xref: /illumos-gate/usr/src/uts/common/fs/sockfs/socksyscalls.c (revision ef16f6b5e980be84e2248939502c5aa269ef026d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /* Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. */
27 
28 #include <sys/types.h>
29 #include <sys/t_lock.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/conf.h>
34 #include <sys/cred.h>
35 #include <sys/kmem.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/vnode.h>
39 #include <sys/debug.h>
40 #include <sys/errno.h>
41 #include <sys/time.h>
42 #include <sys/file.h>
43 #include <sys/user.h>
44 #include <sys/stream.h>
45 #include <sys/strsubr.h>
46 #include <sys/strsun.h>
47 #include <sys/sunddi.h>
48 #include <sys/esunddi.h>
49 #include <sys/flock.h>
50 #include <sys/modctl.h>
51 #include <sys/cmn_err.h>
52 #include <sys/vmsystm.h>
53 #include <sys/policy.h>
54 
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 
58 #include <sys/isa_defs.h>
59 #include <sys/inttypes.h>
60 #include <sys/systm.h>
61 #include <sys/cpuvar.h>
62 #include <sys/filio.h>
63 #include <sys/sendfile.h>
64 #include <sys/ddi.h>
65 #include <vm/seg.h>
66 #include <vm/seg_map.h>
67 #include <vm/seg_kpm.h>
68 
69 #include <fs/sockfs/nl7c.h>
70 #include <fs/sockfs/sockcommon.h>
71 #include <fs/sockfs/sockfilter_impl.h>
72 #include <fs/sockfs/socktpi.h>
73 
74 #ifdef SOCK_TEST
75 int do_useracc = 1;		/* Controlled by setting SO_DEBUG to 4 */
76 #else
77 #define	do_useracc	1
78 #endif /* SOCK_TEST */
79 
80 extern int 	xnet_truncate_print;
81 
82 extern void	nl7c_init(void);
83 extern int	sockfs_defer_nl7c_init;
84 
85 /*
86  * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c"
87  *	 as there isn't a formal definition of IOV_MAX ???
88  */
89 #define	MSG_MAXIOVLEN	16
90 
91 /*
92  * Kernel component of socket creation.
93  *
94  * The socket library determines which version number to use.
95  * First the library calls this with a NULL devpath. If this fails
96  * to find a transport (using solookup) the library will look in /etc/netconfig
97  * for the appropriate transport. If one is found it will pass in the
98  * devpath for the kernel to use.
99  */
100 int
101 so_socket(int family, int type_w_flags, int protocol, char *devpath,
102     int version)
103 {
104 	struct sonode *so;
105 	vnode_t *vp;
106 	struct file *fp;
107 	int fd;
108 	int error;
109 	int type;
110 
111 	type = type_w_flags & SOCK_TYPE_MASK;
112 	if (devpath != NULL) {
113 		char *buf;
114 		size_t kdevpathlen = 0;
115 
116 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
117 		if ((error = copyinstr(devpath, buf,
118 		    MAXPATHLEN, &kdevpathlen)) != 0) {
119 			kmem_free(buf, MAXPATHLEN);
120 			return (set_errno(error));
121 		}
122 		so = socket_create(family, type, protocol, buf, NULL,
123 		    SOCKET_SLEEP, version, CRED(), &error);
124 		kmem_free(buf, MAXPATHLEN);
125 	} else {
126 		so = socket_create(family, type, protocol, NULL, NULL,
127 		    SOCKET_SLEEP, version, CRED(), &error);
128 	}
129 	if (so == NULL)
130 		return (set_errno(error));
131 
132 	/* Allocate a file descriptor for the socket */
133 	vp = SOTOV(so);
134 	if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) {
135 		(void) socket_close(so, 0, CRED());
136 		socket_destroy(so);
137 		return (set_errno(error));
138 	}
139 
140 	/*
141 	 * Now fill in the entries that falloc reserved
142 	 */
143 	mutex_exit(&fp->f_tlock);
144 	setf(fd, fp);
145 	if ((type_w_flags & SOCK_CLOEXEC) != 0) {
146 		f_setfd(fd, FD_CLOEXEC);
147 	}
148 
149 	return (fd);
150 }
151 
152 /*
153  * Map from a file descriptor to a socket node.
154  * Returns with the file descriptor held i.e. the caller has to
155  * use releasef when done with the file descriptor.
156  */
157 struct sonode *
158 getsonode(int sock, int *errorp, file_t **fpp)
159 {
160 	file_t *fp;
161 	vnode_t *vp;
162 	struct sonode *so;
163 
164 	if ((fp = getf(sock)) == NULL) {
165 		*errorp = EBADF;
166 		eprintline(*errorp);
167 		return (NULL);
168 	}
169 	vp = fp->f_vnode;
170 	/* Check if it is a socket */
171 	if (vp->v_type != VSOCK) {
172 		releasef(sock);
173 		*errorp = ENOTSOCK;
174 		eprintline(*errorp);
175 		return (NULL);
176 	}
177 	/*
178 	 * Use the stream head to find the real socket vnode.
179 	 * This is needed when namefs sits above sockfs.
180 	 */
181 	if (vp->v_stream) {
182 		ASSERT(vp->v_stream->sd_vnode);
183 		vp = vp->v_stream->sd_vnode;
184 
185 		so = VTOSO(vp);
186 		if (so->so_version == SOV_STREAM) {
187 			releasef(sock);
188 			*errorp = ENOTSOCK;
189 			eprintsoline(so, *errorp);
190 			return (NULL);
191 		}
192 	} else {
193 		so = VTOSO(vp);
194 	}
195 	if (fpp)
196 		*fpp = fp;
197 	return (so);
198 }
199 
200 /*
201  * Allocate and copyin a sockaddr.
202  * Ensures NULL termination for AF_UNIX addresses by extending them
203  * with one NULL byte if need be. Verifies that the length is not
204  * excessive to prevent an application from consuming all of kernel
205  * memory. Returns NULL when an error occurred.
206  */
207 static struct sockaddr *
208 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
209 	    int *errorp)
210 {
211 	char	*faddr;
212 	size_t	namelen = (size_t)*namelenp;
213 
214 	ASSERT(namelen != 0);
215 	if (namelen > SO_MAXARGSIZE) {
216 		*errorp = EINVAL;
217 		eprintsoline(so, *errorp);
218 		return (NULL);
219 	}
220 
221 	faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
222 	if (copyin(name, faddr, namelen)) {
223 		kmem_free(faddr, namelen);
224 		*errorp = EFAULT;
225 		eprintsoline(so, *errorp);
226 		return (NULL);
227 	}
228 
229 	/*
230 	 * Add space for NULL termination if needed.
231 	 * Do a quick check if the last byte is NUL.
232 	 */
233 	if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
234 		/* Check if there is any NULL termination */
235 		size_t	i;
236 		int foundnull = 0;
237 
238 		for (i = sizeof (name->sa_family); i < namelen; i++) {
239 			if (faddr[i] == '\0') {
240 				foundnull = 1;
241 				break;
242 			}
243 		}
244 		if (!foundnull) {
245 			/* Add extra byte for NUL padding */
246 			char *nfaddr;
247 
248 			nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
249 			bcopy(faddr, nfaddr, namelen);
250 			kmem_free(faddr, namelen);
251 
252 			/* NUL terminate */
253 			nfaddr[namelen] = '\0';
254 			namelen++;
255 			ASSERT((socklen_t)namelen == namelen);
256 			*namelenp = (socklen_t)namelen;
257 			faddr = nfaddr;
258 		}
259 	}
260 	return ((struct sockaddr *)faddr);
261 }
262 
263 /*
264  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
265  */
266 static int
267 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp,
268 		void *kaddr, socklen_t klen)
269 {
270 	if (uaddr != NULL) {
271 		if (ulen > klen)
272 			ulen = klen;
273 
274 		if (ulen != 0) {
275 			if (copyout(kaddr, uaddr, ulen))
276 				return (EFAULT);
277 		}
278 	} else
279 		ulen = 0;
280 
281 	if (ulenp != NULL) {
282 		if (copyout(&ulen, ulenp, sizeof (ulen)))
283 			return (EFAULT);
284 	}
285 	return (0);
286 }
287 
288 /*
289  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
290  * If klen is greater than ulen it still uses the non-truncated
291  * klen to update ulenp.
292  */
293 static int
294 copyout_name(void *uaddr, socklen_t ulen, void *ulenp,
295 		void *kaddr, socklen_t klen)
296 {
297 	if (uaddr != NULL) {
298 		if (ulen >= klen)
299 			ulen = klen;
300 		else if (ulen != 0 && xnet_truncate_print) {
301 			printf("sockfs: truncating copyout of address using "
302 			    "XNET semantics for pid = %d. Lengths %d, %d\n",
303 			    curproc->p_pid, klen, ulen);
304 		}
305 
306 		if (ulen != 0) {
307 			if (copyout(kaddr, uaddr, ulen))
308 				return (EFAULT);
309 		} else
310 			klen = 0;
311 	} else
312 		klen = 0;
313 
314 	if (ulenp != NULL) {
315 		if (copyout(&klen, ulenp, sizeof (klen)))
316 			return (EFAULT);
317 	}
318 	return (0);
319 }
320 
321 /*
322  * The socketpair() code in libsocket creates two sockets (using
323  * the /etc/netconfig fallback if needed) before calling this routine
324  * to connect the two sockets together.
325  *
326  * For a SOCK_STREAM socketpair a listener is needed - in that case this
327  * routine will create a new file descriptor as part of accepting the
328  * connection. The library socketpair() will check if svs[2] has changed
329  * in which case it will close the changed fd.
330  *
331  * Note that this code could use the TPI feature of accepting the connection
332  * on the listening endpoint. However, that would require significant changes
333  * to soaccept.
334  */
335 int
336 so_socketpair(int sv[2])
337 {
338 	int svs[2];
339 	struct sonode *so1, *so2;
340 	int error;
341 	struct sockaddr_ux *name;
342 	size_t namelen;
343 	sotpi_info_t *sti1;
344 	sotpi_info_t *sti2;
345 
346 	dprint(1, ("so_socketpair(%p)\n", (void *)sv));
347 
348 	error = useracc(sv, sizeof (svs), B_WRITE);
349 	if (error && do_useracc)
350 		return (set_errno(EFAULT));
351 
352 	if (copyin(sv, svs, sizeof (svs)))
353 		return (set_errno(EFAULT));
354 
355 	if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
356 		return (set_errno(error));
357 
358 	if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
359 		releasef(svs[0]);
360 		return (set_errno(error));
361 	}
362 
363 	if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
364 		error = EOPNOTSUPP;
365 		goto done;
366 	}
367 
368 	sti1 = SOTOTPI(so1);
369 	sti2 = SOTOTPI(so2);
370 
371 	/*
372 	 * The code below makes assumptions about the "sockfs" implementation.
373 	 * So make sure that the correct implementation is really used.
374 	 */
375 	ASSERT(so1->so_ops == &sotpi_sonodeops);
376 	ASSERT(so2->so_ops == &sotpi_sonodeops);
377 
378 	if (so1->so_type == SOCK_DGRAM) {
379 		/*
380 		 * Bind both sockets and connect them with each other.
381 		 * Need to allocate name/namelen for soconnect.
382 		 */
383 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED());
384 		if (error) {
385 			eprintsoline(so1, error);
386 			goto done;
387 		}
388 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
389 		if (error) {
390 			eprintsoline(so2, error);
391 			goto done;
392 		}
393 		namelen = sizeof (struct sockaddr_ux);
394 		name = kmem_alloc(namelen, KM_SLEEP);
395 		name->sou_family = AF_UNIX;
396 		name->sou_addr = sti2->sti_ux_laddr;
397 		error = socket_connect(so1,
398 		    (struct sockaddr *)name,
399 		    (socklen_t)namelen,
400 		    0, _SOCONNECT_NOXLATE, CRED());
401 		if (error) {
402 			kmem_free(name, namelen);
403 			eprintsoline(so1, error);
404 			goto done;
405 		}
406 		name->sou_addr = sti1->sti_ux_laddr;
407 		error = socket_connect(so2,
408 		    (struct sockaddr *)name,
409 		    (socklen_t)namelen,
410 		    0, _SOCONNECT_NOXLATE, CRED());
411 		kmem_free(name, namelen);
412 		if (error) {
413 			eprintsoline(so2, error);
414 			goto done;
415 		}
416 		releasef(svs[0]);
417 		releasef(svs[1]);
418 	} else {
419 		/*
420 		 * Bind both sockets, with so1 being a listener.
421 		 * Connect so2 to so1 - nonblocking to avoid waiting for
422 		 * soaccept to complete.
423 		 * Accept a connection on so1. Pass out the new fd as sv[0].
424 		 * The library will detect the changed fd and close
425 		 * the original one.
426 		 */
427 		struct sonode *nso;
428 		struct vnode *nvp;
429 		struct file *nfp;
430 		int nfd;
431 
432 		/*
433 		 * We could simply call socket_listen() here (which would do the
434 		 * binding automatically) if the code didn't rely on passing
435 		 * _SOBIND_NOXLATE to the TPI implementation of socket_bind().
436 		 */
437 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC|
438 		    _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR,
439 		    CRED());
440 		if (error) {
441 			eprintsoline(so1, error);
442 			goto done;
443 		}
444 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
445 		if (error) {
446 			eprintsoline(so2, error);
447 			goto done;
448 		}
449 
450 		namelen = sizeof (struct sockaddr_ux);
451 		name = kmem_alloc(namelen, KM_SLEEP);
452 		name->sou_family = AF_UNIX;
453 		name->sou_addr = sti1->sti_ux_laddr;
454 		error = socket_connect(so2,
455 		    (struct sockaddr *)name,
456 		    (socklen_t)namelen,
457 		    FNONBLOCK, _SOCONNECT_NOXLATE, CRED());
458 		kmem_free(name, namelen);
459 		if (error) {
460 			if (error != EINPROGRESS) {
461 				eprintsoline(so2, error); goto done;
462 			}
463 		}
464 
465 		error = socket_accept(so1, 0, CRED(), &nso);
466 		if (error) {
467 			eprintsoline(so1, error);
468 			goto done;
469 		}
470 
471 		/* wait for so2 being SS_CONNECTED ignoring signals */
472 		mutex_enter(&so2->so_lock);
473 		error = sowaitconnected(so2, 0, 1);
474 		mutex_exit(&so2->so_lock);
475 		if (error != 0) {
476 			(void) socket_close(nso, 0, CRED());
477 			socket_destroy(nso);
478 			eprintsoline(so2, error);
479 			goto done;
480 		}
481 
482 		nvp = SOTOV(nso);
483 		if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) {
484 			(void) socket_close(nso, 0, CRED());
485 			socket_destroy(nso);
486 			eprintsoline(nso, error);
487 			goto done;
488 		}
489 		/*
490 		 * fill in the entries that falloc reserved
491 		 */
492 		mutex_exit(&nfp->f_tlock);
493 		setf(nfd, nfp);
494 
495 		releasef(svs[0]);
496 		releasef(svs[1]);
497 		svs[0] = nfd;
498 
499 		/*
500 		 * The socketpair library routine will close the original
501 		 * svs[0] when this code passes out a different file
502 		 * descriptor.
503 		 */
504 		if (copyout(svs, sv, sizeof (svs))) {
505 			(void) closeandsetf(nfd, NULL);
506 			eprintline(EFAULT);
507 			return (set_errno(EFAULT));
508 		}
509 	}
510 	return (0);
511 
512 done:
513 	releasef(svs[0]);
514 	releasef(svs[1]);
515 	return (set_errno(error));
516 }
517 
518 int
519 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
520 {
521 	struct sonode *so;
522 	int error;
523 
524 	dprint(1, ("bind(%d, %p, %d)\n",
525 	    sock, (void *)name, namelen));
526 
527 	if ((so = getsonode(sock, &error, NULL)) == NULL)
528 		return (set_errno(error));
529 
530 	/* Allocate and copyin name */
531 	/*
532 	 * X/Open test does not expect EFAULT with NULL name and non-zero
533 	 * namelen.
534 	 */
535 	if (name != NULL && namelen != 0) {
536 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
537 		name = copyin_name(so, name, &namelen, &error);
538 		if (name == NULL) {
539 			releasef(sock);
540 			return (set_errno(error));
541 		}
542 	} else {
543 		name = NULL;
544 		namelen = 0;
545 	}
546 
547 	switch (version) {
548 	default:
549 		error = socket_bind(so, name, namelen, 0, CRED());
550 		break;
551 	case SOV_XPG4_2:
552 		error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED());
553 		break;
554 	case SOV_SOCKBSD:
555 		error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED());
556 		break;
557 	}
558 done:
559 	releasef(sock);
560 	if (name != NULL)
561 		kmem_free(name, (size_t)namelen);
562 
563 	if (error)
564 		return (set_errno(error));
565 	return (0);
566 }
567 
568 /* ARGSUSED2 */
569 int
570 listen(int sock, int backlog, int version)
571 {
572 	struct sonode *so;
573 	int error;
574 
575 	dprint(1, ("listen(%d, %d)\n",
576 	    sock, backlog));
577 
578 	if ((so = getsonode(sock, &error, NULL)) == NULL)
579 		return (set_errno(error));
580 
581 	error = socket_listen(so, backlog, CRED());
582 
583 	releasef(sock);
584 	if (error)
585 		return (set_errno(error));
586 	return (0);
587 }
588 
589 /*ARGSUSED3*/
590 int
591 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
592 {
593 	struct sonode *so;
594 	file_t *fp;
595 	int error;
596 	socklen_t namelen;
597 	struct sonode *nso;
598 	struct vnode *nvp;
599 	struct file *nfp;
600 	int nfd;
601 	struct sockaddr *addrp;
602 	socklen_t addrlen;
603 
604 	dprint(1, ("accept(%d, %p, %p)\n",
605 	    sock, (void *)name, (void *)namelenp));
606 
607 	if ((so = getsonode(sock, &error, &fp)) == NULL)
608 		return (set_errno(error));
609 
610 	if (name != NULL) {
611 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
612 		if (copyin(namelenp, &namelen, sizeof (namelen))) {
613 			releasef(sock);
614 			return (set_errno(EFAULT));
615 		}
616 		if (namelen != 0) {
617 			error = useracc(name, (size_t)namelen, B_WRITE);
618 			if (error && do_useracc) {
619 				releasef(sock);
620 				return (set_errno(EFAULT));
621 			}
622 		} else
623 			name = NULL;
624 	} else {
625 		namelen = 0;
626 	}
627 
628 	/*
629 	 * Allocate the user fd before socket_accept() in order to
630 	 * catch EMFILE errors before calling socket_accept().
631 	 */
632 	if ((nfd = ufalloc(0)) == -1) {
633 		eprintsoline(so, EMFILE);
634 		releasef(sock);
635 		return (set_errno(EMFILE));
636 	}
637 	error = socket_accept(so, fp->f_flag, CRED(), &nso);
638 	if (error) {
639 		setf(nfd, NULL);
640 		releasef(sock);
641 		return (set_errno(error));
642 	}
643 
644 	nvp = SOTOV(nso);
645 
646 	ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
647 	if (namelen != 0) {
648 		addrlen = so->so_max_addr_len;
649 		addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP);
650 
651 		if ((error = socket_getpeername(nso, (struct sockaddr *)addrp,
652 		    &addrlen, B_TRUE, CRED())) == 0) {
653 			error = copyout_name(name, namelen, namelenp,
654 			    addrp, addrlen);
655 		} else {
656 			ASSERT(error == EINVAL || error == ENOTCONN);
657 			error = ECONNABORTED;
658 		}
659 		kmem_free(addrp, so->so_max_addr_len);
660 	}
661 
662 	if (error) {
663 		setf(nfd, NULL);
664 		(void) socket_close(nso, 0, CRED());
665 		socket_destroy(nso);
666 		releasef(sock);
667 		return (set_errno(error));
668 	}
669 	if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) {
670 		setf(nfd, NULL);
671 		(void) socket_close(nso, 0, CRED());
672 		socket_destroy(nso);
673 		eprintsoline(so, error);
674 		releasef(sock);
675 		return (set_errno(error));
676 	}
677 	/*
678 	 * fill in the entries that falloc reserved
679 	 */
680 	nfp->f_vnode = nvp;
681 	mutex_exit(&nfp->f_tlock);
682 	setf(nfd, nfp);
683 
684 	/*
685 	 * Copy FNDELAY and FNONBLOCK from listener to acceptor
686 	 */
687 	if (so->so_state & (SS_NDELAY|SS_NONBLOCK)) {
688 		uint_t oflag = nfp->f_flag;
689 		int arg = 0;
690 
691 		if (so->so_state & SS_NONBLOCK)
692 			arg |= FNONBLOCK;
693 		else if (so->so_state & SS_NDELAY)
694 			arg |= FNDELAY;
695 
696 		/*
697 		 * This code is a simplification of the F_SETFL code in fcntl()
698 		 * Ignore any errors from VOP_SETFL.
699 		 */
700 		if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
701 		    != 0) {
702 			eprintsoline(so, error);
703 			error = 0;
704 		} else {
705 			mutex_enter(&nfp->f_tlock);
706 			nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
707 			nfp->f_flag |= arg;
708 			mutex_exit(&nfp->f_tlock);
709 		}
710 	}
711 	releasef(sock);
712 	return (nfd);
713 }
714 
715 int
716 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
717 {
718 	struct sonode *so;
719 	file_t *fp;
720 	int error;
721 
722 	dprint(1, ("connect(%d, %p, %d)\n",
723 	    sock, (void *)name, namelen));
724 
725 	if ((so = getsonode(sock, &error, &fp)) == NULL)
726 		return (set_errno(error));
727 
728 	/* Allocate and copyin name */
729 	if (namelen != 0) {
730 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
731 		name = copyin_name(so, name, &namelen, &error);
732 		if (name == NULL) {
733 			releasef(sock);
734 			return (set_errno(error));
735 		}
736 	} else
737 		name = NULL;
738 
739 	error = socket_connect(so, name, namelen, fp->f_flag,
740 	    (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED());
741 	releasef(sock);
742 	if (name)
743 		kmem_free(name, (size_t)namelen);
744 	if (error)
745 		return (set_errno(error));
746 	return (0);
747 }
748 
749 /*ARGSUSED2*/
750 int
751 shutdown(int sock, int how, int version)
752 {
753 	struct sonode *so;
754 	int error;
755 
756 	dprint(1, ("shutdown(%d, %d)\n",
757 	    sock, how));
758 
759 	if ((so = getsonode(sock, &error, NULL)) == NULL)
760 		return (set_errno(error));
761 
762 	error = socket_shutdown(so, how, CRED());
763 
764 	releasef(sock);
765 	if (error)
766 		return (set_errno(error));
767 	return (0);
768 }
769 
770 /*
771  * Common receive routine.
772  */
773 static ssize_t
774 recvit(int sock,
775 	struct nmsghdr *msg,
776 	struct uio *uiop,
777 	int flags,
778 	socklen_t *namelenp,
779 	socklen_t *controllenp,
780 	int *flagsp)
781 {
782 	struct sonode *so;
783 	file_t *fp;
784 	void *name;
785 	socklen_t namelen;
786 	void *control;
787 	socklen_t controllen;
788 	ssize_t len;
789 	int error;
790 
791 	if ((so = getsonode(sock, &error, &fp)) == NULL)
792 		return (set_errno(error));
793 
794 	len = uiop->uio_resid;
795 	uiop->uio_fmode = fp->f_flag;
796 	uiop->uio_extflg = UIO_COPY_CACHED;
797 
798 	name = msg->msg_name;
799 	namelen = msg->msg_namelen;
800 	control = msg->msg_control;
801 	controllen = msg->msg_controllen;
802 
803 	msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
804 	    MSG_DONTWAIT | MSG_XPG4_2);
805 
806 	error = socket_recvmsg(so, msg, uiop, CRED());
807 	if (error) {
808 		releasef(sock);
809 		return (set_errno(error));
810 	}
811 	lwp_stat_update(LWP_STAT_MSGRCV, 1);
812 	releasef(sock);
813 
814 	error = copyout_name(name, namelen, namelenp,
815 	    msg->msg_name, msg->msg_namelen);
816 	if (error)
817 		goto err;
818 
819 	if (flagsp != NULL) {
820 		/*
821 		 * Clear internal flag.
822 		 */
823 		msg->msg_flags &= ~MSG_XPG4_2;
824 
825 		/*
826 		 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
827 		 * when controllen is zero and there is control data to
828 		 * copy out.
829 		 */
830 		if (controllen != 0 &&
831 		    (msg->msg_controllen > controllen || control == NULL)) {
832 			dprint(1, ("recvit: CTRUNC %d %d %p\n",
833 			    msg->msg_controllen, controllen, control));
834 
835 			msg->msg_flags |= MSG_CTRUNC;
836 		}
837 		if (copyout(&msg->msg_flags, flagsp,
838 		    sizeof (msg->msg_flags))) {
839 			error = EFAULT;
840 			goto err;
841 		}
842 	}
843 	/*
844 	 * Note: This MUST be done last. There can be no "goto err" after this
845 	 * point since it could make so_closefds run twice on some part
846 	 * of the file descriptor array.
847 	 */
848 	if (controllen != 0) {
849 		if (!(flags & MSG_XPG4_2)) {
850 			/*
851 			 * Good old msg_accrights can only return a multiple
852 			 * of 4 bytes.
853 			 */
854 			controllen &= ~((int)sizeof (uint32_t) - 1);
855 		}
856 		error = copyout_arg(control, controllen, controllenp,
857 		    msg->msg_control, msg->msg_controllen);
858 		if (error)
859 			goto err;
860 
861 		if (msg->msg_controllen > controllen || control == NULL) {
862 			if (control == NULL)
863 				controllen = 0;
864 			so_closefds(msg->msg_control, msg->msg_controllen,
865 			    !(flags & MSG_XPG4_2), controllen);
866 		}
867 	}
868 	if (msg->msg_namelen != 0)
869 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
870 	if (msg->msg_controllen != 0)
871 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
872 	return (len - uiop->uio_resid);
873 
874 err:
875 	/*
876 	 * If we fail and the control part contains file descriptors
877 	 * we have to close the fd's.
878 	 */
879 	if (msg->msg_controllen != 0)
880 		so_closefds(msg->msg_control, msg->msg_controllen,
881 		    !(flags & MSG_XPG4_2), 0);
882 	if (msg->msg_namelen != 0)
883 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
884 	if (msg->msg_controllen != 0)
885 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
886 	return (set_errno(error));
887 }
888 
889 /*
890  * Native system call
891  */
892 ssize_t
893 recv(int sock, void *buffer, size_t len, int flags)
894 {
895 	struct nmsghdr lmsg;
896 	struct uio auio;
897 	struct iovec aiov[1];
898 
899 	dprint(1, ("recv(%d, %p, %ld, %d)\n",
900 	    sock, buffer, len, flags));
901 
902 	if ((ssize_t)len < 0) {
903 		return (set_errno(EINVAL));
904 	}
905 
906 	aiov[0].iov_base = buffer;
907 	aiov[0].iov_len = len;
908 	auio.uio_loffset = 0;
909 	auio.uio_iov = aiov;
910 	auio.uio_iovcnt = 1;
911 	auio.uio_resid = len;
912 	auio.uio_segflg = UIO_USERSPACE;
913 	auio.uio_limit = 0;
914 
915 	lmsg.msg_namelen = 0;
916 	lmsg.msg_controllen = 0;
917 	lmsg.msg_flags = 0;
918 	return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
919 }
920 
921 ssize_t
922 recvfrom(int sock, void *buffer, size_t len, int flags,
923 	struct sockaddr *name, socklen_t *namelenp)
924 {
925 	struct nmsghdr lmsg;
926 	struct uio auio;
927 	struct iovec aiov[1];
928 
929 	dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
930 	    sock, buffer, len, flags, (void *)name, (void *)namelenp));
931 
932 	if ((ssize_t)len < 0) {
933 		return (set_errno(EINVAL));
934 	}
935 
936 	aiov[0].iov_base = buffer;
937 	aiov[0].iov_len = len;
938 	auio.uio_loffset = 0;
939 	auio.uio_iov = aiov;
940 	auio.uio_iovcnt = 1;
941 	auio.uio_resid = len;
942 	auio.uio_segflg = UIO_USERSPACE;
943 	auio.uio_limit = 0;
944 
945 	lmsg.msg_name = (char *)name;
946 	if (namelenp != NULL) {
947 		if (copyin(namelenp, &lmsg.msg_namelen,
948 		    sizeof (lmsg.msg_namelen)))
949 			return (set_errno(EFAULT));
950 	} else {
951 		lmsg.msg_namelen = 0;
952 	}
953 	lmsg.msg_controllen = 0;
954 	lmsg.msg_flags = 0;
955 
956 	return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
957 }
958 
959 /*
960  * Uses the MSG_XPG4_2 flag to determine if the caller is using
961  * struct omsghdr or struct nmsghdr.
962  */
963 ssize_t
964 recvmsg(int sock, struct nmsghdr *msg, int flags)
965 {
966 	STRUCT_DECL(nmsghdr, u_lmsg);
967 	STRUCT_HANDLE(nmsghdr, umsgptr);
968 	struct nmsghdr lmsg;
969 	struct uio auio;
970 	struct iovec aiov[MSG_MAXIOVLEN];
971 	int iovcnt;
972 	ssize_t len;
973 	int i;
974 	int *flagsp;
975 	model_t	model;
976 
977 	dprint(1, ("recvmsg(%d, %p, %d)\n",
978 	    sock, (void *)msg, flags));
979 
980 	model = get_udatamodel();
981 	STRUCT_INIT(u_lmsg, model);
982 	STRUCT_SET_HANDLE(umsgptr, model, msg);
983 
984 	if (flags & MSG_XPG4_2) {
985 		if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
986 			return (set_errno(EFAULT));
987 		flagsp = STRUCT_FADDR(umsgptr, msg_flags);
988 	} else {
989 		/*
990 		 * Assumes that nmsghdr and omsghdr are identically shaped
991 		 * except for the added msg_flags field.
992 		 */
993 		if (copyin(msg, STRUCT_BUF(u_lmsg),
994 		    SIZEOF_STRUCT(omsghdr, model)))
995 			return (set_errno(EFAULT));
996 		STRUCT_FSET(u_lmsg, msg_flags, 0);
997 		flagsp = NULL;
998 	}
999 
1000 	/*
1001 	 * Code below us will kmem_alloc memory and hang it
1002 	 * off msg_control and msg_name fields. This forces
1003 	 * us to copy the structure to its native form.
1004 	 */
1005 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1006 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1007 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1008 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1009 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1010 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1011 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1012 
1013 	iovcnt = lmsg.msg_iovlen;
1014 
1015 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1016 		return (set_errno(EMSGSIZE));
1017 	}
1018 
1019 #ifdef _SYSCALL32_IMPL
1020 	/*
1021 	 * 32-bit callers need to have their iovec expanded, while ensuring
1022 	 * that they can't move more than 2Gbytes of data in a single call.
1023 	 */
1024 	if (model == DATAMODEL_ILP32) {
1025 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1026 		ssize32_t count32;
1027 
1028 		if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1029 		    iovcnt * sizeof (struct iovec32)))
1030 			return (set_errno(EFAULT));
1031 
1032 		count32 = 0;
1033 		for (i = 0; i < iovcnt; i++) {
1034 			ssize32_t iovlen32;
1035 
1036 			iovlen32 = aiov32[i].iov_len;
1037 			count32 += iovlen32;
1038 			if (iovlen32 < 0 || count32 < 0)
1039 				return (set_errno(EINVAL));
1040 			aiov[i].iov_len = iovlen32;
1041 			aiov[i].iov_base =
1042 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1043 		}
1044 	} else
1045 #endif /* _SYSCALL32_IMPL */
1046 	if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1047 		return (set_errno(EFAULT));
1048 	}
1049 	len = 0;
1050 	for (i = 0; i < iovcnt; i++) {
1051 		ssize_t iovlen = aiov[i].iov_len;
1052 		len += iovlen;
1053 		if (iovlen < 0 || len < 0) {
1054 			return (set_errno(EINVAL));
1055 		}
1056 	}
1057 	auio.uio_loffset = 0;
1058 	auio.uio_iov = aiov;
1059 	auio.uio_iovcnt = iovcnt;
1060 	auio.uio_resid = len;
1061 	auio.uio_segflg = UIO_USERSPACE;
1062 	auio.uio_limit = 0;
1063 
1064 	if (lmsg.msg_control != NULL &&
1065 	    (do_useracc == 0 ||
1066 	    useracc(lmsg.msg_control, lmsg.msg_controllen,
1067 	    B_WRITE) != 0)) {
1068 		return (set_errno(EFAULT));
1069 	}
1070 
1071 	return (recvit(sock, &lmsg, &auio, flags,
1072 	    STRUCT_FADDR(umsgptr, msg_namelen),
1073 	    STRUCT_FADDR(umsgptr, msg_controllen), flagsp));
1074 }
1075 
1076 /*
1077  * Common send function.
1078  */
1079 static ssize_t
1080 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1081 {
1082 	struct sonode *so;
1083 	file_t *fp;
1084 	void *name;
1085 	socklen_t namelen;
1086 	void *control;
1087 	socklen_t controllen;
1088 	ssize_t len;
1089 	int error;
1090 
1091 	if ((so = getsonode(sock, &error, &fp)) == NULL)
1092 		return (set_errno(error));
1093 
1094 	uiop->uio_fmode = fp->f_flag;
1095 
1096 	if (so->so_family == AF_UNIX)
1097 		uiop->uio_extflg = UIO_COPY_CACHED;
1098 	else
1099 		uiop->uio_extflg = UIO_COPY_DEFAULT;
1100 
1101 	/* Allocate and copyin name and control */
1102 	name = msg->msg_name;
1103 	namelen = msg->msg_namelen;
1104 	if (name != NULL && namelen != 0) {
1105 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1106 		name = copyin_name(so,
1107 		    (struct sockaddr *)name,
1108 		    &namelen, &error);
1109 		if (name == NULL)
1110 			goto done3;
1111 		/* copyin_name null terminates addresses for AF_UNIX */
1112 		msg->msg_namelen = namelen;
1113 		msg->msg_name = name;
1114 	} else {
1115 		msg->msg_name = name = NULL;
1116 		msg->msg_namelen = namelen = 0;
1117 	}
1118 
1119 	control = msg->msg_control;
1120 	controllen = msg->msg_controllen;
1121 	if ((control != NULL) && (controllen != 0)) {
1122 		/*
1123 		 * Verify that the length is not excessive to prevent
1124 		 * an application from consuming all of kernel memory.
1125 		 */
1126 		if (controllen > SO_MAXARGSIZE) {
1127 			error = EINVAL;
1128 			goto done2;
1129 		}
1130 		control = kmem_alloc(controllen, KM_SLEEP);
1131 
1132 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1133 		if (copyin(msg->msg_control, control, controllen)) {
1134 			error = EFAULT;
1135 			goto done1;
1136 		}
1137 		msg->msg_control = control;
1138 	} else {
1139 		msg->msg_control = control = NULL;
1140 		msg->msg_controllen = controllen = 0;
1141 	}
1142 
1143 	len = uiop->uio_resid;
1144 	msg->msg_flags = flags;
1145 
1146 	error = socket_sendmsg(so, msg, uiop, CRED());
1147 done1:
1148 	if (control != NULL)
1149 		kmem_free(control, controllen);
1150 done2:
1151 	if (name != NULL)
1152 		kmem_free(name, namelen);
1153 done3:
1154 	if (error != 0) {
1155 		releasef(sock);
1156 		return (set_errno(error));
1157 	}
1158 	lwp_stat_update(LWP_STAT_MSGSND, 1);
1159 	releasef(sock);
1160 	return (len - uiop->uio_resid);
1161 }
1162 
1163 /*
1164  * Native system call
1165  */
1166 ssize_t
1167 send(int sock, void *buffer, size_t len, int flags)
1168 {
1169 	struct nmsghdr lmsg;
1170 	struct uio auio;
1171 	struct iovec aiov[1];
1172 
1173 	dprint(1, ("send(%d, %p, %ld, %d)\n",
1174 	    sock, buffer, len, flags));
1175 
1176 	if ((ssize_t)len < 0) {
1177 		return (set_errno(EINVAL));
1178 	}
1179 
1180 	aiov[0].iov_base = buffer;
1181 	aiov[0].iov_len = len;
1182 	auio.uio_loffset = 0;
1183 	auio.uio_iov = aiov;
1184 	auio.uio_iovcnt = 1;
1185 	auio.uio_resid = len;
1186 	auio.uio_segflg = UIO_USERSPACE;
1187 	auio.uio_limit = 0;
1188 
1189 	lmsg.msg_name = NULL;
1190 	lmsg.msg_control = NULL;
1191 	if (!(flags & MSG_XPG4_2)) {
1192 		/*
1193 		 * In order to be compatible with the libsocket/sockmod
1194 		 * implementation we set EOR for all send* calls.
1195 		 */
1196 		flags |= MSG_EOR;
1197 	}
1198 	return (sendit(sock, &lmsg, &auio, flags));
1199 }
1200 
1201 /*
1202  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1203  * struct omsghdr or struct nmsghdr.
1204  */
1205 ssize_t
1206 sendmsg(int sock, struct nmsghdr *msg, int flags)
1207 {
1208 	struct nmsghdr lmsg;
1209 	STRUCT_DECL(nmsghdr, u_lmsg);
1210 	struct uio auio;
1211 	struct iovec aiov[MSG_MAXIOVLEN];
1212 	int iovcnt;
1213 	ssize_t len;
1214 	int i;
1215 	model_t	model;
1216 
1217 	dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags));
1218 
1219 	model = get_udatamodel();
1220 	STRUCT_INIT(u_lmsg, model);
1221 
1222 	if (flags & MSG_XPG4_2) {
1223 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1224 		    STRUCT_SIZE(u_lmsg)))
1225 			return (set_errno(EFAULT));
1226 	} else {
1227 		/*
1228 		 * Assumes that nmsghdr and omsghdr are identically shaped
1229 		 * except for the added msg_flags field.
1230 		 */
1231 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1232 		    SIZEOF_STRUCT(omsghdr, model)))
1233 			return (set_errno(EFAULT));
1234 		/*
1235 		 * In order to be compatible with the libsocket/sockmod
1236 		 * implementation we set EOR for all send* calls.
1237 		 */
1238 		flags |= MSG_EOR;
1239 	}
1240 
1241 	/*
1242 	 * Code below us will kmem_alloc memory and hang it
1243 	 * off msg_control and msg_name fields. This forces
1244 	 * us to copy the structure to its native form.
1245 	 */
1246 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1247 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1248 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1249 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1250 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1251 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1252 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1253 
1254 	iovcnt = lmsg.msg_iovlen;
1255 
1256 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1257 		/*
1258 		 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1259 		 * be compatible with SunOS 4.X and 4.4BSD.
1260 		 */
1261 		if (iovcnt != 0 || (flags & MSG_XPG4_2))
1262 			return (set_errno(EMSGSIZE));
1263 	}
1264 
1265 #ifdef _SYSCALL32_IMPL
1266 	/*
1267 	 * 32-bit callers need to have their iovec expanded, while ensuring
1268 	 * that they can't move more than 2Gbytes of data in a single call.
1269 	 */
1270 	if (model == DATAMODEL_ILP32) {
1271 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1272 		ssize32_t count32;
1273 
1274 		if (iovcnt != 0 &&
1275 		    copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1276 		    iovcnt * sizeof (struct iovec32)))
1277 			return (set_errno(EFAULT));
1278 
1279 		count32 = 0;
1280 		for (i = 0; i < iovcnt; i++) {
1281 			ssize32_t iovlen32;
1282 
1283 			iovlen32 = aiov32[i].iov_len;
1284 			count32 += iovlen32;
1285 			if (iovlen32 < 0 || count32 < 0)
1286 				return (set_errno(EINVAL));
1287 			aiov[i].iov_len = iovlen32;
1288 			aiov[i].iov_base =
1289 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1290 		}
1291 	} else
1292 #endif /* _SYSCALL32_IMPL */
1293 	if (iovcnt != 0 &&
1294 	    copyin(lmsg.msg_iov, aiov,
1295 	    (unsigned)iovcnt * sizeof (struct iovec))) {
1296 		return (set_errno(EFAULT));
1297 	}
1298 	len = 0;
1299 	for (i = 0; i < iovcnt; i++) {
1300 		ssize_t iovlen = aiov[i].iov_len;
1301 		len += iovlen;
1302 		if (iovlen < 0 || len < 0) {
1303 			return (set_errno(EINVAL));
1304 		}
1305 	}
1306 	auio.uio_loffset = 0;
1307 	auio.uio_iov = aiov;
1308 	auio.uio_iovcnt = iovcnt;
1309 	auio.uio_resid = len;
1310 	auio.uio_segflg = UIO_USERSPACE;
1311 	auio.uio_limit = 0;
1312 
1313 	return (sendit(sock, &lmsg, &auio, flags));
1314 }
1315 
1316 ssize_t
1317 sendto(int sock, void *buffer, size_t len, int flags,
1318     struct sockaddr *name, socklen_t namelen)
1319 {
1320 	struct nmsghdr lmsg;
1321 	struct uio auio;
1322 	struct iovec aiov[1];
1323 
1324 	dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1325 	    sock, buffer, len, flags, (void *)name, namelen));
1326 
1327 	if ((ssize_t)len < 0) {
1328 		return (set_errno(EINVAL));
1329 	}
1330 
1331 	aiov[0].iov_base = buffer;
1332 	aiov[0].iov_len = len;
1333 	auio.uio_loffset = 0;
1334 	auio.uio_iov = aiov;
1335 	auio.uio_iovcnt = 1;
1336 	auio.uio_resid = len;
1337 	auio.uio_segflg = UIO_USERSPACE;
1338 	auio.uio_limit = 0;
1339 
1340 	lmsg.msg_name = (char *)name;
1341 	lmsg.msg_namelen = namelen;
1342 	lmsg.msg_control = NULL;
1343 	if (!(flags & MSG_XPG4_2)) {
1344 		/*
1345 		 * In order to be compatible with the libsocket/sockmod
1346 		 * implementation we set EOR for all send* calls.
1347 		 */
1348 		flags |= MSG_EOR;
1349 	}
1350 	return (sendit(sock, &lmsg, &auio, flags));
1351 }
1352 
1353 /*ARGSUSED3*/
1354 int
1355 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1356 {
1357 	struct sonode *so;
1358 	int error;
1359 	socklen_t namelen;
1360 	socklen_t sock_addrlen;
1361 	struct sockaddr *sock_addrp;
1362 
1363 	dprint(1, ("getpeername(%d, %p, %p)\n",
1364 	    sock, (void *)name, (void *)namelenp));
1365 
1366 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1367 		goto bad;
1368 
1369 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1370 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1371 	    (name == NULL && namelen != 0)) {
1372 		error = EFAULT;
1373 		goto rel_out;
1374 	}
1375 	sock_addrlen = so->so_max_addr_len;
1376 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1377 
1378 	if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen,
1379 	    B_FALSE, CRED())) == 0) {
1380 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1381 		error = copyout_name(name, namelen, namelenp,
1382 		    (void *)sock_addrp, sock_addrlen);
1383 	}
1384 	kmem_free(sock_addrp, so->so_max_addr_len);
1385 rel_out:
1386 	releasef(sock);
1387 bad:	return (error != 0 ? set_errno(error) : 0);
1388 }
1389 
1390 /*ARGSUSED3*/
1391 int
1392 getsockname(int sock, struct sockaddr *name,
1393 		socklen_t *namelenp, int version)
1394 {
1395 	struct sonode *so;
1396 	int error;
1397 	socklen_t namelen, sock_addrlen;
1398 	struct sockaddr *sock_addrp;
1399 
1400 	dprint(1, ("getsockname(%d, %p, %p)\n",
1401 	    sock, (void *)name, (void *)namelenp));
1402 
1403 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1404 		goto bad;
1405 
1406 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1407 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1408 	    (name == NULL && namelen != 0)) {
1409 		error = EFAULT;
1410 		goto rel_out;
1411 	}
1412 
1413 	sock_addrlen = so->so_max_addr_len;
1414 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1415 	if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen,
1416 	    CRED())) == 0) {
1417 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1418 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1419 		error = copyout_name(name, namelen, namelenp,
1420 		    (void *)sock_addrp, sock_addrlen);
1421 	}
1422 	kmem_free(sock_addrp, so->so_max_addr_len);
1423 rel_out:
1424 	releasef(sock);
1425 bad:	return (error != 0 ? set_errno(error) : 0);
1426 }
1427 
1428 /*ARGSUSED5*/
1429 int
1430 getsockopt(int sock,
1431 	int level,
1432 	int option_name,
1433 	void *option_value,
1434 	socklen_t *option_lenp,
1435 	int version)
1436 {
1437 	struct sonode *so;
1438 	socklen_t optlen, optlen_res;
1439 	void *optval;
1440 	int error;
1441 
1442 	dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1443 	    sock, level, option_name, option_value, (void *)option_lenp));
1444 
1445 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1446 		return (set_errno(error));
1447 
1448 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1449 	if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1450 		releasef(sock);
1451 		return (set_errno(EFAULT));
1452 	}
1453 	/*
1454 	 * Verify that the length is not excessive to prevent
1455 	 * an application from consuming all of kernel memory.
1456 	 */
1457 	if (optlen > SO_MAXARGSIZE) {
1458 		error = EINVAL;
1459 		releasef(sock);
1460 		return (set_errno(error));
1461 	}
1462 	optval = kmem_alloc(optlen, KM_SLEEP);
1463 	optlen_res = optlen;
1464 	error = socket_getsockopt(so, level, option_name, optval,
1465 	    &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2,
1466 	    CRED());
1467 	releasef(sock);
1468 	if (error) {
1469 		kmem_free(optval, optlen);
1470 		return (set_errno(error));
1471 	}
1472 	error = copyout_arg(option_value, optlen, option_lenp,
1473 	    optval, optlen_res);
1474 	kmem_free(optval, optlen);
1475 	if (error)
1476 		return (set_errno(error));
1477 	return (0);
1478 }
1479 
1480 /*ARGSUSED5*/
1481 int
1482 setsockopt(int sock,
1483 	int level,
1484 	int option_name,
1485 	void *option_value,
1486 	socklen_t option_len,
1487 	int version)
1488 {
1489 	struct sonode *so;
1490 	intptr_t buffer[2];
1491 	void *optval = NULL;
1492 	int error;
1493 
1494 	dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1495 	    sock, level, option_name, option_value, option_len));
1496 
1497 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1498 		return (set_errno(error));
1499 
1500 	if (option_value != NULL) {
1501 		if (option_len != 0) {
1502 			/*
1503 			 * Verify that the length is not excessive to prevent
1504 			 * an application from consuming all of kernel memory.
1505 			 */
1506 			if (option_len > SO_MAXARGSIZE) {
1507 				error = EINVAL;
1508 				goto done2;
1509 			}
1510 			optval = option_len <= sizeof (buffer) ?
1511 			    &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1512 			ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1513 			if (copyin(option_value, optval, (size_t)option_len)) {
1514 				error = EFAULT;
1515 				goto done1;
1516 			}
1517 		}
1518 	} else
1519 		option_len = 0;
1520 
1521 	error = socket_setsockopt(so, level, option_name, optval,
1522 	    (t_uscalar_t)option_len, CRED());
1523 done1:
1524 	if (optval != buffer)
1525 		kmem_free(optval, (size_t)option_len);
1526 done2:
1527 	releasef(sock);
1528 	if (error)
1529 		return (set_errno(error));
1530 	return (0);
1531 }
1532 
1533 static int
1534 sockconf_add_sock(int family, int type, int protocol, char *name)
1535 {
1536 	int error = 0;
1537 	char *kdevpath = NULL;
1538 	char *kmodule = NULL;
1539 	char *buf = NULL;
1540 	size_t pathlen = 0;
1541 	struct sockparams *sp;
1542 
1543 	if (name == NULL)
1544 		return (EINVAL);
1545 	/*
1546 	 * Copyin the name.
1547 	 * This also makes it possible to check for too long pathnames.
1548 	 * Compress the space needed for the name before passing it
1549 	 * to soconfig - soconfig will store the string until
1550 	 * the configuration is removed.
1551 	 */
1552 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1553 	if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) {
1554 		kmem_free(buf, MAXPATHLEN);
1555 		return (error);
1556 	}
1557 	if (strncmp(buf, "/dev", strlen("/dev")) == 0) {
1558 		/* For device */
1559 
1560 		/*
1561 		 * Special handling for NCA:
1562 		 *
1563 		 * DEV_NCA is never opened even if an application
1564 		 * requests for AF_NCA. The device opened is instead a
1565 		 * predefined AF_INET transport (NCA_INET_DEV).
1566 		 *
1567 		 * Prior to Volo (PSARC/2007/587) NCA would determine
1568 		 * the device using a lookup, which worked then because
1569 		 * all protocols were based on TPI. Since TPI is no
1570 		 * longer the default, we have to explicitly state
1571 		 * which device to use.
1572 		 */
1573 		if (strcmp(buf, NCA_DEV) == 0) {
1574 			/* only support entry <28, 2, 0> */
1575 			if (family != AF_NCA || type != SOCK_STREAM ||
1576 			    protocol != 0) {
1577 				kmem_free(buf, MAXPATHLEN);
1578 				return (EINVAL);
1579 			}
1580 
1581 			pathlen = strlen(NCA_INET_DEV) + 1;
1582 			kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1583 			bcopy(NCA_INET_DEV, kdevpath, pathlen);
1584 			kdevpath[pathlen - 1] = '\0';
1585 		} else {
1586 			kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1587 			bcopy(buf, kdevpath, pathlen);
1588 			kdevpath[pathlen - 1] = '\0';
1589 		}
1590 	} else {
1591 		/* For socket module */
1592 		kmodule = kmem_alloc(pathlen, KM_SLEEP);
1593 		bcopy(buf, kmodule, pathlen);
1594 		kmodule[pathlen - 1] = '\0';
1595 		pathlen = 0;
1596 	}
1597 	kmem_free(buf, MAXPATHLEN);
1598 
1599 	/* sockparams_create frees mod name and devpath upon failure */
1600 	sp = sockparams_create(family, type, protocol, kmodule,
1601 	    kdevpath, pathlen, 0, KM_SLEEP, &error);
1602 	if (sp != NULL) {
1603 		error = sockparams_add(sp);
1604 		if (error != 0)
1605 			sockparams_destroy(sp);
1606 	}
1607 
1608 	return (error);
1609 }
1610 
1611 static int
1612 sockconf_remove_sock(int family, int type, int protocol)
1613 {
1614 	return (sockparams_delete(family, type, protocol));
1615 }
1616 
1617 static int
1618 sockconfig_remove_filter(const char *uname)
1619 {
1620 	char kname[SOF_MAXNAMELEN];
1621 	size_t len;
1622 	int error;
1623 	sof_entry_t *ent;
1624 
1625 	if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0)
1626 		return (error);
1627 
1628 	ent = sof_entry_remove_by_name(kname);
1629 	if (ent == NULL)
1630 		return (ENXIO);
1631 
1632 	mutex_enter(&ent->sofe_lock);
1633 	ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED));
1634 	if (ent->sofe_refcnt == 0) {
1635 		mutex_exit(&ent->sofe_lock);
1636 		sof_entry_free(ent);
1637 	} else {
1638 		/* let the last socket free the filter */
1639 		ent->sofe_flags |= SOFEF_CONDEMED;
1640 		mutex_exit(&ent->sofe_lock);
1641 	}
1642 
1643 	return (0);
1644 }
1645 
1646 static int
1647 sockconfig_add_filter(const char *uname, void *ufilpropp)
1648 {
1649 	struct sockconfig_filter_props filprop;
1650 	sof_entry_t *ent;
1651 	int error;
1652 	size_t tuplesz, len;
1653 	char hintbuf[SOF_MAXNAMELEN];
1654 
1655 	ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP);
1656 	mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL);
1657 
1658 	if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN,
1659 	    &len)) != 0) {
1660 		sof_entry_free(ent);
1661 		return (error);
1662 	}
1663 
1664 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1665 		if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) {
1666 			sof_entry_free(ent);
1667 			return (EFAULT);
1668 		}
1669 	}
1670 #ifdef	_SYSCALL32_IMPL
1671 	else {
1672 		struct sockconfig_filter_props32 filprop32;
1673 
1674 		if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) {
1675 			sof_entry_free(ent);
1676 			return (EFAULT);
1677 		}
1678 		filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname;
1679 		filprop.sfp_autoattach = filprop32.sfp_autoattach;
1680 		filprop.sfp_hint = filprop32.sfp_hint;
1681 		filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg;
1682 		filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt;
1683 		filprop.sfp_socktuple =
1684 		    (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple;
1685 	}
1686 #endif	/* _SYSCALL32_IMPL */
1687 
1688 	if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname,
1689 	    sizeof (ent->sofe_modname), &len)) != 0) {
1690 		sof_entry_free(ent);
1691 		return (error);
1692 	}
1693 
1694 	/*
1695 	 * A filter must specify at least one socket tuple.
1696 	 */
1697 	if (filprop.sfp_socktuple_cnt == 0 ||
1698 	    filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) {
1699 		sof_entry_free(ent);
1700 		return (EINVAL);
1701 	}
1702 	ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG;
1703 	ent->sofe_hint = filprop.sfp_hint;
1704 
1705 	/*
1706 	 * Verify the hint, and copy in the hint argument, if necessary.
1707 	 */
1708 	switch (ent->sofe_hint) {
1709 	case SOF_HINT_BEFORE:
1710 	case SOF_HINT_AFTER:
1711 		if ((error = copyinstr(filprop.sfp_hintarg, hintbuf,
1712 		    sizeof (hintbuf), &len)) != 0) {
1713 			sof_entry_free(ent);
1714 			return (error);
1715 		}
1716 		ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP);
1717 		bcopy(hintbuf, ent->sofe_hintarg, len);
1718 		/* FALLTHRU */
1719 	case SOF_HINT_TOP:
1720 	case SOF_HINT_BOTTOM:
1721 		/* hints cannot be used with programmatic filters */
1722 		if (ent->sofe_flags & SOFEF_PROG) {
1723 			sof_entry_free(ent);
1724 			return (EINVAL);
1725 		}
1726 		break;
1727 	case SOF_HINT_NONE:
1728 		break;
1729 	default:
1730 		/* bad hint value */
1731 		sof_entry_free(ent);
1732 		return (EINVAL);
1733 	}
1734 
1735 	ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt;
1736 	tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt;
1737 	ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP);
1738 
1739 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1740 		if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple,
1741 		    tuplesz)) {
1742 			sof_entry_free(ent);
1743 			return (EFAULT);
1744 		}
1745 	}
1746 #ifdef	_SYSCALL32_IMPL
1747 	else {
1748 		int i;
1749 		caddr_t data = (caddr_t)filprop.sfp_socktuple;
1750 		sof_socktuple_t	*tup = ent->sofe_socktuple;
1751 		sof_socktuple32_t tup32;
1752 
1753 		tup = ent->sofe_socktuple;
1754 		for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) {
1755 			ASSERT(tup < ent->sofe_socktuple + tuplesz);
1756 
1757 			if (copyin(data, &tup32, sizeof (tup32)) != 0) {
1758 				sof_entry_free(ent);
1759 				return (EFAULT);
1760 			}
1761 			tup->sofst_family = tup32.sofst_family;
1762 			tup->sofst_type = tup32.sofst_type;
1763 			tup->sofst_protocol = tup32.sofst_protocol;
1764 
1765 			data += sizeof (tup32);
1766 		}
1767 	}
1768 #endif	/* _SYSCALL32_IMPL */
1769 
1770 	/* Sockets can start using the filter as soon as the filter is added */
1771 	if ((error = sof_entry_add(ent)) != 0)
1772 		sof_entry_free(ent);
1773 
1774 	return (error);
1775 }
1776 
1777 /*
1778  * Socket configuration system call. It is used to add and remove
1779  * socket types.
1780  */
1781 int
1782 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
1783 {
1784 	int error = 0;
1785 
1786 	if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1787 		return (set_errno(EPERM));
1788 
1789 	if (sockfs_defer_nl7c_init) {
1790 		nl7c_init();
1791 		sockfs_defer_nl7c_init = 0;
1792 	}
1793 
1794 	switch (cmd) {
1795 	case SOCKCONFIG_ADD_SOCK:
1796 		error = sockconf_add_sock((int)(uintptr_t)arg1,
1797 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4);
1798 		break;
1799 	case SOCKCONFIG_REMOVE_SOCK:
1800 		error = sockconf_remove_sock((int)(uintptr_t)arg1,
1801 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3);
1802 		break;
1803 	case SOCKCONFIG_ADD_FILTER:
1804 		error = sockconfig_add_filter((const char *)arg1, arg2);
1805 		break;
1806 	case SOCKCONFIG_REMOVE_FILTER:
1807 		error = sockconfig_remove_filter((const char *)arg1);
1808 		break;
1809 	default:
1810 #ifdef	DEBUG
1811 		cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd);
1812 #endif
1813 		error = EINVAL;
1814 		break;
1815 	}
1816 
1817 	if (error != 0) {
1818 		eprintline(error);
1819 		return (set_errno(error));
1820 	}
1821 	return (0);
1822 }
1823 
1824 
1825 /*
1826  * Sendfile is implemented through two schemes, direct I/O or by
1827  * caching in the filesystem page cache. We cache the input file by
1828  * default and use direct I/O only if sendfile_max_size is set
1829  * appropriately as explained below. Note that this logic is consistent
1830  * with other filesystems where caching is turned on by default
1831  * unless explicitly turned off by using the DIRECTIO ioctl.
1832  *
1833  * We choose a slightly different scheme here. One can turn off
1834  * caching by setting sendfile_max_size to 0. One can also enable
1835  * caching of files <= sendfile_max_size by setting sendfile_max_size
1836  * to an appropriate value. By default sendfile_max_size is set to the
1837  * maximum value so that all files are cached. In future, we may provide
1838  * better interfaces for caching the file.
1839  *
1840  * Sendfile through Direct I/O (Zero copy)
1841  * --------------------------------------
1842  *
1843  * As disks are normally slower than the network, we can't have a
1844  * single thread that reads the disk and writes to the network. We
1845  * need to have parallelism. This is done by having the sendfile
1846  * thread create another thread that reads from the filesystem
1847  * and queues it for network processing. In this scheme, the data
1848  * is never copied anywhere i.e it is zero copy unlike the other
1849  * scheme.
1850  *
1851  * We have a sendfile queue (snfq) where each sendfile
1852  * request (snf_req_t) is queued for processing by a thread. Number
1853  * of threads is dynamically allocated and they exit if they are idling
1854  * beyond a specified amount of time. When each request (snf_req_t) is
1855  * processed by a thread, it produces a number of mblk_t structures to
1856  * be consumed by the sendfile thread. snf_deque and snf_enque are
1857  * used for consuming and producing mblks. Size of the filesystem
1858  * read is determined by the tunable (sendfile_read_size). A single
1859  * mblk holds sendfile_read_size worth of data (except the last
1860  * read of the file) which is sent down as a whole to the network.
1861  * sendfile_read_size is set to 1 MB as this seems to be the optimal
1862  * value for the UFS filesystem backed by a striped storage array.
1863  *
1864  * Synchronisation between read (producer) and write (consumer) threads.
1865  * --------------------------------------------------------------------
1866  *
1867  * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1868  * adding and deleting items in this list. Error can happen anytime
1869  * during read or write. There could be unprocessed mblks in the
1870  * sr_ib_XXX list when a read or write error occurs. Whenever error
1871  * is encountered, we need two things to happen :
1872  *
1873  * a) One of the threads need to clean the mblks.
1874  * b) When one thread encounters an error, the other should stop.
1875  *
1876  * For (a), we don't want to penalize the reader thread as it could do
1877  * some useful work processing other requests. For (b), the error can
1878  * be detected by examining sr_read_error or sr_write_error.
1879  * sr_lock protects sr_read_error and sr_write_error. If both reader and
1880  * writer encounters error, we need to report the write error back to
1881  * the application as that's what would have happened if the operations
1882  * were done sequentially. With this in mind, following should work :
1883  *
1884  * 	- Check for errors before read or write.
1885  *	- If the reader encounters error, set the error in sr_read_error.
1886  *	  Check sr_write_error, if it is set, send cv_signal as it is
1887  *	  waiting for reader to complete. If it is not set, the writer
1888  *	  is either running sinking data to the network or blocked
1889  *        because of flow control. For handling the latter case, we
1890  *	  always send a signal. In any case, it will examine sr_read_error
1891  *	  and return. sr_read_error is marked with SR_READ_DONE to tell
1892  *	  the writer that the reader is done in all the cases.
1893  *	- If the writer encounters error, set the error in sr_write_error.
1894  *	  The reader thread is either blocked because of flow control or
1895  *	  running reading data from the disk. For the former, we need to
1896  *	  wakeup the thread. Again to keep it simple, we always wake up
1897  *	  the reader thread. Then, wait for the read thread to complete
1898  *	  if it is not done yet. Cleanup and return.
1899  *
1900  * High and low water marks for the read thread.
1901  * --------------------------------------------
1902  *
1903  * If sendfile() is used to send data over a slow network, we need to
1904  * make sure that the read thread does not produce data at a faster
1905  * rate than the network. This can happen if the disk is faster than
1906  * the network. In such a case, we don't want to build a very large queue.
1907  * But we would still like to get all of the network throughput possible.
1908  * This implies that network should never block waiting for data.
1909  * As there are lot of disk throughput/network throughput combinations
1910  * possible, it is difficult to come up with an accurate number.
1911  * A typical 10K RPM disk has a max seek latency 17ms and rotational
1912  * latency of 3ms for reading a disk block. Thus, the total latency to
1913  * initiate a new read, transfer data from the disk and queue for
1914  * transmission would take about a max of 25ms. Todays max transfer rate
1915  * for network is 100MB/sec. If the thread is blocked because of flow
1916  * control, it would take 25ms to get new data ready for transmission.
1917  * We have to make sure that network is not idling, while we are initiating
1918  * new transfers. So, at 100MB/sec, to keep network busy we would need
1919  * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
1920  * We need to pick a high water mark so that the woken up thread would
1921  * do considerable work before blocking again to prevent thrashing. Currently,
1922  * we pick this to be 10 times that of the low water mark.
1923  *
1924  * Sendfile with segmap caching (One copy from page cache to mblks).
1925  * ----------------------------------------------------------------
1926  *
1927  * We use the segmap cache for caching the file, if the size of file
1928  * is <= sendfile_max_size. In this case we don't use threads as VM
1929  * is reasonably fast enough to keep up with the network. If the underlying
1930  * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
1931  * of data into segmap space, and use the virtual address from segmap
1932  * directly through desballoc() to avoid copy. Once the transport is done
1933  * with the data, the mapping will be released through segmap_release()
1934  * called by the call-back routine.
1935  *
1936  * If zero-copy is not allowed by the transport, we simply call VOP_READ()
1937  * to copy the data from the filesystem into our temporary network buffer.
1938  *
1939  * To disable caching, set sendfile_max_size to 0.
1940  */
1941 
1942 uint_t sendfile_read_size = 1024 * 1024;
1943 #define	SENDFILE_REQ_LOWAT	3 * 1024 * 1024
1944 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
1945 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
1946 struct sendfile_stats sf_stats;
1947 struct sendfile_queue *snfq;
1948 clock_t snfq_timeout;
1949 off64_t sendfile_max_size;
1950 
1951 static void snf_enque(snf_req_t *, mblk_t *);
1952 static mblk_t *snf_deque(snf_req_t *);
1953 
1954 void
1955 sendfile_init(void)
1956 {
1957 	snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
1958 
1959 	mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
1960 	cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
1961 	snfq->snfq_max_threads = max_ncpus;
1962 	snfq_timeout = SNFQ_TIMEOUT;
1963 	/* Cache all files by default. */
1964 	sendfile_max_size = MAXOFFSET_T;
1965 }
1966 
1967 /*
1968  * Queues a mblk_t for network processing.
1969  */
1970 static void
1971 snf_enque(snf_req_t *sr, mblk_t *mp)
1972 {
1973 	mp->b_next = NULL;
1974 	mutex_enter(&sr->sr_lock);
1975 	if (sr->sr_mp_head == NULL) {
1976 		sr->sr_mp_head = sr->sr_mp_tail = mp;
1977 		cv_signal(&sr->sr_cv);
1978 	} else {
1979 		sr->sr_mp_tail->b_next = mp;
1980 		sr->sr_mp_tail = mp;
1981 	}
1982 	sr->sr_qlen += MBLKL(mp);
1983 	while ((sr->sr_qlen > sr->sr_hiwat) &&
1984 	    (sr->sr_write_error == 0)) {
1985 		sf_stats.ss_full_waits++;
1986 		cv_wait(&sr->sr_cv, &sr->sr_lock);
1987 	}
1988 	mutex_exit(&sr->sr_lock);
1989 }
1990 
1991 /*
1992  * De-queues a mblk_t for network processing.
1993  */
1994 static mblk_t *
1995 snf_deque(snf_req_t *sr)
1996 {
1997 	mblk_t *mp;
1998 
1999 	mutex_enter(&sr->sr_lock);
2000 	/*
2001 	 * If we have encountered an error on read or read is
2002 	 * completed and no more mblks, return NULL.
2003 	 * We need to check for NULL sr_mp_head also as
2004 	 * the reads could have completed and there is
2005 	 * nothing more to come.
2006 	 */
2007 	if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
2008 	    ((sr->sr_read_error & SR_READ_DONE) &&
2009 	    sr->sr_mp_head == NULL)) {
2010 		mutex_exit(&sr->sr_lock);
2011 		return (NULL);
2012 	}
2013 	/*
2014 	 * To start with neither SR_READ_DONE is marked nor
2015 	 * the error is set. When we wake up from cv_wait,
2016 	 * following are the possibilities :
2017 	 *
2018 	 *	a) sr_read_error is zero and mblks are queued.
2019 	 *	b) sr_read_error is set to SR_READ_DONE
2020 	 *	   and mblks are queued.
2021 	 *	c) sr_read_error is set to SR_READ_DONE
2022 	 *	   and no mblks.
2023 	 *	d) sr_read_error is set to some error other
2024 	 *	   than SR_READ_DONE.
2025 	 */
2026 
2027 	while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
2028 		sf_stats.ss_empty_waits++;
2029 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2030 	}
2031 	/* Handle (a) and (b) first  - the normal case. */
2032 	if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
2033 	    (sr->sr_mp_head != NULL)) {
2034 		mp = sr->sr_mp_head;
2035 		sr->sr_mp_head = mp->b_next;
2036 		sr->sr_qlen -= MBLKL(mp);
2037 		if (sr->sr_qlen < sr->sr_lowat)
2038 			cv_signal(&sr->sr_cv);
2039 		mutex_exit(&sr->sr_lock);
2040 		mp->b_next = NULL;
2041 		return (mp);
2042 	}
2043 	/* Handle (c) and (d). */
2044 	mutex_exit(&sr->sr_lock);
2045 	return (NULL);
2046 }
2047 
2048 /*
2049  * Reads data from the filesystem and queues it for network processing.
2050  */
2051 void
2052 snf_async_read(snf_req_t *sr)
2053 {
2054 	size_t iosize;
2055 	u_offset_t fileoff;
2056 	u_offset_t size;
2057 	int ret_size;
2058 	int error;
2059 	file_t *fp;
2060 	mblk_t *mp;
2061 	struct vnode *vp;
2062 	int extra = 0;
2063 	int maxblk = 0;
2064 	int wroff = 0;
2065 	struct sonode *so;
2066 
2067 	fp = sr->sr_fp;
2068 	size = sr->sr_file_size;
2069 	fileoff = sr->sr_file_off;
2070 
2071 	/*
2072 	 * Ignore the error for filesystems that doesn't support DIRECTIO.
2073 	 */
2074 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
2075 	    kcred, NULL, NULL);
2076 
2077 	vp = sr->sr_vp;
2078 	if (vp->v_type == VSOCK) {
2079 		stdata_t *stp;
2080 
2081 		/*
2082 		 * Get the extra space to insert a header and a trailer.
2083 		 */
2084 		so = VTOSO(vp);
2085 		stp = vp->v_stream;
2086 		if (stp == NULL) {
2087 			wroff = so->so_proto_props.sopp_wroff;
2088 			maxblk = so->so_proto_props.sopp_maxblk;
2089 			extra = wroff + so->so_proto_props.sopp_tail;
2090 		} else {
2091 			wroff = (int)(stp->sd_wroff);
2092 			maxblk = (int)(stp->sd_maxblk);
2093 			extra = wroff + (int)(stp->sd_tail);
2094 		}
2095 	}
2096 
2097 	while ((size != 0) && (sr->sr_write_error == 0)) {
2098 
2099 		iosize = (int)MIN(sr->sr_maxpsz, size);
2100 
2101 		/*
2102 		 * Socket filters can limit the mblk size,
2103 		 * so limit reads to maxblk if there are
2104 		 * filters present.
2105 		 */
2106 		if (vp->v_type == VSOCK &&
2107 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2108 			iosize = (int)MIN(iosize, maxblk);
2109 
2110 		if (is_system_labeled()) {
2111 			mp = allocb_cred(iosize + extra, CRED(),
2112 			    curproc->p_pid);
2113 		} else {
2114 			mp = allocb(iosize + extra, BPRI_MED);
2115 		}
2116 		if (mp == NULL) {
2117 			error = EAGAIN;
2118 			break;
2119 		}
2120 
2121 		mp->b_rptr += wroff;
2122 
2123 		ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
2124 
2125 		/* Error or Reached EOF ? */
2126 		if ((error != 0) || (ret_size == 0)) {
2127 			freeb(mp);
2128 			break;
2129 		}
2130 		mp->b_wptr = mp->b_rptr + ret_size;
2131 
2132 		snf_enque(sr, mp);
2133 		size -= ret_size;
2134 		fileoff += ret_size;
2135 	}
2136 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
2137 	    kcred, NULL, NULL);
2138 	mutex_enter(&sr->sr_lock);
2139 	sr->sr_read_error = error;
2140 	sr->sr_read_error |= SR_READ_DONE;
2141 	cv_signal(&sr->sr_cv);
2142 	mutex_exit(&sr->sr_lock);
2143 }
2144 
2145 void
2146 snf_async_thread(void)
2147 {
2148 	snf_req_t *sr;
2149 	callb_cpr_t cprinfo;
2150 	clock_t time_left = 1;
2151 
2152 	CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
2153 
2154 	mutex_enter(&snfq->snfq_lock);
2155 	for (;;) {
2156 		/*
2157 		 * If we didn't find a entry, then block until woken up
2158 		 * again and then look through the queues again.
2159 		 */
2160 		while ((sr = snfq->snfq_req_head) == NULL) {
2161 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2162 			if (time_left <= 0) {
2163 				snfq->snfq_svc_threads--;
2164 				CALLB_CPR_EXIT(&cprinfo);
2165 				thread_exit();
2166 				/* NOTREACHED */
2167 			}
2168 			snfq->snfq_idle_cnt++;
2169 
2170 			time_left = cv_reltimedwait(&snfq->snfq_cv,
2171 			    &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK);
2172 			snfq->snfq_idle_cnt--;
2173 
2174 			CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2175 		}
2176 		snfq->snfq_req_head = sr->sr_next;
2177 		snfq->snfq_req_cnt--;
2178 		mutex_exit(&snfq->snfq_lock);
2179 		snf_async_read(sr);
2180 		mutex_enter(&snfq->snfq_lock);
2181 	}
2182 }
2183 
2184 
2185 snf_req_t *
2186 create_thread(int operation, struct vnode *vp, file_t *fp,
2187     u_offset_t fileoff, u_offset_t size)
2188 {
2189 	snf_req_t *sr;
2190 	stdata_t *stp;
2191 
2192 	sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2193 
2194 	sr->sr_vp = vp;
2195 	sr->sr_fp = fp;
2196 	stp = vp->v_stream;
2197 
2198 	/*
2199 	 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2200 	 * stream might be closed before thread returns from snf_async_read.
2201 	 */
2202 	if (stp != NULL && stp->sd_qn_maxpsz > 0) {
2203 		sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2204 	} else {
2205 		sr->sr_maxpsz = MAXBSIZE;
2206 	}
2207 
2208 	sr->sr_operation = operation;
2209 	sr->sr_file_off = fileoff;
2210 	sr->sr_file_size = size;
2211 	sr->sr_hiwat = sendfile_req_hiwat;
2212 	sr->sr_lowat = sendfile_req_lowat;
2213 	mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2214 	cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2215 	/*
2216 	 * See whether we need another thread for servicing this
2217 	 * request. If there are already enough requests queued
2218 	 * for the threads, create one if not exceeding
2219 	 * snfq_max_threads.
2220 	 */
2221 	mutex_enter(&snfq->snfq_lock);
2222 	if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2223 	    snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2224 		(void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2225 		    TS_RUN, minclsyspri);
2226 		snfq->snfq_svc_threads++;
2227 	}
2228 	if (snfq->snfq_req_head == NULL) {
2229 		snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2230 		cv_signal(&snfq->snfq_cv);
2231 	} else {
2232 		snfq->snfq_req_tail->sr_next = sr;
2233 		snfq->snfq_req_tail = sr;
2234 	}
2235 	snfq->snfq_req_cnt++;
2236 	mutex_exit(&snfq->snfq_lock);
2237 	return (sr);
2238 }
2239 
2240 int
2241 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2242     ssize_t *count)
2243 {
2244 	snf_req_t *sr;
2245 	mblk_t *mp;
2246 	int iosize;
2247 	int error = 0;
2248 	short fflag;
2249 	struct vnode *vp;
2250 	int ksize;
2251 	struct nmsghdr msg;
2252 
2253 	ksize = 0;
2254 	*count = 0;
2255 	bzero(&msg, sizeof (msg));
2256 
2257 	vp = fp->f_vnode;
2258 	fflag = fp->f_flag;
2259 	if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2260 		return (EAGAIN);
2261 
2262 	/*
2263 	 * We check for read error in snf_deque. It has to check
2264 	 * for successful READ_DONE and return NULL, and we might
2265 	 * as well make an additional check there.
2266 	 */
2267 	while ((mp = snf_deque(sr)) != NULL) {
2268 
2269 		if (ISSIG(curthread, JUSTLOOKING)) {
2270 			freeb(mp);
2271 			error = EINTR;
2272 			break;
2273 		}
2274 		iosize = MBLKL(mp);
2275 
2276 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2277 
2278 		if (error != 0) {
2279 			if (mp != NULL)
2280 				freeb(mp);
2281 			break;
2282 		}
2283 		ksize += iosize;
2284 	}
2285 	*count = ksize;
2286 
2287 	mutex_enter(&sr->sr_lock);
2288 	sr->sr_write_error = error;
2289 	/* Look at the big comments on why we cv_signal here. */
2290 	cv_signal(&sr->sr_cv);
2291 
2292 	/* Wait for the reader to complete always. */
2293 	while (!(sr->sr_read_error & SR_READ_DONE)) {
2294 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2295 	}
2296 	/* If there is no write error, check for read error. */
2297 	if (error == 0)
2298 		error = (sr->sr_read_error & ~SR_READ_DONE);
2299 
2300 	if (error != 0) {
2301 		mblk_t *next_mp;
2302 
2303 		mp = sr->sr_mp_head;
2304 		while (mp != NULL) {
2305 			next_mp = mp->b_next;
2306 			mp->b_next = NULL;
2307 			freeb(mp);
2308 			mp = next_mp;
2309 		}
2310 	}
2311 	mutex_exit(&sr->sr_lock);
2312 	kmem_free(sr, sizeof (snf_req_t));
2313 	return (error);
2314 }
2315 
2316 /* Maximum no.of pages allocated by vpm for sendfile at a time */
2317 #define	SNF_VPMMAXPGS	(VPMMAXPGS/2)
2318 
2319 /*
2320  * Maximum no.of elements in the list returned by vpm, including
2321  * NULL for the last entry
2322  */
2323 #define	SNF_MAXVMAPS	(SNF_VPMMAXPGS + 1)
2324 
2325 typedef struct {
2326 	unsigned int	snfv_ref;
2327 	frtn_t		snfv_frtn;
2328 	vnode_t		*snfv_vp;
2329 	struct vmap	snfv_vml[SNF_MAXVMAPS];
2330 } snf_vmap_desbinfo;
2331 
2332 typedef struct {
2333 	frtn_t		snfi_frtn;
2334 	caddr_t		snfi_base;
2335 	uint_t		snfi_mapoff;
2336 	size_t		snfi_len;
2337 	vnode_t		*snfi_vp;
2338 } snf_smap_desbinfo;
2339 
2340 /*
2341  * The callback function used for vpm mapped mblks called when the last ref of
2342  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2343  * can be the driver too due to lazy reclaim.
2344  */
2345 void
2346 snf_vmap_desbfree(snf_vmap_desbinfo *snfv)
2347 {
2348 	ASSERT(snfv->snfv_ref != 0);
2349 	if (atomic_add_32_nv(&snfv->snfv_ref, -1) == 0) {
2350 		vpm_unmap_pages(snfv->snfv_vml, S_READ);
2351 		VN_RELE(snfv->snfv_vp);
2352 		kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2353 	}
2354 }
2355 
2356 /*
2357  * The callback function used for segmap'ped mblks called when the last ref of
2358  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2359  * can be the driver too due to lazy reclaim.
2360  */
2361 void
2362 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2363 {
2364 	if (! IS_KPM_ADDR(snfi->snfi_base)) {
2365 		/*
2366 		 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2367 		 * segmap_kpm as long as the latter never falls back to
2368 		 * "use_segmap_range". (See segmap_getmapflt().)
2369 		 *
2370 		 * Using S_OTHER saves an redundant hat_setref() in
2371 		 * segmap_unlock()
2372 		 */
2373 		(void) segmap_fault(kas.a_hat, segkmap,
2374 		    (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2375 		    snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2376 		    F_SOFTUNLOCK, S_OTHER);
2377 	}
2378 	(void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2379 	VN_RELE(snfi->snfi_vp);
2380 	kmem_free(snfi, sizeof (*snfi));
2381 }
2382 
2383 /*
2384  * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk.
2385  * When segmap is used, the mblk contains a segmap slot of no more
2386  * than MAXBSIZE.
2387  *
2388  * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained
2389  * in each iteration and sent by socket_sendmblk until an error occurs or
2390  * the requested size has been transferred. An mblk is esballoca'ed from
2391  * each mapped page and a chain of these mblk is sent to the transport layer.
2392  * vpm will be called to unmap the pages when all mblks have been freed by
2393  * free_func.
2394  *
2395  * At the end of the whole sendfile() operation, we wait till the data from
2396  * the last mblk is ack'ed by the transport before returning so that the
2397  * caller of sendfile() can safely modify the file content.
2398  */
2399 int
2400 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size,
2401     ssize_t *count, boolean_t nowait)
2402 {
2403 	caddr_t base;
2404 	int mapoff;
2405 	vnode_t *vp;
2406 	mblk_t *mp = NULL;
2407 	int chain_size;
2408 	int error;
2409 	clock_t deadlk_wait;
2410 	short fflag;
2411 	int ksize;
2412 	struct vattr va;
2413 	boolean_t dowait = B_FALSE;
2414 	struct nmsghdr msg;
2415 
2416 	vp = fp->f_vnode;
2417 	fflag = fp->f_flag;
2418 	ksize = 0;
2419 	bzero(&msg, sizeof (msg));
2420 
2421 	for (;;) {
2422 		if (ISSIG(curthread, JUSTLOOKING)) {
2423 			error = EINTR;
2424 			break;
2425 		}
2426 
2427 		if (vpm_enable) {
2428 			snf_vmap_desbinfo *snfv;
2429 			mblk_t *nmp;
2430 			int mblk_size;
2431 			int maxsize;
2432 			int i;
2433 
2434 			mapoff = fileoff & PAGEOFFSET;
2435 			maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size);
2436 
2437 			snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo),
2438 			    KM_SLEEP);
2439 
2440 			/*
2441 			 * Get vpm mappings for maxsize with read access.
2442 			 * If the pages aren't available yet, we get
2443 			 * DEADLK, so wait and try again a little later using
2444 			 * an increasing wait. We might be here a long time.
2445 			 *
2446 			 * If delay_sig returns EINTR, be sure to exit and
2447 			 * pass it up to the caller.
2448 			 */
2449 			deadlk_wait = 0;
2450 			while ((error = vpm_map_pages(fvp, fileoff,
2451 			    (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml,
2452 			    SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) {
2453 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2454 				if ((error = delay_sig(deadlk_wait)) != 0) {
2455 					break;
2456 				}
2457 			}
2458 			if (error != 0) {
2459 				kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2460 				error = (error == EINTR) ? EINTR : EIO;
2461 				goto out;
2462 			}
2463 			snfv->snfv_frtn.free_func = snf_vmap_desbfree;
2464 			snfv->snfv_frtn.free_arg = (caddr_t)snfv;
2465 
2466 			/* Construct the mblk chain from the page mappings */
2467 			chain_size = 0;
2468 			for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) &&
2469 			    total_size > 0; i++) {
2470 				ASSERT(chain_size < maxsize);
2471 				mblk_size = MIN(snfv->snfv_vml[i].vs_len -
2472 				    mapoff, total_size);
2473 				nmp = esballoca(
2474 				    (uchar_t *)snfv->snfv_vml[i].vs_addr +
2475 				    mapoff, mblk_size, BPRI_HI,
2476 				    &snfv->snfv_frtn);
2477 
2478 				/*
2479 				 * We return EAGAIN after unmapping the pages
2480 				 * if we cannot allocate the the head of the
2481 				 * chain. Otherwise, we continue sending the
2482 				 * mblks constructed so far.
2483 				 */
2484 				if (nmp == NULL) {
2485 					if (i == 0) {
2486 						vpm_unmap_pages(snfv->snfv_vml,
2487 						    S_READ);
2488 						kmem_free(snfv,
2489 						    sizeof (snf_vmap_desbinfo));
2490 						error = EAGAIN;
2491 						goto out;
2492 					}
2493 					break;
2494 				}
2495 				/* Mark this dblk with the zero-copy flag */
2496 				nmp->b_datap->db_struioflag |= STRUIO_ZC;
2497 				nmp->b_wptr += mblk_size;
2498 				chain_size += mblk_size;
2499 				fileoff += mblk_size;
2500 				total_size -= mblk_size;
2501 				snfv->snfv_ref++;
2502 				mapoff = 0;
2503 				if (i > 0)
2504 					linkb(mp, nmp);
2505 				else
2506 					mp = nmp;
2507 			}
2508 			VN_HOLD(fvp);
2509 			snfv->snfv_vp = fvp;
2510 		} else {
2511 			/* vpm not supported. fallback to segmap */
2512 			snf_smap_desbinfo *snfi;
2513 
2514 			mapoff = fileoff & MAXBOFFSET;
2515 			chain_size = MAXBSIZE - mapoff;
2516 			if (chain_size > total_size)
2517 				chain_size = total_size;
2518 			/*
2519 			 * we don't forcefault because we'll call
2520 			 * segmap_fault(F_SOFTLOCK) next.
2521 			 *
2522 			 * S_READ will get the ref bit set (by either
2523 			 * segmap_getmapflt() or segmap_fault()) and page
2524 			 * shared locked.
2525 			 */
2526 			base = segmap_getmapflt(segkmap, fvp, fileoff,
2527 			    chain_size, segmap_kpm ? SM_FAULT : 0, S_READ);
2528 
2529 			snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2530 			snfi->snfi_len = (size_t)roundup(mapoff+chain_size,
2531 			    PAGESIZE)- (mapoff & PAGEMASK);
2532 			/*
2533 			 * We must call segmap_fault() even for segmap_kpm
2534 			 * because that's how error gets returned.
2535 			 * (segmap_getmapflt() never fails but segmap_fault()
2536 			 * does.)
2537 			 *
2538 			 * If the pages aren't available yet, we get
2539 			 * DEADLK, so wait and try again a little later using
2540 			 * an increasing wait. We might be here a long time.
2541 			 *
2542 			 * If delay_sig returns EINTR, be sure to exit and
2543 			 * pass it up to the caller.
2544 			 */
2545 			deadlk_wait = 0;
2546 			while ((error = FC_ERRNO(segmap_fault(kas.a_hat,
2547 			    segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base +
2548 			    mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2549 			    S_READ))) == EDEADLK) {
2550 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2551 				if ((error = delay_sig(deadlk_wait)) != 0) {
2552 					break;
2553 				}
2554 			}
2555 			if (error != 0) {
2556 				(void) segmap_release(segkmap, base, 0);
2557 				kmem_free(snfi, sizeof (*snfi));
2558 				error = (error == EINTR) ? EINTR : EIO;
2559 				goto out;
2560 			}
2561 			snfi->snfi_frtn.free_func = snf_smap_desbfree;
2562 			snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2563 			snfi->snfi_base = base;
2564 			snfi->snfi_mapoff = mapoff;
2565 			mp = esballoca((uchar_t *)base + mapoff, chain_size,
2566 			    BPRI_HI, &snfi->snfi_frtn);
2567 
2568 			if (mp == NULL) {
2569 				(void) segmap_fault(kas.a_hat, segkmap,
2570 				    (caddr_t)(uintptr_t)(((uintptr_t)base +
2571 				    mapoff) & PAGEMASK), snfi->snfi_len,
2572 				    F_SOFTUNLOCK, S_OTHER);
2573 				(void) segmap_release(segkmap, base, 0);
2574 				kmem_free(snfi, sizeof (*snfi));
2575 				freemsg(mp);
2576 				error = EAGAIN;
2577 				goto out;
2578 			}
2579 			VN_HOLD(fvp);
2580 			snfi->snfi_vp = fvp;
2581 			mp->b_wptr += chain_size;
2582 
2583 			/* Mark this dblk with the zero-copy flag */
2584 			mp->b_datap->db_struioflag |= STRUIO_ZC;
2585 			fileoff += chain_size;
2586 			total_size -= chain_size;
2587 		}
2588 
2589 		if (total_size == 0 && !nowait) {
2590 			ASSERT(!dowait);
2591 			dowait = B_TRUE;
2592 			mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2593 		}
2594 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2595 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2596 		if (error != 0) {
2597 			/*
2598 			 * mp contains the mblks that were not sent by
2599 			 * socket_sendmblk. Use its size to update *count
2600 			 */
2601 			*count = ksize + (chain_size - msgdsize(mp));
2602 			if (mp != NULL)
2603 				freemsg(mp);
2604 			return (error);
2605 		}
2606 		ksize += chain_size;
2607 		if (total_size == 0)
2608 			goto done;
2609 
2610 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2611 		va.va_mask = AT_SIZE;
2612 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2613 		if (error)
2614 			break;
2615 		/* Read as much as possible. */
2616 		if (fileoff >= va.va_size)
2617 			break;
2618 		if (total_size + fileoff > va.va_size)
2619 			total_size = va.va_size - fileoff;
2620 	}
2621 out:
2622 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2623 done:
2624 	*count = ksize;
2625 	if (dowait) {
2626 		stdata_t *stp;
2627 
2628 		stp = vp->v_stream;
2629 		if (stp == NULL) {
2630 			struct sonode *so;
2631 			so = VTOSO(vp);
2632 			error = so_zcopy_wait(so);
2633 		} else {
2634 			mutex_enter(&stp->sd_lock);
2635 			while (!(stp->sd_flag & STZCNOTIFY)) {
2636 				if (cv_wait_sig(&stp->sd_zcopy_wait,
2637 				    &stp->sd_lock) == 0) {
2638 					error = EINTR;
2639 					break;
2640 				}
2641 			}
2642 			stp->sd_flag &= ~STZCNOTIFY;
2643 			mutex_exit(&stp->sd_lock);
2644 		}
2645 	}
2646 	return (error);
2647 }
2648 
2649 int
2650 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2651     uint_t maxpsz, ssize_t *count)
2652 {
2653 	struct vnode *vp;
2654 	mblk_t *mp;
2655 	int iosize;
2656 	int extra = 0;
2657 	int error;
2658 	short fflag;
2659 	int ksize;
2660 	int ioflag;
2661 	struct uio auio;
2662 	struct iovec aiov;
2663 	struct vattr va;
2664 	int maxblk = 0;
2665 	int wroff = 0;
2666 	struct sonode *so;
2667 	struct nmsghdr msg;
2668 
2669 	vp = fp->f_vnode;
2670 	if (vp->v_type == VSOCK) {
2671 		stdata_t *stp;
2672 
2673 		/*
2674 		 * Get the extra space to insert a header and a trailer.
2675 		 */
2676 		so = VTOSO(vp);
2677 		stp = vp->v_stream;
2678 		if (stp == NULL) {
2679 			wroff = so->so_proto_props.sopp_wroff;
2680 			maxblk = so->so_proto_props.sopp_maxblk;
2681 			extra = wroff + so->so_proto_props.sopp_tail;
2682 		} else {
2683 			wroff = (int)(stp->sd_wroff);
2684 			maxblk = (int)(stp->sd_maxblk);
2685 			extra = wroff + (int)(stp->sd_tail);
2686 		}
2687 	}
2688 	bzero(&msg, sizeof (msg));
2689 	fflag = fp->f_flag;
2690 	ksize = 0;
2691 	auio.uio_iov = &aiov;
2692 	auio.uio_iovcnt = 1;
2693 	auio.uio_segflg = UIO_SYSSPACE;
2694 	auio.uio_llimit = MAXOFFSET_T;
2695 	auio.uio_fmode = fflag;
2696 	auio.uio_extflg = UIO_COPY_CACHED;
2697 	ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2698 	/* If read sync is not asked for, filter sync flags */
2699 	if ((ioflag & FRSYNC) == 0)
2700 		ioflag &= ~(FSYNC|FDSYNC);
2701 	for (;;) {
2702 		if (ISSIG(curthread, JUSTLOOKING)) {
2703 			error = EINTR;
2704 			break;
2705 		}
2706 		iosize = (int)MIN(maxpsz, size);
2707 
2708 		/*
2709 		 * Socket filters can limit the mblk size,
2710 		 * so limit reads to maxblk if there are
2711 		 * filters present.
2712 		 */
2713 		if (vp->v_type == VSOCK &&
2714 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2715 			iosize = (int)MIN(iosize, maxblk);
2716 
2717 		if (is_system_labeled()) {
2718 			mp = allocb_cred(iosize + extra, CRED(),
2719 			    curproc->p_pid);
2720 		} else {
2721 			mp = allocb(iosize + extra, BPRI_MED);
2722 		}
2723 		if (mp == NULL) {
2724 			error = EAGAIN;
2725 			break;
2726 		}
2727 
2728 		mp->b_rptr += wroff;
2729 
2730 		aiov.iov_base = (caddr_t)mp->b_rptr;
2731 		aiov.iov_len = iosize;
2732 		auio.uio_loffset = fileoff;
2733 		auio.uio_resid = iosize;
2734 
2735 		error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2736 		iosize -= auio.uio_resid;
2737 
2738 		if (error == EINTR && iosize != 0)
2739 			error = 0;
2740 
2741 		if (error != 0 || iosize == 0) {
2742 			freeb(mp);
2743 			break;
2744 		}
2745 		mp->b_wptr = mp->b_rptr + iosize;
2746 
2747 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2748 
2749 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2750 
2751 		if (error != 0) {
2752 			*count = ksize;
2753 			if (mp != NULL)
2754 				freeb(mp);
2755 			return (error);
2756 		}
2757 		ksize += iosize;
2758 		size -= iosize;
2759 		if (size == 0)
2760 			goto done;
2761 
2762 		fileoff += iosize;
2763 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2764 		va.va_mask = AT_SIZE;
2765 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2766 		if (error)
2767 			break;
2768 		/* Read as much as possible. */
2769 		if (fileoff >= va.va_size)
2770 			size = 0;
2771 		else if (size + fileoff > va.va_size)
2772 			size = va.va_size - fileoff;
2773 	}
2774 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2775 done:
2776 	*count = ksize;
2777 	return (error);
2778 }
2779 
2780 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2781 /*
2782  * Largefile support for 32 bit applications only.
2783  */
2784 int
2785 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2786     ssize32_t *count32)
2787 {
2788 	ssize32_t sfv_len;
2789 	u_offset_t sfv_off, va_size;
2790 	struct vnode *vp, *fvp, *realvp;
2791 	struct vattr va;
2792 	stdata_t *stp;
2793 	ssize_t count = 0;
2794 	int error = 0;
2795 	boolean_t dozcopy = B_FALSE;
2796 	uint_t maxpsz;
2797 
2798 	sfv_len = (ssize32_t)sfv->sfv_len;
2799 	if (sfv_len < 0) {
2800 		error = EINVAL;
2801 		goto out;
2802 	}
2803 
2804 	if (sfv_len == 0) goto out;
2805 
2806 	sfv_off = (u_offset_t)sfv->sfv_off;
2807 
2808 	/* Same checks as in pread */
2809 	if (sfv_off > MAXOFFSET_T) {
2810 		error = EINVAL;
2811 		goto out;
2812 	}
2813 	if (sfv_off + sfv_len > MAXOFFSET_T)
2814 		sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2815 
2816 	/*
2817 	 * There are no more checks on sfv_len. So, we cast it to
2818 	 * u_offset_t and share the snf_direct_io/snf_cache code between
2819 	 * 32 bit and 64 bit.
2820 	 *
2821 	 * TODO: should do nbl_need_check() like read()?
2822 	 */
2823 	if (sfv_len > sendfile_max_size) {
2824 		sf_stats.ss_file_not_cached++;
2825 		error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2826 		    &count);
2827 		goto out;
2828 	}
2829 	fvp = rfp->f_vnode;
2830 	if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2831 		fvp = realvp;
2832 	/*
2833 	 * Grab the lock as a reader to prevent the file size
2834 	 * from changing underneath.
2835 	 */
2836 	(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2837 	va.va_mask = AT_SIZE;
2838 	error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2839 	va_size = va.va_size;
2840 	if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2841 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2842 		goto out;
2843 	}
2844 	/* Read as much as possible. */
2845 	if (sfv_off + sfv_len > va_size)
2846 		sfv_len = va_size - sfv_off;
2847 
2848 	vp = fp->f_vnode;
2849 	stp = vp->v_stream;
2850 	/*
2851 	 * When the NOWAIT flag is not set, we enable zero-copy only if the
2852 	 * transfer size is large enough. This prevents performance loss
2853 	 * when the caller sends the file piece by piece.
2854 	 */
2855 	if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2856 	    (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2857 	    !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2858 		uint_t copyflag;
2859 		copyflag = stp != NULL ? stp->sd_copyflag :
2860 		    VTOSO(vp)->so_proto_props.sopp_zcopyflag;
2861 		if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2862 			int on = 1;
2863 
2864 			if (socket_setsockopt(VTOSO(vp), SOL_SOCKET,
2865 			    SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0)
2866 				dozcopy = B_TRUE;
2867 		} else {
2868 			dozcopy = copyflag & STZCVMSAFE;
2869 		}
2870 	}
2871 	if (dozcopy) {
2872 		sf_stats.ss_file_segmap++;
2873 		error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2874 		    &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2875 	} else {
2876 		if (vp->v_type == VSOCK && stp == NULL) {
2877 			sonode_t *so = VTOSO(vp);
2878 			maxpsz = so->so_proto_props.sopp_maxpsz;
2879 		} else if (stp != NULL) {
2880 			maxpsz = stp->sd_qn_maxpsz;
2881 		} else {
2882 			maxpsz = maxphys;
2883 		}
2884 
2885 		if (maxpsz == INFPSZ)
2886 			maxpsz = maxphys;
2887 		else
2888 			maxpsz = roundup(maxpsz, MAXBSIZE);
2889 		sf_stats.ss_file_cached++;
2890 		error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2891 		    maxpsz, &count);
2892 	}
2893 out:
2894 	releasef(sfv->sfv_fd);
2895 	*count32 = (ssize32_t)count;
2896 	return (error);
2897 }
2898 #endif
2899 
2900 #ifdef _SYSCALL32_IMPL
2901 /*
2902  * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
2903  * ssize_t rather than ssize32_t; see the comments above read32 for details.
2904  */
2905 
2906 ssize_t
2907 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2908 {
2909 	return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2910 }
2911 
2912 ssize_t
2913 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2914 	caddr32_t name, caddr32_t namelenp)
2915 {
2916 	return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2917 	    (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
2918 }
2919 
2920 ssize_t
2921 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2922 {
2923 	return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2924 }
2925 
2926 ssize_t
2927 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2928 	caddr32_t name, socklen_t namelen)
2929 {
2930 	return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2931 	    (void *)(uintptr_t)name, namelen));
2932 }
2933 #endif	/* _SYSCALL32_IMPL */
2934 
2935 /*
2936  * Function wrappers (mostly around the sonode switch) for
2937  * backward compatibility.
2938  */
2939 
2940 int
2941 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
2942 {
2943 	return (socket_accept(so, fflag, CRED(), nsop));
2944 }
2945 
2946 int
2947 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2948     int backlog, int flags)
2949 {
2950 	int	error;
2951 
2952 	error = socket_bind(so, name, namelen, flags, CRED());
2953 	if (error == 0 && backlog != 0)
2954 		return (socket_listen(so, backlog, CRED()));
2955 
2956 	return (error);
2957 }
2958 
2959 int
2960 solisten(struct sonode *so, int backlog)
2961 {
2962 	return (socket_listen(so, backlog, CRED()));
2963 }
2964 
2965 int
2966 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2967     int fflag, int flags)
2968 {
2969 	return (socket_connect(so, name, namelen, fflag, flags, CRED()));
2970 }
2971 
2972 int
2973 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2974 {
2975 	return (socket_recvmsg(so, msg, uiop, CRED()));
2976 }
2977 
2978 int
2979 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2980 {
2981 	return (socket_sendmsg(so, msg, uiop, CRED()));
2982 }
2983 
2984 int
2985 soshutdown(struct sonode *so, int how)
2986 {
2987 	return (socket_shutdown(so, how, CRED()));
2988 }
2989 
2990 int
2991 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
2992     socklen_t *optlenp, int flags)
2993 {
2994 	return (socket_getsockopt(so, level, option_name, optval, optlenp,
2995 	    flags, CRED()));
2996 }
2997 
2998 int
2999 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
3000     t_uscalar_t optlen)
3001 {
3002 	return (socket_setsockopt(so, level, option_name, optval, optlen,
3003 	    CRED()));
3004 }
3005 
3006 /*
3007  * Because this is backward compatibility interface it only needs to be
3008  * able to handle the creation of TPI sockfs sockets.
3009  */
3010 struct sonode *
3011 socreate(struct sockparams *sp, int family, int type, int protocol, int version,
3012     int *errorp)
3013 {
3014 	struct sonode *so;
3015 
3016 	ASSERT(sp != NULL);
3017 
3018 	so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol,
3019 	    version, SOCKET_SLEEP, errorp, CRED());
3020 	if (so == NULL) {
3021 		SOCKPARAMS_DEC_REF(sp);
3022 	} else {
3023 		if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) {
3024 			/* Cannot fail, only bumps so_count */
3025 			(void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL);
3026 		} else {
3027 			socket_destroy(so);
3028 			so = NULL;
3029 		}
3030 	}
3031 	return (so);
3032 }
3033