sd_tail); 2803 } 2804 } 2805 bzero(&msg, sizeof (msg)); 2806 fflag = fp->f_flag; 2807 ksize = 0; 2808 auio.uio_iov = &aiov; 2809 auio.uio_iovcnt = 1; 2810 auio.uio_segflg = UIO_SYSSPACE; 2811 auio.uio_llimit = MAXOFFSET_T; 2812 auio.uio_fmode = fflag; 2813 auio.uio_extflg = UIO_COPY_CACHED; 2814 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC); 2815 /* If read sync is not asked for, filter sync flags */ 2816 if ((ioflag & FRSYNC) == 0) 2817 ioflag &= ~(FSYNC|FDSYNC); 2818 for (;;) { 2819 if (ISSIG(curthread, JUSTLOOKING)) { 2820 error = EINTR; 2821 break; 2822 } 2823 iosize = (int)MIN(maxpsz, size); 2824 2825 /* 2826 * Socket filters can limit the mblk size, 2827 * so limit reads to maxblk if there are 2828 * filters present. 2829 */ 2830 if (vp->v_type == VSOCK && 2831 so->so_filter_active > 0 && maxblk != INFPSZ) 2832 iosize = (int)MIN(iosize, maxblk); 2833 2834 if (is_system_labeled()) { 2835 mp = allocb_cred(iosize + extra, CRED(), 2836 curproc->p_pid); 2837 } else { 2838 mp = allocb(iosize + extra, BPRI_MED); 2839 } 2840 if (mp == NULL) { 2841 error = EAGAIN; 2842 break; 2843 } 2844 2845 mp->b_rptr += wroff; 2846 2847 aiov.iov_base = (caddr_t)mp->b_rptr; 2848 aiov.iov_len = iosize; 2849 auio.uio_loffset = fileoff; 2850 auio.uio_resid = iosize; 2851 2852 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL); 2853 iosize -= auio.uio_resid; 2854 2855 if (error == EINTR && iosize != 0) 2856 error = 0; 2857 2858 if (error != 0 || iosize == 0) { 2859 freeb(mp); 2860 break; 2861 } 2862 mp->b_wptr = mp->b_rptr + iosize; 2863 2864 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2865 2866 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2867 2868 if (error != 0) { 2869 *count = ksize; 2870 if (mp != NULL) 2871 freeb(mp); 2872 return (error); 2873 } 2874 ksize += iosize; 2875 size -= iosize; 2876 if (size == 0) 2877 goto done; 2878 2879 fileoff += iosize; 2880 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2881 va.va_mask = AT_SIZE; 2882 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2883 if (error) 2884 break; 2885 /* Read as much as possible. */ 2886 if (fileoff >= va.va_size) 2887 size = 0; 2888 else if (size + fileoff > va.va_size) 2889 size = va.va_size - fileoff; 2890 } 2891 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2892 done: 2893 *count = ksize; 2894 return (error); 2895 } 2896 2897 #if defined(_SYSCALL32_IMPL) || defined(_ILP32) 2898 /* 2899 * Largefile support for 32 bit applications only. 2900 */ 2901 int 2902 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv, 2903 ssize32_t *count32) 2904 { 2905 ssize32_t sfv_len; 2906 u_offset_t sfv_off, va_size; 2907 struct vnode *vp, *fvp, *realvp; 2908 struct vattr va; 2909 stdata_t *stp; 2910 ssize_t count = 0; 2911 int error = 0; 2912 boolean_t dozcopy = B_FALSE; 2913 uint_t maxpsz; 2914 2915 sfv_len = (ssize32_t)sfv->sfv_len; 2916 if (sfv_len < 0) { 2917 error = EINVAL; 2918 goto out; 2919 } 2920 2921 if (sfv_len == 0) goto out; 2922 2923 sfv_off = (u_offset_t)sfv->sfv_off; 2924 2925 /* Same checks as in pread */ 2926 if (sfv_off > MAXOFFSET_T) { 2927 error = EINVAL; 2928 goto out; 2929 } 2930 if (sfv_off + sfv_len > MAXOFFSET_T) 2931 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off); 2932 2933 /* 2934 * There are no more checks on sfv_len. So, we cast it to 2935 * u_offset_t and share the snf_direct_io/snf_cache code between 2936 * 32 bit and 64 bit. 2937 * 2938 * TODO: should do nbl_need_check() like read()? 2939 */ 2940 if (sfv_len > sendfile_max_size) { 2941 sf_stats.ss_file_not_cached++; 2942 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len, 2943 &count); 2944 goto out; 2945 } 2946 fvp = rfp->f_vnode; 2947 if (VOP_REALVP(fvp, &realvp, NULL) == 0) 2948 fvp = realvp; 2949 /* 2950 * Grab the lock as a reader to prevent the file size 2951 * from changing underneath. 2952 */ 2953 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2954 va.va_mask = AT_SIZE; 2955 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2956 va_size = va.va_size; 2957 if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) { 2958 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2959 goto out; 2960 } 2961 /* Read as much as possible. */ 2962 if (sfv_off + sfv_len > va_size) 2963 sfv_len = va_size - sfv_off; 2964 2965 vp = fp->f_vnode; 2966 stp = vp->v_stream; 2967 /* 2968 * When the NOWAIT flag is not set, we enable zero-copy only if the 2969 * transfer size is large enough. This prevents performance loss 2970 * when the caller sends the file piece by piece. 2971 */ 2972 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) || 2973 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) && 2974 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) { 2975 uint_t copyflag; 2976 copyflag = stp != NULL ? stp->sd_copyflag : 2977 VTOSO(vp)->so_proto_props.sopp_zcopyflag; 2978 if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) { 2979 int on = 1; 2980 2981 if (socket_setsockopt(VTOSO(vp), SOL_SOCKET, 2982 SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0) 2983 dozcopy = B_TRUE; 2984 } else { 2985 dozcopy = copyflag & STZCVMSAFE; 2986 } 2987 } 2988 if (dozcopy) { 2989 sf_stats.ss_file_segmap++; 2990 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2991 &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0)); 2992 } else { 2993 if (vp->v_type == VSOCK && stp == NULL) { 2994 sonode_t *so = VTOSO(vp); 2995 maxpsz = so->so_proto_props.sopp_maxpsz; 2996 } else if (stp != NULL) { 2997 maxpsz = stp->sd_qn_maxpsz; 2998 } else { 2999 maxpsz = maxphys; 3000 } 3001 3002 if (maxpsz == INFPSZ) 3003 maxpsz = maxphys; 3004 else 3005 maxpsz = roundup(maxpsz, MAXBSIZE); 3006 sf_stats.ss_file_cached++; 3007 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len, 3008 maxpsz, &count); 3009 } 3010 out: 3011 releasef(sfv->sfv_fd); 3012 *count32 = (ssize32_t)count; 3013 return (error); 3014 } 3015 #endif 3016 3017 #ifdef _SYSCALL32_IMPL 3018 /* 3019 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a 3020 * ssize_t rather than ssize32_t; see the comments above read32 for details. 3021 */ 3022 3023 ssize_t 3024 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 3025 { 3026 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 3027 } 3028 3029 ssize_t 3030 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 3031 caddr32_t name, caddr32_t namelenp) 3032 { 3033 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 3034 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp)); 3035 } 3036 3037 ssize_t 3038 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 3039 { 3040 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 3041 } 3042 3043 ssize_t 3044 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 3045 caddr32_t name, socklen_t namelen) 3046 { 3047 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 3048 (void *)(uintptr_t)name, namelen)); 3049 } 3050 #endif /* _SYSCALL32_IMPL */ 3051 3052 /* 3053 * Function wrappers (mostly around the sonode switch) for 3054 * backward compatibility. 3055 */ 3056 3057 int 3058 soaccept(struct sonode *so, int fflag, struct sonode **nsop) 3059 { 3060 return (socket_accept(so, fflag, CRED(), nsop)); 3061 } 3062 3063 int 3064 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3065 int backlog, int flags) 3066 { 3067 int error; 3068 3069 error = socket_bind(so, name, namelen, flags, CRED()); 3070 if (error == 0 && backlog != 0) 3071 return (socket_listen(so, backlog, CRED())); 3072 3073 return (error); 3074 } 3075 3076 int 3077 solisten(struct sonode *so, int backlog) 3078 { 3079 return (socket_listen(so, backlog, CRED())); 3080 } 3081 3082 int 3083 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3084 int fflag, int flags) 3085 { 3086 return (socket_connect(so, name, namelen, fflag, flags, CRED())); 3087 } 3088 3089 int 3090 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 3091 { 3092 return (socket_recvmsg(so, msg, uiop, CRED())); 3093 } 3094 3095 int 3096 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 3097 { 3098 return (socket_sendmsg(so, msg, uiop, CRED())); 3099 } 3100 3101 int 3102 soshutdown(struct sonode *so, int how) 3103 { 3104 return (socket_shutdown(so, how, CRED())); 3105 } 3106 3107 int 3108 sogetsockopt(struct sonode *so, int level, int option_name, void *optval, 3109 socklen_t *optlenp, int flags) 3110 { 3111 return (socket_getsockopt(so, level, option_name, optval, optlenp, 3112 flags, CRED())); 3113 } 3114 3115 int 3116 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval, 3117 t_uscalar_t optlen) 3118 { 3119 return (socket_setsockopt(so, level, option_name, optval, optlen, 3120 CRED())); 3121 } 3122 3123 /* 3124 * Because this is backward compatibility interface it only needs to be 3125 * able to handle the creation of TPI sockfs sockets. 3126 */ 3127 struct sonode * 3128 socreate(struct sockparams *sp, int family, int type, int protocol, int version, 3129 int *errorp) 3130 { 3131 struct sonode *so; 3132 3133 ASSERT(sp != NULL); 3134 3135 so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol, 3136 version, SOCKET_SLEEP, errorp, CRED()); 3137 if (so == NULL) { 3138 SOCKPARAMS_DEC_REF(sp); 3139 } else { 3140 if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) { 3141 /* Cannot fail, only bumps so_count */ 3142 (void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL); 3143 } else { 3144 socket_destroy(so); 3145 so = NULL; 3146 } 3147 } 3148 return (so); 3149 } 3150