1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/systm.h> 31 #include <sys/cred.h> 32 #include <sys/modctl.h> 33 #include <sys/vfs.h> 34 #include <sys/sysmacros.h> 35 #include <sys/cmn_err.h> 36 #include <sys/stat.h> 37 #include <sys/errno.h> 38 #include <sys/kmem.h> 39 #include <sys/file.h> 40 #include <sys/kstat.h> 41 #include <sys/port_impl.h> 42 #include <sys/task.h> 43 #include <sys/project.h> 44 45 /* 46 * Event Ports can be shared across threads or across processes. 47 * Every thread/process can use an own event port or a group of them 48 * can use a single port. A major request was also to get the ability 49 * to submit user-defined events to a port. The idea of the 50 * user-defined events is to use the event ports for communication between 51 * threads/processes (like message queues). User defined-events are queued 52 * in a port with the same priority as other event types. 53 * 54 * Events are delivered only once. The thread/process which is waiting 55 * for events with the "highest priority" (priority here is related to the 56 * internal strategy to wakeup waiting threads) will retrieve the event, 57 * all other threads/processes will not be notified. There is also 58 * the requirement to have events which should be submitted immediately 59 * to all "waiting" threads. That is the main task of the alert event. 60 * The alert event is submitted by the application to a port. The port 61 * changes from a standard mode to the alert mode. Now all waiting threads 62 * will be awaken immediately and they will return with the alert event. 63 * Threads trying to retrieve events from a port in alert mode will 64 * return immediately with the alert event. 65 * 66 * 67 * An event port is like a kernel queue, which accept events submitted from 68 * user level as well as events submitted from kernel sub-systems. Sub-systems 69 * able to submit events to a port are the so-called "event sources". 70 * Current event sources: 71 * PORT_SOURCE_AIO : events submitted per transaction completion from 72 * POSIX-I/O framework. 73 * PORT_SOURCE_TIMER : events submitted when a timer fires 74 * (see timer_create(3RT)). 75 * PORT_SOURCE_FD : events submitted per file descriptor (see poll(2)). 76 * PORT_SOURCE_ALERT : events submitted from user. This is not really a 77 * single event, this is actually a port mode 78 * (see port_alert(3c)). 79 * PORT_SOURCE_USER : events submitted by applications with 80 * port_send(3c) or port_sendn(3c). 81 * 82 * There is a user API implemented in the libc library as well as a 83 * kernel API implemented in port_subr.c in genunix. 84 * The available user API functions are: 85 * port_create() : create a port as a file descriptor of portfs file system 86 * The standard close(2) function closes a port. 87 * port_associate() : associate a file descriptor with a port to be able to 88 * retrieve events from that file descriptor. 89 * port_dissociate(): remove the association of a file descriptor with a port. 90 * port_alert() : set/unset a port in alert mode 91 * port_send() : send an event of type PORT_SOURCE_USER to a port 92 * port_sendn() : send an event of type PORT_SOURCE_USER to a list of ports 93 * port_get() : retrieve a single event from a port 94 * port_getn() : retrieve a list of events from a port 95 * 96 * The available kernel API functions are: 97 * port_allocate_event(): allocate an event slot/structure of/from a port 98 * port_init_event() : set event data in the event structure 99 * port_send_event() : send event to a port 100 * port_free_event() : deliver allocated slot/structure back to a port 101 * port_associate_ksource(): associate a kernel event source with a port 102 * port_dissociate_ksource(): dissociate a kernel event source from a port 103 * 104 * The libc implementation consists of small functions which pass the 105 * arguments to the kernel using the "portfs" system call. It means, all the 106 * synchronisation work is being done in the kernel. The "portfs" system 107 * call loads the portfs file system into the kernel. 108 * 109 * PORT CREATION 110 * The first function to be used is port_create() which internally creates 111 * a vnode and a portfs node. The portfs node is represented by the port_t 112 * structure, which again includes all the data necessary to control a port. 113 * port_create() returns a file descriptor, which needs to be used in almost 114 * all other event port functions. 115 * The maximum number of ports per system is controlled by the resource 116 * control: project:port-max-ids. 117 * 118 * EVENT GENERATION 119 * The second step is the triggering of events, which could be sent to a port. 120 * Every event source implements an own method to generate events for a port: 121 * PORT_SOURCE_AIO: 122 * The sigevent structure of the standard POSIX-IO functions 123 * was extended by an additional notification type. 124 * Standard notification types: 125 * SIGEV_NONE, SIGEV_SIGNAL and SIGEV_THREAD 126 * Event ports introduced now SIGEV_PORT. 127 * The notification type SIGEV_PORT specifies that a structure 128 * of type port_notify_t has to be attached to the sigev_value. 129 * The port_notify_t structure contains the event port file 130 * descriptor and a user-defined pointer. 131 * Internally the AIO implementation will use the kernel API 132 * functions to allocate an event port slot per transaction (aiocb) 133 * and sent the event to the port as soon as the transaction completes. 134 * All the events submitted per transaction are of type 135 * PORT_SOURCE_AIO. 136 * PORT_SOURCE_TIMER: 137 * The timer_create() function uses the same method as the 138 * PORT_SOURCE_AIO event source. It also uses the sigevent structure 139 * to deliver the port information. 140 * Internally the timer code will allocate a single event slot/struct 141 * per timer and it will send the timer event as soon as the timer 142 * fires. If the timer-fired event is not delivered to the application 143 * before the next period elapsed, then an overrun counter will be 144 * incremented. The timer event source uses a callback function to 145 * detect the delivery of the event to the application. At that time 146 * the timer callback function will update the event overrun counter. 147 * PORT_SOURCE_FD: 148 * This event source uses the port_associate() function to allocate 149 * an event slot/struct from a port. The application defines in the 150 * events argument of port_associate() the type of events which it is 151 * interested on. 152 * The internal pollwakeup() function is used by all the file 153 * systems --which are supporting the VOP_POLL() interface- to notify 154 * the upper layer (poll(2), devpoll(7d) and now event ports) about 155 * the event triggered (see valid events in poll(2)). 156 * The pollwakeup() function forwards the event to the layer registered 157 * to receive the current event. 158 * The port_dissociate() function can be used to free the allocated 159 * event slot from the port. Anyway, file descriptors deliver events 160 * only one time and remain deactivated until the application 161 * reactivates the association of a file descriptor with port_associate(). 162 * If an associated file descriptor is closed then the file descriptor 163 * will be dissociated automatically from the port. 164 * 165 * PORT_SOURCE_ALERT: 166 * This event type is generated when the port was previously set in 167 * alert mode using the port_alert() function. 168 * A single alert event is delivered to every thread which tries to 169 * retrieve events from a port. 170 * PORT_SOURCE_USER: 171 * This type of event is generated from user level using the port_send() 172 * function to send a user event to a port or the port_sendn() function 173 * to send an event to a list of ports. 174 * 175 * EVENT DELIVERY / RETRIEVING EVENTS 176 * Events remain in the port queue until: 177 * - the application uses port_get() or port_getn() to retrieve events, 178 * - the event source cancel the event, 179 * - the event port is closed or 180 * - the process exits. 181 * The maximal number of events in a port queue is the maximal number 182 * of event slots/structures which can be allocated by event sources. 183 * The allocation of event slots/structures is controlled by the resource 184 * control: process.port-max-events. 185 * The port_get() function retrieves a single event and the port_getn() 186 * function retrieves a list of events. 187 * Events are classified as shareable and non-shareable events across processes. 188 * Non-shareable events are invisible for the port_get(n)() functions of 189 * processes other than the owner of the event. 190 * Shareable event types are: 191 * PORT_SOURCE_USER events 192 * This type of event is unconditionally shareable and without 193 * limitations. If the parent process sends a user event and closes 194 * the port afterwards, the event remains in the port and the child 195 * process will still be able to retrieve the user event. 196 * PORT_SOURCE_ALERT events 197 * This type of event is shareable between processes. 198 * Limitation: The alert mode of the port is removed if the owner 199 * (process which set the port in alert mode) of the 200 * alert event closes the port. 201 * PORT_SOURCE_FD events 202 * This type of event is conditional shareable between processes. 203 * After fork(2) all forked file descriptors are shareable between 204 * the processes. The child process is allowed to retrieve events 205 * from the associated file descriptors and it can also re-associate 206 * the fd with the port. 207 * Limitations: The child process is not allowed to dissociate 208 * the file descriptor from the port. Only the 209 * owner (process) of the association is allowed to 210 * dissociate the file descriptor from the port. 211 * If the owner of the association closes the port 212 * the association will be removed. 213 * PORT_SOURCE_AIO events 214 * This type of event is not shareable between processes. 215 * PORT_SOURCE_TIMER events 216 * This type of event is not shareable between processes. 217 * 218 * FORK BEHAVIOUR 219 * On fork(2) the child process inherits all opened file descriptors from 220 * the parent process. This is also valid for port file descriptors. 221 * Associated file descriptors with a port maintain the association across the 222 * fork(2). It means, the child process gets full access to the port and 223 * it can retrieve events from all common associated file descriptors. 224 * Events of file descriptors created and associated with a port after the 225 * fork(2) are non-shareable and can only be retrieved by the same process. 226 * 227 * If the parent or the child process closes an exported port (using fork(2) 228 * or I_SENDFD) all the file descriptors associated with the port by the 229 * process will be dissociated from the port. Events of dissociated file 230 * descriptors as well as all non-shareable events will be discarded. 231 * The other process can continue working with the port as usual. 232 * 233 * CLOSING A PORT 234 * close(2) has to be used to close a port. See FORK BEHAVIOUR for details. 235 * 236 * PORT EVENT STRUCTURES 237 * The global control structure of the event ports framework is port_control_t. 238 * port_control_t keeps track of the number of created ports in the system. 239 * The cache of the port event structures is also located in port_control_t. 240 * 241 * On port_create() the vnode and the portfs node is also created. 242 * The portfs node is represented by the port_t structure. 243 * The port_t structure manages all port specific tasks: 244 * - management of resource control values 245 * - port VOP_POLL interface 246 * - creation time 247 * - uid and gid of the port 248 * 249 * The port_t structure contains the port_queue_t structure. 250 * The port_queue_t structure contains all the data necessary for the 251 * queue management: 252 * - locking 253 * - condition variables 254 * - event counters 255 * - submitted events (represented by port_kevent_t structures) 256 * - threads waiting for event delivery (check portget_t structure) 257 * - PORT_SOURCE_FD cache (managed by the port_fdcache_t structure) 258 * - event source management (managed by the port_source_t structure) 259 * - alert mode management (check port_alert_t structure) 260 * 261 * EVENT MANAGEMENT 262 * The event port file system creates a kmem_cache for internal allocation of 263 * event port structures. 264 * 265 * 1. Event source association with a port: 266 * The first step to do for event sources is to get associated with a port 267 * using the port_associate_ksource() function or adding an entry to the 268 * port_ksource_tab[]. An event source can get dissociated from a port 269 * using the port_dissociate_ksource() function. An entry in the 270 * port_ksource_tab[] implies that the source will be associated 271 * automatically with every new created port. 272 * The event source can deliver a callback function, which is used by the 273 * port to notify the event source about close(2). The idea is that 274 * in such a case the event source should free all allocated resources 275 * and it must return to the port all allocated slots/structures. 276 * The port_close() function will wait until all allocated event 277 * structures/slots are returned to the port. 278 * The callback function is not necessary when the event source does not 279 * maintain local resources, a second condition is that the event source 280 * can guarantee that allocated event slots will be returned without 281 * delay to the port (it will not block and sleep somewhere). 282 * 283 * 2. Reservation of an event slot / event structure 284 * The event port reliability is based on the reservation of an event "slot" 285 * (allocation of an event structure) by the event source as part of the 286 * application call. If the maximal number of event slots is exhausted then 287 * the event source can return a corresponding error code to the application. 288 * 289 * The port_alloc_event() function has to be used by event sources to 290 * allocate an event slot (reserve an event structure). The port_alloc_event() 291 * doesn not block and it will return a 0 value on success or an error code 292 * if it fails. 293 * An argument of port_alloc_event() is a flag which determines the behavior 294 * of the event after it was delivered to the application: 295 * PORT_ALLOC_DEFAULT : event slot becomes free after delivery to the 296 * application. 297 * PORT_ALLOC_PRIVATE : event slot remains under the control of the event 298 * source. This kind of slots can not be used for 299 * event delivery and should only be used internally 300 * by the event source. 301 * PORT_KEV_CACHED : event slot remains under the control of an event 302 * port cache. It does not become free after delivery 303 * to the application. 304 * PORT_ALLOC_SCACHED : event slot remains under the control of the event 305 * source. The event source takes the control over 306 * the slot after the event is delivered to the 307 * application. 308 * 309 * 3. Delivery of events to the event port 310 * Earlier allocated event structure/slot has to be used to deliver 311 * event data to the port. Event source has to use the function 312 * port_send_event(). The single argument is a pointer to the previously 313 * reserved event structure/slot. 314 * The portkev_events field of the port_kevent_t structure can be updated/set 315 * in two ways: 316 * 1. using the port_set_event() function, or 317 * 2. updating the portkev_events field out of the callback function: 318 * The event source can deliver a callback function to the port as an 319 * argument of port_init_event(). 320 * One of the arguments of the callback function is a pointer to the 321 * events field, which will be delivered to the application. 322 * (see Delivery of events to the application). 323 * Event structures/slots can be delivered to the event port only one time, 324 * they remain blocked until the data is delivered to the application and the 325 * slot becomes free or it is delivered back to the event source 326 * (PORT_ALLOC_SCACHED). The activation of the callback function mentioned above 327 * is at the same time the indicator for the event source that the event 328 * structure/slot is free for reuse. 329 * 330 * 4. Delivery of events to the application 331 * The events structures/slots delivered by event sources remain in the 332 * port queue until they are retrieved by the application or the port 333 * is closed (exit(2) also closes all opened file descriptors).. 334 * The application uses port_get() or port_getn() to retrieve events from 335 * a port. port_get() retrieves a single event structure/slot and port_getn() 336 * retrieves a list of event structures/slots. 337 * Both functions are able to poll for events and return immediately or they 338 * can specify a timeout value. 339 * Before the events are delivered to the application they are moved to a 340 * second temporary internal queue. The idea is to avoid lock collisions or 341 * contentions of the global queue lock. 342 * The global queue lock is used every time when an event source delivers 343 * new events to the port. 344 * The port_get() and port_getn() functions 345 * a) retrieve single events from the temporary queue, 346 * b) prepare the data to be passed to the application memory, 347 * c) activate the callback function of the event sources: 348 * - to get the latest event data, 349 * - the event source can free all allocated resources associated with the 350 * current event, 351 * - the event source can re-use the current event slot/structure 352 * - the event source can deny the delivery of the event to the application 353 * (e.g. because of the wrong process). 354 * d) put the event back to the temporary queue if the event delivery was denied 355 * e) repeat a) until d) as long as there are events in the queue and 356 * there is enough user space available. 357 * 358 * The loop described above could block for a very long time the global mutex, 359 * to avoid that a second mutex was introduced to synchronized concurrent 360 * threads accessing the temporary queue. 361 */ 362 363 static int64_t portfs(int, uintptr_t, uintptr_t, uintptr_t, uintptr_t, 364 uintptr_t); 365 366 static struct sysent port_sysent = { 367 6, 368 SE_ARGC | SE_64RVAL | SE_NOUNLOAD, 369 (int (*)())portfs, 370 }; 371 372 static struct modlsys modlsys = { 373 &mod_syscallops, "event ports", &port_sysent 374 }; 375 376 #ifdef _SYSCALL32_IMPL 377 378 static int64_t 379 portfs32(uint32_t arg1, int32_t arg2, uint32_t arg3, uint32_t arg4, 380 uint32_t arg5, uint32_t arg6); 381 382 static struct sysent port_sysent32 = { 383 6, 384 SE_ARGC | SE_64RVAL | SE_NOUNLOAD, 385 (int (*)())portfs32, 386 }; 387 388 static struct modlsys modlsys32 = { 389 &mod_syscallops32, 390 "32-bit event ports syscalls", 391 &port_sysent32 392 }; 393 #endif /* _SYSCALL32_IMPL */ 394 395 static struct modlinkage modlinkage = { 396 MODREV_1, 397 &modlsys, 398 #ifdef _SYSCALL32_IMPL 399 &modlsys32, 400 #endif 401 NULL 402 }; 403 404 port_kstat_t port_kstat = { 405 { "ports", KSTAT_DATA_UINT32 } 406 }; 407 408 dev_t portdev; 409 struct vnodeops *port_vnodeops; 410 struct vfs port_vfs; 411 412 extern rctl_hndl_t rc_process_portev; 413 extern rctl_hndl_t rc_project_portids; 414 extern void aio_close_port(void *, int, pid_t, int); 415 416 /* 417 * This table contains a list of event sources which need a static 418 * association with a port (every port). 419 * The last NULL entry in the table is required to detect "end of table". 420 */ 421 struct port_ksource port_ksource_tab[] = { 422 {PORT_SOURCE_AIO, aio_close_port, NULL, NULL}, 423 {0, NULL, NULL, NULL} 424 }; 425 426 /* local functions */ 427 static int port_getn(port_t *, port_event_t *, uint_t, uint_t *, 428 port_gettimer_t *); 429 static int port_sendn(int [], int [], uint_t, int, void *, uint_t *); 430 static int port_alert(port_t *, int, int, void *); 431 static int port_dispatch_event(port_t *, int, int, int, uintptr_t, void *); 432 static int port_send(port_t *, int, int, void *); 433 static int port_create(int *); 434 static int port_get_alert(port_alert_t *, port_event_t *); 435 static int port_copy_event(port_event_t *, port_kevent_t *, list_t *); 436 static int *port_errorn(int *, int, int, int); 437 static int port_noshare(void *, int *, pid_t, int, void *); 438 static int port_get_timeout(timespec_t *, timespec_t *, timespec_t **, int *, 439 int); 440 static void port_init(port_t *); 441 static void port_remove_alert(port_queue_t *); 442 static void port_add_ksource_local(port_t *, port_ksource_t *); 443 static void port_check_return_cond(port_queue_t *); 444 static void port_dequeue_thread(port_queue_t *, portget_t *); 445 static portget_t *port_queue_thread(port_queue_t *, uint_t); 446 static void port_kstat_init(void); 447 448 #ifdef _SYSCALL32_IMPL 449 static int port_copy_event32(port_event32_t *, port_kevent_t *, list_t *); 450 #endif 451 452 int 453 _init(void) 454 { 455 static const fs_operation_def_t port_vfsops_template[] = { 456 NULL, NULL 457 }; 458 extern const fs_operation_def_t port_vnodeops_template[]; 459 vfsops_t *port_vfsops; 460 int error; 461 major_t major; 462 463 if ((major = getudev()) == (major_t)-1) 464 return (ENXIO); 465 portdev = makedevice(major, 0); 466 467 /* Create a dummy vfs */ 468 error = vfs_makefsops(port_vfsops_template, &port_vfsops); 469 if (error) { 470 cmn_err(CE_WARN, "port init: bad vfs ops"); 471 return (error); 472 } 473 vfs_setops(&port_vfs, port_vfsops); 474 port_vfs.vfs_flag = VFS_RDONLY; 475 port_vfs.vfs_dev = portdev; 476 vfs_make_fsid(&(port_vfs.vfs_fsid), portdev, 0); 477 478 error = vn_make_ops("portfs", port_vnodeops_template, &port_vnodeops); 479 if (error) { 480 vfs_freevfsops(port_vfsops); 481 cmn_err(CE_WARN, "port init: bad vnode ops"); 482 return (error); 483 } 484 485 mutex_init(&port_control.pc_mutex, NULL, MUTEX_DEFAULT, NULL); 486 port_control.pc_nents = 0; /* number of active ports */ 487 488 /* create kmem_cache for port event structures */ 489 port_control.pc_cache = kmem_cache_create("port_cache", 490 sizeof (port_kevent_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 491 492 port_kstat_init(); /* init port kstats */ 493 return (mod_install(&modlinkage)); 494 } 495 496 int 497 _info(struct modinfo *modinfop) 498 { 499 return (mod_info(&modlinkage, modinfop)); 500 } 501 502 /* 503 * System call wrapper for all port related system calls from 32-bit programs. 504 */ 505 #ifdef _SYSCALL32_IMPL 506 static int64_t 507 portfs32(uint32_t opcode, int32_t a0, uint32_t a1, uint32_t a2, uint32_t a3, 508 uint32_t a4) 509 { 510 int64_t error; 511 512 switch (opcode & PORT_CODE_MASK) { 513 case PORT_GET: 514 error = portfs(PORT_GET, a0, a1, (int)a2, (int)a3, a4); 515 break; 516 case PORT_SENDN: 517 error = portfs(opcode, (uint32_t)a0, a1, a2, a3, a4); 518 break; 519 default: 520 error = portfs(opcode, a0, a1, a2, a3, a4); 521 break; 522 } 523 return (error); 524 } 525 #endif /* _SYSCALL32_IMPL */ 526 527 /* 528 * System entry point for port functions. 529 * a0 is a port file descriptor (except for PORT_SENDN and PORT_CREATE). 530 * The libc uses PORT_SYS_NOPORT in functions which do not deliver a 531 * port file descriptor as first argument. 532 */ 533 static int64_t 534 portfs(int opcode, uintptr_t a0, uintptr_t a1, uintptr_t a2, uintptr_t a3, 535 uintptr_t a4) 536 { 537 rval_t r; 538 port_t *pp; 539 int error = 0; 540 uint_t nget; 541 file_t *fp; 542 port_gettimer_t port_timer; 543 544 r.r_vals = 0; 545 if (opcode & PORT_SYS_NOPORT) { 546 opcode &= PORT_CODE_MASK; 547 if (opcode == PORT_SENDN) { 548 error = port_sendn((int *)a0, (int *)a1, (uint_t)a2, 549 (int)a3, (void *)a4, (uint_t *)&r.r_val1); 550 if (error && (error != EIO)) 551 return ((int64_t)set_errno(error)); 552 return (r.r_vals); 553 } 554 555 if (opcode == PORT_CREATE) { 556 error = port_create(&r.r_val1); 557 if (error) 558 return ((int64_t)set_errno(error)); 559 return (r.r_vals); 560 } 561 } 562 563 /* opcodes using port as first argument (a0) */ 564 565 if ((fp = getf((int)a0)) == NULL) 566 return ((uintptr_t)set_errno(EBADF)); 567 568 if (fp->f_vnode->v_type != VPORT) { 569 releasef((int)a0); 570 return ((uintptr_t)set_errno(EBADFD)); 571 } 572 573 pp = VTOEP(fp->f_vnode); 574 575 switch (opcode & PORT_CODE_MASK) { 576 case PORT_GET: 577 { 578 /* see PORT_GETN description */ 579 struct timespec timeout; 580 581 port_timer.pgt_flags = PORTGET_ONE; 582 port_timer.pgt_loop = 0; 583 port_timer.pgt_rqtp = NULL; 584 if (a4 != NULL) { 585 port_timer.pgt_timeout = &timeout; 586 timeout.tv_sec = (time_t)a2; 587 timeout.tv_nsec = (long)a3; 588 } else { 589 port_timer.pgt_timeout = NULL; 590 } 591 do { 592 nget = 1; 593 error = port_getn(pp, (port_event_t *)a1, 1, 594 (uint_t *)&nget, &port_timer); 595 } while (nget == 0 && error == 0 && port_timer.pgt_loop); 596 break; 597 } 598 case PORT_GETN: 599 { 600 /* 601 * port_getn() can only retrieve own or shareable events from 602 * other processes. The port_getn() function remains in the 603 * kernel until own or shareable events are available or the 604 * timeout elapses. 605 */ 606 port_timer.pgt_flags = 0; 607 port_timer.pgt_loop = 0; 608 port_timer.pgt_rqtp = NULL; 609 port_timer.pgt_timeout = (struct timespec *)a4; 610 do { 611 nget = a3; 612 error = port_getn(pp, (port_event_t *)a1, (uint_t)a2, 613 (uint_t *)&nget, &port_timer); 614 } while (nget == 0 && error == 0 && port_timer.pgt_loop); 615 r.r_val1 = nget; 616 r.r_val2 = error; 617 releasef((int)a0); 618 if (error && error != ETIME) 619 return ((int64_t)set_errno(error)); 620 return (r.r_vals); 621 } 622 case PORT_ASSOCIATE: 623 { 624 /* currently only PORT_SOURCE_FD is implemented */ 625 if ((int)a1 != PORT_SOURCE_FD) { 626 error = EINVAL; 627 break; 628 } 629 error = port_associate_fd(pp, (int)a1, (uintptr_t)a2, (int)a3, 630 (void *)a4); 631 break; 632 } 633 case PORT_SEND: 634 { 635 /* user-defined events */ 636 error = port_send(pp, PORT_SOURCE_USER, (int)a1, (void *)a2); 637 break; 638 } 639 case PORT_DISPATCH: 640 { 641 /* 642 * library events, blocking 643 * Only events of type PORT_SOURCE_AIO or PORT_SOURCE_MQ 644 * are currently allowed. 645 */ 646 if ((int)a1 != PORT_SOURCE_AIO && (int)a1 != PORT_SOURCE_MQ) { 647 error = EINVAL; 648 break; 649 } 650 error = port_dispatch_event(pp, (int)opcode, (int)a1, (int)a2, 651 (uintptr_t)a3, (void *)a4); 652 break; 653 } 654 case PORT_DISSOCIATE: 655 { 656 /* currently only PORT_SOURCE_FD is implemented */ 657 if ((int)a1 != PORT_SOURCE_FD) { 658 error = EINVAL; 659 break; 660 } 661 error = port_dissociate_fd(pp, (uintptr_t)a2); 662 break; 663 } 664 case PORT_ALERT: 665 { 666 if ((int)a2) /* a2 = events */ 667 error = port_alert(pp, (int)a1, (int)a2, (void *)a3); 668 else 669 port_remove_alert(&pp->port_queue); 670 break; 671 } 672 default: 673 error = EINVAL; 674 break; 675 } 676 677 releasef((int)a0); 678 if (error) 679 return ((int64_t)set_errno(error)); 680 return (r.r_vals); 681 } 682 683 /* 684 * System call to create a port. 685 * 686 * The port_create() function creates a vnode of type VPORT per port. 687 * The port control data is associated with the vnode as vnode private data. 688 * The port_create() function returns an event port file descriptor. 689 */ 690 static int 691 port_create(int *fdp) 692 { 693 port_t *pp; 694 vnode_t *vp; 695 struct file *fp; 696 proc_t *p = curproc; 697 698 /* initialize vnode and port private data */ 699 pp = kmem_zalloc(sizeof (port_t), KM_SLEEP); 700 701 pp->port_vnode = vn_alloc(KM_SLEEP); 702 vp = EPTOV(pp); 703 vn_setops(vp, port_vnodeops); 704 vp->v_type = VPORT; 705 vp->v_vfsp = &port_vfs; 706 vp->v_data = (caddr_t)pp; 707 708 mutex_enter(&port_control.pc_mutex); 709 /* 710 * Retrieve the maximal number of event ports allowed per system from 711 * the resource control: project.port-max-ids. 712 */ 713 mutex_enter(&p->p_lock); 714 if (rctl_test(rc_project_portids, p->p_task->tk_proj->kpj_rctls, p, 715 port_control.pc_nents + 1, RCA_SAFE) & RCT_DENY) { 716 mutex_exit(&p->p_lock); 717 vn_free(vp); 718 kmem_free(pp, sizeof (port_t)); 719 mutex_exit(&port_control.pc_mutex); 720 return (EAGAIN); 721 } 722 723 /* 724 * Retrieve the maximal number of events allowed per port from 725 * the resource control: process.port-max-events. 726 */ 727 pp->port_max_events = rctl_enforced_value(rc_process_portev, 728 p->p_rctls, p); 729 mutex_exit(&p->p_lock); 730 731 /* allocate a new user file descriptor and a file structure */ 732 if (falloc(vp, 0, &fp, fdp)) { 733 /* 734 * If the file table is full, free allocated resources. 735 */ 736 vn_free(vp); 737 kmem_free(pp, sizeof (port_t)); 738 mutex_exit(&port_control.pc_mutex); 739 return (EMFILE); 740 } 741 742 mutex_exit(&fp->f_tlock); 743 744 pp->port_fd = *fdp; 745 port_control.pc_nents++; 746 p->p_portcnt++; 747 port_kstat.pks_ports.value.ui32++; 748 mutex_exit(&port_control.pc_mutex); 749 750 /* initializes port private data */ 751 port_init(pp); 752 /* set user file pointer */ 753 setf(*fdp, fp); 754 return (0); 755 } 756 757 /* 758 * port_init() initializes event port specific data 759 */ 760 static void 761 port_init(port_t *pp) 762 { 763 port_queue_t *portq; 764 port_ksource_t *pks; 765 766 mutex_init(&pp->port_mutex, NULL, MUTEX_DEFAULT, NULL); 767 portq = &pp->port_queue; 768 mutex_init(&portq->portq_mutex, NULL, MUTEX_DEFAULT, NULL); 769 pp->port_flags |= PORT_INIT; 770 771 /* 772 * If it is not enough memory available to satisfy a user 773 * request using a single port_getn() call then port_getn() 774 * will reduce the size of the list to PORT_MAX_LIST. 775 */ 776 pp->port_max_list = port_max_list; 777 778 /* Set timestamp entries required for fstat(2) requests */ 779 gethrestime(&pp->port_ctime); 780 pp->port_uid = crgetuid(curproc->p_cred); 781 pp->port_gid = crgetgid(curproc->p_cred); 782 783 /* initialize port queue structs */ 784 list_create(&portq->portq_list, sizeof (port_kevent_t), 785 offsetof(port_kevent_t, portkev_node)); 786 list_create(&portq->portq_get_list, sizeof (port_kevent_t), 787 offsetof(port_kevent_t, portkev_node)); 788 portq->portq_flags = 0; 789 pp->port_pid = curproc->p_pid; 790 791 /* Allocate cache skeleton for PORT_SOURCE_FD events */ 792 portq->portq_pcp = kmem_zalloc(sizeof (port_fdcache_t), KM_SLEEP); 793 mutex_init(&portq->portq_pcp->pc_lock, NULL, MUTEX_DEFAULT, NULL); 794 795 /* 796 * Allocate cache skeleton for association of event sources. 797 */ 798 mutex_init(&portq->portq_source_mutex, NULL, MUTEX_DEFAULT, NULL); 799 portq->portq_scache = kmem_zalloc( 800 PORT_SCACHE_SIZE * sizeof (port_source_t *), KM_SLEEP); 801 802 /* 803 * pre-associate some kernel sources with this port. 804 * The pre-association is required to create port_source_t 805 * structures for object association. 806 * Some sources can not get associated with a port before the first 807 * object association is requested. Another reason to pre_associate 808 * a particular source with a port is because of performance. 809 */ 810 811 for (pks = port_ksource_tab; pks->pks_source != 0; pks++) 812 port_add_ksource_local(pp, pks); 813 } 814 815 /* 816 * The port_add_ksource_local() function is being used to associate 817 * event sources with every new port. 818 * The event sources need to be added to port_ksource_tab[]. 819 */ 820 static void 821 port_add_ksource_local(port_t *pp, port_ksource_t *pks) 822 { 823 port_source_t *pse; 824 port_source_t **ps; 825 826 mutex_enter(&pp->port_queue.portq_source_mutex); 827 ps = &pp->port_queue.portq_scache[PORT_SHASH(pks->pks_source)]; 828 for (pse = *ps; pse != NULL; pse = pse->portsrc_next) { 829 if (pse->portsrc_source == pks->pks_source) 830 break; 831 } 832 833 if (pse == NULL) { 834 /* associate new source with the port */ 835 pse = kmem_zalloc(sizeof (port_source_t), KM_SLEEP); 836 pse->portsrc_source = pks->pks_source; 837 pse->portsrc_close = pks->pks_close; 838 pse->portsrc_closearg = pks->pks_closearg; 839 pse->portsrc_cnt = 1; 840 841 pks->pks_portsrc = pse; 842 if (*ps != NULL) 843 pse->portsrc_next = (*ps)->portsrc_next; 844 *ps = pse; 845 } 846 mutex_exit(&pp->port_queue.portq_source_mutex); 847 } 848 849 /* 850 * The port_send() function sends an event of type "source" to a 851 * port. This function is non-blocking. An event can be sent to 852 * a port as long as the number of events per port does not achieve the 853 * maximal allowed number of events. The max. number of events per port is 854 * defined by the resource control process.max-port-events. 855 * This function is used by the port library function port_send() 856 * and port_dispatch(). The port_send(3c) function is part of the 857 * event ports API and submits events of type PORT_SOURCE_USER. The 858 * port_dispatch() function is project private and it is used by library 859 * functions to submit events of other types than PORT_SOURCE_USER 860 * (e.g. PORT_SOURCE_AIO). 861 */ 862 static int 863 port_send(port_t *pp, int source, int events, void *user) 864 { 865 port_kevent_t *pev; 866 int error; 867 868 error = port_alloc_event_local(pp, source, PORT_ALLOC_DEFAULT, &pev); 869 if (error) 870 return (error); 871 872 pev->portkev_object = 0; 873 pev->portkev_events = events; 874 pev->portkev_user = user; 875 pev->portkev_callback = NULL; 876 pev->portkev_arg = NULL; 877 pev->portkev_flags = 0; 878 879 port_send_event(pev); 880 return (0); 881 } 882 883 /* 884 * The port_noshare() function returns 0 if the current event was generated 885 * by the same process. Otherwise is returns a value other than 0 and the 886 * event should not be delivered to the current processe. 887 * The port_noshare() function is normally used by the port_dispatch() 888 * function. The port_dispatch() function is project private and can only be 889 * used within the event port project. 890 * Currently the libaio uses the port_dispatch() function to deliver events 891 * of types PORT_SOURCE_AIO. 892 */ 893 /* ARGSUSED */ 894 static int 895 port_noshare(void *arg, int *events, pid_t pid, int flag, void *evp) 896 { 897 if (flag == PORT_CALLBACK_DEFAULT && curproc->p_pid != pid) 898 return (1); 899 return (0); 900 } 901 902 /* 903 * The port_dispatch_event() function is project private and it is used by 904 * libraries involved in the project to deliver events to the port. 905 * port_dispatch will sleep and wait for enough resources to satisfy the 906 * request, if necessary. 907 * The library can specify if the delivered event is shareable with other 908 * processes (see PORT_SYS_NOSHARE flag). 909 */ 910 static int 911 port_dispatch_event(port_t *pp, int opcode, int source, int events, 912 uintptr_t object, void *user) 913 { 914 port_kevent_t *pev; 915 int error; 916 917 error = port_alloc_event_block(pp, source, PORT_ALLOC_DEFAULT, &pev); 918 if (error) 919 return (error); 920 921 pev->portkev_object = object; 922 pev->portkev_events = events; 923 pev->portkev_user = user; 924 pev->portkev_arg = NULL; 925 if (opcode & PORT_SYS_NOSHARE) { 926 pev->portkev_flags = PORT_KEV_NOSHARE; 927 pev->portkev_callback = port_noshare; 928 } else { 929 pev->portkev_flags = 0; 930 pev->portkev_callback = NULL; 931 } 932 933 port_send_event(pev); 934 return (0); 935 } 936 937 938 /* 939 * The port_sendn() function is the kernel implementation of the event 940 * port API function port_sendn(3c). 941 * This function is able to send an event to a list of event ports. 942 */ 943 static int 944 port_sendn(int ports[], int errors[], uint_t nent, int events, void *user, 945 uint_t *nget) 946 { 947 port_kevent_t *pev; 948 int errorcnt = 0; 949 int error = 0; 950 int count; 951 int port; 952 int *plist; 953 int *elist = NULL; 954 file_t *fp; 955 port_t *pp; 956 957 if (nent == 0 || nent > port_max_list) 958 return (EINVAL); 959 960 plist = kmem_alloc(nent * sizeof (int), KM_SLEEP); 961 if (copyin((void *)ports, plist, nent * sizeof (int))) { 962 kmem_free(plist, nent * sizeof (int)); 963 return (EFAULT); 964 } 965 966 /* 967 * Scan the list for event port file descriptors and send the 968 * attached user event data embedded in a event of type 969 * PORT_SOURCE_USER to every event port in the list. 970 * If a list entry is not a valid event port then the corresponding 971 * error code will be stored in the errors[] list with the same 972 * list offset as in the ports[] list. 973 */ 974 975 for (count = 0; count < nent; count++) { 976 port = plist[count]; 977 if ((fp = getf(port)) == NULL) { 978 elist = port_errorn(elist, nent, EBADF, count); 979 errorcnt++; 980 continue; 981 } 982 983 pp = VTOEP(fp->f_vnode); 984 if (fp->f_vnode->v_type != VPORT) { 985 releasef(port); 986 elist = port_errorn(elist, nent, EBADFD, count); 987 errorcnt++; 988 continue; 989 } 990 991 error = port_alloc_event_local(pp, PORT_SOURCE_USER, 992 PORT_ALLOC_DEFAULT, &pev); 993 if (error) { 994 releasef(port); 995 elist = port_errorn(elist, nent, error, count); 996 errorcnt++; 997 continue; 998 } 999 1000 pev->portkev_object = 0; 1001 pev->portkev_events = events; 1002 pev->portkev_user = user; 1003 pev->portkev_callback = NULL; 1004 pev->portkev_arg = NULL; 1005 pev->portkev_flags = 0; 1006 1007 port_send_event(pev); 1008 releasef(port); 1009 } 1010 if (errorcnt) { 1011 error = EIO; 1012 if (copyout(elist, (void *)errors, nent * sizeof (int))) 1013 error = EFAULT; 1014 kmem_free(elist, nent * sizeof (int)); 1015 } 1016 *nget = nent - errorcnt; 1017 kmem_free(plist, nent * sizeof (int)); 1018 return (error); 1019 } 1020 1021 static int * 1022 port_errorn(int *elist, int nent, int error, int index) 1023 { 1024 if (elist == NULL) 1025 elist = kmem_zalloc(nent * sizeof (int), KM_SLEEP); 1026 elist[index] = error; 1027 return (elist); 1028 } 1029 1030 /* 1031 * port_alert() 1032 * The port_alert() funcion is a high priority event and it is always set 1033 * on top of the queue. It is also delivered as single event. 1034 * flags: 1035 * - SET :overwrite current alert data 1036 * - UPDATE:set alert data or return EBUSY if alert mode is already set 1037 * 1038 * - set the ALERT flag 1039 * - wakeup all sleeping threads 1040 */ 1041 static int 1042 port_alert(port_t *pp, int flags, int events, void *user) 1043 { 1044 port_queue_t *portq; 1045 portget_t *pgetp; 1046 port_alert_t *pa; 1047 1048 if ((flags & PORT_ALERT_INVALID) == PORT_ALERT_INVALID) 1049 return (EINVAL); 1050 1051 portq = &pp->port_queue; 1052 pa = &portq->portq_alert; 1053 mutex_enter(&portq->portq_mutex); 1054 1055 /* check alert conditions */ 1056 if (flags == PORT_ALERT_UPDATE) { 1057 if (portq->portq_flags & PORTQ_ALERT) { 1058 mutex_exit(&portq->portq_mutex); 1059 return (EBUSY); 1060 } 1061 } 1062 1063 /* 1064 * Store alert data in the port to be delivered to threads 1065 * which are using port_get(n) to retrieve events. 1066 */ 1067 1068 portq->portq_flags |= PORTQ_ALERT; 1069 pa->portal_events = events; /* alert info */ 1070 pa->portal_pid = curproc->p_pid; /* process owner */ 1071 pa->portal_object = 0; /* no object */ 1072 pa->portal_user = user; /* user alert data */ 1073 1074 /* alert and deliver alert data to waiting threads */ 1075 pgetp = portq->portq_thread; 1076 if (pgetp == NULL) { 1077 /* no threads waiting for events */ 1078 mutex_exit(&portq->portq_mutex); 1079 return (0); 1080 } 1081 1082 /* 1083 * Set waiting threads in alert mode (PORTGET_ALERT).. 1084 * Every thread waiting for events already allocated a portget_t 1085 * structure to sleep on. 1086 * The port alert arguments are stored in the portget_t structure. 1087 * The PORTGET_ALERT flag is set to indicate the thread to return 1088 * immediately with the alert event. 1089 */ 1090 do { 1091 if ((pgetp->portget_state & PORTGET_ALERT) == 0) { 1092 pa = &pgetp->portget_alert; 1093 pa->portal_events = events; 1094 pa->portal_object = 0; 1095 pa->portal_user = user; 1096 pgetp->portget_state |= PORTGET_ALERT; 1097 cv_signal(&pgetp->portget_cv); 1098 } 1099 } while ((pgetp = pgetp->portget_next) != portq->portq_thread); 1100 mutex_exit(&portq->portq_mutex); 1101 return (0); 1102 } 1103 1104 /* 1105 * Clear alert state of the port 1106 */ 1107 static void 1108 port_remove_alert(port_queue_t *portq) 1109 { 1110 mutex_enter(&portq->portq_mutex); 1111 portq->portq_flags &= ~PORTQ_ALERT; 1112 mutex_exit(&portq->portq_mutex); 1113 } 1114 1115 /* 1116 * The port_getn() function is used to retrieve events from a port. 1117 * 1118 * The port_getn() function returns immediately if there are enough events 1119 * available in the port to satisfy the request or if the port is in alert 1120 * mode (see port_alert(3c)). 1121 * The timeout argument of port_getn(3c) -which is embedded in the 1122 * port_gettimer_t structure- specifies if the system call should block or if it 1123 * should return immediately depending on the number of events available. 1124 * This function is internally used by port_getn(3c) as well as by 1125 * port_get(3c). 1126 */ 1127 static int 1128 port_getn(port_t *pp, port_event_t *uevp, uint_t max, uint_t *nget, 1129 port_gettimer_t *pgt) 1130 { 1131 port_queue_t *portq; 1132 port_kevent_t *pev; 1133 port_kevent_t *lev; 1134 int error = 0; 1135 uint_t nmax; 1136 uint_t nevents; 1137 uint_t eventsz; 1138 port_event_t *kevp; 1139 list_t *glist; 1140 uint_t tnent; 1141 int rval; 1142 int blocking = -1; 1143 int flag; 1144 timespec_t rqtime; 1145 timespec_t *rqtp = NULL; 1146 portget_t *pgetp; 1147 void *results; 1148 model_t model = get_udatamodel(); 1149 1150 flag = pgt->pgt_flags; 1151 1152 if (*nget > max && max > 0) 1153 return (EINVAL); 1154 1155 portq = &pp->port_queue; 1156 mutex_enter(&portq->portq_mutex); 1157 if (max == 0) { 1158 /* 1159 * Return number of objects with events. 1160 * The port_block() call is required to synchronize this 1161 * thread with another possible thread, which could be 1162 * retrieving events from the port queue. 1163 */ 1164 port_block(portq); 1165 /* 1166 * Check if a second thread is currently retrieving events 1167 * and it is using the temporary event queue. 1168 */ 1169 if (portq->portq_tnent) { 1170 /* put remaining events back to the port queue */ 1171 port_push_eventq(portq); 1172 } 1173 *nget = portq->portq_nent; 1174 port_unblock(portq); 1175 mutex_exit(&portq->portq_mutex); 1176 return (0); 1177 } 1178 1179 if (uevp == NULL) { 1180 mutex_exit(&portq->portq_mutex); 1181 return (EFAULT); 1182 } 1183 if (*nget == 0) { /* no events required */ 1184 mutex_exit(&portq->portq_mutex); 1185 return (0); 1186 } 1187 1188 /* port is being closed ... */ 1189 if (portq->portq_flags & PORTQ_CLOSE) { 1190 mutex_exit(&portq->portq_mutex); 1191 return (EBADFD); 1192 } 1193 1194 /* return immediately if port in alert mode */ 1195 if (portq->portq_flags & PORTQ_ALERT) { 1196 error = port_get_alert(&portq->portq_alert, uevp); 1197 if (error == 0) 1198 *nget = 1; 1199 mutex_exit(&portq->portq_mutex); 1200 return (error); 1201 } 1202 1203 portq->portq_thrcnt++; 1204 1205 /* 1206 * Now check if the completed events satisfy the 1207 * "wait" requirements of the current thread: 1208 */ 1209 1210 if (pgt->pgt_loop) { 1211 /* 1212 * loop entry of same thread 1213 * pgt_loop is set when the current thread returns 1214 * prematurely from this function. That could happen 1215 * when a port is being shared between processes and 1216 * this thread could not find events to return. 1217 * It is not allowed to a thread to retrieve non-shareable 1218 * events generated in other processes. 1219 * PORTQ_WAIT_EVENTS is set when a thread already 1220 * checked the current event queue and no new events 1221 * are added to the queue. 1222 */ 1223 if (((portq->portq_flags & PORTQ_WAIT_EVENTS) == 0) && 1224 (portq->portq_nent >= *nget)) { 1225 /* some new events arrived ...check them */ 1226 goto portnowait; 1227 } 1228 rqtp = pgt->pgt_rqtp; 1229 pgt->pgt_flags |= PORTGET_WAIT_EVENTS; 1230 } else { 1231 /* check if enough events are available ... */ 1232 if (portq->portq_nent >= *nget) 1233 goto portnowait; 1234 /* 1235 * There are not enough events available to satisfy 1236 * the request, check timeout value and wait for 1237 * incoming events. 1238 */ 1239 error = port_get_timeout(pgt->pgt_timeout, &rqtime, &rqtp, 1240 &blocking, flag); 1241 if (error) { 1242 port_check_return_cond(portq); 1243 mutex_exit(&portq->portq_mutex); 1244 return (error); 1245 } 1246 1247 if (blocking == 0) /* don't block, check fired events */ 1248 goto portnowait; 1249 1250 if (rqtp != NULL) { 1251 timespec_t now; 1252 gethrestime(&now); 1253 timespecadd(rqtp, &now); 1254 } 1255 } 1256 1257 /* enqueue thread in the list of waiting threads */ 1258 pgetp = port_queue_thread(portq, *nget); 1259 1260 1261 /* Wait here until return conditions met */ 1262 for (;;) { 1263 if (pgetp->portget_state & PORTGET_ALERT) { 1264 /* reap alert event and return */ 1265 error = port_get_alert(&pgetp->portget_alert, uevp); 1266 if (error) 1267 *nget = 0; 1268 else 1269 *nget = 1; 1270 port_dequeue_thread(&pp->port_queue, pgetp); 1271 portq->portq_thrcnt--; 1272 mutex_exit(&portq->portq_mutex); 1273 return (error); 1274 } 1275 1276 /* 1277 * Check if some other thread is already retrieving 1278 * events (portq_getn > 0). 1279 */ 1280 1281 if ((portq->portq_getn == 0) && 1282 ((portq)->portq_nent >= *nget) && 1283 (!((pgt)->pgt_flags & PORTGET_WAIT_EVENTS) || 1284 !((portq)->portq_flags & PORTQ_WAIT_EVENTS))) 1285 break; 1286 1287 if (portq->portq_flags & PORTQ_CLOSE) { 1288 error = EBADFD; 1289 break; 1290 } 1291 1292 rval = cv_waituntil_sig(&pgetp->portget_cv, &portq->portq_mutex, 1293 rqtp); 1294 1295 if (rval <= 0) { 1296 error = (rval == 0) ? EINTR : ETIME; 1297 break; 1298 } 1299 } 1300 1301 /* take thread out of the wait queue */ 1302 port_dequeue_thread(portq, pgetp); 1303 1304 if (error != 0 && (error == EINTR || error == EBADFD || 1305 (error == ETIME && flag))) { 1306 /* return without events */ 1307 port_check_return_cond(portq); 1308 mutex_exit(&portq->portq_mutex); 1309 return (error); 1310 } 1311 1312 portnowait: 1313 /* 1314 * Move port event queue to a temporary event queue . 1315 * New incoming events will be continue be posted to the event queue 1316 * and they will not be considered by the current thread. 1317 * The idea is to avoid lock contentions or an often locking/unlocking 1318 * of the port queue mutex. The contention and performance degradation 1319 * could happen because: 1320 * a) incoming events use the port queue mutex to enqueue new events and 1321 * b) before the event can be delivered to the application it is 1322 * necessary to notify the event sources about the event delivery. 1323 * Sometimes the event sources can require a long time to return and 1324 * the queue mutex would block incoming events. 1325 * During this time incoming events (port_send_event()) do not need 1326 * to awake threads waiting for events. Before the current thread 1327 * returns it will check the conditions to awake other waiting threads. 1328 */ 1329 portq->portq_getn++; /* number of threads retrieving events */ 1330 port_block(portq); /* block other threads here */ 1331 nmax = max < portq->portq_nent ? max : portq->portq_nent; 1332 1333 if (portq->portq_tnent) { 1334 /* 1335 * Move remaining events from previous thread back to the 1336 * port event queue. 1337 */ 1338 port_push_eventq(portq); 1339 } 1340 /* move port event queue to a temporary queue */ 1341 list_move_tail(&portq->portq_get_list, &portq->portq_list); 1342 glist = &portq->portq_get_list; /* use temporary event queue */ 1343 tnent = portq->portq_nent; /* get current number of events */ 1344 portq->portq_nent = 0; /* no events in the port event queue */ 1345 portq->portq_flags |= PORTQ_WAIT_EVENTS; /* detect incoming events */ 1346 mutex_exit(&portq->portq_mutex); /* event queue can be reused now */ 1347 1348 if (model == DATAMODEL_NATIVE) { 1349 eventsz = sizeof (port_event_t); 1350 kevp = kmem_alloc(eventsz * nmax, KM_NOSLEEP); 1351 if (kevp == NULL) { 1352 if (nmax > pp->port_max_list) 1353 nmax = pp->port_max_list; 1354 kevp = kmem_alloc(eventsz * nmax, KM_SLEEP); 1355 } 1356 results = kevp; 1357 lev = NULL; /* start with first event in the queue */ 1358 for (nevents = 0; nevents < nmax; ) { 1359 pev = port_get_kevent(glist, lev); 1360 if (pev == NULL) /* no more events available */ 1361 break; 1362 if (pev->portkev_flags & PORT_KEV_FREE) { 1363 /* Just discard event */ 1364 list_remove(glist, pev); 1365 pev->portkev_flags &= ~(PORT_CLEANUP_DONE); 1366 if (PORT_FREE_EVENT(pev)) 1367 port_free_event_local(pev, 0); 1368 tnent--; 1369 continue; 1370 } 1371 1372 /* move event data to copyout list */ 1373 if (port_copy_event(&kevp[nevents], pev, glist)) { 1374 /* 1375 * Event can not be delivered to the 1376 * current process. 1377 */ 1378 if (lev != NULL) 1379 list_insert_after(glist, lev, pev); 1380 else 1381 list_insert_head(glist, pev); 1382 lev = pev; /* last checked event */ 1383 } else { 1384 nevents++; /* # of events ready */ 1385 } 1386 } 1387 #ifdef _SYSCALL32_IMPL 1388 } else { 1389 port_event32_t *kevp32; 1390 1391 eventsz = sizeof (port_event32_t); 1392 kevp32 = kmem_alloc(eventsz * nmax, KM_NOSLEEP); 1393 if (kevp32 == NULL) { 1394 if (nmax > pp->port_max_list) 1395 nmax = pp->port_max_list; 1396 kevp32 = kmem_alloc(eventsz * nmax, KM_SLEEP); 1397 } 1398 results = kevp32; 1399 lev = NULL; /* start with first event in the queue */ 1400 for (nevents = 0; nevents < nmax; ) { 1401 pev = port_get_kevent(glist, lev); 1402 if (pev == NULL) /* no more events available */ 1403 break; 1404 if (pev->portkev_flags & PORT_KEV_FREE) { 1405 /* Just discard event */ 1406 list_remove(glist, pev); 1407 pev->portkev_flags &= ~(PORT_CLEANUP_DONE); 1408 if (PORT_FREE_EVENT(pev)) 1409 port_free_event_local(pev, 0); 1410 tnent--; 1411 continue; 1412 } 1413 1414 /* move event data to copyout list */ 1415 if (port_copy_event32(&kevp32[nevents], pev, glist)) { 1416 /* 1417 * Event can not be delivered to the 1418 * current process. 1419 */ 1420 if (lev != NULL) 1421 list_insert_after(glist, lev, pev); 1422 else 1423 list_insert_head(glist, pev); 1424 lev = pev; /* last checked event */ 1425 } else { 1426 nevents++; /* # of events ready */ 1427 } 1428 } 1429 #endif /* _SYSCALL32_IMPL */ 1430 } 1431 1432 /* 1433 * Remember number of remaining events in the temporary event queue. 1434 */ 1435 portq->portq_tnent = tnent - nevents; 1436 1437 /* 1438 * Work to do before return : 1439 * - push list of remaining events back to the top of the standard 1440 * port queue. 1441 * - if this is the last thread calling port_get(n) then wakeup the 1442 * thread waiting on close(2). 1443 * - check for a deferred cv_signal from port_send_event() and wakeup 1444 * the sleeping thread. 1445 */ 1446 1447 mutex_enter(&portq->portq_mutex); 1448 port_unblock(portq); 1449 if (portq->portq_tnent) { 1450 /* 1451 * move remaining events in the temporary event queue back 1452 * to the port event queue 1453 */ 1454 port_push_eventq(portq); 1455 } 1456 portq->portq_getn--; /* update # of threads retrieving events */ 1457 if (--portq->portq_thrcnt == 0) { /* # of threads waiting ... */ 1458 /* Last thread => check close(2) conditions ... */ 1459 if (portq->portq_flags & PORTQ_CLOSE) { 1460 cv_signal(&portq->portq_closecv); 1461 mutex_exit(&portq->portq_mutex); 1462 kmem_free(results, eventsz * nmax); 1463 /* do not copyout events */ 1464 *nget = 0; 1465 return (EBADFD); 1466 } 1467 } else if (portq->portq_getn == 0) { 1468 /* 1469 * no other threads retrieving events ... 1470 * check wakeup conditions of sleeping threads 1471 */ 1472 if ((portq->portq_thread != NULL) && 1473 (portq->portq_nent >= portq->portq_nget)) 1474 cv_signal(&portq->portq_thread->portget_cv); 1475 } 1476 1477 /* 1478 * Check PORTQ_POLLIN here because the current thread set temporarily 1479 * the number of events in the queue to zero. 1480 */ 1481 if (portq->portq_flags & PORTQ_POLLIN) { 1482 portq->portq_flags &= ~PORTQ_POLLIN; 1483 mutex_exit(&portq->portq_mutex); 1484 pollwakeup(&pp->port_pollhd, POLLIN); 1485 } else { 1486 mutex_exit(&portq->portq_mutex); 1487 } 1488 1489 /* now copyout list of user event structures to user space */ 1490 if (nevents) { 1491 if (copyout(results, uevp, nevents * eventsz)) 1492 error = EFAULT; 1493 } 1494 kmem_free(results, eventsz * nmax); 1495 1496 if (nevents == 0 && error == 0 && pgt->pgt_loop == 0 && blocking != 0) { 1497 /* no events retrieved: check loop conditions */ 1498 if (blocking == -1) { 1499 /* no timeout checked */ 1500 error = port_get_timeout(pgt->pgt_timeout, 1501 &pgt->pgt_rqtime, &rqtp, &blocking, flag); 1502 if (error) { 1503 *nget = nevents; 1504 return (error); 1505 } 1506 if (rqtp != NULL) { 1507 timespec_t now; 1508 gethrestime(&now); 1509 timespecadd(&pgt->pgt_rqtime, &now); 1510 } 1511 pgt->pgt_rqtp = rqtp; 1512 } else { 1513 /* timeout already checked -> remember values */ 1514 pgt->pgt_rqtp = rqtp; 1515 if (rqtp != NULL) { 1516 pgt->pgt_rqtime = *rqtp; 1517 } 1518 } 1519 if (blocking) 1520 /* timeout remaining */ 1521 pgt->pgt_loop = 1; 1522 } 1523 1524 /* set number of user event structures completed */ 1525 *nget = nevents; 1526 return (error); 1527 } 1528 1529 /* 1530 * 1. copy kernel event structure to user event structure. 1531 * 2. PORT_KEV_WIRED event structures will be reused by the "source" 1532 * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue) 1533 * 4. Other types of event structures can be delivered back to the port cache 1534 * (port_free_event_local()). 1535 * 5. The event source callback function is the last opportunity for the 1536 * event source to update events, to free local resources associated with 1537 * the event or to deny the delivery of the event. 1538 */ 1539 static int 1540 port_copy_event(port_event_t *puevp, port_kevent_t *pkevp, list_t *list) 1541 { 1542 int free_event = 0; 1543 int flags; 1544 int error; 1545 1546 puevp->portev_source = pkevp->portkev_source; 1547 puevp->portev_object = pkevp->portkev_object; 1548 puevp->portev_user = pkevp->portkev_user; 1549 puevp->portev_events = pkevp->portkev_events; 1550 1551 /* remove event from the queue */ 1552 list_remove(list, pkevp); 1553 1554 /* 1555 * Events of type PORT_KEV_WIRED remain allocated by the 1556 * event source. 1557 */ 1558 flags = pkevp->portkev_flags; 1559 if (pkevp->portkev_flags & PORT_KEV_WIRED) 1560 pkevp->portkev_flags &= ~PORT_KEV_DONEQ; 1561 else 1562 free_event = 1; 1563 1564 if (pkevp->portkev_callback) { 1565 error = (*pkevp->portkev_callback)(pkevp->portkev_arg, 1566 &puevp->portev_events, pkevp->portkev_pid, 1567 PORT_CALLBACK_DEFAULT, pkevp); 1568 1569 if (error) { 1570 /* 1571 * Event can not be delivered. 1572 * Caller must reinsert the event into the queue. 1573 */ 1574 pkevp->portkev_flags = flags; 1575 return (error); 1576 } 1577 } 1578 if (free_event) 1579 port_free_event_local(pkevp, 0); 1580 return (0); 1581 } 1582 1583 #ifdef _SYSCALL32_IMPL 1584 /* 1585 * 1. copy kernel event structure to user event structure. 1586 * 2. PORT_KEV_WIRED event structures will be reused by the "source" 1587 * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue) 1588 * 4. Other types of event structures can be delivered back to the port cache 1589 * (port_free_event_local()). 1590 * 5. The event source callback function is the last opportunity for the 1591 * event source to update events, to free local resources associated with 1592 * the event or to deny the delivery of the event. 1593 */ 1594 static int 1595 port_copy_event32(port_event32_t *puevp, port_kevent_t *pkevp, list_t *list) 1596 { 1597 int free_event = 0; 1598 int error; 1599 int flags; 1600 1601 puevp->portev_source = pkevp->portkev_source; 1602 puevp->portev_object = (daddr32_t)pkevp->portkev_object; 1603 puevp->portev_user = (caddr32_t)(uintptr_t)pkevp->portkev_user; 1604 puevp->portev_events = pkevp->portkev_events; 1605 1606 /* remove event from the queue */ 1607 list_remove(list, pkevp); 1608 1609 /* 1610 * Events if type PORT_KEV_WIRED remain allocated by the 1611 * sub-system (source). 1612 */ 1613 1614 flags = pkevp->portkev_flags; 1615 if (pkevp->portkev_flags & PORT_KEV_WIRED) 1616 pkevp->portkev_flags &= ~PORT_KEV_DONEQ; 1617 else 1618 free_event = 1; 1619 1620 if (pkevp->portkev_callback != NULL) { 1621 error = (*pkevp->portkev_callback)(pkevp->portkev_arg, 1622 &puevp->portev_events, pkevp->portkev_pid, 1623 PORT_CALLBACK_DEFAULT, pkevp); 1624 if (error) { 1625 /* 1626 * Event can not be delivered. 1627 * Caller must reinsert the event into the queue. 1628 */ 1629 pkevp->portkev_flags = flags; 1630 return (error); 1631 } 1632 } 1633 if (free_event) 1634 port_free_event_local(pkevp, 0); 1635 return (0); 1636 } 1637 #endif /* _SYSCALL32_IMPL */ 1638 1639 /* 1640 * copyout alert event. 1641 */ 1642 static int 1643 port_get_alert(port_alert_t *pa, port_event_t *uevp) 1644 { 1645 model_t model = get_udatamodel(); 1646 1647 /* copyout alert event structures to user space */ 1648 if (model == DATAMODEL_NATIVE) { 1649 port_event_t uev; 1650 uev.portev_source = PORT_SOURCE_ALERT; 1651 uev.portev_object = pa->portal_object; 1652 uev.portev_events = pa->portal_events; 1653 uev.portev_user = pa->portal_user; 1654 if (copyout(&uev, uevp, sizeof (port_event_t))) 1655 return (EFAULT); 1656 #ifdef _SYSCALL32_IMPL 1657 } else { 1658 port_event32_t uev32; 1659 uev32.portev_source = PORT_SOURCE_ALERT; 1660 uev32.portev_object = (daddr32_t)pa->portal_object; 1661 uev32.portev_events = pa->portal_events; 1662 uev32.portev_user = (daddr32_t)(uintptr_t)pa->portal_user; 1663 if (copyout(&uev32, uevp, sizeof (port_event32_t))) 1664 return (EFAULT); 1665 #endif /* _SYSCALL32_IMPL */ 1666 } 1667 return (0); 1668 } 1669 1670 /* 1671 * Check return conditions : 1672 * - pending port close(2) 1673 * - threads waiting for events 1674 */ 1675 static void 1676 port_check_return_cond(port_queue_t *portq) 1677 { 1678 ASSERT(MUTEX_HELD(&portq->portq_mutex)); 1679 portq->portq_thrcnt--; 1680 if (portq->portq_flags & PORTQ_CLOSE) { 1681 if (portq->portq_thrcnt == 0) 1682 cv_signal(&portq->portq_closecv); 1683 else 1684 cv_signal(&portq->portq_thread->portget_cv); 1685 } 1686 } 1687 1688 /* 1689 * The port_get_kevent() function returns 1690 * - the event located at the head of the queue if 'last' pointer is NULL 1691 * - the next event after the event pointed by 'last' 1692 * The caller of this function is responsible for the integrity of the queue 1693 * in use: 1694 * - port_getn() is using a temporary queue protected with port_block(). 1695 * - port_close_events() is working on the global event queue and protects 1696 * the queue with portq->portq_mutex. 1697 */ 1698 port_kevent_t * 1699 port_get_kevent(list_t *list, port_kevent_t *last) 1700 { 1701 if (last == NULL) 1702 return (list_head(list)); 1703 else 1704 return (list_next(list, last)); 1705 } 1706 1707 /* 1708 * The port_get_timeout() function gets the timeout data from user space 1709 * and converts that info into a corresponding internal representation. 1710 * The kerneldata flag means that the timeout data is already loaded. 1711 */ 1712 static int 1713 port_get_timeout(timespec_t *timeout, timespec_t *rqtime, timespec_t **rqtp, 1714 int *blocking, int kerneldata) 1715 { 1716 model_t model = get_udatamodel(); 1717 1718 *rqtp = NULL; 1719 if (timeout == NULL) { 1720 *blocking = 1; 1721 return (0); 1722 } 1723 1724 if (kerneldata) { 1725 *rqtime = *timeout; 1726 } else { 1727 if (model == DATAMODEL_NATIVE) { 1728 if (copyin(timeout, rqtime, sizeof (*rqtime))) 1729 return (EFAULT); 1730 #ifdef _SYSCALL32_IMPL 1731 } else { 1732 timespec32_t wait_time_32; 1733 if (copyin(timeout, &wait_time_32, 1734 sizeof (wait_time_32))) 1735 return (EFAULT); 1736 TIMESPEC32_TO_TIMESPEC(rqtime, &wait_time_32); 1737 #endif /* _SYSCALL32_IMPL */ 1738 } 1739 } 1740 1741 if (rqtime->tv_sec == 0 && rqtime->tv_nsec == 0) { 1742 *blocking = 0; 1743 return (0); 1744 } 1745 1746 if (rqtime->tv_sec < 0 || 1747 rqtime->tv_nsec < 0 || rqtime->tv_nsec >= NANOSEC) 1748 return (EINVAL); 1749 1750 *rqtp = rqtime; 1751 *blocking = 1; 1752 return (0); 1753 } 1754 1755 /* 1756 * port_queue_thread() 1757 * Threads requiring more events than available will be put in a wait queue. 1758 * There is a "thread wait queue" per port. 1759 * Threads requiring less events get a higher priority than others and they 1760 * will be awoken first. 1761 */ 1762 static portget_t * 1763 port_queue_thread(port_queue_t *portq, uint_t nget) 1764 { 1765 portget_t *pgetp; 1766 portget_t *ttp; 1767 portget_t *htp; 1768 1769 pgetp = kmem_zalloc(sizeof (portget_t), KM_SLEEP); 1770 pgetp->portget_nget = nget; 1771 pgetp->portget_pid = curproc->p_pid; 1772 if (portq->portq_thread == NULL) { 1773 /* first waiting thread */ 1774 portq->portq_thread = pgetp; 1775 portq->portq_nget = nget; 1776 pgetp->portget_prev = pgetp; 1777 pgetp->portget_next = pgetp; 1778 return (pgetp); 1779 } 1780 1781 /* 1782 * thread waiting for less events will be set on top of the queue. 1783 */ 1784 ttp = portq->portq_thread; 1785 htp = ttp; 1786 for (;;) { 1787 if (nget <= ttp->portget_nget) 1788 break; 1789 if (htp == ttp->portget_next) 1790 break; /* last event */ 1791 ttp = ttp->portget_next; 1792 } 1793 1794 /* add thread to the queue */ 1795 pgetp->portget_next = ttp; 1796 pgetp->portget_prev = ttp->portget_prev; 1797 ttp->portget_prev->portget_next = pgetp; 1798 ttp->portget_prev = pgetp; 1799 if (portq->portq_thread == ttp) 1800 portq->portq_thread = pgetp; 1801 portq->portq_nget = portq->portq_thread->portget_nget; 1802 return (pgetp); 1803 } 1804 1805 /* 1806 * Take thread out of the queue. 1807 */ 1808 static void 1809 port_dequeue_thread(port_queue_t *portq, portget_t *pgetp) 1810 { 1811 if (pgetp->portget_next == pgetp) { 1812 /* last (single) waiting thread */ 1813 portq->portq_thread = NULL; 1814 portq->portq_nget = 0; 1815 } else { 1816 pgetp->portget_prev->portget_next = pgetp->portget_next; 1817 pgetp->portget_next->portget_prev = pgetp->portget_prev; 1818 if (portq->portq_thread == pgetp) 1819 portq->portq_thread = pgetp->portget_next; 1820 portq->portq_nget = portq->portq_thread->portget_nget; 1821 } 1822 kmem_free(pgetp, sizeof (portget_t)); 1823 } 1824 1825 /* 1826 * Set up event port kstats. 1827 */ 1828 static void 1829 port_kstat_init() 1830 { 1831 kstat_t *ksp; 1832 uint_t ndata; 1833 1834 ndata = sizeof (port_kstat) / sizeof (kstat_named_t); 1835 ksp = kstat_create("portfs", 0, "Event Ports", "misc", 1836 KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_VIRTUAL); 1837 if (ksp) { 1838 ksp->ks_data = &port_kstat; 1839 kstat_install(ksp); 1840 } 1841 } 1842