xref: /illumos-gate/usr/src/uts/common/fs/sockfs/socksyscalls.c (revision bec2e3ffadac8d3536ea115d636d06c7b561623a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /* Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. */
27 /*
28  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/t_lock.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/conf.h>
37 #include <sys/cred.h>
38 #include <sys/kmem.h>
39 #include <sys/sysmacros.h>
40 #include <sys/vfs.h>
41 #include <sys/vnode.h>
42 #include <sys/debug.h>
43 #include <sys/errno.h>
44 #include <sys/time.h>
45 #include <sys/file.h>
46 #include <sys/user.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strsun.h>
50 #include <sys/sunddi.h>
51 #include <sys/esunddi.h>
52 #include <sys/flock.h>
53 #include <sys/modctl.h>
54 #include <sys/cmn_err.h>
55 #include <sys/vmsystm.h>
56 #include <sys/policy.h>
57 
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 
61 #include <sys/isa_defs.h>
62 #include <sys/inttypes.h>
63 #include <sys/systm.h>
64 #include <sys/cpuvar.h>
65 #include <sys/filio.h>
66 #include <sys/sendfile.h>
67 #include <sys/ddi.h>
68 #include <vm/seg.h>
69 #include <vm/seg_map.h>
70 #include <vm/seg_kpm.h>
71 
72 #include <fs/sockfs/nl7c.h>
73 #include <fs/sockfs/sockcommon.h>
74 #include <fs/sockfs/sockfilter_impl.h>
75 #include <fs/sockfs/socktpi.h>
76 
77 #ifdef SOCK_TEST
78 int do_useracc = 1;		/* Controlled by setting SO_DEBUG to 4 */
79 #else
80 #define	do_useracc	1
81 #endif /* SOCK_TEST */
82 
83 extern int 	xnet_truncate_print;
84 
85 extern void	nl7c_init(void);
86 extern int	sockfs_defer_nl7c_init;
87 
88 /*
89  * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c"
90  *	 as there isn't a formal definition of IOV_MAX ???
91  */
92 #define	MSG_MAXIOVLEN	16
93 
94 /*
95  * Kernel component of socket creation.
96  *
97  * The socket library determines which version number to use.
98  * First the library calls this with a NULL devpath. If this fails
99  * to find a transport (using solookup) the library will look in /etc/netconfig
100  * for the appropriate transport. If one is found it will pass in the
101  * devpath for the kernel to use.
102  */
103 int
104 so_socket(int family, int type_w_flags, int protocol, char *devpath,
105     int version)
106 {
107 	struct sonode *so;
108 	vnode_t *vp;
109 	struct file *fp;
110 	int fd;
111 	int error;
112 	int type;
113 
114 	type = type_w_flags & SOCK_TYPE_MASK;
115 	type_w_flags &= ~SOCK_TYPE_MASK;
116 	if (type_w_flags & ~(SOCK_CLOEXEC|SOCK_NDELAY|SOCK_NONBLOCK))
117 		return (set_errno(EINVAL));
118 
119 	if (devpath != NULL) {
120 		char *buf;
121 		size_t kdevpathlen = 0;
122 
123 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
124 		if ((error = copyinstr(devpath, buf,
125 		    MAXPATHLEN, &kdevpathlen)) != 0) {
126 			kmem_free(buf, MAXPATHLEN);
127 			return (set_errno(error));
128 		}
129 		so = socket_create(family, type, protocol, buf, NULL,
130 		    SOCKET_SLEEP, version, CRED(), &error);
131 		kmem_free(buf, MAXPATHLEN);
132 	} else {
133 		so = socket_create(family, type, protocol, NULL, NULL,
134 		    SOCKET_SLEEP, version, CRED(), &error);
135 	}
136 	if (so == NULL)
137 		return (set_errno(error));
138 
139 	/* Allocate a file descriptor for the socket */
140 	vp = SOTOV(so);
141 	if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) {
142 		(void) socket_close(so, 0, CRED());
143 		socket_destroy(so);
144 		return (set_errno(error));
145 	}
146 
147 	/*
148 	 * Now fill in the entries that falloc reserved
149 	 */
150 	if (type_w_flags & SOCK_NDELAY) {
151 		so->so_state |= SS_NDELAY;
152 		fp->f_flag |= FNDELAY;
153 	}
154 	if (type_w_flags & SOCK_NONBLOCK) {
155 		so->so_state |= SS_NONBLOCK;
156 		fp->f_flag |= FNONBLOCK;
157 	}
158 	mutex_exit(&fp->f_tlock);
159 	setf(fd, fp);
160 	if ((type_w_flags & SOCK_CLOEXEC) != 0) {
161 		f_setfd(fd, FD_CLOEXEC);
162 	}
163 
164 	return (fd);
165 }
166 
167 /*
168  * Map from a file descriptor to a socket node.
169  * Returns with the file descriptor held i.e. the caller has to
170  * use releasef when done with the file descriptor.
171  */
172 struct sonode *
173 getsonode(int sock, int *errorp, file_t **fpp)
174 {
175 	file_t *fp;
176 	vnode_t *vp;
177 	struct sonode *so;
178 
179 	if ((fp = getf(sock)) == NULL) {
180 		*errorp = EBADF;
181 		eprintline(*errorp);
182 		return (NULL);
183 	}
184 	vp = fp->f_vnode;
185 	/* Check if it is a socket */
186 	if (vp->v_type != VSOCK) {
187 		releasef(sock);
188 		*errorp = ENOTSOCK;
189 		eprintline(*errorp);
190 		return (NULL);
191 	}
192 	/*
193 	 * Use the stream head to find the real socket vnode.
194 	 * This is needed when namefs sits above sockfs.
195 	 */
196 	if (vp->v_stream) {
197 		ASSERT(vp->v_stream->sd_vnode);
198 		vp = vp->v_stream->sd_vnode;
199 
200 		so = VTOSO(vp);
201 		if (so->so_version == SOV_STREAM) {
202 			releasef(sock);
203 			*errorp = ENOTSOCK;
204 			eprintsoline(so, *errorp);
205 			return (NULL);
206 		}
207 	} else {
208 		so = VTOSO(vp);
209 	}
210 	if (fpp)
211 		*fpp = fp;
212 	return (so);
213 }
214 
215 /*
216  * Allocate and copyin a sockaddr.
217  * Ensures NULL termination for AF_UNIX addresses by extending them
218  * with one NULL byte if need be. Verifies that the length is not
219  * excessive to prevent an application from consuming all of kernel
220  * memory. Returns NULL when an error occurred.
221  */
222 static struct sockaddr *
223 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
224 	    int *errorp)
225 {
226 	char	*faddr;
227 	size_t	namelen = (size_t)*namelenp;
228 
229 	ASSERT(namelen != 0);
230 	if (namelen > SO_MAXARGSIZE) {
231 		*errorp = EINVAL;
232 		eprintsoline(so, *errorp);
233 		return (NULL);
234 	}
235 
236 	faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
237 	if (copyin(name, faddr, namelen)) {
238 		kmem_free(faddr, namelen);
239 		*errorp = EFAULT;
240 		eprintsoline(so, *errorp);
241 		return (NULL);
242 	}
243 
244 	/*
245 	 * Add space for NULL termination if needed.
246 	 * Do a quick check if the last byte is NUL.
247 	 */
248 	if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
249 		/* Check if there is any NULL termination */
250 		size_t	i;
251 		int foundnull = 0;
252 
253 		for (i = sizeof (name->sa_family); i < namelen; i++) {
254 			if (faddr[i] == '\0') {
255 				foundnull = 1;
256 				break;
257 			}
258 		}
259 		if (!foundnull) {
260 			/* Add extra byte for NUL padding */
261 			char *nfaddr;
262 
263 			nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
264 			bcopy(faddr, nfaddr, namelen);
265 			kmem_free(faddr, namelen);
266 
267 			/* NUL terminate */
268 			nfaddr[namelen] = '\0';
269 			namelen++;
270 			ASSERT((socklen_t)namelen == namelen);
271 			*namelenp = (socklen_t)namelen;
272 			faddr = nfaddr;
273 		}
274 	}
275 	return ((struct sockaddr *)faddr);
276 }
277 
278 /*
279  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
280  */
281 static int
282 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp,
283 		void *kaddr, socklen_t klen)
284 {
285 	if (uaddr != NULL) {
286 		if (ulen > klen)
287 			ulen = klen;
288 
289 		if (ulen != 0) {
290 			if (copyout(kaddr, uaddr, ulen))
291 				return (EFAULT);
292 		}
293 	} else
294 		ulen = 0;
295 
296 	if (ulenp != NULL) {
297 		if (copyout(&ulen, ulenp, sizeof (ulen)))
298 			return (EFAULT);
299 	}
300 	return (0);
301 }
302 
303 /*
304  * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
305  * If klen is greater than ulen it still uses the non-truncated
306  * klen to update ulenp.
307  */
308 static int
309 copyout_name(void *uaddr, socklen_t ulen, void *ulenp,
310 		void *kaddr, socklen_t klen)
311 {
312 	if (uaddr != NULL) {
313 		if (ulen >= klen)
314 			ulen = klen;
315 		else if (ulen != 0 && xnet_truncate_print) {
316 			printf("sockfs: truncating copyout of address using "
317 			    "XNET semantics for pid = %d. Lengths %d, %d\n",
318 			    curproc->p_pid, klen, ulen);
319 		}
320 
321 		if (ulen != 0) {
322 			if (copyout(kaddr, uaddr, ulen))
323 				return (EFAULT);
324 		} else
325 			klen = 0;
326 	} else
327 		klen = 0;
328 
329 	if (ulenp != NULL) {
330 		if (copyout(&klen, ulenp, sizeof (klen)))
331 			return (EFAULT);
332 	}
333 	return (0);
334 }
335 
336 /*
337  * The socketpair() code in libsocket creates two sockets (using
338  * the /etc/netconfig fallback if needed) before calling this routine
339  * to connect the two sockets together.
340  *
341  * For a SOCK_STREAM socketpair a listener is needed - in that case this
342  * routine will create a new file descriptor as part of accepting the
343  * connection. The library socketpair() will check if svs[2] has changed
344  * in which case it will close the changed fd.
345  *
346  * Note that this code could use the TPI feature of accepting the connection
347  * on the listening endpoint. However, that would require significant changes
348  * to soaccept.
349  */
350 int
351 so_socketpair(int sv[2])
352 {
353 	int svs[2];
354 	struct sonode *so1, *so2;
355 	int error;
356 	int orig_flags;
357 	struct sockaddr_ux *name;
358 	size_t namelen;
359 	sotpi_info_t *sti1;
360 	sotpi_info_t *sti2;
361 
362 	dprint(1, ("so_socketpair(%p)\n", (void *)sv));
363 
364 	error = useracc(sv, sizeof (svs), B_WRITE);
365 	if (error && do_useracc)
366 		return (set_errno(EFAULT));
367 
368 	if (copyin(sv, svs, sizeof (svs)))
369 		return (set_errno(EFAULT));
370 
371 	if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
372 		return (set_errno(error));
373 
374 	if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
375 		releasef(svs[0]);
376 		return (set_errno(error));
377 	}
378 
379 	if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
380 		error = EOPNOTSUPP;
381 		goto done;
382 	}
383 
384 	sti1 = SOTOTPI(so1);
385 	sti2 = SOTOTPI(so2);
386 
387 	/*
388 	 * The code below makes assumptions about the "sockfs" implementation.
389 	 * So make sure that the correct implementation is really used.
390 	 */
391 	ASSERT(so1->so_ops == &sotpi_sonodeops);
392 	ASSERT(so2->so_ops == &sotpi_sonodeops);
393 
394 	if (so1->so_type == SOCK_DGRAM) {
395 		/*
396 		 * Bind both sockets and connect them with each other.
397 		 * Need to allocate name/namelen for soconnect.
398 		 */
399 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED());
400 		if (error) {
401 			eprintsoline(so1, error);
402 			goto done;
403 		}
404 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
405 		if (error) {
406 			eprintsoline(so2, error);
407 			goto done;
408 		}
409 		namelen = sizeof (struct sockaddr_ux);
410 		name = kmem_alloc(namelen, KM_SLEEP);
411 		name->sou_family = AF_UNIX;
412 		name->sou_addr = sti2->sti_ux_laddr;
413 		error = socket_connect(so1,
414 		    (struct sockaddr *)name,
415 		    (socklen_t)namelen,
416 		    0, _SOCONNECT_NOXLATE, CRED());
417 		if (error) {
418 			kmem_free(name, namelen);
419 			eprintsoline(so1, error);
420 			goto done;
421 		}
422 		name->sou_addr = sti1->sti_ux_laddr;
423 		error = socket_connect(so2,
424 		    (struct sockaddr *)name,
425 		    (socklen_t)namelen,
426 		    0, _SOCONNECT_NOXLATE, CRED());
427 		kmem_free(name, namelen);
428 		if (error) {
429 			eprintsoline(so2, error);
430 			goto done;
431 		}
432 		releasef(svs[0]);
433 		releasef(svs[1]);
434 	} else {
435 		/*
436 		 * Bind both sockets, with so1 being a listener.
437 		 * Connect so2 to so1 - nonblocking to avoid waiting for
438 		 * soaccept to complete.
439 		 * Accept a connection on so1. Pass out the new fd as sv[0].
440 		 * The library will detect the changed fd and close
441 		 * the original one.
442 		 */
443 		struct sonode *nso;
444 		struct vnode *nvp;
445 		struct file *nfp;
446 		int nfd;
447 
448 		/*
449 		 * We could simply call socket_listen() here (which would do the
450 		 * binding automatically) if the code didn't rely on passing
451 		 * _SOBIND_NOXLATE to the TPI implementation of socket_bind().
452 		 */
453 		error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC|
454 		    _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR,
455 		    CRED());
456 		if (error) {
457 			eprintsoline(so1, error);
458 			goto done;
459 		}
460 		error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
461 		if (error) {
462 			eprintsoline(so2, error);
463 			goto done;
464 		}
465 
466 		namelen = sizeof (struct sockaddr_ux);
467 		name = kmem_alloc(namelen, KM_SLEEP);
468 		name->sou_family = AF_UNIX;
469 		name->sou_addr = sti1->sti_ux_laddr;
470 		error = socket_connect(so2,
471 		    (struct sockaddr *)name,
472 		    (socklen_t)namelen,
473 		    FNONBLOCK, _SOCONNECT_NOXLATE, CRED());
474 		kmem_free(name, namelen);
475 		if (error) {
476 			if (error != EINPROGRESS) {
477 				eprintsoline(so2, error); goto done;
478 			}
479 		}
480 
481 		error = socket_accept(so1, 0, CRED(), &nso);
482 		if (error) {
483 			eprintsoline(so1, error);
484 			goto done;
485 		}
486 
487 		/* wait for so2 being SS_CONNECTED ignoring signals */
488 		mutex_enter(&so2->so_lock);
489 		error = sowaitconnected(so2, 0, 1);
490 		mutex_exit(&so2->so_lock);
491 		if (error != 0) {
492 			(void) socket_close(nso, 0, CRED());
493 			socket_destroy(nso);
494 			eprintsoline(so2, error);
495 			goto done;
496 		}
497 
498 		nvp = SOTOV(nso);
499 		if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) {
500 			(void) socket_close(nso, 0, CRED());
501 			socket_destroy(nso);
502 			eprintsoline(nso, error);
503 			goto done;
504 		}
505 		/*
506 		 * copy over FNONBLOCK and FNDELAY flags should they exist
507 		 */
508 		if (so1->so_state & SS_NONBLOCK)
509 			nfp->f_flag |= FNONBLOCK;
510 		if (so1->so_state & SS_NDELAY)
511 			nfp->f_flag |= FNDELAY;
512 
513 		/*
514 		 * fill in the entries that falloc reserved
515 		 */
516 		mutex_exit(&nfp->f_tlock);
517 		setf(nfd, nfp);
518 
519 		/*
520 		 * get the original flags before we release
521 		 */
522 		VERIFY(f_getfd_error(svs[0], &orig_flags) == 0);
523 
524 		releasef(svs[0]);
525 		releasef(svs[1]);
526 
527 		/*
528 		 * If FD_CLOEXEC was set on the filedescriptor we're
529 		 * swapping out, we should set it on the new one too.
530 		 */
531 		if (orig_flags & FD_CLOEXEC) {
532 			f_setfd(nfd, FD_CLOEXEC);
533 		}
534 
535 		/*
536 		 * The socketpair library routine will close the original
537 		 * svs[0] when this code passes out a different file
538 		 * descriptor.
539 		 */
540 		svs[0] = nfd;
541 
542 		if (copyout(svs, sv, sizeof (svs))) {
543 			(void) closeandsetf(nfd, NULL);
544 			eprintline(EFAULT);
545 			return (set_errno(EFAULT));
546 		}
547 	}
548 	return (0);
549 
550 done:
551 	releasef(svs[0]);
552 	releasef(svs[1]);
553 	return (set_errno(error));
554 }
555 
556 int
557 bind(int sock, struct sockaddr *name, socklen_t namelen, int version)
558 {
559 	struct sonode *so;
560 	int error;
561 
562 	dprint(1, ("bind(%d, %p, %d)\n",
563 	    sock, (void *)name, namelen));
564 
565 	if ((so = getsonode(sock, &error, NULL)) == NULL)
566 		return (set_errno(error));
567 
568 	/* Allocate and copyin name */
569 	/*
570 	 * X/Open test does not expect EFAULT with NULL name and non-zero
571 	 * namelen.
572 	 */
573 	if (name != NULL && namelen != 0) {
574 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
575 		name = copyin_name(so, name, &namelen, &error);
576 		if (name == NULL) {
577 			releasef(sock);
578 			return (set_errno(error));
579 		}
580 	} else {
581 		name = NULL;
582 		namelen = 0;
583 	}
584 
585 	switch (version) {
586 	default:
587 		error = socket_bind(so, name, namelen, 0, CRED());
588 		break;
589 	case SOV_XPG4_2:
590 		error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED());
591 		break;
592 	case SOV_SOCKBSD:
593 		error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED());
594 		break;
595 	}
596 done:
597 	releasef(sock);
598 	if (name != NULL)
599 		kmem_free(name, (size_t)namelen);
600 
601 	if (error)
602 		return (set_errno(error));
603 	return (0);
604 }
605 
606 /* ARGSUSED2 */
607 int
608 listen(int sock, int backlog, int version)
609 {
610 	struct sonode *so;
611 	int error;
612 
613 	dprint(1, ("listen(%d, %d)\n",
614 	    sock, backlog));
615 
616 	if ((so = getsonode(sock, &error, NULL)) == NULL)
617 		return (set_errno(error));
618 
619 	error = socket_listen(so, backlog, CRED());
620 
621 	releasef(sock);
622 	if (error)
623 		return (set_errno(error));
624 	return (0);
625 }
626 
627 /*ARGSUSED3*/
628 int
629 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version,
630     int flags)
631 {
632 	struct sonode *so;
633 	file_t *fp;
634 	int error;
635 	socklen_t namelen;
636 	struct sonode *nso;
637 	struct vnode *nvp;
638 	struct file *nfp;
639 	int nfd;
640 	int ssflags;
641 	struct sockaddr *addrp;
642 	socklen_t addrlen;
643 
644 	dprint(1, ("accept(%d, %p, %p)\n",
645 	    sock, (void *)name, (void *)namelenp));
646 
647 	if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) {
648 		return (set_errno(EINVAL));
649 	}
650 
651 	/* Translate SOCK_ flags to their SS_ variant */
652 	ssflags = 0;
653 	if (flags & SOCK_NONBLOCK)
654 		ssflags |= SS_NONBLOCK;
655 	if (flags & SOCK_NDELAY)
656 		ssflags |= SS_NDELAY;
657 
658 	if ((so = getsonode(sock, &error, &fp)) == NULL)
659 		return (set_errno(error));
660 
661 	if (name != NULL) {
662 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
663 		if (copyin(namelenp, &namelen, sizeof (namelen))) {
664 			releasef(sock);
665 			return (set_errno(EFAULT));
666 		}
667 		if (namelen != 0) {
668 			error = useracc(name, (size_t)namelen, B_WRITE);
669 			if (error && do_useracc) {
670 				releasef(sock);
671 				return (set_errno(EFAULT));
672 			}
673 		} else
674 			name = NULL;
675 	} else {
676 		namelen = 0;
677 	}
678 
679 	/*
680 	 * Allocate the user fd before socket_accept() in order to
681 	 * catch EMFILE errors before calling socket_accept().
682 	 */
683 	if ((nfd = ufalloc(0)) == -1) {
684 		eprintsoline(so, EMFILE);
685 		releasef(sock);
686 		return (set_errno(EMFILE));
687 	}
688 	error = socket_accept(so, fp->f_flag, CRED(), &nso);
689 	if (error) {
690 		setf(nfd, NULL);
691 		releasef(sock);
692 		return (set_errno(error));
693 	}
694 
695 	nvp = SOTOV(nso);
696 
697 	ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
698 	if (namelen != 0) {
699 		addrlen = so->so_max_addr_len;
700 		addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP);
701 
702 		if ((error = socket_getpeername(nso, (struct sockaddr *)addrp,
703 		    &addrlen, B_TRUE, CRED())) == 0) {
704 			error = copyout_name(name, namelen, namelenp,
705 			    addrp, addrlen);
706 		} else {
707 			ASSERT(error == EINVAL || error == ENOTCONN);
708 			error = ECONNABORTED;
709 		}
710 		kmem_free(addrp, so->so_max_addr_len);
711 	}
712 
713 	if (error) {
714 		setf(nfd, NULL);
715 		(void) socket_close(nso, 0, CRED());
716 		socket_destroy(nso);
717 		releasef(sock);
718 		return (set_errno(error));
719 	}
720 	if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) {
721 		setf(nfd, NULL);
722 		(void) socket_close(nso, 0, CRED());
723 		socket_destroy(nso);
724 		eprintsoline(so, error);
725 		releasef(sock);
726 		return (set_errno(error));
727 	}
728 	/*
729 	 * fill in the entries that falloc reserved
730 	 */
731 	nfp->f_vnode = nvp;
732 	mutex_exit(&nfp->f_tlock);
733 	setf(nfd, nfp);
734 
735 	/*
736 	 * Act on SOCK_CLOEXEC from flags
737 	 */
738 	if (flags & SOCK_CLOEXEC) {
739 		f_setfd(nfd, FD_CLOEXEC);
740 	}
741 
742 	/*
743 	 * Copy FNDELAY and FNONBLOCK from listener to acceptor
744 	 * and from ssflags
745 	 */
746 	if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) {
747 		uint_t oflag = nfp->f_flag;
748 		int arg = 0;
749 
750 		if ((ssflags | so->so_state) & SS_NONBLOCK)
751 			arg |= FNONBLOCK;
752 		else if ((ssflags | so->so_state) & SS_NDELAY)
753 			arg |= FNDELAY;
754 
755 		/*
756 		 * This code is a simplification of the F_SETFL code in fcntl()
757 		 * Ignore any errors from VOP_SETFL.
758 		 */
759 		if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
760 		    != 0) {
761 			eprintsoline(so, error);
762 			error = 0;
763 		} else {
764 			mutex_enter(&nfp->f_tlock);
765 			nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
766 			nfp->f_flag |= arg;
767 			mutex_exit(&nfp->f_tlock);
768 		}
769 	}
770 	releasef(sock);
771 	return (nfd);
772 }
773 
774 int
775 connect(int sock, struct sockaddr *name, socklen_t namelen, int version)
776 {
777 	struct sonode *so;
778 	file_t *fp;
779 	int error;
780 
781 	dprint(1, ("connect(%d, %p, %d)\n",
782 	    sock, (void *)name, namelen));
783 
784 	if ((so = getsonode(sock, &error, &fp)) == NULL)
785 		return (set_errno(error));
786 
787 	/* Allocate and copyin name */
788 	if (namelen != 0) {
789 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
790 		name = copyin_name(so, name, &namelen, &error);
791 		if (name == NULL) {
792 			releasef(sock);
793 			return (set_errno(error));
794 		}
795 	} else
796 		name = NULL;
797 
798 	error = socket_connect(so, name, namelen, fp->f_flag,
799 	    (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED());
800 	releasef(sock);
801 	if (name)
802 		kmem_free(name, (size_t)namelen);
803 	if (error)
804 		return (set_errno(error));
805 	return (0);
806 }
807 
808 /*ARGSUSED2*/
809 int
810 shutdown(int sock, int how, int version)
811 {
812 	struct sonode *so;
813 	int error;
814 
815 	dprint(1, ("shutdown(%d, %d)\n",
816 	    sock, how));
817 
818 	if ((so = getsonode(sock, &error, NULL)) == NULL)
819 		return (set_errno(error));
820 
821 	error = socket_shutdown(so, how, CRED());
822 
823 	releasef(sock);
824 	if (error)
825 		return (set_errno(error));
826 	return (0);
827 }
828 
829 /*
830  * Common receive routine.
831  */
832 static ssize_t
833 recvit(int sock,
834 	struct nmsghdr *msg,
835 	struct uio *uiop,
836 	int flags,
837 	socklen_t *namelenp,
838 	socklen_t *controllenp,
839 	int *flagsp)
840 {
841 	struct sonode *so;
842 	file_t *fp;
843 	void *name;
844 	socklen_t namelen;
845 	void *control;
846 	socklen_t controllen;
847 	ssize_t len;
848 	int error;
849 
850 	if ((so = getsonode(sock, &error, &fp)) == NULL)
851 		return (set_errno(error));
852 
853 	len = uiop->uio_resid;
854 	uiop->uio_fmode = fp->f_flag;
855 	uiop->uio_extflg = UIO_COPY_CACHED;
856 
857 	name = msg->msg_name;
858 	namelen = msg->msg_namelen;
859 	control = msg->msg_control;
860 	controllen = msg->msg_controllen;
861 
862 	msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
863 	    MSG_DONTWAIT | MSG_XPG4_2);
864 
865 	error = socket_recvmsg(so, msg, uiop, CRED());
866 	if (error) {
867 		releasef(sock);
868 		return (set_errno(error));
869 	}
870 	lwp_stat_update(LWP_STAT_MSGRCV, 1);
871 	releasef(sock);
872 
873 	error = copyout_name(name, namelen, namelenp,
874 	    msg->msg_name, msg->msg_namelen);
875 	if (error)
876 		goto err;
877 
878 	if (flagsp != NULL) {
879 		/*
880 		 * Clear internal flag.
881 		 */
882 		msg->msg_flags &= ~MSG_XPG4_2;
883 
884 		/*
885 		 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
886 		 * when controllen is zero and there is control data to
887 		 * copy out.
888 		 */
889 		if (controllen != 0 &&
890 		    (msg->msg_controllen > controllen || control == NULL)) {
891 			dprint(1, ("recvit: CTRUNC %d %d %p\n",
892 			    msg->msg_controllen, controllen, control));
893 
894 			msg->msg_flags |= MSG_CTRUNC;
895 		}
896 		if (copyout(&msg->msg_flags, flagsp,
897 		    sizeof (msg->msg_flags))) {
898 			error = EFAULT;
899 			goto err;
900 		}
901 	}
902 	/*
903 	 * Note: This MUST be done last. There can be no "goto err" after this
904 	 * point since it could make so_closefds run twice on some part
905 	 * of the file descriptor array.
906 	 */
907 	if (controllen != 0) {
908 		if (!(flags & MSG_XPG4_2)) {
909 			/*
910 			 * Good old msg_accrights can only return a multiple
911 			 * of 4 bytes.
912 			 */
913 			controllen &= ~((int)sizeof (uint32_t) - 1);
914 		}
915 		error = copyout_arg(control, controllen, controllenp,
916 		    msg->msg_control, msg->msg_controllen);
917 		if (error)
918 			goto err;
919 
920 		if (msg->msg_controllen > controllen || control == NULL) {
921 			if (control == NULL)
922 				controllen = 0;
923 			so_closefds(msg->msg_control, msg->msg_controllen,
924 			    !(flags & MSG_XPG4_2), controllen);
925 		}
926 	}
927 	if (msg->msg_namelen != 0)
928 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
929 	if (msg->msg_controllen != 0)
930 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
931 	return (len - uiop->uio_resid);
932 
933 err:
934 	/*
935 	 * If we fail and the control part contains file descriptors
936 	 * we have to close the fd's.
937 	 */
938 	if (msg->msg_controllen != 0)
939 		so_closefds(msg->msg_control, msg->msg_controllen,
940 		    !(flags & MSG_XPG4_2), 0);
941 	if (msg->msg_namelen != 0)
942 		kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
943 	if (msg->msg_controllen != 0)
944 		kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
945 	return (set_errno(error));
946 }
947 
948 /*
949  * Native system call
950  */
951 ssize_t
952 recv(int sock, void *buffer, size_t len, int flags)
953 {
954 	struct nmsghdr lmsg;
955 	struct uio auio;
956 	struct iovec aiov[1];
957 
958 	dprint(1, ("recv(%d, %p, %ld, %d)\n",
959 	    sock, buffer, len, flags));
960 
961 	if ((ssize_t)len < 0) {
962 		return (set_errno(EINVAL));
963 	}
964 
965 	aiov[0].iov_base = buffer;
966 	aiov[0].iov_len = len;
967 	auio.uio_loffset = 0;
968 	auio.uio_iov = aiov;
969 	auio.uio_iovcnt = 1;
970 	auio.uio_resid = len;
971 	auio.uio_segflg = UIO_USERSPACE;
972 	auio.uio_limit = 0;
973 
974 	lmsg.msg_namelen = 0;
975 	lmsg.msg_controllen = 0;
976 	lmsg.msg_flags = 0;
977 	return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
978 }
979 
980 ssize_t
981 recvfrom(int sock, void *buffer, size_t len, int flags,
982 	struct sockaddr *name, socklen_t *namelenp)
983 {
984 	struct nmsghdr lmsg;
985 	struct uio auio;
986 	struct iovec aiov[1];
987 
988 	dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
989 	    sock, buffer, len, flags, (void *)name, (void *)namelenp));
990 
991 	if ((ssize_t)len < 0) {
992 		return (set_errno(EINVAL));
993 	}
994 
995 	aiov[0].iov_base = buffer;
996 	aiov[0].iov_len = len;
997 	auio.uio_loffset = 0;
998 	auio.uio_iov = aiov;
999 	auio.uio_iovcnt = 1;
1000 	auio.uio_resid = len;
1001 	auio.uio_segflg = UIO_USERSPACE;
1002 	auio.uio_limit = 0;
1003 
1004 	lmsg.msg_name = (char *)name;
1005 	if (namelenp != NULL) {
1006 		if (copyin(namelenp, &lmsg.msg_namelen,
1007 		    sizeof (lmsg.msg_namelen)))
1008 			return (set_errno(EFAULT));
1009 	} else {
1010 		lmsg.msg_namelen = 0;
1011 	}
1012 	lmsg.msg_controllen = 0;
1013 	lmsg.msg_flags = 0;
1014 
1015 	return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
1016 }
1017 
1018 /*
1019  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1020  * struct omsghdr or struct nmsghdr.
1021  */
1022 ssize_t
1023 recvmsg(int sock, struct nmsghdr *msg, int flags)
1024 {
1025 	STRUCT_DECL(nmsghdr, u_lmsg);
1026 	STRUCT_HANDLE(nmsghdr, umsgptr);
1027 	struct nmsghdr lmsg;
1028 	struct uio auio;
1029 	struct iovec aiov[MSG_MAXIOVLEN];
1030 	int iovcnt;
1031 	ssize_t len;
1032 	int i;
1033 	int *flagsp;
1034 	model_t	model;
1035 
1036 	dprint(1, ("recvmsg(%d, %p, %d)\n",
1037 	    sock, (void *)msg, flags));
1038 
1039 	model = get_udatamodel();
1040 	STRUCT_INIT(u_lmsg, model);
1041 	STRUCT_SET_HANDLE(umsgptr, model, msg);
1042 
1043 	if (flags & MSG_XPG4_2) {
1044 		if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
1045 			return (set_errno(EFAULT));
1046 		flagsp = STRUCT_FADDR(umsgptr, msg_flags);
1047 	} else {
1048 		/*
1049 		 * Assumes that nmsghdr and omsghdr are identically shaped
1050 		 * except for the added msg_flags field.
1051 		 */
1052 		if (copyin(msg, STRUCT_BUF(u_lmsg),
1053 		    SIZEOF_STRUCT(omsghdr, model)))
1054 			return (set_errno(EFAULT));
1055 		STRUCT_FSET(u_lmsg, msg_flags, 0);
1056 		flagsp = NULL;
1057 	}
1058 
1059 	/*
1060 	 * Code below us will kmem_alloc memory and hang it
1061 	 * off msg_control and msg_name fields. This forces
1062 	 * us to copy the structure to its native form.
1063 	 */
1064 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1065 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1066 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1067 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1068 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1069 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1070 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1071 
1072 	iovcnt = lmsg.msg_iovlen;
1073 
1074 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1075 		return (set_errno(EMSGSIZE));
1076 	}
1077 
1078 #ifdef _SYSCALL32_IMPL
1079 	/*
1080 	 * 32-bit callers need to have their iovec expanded, while ensuring
1081 	 * that they can't move more than 2Gbytes of data in a single call.
1082 	 */
1083 	if (model == DATAMODEL_ILP32) {
1084 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1085 		ssize32_t count32;
1086 
1087 		if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1088 		    iovcnt * sizeof (struct iovec32)))
1089 			return (set_errno(EFAULT));
1090 
1091 		count32 = 0;
1092 		for (i = 0; i < iovcnt; i++) {
1093 			ssize32_t iovlen32;
1094 
1095 			iovlen32 = aiov32[i].iov_len;
1096 			count32 += iovlen32;
1097 			if (iovlen32 < 0 || count32 < 0)
1098 				return (set_errno(EINVAL));
1099 			aiov[i].iov_len = iovlen32;
1100 			aiov[i].iov_base =
1101 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1102 		}
1103 	} else
1104 #endif /* _SYSCALL32_IMPL */
1105 	if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1106 		return (set_errno(EFAULT));
1107 	}
1108 	len = 0;
1109 	for (i = 0; i < iovcnt; i++) {
1110 		ssize_t iovlen = aiov[i].iov_len;
1111 		len += iovlen;
1112 		if (iovlen < 0 || len < 0) {
1113 			return (set_errno(EINVAL));
1114 		}
1115 	}
1116 	auio.uio_loffset = 0;
1117 	auio.uio_iov = aiov;
1118 	auio.uio_iovcnt = iovcnt;
1119 	auio.uio_resid = len;
1120 	auio.uio_segflg = UIO_USERSPACE;
1121 	auio.uio_limit = 0;
1122 
1123 	if (lmsg.msg_control != NULL &&
1124 	    (do_useracc == 0 ||
1125 	    useracc(lmsg.msg_control, lmsg.msg_controllen,
1126 	    B_WRITE) != 0)) {
1127 		return (set_errno(EFAULT));
1128 	}
1129 
1130 	return (recvit(sock, &lmsg, &auio, flags,
1131 	    STRUCT_FADDR(umsgptr, msg_namelen),
1132 	    STRUCT_FADDR(umsgptr, msg_controllen), flagsp));
1133 }
1134 
1135 /*
1136  * Common send function.
1137  */
1138 static ssize_t
1139 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1140 {
1141 	struct sonode *so;
1142 	file_t *fp;
1143 	void *name;
1144 	socklen_t namelen;
1145 	void *control;
1146 	socklen_t controllen;
1147 	ssize_t len;
1148 	int error;
1149 
1150 	if ((so = getsonode(sock, &error, &fp)) == NULL)
1151 		return (set_errno(error));
1152 
1153 	uiop->uio_fmode = fp->f_flag;
1154 
1155 	if (so->so_family == AF_UNIX)
1156 		uiop->uio_extflg = UIO_COPY_CACHED;
1157 	else
1158 		uiop->uio_extflg = UIO_COPY_DEFAULT;
1159 
1160 	/* Allocate and copyin name and control */
1161 	name = msg->msg_name;
1162 	namelen = msg->msg_namelen;
1163 	if (name != NULL && namelen != 0) {
1164 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1165 		name = copyin_name(so,
1166 		    (struct sockaddr *)name,
1167 		    &namelen, &error);
1168 		if (name == NULL)
1169 			goto done3;
1170 		/* copyin_name null terminates addresses for AF_UNIX */
1171 		msg->msg_namelen = namelen;
1172 		msg->msg_name = name;
1173 	} else {
1174 		msg->msg_name = name = NULL;
1175 		msg->msg_namelen = namelen = 0;
1176 	}
1177 
1178 	control = msg->msg_control;
1179 	controllen = msg->msg_controllen;
1180 	if ((control != NULL) && (controllen != 0)) {
1181 		/*
1182 		 * Verify that the length is not excessive to prevent
1183 		 * an application from consuming all of kernel memory.
1184 		 */
1185 		if (controllen > SO_MAXARGSIZE) {
1186 			error = EINVAL;
1187 			goto done2;
1188 		}
1189 		control = kmem_alloc(controllen, KM_SLEEP);
1190 
1191 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1192 		if (copyin(msg->msg_control, control, controllen)) {
1193 			error = EFAULT;
1194 			goto done1;
1195 		}
1196 		msg->msg_control = control;
1197 	} else {
1198 		msg->msg_control = control = NULL;
1199 		msg->msg_controllen = controllen = 0;
1200 	}
1201 
1202 	len = uiop->uio_resid;
1203 	msg->msg_flags = flags;
1204 
1205 	error = socket_sendmsg(so, msg, uiop, CRED());
1206 done1:
1207 	if (control != NULL)
1208 		kmem_free(control, controllen);
1209 done2:
1210 	if (name != NULL)
1211 		kmem_free(name, namelen);
1212 done3:
1213 	if (error != 0) {
1214 		releasef(sock);
1215 		return (set_errno(error));
1216 	}
1217 	lwp_stat_update(LWP_STAT_MSGSND, 1);
1218 	releasef(sock);
1219 	return (len - uiop->uio_resid);
1220 }
1221 
1222 /*
1223  * Native system call
1224  */
1225 ssize_t
1226 send(int sock, void *buffer, size_t len, int flags)
1227 {
1228 	struct nmsghdr lmsg;
1229 	struct uio auio;
1230 	struct iovec aiov[1];
1231 
1232 	dprint(1, ("send(%d, %p, %ld, %d)\n",
1233 	    sock, buffer, len, flags));
1234 
1235 	if ((ssize_t)len < 0) {
1236 		return (set_errno(EINVAL));
1237 	}
1238 
1239 	aiov[0].iov_base = buffer;
1240 	aiov[0].iov_len = len;
1241 	auio.uio_loffset = 0;
1242 	auio.uio_iov = aiov;
1243 	auio.uio_iovcnt = 1;
1244 	auio.uio_resid = len;
1245 	auio.uio_segflg = UIO_USERSPACE;
1246 	auio.uio_limit = 0;
1247 
1248 	lmsg.msg_name = NULL;
1249 	lmsg.msg_control = NULL;
1250 	if (!(flags & MSG_XPG4_2)) {
1251 		/*
1252 		 * In order to be compatible with the libsocket/sockmod
1253 		 * implementation we set EOR for all send* calls.
1254 		 */
1255 		flags |= MSG_EOR;
1256 	}
1257 	return (sendit(sock, &lmsg, &auio, flags));
1258 }
1259 
1260 /*
1261  * Uses the MSG_XPG4_2 flag to determine if the caller is using
1262  * struct omsghdr or struct nmsghdr.
1263  */
1264 ssize_t
1265 sendmsg(int sock, struct nmsghdr *msg, int flags)
1266 {
1267 	struct nmsghdr lmsg;
1268 	STRUCT_DECL(nmsghdr, u_lmsg);
1269 	struct uio auio;
1270 	struct iovec aiov[MSG_MAXIOVLEN];
1271 	int iovcnt;
1272 	ssize_t len;
1273 	int i;
1274 	model_t	model;
1275 
1276 	dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags));
1277 
1278 	model = get_udatamodel();
1279 	STRUCT_INIT(u_lmsg, model);
1280 
1281 	if (flags & MSG_XPG4_2) {
1282 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1283 		    STRUCT_SIZE(u_lmsg)))
1284 			return (set_errno(EFAULT));
1285 	} else {
1286 		/*
1287 		 * Assumes that nmsghdr and omsghdr are identically shaped
1288 		 * except for the added msg_flags field.
1289 		 */
1290 		if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1291 		    SIZEOF_STRUCT(omsghdr, model)))
1292 			return (set_errno(EFAULT));
1293 		/*
1294 		 * In order to be compatible with the libsocket/sockmod
1295 		 * implementation we set EOR for all send* calls.
1296 		 */
1297 		flags |= MSG_EOR;
1298 	}
1299 
1300 	/*
1301 	 * Code below us will kmem_alloc memory and hang it
1302 	 * off msg_control and msg_name fields. This forces
1303 	 * us to copy the structure to its native form.
1304 	 */
1305 	lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1306 	lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1307 	lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1308 	lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1309 	lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1310 	lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1311 	lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1312 
1313 	iovcnt = lmsg.msg_iovlen;
1314 
1315 	if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) {
1316 		/*
1317 		 * Unless this is XPG 4.2 we allow iovcnt == 0 to
1318 		 * be compatible with SunOS 4.X and 4.4BSD.
1319 		 */
1320 		if (iovcnt != 0 || (flags & MSG_XPG4_2))
1321 			return (set_errno(EMSGSIZE));
1322 	}
1323 
1324 #ifdef _SYSCALL32_IMPL
1325 	/*
1326 	 * 32-bit callers need to have their iovec expanded, while ensuring
1327 	 * that they can't move more than 2Gbytes of data in a single call.
1328 	 */
1329 	if (model == DATAMODEL_ILP32) {
1330 		struct iovec32 aiov32[MSG_MAXIOVLEN];
1331 		ssize32_t count32;
1332 
1333 		if (iovcnt != 0 &&
1334 		    copyin((struct iovec32 *)lmsg.msg_iov, aiov32,
1335 		    iovcnt * sizeof (struct iovec32)))
1336 			return (set_errno(EFAULT));
1337 
1338 		count32 = 0;
1339 		for (i = 0; i < iovcnt; i++) {
1340 			ssize32_t iovlen32;
1341 
1342 			iovlen32 = aiov32[i].iov_len;
1343 			count32 += iovlen32;
1344 			if (iovlen32 < 0 || count32 < 0)
1345 				return (set_errno(EINVAL));
1346 			aiov[i].iov_len = iovlen32;
1347 			aiov[i].iov_base =
1348 			    (caddr_t)(uintptr_t)aiov32[i].iov_base;
1349 		}
1350 	} else
1351 #endif /* _SYSCALL32_IMPL */
1352 	if (iovcnt != 0 &&
1353 	    copyin(lmsg.msg_iov, aiov,
1354 	    (unsigned)iovcnt * sizeof (struct iovec))) {
1355 		return (set_errno(EFAULT));
1356 	}
1357 	len = 0;
1358 	for (i = 0; i < iovcnt; i++) {
1359 		ssize_t iovlen = aiov[i].iov_len;
1360 		len += iovlen;
1361 		if (iovlen < 0 || len < 0) {
1362 			return (set_errno(EINVAL));
1363 		}
1364 	}
1365 	auio.uio_loffset = 0;
1366 	auio.uio_iov = aiov;
1367 	auio.uio_iovcnt = iovcnt;
1368 	auio.uio_resid = len;
1369 	auio.uio_segflg = UIO_USERSPACE;
1370 	auio.uio_limit = 0;
1371 
1372 	return (sendit(sock, &lmsg, &auio, flags));
1373 }
1374 
1375 ssize_t
1376 sendto(int sock, void *buffer, size_t len, int flags,
1377     struct sockaddr *name, socklen_t namelen)
1378 {
1379 	struct nmsghdr lmsg;
1380 	struct uio auio;
1381 	struct iovec aiov[1];
1382 
1383 	dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1384 	    sock, buffer, len, flags, (void *)name, namelen));
1385 
1386 	if ((ssize_t)len < 0) {
1387 		return (set_errno(EINVAL));
1388 	}
1389 
1390 	aiov[0].iov_base = buffer;
1391 	aiov[0].iov_len = len;
1392 	auio.uio_loffset = 0;
1393 	auio.uio_iov = aiov;
1394 	auio.uio_iovcnt = 1;
1395 	auio.uio_resid = len;
1396 	auio.uio_segflg = UIO_USERSPACE;
1397 	auio.uio_limit = 0;
1398 
1399 	lmsg.msg_name = (char *)name;
1400 	lmsg.msg_namelen = namelen;
1401 	lmsg.msg_control = NULL;
1402 	if (!(flags & MSG_XPG4_2)) {
1403 		/*
1404 		 * In order to be compatible with the libsocket/sockmod
1405 		 * implementation we set EOR for all send* calls.
1406 		 */
1407 		flags |= MSG_EOR;
1408 	}
1409 	return (sendit(sock, &lmsg, &auio, flags));
1410 }
1411 
1412 /*ARGSUSED3*/
1413 int
1414 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version)
1415 {
1416 	struct sonode *so;
1417 	int error;
1418 	socklen_t namelen;
1419 	socklen_t sock_addrlen;
1420 	struct sockaddr *sock_addrp;
1421 
1422 	dprint(1, ("getpeername(%d, %p, %p)\n",
1423 	    sock, (void *)name, (void *)namelenp));
1424 
1425 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1426 		goto bad;
1427 
1428 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1429 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1430 	    (name == NULL && namelen != 0)) {
1431 		error = EFAULT;
1432 		goto rel_out;
1433 	}
1434 	sock_addrlen = so->so_max_addr_len;
1435 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1436 
1437 	if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen,
1438 	    B_FALSE, CRED())) == 0) {
1439 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1440 		error = copyout_name(name, namelen, namelenp,
1441 		    (void *)sock_addrp, sock_addrlen);
1442 	}
1443 	kmem_free(sock_addrp, so->so_max_addr_len);
1444 rel_out:
1445 	releasef(sock);
1446 bad:	return (error != 0 ? set_errno(error) : 0);
1447 }
1448 
1449 /*ARGSUSED3*/
1450 int
1451 getsockname(int sock, struct sockaddr *name,
1452 		socklen_t *namelenp, int version)
1453 {
1454 	struct sonode *so;
1455 	int error;
1456 	socklen_t namelen, sock_addrlen;
1457 	struct sockaddr *sock_addrp;
1458 
1459 	dprint(1, ("getsockname(%d, %p, %p)\n",
1460 	    sock, (void *)name, (void *)namelenp));
1461 
1462 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1463 		goto bad;
1464 
1465 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1466 	if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1467 	    (name == NULL && namelen != 0)) {
1468 		error = EFAULT;
1469 		goto rel_out;
1470 	}
1471 
1472 	sock_addrlen = so->so_max_addr_len;
1473 	sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1474 	if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen,
1475 	    CRED())) == 0) {
1476 		ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1477 		ASSERT(sock_addrlen <= so->so_max_addr_len);
1478 		error = copyout_name(name, namelen, namelenp,
1479 		    (void *)sock_addrp, sock_addrlen);
1480 	}
1481 	kmem_free(sock_addrp, so->so_max_addr_len);
1482 rel_out:
1483 	releasef(sock);
1484 bad:	return (error != 0 ? set_errno(error) : 0);
1485 }
1486 
1487 /*ARGSUSED5*/
1488 int
1489 getsockopt(int sock,
1490 	int level,
1491 	int option_name,
1492 	void *option_value,
1493 	socklen_t *option_lenp,
1494 	int version)
1495 {
1496 	struct sonode *so;
1497 	socklen_t optlen, optlen_res;
1498 	void *optval;
1499 	int error;
1500 
1501 	dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1502 	    sock, level, option_name, option_value, (void *)option_lenp));
1503 
1504 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1505 		return (set_errno(error));
1506 
1507 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1508 	if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1509 		releasef(sock);
1510 		return (set_errno(EFAULT));
1511 	}
1512 	/*
1513 	 * Verify that the length is not excessive to prevent
1514 	 * an application from consuming all of kernel memory.
1515 	 */
1516 	if (optlen > SO_MAXARGSIZE) {
1517 		error = EINVAL;
1518 		releasef(sock);
1519 		return (set_errno(error));
1520 	}
1521 	optval = kmem_alloc(optlen, KM_SLEEP);
1522 	optlen_res = optlen;
1523 	error = socket_getsockopt(so, level, option_name, optval,
1524 	    &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2,
1525 	    CRED());
1526 	releasef(sock);
1527 	if (error) {
1528 		kmem_free(optval, optlen);
1529 		return (set_errno(error));
1530 	}
1531 	error = copyout_arg(option_value, optlen, option_lenp,
1532 	    optval, optlen_res);
1533 	kmem_free(optval, optlen);
1534 	if (error)
1535 		return (set_errno(error));
1536 	return (0);
1537 }
1538 
1539 /*ARGSUSED5*/
1540 int
1541 setsockopt(int sock,
1542 	int level,
1543 	int option_name,
1544 	void *option_value,
1545 	socklen_t option_len,
1546 	int version)
1547 {
1548 	struct sonode *so;
1549 	intptr_t buffer[2];
1550 	void *optval = NULL;
1551 	int error;
1552 
1553 	dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1554 	    sock, level, option_name, option_value, option_len));
1555 
1556 	if ((so = getsonode(sock, &error, NULL)) == NULL)
1557 		return (set_errno(error));
1558 
1559 	if (option_value != NULL) {
1560 		if (option_len != 0) {
1561 			/*
1562 			 * Verify that the length is not excessive to prevent
1563 			 * an application from consuming all of kernel memory.
1564 			 */
1565 			if (option_len > SO_MAXARGSIZE) {
1566 				error = EINVAL;
1567 				goto done2;
1568 			}
1569 			optval = option_len <= sizeof (buffer) ?
1570 			    &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1571 			ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1572 			if (copyin(option_value, optval, (size_t)option_len)) {
1573 				error = EFAULT;
1574 				goto done1;
1575 			}
1576 		}
1577 	} else
1578 		option_len = 0;
1579 
1580 	error = socket_setsockopt(so, level, option_name, optval,
1581 	    (t_uscalar_t)option_len, CRED());
1582 done1:
1583 	if (optval != buffer)
1584 		kmem_free(optval, (size_t)option_len);
1585 done2:
1586 	releasef(sock);
1587 	if (error)
1588 		return (set_errno(error));
1589 	return (0);
1590 }
1591 
1592 static int
1593 sockconf_add_sock(int family, int type, int protocol, char *name)
1594 {
1595 	int error = 0;
1596 	char *kdevpath = NULL;
1597 	char *kmodule = NULL;
1598 	char *buf = NULL;
1599 	size_t pathlen = 0;
1600 	struct sockparams *sp;
1601 
1602 	if (name == NULL)
1603 		return (EINVAL);
1604 	/*
1605 	 * Copyin the name.
1606 	 * This also makes it possible to check for too long pathnames.
1607 	 * Compress the space needed for the name before passing it
1608 	 * to soconfig - soconfig will store the string until
1609 	 * the configuration is removed.
1610 	 */
1611 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1612 	if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) {
1613 		kmem_free(buf, MAXPATHLEN);
1614 		return (error);
1615 	}
1616 	if (strncmp(buf, "/dev", strlen("/dev")) == 0) {
1617 		/* For device */
1618 
1619 		/*
1620 		 * Special handling for NCA:
1621 		 *
1622 		 * DEV_NCA is never opened even if an application
1623 		 * requests for AF_NCA. The device opened is instead a
1624 		 * predefined AF_INET transport (NCA_INET_DEV).
1625 		 *
1626 		 * Prior to Volo (PSARC/2007/587) NCA would determine
1627 		 * the device using a lookup, which worked then because
1628 		 * all protocols were based on TPI. Since TPI is no
1629 		 * longer the default, we have to explicitly state
1630 		 * which device to use.
1631 		 */
1632 		if (strcmp(buf, NCA_DEV) == 0) {
1633 			/* only support entry <28, 2, 0> */
1634 			if (family != AF_NCA || type != SOCK_STREAM ||
1635 			    protocol != 0) {
1636 				kmem_free(buf, MAXPATHLEN);
1637 				return (EINVAL);
1638 			}
1639 
1640 			pathlen = strlen(NCA_INET_DEV) + 1;
1641 			kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1642 			bcopy(NCA_INET_DEV, kdevpath, pathlen);
1643 			kdevpath[pathlen - 1] = '\0';
1644 		} else {
1645 			kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1646 			bcopy(buf, kdevpath, pathlen);
1647 			kdevpath[pathlen - 1] = '\0';
1648 		}
1649 	} else {
1650 		/* For socket module */
1651 		kmodule = kmem_alloc(pathlen, KM_SLEEP);
1652 		bcopy(buf, kmodule, pathlen);
1653 		kmodule[pathlen - 1] = '\0';
1654 		pathlen = 0;
1655 	}
1656 	kmem_free(buf, MAXPATHLEN);
1657 
1658 	/* sockparams_create frees mod name and devpath upon failure */
1659 	sp = sockparams_create(family, type, protocol, kmodule,
1660 	    kdevpath, pathlen, 0, KM_SLEEP, &error);
1661 	if (sp != NULL) {
1662 		error = sockparams_add(sp);
1663 		if (error != 0)
1664 			sockparams_destroy(sp);
1665 	}
1666 
1667 	return (error);
1668 }
1669 
1670 static int
1671 sockconf_remove_sock(int family, int type, int protocol)
1672 {
1673 	return (sockparams_delete(family, type, protocol));
1674 }
1675 
1676 static int
1677 sockconfig_remove_filter(const char *uname)
1678 {
1679 	char kname[SOF_MAXNAMELEN];
1680 	size_t len;
1681 	int error;
1682 	sof_entry_t *ent;
1683 
1684 	if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0)
1685 		return (error);
1686 
1687 	ent = sof_entry_remove_by_name(kname);
1688 	if (ent == NULL)
1689 		return (ENXIO);
1690 
1691 	mutex_enter(&ent->sofe_lock);
1692 	ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED));
1693 	if (ent->sofe_refcnt == 0) {
1694 		mutex_exit(&ent->sofe_lock);
1695 		sof_entry_free(ent);
1696 	} else {
1697 		/* let the last socket free the filter */
1698 		ent->sofe_flags |= SOFEF_CONDEMED;
1699 		mutex_exit(&ent->sofe_lock);
1700 	}
1701 
1702 	return (0);
1703 }
1704 
1705 static int
1706 sockconfig_add_filter(const char *uname, void *ufilpropp)
1707 {
1708 	struct sockconfig_filter_props filprop;
1709 	sof_entry_t *ent;
1710 	int error;
1711 	size_t tuplesz, len;
1712 	char hintbuf[SOF_MAXNAMELEN];
1713 
1714 	ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP);
1715 	mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL);
1716 
1717 	if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN,
1718 	    &len)) != 0) {
1719 		sof_entry_free(ent);
1720 		return (error);
1721 	}
1722 
1723 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1724 		if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) {
1725 			sof_entry_free(ent);
1726 			return (EFAULT);
1727 		}
1728 	}
1729 #ifdef	_SYSCALL32_IMPL
1730 	else {
1731 		struct sockconfig_filter_props32 filprop32;
1732 
1733 		if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) {
1734 			sof_entry_free(ent);
1735 			return (EFAULT);
1736 		}
1737 		filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname;
1738 		filprop.sfp_autoattach = filprop32.sfp_autoattach;
1739 		filprop.sfp_hint = filprop32.sfp_hint;
1740 		filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg;
1741 		filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt;
1742 		filprop.sfp_socktuple =
1743 		    (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple;
1744 	}
1745 #endif	/* _SYSCALL32_IMPL */
1746 
1747 	if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname,
1748 	    sizeof (ent->sofe_modname), &len)) != 0) {
1749 		sof_entry_free(ent);
1750 		return (error);
1751 	}
1752 
1753 	/*
1754 	 * A filter must specify at least one socket tuple.
1755 	 */
1756 	if (filprop.sfp_socktuple_cnt == 0 ||
1757 	    filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) {
1758 		sof_entry_free(ent);
1759 		return (EINVAL);
1760 	}
1761 	ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG;
1762 	ent->sofe_hint = filprop.sfp_hint;
1763 
1764 	/*
1765 	 * Verify the hint, and copy in the hint argument, if necessary.
1766 	 */
1767 	switch (ent->sofe_hint) {
1768 	case SOF_HINT_BEFORE:
1769 	case SOF_HINT_AFTER:
1770 		if ((error = copyinstr(filprop.sfp_hintarg, hintbuf,
1771 		    sizeof (hintbuf), &len)) != 0) {
1772 			sof_entry_free(ent);
1773 			return (error);
1774 		}
1775 		ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP);
1776 		bcopy(hintbuf, ent->sofe_hintarg, len);
1777 		/* FALLTHRU */
1778 	case SOF_HINT_TOP:
1779 	case SOF_HINT_BOTTOM:
1780 		/* hints cannot be used with programmatic filters */
1781 		if (ent->sofe_flags & SOFEF_PROG) {
1782 			sof_entry_free(ent);
1783 			return (EINVAL);
1784 		}
1785 		break;
1786 	case SOF_HINT_NONE:
1787 		break;
1788 	default:
1789 		/* bad hint value */
1790 		sof_entry_free(ent);
1791 		return (EINVAL);
1792 	}
1793 
1794 	ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt;
1795 	tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt;
1796 	ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP);
1797 
1798 	if (get_udatamodel() == DATAMODEL_NATIVE) {
1799 		if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple,
1800 		    tuplesz)) {
1801 			sof_entry_free(ent);
1802 			return (EFAULT);
1803 		}
1804 	}
1805 #ifdef	_SYSCALL32_IMPL
1806 	else {
1807 		int i;
1808 		caddr_t data = (caddr_t)filprop.sfp_socktuple;
1809 		sof_socktuple_t	*tup = ent->sofe_socktuple;
1810 		sof_socktuple32_t tup32;
1811 
1812 		tup = ent->sofe_socktuple;
1813 		for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) {
1814 			ASSERT(tup < ent->sofe_socktuple + tuplesz);
1815 
1816 			if (copyin(data, &tup32, sizeof (tup32)) != 0) {
1817 				sof_entry_free(ent);
1818 				return (EFAULT);
1819 			}
1820 			tup->sofst_family = tup32.sofst_family;
1821 			tup->sofst_type = tup32.sofst_type;
1822 			tup->sofst_protocol = tup32.sofst_protocol;
1823 
1824 			data += sizeof (tup32);
1825 		}
1826 	}
1827 #endif	/* _SYSCALL32_IMPL */
1828 
1829 	/* Sockets can start using the filter as soon as the filter is added */
1830 	if ((error = sof_entry_add(ent)) != 0)
1831 		sof_entry_free(ent);
1832 
1833 	return (error);
1834 }
1835 
1836 /*
1837  * Socket configuration system call. It is used to add and remove
1838  * socket types.
1839  */
1840 int
1841 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
1842 {
1843 	int error = 0;
1844 
1845 	if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1846 		return (set_errno(EPERM));
1847 
1848 	if (sockfs_defer_nl7c_init) {
1849 		nl7c_init();
1850 		sockfs_defer_nl7c_init = 0;
1851 	}
1852 
1853 	switch (cmd) {
1854 	case SOCKCONFIG_ADD_SOCK:
1855 		error = sockconf_add_sock((int)(uintptr_t)arg1,
1856 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4);
1857 		break;
1858 	case SOCKCONFIG_REMOVE_SOCK:
1859 		error = sockconf_remove_sock((int)(uintptr_t)arg1,
1860 		    (int)(uintptr_t)arg2, (int)(uintptr_t)arg3);
1861 		break;
1862 	case SOCKCONFIG_ADD_FILTER:
1863 		error = sockconfig_add_filter((const char *)arg1, arg2);
1864 		break;
1865 	case SOCKCONFIG_REMOVE_FILTER:
1866 		error = sockconfig_remove_filter((const char *)arg1);
1867 		break;
1868 	case SOCKCONFIG_GET_SOCKTABLE:
1869 		error = sockparams_copyout_socktable((int)(uintptr_t)arg1);
1870 		break;
1871 	default:
1872 #ifdef	DEBUG
1873 		cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd);
1874 #endif
1875 		error = EINVAL;
1876 		break;
1877 	}
1878 
1879 	if (error != 0) {
1880 		eprintline(error);
1881 		return (set_errno(error));
1882 	}
1883 	return (0);
1884 }
1885 
1886 
1887 /*
1888  * Sendfile is implemented through two schemes, direct I/O or by
1889  * caching in the filesystem page cache. We cache the input file by
1890  * default and use direct I/O only if sendfile_max_size is set
1891  * appropriately as explained below. Note that this logic is consistent
1892  * with other filesystems where caching is turned on by default
1893  * unless explicitly turned off by using the DIRECTIO ioctl.
1894  *
1895  * We choose a slightly different scheme here. One can turn off
1896  * caching by setting sendfile_max_size to 0. One can also enable
1897  * caching of files <= sendfile_max_size by setting sendfile_max_size
1898  * to an appropriate value. By default sendfile_max_size is set to the
1899  * maximum value so that all files are cached. In future, we may provide
1900  * better interfaces for caching the file.
1901  *
1902  * Sendfile through Direct I/O (Zero copy)
1903  * --------------------------------------
1904  *
1905  * As disks are normally slower than the network, we can't have a
1906  * single thread that reads the disk and writes to the network. We
1907  * need to have parallelism. This is done by having the sendfile
1908  * thread create another thread that reads from the filesystem
1909  * and queues it for network processing. In this scheme, the data
1910  * is never copied anywhere i.e it is zero copy unlike the other
1911  * scheme.
1912  *
1913  * We have a sendfile queue (snfq) where each sendfile
1914  * request (snf_req_t) is queued for processing by a thread. Number
1915  * of threads is dynamically allocated and they exit if they are idling
1916  * beyond a specified amount of time. When each request (snf_req_t) is
1917  * processed by a thread, it produces a number of mblk_t structures to
1918  * be consumed by the sendfile thread. snf_deque and snf_enque are
1919  * used for consuming and producing mblks. Size of the filesystem
1920  * read is determined by the tunable (sendfile_read_size). A single
1921  * mblk holds sendfile_read_size worth of data (except the last
1922  * read of the file) which is sent down as a whole to the network.
1923  * sendfile_read_size is set to 1 MB as this seems to be the optimal
1924  * value for the UFS filesystem backed by a striped storage array.
1925  *
1926  * Synchronisation between read (producer) and write (consumer) threads.
1927  * --------------------------------------------------------------------
1928  *
1929  * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1930  * adding and deleting items in this list. Error can happen anytime
1931  * during read or write. There could be unprocessed mblks in the
1932  * sr_ib_XXX list when a read or write error occurs. Whenever error
1933  * is encountered, we need two things to happen :
1934  *
1935  * a) One of the threads need to clean the mblks.
1936  * b) When one thread encounters an error, the other should stop.
1937  *
1938  * For (a), we don't want to penalize the reader thread as it could do
1939  * some useful work processing other requests. For (b), the error can
1940  * be detected by examining sr_read_error or sr_write_error.
1941  * sr_lock protects sr_read_error and sr_write_error. If both reader and
1942  * writer encounters error, we need to report the write error back to
1943  * the application as that's what would have happened if the operations
1944  * were done sequentially. With this in mind, following should work :
1945  *
1946  * 	- Check for errors before read or write.
1947  *	- If the reader encounters error, set the error in sr_read_error.
1948  *	  Check sr_write_error, if it is set, send cv_signal as it is
1949  *	  waiting for reader to complete. If it is not set, the writer
1950  *	  is either running sinking data to the network or blocked
1951  *        because of flow control. For handling the latter case, we
1952  *	  always send a signal. In any case, it will examine sr_read_error
1953  *	  and return. sr_read_error is marked with SR_READ_DONE to tell
1954  *	  the writer that the reader is done in all the cases.
1955  *	- If the writer encounters error, set the error in sr_write_error.
1956  *	  The reader thread is either blocked because of flow control or
1957  *	  running reading data from the disk. For the former, we need to
1958  *	  wakeup the thread. Again to keep it simple, we always wake up
1959  *	  the reader thread. Then, wait for the read thread to complete
1960  *	  if it is not done yet. Cleanup and return.
1961  *
1962  * High and low water marks for the read thread.
1963  * --------------------------------------------
1964  *
1965  * If sendfile() is used to send data over a slow network, we need to
1966  * make sure that the read thread does not produce data at a faster
1967  * rate than the network. This can happen if the disk is faster than
1968  * the network. In such a case, we don't want to build a very large queue.
1969  * But we would still like to get all of the network throughput possible.
1970  * This implies that network should never block waiting for data.
1971  * As there are lot of disk throughput/network throughput combinations
1972  * possible, it is difficult to come up with an accurate number.
1973  * A typical 10K RPM disk has a max seek latency 17ms and rotational
1974  * latency of 3ms for reading a disk block. Thus, the total latency to
1975  * initiate a new read, transfer data from the disk and queue for
1976  * transmission would take about a max of 25ms. Todays max transfer rate
1977  * for network is 100MB/sec. If the thread is blocked because of flow
1978  * control, it would take 25ms to get new data ready for transmission.
1979  * We have to make sure that network is not idling, while we are initiating
1980  * new transfers. So, at 100MB/sec, to keep network busy we would need
1981  * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
1982  * We need to pick a high water mark so that the woken up thread would
1983  * do considerable work before blocking again to prevent thrashing. Currently,
1984  * we pick this to be 10 times that of the low water mark.
1985  *
1986  * Sendfile with segmap caching (One copy from page cache to mblks).
1987  * ----------------------------------------------------------------
1988  *
1989  * We use the segmap cache for caching the file, if the size of file
1990  * is <= sendfile_max_size. In this case we don't use threads as VM
1991  * is reasonably fast enough to keep up with the network. If the underlying
1992  * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
1993  * of data into segmap space, and use the virtual address from segmap
1994  * directly through desballoc() to avoid copy. Once the transport is done
1995  * with the data, the mapping will be released through segmap_release()
1996  * called by the call-back routine.
1997  *
1998  * If zero-copy is not allowed by the transport, we simply call VOP_READ()
1999  * to copy the data from the filesystem into our temporary network buffer.
2000  *
2001  * To disable caching, set sendfile_max_size to 0.
2002  */
2003 
2004 uint_t sendfile_read_size = 1024 * 1024;
2005 #define	SENDFILE_REQ_LOWAT	3 * 1024 * 1024
2006 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
2007 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
2008 struct sendfile_stats sf_stats;
2009 struct sendfile_queue *snfq;
2010 clock_t snfq_timeout;
2011 off64_t sendfile_max_size;
2012 
2013 static void snf_enque(snf_req_t *, mblk_t *);
2014 static mblk_t *snf_deque(snf_req_t *);
2015 
2016 void
2017 sendfile_init(void)
2018 {
2019 	snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
2020 
2021 	mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
2022 	cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
2023 	snfq->snfq_max_threads = max_ncpus;
2024 	snfq_timeout = SNFQ_TIMEOUT;
2025 	/* Cache all files by default. */
2026 	sendfile_max_size = MAXOFFSET_T;
2027 }
2028 
2029 /*
2030  * Queues a mblk_t for network processing.
2031  */
2032 static void
2033 snf_enque(snf_req_t *sr, mblk_t *mp)
2034 {
2035 	mp->b_next = NULL;
2036 	mutex_enter(&sr->sr_lock);
2037 	if (sr->sr_mp_head == NULL) {
2038 		sr->sr_mp_head = sr->sr_mp_tail = mp;
2039 		cv_signal(&sr->sr_cv);
2040 	} else {
2041 		sr->sr_mp_tail->b_next = mp;
2042 		sr->sr_mp_tail = mp;
2043 	}
2044 	sr->sr_qlen += MBLKL(mp);
2045 	while ((sr->sr_qlen > sr->sr_hiwat) &&
2046 	    (sr->sr_write_error == 0)) {
2047 		sf_stats.ss_full_waits++;
2048 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2049 	}
2050 	mutex_exit(&sr->sr_lock);
2051 }
2052 
2053 /*
2054  * De-queues a mblk_t for network processing.
2055  */
2056 static mblk_t *
2057 snf_deque(snf_req_t *sr)
2058 {
2059 	mblk_t *mp;
2060 
2061 	mutex_enter(&sr->sr_lock);
2062 	/*
2063 	 * If we have encountered an error on read or read is
2064 	 * completed and no more mblks, return NULL.
2065 	 * We need to check for NULL sr_mp_head also as
2066 	 * the reads could have completed and there is
2067 	 * nothing more to come.
2068 	 */
2069 	if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
2070 	    ((sr->sr_read_error & SR_READ_DONE) &&
2071 	    sr->sr_mp_head == NULL)) {
2072 		mutex_exit(&sr->sr_lock);
2073 		return (NULL);
2074 	}
2075 	/*
2076 	 * To start with neither SR_READ_DONE is marked nor
2077 	 * the error is set. When we wake up from cv_wait,
2078 	 * following are the possibilities :
2079 	 *
2080 	 *	a) sr_read_error is zero and mblks are queued.
2081 	 *	b) sr_read_error is set to SR_READ_DONE
2082 	 *	   and mblks are queued.
2083 	 *	c) sr_read_error is set to SR_READ_DONE
2084 	 *	   and no mblks.
2085 	 *	d) sr_read_error is set to some error other
2086 	 *	   than SR_READ_DONE.
2087 	 */
2088 
2089 	while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
2090 		sf_stats.ss_empty_waits++;
2091 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2092 	}
2093 	/* Handle (a) and (b) first  - the normal case. */
2094 	if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
2095 	    (sr->sr_mp_head != NULL)) {
2096 		mp = sr->sr_mp_head;
2097 		sr->sr_mp_head = mp->b_next;
2098 		sr->sr_qlen -= MBLKL(mp);
2099 		if (sr->sr_qlen < sr->sr_lowat)
2100 			cv_signal(&sr->sr_cv);
2101 		mutex_exit(&sr->sr_lock);
2102 		mp->b_next = NULL;
2103 		return (mp);
2104 	}
2105 	/* Handle (c) and (d). */
2106 	mutex_exit(&sr->sr_lock);
2107 	return (NULL);
2108 }
2109 
2110 /*
2111  * Reads data from the filesystem and queues it for network processing.
2112  */
2113 void
2114 snf_async_read(snf_req_t *sr)
2115 {
2116 	size_t iosize;
2117 	u_offset_t fileoff;
2118 	u_offset_t size;
2119 	int ret_size;
2120 	int error;
2121 	file_t *fp;
2122 	mblk_t *mp;
2123 	struct vnode *vp;
2124 	int extra = 0;
2125 	int maxblk = 0;
2126 	int wroff = 0;
2127 	struct sonode *so;
2128 
2129 	fp = sr->sr_fp;
2130 	size = sr->sr_file_size;
2131 	fileoff = sr->sr_file_off;
2132 
2133 	/*
2134 	 * Ignore the error for filesystems that doesn't support DIRECTIO.
2135 	 */
2136 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
2137 	    kcred, NULL, NULL);
2138 
2139 	vp = sr->sr_vp;
2140 	if (vp->v_type == VSOCK) {
2141 		stdata_t *stp;
2142 
2143 		/*
2144 		 * Get the extra space to insert a header and a trailer.
2145 		 */
2146 		so = VTOSO(vp);
2147 		stp = vp->v_stream;
2148 		if (stp == NULL) {
2149 			wroff = so->so_proto_props.sopp_wroff;
2150 			maxblk = so->so_proto_props.sopp_maxblk;
2151 			extra = wroff + so->so_proto_props.sopp_tail;
2152 		} else {
2153 			wroff = (int)(stp->sd_wroff);
2154 			maxblk = (int)(stp->sd_maxblk);
2155 			extra = wroff + (int)(stp->sd_tail);
2156 		}
2157 	}
2158 
2159 	while ((size != 0) && (sr->sr_write_error == 0)) {
2160 
2161 		iosize = (int)MIN(sr->sr_maxpsz, size);
2162 
2163 		/*
2164 		 * Socket filters can limit the mblk size,
2165 		 * so limit reads to maxblk if there are
2166 		 * filters present.
2167 		 */
2168 		if (vp->v_type == VSOCK &&
2169 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2170 			iosize = (int)MIN(iosize, maxblk);
2171 
2172 		if (is_system_labeled()) {
2173 			mp = allocb_cred(iosize + extra, CRED(),
2174 			    curproc->p_pid);
2175 		} else {
2176 			mp = allocb(iosize + extra, BPRI_MED);
2177 		}
2178 		if (mp == NULL) {
2179 			error = EAGAIN;
2180 			break;
2181 		}
2182 
2183 		mp->b_rptr += wroff;
2184 
2185 		ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
2186 
2187 		/* Error or Reached EOF ? */
2188 		if ((error != 0) || (ret_size == 0)) {
2189 			freeb(mp);
2190 			break;
2191 		}
2192 		mp->b_wptr = mp->b_rptr + ret_size;
2193 
2194 		snf_enque(sr, mp);
2195 		size -= ret_size;
2196 		fileoff += ret_size;
2197 	}
2198 	(void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
2199 	    kcred, NULL, NULL);
2200 	mutex_enter(&sr->sr_lock);
2201 	sr->sr_read_error = error;
2202 	sr->sr_read_error |= SR_READ_DONE;
2203 	cv_signal(&sr->sr_cv);
2204 	mutex_exit(&sr->sr_lock);
2205 }
2206 
2207 void
2208 snf_async_thread(void)
2209 {
2210 	snf_req_t *sr;
2211 	callb_cpr_t cprinfo;
2212 	clock_t time_left = 1;
2213 
2214 	CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
2215 
2216 	mutex_enter(&snfq->snfq_lock);
2217 	for (;;) {
2218 		/*
2219 		 * If we didn't find a entry, then block until woken up
2220 		 * again and then look through the queues again.
2221 		 */
2222 		while ((sr = snfq->snfq_req_head) == NULL) {
2223 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2224 			if (time_left <= 0) {
2225 				snfq->snfq_svc_threads--;
2226 				CALLB_CPR_EXIT(&cprinfo);
2227 				thread_exit();
2228 				/* NOTREACHED */
2229 			}
2230 			snfq->snfq_idle_cnt++;
2231 
2232 			time_left = cv_reltimedwait(&snfq->snfq_cv,
2233 			    &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK);
2234 			snfq->snfq_idle_cnt--;
2235 
2236 			CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2237 		}
2238 		snfq->snfq_req_head = sr->sr_next;
2239 		snfq->snfq_req_cnt--;
2240 		mutex_exit(&snfq->snfq_lock);
2241 		snf_async_read(sr);
2242 		mutex_enter(&snfq->snfq_lock);
2243 	}
2244 }
2245 
2246 
2247 snf_req_t *
2248 create_thread(int operation, struct vnode *vp, file_t *fp,
2249     u_offset_t fileoff, u_offset_t size)
2250 {
2251 	snf_req_t *sr;
2252 	stdata_t *stp;
2253 
2254 	sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2255 
2256 	sr->sr_vp = vp;
2257 	sr->sr_fp = fp;
2258 	stp = vp->v_stream;
2259 
2260 	/*
2261 	 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2262 	 * stream might be closed before thread returns from snf_async_read.
2263 	 */
2264 	if (stp != NULL && stp->sd_qn_maxpsz > 0) {
2265 		sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2266 	} else {
2267 		sr->sr_maxpsz = MAXBSIZE;
2268 	}
2269 
2270 	sr->sr_operation = operation;
2271 	sr->sr_file_off = fileoff;
2272 	sr->sr_file_size = size;
2273 	sr->sr_hiwat = sendfile_req_hiwat;
2274 	sr->sr_lowat = sendfile_req_lowat;
2275 	mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2276 	cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2277 	/*
2278 	 * See whether we need another thread for servicing this
2279 	 * request. If there are already enough requests queued
2280 	 * for the threads, create one if not exceeding
2281 	 * snfq_max_threads.
2282 	 */
2283 	mutex_enter(&snfq->snfq_lock);
2284 	if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2285 	    snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2286 		(void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2287 		    TS_RUN, minclsyspri);
2288 		snfq->snfq_svc_threads++;
2289 	}
2290 	if (snfq->snfq_req_head == NULL) {
2291 		snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2292 		cv_signal(&snfq->snfq_cv);
2293 	} else {
2294 		snfq->snfq_req_tail->sr_next = sr;
2295 		snfq->snfq_req_tail = sr;
2296 	}
2297 	snfq->snfq_req_cnt++;
2298 	mutex_exit(&snfq->snfq_lock);
2299 	return (sr);
2300 }
2301 
2302 int
2303 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2304     ssize_t *count)
2305 {
2306 	snf_req_t *sr;
2307 	mblk_t *mp;
2308 	int iosize;
2309 	int error = 0;
2310 	short fflag;
2311 	struct vnode *vp;
2312 	int ksize;
2313 	struct nmsghdr msg;
2314 
2315 	ksize = 0;
2316 	*count = 0;
2317 	bzero(&msg, sizeof (msg));
2318 
2319 	vp = fp->f_vnode;
2320 	fflag = fp->f_flag;
2321 	if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2322 		return (EAGAIN);
2323 
2324 	/*
2325 	 * We check for read error in snf_deque. It has to check
2326 	 * for successful READ_DONE and return NULL, and we might
2327 	 * as well make an additional check there.
2328 	 */
2329 	while ((mp = snf_deque(sr)) != NULL) {
2330 
2331 		if (ISSIG(curthread, JUSTLOOKING)) {
2332 			freeb(mp);
2333 			error = EINTR;
2334 			break;
2335 		}
2336 		iosize = MBLKL(mp);
2337 
2338 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2339 
2340 		if (error != 0) {
2341 			if (mp != NULL)
2342 				freeb(mp);
2343 			break;
2344 		}
2345 		ksize += iosize;
2346 	}
2347 	*count = ksize;
2348 
2349 	mutex_enter(&sr->sr_lock);
2350 	sr->sr_write_error = error;
2351 	/* Look at the big comments on why we cv_signal here. */
2352 	cv_signal(&sr->sr_cv);
2353 
2354 	/* Wait for the reader to complete always. */
2355 	while (!(sr->sr_read_error & SR_READ_DONE)) {
2356 		cv_wait(&sr->sr_cv, &sr->sr_lock);
2357 	}
2358 	/* If there is no write error, check for read error. */
2359 	if (error == 0)
2360 		error = (sr->sr_read_error & ~SR_READ_DONE);
2361 
2362 	if (error != 0) {
2363 		mblk_t *next_mp;
2364 
2365 		mp = sr->sr_mp_head;
2366 		while (mp != NULL) {
2367 			next_mp = mp->b_next;
2368 			mp->b_next = NULL;
2369 			freeb(mp);
2370 			mp = next_mp;
2371 		}
2372 	}
2373 	mutex_exit(&sr->sr_lock);
2374 	kmem_free(sr, sizeof (snf_req_t));
2375 	return (error);
2376 }
2377 
2378 /* Maximum no.of pages allocated by vpm for sendfile at a time */
2379 #define	SNF_VPMMAXPGS	(VPMMAXPGS/2)
2380 
2381 /*
2382  * Maximum no.of elements in the list returned by vpm, including
2383  * NULL for the last entry
2384  */
2385 #define	SNF_MAXVMAPS	(SNF_VPMMAXPGS + 1)
2386 
2387 typedef struct {
2388 	unsigned int	snfv_ref;
2389 	frtn_t		snfv_frtn;
2390 	vnode_t		*snfv_vp;
2391 	struct vmap	snfv_vml[SNF_MAXVMAPS];
2392 } snf_vmap_desbinfo;
2393 
2394 typedef struct {
2395 	frtn_t		snfi_frtn;
2396 	caddr_t		snfi_base;
2397 	uint_t		snfi_mapoff;
2398 	size_t		snfi_len;
2399 	vnode_t		*snfi_vp;
2400 } snf_smap_desbinfo;
2401 
2402 /*
2403  * The callback function used for vpm mapped mblks called when the last ref of
2404  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2405  * can be the driver too due to lazy reclaim.
2406  */
2407 void
2408 snf_vmap_desbfree(snf_vmap_desbinfo *snfv)
2409 {
2410 	ASSERT(snfv->snfv_ref != 0);
2411 	if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) {
2412 		vpm_unmap_pages(snfv->snfv_vml, S_READ);
2413 		VN_RELE(snfv->snfv_vp);
2414 		kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2415 	}
2416 }
2417 
2418 /*
2419  * The callback function used for segmap'ped mblks called when the last ref of
2420  * the mblk is dropped which normally occurs when TCP receives the ack. But it
2421  * can be the driver too due to lazy reclaim.
2422  */
2423 void
2424 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2425 {
2426 	if (! IS_KPM_ADDR(snfi->snfi_base)) {
2427 		/*
2428 		 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2429 		 * segmap_kpm as long as the latter never falls back to
2430 		 * "use_segmap_range". (See segmap_getmapflt().)
2431 		 *
2432 		 * Using S_OTHER saves an redundant hat_setref() in
2433 		 * segmap_unlock()
2434 		 */
2435 		(void) segmap_fault(kas.a_hat, segkmap,
2436 		    (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2437 		    snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2438 		    F_SOFTUNLOCK, S_OTHER);
2439 	}
2440 	(void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2441 	VN_RELE(snfi->snfi_vp);
2442 	kmem_free(snfi, sizeof (*snfi));
2443 }
2444 
2445 /*
2446  * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk.
2447  * When segmap is used, the mblk contains a segmap slot of no more
2448  * than MAXBSIZE.
2449  *
2450  * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained
2451  * in each iteration and sent by socket_sendmblk until an error occurs or
2452  * the requested size has been transferred. An mblk is esballoca'ed from
2453  * each mapped page and a chain of these mblk is sent to the transport layer.
2454  * vpm will be called to unmap the pages when all mblks have been freed by
2455  * free_func.
2456  *
2457  * At the end of the whole sendfile() operation, we wait till the data from
2458  * the last mblk is ack'ed by the transport before returning so that the
2459  * caller of sendfile() can safely modify the file content.
2460  */
2461 int
2462 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size,
2463     ssize_t *count, boolean_t nowait)
2464 {
2465 	caddr_t base;
2466 	int mapoff;
2467 	vnode_t *vp;
2468 	mblk_t *mp = NULL;
2469 	int chain_size;
2470 	int error;
2471 	clock_t deadlk_wait;
2472 	short fflag;
2473 	int ksize;
2474 	struct vattr va;
2475 	boolean_t dowait = B_FALSE;
2476 	struct nmsghdr msg;
2477 
2478 	vp = fp->f_vnode;
2479 	fflag = fp->f_flag;
2480 	ksize = 0;
2481 	bzero(&msg, sizeof (msg));
2482 
2483 	for (;;) {
2484 		if (ISSIG(curthread, JUSTLOOKING)) {
2485 			error = EINTR;
2486 			break;
2487 		}
2488 
2489 		if (vpm_enable) {
2490 			snf_vmap_desbinfo *snfv;
2491 			mblk_t *nmp;
2492 			int mblk_size;
2493 			int maxsize;
2494 			int i;
2495 
2496 			mapoff = fileoff & PAGEOFFSET;
2497 			maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size);
2498 
2499 			snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo),
2500 			    KM_SLEEP);
2501 
2502 			/*
2503 			 * Get vpm mappings for maxsize with read access.
2504 			 * If the pages aren't available yet, we get
2505 			 * DEADLK, so wait and try again a little later using
2506 			 * an increasing wait. We might be here a long time.
2507 			 *
2508 			 * If delay_sig returns EINTR, be sure to exit and
2509 			 * pass it up to the caller.
2510 			 */
2511 			deadlk_wait = 0;
2512 			while ((error = vpm_map_pages(fvp, fileoff,
2513 			    (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml,
2514 			    SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) {
2515 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2516 				if ((error = delay_sig(deadlk_wait)) != 0) {
2517 					break;
2518 				}
2519 			}
2520 			if (error != 0) {
2521 				kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2522 				error = (error == EINTR) ? EINTR : EIO;
2523 				goto out;
2524 			}
2525 			snfv->snfv_frtn.free_func = snf_vmap_desbfree;
2526 			snfv->snfv_frtn.free_arg = (caddr_t)snfv;
2527 
2528 			/* Construct the mblk chain from the page mappings */
2529 			chain_size = 0;
2530 			for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) &&
2531 			    total_size > 0; i++) {
2532 				ASSERT(chain_size < maxsize);
2533 				mblk_size = MIN(snfv->snfv_vml[i].vs_len -
2534 				    mapoff, total_size);
2535 				nmp = esballoca(
2536 				    (uchar_t *)snfv->snfv_vml[i].vs_addr +
2537 				    mapoff, mblk_size, BPRI_HI,
2538 				    &snfv->snfv_frtn);
2539 
2540 				/*
2541 				 * We return EAGAIN after unmapping the pages
2542 				 * if we cannot allocate the the head of the
2543 				 * chain. Otherwise, we continue sending the
2544 				 * mblks constructed so far.
2545 				 */
2546 				if (nmp == NULL) {
2547 					if (i == 0) {
2548 						vpm_unmap_pages(snfv->snfv_vml,
2549 						    S_READ);
2550 						kmem_free(snfv,
2551 						    sizeof (snf_vmap_desbinfo));
2552 						error = EAGAIN;
2553 						goto out;
2554 					}
2555 					break;
2556 				}
2557 				/* Mark this dblk with the zero-copy flag */
2558 				nmp->b_datap->db_struioflag |= STRUIO_ZC;
2559 				nmp->b_wptr += mblk_size;
2560 				chain_size += mblk_size;
2561 				fileoff += mblk_size;
2562 				total_size -= mblk_size;
2563 				snfv->snfv_ref++;
2564 				mapoff = 0;
2565 				if (i > 0)
2566 					linkb(mp, nmp);
2567 				else
2568 					mp = nmp;
2569 			}
2570 			VN_HOLD(fvp);
2571 			snfv->snfv_vp = fvp;
2572 		} else {
2573 			/* vpm not supported. fallback to segmap */
2574 			snf_smap_desbinfo *snfi;
2575 
2576 			mapoff = fileoff & MAXBOFFSET;
2577 			chain_size = MAXBSIZE - mapoff;
2578 			if (chain_size > total_size)
2579 				chain_size = total_size;
2580 			/*
2581 			 * we don't forcefault because we'll call
2582 			 * segmap_fault(F_SOFTLOCK) next.
2583 			 *
2584 			 * S_READ will get the ref bit set (by either
2585 			 * segmap_getmapflt() or segmap_fault()) and page
2586 			 * shared locked.
2587 			 */
2588 			base = segmap_getmapflt(segkmap, fvp, fileoff,
2589 			    chain_size, segmap_kpm ? SM_FAULT : 0, S_READ);
2590 
2591 			snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2592 			snfi->snfi_len = (size_t)roundup(mapoff+chain_size,
2593 			    PAGESIZE)- (mapoff & PAGEMASK);
2594 			/*
2595 			 * We must call segmap_fault() even for segmap_kpm
2596 			 * because that's how error gets returned.
2597 			 * (segmap_getmapflt() never fails but segmap_fault()
2598 			 * does.)
2599 			 *
2600 			 * If the pages aren't available yet, we get
2601 			 * DEADLK, so wait and try again a little later using
2602 			 * an increasing wait. We might be here a long time.
2603 			 *
2604 			 * If delay_sig returns EINTR, be sure to exit and
2605 			 * pass it up to the caller.
2606 			 */
2607 			deadlk_wait = 0;
2608 			while ((error = FC_ERRNO(segmap_fault(kas.a_hat,
2609 			    segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base +
2610 			    mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2611 			    S_READ))) == EDEADLK) {
2612 				deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2613 				if ((error = delay_sig(deadlk_wait)) != 0) {
2614 					break;
2615 				}
2616 			}
2617 			if (error != 0) {
2618 				(void) segmap_release(segkmap, base, 0);
2619 				kmem_free(snfi, sizeof (*snfi));
2620 				error = (error == EINTR) ? EINTR : EIO;
2621 				goto out;
2622 			}
2623 			snfi->snfi_frtn.free_func = snf_smap_desbfree;
2624 			snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2625 			snfi->snfi_base = base;
2626 			snfi->snfi_mapoff = mapoff;
2627 			mp = esballoca((uchar_t *)base + mapoff, chain_size,
2628 			    BPRI_HI, &snfi->snfi_frtn);
2629 
2630 			if (mp == NULL) {
2631 				(void) segmap_fault(kas.a_hat, segkmap,
2632 				    (caddr_t)(uintptr_t)(((uintptr_t)base +
2633 				    mapoff) & PAGEMASK), snfi->snfi_len,
2634 				    F_SOFTUNLOCK, S_OTHER);
2635 				(void) segmap_release(segkmap, base, 0);
2636 				kmem_free(snfi, sizeof (*snfi));
2637 				freemsg(mp);
2638 				error = EAGAIN;
2639 				goto out;
2640 			}
2641 			VN_HOLD(fvp);
2642 			snfi->snfi_vp = fvp;
2643 			mp->b_wptr += chain_size;
2644 
2645 			/* Mark this dblk with the zero-copy flag */
2646 			mp->b_datap->db_struioflag |= STRUIO_ZC;
2647 			fileoff += chain_size;
2648 			total_size -= chain_size;
2649 		}
2650 
2651 		if (total_size == 0 && !nowait) {
2652 			ASSERT(!dowait);
2653 			dowait = B_TRUE;
2654 			mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2655 		}
2656 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2657 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2658 		if (error != 0) {
2659 			/*
2660 			 * mp contains the mblks that were not sent by
2661 			 * socket_sendmblk. Use its size to update *count
2662 			 */
2663 			*count = ksize + (chain_size - msgdsize(mp));
2664 			if (mp != NULL)
2665 				freemsg(mp);
2666 			return (error);
2667 		}
2668 		ksize += chain_size;
2669 		if (total_size == 0)
2670 			goto done;
2671 
2672 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2673 		va.va_mask = AT_SIZE;
2674 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2675 		if (error)
2676 			break;
2677 		/* Read as much as possible. */
2678 		if (fileoff >= va.va_size)
2679 			break;
2680 		if (total_size + fileoff > va.va_size)
2681 			total_size = va.va_size - fileoff;
2682 	}
2683 out:
2684 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2685 done:
2686 	*count = ksize;
2687 	if (dowait) {
2688 		stdata_t *stp;
2689 
2690 		stp = vp->v_stream;
2691 		if (stp == NULL) {
2692 			struct sonode *so;
2693 			so = VTOSO(vp);
2694 			error = so_zcopy_wait(so);
2695 		} else {
2696 			mutex_enter(&stp->sd_lock);
2697 			while (!(stp->sd_flag & STZCNOTIFY)) {
2698 				if (cv_wait_sig(&stp->sd_zcopy_wait,
2699 				    &stp->sd_lock) == 0) {
2700 					error = EINTR;
2701 					break;
2702 				}
2703 			}
2704 			stp->sd_flag &= ~STZCNOTIFY;
2705 			mutex_exit(&stp->sd_lock);
2706 		}
2707 	}
2708 	return (error);
2709 }
2710 
2711 int
2712 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2713     uint_t maxpsz, ssize_t *count)
2714 {
2715 	struct vnode *vp;
2716 	mblk_t *mp;
2717 	int iosize;
2718 	int extra = 0;
2719 	int error;
2720 	short fflag;
2721 	int ksize;
2722 	int ioflag;
2723 	struct uio auio;
2724 	struct iovec aiov;
2725 	struct vattr va;
2726 	int maxblk = 0;
2727 	int wroff = 0;
2728 	struct sonode *so;
2729 	struct nmsghdr msg;
2730 
2731 	vp = fp->f_vnode;
2732 	if (vp->v_type == VSOCK) {
2733 		stdata_t *stp;
2734 
2735 		/*
2736 		 * Get the extra space to insert a header and a trailer.
2737 		 */
2738 		so = VTOSO(vp);
2739 		stp = vp->v_stream;
2740 		if (stp == NULL) {
2741 			wroff = so->so_proto_props.sopp_wroff;
2742 			maxblk = so->so_proto_props.sopp_maxblk;
2743 			extra = wroff + so->so_proto_props.sopp_tail;
2744 		} else {
2745 			wroff = (int)(stp->sd_wroff);
2746 			maxblk = (int)(stp->sd_maxblk);
2747 			extra = wroff + (int)(stp->sd_tail);
2748 		}
2749 	}
2750 	bzero(&msg, sizeof (msg));
2751 	fflag = fp->f_flag;
2752 	ksize = 0;
2753 	auio.uio_iov = &aiov;
2754 	auio.uio_iovcnt = 1;
2755 	auio.uio_segflg = UIO_SYSSPACE;
2756 	auio.uio_llimit = MAXOFFSET_T;
2757 	auio.uio_fmode = fflag;
2758 	auio.uio_extflg = UIO_COPY_CACHED;
2759 	ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2760 	/* If read sync is not asked for, filter sync flags */
2761 	if ((ioflag & FRSYNC) == 0)
2762 		ioflag &= ~(FSYNC|FDSYNC);
2763 	for (;;) {
2764 		if (ISSIG(curthread, JUSTLOOKING)) {
2765 			error = EINTR;
2766 			break;
2767 		}
2768 		iosize = (int)MIN(maxpsz, size);
2769 
2770 		/*
2771 		 * Socket filters can limit the mblk size,
2772 		 * so limit reads to maxblk if there are
2773 		 * filters present.
2774 		 */
2775 		if (vp->v_type == VSOCK &&
2776 		    so->so_filter_active > 0 && maxblk != INFPSZ)
2777 			iosize = (int)MIN(iosize, maxblk);
2778 
2779 		if (is_system_labeled()) {
2780 			mp = allocb_cred(iosize + extra, CRED(),
2781 			    curproc->p_pid);
2782 		} else {
2783 			mp = allocb(iosize + extra, BPRI_MED);
2784 		}
2785 		if (mp == NULL) {
2786 			error = EAGAIN;
2787 			break;
2788 		}
2789 
2790 		mp->b_rptr += wroff;
2791 
2792 		aiov.iov_base = (caddr_t)mp->b_rptr;
2793 		aiov.iov_len = iosize;
2794 		auio.uio_loffset = fileoff;
2795 		auio.uio_resid = iosize;
2796 
2797 		error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2798 		iosize -= auio.uio_resid;
2799 
2800 		if (error == EINTR && iosize != 0)
2801 			error = 0;
2802 
2803 		if (error != 0 || iosize == 0) {
2804 			freeb(mp);
2805 			break;
2806 		}
2807 		mp->b_wptr = mp->b_rptr + iosize;
2808 
2809 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2810 
2811 		error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2812 
2813 		if (error != 0) {
2814 			*count = ksize;
2815 			if (mp != NULL)
2816 				freeb(mp);
2817 			return (error);
2818 		}
2819 		ksize += iosize;
2820 		size -= iosize;
2821 		if (size == 0)
2822 			goto done;
2823 
2824 		fileoff += iosize;
2825 		(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2826 		va.va_mask = AT_SIZE;
2827 		error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2828 		if (error)
2829 			break;
2830 		/* Read as much as possible. */
2831 		if (fileoff >= va.va_size)
2832 			size = 0;
2833 		else if (size + fileoff > va.va_size)
2834 			size = va.va_size - fileoff;
2835 	}
2836 	VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2837 done:
2838 	*count = ksize;
2839 	return (error);
2840 }
2841 
2842 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2843 /*
2844  * Largefile support for 32 bit applications only.
2845  */
2846 int
2847 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2848     ssize32_t *count32)
2849 {
2850 	ssize32_t sfv_len;
2851 	u_offset_t sfv_off, va_size;
2852 	struct vnode *vp, *fvp, *realvp;
2853 	struct vattr va;
2854 	stdata_t *stp;
2855 	ssize_t count = 0;
2856 	int error = 0;
2857 	boolean_t dozcopy = B_FALSE;
2858 	uint_t maxpsz;
2859 
2860 	sfv_len = (ssize32_t)sfv->sfv_len;
2861 	if (sfv_len < 0) {
2862 		error = EINVAL;
2863 		goto out;
2864 	}
2865 
2866 	if (sfv_len == 0) goto out;
2867 
2868 	sfv_off = (u_offset_t)sfv->sfv_off;
2869 
2870 	/* Same checks as in pread */
2871 	if (sfv_off > MAXOFFSET_T) {
2872 		error = EINVAL;
2873 		goto out;
2874 	}
2875 	if (sfv_off + sfv_len > MAXOFFSET_T)
2876 		sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2877 
2878 	/*
2879 	 * There are no more checks on sfv_len. So, we cast it to
2880 	 * u_offset_t and share the snf_direct_io/snf_cache code between
2881 	 * 32 bit and 64 bit.
2882 	 *
2883 	 * TODO: should do nbl_need_check() like read()?
2884 	 */
2885 	if (sfv_len > sendfile_max_size) {
2886 		sf_stats.ss_file_not_cached++;
2887 		error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2888 		    &count);
2889 		goto out;
2890 	}
2891 	fvp = rfp->f_vnode;
2892 	if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2893 		fvp = realvp;
2894 	/*
2895 	 * Grab the lock as a reader to prevent the file size
2896 	 * from changing underneath.
2897 	 */
2898 	(void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2899 	va.va_mask = AT_SIZE;
2900 	error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2901 	va_size = va.va_size;
2902 	if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2903 		VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2904 		goto out;
2905 	}
2906 	/* Read as much as possible. */
2907 	if (sfv_off + sfv_len > va_size)
2908 		sfv_len = va_size - sfv_off;
2909 
2910 	vp = fp->f_vnode;
2911 	stp = vp->v_stream;
2912 	/*
2913 	 * When the NOWAIT flag is not set, we enable zero-copy only if the
2914 	 * transfer size is large enough. This prevents performance loss
2915 	 * when the caller sends the file piece by piece.
2916 	 */
2917 	if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2918 	    (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2919 	    !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2920 		uint_t copyflag;
2921 		copyflag = stp != NULL ? stp->sd_copyflag :
2922 		    VTOSO(vp)->so_proto_props.sopp_zcopyflag;
2923 		if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2924 			int on = 1;
2925 
2926 			if (socket_setsockopt(VTOSO(vp), SOL_SOCKET,
2927 			    SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0)
2928 				dozcopy = B_TRUE;
2929 		} else {
2930 			dozcopy = copyflag & STZCVMSAFE;
2931 		}
2932 	}
2933 	if (dozcopy) {
2934 		sf_stats.ss_file_segmap++;
2935 		error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2936 		    &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2937 	} else {
2938 		if (vp->v_type == VSOCK && stp == NULL) {
2939 			sonode_t *so = VTOSO(vp);
2940 			maxpsz = so->so_proto_props.sopp_maxpsz;
2941 		} else if (stp != NULL) {
2942 			maxpsz = stp->sd_qn_maxpsz;
2943 		} else {
2944 			maxpsz = maxphys;
2945 		}
2946 
2947 		if (maxpsz == INFPSZ)
2948 			maxpsz = maxphys;
2949 		else
2950 			maxpsz = roundup(maxpsz, MAXBSIZE);
2951 		sf_stats.ss_file_cached++;
2952 		error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2953 		    maxpsz, &count);
2954 	}
2955 out:
2956 	releasef(sfv->sfv_fd);
2957 	*count32 = (ssize32_t)count;
2958 	return (error);
2959 }
2960 #endif
2961 
2962 #ifdef _SYSCALL32_IMPL
2963 /*
2964  * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
2965  * ssize_t rather than ssize32_t; see the comments above read32 for details.
2966  */
2967 
2968 ssize_t
2969 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2970 {
2971 	return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2972 }
2973 
2974 ssize_t
2975 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2976 	caddr32_t name, caddr32_t namelenp)
2977 {
2978 	return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2979 	    (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
2980 }
2981 
2982 ssize_t
2983 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2984 {
2985 	return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2986 }
2987 
2988 ssize_t
2989 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2990 	caddr32_t name, socklen_t namelen)
2991 {
2992 	return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2993 	    (void *)(uintptr_t)name, namelen));
2994 }
2995 #endif	/* _SYSCALL32_IMPL */
2996 
2997 /*
2998  * Function wrappers (mostly around the sonode switch) for
2999  * backward compatibility.
3000  */
3001 
3002 int
3003 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
3004 {
3005 	return (socket_accept(so, fflag, CRED(), nsop));
3006 }
3007 
3008 int
3009 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3010     int backlog, int flags)
3011 {
3012 	int	error;
3013 
3014 	error = socket_bind(so, name, namelen, flags, CRED());
3015 	if (error == 0 && backlog != 0)
3016 		return (socket_listen(so, backlog, CRED()));
3017 
3018 	return (error);
3019 }
3020 
3021 int
3022 solisten(struct sonode *so, int backlog)
3023 {
3024 	return (socket_listen(so, backlog, CRED()));
3025 }
3026 
3027 int
3028 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen,
3029     int fflag, int flags)
3030 {
3031 	return (socket_connect(so, name, namelen, fflag, flags, CRED()));
3032 }
3033 
3034 int
3035 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3036 {
3037 	return (socket_recvmsg(so, msg, uiop, CRED()));
3038 }
3039 
3040 int
3041 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
3042 {
3043 	return (socket_sendmsg(so, msg, uiop, CRED()));
3044 }
3045 
3046 int
3047 soshutdown(struct sonode *so, int how)
3048 {
3049 	return (socket_shutdown(so, how, CRED()));
3050 }
3051 
3052 int
3053 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
3054     socklen_t *optlenp, int flags)
3055 {
3056 	return (socket_getsockopt(so, level, option_name, optval, optlenp,
3057 	    flags, CRED()));
3058 }
3059 
3060 int
3061 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
3062     t_uscalar_t optlen)
3063 {
3064 	return (socket_setsockopt(so, level, option_name, optval, optlen,
3065 	    CRED()));
3066 }
3067 
3068 /*
3069  * Because this is backward compatibility interface it only needs to be
3070  * able to handle the creation of TPI sockfs sockets.
3071  */
3072 struct sonode *
3073 socreate(struct sockparams *sp, int family, int type, int protocol, int version,
3074     int *errorp)
3075 {
3076 	struct sonode *so;
3077 
3078 	ASSERT(sp != NULL);
3079 
3080 	so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol,
3081 	    version, SOCKET_SLEEP, errorp, CRED());
3082 	if (so == NULL) {
3083 		SOCKPARAMS_DEC_REF(sp);
3084 	} else {
3085 		if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) {
3086 			/* Cannot fail, only bumps so_count */
3087 			(void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL);
3088 		} else {
3089 			socket_destroy(so);
3090 			so = NULL;
3091 		}
3092 	}
3093 	return (so);
3094 }
3095