xref: /illumos-gate/usr/src/uts/common/fs/sockfs/socksubr.c (revision 150d2c5288c645a1c1a7d2bee61199a3729406c7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/t_lock.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/cred.h>
36 #include <sys/kmem.h>
37 #include <sys/sysmacros.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/debug.h>
41 #include <sys/errno.h>
42 #include <sys/time.h>
43 #include <sys/file.h>
44 #include <sys/open.h>
45 #include <sys/user.h>
46 #include <sys/termios.h>
47 #include <sys/stream.h>
48 #include <sys/strsubr.h>
49 #include <sys/strsun.h>
50 #include <sys/esunddi.h>
51 #include <sys/flock.h>
52 #include <sys/modctl.h>
53 #include <sys/cmn_err.h>
54 #include <sys/mkdev.h>
55 #include <sys/pathname.h>
56 #include <sys/ddi.h>
57 #include <sys/stat.h>
58 #include <sys/fs/snode.h>
59 #include <sys/fs/dv_node.h>
60 #include <sys/zone.h>
61 
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <netinet/in.h>
65 #include <sys/un.h>
66 
67 #include <sys/ucred.h>
68 
69 #include <sys/tiuser.h>
70 #define	_SUN_TPI_VERSION	2
71 #include <sys/tihdr.h>
72 
73 #include <c2/audit.h>
74 
75 #include <fs/sockfs/nl7c.h>
76 
77 /*
78  * Macros that operate on struct cmsghdr.
79  * The CMSG_VALID macro does not assume that the last option buffer is padded.
80  */
81 #define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
82 #define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
83 #define	CMSG_VALID(cmsg, start, end)					\
84 	(ISALIGNED_cmsghdr(cmsg) &&					\
85 	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
86 	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
87 	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
88 	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
89 #define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
90 
91 static struct kmem_cache *socktpi_cache, *socktpi_unix_cache;
92 
93 dev_t sockdev;	/* For fsid in getattr */
94 
95 struct sockparams *sphead;
96 krwlock_t splist_lock;
97 
98 struct socklist socklist;
99 
100 static int sockfs_update(kstat_t *, int);
101 static int sockfs_snapshot(kstat_t *, void *, int);
102 
103 extern void sendfile_init();
104 
105 extern void nl7c_init(void);
106 
107 #define	ADRSTRLEN (2 * sizeof (void *) + 1)
108 /*
109  * kernel structure for passing the sockinfo data back up to the user.
110  * the strings array allows us to convert AF_UNIX addresses into strings
111  * with a common method regardless of which n-bit kernel we're running.
112  */
113 struct k_sockinfo {
114 	struct sockinfo	ks_si;
115 	char		ks_straddr[3][ADRSTRLEN];
116 };
117 
118 /*
119  * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
120  * Returns with the vnode held.
121  */
122 static int
123 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
124 {
125 	struct snode *csp;
126 	vnode_t *vp, *dvp;
127 	major_t maj;
128 	int error;
129 
130 	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
131 	/*
132 	 * Lookup the underlying filesystem vnode.
133 	 */
134 	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
135 	if (error)
136 		return (error);
137 
138 	/* Check that it is the correct vnode */
139 	if (vp->v_type != VCHR) {
140 		VN_RELE(vp);
141 		return (ENOTSOCK);
142 	}
143 
144 	/*
145 	 * If devpath went through devfs, the device should already
146 	 * be configured. If devpath is a mknod file, however, we
147 	 * need to make sure the device is properly configured.
148 	 * To do this, we do something similar to spec_open()
149 	 * except that we resolve to the minor/leaf level since
150 	 * we need to return a vnode.
151 	 */
152 	csp = VTOS(VTOS(vp)->s_commonvp);
153 	if (!(csp->s_flag & SDIPSET)) {
154 		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
155 		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
156 		if (error == 0)
157 			error = devfs_lookupname(pathname, NULLVPP, &dvp);
158 		VN_RELE(vp);
159 		kmem_free(pathname, MAXPATHLEN);
160 		if (error != 0)
161 			return (ENXIO);
162 		vp = dvp;	/* use the devfs vp */
163 	}
164 
165 	/* device is configured at this point */
166 	maj = getmajor(vp->v_rdev);
167 	if (!STREAMSTAB(maj)) {
168 		VN_RELE(vp);
169 		return (ENOSTR);
170 	}
171 
172 	*vpp = vp;
173 	return (0);
174 }
175 
176 /*
177  * Add or delete (latter if devpath is NULL) an enter to the sockparams
178  * table. If devpathlen is zero the devpath with not be kmem_freed. Otherwise
179  * this routine assumes that the caller has kmem_alloced devpath/devpathlen
180  * for this routine to consume.
181  * The zero devpathlen could be used if the kernel wants to create entries
182  * itself by calling sockconfig(1,2,3, "/dev/tcp", 0);
183  */
184 int
185 soconfig(int domain, int type, int protocol,
186     char *devpath, int devpathlen)
187 {
188 	struct sockparams **spp;
189 	struct sockparams *sp;
190 	int error = 0;
191 
192 	dprint(0, ("soconfig(%d,%d,%d,%s,%d)\n",
193 		domain, type, protocol, devpath, devpathlen));
194 
195 	/*
196 	 * Look for an existing match.
197 	 */
198 	rw_enter(&splist_lock, RW_WRITER);
199 	for (spp = &sphead; (sp = *spp) != NULL; spp = &sp->sp_next) {
200 		if (sp->sp_domain == domain &&
201 		    sp->sp_type == type &&
202 		    sp->sp_protocol == protocol) {
203 			break;
204 		}
205 	}
206 	if (devpath == NULL) {
207 		ASSERT(devpathlen == 0);
208 
209 		/* Delete existing entry */
210 		if (sp == NULL) {
211 			error = ENXIO;
212 			goto done;
213 		}
214 		/* Unlink and free existing entry */
215 		*spp = sp->sp_next;
216 		ASSERT(sp->sp_vnode);
217 		VN_RELE(sp->sp_vnode);
218 		if (sp->sp_devpathlen != 0)
219 			kmem_free(sp->sp_devpath, sp->sp_devpathlen);
220 		kmem_free(sp, sizeof (*sp));
221 	} else {
222 		vnode_t *vp;
223 
224 		/* Add new entry */
225 		if (sp != NULL) {
226 			error = EEXIST;
227 			goto done;
228 		}
229 
230 		error = sogetvp(devpath, &vp, UIO_SYSSPACE);
231 		if (error) {
232 			dprint(0, ("soconfig: vp %s failed with %d\n",
233 				devpath, error));
234 			goto done;
235 		}
236 
237 		dprint(0, ("soconfig: %s => vp %p, dev 0x%lx\n",
238 		    devpath, vp, vp->v_rdev));
239 
240 		sp = kmem_alloc(sizeof (*sp), KM_SLEEP);
241 		sp->sp_domain = domain;
242 		sp->sp_type = type;
243 		sp->sp_protocol = protocol;
244 		sp->sp_devpath = devpath;
245 		sp->sp_devpathlen = devpathlen;
246 		sp->sp_vnode = vp;
247 		sp->sp_next = NULL;
248 		*spp = sp;
249 	}
250 done:
251 	rw_exit(&splist_lock);
252 	if (error) {
253 		if (devpath != NULL)
254 			kmem_free(devpath, devpathlen);
255 #ifdef SOCK_DEBUG
256 		eprintline(error);
257 #endif /* SOCK_DEBUG */
258 	}
259 	return (error);
260 }
261 
262 /*
263  * Lookup an entry in the sockparams list based on the triple.
264  * If no entry is found and devpath is not NULL translate devpath to a
265  * vnode. Note that devpath is a pointer to a user address!
266  * Returns with the vnode held.
267  *
268  * When this routine uses devpath it does not create an entry in the sockparams
269  * list since this routine can run on behalf of any user and one user
270  * should not be able to effect the transport used by another user.
271  *
272  * In order to return the correct error this routine has to do wildcard scans
273  * of the list. The errors are (in decreasing precedence):
274  *	EAFNOSUPPORT - address family not in list
275  *	EPROTONOSUPPORT - address family supported but not protocol.
276  *	EPROTOTYPE - address family and protocol supported but not socket type.
277  */
278 vnode_t *
279 solookup(int domain, int type, int protocol, char *devpath, int *errorp)
280 {
281 	struct sockparams *sp;
282 	int error;
283 	vnode_t *vp;
284 
285 	rw_enter(&splist_lock, RW_READER);
286 	for (sp = sphead; sp != NULL; sp = sp->sp_next) {
287 		if (sp->sp_domain == domain &&
288 		    sp->sp_type == type &&
289 		    sp->sp_protocol == protocol) {
290 			break;
291 		}
292 	}
293 	if (sp == NULL) {
294 		dprint(0, ("solookup(%d,%d,%d) not found\n",
295 			domain, type, protocol));
296 		if (devpath == NULL) {
297 			/* Determine correct error code */
298 			int found = 0;
299 
300 			for (sp = sphead; sp != NULL; sp = sp->sp_next) {
301 				if (sp->sp_domain == domain && found < 1)
302 					found = 1;
303 				if (sp->sp_domain == domain &&
304 				    sp->sp_protocol == protocol && found < 2)
305 					found = 2;
306 			}
307 			rw_exit(&splist_lock);
308 			switch (found) {
309 			case 0:
310 				*errorp = EAFNOSUPPORT;
311 				break;
312 			case 1:
313 				*errorp = EPROTONOSUPPORT;
314 				break;
315 			case 2:
316 				*errorp = EPROTOTYPE;
317 				break;
318 			}
319 			return (NULL);
320 		}
321 		rw_exit(&splist_lock);
322 
323 		/*
324 		 * Return vp based on devpath.
325 		 * Do not enter into table to avoid random users
326 		 * modifying the sockparams list.
327 		 */
328 		error = sogetvp(devpath, &vp, UIO_USERSPACE);
329 		if (error) {
330 			dprint(0, ("solookup: vp %p failed with %d\n",
331 				devpath, error));
332 			*errorp = EPROTONOSUPPORT;
333 			return (NULL);
334 		}
335 		dprint(0, ("solookup: %p => vp %p, dev 0x%lx\n",
336 		    devpath, vp, vp->v_rdev));
337 
338 		return (vp);
339 	}
340 	dprint(0, ("solookup(%d,%d,%d) vp %p devpath %s\n",
341 		domain, type, protocol, sp->sp_vnode, sp->sp_devpath));
342 
343 	vp = sp->sp_vnode;
344 	VN_HOLD(vp);
345 	rw_exit(&splist_lock);
346 	return (vp);
347 }
348 
349 /*
350  * Return a socket vnode.
351  *
352  * Assumes that the caller is "passing" an VN_HOLD for accessvp i.e.
353  * when the socket is freed a VN_RELE will take place.
354  *
355  * Note that sockets assume that the driver will clone (either itself
356  * or by using the clone driver) i.e. a socket() call will always
357  * result in a new vnode being created.
358  */
359 struct vnode *
360 makesockvp(struct vnode *accessvp, int domain, int type, int protocol)
361 {
362 	kmem_cache_t *cp;
363 	struct sonode *so;
364 	struct vnode *vp;
365 	time_t now;
366 	dev_t dev;
367 
368 	cp = (domain == AF_UNIX) ? socktpi_unix_cache : socktpi_cache;
369 	so = kmem_cache_alloc(cp, KM_SLEEP);
370 	so->so_cache = cp;
371 	so->so_obj = so;
372 	vp = SOTOV(so);
373 	now = gethrestime_sec();
374 
375 	so->so_flag	= 0;
376 	ASSERT(so->so_accessvp == NULL);
377 	so->so_accessvp	= accessvp;
378 	dev = accessvp->v_rdev;
379 
380 	/*
381 	 * Record in so_flag that it is a clone.
382 	 */
383 	if (getmajor(dev) == clone_major) {
384 		so->so_flag |= SOCLONE;
385 	}
386 	so->so_dev = dev;
387 
388 	so->so_state	= 0;
389 	so->so_mode	= 0;
390 
391 	so->so_fsid	= sockdev;
392 	so->so_atime	= now;
393 	so->so_mtime	= now;
394 	so->so_ctime	= now;		/* Never modified */
395 	so->so_count	= 0;
396 
397 	so->so_family	= (short)domain;
398 	so->so_type	= (short)type;
399 	so->so_protocol	= (short)protocol;
400 	so->so_pushcnt	= 0;
401 
402 	so->so_options	= 0;
403 	so->so_linger.l_onoff	= 0;
404 	so->so_linger.l_linger = 0;
405 	so->so_sndbuf	= 0;
406 	so->so_rcvbuf	= 0;
407 	so->so_sndlowat	= 0;
408 	so->so_rcvlowat	= 0;
409 #ifdef notyet
410 	so->so_sndtimeo	= 0;
411 	so->so_rcvtimeo	= 0;
412 #endif /* notyet */
413 	so->so_error	= 0;
414 	so->so_delayed_error = 0;
415 
416 	ASSERT(so->so_oobmsg == NULL);
417 	so->so_oobcnt	= 0;
418 	so->so_oobsigcnt = 0;
419 	so->so_pgrp	= 0;
420 	so->so_provinfo = NULL;
421 
422 	ASSERT(so->so_laddr_sa == NULL && so->so_faddr_sa == NULL);
423 	so->so_laddr_len = so->so_faddr_len = 0;
424 	so->so_laddr_maxlen = so->so_faddr_maxlen = 0;
425 	so->so_eaddr_mp = NULL;
426 	so->so_priv = NULL;
427 
428 	so->so_peercred = NULL;
429 
430 	ASSERT(so->so_ack_mp == NULL);
431 	ASSERT(so->so_conn_ind_head == NULL);
432 	ASSERT(so->so_conn_ind_tail == NULL);
433 	ASSERT(so->so_ux_bound_vp == NULL);
434 	ASSERT(so->so_unbind_mp == NULL);
435 
436 	vn_reinit(vp);
437 	vp->v_vfsp	= rootvfs;
438 	vp->v_type	= VSOCK;
439 	vp->v_rdev	= so->so_dev;
440 	vn_exists(vp);
441 
442 	return (vp);
443 }
444 
445 void
446 sockfree(struct sonode *so)
447 {
448 	mblk_t *mp;
449 	vnode_t *vp;
450 
451 	ASSERT(so->so_count == 0);
452 	ASSERT(so->so_accessvp);
453 	ASSERT(so->so_discon_ind_mp == NULL);
454 
455 	vp = so->so_accessvp;
456 	VN_RELE(vp);
457 
458 	/*
459 	 * Protect so->so_[lf]addr_sa so that sockfs_snapshot() can safely
460 	 * indirect them.  It also uses so_accessvp as a validity test.
461 	 */
462 	mutex_enter(&so->so_lock);
463 
464 	so->so_accessvp = NULL;
465 
466 	if (so->so_laddr_sa) {
467 		ASSERT((caddr_t)so->so_faddr_sa ==
468 		    (caddr_t)so->so_laddr_sa + so->so_laddr_maxlen);
469 		ASSERT(so->so_faddr_maxlen == so->so_laddr_maxlen);
470 		so->so_state &= ~(SS_LADDR_VALID | SS_FADDR_VALID);
471 		kmem_free(so->so_laddr_sa, so->so_laddr_maxlen * 2);
472 		so->so_laddr_sa = NULL;
473 		so->so_laddr_len = so->so_laddr_maxlen = 0;
474 		so->so_faddr_sa = NULL;
475 		so->so_faddr_len = so->so_faddr_maxlen = 0;
476 	}
477 
478 	mutex_exit(&so->so_lock);
479 
480 	if ((mp = so->so_eaddr_mp) != NULL) {
481 		freemsg(mp);
482 		so->so_eaddr_mp = NULL;
483 		so->so_delayed_error = 0;
484 	}
485 	if ((mp = so->so_ack_mp) != NULL) {
486 		freemsg(mp);
487 		so->so_ack_mp = NULL;
488 	}
489 	if ((mp = so->so_conn_ind_head) != NULL) {
490 		mblk_t *mp1;
491 
492 		while (mp) {
493 			mp1 = mp->b_next;
494 			mp->b_next = NULL;
495 			freemsg(mp);
496 			mp = mp1;
497 		}
498 		so->so_conn_ind_head = so->so_conn_ind_tail = NULL;
499 		so->so_state &= ~SS_HASCONNIND;
500 	}
501 #ifdef DEBUG
502 	mutex_enter(&so->so_lock);
503 	ASSERT(so_verify_oobstate(so));
504 	mutex_exit(&so->so_lock);
505 #endif /* DEBUG */
506 	if ((mp = so->so_oobmsg) != NULL) {
507 		freemsg(mp);
508 		so->so_oobmsg = NULL;
509 		so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA);
510 	}
511 
512 	if ((mp = so->so_nl7c_rcv_mp) != NULL) {
513 		so->so_nl7c_rcv_mp = NULL;
514 		freemsg(mp);
515 	}
516 	so->so_nl7c_rcv_rval = 0;
517 	if (so->so_nl7c_uri != NULL) {
518 		nl7c_urifree(so);
519 		/* urifree() cleared nl7c_uri */
520 	}
521 	if (so->so_nl7c_flags) {
522 		so->so_nl7c_flags = 0;
523 	}
524 
525 	ASSERT(so->so_ux_bound_vp == NULL);
526 	if ((mp = so->so_unbind_mp) != NULL) {
527 		freemsg(mp);
528 		so->so_unbind_mp = NULL;
529 	}
530 	vn_invalid(SOTOV(so));
531 
532 	if (so->so_peercred != NULL)
533 		crfree(so->so_peercred);
534 
535 	kmem_cache_free(so->so_cache, so->so_obj);
536 }
537 
538 /*
539  * Update the accessed, updated, or changed times in an sonode
540  * with the current time.
541  *
542  * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
543  * attributes in a fstat call. (They return the current time and 0 for
544  * all timestamps, respectively.) We maintain the current timestamps
545  * here primarily so that should sockmod be popped the resulting
546  * file descriptor will behave like a stream w.r.t. the timestamps.
547  */
548 void
549 so_update_attrs(struct sonode *so, int flag)
550 {
551 	time_t now = gethrestime_sec();
552 
553 	mutex_enter(&so->so_lock);
554 	so->so_flag |= flag;
555 	if (flag & SOACC)
556 		so->so_atime = now;
557 	if (flag & SOMOD)
558 		so->so_mtime = now;
559 	mutex_exit(&so->so_lock);
560 }
561 
562 /*ARGSUSED*/
563 static int
564 socktpi_constructor(void *buf, void *cdrarg, int kmflags)
565 {
566 	struct sonode *so = buf;
567 	struct vnode *vp;
568 
569 	so->so_nl7c_flags	= 0;
570 	so->so_nl7c_uri		= NULL;
571 	so->so_nl7c_rcv_mp	= NULL;
572 
573 	so->so_oobmsg		= NULL;
574 	so->so_ack_mp		= NULL;
575 	so->so_conn_ind_head	= NULL;
576 	so->so_conn_ind_tail	= NULL;
577 	so->so_discon_ind_mp	= NULL;
578 	so->so_ux_bound_vp	= NULL;
579 	so->so_unbind_mp	= NULL;
580 	so->so_accessvp		= NULL;
581 	so->so_laddr_sa		= NULL;
582 	so->so_faddr_sa		= NULL;
583 	so->so_ops		= &sotpi_sonodeops;
584 
585 	vp = vn_alloc(KM_SLEEP);
586 	so->so_vnode = vp;
587 
588 	vn_setops(vp, socktpi_vnodeops);
589 	vp->v_data = (caddr_t)so;
590 
591 	mutex_init(&so->so_lock, NULL, MUTEX_DEFAULT, NULL);
592 	mutex_init(&so->so_plumb_lock, NULL, MUTEX_DEFAULT, NULL);
593 	cv_init(&so->so_state_cv, NULL, CV_DEFAULT, NULL);
594 	cv_init(&so->so_ack_cv, NULL, CV_DEFAULT, NULL);
595 	cv_init(&so->so_connind_cv, NULL, CV_DEFAULT, NULL);
596 	cv_init(&so->so_want_cv, NULL, CV_DEFAULT, NULL);
597 
598 	return (0);
599 }
600 
601 /*ARGSUSED1*/
602 static void
603 socktpi_destructor(void *buf, void *cdrarg)
604 {
605 	struct sonode *so = buf;
606 	struct vnode *vp = SOTOV(so);
607 
608 	ASSERT(so->so_nl7c_flags == 0);
609 	ASSERT(so->so_nl7c_uri == NULL);
610 	ASSERT(so->so_nl7c_rcv_mp == NULL);
611 
612 	ASSERT(so->so_oobmsg == NULL);
613 	ASSERT(so->so_ack_mp == NULL);
614 	ASSERT(so->so_conn_ind_head == NULL);
615 	ASSERT(so->so_conn_ind_tail == NULL);
616 	ASSERT(so->so_discon_ind_mp == NULL);
617 	ASSERT(so->so_ux_bound_vp == NULL);
618 	ASSERT(so->so_unbind_mp == NULL);
619 	ASSERT(so->so_ops == &sotpi_sonodeops);
620 
621 	ASSERT(vn_matchops(vp, socktpi_vnodeops));
622 	ASSERT(vp->v_data == (caddr_t)so);
623 
624 	vn_free(vp);
625 
626 	mutex_destroy(&so->so_lock);
627 	mutex_destroy(&so->so_plumb_lock);
628 	cv_destroy(&so->so_state_cv);
629 	cv_destroy(&so->so_ack_cv);
630 	cv_destroy(&so->so_connind_cv);
631 	cv_destroy(&so->so_want_cv);
632 }
633 
634 static int
635 socktpi_unix_constructor(void *buf, void *cdrarg, int kmflags)
636 {
637 	int retval;
638 
639 	if ((retval = socktpi_constructor(buf, cdrarg, kmflags)) == 0) {
640 		struct sonode *so = (struct sonode *)buf;
641 
642 		mutex_enter(&socklist.sl_lock);
643 
644 		so->so_next = socklist.sl_list;
645 		so->so_prev = NULL;
646 		if (so->so_next != NULL)
647 			so->so_next->so_prev = so;
648 		socklist.sl_list = so;
649 
650 		mutex_exit(&socklist.sl_lock);
651 
652 	}
653 	return (retval);
654 }
655 
656 static void
657 socktpi_unix_destructor(void *buf, void *cdrarg)
658 {
659 	struct sonode	*so	= (struct sonode *)buf;
660 
661 	mutex_enter(&socklist.sl_lock);
662 
663 	if (so->so_next != NULL)
664 		so->so_next->so_prev = so->so_prev;
665 	if (so->so_prev != NULL)
666 		so->so_prev->so_next = so->so_next;
667 	else
668 		socklist.sl_list = so->so_next;
669 
670 	mutex_exit(&socklist.sl_lock);
671 
672 	socktpi_destructor(buf, cdrarg);
673 }
674 
675 /*
676  * Init function called when sockfs is loaded.
677  */
678 int
679 sockinit(int fstype, char *name)
680 {
681 	static const fs_operation_def_t sock_vfsops_template[] = {
682 		NULL, NULL
683 	};
684 	int error;
685 	major_t dev;
686 	char *err_str;
687 
688 	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
689 	if (error != 0) {
690 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
691 		    "sockinit: bad vfs ops template");
692 		return (error);
693 	}
694 
695 	error = vn_make_ops(name, socktpi_vnodeops_template, &socktpi_vnodeops);
696 	if (error != 0) {
697 		err_str = "sockinit: bad sock vnode ops template";
698 		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
699 		socktpi_vnodeops = NULL;
700 		goto failure;
701 	}
702 
703 	error = sosctp_init();
704 	if (error != 0) {
705 		err_str = NULL;
706 		goto failure;
707 	}
708 
709 	error = sosdp_init();
710 	if (error != 0) {
711 		err_str = NULL;
712 		goto failure;
713 	}
714 
715 	/*
716 	 * Create sonode caches.  We create a special one for AF_UNIX so
717 	 * that we can track them for netstat(1m).
718 	 */
719 	socktpi_cache = kmem_cache_create("socktpi_cache",
720 	    sizeof (struct sonode), 0, socktpi_constructor,
721 	    socktpi_destructor, NULL, NULL, NULL, 0);
722 
723 	socktpi_unix_cache = kmem_cache_create("socktpi_unix_cache",
724 	    sizeof (struct sonode), 0, socktpi_unix_constructor,
725 	    socktpi_unix_destructor, NULL, NULL, NULL, 0);
726 
727 	/*
728 	 * Build initial list mapping socket parameters to vnode.
729 	 */
730 	rw_init(&splist_lock, NULL, RW_DEFAULT, NULL);
731 
732 	/*
733 	 * If sockets are needed before init runs /sbin/soconfig
734 	 * it is possible to preload the sockparams list here using
735 	 * calls like:
736 	 *	sockconfig(1,2,3, "/dev/tcp", 0);
737 	 */
738 
739 	/*
740 	 * Create a unique dev_t for use in so_fsid.
741 	 */
742 
743 	if ((dev = getudev()) == (major_t)-1)
744 		dev = 0;
745 	sockdev = makedevice(dev, 0);
746 
747 	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
748 	sendfile_init();
749 	nl7c_init();
750 
751 	return (0);
752 
753 failure:
754 	(void) vfs_freevfsops_by_type(fstype);
755 	if (socktpi_vnodeops != NULL)
756 		vn_freevnodeops(socktpi_vnodeops);
757 	if (err_str != NULL)
758 		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
759 	return (error);
760 }
761 
762 /*
763  * Caller must hold the mutex. Used to set SOLOCKED.
764  */
765 void
766 so_lock_single(struct sonode *so)
767 {
768 	ASSERT(MUTEX_HELD(&so->so_lock));
769 
770 	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
771 		so->so_flag |= SOWANT;
772 		cv_wait_stop(&so->so_want_cv, &so->so_lock,
773 			SO_LOCK_WAKEUP_TIME);
774 	}
775 	so->so_flag |= SOLOCKED;
776 }
777 
778 /*
779  * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
780  * Used to clear SOLOCKED or SOASYNC_UNBIND.
781  */
782 void
783 so_unlock_single(struct sonode *so, int flag)
784 {
785 	ASSERT(MUTEX_HELD(&so->so_lock));
786 	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
787 	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
788 	ASSERT(so->so_flag & flag);
789 
790 	/*
791 	 * Process the T_DISCON_IND on so_discon_ind_mp.
792 	 *
793 	 * Call to so_drain_discon_ind will result in so_lock
794 	 * being dropped and re-acquired later.
795 	 */
796 	if (so->so_discon_ind_mp != NULL)
797 		so_drain_discon_ind(so);
798 
799 	if (so->so_flag & SOWANT)
800 		cv_broadcast(&so->so_want_cv);
801 	so->so_flag &= ~(SOWANT|flag);
802 }
803 
804 /*
805  * Caller must hold the mutex. Used to set SOREADLOCKED.
806  * If the caller wants nonblocking behavior it should set fmode.
807  */
808 int
809 so_lock_read(struct sonode *so, int fmode)
810 {
811 	ASSERT(MUTEX_HELD(&so->so_lock));
812 
813 	while (so->so_flag & SOREADLOCKED) {
814 		if (fmode & (FNDELAY|FNONBLOCK))
815 			return (EWOULDBLOCK);
816 		so->so_flag |= SOWANT;
817 		cv_wait_stop(&so->so_want_cv, &so->so_lock,
818 			SO_LOCK_WAKEUP_TIME);
819 	}
820 	so->so_flag |= SOREADLOCKED;
821 	return (0);
822 }
823 
824 /*
825  * Like so_lock_read above but allows signals.
826  */
827 int
828 so_lock_read_intr(struct sonode *so, int fmode)
829 {
830 	ASSERT(MUTEX_HELD(&so->so_lock));
831 
832 	while (so->so_flag & SOREADLOCKED) {
833 		if (fmode & (FNDELAY|FNONBLOCK))
834 			return (EWOULDBLOCK);
835 		so->so_flag |= SOWANT;
836 		if (!cv_wait_sig(&so->so_want_cv, &so->so_lock))
837 			return (EINTR);
838 	}
839 	so->so_flag |= SOREADLOCKED;
840 	return (0);
841 }
842 
843 /*
844  * Caller must hold the mutex. Used to clear SOREADLOCKED,
845  * set in so_lock_read() or so_lock_read_intr().
846  */
847 void
848 so_unlock_read(struct sonode *so)
849 {
850 	ASSERT(MUTEX_HELD(&so->so_lock));
851 	ASSERT(so->so_flag & SOREADLOCKED);
852 
853 	if (so->so_flag & SOWANT)
854 		cv_broadcast(&so->so_want_cv);
855 	so->so_flag &= ~(SOWANT|SOREADLOCKED);
856 }
857 
858 /*
859  * Verify that the specified offset falls within the mblk and
860  * that the resulting pointer is aligned.
861  * Returns NULL if not.
862  */
863 void *
864 sogetoff(mblk_t *mp, t_uscalar_t offset,
865     t_uscalar_t length, uint_t align_size)
866 {
867 	uintptr_t ptr1, ptr2;
868 
869 	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
870 	ptr1 = (uintptr_t)mp->b_rptr + offset;
871 	ptr2 = (uintptr_t)ptr1 + length;
872 	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
873 		eprintline(0);
874 		return (NULL);
875 	}
876 	if ((ptr1 & (align_size - 1)) != 0) {
877 		eprintline(0);
878 		return (NULL);
879 	}
880 	return ((void *)ptr1);
881 }
882 
883 /*
884  * Return the AF_UNIX underlying filesystem vnode matching a given name.
885  * Makes sure the sending and the destination sonodes are compatible.
886  * The vnode is returned held.
887  *
888  * The underlying filesystem VSOCK vnode has a v_stream pointer that
889  * references the actual stream head (hence indirectly the actual sonode).
890  */
891 static int
892 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
893 		vnode_t **vpp)
894 {
895 	vnode_t		*vp;	/* Underlying filesystem vnode */
896 	vnode_t		*svp;	/* sockfs vnode */
897 	struct sonode	*so2;
898 	int		error;
899 
900 	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n",
901 		so, soun->sun_path));
902 
903 	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
904 	if (error) {
905 		eprintsoline(so, error);
906 		return (error);
907 	}
908 	if (vp->v_type != VSOCK) {
909 		error = ENOTSOCK;
910 		eprintsoline(so, error);
911 		goto done2;
912 	}
913 
914 	if (checkaccess) {
915 		/*
916 		 * Check that we have permissions to access the destination
917 		 * vnode. This check is not done in BSD but it is required
918 		 * by X/Open.
919 		 */
920 		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED())) {
921 			eprintsoline(so, error);
922 			goto done2;
923 		}
924 	}
925 
926 	/*
927 	 * Check if the remote socket has been closed.
928 	 *
929 	 * Synchronize with vn_rele_stream by holding v_lock while traversing
930 	 * v_stream->sd_vnode.
931 	 */
932 	mutex_enter(&vp->v_lock);
933 	if (vp->v_stream == NULL) {
934 		mutex_exit(&vp->v_lock);
935 		if (so->so_type == SOCK_DGRAM)
936 			error = EDESTADDRREQ;
937 		else
938 			error = ECONNREFUSED;
939 
940 		eprintsoline(so, error);
941 		goto done2;
942 	}
943 	ASSERT(vp->v_stream->sd_vnode);
944 	svp = vp->v_stream->sd_vnode;
945 	/*
946 	 * holding v_lock on underlying filesystem vnode and acquiring
947 	 * it on sockfs vnode. Assumes that no code ever attempts to
948 	 * acquire these locks in the reverse order.
949 	 */
950 	VN_HOLD(svp);
951 	mutex_exit(&vp->v_lock);
952 
953 	if (svp->v_type != VSOCK) {
954 		error = ENOTSOCK;
955 		eprintsoline(so, error);
956 		goto done;
957 	}
958 
959 	so2 = VTOSO(svp);
960 
961 	if (so->so_type != so2->so_type) {
962 		error = EPROTOTYPE;
963 		eprintsoline(so, error);
964 		goto done;
965 	}
966 
967 	VN_RELE(svp);
968 	*vpp = vp;
969 	return (0);
970 
971 done:
972 	VN_RELE(svp);
973 done2:
974 	VN_RELE(vp);
975 	return (error);
976 }
977 
978 /*
979  * Verify peer address for connect and sendto/sendmsg.
980  * Since sendto/sendmsg would not get synchronous errors from the transport
981  * provider we have to do these ugly checks in the socket layer to
982  * preserve compatibility with SunOS 4.X.
983  */
984 int
985 so_addr_verify(struct sonode *so, const struct sockaddr *name,
986     socklen_t namelen)
987 {
988 	int		family;
989 
990 	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n", so, name, namelen));
991 
992 	ASSERT(name != NULL);
993 
994 	family = so->so_family;
995 	switch (family) {
996 	case AF_INET:
997 		if (name->sa_family != family) {
998 			eprintsoline(so, EAFNOSUPPORT);
999 			return (EAFNOSUPPORT);
1000 		}
1001 		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
1002 			eprintsoline(so, EINVAL);
1003 			return (EINVAL);
1004 		}
1005 		break;
1006 	case AF_INET6: {
1007 #ifdef DEBUG
1008 		struct sockaddr_in6 *sin6;
1009 #endif /* DEBUG */
1010 
1011 		if (name->sa_family != family) {
1012 			eprintsoline(so, EAFNOSUPPORT);
1013 			return (EAFNOSUPPORT);
1014 		}
1015 		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
1016 			eprintsoline(so, EINVAL);
1017 			return (EINVAL);
1018 		}
1019 #ifdef DEBUG
1020 		/* Verify that apps don't forget to clear sin6_scope_id etc */
1021 		sin6 = (struct sockaddr_in6 *)name;
1022 		if (sin6->sin6_scope_id != 0 &&
1023 		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
1024 			zcmn_err(getzoneid(), CE_WARN,
1025 			    "connect/send* with uninitialized sin6_scope_id "
1026 			    "(%d) on socket. Pid = %d\n",
1027 			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
1028 		}
1029 #endif /* DEBUG */
1030 		break;
1031 	}
1032 	case AF_UNIX:
1033 		if (so->so_state & SS_FADDR_NOXLATE) {
1034 			return (0);
1035 		}
1036 		if (namelen < (socklen_t)sizeof (short)) {
1037 			eprintsoline(so, ENOENT);
1038 			return (ENOENT);
1039 		}
1040 		if (name->sa_family != family) {
1041 			eprintsoline(so, EAFNOSUPPORT);
1042 			return (EAFNOSUPPORT);
1043 		}
1044 		/* MAXPATHLEN + soun_family + nul termination */
1045 		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
1046 			eprintsoline(so, ENAMETOOLONG);
1047 			return (ENAMETOOLONG);
1048 		}
1049 
1050 		break;
1051 
1052 	default:
1053 		/*
1054 		 * Default is don't do any length or sa_family check
1055 		 * to allow non-sockaddr style addresses.
1056 		 */
1057 		break;
1058 	}
1059 
1060 	return (0);
1061 }
1062 
1063 
1064 /*
1065  * Translate an AF_UNIX sockaddr_un to the transport internal name.
1066  * Assumes caller has called so_addr_verify first.
1067  */
1068 /*ARGSUSED*/
1069 int
1070 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
1071     socklen_t namelen, int checkaccess,
1072     void **addrp, socklen_t *addrlenp)
1073 {
1074 	int			error;
1075 	struct sockaddr_un	*soun;
1076 	vnode_t			*vp;
1077 	void			*addr;
1078 	socklen_t		addrlen;
1079 
1080 	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
1081 			so, name, namelen, checkaccess));
1082 
1083 	ASSERT(name != NULL);
1084 	ASSERT(so->so_family == AF_UNIX);
1085 	ASSERT(!(so->so_state & SS_FADDR_NOXLATE));
1086 	ASSERT(namelen >= (socklen_t)sizeof (short));
1087 	ASSERT(name->sa_family == AF_UNIX);
1088 	soun = (struct sockaddr_un *)name;
1089 	/*
1090 	 * Lookup vnode for the specified path name and verify that
1091 	 * it is a socket.
1092 	 */
1093 	error = so_ux_lookup(so, soun, checkaccess, &vp);
1094 	if (error) {
1095 		eprintsoline(so, error);
1096 		return (error);
1097 	}
1098 	/*
1099 	 * Use the address of the peer vnode as the address to send
1100 	 * to. We release the peer vnode here. In case it has been
1101 	 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the
1102 	 * transport the message will get an error or be dropped.
1103 	 */
1104 	so->so_ux_faddr.soua_vp = vp;
1105 	so->so_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT;
1106 	addr = &so->so_ux_faddr;
1107 	addrlen = (socklen_t)sizeof (so->so_ux_faddr);
1108 	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
1109 				addrlen, vp));
1110 	VN_RELE(vp);
1111 	*addrp = addr;
1112 	*addrlenp = (socklen_t)addrlen;
1113 	return (0);
1114 }
1115 
1116 /*
1117  * Esballoc free function for messages that contain SO_FILEP option.
1118  * Decrement the reference count on the file pointers using closef.
1119  */
1120 void
1121 fdbuf_free(struct fdbuf *fdbuf)
1122 {
1123 	int	i;
1124 	struct file *fp;
1125 
1126 	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
1127 	for (i = 0; i < fdbuf->fd_numfd; i++) {
1128 		/*
1129 		 * We need pointer size alignment for fd_fds. On a LP64
1130 		 * kernel, the required alignment is 8 bytes while
1131 		 * the option headers and values are only 4 bytes
1132 		 * aligned. So its safer to do a bcopy compared to
1133 		 * assigning fdbuf->fd_fds[i] to fp.
1134 		 */
1135 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
1136 		dprint(1, ("fdbuf_free: [%d] = %p\n", i, fp));
1137 		(void) closef(fp);
1138 	}
1139 	if (fdbuf->fd_ebuf != NULL)
1140 		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
1141 	kmem_free(fdbuf, fdbuf->fd_size);
1142 }
1143 
1144 /*
1145  * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
1146  * Waits if memory is not available.
1147  */
1148 mblk_t *
1149 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
1150 {
1151 	uchar_t	*buf;
1152 	mblk_t	*mp;
1153 
1154 	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
1155 	buf = kmem_alloc(size, KM_SLEEP);
1156 	fdbuf->fd_ebuf = (caddr_t)buf;
1157 	fdbuf->fd_ebuflen = size;
1158 	fdbuf->fd_frtn.free_func = fdbuf_free;
1159 	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
1160 
1161 	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
1162 	mp->b_datap->db_type = M_PROTO;
1163 	return (mp);
1164 }
1165 
1166 /*
1167  * Extract file descriptors from a fdbuf.
1168  * Return list in rights/rightslen.
1169  */
1170 /*ARGSUSED*/
1171 static int
1172 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
1173 {
1174 	int	i, fd;
1175 	int	*rp;
1176 	struct file *fp;
1177 	int	numfd;
1178 
1179 	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
1180 		fdbuf->fd_numfd, rightslen));
1181 
1182 	numfd = fdbuf->fd_numfd;
1183 	ASSERT(rightslen == numfd * (int)sizeof (int));
1184 
1185 	/*
1186 	 * Allocate a file descriptor and increment the f_count.
1187 	 * The latter is needed since we always call fdbuf_free
1188 	 * which performs a closef.
1189 	 */
1190 	rp = (int *)rights;
1191 	for (i = 0; i < numfd; i++) {
1192 		if ((fd = ufalloc(0)) == -1)
1193 			goto cleanup;
1194 		/*
1195 		 * We need pointer size alignment for fd_fds. On a LP64
1196 		 * kernel, the required alignment is 8 bytes while
1197 		 * the option headers and values are only 4 bytes
1198 		 * aligned. So its safer to do a bcopy compared to
1199 		 * assigning fdbuf->fd_fds[i] to fp.
1200 		 */
1201 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
1202 		mutex_enter(&fp->f_tlock);
1203 		fp->f_count++;
1204 		mutex_exit(&fp->f_tlock);
1205 		setf(fd, fp);
1206 		*rp++ = fd;
1207 #ifdef C2_AUDIT
1208 		if (audit_active)
1209 			audit_fdrecv(fd, fp);
1210 #endif
1211 		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
1212 			i, fd, fp, fp->f_count));
1213 	}
1214 	return (0);
1215 
1216 cleanup:
1217 	/*
1218 	 * Undo whatever partial work the loop above has done.
1219 	 */
1220 	{
1221 		int j;
1222 
1223 		rp = (int *)rights;
1224 		for (j = 0; j < i; j++) {
1225 			dprint(0,
1226 			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
1227 			(void) closeandsetf(*rp++, NULL);
1228 		}
1229 	}
1230 
1231 	return (EMFILE);
1232 }
1233 
1234 /*
1235  * Insert file descriptors into an fdbuf.
1236  * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
1237  * by calling fdbuf_free().
1238  */
1239 int
1240 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
1241 {
1242 	int		numfd, i;
1243 	int		*fds;
1244 	struct file	*fp;
1245 	struct fdbuf	*fdbuf;
1246 	int		fdbufsize;
1247 
1248 	dprint(1, ("fdbuf_create: len %d\n", rightslen));
1249 
1250 	numfd = rightslen / (int)sizeof (int);
1251 
1252 	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
1253 	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
1254 	fdbuf->fd_size = fdbufsize;
1255 	fdbuf->fd_numfd = 0;
1256 	fdbuf->fd_ebuf = NULL;
1257 	fdbuf->fd_ebuflen = 0;
1258 	fds = (int *)rights;
1259 	for (i = 0; i < numfd; i++) {
1260 		if ((fp = getf(fds[i])) == NULL) {
1261 			fdbuf_free(fdbuf);
1262 			return (EBADF);
1263 		}
1264 		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
1265 			i, fds[i], fp, fp->f_count));
1266 		mutex_enter(&fp->f_tlock);
1267 		fp->f_count++;
1268 		mutex_exit(&fp->f_tlock);
1269 		/*
1270 		 * The maximum alignment for fdbuf (or any option header
1271 		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
1272 		 * is not sufficient for pointers (fd_fds in this case). Since
1273 		 * we just did a kmem_alloc (we get a double word alignment),
1274 		 * we don't need to do anything on the send side (we loose
1275 		 * the double word alignment because fdbuf goes after an
1276 		 * option header (eg T_unitdata_req) which is only 4 byte
1277 		 * aligned). We take care of this when we extract the file
1278 		 * descriptor in fdbuf_extract or fdbuf_free.
1279 		 */
1280 		fdbuf->fd_fds[i] = fp;
1281 		fdbuf->fd_numfd++;
1282 		releasef(fds[i]);
1283 #ifdef C2_AUDIT
1284 		if (audit_active)
1285 			audit_fdsend(fds[i], fp, 0);
1286 #endif
1287 	}
1288 	*fdbufp = fdbuf;
1289 	return (0);
1290 }
1291 
1292 static int
1293 fdbuf_optlen(int rightslen)
1294 {
1295 	int numfd;
1296 
1297 	numfd = rightslen / (int)sizeof (int);
1298 
1299 	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
1300 }
1301 
1302 static t_uscalar_t
1303 fdbuf_cmsglen(int fdbuflen)
1304 {
1305 	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
1306 	    (int)sizeof (struct file *) * (int)sizeof (int));
1307 }
1308 
1309 
1310 /*
1311  * Return non-zero if the mblk and fdbuf are consistent.
1312  */
1313 static int
1314 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
1315 {
1316 	if (fdbuflen >= FDBUF_HDRSIZE &&
1317 	    fdbuflen == fdbuf->fd_size) {
1318 		frtn_t *frp = mp->b_datap->db_frtnp;
1319 		/*
1320 		 * Check that the SO_FILEP portion of the
1321 		 * message has not been modified by
1322 		 * the loopback transport. The sending sockfs generates
1323 		 * a message that is esballoc'ed with the free function
1324 		 * being fdbuf_free() and where free_arg contains the
1325 		 * identical information as the SO_FILEP content.
1326 		 *
1327 		 * If any of these constraints are not satisfied we
1328 		 * silently ignore the option.
1329 		 */
1330 		ASSERT(mp);
1331 		if (frp != NULL &&
1332 		    frp->free_func == fdbuf_free &&
1333 		    frp->free_arg != NULL &&
1334 		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
1335 			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
1336 				fdbuf, fdbuflen));
1337 			return (1);
1338 		} else {
1339 			zcmn_err(getzoneid(), CE_WARN,
1340 			    "sockfs: mismatched fdbuf content (%p)",
1341 			    (void *)mp);
1342 			return (0);
1343 		}
1344 	} else {
1345 		zcmn_err(getzoneid(), CE_WARN,
1346 		    "sockfs: mismatched fdbuf len %d, %d\n",
1347 		    fdbuflen, fdbuf->fd_size);
1348 		return (0);
1349 	}
1350 }
1351 
1352 /*
1353  * When the file descriptors returned by sorecvmsg can not be passed
1354  * to the application this routine will cleanup the references on
1355  * the files. Start at startoff bytes into the buffer.
1356  */
1357 static void
1358 close_fds(void *fdbuf, int fdbuflen, int startoff)
1359 {
1360 	int *fds = (int *)fdbuf;
1361 	int numfd = fdbuflen / (int)sizeof (int);
1362 	int i;
1363 
1364 	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
1365 
1366 	for (i = 0; i < numfd; i++) {
1367 		if (startoff < 0)
1368 			startoff = 0;
1369 		if (startoff < (int)sizeof (int)) {
1370 			/*
1371 			 * This file descriptor is partially or fully after
1372 			 * the offset
1373 			 */
1374 			dprint(0,
1375 			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
1376 			(void) closeandsetf(fds[i], NULL);
1377 		}
1378 		startoff -= (int)sizeof (int);
1379 	}
1380 }
1381 
1382 /*
1383  * Close all file descriptors contained in the control part starting at
1384  * the startoffset.
1385  */
1386 void
1387 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
1388     int startoff)
1389 {
1390 	struct cmsghdr *cmsg;
1391 
1392 	if (control == NULL)
1393 		return;
1394 
1395 	if (oldflg) {
1396 		close_fds(control, controllen, startoff);
1397 		return;
1398 	}
1399 	/* Scan control part for file descriptors. */
1400 	for (cmsg = (struct cmsghdr *)control;
1401 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1402 	    cmsg = CMSG_NEXT(cmsg)) {
1403 		if (cmsg->cmsg_level == SOL_SOCKET &&
1404 		    cmsg->cmsg_type == SCM_RIGHTS) {
1405 			close_fds(CMSG_CONTENT(cmsg),
1406 			    (int)CMSG_CONTENTLEN(cmsg),
1407 			    startoff - (int)sizeof (struct cmsghdr));
1408 		}
1409 		startoff -= cmsg->cmsg_len;
1410 	}
1411 }
1412 
1413 /*
1414  * Returns a pointer/length for the file descriptors contained
1415  * in the control buffer. Returns with *fdlenp == -1 if there are no
1416  * file descriptor options present. This is different than there being
1417  * a zero-length file descriptor option.
1418  * Fail if there are multiple SCM_RIGHT cmsgs.
1419  */
1420 int
1421 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
1422     void **fdsp, int *fdlenp)
1423 {
1424 	struct cmsghdr *cmsg;
1425 	void *fds;
1426 	int fdlen;
1427 
1428 	if (control == NULL) {
1429 		*fdsp = NULL;
1430 		*fdlenp = -1;
1431 		return (0);
1432 	}
1433 
1434 	if (oldflg) {
1435 		*fdsp = control;
1436 		if (controllen == 0)
1437 			*fdlenp = -1;
1438 		else
1439 			*fdlenp = controllen;
1440 		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
1441 		return (0);
1442 	}
1443 
1444 	fds = NULL;
1445 	fdlen = 0;
1446 
1447 	for (cmsg = (struct cmsghdr *)control;
1448 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1449 	    cmsg = CMSG_NEXT(cmsg)) {
1450 		if (cmsg->cmsg_level == SOL_SOCKET &&
1451 		    cmsg->cmsg_type == SCM_RIGHTS) {
1452 			if (fds != NULL)
1453 				return (EINVAL);
1454 			fds = CMSG_CONTENT(cmsg);
1455 			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1456 			dprint(1, ("so_getfdopt: new %lu\n",
1457 				(size_t)CMSG_CONTENTLEN(cmsg)));
1458 		}
1459 	}
1460 	if (fds == NULL) {
1461 		dprint(1, ("so_getfdopt: NONE\n"));
1462 		*fdlenp = -1;
1463 	} else
1464 		*fdlenp = fdlen;
1465 	*fdsp = fds;
1466 	return (0);
1467 }
1468 
1469 /*
1470  * Return the length of the options including any file descriptor options.
1471  */
1472 t_uscalar_t
1473 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1474 {
1475 	struct cmsghdr *cmsg;
1476 	t_uscalar_t optlen = 0;
1477 	t_uscalar_t len;
1478 
1479 	if (control == NULL)
1480 		return (0);
1481 
1482 	if (oldflg)
1483 		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1484 		    fdbuf_optlen(controllen)));
1485 
1486 	for (cmsg = (struct cmsghdr *)control;
1487 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1488 	    cmsg = CMSG_NEXT(cmsg)) {
1489 		if (cmsg->cmsg_level == SOL_SOCKET &&
1490 		    cmsg->cmsg_type == SCM_RIGHTS) {
1491 			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1492 		} else {
1493 			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1494 		}
1495 		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1496 		    sizeof (struct T_opthdr));
1497 	}
1498 	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1499 		controllen, oldflg, optlen));
1500 	return (optlen);
1501 }
1502 
1503 /*
1504  * Copy options from control to the mblk. Skip any file descriptor options.
1505  */
1506 void
1507 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1508 {
1509 	struct T_opthdr toh;
1510 	struct cmsghdr *cmsg;
1511 
1512 	if (control == NULL)
1513 		return;
1514 
1515 	if (oldflg) {
1516 		/* No real options - caller has handled file descriptors */
1517 		return;
1518 	}
1519 	for (cmsg = (struct cmsghdr *)control;
1520 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1521 	    cmsg = CMSG_NEXT(cmsg)) {
1522 		/*
1523 		 * Note: The caller handles file descriptors prior
1524 		 * to calling this function.
1525 		 */
1526 		t_uscalar_t len;
1527 
1528 		if (cmsg->cmsg_level == SOL_SOCKET &&
1529 		    cmsg->cmsg_type == SCM_RIGHTS)
1530 			continue;
1531 
1532 		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1533 		toh.level = cmsg->cmsg_level;
1534 		toh.name = cmsg->cmsg_type;
1535 		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1536 		toh.status = 0;
1537 
1538 		soappendmsg(mp, &toh, sizeof (toh));
1539 		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1540 		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1541 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1542 	}
1543 }
1544 
1545 /*
1546  * Return the length of the control message derived from the options.
1547  * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1548  * When oldflg is set only include SO_FILEP.
1549  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1550  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1551  * also be checked for any possible impacts.
1552  */
1553 t_uscalar_t
1554 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1555 {
1556 	t_uscalar_t cmsglen = 0;
1557 	struct T_opthdr *tohp;
1558 	t_uscalar_t len;
1559 	t_uscalar_t last_roundup = 0;
1560 
1561 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1562 
1563 	for (tohp = (struct T_opthdr *)opt;
1564 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1565 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1566 		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1567 			tohp->level, tohp->name, tohp->len));
1568 		if (tohp->level == SOL_SOCKET &&
1569 		    (tohp->name == SO_SRCADDR ||
1570 		    tohp->name == SO_UNIX_CLOSE)) {
1571 			continue;
1572 		}
1573 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1574 			struct fdbuf *fdbuf;
1575 			int fdbuflen;
1576 
1577 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1578 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1579 
1580 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1581 				continue;
1582 			if (oldflg) {
1583 				cmsglen += fdbuf_cmsglen(fdbuflen);
1584 				continue;
1585 			}
1586 			len = fdbuf_cmsglen(fdbuflen);
1587 		} else if (tohp->level == SOL_SOCKET &&
1588 		    tohp->name == SCM_TIMESTAMP) {
1589 			if (oldflg)
1590 				continue;
1591 
1592 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1593 				len = sizeof (struct timeval);
1594 			} else {
1595 				len = sizeof (struct timeval32);
1596 			}
1597 		} else {
1598 			if (oldflg)
1599 				continue;
1600 			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1601 		}
1602 		/*
1603 		 * Exclude roundup for last option to not set
1604 		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1605 		 */
1606 		last_roundup = (t_uscalar_t)
1607 		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1608 		    (len + (int)sizeof (struct cmsghdr)));
1609 		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1610 		    last_roundup;
1611 	}
1612 	cmsglen -= last_roundup;
1613 	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1614 		optlen, oldflg, cmsglen));
1615 	return (cmsglen);
1616 }
1617 
1618 /*
1619  * Copy options from options to the control. Convert SO_FILEP to
1620  * file descriptors.
1621  * Returns errno or zero.
1622  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1623  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1624  * also be checked for any possible impacts.
1625  */
1626 int
1627 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1628     void *control, t_uscalar_t controllen)
1629 {
1630 	struct T_opthdr *tohp;
1631 	struct cmsghdr *cmsg;
1632 	struct fdbuf *fdbuf;
1633 	int fdbuflen;
1634 	int error;
1635 #if defined(DEBUG) || defined(__lint)
1636 	struct cmsghdr *cend = (struct cmsghdr *)
1637 	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1638 #endif
1639 	cmsg = (struct cmsghdr *)control;
1640 
1641 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1642 
1643 	for (tohp = (struct T_opthdr *)opt;
1644 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1645 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1646 		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1647 			tohp->level, tohp->name, tohp->len));
1648 
1649 		if (tohp->level == SOL_SOCKET &&
1650 		    (tohp->name == SO_SRCADDR ||
1651 		    tohp->name == SO_UNIX_CLOSE)) {
1652 			continue;
1653 		}
1654 		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1655 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1656 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1657 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1658 
1659 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1660 				return (EPROTO);
1661 			if (oldflg) {
1662 				error = fdbuf_extract(fdbuf, control,
1663 				    (int)controllen);
1664 				if (error != 0)
1665 					return (error);
1666 				continue;
1667 			} else {
1668 				int fdlen;
1669 
1670 				fdlen = (int)fdbuf_cmsglen(
1671 				    (int)_TPI_TOPT_DATALEN(tohp));
1672 
1673 				cmsg->cmsg_level = tohp->level;
1674 				cmsg->cmsg_type = SCM_RIGHTS;
1675 				cmsg->cmsg_len = (socklen_t)(fdlen +
1676 					sizeof (struct cmsghdr));
1677 
1678 				error = fdbuf_extract(fdbuf,
1679 						CMSG_CONTENT(cmsg), fdlen);
1680 				if (error != 0)
1681 					return (error);
1682 			}
1683 		} else if (tohp->level == SOL_SOCKET &&
1684 		    tohp->name == SCM_TIMESTAMP) {
1685 			timestruc_t *timestamp;
1686 
1687 			if (oldflg)
1688 				continue;
1689 
1690 			cmsg->cmsg_level = tohp->level;
1691 			cmsg->cmsg_type = tohp->name;
1692 
1693 			timestamp =
1694 			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1695 			    sizeof (intptr_t));
1696 
1697 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1698 				struct timeval tv;
1699 
1700 				cmsg->cmsg_len = sizeof (struct timeval) +
1701 				    sizeof (struct cmsghdr);
1702 				tv.tv_sec = timestamp->tv_sec;
1703 				tv.tv_usec = timestamp->tv_nsec /
1704 				    (NANOSEC / MICROSEC);
1705 				/*
1706 				 * on LP64 systems, the struct timeval in
1707 				 * the destination will not be 8-byte aligned,
1708 				 * so use bcopy to avoid alignment trouble
1709 				 */
1710 				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1711 			} else {
1712 				struct timeval32 *time32;
1713 
1714 				cmsg->cmsg_len = sizeof (struct timeval32) +
1715 				    sizeof (struct cmsghdr);
1716 				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1717 				time32->tv_sec = (time32_t)timestamp->tv_sec;
1718 				time32->tv_usec =
1719 				    (int32_t)(timestamp->tv_nsec /
1720 				    (NANOSEC / MICROSEC));
1721 			}
1722 
1723 		} else {
1724 			if (oldflg)
1725 				continue;
1726 
1727 			cmsg->cmsg_level = tohp->level;
1728 			cmsg->cmsg_type = tohp->name;
1729 			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1730 			    sizeof (struct cmsghdr));
1731 
1732 			/* copy content to control data part */
1733 			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1734 				CMSG_CONTENTLEN(cmsg));
1735 		}
1736 		/* move to next CMSG structure! */
1737 		cmsg = CMSG_NEXT(cmsg);
1738 	}
1739 	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1740 	    control, controllen, cend, cmsg));
1741 	ASSERT(cmsg <= cend);
1742 	return (0);
1743 }
1744 
1745 /*
1746  * Extract the SO_SRCADDR option value if present.
1747  */
1748 void
1749 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1750     t_uscalar_t *srclenp)
1751 {
1752 	struct T_opthdr		*tohp;
1753 
1754 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1755 
1756 	ASSERT(srcp != NULL && srclenp != NULL);
1757 	*srcp = NULL;
1758 	*srclenp = 0;
1759 
1760 	for (tohp = (struct T_opthdr *)opt;
1761 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1762 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1763 		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1764 			tohp->level, tohp->name, tohp->len));
1765 		if (tohp->level == SOL_SOCKET &&
1766 		    tohp->name == SO_SRCADDR) {
1767 			*srcp = _TPI_TOPT_DATA(tohp);
1768 			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1769 		}
1770 	}
1771 }
1772 
1773 /*
1774  * Verify if the SO_UNIX_CLOSE option is present.
1775  */
1776 int
1777 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1778 {
1779 	struct T_opthdr		*tohp;
1780 
1781 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1782 
1783 	for (tohp = (struct T_opthdr *)opt;
1784 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1785 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1786 		dprint(1,
1787 			("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1788 			tohp->level, tohp->name, tohp->len));
1789 		if (tohp->level == SOL_SOCKET &&
1790 		    tohp->name == SO_UNIX_CLOSE)
1791 			return (1);
1792 	}
1793 	return (0);
1794 }
1795 
1796 /*
1797  * Allocate an M_PROTO message.
1798  *
1799  * If allocation fails the behavior depends on sleepflg:
1800  *	_ALLOC_NOSLEEP	fail immediately
1801  *	_ALLOC_INTR	sleep for memory until a signal is caught
1802  *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1803  */
1804 mblk_t *
1805 soallocproto(size_t size, int sleepflg)
1806 {
1807 	mblk_t	*mp;
1808 
1809 	/* Round up size for reuse */
1810 	size = MAX(size, 64);
1811 	mp = allocb(size, BPRI_MED);
1812 	if (mp == NULL) {
1813 		int error;	/* Dummy - error not returned to caller */
1814 
1815 		switch (sleepflg) {
1816 		case _ALLOC_SLEEP:
1817 			mp = allocb_wait(size, BPRI_MED, STR_NOSIG, &error);
1818 			ASSERT(mp);
1819 			break;
1820 		case _ALLOC_INTR:
1821 			mp = allocb_wait(size, BPRI_MED, 0, &error);
1822 			if (mp == NULL) {
1823 				/* Caught signal while sleeping for memory */
1824 				eprintline(ENOBUFS);
1825 				return (NULL);
1826 			}
1827 			break;
1828 		case _ALLOC_NOSLEEP:
1829 		default:
1830 			eprintline(ENOBUFS);
1831 			return (NULL);
1832 		}
1833 	}
1834 	DB_TYPE(mp) = M_PROTO;
1835 	return (mp);
1836 }
1837 
1838 /*
1839  * Allocate an M_PROTO message with a single component.
1840  * len is the length of buf. size is the amount to allocate.
1841  *
1842  * buf can be NULL with a non-zero len.
1843  * This results in a bzero'ed chunk being placed the message.
1844  */
1845 mblk_t *
1846 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg)
1847 {
1848 	mblk_t	*mp;
1849 
1850 	if (size == 0)
1851 		size = len;
1852 
1853 	ASSERT(size >= len);
1854 	/* Round up size for reuse */
1855 	size = MAX(size, 64);
1856 	mp = soallocproto(size, sleepflg);
1857 	if (mp == NULL)
1858 		return (NULL);
1859 	mp->b_datap->db_type = M_PROTO;
1860 	if (len != 0) {
1861 		if (buf != NULL)
1862 			bcopy(buf, mp->b_wptr, len);
1863 		else
1864 			bzero(mp->b_wptr, len);
1865 		mp->b_wptr += len;
1866 	}
1867 	return (mp);
1868 }
1869 
1870 /*
1871  * Append buf/len to mp.
1872  * The caller has to ensure that there is enough room in the mblk.
1873  *
1874  * buf can be NULL with a non-zero len.
1875  * This results in a bzero'ed chunk being placed the message.
1876  */
1877 void
1878 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1879 {
1880 	ASSERT(mp);
1881 
1882 	if (len != 0) {
1883 		/* Assert for room left */
1884 		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1885 		if (buf != NULL)
1886 			bcopy(buf, mp->b_wptr, len);
1887 		else
1888 			bzero(mp->b_wptr, len);
1889 	}
1890 	mp->b_wptr += len;
1891 }
1892 
1893 /*
1894  * Create a message using two kernel buffers.
1895  * If size is set that will determine the allocation size (e.g. for future
1896  * soappendmsg calls). If size is zero it is derived from the buffer
1897  * lengths.
1898  */
1899 mblk_t *
1900 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1901     ssize_t size, int sleepflg)
1902 {
1903 	mblk_t *mp;
1904 
1905 	if (size == 0)
1906 		size = len1 + len2;
1907 	ASSERT(size >= len1 + len2);
1908 
1909 	mp = soallocproto1(buf1, len1, size, sleepflg);
1910 	if (mp)
1911 		soappendmsg(mp, buf2, len2);
1912 	return (mp);
1913 }
1914 
1915 /*
1916  * Create a message using three kernel buffers.
1917  * If size is set that will determine the allocation size (for future
1918  * soappendmsg calls). If size is zero it is derived from the buffer
1919  * lengths.
1920  */
1921 mblk_t *
1922 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1923     const void *buf3, ssize_t len3, ssize_t size, int sleepflg)
1924 {
1925 	mblk_t *mp;
1926 
1927 	if (size == 0)
1928 		size = len1 + len2 +len3;
1929 	ASSERT(size >= len1 + len2 + len3);
1930 
1931 	mp = soallocproto1(buf1, len1, size, sleepflg);
1932 	if (mp != NULL) {
1933 		soappendmsg(mp, buf2, len2);
1934 		soappendmsg(mp, buf3, len3);
1935 	}
1936 	return (mp);
1937 }
1938 
1939 #ifdef DEBUG
1940 char *
1941 pr_state(uint_t state, uint_t mode)
1942 {
1943 	static char buf[1024];
1944 
1945 	buf[0] = 0;
1946 	if (state & SS_ISCONNECTED)
1947 		strcat(buf, "ISCONNECTED ");
1948 	if (state & SS_ISCONNECTING)
1949 		strcat(buf, "ISCONNECTING ");
1950 	if (state & SS_ISDISCONNECTING)
1951 		strcat(buf, "ISDISCONNECTING ");
1952 	if (state & SS_CANTSENDMORE)
1953 		strcat(buf, "CANTSENDMORE ");
1954 
1955 	if (state & SS_CANTRCVMORE)
1956 		strcat(buf, "CANTRCVMORE ");
1957 	if (state & SS_ISBOUND)
1958 		strcat(buf, "ISBOUND ");
1959 	if (state & SS_NDELAY)
1960 		strcat(buf, "NDELAY ");
1961 	if (state & SS_NONBLOCK)
1962 		strcat(buf, "NONBLOCK ");
1963 
1964 	if (state & SS_ASYNC)
1965 		strcat(buf, "ASYNC ");
1966 	if (state & SS_ACCEPTCONN)
1967 		strcat(buf, "ACCEPTCONN ");
1968 	if (state & SS_HASCONNIND)
1969 		strcat(buf, "HASCONNIND ");
1970 	if (state & SS_SAVEDEOR)
1971 		strcat(buf, "SAVEDEOR ");
1972 
1973 	if (state & SS_RCVATMARK)
1974 		strcat(buf, "RCVATMARK ");
1975 	if (state & SS_OOBPEND)
1976 		strcat(buf, "OOBPEND ");
1977 	if (state & SS_HAVEOOBDATA)
1978 		strcat(buf, "HAVEOOBDATA ");
1979 	if (state & SS_HADOOBDATA)
1980 		strcat(buf, "HADOOBDATA ");
1981 
1982 	if (state & SS_FADDR_NOXLATE)
1983 		strcat(buf, "FADDR_NOXLATE ");
1984 
1985 	if (mode & SM_PRIV)
1986 		strcat(buf, "PRIV ");
1987 	if (mode & SM_ATOMIC)
1988 		strcat(buf, "ATOMIC ");
1989 	if (mode & SM_ADDR)
1990 		strcat(buf, "ADDR ");
1991 	if (mode & SM_CONNREQUIRED)
1992 		strcat(buf, "CONNREQUIRED ");
1993 
1994 	if (mode & SM_FDPASSING)
1995 		strcat(buf, "FDPASSING ");
1996 	if (mode & SM_EXDATA)
1997 		strcat(buf, "EXDATA ");
1998 	if (mode & SM_OPTDATA)
1999 		strcat(buf, "OPTDATA ");
2000 	if (mode & SM_BYTESTREAM)
2001 		strcat(buf, "BYTESTREAM ");
2002 	return (buf);
2003 }
2004 
2005 char *
2006 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
2007 {
2008 	static char buf[1024];
2009 
2010 	if (addr == NULL || addrlen == 0) {
2011 		sprintf(buf, "(len %d) %p", addrlen, addr);
2012 		return (buf);
2013 	}
2014 	switch (family) {
2015 	case AF_INET: {
2016 		struct sockaddr_in sin;
2017 
2018 		bcopy(addr, &sin, sizeof (sin));
2019 
2020 		(void) sprintf(buf, "(len %d) %x/%d",
2021 			addrlen, ntohl(sin.sin_addr.s_addr),
2022 			ntohs(sin.sin_port));
2023 		break;
2024 	}
2025 	case AF_INET6: {
2026 		struct sockaddr_in6 sin6;
2027 		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
2028 
2029 		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
2030 		sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
2031 		    addrlen,
2032 		    ntohs(piece[0]), ntohs(piece[1]),
2033 		    ntohs(piece[2]), ntohs(piece[3]),
2034 		    ntohs(piece[4]), ntohs(piece[5]),
2035 		    ntohs(piece[6]), ntohs(piece[7]),
2036 		    ntohs(sin6.sin6_port));
2037 		break;
2038 	}
2039 	case AF_UNIX: {
2040 		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
2041 
2042 		(void) sprintf(buf, "(len %d) %s",
2043 			addrlen,
2044 			(soun == NULL) ? "(none)" : soun->sun_path);
2045 		break;
2046 	}
2047 	default:
2048 		(void) sprintf(buf, "(unknown af %d)", family);
2049 		break;
2050 	}
2051 	return (buf);
2052 }
2053 
2054 /* The logical equivalence operator (a if-and-only-if b) */
2055 #define	EQUIV(a, b)	(((a) && (b)) || (!(a) && (!(b))))
2056 
2057 /*
2058  * Verify limitations and invariants on oob state.
2059  * Return 1 if OK, otherwise 0 so that it can be used as
2060  *	ASSERT(verify_oobstate(so));
2061  */
2062 int
2063 so_verify_oobstate(struct sonode *so)
2064 {
2065 	ASSERT(MUTEX_HELD(&so->so_lock));
2066 
2067 	/*
2068 	 * The possible state combinations are:
2069 	 *	0
2070 	 *	SS_OOBPEND
2071 	 *	SS_OOBPEND|SS_HAVEOOBDATA
2072 	 *	SS_OOBPEND|SS_HADOOBDATA
2073 	 *	SS_HADOOBDATA
2074 	 */
2075 	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
2076 	case 0:
2077 	case SS_OOBPEND:
2078 	case SS_OOBPEND|SS_HAVEOOBDATA:
2079 	case SS_OOBPEND|SS_HADOOBDATA:
2080 	case SS_HADOOBDATA:
2081 		break;
2082 	default:
2083 		printf("Bad oob state 1 (%p): counts %d/%d state %s\n",
2084 			so, so->so_oobsigcnt,
2085 			so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2086 		return (0);
2087 	}
2088 
2089 	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
2090 	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
2091 		printf("Bad oob state 2 (%p): counts %d/%d state %s\n",
2092 			so, so->so_oobsigcnt,
2093 			so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2094 		return (0);
2095 	}
2096 
2097 	/*
2098 	 * (so_oobsigcnt != 0 or SS_RCVATMARK) iff SS_OOBPEND
2099 	 */
2100 	if (!EQUIV((so->so_oobsigcnt != 0) || (so->so_state & SS_RCVATMARK),
2101 		so->so_state & SS_OOBPEND)) {
2102 		printf("Bad oob state 3 (%p): counts %d/%d state %s\n",
2103 			so, so->so_oobsigcnt,
2104 			so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2105 		return (0);
2106 	}
2107 
2108 	/*
2109 	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
2110 	 */
2111 	if (!(so->so_options & SO_OOBINLINE) &&
2112 	    !EQUIV(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
2113 		printf("Bad oob state 4 (%p): counts %d/%d state %s\n",
2114 			so, so->so_oobsigcnt,
2115 			so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2116 		return (0);
2117 	}
2118 	if (so->so_oobsigcnt < so->so_oobcnt) {
2119 		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
2120 			so, so->so_oobsigcnt,
2121 			so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2122 		return (0);
2123 	}
2124 	return (1);
2125 }
2126 #undef	EQUIV
2127 
2128 #endif /* DEBUG */
2129 
2130 /* initialize sockfs zone specific kstat related items			*/
2131 void *
2132 sock_kstat_init(zoneid_t zoneid)
2133 {
2134 	kstat_t	*ksp;
2135 
2136 	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
2137 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
2138 
2139 	if (ksp != NULL) {
2140 		ksp->ks_update = sockfs_update;
2141 		ksp->ks_snapshot = sockfs_snapshot;
2142 		ksp->ks_lock = &socklist.sl_lock;
2143 		ksp->ks_private = (void *)(uintptr_t)zoneid;
2144 		kstat_install(ksp);
2145 	}
2146 
2147 	return (ksp);
2148 }
2149 
2150 /* tear down sockfs zone specific kstat related items			*/
2151 /*ARGSUSED*/
2152 void
2153 sock_kstat_fini(zoneid_t zoneid, void *arg)
2154 {
2155 	kstat_t *ksp = (kstat_t *)arg;
2156 
2157 	if (ksp != NULL) {
2158 		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
2159 		kstat_delete(ksp);
2160 	}
2161 }
2162 
2163 /*
2164  * Zones:
2165  * Note that nactive is going to be different for each zone.
2166  * This means we require kstat to call sockfs_update and then sockfs_snapshot
2167  * for the same zone, or sockfs_snapshot will be taken into the wrong size
2168  * buffer. This is safe, but if the buffer is too small, user will not be
2169  * given details of all sockets. However, as this kstat has a ks_lock, kstat
2170  * driver will keep it locked between the update and the snapshot, so no
2171  * other process (zone) can currently get inbetween resulting in a wrong size
2172  * buffer allocation.
2173  */
2174 static int
2175 sockfs_update(kstat_t *ksp, int rw)
2176 {
2177 	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
2178 	struct sonode	*so;		/* current sonode on socklist	*/
2179 	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
2180 
2181 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
2182 
2183 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
2184 		return (EACCES);
2185 	}
2186 
2187 	for (so = socklist.sl_list; so != NULL; so = so->so_next) {
2188 		if (so->so_accessvp != NULL && so->so_zoneid == myzoneid) {
2189 			nactive++;
2190 		}
2191 	}
2192 	ksp->ks_ndata = nactive;
2193 	ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
2194 
2195 	return (0);
2196 }
2197 
2198 static int
2199 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
2200 {
2201 	int			ns;	/* # of sonodes we've copied	*/
2202 	struct sonode		*so;	/* current sonode on socklist	*/
2203 	struct k_sockinfo	*pksi;	/* where we put sockinfo data	*/
2204 	t_uscalar_t		sn_len;	/* soa_len			*/
2205 	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
2206 
2207 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
2208 
2209 	ksp->ks_snaptime = gethrtime();
2210 
2211 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
2212 		return (EACCES);
2213 	}
2214 
2215 	/*
2216 	 * for each sonode on the socklist, we massage the important
2217 	 * info into buf, in k_sockinfo format.
2218 	 */
2219 	pksi = (struct k_sockinfo *)buf;
2220 	for (ns = 0, so = socklist.sl_list; so != NULL; so = so->so_next) {
2221 		/* only stuff active sonodes and the same zone:		*/
2222 		if (so->so_accessvp == NULL || so->so_zoneid != myzoneid) {
2223 			continue;
2224 		}
2225 
2226 		/*
2227 		 * If the sonode was activated between the update and the
2228 		 * snapshot, we're done - as this is only a snapshot.
2229 		 */
2230 		if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
2231 			break;
2232 		}
2233 
2234 		/* copy important info into buf:			*/
2235 		pksi->ks_si.si_size = sizeof (struct k_sockinfo);
2236 		pksi->ks_si.si_family = so->so_family;
2237 		pksi->ks_si.si_type = so->so_type;
2238 		pksi->ks_si.si_flag = so->so_flag;
2239 		pksi->ks_si.si_state = so->so_state;
2240 		pksi->ks_si.si_serv_type = so->so_serv_type;
2241 		pksi->ks_si.si_ux_laddr_sou_magic = so->so_ux_laddr.soua_magic;
2242 		pksi->ks_si.si_ux_faddr_sou_magic = so->so_ux_faddr.soua_magic;
2243 		pksi->ks_si.si_laddr_soa_len = so->so_laddr.soa_len;
2244 		pksi->ks_si.si_faddr_soa_len = so->so_faddr.soa_len;
2245 		pksi->ks_si.si_szoneid = so->so_zoneid;
2246 
2247 		mutex_enter(&so->so_lock);
2248 
2249 		if (so->so_laddr_sa != NULL) {
2250 			ASSERT(so->so_laddr_sa->sa_data != NULL);
2251 			sn_len = so->so_laddr_len;
2252 			ASSERT(sn_len <= sizeof (short) +
2253 			    sizeof (pksi->ks_si.si_laddr_sun_path));
2254 
2255 			pksi->ks_si.si_laddr_family =
2256 				so->so_laddr_sa->sa_family;
2257 			if (sn_len != 0) {
2258 				/* AF_UNIX socket names are NULL terminated */
2259 				(void) strncpy(pksi->ks_si.si_laddr_sun_path,
2260 				    so->so_laddr_sa->sa_data,
2261 				    sizeof (pksi->ks_si.si_laddr_sun_path));
2262 				sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
2263 			}
2264 			pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
2265 		}
2266 
2267 		if (so->so_faddr_sa != NULL) {
2268 			ASSERT(so->so_faddr_sa->sa_data != NULL);
2269 			sn_len = so->so_faddr_len;
2270 			ASSERT(sn_len <= sizeof (short) +
2271 			    sizeof (pksi->ks_si.si_faddr_sun_path));
2272 
2273 			pksi->ks_si.si_faddr_family =
2274 			    so->so_faddr_sa->sa_family;
2275 			if (sn_len != 0) {
2276 				(void) strncpy(pksi->ks_si.si_faddr_sun_path,
2277 				    so->so_faddr_sa->sa_data,
2278 				    sizeof (pksi->ks_si.si_faddr_sun_path));
2279 				sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
2280 			}
2281 			pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
2282 		}
2283 
2284 		mutex_exit(&so->so_lock);
2285 
2286 		(void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
2287 		(void) sprintf(pksi->ks_straddr[1], "%p",
2288 		    (void *)so->so_ux_laddr.soua_vp);
2289 		(void) sprintf(pksi->ks_straddr[2], "%p",
2290 		    (void *)so->so_ux_faddr.soua_vp);
2291 
2292 		ns++;
2293 		pksi++;
2294 	}
2295 
2296 	ksp->ks_ndata = ns;
2297 	return (0);
2298 }
2299 
2300 ssize_t
2301 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
2302 {
2303 	struct uio auio;
2304 	struct iovec aiov[MSG_MAXIOVLEN];
2305 	register vnode_t *vp;
2306 	int ioflag, rwflag;
2307 	ssize_t cnt;
2308 	int error = 0;
2309 	int iovcnt = 0;
2310 	short fflag;
2311 
2312 	vp = fp->f_vnode;
2313 	fflag = fp->f_flag;
2314 
2315 	rwflag = 0;
2316 	aiov[0].iov_base = (caddr_t)buf;
2317 	aiov[0].iov_len = size;
2318 	iovcnt = 1;
2319 	cnt = (ssize_t)size;
2320 	(void) VOP_RWLOCK(vp, rwflag, NULL);
2321 
2322 	auio.uio_loffset = fileoff;
2323 	auio.uio_iov = aiov;
2324 	auio.uio_iovcnt = iovcnt;
2325 	auio.uio_resid = cnt;
2326 	auio.uio_segflg = UIO_SYSSPACE;
2327 	auio.uio_llimit = MAXOFFSET_T;
2328 	auio.uio_fmode = fflag;
2329 	auio.uio_extflg = UIO_COPY_CACHED;
2330 
2331 	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
2332 
2333 	/* If read sync is not asked for, filter sync flags */
2334 	if ((ioflag & FRSYNC) == 0)
2335 		ioflag &= ~(FSYNC|FDSYNC);
2336 	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
2337 	cnt -= auio.uio_resid;
2338 
2339 	VOP_RWUNLOCK(vp, rwflag, NULL);
2340 
2341 	if (error == EINTR && cnt != 0)
2342 		error = 0;
2343 out:
2344 	if (error != 0) {
2345 		*err = error;
2346 		return (0);
2347 	} else {
2348 		*err = 0;
2349 		return (cnt);
2350 	}
2351 }
2352