1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/t_lock.h> 32 #include <sys/param.h> 33 #include <sys/cmn_err.h> 34 #include <sys/cred.h> 35 #include <sys/priv.h> 36 #include <sys/debug.h> 37 #include <sys/errno.h> 38 #include <sys/inline.h> 39 #include <sys/kmem.h> 40 #include <sys/mman.h> 41 #include <sys/proc.h> 42 #include <sys/brand.h> 43 #include <sys/sobject.h> 44 #include <sys/sysmacros.h> 45 #include <sys/systm.h> 46 #include <sys/uio.h> 47 #include <sys/var.h> 48 #include <sys/vfs.h> 49 #include <sys/vnode.h> 50 #include <sys/session.h> 51 #include <sys/pcb.h> 52 #include <sys/signal.h> 53 #include <sys/user.h> 54 #include <sys/disp.h> 55 #include <sys/class.h> 56 #include <sys/ts.h> 57 #include <sys/bitmap.h> 58 #include <sys/poll.h> 59 #include <sys/shm_impl.h> 60 #include <sys/fault.h> 61 #include <sys/syscall.h> 62 #include <sys/procfs.h> 63 #include <sys/processor.h> 64 #include <sys/cpuvar.h> 65 #include <sys/copyops.h> 66 #include <sys/time.h> 67 #include <sys/msacct.h> 68 #include <vm/as.h> 69 #include <vm/rm.h> 70 #include <vm/seg.h> 71 #include <vm/seg_vn.h> 72 #include <vm/seg_dev.h> 73 #include <vm/seg_spt.h> 74 #include <vm/page.h> 75 #include <sys/vmparam.h> 76 #include <sys/swap.h> 77 #include <fs/proc/prdata.h> 78 #include <sys/task.h> 79 #include <sys/project.h> 80 #include <sys/contract_impl.h> 81 #include <sys/contract/process.h> 82 #include <sys/contract/process_impl.h> 83 #include <sys/schedctl.h> 84 #include <sys/pool.h> 85 #include <sys/zone.h> 86 #include <sys/atomic.h> 87 #include <sys/sdt.h> 88 89 #define MAX_ITERS_SPIN 5 90 91 typedef struct prpagev { 92 uint_t *pg_protv; /* vector of page permissions */ 93 char *pg_incore; /* vector of incore flags */ 94 size_t pg_npages; /* number of pages in protv and incore */ 95 ulong_t pg_pnbase; /* pn within segment of first protv element */ 96 } prpagev_t; 97 98 size_t pagev_lim = 256 * 1024; /* limit on number of pages in prpagev_t */ 99 100 extern struct seg_ops segdev_ops; /* needs a header file */ 101 extern struct seg_ops segspt_shmops; /* needs a header file */ 102 103 static int set_watched_page(proc_t *, caddr_t, caddr_t, ulong_t, ulong_t); 104 static void clear_watched_page(proc_t *, caddr_t, caddr_t, ulong_t); 105 106 /* 107 * Choose an lwp from the complete set of lwps for the process. 108 * This is called for any operation applied to the process 109 * file descriptor that requires an lwp to operate upon. 110 * 111 * Returns a pointer to the thread for the selected LWP, 112 * and with the dispatcher lock held for the thread. 113 * 114 * The algorithm for choosing an lwp is critical for /proc semantics; 115 * don't touch this code unless you know all of the implications. 116 */ 117 kthread_t * 118 prchoose(proc_t *p) 119 { 120 kthread_t *t; 121 kthread_t *t_onproc = NULL; /* running on processor */ 122 kthread_t *t_run = NULL; /* runnable, on disp queue */ 123 kthread_t *t_sleep = NULL; /* sleeping */ 124 kthread_t *t_hold = NULL; /* sleeping, performing hold */ 125 kthread_t *t_susp = NULL; /* suspended stop */ 126 kthread_t *t_jstop = NULL; /* jobcontrol stop, w/o directed stop */ 127 kthread_t *t_jdstop = NULL; /* jobcontrol stop with directed stop */ 128 kthread_t *t_req = NULL; /* requested stop */ 129 kthread_t *t_istop = NULL; /* event-of-interest stop */ 130 kthread_t *t_dtrace = NULL; /* DTrace stop */ 131 132 ASSERT(MUTEX_HELD(&p->p_lock)); 133 134 /* 135 * If the agent lwp exists, it takes precedence over all others. 136 */ 137 if ((t = p->p_agenttp) != NULL) { 138 thread_lock(t); 139 return (t); 140 } 141 142 if ((t = p->p_tlist) == NULL) /* start at the head of the list */ 143 return (t); 144 do { /* for eacn lwp in the process */ 145 if (VSTOPPED(t)) { /* virtually stopped */ 146 if (t_req == NULL) 147 t_req = t; 148 continue; 149 } 150 151 thread_lock(t); /* make sure thread is in good state */ 152 switch (t->t_state) { 153 default: 154 panic("prchoose: bad thread state %d, thread 0x%p", 155 t->t_state, (void *)t); 156 /*NOTREACHED*/ 157 case TS_SLEEP: 158 /* this is filthy */ 159 if (t->t_wchan == (caddr_t)&p->p_holdlwps && 160 t->t_wchan0 == NULL) { 161 if (t_hold == NULL) 162 t_hold = t; 163 } else { 164 if (t_sleep == NULL) 165 t_sleep = t; 166 } 167 break; 168 case TS_RUN: 169 case TS_WAIT: 170 if (t_run == NULL) 171 t_run = t; 172 break; 173 case TS_ONPROC: 174 if (t_onproc == NULL) 175 t_onproc = t; 176 break; 177 case TS_ZOMB: /* last possible choice */ 178 break; 179 case TS_STOPPED: 180 switch (t->t_whystop) { 181 case PR_SUSPENDED: 182 if (t_susp == NULL) 183 t_susp = t; 184 break; 185 case PR_JOBCONTROL: 186 if (t->t_proc_flag & TP_PRSTOP) { 187 if (t_jdstop == NULL) 188 t_jdstop = t; 189 } else { 190 if (t_jstop == NULL) 191 t_jstop = t; 192 } 193 break; 194 case PR_REQUESTED: 195 if (t->t_dtrace_stop && t_dtrace == NULL) 196 t_dtrace = t; 197 else if (t_req == NULL) 198 t_req = t; 199 break; 200 case PR_SYSENTRY: 201 case PR_SYSEXIT: 202 case PR_SIGNALLED: 203 case PR_FAULTED: 204 /* 205 * Make an lwp calling exit() be the 206 * last lwp seen in the process. 207 */ 208 if (t_istop == NULL || 209 (t_istop->t_whystop == PR_SYSENTRY && 210 t_istop->t_whatstop == SYS_exit)) 211 t_istop = t; 212 break; 213 case PR_CHECKPOINT: /* can't happen? */ 214 break; 215 default: 216 panic("prchoose: bad t_whystop %d, thread 0x%p", 217 t->t_whystop, (void *)t); 218 /*NOTREACHED*/ 219 } 220 break; 221 } 222 thread_unlock(t); 223 } while ((t = t->t_forw) != p->p_tlist); 224 225 if (t_onproc) 226 t = t_onproc; 227 else if (t_run) 228 t = t_run; 229 else if (t_sleep) 230 t = t_sleep; 231 else if (t_jstop) 232 t = t_jstop; 233 else if (t_jdstop) 234 t = t_jdstop; 235 else if (t_istop) 236 t = t_istop; 237 else if (t_dtrace) 238 t = t_dtrace; 239 else if (t_req) 240 t = t_req; 241 else if (t_hold) 242 t = t_hold; 243 else if (t_susp) 244 t = t_susp; 245 else /* TS_ZOMB */ 246 t = p->p_tlist; 247 248 if (t != NULL) 249 thread_lock(t); 250 return (t); 251 } 252 253 /* 254 * Wakeup anyone sleeping on the /proc vnode for the process/lwp to stop. 255 * Also call pollwakeup() if any lwps are waiting in poll() for POLLPRI 256 * on the /proc file descriptor. Called from stop() when a traced 257 * process stops on an event of interest. Also called from exit() 258 * and prinvalidate() to indicate POLLHUP and POLLERR respectively. 259 */ 260 void 261 prnotify(struct vnode *vp) 262 { 263 prcommon_t *pcp = VTOP(vp)->pr_common; 264 265 mutex_enter(&pcp->prc_mutex); 266 cv_broadcast(&pcp->prc_wait); 267 mutex_exit(&pcp->prc_mutex); 268 if (pcp->prc_flags & PRC_POLL) { 269 /* 270 * We call pollwakeup() with POLLHUP to ensure that 271 * the pollers are awakened even if they are polling 272 * for nothing (i.e., waiting for the process to exit). 273 * This enables the use of the PRC_POLL flag for optimization 274 * (we can turn off PRC_POLL only if we know no pollers remain). 275 */ 276 pcp->prc_flags &= ~PRC_POLL; 277 pollwakeup(&pcp->prc_pollhead, POLLHUP); 278 } 279 } 280 281 /* called immediately below, in prfree() */ 282 static void 283 prfreenotify(vnode_t *vp) 284 { 285 prnode_t *pnp; 286 prcommon_t *pcp; 287 288 while (vp != NULL) { 289 pnp = VTOP(vp); 290 pcp = pnp->pr_common; 291 ASSERT(pcp->prc_thread == NULL); 292 pcp->prc_proc = NULL; 293 /* 294 * We can't call prnotify() here because we are holding 295 * pidlock. We assert that there is no need to. 296 */ 297 mutex_enter(&pcp->prc_mutex); 298 cv_broadcast(&pcp->prc_wait); 299 mutex_exit(&pcp->prc_mutex); 300 ASSERT(!(pcp->prc_flags & PRC_POLL)); 301 302 vp = pnp->pr_next; 303 pnp->pr_next = NULL; 304 } 305 } 306 307 /* 308 * Called from a hook in freeproc() when a traced process is removed 309 * from the process table. The proc-table pointers of all associated 310 * /proc vnodes are cleared to indicate that the process has gone away. 311 */ 312 void 313 prfree(proc_t *p) 314 { 315 uint_t slot = p->p_slot; 316 317 ASSERT(MUTEX_HELD(&pidlock)); 318 319 /* 320 * Block the process against /proc so it can be freed. 321 * It cannot be freed while locked by some controlling process. 322 * Lock ordering: 323 * pidlock -> pr_pidlock -> p->p_lock -> pcp->prc_mutex 324 */ 325 mutex_enter(&pr_pidlock); /* protects pcp->prc_proc */ 326 mutex_enter(&p->p_lock); 327 while (p->p_proc_flag & P_PR_LOCK) { 328 mutex_exit(&pr_pidlock); 329 cv_wait(&pr_pid_cv[slot], &p->p_lock); 330 mutex_exit(&p->p_lock); 331 mutex_enter(&pr_pidlock); 332 mutex_enter(&p->p_lock); 333 } 334 335 ASSERT(p->p_tlist == NULL); 336 337 prfreenotify(p->p_plist); 338 p->p_plist = NULL; 339 340 prfreenotify(p->p_trace); 341 p->p_trace = NULL; 342 343 /* 344 * We broadcast to wake up everyone waiting for this process. 345 * No one can reach this process from this point on. 346 */ 347 cv_broadcast(&pr_pid_cv[slot]); 348 349 mutex_exit(&p->p_lock); 350 mutex_exit(&pr_pidlock); 351 } 352 353 /* 354 * Called from a hook in exit() when a traced process is becoming a zombie. 355 */ 356 void 357 prexit(proc_t *p) 358 { 359 ASSERT(MUTEX_HELD(&p->p_lock)); 360 361 if (pr_watch_active(p)) { 362 pr_free_watchpoints(p); 363 watch_disable(curthread); 364 } 365 /* pr_free_watched_pages() is called in exit(), after dropping p_lock */ 366 if (p->p_trace) { 367 VTOP(p->p_trace)->pr_common->prc_flags |= PRC_DESTROY; 368 prnotify(p->p_trace); 369 } 370 cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */ 371 } 372 373 /* 374 * Called when a thread calls lwp_exit(). 375 */ 376 void 377 prlwpexit(kthread_t *t) 378 { 379 vnode_t *vp; 380 prnode_t *pnp; 381 prcommon_t *pcp; 382 proc_t *p = ttoproc(t); 383 lwpent_t *lep = p->p_lwpdir[t->t_dslot].ld_entry; 384 385 ASSERT(t == curthread); 386 ASSERT(MUTEX_HELD(&p->p_lock)); 387 388 /* 389 * The process must be blocked against /proc to do this safely. 390 * The lwp must not disappear while the process is marked P_PR_LOCK. 391 * It is the caller's responsibility to have called prbarrier(p). 392 */ 393 ASSERT(!(p->p_proc_flag & P_PR_LOCK)); 394 395 for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) { 396 pnp = VTOP(vp); 397 pcp = pnp->pr_common; 398 if (pcp->prc_thread == t) { 399 pcp->prc_thread = NULL; 400 pcp->prc_flags |= PRC_DESTROY; 401 } 402 } 403 404 for (vp = lep->le_trace; vp != NULL; vp = pnp->pr_next) { 405 pnp = VTOP(vp); 406 pcp = pnp->pr_common; 407 pcp->prc_thread = NULL; 408 pcp->prc_flags |= PRC_DESTROY; 409 prnotify(vp); 410 } 411 412 if (p->p_trace) 413 prnotify(p->p_trace); 414 } 415 416 /* 417 * Called when a zombie thread is joined or when a 418 * detached lwp exits. Called from lwp_hash_out(). 419 */ 420 void 421 prlwpfree(proc_t *p, lwpent_t *lep) 422 { 423 vnode_t *vp; 424 prnode_t *pnp; 425 prcommon_t *pcp; 426 427 ASSERT(MUTEX_HELD(&p->p_lock)); 428 429 /* 430 * The process must be blocked against /proc to do this safely. 431 * The lwp must not disappear while the process is marked P_PR_LOCK. 432 * It is the caller's responsibility to have called prbarrier(p). 433 */ 434 ASSERT(!(p->p_proc_flag & P_PR_LOCK)); 435 436 vp = lep->le_trace; 437 lep->le_trace = NULL; 438 while (vp) { 439 prnotify(vp); 440 pnp = VTOP(vp); 441 pcp = pnp->pr_common; 442 ASSERT(pcp->prc_thread == NULL && 443 (pcp->prc_flags & PRC_DESTROY)); 444 pcp->prc_tslot = -1; 445 vp = pnp->pr_next; 446 pnp->pr_next = NULL; 447 } 448 449 if (p->p_trace) 450 prnotify(p->p_trace); 451 } 452 453 /* 454 * Called from a hook in exec() when a thread starts exec(). 455 */ 456 void 457 prexecstart(void) 458 { 459 proc_t *p = ttoproc(curthread); 460 klwp_t *lwp = ttolwp(curthread); 461 462 /* 463 * The P_PR_EXEC flag blocks /proc operations for 464 * the duration of the exec(). 465 * We can't start exec() while the process is 466 * locked by /proc, so we call prbarrier(). 467 * lwp_nostop keeps the process from being stopped 468 * via job control for the duration of the exec(). 469 */ 470 471 ASSERT(MUTEX_HELD(&p->p_lock)); 472 prbarrier(p); 473 lwp->lwp_nostop++; 474 p->p_proc_flag |= P_PR_EXEC; 475 } 476 477 /* 478 * Called from a hook in exec() when a thread finishes exec(). 479 * The thread may or may not have succeeded. Some other thread 480 * may have beat it to the punch. 481 */ 482 void 483 prexecend(void) 484 { 485 proc_t *p = ttoproc(curthread); 486 klwp_t *lwp = ttolwp(curthread); 487 vnode_t *vp; 488 prnode_t *pnp; 489 prcommon_t *pcp; 490 model_t model = p->p_model; 491 id_t tid = curthread->t_tid; 492 int tslot = curthread->t_dslot; 493 494 ASSERT(MUTEX_HELD(&p->p_lock)); 495 496 lwp->lwp_nostop--; 497 if (p->p_flag & SEXITLWPS) { 498 /* 499 * We are on our way to exiting because some 500 * other thread beat us in the race to exec(). 501 * Don't clear the P_PR_EXEC flag in this case. 502 */ 503 return; 504 } 505 506 /* 507 * Wake up anyone waiting in /proc for the process to complete exec(). 508 */ 509 p->p_proc_flag &= ~P_PR_EXEC; 510 if ((vp = p->p_trace) != NULL) { 511 pcp = VTOP(vp)->pr_common; 512 mutex_enter(&pcp->prc_mutex); 513 cv_broadcast(&pcp->prc_wait); 514 mutex_exit(&pcp->prc_mutex); 515 for (; vp != NULL; vp = pnp->pr_next) { 516 pnp = VTOP(vp); 517 pnp->pr_common->prc_datamodel = model; 518 } 519 } 520 if ((vp = p->p_lwpdir[tslot].ld_entry->le_trace) != NULL) { 521 /* 522 * We dealt with the process common above. 523 */ 524 ASSERT(p->p_trace != NULL); 525 pcp = VTOP(vp)->pr_common; 526 mutex_enter(&pcp->prc_mutex); 527 cv_broadcast(&pcp->prc_wait); 528 mutex_exit(&pcp->prc_mutex); 529 for (; vp != NULL; vp = pnp->pr_next) { 530 pnp = VTOP(vp); 531 pcp = pnp->pr_common; 532 pcp->prc_datamodel = model; 533 pcp->prc_tid = tid; 534 pcp->prc_tslot = tslot; 535 } 536 } 537 } 538 539 /* 540 * Called from a hook in relvm() just before freeing the address space. 541 * We free all the watched areas now. 542 */ 543 void 544 prrelvm(void) 545 { 546 proc_t *p = ttoproc(curthread); 547 548 mutex_enter(&p->p_lock); 549 prbarrier(p); /* block all other /proc operations */ 550 if (pr_watch_active(p)) { 551 pr_free_watchpoints(p); 552 watch_disable(curthread); 553 } 554 mutex_exit(&p->p_lock); 555 pr_free_watched_pages(p); 556 } 557 558 /* 559 * Called from hooks in exec-related code when a traced process 560 * attempts to exec(2) a setuid/setgid program or an unreadable 561 * file. Rather than fail the exec we invalidate the associated 562 * /proc vnodes so that subsequent attempts to use them will fail. 563 * 564 * All /proc vnodes, except directory vnodes, are retained on a linked 565 * list (rooted at p_plist in the process structure) until last close. 566 * 567 * A controlling process must re-open the /proc files in order to 568 * regain control. 569 */ 570 void 571 prinvalidate(struct user *up) 572 { 573 kthread_t *t = curthread; 574 proc_t *p = ttoproc(t); 575 vnode_t *vp; 576 prnode_t *pnp; 577 int writers = 0; 578 579 mutex_enter(&p->p_lock); 580 prbarrier(p); /* block all other /proc operations */ 581 582 /* 583 * At this moment, there can be only one lwp in the process. 584 */ 585 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0); 586 587 /* 588 * Invalidate any currently active /proc vnodes. 589 */ 590 for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) { 591 pnp = VTOP(vp); 592 switch (pnp->pr_type) { 593 case PR_PSINFO: /* these files can read by anyone */ 594 case PR_LPSINFO: 595 case PR_LWPSINFO: 596 case PR_LWPDIR: 597 case PR_LWPIDDIR: 598 case PR_USAGE: 599 case PR_LUSAGE: 600 case PR_LWPUSAGE: 601 break; 602 default: 603 pnp->pr_flags |= PR_INVAL; 604 break; 605 } 606 } 607 /* 608 * Wake up anyone waiting for the process or lwp. 609 * p->p_trace is guaranteed to be non-NULL if there 610 * are any open /proc files for this process. 611 */ 612 if ((vp = p->p_trace) != NULL) { 613 prcommon_t *pcp = VTOP(vp)->pr_pcommon; 614 615 prnotify(vp); 616 /* 617 * Are there any writers? 618 */ 619 if ((writers = pcp->prc_writers) != 0) { 620 /* 621 * Clear the exclusive open flag (old /proc interface). 622 * Set prc_selfopens equal to prc_writers so that 623 * the next O_EXCL|O_WRITE open will succeed 624 * even with existing (though invalid) writers. 625 * prclose() must decrement prc_selfopens when 626 * the invalid files are closed. 627 */ 628 pcp->prc_flags &= ~PRC_EXCL; 629 ASSERT(pcp->prc_selfopens <= writers); 630 pcp->prc_selfopens = writers; 631 } 632 } 633 vp = p->p_lwpdir[t->t_dslot].ld_entry->le_trace; 634 while (vp != NULL) { 635 /* 636 * We should not invalidate the lwpiddir vnodes, 637 * but the necessities of maintaining the old 638 * ioctl()-based version of /proc require it. 639 */ 640 pnp = VTOP(vp); 641 pnp->pr_flags |= PR_INVAL; 642 prnotify(vp); 643 vp = pnp->pr_next; 644 } 645 646 /* 647 * If any tracing flags are in effect and any vnodes are open for 648 * writing then set the requested-stop and run-on-last-close flags. 649 * Otherwise, clear all tracing flags. 650 */ 651 t->t_proc_flag &= ~TP_PAUSE; 652 if ((p->p_proc_flag & P_PR_TRACE) && writers) { 653 t->t_proc_flag |= TP_PRSTOP; 654 aston(t); /* so ISSIG will see the flag */ 655 p->p_proc_flag |= P_PR_RUNLCL; 656 } else { 657 premptyset(&up->u_entrymask); /* syscalls */ 658 premptyset(&up->u_exitmask); 659 up->u_systrap = 0; 660 premptyset(&p->p_sigmask); /* signals */ 661 premptyset(&p->p_fltmask); /* faults */ 662 t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP|TP_STOPPING); 663 p->p_proc_flag &= ~(P_PR_RUNLCL|P_PR_KILLCL|P_PR_TRACE); 664 prnostep(ttolwp(t)); 665 } 666 667 mutex_exit(&p->p_lock); 668 } 669 670 /* 671 * Acquire the controlled process's p_lock and mark it P_PR_LOCK. 672 * Return with pr_pidlock held in all cases. 673 * Return with p_lock held if the the process still exists. 674 * Return value is the process pointer if the process still exists, else NULL. 675 * If we lock the process, give ourself kernel priority to avoid deadlocks; 676 * this is undone in prunlock(). 677 */ 678 proc_t * 679 pr_p_lock(prnode_t *pnp) 680 { 681 proc_t *p; 682 prcommon_t *pcp; 683 684 mutex_enter(&pr_pidlock); 685 if ((pcp = pnp->pr_pcommon) == NULL || (p = pcp->prc_proc) == NULL) 686 return (NULL); 687 mutex_enter(&p->p_lock); 688 while (p->p_proc_flag & P_PR_LOCK) { 689 /* 690 * This cv/mutex pair is persistent even if 691 * the process disappears while we sleep. 692 */ 693 kcondvar_t *cv = &pr_pid_cv[p->p_slot]; 694 kmutex_t *mp = &p->p_lock; 695 696 mutex_exit(&pr_pidlock); 697 cv_wait(cv, mp); 698 mutex_exit(mp); 699 mutex_enter(&pr_pidlock); 700 if (pcp->prc_proc == NULL) 701 return (NULL); 702 ASSERT(p == pcp->prc_proc); 703 mutex_enter(&p->p_lock); 704 } 705 p->p_proc_flag |= P_PR_LOCK; 706 THREAD_KPRI_REQUEST(); 707 return (p); 708 } 709 710 /* 711 * Lock the target process by setting P_PR_LOCK and grabbing p->p_lock. 712 * This prevents any lwp of the process from disappearing and 713 * blocks most operations that a process can perform on itself. 714 * Returns 0 on success, a non-zero error number on failure. 715 * 716 * 'zdisp' is ZYES or ZNO to indicate whether prlock() should succeed when 717 * the subject process is a zombie (ZYES) or fail for zombies (ZNO). 718 * 719 * error returns: 720 * ENOENT: process or lwp has disappeared or process is exiting 721 * (or has become a zombie and zdisp == ZNO). 722 * EAGAIN: procfs vnode has become invalid. 723 * EINTR: signal arrived while waiting for exec to complete. 724 */ 725 int 726 prlock(prnode_t *pnp, int zdisp) 727 { 728 prcommon_t *pcp; 729 proc_t *p; 730 731 again: 732 pcp = pnp->pr_common; 733 p = pr_p_lock(pnp); 734 mutex_exit(&pr_pidlock); 735 736 /* 737 * Return ENOENT immediately if there is no process. 738 */ 739 if (p == NULL) 740 return (ENOENT); 741 742 ASSERT(p == pcp->prc_proc && p->p_stat != 0 && p->p_stat != SIDL); 743 744 /* 745 * Return ENOENT if process entered zombie state or is exiting 746 * and the 'zdisp' flag is set to ZNO indicating not to lock zombies. 747 */ 748 if (zdisp == ZNO && 749 ((pcp->prc_flags & PRC_DESTROY) || (p->p_flag & SEXITING))) { 750 prunlock(pnp); 751 return (ENOENT); 752 } 753 754 /* 755 * If lwp-specific, check to see if lwp has disappeared. 756 */ 757 if (pcp->prc_flags & PRC_LWP) { 758 if ((zdisp == ZNO && (pcp->prc_flags & PRC_DESTROY)) || 759 pcp->prc_tslot == -1) { 760 prunlock(pnp); 761 return (ENOENT); 762 } 763 } 764 765 /* 766 * Return EAGAIN if we have encountered a security violation. 767 * (The process exec'd a set-id or unreadable executable file.) 768 */ 769 if (pnp->pr_flags & PR_INVAL) { 770 prunlock(pnp); 771 return (EAGAIN); 772 } 773 774 /* 775 * If process is undergoing an exec(), wait for 776 * completion and then start all over again. 777 */ 778 if (p->p_proc_flag & P_PR_EXEC) { 779 pcp = pnp->pr_pcommon; /* Put on the correct sleep queue */ 780 mutex_enter(&pcp->prc_mutex); 781 prunlock(pnp); 782 if (!cv_wait_sig(&pcp->prc_wait, &pcp->prc_mutex)) { 783 mutex_exit(&pcp->prc_mutex); 784 return (EINTR); 785 } 786 mutex_exit(&pcp->prc_mutex); 787 goto again; 788 } 789 790 /* 791 * We return holding p->p_lock. 792 */ 793 return (0); 794 } 795 796 /* 797 * Undo prlock() and pr_p_lock(). 798 * p->p_lock is still held; pr_pidlock is no longer held. 799 * 800 * prunmark() drops the P_PR_LOCK flag and wakes up another thread, 801 * if any, waiting for the flag to be dropped; it retains p->p_lock. 802 * 803 * prunlock() calls prunmark() and then drops p->p_lock. 804 */ 805 void 806 prunmark(proc_t *p) 807 { 808 ASSERT(p->p_proc_flag & P_PR_LOCK); 809 ASSERT(MUTEX_HELD(&p->p_lock)); 810 811 cv_signal(&pr_pid_cv[p->p_slot]); 812 p->p_proc_flag &= ~P_PR_LOCK; 813 THREAD_KPRI_RELEASE(); 814 } 815 816 void 817 prunlock(prnode_t *pnp) 818 { 819 prcommon_t *pcp = pnp->pr_common; 820 proc_t *p = pcp->prc_proc; 821 822 /* 823 * If we (or someone) gave it a SIGKILL, and it is not 824 * already a zombie, set it running unconditionally. 825 */ 826 if ((p->p_flag & SKILLED) && 827 !(p->p_flag & SEXITING) && 828 !(pcp->prc_flags & PRC_DESTROY) && 829 !((pcp->prc_flags & PRC_LWP) && pcp->prc_tslot == -1)) 830 (void) pr_setrun(pnp, 0); 831 prunmark(p); 832 mutex_exit(&p->p_lock); 833 } 834 835 /* 836 * Called while holding p->p_lock to delay until the process is unlocked. 837 * We enter holding p->p_lock; p->p_lock is dropped and reacquired. 838 * The process cannot become locked again until p->p_lock is dropped. 839 */ 840 void 841 prbarrier(proc_t *p) 842 { 843 ASSERT(MUTEX_HELD(&p->p_lock)); 844 845 if (p->p_proc_flag & P_PR_LOCK) { 846 /* The process is locked; delay until not locked */ 847 uint_t slot = p->p_slot; 848 849 while (p->p_proc_flag & P_PR_LOCK) 850 cv_wait(&pr_pid_cv[slot], &p->p_lock); 851 cv_signal(&pr_pid_cv[slot]); 852 } 853 } 854 855 /* 856 * Return process/lwp status. 857 * The u-block is mapped in by this routine and unmapped at the end. 858 */ 859 void 860 prgetstatus(proc_t *p, pstatus_t *sp, zone_t *zp) 861 { 862 kthread_t *t; 863 864 ASSERT(MUTEX_HELD(&p->p_lock)); 865 866 t = prchoose(p); /* returns locked thread */ 867 ASSERT(t != NULL); 868 thread_unlock(t); 869 870 /* just bzero the process part, prgetlwpstatus() does the rest */ 871 bzero(sp, sizeof (pstatus_t) - sizeof (lwpstatus_t)); 872 sp->pr_nlwp = p->p_lwpcnt; 873 sp->pr_nzomb = p->p_zombcnt; 874 prassignset(&sp->pr_sigpend, &p->p_sig); 875 sp->pr_brkbase = (uintptr_t)p->p_brkbase; 876 sp->pr_brksize = p->p_brksize; 877 sp->pr_stkbase = (uintptr_t)prgetstackbase(p); 878 sp->pr_stksize = p->p_stksize; 879 sp->pr_pid = p->p_pid; 880 if (curproc->p_zone->zone_id != GLOBAL_ZONEID && 881 (p->p_flag & SZONETOP)) { 882 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID); 883 /* 884 * Inside local zones, fake zsched's pid as parent pids for 885 * processes which reference processes outside of the zone. 886 */ 887 sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid; 888 } else { 889 sp->pr_ppid = p->p_ppid; 890 } 891 sp->pr_pgid = p->p_pgrp; 892 sp->pr_sid = p->p_sessp->s_sid; 893 sp->pr_taskid = p->p_task->tk_tkid; 894 sp->pr_projid = p->p_task->tk_proj->kpj_id; 895 sp->pr_zoneid = p->p_zone->zone_id; 896 hrt2ts(mstate_aggr_state(p, LMS_USER), &sp->pr_utime); 897 hrt2ts(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime); 898 TICK_TO_TIMESTRUC(p->p_cutime, &sp->pr_cutime); 899 TICK_TO_TIMESTRUC(p->p_cstime, &sp->pr_cstime); 900 prassignset(&sp->pr_sigtrace, &p->p_sigmask); 901 prassignset(&sp->pr_flttrace, &p->p_fltmask); 902 prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask); 903 prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask); 904 switch (p->p_model) { 905 case DATAMODEL_ILP32: 906 sp->pr_dmodel = PR_MODEL_ILP32; 907 break; 908 case DATAMODEL_LP64: 909 sp->pr_dmodel = PR_MODEL_LP64; 910 break; 911 } 912 if (p->p_agenttp) 913 sp->pr_agentid = p->p_agenttp->t_tid; 914 915 /* get the chosen lwp's status */ 916 prgetlwpstatus(t, &sp->pr_lwp, zp); 917 918 /* replicate the flags */ 919 sp->pr_flags = sp->pr_lwp.pr_flags; 920 } 921 922 #ifdef _SYSCALL32_IMPL 923 void 924 prgetlwpstatus32(kthread_t *t, lwpstatus32_t *sp, zone_t *zp) 925 { 926 proc_t *p = ttoproc(t); 927 klwp_t *lwp = ttolwp(t); 928 struct mstate *ms = &lwp->lwp_mstate; 929 hrtime_t usr, sys; 930 int flags; 931 ulong_t instr; 932 933 ASSERT(MUTEX_HELD(&p->p_lock)); 934 935 bzero(sp, sizeof (*sp)); 936 flags = 0L; 937 if (t->t_state == TS_STOPPED) { 938 flags |= PR_STOPPED; 939 if ((t->t_schedflag & TS_PSTART) == 0) 940 flags |= PR_ISTOP; 941 } else if (VSTOPPED(t)) { 942 flags |= PR_STOPPED|PR_ISTOP; 943 } 944 if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP)) 945 flags |= PR_DSTOP; 946 if (lwp->lwp_asleep) 947 flags |= PR_ASLEEP; 948 if (t == p->p_agenttp) 949 flags |= PR_AGENT; 950 if (!(t->t_proc_flag & TP_TWAIT)) 951 flags |= PR_DETACH; 952 if (t->t_proc_flag & TP_DAEMON) 953 flags |= PR_DAEMON; 954 if (p->p_proc_flag & P_PR_FORK) 955 flags |= PR_FORK; 956 if (p->p_proc_flag & P_PR_RUNLCL) 957 flags |= PR_RLC; 958 if (p->p_proc_flag & P_PR_KILLCL) 959 flags |= PR_KLC; 960 if (p->p_proc_flag & P_PR_ASYNC) 961 flags |= PR_ASYNC; 962 if (p->p_proc_flag & P_PR_BPTADJ) 963 flags |= PR_BPTADJ; 964 if (p->p_proc_flag & P_PR_PTRACE) 965 flags |= PR_PTRACE; 966 if (p->p_flag & SMSACCT) 967 flags |= PR_MSACCT; 968 if (p->p_flag & SMSFORK) 969 flags |= PR_MSFORK; 970 if (p->p_flag & SVFWAIT) 971 flags |= PR_VFORKP; 972 sp->pr_flags = flags; 973 if (VSTOPPED(t)) { 974 sp->pr_why = PR_REQUESTED; 975 sp->pr_what = 0; 976 } else { 977 sp->pr_why = t->t_whystop; 978 sp->pr_what = t->t_whatstop; 979 } 980 sp->pr_lwpid = t->t_tid; 981 sp->pr_cursig = lwp->lwp_cursig; 982 prassignset(&sp->pr_lwppend, &t->t_sig); 983 schedctl_finish_sigblock(t); 984 prassignset(&sp->pr_lwphold, &t->t_hold); 985 if (t->t_whystop == PR_FAULTED) { 986 siginfo_kto32(&lwp->lwp_siginfo, &sp->pr_info); 987 if (t->t_whatstop == FLTPAGE) 988 sp->pr_info.si_addr = 989 (caddr32_t)(uintptr_t)lwp->lwp_siginfo.si_addr; 990 } else if (lwp->lwp_curinfo) 991 siginfo_kto32(&lwp->lwp_curinfo->sq_info, &sp->pr_info); 992 if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID && 993 sp->pr_info.si_zoneid != zp->zone_id) { 994 sp->pr_info.si_pid = zp->zone_zsched->p_pid; 995 sp->pr_info.si_uid = 0; 996 sp->pr_info.si_ctid = -1; 997 sp->pr_info.si_zoneid = zp->zone_id; 998 } 999 sp->pr_altstack.ss_sp = 1000 (caddr32_t)(uintptr_t)lwp->lwp_sigaltstack.ss_sp; 1001 sp->pr_altstack.ss_size = (size32_t)lwp->lwp_sigaltstack.ss_size; 1002 sp->pr_altstack.ss_flags = (int32_t)lwp->lwp_sigaltstack.ss_flags; 1003 prgetaction32(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action); 1004 sp->pr_oldcontext = (caddr32_t)lwp->lwp_oldcontext; 1005 sp->pr_ustack = (caddr32_t)lwp->lwp_ustack; 1006 (void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name, 1007 sizeof (sp->pr_clname) - 1); 1008 if (flags & PR_STOPPED) 1009 hrt2ts32(t->t_stoptime, &sp->pr_tstamp); 1010 usr = ms->ms_acct[LMS_USER]; 1011 sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP]; 1012 scalehrtime(&usr); 1013 scalehrtime(&sys); 1014 hrt2ts32(usr, &sp->pr_utime); 1015 hrt2ts32(sys, &sp->pr_stime); 1016 1017 /* 1018 * Fetch the current instruction, if not a system process. 1019 * We don't attempt this unless the lwp is stopped. 1020 */ 1021 if ((p->p_flag & SSYS) || p->p_as == &kas) 1022 sp->pr_flags |= (PR_ISSYS|PR_PCINVAL); 1023 else if (!(flags & PR_STOPPED)) 1024 sp->pr_flags |= PR_PCINVAL; 1025 else if (!prfetchinstr(lwp, &instr)) 1026 sp->pr_flags |= PR_PCINVAL; 1027 else 1028 sp->pr_instr = (uint32_t)instr; 1029 1030 /* 1031 * Drop p_lock while touching the lwp's stack. 1032 */ 1033 mutex_exit(&p->p_lock); 1034 if (prisstep(lwp)) 1035 sp->pr_flags |= PR_STEP; 1036 if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) { 1037 int i; 1038 1039 sp->pr_syscall = get_syscall32_args(lwp, 1040 (int *)sp->pr_sysarg, &i); 1041 sp->pr_nsysarg = (ushort_t)i; 1042 } 1043 if ((flags & PR_STOPPED) || t == curthread) 1044 prgetprregs32(lwp, sp->pr_reg); 1045 if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) || 1046 (flags & PR_VFORKP)) { 1047 long r1, r2; 1048 user_t *up; 1049 auxv_t *auxp; 1050 int i; 1051 1052 sp->pr_errno = prgetrvals(lwp, &r1, &r2); 1053 if (sp->pr_errno == 0) { 1054 sp->pr_rval1 = (int32_t)r1; 1055 sp->pr_rval2 = (int32_t)r2; 1056 sp->pr_errpriv = PRIV_NONE; 1057 } else 1058 sp->pr_errpriv = lwp->lwp_badpriv; 1059 1060 if (t->t_sysnum == SYS_execve) { 1061 up = PTOU(p); 1062 sp->pr_sysarg[0] = 0; 1063 sp->pr_sysarg[1] = (caddr32_t)up->u_argv; 1064 sp->pr_sysarg[2] = (caddr32_t)up->u_envp; 1065 for (i = 0, auxp = up->u_auxv; 1066 i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]); 1067 i++, auxp++) { 1068 if (auxp->a_type == AT_SUN_EXECNAME) { 1069 sp->pr_sysarg[0] = 1070 (caddr32_t) 1071 (uintptr_t)auxp->a_un.a_ptr; 1072 break; 1073 } 1074 } 1075 } 1076 } 1077 if (prhasfp()) 1078 prgetprfpregs32(lwp, &sp->pr_fpreg); 1079 mutex_enter(&p->p_lock); 1080 } 1081 1082 void 1083 prgetstatus32(proc_t *p, pstatus32_t *sp, zone_t *zp) 1084 { 1085 kthread_t *t; 1086 1087 ASSERT(MUTEX_HELD(&p->p_lock)); 1088 1089 t = prchoose(p); /* returns locked thread */ 1090 ASSERT(t != NULL); 1091 thread_unlock(t); 1092 1093 /* just bzero the process part, prgetlwpstatus32() does the rest */ 1094 bzero(sp, sizeof (pstatus32_t) - sizeof (lwpstatus32_t)); 1095 sp->pr_nlwp = p->p_lwpcnt; 1096 sp->pr_nzomb = p->p_zombcnt; 1097 prassignset(&sp->pr_sigpend, &p->p_sig); 1098 sp->pr_brkbase = (uint32_t)(uintptr_t)p->p_brkbase; 1099 sp->pr_brksize = (uint32_t)p->p_brksize; 1100 sp->pr_stkbase = (uint32_t)(uintptr_t)prgetstackbase(p); 1101 sp->pr_stksize = (uint32_t)p->p_stksize; 1102 sp->pr_pid = p->p_pid; 1103 if (curproc->p_zone->zone_id != GLOBAL_ZONEID && 1104 (p->p_flag & SZONETOP)) { 1105 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID); 1106 /* 1107 * Inside local zones, fake zsched's pid as parent pids for 1108 * processes which reference processes outside of the zone. 1109 */ 1110 sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid; 1111 } else { 1112 sp->pr_ppid = p->p_ppid; 1113 } 1114 sp->pr_pgid = p->p_pgrp; 1115 sp->pr_sid = p->p_sessp->s_sid; 1116 sp->pr_taskid = p->p_task->tk_tkid; 1117 sp->pr_projid = p->p_task->tk_proj->kpj_id; 1118 sp->pr_zoneid = p->p_zone->zone_id; 1119 hrt2ts32(mstate_aggr_state(p, LMS_USER), &sp->pr_utime); 1120 hrt2ts32(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime); 1121 TICK_TO_TIMESTRUC32(p->p_cutime, &sp->pr_cutime); 1122 TICK_TO_TIMESTRUC32(p->p_cstime, &sp->pr_cstime); 1123 prassignset(&sp->pr_sigtrace, &p->p_sigmask); 1124 prassignset(&sp->pr_flttrace, &p->p_fltmask); 1125 prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask); 1126 prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask); 1127 switch (p->p_model) { 1128 case DATAMODEL_ILP32: 1129 sp->pr_dmodel = PR_MODEL_ILP32; 1130 break; 1131 case DATAMODEL_LP64: 1132 sp->pr_dmodel = PR_MODEL_LP64; 1133 break; 1134 } 1135 if (p->p_agenttp) 1136 sp->pr_agentid = p->p_agenttp->t_tid; 1137 1138 /* get the chosen lwp's status */ 1139 prgetlwpstatus32(t, &sp->pr_lwp, zp); 1140 1141 /* replicate the flags */ 1142 sp->pr_flags = sp->pr_lwp.pr_flags; 1143 } 1144 #endif /* _SYSCALL32_IMPL */ 1145 1146 /* 1147 * Return lwp status. 1148 */ 1149 void 1150 prgetlwpstatus(kthread_t *t, lwpstatus_t *sp, zone_t *zp) 1151 { 1152 proc_t *p = ttoproc(t); 1153 klwp_t *lwp = ttolwp(t); 1154 struct mstate *ms = &lwp->lwp_mstate; 1155 hrtime_t usr, sys; 1156 int flags; 1157 ulong_t instr; 1158 1159 ASSERT(MUTEX_HELD(&p->p_lock)); 1160 1161 bzero(sp, sizeof (*sp)); 1162 flags = 0L; 1163 if (t->t_state == TS_STOPPED) { 1164 flags |= PR_STOPPED; 1165 if ((t->t_schedflag & TS_PSTART) == 0) 1166 flags |= PR_ISTOP; 1167 } else if (VSTOPPED(t)) { 1168 flags |= PR_STOPPED|PR_ISTOP; 1169 } 1170 if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP)) 1171 flags |= PR_DSTOP; 1172 if (lwp->lwp_asleep) 1173 flags |= PR_ASLEEP; 1174 if (t == p->p_agenttp) 1175 flags |= PR_AGENT; 1176 if (!(t->t_proc_flag & TP_TWAIT)) 1177 flags |= PR_DETACH; 1178 if (t->t_proc_flag & TP_DAEMON) 1179 flags |= PR_DAEMON; 1180 if (p->p_proc_flag & P_PR_FORK) 1181 flags |= PR_FORK; 1182 if (p->p_proc_flag & P_PR_RUNLCL) 1183 flags |= PR_RLC; 1184 if (p->p_proc_flag & P_PR_KILLCL) 1185 flags |= PR_KLC; 1186 if (p->p_proc_flag & P_PR_ASYNC) 1187 flags |= PR_ASYNC; 1188 if (p->p_proc_flag & P_PR_BPTADJ) 1189 flags |= PR_BPTADJ; 1190 if (p->p_proc_flag & P_PR_PTRACE) 1191 flags |= PR_PTRACE; 1192 if (p->p_flag & SMSACCT) 1193 flags |= PR_MSACCT; 1194 if (p->p_flag & SMSFORK) 1195 flags |= PR_MSFORK; 1196 if (p->p_flag & SVFWAIT) 1197 flags |= PR_VFORKP; 1198 if (p->p_pgidp->pid_pgorphaned) 1199 flags |= PR_ORPHAN; 1200 if (p->p_pidflag & CLDNOSIGCHLD) 1201 flags |= PR_NOSIGCHLD; 1202 if (p->p_pidflag & CLDWAITPID) 1203 flags |= PR_WAITPID; 1204 sp->pr_flags = flags; 1205 if (VSTOPPED(t)) { 1206 sp->pr_why = PR_REQUESTED; 1207 sp->pr_what = 0; 1208 } else { 1209 sp->pr_why = t->t_whystop; 1210 sp->pr_what = t->t_whatstop; 1211 } 1212 sp->pr_lwpid = t->t_tid; 1213 sp->pr_cursig = lwp->lwp_cursig; 1214 prassignset(&sp->pr_lwppend, &t->t_sig); 1215 schedctl_finish_sigblock(t); 1216 prassignset(&sp->pr_lwphold, &t->t_hold); 1217 if (t->t_whystop == PR_FAULTED) 1218 bcopy(&lwp->lwp_siginfo, 1219 &sp->pr_info, sizeof (k_siginfo_t)); 1220 else if (lwp->lwp_curinfo) 1221 bcopy(&lwp->lwp_curinfo->sq_info, 1222 &sp->pr_info, sizeof (k_siginfo_t)); 1223 if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID && 1224 sp->pr_info.si_zoneid != zp->zone_id) { 1225 sp->pr_info.si_pid = zp->zone_zsched->p_pid; 1226 sp->pr_info.si_uid = 0; 1227 sp->pr_info.si_ctid = -1; 1228 sp->pr_info.si_zoneid = zp->zone_id; 1229 } 1230 sp->pr_altstack = lwp->lwp_sigaltstack; 1231 prgetaction(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action); 1232 sp->pr_oldcontext = (uintptr_t)lwp->lwp_oldcontext; 1233 sp->pr_ustack = lwp->lwp_ustack; 1234 (void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name, 1235 sizeof (sp->pr_clname) - 1); 1236 if (flags & PR_STOPPED) 1237 hrt2ts(t->t_stoptime, &sp->pr_tstamp); 1238 usr = ms->ms_acct[LMS_USER]; 1239 sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP]; 1240 scalehrtime(&usr); 1241 scalehrtime(&sys); 1242 hrt2ts(usr, &sp->pr_utime); 1243 hrt2ts(sys, &sp->pr_stime); 1244 1245 /* 1246 * Fetch the current instruction, if not a system process. 1247 * We don't attempt this unless the lwp is stopped. 1248 */ 1249 if ((p->p_flag & SSYS) || p->p_as == &kas) 1250 sp->pr_flags |= (PR_ISSYS|PR_PCINVAL); 1251 else if (!(flags & PR_STOPPED)) 1252 sp->pr_flags |= PR_PCINVAL; 1253 else if (!prfetchinstr(lwp, &instr)) 1254 sp->pr_flags |= PR_PCINVAL; 1255 else 1256 sp->pr_instr = instr; 1257 1258 /* 1259 * Drop p_lock while touching the lwp's stack. 1260 */ 1261 mutex_exit(&p->p_lock); 1262 if (prisstep(lwp)) 1263 sp->pr_flags |= PR_STEP; 1264 if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) { 1265 int i; 1266 1267 sp->pr_syscall = get_syscall_args(lwp, 1268 (long *)sp->pr_sysarg, &i); 1269 sp->pr_nsysarg = (ushort_t)i; 1270 } 1271 if ((flags & PR_STOPPED) || t == curthread) 1272 prgetprregs(lwp, sp->pr_reg); 1273 if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) || 1274 (flags & PR_VFORKP)) { 1275 user_t *up; 1276 auxv_t *auxp; 1277 int i; 1278 1279 sp->pr_errno = prgetrvals(lwp, &sp->pr_rval1, &sp->pr_rval2); 1280 if (sp->pr_errno == 0) 1281 sp->pr_errpriv = PRIV_NONE; 1282 else 1283 sp->pr_errpriv = lwp->lwp_badpriv; 1284 1285 if (t->t_sysnum == SYS_execve) { 1286 up = PTOU(p); 1287 sp->pr_sysarg[0] = 0; 1288 sp->pr_sysarg[1] = (uintptr_t)up->u_argv; 1289 sp->pr_sysarg[2] = (uintptr_t)up->u_envp; 1290 for (i = 0, auxp = up->u_auxv; 1291 i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]); 1292 i++, auxp++) { 1293 if (auxp->a_type == AT_SUN_EXECNAME) { 1294 sp->pr_sysarg[0] = 1295 (uintptr_t)auxp->a_un.a_ptr; 1296 break; 1297 } 1298 } 1299 } 1300 } 1301 if (prhasfp()) 1302 prgetprfpregs(lwp, &sp->pr_fpreg); 1303 mutex_enter(&p->p_lock); 1304 } 1305 1306 /* 1307 * Get the sigaction structure for the specified signal. The u-block 1308 * must already have been mapped in by the caller. 1309 */ 1310 void 1311 prgetaction(proc_t *p, user_t *up, uint_t sig, struct sigaction *sp) 1312 { 1313 int nsig = PROC_IS_BRANDED(curproc)? BROP(curproc)->b_nsig : NSIG; 1314 1315 bzero(sp, sizeof (*sp)); 1316 1317 if (sig != 0 && (unsigned)sig < nsig) { 1318 sp->sa_handler = up->u_signal[sig-1]; 1319 prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]); 1320 if (sigismember(&up->u_sigonstack, sig)) 1321 sp->sa_flags |= SA_ONSTACK; 1322 if (sigismember(&up->u_sigresethand, sig)) 1323 sp->sa_flags |= SA_RESETHAND; 1324 if (sigismember(&up->u_sigrestart, sig)) 1325 sp->sa_flags |= SA_RESTART; 1326 if (sigismember(&p->p_siginfo, sig)) 1327 sp->sa_flags |= SA_SIGINFO; 1328 if (sigismember(&up->u_signodefer, sig)) 1329 sp->sa_flags |= SA_NODEFER; 1330 if (sig == SIGCLD) { 1331 if (p->p_flag & SNOWAIT) 1332 sp->sa_flags |= SA_NOCLDWAIT; 1333 if ((p->p_flag & SJCTL) == 0) 1334 sp->sa_flags |= SA_NOCLDSTOP; 1335 } 1336 } 1337 } 1338 1339 #ifdef _SYSCALL32_IMPL 1340 void 1341 prgetaction32(proc_t *p, user_t *up, uint_t sig, struct sigaction32 *sp) 1342 { 1343 int nsig = PROC_IS_BRANDED(curproc)? BROP(curproc)->b_nsig : NSIG; 1344 1345 bzero(sp, sizeof (*sp)); 1346 1347 if (sig != 0 && (unsigned)sig < nsig) { 1348 sp->sa_handler = (caddr32_t)(uintptr_t)up->u_signal[sig-1]; 1349 prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]); 1350 if (sigismember(&up->u_sigonstack, sig)) 1351 sp->sa_flags |= SA_ONSTACK; 1352 if (sigismember(&up->u_sigresethand, sig)) 1353 sp->sa_flags |= SA_RESETHAND; 1354 if (sigismember(&up->u_sigrestart, sig)) 1355 sp->sa_flags |= SA_RESTART; 1356 if (sigismember(&p->p_siginfo, sig)) 1357 sp->sa_flags |= SA_SIGINFO; 1358 if (sigismember(&up->u_signodefer, sig)) 1359 sp->sa_flags |= SA_NODEFER; 1360 if (sig == SIGCLD) { 1361 if (p->p_flag & SNOWAIT) 1362 sp->sa_flags |= SA_NOCLDWAIT; 1363 if ((p->p_flag & SJCTL) == 0) 1364 sp->sa_flags |= SA_NOCLDSTOP; 1365 } 1366 } 1367 } 1368 #endif /* _SYSCALL32_IMPL */ 1369 1370 /* 1371 * Count the number of segments in this process's address space. 1372 */ 1373 int 1374 prnsegs(struct as *as, int reserved) 1375 { 1376 int n = 0; 1377 struct seg *seg; 1378 1379 ASSERT(as != &kas && AS_WRITE_HELD(as)); 1380 1381 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1382 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved); 1383 caddr_t saddr, naddr; 1384 void *tmp = NULL; 1385 1386 if ((seg->s_flags & S_HOLE) != 0) { 1387 continue; 1388 } 1389 1390 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1391 (void) pr_getprot(seg, reserved, &tmp, 1392 &saddr, &naddr, eaddr); 1393 if (saddr != naddr) 1394 n++; 1395 } 1396 1397 ASSERT(tmp == NULL); 1398 } 1399 1400 return (n); 1401 } 1402 1403 /* 1404 * Convert uint32_t to decimal string w/o leading zeros. 1405 * Add trailing null characters if 'len' is greater than string length. 1406 * Return the string length. 1407 */ 1408 int 1409 pr_u32tos(uint32_t n, char *s, int len) 1410 { 1411 char cbuf[11]; /* 32-bit unsigned integer fits in 10 digits */ 1412 char *cp = cbuf; 1413 char *end = s + len; 1414 1415 do { 1416 *cp++ = (char)(n % 10 + '0'); 1417 n /= 10; 1418 } while (n); 1419 1420 len = (int)(cp - cbuf); 1421 1422 do { 1423 *s++ = *--cp; 1424 } while (cp > cbuf); 1425 1426 while (s < end) /* optional pad */ 1427 *s++ = '\0'; 1428 1429 return (len); 1430 } 1431 1432 /* 1433 * Convert uint64_t to decimal string w/o leading zeros. 1434 * Return the string length. 1435 */ 1436 static int 1437 pr_u64tos(uint64_t n, char *s) 1438 { 1439 char cbuf[21]; /* 64-bit unsigned integer fits in 20 digits */ 1440 char *cp = cbuf; 1441 int len; 1442 1443 do { 1444 *cp++ = (char)(n % 10 + '0'); 1445 n /= 10; 1446 } while (n); 1447 1448 len = (int)(cp - cbuf); 1449 1450 do { 1451 *s++ = *--cp; 1452 } while (cp > cbuf); 1453 1454 return (len); 1455 } 1456 1457 void 1458 pr_object_name(char *name, vnode_t *vp, struct vattr *vattr) 1459 { 1460 char *s = name; 1461 struct vfs *vfsp; 1462 struct vfssw *vfsswp; 1463 1464 if ((vfsp = vp->v_vfsp) != NULL && 1465 ((vfsswp = vfssw + vfsp->vfs_fstype), vfsswp->vsw_name) && 1466 *vfsswp->vsw_name) { 1467 (void) strcpy(s, vfsswp->vsw_name); 1468 s += strlen(s); 1469 *s++ = '.'; 1470 } 1471 s += pr_u32tos(getmajor(vattr->va_fsid), s, 0); 1472 *s++ = '.'; 1473 s += pr_u32tos(getminor(vattr->va_fsid), s, 0); 1474 *s++ = '.'; 1475 s += pr_u64tos(vattr->va_nodeid, s); 1476 *s++ = '\0'; 1477 } 1478 1479 struct seg * 1480 break_seg(proc_t *p) 1481 { 1482 caddr_t addr = p->p_brkbase; 1483 struct seg *seg; 1484 struct vnode *vp; 1485 1486 if (p->p_brksize != 0) 1487 addr += p->p_brksize - 1; 1488 seg = as_segat(p->p_as, addr); 1489 if (seg != NULL && seg->s_ops == &segvn_ops && 1490 (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)) 1491 return (seg); 1492 return (NULL); 1493 } 1494 1495 /* 1496 * Implementation of service functions to handle procfs generic chained 1497 * copyout buffers. 1498 */ 1499 typedef struct pr_iobuf_list { 1500 list_node_t piol_link; /* buffer linkage */ 1501 size_t piol_size; /* total size (header + data) */ 1502 size_t piol_usedsize; /* amount to copy out from this buf */ 1503 } piol_t; 1504 1505 #define MAPSIZE (64 * 1024) 1506 #define PIOL_DATABUF(iol) ((void *)(&(iol)[1])) 1507 1508 void 1509 pr_iol_initlist(list_t *iolhead, size_t itemsize, int n) 1510 { 1511 piol_t *iol; 1512 size_t initial_size = MIN(1, n) * itemsize; 1513 1514 list_create(iolhead, sizeof (piol_t), offsetof(piol_t, piol_link)); 1515 1516 ASSERT(list_head(iolhead) == NULL); 1517 ASSERT(itemsize < MAPSIZE - sizeof (*iol)); 1518 ASSERT(initial_size > 0); 1519 1520 /* 1521 * Someone creating chained copyout buffers may ask for less than 1522 * MAPSIZE if the amount of data to be buffered is known to be 1523 * smaller than that. 1524 * But in order to prevent involuntary self-denial of service, 1525 * the requested input size is clamped at MAPSIZE. 1526 */ 1527 initial_size = MIN(MAPSIZE, initial_size + sizeof (*iol)); 1528 iol = kmem_alloc(initial_size, KM_SLEEP); 1529 list_insert_head(iolhead, iol); 1530 iol->piol_usedsize = 0; 1531 iol->piol_size = initial_size; 1532 } 1533 1534 void * 1535 pr_iol_newbuf(list_t *iolhead, size_t itemsize) 1536 { 1537 piol_t *iol; 1538 char *new; 1539 1540 ASSERT(itemsize < MAPSIZE - sizeof (*iol)); 1541 ASSERT(list_head(iolhead) != NULL); 1542 1543 iol = (piol_t *)list_tail(iolhead); 1544 1545 if (iol->piol_size < 1546 iol->piol_usedsize + sizeof (*iol) + itemsize) { 1547 /* 1548 * Out of space in the current buffer. Allocate more. 1549 */ 1550 piol_t *newiol; 1551 1552 newiol = kmem_alloc(MAPSIZE, KM_SLEEP); 1553 newiol->piol_size = MAPSIZE; 1554 newiol->piol_usedsize = 0; 1555 1556 list_insert_after(iolhead, iol, newiol); 1557 iol = list_next(iolhead, iol); 1558 ASSERT(iol == newiol); 1559 } 1560 new = (char *)PIOL_DATABUF(iol) + iol->piol_usedsize; 1561 iol->piol_usedsize += itemsize; 1562 bzero(new, itemsize); 1563 return (new); 1564 } 1565 1566 int 1567 pr_iol_copyout_and_free(list_t *iolhead, caddr_t *tgt, int errin) 1568 { 1569 int error = errin; 1570 piol_t *iol; 1571 1572 while ((iol = list_head(iolhead)) != NULL) { 1573 list_remove(iolhead, iol); 1574 if (!error) { 1575 if (copyout(PIOL_DATABUF(iol), *tgt, 1576 iol->piol_usedsize)) 1577 error = EFAULT; 1578 *tgt += iol->piol_usedsize; 1579 } 1580 kmem_free(iol, iol->piol_size); 1581 } 1582 list_destroy(iolhead); 1583 1584 return (error); 1585 } 1586 1587 int 1588 pr_iol_uiomove_and_free(list_t *iolhead, uio_t *uiop, int errin) 1589 { 1590 offset_t off = uiop->uio_offset; 1591 char *base; 1592 size_t size; 1593 piol_t *iol; 1594 int error = errin; 1595 1596 while ((iol = list_head(iolhead)) != NULL) { 1597 list_remove(iolhead, iol); 1598 base = PIOL_DATABUF(iol); 1599 size = iol->piol_usedsize; 1600 if (off <= size && error == 0 && uiop->uio_resid > 0) 1601 error = uiomove(base + off, size - off, 1602 UIO_READ, uiop); 1603 off = MAX(0, off - (offset_t)size); 1604 kmem_free(iol, iol->piol_size); 1605 } 1606 list_destroy(iolhead); 1607 1608 return (error); 1609 } 1610 1611 /* 1612 * Return an array of structures with memory map information. 1613 * We allocate here; the caller must deallocate. 1614 */ 1615 int 1616 prgetmap(proc_t *p, int reserved, list_t *iolhead) 1617 { 1618 struct as *as = p->p_as; 1619 prmap_t *mp; 1620 struct seg *seg; 1621 struct seg *brkseg, *stkseg; 1622 struct vnode *vp; 1623 struct vattr vattr; 1624 uint_t prot; 1625 1626 ASSERT(as != &kas && AS_WRITE_HELD(as)); 1627 1628 /* 1629 * Request an initial buffer size that doesn't waste memory 1630 * if the address space has only a small number of segments. 1631 */ 1632 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree)); 1633 1634 if ((seg = AS_SEGFIRST(as)) == NULL) 1635 return (0); 1636 1637 brkseg = break_seg(p); 1638 stkseg = as_segat(as, prgetstackbase(p)); 1639 1640 do { 1641 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved); 1642 caddr_t saddr, naddr; 1643 void *tmp = NULL; 1644 1645 if ((seg->s_flags & S_HOLE) != 0) { 1646 continue; 1647 } 1648 1649 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1650 prot = pr_getprot(seg, reserved, &tmp, 1651 &saddr, &naddr, eaddr); 1652 if (saddr == naddr) 1653 continue; 1654 1655 mp = pr_iol_newbuf(iolhead, sizeof (*mp)); 1656 1657 mp->pr_vaddr = (uintptr_t)saddr; 1658 mp->pr_size = naddr - saddr; 1659 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 1660 mp->pr_mflags = 0; 1661 if (prot & PROT_READ) 1662 mp->pr_mflags |= MA_READ; 1663 if (prot & PROT_WRITE) 1664 mp->pr_mflags |= MA_WRITE; 1665 if (prot & PROT_EXEC) 1666 mp->pr_mflags |= MA_EXEC; 1667 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 1668 mp->pr_mflags |= MA_SHARED; 1669 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 1670 mp->pr_mflags |= MA_NORESERVE; 1671 if (seg->s_ops == &segspt_shmops || 1672 (seg->s_ops == &segvn_ops && 1673 (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL))) 1674 mp->pr_mflags |= MA_ANON; 1675 if (seg == brkseg) 1676 mp->pr_mflags |= MA_BREAK; 1677 else if (seg == stkseg) { 1678 mp->pr_mflags |= MA_STACK; 1679 if (reserved) { 1680 size_t maxstack = 1681 ((size_t)p->p_stk_ctl + 1682 PAGEOFFSET) & PAGEMASK; 1683 mp->pr_vaddr = 1684 (uintptr_t)prgetstackbase(p) + 1685 p->p_stksize - maxstack; 1686 mp->pr_size = (uintptr_t)naddr - 1687 mp->pr_vaddr; 1688 } 1689 } 1690 if (seg->s_ops == &segspt_shmops) 1691 mp->pr_mflags |= MA_ISM | MA_SHM; 1692 mp->pr_pagesize = PAGESIZE; 1693 1694 /* 1695 * Manufacture a filename for the "object" directory. 1696 */ 1697 vattr.va_mask = AT_FSID|AT_NODEID; 1698 if (seg->s_ops == &segvn_ops && 1699 SEGOP_GETVP(seg, saddr, &vp) == 0 && 1700 vp != NULL && vp->v_type == VREG && 1701 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 1702 if (vp == p->p_exec) 1703 (void) strcpy(mp->pr_mapname, "a.out"); 1704 else 1705 pr_object_name(mp->pr_mapname, 1706 vp, &vattr); 1707 } 1708 1709 /* 1710 * Get the SysV shared memory id, if any. 1711 */ 1712 if ((mp->pr_mflags & MA_SHARED) && p->p_segacct && 1713 (mp->pr_shmid = shmgetid(p, seg->s_base)) != 1714 SHMID_NONE) { 1715 if (mp->pr_shmid == SHMID_FREE) 1716 mp->pr_shmid = -1; 1717 1718 mp->pr_mflags |= MA_SHM; 1719 } else { 1720 mp->pr_shmid = -1; 1721 } 1722 } 1723 ASSERT(tmp == NULL); 1724 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 1725 1726 return (0); 1727 } 1728 1729 #ifdef _SYSCALL32_IMPL 1730 int 1731 prgetmap32(proc_t *p, int reserved, list_t *iolhead) 1732 { 1733 struct as *as = p->p_as; 1734 prmap32_t *mp; 1735 struct seg *seg; 1736 struct seg *brkseg, *stkseg; 1737 struct vnode *vp; 1738 struct vattr vattr; 1739 uint_t prot; 1740 1741 ASSERT(as != &kas && AS_WRITE_HELD(as)); 1742 1743 /* 1744 * Request an initial buffer size that doesn't waste memory 1745 * if the address space has only a small number of segments. 1746 */ 1747 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree)); 1748 1749 if ((seg = AS_SEGFIRST(as)) == NULL) 1750 return (0); 1751 1752 brkseg = break_seg(p); 1753 stkseg = as_segat(as, prgetstackbase(p)); 1754 1755 do { 1756 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved); 1757 caddr_t saddr, naddr; 1758 void *tmp = NULL; 1759 1760 if ((seg->s_flags & S_HOLE) != 0) { 1761 continue; 1762 } 1763 1764 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1765 prot = pr_getprot(seg, reserved, &tmp, 1766 &saddr, &naddr, eaddr); 1767 if (saddr == naddr) 1768 continue; 1769 1770 mp = pr_iol_newbuf(iolhead, sizeof (*mp)); 1771 1772 mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr; 1773 mp->pr_size = (size32_t)(naddr - saddr); 1774 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 1775 mp->pr_mflags = 0; 1776 if (prot & PROT_READ) 1777 mp->pr_mflags |= MA_READ; 1778 if (prot & PROT_WRITE) 1779 mp->pr_mflags |= MA_WRITE; 1780 if (prot & PROT_EXEC) 1781 mp->pr_mflags |= MA_EXEC; 1782 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 1783 mp->pr_mflags |= MA_SHARED; 1784 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 1785 mp->pr_mflags |= MA_NORESERVE; 1786 if (seg->s_ops == &segspt_shmops || 1787 (seg->s_ops == &segvn_ops && 1788 (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL))) 1789 mp->pr_mflags |= MA_ANON; 1790 if (seg == brkseg) 1791 mp->pr_mflags |= MA_BREAK; 1792 else if (seg == stkseg) { 1793 mp->pr_mflags |= MA_STACK; 1794 if (reserved) { 1795 size_t maxstack = 1796 ((size_t)p->p_stk_ctl + 1797 PAGEOFFSET) & PAGEMASK; 1798 uintptr_t vaddr = 1799 (uintptr_t)prgetstackbase(p) + 1800 p->p_stksize - maxstack; 1801 mp->pr_vaddr = (caddr32_t)vaddr; 1802 mp->pr_size = (size32_t) 1803 ((uintptr_t)naddr - vaddr); 1804 } 1805 } 1806 if (seg->s_ops == &segspt_shmops) 1807 mp->pr_mflags |= MA_ISM | MA_SHM; 1808 mp->pr_pagesize = PAGESIZE; 1809 1810 /* 1811 * Manufacture a filename for the "object" directory. 1812 */ 1813 vattr.va_mask = AT_FSID|AT_NODEID; 1814 if (seg->s_ops == &segvn_ops && 1815 SEGOP_GETVP(seg, saddr, &vp) == 0 && 1816 vp != NULL && vp->v_type == VREG && 1817 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 1818 if (vp == p->p_exec) 1819 (void) strcpy(mp->pr_mapname, "a.out"); 1820 else 1821 pr_object_name(mp->pr_mapname, 1822 vp, &vattr); 1823 } 1824 1825 /* 1826 * Get the SysV shared memory id, if any. 1827 */ 1828 if ((mp->pr_mflags & MA_SHARED) && p->p_segacct && 1829 (mp->pr_shmid = shmgetid(p, seg->s_base)) != 1830 SHMID_NONE) { 1831 if (mp->pr_shmid == SHMID_FREE) 1832 mp->pr_shmid = -1; 1833 1834 mp->pr_mflags |= MA_SHM; 1835 } else { 1836 mp->pr_shmid = -1; 1837 } 1838 } 1839 ASSERT(tmp == NULL); 1840 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 1841 1842 return (0); 1843 } 1844 #endif /* _SYSCALL32_IMPL */ 1845 1846 /* 1847 * Return the size of the /proc page data file. 1848 */ 1849 size_t 1850 prpdsize(struct as *as) 1851 { 1852 struct seg *seg; 1853 size_t size; 1854 1855 ASSERT(as != &kas && AS_WRITE_HELD(as)); 1856 1857 if ((seg = AS_SEGFIRST(as)) == NULL) 1858 return (0); 1859 1860 size = sizeof (prpageheader_t); 1861 do { 1862 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1863 caddr_t saddr, naddr; 1864 void *tmp = NULL; 1865 size_t npage; 1866 1867 if ((seg->s_flags & S_HOLE) != 0) { 1868 continue; 1869 } 1870 1871 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1872 (void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1873 if ((npage = (naddr - saddr) / PAGESIZE) != 0) 1874 size += sizeof (prasmap_t) + round8(npage); 1875 } 1876 ASSERT(tmp == NULL); 1877 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 1878 1879 return (size); 1880 } 1881 1882 #ifdef _SYSCALL32_IMPL 1883 size_t 1884 prpdsize32(struct as *as) 1885 { 1886 struct seg *seg; 1887 size_t size; 1888 1889 ASSERT(as != &kas && AS_WRITE_HELD(as)); 1890 1891 if ((seg = AS_SEGFIRST(as)) == NULL) 1892 return (0); 1893 1894 size = sizeof (prpageheader32_t); 1895 do { 1896 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1897 caddr_t saddr, naddr; 1898 void *tmp = NULL; 1899 size_t npage; 1900 1901 if ((seg->s_flags & S_HOLE) != 0) { 1902 continue; 1903 } 1904 1905 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1906 (void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1907 if ((npage = (naddr - saddr) / PAGESIZE) != 0) 1908 size += sizeof (prasmap32_t) + round8(npage); 1909 } 1910 ASSERT(tmp == NULL); 1911 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 1912 1913 return (size); 1914 } 1915 #endif /* _SYSCALL32_IMPL */ 1916 1917 /* 1918 * Read page data information. 1919 */ 1920 int 1921 prpdread(proc_t *p, uint_t hatid, struct uio *uiop) 1922 { 1923 struct as *as = p->p_as; 1924 caddr_t buf; 1925 size_t size; 1926 prpageheader_t *php; 1927 prasmap_t *pmp; 1928 struct seg *seg; 1929 int error; 1930 1931 again: 1932 AS_LOCK_ENTER(as, RW_WRITER); 1933 1934 if ((seg = AS_SEGFIRST(as)) == NULL) { 1935 AS_LOCK_EXIT(as); 1936 return (0); 1937 } 1938 size = prpdsize(as); 1939 if (uiop->uio_resid < size) { 1940 AS_LOCK_EXIT(as); 1941 return (E2BIG); 1942 } 1943 1944 buf = kmem_zalloc(size, KM_SLEEP); 1945 php = (prpageheader_t *)buf; 1946 pmp = (prasmap_t *)(buf + sizeof (prpageheader_t)); 1947 1948 hrt2ts(gethrtime(), &php->pr_tstamp); 1949 php->pr_nmap = 0; 1950 php->pr_npage = 0; 1951 do { 1952 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1953 caddr_t saddr, naddr; 1954 void *tmp = NULL; 1955 1956 if ((seg->s_flags & S_HOLE) != 0) { 1957 continue; 1958 } 1959 1960 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1961 struct vnode *vp; 1962 struct vattr vattr; 1963 size_t len; 1964 size_t npage; 1965 uint_t prot; 1966 uintptr_t next; 1967 1968 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1969 if ((len = (size_t)(naddr - saddr)) == 0) 1970 continue; 1971 npage = len / PAGESIZE; 1972 next = (uintptr_t)(pmp + 1) + round8(npage); 1973 /* 1974 * It's possible that the address space can change 1975 * subtlely even though we're holding as->a_lock 1976 * due to the nondeterminism of page_exists() in 1977 * the presence of asychronously flushed pages or 1978 * mapped files whose sizes are changing. 1979 * page_exists() may be called indirectly from 1980 * pr_getprot() by a SEGOP_INCORE() routine. 1981 * If this happens we need to make sure we don't 1982 * overrun the buffer whose size we computed based 1983 * on the initial iteration through the segments. 1984 * Once we've detected an overflow, we need to clean 1985 * up the temporary memory allocated in pr_getprot() 1986 * and retry. If there's a pending signal, we return 1987 * EINTR so that this thread can be dislodged if 1988 * a latent bug causes us to spin indefinitely. 1989 */ 1990 if (next > (uintptr_t)buf + size) { 1991 pr_getprot_done(&tmp); 1992 AS_LOCK_EXIT(as); 1993 1994 kmem_free(buf, size); 1995 1996 if (ISSIG(curthread, JUSTLOOKING)) 1997 return (EINTR); 1998 1999 goto again; 2000 } 2001 2002 php->pr_nmap++; 2003 php->pr_npage += npage; 2004 pmp->pr_vaddr = (uintptr_t)saddr; 2005 pmp->pr_npage = npage; 2006 pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 2007 pmp->pr_mflags = 0; 2008 if (prot & PROT_READ) 2009 pmp->pr_mflags |= MA_READ; 2010 if (prot & PROT_WRITE) 2011 pmp->pr_mflags |= MA_WRITE; 2012 if (prot & PROT_EXEC) 2013 pmp->pr_mflags |= MA_EXEC; 2014 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 2015 pmp->pr_mflags |= MA_SHARED; 2016 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 2017 pmp->pr_mflags |= MA_NORESERVE; 2018 if (seg->s_ops == &segspt_shmops || 2019 (seg->s_ops == &segvn_ops && 2020 (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL))) 2021 pmp->pr_mflags |= MA_ANON; 2022 if (seg->s_ops == &segspt_shmops) 2023 pmp->pr_mflags |= MA_ISM | MA_SHM; 2024 pmp->pr_pagesize = PAGESIZE; 2025 /* 2026 * Manufacture a filename for the "object" directory. 2027 */ 2028 vattr.va_mask = AT_FSID|AT_NODEID; 2029 if (seg->s_ops == &segvn_ops && 2030 SEGOP_GETVP(seg, saddr, &vp) == 0 && 2031 vp != NULL && vp->v_type == VREG && 2032 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 2033 if (vp == p->p_exec) 2034 (void) strcpy(pmp->pr_mapname, "a.out"); 2035 else 2036 pr_object_name(pmp->pr_mapname, 2037 vp, &vattr); 2038 } 2039 2040 /* 2041 * Get the SysV shared memory id, if any. 2042 */ 2043 if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct && 2044 (pmp->pr_shmid = shmgetid(p, seg->s_base)) != 2045 SHMID_NONE) { 2046 if (pmp->pr_shmid == SHMID_FREE) 2047 pmp->pr_shmid = -1; 2048 2049 pmp->pr_mflags |= MA_SHM; 2050 } else { 2051 pmp->pr_shmid = -1; 2052 } 2053 2054 hat_getstat(as, saddr, len, hatid, 2055 (char *)(pmp + 1), HAT_SYNC_ZERORM); 2056 pmp = (prasmap_t *)next; 2057 } 2058 ASSERT(tmp == NULL); 2059 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 2060 2061 AS_LOCK_EXIT(as); 2062 2063 ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size); 2064 error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop); 2065 kmem_free(buf, size); 2066 2067 return (error); 2068 } 2069 2070 #ifdef _SYSCALL32_IMPL 2071 int 2072 prpdread32(proc_t *p, uint_t hatid, struct uio *uiop) 2073 { 2074 struct as *as = p->p_as; 2075 caddr_t buf; 2076 size_t size; 2077 prpageheader32_t *php; 2078 prasmap32_t *pmp; 2079 struct seg *seg; 2080 int error; 2081 2082 again: 2083 AS_LOCK_ENTER(as, RW_WRITER); 2084 2085 if ((seg = AS_SEGFIRST(as)) == NULL) { 2086 AS_LOCK_EXIT(as); 2087 return (0); 2088 } 2089 size = prpdsize32(as); 2090 if (uiop->uio_resid < size) { 2091 AS_LOCK_EXIT(as); 2092 return (E2BIG); 2093 } 2094 2095 buf = kmem_zalloc(size, KM_SLEEP); 2096 php = (prpageheader32_t *)buf; 2097 pmp = (prasmap32_t *)(buf + sizeof (prpageheader32_t)); 2098 2099 hrt2ts32(gethrtime(), &php->pr_tstamp); 2100 php->pr_nmap = 0; 2101 php->pr_npage = 0; 2102 do { 2103 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 2104 caddr_t saddr, naddr; 2105 void *tmp = NULL; 2106 2107 if ((seg->s_flags & S_HOLE) != 0) { 2108 continue; 2109 } 2110 2111 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 2112 struct vnode *vp; 2113 struct vattr vattr; 2114 size_t len; 2115 size_t npage; 2116 uint_t prot; 2117 uintptr_t next; 2118 2119 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 2120 if ((len = (size_t)(naddr - saddr)) == 0) 2121 continue; 2122 npage = len / PAGESIZE; 2123 next = (uintptr_t)(pmp + 1) + round8(npage); 2124 /* 2125 * It's possible that the address space can change 2126 * subtlely even though we're holding as->a_lock 2127 * due to the nondeterminism of page_exists() in 2128 * the presence of asychronously flushed pages or 2129 * mapped files whose sizes are changing. 2130 * page_exists() may be called indirectly from 2131 * pr_getprot() by a SEGOP_INCORE() routine. 2132 * If this happens we need to make sure we don't 2133 * overrun the buffer whose size we computed based 2134 * on the initial iteration through the segments. 2135 * Once we've detected an overflow, we need to clean 2136 * up the temporary memory allocated in pr_getprot() 2137 * and retry. If there's a pending signal, we return 2138 * EINTR so that this thread can be dislodged if 2139 * a latent bug causes us to spin indefinitely. 2140 */ 2141 if (next > (uintptr_t)buf + size) { 2142 pr_getprot_done(&tmp); 2143 AS_LOCK_EXIT(as); 2144 2145 kmem_free(buf, size); 2146 2147 if (ISSIG(curthread, JUSTLOOKING)) 2148 return (EINTR); 2149 2150 goto again; 2151 } 2152 2153 php->pr_nmap++; 2154 php->pr_npage += npage; 2155 pmp->pr_vaddr = (caddr32_t)(uintptr_t)saddr; 2156 pmp->pr_npage = (size32_t)npage; 2157 pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 2158 pmp->pr_mflags = 0; 2159 if (prot & PROT_READ) 2160 pmp->pr_mflags |= MA_READ; 2161 if (prot & PROT_WRITE) 2162 pmp->pr_mflags |= MA_WRITE; 2163 if (prot & PROT_EXEC) 2164 pmp->pr_mflags |= MA_EXEC; 2165 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 2166 pmp->pr_mflags |= MA_SHARED; 2167 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 2168 pmp->pr_mflags |= MA_NORESERVE; 2169 if (seg->s_ops == &segspt_shmops || 2170 (seg->s_ops == &segvn_ops && 2171 (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL))) 2172 pmp->pr_mflags |= MA_ANON; 2173 if (seg->s_ops == &segspt_shmops) 2174 pmp->pr_mflags |= MA_ISM | MA_SHM; 2175 pmp->pr_pagesize = PAGESIZE; 2176 /* 2177 * Manufacture a filename for the "object" directory. 2178 */ 2179 vattr.va_mask = AT_FSID|AT_NODEID; 2180 if (seg->s_ops == &segvn_ops && 2181 SEGOP_GETVP(seg, saddr, &vp) == 0 && 2182 vp != NULL && vp->v_type == VREG && 2183 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 2184 if (vp == p->p_exec) 2185 (void) strcpy(pmp->pr_mapname, "a.out"); 2186 else 2187 pr_object_name(pmp->pr_mapname, 2188 vp, &vattr); 2189 } 2190 2191 /* 2192 * Get the SysV shared memory id, if any. 2193 */ 2194 if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct && 2195 (pmp->pr_shmid = shmgetid(p, seg->s_base)) != 2196 SHMID_NONE) { 2197 if (pmp->pr_shmid == SHMID_FREE) 2198 pmp->pr_shmid = -1; 2199 2200 pmp->pr_mflags |= MA_SHM; 2201 } else { 2202 pmp->pr_shmid = -1; 2203 } 2204 2205 hat_getstat(as, saddr, len, hatid, 2206 (char *)(pmp + 1), HAT_SYNC_ZERORM); 2207 pmp = (prasmap32_t *)next; 2208 } 2209 ASSERT(tmp == NULL); 2210 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 2211 2212 AS_LOCK_EXIT(as); 2213 2214 ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size); 2215 error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop); 2216 kmem_free(buf, size); 2217 2218 return (error); 2219 } 2220 #endif /* _SYSCALL32_IMPL */ 2221 2222 ushort_t 2223 prgetpctcpu(uint64_t pct) 2224 { 2225 /* 2226 * The value returned will be relevant in the zone of the examiner, 2227 * which may not be the same as the zone which performed the procfs 2228 * mount. 2229 */ 2230 int nonline = zone_ncpus_online_get(curproc->p_zone); 2231 2232 /* 2233 * Prorate over online cpus so we don't exceed 100% 2234 */ 2235 if (nonline > 1) 2236 pct /= nonline; 2237 pct >>= 16; /* convert to 16-bit scaled integer */ 2238 if (pct > 0x8000) /* might happen, due to rounding */ 2239 pct = 0x8000; 2240 return ((ushort_t)pct); 2241 } 2242 2243 /* 2244 * Return information used by ps(1). 2245 */ 2246 void 2247 prgetpsinfo(proc_t *p, psinfo_t *psp) 2248 { 2249 kthread_t *t; 2250 struct cred *cred; 2251 hrtime_t hrutime, hrstime; 2252 2253 ASSERT(MUTEX_HELD(&p->p_lock)); 2254 2255 if ((t = prchoose(p)) == NULL) /* returns locked thread */ 2256 bzero(psp, sizeof (*psp)); 2257 else { 2258 thread_unlock(t); 2259 bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp)); 2260 } 2261 2262 /* 2263 * only export SSYS and SMSACCT; everything else is off-limits to 2264 * userland apps. 2265 */ 2266 psp->pr_flag = p->p_flag & (SSYS | SMSACCT); 2267 psp->pr_nlwp = p->p_lwpcnt; 2268 psp->pr_nzomb = p->p_zombcnt; 2269 mutex_enter(&p->p_crlock); 2270 cred = p->p_cred; 2271 psp->pr_uid = crgetruid(cred); 2272 psp->pr_euid = crgetuid(cred); 2273 psp->pr_gid = crgetrgid(cred); 2274 psp->pr_egid = crgetgid(cred); 2275 mutex_exit(&p->p_crlock); 2276 psp->pr_pid = p->p_pid; 2277 if (curproc->p_zone->zone_id != GLOBAL_ZONEID && 2278 (p->p_flag & SZONETOP)) { 2279 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID); 2280 /* 2281 * Inside local zones, fake zsched's pid as parent pids for 2282 * processes which reference processes outside of the zone. 2283 */ 2284 psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid; 2285 } else { 2286 psp->pr_ppid = p->p_ppid; 2287 } 2288 psp->pr_pgid = p->p_pgrp; 2289 psp->pr_sid = p->p_sessp->s_sid; 2290 psp->pr_taskid = p->p_task->tk_tkid; 2291 psp->pr_projid = p->p_task->tk_proj->kpj_id; 2292 psp->pr_poolid = p->p_pool->pool_id; 2293 psp->pr_zoneid = p->p_zone->zone_id; 2294 if ((psp->pr_contract = PRCTID(p)) == 0) 2295 psp->pr_contract = -1; 2296 psp->pr_addr = (uintptr_t)prgetpsaddr(p); 2297 switch (p->p_model) { 2298 case DATAMODEL_ILP32: 2299 psp->pr_dmodel = PR_MODEL_ILP32; 2300 break; 2301 case DATAMODEL_LP64: 2302 psp->pr_dmodel = PR_MODEL_LP64; 2303 break; 2304 } 2305 hrutime = mstate_aggr_state(p, LMS_USER); 2306 hrstime = mstate_aggr_state(p, LMS_SYSTEM); 2307 hrt2ts((hrutime + hrstime), &psp->pr_time); 2308 TICK_TO_TIMESTRUC(p->p_cutime + p->p_cstime, &psp->pr_ctime); 2309 2310 if (t == NULL) { 2311 int wcode = p->p_wcode; /* must be atomic read */ 2312 2313 if (wcode) 2314 psp->pr_wstat = wstat(wcode, p->p_wdata); 2315 psp->pr_ttydev = PRNODEV; 2316 psp->pr_lwp.pr_state = SZOMB; 2317 psp->pr_lwp.pr_sname = 'Z'; 2318 psp->pr_lwp.pr_bindpro = PBIND_NONE; 2319 psp->pr_lwp.pr_bindpset = PS_NONE; 2320 } else { 2321 user_t *up = PTOU(p); 2322 struct as *as; 2323 dev_t d; 2324 extern dev_t rwsconsdev, rconsdev, uconsdev; 2325 2326 d = cttydev(p); 2327 /* 2328 * If the controlling terminal is the real 2329 * or workstation console device, map to what the 2330 * user thinks is the console device. Handle case when 2331 * rwsconsdev or rconsdev is set to NODEV for Starfire. 2332 */ 2333 if ((d == rwsconsdev || d == rconsdev) && d != NODEV) 2334 d = uconsdev; 2335 psp->pr_ttydev = (d == NODEV) ? PRNODEV : d; 2336 psp->pr_start = up->u_start; 2337 bcopy(up->u_comm, psp->pr_fname, 2338 MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1)); 2339 bcopy(up->u_psargs, psp->pr_psargs, 2340 MIN(PRARGSZ-1, PSARGSZ)); 2341 psp->pr_argc = up->u_argc; 2342 psp->pr_argv = up->u_argv; 2343 psp->pr_envp = up->u_envp; 2344 2345 /* get the chosen lwp's lwpsinfo */ 2346 prgetlwpsinfo(t, &psp->pr_lwp); 2347 2348 /* compute %cpu for the process */ 2349 if (p->p_lwpcnt == 1) 2350 psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu; 2351 else { 2352 uint64_t pct = 0; 2353 hrtime_t cur_time = gethrtime_unscaled(); 2354 2355 t = p->p_tlist; 2356 do { 2357 pct += cpu_update_pct(t, cur_time); 2358 } while ((t = t->t_forw) != p->p_tlist); 2359 2360 psp->pr_pctcpu = prgetpctcpu(pct); 2361 } 2362 if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) { 2363 psp->pr_size = 0; 2364 psp->pr_rssize = 0; 2365 } else { 2366 mutex_exit(&p->p_lock); 2367 AS_LOCK_ENTER(as, RW_READER); 2368 psp->pr_size = btopr(as->a_resvsize) * 2369 (PAGESIZE / 1024); 2370 psp->pr_rssize = rm_asrss(as) * (PAGESIZE / 1024); 2371 psp->pr_pctmem = rm_pctmemory(as); 2372 AS_LOCK_EXIT(as); 2373 mutex_enter(&p->p_lock); 2374 } 2375 } 2376 } 2377 2378 #ifdef _SYSCALL32_IMPL 2379 void 2380 prgetpsinfo32(proc_t *p, psinfo32_t *psp) 2381 { 2382 kthread_t *t; 2383 struct cred *cred; 2384 hrtime_t hrutime, hrstime; 2385 2386 ASSERT(MUTEX_HELD(&p->p_lock)); 2387 2388 if ((t = prchoose(p)) == NULL) /* returns locked thread */ 2389 bzero(psp, sizeof (*psp)); 2390 else { 2391 thread_unlock(t); 2392 bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp)); 2393 } 2394 2395 /* 2396 * only export SSYS and SMSACCT; everything else is off-limits to 2397 * userland apps. 2398 */ 2399 psp->pr_flag = p->p_flag & (SSYS | SMSACCT); 2400 psp->pr_nlwp = p->p_lwpcnt; 2401 psp->pr_nzomb = p->p_zombcnt; 2402 mutex_enter(&p->p_crlock); 2403 cred = p->p_cred; 2404 psp->pr_uid = crgetruid(cred); 2405 psp->pr_euid = crgetuid(cred); 2406 psp->pr_gid = crgetrgid(cred); 2407 psp->pr_egid = crgetgid(cred); 2408 mutex_exit(&p->p_crlock); 2409 psp->pr_pid = p->p_pid; 2410 if (curproc->p_zone->zone_id != GLOBAL_ZONEID && 2411 (p->p_flag & SZONETOP)) { 2412 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID); 2413 /* 2414 * Inside local zones, fake zsched's pid as parent pids for 2415 * processes which reference processes outside of the zone. 2416 */ 2417 psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid; 2418 } else { 2419 psp->pr_ppid = p->p_ppid; 2420 } 2421 psp->pr_pgid = p->p_pgrp; 2422 psp->pr_sid = p->p_sessp->s_sid; 2423 psp->pr_taskid = p->p_task->tk_tkid; 2424 psp->pr_projid = p->p_task->tk_proj->kpj_id; 2425 psp->pr_poolid = p->p_pool->pool_id; 2426 psp->pr_zoneid = p->p_zone->zone_id; 2427 if ((psp->pr_contract = PRCTID(p)) == 0) 2428 psp->pr_contract = -1; 2429 psp->pr_addr = 0; /* cannot represent 64-bit addr in 32 bits */ 2430 switch (p->p_model) { 2431 case DATAMODEL_ILP32: 2432 psp->pr_dmodel = PR_MODEL_ILP32; 2433 break; 2434 case DATAMODEL_LP64: 2435 psp->pr_dmodel = PR_MODEL_LP64; 2436 break; 2437 } 2438 hrutime = mstate_aggr_state(p, LMS_USER); 2439 hrstime = mstate_aggr_state(p, LMS_SYSTEM); 2440 hrt2ts32(hrutime + hrstime, &psp->pr_time); 2441 TICK_TO_TIMESTRUC32(p->p_cutime + p->p_cstime, &psp->pr_ctime); 2442 2443 if (t == NULL) { 2444 extern int wstat(int, int); /* needs a header file */ 2445 int wcode = p->p_wcode; /* must be atomic read */ 2446 2447 if (wcode) 2448 psp->pr_wstat = wstat(wcode, p->p_wdata); 2449 psp->pr_ttydev = PRNODEV32; 2450 psp->pr_lwp.pr_state = SZOMB; 2451 psp->pr_lwp.pr_sname = 'Z'; 2452 } else { 2453 user_t *up = PTOU(p); 2454 struct as *as; 2455 dev_t d; 2456 extern dev_t rwsconsdev, rconsdev, uconsdev; 2457 2458 d = cttydev(p); 2459 /* 2460 * If the controlling terminal is the real 2461 * or workstation console device, map to what the 2462 * user thinks is the console device. Handle case when 2463 * rwsconsdev or rconsdev is set to NODEV for Starfire. 2464 */ 2465 if ((d == rwsconsdev || d == rconsdev) && d != NODEV) 2466 d = uconsdev; 2467 (void) cmpldev(&psp->pr_ttydev, d); 2468 TIMESPEC_TO_TIMESPEC32(&psp->pr_start, &up->u_start); 2469 bcopy(up->u_comm, psp->pr_fname, 2470 MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1)); 2471 bcopy(up->u_psargs, psp->pr_psargs, 2472 MIN(PRARGSZ-1, PSARGSZ)); 2473 psp->pr_argc = up->u_argc; 2474 psp->pr_argv = (caddr32_t)up->u_argv; 2475 psp->pr_envp = (caddr32_t)up->u_envp; 2476 2477 /* get the chosen lwp's lwpsinfo */ 2478 prgetlwpsinfo32(t, &psp->pr_lwp); 2479 2480 /* compute %cpu for the process */ 2481 if (p->p_lwpcnt == 1) 2482 psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu; 2483 else { 2484 uint64_t pct = 0; 2485 hrtime_t cur_time; 2486 2487 t = p->p_tlist; 2488 cur_time = gethrtime_unscaled(); 2489 do { 2490 pct += cpu_update_pct(t, cur_time); 2491 } while ((t = t->t_forw) != p->p_tlist); 2492 2493 psp->pr_pctcpu = prgetpctcpu(pct); 2494 } 2495 if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) { 2496 psp->pr_size = 0; 2497 psp->pr_rssize = 0; 2498 } else { 2499 mutex_exit(&p->p_lock); 2500 AS_LOCK_ENTER(as, RW_READER); 2501 psp->pr_size = (size32_t) 2502 (btopr(as->a_resvsize) * (PAGESIZE / 1024)); 2503 psp->pr_rssize = (size32_t) 2504 (rm_asrss(as) * (PAGESIZE / 1024)); 2505 psp->pr_pctmem = rm_pctmemory(as); 2506 AS_LOCK_EXIT(as); 2507 mutex_enter(&p->p_lock); 2508 } 2509 } 2510 2511 /* 2512 * If we are looking at an LP64 process, zero out 2513 * the fields that cannot be represented in ILP32. 2514 */ 2515 if (p->p_model != DATAMODEL_ILP32) { 2516 psp->pr_size = 0; 2517 psp->pr_rssize = 0; 2518 psp->pr_argv = 0; 2519 psp->pr_envp = 0; 2520 } 2521 } 2522 2523 #endif /* _SYSCALL32_IMPL */ 2524 2525 void 2526 prgetlwpsinfo(kthread_t *t, lwpsinfo_t *psp) 2527 { 2528 klwp_t *lwp = ttolwp(t); 2529 sobj_ops_t *sobj; 2530 char c, state; 2531 uint64_t pct; 2532 int retval, niceval; 2533 hrtime_t hrutime, hrstime; 2534 2535 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2536 2537 bzero(psp, sizeof (*psp)); 2538 2539 psp->pr_flag = 0; /* lwpsinfo_t.pr_flag is deprecated */ 2540 psp->pr_lwpid = t->t_tid; 2541 psp->pr_addr = (uintptr_t)t; 2542 psp->pr_wchan = (uintptr_t)t->t_wchan; 2543 2544 /* map the thread state enum into a process state enum */ 2545 state = VSTOPPED(t) ? TS_STOPPED : t->t_state; 2546 switch (state) { 2547 case TS_SLEEP: state = SSLEEP; c = 'S'; break; 2548 case TS_RUN: state = SRUN; c = 'R'; break; 2549 case TS_ONPROC: state = SONPROC; c = 'O'; break; 2550 case TS_ZOMB: state = SZOMB; c = 'Z'; break; 2551 case TS_STOPPED: state = SSTOP; c = 'T'; break; 2552 case TS_WAIT: state = SWAIT; c = 'W'; break; 2553 default: state = 0; c = '?'; break; 2554 } 2555 psp->pr_state = state; 2556 psp->pr_sname = c; 2557 if ((sobj = t->t_sobj_ops) != NULL) 2558 psp->pr_stype = SOBJ_TYPE(sobj); 2559 retval = CL_DONICE(t, NULL, 0, &niceval); 2560 if (retval == 0) { 2561 psp->pr_oldpri = v.v_maxsyspri - t->t_pri; 2562 psp->pr_nice = niceval + NZERO; 2563 } 2564 psp->pr_syscall = t->t_sysnum; 2565 psp->pr_pri = t->t_pri; 2566 psp->pr_start.tv_sec = t->t_start; 2567 psp->pr_start.tv_nsec = 0L; 2568 hrutime = lwp->lwp_mstate.ms_acct[LMS_USER]; 2569 scalehrtime(&hrutime); 2570 hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] + 2571 lwp->lwp_mstate.ms_acct[LMS_TRAP]; 2572 scalehrtime(&hrstime); 2573 hrt2ts(hrutime + hrstime, &psp->pr_time); 2574 /* compute %cpu for the lwp */ 2575 pct = cpu_update_pct(t, gethrtime_unscaled()); 2576 psp->pr_pctcpu = prgetpctcpu(pct); 2577 psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15; /* [0..99] */ 2578 if (psp->pr_cpu > 99) 2579 psp->pr_cpu = 99; 2580 2581 (void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name, 2582 sizeof (psp->pr_clname) - 1); 2583 bzero(psp->pr_name, sizeof (psp->pr_name)); /* XXX ??? */ 2584 psp->pr_onpro = t->t_cpu->cpu_id; 2585 psp->pr_bindpro = t->t_bind_cpu; 2586 psp->pr_bindpset = t->t_bind_pset; 2587 psp->pr_lgrp = t->t_lpl->lpl_lgrpid; 2588 } 2589 2590 #ifdef _SYSCALL32_IMPL 2591 void 2592 prgetlwpsinfo32(kthread_t *t, lwpsinfo32_t *psp) 2593 { 2594 proc_t *p = ttoproc(t); 2595 klwp_t *lwp = ttolwp(t); 2596 sobj_ops_t *sobj; 2597 char c, state; 2598 uint64_t pct; 2599 int retval, niceval; 2600 hrtime_t hrutime, hrstime; 2601 2602 ASSERT(MUTEX_HELD(&p->p_lock)); 2603 2604 bzero(psp, sizeof (*psp)); 2605 2606 psp->pr_flag = 0; /* lwpsinfo_t.pr_flag is deprecated */ 2607 psp->pr_lwpid = t->t_tid; 2608 psp->pr_addr = 0; /* cannot represent 64-bit addr in 32 bits */ 2609 psp->pr_wchan = 0; /* cannot represent 64-bit addr in 32 bits */ 2610 2611 /* map the thread state enum into a process state enum */ 2612 state = VSTOPPED(t) ? TS_STOPPED : t->t_state; 2613 switch (state) { 2614 case TS_SLEEP: state = SSLEEP; c = 'S'; break; 2615 case TS_RUN: state = SRUN; c = 'R'; break; 2616 case TS_ONPROC: state = SONPROC; c = 'O'; break; 2617 case TS_ZOMB: state = SZOMB; c = 'Z'; break; 2618 case TS_STOPPED: state = SSTOP; c = 'T'; break; 2619 case TS_WAIT: state = SWAIT; c = 'W'; break; 2620 default: state = 0; c = '?'; break; 2621 } 2622 psp->pr_state = state; 2623 psp->pr_sname = c; 2624 if ((sobj = t->t_sobj_ops) != NULL) 2625 psp->pr_stype = SOBJ_TYPE(sobj); 2626 retval = CL_DONICE(t, NULL, 0, &niceval); 2627 if (retval == 0) { 2628 psp->pr_oldpri = v.v_maxsyspri - t->t_pri; 2629 psp->pr_nice = niceval + NZERO; 2630 } else { 2631 psp->pr_oldpri = 0; 2632 psp->pr_nice = 0; 2633 } 2634 psp->pr_syscall = t->t_sysnum; 2635 psp->pr_pri = t->t_pri; 2636 psp->pr_start.tv_sec = (time32_t)t->t_start; 2637 psp->pr_start.tv_nsec = 0L; 2638 hrutime = lwp->lwp_mstate.ms_acct[LMS_USER]; 2639 scalehrtime(&hrutime); 2640 hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] + 2641 lwp->lwp_mstate.ms_acct[LMS_TRAP]; 2642 scalehrtime(&hrstime); 2643 hrt2ts32(hrutime + hrstime, &psp->pr_time); 2644 /* compute %cpu for the lwp */ 2645 pct = cpu_update_pct(t, gethrtime_unscaled()); 2646 psp->pr_pctcpu = prgetpctcpu(pct); 2647 psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15; /* [0..99] */ 2648 if (psp->pr_cpu > 99) 2649 psp->pr_cpu = 99; 2650 2651 (void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name, 2652 sizeof (psp->pr_clname) - 1); 2653 bzero(psp->pr_name, sizeof (psp->pr_name)); /* XXX ??? */ 2654 psp->pr_onpro = t->t_cpu->cpu_id; 2655 psp->pr_bindpro = t->t_bind_cpu; 2656 psp->pr_bindpset = t->t_bind_pset; 2657 psp->pr_lgrp = t->t_lpl->lpl_lgrpid; 2658 } 2659 #endif /* _SYSCALL32_IMPL */ 2660 2661 #ifdef _SYSCALL32_IMPL 2662 2663 #define PR_COPY_FIELD(s, d, field) d->field = s->field 2664 2665 #define PR_COPY_FIELD_ILP32(s, d, field) \ 2666 if (s->pr_dmodel == PR_MODEL_ILP32) { \ 2667 d->field = s->field; \ 2668 } 2669 2670 #define PR_COPY_TIMESPEC(s, d, field) \ 2671 TIMESPEC_TO_TIMESPEC32(&d->field, &s->field); 2672 2673 #define PR_COPY_BUF(s, d, field) \ 2674 bcopy(s->field, d->field, sizeof (d->field)); 2675 2676 #define PR_IGNORE_FIELD(s, d, field) 2677 2678 void 2679 lwpsinfo_kto32(const struct lwpsinfo *src, struct lwpsinfo32 *dest) 2680 { 2681 bzero(dest, sizeof (*dest)); 2682 2683 PR_COPY_FIELD(src, dest, pr_flag); 2684 PR_COPY_FIELD(src, dest, pr_lwpid); 2685 PR_IGNORE_FIELD(src, dest, pr_addr); 2686 PR_IGNORE_FIELD(src, dest, pr_wchan); 2687 PR_COPY_FIELD(src, dest, pr_stype); 2688 PR_COPY_FIELD(src, dest, pr_state); 2689 PR_COPY_FIELD(src, dest, pr_sname); 2690 PR_COPY_FIELD(src, dest, pr_nice); 2691 PR_COPY_FIELD(src, dest, pr_syscall); 2692 PR_COPY_FIELD(src, dest, pr_oldpri); 2693 PR_COPY_FIELD(src, dest, pr_cpu); 2694 PR_COPY_FIELD(src, dest, pr_pri); 2695 PR_COPY_FIELD(src, dest, pr_pctcpu); 2696 PR_COPY_TIMESPEC(src, dest, pr_start); 2697 PR_COPY_BUF(src, dest, pr_clname); 2698 PR_COPY_BUF(src, dest, pr_name); 2699 PR_COPY_FIELD(src, dest, pr_onpro); 2700 PR_COPY_FIELD(src, dest, pr_bindpro); 2701 PR_COPY_FIELD(src, dest, pr_bindpset); 2702 PR_COPY_FIELD(src, dest, pr_lgrp); 2703 } 2704 2705 void 2706 psinfo_kto32(const struct psinfo *src, struct psinfo32 *dest) 2707 { 2708 bzero(dest, sizeof (*dest)); 2709 2710 PR_COPY_FIELD(src, dest, pr_flag); 2711 PR_COPY_FIELD(src, dest, pr_nlwp); 2712 PR_COPY_FIELD(src, dest, pr_pid); 2713 PR_COPY_FIELD(src, dest, pr_ppid); 2714 PR_COPY_FIELD(src, dest, pr_pgid); 2715 PR_COPY_FIELD(src, dest, pr_sid); 2716 PR_COPY_FIELD(src, dest, pr_uid); 2717 PR_COPY_FIELD(src, dest, pr_euid); 2718 PR_COPY_FIELD(src, dest, pr_gid); 2719 PR_COPY_FIELD(src, dest, pr_egid); 2720 PR_IGNORE_FIELD(src, dest, pr_addr); 2721 PR_COPY_FIELD_ILP32(src, dest, pr_size); 2722 PR_COPY_FIELD_ILP32(src, dest, pr_rssize); 2723 PR_COPY_FIELD(src, dest, pr_ttydev); 2724 PR_COPY_FIELD(src, dest, pr_pctcpu); 2725 PR_COPY_FIELD(src, dest, pr_pctmem); 2726 PR_COPY_TIMESPEC(src, dest, pr_start); 2727 PR_COPY_TIMESPEC(src, dest, pr_time); 2728 PR_COPY_TIMESPEC(src, dest, pr_ctime); 2729 PR_COPY_BUF(src, dest, pr_fname); 2730 PR_COPY_BUF(src, dest, pr_psargs); 2731 PR_COPY_FIELD(src, dest, pr_wstat); 2732 PR_COPY_FIELD(src, dest, pr_argc); 2733 PR_COPY_FIELD_ILP32(src, dest, pr_argv); 2734 PR_COPY_FIELD_ILP32(src, dest, pr_envp); 2735 PR_COPY_FIELD(src, dest, pr_dmodel); 2736 PR_COPY_FIELD(src, dest, pr_taskid); 2737 PR_COPY_FIELD(src, dest, pr_projid); 2738 PR_COPY_FIELD(src, dest, pr_nzomb); 2739 PR_COPY_FIELD(src, dest, pr_poolid); 2740 PR_COPY_FIELD(src, dest, pr_contract); 2741 PR_COPY_FIELD(src, dest, pr_poolid); 2742 PR_COPY_FIELD(src, dest, pr_poolid); 2743 2744 lwpsinfo_kto32(&src->pr_lwp, &dest->pr_lwp); 2745 } 2746 2747 #undef PR_COPY_FIELD 2748 #undef PR_COPY_FIELD_ILP32 2749 #undef PR_COPY_TIMESPEC 2750 #undef PR_COPY_BUF 2751 #undef PR_IGNORE_FIELD 2752 2753 #endif /* _SYSCALL32_IMPL */ 2754 2755 /* 2756 * This used to get called when microstate accounting was disabled but 2757 * microstate information was requested. Since Microstate accounting is on 2758 * regardless of the proc flags, this simply makes it appear to procfs that 2759 * microstate accounting is on. This is relatively meaningless since you 2760 * can't turn it off, but this is here for the sake of appearances. 2761 */ 2762 2763 /*ARGSUSED*/ 2764 void 2765 estimate_msacct(kthread_t *t, hrtime_t curtime) 2766 { 2767 proc_t *p; 2768 2769 if (t == NULL) 2770 return; 2771 2772 p = ttoproc(t); 2773 ASSERT(MUTEX_HELD(&p->p_lock)); 2774 2775 /* 2776 * A system process (p0) could be referenced if the thread is 2777 * in the process of exiting. Don't turn on microstate accounting 2778 * in that case. 2779 */ 2780 if (p->p_flag & SSYS) 2781 return; 2782 2783 /* 2784 * Loop through all the LWPs (kernel threads) in the process. 2785 */ 2786 t = p->p_tlist; 2787 do { 2788 t->t_proc_flag |= TP_MSACCT; 2789 } while ((t = t->t_forw) != p->p_tlist); 2790 2791 p->p_flag |= SMSACCT; /* set process-wide MSACCT */ 2792 } 2793 2794 /* 2795 * It's not really possible to disable microstate accounting anymore. 2796 * However, this routine simply turns off the ms accounting flags in a process 2797 * This way procfs can still pretend to turn microstate accounting on and 2798 * off for a process, but it actually doesn't do anything. This is 2799 * a neutered form of preemptive idiot-proofing. 2800 */ 2801 void 2802 disable_msacct(proc_t *p) 2803 { 2804 kthread_t *t; 2805 2806 ASSERT(MUTEX_HELD(&p->p_lock)); 2807 2808 p->p_flag &= ~SMSACCT; /* clear process-wide MSACCT */ 2809 /* 2810 * Loop through all the LWPs (kernel threads) in the process. 2811 */ 2812 if ((t = p->p_tlist) != NULL) { 2813 do { 2814 /* clear per-thread flag */ 2815 t->t_proc_flag &= ~TP_MSACCT; 2816 } while ((t = t->t_forw) != p->p_tlist); 2817 } 2818 } 2819 2820 /* 2821 * Return resource usage information. 2822 */ 2823 void 2824 prgetusage(kthread_t *t, prhusage_t *pup) 2825 { 2826 klwp_t *lwp = ttolwp(t); 2827 hrtime_t *mstimep; 2828 struct mstate *ms = &lwp->lwp_mstate; 2829 int state; 2830 int i; 2831 hrtime_t curtime; 2832 hrtime_t waitrq; 2833 hrtime_t tmp1; 2834 2835 curtime = gethrtime_unscaled(); 2836 2837 pup->pr_lwpid = t->t_tid; 2838 pup->pr_count = 1; 2839 pup->pr_create = ms->ms_start; 2840 pup->pr_term = ms->ms_term; 2841 scalehrtime(&pup->pr_create); 2842 scalehrtime(&pup->pr_term); 2843 if (ms->ms_term == 0) { 2844 pup->pr_rtime = curtime - ms->ms_start; 2845 scalehrtime(&pup->pr_rtime); 2846 } else { 2847 pup->pr_rtime = ms->ms_term - ms->ms_start; 2848 scalehrtime(&pup->pr_rtime); 2849 } 2850 2851 2852 pup->pr_utime = ms->ms_acct[LMS_USER]; 2853 pup->pr_stime = ms->ms_acct[LMS_SYSTEM]; 2854 pup->pr_ttime = ms->ms_acct[LMS_TRAP]; 2855 pup->pr_tftime = ms->ms_acct[LMS_TFAULT]; 2856 pup->pr_dftime = ms->ms_acct[LMS_DFAULT]; 2857 pup->pr_kftime = ms->ms_acct[LMS_KFAULT]; 2858 pup->pr_ltime = ms->ms_acct[LMS_USER_LOCK]; 2859 pup->pr_slptime = ms->ms_acct[LMS_SLEEP]; 2860 pup->pr_wtime = ms->ms_acct[LMS_WAIT_CPU]; 2861 pup->pr_stoptime = ms->ms_acct[LMS_STOPPED]; 2862 2863 prscaleusage(pup); 2864 2865 /* 2866 * Adjust for time waiting in the dispatcher queue. 2867 */ 2868 waitrq = t->t_waitrq; /* hopefully atomic */ 2869 if (waitrq != 0) { 2870 if (waitrq > curtime) { 2871 curtime = gethrtime_unscaled(); 2872 } 2873 tmp1 = curtime - waitrq; 2874 scalehrtime(&tmp1); 2875 pup->pr_wtime += tmp1; 2876 curtime = waitrq; 2877 } 2878 2879 /* 2880 * Adjust for time spent in current microstate. 2881 */ 2882 if (ms->ms_state_start > curtime) { 2883 curtime = gethrtime_unscaled(); 2884 } 2885 2886 i = 0; 2887 do { 2888 switch (state = t->t_mstate) { 2889 case LMS_SLEEP: 2890 /* 2891 * Update the timer for the current sleep state. 2892 */ 2893 switch (state = ms->ms_prev) { 2894 case LMS_TFAULT: 2895 case LMS_DFAULT: 2896 case LMS_KFAULT: 2897 case LMS_USER_LOCK: 2898 break; 2899 default: 2900 state = LMS_SLEEP; 2901 break; 2902 } 2903 break; 2904 case LMS_TFAULT: 2905 case LMS_DFAULT: 2906 case LMS_KFAULT: 2907 case LMS_USER_LOCK: 2908 state = LMS_SYSTEM; 2909 break; 2910 } 2911 switch (state) { 2912 case LMS_USER: mstimep = &pup->pr_utime; break; 2913 case LMS_SYSTEM: mstimep = &pup->pr_stime; break; 2914 case LMS_TRAP: mstimep = &pup->pr_ttime; break; 2915 case LMS_TFAULT: mstimep = &pup->pr_tftime; break; 2916 case LMS_DFAULT: mstimep = &pup->pr_dftime; break; 2917 case LMS_KFAULT: mstimep = &pup->pr_kftime; break; 2918 case LMS_USER_LOCK: mstimep = &pup->pr_ltime; break; 2919 case LMS_SLEEP: mstimep = &pup->pr_slptime; break; 2920 case LMS_WAIT_CPU: mstimep = &pup->pr_wtime; break; 2921 case LMS_STOPPED: mstimep = &pup->pr_stoptime; break; 2922 default: panic("prgetusage: unknown microstate"); 2923 } 2924 tmp1 = curtime - ms->ms_state_start; 2925 if (tmp1 < 0) { 2926 curtime = gethrtime_unscaled(); 2927 i++; 2928 continue; 2929 } 2930 scalehrtime(&tmp1); 2931 } while (tmp1 < 0 && i < MAX_ITERS_SPIN); 2932 2933 *mstimep += tmp1; 2934 2935 /* update pup timestamp */ 2936 pup->pr_tstamp = curtime; 2937 scalehrtime(&pup->pr_tstamp); 2938 2939 /* 2940 * Resource usage counters. 2941 */ 2942 pup->pr_minf = lwp->lwp_ru.minflt; 2943 pup->pr_majf = lwp->lwp_ru.majflt; 2944 pup->pr_nswap = lwp->lwp_ru.nswap; 2945 pup->pr_inblk = lwp->lwp_ru.inblock; 2946 pup->pr_oublk = lwp->lwp_ru.oublock; 2947 pup->pr_msnd = lwp->lwp_ru.msgsnd; 2948 pup->pr_mrcv = lwp->lwp_ru.msgrcv; 2949 pup->pr_sigs = lwp->lwp_ru.nsignals; 2950 pup->pr_vctx = lwp->lwp_ru.nvcsw; 2951 pup->pr_ictx = lwp->lwp_ru.nivcsw; 2952 pup->pr_sysc = lwp->lwp_ru.sysc; 2953 pup->pr_ioch = lwp->lwp_ru.ioch; 2954 } 2955 2956 /* 2957 * Convert ms_acct stats from unscaled high-res time to nanoseconds 2958 */ 2959 void 2960 prscaleusage(prhusage_t *usg) 2961 { 2962 scalehrtime(&usg->pr_utime); 2963 scalehrtime(&usg->pr_stime); 2964 scalehrtime(&usg->pr_ttime); 2965 scalehrtime(&usg->pr_tftime); 2966 scalehrtime(&usg->pr_dftime); 2967 scalehrtime(&usg->pr_kftime); 2968 scalehrtime(&usg->pr_ltime); 2969 scalehrtime(&usg->pr_slptime); 2970 scalehrtime(&usg->pr_wtime); 2971 scalehrtime(&usg->pr_stoptime); 2972 } 2973 2974 2975 /* 2976 * Sum resource usage information. 2977 */ 2978 void 2979 praddusage(kthread_t *t, prhusage_t *pup) 2980 { 2981 klwp_t *lwp = ttolwp(t); 2982 hrtime_t *mstimep; 2983 struct mstate *ms = &lwp->lwp_mstate; 2984 int state; 2985 int i; 2986 hrtime_t curtime; 2987 hrtime_t waitrq; 2988 hrtime_t tmp; 2989 prhusage_t conv; 2990 2991 curtime = gethrtime_unscaled(); 2992 2993 if (ms->ms_term == 0) { 2994 tmp = curtime - ms->ms_start; 2995 scalehrtime(&tmp); 2996 pup->pr_rtime += tmp; 2997 } else { 2998 tmp = ms->ms_term - ms->ms_start; 2999 scalehrtime(&tmp); 3000 pup->pr_rtime += tmp; 3001 } 3002 3003 conv.pr_utime = ms->ms_acct[LMS_USER]; 3004 conv.pr_stime = ms->ms_acct[LMS_SYSTEM]; 3005 conv.pr_ttime = ms->ms_acct[LMS_TRAP]; 3006 conv.pr_tftime = ms->ms_acct[LMS_TFAULT]; 3007 conv.pr_dftime = ms->ms_acct[LMS_DFAULT]; 3008 conv.pr_kftime = ms->ms_acct[LMS_KFAULT]; 3009 conv.pr_ltime = ms->ms_acct[LMS_USER_LOCK]; 3010 conv.pr_slptime = ms->ms_acct[LMS_SLEEP]; 3011 conv.pr_wtime = ms->ms_acct[LMS_WAIT_CPU]; 3012 conv.pr_stoptime = ms->ms_acct[LMS_STOPPED]; 3013 3014 prscaleusage(&conv); 3015 3016 pup->pr_utime += conv.pr_utime; 3017 pup->pr_stime += conv.pr_stime; 3018 pup->pr_ttime += conv.pr_ttime; 3019 pup->pr_tftime += conv.pr_tftime; 3020 pup->pr_dftime += conv.pr_dftime; 3021 pup->pr_kftime += conv.pr_kftime; 3022 pup->pr_ltime += conv.pr_ltime; 3023 pup->pr_slptime += conv.pr_slptime; 3024 pup->pr_wtime += conv.pr_wtime; 3025 pup->pr_stoptime += conv.pr_stoptime; 3026 3027 /* 3028 * Adjust for time waiting in the dispatcher queue. 3029 */ 3030 waitrq = t->t_waitrq; /* hopefully atomic */ 3031 if (waitrq != 0) { 3032 if (waitrq > curtime) { 3033 curtime = gethrtime_unscaled(); 3034 } 3035 tmp = curtime - waitrq; 3036 scalehrtime(&tmp); 3037 pup->pr_wtime += tmp; 3038 curtime = waitrq; 3039 } 3040 3041 /* 3042 * Adjust for time spent in current microstate. 3043 */ 3044 if (ms->ms_state_start > curtime) { 3045 curtime = gethrtime_unscaled(); 3046 } 3047 3048 i = 0; 3049 do { 3050 switch (state = t->t_mstate) { 3051 case LMS_SLEEP: 3052 /* 3053 * Update the timer for the current sleep state. 3054 */ 3055 switch (state = ms->ms_prev) { 3056 case LMS_TFAULT: 3057 case LMS_DFAULT: 3058 case LMS_KFAULT: 3059 case LMS_USER_LOCK: 3060 break; 3061 default: 3062 state = LMS_SLEEP; 3063 break; 3064 } 3065 break; 3066 case LMS_TFAULT: 3067 case LMS_DFAULT: 3068 case LMS_KFAULT: 3069 case LMS_USER_LOCK: 3070 state = LMS_SYSTEM; 3071 break; 3072 } 3073 switch (state) { 3074 case LMS_USER: mstimep = &pup->pr_utime; break; 3075 case LMS_SYSTEM: mstimep = &pup->pr_stime; break; 3076 case LMS_TRAP: mstimep = &pup->pr_ttime; break; 3077 case LMS_TFAULT: mstimep = &pup->pr_tftime; break; 3078 case LMS_DFAULT: mstimep = &pup->pr_dftime; break; 3079 case LMS_KFAULT: mstimep = &pup->pr_kftime; break; 3080 case LMS_USER_LOCK: mstimep = &pup->pr_ltime; break; 3081 case LMS_SLEEP: mstimep = &pup->pr_slptime; break; 3082 case LMS_WAIT_CPU: mstimep = &pup->pr_wtime; break; 3083 case LMS_STOPPED: mstimep = &pup->pr_stoptime; break; 3084 default: panic("praddusage: unknown microstate"); 3085 } 3086 tmp = curtime - ms->ms_state_start; 3087 if (tmp < 0) { 3088 curtime = gethrtime_unscaled(); 3089 i++; 3090 continue; 3091 } 3092 scalehrtime(&tmp); 3093 } while (tmp < 0 && i < MAX_ITERS_SPIN); 3094 3095 *mstimep += tmp; 3096 3097 /* update pup timestamp */ 3098 pup->pr_tstamp = curtime; 3099 scalehrtime(&pup->pr_tstamp); 3100 3101 /* 3102 * Resource usage counters. 3103 */ 3104 pup->pr_minf += lwp->lwp_ru.minflt; 3105 pup->pr_majf += lwp->lwp_ru.majflt; 3106 pup->pr_nswap += lwp->lwp_ru.nswap; 3107 pup->pr_inblk += lwp->lwp_ru.inblock; 3108 pup->pr_oublk += lwp->lwp_ru.oublock; 3109 pup->pr_msnd += lwp->lwp_ru.msgsnd; 3110 pup->pr_mrcv += lwp->lwp_ru.msgrcv; 3111 pup->pr_sigs += lwp->lwp_ru.nsignals; 3112 pup->pr_vctx += lwp->lwp_ru.nvcsw; 3113 pup->pr_ictx += lwp->lwp_ru.nivcsw; 3114 pup->pr_sysc += lwp->lwp_ru.sysc; 3115 pup->pr_ioch += lwp->lwp_ru.ioch; 3116 } 3117 3118 /* 3119 * Convert a prhusage_t to a prusage_t. 3120 * This means convert each hrtime_t to a timestruc_t 3121 * and copy the count fields uint64_t => ulong_t. 3122 */ 3123 void 3124 prcvtusage(prhusage_t *pup, prusage_t *upup) 3125 { 3126 uint64_t *ullp; 3127 ulong_t *ulp; 3128 int i; 3129 3130 upup->pr_lwpid = pup->pr_lwpid; 3131 upup->pr_count = pup->pr_count; 3132 3133 hrt2ts(pup->pr_tstamp, &upup->pr_tstamp); 3134 hrt2ts(pup->pr_create, &upup->pr_create); 3135 hrt2ts(pup->pr_term, &upup->pr_term); 3136 hrt2ts(pup->pr_rtime, &upup->pr_rtime); 3137 hrt2ts(pup->pr_utime, &upup->pr_utime); 3138 hrt2ts(pup->pr_stime, &upup->pr_stime); 3139 hrt2ts(pup->pr_ttime, &upup->pr_ttime); 3140 hrt2ts(pup->pr_tftime, &upup->pr_tftime); 3141 hrt2ts(pup->pr_dftime, &upup->pr_dftime); 3142 hrt2ts(pup->pr_kftime, &upup->pr_kftime); 3143 hrt2ts(pup->pr_ltime, &upup->pr_ltime); 3144 hrt2ts(pup->pr_slptime, &upup->pr_slptime); 3145 hrt2ts(pup->pr_wtime, &upup->pr_wtime); 3146 hrt2ts(pup->pr_stoptime, &upup->pr_stoptime); 3147 bzero(upup->filltime, sizeof (upup->filltime)); 3148 3149 ullp = &pup->pr_minf; 3150 ulp = &upup->pr_minf; 3151 for (i = 0; i < 22; i++) 3152 *ulp++ = (ulong_t)*ullp++; 3153 } 3154 3155 #ifdef _SYSCALL32_IMPL 3156 void 3157 prcvtusage32(prhusage_t *pup, prusage32_t *upup) 3158 { 3159 uint64_t *ullp; 3160 uint32_t *ulp; 3161 int i; 3162 3163 upup->pr_lwpid = pup->pr_lwpid; 3164 upup->pr_count = pup->pr_count; 3165 3166 hrt2ts32(pup->pr_tstamp, &upup->pr_tstamp); 3167 hrt2ts32(pup->pr_create, &upup->pr_create); 3168 hrt2ts32(pup->pr_term, &upup->pr_term); 3169 hrt2ts32(pup->pr_rtime, &upup->pr_rtime); 3170 hrt2ts32(pup->pr_utime, &upup->pr_utime); 3171 hrt2ts32(pup->pr_stime, &upup->pr_stime); 3172 hrt2ts32(pup->pr_ttime, &upup->pr_ttime); 3173 hrt2ts32(pup->pr_tftime, &upup->pr_tftime); 3174 hrt2ts32(pup->pr_dftime, &upup->pr_dftime); 3175 hrt2ts32(pup->pr_kftime, &upup->pr_kftime); 3176 hrt2ts32(pup->pr_ltime, &upup->pr_ltime); 3177 hrt2ts32(pup->pr_slptime, &upup->pr_slptime); 3178 hrt2ts32(pup->pr_wtime, &upup->pr_wtime); 3179 hrt2ts32(pup->pr_stoptime, &upup->pr_stoptime); 3180 bzero(upup->filltime, sizeof (upup->filltime)); 3181 3182 ullp = &pup->pr_minf; 3183 ulp = &upup->pr_minf; 3184 for (i = 0; i < 22; i++) 3185 *ulp++ = (uint32_t)*ullp++; 3186 } 3187 #endif /* _SYSCALL32_IMPL */ 3188 3189 /* 3190 * Determine whether a set is empty. 3191 */ 3192 int 3193 setisempty(uint32_t *sp, uint_t n) 3194 { 3195 while (n--) 3196 if (*sp++) 3197 return (0); 3198 return (1); 3199 } 3200 3201 /* 3202 * Utility routine for establishing a watched area in the process. 3203 * Keep the list of watched areas sorted by virtual address. 3204 */ 3205 int 3206 set_watched_area(proc_t *p, struct watched_area *pwa) 3207 { 3208 caddr_t vaddr = pwa->wa_vaddr; 3209 caddr_t eaddr = pwa->wa_eaddr; 3210 ulong_t flags = pwa->wa_flags; 3211 struct watched_area *target; 3212 avl_index_t where; 3213 int error = 0; 3214 3215 /* we must not be holding p->p_lock, but the process must be locked */ 3216 ASSERT(MUTEX_NOT_HELD(&p->p_lock)); 3217 ASSERT(p->p_proc_flag & P_PR_LOCK); 3218 3219 /* 3220 * If this is our first watchpoint, enable watchpoints for the process. 3221 */ 3222 if (!pr_watch_active(p)) { 3223 kthread_t *t; 3224 3225 mutex_enter(&p->p_lock); 3226 if ((t = p->p_tlist) != NULL) { 3227 do { 3228 watch_enable(t); 3229 } while ((t = t->t_forw) != p->p_tlist); 3230 } 3231 mutex_exit(&p->p_lock); 3232 } 3233 3234 target = pr_find_watched_area(p, pwa, &where); 3235 if (target != NULL) { 3236 /* 3237 * We discovered an existing, overlapping watched area. 3238 * Allow it only if it is an exact match. 3239 */ 3240 if (target->wa_vaddr != vaddr || 3241 target->wa_eaddr != eaddr) 3242 error = EINVAL; 3243 else if (target->wa_flags != flags) { 3244 error = set_watched_page(p, vaddr, eaddr, 3245 flags, target->wa_flags); 3246 target->wa_flags = flags; 3247 } 3248 kmem_free(pwa, sizeof (struct watched_area)); 3249 } else { 3250 avl_insert(&p->p_warea, pwa, where); 3251 error = set_watched_page(p, vaddr, eaddr, flags, 0); 3252 } 3253 3254 return (error); 3255 } 3256 3257 /* 3258 * Utility routine for clearing a watched area in the process. 3259 * Must be an exact match of the virtual address. 3260 * size and flags don't matter. 3261 */ 3262 int 3263 clear_watched_area(proc_t *p, struct watched_area *pwa) 3264 { 3265 struct watched_area *found; 3266 3267 /* we must not be holding p->p_lock, but the process must be locked */ 3268 ASSERT(MUTEX_NOT_HELD(&p->p_lock)); 3269 ASSERT(p->p_proc_flag & P_PR_LOCK); 3270 3271 3272 if (!pr_watch_active(p)) { 3273 kmem_free(pwa, sizeof (struct watched_area)); 3274 return (0); 3275 } 3276 3277 /* 3278 * Look for a matching address in the watched areas. If a match is 3279 * found, clear the old watched area and adjust the watched page(s). It 3280 * is not an error if there is no match. 3281 */ 3282 if ((found = pr_find_watched_area(p, pwa, NULL)) != NULL && 3283 found->wa_vaddr == pwa->wa_vaddr) { 3284 clear_watched_page(p, found->wa_vaddr, found->wa_eaddr, 3285 found->wa_flags); 3286 avl_remove(&p->p_warea, found); 3287 kmem_free(found, sizeof (struct watched_area)); 3288 } 3289 3290 kmem_free(pwa, sizeof (struct watched_area)); 3291 3292 /* 3293 * If we removed the last watched area from the process, disable 3294 * watchpoints. 3295 */ 3296 if (!pr_watch_active(p)) { 3297 kthread_t *t; 3298 3299 mutex_enter(&p->p_lock); 3300 if ((t = p->p_tlist) != NULL) { 3301 do { 3302 watch_disable(t); 3303 } while ((t = t->t_forw) != p->p_tlist); 3304 } 3305 mutex_exit(&p->p_lock); 3306 } 3307 3308 return (0); 3309 } 3310 3311 /* 3312 * Frees all the watched_area structures 3313 */ 3314 void 3315 pr_free_watchpoints(proc_t *p) 3316 { 3317 struct watched_area *delp; 3318 void *cookie; 3319 3320 cookie = NULL; 3321 while ((delp = avl_destroy_nodes(&p->p_warea, &cookie)) != NULL) 3322 kmem_free(delp, sizeof (struct watched_area)); 3323 3324 avl_destroy(&p->p_warea); 3325 } 3326 3327 /* 3328 * This one is called by the traced process to unwatch all the 3329 * pages while deallocating the list of watched_page structs. 3330 */ 3331 void 3332 pr_free_watched_pages(proc_t *p) 3333 { 3334 struct as *as = p->p_as; 3335 struct watched_page *pwp; 3336 uint_t prot; 3337 int retrycnt, err; 3338 void *cookie; 3339 3340 if (as == NULL || avl_numnodes(&as->a_wpage) == 0) 3341 return; 3342 3343 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 3344 AS_LOCK_ENTER(as, RW_WRITER); 3345 3346 pwp = avl_first(&as->a_wpage); 3347 3348 cookie = NULL; 3349 while ((pwp = avl_destroy_nodes(&as->a_wpage, &cookie)) != NULL) { 3350 retrycnt = 0; 3351 if ((prot = pwp->wp_oprot) != 0) { 3352 caddr_t addr = pwp->wp_vaddr; 3353 struct seg *seg; 3354 retry: 3355 3356 if ((pwp->wp_prot != prot || 3357 (pwp->wp_flags & WP_NOWATCH)) && 3358 (seg = as_segat(as, addr)) != NULL) { 3359 err = SEGOP_SETPROT(seg, addr, PAGESIZE, prot); 3360 if (err == IE_RETRY) { 3361 ASSERT(retrycnt == 0); 3362 retrycnt++; 3363 goto retry; 3364 } 3365 } 3366 } 3367 kmem_free(pwp, sizeof (struct watched_page)); 3368 } 3369 3370 avl_destroy(&as->a_wpage); 3371 p->p_wprot = NULL; 3372 3373 AS_LOCK_EXIT(as); 3374 } 3375 3376 /* 3377 * Insert a watched area into the list of watched pages. 3378 * If oflags is zero then we are adding a new watched area. 3379 * Otherwise we are changing the flags of an existing watched area. 3380 */ 3381 static int 3382 set_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr, 3383 ulong_t flags, ulong_t oflags) 3384 { 3385 struct as *as = p->p_as; 3386 avl_tree_t *pwp_tree; 3387 struct watched_page *pwp, *newpwp; 3388 struct watched_page tpw; 3389 avl_index_t where; 3390 struct seg *seg; 3391 uint_t prot; 3392 caddr_t addr; 3393 3394 /* 3395 * We need to pre-allocate a list of structures before we grab the 3396 * address space lock to avoid calling kmem_alloc(KM_SLEEP) with locks 3397 * held. 3398 */ 3399 newpwp = NULL; 3400 for (addr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 3401 addr < eaddr; addr += PAGESIZE) { 3402 pwp = kmem_zalloc(sizeof (struct watched_page), KM_SLEEP); 3403 pwp->wp_list = newpwp; 3404 newpwp = pwp; 3405 } 3406 3407 AS_LOCK_ENTER(as, RW_WRITER); 3408 3409 /* 3410 * Search for an existing watched page to contain the watched area. 3411 * If none is found, grab a new one from the available list 3412 * and insert it in the active list, keeping the list sorted 3413 * by user-level virtual address. 3414 */ 3415 if (p->p_flag & SVFWAIT) 3416 pwp_tree = &p->p_wpage; 3417 else 3418 pwp_tree = &as->a_wpage; 3419 3420 again: 3421 if (avl_numnodes(pwp_tree) > prnwatch) { 3422 AS_LOCK_EXIT(as); 3423 while (newpwp != NULL) { 3424 pwp = newpwp->wp_list; 3425 kmem_free(newpwp, sizeof (struct watched_page)); 3426 newpwp = pwp; 3427 } 3428 return (E2BIG); 3429 } 3430 3431 tpw.wp_vaddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 3432 if ((pwp = avl_find(pwp_tree, &tpw, &where)) == NULL) { 3433 pwp = newpwp; 3434 newpwp = newpwp->wp_list; 3435 pwp->wp_list = NULL; 3436 pwp->wp_vaddr = (caddr_t)((uintptr_t)vaddr & 3437 (uintptr_t)PAGEMASK); 3438 avl_insert(pwp_tree, pwp, where); 3439 } 3440 3441 ASSERT(vaddr >= pwp->wp_vaddr && vaddr < pwp->wp_vaddr + PAGESIZE); 3442 3443 if (oflags & WA_READ) 3444 pwp->wp_read--; 3445 if (oflags & WA_WRITE) 3446 pwp->wp_write--; 3447 if (oflags & WA_EXEC) 3448 pwp->wp_exec--; 3449 3450 ASSERT(pwp->wp_read >= 0); 3451 ASSERT(pwp->wp_write >= 0); 3452 ASSERT(pwp->wp_exec >= 0); 3453 3454 if (flags & WA_READ) 3455 pwp->wp_read++; 3456 if (flags & WA_WRITE) 3457 pwp->wp_write++; 3458 if (flags & WA_EXEC) 3459 pwp->wp_exec++; 3460 3461 if (!(p->p_flag & SVFWAIT)) { 3462 vaddr = pwp->wp_vaddr; 3463 if (pwp->wp_oprot == 0 && 3464 (seg = as_segat(as, vaddr)) != NULL) { 3465 SEGOP_GETPROT(seg, vaddr, 0, &prot); 3466 pwp->wp_oprot = (uchar_t)prot; 3467 pwp->wp_prot = (uchar_t)prot; 3468 } 3469 if (pwp->wp_oprot != 0) { 3470 prot = pwp->wp_oprot; 3471 if (pwp->wp_read) 3472 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3473 if (pwp->wp_write) 3474 prot &= ~PROT_WRITE; 3475 if (pwp->wp_exec) 3476 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3477 if (!(pwp->wp_flags & WP_NOWATCH) && 3478 pwp->wp_prot != prot && 3479 (pwp->wp_flags & WP_SETPROT) == 0) { 3480 pwp->wp_flags |= WP_SETPROT; 3481 pwp->wp_list = p->p_wprot; 3482 p->p_wprot = pwp; 3483 } 3484 pwp->wp_prot = (uchar_t)prot; 3485 } 3486 } 3487 3488 /* 3489 * If the watched area extends into the next page then do 3490 * it over again with the virtual address of the next page. 3491 */ 3492 if ((vaddr = pwp->wp_vaddr + PAGESIZE) < eaddr) 3493 goto again; 3494 3495 AS_LOCK_EXIT(as); 3496 3497 /* 3498 * Free any pages we may have over-allocated 3499 */ 3500 while (newpwp != NULL) { 3501 pwp = newpwp->wp_list; 3502 kmem_free(newpwp, sizeof (struct watched_page)); 3503 newpwp = pwp; 3504 } 3505 3506 return (0); 3507 } 3508 3509 /* 3510 * Remove a watched area from the list of watched pages. 3511 * A watched area may extend over more than one page. 3512 */ 3513 static void 3514 clear_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr, ulong_t flags) 3515 { 3516 struct as *as = p->p_as; 3517 struct watched_page *pwp; 3518 struct watched_page tpw; 3519 avl_tree_t *tree; 3520 avl_index_t where; 3521 3522 AS_LOCK_ENTER(as, RW_WRITER); 3523 3524 if (p->p_flag & SVFWAIT) 3525 tree = &p->p_wpage; 3526 else 3527 tree = &as->a_wpage; 3528 3529 tpw.wp_vaddr = vaddr = 3530 (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 3531 pwp = avl_find(tree, &tpw, &where); 3532 if (pwp == NULL) 3533 pwp = avl_nearest(tree, where, AVL_AFTER); 3534 3535 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 3536 ASSERT(vaddr <= pwp->wp_vaddr); 3537 3538 if (flags & WA_READ) 3539 pwp->wp_read--; 3540 if (flags & WA_WRITE) 3541 pwp->wp_write--; 3542 if (flags & WA_EXEC) 3543 pwp->wp_exec--; 3544 3545 if (pwp->wp_read + pwp->wp_write + pwp->wp_exec != 0) { 3546 /* 3547 * Reset the hat layer's protections on this page. 3548 */ 3549 if (pwp->wp_oprot != 0) { 3550 uint_t prot = pwp->wp_oprot; 3551 3552 if (pwp->wp_read) 3553 prot &= 3554 ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3555 if (pwp->wp_write) 3556 prot &= ~PROT_WRITE; 3557 if (pwp->wp_exec) 3558 prot &= 3559 ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3560 if (!(pwp->wp_flags & WP_NOWATCH) && 3561 pwp->wp_prot != prot && 3562 (pwp->wp_flags & WP_SETPROT) == 0) { 3563 pwp->wp_flags |= WP_SETPROT; 3564 pwp->wp_list = p->p_wprot; 3565 p->p_wprot = pwp; 3566 } 3567 pwp->wp_prot = (uchar_t)prot; 3568 } 3569 } else { 3570 /* 3571 * No watched areas remain in this page. 3572 * Reset everything to normal. 3573 */ 3574 if (pwp->wp_oprot != 0) { 3575 pwp->wp_prot = pwp->wp_oprot; 3576 if ((pwp->wp_flags & WP_SETPROT) == 0) { 3577 pwp->wp_flags |= WP_SETPROT; 3578 pwp->wp_list = p->p_wprot; 3579 p->p_wprot = pwp; 3580 } 3581 } 3582 } 3583 3584 pwp = AVL_NEXT(tree, pwp); 3585 } 3586 3587 AS_LOCK_EXIT(as); 3588 } 3589 3590 /* 3591 * Return the original protections for the specified page. 3592 */ 3593 static void 3594 getwatchprot(struct as *as, caddr_t addr, uint_t *prot) 3595 { 3596 struct watched_page *pwp; 3597 struct watched_page tpw; 3598 3599 ASSERT(AS_LOCK_HELD(as)); 3600 3601 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 3602 if ((pwp = avl_find(&as->a_wpage, &tpw, NULL)) != NULL) 3603 *prot = pwp->wp_oprot; 3604 } 3605 3606 static prpagev_t * 3607 pr_pagev_create(struct seg *seg, int check_noreserve) 3608 { 3609 prpagev_t *pagev = kmem_alloc(sizeof (prpagev_t), KM_SLEEP); 3610 size_t total_pages = seg_pages(seg); 3611 3612 /* 3613 * Limit the size of our vectors to pagev_lim pages at a time. We need 3614 * 4 or 5 bytes of storage per page, so this means we limit ourself 3615 * to about a megabyte of kernel heap by default. 3616 */ 3617 pagev->pg_npages = MIN(total_pages, pagev_lim); 3618 pagev->pg_pnbase = 0; 3619 3620 pagev->pg_protv = 3621 kmem_alloc(pagev->pg_npages * sizeof (uint_t), KM_SLEEP); 3622 3623 if (check_noreserve) 3624 pagev->pg_incore = 3625 kmem_alloc(pagev->pg_npages * sizeof (char), KM_SLEEP); 3626 else 3627 pagev->pg_incore = NULL; 3628 3629 return (pagev); 3630 } 3631 3632 static void 3633 pr_pagev_destroy(prpagev_t *pagev) 3634 { 3635 if (pagev->pg_incore != NULL) 3636 kmem_free(pagev->pg_incore, pagev->pg_npages * sizeof (char)); 3637 3638 kmem_free(pagev->pg_protv, pagev->pg_npages * sizeof (uint_t)); 3639 kmem_free(pagev, sizeof (prpagev_t)); 3640 } 3641 3642 static caddr_t 3643 pr_pagev_fill(prpagev_t *pagev, struct seg *seg, caddr_t addr, caddr_t eaddr) 3644 { 3645 ulong_t lastpg = seg_page(seg, eaddr - 1); 3646 ulong_t pn, pnlim; 3647 caddr_t saddr; 3648 size_t len; 3649 3650 ASSERT(addr >= seg->s_base && addr <= eaddr); 3651 3652 if (addr == eaddr) 3653 return (eaddr); 3654 3655 refill: 3656 ASSERT(addr < eaddr); 3657 pagev->pg_pnbase = seg_page(seg, addr); 3658 pnlim = pagev->pg_pnbase + pagev->pg_npages; 3659 saddr = addr; 3660 3661 if (lastpg < pnlim) 3662 len = (size_t)(eaddr - addr); 3663 else 3664 len = pagev->pg_npages * PAGESIZE; 3665 3666 if (pagev->pg_incore != NULL) { 3667 /* 3668 * INCORE cleverly has different semantics than GETPROT: 3669 * it returns info on pages up to but NOT including addr + len. 3670 */ 3671 SEGOP_INCORE(seg, addr, len, pagev->pg_incore); 3672 pn = pagev->pg_pnbase; 3673 3674 do { 3675 /* 3676 * Guilty knowledge here: We know that segvn_incore 3677 * returns more than just the low-order bit that 3678 * indicates the page is actually in memory. If any 3679 * bits are set, then the page has backing store. 3680 */ 3681 if (pagev->pg_incore[pn++ - pagev->pg_pnbase]) 3682 goto out; 3683 3684 } while ((addr += PAGESIZE) < eaddr && pn < pnlim); 3685 3686 /* 3687 * If we examined all the pages in the vector but we're not 3688 * at the end of the segment, take another lap. 3689 */ 3690 if (addr < eaddr) 3691 goto refill; 3692 } 3693 3694 /* 3695 * Need to take len - 1 because addr + len is the address of the 3696 * first byte of the page just past the end of what we want. 3697 */ 3698 out: 3699 SEGOP_GETPROT(seg, saddr, len - 1, pagev->pg_protv); 3700 return (addr); 3701 } 3702 3703 static caddr_t 3704 pr_pagev_nextprot(prpagev_t *pagev, struct seg *seg, 3705 caddr_t *saddrp, caddr_t eaddr, uint_t *protp) 3706 { 3707 /* 3708 * Our starting address is either the specified address, or the base 3709 * address from the start of the pagev. If the latter is greater, 3710 * this means a previous call to pr_pagev_fill has already scanned 3711 * further than the end of the previous mapping. 3712 */ 3713 caddr_t base = seg->s_base + pagev->pg_pnbase * PAGESIZE; 3714 caddr_t addr = MAX(*saddrp, base); 3715 ulong_t pn = seg_page(seg, addr); 3716 uint_t prot, nprot; 3717 3718 /* 3719 * If we're dealing with noreserve pages, then advance addr to 3720 * the address of the next page which has backing store. 3721 */ 3722 if (pagev->pg_incore != NULL) { 3723 while (pagev->pg_incore[pn - pagev->pg_pnbase] == 0) { 3724 if ((addr += PAGESIZE) == eaddr) { 3725 *saddrp = addr; 3726 prot = 0; 3727 goto out; 3728 } 3729 if (++pn == pagev->pg_pnbase + pagev->pg_npages) { 3730 addr = pr_pagev_fill(pagev, seg, addr, eaddr); 3731 if (addr == eaddr) { 3732 *saddrp = addr; 3733 prot = 0; 3734 goto out; 3735 } 3736 pn = seg_page(seg, addr); 3737 } 3738 } 3739 } 3740 3741 /* 3742 * Get the protections on the page corresponding to addr. 3743 */ 3744 pn = seg_page(seg, addr); 3745 ASSERT(pn >= pagev->pg_pnbase); 3746 ASSERT(pn < (pagev->pg_pnbase + pagev->pg_npages)); 3747 3748 prot = pagev->pg_protv[pn - pagev->pg_pnbase]; 3749 getwatchprot(seg->s_as, addr, &prot); 3750 *saddrp = addr; 3751 3752 /* 3753 * Now loop until we find a backed page with different protections 3754 * or we reach the end of this segment. 3755 */ 3756 while ((addr += PAGESIZE) < eaddr) { 3757 /* 3758 * If pn has advanced to the page number following what we 3759 * have information on, refill the page vector and reset 3760 * addr and pn. If pr_pagev_fill does not return the 3761 * address of the next page, we have a discontiguity and 3762 * thus have reached the end of the current mapping. 3763 */ 3764 if (++pn == pagev->pg_pnbase + pagev->pg_npages) { 3765 caddr_t naddr = pr_pagev_fill(pagev, seg, addr, eaddr); 3766 if (naddr != addr) 3767 goto out; 3768 pn = seg_page(seg, addr); 3769 } 3770 3771 /* 3772 * The previous page's protections are in prot, and it has 3773 * backing. If this page is MAP_NORESERVE and has no backing, 3774 * then end this mapping and return the previous protections. 3775 */ 3776 if (pagev->pg_incore != NULL && 3777 pagev->pg_incore[pn - pagev->pg_pnbase] == 0) 3778 break; 3779 3780 /* 3781 * Otherwise end the mapping if this page's protections (nprot) 3782 * are different than those in the previous page (prot). 3783 */ 3784 nprot = pagev->pg_protv[pn - pagev->pg_pnbase]; 3785 getwatchprot(seg->s_as, addr, &nprot); 3786 3787 if (nprot != prot) 3788 break; 3789 } 3790 3791 out: 3792 *protp = prot; 3793 return (addr); 3794 } 3795 3796 size_t 3797 pr_getsegsize(struct seg *seg, int reserved) 3798 { 3799 size_t size = seg->s_size; 3800 3801 /* 3802 * If we're interested in the reserved space, return the size of the 3803 * segment itself. Everything else in this function is a special case 3804 * to determine the actual underlying size of various segment types. 3805 */ 3806 if (reserved) 3807 return (size); 3808 3809 /* 3810 * If this is a segvn mapping of a regular file, return the smaller 3811 * of the segment size and the remaining size of the file beyond 3812 * the file offset corresponding to seg->s_base. 3813 */ 3814 if (seg->s_ops == &segvn_ops) { 3815 vattr_t vattr; 3816 vnode_t *vp; 3817 3818 vattr.va_mask = AT_SIZE; 3819 3820 if (SEGOP_GETVP(seg, seg->s_base, &vp) == 0 && 3821 vp != NULL && vp->v_type == VREG && 3822 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 3823 3824 u_offset_t fsize = vattr.va_size; 3825 u_offset_t offset = SEGOP_GETOFFSET(seg, seg->s_base); 3826 3827 if (fsize < offset) 3828 fsize = 0; 3829 else 3830 fsize -= offset; 3831 3832 fsize = roundup(fsize, (u_offset_t)PAGESIZE); 3833 3834 if (fsize < (u_offset_t)size) 3835 size = (size_t)fsize; 3836 } 3837 3838 return (size); 3839 } 3840 3841 /* 3842 * If this is an ISM shared segment, don't include pages that are 3843 * beyond the real size of the spt segment that backs it. 3844 */ 3845 if (seg->s_ops == &segspt_shmops) 3846 return (MIN(spt_realsize(seg), size)); 3847 3848 /* 3849 * If this is segment is a mapping from /dev/null, then this is a 3850 * reservation of virtual address space and has no actual size. 3851 * Such segments are backed by segdev and have type set to neither 3852 * MAP_SHARED nor MAP_PRIVATE. 3853 */ 3854 if (seg->s_ops == &segdev_ops && 3855 ((SEGOP_GETTYPE(seg, seg->s_base) & 3856 (MAP_SHARED | MAP_PRIVATE)) == 0)) 3857 return (0); 3858 3859 /* 3860 * If this segment doesn't match one of the special types we handle, 3861 * just return the size of the segment itself. 3862 */ 3863 return (size); 3864 } 3865 3866 uint_t 3867 pr_getprot(struct seg *seg, int reserved, void **tmp, 3868 caddr_t *saddrp, caddr_t *naddrp, caddr_t eaddr) 3869 { 3870 struct as *as = seg->s_as; 3871 3872 caddr_t saddr = *saddrp; 3873 caddr_t naddr; 3874 3875 int check_noreserve; 3876 uint_t prot; 3877 3878 union { 3879 struct segvn_data *svd; 3880 struct segdev_data *sdp; 3881 void *data; 3882 } s; 3883 3884 s.data = seg->s_data; 3885 3886 ASSERT(AS_WRITE_HELD(as)); 3887 ASSERT(saddr >= seg->s_base && saddr < eaddr); 3888 ASSERT(eaddr <= seg->s_base + seg->s_size); 3889 3890 /* 3891 * Don't include MAP_NORESERVE pages in the address range 3892 * unless their mappings have actually materialized. 3893 * We cheat by knowing that segvn is the only segment 3894 * driver that supports MAP_NORESERVE. 3895 */ 3896 check_noreserve = 3897 (!reserved && seg->s_ops == &segvn_ops && s.svd != NULL && 3898 (s.svd->vp == NULL || s.svd->vp->v_type != VREG) && 3899 (s.svd->flags & MAP_NORESERVE)); 3900 3901 /* 3902 * Examine every page only as a last resort. We use guilty knowledge 3903 * of segvn and segdev to avoid this: if there are no per-page 3904 * protections present in the segment and we don't care about 3905 * MAP_NORESERVE, then s_data->prot is the prot for the whole segment. 3906 */ 3907 if (!check_noreserve && saddr == seg->s_base && 3908 seg->s_ops == &segvn_ops && s.svd != NULL && s.svd->pageprot == 0) { 3909 prot = s.svd->prot; 3910 getwatchprot(as, saddr, &prot); 3911 naddr = eaddr; 3912 3913 } else if (saddr == seg->s_base && seg->s_ops == &segdev_ops && 3914 s.sdp != NULL && s.sdp->pageprot == 0) { 3915 prot = s.sdp->prot; 3916 getwatchprot(as, saddr, &prot); 3917 naddr = eaddr; 3918 3919 } else { 3920 prpagev_t *pagev; 3921 3922 /* 3923 * If addr is sitting at the start of the segment, then 3924 * create a page vector to store protection and incore 3925 * information for pages in the segment, and fill it. 3926 * Otherwise, we expect *tmp to address the prpagev_t 3927 * allocated by a previous call to this function. 3928 */ 3929 if (saddr == seg->s_base) { 3930 pagev = pr_pagev_create(seg, check_noreserve); 3931 saddr = pr_pagev_fill(pagev, seg, saddr, eaddr); 3932 3933 ASSERT(*tmp == NULL); 3934 *tmp = pagev; 3935 3936 ASSERT(saddr <= eaddr); 3937 *saddrp = saddr; 3938 3939 if (saddr == eaddr) { 3940 naddr = saddr; 3941 prot = 0; 3942 goto out; 3943 } 3944 3945 } else { 3946 ASSERT(*tmp != NULL); 3947 pagev = (prpagev_t *)*tmp; 3948 } 3949 3950 naddr = pr_pagev_nextprot(pagev, seg, saddrp, eaddr, &prot); 3951 ASSERT(naddr <= eaddr); 3952 } 3953 3954 out: 3955 if (naddr == eaddr) 3956 pr_getprot_done(tmp); 3957 *naddrp = naddr; 3958 return (prot); 3959 } 3960 3961 void 3962 pr_getprot_done(void **tmp) 3963 { 3964 if (*tmp != NULL) { 3965 pr_pagev_destroy((prpagev_t *)*tmp); 3966 *tmp = NULL; 3967 } 3968 } 3969 3970 /* 3971 * Return true iff the vnode is a /proc file from the object directory. 3972 */ 3973 int 3974 pr_isobject(vnode_t *vp) 3975 { 3976 return (vn_matchops(vp, prvnodeops) && VTOP(vp)->pr_type == PR_OBJECT); 3977 } 3978 3979 /* 3980 * Return true iff the vnode is a /proc file opened by the process itself. 3981 */ 3982 int 3983 pr_isself(vnode_t *vp) 3984 { 3985 /* 3986 * XXX: To retain binary compatibility with the old 3987 * ioctl()-based version of /proc, we exempt self-opens 3988 * of /proc/<pid> from being marked close-on-exec. 3989 */ 3990 return (vn_matchops(vp, prvnodeops) && 3991 (VTOP(vp)->pr_flags & PR_ISSELF) && 3992 VTOP(vp)->pr_type != PR_PIDDIR); 3993 } 3994 3995 static ssize_t 3996 pr_getpagesize(struct seg *seg, caddr_t saddr, caddr_t *naddrp, caddr_t eaddr) 3997 { 3998 ssize_t pagesize, hatsize; 3999 4000 ASSERT(AS_WRITE_HELD(seg->s_as)); 4001 ASSERT(IS_P2ALIGNED(saddr, PAGESIZE)); 4002 ASSERT(IS_P2ALIGNED(eaddr, PAGESIZE)); 4003 ASSERT(saddr < eaddr); 4004 4005 pagesize = hatsize = hat_getpagesize(seg->s_as->a_hat, saddr); 4006 ASSERT(pagesize == -1 || IS_P2ALIGNED(pagesize, pagesize)); 4007 ASSERT(pagesize != 0); 4008 4009 if (pagesize == -1) 4010 pagesize = PAGESIZE; 4011 4012 saddr += P2NPHASE((uintptr_t)saddr, pagesize); 4013 4014 while (saddr < eaddr) { 4015 if (hatsize != hat_getpagesize(seg->s_as->a_hat, saddr)) 4016 break; 4017 ASSERT(IS_P2ALIGNED(saddr, pagesize)); 4018 saddr += pagesize; 4019 } 4020 4021 *naddrp = ((saddr < eaddr) ? saddr : eaddr); 4022 return (hatsize); 4023 } 4024 4025 /* 4026 * Return an array of structures with extended memory map information. 4027 * We allocate here; the caller must deallocate. 4028 */ 4029 int 4030 prgetxmap(proc_t *p, list_t *iolhead) 4031 { 4032 struct as *as = p->p_as; 4033 prxmap_t *mp; 4034 struct seg *seg; 4035 struct seg *brkseg, *stkseg; 4036 struct vnode *vp; 4037 struct vattr vattr; 4038 uint_t prot; 4039 4040 ASSERT(as != &kas && AS_WRITE_HELD(as)); 4041 4042 /* 4043 * Request an initial buffer size that doesn't waste memory 4044 * if the address space has only a small number of segments. 4045 */ 4046 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree)); 4047 4048 if ((seg = AS_SEGFIRST(as)) == NULL) 4049 return (0); 4050 4051 brkseg = break_seg(p); 4052 stkseg = as_segat(as, prgetstackbase(p)); 4053 4054 do { 4055 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 4056 caddr_t saddr, naddr, baddr; 4057 void *tmp = NULL; 4058 ssize_t psz; 4059 char *parr; 4060 uint64_t npages; 4061 uint64_t pagenum; 4062 4063 if ((seg->s_flags & S_HOLE) != 0) { 4064 continue; 4065 } 4066 /* 4067 * Segment loop part one: iterate from the base of the segment 4068 * to its end, pausing at each address boundary (baddr) between 4069 * ranges that have different virtual memory protections. 4070 */ 4071 for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) { 4072 prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr); 4073 ASSERT(baddr >= saddr && baddr <= eaddr); 4074 4075 /* 4076 * Segment loop part two: iterate from the current 4077 * position to the end of the protection boundary, 4078 * pausing at each address boundary (naddr) between 4079 * ranges that have different underlying page sizes. 4080 */ 4081 for (; saddr < baddr; saddr = naddr) { 4082 psz = pr_getpagesize(seg, saddr, &naddr, baddr); 4083 ASSERT(naddr >= saddr && naddr <= baddr); 4084 4085 mp = pr_iol_newbuf(iolhead, sizeof (*mp)); 4086 4087 mp->pr_vaddr = (uintptr_t)saddr; 4088 mp->pr_size = naddr - saddr; 4089 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 4090 mp->pr_mflags = 0; 4091 if (prot & PROT_READ) 4092 mp->pr_mflags |= MA_READ; 4093 if (prot & PROT_WRITE) 4094 mp->pr_mflags |= MA_WRITE; 4095 if (prot & PROT_EXEC) 4096 mp->pr_mflags |= MA_EXEC; 4097 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 4098 mp->pr_mflags |= MA_SHARED; 4099 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 4100 mp->pr_mflags |= MA_NORESERVE; 4101 if (seg->s_ops == &segspt_shmops || 4102 (seg->s_ops == &segvn_ops && 4103 (SEGOP_GETVP(seg, saddr, &vp) != 0 || 4104 vp == NULL))) 4105 mp->pr_mflags |= MA_ANON; 4106 if (seg == brkseg) 4107 mp->pr_mflags |= MA_BREAK; 4108 else if (seg == stkseg) 4109 mp->pr_mflags |= MA_STACK; 4110 if (seg->s_ops == &segspt_shmops) 4111 mp->pr_mflags |= MA_ISM | MA_SHM; 4112 4113 mp->pr_pagesize = PAGESIZE; 4114 if (psz == -1) { 4115 mp->pr_hatpagesize = 0; 4116 } else { 4117 mp->pr_hatpagesize = psz; 4118 } 4119 4120 /* 4121 * Manufacture a filename for the "object" dir. 4122 */ 4123 mp->pr_dev = PRNODEV; 4124 vattr.va_mask = AT_FSID|AT_NODEID; 4125 if (seg->s_ops == &segvn_ops && 4126 SEGOP_GETVP(seg, saddr, &vp) == 0 && 4127 vp != NULL && vp->v_type == VREG && 4128 VOP_GETATTR(vp, &vattr, 0, CRED(), 4129 NULL) == 0) { 4130 mp->pr_dev = vattr.va_fsid; 4131 mp->pr_ino = vattr.va_nodeid; 4132 if (vp == p->p_exec) 4133 (void) strcpy(mp->pr_mapname, 4134 "a.out"); 4135 else 4136 pr_object_name(mp->pr_mapname, 4137 vp, &vattr); 4138 } 4139 4140 /* 4141 * Get the SysV shared memory id, if any. 4142 */ 4143 if ((mp->pr_mflags & MA_SHARED) && 4144 p->p_segacct && (mp->pr_shmid = shmgetid(p, 4145 seg->s_base)) != SHMID_NONE) { 4146 if (mp->pr_shmid == SHMID_FREE) 4147 mp->pr_shmid = -1; 4148 4149 mp->pr_mflags |= MA_SHM; 4150 } else { 4151 mp->pr_shmid = -1; 4152 } 4153 4154 npages = ((uintptr_t)(naddr - saddr)) >> 4155 PAGESHIFT; 4156 parr = kmem_zalloc(npages, KM_SLEEP); 4157 4158 SEGOP_INCORE(seg, saddr, naddr - saddr, parr); 4159 4160 for (pagenum = 0; pagenum < npages; pagenum++) { 4161 if (parr[pagenum] & SEG_PAGE_INCORE) 4162 mp->pr_rss++; 4163 if (parr[pagenum] & SEG_PAGE_ANON) 4164 mp->pr_anon++; 4165 if (parr[pagenum] & SEG_PAGE_LOCKED) 4166 mp->pr_locked++; 4167 } 4168 kmem_free(parr, npages); 4169 } 4170 } 4171 ASSERT(tmp == NULL); 4172 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 4173 4174 return (0); 4175 } 4176 4177 /* 4178 * Return the process's credentials. We don't need a 32-bit equivalent of 4179 * this function because prcred_t and prcred32_t are actually the same. 4180 */ 4181 void 4182 prgetcred(proc_t *p, prcred_t *pcrp) 4183 { 4184 mutex_enter(&p->p_crlock); 4185 cred2prcred(p->p_cred, pcrp); 4186 mutex_exit(&p->p_crlock); 4187 } 4188 4189 void 4190 prgetsecflags(proc_t *p, prsecflags_t *psfp) 4191 { 4192 ASSERT(psfp != NULL); 4193 4194 psfp->pr_version = PRSECFLAGS_VERSION_CURRENT; 4195 psfp->pr_lower = p->p_secflags.psf_lower; 4196 psfp->pr_upper = p->p_secflags.psf_upper; 4197 psfp->pr_effective = p->p_secflags.psf_effective; 4198 psfp->pr_inherit = p->p_secflags.psf_inherit; 4199 } 4200 4201 /* 4202 * Compute actual size of the prpriv_t structure. 4203 */ 4204 4205 size_t 4206 prgetprivsize(void) 4207 { 4208 return (priv_prgetprivsize(NULL)); 4209 } 4210 4211 /* 4212 * Return the process's privileges. We don't need a 32-bit equivalent of 4213 * this function because prpriv_t and prpriv32_t are actually the same. 4214 */ 4215 void 4216 prgetpriv(proc_t *p, prpriv_t *pprp) 4217 { 4218 mutex_enter(&p->p_crlock); 4219 cred2prpriv(p->p_cred, pprp); 4220 mutex_exit(&p->p_crlock); 4221 } 4222 4223 #ifdef _SYSCALL32_IMPL 4224 /* 4225 * Return an array of structures with HAT memory map information. 4226 * We allocate here; the caller must deallocate. 4227 */ 4228 int 4229 prgetxmap32(proc_t *p, list_t *iolhead) 4230 { 4231 struct as *as = p->p_as; 4232 prxmap32_t *mp; 4233 struct seg *seg; 4234 struct seg *brkseg, *stkseg; 4235 struct vnode *vp; 4236 struct vattr vattr; 4237 uint_t prot; 4238 4239 ASSERT(as != &kas && AS_WRITE_HELD(as)); 4240 4241 /* 4242 * Request an initial buffer size that doesn't waste memory 4243 * if the address space has only a small number of segments. 4244 */ 4245 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree)); 4246 4247 if ((seg = AS_SEGFIRST(as)) == NULL) 4248 return (0); 4249 4250 brkseg = break_seg(p); 4251 stkseg = as_segat(as, prgetstackbase(p)); 4252 4253 do { 4254 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 4255 caddr_t saddr, naddr, baddr; 4256 void *tmp = NULL; 4257 ssize_t psz; 4258 char *parr; 4259 uint64_t npages; 4260 uint64_t pagenum; 4261 4262 if ((seg->s_flags & S_HOLE) != 0) { 4263 continue; 4264 } 4265 4266 /* 4267 * Segment loop part one: iterate from the base of the segment 4268 * to its end, pausing at each address boundary (baddr) between 4269 * ranges that have different virtual memory protections. 4270 */ 4271 for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) { 4272 prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr); 4273 ASSERT(baddr >= saddr && baddr <= eaddr); 4274 4275 /* 4276 * Segment loop part two: iterate from the current 4277 * position to the end of the protection boundary, 4278 * pausing at each address boundary (naddr) between 4279 * ranges that have different underlying page sizes. 4280 */ 4281 for (; saddr < baddr; saddr = naddr) { 4282 psz = pr_getpagesize(seg, saddr, &naddr, baddr); 4283 ASSERT(naddr >= saddr && naddr <= baddr); 4284 4285 mp = pr_iol_newbuf(iolhead, sizeof (*mp)); 4286 4287 mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr; 4288 mp->pr_size = (size32_t)(naddr - saddr); 4289 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 4290 mp->pr_mflags = 0; 4291 if (prot & PROT_READ) 4292 mp->pr_mflags |= MA_READ; 4293 if (prot & PROT_WRITE) 4294 mp->pr_mflags |= MA_WRITE; 4295 if (prot & PROT_EXEC) 4296 mp->pr_mflags |= MA_EXEC; 4297 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 4298 mp->pr_mflags |= MA_SHARED; 4299 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 4300 mp->pr_mflags |= MA_NORESERVE; 4301 if (seg->s_ops == &segspt_shmops || 4302 (seg->s_ops == &segvn_ops && 4303 (SEGOP_GETVP(seg, saddr, &vp) != 0 || 4304 vp == NULL))) 4305 mp->pr_mflags |= MA_ANON; 4306 if (seg == brkseg) 4307 mp->pr_mflags |= MA_BREAK; 4308 else if (seg == stkseg) 4309 mp->pr_mflags |= MA_STACK; 4310 if (seg->s_ops == &segspt_shmops) 4311 mp->pr_mflags |= MA_ISM | MA_SHM; 4312 4313 mp->pr_pagesize = PAGESIZE; 4314 if (psz == -1) { 4315 mp->pr_hatpagesize = 0; 4316 } else { 4317 mp->pr_hatpagesize = psz; 4318 } 4319 4320 /* 4321 * Manufacture a filename for the "object" dir. 4322 */ 4323 mp->pr_dev = PRNODEV32; 4324 vattr.va_mask = AT_FSID|AT_NODEID; 4325 if (seg->s_ops == &segvn_ops && 4326 SEGOP_GETVP(seg, saddr, &vp) == 0 && 4327 vp != NULL && vp->v_type == VREG && 4328 VOP_GETATTR(vp, &vattr, 0, CRED(), 4329 NULL) == 0) { 4330 (void) cmpldev(&mp->pr_dev, 4331 vattr.va_fsid); 4332 mp->pr_ino = vattr.va_nodeid; 4333 if (vp == p->p_exec) 4334 (void) strcpy(mp->pr_mapname, 4335 "a.out"); 4336 else 4337 pr_object_name(mp->pr_mapname, 4338 vp, &vattr); 4339 } 4340 4341 /* 4342 * Get the SysV shared memory id, if any. 4343 */ 4344 if ((mp->pr_mflags & MA_SHARED) && 4345 p->p_segacct && (mp->pr_shmid = shmgetid(p, 4346 seg->s_base)) != SHMID_NONE) { 4347 if (mp->pr_shmid == SHMID_FREE) 4348 mp->pr_shmid = -1; 4349 4350 mp->pr_mflags |= MA_SHM; 4351 } else { 4352 mp->pr_shmid = -1; 4353 } 4354 4355 npages = ((uintptr_t)(naddr - saddr)) >> 4356 PAGESHIFT; 4357 parr = kmem_zalloc(npages, KM_SLEEP); 4358 4359 SEGOP_INCORE(seg, saddr, naddr - saddr, parr); 4360 4361 for (pagenum = 0; pagenum < npages; pagenum++) { 4362 if (parr[pagenum] & SEG_PAGE_INCORE) 4363 mp->pr_rss++; 4364 if (parr[pagenum] & SEG_PAGE_ANON) 4365 mp->pr_anon++; 4366 if (parr[pagenum] & SEG_PAGE_LOCKED) 4367 mp->pr_locked++; 4368 } 4369 kmem_free(parr, npages); 4370 } 4371 } 4372 ASSERT(tmp == NULL); 4373 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 4374 4375 return (0); 4376 } 4377 #endif /* _SYSCALL32_IMPL */ 4378