xref: /illumos-gate/usr/src/uts/common/fs/portfs/port.c (revision fa4a3e77edc40df6d92e8da6fc4961d275e9896d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2015 Joyent, Inc.  All rights reserved.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/systm.h>
33 #include <sys/cred.h>
34 #include <sys/modctl.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/sysmacros.h>
38 #include <sys/cmn_err.h>
39 #include <sys/stat.h>
40 #include <sys/errno.h>
41 #include <sys/kmem.h>
42 #include <sys/file.h>
43 #include <sys/kstat.h>
44 #include <sys/port_impl.h>
45 #include <sys/task.h>
46 #include <sys/project.h>
47 
48 /*
49  * Event Ports can be shared across threads or across processes.
50  * Every thread/process can use an own event port or a group of them
51  * can use a single port. A major request was also to get the ability
52  * to submit user-defined events to a port. The idea of the
53  * user-defined events is to use the event ports for communication between
54  * threads/processes (like message queues). User defined-events are queued
55  * in a port with the same priority as other event types.
56  *
57  * Events are delivered only once. The thread/process which is waiting
58  * for events with the "highest priority" (priority here is related to the
59  * internal strategy to wakeup waiting threads) will retrieve the event,
60  * all other threads/processes will not be notified. There is also
61  * the requirement to have events which should be submitted immediately
62  * to all "waiting" threads. That is the main task of the alert event.
63  * The alert event is submitted by the application to a port. The port
64  * changes from a standard mode to the alert mode. Now all waiting threads
65  * will be awaken immediately and they will return with the alert event.
66  * Threads trying to retrieve events from a port in alert mode will
67  * return immediately with the alert event.
68  *
69  *
70  * An event port is like a kernel queue, which accept events submitted from
71  * user level as well as events submitted from kernel sub-systems. Sub-systems
72  * able to submit events to a port are the so-called "event sources".
73  * Current event sources:
74  * PORT_SOURCE_AIO	 : events submitted per transaction completion from
75  *			   POSIX-I/O framework.
76  * PORT_SOURCE_TIMER	 : events submitted when a timer fires
77  *			   (see timer_create(3RT)).
78  * PORT_SOURCE_FD	 : events submitted per file descriptor (see poll(2)).
79  * PORT_SOURCE_ALERT	 : events submitted from user. This is not really a
80  *			   single event, this is actually a port mode
81  *			   (see port_alert(3c)).
82  * PORT_SOURCE_USER	 : events submitted by applications with
83  *			   port_send(3c) or port_sendn(3c).
84  * PORT_SOURCE_FILE	 : events submitted per file being watched for file
85  *			   change events  (see port_create(3c).
86  *
87  * There is a user API implemented in the libc library as well as a
88  * kernel API implemented in port_subr.c in genunix.
89  * The available user API functions are:
90  * port_create() : create a port as a file descriptor of portfs file system
91  *		   The standard close(2) function closes a port.
92  * port_associate() : associate a file descriptor with a port to be able to
93  *		      retrieve events from that file descriptor.
94  * port_dissociate(): remove the association of a file descriptor with a port.
95  * port_alert()	 : set/unset a port in alert mode
96  * port_send()	 : send an event of type PORT_SOURCE_USER to a port
97  * port_sendn()	 : send an event of type PORT_SOURCE_USER to a list of ports
98  * port_get()	 : retrieve a single event from a port
99  * port_getn()	 : retrieve a list of events from a port
100  *
101  * The available kernel API functions are:
102  * port_allocate_event(): allocate an event slot/structure of/from a port
103  * port_init_event()    : set event data in the event structure
104  * port_send_event()    : send event to a port
105  * port_free_event()    : deliver allocated slot/structure back to a port
106  * port_associate_ksource(): associate a kernel event source with a port
107  * port_dissociate_ksource(): dissociate a kernel event source from a port
108  *
109  * The libc implementation consists of small functions which pass the
110  * arguments to the kernel using the "portfs" system call. It means, all the
111  * synchronisation work is being done in the kernel. The "portfs" system
112  * call loads the portfs file system into the kernel.
113  *
114  * PORT CREATION
115  * The first function to be used is port_create() which internally creates
116  * a vnode and a portfs node. The portfs node is represented by the port_t
117  * structure, which again includes all the data necessary to control a port.
118  * port_create() returns a file descriptor, which needs to be used in almost
119  * all other event port functions.
120  * The maximum number of ports per system is controlled by the resource
121  * control: project:port-max-ids.
122  *
123  * EVENT GENERATION
124  * The second step is the triggering of events, which could be sent to a port.
125  * Every event source implements an own method to generate events for a port:
126  * PORT_SOURCE_AIO:
127  *	The sigevent structure of the standard POSIX-IO functions
128  *	was extended by an additional notification type.
129  *	Standard notification types:
130  *	SIGEV_NONE, SIGEV_SIGNAL and SIGEV_THREAD
131  *	Event ports introduced now SIGEV_PORT.
132  *	The notification type SIGEV_PORT specifies that a structure
133  *	of type port_notify_t has to be attached to the sigev_value.
134  *	The port_notify_t structure contains the event port file
135  *	descriptor and a user-defined pointer.
136  *	Internally the AIO implementation will use the kernel API
137  *	functions to allocate an event port slot per transaction (aiocb)
138  *	and sent the event to the port as soon as the transaction completes.
139  *	All the events submitted per transaction are of type
140  *	PORT_SOURCE_AIO.
141  * PORT_SOURCE_TIMER:
142  *	The timer_create() function uses the same method as the
143  *	PORT_SOURCE_AIO event source. It also uses the sigevent structure
144  *	to deliver the port information.
145  *	Internally the timer code will allocate a single event slot/struct
146  *	per timer and it will send the timer event as soon as the timer
147  *	fires. If the timer-fired event is not delivered to the application
148  *	before the next period elapsed, then an overrun counter will be
149  *	incremented. The timer event source uses a callback function to
150  *	detect the delivery of the event to the application. At that time
151  *	the timer callback function will update the event overrun counter.
152  * PORT_SOURCE_FD:
153  *	This event source uses the port_associate() function to allocate
154  *	an event slot/struct from a port. The application defines in the
155  *	events argument of port_associate() the type of events which it is
156  *	interested on.
157  *	The internal pollwakeup() function is used by all the file
158  *	systems --which are supporting the VOP_POLL() interface- to notify
159  *	the upper layer (poll(2), devpoll(7d) and now event ports) about
160  *	the event triggered (see valid events in poll(2)).
161  *	The pollwakeup() function forwards the event to the layer registered
162  *	to receive the current event.
163  *	The port_dissociate() function can be used to free the allocated
164  *	event slot from the port. Anyway, file descriptors deliver events
165  *	only one time and remain deactivated until the application
166  *	reactivates the association of a file descriptor with port_associate().
167  *	If an associated file descriptor is closed then the file descriptor
168  *	will be dissociated automatically from the port.
169  *
170  * PORT_SOURCE_ALERT:
171  *	This event type is generated when the port was previously set in
172  *	alert mode using the port_alert() function.
173  *	A single alert event is delivered to every thread which tries to
174  *	retrieve events from a port.
175  * PORT_SOURCE_USER:
176  *	This type of event is generated from user level using the port_send()
177  *	function to send a user event to a port or the port_sendn() function
178  *	to send an event to a list of ports.
179  * PORT_SOURCE_FILE:
180  *	This event source uses the port_associate() interface to register
181  *	a file to be monitored for changes. The file name that needs to be
182  *	monitored is specified in the file_obj_t structure, a pointer to which
183  *	is passed as an argument. The event types to be monitored are specified
184  *	in the events argument.
185  *	A file events monitor is represented internal per port per object
186  *	address(the file_obj_t pointer). Which means there can be multiple
187  *	watches registered on the same file using different file_obj_t
188  *	structure pointer. With the help of the	FEM(File Event Monitoring)
189  *	hooks, the file's vnode ops are intercepted and relevant events
190  *	delivered. The port_dissociate() function is used to de-register a
191  *	file events monitor on a file. When the specified file is
192  *	removed/renamed, the file events watch/monitor is automatically
193  *	removed.
194  *
195  * EVENT DELIVERY / RETRIEVING EVENTS
196  * Events remain in the port queue until:
197  * - the application uses port_get() or port_getn() to retrieve events,
198  * - the event source cancel the event,
199  * - the event port is closed or
200  * - the process exits.
201  * The maximal number of events in a port queue is the maximal number
202  * of event slots/structures which can be allocated by event sources.
203  * The allocation of event slots/structures is controlled by the resource
204  * control: process.port-max-events.
205  * The port_get() function retrieves a single event and the port_getn()
206  * function retrieves a list of events.
207  * Events are classified as shareable and non-shareable events across processes.
208  * Non-shareable events are invisible for the port_get(n)() functions of
209  * processes other than the owner of the event.
210  *    Shareable event types are:
211  *    PORT_SOURCE_USER events
212  *	This type of event is unconditionally shareable and without
213  *	limitations. If the parent process sends a user event and closes
214  *	the port afterwards, the event remains in the port and the child
215  *	process will still be able to retrieve the user event.
216  *    PORT_SOURCE_ALERT events
217  *	This type of event is shareable between processes.
218  *	Limitation:	The alert mode of the port is removed if the owner
219  *			(process which set the port in alert mode) of the
220  *			alert event closes the port.
221  *    PORT_SOURCE_FD events
222  *	This type of event is conditional shareable between processes.
223  *	After fork(2) all forked file descriptors are shareable between
224  *	the processes. The child process is allowed to retrieve events
225  *	from the associated file descriptors and it can also re-associate
226  *	the fd with the port.
227  *	Limitations:	The child process is not allowed to dissociate
228  *			the file descriptor from the port. Only the
229  *			owner (process) of the association is allowed to
230  *			dissociate the file descriptor from the port.
231  *			If the owner of the association closes the port
232  *			the association will be removed.
233  *    PORT_SOURCE_AIO events
234  *	This type of event is not shareable between processes.
235  *    PORT_SOURCE_TIMER events
236  *	This type of event is not shareable between processes.
237  *    PORT_SOURCE_FILE events
238  *	This type of event is not shareable between processes.
239  *
240  * FORK BEHAVIOUR
241  * On fork(2) the child process inherits all opened file descriptors from
242  * the parent process. This is also valid for port file descriptors.
243  * Associated file descriptors with a port maintain the association across the
244  * fork(2). It means, the child process gets full access to the port and
245  * it can retrieve events from all common associated file descriptors.
246  * Events of file descriptors created and associated with a port after the
247  * fork(2) are non-shareable and can only be retrieved by the same process.
248  *
249  * If the parent or the child process closes an exported port (using fork(2)
250  * or I_SENDFD) all the file descriptors associated with the port by the
251  * process will be dissociated from the port. Events of dissociated file
252  * descriptors as well as all non-shareable events will be discarded.
253  * The other process can continue working with the port as usual.
254  *
255  * CLOSING A PORT
256  * close(2) has to be used to close a port. See FORK BEHAVIOUR for details.
257  *
258  * PORT EVENT STRUCTURES
259  * The global control structure of the event ports framework is port_control_t.
260  * port_control_t keeps track of the number of created ports in the system.
261  * The cache of the port event structures is also located in port_control_t.
262  *
263  * On port_create() the vnode and the portfs node is also created.
264  * The portfs node is represented by the port_t structure.
265  * The port_t structure manages all port specific tasks:
266  * - management of resource control values
267  * - port VOP_POLL interface
268  * - creation time
269  * - uid and gid of the port
270  *
271  * The port_t structure contains the port_queue_t structure.
272  * The port_queue_t structure contains all the data necessary for the
273  * queue management:
274  * - locking
275  * - condition variables
276  * - event counters
277  * - submitted events	(represented by port_kevent_t structures)
278  * - threads waiting for event delivery (check portget_t structure)
279  * - PORT_SOURCE_FD cache	(managed by the port_fdcache_t structure)
280  * - event source management (managed by the port_source_t structure)
281  * - alert mode management	(check port_alert_t structure)
282  *
283  * EVENT MANAGEMENT
284  * The event port file system creates a kmem_cache for internal allocation of
285  * event port structures.
286  *
287  * 1. Event source association with a port:
288  * The first step to do for event sources is to get associated with a port
289  * using the port_associate_ksource() function or adding an entry to the
290  * port_ksource_tab[]. An event source can get dissociated from a port
291  * using the port_dissociate_ksource() function. An entry in the
292  * port_ksource_tab[] implies that the source will be associated
293  * automatically with every new created port.
294  * The event source can deliver a callback function, which is used by the
295  * port to notify the event source about close(2). The idea is that
296  * in such a case the event source should free all allocated resources
297  * and it must return to the port all allocated slots/structures.
298  * The port_close() function will wait until all allocated event
299  * structures/slots are returned to the port.
300  * The callback function is not necessary when the event source does not
301  * maintain local resources, a second condition is that the event source
302  * can guarantee that allocated event slots will be returned without
303  * delay to the port (it will not block and sleep somewhere).
304  *
305  * 2. Reservation of an event slot / event structure
306  * The event port reliability is based on the reservation of an event "slot"
307  * (allocation of an event structure) by the event source as part of the
308  * application call. If the maximal number of event slots is exhausted then
309  * the event source can return a corresponding error code to the application.
310  *
311  * The port_alloc_event() function has to be used by event sources to
312  * allocate an event slot (reserve an event structure). The port_alloc_event()
313  * doesn not block and it will return a 0 value on success or an error code
314  * if it fails.
315  * An argument of port_alloc_event() is a flag which determines the behavior
316  * of the event after it was delivered to the application:
317  * PORT_ALLOC_DEFAULT	: event slot becomes free after delivery to the
318  *			  application.
319  * PORT_ALLOC_PRIVATE	: event slot remains under the control of the event
320  *			  source. This kind of slots can not be used for
321  *			  event delivery and should only be used internally
322  *			  by the event source.
323  * PORT_KEV_CACHED	: event slot remains under the control of an event
324  *			  port cache. It does not become free after delivery
325  *			  to the application.
326  * PORT_ALLOC_SCACHED	: event slot remains under the control of the event
327  *			  source. The event source takes the control over
328  *			  the slot after the event is delivered to the
329  *			  application.
330  *
331  * 3. Delivery of events to the event port
332  * Earlier allocated event structure/slot has to be used to deliver
333  * event data to the port. Event source has to use the function
334  * port_send_event(). The single argument is a pointer to the previously
335  * reserved event structure/slot.
336  * The portkev_events field of the port_kevent_t structure can be updated/set
337  * in two ways:
338  * 1. using the port_set_event() function, or
339  * 2. updating the portkev_events field out of the callback function:
340  *    The event source can deliver a callback function to the port as an
341  *    argument of port_init_event().
342  *    One of the arguments of the callback function is a pointer to the
343  *    events field, which will be delivered to the application.
344  *    (see Delivery of events to the application).
345  * Event structures/slots can be delivered to the event port only one time,
346  * they remain blocked until the data is delivered to the application and the
347  * slot becomes free or it is delivered back to the event source
348  * (PORT_ALLOC_SCACHED). The activation of the callback function mentioned above
349  * is at the same time the indicator for the event source that the event
350  * structure/slot is free for reuse.
351  *
352  * 4. Delivery of events to the application
353  * The events structures/slots delivered by event sources remain in the
354  * port queue until they are retrieved by the application or the port
355  * is closed (exit(2) also closes all opened file descriptors)..
356  * The application uses port_get() or port_getn() to retrieve events from
357  * a port. port_get() retrieves a single event structure/slot and port_getn()
358  * retrieves a list of event structures/slots.
359  * Both functions are able to poll for events and return immediately or they
360  * can specify a timeout value.
361  * Before the events are delivered to the application they are moved to a
362  * second temporary internal queue. The idea is to avoid lock collisions or
363  * contentions of the global queue lock.
364  * The global queue lock is used every time when an event source delivers
365  * new events to the port.
366  * The port_get() and port_getn() functions
367  * a) retrieve single events from the temporary queue,
368  * b) prepare the data to be passed to the application memory,
369  * c) activate the callback function of the event sources:
370  *    - to get the latest event data,
371  *    - the event source can free all allocated resources associated with the
372  *      current event,
373  *    - the event source can re-use the current event slot/structure
374  *    - the event source can deny the delivery of the event to the application
375  *      (e.g. because of the wrong process).
376  * d) put the event back to the temporary queue if the event delivery was denied
377  * e) repeat a) until d) as long as there are events in the queue and
378  *    there is enough user space available.
379  *
380  * The loop described above could block for a very long time the global mutex,
381  * to avoid that a second mutex was introduced to synchronized concurrent
382  * threads accessing the temporary queue.
383  */
384 
385 static int64_t portfs(int, uintptr_t, uintptr_t, uintptr_t, uintptr_t,
386     uintptr_t);
387 
388 static struct sysent port_sysent = {
389 	6,
390 	SE_ARGC | SE_64RVAL | SE_NOUNLOAD,
391 	(int (*)())(uintptr_t)portfs,
392 };
393 
394 static struct modlsys modlsys = {
395 	&mod_syscallops, "event ports", &port_sysent
396 };
397 
398 #ifdef _SYSCALL32_IMPL
399 
400 static int64_t
401 portfs32(uint32_t arg1, int32_t arg2, uint32_t arg3, uint32_t arg4,
402     uint32_t arg5, uint32_t arg6);
403 
404 static struct sysent port_sysent32 = {
405 	6,
406 	SE_ARGC | SE_64RVAL | SE_NOUNLOAD,
407 	(int (*)())(uintptr_t)portfs32,
408 };
409 
410 static struct modlsys modlsys32 = {
411 	&mod_syscallops32,
412 	"32-bit event ports syscalls",
413 	&port_sysent32
414 };
415 #endif	/* _SYSCALL32_IMPL */
416 
417 static struct modlinkage modlinkage = {
418 	MODREV_1,
419 	&modlsys,
420 #ifdef _SYSCALL32_IMPL
421 	&modlsys32,
422 #endif
423 	NULL
424 };
425 
426 port_kstat_t port_kstat = {
427 	{ "ports",	KSTAT_DATA_UINT32 }
428 };
429 
430 dev_t	portdev;
431 struct	vnodeops *port_vnodeops;
432 struct	vfs port_vfs;
433 
434 extern	rctl_hndl_t rc_process_portev;
435 extern	rctl_hndl_t rc_project_portids;
436 extern	void aio_close_port(void *, int, pid_t, int);
437 
438 /*
439  * This table contains a list of event sources which need a static
440  * association with a port (every port).
441  * The last NULL entry in the table is required to detect "end of table".
442  */
443 struct port_ksource port_ksource_tab[] = {
444 	{PORT_SOURCE_AIO, aio_close_port, NULL, NULL},
445 	{0, NULL, NULL, NULL}
446 };
447 
448 /* local functions */
449 static int port_getn(port_t *, port_event_t *, uint_t, uint_t *,
450     port_gettimer_t *);
451 static int port_sendn(int [], int [], uint_t, int, void *, uint_t *);
452 static int port_alert(port_t *, int, int, void *);
453 static int port_dispatch_event(port_t *, int, int, int, uintptr_t, void *);
454 static int port_send(port_t *, int, int, void *);
455 static int port_create(int *);
456 static int port_get_alert(port_alert_t *, port_event_t *);
457 static int port_copy_event(port_event_t *, port_kevent_t *, list_t *);
458 static int *port_errorn(int *, int, int, int);
459 static int port_noshare(void *, int *, pid_t, int, void *);
460 static int port_get_timeout(timespec_t *, timespec_t *, timespec_t **, int *,
461     int);
462 static void port_init(port_t *);
463 static void port_remove_alert(port_queue_t *);
464 static void port_add_ksource_local(port_t *, port_ksource_t *);
465 static void port_check_return_cond(port_queue_t *);
466 static void port_dequeue_thread(port_queue_t *, portget_t *);
467 static portget_t *port_queue_thread(port_queue_t *, uint_t);
468 static void port_kstat_init(void);
469 
470 #ifdef	_SYSCALL32_IMPL
471 static int port_copy_event32(port_event32_t *, port_kevent_t *, list_t *);
472 #endif
473 
474 int
475 _init(void)
476 {
477 	static const fs_operation_def_t port_vfsops_template[] = {
478 		NULL, NULL
479 	};
480 	extern const	fs_operation_def_t port_vnodeops_template[];
481 	vfsops_t	*port_vfsops;
482 	int		error;
483 	major_t		major;
484 
485 	if ((major = getudev()) == (major_t)-1)
486 		return (ENXIO);
487 	portdev = makedevice(major, 0);
488 
489 	/* Create a dummy vfs */
490 	error = vfs_makefsops(port_vfsops_template, &port_vfsops);
491 	if (error) {
492 		cmn_err(CE_WARN, "port init: bad vfs ops");
493 		return (error);
494 	}
495 	vfs_setops(&port_vfs, port_vfsops);
496 	port_vfs.vfs_flag = VFS_RDONLY;
497 	port_vfs.vfs_dev = portdev;
498 	vfs_make_fsid(&(port_vfs.vfs_fsid), portdev, 0);
499 
500 	error = vn_make_ops("portfs", port_vnodeops_template, &port_vnodeops);
501 	if (error) {
502 		vfs_freevfsops(port_vfsops);
503 		cmn_err(CE_WARN, "port init: bad vnode ops");
504 		return (error);
505 	}
506 
507 	mutex_init(&port_control.pc_mutex, NULL, MUTEX_DEFAULT, NULL);
508 	port_control.pc_nents = 0;	/* number of active ports */
509 
510 	/* create kmem_cache for port event structures */
511 	port_control.pc_cache = kmem_cache_create("port_cache",
512 	    sizeof (port_kevent_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
513 
514 	port_kstat_init();		/* init port kstats */
515 	return (mod_install(&modlinkage));
516 }
517 
518 int
519 _info(struct modinfo *modinfop)
520 {
521 	return (mod_info(&modlinkage, modinfop));
522 }
523 
524 /*
525  * System call wrapper for all port related system calls from 32-bit programs.
526  */
527 #ifdef _SYSCALL32_IMPL
528 static int64_t
529 portfs32(uint32_t opcode, int32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
530     uint32_t a4)
531 {
532 	int64_t	error;
533 
534 	switch (opcode & PORT_CODE_MASK) {
535 	case PORT_GET:
536 		error = portfs(PORT_GET, a0, a1, (int)a2, (int)a3, a4);
537 		break;
538 	case PORT_SENDN:
539 		error = portfs(opcode, (uint32_t)a0, a1, a2, a3, a4);
540 		break;
541 	default:
542 		error = portfs(opcode, a0, a1, a2, a3, a4);
543 		break;
544 	}
545 	return (error);
546 }
547 #endif	/* _SYSCALL32_IMPL */
548 
549 /*
550  * System entry point for port functions.
551  * a0 is a port file descriptor (except for PORT_SENDN and PORT_CREATE).
552  * The libc uses PORT_SYS_NOPORT in functions which do not deliver a
553  * port file descriptor as first argument.
554  */
555 static int64_t
556 portfs(int opcode, uintptr_t a0, uintptr_t a1, uintptr_t a2, uintptr_t a3,
557     uintptr_t a4)
558 {
559 	rval_t		r;
560 	port_t		*pp;
561 	int		error = 0;
562 	uint_t		nget;
563 	file_t		*fp;
564 	port_gettimer_t	port_timer;
565 
566 	r.r_vals = 0;
567 	if (opcode & PORT_SYS_NOPORT) {
568 		opcode &= PORT_CODE_MASK;
569 		if (opcode == PORT_SENDN) {
570 			error = port_sendn((int *)a0, (int *)a1, (uint_t)a2,
571 			    (int)a3, (void *)a4, (uint_t *)&r.r_val1);
572 			if (error && (error != EIO))
573 				return ((int64_t)set_errno(error));
574 			return (r.r_vals);
575 		}
576 
577 		if (opcode == PORT_CREATE) {
578 			error = port_create(&r.r_val1);
579 			if (error)
580 				return ((int64_t)set_errno(error));
581 			return (r.r_vals);
582 		}
583 	}
584 
585 	/* opcodes using port as first argument (a0) */
586 
587 	if ((fp = getf((int)a0)) == NULL)
588 		return ((uintptr_t)set_errno(EBADF));
589 
590 	if (fp->f_vnode->v_type != VPORT) {
591 		releasef((int)a0);
592 		return ((uintptr_t)set_errno(EBADFD));
593 	}
594 
595 	pp = VTOEP(fp->f_vnode);
596 
597 	switch (opcode & PORT_CODE_MASK) {
598 	case	PORT_GET:
599 	{
600 		/* see PORT_GETN description */
601 		struct	timespec timeout;
602 
603 		port_timer.pgt_flags = PORTGET_ONE;
604 		port_timer.pgt_loop = 0;
605 		port_timer.pgt_rqtp = NULL;
606 		if (a4 != 0) {
607 			port_timer.pgt_timeout = &timeout;
608 			timeout.tv_sec = (time_t)a2;
609 			timeout.tv_nsec = (long)a3;
610 		} else {
611 			port_timer.pgt_timeout = NULL;
612 		}
613 		do {
614 			nget = 1;
615 			error = port_getn(pp, (port_event_t *)a1, 1,
616 			    (uint_t *)&nget, &port_timer);
617 		} while (nget == 0 && error == 0 && port_timer.pgt_loop);
618 		break;
619 	}
620 	case	PORT_GETN:
621 	{
622 		/*
623 		 * port_getn() can only retrieve own or shareable events from
624 		 * other processes. The port_getn() function remains in the
625 		 * kernel until own or shareable events are available or the
626 		 * timeout elapses.
627 		 */
628 		port_timer.pgt_flags = 0;
629 		port_timer.pgt_loop = 0;
630 		port_timer.pgt_rqtp = NULL;
631 		port_timer.pgt_timeout = (struct timespec *)a4;
632 		do {
633 			nget = a3;
634 			error = port_getn(pp, (port_event_t *)a1, (uint_t)a2,
635 			    (uint_t *)&nget, &port_timer);
636 		} while (nget == 0 && error == 0 && port_timer.pgt_loop);
637 		r.r_val1 = nget;
638 		r.r_val2 = error;
639 		releasef((int)a0);
640 		if (error && error != ETIME)
641 			return ((int64_t)set_errno(error));
642 		return (r.r_vals);
643 	}
644 	case	PORT_ASSOCIATE:
645 	{
646 		switch ((int)a1) {
647 		case PORT_SOURCE_FD:
648 			error = port_associate_fd(pp, (int)a1, (uintptr_t)a2,
649 			    (int)a3, (void *)a4);
650 			break;
651 		case PORT_SOURCE_FILE:
652 			error = port_associate_fop(pp, (int)a1, (uintptr_t)a2,
653 			    (int)a3, (void *)a4);
654 			break;
655 		default:
656 			error = EINVAL;
657 			break;
658 		}
659 		break;
660 	}
661 	case	PORT_SEND:
662 	{
663 		/* user-defined events */
664 		error = port_send(pp, PORT_SOURCE_USER, (int)a1, (void *)a2);
665 		break;
666 	}
667 	case	PORT_DISPATCH:
668 	{
669 		/*
670 		 * library events, blocking
671 		 * Only events of type PORT_SOURCE_AIO or PORT_SOURCE_MQ
672 		 * are currently allowed.
673 		 */
674 		if ((int)a1 != PORT_SOURCE_AIO && (int)a1 != PORT_SOURCE_MQ) {
675 			error = EINVAL;
676 			break;
677 		}
678 		error = port_dispatch_event(pp, (int)opcode, (int)a1, (int)a2,
679 		    (uintptr_t)a3, (void *)a4);
680 		break;
681 	}
682 	case	PORT_DISSOCIATE:
683 	{
684 		switch ((int)a1) {
685 		case PORT_SOURCE_FD:
686 			error = port_dissociate_fd(pp, (uintptr_t)a2);
687 			break;
688 		case PORT_SOURCE_FILE:
689 			error = port_dissociate_fop(pp, (uintptr_t)a2);
690 			break;
691 		default:
692 			error = EINVAL;
693 			break;
694 		}
695 		break;
696 	}
697 	case	PORT_ALERT:
698 	{
699 		if ((int)a2)	/* a2 = events */
700 			error = port_alert(pp, (int)a1, (int)a2, (void *)a3);
701 		else
702 			port_remove_alert(&pp->port_queue);
703 		break;
704 	}
705 	default:
706 		error = EINVAL;
707 		break;
708 	}
709 
710 	releasef((int)a0);
711 	if (error)
712 		return ((int64_t)set_errno(error));
713 	return (r.r_vals);
714 }
715 
716 /*
717  * System call to create a port.
718  *
719  * The port_create() function creates a vnode of type VPORT per port.
720  * The port control data is associated with the vnode as vnode private data.
721  * The port_create() function returns an event port file descriptor.
722  */
723 static int
724 port_create(int *fdp)
725 {
726 	port_t		*pp;
727 	vnode_t		*vp;
728 	struct file	*fp;
729 	proc_t		*p = curproc;
730 
731 	/* initialize vnode and port private data */
732 	pp = kmem_zalloc(sizeof (port_t), KM_SLEEP);
733 
734 	pp->port_vnode = vn_alloc(KM_SLEEP);
735 	vp = EPTOV(pp);
736 	vn_setops(vp, port_vnodeops);
737 	vp->v_type = VPORT;
738 	vp->v_vfsp = &port_vfs;
739 	vp->v_data = (caddr_t)pp;
740 
741 	mutex_enter(&port_control.pc_mutex);
742 	/*
743 	 * Retrieve the maximal number of event ports allowed per system from
744 	 * the resource control: project.port-max-ids.
745 	 */
746 	mutex_enter(&p->p_lock);
747 	if (rctl_test(rc_project_portids, p->p_task->tk_proj->kpj_rctls, p,
748 	    port_control.pc_nents + 1, RCA_SAFE) & RCT_DENY) {
749 		mutex_exit(&p->p_lock);
750 		vn_free(vp);
751 		kmem_free(pp, sizeof (port_t));
752 		mutex_exit(&port_control.pc_mutex);
753 		return (EAGAIN);
754 	}
755 
756 	/*
757 	 * Retrieve the maximal number of events allowed per port from
758 	 * the resource control: process.port-max-events.
759 	 */
760 	pp->port_max_events = rctl_enforced_value(rc_process_portev,
761 	    p->p_rctls, p);
762 	mutex_exit(&p->p_lock);
763 
764 	/* allocate a new user file descriptor and a file structure */
765 	if (falloc(vp, 0, &fp, fdp)) {
766 		/*
767 		 * If the file table is full, free allocated resources.
768 		 */
769 		vn_free(vp);
770 		kmem_free(pp, sizeof (port_t));
771 		mutex_exit(&port_control.pc_mutex);
772 		return (EMFILE);
773 	}
774 
775 	mutex_exit(&fp->f_tlock);
776 
777 	pp->port_fd = *fdp;
778 	port_control.pc_nents++;
779 	p->p_portcnt++;
780 	port_kstat.pks_ports.value.ui32++;
781 	mutex_exit(&port_control.pc_mutex);
782 
783 	/* initializes port private data */
784 	port_init(pp);
785 	/* set user file pointer */
786 	setf(*fdp, fp);
787 	return (0);
788 }
789 
790 /*
791  * port_init() initializes event port specific data
792  */
793 static void
794 port_init(port_t *pp)
795 {
796 	port_queue_t	*portq;
797 	port_ksource_t	*pks;
798 
799 	mutex_init(&pp->port_mutex, NULL, MUTEX_DEFAULT, NULL);
800 	portq = &pp->port_queue;
801 	mutex_init(&portq->portq_mutex, NULL, MUTEX_DEFAULT, NULL);
802 	pp->port_flags |= PORT_INIT;
803 
804 	/*
805 	 * If it is not enough memory available to satisfy a user
806 	 * request using a single port_getn() call then port_getn()
807 	 * will reduce the size of the list to PORT_MAX_LIST.
808 	 */
809 	pp->port_max_list = port_max_list;
810 
811 	/* Set timestamp entries required for fstat(2) requests */
812 	gethrestime(&pp->port_ctime);
813 	pp->port_uid = crgetuid(curproc->p_cred);
814 	pp->port_gid = crgetgid(curproc->p_cred);
815 
816 	/* initialize port queue structs */
817 	list_create(&portq->portq_list, sizeof (port_kevent_t),
818 	    offsetof(port_kevent_t, portkev_node));
819 	list_create(&portq->portq_get_list, sizeof (port_kevent_t),
820 	    offsetof(port_kevent_t, portkev_node));
821 	portq->portq_flags = 0;
822 	pp->port_pid = curproc->p_pid;
823 
824 	/* Allocate cache skeleton for PORT_SOURCE_FD events */
825 	portq->portq_pcp = kmem_zalloc(sizeof (port_fdcache_t), KM_SLEEP);
826 	mutex_init(&portq->portq_pcp->pc_lock, NULL, MUTEX_DEFAULT, NULL);
827 
828 	/*
829 	 * Allocate cache skeleton for association of event sources.
830 	 */
831 	mutex_init(&portq->portq_source_mutex, NULL, MUTEX_DEFAULT, NULL);
832 	portq->portq_scache = kmem_zalloc(
833 	    PORT_SCACHE_SIZE * sizeof (port_source_t *), KM_SLEEP);
834 
835 	/*
836 	 * pre-associate some kernel sources with this port.
837 	 * The pre-association is required to create port_source_t
838 	 * structures for object association.
839 	 * Some sources can not get associated with a port before the first
840 	 * object association is requested. Another reason to pre_associate
841 	 * a particular source with a port is because of performance.
842 	 */
843 
844 	for (pks = port_ksource_tab; pks->pks_source != 0; pks++)
845 		port_add_ksource_local(pp, pks);
846 }
847 
848 /*
849  * The port_add_ksource_local() function is being used to associate
850  * event sources with every new port.
851  * The event sources need to be added to port_ksource_tab[].
852  */
853 static void
854 port_add_ksource_local(port_t *pp, port_ksource_t *pks)
855 {
856 	port_source_t	*pse;
857 	port_source_t	**ps;
858 
859 	mutex_enter(&pp->port_queue.portq_source_mutex);
860 	ps = &pp->port_queue.portq_scache[PORT_SHASH(pks->pks_source)];
861 	for (pse = *ps; pse != NULL; pse = pse->portsrc_next) {
862 		if (pse->portsrc_source == pks->pks_source)
863 			break;
864 	}
865 
866 	if (pse == NULL) {
867 		/* associate new source with the port */
868 		pse = kmem_zalloc(sizeof (port_source_t), KM_SLEEP);
869 		pse->portsrc_source = pks->pks_source;
870 		pse->portsrc_close = pks->pks_close;
871 		pse->portsrc_closearg = pks->pks_closearg;
872 		pse->portsrc_cnt = 1;
873 
874 		pks->pks_portsrc = pse;
875 		if (*ps != NULL)
876 			pse->portsrc_next = (*ps)->portsrc_next;
877 		*ps = pse;
878 	}
879 	mutex_exit(&pp->port_queue.portq_source_mutex);
880 }
881 
882 /*
883  * The port_send() function sends an event of type "source" to a
884  * port. This function is non-blocking. An event can be sent to
885  * a port as long as the number of events per port does not achieve the
886  * maximal allowed number of events. The max. number of events per port is
887  * defined by the resource control process.max-port-events.
888  * This function is used by the port library function port_send()
889  * and port_dispatch(). The port_send(3c) function is part of the
890  * event ports API and submits events of type PORT_SOURCE_USER. The
891  * port_dispatch() function is project private and it is used by library
892  * functions to submit events of other types than PORT_SOURCE_USER
893  * (e.g. PORT_SOURCE_AIO).
894  */
895 static int
896 port_send(port_t *pp, int source, int events, void *user)
897 {
898 	port_kevent_t	*pev;
899 	int		error;
900 
901 	error = port_alloc_event_local(pp, source, PORT_ALLOC_DEFAULT, &pev);
902 	if (error)
903 		return (error);
904 
905 	pev->portkev_object = 0;
906 	pev->portkev_events = events;
907 	pev->portkev_user = user;
908 	pev->portkev_callback = NULL;
909 	pev->portkev_arg = NULL;
910 	pev->portkev_flags = 0;
911 
912 	port_send_event(pev);
913 	return (0);
914 }
915 
916 /*
917  * The port_noshare() function returns 0 if the current event was generated
918  * by the same process. Otherwise is returns a value other than 0 and the
919  * event should not be delivered to the current processe.
920  * The port_noshare() function is normally used by the port_dispatch()
921  * function. The port_dispatch() function is project private and can only be
922  * used within the event port project.
923  * Currently the libaio uses the port_dispatch() function to deliver events
924  * of types PORT_SOURCE_AIO.
925  */
926 /* ARGSUSED */
927 static int
928 port_noshare(void *arg, int *events, pid_t pid, int flag, void *evp)
929 {
930 	if (flag == PORT_CALLBACK_DEFAULT && curproc->p_pid != pid)
931 		return (1);
932 	return (0);
933 }
934 
935 /*
936  * The port_dispatch_event() function is project private and it is used by
937  * libraries involved in the project to deliver events to the port.
938  * port_dispatch will sleep and wait for enough resources to satisfy the
939  * request, if necessary.
940  * The library can specify if the delivered event is shareable with other
941  * processes (see PORT_SYS_NOSHARE flag).
942  */
943 static int
944 port_dispatch_event(port_t *pp, int opcode, int source, int events,
945     uintptr_t object, void *user)
946 {
947 	port_kevent_t	*pev;
948 	int		error;
949 
950 	error = port_alloc_event_block(pp, source, PORT_ALLOC_DEFAULT, &pev);
951 	if (error)
952 		return (error);
953 
954 	pev->portkev_object = object;
955 	pev->portkev_events = events;
956 	pev->portkev_user = user;
957 	pev->portkev_arg = NULL;
958 	if (opcode & PORT_SYS_NOSHARE) {
959 		pev->portkev_flags = PORT_KEV_NOSHARE;
960 		pev->portkev_callback = port_noshare;
961 	} else {
962 		pev->portkev_flags = 0;
963 		pev->portkev_callback = NULL;
964 	}
965 
966 	port_send_event(pev);
967 	return (0);
968 }
969 
970 
971 /*
972  * The port_sendn() function is the kernel implementation of the event
973  * port API function port_sendn(3c).
974  * This function is able to send an event to a list of event ports.
975  */
976 static int
977 port_sendn(int ports[], int errors[], uint_t nent, int events, void *user,
978     uint_t *nget)
979 {
980 	port_kevent_t	*pev;
981 	int		errorcnt = 0;
982 	int		error = 0;
983 	int		count;
984 	int		port;
985 	int		*plist;
986 	int		*elist = NULL;
987 	file_t		*fp;
988 	port_t		*pp;
989 
990 	if (nent == 0 || nent > port_max_list)
991 		return (EINVAL);
992 
993 	plist = kmem_alloc(nent * sizeof (int), KM_SLEEP);
994 	if (copyin((void *)ports, plist, nent * sizeof (int))) {
995 		kmem_free(plist, nent * sizeof (int));
996 		return (EFAULT);
997 	}
998 
999 	/*
1000 	 * Scan the list for event port file descriptors and send the
1001 	 * attached user event data embedded in a event of type
1002 	 * PORT_SOURCE_USER to every event port in the list.
1003 	 * If a list entry is not a valid event port then the corresponding
1004 	 * error code will be stored in the errors[] list with the same
1005 	 * list offset as in the ports[] list.
1006 	 */
1007 
1008 	for (count = 0; count < nent; count++) {
1009 		port = plist[count];
1010 		if ((fp = getf(port)) == NULL) {
1011 			elist = port_errorn(elist, nent, EBADF, count);
1012 			errorcnt++;
1013 			continue;
1014 		}
1015 
1016 		pp = VTOEP(fp->f_vnode);
1017 		if (fp->f_vnode->v_type != VPORT) {
1018 			releasef(port);
1019 			elist = port_errorn(elist, nent, EBADFD, count);
1020 			errorcnt++;
1021 			continue;
1022 		}
1023 
1024 		error = port_alloc_event_local(pp, PORT_SOURCE_USER,
1025 		    PORT_ALLOC_DEFAULT, &pev);
1026 		if (error) {
1027 			releasef(port);
1028 			elist = port_errorn(elist, nent, error, count);
1029 			errorcnt++;
1030 			continue;
1031 		}
1032 
1033 		pev->portkev_object = 0;
1034 		pev->portkev_events = events;
1035 		pev->portkev_user = user;
1036 		pev->portkev_callback = NULL;
1037 		pev->portkev_arg = NULL;
1038 		pev->portkev_flags = 0;
1039 
1040 		port_send_event(pev);
1041 		releasef(port);
1042 	}
1043 	if (errorcnt) {
1044 		error = EIO;
1045 		if (copyout(elist, (void *)errors, nent * sizeof (int)))
1046 			error = EFAULT;
1047 		kmem_free(elist, nent * sizeof (int));
1048 	}
1049 	*nget = nent - errorcnt;
1050 	kmem_free(plist, nent * sizeof (int));
1051 	return (error);
1052 }
1053 
1054 static int *
1055 port_errorn(int *elist, int nent, int error, int index)
1056 {
1057 	if (elist == NULL)
1058 		elist = kmem_zalloc(nent * sizeof (int), KM_SLEEP);
1059 	elist[index] = error;
1060 	return (elist);
1061 }
1062 
1063 /*
1064  * port_alert()
1065  * The port_alert() funcion is a high priority event and it is always set
1066  * on top of the queue. It is also delivered as single event.
1067  * flags:
1068  *	- SET	:overwrite current alert data
1069  *	- UPDATE:set alert data or return EBUSY if alert mode is already set
1070  *
1071  * - set the ALERT flag
1072  * - wakeup all sleeping threads
1073  */
1074 static int
1075 port_alert(port_t *pp, int flags, int events, void *user)
1076 {
1077 	port_queue_t	*portq;
1078 	portget_t	*pgetp;
1079 	port_alert_t	*pa;
1080 
1081 	if ((flags & PORT_ALERT_INVALID) == PORT_ALERT_INVALID)
1082 		return (EINVAL);
1083 
1084 	portq = &pp->port_queue;
1085 	pa = &portq->portq_alert;
1086 	mutex_enter(&portq->portq_mutex);
1087 
1088 	/* check alert conditions */
1089 	if (flags == PORT_ALERT_UPDATE) {
1090 		if (portq->portq_flags & PORTQ_ALERT) {
1091 			mutex_exit(&portq->portq_mutex);
1092 			return (EBUSY);
1093 		}
1094 	}
1095 
1096 	/*
1097 	 * Store alert data in the port to be delivered to threads
1098 	 * which are using port_get(n) to retrieve events.
1099 	 */
1100 
1101 	portq->portq_flags |= PORTQ_ALERT;
1102 	pa->portal_events = events;		/* alert info */
1103 	pa->portal_pid = curproc->p_pid;	/* process owner */
1104 	pa->portal_object = 0;			/* no object */
1105 	pa->portal_user = user;			/* user alert data */
1106 
1107 	/* alert and deliver alert data to waiting threads */
1108 	pgetp = portq->portq_thread;
1109 	if (pgetp == NULL) {
1110 		/* no threads waiting for events */
1111 		mutex_exit(&portq->portq_mutex);
1112 		return (0);
1113 	}
1114 
1115 	/*
1116 	 * Set waiting threads in alert mode (PORTGET_ALERT)..
1117 	 * Every thread waiting for events already allocated a portget_t
1118 	 * structure to sleep on.
1119 	 * The port alert arguments are stored in the portget_t structure.
1120 	 * The PORTGET_ALERT flag is set to indicate the thread to return
1121 	 * immediately with the alert event.
1122 	 */
1123 	do {
1124 		if ((pgetp->portget_state & PORTGET_ALERT) == 0) {
1125 			pa = &pgetp->portget_alert;
1126 			pa->portal_events = events;
1127 			pa->portal_object = 0;
1128 			pa->portal_user = user;
1129 			pgetp->portget_state |= PORTGET_ALERT;
1130 			cv_signal(&pgetp->portget_cv);
1131 		}
1132 	} while ((pgetp = pgetp->portget_next) != portq->portq_thread);
1133 	mutex_exit(&portq->portq_mutex);
1134 	return (0);
1135 }
1136 
1137 /*
1138  * Clear alert state of the port
1139  */
1140 static void
1141 port_remove_alert(port_queue_t *portq)
1142 {
1143 	mutex_enter(&portq->portq_mutex);
1144 	portq->portq_flags &= ~PORTQ_ALERT;
1145 	mutex_exit(&portq->portq_mutex);
1146 }
1147 
1148 /*
1149  * The port_getn() function is used to retrieve events from a port.
1150  *
1151  * The port_getn() function returns immediately if there are enough events
1152  * available in the port to satisfy the request or if the port is in alert
1153  * mode (see port_alert(3c)).
1154  * The timeout argument of port_getn(3c) -which is embedded in the
1155  * port_gettimer_t structure- specifies if the system call should block or if it
1156  * should return immediately depending on the number of events available.
1157  * This function is internally used by port_getn(3c) as well as by
1158  * port_get(3c).
1159  */
1160 static int
1161 port_getn(port_t *pp, port_event_t *uevp, uint_t max, uint_t *nget,
1162     port_gettimer_t *pgt)
1163 {
1164 	port_queue_t	*portq;
1165 	port_kevent_t	*pev;
1166 	port_kevent_t	*lev;
1167 	int		error = 0;
1168 	uint_t		nmax;
1169 	uint_t		nevents;
1170 	uint_t		eventsz;
1171 	port_event_t	*kevp;
1172 	list_t		*glist;
1173 	uint_t		tnent;
1174 	int		rval;
1175 	int		blocking = -1;
1176 	int		timecheck;
1177 	int		flag;
1178 	timespec_t	rqtime;
1179 	timespec_t	*rqtp = NULL;
1180 	portget_t	*pgetp;
1181 	void		*results;
1182 	model_t		model = get_udatamodel();
1183 
1184 	flag = pgt->pgt_flags;
1185 
1186 	if (*nget > max && max > 0)
1187 		return (EINVAL);
1188 
1189 	portq = &pp->port_queue;
1190 	mutex_enter(&portq->portq_mutex);
1191 	if (max == 0) {
1192 		/*
1193 		 * Return number of objects with events.
1194 		 * The port_block() call is required to synchronize this
1195 		 * thread with another possible thread, which could be
1196 		 * retrieving events from the port queue.
1197 		 */
1198 		port_block(portq);
1199 		/*
1200 		 * Check if a second thread is currently retrieving events
1201 		 * and it is using the temporary event queue.
1202 		 */
1203 		if (portq->portq_tnent) {
1204 			/* put remaining events back to the port queue */
1205 			port_push_eventq(portq);
1206 		}
1207 		*nget = portq->portq_nent;
1208 		port_unblock(portq);
1209 		mutex_exit(&portq->portq_mutex);
1210 		return (0);
1211 	}
1212 
1213 	if (uevp == NULL) {
1214 		mutex_exit(&portq->portq_mutex);
1215 		return (EFAULT);
1216 	}
1217 	if (*nget == 0) {		/* no events required */
1218 		mutex_exit(&portq->portq_mutex);
1219 		return (0);
1220 	}
1221 
1222 	/* port is being closed ... */
1223 	if (portq->portq_flags & PORTQ_CLOSE) {
1224 		mutex_exit(&portq->portq_mutex);
1225 		return (EBADFD);
1226 	}
1227 
1228 	/* return immediately if port in alert mode */
1229 	if (portq->portq_flags & PORTQ_ALERT) {
1230 		error = port_get_alert(&portq->portq_alert, uevp);
1231 		if (error == 0)
1232 			*nget = 1;
1233 		mutex_exit(&portq->portq_mutex);
1234 		return (error);
1235 	}
1236 
1237 	portq->portq_thrcnt++;
1238 
1239 	/*
1240 	 * Now check if the completed events satisfy the
1241 	 * "wait" requirements of the current thread:
1242 	 */
1243 
1244 	if (pgt->pgt_loop) {
1245 		/*
1246 		 * loop entry of same thread
1247 		 * pgt_loop is set when the current thread returns
1248 		 * prematurely from this function. That could happen
1249 		 * when a port is being shared between processes and
1250 		 * this thread could not find events to return.
1251 		 * It is not allowed to a thread to retrieve non-shareable
1252 		 * events generated in other processes.
1253 		 * PORTQ_WAIT_EVENTS is set when a thread already
1254 		 * checked the current event queue and no new events
1255 		 * are added to the queue.
1256 		 */
1257 		if (((portq->portq_flags & PORTQ_WAIT_EVENTS) == 0) &&
1258 		    (portq->portq_nent >= *nget)) {
1259 			/* some new events arrived ...check them */
1260 			goto portnowait;
1261 		}
1262 		rqtp = pgt->pgt_rqtp;
1263 		timecheck = pgt->pgt_timecheck;
1264 		pgt->pgt_flags |= PORTGET_WAIT_EVENTS;
1265 	} else {
1266 		/* check if enough events are available ... */
1267 		if (portq->portq_nent >= *nget)
1268 			goto portnowait;
1269 		/*
1270 		 * There are not enough events available to satisfy
1271 		 * the request, check timeout value and wait for
1272 		 * incoming events.
1273 		 */
1274 		error = port_get_timeout(pgt->pgt_timeout, &rqtime, &rqtp,
1275 		    &blocking, flag);
1276 		if (error) {
1277 			port_check_return_cond(portq);
1278 			mutex_exit(&portq->portq_mutex);
1279 			return (error);
1280 		}
1281 
1282 		if (blocking == 0) /* don't block, check fired events */
1283 			goto portnowait;
1284 
1285 		if (rqtp != NULL) {
1286 			timespec_t	now;
1287 			timecheck = timechanged;
1288 			gethrestime(&now);
1289 			timespecadd(rqtp, &now);
1290 		}
1291 	}
1292 
1293 	/* enqueue thread in the list of waiting threads */
1294 	pgetp = port_queue_thread(portq, *nget);
1295 
1296 
1297 	/* Wait here until return conditions met */
1298 	for (;;) {
1299 		if (pgetp->portget_state & PORTGET_ALERT) {
1300 			/* reap alert event and return */
1301 			error = port_get_alert(&pgetp->portget_alert, uevp);
1302 			if (error)
1303 				*nget = 0;
1304 			else
1305 				*nget = 1;
1306 			port_dequeue_thread(&pp->port_queue, pgetp);
1307 			portq->portq_thrcnt--;
1308 			mutex_exit(&portq->portq_mutex);
1309 			return (error);
1310 		}
1311 
1312 		/*
1313 		 * Check if some other thread is already retrieving
1314 		 * events (portq_getn > 0).
1315 		 */
1316 
1317 		if ((portq->portq_getn  == 0) &&
1318 		    ((portq)->portq_nent >= *nget) &&
1319 		    (!((pgt)->pgt_flags & PORTGET_WAIT_EVENTS) ||
1320 		    !((portq)->portq_flags & PORTQ_WAIT_EVENTS)))
1321 			break;
1322 
1323 		if (portq->portq_flags & PORTQ_CLOSE) {
1324 			error = EBADFD;
1325 			break;
1326 		}
1327 
1328 		rval = cv_waituntil_sig(&pgetp->portget_cv, &portq->portq_mutex,
1329 		    rqtp, timecheck);
1330 
1331 		if (rval <= 0) {
1332 			error = (rval == 0) ? EINTR : ETIME;
1333 			break;
1334 		}
1335 	}
1336 
1337 	/* take thread out of the wait queue */
1338 	port_dequeue_thread(portq, pgetp);
1339 
1340 	if (error != 0 && (error == EINTR || error == EBADFD ||
1341 	    (error == ETIME && flag))) {
1342 		/* return without events */
1343 		port_check_return_cond(portq);
1344 		mutex_exit(&portq->portq_mutex);
1345 		return (error);
1346 	}
1347 
1348 portnowait:
1349 	/*
1350 	 * Move port event queue to a temporary event queue .
1351 	 * New incoming events will be continue be posted to the event queue
1352 	 * and they will not be considered by the current thread.
1353 	 * The idea is to avoid lock contentions or an often locking/unlocking
1354 	 * of the port queue mutex. The contention and performance degradation
1355 	 * could happen because:
1356 	 * a) incoming events use the port queue mutex to enqueue new events and
1357 	 * b) before the event can be delivered to the application it is
1358 	 *    necessary to notify the event sources about the event delivery.
1359 	 *    Sometimes the event sources can require a long time to return and
1360 	 *    the queue mutex would block incoming events.
1361 	 * During this time incoming events (port_send_event()) do not need
1362 	 * to awake threads waiting for events. Before the current thread
1363 	 * returns it will check the conditions to awake other waiting threads.
1364 	 */
1365 	portq->portq_getn++;	/* number of threads retrieving events */
1366 	port_block(portq);	/* block other threads here */
1367 	nmax = max < portq->portq_nent ? max : portq->portq_nent;
1368 
1369 	if (portq->portq_tnent) {
1370 		/*
1371 		 * Move remaining events from previous thread back to the
1372 		 * port event queue.
1373 		 */
1374 		port_push_eventq(portq);
1375 	}
1376 	/* move port event queue to a temporary queue */
1377 	list_move_tail(&portq->portq_get_list, &portq->portq_list);
1378 	glist = &portq->portq_get_list;	/* use temporary event queue */
1379 	tnent = portq->portq_nent;	/* get current number of events */
1380 	portq->portq_nent = 0;		/* no events in the port event queue */
1381 	portq->portq_flags |= PORTQ_WAIT_EVENTS; /* detect incoming events */
1382 	mutex_exit(&portq->portq_mutex);    /* event queue can be reused now */
1383 
1384 	if (model == DATAMODEL_NATIVE) {
1385 		eventsz = sizeof (port_event_t);
1386 
1387 		if (nmax == 0) {
1388 			kevp = NULL;
1389 		} else {
1390 			kevp = kmem_alloc(eventsz * nmax, KM_NOSLEEP);
1391 			if (kevp == NULL) {
1392 				if (nmax > pp->port_max_list)
1393 					nmax = pp->port_max_list;
1394 				kevp = kmem_alloc(eventsz * nmax, KM_SLEEP);
1395 			}
1396 		}
1397 
1398 		results = kevp;
1399 		lev = NULL;	/* start with first event in the queue */
1400 		for (nevents = 0; nevents < nmax; ) {
1401 			pev = port_get_kevent(glist, lev);
1402 			if (pev == NULL)	/* no more events available */
1403 				break;
1404 			if (pev->portkev_flags & PORT_KEV_FREE) {
1405 				/* Just discard event */
1406 				list_remove(glist, pev);
1407 				pev->portkev_flags &= ~(PORT_CLEANUP_DONE);
1408 				if (PORT_FREE_EVENT(pev))
1409 					port_free_event_local(pev, 0);
1410 				tnent--;
1411 				continue;
1412 			}
1413 
1414 			/* move event data to copyout list */
1415 			if (port_copy_event(&kevp[nevents], pev, glist)) {
1416 				/*
1417 				 * Event can not be delivered to the
1418 				 * current process.
1419 				 */
1420 				if (lev != NULL)
1421 					list_insert_after(glist, lev, pev);
1422 				else
1423 					list_insert_head(glist, pev);
1424 				lev = pev;  /* last checked event */
1425 			} else {
1426 				nevents++;	/* # of events ready */
1427 			}
1428 		}
1429 #ifdef	_SYSCALL32_IMPL
1430 	} else {
1431 		port_event32_t	*kevp32;
1432 
1433 		eventsz = sizeof (port_event32_t);
1434 
1435 		if (nmax == 0) {
1436 			kevp32 = NULL;
1437 		} else {
1438 			kevp32 = kmem_alloc(eventsz * nmax, KM_NOSLEEP);
1439 			if (kevp32 == NULL) {
1440 				if (nmax > pp->port_max_list)
1441 					nmax = pp->port_max_list;
1442 				kevp32 = kmem_alloc(eventsz * nmax, KM_SLEEP);
1443 			}
1444 		}
1445 
1446 		results = kevp32;
1447 		lev = NULL;	/* start with first event in the queue */
1448 		for (nevents = 0; nevents < nmax; ) {
1449 			pev = port_get_kevent(glist, lev);
1450 			if (pev == NULL)	/* no more events available */
1451 				break;
1452 			if (pev->portkev_flags & PORT_KEV_FREE) {
1453 				/* Just discard event */
1454 				list_remove(glist, pev);
1455 				pev->portkev_flags &= ~(PORT_CLEANUP_DONE);
1456 				if (PORT_FREE_EVENT(pev))
1457 					port_free_event_local(pev, 0);
1458 				tnent--;
1459 				continue;
1460 			}
1461 
1462 			/* move event data to copyout list */
1463 			if (port_copy_event32(&kevp32[nevents], pev, glist)) {
1464 				/*
1465 				 * Event can not be delivered to the
1466 				 * current process.
1467 				 */
1468 				if (lev != NULL)
1469 					list_insert_after(glist, lev, pev);
1470 				else
1471 					list_insert_head(glist, pev);
1472 				lev = pev;  /* last checked event */
1473 			} else {
1474 				nevents++;	/* # of events ready */
1475 			}
1476 		}
1477 #endif	/* _SYSCALL32_IMPL */
1478 	}
1479 
1480 	/*
1481 	 *  Remember number of remaining events in the temporary event queue.
1482 	 */
1483 	portq->portq_tnent = tnent - nevents;
1484 
1485 	/*
1486 	 * Work to do before return :
1487 	 * - push list of remaining events back to the top of the standard
1488 	 *   port queue.
1489 	 * - if this is the last thread calling port_get(n) then wakeup the
1490 	 *   thread waiting on close(2).
1491 	 * - check for a deferred cv_signal from port_send_event() and wakeup
1492 	 *   the sleeping thread.
1493 	 */
1494 
1495 	mutex_enter(&portq->portq_mutex);
1496 	port_unblock(portq);
1497 	if (portq->portq_tnent) {
1498 		/*
1499 		 * move remaining events in the temporary event queue back
1500 		 * to the port event queue
1501 		 */
1502 		port_push_eventq(portq);
1503 	}
1504 	portq->portq_getn--;	/* update # of threads retrieving events */
1505 	if (--portq->portq_thrcnt == 0) { /* # of threads waiting ... */
1506 		/* Last thread => check close(2) conditions ... */
1507 		if (portq->portq_flags & PORTQ_CLOSE) {
1508 			cv_signal(&portq->portq_closecv);
1509 			mutex_exit(&portq->portq_mutex);
1510 			kmem_free(results, eventsz * nmax);
1511 			/* do not copyout events */
1512 			*nget = 0;
1513 			return (EBADFD);
1514 		}
1515 	} else if (portq->portq_getn == 0) {
1516 		/*
1517 		 * no other threads retrieving events ...
1518 		 * check wakeup conditions of sleeping threads
1519 		 */
1520 		if ((portq->portq_thread != NULL) &&
1521 		    (portq->portq_nent >= portq->portq_nget))
1522 			cv_signal(&portq->portq_thread->portget_cv);
1523 	}
1524 
1525 	/*
1526 	 * Check PORTQ_POLLIN here because the current thread set temporarily
1527 	 * the number of events in the queue to zero.
1528 	 */
1529 	if (portq->portq_flags & PORTQ_POLLIN) {
1530 		portq->portq_flags &= ~PORTQ_POLLIN;
1531 		mutex_exit(&portq->portq_mutex);
1532 		pollwakeup(&pp->port_pollhd, POLLIN);
1533 	} else {
1534 		mutex_exit(&portq->portq_mutex);
1535 	}
1536 
1537 	/* now copyout list of user event structures to user space */
1538 	if (nevents) {
1539 		if (copyout(results, uevp, nevents * eventsz))
1540 			error = EFAULT;
1541 	}
1542 	kmem_free(results, eventsz * nmax);
1543 
1544 	if (nevents == 0 && error == 0 && pgt->pgt_loop == 0 && blocking != 0) {
1545 		/* no events retrieved: check loop conditions */
1546 		if (blocking == -1) {
1547 			/* no timeout checked */
1548 			error = port_get_timeout(pgt->pgt_timeout,
1549 			    &pgt->pgt_rqtime, &rqtp, &blocking, flag);
1550 			if (error) {
1551 				*nget = nevents;
1552 				return (error);
1553 			}
1554 			if (rqtp != NULL) {
1555 				timespec_t	now;
1556 				pgt->pgt_timecheck = timechanged;
1557 				gethrestime(&now);
1558 				timespecadd(&pgt->pgt_rqtime, &now);
1559 			}
1560 			pgt->pgt_rqtp = rqtp;
1561 		} else {
1562 			/* timeout already checked -> remember values */
1563 			pgt->pgt_rqtp = rqtp;
1564 			if (rqtp != NULL) {
1565 				pgt->pgt_timecheck = timecheck;
1566 				pgt->pgt_rqtime = *rqtp;
1567 			}
1568 		}
1569 		if (blocking)
1570 			/* timeout remaining */
1571 			pgt->pgt_loop = 1;
1572 	}
1573 
1574 	/* set number of user event structures completed */
1575 	*nget = nevents;
1576 	return (error);
1577 }
1578 
1579 /*
1580  * 1. copy kernel event structure to user event structure.
1581  * 2. PORT_KEV_WIRED event structures will be reused by the "source"
1582  * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue)
1583  * 4. Other types of event structures can be delivered back to the port cache
1584  *    (port_free_event_local()).
1585  * 5. The event source callback function is the last opportunity for the
1586  *    event source to update events, to free local resources associated with
1587  *    the event or to deny the delivery of the event.
1588  */
1589 static int
1590 port_copy_event(port_event_t *puevp, port_kevent_t *pkevp, list_t *list)
1591 {
1592 	int	free_event = 0;
1593 	int	flags;
1594 	int	error;
1595 
1596 	puevp->portev_source = pkevp->portkev_source;
1597 	puevp->portev_object = pkevp->portkev_object;
1598 	puevp->portev_user = pkevp->portkev_user;
1599 	puevp->portev_events = pkevp->portkev_events;
1600 
1601 	/* remove event from the queue */
1602 	list_remove(list, pkevp);
1603 
1604 	/*
1605 	 * Events of type PORT_KEV_WIRED remain allocated by the
1606 	 * event source.
1607 	 */
1608 	flags = pkevp->portkev_flags;
1609 	if (pkevp->portkev_flags & PORT_KEV_WIRED)
1610 		pkevp->portkev_flags &= ~PORT_KEV_DONEQ;
1611 	else
1612 		free_event = 1;
1613 
1614 	if (pkevp->portkev_callback) {
1615 		error = (*pkevp->portkev_callback)(pkevp->portkev_arg,
1616 		    &puevp->portev_events, pkevp->portkev_pid,
1617 		    PORT_CALLBACK_DEFAULT, pkevp);
1618 
1619 		if (error) {
1620 			/*
1621 			 * Event can not be delivered.
1622 			 * Caller must reinsert the event into the queue.
1623 			 */
1624 			pkevp->portkev_flags = flags;
1625 			return (error);
1626 		}
1627 	}
1628 	if (free_event)
1629 		port_free_event_local(pkevp, 0);
1630 	return (0);
1631 }
1632 
1633 #ifdef	_SYSCALL32_IMPL
1634 /*
1635  * 1. copy kernel event structure to user event structure.
1636  * 2. PORT_KEV_WIRED event structures will be reused by the "source"
1637  * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue)
1638  * 4. Other types of event structures can be delivered back to the port cache
1639  *    (port_free_event_local()).
1640  * 5. The event source callback function is the last opportunity for the
1641  *    event source to update events, to free local resources associated with
1642  *    the event or to deny the delivery of the event.
1643  */
1644 static int
1645 port_copy_event32(port_event32_t *puevp, port_kevent_t *pkevp, list_t *list)
1646 {
1647 	int	free_event = 0;
1648 	int	error;
1649 	int	flags;
1650 
1651 	puevp->portev_source = pkevp->portkev_source;
1652 	puevp->portev_object = (daddr32_t)pkevp->portkev_object;
1653 	puevp->portev_user = (caddr32_t)(uintptr_t)pkevp->portkev_user;
1654 	puevp->portev_events = pkevp->portkev_events;
1655 
1656 	/* remove event from the queue */
1657 	list_remove(list, pkevp);
1658 
1659 	/*
1660 	 * Events if type PORT_KEV_WIRED remain allocated by the
1661 	 * sub-system (source).
1662 	 */
1663 
1664 	flags = pkevp->portkev_flags;
1665 	if (pkevp->portkev_flags & PORT_KEV_WIRED)
1666 		pkevp->portkev_flags &= ~PORT_KEV_DONEQ;
1667 	else
1668 		free_event = 1;
1669 
1670 	if (pkevp->portkev_callback != NULL) {
1671 		error = (*pkevp->portkev_callback)(pkevp->portkev_arg,
1672 		    &puevp->portev_events, pkevp->portkev_pid,
1673 		    PORT_CALLBACK_DEFAULT, pkevp);
1674 		if (error) {
1675 			/*
1676 			 * Event can not be delivered.
1677 			 * Caller must reinsert the event into the queue.
1678 			 */
1679 			pkevp->portkev_flags = flags;
1680 			return (error);
1681 		}
1682 	}
1683 	if (free_event)
1684 		port_free_event_local(pkevp, 0);
1685 	return (0);
1686 }
1687 #endif	/* _SYSCALL32_IMPL */
1688 
1689 /*
1690  * copyout alert event.
1691  */
1692 static int
1693 port_get_alert(port_alert_t *pa, port_event_t *uevp)
1694 {
1695 	model_t	model = get_udatamodel();
1696 
1697 	/* copyout alert event structures to user space */
1698 	if (model == DATAMODEL_NATIVE) {
1699 		port_event_t	uev;
1700 		uev.portev_source = PORT_SOURCE_ALERT;
1701 		uev.portev_object = pa->portal_object;
1702 		uev.portev_events = pa->portal_events;
1703 		uev.portev_user = pa->portal_user;
1704 		if (copyout(&uev, uevp, sizeof (port_event_t)))
1705 			return (EFAULT);
1706 #ifdef	_SYSCALL32_IMPL
1707 	} else {
1708 		port_event32_t	uev32;
1709 		uev32.portev_source = PORT_SOURCE_ALERT;
1710 		uev32.portev_object = (daddr32_t)pa->portal_object;
1711 		uev32.portev_events = pa->portal_events;
1712 		uev32.portev_user = (daddr32_t)(uintptr_t)pa->portal_user;
1713 		if (copyout(&uev32, uevp, sizeof (port_event32_t)))
1714 			return (EFAULT);
1715 #endif	/* _SYSCALL32_IMPL */
1716 	}
1717 	return (0);
1718 }
1719 
1720 /*
1721  * Check return conditions :
1722  * - pending port close(2)
1723  * - threads waiting for events
1724  */
1725 static void
1726 port_check_return_cond(port_queue_t *portq)
1727 {
1728 	ASSERT(MUTEX_HELD(&portq->portq_mutex));
1729 	portq->portq_thrcnt--;
1730 	if (portq->portq_flags & PORTQ_CLOSE) {
1731 		if (portq->portq_thrcnt == 0)
1732 			cv_signal(&portq->portq_closecv);
1733 		else
1734 			cv_signal(&portq->portq_thread->portget_cv);
1735 	}
1736 }
1737 
1738 /*
1739  * The port_get_kevent() function returns
1740  * - the event located at the head of the queue if 'last' pointer is NULL
1741  * - the next event after the event pointed by 'last'
1742  * The caller of this function is responsible for the integrity of the queue
1743  * in use:
1744  * - port_getn() is using a temporary queue protected with port_block().
1745  * - port_close_events() is working on the global event queue and protects
1746  *   the queue with portq->portq_mutex.
1747  */
1748 port_kevent_t *
1749 port_get_kevent(list_t *list, port_kevent_t *last)
1750 {
1751 	if (last == NULL)
1752 		return (list_head(list));
1753 	else
1754 		return (list_next(list, last));
1755 }
1756 
1757 /*
1758  * The port_get_timeout() function gets the timeout data from user space
1759  * and converts that info into a corresponding internal representation.
1760  * The kerneldata flag means that the timeout data is already loaded.
1761  */
1762 static int
1763 port_get_timeout(timespec_t *timeout, timespec_t *rqtime, timespec_t **rqtp,
1764     int *blocking, int kerneldata)
1765 {
1766 	model_t	model = get_udatamodel();
1767 
1768 	*rqtp = NULL;
1769 	if (timeout == NULL) {
1770 		*blocking = 1;
1771 		return (0);
1772 	}
1773 
1774 	if (kerneldata) {
1775 		*rqtime = *timeout;
1776 	} else {
1777 		if (model == DATAMODEL_NATIVE) {
1778 			if (copyin(timeout, rqtime, sizeof (*rqtime)))
1779 				return (EFAULT);
1780 #ifdef	_SYSCALL32_IMPL
1781 		} else {
1782 			timespec32_t	wait_time_32;
1783 			if (copyin(timeout, &wait_time_32,
1784 			    sizeof (wait_time_32)))
1785 				return (EFAULT);
1786 			TIMESPEC32_TO_TIMESPEC(rqtime, &wait_time_32);
1787 #endif  /* _SYSCALL32_IMPL */
1788 		}
1789 	}
1790 
1791 	if (rqtime->tv_sec == 0 && rqtime->tv_nsec == 0) {
1792 		*blocking = 0;
1793 		return (0);
1794 	}
1795 
1796 	if (rqtime->tv_sec < 0 ||
1797 	    rqtime->tv_nsec < 0 || rqtime->tv_nsec >= NANOSEC)
1798 		return (EINVAL);
1799 
1800 	*rqtp = rqtime;
1801 	*blocking = 1;
1802 	return (0);
1803 }
1804 
1805 /*
1806  * port_queue_thread()
1807  * Threads requiring more events than available will be put in a wait queue.
1808  * There is a "thread wait queue" per port.
1809  * Threads requiring less events get a higher priority than others and they
1810  * will be awoken first.
1811  */
1812 static portget_t *
1813 port_queue_thread(port_queue_t *portq, uint_t nget)
1814 {
1815 	portget_t	*pgetp;
1816 	portget_t	*ttp;
1817 	portget_t	*htp;
1818 
1819 	pgetp = kmem_zalloc(sizeof (portget_t), KM_SLEEP);
1820 	pgetp->portget_nget = nget;
1821 	pgetp->portget_pid = curproc->p_pid;
1822 	if (portq->portq_thread == NULL) {
1823 		/* first waiting thread */
1824 		portq->portq_thread = pgetp;
1825 		portq->portq_nget = nget;
1826 		pgetp->portget_prev = pgetp;
1827 		pgetp->portget_next = pgetp;
1828 		return (pgetp);
1829 	}
1830 
1831 	/*
1832 	 * thread waiting for less events will be set on top of the queue.
1833 	 */
1834 	ttp = portq->portq_thread;
1835 	htp = ttp;
1836 	for (;;) {
1837 		if (nget <= ttp->portget_nget)
1838 			break;
1839 		if (htp == ttp->portget_next)
1840 			break;	/* last event */
1841 		ttp = ttp->portget_next;
1842 	}
1843 
1844 	/* add thread to the queue */
1845 	pgetp->portget_next = ttp;
1846 	pgetp->portget_prev = ttp->portget_prev;
1847 	ttp->portget_prev->portget_next = pgetp;
1848 	ttp->portget_prev = pgetp;
1849 	if (portq->portq_thread == ttp)
1850 		portq->portq_thread = pgetp;
1851 	portq->portq_nget = portq->portq_thread->portget_nget;
1852 	return (pgetp);
1853 }
1854 
1855 /*
1856  * Take thread out of the queue.
1857  */
1858 static void
1859 port_dequeue_thread(port_queue_t *portq, portget_t *pgetp)
1860 {
1861 	if (pgetp->portget_next == pgetp) {
1862 		/* last (single) waiting thread */
1863 		portq->portq_thread = NULL;
1864 		portq->portq_nget = 0;
1865 	} else {
1866 		pgetp->portget_prev->portget_next = pgetp->portget_next;
1867 		pgetp->portget_next->portget_prev = pgetp->portget_prev;
1868 		if (portq->portq_thread == pgetp)
1869 			portq->portq_thread = pgetp->portget_next;
1870 		portq->portq_nget = portq->portq_thread->portget_nget;
1871 	}
1872 	kmem_free(pgetp, sizeof (portget_t));
1873 }
1874 
1875 /*
1876  * Set up event port kstats.
1877  */
1878 static void
1879 port_kstat_init()
1880 {
1881 	kstat_t	*ksp;
1882 	uint_t	ndata;
1883 
1884 	ndata = sizeof (port_kstat) / sizeof (kstat_named_t);
1885 	ksp = kstat_create("portfs", 0, "Event Ports", "misc",
1886 	    KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_VIRTUAL);
1887 	if (ksp) {
1888 		ksp->ks_data = &port_kstat;
1889 		kstat_install(ksp);
1890 	}
1891 }
1892