1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1996, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/t_lock.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/cmn_err.h> 33 #include <sys/list.h> 34 #include <sys/sunddi.h> 35 36 #include <sys/stropts.h> 37 #include <sys/socket.h> 38 #include <sys/socketvar.h> 39 40 #include <fs/sockfs/sockcommon.h> 41 #include <fs/sockfs/sockfilter_impl.h> 42 #include <fs/sockfs/socktpi.h> 43 44 /* 45 * Socket Parameters 46 * 47 * Socket parameter (struct sockparams) entries represent the socket types 48 * available on the system. 49 * 50 * Flags (sp_flags): 51 * 52 * SOCKPARAMS_EPHEMERAL: A temporary sockparams entry that will be deleted 53 * as soon as its' ref count drops to zero. In addition, ephemeral entries will 54 * never be hooked onto the global sockparams list. Ephemeral entries are 55 * created when application requests to create a socket using an application 56 * supplied device path, or when a socket is falling back to TPI. 57 * 58 * Lock order: 59 * The lock order is sockconf_lock -> sp_lock. 60 */ 61 extern int kobj_path_exists(char *, int); 62 63 static int sockparams_sdev_init(struct sockparams *, char *, int); 64 static void sockparams_sdev_fini(struct sockparams *); 65 66 /* 67 * Global sockparams list (populated via soconfig(1M)). 68 */ 69 static list_t sphead; 70 71 /* 72 * List of ephemeral sockparams. 73 */ 74 static list_t sp_ephem_list; 75 76 /* Global kstats for sockparams */ 77 typedef struct sockparams_g_stats { 78 kstat_named_t spgs_ephem_nalloc; 79 kstat_named_t spgs_ephem_nreuse; 80 } sockparams_g_stats_t; 81 82 static sockparams_g_stats_t sp_g_stats; 83 static kstat_t *sp_g_kstat; 84 85 86 void 87 sockparams_init(void) 88 { 89 list_create(&sphead, sizeof (struct sockparams), 90 offsetof(struct sockparams, sp_node)); 91 list_create(&sp_ephem_list, sizeof (struct sockparams), 92 offsetof(struct sockparams, sp_node)); 93 94 kstat_named_init(&sp_g_stats.spgs_ephem_nalloc, "ephemeral_nalloc", 95 KSTAT_DATA_UINT64); 96 kstat_named_init(&sp_g_stats.spgs_ephem_nreuse, "ephemeral_nreuse", 97 KSTAT_DATA_UINT64); 98 99 sp_g_kstat = kstat_create("sockfs", 0, "sockparams", "misc", 100 KSTAT_TYPE_NAMED, sizeof (sp_g_stats) / sizeof (kstat_named_t), 101 KSTAT_FLAG_VIRTUAL); 102 if (sp_g_kstat == NULL) 103 return; 104 105 sp_g_kstat->ks_data = &sp_g_stats; 106 107 kstat_install(sp_g_kstat); 108 } 109 110 static int 111 sockparams_kstat_update(kstat_t *ksp, int rw) 112 { 113 struct sockparams *sp = ksp->ks_private; 114 sockparams_stats_t *sps = ksp->ks_data; 115 116 if (rw == KSTAT_WRITE) 117 return (EACCES); 118 119 sps->sps_nactive.value.ui64 = sp->sp_refcnt; 120 121 return (0); 122 } 123 124 /* 125 * Setup kstats for the given sockparams entry. 126 */ 127 static void 128 sockparams_kstat_init(struct sockparams *sp) 129 { 130 char name[KSTAT_STRLEN]; 131 132 (void) snprintf(name, KSTAT_STRLEN, "socket_%d_%d_%d", sp->sp_family, 133 sp->sp_type, sp->sp_protocol); 134 135 sp->sp_kstat = kstat_create("sockfs", 0, name, "misc", KSTAT_TYPE_NAMED, 136 sizeof (sockparams_stats_t) / sizeof (kstat_named_t), 137 KSTAT_FLAG_VIRTUAL); 138 139 if (sp->sp_kstat == NULL) 140 return; 141 142 sp->sp_kstat->ks_data = &sp->sp_stats; 143 sp->sp_kstat->ks_update = sockparams_kstat_update; 144 sp->sp_kstat->ks_private = sp; 145 kstat_install(sp->sp_kstat); 146 } 147 148 static void 149 sockparams_kstat_fini(struct sockparams *sp) 150 { 151 if (sp->sp_kstat != NULL) { 152 kstat_delete(sp->sp_kstat); 153 sp->sp_kstat = NULL; 154 } 155 } 156 157 /* 158 * sockparams_create(int family, int type, int protocol, char *modname, 159 * char *devpath, int devpathlen, int flags, int kmflags, int *errorp) 160 * 161 * Create a new sockparams entry. 162 * 163 * Arguments: 164 * family, type, protocol: specifies the socket type 165 * modname: Name of the module associated with the socket type. The 166 * module can be NULL if a device path is given, in which 167 * case the TPI module is used. 168 * devpath: Path to the STREAMS device. Must be NULL for non-STREAMS 169 * based transports. 170 * devpathlen: Length of the devpath string. The argument can be 0, 171 * indicating that devpath was allocated statically, and should 172 * not be freed when the sockparams entry is destroyed. 173 * 174 * flags : SOCKPARAMS_EPHEMERAL is the only flag that is allowed. 175 * kmflags: KM_{NO,}SLEEP 176 * errorp : Value-return argument, set when an error occurs. 177 * 178 * Returns: 179 * On success a new sockparams entry is returned, and *errorp is set 180 * to 0. On failure NULL is returned and *errorp is set to indicate the 181 * type of error that occured. 182 * 183 * Notes: 184 * devpath and modname are freed upon failure. 185 */ 186 struct sockparams * 187 sockparams_create(int family, int type, int protocol, char *modname, 188 char *devpath, int devpathlen, int flags, int kmflags, int *errorp) 189 { 190 struct sockparams *sp = NULL; 191 size_t size; 192 193 ASSERT((flags & ~SOCKPARAMS_EPHEMERAL) == 0); 194 if (flags & ~SOCKPARAMS_EPHEMERAL) { 195 *errorp = EINVAL; 196 goto error; 197 } 198 199 /* either a module or device must be given, but not both */ 200 if (modname == NULL && devpath == NULL) { 201 *errorp = EINVAL; 202 goto error; 203 } 204 205 sp = kmem_zalloc(sizeof (*sp), kmflags); 206 if (sp == NULL) { 207 *errorp = ENOMEM; 208 goto error; 209 } 210 sp->sp_family = family; 211 sp->sp_type = type; 212 sp->sp_protocol = protocol; 213 sp->sp_refcnt = 0; 214 sp->sp_flags = flags; 215 216 list_create(&sp->sp_auto_filters, sizeof (sp_filter_t), 217 offsetof(sp_filter_t, spf_node)); 218 list_create(&sp->sp_prog_filters, sizeof (sp_filter_t), 219 offsetof(sp_filter_t, spf_node)); 220 221 kstat_named_init(&sp->sp_stats.sps_nfallback, "nfallback", 222 KSTAT_DATA_UINT64); 223 kstat_named_init(&sp->sp_stats.sps_nactive, "nactive", 224 KSTAT_DATA_UINT64); 225 kstat_named_init(&sp->sp_stats.sps_ncreate, "ncreate", 226 KSTAT_DATA_UINT64); 227 228 /* 229 * Track how many ephemeral entries we have created. 230 */ 231 if (sp->sp_flags & SOCKPARAMS_EPHEMERAL) 232 sp_g_stats.spgs_ephem_nalloc.value.ui64++; 233 234 if (modname != NULL) { 235 sp->sp_smod_name = modname; 236 } else { 237 size = strlen(SOTPI_SMOD_NAME) + 1; 238 modname = kmem_zalloc(size, kmflags); 239 if (modname == NULL) { 240 *errorp = ENOMEM; 241 goto error; 242 } 243 sp->sp_smod_name = modname; 244 (void) sprintf(sp->sp_smod_name, "%s", SOTPI_SMOD_NAME); 245 } 246 247 if (devpath != NULL) { 248 /* Set up the device entry. */ 249 *errorp = sockparams_sdev_init(sp, devpath, devpathlen); 250 if (*errorp != 0) 251 goto error; 252 } 253 254 mutex_init(&sp->sp_lock, NULL, MUTEX_DEFAULT, NULL); 255 *errorp = 0; 256 return (sp); 257 error: 258 ASSERT(*errorp != 0); 259 if (modname != NULL) 260 kmem_free(modname, strlen(modname) + 1); 261 if (devpathlen != 0) 262 kmem_free(devpath, devpathlen); 263 if (sp != NULL) 264 kmem_free(sp, sizeof (*sp)); 265 return (NULL); 266 } 267 268 /* 269 * Initialize the STREAMS device aspect of the sockparams entry. 270 */ 271 static int 272 sockparams_sdev_init(struct sockparams *sp, char *devpath, int devpathlen) 273 { 274 vnode_t *vp = NULL; 275 int error; 276 277 ASSERT(devpath != NULL); 278 279 if ((error = sogetvp(devpath, &vp, UIO_SYSSPACE)) != 0) { 280 dprint(0, ("sockparams_sdev_init: vp %s failed with %d\n", 281 devpath, error)); 282 return (error); 283 } 284 285 ASSERT(vp != NULL); 286 sp->sp_sdev_info.sd_vnode = vp; 287 sp->sp_sdev_info.sd_devpath = devpath; 288 sp->sp_sdev_info.sd_devpathlen = devpathlen; 289 290 return (0); 291 } 292 293 /* 294 * sockparams_destroy(struct sockparams *sp) 295 * 296 * Releases all the resources associated with the sockparams entry, 297 * and frees the sockparams entry. 298 * 299 * Arguments: 300 * sp: the sockparams entry to destroy. 301 * 302 * Returns: 303 * Nothing. 304 * 305 * Locking: 306 * The sp_lock of the entry can not be held. 307 */ 308 void 309 sockparams_destroy(struct sockparams *sp) 310 { 311 ASSERT(sp->sp_refcnt == 0); 312 ASSERT(!list_link_active(&sp->sp_node)); 313 314 sockparams_sdev_fini(sp); 315 316 if (sp->sp_smod_info != NULL) 317 SMOD_DEC_REF(sp->sp_smod_info, sp->sp_smod_name); 318 kmem_free(sp->sp_smod_name, strlen(sp->sp_smod_name) + 1); 319 sp->sp_smod_name = NULL; 320 sp->sp_smod_info = NULL; 321 mutex_destroy(&sp->sp_lock); 322 sockparams_kstat_fini(sp); 323 324 sof_sockparams_fini(sp); 325 list_destroy(&sp->sp_auto_filters); 326 list_destroy(&sp->sp_prog_filters); 327 328 kmem_free(sp, sizeof (*sp)); 329 } 330 331 /* 332 * Clean up the STREAMS device part of the sockparams entry. 333 */ 334 static void 335 sockparams_sdev_fini(struct sockparams *sp) 336 { 337 sdev_info_t sd; 338 339 /* 340 * if the entry does not have a STREAMS device, then there 341 * is nothing to do. 342 */ 343 if (!SOCKPARAMS_HAS_DEVICE(sp)) 344 return; 345 346 sd = sp->sp_sdev_info; 347 if (sd.sd_vnode != NULL) 348 VN_RELE(sd.sd_vnode); 349 if (sd.sd_devpathlen != 0) 350 kmem_free(sd.sd_devpath, sd.sd_devpathlen); 351 352 sp->sp_sdev_info.sd_vnode = NULL; 353 sp->sp_sdev_info.sd_devpath = NULL; 354 } 355 356 /* 357 * Look for a matching sockparams entry on the given list. 358 * The caller must hold the associated list lock. 359 */ 360 static struct sockparams * 361 sockparams_find(list_t *list, int family, int type, int protocol, 362 boolean_t by_devpath, const char *name) 363 { 364 struct sockparams *sp; 365 366 for (sp = list_head(list); sp != NULL; sp = list_next(list, sp)) { 367 if (sp->sp_family == family && sp->sp_type == type) { 368 if (sp->sp_protocol == protocol) { 369 if (name == NULL) 370 break; 371 else if (by_devpath && 372 sp->sp_sdev_info.sd_devpath != NULL && 373 strcmp(sp->sp_sdev_info.sd_devpath, 374 name) == 0) 375 break; 376 else if (strcmp(sp->sp_smod_name, name) == 0) 377 break; 378 } 379 } 380 } 381 return (sp); 382 } 383 384 /* 385 * sockparams_hold_ephemeral() 386 * 387 * Returns an ephemeral sockparams entry of the requested family, type and 388 * protocol. The entry is returned held, and the caller is responsible for 389 * dropping the reference using SOCKPARAMS_DEC_REF() once done. 390 * 391 * All ephemeral entries are on list (sp_ephem_list). If there is an 392 * entry on the list that match the search criteria, then a reference is 393 * placed on that entry. Otherwise, a new entry is created and inserted 394 * in the list. The entry is removed from the list when the last reference 395 * is dropped. 396 * 397 * The tpi flag is used to determine whether name refers to a device or 398 * module name. 399 */ 400 static struct sockparams * 401 sockparams_hold_ephemeral(int family, int type, int protocol, 402 const char *name, boolean_t by_devpath, int kmflag, int *errorp) 403 { 404 struct sockparams *sp = NULL; 405 *errorp = 0; 406 407 /* 408 * First look for an existing entry 409 */ 410 rw_enter(&sockconf_lock, RW_READER); 411 sp = sockparams_find(&sp_ephem_list, family, type, protocol, 412 by_devpath, name); 413 if (sp != NULL) { 414 SOCKPARAMS_INC_REF(sp); 415 rw_exit(&sockconf_lock); 416 sp_g_stats.spgs_ephem_nreuse.value.ui64++; 417 418 return (sp); 419 } else { 420 struct sockparams *newsp = NULL; 421 char *namebuf = NULL; 422 int namelen = 0; 423 424 rw_exit(&sockconf_lock); 425 426 namelen = strlen(name) + 1; 427 namebuf = kmem_alloc(namelen, kmflag); 428 if (namebuf == NULL) { 429 *errorp = ENOMEM; 430 return (NULL); 431 } 432 433 (void *)strncpy(namebuf, name, namelen); 434 if (by_devpath) { 435 newsp = sockparams_create(family, type, 436 protocol, NULL, namebuf, namelen, 437 SOCKPARAMS_EPHEMERAL, kmflag, errorp); 438 } else { 439 newsp = sockparams_create(family, type, 440 protocol, namebuf, NULL, 0, 441 SOCKPARAMS_EPHEMERAL, kmflag, errorp); 442 } 443 444 if (newsp == NULL) { 445 ASSERT(*errorp != 0); 446 return (NULL); 447 } 448 449 /* 450 * Time to load the socket module. 451 */ 452 ASSERT(newsp->sp_smod_info == NULL); 453 newsp->sp_smod_info = 454 smod_lookup_byname(newsp->sp_smod_name); 455 if (newsp->sp_smod_info == NULL) { 456 /* Failed to load */ 457 sockparams_destroy(newsp); 458 *errorp = ENXIO; 459 return (NULL); 460 } 461 462 /* 463 * The sockparams entry was created, now try to add it 464 * to the list. We need to hold the lock as a WRITER. 465 */ 466 rw_enter(&sockconf_lock, RW_WRITER); 467 sp = sockparams_find(&sp_ephem_list, family, type, protocol, 468 by_devpath, name); 469 if (sp != NULL) { 470 /* 471 * Someone has requested a matching entry, so just 472 * place a hold on it and release the entry we alloc'ed. 473 */ 474 SOCKPARAMS_INC_REF(sp); 475 rw_exit(&sockconf_lock); 476 477 sockparams_destroy(newsp); 478 } else { 479 *errorp = sof_sockparams_init(newsp); 480 if (*errorp != 0) { 481 rw_exit(&sockconf_lock); 482 sockparams_destroy(newsp); 483 return (NULL); 484 } 485 SOCKPARAMS_INC_REF(newsp); 486 list_insert_tail(&sp_ephem_list, newsp); 487 rw_exit(&sockconf_lock); 488 489 sp = newsp; 490 } 491 ASSERT(*errorp == 0); 492 493 return (sp); 494 } 495 } 496 497 struct sockparams * 498 sockparams_hold_ephemeral_bydev(int family, int type, int protocol, 499 const char *dev, int kmflag, int *errorp) 500 { 501 return (sockparams_hold_ephemeral(family, type, protocol, dev, B_TRUE, 502 kmflag, errorp)); 503 } 504 505 struct sockparams * 506 sockparams_hold_ephemeral_bymod(int family, int type, int protocol, 507 const char *mod, int kmflag, int *errorp) 508 { 509 return (sockparams_hold_ephemeral(family, type, protocol, mod, B_FALSE, 510 kmflag, errorp)); 511 } 512 513 /* 514 * Called when the last socket using the ephemeral entry is dropping 515 * its' reference. To maintain lock order we must drop the sockparams 516 * lock before calling this function. As a result, a new reference 517 * might be placed on the entry, in which case there is nothing to 518 * do. However, if ref count goes to zero, we delete the entry. 519 */ 520 void 521 sockparams_ephemeral_drop_last_ref(struct sockparams *sp) 522 { 523 ASSERT(sp->sp_flags & SOCKPARAMS_EPHEMERAL); 524 ASSERT(MUTEX_NOT_HELD(&sp->sp_lock)); 525 526 rw_enter(&sockconf_lock, RW_WRITER); 527 mutex_enter(&sp->sp_lock); 528 529 if (--sp->sp_refcnt == 0) { 530 list_remove(&sp_ephem_list, sp); 531 mutex_exit(&sp->sp_lock); 532 rw_exit(&sockconf_lock); 533 534 sockparams_destroy(sp); 535 } else { 536 mutex_exit(&sp->sp_lock); 537 rw_exit(&sockconf_lock); 538 } 539 } 540 541 /* 542 * sockparams_add(struct sockparams *sp) 543 * 544 * Tries to add the given sockparams entry to the global list. 545 * 546 * Arguments: 547 * sp: the sockparms entry to add 548 * 549 * Returns: 550 * On success 0, but if an entry already exists, then EEXIST 551 * is returned. 552 * 553 * Locking: 554 * The caller can not be holding sockconf_lock. 555 */ 556 int 557 sockparams_add(struct sockparams *sp) 558 { 559 int error; 560 561 ASSERT(!(sp->sp_flags & SOCKPARAMS_EPHEMERAL)); 562 563 rw_enter(&sockconf_lock, RW_WRITER); 564 if (sockparams_find(&sphead, sp->sp_family, sp->sp_type, 565 sp->sp_protocol, B_TRUE, NULL) != 0) { 566 rw_exit(&sockconf_lock); 567 return (EEXIST); 568 } else { 569 /* 570 * Unique sockparams entry, so init the kstats. 571 */ 572 sockparams_kstat_init(sp); 573 574 /* 575 * Before making the socket type available we must make 576 * sure that interested socket filters are aware of it. 577 */ 578 error = sof_sockparams_init(sp); 579 if (error != 0) { 580 rw_exit(&sockconf_lock); 581 return (error); 582 } 583 list_insert_tail(&sphead, sp); 584 rw_exit(&sockconf_lock); 585 return (0); 586 } 587 } 588 589 /* 590 * sockparams_delete(int family, int type, int protocol) 591 * 592 * Marks the sockparams entry for a specific family, type and protocol 593 * for deletion. The entry is removed from the list and destroyed 594 * if no one is holding a reference to it. 595 * 596 * Arguments: 597 * family, type, protocol: the socket type that should be removed. 598 * 599 * Returns: 600 * On success 0, otherwise ENXIO. 601 * 602 * Locking: 603 * Caller can not be holding sockconf_lock or the sp_lock of 604 * any sockparams entry. 605 */ 606 int 607 sockparams_delete(int family, int type, int protocol) 608 { 609 struct sockparams *sp; 610 611 rw_enter(&sockconf_lock, RW_WRITER); 612 sp = sockparams_find(&sphead, family, type, protocol, B_TRUE, NULL); 613 614 if (sp != NULL) { 615 /* 616 * If no one is holding a reference to the entry, then 617 * we go ahead and remove it from the list and then 618 * destroy it. 619 */ 620 mutex_enter(&sp->sp_lock); 621 if (sp->sp_refcnt != 0) { 622 mutex_exit(&sp->sp_lock); 623 rw_exit(&sockconf_lock); 624 return (EBUSY); 625 } 626 mutex_exit(&sp->sp_lock); 627 /* Delete the sockparams entry. */ 628 list_remove(&sphead, sp); 629 rw_exit(&sockconf_lock); 630 631 sockparams_destroy(sp); 632 return (0); 633 } else { 634 rw_exit(&sockconf_lock); 635 return (ENXIO); 636 } 637 } 638 639 640 /* 641 * solookup(int family, int type, int protocol, struct sockparams **spp) 642 * 643 * Lookup an entry in the sockparams list based on the triple. The returned 644 * entry either exactly match the given tuple, or it is the 'default' entry 645 * for the given <family, type>. A default entry is on with a protocol 646 * value of zero. 647 * 648 * Arguments: 649 * family, type, protocol: tuple to search for 650 * spp: Value-return argument 651 * 652 * Returns: 653 * If an entry is found, 0 is returned and *spp is set to point to the 654 * entry. In case an entry is not found, *spp is set to NULL, and an 655 * error code is returned. The errors are (in decreasing precedence): 656 * EAFNOSUPPORT - address family not in list 657 * EPROTONOSUPPORT - address family supported but not protocol. 658 * EPROTOTYPE - address family and protocol supported but not socket type. 659 * 660 * TODO: should use ddi_modopen()/ddi_modclose() 661 */ 662 int 663 solookup(int family, int type, int protocol, struct sockparams **spp) 664 { 665 struct sockparams *sp = NULL; 666 int error = 0; 667 668 *spp = NULL; 669 rw_enter(&sockconf_lock, RW_READER); 670 671 /* 672 * Search the sockparams list for an appropiate entry. 673 * Hopefully we find an entry that match the exact family, 674 * type and protocol specified by the user, in which case 675 * we return that entry. However, we also keep track of 676 * the default entry for a specific family and type, the 677 * entry of which would have a protocol value of 0. 678 */ 679 sp = sockparams_find(&sphead, family, type, protocol, B_TRUE, NULL); 680 681 if (sp == NULL) { 682 int found = 0; 683 684 /* Determine correct error code */ 685 for (sp = list_head(&sphead); sp != NULL; 686 sp = list_next(&sphead, sp)) { 687 if (sp->sp_family == family && found < 1) 688 found = 1; 689 if (sp->sp_family == family && 690 sp->sp_protocol == protocol && found < 2) 691 found = 2; 692 } 693 rw_exit(&sockconf_lock); 694 switch (found) { 695 case 0: 696 error = EAFNOSUPPORT; 697 break; 698 case 1: 699 error = EPROTONOSUPPORT; 700 break; 701 case 2: 702 error = EPROTOTYPE; 703 break; 704 } 705 return (error); 706 } 707 708 /* 709 * An entry was found. 710 * 711 * We put a hold on the entry early on, so if the 712 * sockmod is not loaded, and we have to exit 713 * sockconf_lock to call modload(), we know that the 714 * sockparams entry wont go away. That way we don't 715 * have to look up the entry once we come back from 716 * modload(). 717 */ 718 SOCKPARAMS_INC_REF(sp); 719 rw_exit(&sockconf_lock); 720 721 if (sp->sp_smod_info == NULL) { 722 smod_info_t *smod = smod_lookup_byname(sp->sp_smod_name); 723 724 if (smod == NULL) { 725 /* 726 * We put a hold on the sockparams entry 727 * earlier, hoping everything would work out. 728 * That obviously did not happen, so release 729 * the hold here. 730 */ 731 SOCKPARAMS_DEC_REF(sp); 732 /* 733 * We should probably mark the sockparams as 734 * "bad", and redo the lookup skipping the 735 * "bad" entries. I.e., sp->sp_mod_state |= BAD, 736 * return (solookup(...)) 737 */ 738 return (ENXIO); 739 } 740 /* 741 * Another thread might have already looked up the socket 742 * module for this entry. In that case we need to drop our 743 * reference to `smod' to ensure that the sockparams entry 744 * only holds one reference. 745 */ 746 mutex_enter(&sp->sp_lock); 747 if (sp->sp_smod_info == NULL) 748 sp->sp_smod_info = smod; 749 else 750 SMOD_DEC_REF(smod, sp->sp_smod_name); 751 mutex_exit(&sp->sp_lock); 752 } 753 754 /* 755 * Alright, we have a valid sockparams entry. 756 */ 757 *spp = sp; 758 return (0); 759 } 760 761 /* 762 * Called when filter entry `ent' is going away. All sockparams remove 763 * their references to `ent'. 764 */ 765 static void 766 sockparams_filter_cleanup_impl(sof_entry_t *ent, list_t *list) 767 { 768 struct sockparams *sp; 769 sp_filter_t *fil; 770 list_t *flist; 771 772 ASSERT(RW_WRITE_HELD(&sockconf_lock)); 773 774 for (sp = list_head(list); sp != NULL; 775 sp = list_next(list, sp)) { 776 flist = (ent->sofe_flags & SOFEF_AUTO) ? 777 &sp->sp_auto_filters : &sp->sp_prog_filters; 778 for (fil = list_head(flist); fil != NULL; 779 fil = list_next(flist, fil)) { 780 if (fil->spf_filter == ent) { 781 list_remove(flist, fil); 782 kmem_free(fil, sizeof (sp_filter_t)); 783 break; 784 } 785 } 786 } 787 } 788 void 789 sockparams_filter_cleanup(sof_entry_t *ent) 790 { 791 sockparams_filter_cleanup_impl(ent, &sphead); 792 sockparams_filter_cleanup_impl(ent, &sp_ephem_list); 793 } 794 795 /* 796 * New filter is being added; walk the list of sockparams to see if 797 * the filter is interested in any of the sockparams. 798 */ 799 static int 800 sockparams_new_filter_impl(sof_entry_t *ent, list_t *list) 801 { 802 struct sockparams *sp; 803 int err; 804 805 ASSERT(RW_WRITE_HELD(&sockconf_lock)); 806 807 for (sp = list_head(list); sp != NULL; 808 sp = list_next(list, sp)) { 809 if ((err = sof_entry_proc_sockparams(ent, sp)) != 0) { 810 sockparams_filter_cleanup(ent); 811 return (err); 812 } 813 } 814 return (0); 815 } 816 817 int 818 sockparams_new_filter(sof_entry_t *ent) 819 { 820 int error; 821 822 if ((error = sockparams_new_filter_impl(ent, &sphead)) != 0) 823 return (error); 824 825 if ((error = sockparams_new_filter_impl(ent, &sp_ephem_list)) != 0) 826 sockparams_filter_cleanup_impl(ent, &sphead); 827 return (error); 828 } 829 830 /* 831 * Setup and return socket configuration table. 832 */ 833 int 834 sockparams_copyout_socktable(uintptr_t socktable) 835 { 836 STRUCT_DECL(sockconfig_socktable, st); 837 struct sockparams *sp; 838 uint_t count; 839 uint_t i = 0; 840 int ret = 0; 841 sockconfig_socktable_entry_t *se; 842 843 STRUCT_INIT(st, get_udatamodel()); 844 if (ddi_copyin((void *)socktable, STRUCT_BUF(st), 845 STRUCT_SIZE(st), 0) != 0) 846 return (EFAULT); 847 848 rw_enter(&sockconf_lock, RW_READER); 849 850 count = STRUCT_FGET(st, num_of_entries); 851 /* 852 * If the output buffer is size zero, just copy out the count. 853 */ 854 if (count == 0) { 855 for (sp = list_head(&sphead); sp != NULL; 856 sp = list_next(&sphead, sp)) { 857 count++; 858 } 859 STRUCT_FSET(st, num_of_entries, count); 860 861 rw_exit(&sockconf_lock); 862 if (ddi_copyout(STRUCT_BUF(st), (void *)socktable, 863 STRUCT_SIZE(st), 0) != 0) 864 return (EFAULT); 865 866 return (0); 867 } 868 869 se = kmem_alloc(count * sizeof (sockconfig_socktable_entry_t), 870 KM_SLEEP); 871 for (sp = list_head(&sphead); sp != NULL; 872 sp = list_next(&sphead, sp)) { 873 if (i >= count) { 874 /* 875 * Return if the number of entries has changed. 876 */ 877 rw_exit(&sockconf_lock); 878 kmem_free(se, 879 count * sizeof (sockconfig_socktable_entry_t)); 880 return (EAGAIN); 881 } 882 se[i].se_family = sp->sp_family; 883 se[i].se_type = sp->sp_type; 884 se[i].se_protocol = sp->sp_protocol; 885 (void) strncpy(se[i].se_modname, sp->sp_smod_name, 886 MODMAXNAMELEN); 887 if (sp->sp_sdev_info.sd_devpath != NULL) 888 (void) strncpy(se[i].se_strdev, 889 sp->sp_sdev_info.sd_devpath, MAXPATHLEN); 890 se[i].se_refcnt = sp->sp_refcnt; 891 se[i].se_flags = sp->sp_flags; 892 i++; 893 } 894 rw_exit(&sockconf_lock); 895 if (ddi_copyout(se, STRUCT_FGETP(st, st_entries), 896 i * sizeof (sockconfig_socktable_entry_t), 0) != 0) 897 ret = EFAULT; 898 899 STRUCT_FSET(st, num_of_entries, i); 900 kmem_free(se, count * sizeof (sockconfig_socktable_entry_t)); 901 902 if (ddi_copyout(STRUCT_BUF(st), (void *)socktable, 903 STRUCT_SIZE(st), 0) != 0) 904 ret = EFAULT; 905 906 return (ret); 907 } 908