xref: /illumos-gate/usr/src/uts/common/fs/portfs/port.c (revision 5ffb0c9b03b5149ff4f5821a62be4a52408ada2a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/cred.h>
32 #include <sys/modctl.h>
33 #include <sys/vfs.h>
34 #include <sys/vfs_opreg.h>
35 #include <sys/sysmacros.h>
36 #include <sys/cmn_err.h>
37 #include <sys/stat.h>
38 #include <sys/errno.h>
39 #include <sys/kmem.h>
40 #include <sys/file.h>
41 #include <sys/kstat.h>
42 #include <sys/port_impl.h>
43 #include <sys/task.h>
44 #include <sys/project.h>
45 
46 /*
47  * Event Ports can be shared across threads or across processes.
48  * Every thread/process can use an own event port or a group of them
49  * can use a single port. A major request was also to get the ability
50  * to submit user-defined events to a port. The idea of the
51  * user-defined events is to use the event ports for communication between
52  * threads/processes (like message queues). User defined-events are queued
53  * in a port with the same priority as other event types.
54  *
55  * Events are delivered only once. The thread/process which is waiting
56  * for events with the "highest priority" (priority here is related to the
57  * internal strategy to wakeup waiting threads) will retrieve the event,
58  * all other threads/processes will not be notified. There is also
59  * the requirement to have events which should be submitted immediately
60  * to all "waiting" threads. That is the main task of the alert event.
61  * The alert event is submitted by the application to a port. The port
62  * changes from a standard mode to the alert mode. Now all waiting threads
63  * will be awaken immediately and they will return with the alert event.
64  * Threads trying to retrieve events from a port in alert mode will
65  * return immediately with the alert event.
66  *
67  *
68  * An event port is like a kernel queue, which accept events submitted from
69  * user level as well as events submitted from kernel sub-systems. Sub-systems
70  * able to submit events to a port are the so-called "event sources".
71  * Current event sources:
72  * PORT_SOURCE_AIO	 : events submitted per transaction completion from
73  *			   POSIX-I/O framework.
74  * PORT_SOURCE_TIMER	 : events submitted when a timer fires
75  *			   (see timer_create(3RT)).
76  * PORT_SOURCE_FD	 : events submitted per file descriptor (see poll(2)).
77  * PORT_SOURCE_ALERT	 : events submitted from user. This is not really a
78  *			   single event, this is actually a port mode
79  *			   (see port_alert(3c)).
80  * PORT_SOURCE_USER	 : events submitted by applications with
81  *			   port_send(3c) or port_sendn(3c).
82  * PORT_SOURCE_FILE	 : events submitted per file being watched for file
83  *			   change events  (see port_create(3c).
84  *
85  * There is a user API implemented in the libc library as well as a
86  * kernel API implemented in port_subr.c in genunix.
87  * The available user API functions are:
88  * port_create() : create a port as a file descriptor of portfs file system
89  *		   The standard close(2) function closes a port.
90  * port_associate() : associate a file descriptor with a port to be able to
91  *		      retrieve events from that file descriptor.
92  * port_dissociate(): remove the association of a file descriptor with a port.
93  * port_alert()	 : set/unset a port in alert mode
94  * port_send()	 : send an event of type PORT_SOURCE_USER to a port
95  * port_sendn()	 : send an event of type PORT_SOURCE_USER to a list of ports
96  * port_get()	 : retrieve a single event from a port
97  * port_getn()	 : retrieve a list of events from a port
98  *
99  * The available kernel API functions are:
100  * port_allocate_event(): allocate an event slot/structure of/from a port
101  * port_init_event()    : set event data in the event structure
102  * port_send_event()    : send event to a port
103  * port_free_event()    : deliver allocated slot/structure back to a port
104  * port_associate_ksource(): associate a kernel event source with a port
105  * port_dissociate_ksource(): dissociate a kernel event source from a port
106  *
107  * The libc implementation consists of small functions which pass the
108  * arguments to the kernel using the "portfs" system call. It means, all the
109  * synchronisation work is being done in the kernel. The "portfs" system
110  * call loads the portfs file system into the kernel.
111  *
112  * PORT CREATION
113  * The first function to be used is port_create() which internally creates
114  * a vnode and a portfs node. The portfs node is represented by the port_t
115  * structure, which again includes all the data necessary to control a port.
116  * port_create() returns a file descriptor, which needs to be used in almost
117  * all other event port functions.
118  * The maximum number of ports per system is controlled by the resource
119  * control: project:port-max-ids.
120  *
121  * EVENT GENERATION
122  * The second step is the triggering of events, which could be sent to a port.
123  * Every event source implements an own method to generate events for a port:
124  * PORT_SOURCE_AIO:
125  * 	The sigevent structure of the standard POSIX-IO functions
126  * 	was extended by an additional notification type.
127  * 	Standard notification types:
128  * 	SIGEV_NONE, SIGEV_SIGNAL and SIGEV_THREAD
129  * 	Event ports introduced now SIGEV_PORT.
130  * 	The notification type SIGEV_PORT specifies that a structure
131  * 	of type port_notify_t has to be attached to the sigev_value.
132  * 	The port_notify_t structure contains the event port file
133  * 	descriptor and a user-defined pointer.
134  * 	Internally the AIO implementation will use the kernel API
135  * 	functions to allocate an event port slot per transaction (aiocb)
136  * 	and sent the event to the port as soon as the transaction completes.
137  * 	All the events submitted per transaction are of type
138  * 	PORT_SOURCE_AIO.
139  * PORT_SOURCE_TIMER:
140  * 	The timer_create() function uses the same method as the
141  * 	PORT_SOURCE_AIO event source. It also uses the sigevent structure
142  * 	to deliver the port information.
143  * 	Internally the timer code will allocate a single event slot/struct
144  * 	per timer and it will send the timer event as soon as the timer
145  * 	fires. If the timer-fired event is not delivered to the application
146  * 	before the next period elapsed, then an overrun counter will be
147  * 	incremented. The timer event source uses a callback function to
148  * 	detect the delivery of the event to the application. At that time
149  * 	the timer callback function will update the event overrun counter.
150  * PORT_SOURCE_FD:
151  * 	This event source uses the port_associate() function to allocate
152  * 	an event slot/struct from a port. The application defines in the
153  * 	events argument of port_associate() the type of events which it is
154  * 	interested on.
155  * 	The internal pollwakeup() function is used by all the file
156  * 	systems --which are supporting the VOP_POLL() interface- to notify
157  * 	the upper layer (poll(2), devpoll(7d) and now event ports) about
158  * 	the event triggered (see valid events in poll(2)).
159  * 	The pollwakeup() function forwards the event to the layer registered
160  * 	to receive the current event.
161  * 	The port_dissociate() function can be used to free the allocated
162  * 	event slot from the port. Anyway, file descriptors deliver events
163  * 	only one time and remain deactivated until the application
164  * 	reactivates the association of a file descriptor with port_associate().
165  * 	If an associated file descriptor is closed then the file descriptor
166  * 	will be dissociated automatically from the port.
167  *
168  * PORT_SOURCE_ALERT:
169  * 	This event type is generated when the port was previously set in
170  * 	alert mode using the port_alert() function.
171  * 	A single alert event is delivered to every thread which tries to
172  * 	retrieve events from a port.
173  * PORT_SOURCE_USER:
174  * 	This type of event is generated from user level using the port_send()
175  * 	function to send a user event to a port or the port_sendn() function
176  * 	to send an event to a list of ports.
177  * PORT_SOURCE_FILE:
178  *	This event source uses the port_associate() interface to register
179  *	a file to be monitored for changes. The file name that needs to be
180  *	monitored is specified in the file_obj_t structure, a pointer to which
181  *	is passed as an argument. The event types to be monitored are specified
182  *	in the events argument.
183  *	A file events monitor is represented internal per port per object
184  *	address(the file_obj_t pointer). Which means there can be multiple
185  *	watches registered on the same file using different file_obj_t
186  *	structure pointer. With the help of the	FEM(File Event Monitoring)
187  *	hooks, the file's vnode ops are intercepted and relevant events
188  *	delivered. The port_dissociate() function is used to de-register a
189  *	file events monitor on a file. When the specified file is
190  *	removed/renamed, the file events watch/monitor is automatically
191  *	removed.
192  *
193  * EVENT DELIVERY / RETRIEVING EVENTS
194  * Events remain in the port queue until:
195  * - the application uses port_get() or port_getn() to retrieve events,
196  * - the event source cancel the event,
197  * - the event port is closed or
198  * - the process exits.
199  * The maximal number of events in a port queue is the maximal number
200  * of event slots/structures which can be allocated by event sources.
201  * The allocation of event slots/structures is controlled by the resource
202  * control: process.port-max-events.
203  * The port_get() function retrieves a single event and the port_getn()
204  * function retrieves a list of events.
205  * Events are classified as shareable and non-shareable events across processes.
206  * Non-shareable events are invisible for the port_get(n)() functions of
207  * processes other than the owner of the event.
208  *    Shareable event types are:
209  *    PORT_SOURCE_USER events
210  * 	This type of event is unconditionally shareable and without
211  * 	limitations. If the parent process sends a user event and closes
212  * 	the port afterwards, the event remains in the port and the child
213  * 	process will still be able to retrieve the user event.
214  *    PORT_SOURCE_ALERT events
215  * 	This type of event is shareable between processes.
216  * 	Limitation:	The alert mode of the port is removed if the owner
217  * 			(process which set the port in alert mode) of the
218  * 			alert event closes the port.
219  *    PORT_SOURCE_FD events
220  * 	This type of event is conditional shareable between processes.
221  * 	After fork(2) all forked file descriptors are shareable between
222  * 	the processes. The child process is allowed to retrieve events
223  * 	from the associated file descriptors and it can also re-associate
224  * 	the fd with the port.
225  * 	Limitations:	The child process is not allowed to dissociate
226  * 			the file descriptor from the port. Only the
227  * 			owner (process) of the association is allowed to
228  * 			dissociate the file descriptor from the port.
229  * 			If the owner of the association closes the port
230  * 			the association will be removed.
231  *    PORT_SOURCE_AIO events
232  * 	This type of event is not shareable between processes.
233  *    PORT_SOURCE_TIMER events
234  * 	This type of event is not shareable between processes.
235  *    PORT_SOURCE_FILE events
236  * 	This type of event is not shareable between processes.
237  *
238  * FORK BEHAVIOUR
239  * On fork(2) the child process inherits all opened file descriptors from
240  * the parent process. This is also valid for port file descriptors.
241  * Associated file descriptors with a port maintain the association across the
242  * fork(2). It means, the child process gets full access to the port and
243  * it can retrieve events from all common associated file descriptors.
244  * Events of file descriptors created and associated with a port after the
245  * fork(2) are non-shareable and can only be retrieved by the same process.
246  *
247  * If the parent or the child process closes an exported port (using fork(2)
248  * or I_SENDFD) all the file descriptors associated with the port by the
249  * process will be dissociated from the port. Events of dissociated file
250  * descriptors as well as all non-shareable events will be discarded.
251  * The other process can continue working with the port as usual.
252  *
253  * CLOSING A PORT
254  * close(2) has to be used to close a port. See FORK BEHAVIOUR for details.
255  *
256  * PORT EVENT STRUCTURES
257  * The global control structure of the event ports framework is port_control_t.
258  * port_control_t keeps track of the number of created ports in the system.
259  * The cache of the port event structures is also located in port_control_t.
260  *
261  * On port_create() the vnode and the portfs node is also created.
262  * The portfs node is represented by the port_t structure.
263  * The port_t structure manages all port specific tasks:
264  * - management of resource control values
265  * - port VOP_POLL interface
266  * - creation time
267  * - uid and gid of the port
268  *
269  * The port_t structure contains the port_queue_t structure.
270  * The port_queue_t structure contains all the data necessary for the
271  * queue management:
272  * - locking
273  * - condition variables
274  * - event counters
275  * - submitted events	(represented by port_kevent_t structures)
276  * - threads waiting for event delivery (check portget_t structure)
277  * - PORT_SOURCE_FD cache	(managed by the port_fdcache_t structure)
278  * - event source management (managed by the port_source_t structure)
279  * - alert mode management	(check port_alert_t structure)
280  *
281  * EVENT MANAGEMENT
282  * The event port file system creates a kmem_cache for internal allocation of
283  * event port structures.
284  *
285  * 1. Event source association with a port:
286  * The first step to do for event sources is to get associated with a port
287  * using the port_associate_ksource() function or adding an entry to the
288  * port_ksource_tab[]. An event source can get dissociated from a port
289  * using the port_dissociate_ksource() function. An entry in the
290  * port_ksource_tab[] implies that the source will be associated
291  * automatically with every new created port.
292  * The event source can deliver a callback function, which is used by the
293  * port to notify the event source about close(2). The idea is that
294  * in such a case the event source should free all allocated resources
295  * and it must return to the port all allocated slots/structures.
296  * The port_close() function will wait until all allocated event
297  * structures/slots are returned to the port.
298  * The callback function is not necessary when the event source does not
299  * maintain local resources, a second condition is that the event source
300  * can guarantee that allocated event slots will be returned without
301  * delay to the port (it will not block and sleep somewhere).
302  *
303  * 2. Reservation of an event slot / event structure
304  * The event port reliability is based on the reservation of an event "slot"
305  * (allocation of an event structure) by the event source as part of the
306  * application call. If the maximal number of event slots is exhausted then
307  * the event source can return a corresponding error code to the application.
308  *
309  * The port_alloc_event() function has to be used by event sources to
310  * allocate an event slot (reserve an event structure). The port_alloc_event()
311  * doesn not block and it will return a 0 value on success or an error code
312  * if it fails.
313  * An argument of port_alloc_event() is a flag which determines the behavior
314  * of the event after it was delivered to the application:
315  * PORT_ALLOC_DEFAULT	: event slot becomes free after delivery to the
316  *			  application.
317  * PORT_ALLOC_PRIVATE	: event slot remains under the control of the event
318  *			  source. This kind of slots can not be used for
319  *			  event delivery and should only be used internally
320  *			  by the event source.
321  * PORT_KEV_CACHED	: event slot remains under the control of an event
322  *			  port cache. It does not become free after delivery
323  *			  to the application.
324  * PORT_ALLOC_SCACHED	: event slot remains under the control of the event
325  *			  source. The event source takes the control over
326  *			  the slot after the event is delivered to the
327  *			  application.
328  *
329  * 3. Delivery of events to the event port
330  * Earlier allocated event structure/slot has to be used to deliver
331  * event data to the port. Event source has to use the function
332  * port_send_event(). The single argument is a pointer to the previously
333  * reserved event structure/slot.
334  * The portkev_events field of the port_kevent_t structure can be updated/set
335  * in two ways:
336  * 1. using the port_set_event() function, or
337  * 2. updating the portkev_events field out of the callback function:
338  *    The event source can deliver a callback function to the port as an
339  *    argument of port_init_event().
340  *    One of the arguments of the callback function is a pointer to the
341  *    events field, which will be delivered to the application.
342  *    (see Delivery of events to the application).
343  * Event structures/slots can be delivered to the event port only one time,
344  * they remain blocked until the data is delivered to the application and the
345  * slot becomes free or it is delivered back to the event source
346  * (PORT_ALLOC_SCACHED). The activation of the callback function mentioned above
347  * is at the same time the indicator for the event source that the event
348  * structure/slot is free for reuse.
349  *
350  * 4. Delivery of events to the application
351  * The events structures/slots delivered by event sources remain in the
352  * port queue until they are retrieved by the application or the port
353  * is closed (exit(2) also closes all opened file descriptors)..
354  * The application uses port_get() or port_getn() to retrieve events from
355  * a port. port_get() retrieves a single event structure/slot and port_getn()
356  * retrieves a list of event structures/slots.
357  * Both functions are able to poll for events and return immediately or they
358  * can specify a timeout value.
359  * Before the events are delivered to the application they are moved to a
360  * second temporary internal queue. The idea is to avoid lock collisions or
361  * contentions of the global queue lock.
362  * The global queue lock is used every time when an event source delivers
363  * new events to the port.
364  * The port_get() and port_getn() functions
365  * a) retrieve single events from the temporary queue,
366  * b) prepare the data to be passed to the application memory,
367  * c) activate the callback function of the event sources:
368  *    - to get the latest event data,
369  *    - the event source can free all allocated resources associated with the
370  *      current event,
371  *    - the event source can re-use the current event slot/structure
372  *    - the event source can deny the delivery of the event to the application
373  *      (e.g. because of the wrong process).
374  * d) put the event back to the temporary queue if the event delivery was denied
375  * e) repeat a) until d) as long as there are events in the queue and
376  *    there is enough user space available.
377  *
378  * The loop described above could block for a very long time the global mutex,
379  * to avoid that a second mutex was introduced to synchronized concurrent
380  * threads accessing the temporary queue.
381  */
382 
383 static int64_t portfs(int, uintptr_t, uintptr_t, uintptr_t, uintptr_t,
384     uintptr_t);
385 
386 static struct sysent port_sysent = {
387 	6,
388 	SE_ARGC | SE_64RVAL | SE_NOUNLOAD,
389 	(int (*)())portfs,
390 };
391 
392 static struct modlsys modlsys = {
393 	&mod_syscallops, "event ports", &port_sysent
394 };
395 
396 #ifdef _SYSCALL32_IMPL
397 
398 static int64_t
399 portfs32(uint32_t arg1, int32_t arg2, uint32_t arg3, uint32_t arg4,
400     uint32_t arg5, uint32_t arg6);
401 
402 static struct sysent port_sysent32 = {
403 	6,
404 	SE_ARGC | SE_64RVAL | SE_NOUNLOAD,
405 	(int (*)())portfs32,
406 };
407 
408 static struct modlsys modlsys32 = {
409 	&mod_syscallops32,
410 	"32-bit event ports syscalls",
411 	&port_sysent32
412 };
413 #endif	/* _SYSCALL32_IMPL */
414 
415 static struct modlinkage modlinkage = {
416 	MODREV_1,
417 	&modlsys,
418 #ifdef _SYSCALL32_IMPL
419 	&modlsys32,
420 #endif
421 	NULL
422 };
423 
424 port_kstat_t port_kstat = {
425 	{ "ports",	KSTAT_DATA_UINT32 }
426 };
427 
428 dev_t	portdev;
429 struct	vnodeops *port_vnodeops;
430 struct	vfs port_vfs;
431 
432 extern	rctl_hndl_t rc_process_portev;
433 extern	rctl_hndl_t rc_project_portids;
434 extern	void aio_close_port(void *, int, pid_t, int);
435 
436 /*
437  * This table contains a list of event sources which need a static
438  * association with a port (every port).
439  * The last NULL entry in the table is required to detect "end of table".
440  */
441 struct port_ksource port_ksource_tab[] = {
442 	{PORT_SOURCE_AIO, aio_close_port, NULL, NULL},
443 	{0, NULL, NULL, NULL}
444 };
445 
446 /* local functions */
447 static int port_getn(port_t *, port_event_t *, uint_t, uint_t *,
448     port_gettimer_t *);
449 static int port_sendn(int [], int [], uint_t, int, void *, uint_t *);
450 static int port_alert(port_t *, int, int, void *);
451 static int port_dispatch_event(port_t *, int, int, int, uintptr_t, void *);
452 static int port_send(port_t *, int, int, void *);
453 static int port_create(int *);
454 static int port_get_alert(port_alert_t *, port_event_t *);
455 static int port_copy_event(port_event_t *, port_kevent_t *, list_t *);
456 static int *port_errorn(int *, int, int, int);
457 static int port_noshare(void *, int *, pid_t, int, void *);
458 static int port_get_timeout(timespec_t *, timespec_t *, timespec_t **, int *,
459     int);
460 static void port_init(port_t *);
461 static void port_remove_alert(port_queue_t *);
462 static void port_add_ksource_local(port_t *, port_ksource_t *);
463 static void port_check_return_cond(port_queue_t *);
464 static void port_dequeue_thread(port_queue_t *, portget_t *);
465 static portget_t *port_queue_thread(port_queue_t *, uint_t);
466 static void port_kstat_init(void);
467 
468 #ifdef	_SYSCALL32_IMPL
469 static int port_copy_event32(port_event32_t *, port_kevent_t *, list_t *);
470 #endif
471 
472 int
473 _init(void)
474 {
475 	static const fs_operation_def_t port_vfsops_template[] = {
476 		NULL, NULL
477 	};
478 	extern const	fs_operation_def_t port_vnodeops_template[];
479 	vfsops_t	*port_vfsops;
480 	int		error;
481 	major_t 	major;
482 
483 	if ((major = getudev()) == (major_t)-1)
484 		return (ENXIO);
485 	portdev = makedevice(major, 0);
486 
487 	/* Create a dummy vfs */
488 	error = vfs_makefsops(port_vfsops_template, &port_vfsops);
489 	if (error) {
490 		cmn_err(CE_WARN, "port init: bad vfs ops");
491 		return (error);
492 	}
493 	vfs_setops(&port_vfs, port_vfsops);
494 	port_vfs.vfs_flag = VFS_RDONLY;
495 	port_vfs.vfs_dev = portdev;
496 	vfs_make_fsid(&(port_vfs.vfs_fsid), portdev, 0);
497 
498 	error = vn_make_ops("portfs", port_vnodeops_template, &port_vnodeops);
499 	if (error) {
500 		vfs_freevfsops(port_vfsops);
501 		cmn_err(CE_WARN, "port init: bad vnode ops");
502 		return (error);
503 	}
504 
505 	mutex_init(&port_control.pc_mutex, NULL, MUTEX_DEFAULT, NULL);
506 	port_control.pc_nents = 0;	/* number of active ports */
507 
508 	/* create kmem_cache for port event structures */
509 	port_control.pc_cache = kmem_cache_create("port_cache",
510 	    sizeof (port_kevent_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
511 
512 	port_kstat_init();		/* init port kstats */
513 	return (mod_install(&modlinkage));
514 }
515 
516 int
517 _info(struct modinfo *modinfop)
518 {
519 	return (mod_info(&modlinkage, modinfop));
520 }
521 
522 /*
523  * System call wrapper for all port related system calls from 32-bit programs.
524  */
525 #ifdef _SYSCALL32_IMPL
526 static int64_t
527 portfs32(uint32_t opcode, int32_t a0, uint32_t a1, uint32_t a2, uint32_t a3,
528     uint32_t a4)
529 {
530 	int64_t	error;
531 
532 	switch (opcode & PORT_CODE_MASK) {
533 	case PORT_GET:
534 		error = portfs(PORT_GET, a0, a1, (int)a2, (int)a3, a4);
535 		break;
536 	case PORT_SENDN:
537 		error = portfs(opcode, (uint32_t)a0, a1, a2, a3, a4);
538 		break;
539 	default:
540 		error = portfs(opcode, a0, a1, a2, a3, a4);
541 		break;
542 	}
543 	return (error);
544 }
545 #endif	/* _SYSCALL32_IMPL */
546 
547 /*
548  * System entry point for port functions.
549  * a0 is a port file descriptor (except for PORT_SENDN and PORT_CREATE).
550  * The libc uses PORT_SYS_NOPORT in functions which do not deliver a
551  * port file descriptor as first argument.
552  */
553 static int64_t
554 portfs(int opcode, uintptr_t a0, uintptr_t a1, uintptr_t a2, uintptr_t a3,
555     uintptr_t a4)
556 {
557 	rval_t		r;
558 	port_t		*pp;
559 	int 		error = 0;
560 	uint_t		nget;
561 	file_t		*fp;
562 	port_gettimer_t	port_timer;
563 
564 	r.r_vals = 0;
565 	if (opcode & PORT_SYS_NOPORT) {
566 		opcode &= PORT_CODE_MASK;
567 		if (opcode == PORT_SENDN) {
568 			error = port_sendn((int *)a0, (int *)a1, (uint_t)a2,
569 			    (int)a3, (void *)a4, (uint_t *)&r.r_val1);
570 			if (error && (error != EIO))
571 				return ((int64_t)set_errno(error));
572 			return (r.r_vals);
573 		}
574 
575 		if (opcode == PORT_CREATE) {
576 			error = port_create(&r.r_val1);
577 			if (error)
578 				return ((int64_t)set_errno(error));
579 			return (r.r_vals);
580 		}
581 	}
582 
583 	/* opcodes using port as first argument (a0) */
584 
585 	if ((fp = getf((int)a0)) == NULL)
586 		return ((uintptr_t)set_errno(EBADF));
587 
588 	if (fp->f_vnode->v_type != VPORT) {
589 		releasef((int)a0);
590 		return ((uintptr_t)set_errno(EBADFD));
591 	}
592 
593 	pp = VTOEP(fp->f_vnode);
594 
595 	switch (opcode & PORT_CODE_MASK) {
596 	case	PORT_GET:
597 	{
598 		/* see PORT_GETN description */
599 		struct	timespec timeout;
600 
601 		port_timer.pgt_flags = PORTGET_ONE;
602 		port_timer.pgt_loop = 0;
603 		port_timer.pgt_rqtp = NULL;
604 		if (a4 != NULL) {
605 			port_timer.pgt_timeout = &timeout;
606 			timeout.tv_sec = (time_t)a2;
607 			timeout.tv_nsec = (long)a3;
608 		} else {
609 			port_timer.pgt_timeout = NULL;
610 		}
611 		do {
612 			nget = 1;
613 			error = port_getn(pp, (port_event_t *)a1, 1,
614 			    (uint_t *)&nget, &port_timer);
615 		} while (nget == 0 && error == 0 && port_timer.pgt_loop);
616 		break;
617 	}
618 	case	PORT_GETN:
619 	{
620 		/*
621 		 * port_getn() can only retrieve own or shareable events from
622 		 * other processes. The port_getn() function remains in the
623 		 * kernel until own or shareable events are available or the
624 		 * timeout elapses.
625 		 */
626 		port_timer.pgt_flags = 0;
627 		port_timer.pgt_loop = 0;
628 		port_timer.pgt_rqtp = NULL;
629 		port_timer.pgt_timeout = (struct timespec *)a4;
630 		do {
631 			nget = a3;
632 			error = port_getn(pp, (port_event_t *)a1, (uint_t)a2,
633 			    (uint_t *)&nget, &port_timer);
634 		} while (nget == 0 && error == 0 && port_timer.pgt_loop);
635 		r.r_val1 = nget;
636 		r.r_val2 = error;
637 		releasef((int)a0);
638 		if (error && error != ETIME)
639 			return ((int64_t)set_errno(error));
640 		return (r.r_vals);
641 	}
642 	case	PORT_ASSOCIATE:
643 	{
644 		switch ((int)a1) {
645 		case PORT_SOURCE_FD:
646 			error = port_associate_fd(pp, (int)a1, (uintptr_t)a2,
647 			    (int)a3, (void *)a4);
648 			break;
649 		case PORT_SOURCE_FILE:
650 			error = port_associate_fop(pp, (int)a1, (uintptr_t)a2,
651 			    (int)a3, (void *)a4);
652 			break;
653 		default:
654 			error = EINVAL;
655 			break;
656 		}
657 		break;
658 	}
659 	case	PORT_SEND:
660 	{
661 		/* user-defined events */
662 		error = port_send(pp, PORT_SOURCE_USER, (int)a1, (void *)a2);
663 		break;
664 	}
665 	case	PORT_DISPATCH:
666 	{
667 		/*
668 		 * library events, blocking
669 		 * Only events of type PORT_SOURCE_AIO or PORT_SOURCE_MQ
670 		 * are currently allowed.
671 		 */
672 		if ((int)a1 != PORT_SOURCE_AIO && (int)a1 != PORT_SOURCE_MQ) {
673 			error = EINVAL;
674 			break;
675 		}
676 		error = port_dispatch_event(pp, (int)opcode, (int)a1, (int)a2,
677 		    (uintptr_t)a3, (void *)a4);
678 		break;
679 	}
680 	case	PORT_DISSOCIATE:
681 	{
682 		switch ((int)a1) {
683 		case PORT_SOURCE_FD:
684 			error = port_dissociate_fd(pp, (uintptr_t)a2);
685 			break;
686 		case PORT_SOURCE_FILE:
687 			error = port_dissociate_fop(pp, (uintptr_t)a2);
688 			break;
689 		default:
690 			error = EINVAL;
691 			break;
692 		}
693 		break;
694 	}
695 	case	PORT_ALERT:
696 	{
697 		if ((int)a2)	/* a2 = events */
698 			error = port_alert(pp, (int)a1, (int)a2, (void *)a3);
699 		else
700 			port_remove_alert(&pp->port_queue);
701 		break;
702 	}
703 	default:
704 		error = EINVAL;
705 		break;
706 	}
707 
708 	releasef((int)a0);
709 	if (error)
710 		return ((int64_t)set_errno(error));
711 	return (r.r_vals);
712 }
713 
714 /*
715  * System call to create a port.
716  *
717  * The port_create() function creates a vnode of type VPORT per port.
718  * The port control data is associated with the vnode as vnode private data.
719  * The port_create() function returns an event port file descriptor.
720  */
721 static int
722 port_create(int *fdp)
723 {
724 	port_t		*pp;
725 	vnode_t		*vp;
726 	struct file	*fp;
727 	proc_t		*p = curproc;
728 
729 	/* initialize vnode and port private data */
730 	pp = kmem_zalloc(sizeof (port_t), KM_SLEEP);
731 
732 	pp->port_vnode = vn_alloc(KM_SLEEP);
733 	vp = EPTOV(pp);
734 	vn_setops(vp, port_vnodeops);
735 	vp->v_type = VPORT;
736 	vp->v_vfsp = &port_vfs;
737 	vp->v_data = (caddr_t)pp;
738 
739 	mutex_enter(&port_control.pc_mutex);
740 	/*
741 	 * Retrieve the maximal number of event ports allowed per system from
742 	 * the resource control: project.port-max-ids.
743 	 */
744 	mutex_enter(&p->p_lock);
745 	if (rctl_test(rc_project_portids, p->p_task->tk_proj->kpj_rctls, p,
746 	    port_control.pc_nents + 1, RCA_SAFE) & RCT_DENY) {
747 		mutex_exit(&p->p_lock);
748 		vn_free(vp);
749 		kmem_free(pp, sizeof (port_t));
750 		mutex_exit(&port_control.pc_mutex);
751 		return (EAGAIN);
752 	}
753 
754 	/*
755 	 * Retrieve the maximal number of events allowed per port from
756 	 * the resource control: process.port-max-events.
757 	 */
758 	pp->port_max_events = rctl_enforced_value(rc_process_portev,
759 	    p->p_rctls, p);
760 	mutex_exit(&p->p_lock);
761 
762 	/* allocate a new user file descriptor and a file structure */
763 	if (falloc(vp, 0, &fp, fdp)) {
764 		/*
765 		 * If the file table is full, free allocated resources.
766 		 */
767 		vn_free(vp);
768 		kmem_free(pp, sizeof (port_t));
769 		mutex_exit(&port_control.pc_mutex);
770 		return (EMFILE);
771 	}
772 
773 	mutex_exit(&fp->f_tlock);
774 
775 	pp->port_fd = *fdp;
776 	port_control.pc_nents++;
777 	p->p_portcnt++;
778 	port_kstat.pks_ports.value.ui32++;
779 	mutex_exit(&port_control.pc_mutex);
780 
781 	/* initializes port private data */
782 	port_init(pp);
783 	/* set user file pointer */
784 	setf(*fdp, fp);
785 	return (0);
786 }
787 
788 /*
789  * port_init() initializes event port specific data
790  */
791 static void
792 port_init(port_t *pp)
793 {
794 	port_queue_t	*portq;
795 	port_ksource_t	*pks;
796 
797 	mutex_init(&pp->port_mutex, NULL, MUTEX_DEFAULT, NULL);
798 	portq = &pp->port_queue;
799 	mutex_init(&portq->portq_mutex, NULL, MUTEX_DEFAULT, NULL);
800 	pp->port_flags |= PORT_INIT;
801 
802 	/*
803 	 * If it is not enough memory available to satisfy a user
804 	 * request using a single port_getn() call then port_getn()
805 	 * will reduce the size of the list to PORT_MAX_LIST.
806 	 */
807 	pp->port_max_list = port_max_list;
808 
809 	/* Set timestamp entries required for fstat(2) requests */
810 	gethrestime(&pp->port_ctime);
811 	pp->port_uid = crgetuid(curproc->p_cred);
812 	pp->port_gid = crgetgid(curproc->p_cred);
813 
814 	/* initialize port queue structs */
815 	list_create(&portq->portq_list, sizeof (port_kevent_t),
816 	    offsetof(port_kevent_t, portkev_node));
817 	list_create(&portq->portq_get_list, sizeof (port_kevent_t),
818 	    offsetof(port_kevent_t, portkev_node));
819 	portq->portq_flags = 0;
820 	pp->port_pid = curproc->p_pid;
821 
822 	/* Allocate cache skeleton for PORT_SOURCE_FD events */
823 	portq->portq_pcp = kmem_zalloc(sizeof (port_fdcache_t), KM_SLEEP);
824 	mutex_init(&portq->portq_pcp->pc_lock, NULL, MUTEX_DEFAULT, NULL);
825 
826 	/*
827 	 * Allocate cache skeleton for association of event sources.
828 	 */
829 	mutex_init(&portq->portq_source_mutex, NULL, MUTEX_DEFAULT, NULL);
830 	portq->portq_scache = kmem_zalloc(
831 	    PORT_SCACHE_SIZE * sizeof (port_source_t *), KM_SLEEP);
832 
833 	/*
834 	 * pre-associate some kernel sources with this port.
835 	 * The pre-association is required to create port_source_t
836 	 * structures for object association.
837 	 * Some sources can not get associated with a port before the first
838 	 * object association is requested. Another reason to pre_associate
839 	 * a particular source with a port is because of performance.
840 	 */
841 
842 	for (pks = port_ksource_tab; pks->pks_source != 0; pks++)
843 		port_add_ksource_local(pp, pks);
844 }
845 
846 /*
847  * The port_add_ksource_local() function is being used to associate
848  * event sources with every new port.
849  * The event sources need to be added to port_ksource_tab[].
850  */
851 static void
852 port_add_ksource_local(port_t *pp, port_ksource_t *pks)
853 {
854 	port_source_t	*pse;
855 	port_source_t	**ps;
856 
857 	mutex_enter(&pp->port_queue.portq_source_mutex);
858 	ps = &pp->port_queue.portq_scache[PORT_SHASH(pks->pks_source)];
859 	for (pse = *ps; pse != NULL; pse = pse->portsrc_next) {
860 		if (pse->portsrc_source == pks->pks_source)
861 			break;
862 	}
863 
864 	if (pse == NULL) {
865 		/* associate new source with the port */
866 		pse = kmem_zalloc(sizeof (port_source_t), KM_SLEEP);
867 		pse->portsrc_source = pks->pks_source;
868 		pse->portsrc_close = pks->pks_close;
869 		pse->portsrc_closearg = pks->pks_closearg;
870 		pse->portsrc_cnt = 1;
871 
872 		pks->pks_portsrc = pse;
873 		if (*ps != NULL)
874 			pse->portsrc_next = (*ps)->portsrc_next;
875 		*ps = pse;
876 	}
877 	mutex_exit(&pp->port_queue.portq_source_mutex);
878 }
879 
880 /*
881  * The port_send() function sends an event of type "source" to a
882  * port. This function is non-blocking. An event can be sent to
883  * a port as long as the number of events per port does not achieve the
884  * maximal allowed number of events. The max. number of events per port is
885  * defined by the resource control process.max-port-events.
886  * This function is used by the port library function port_send()
887  * and port_dispatch(). The port_send(3c) function is part of the
888  * event ports API and submits events of type PORT_SOURCE_USER. The
889  * port_dispatch() function is project private and it is used by library
890  * functions to submit events of other types than PORT_SOURCE_USER
891  * (e.g. PORT_SOURCE_AIO).
892  */
893 static int
894 port_send(port_t *pp, int source, int events, void *user)
895 {
896 	port_kevent_t	*pev;
897 	int		error;
898 
899 	error = port_alloc_event_local(pp, source, PORT_ALLOC_DEFAULT, &pev);
900 	if (error)
901 		return (error);
902 
903 	pev->portkev_object = 0;
904 	pev->portkev_events = events;
905 	pev->portkev_user = user;
906 	pev->portkev_callback = NULL;
907 	pev->portkev_arg = NULL;
908 	pev->portkev_flags = 0;
909 
910 	port_send_event(pev);
911 	return (0);
912 }
913 
914 /*
915  * The port_noshare() function returns 0 if the current event was generated
916  * by the same process. Otherwise is returns a value other than 0 and the
917  * event should not be delivered to the current processe.
918  * The port_noshare() function is normally used by the port_dispatch()
919  * function. The port_dispatch() function is project private and can only be
920  * used within the event port project.
921  * Currently the libaio uses the port_dispatch() function to deliver events
922  * of types PORT_SOURCE_AIO.
923  */
924 /* ARGSUSED */
925 static int
926 port_noshare(void *arg, int *events, pid_t pid, int flag, void *evp)
927 {
928 	if (flag == PORT_CALLBACK_DEFAULT && curproc->p_pid != pid)
929 		return (1);
930 	return (0);
931 }
932 
933 /*
934  * The port_dispatch_event() function is project private and it is used by
935  * libraries involved in the project to deliver events to the port.
936  * port_dispatch will sleep and wait for enough resources to satisfy the
937  * request, if necessary.
938  * The library can specify if the delivered event is shareable with other
939  * processes (see PORT_SYS_NOSHARE flag).
940  */
941 static int
942 port_dispatch_event(port_t *pp, int opcode, int source, int events,
943     uintptr_t object, void *user)
944 {
945 	port_kevent_t	*pev;
946 	int		error;
947 
948 	error = port_alloc_event_block(pp, source, PORT_ALLOC_DEFAULT, &pev);
949 	if (error)
950 		return (error);
951 
952 	pev->portkev_object = object;
953 	pev->portkev_events = events;
954 	pev->portkev_user = user;
955 	pev->portkev_arg = NULL;
956 	if (opcode & PORT_SYS_NOSHARE) {
957 		pev->portkev_flags = PORT_KEV_NOSHARE;
958 		pev->portkev_callback = port_noshare;
959 	} else {
960 		pev->portkev_flags = 0;
961 		pev->portkev_callback = NULL;
962 	}
963 
964 	port_send_event(pev);
965 	return (0);
966 }
967 
968 
969 /*
970  * The port_sendn() function is the kernel implementation of the event
971  * port API function port_sendn(3c).
972  * This function is able to send an event to a list of event ports.
973  */
974 static int
975 port_sendn(int ports[], int errors[], uint_t nent, int events, void *user,
976     uint_t *nget)
977 {
978 	port_kevent_t	*pev;
979 	int		errorcnt = 0;
980 	int		error = 0;
981 	int		count;
982 	int		port;
983 	int		*plist;
984 	int		*elist = NULL;
985 	file_t		*fp;
986 	port_t		*pp;
987 
988 	if (nent == 0 || nent > port_max_list)
989 		return (EINVAL);
990 
991 	plist = kmem_alloc(nent * sizeof (int), KM_SLEEP);
992 	if (copyin((void *)ports, plist, nent * sizeof (int))) {
993 		kmem_free(plist, nent * sizeof (int));
994 		return (EFAULT);
995 	}
996 
997 	/*
998 	 * Scan the list for event port file descriptors and send the
999 	 * attached user event data embedded in a event of type
1000 	 * PORT_SOURCE_USER to every event port in the list.
1001 	 * If a list entry is not a valid event port then the corresponding
1002 	 * error code will be stored in the errors[] list with the same
1003 	 * list offset as in the ports[] list.
1004 	 */
1005 
1006 	for (count = 0; count < nent; count++) {
1007 		port = plist[count];
1008 		if ((fp = getf(port)) == NULL) {
1009 			elist = port_errorn(elist, nent, EBADF, count);
1010 			errorcnt++;
1011 			continue;
1012 		}
1013 
1014 		pp = VTOEP(fp->f_vnode);
1015 		if (fp->f_vnode->v_type != VPORT) {
1016 			releasef(port);
1017 			elist = port_errorn(elist, nent, EBADFD, count);
1018 			errorcnt++;
1019 			continue;
1020 		}
1021 
1022 		error = port_alloc_event_local(pp, PORT_SOURCE_USER,
1023 		    PORT_ALLOC_DEFAULT, &pev);
1024 		if (error) {
1025 			releasef(port);
1026 			elist = port_errorn(elist, nent, error, count);
1027 			errorcnt++;
1028 			continue;
1029 		}
1030 
1031 		pev->portkev_object = 0;
1032 		pev->portkev_events = events;
1033 		pev->portkev_user = user;
1034 		pev->portkev_callback = NULL;
1035 		pev->portkev_arg = NULL;
1036 		pev->portkev_flags = 0;
1037 
1038 		port_send_event(pev);
1039 		releasef(port);
1040 	}
1041 	if (errorcnt) {
1042 		error = EIO;
1043 		if (copyout(elist, (void *)errors, nent * sizeof (int)))
1044 			error = EFAULT;
1045 		kmem_free(elist, nent * sizeof (int));
1046 	}
1047 	*nget = nent - errorcnt;
1048 	kmem_free(plist, nent * sizeof (int));
1049 	return (error);
1050 }
1051 
1052 static int *
1053 port_errorn(int *elist, int nent, int error, int index)
1054 {
1055 	if (elist == NULL)
1056 		elist = kmem_zalloc(nent * sizeof (int), KM_SLEEP);
1057 	elist[index] = error;
1058 	return (elist);
1059 }
1060 
1061 /*
1062  * port_alert()
1063  * The port_alert() funcion is a high priority event and it is always set
1064  * on top of the queue. It is also delivered as single event.
1065  * flags:
1066  *	- SET	:overwrite current alert data
1067  *	- UPDATE:set alert data or return EBUSY if alert mode is already set
1068  *
1069  * - set the ALERT flag
1070  * - wakeup all sleeping threads
1071  */
1072 static int
1073 port_alert(port_t *pp, int flags, int events, void *user)
1074 {
1075 	port_queue_t	*portq;
1076 	portget_t	*pgetp;
1077 	port_alert_t	*pa;
1078 
1079 	if ((flags & PORT_ALERT_INVALID) == PORT_ALERT_INVALID)
1080 		return (EINVAL);
1081 
1082 	portq = &pp->port_queue;
1083 	pa = &portq->portq_alert;
1084 	mutex_enter(&portq->portq_mutex);
1085 
1086 	/* check alert conditions */
1087 	if (flags == PORT_ALERT_UPDATE) {
1088 		if (portq->portq_flags & PORTQ_ALERT) {
1089 			mutex_exit(&portq->portq_mutex);
1090 			return (EBUSY);
1091 		}
1092 	}
1093 
1094 	/*
1095 	 * Store alert data in the port to be delivered to threads
1096 	 * which are using port_get(n) to retrieve events.
1097 	 */
1098 
1099 	portq->portq_flags |= PORTQ_ALERT;
1100 	pa->portal_events = events;		/* alert info */
1101 	pa->portal_pid = curproc->p_pid;	/* process owner */
1102 	pa->portal_object = 0;			/* no object */
1103 	pa->portal_user = user;			/* user alert data */
1104 
1105 	/* alert and deliver alert data to waiting threads */
1106 	pgetp = portq->portq_thread;
1107 	if (pgetp == NULL) {
1108 		/* no threads waiting for events */
1109 		mutex_exit(&portq->portq_mutex);
1110 		return (0);
1111 	}
1112 
1113 	/*
1114 	 * Set waiting threads in alert mode (PORTGET_ALERT)..
1115 	 * Every thread waiting for events already allocated a portget_t
1116 	 * structure to sleep on.
1117 	 * The port alert arguments are stored in the portget_t structure.
1118 	 * The PORTGET_ALERT flag is set to indicate the thread to return
1119 	 * immediately with the alert event.
1120 	 */
1121 	do {
1122 		if ((pgetp->portget_state & PORTGET_ALERT) == 0) {
1123 			pa = &pgetp->portget_alert;
1124 			pa->portal_events = events;
1125 			pa->portal_object = 0;
1126 			pa->portal_user = user;
1127 			pgetp->portget_state |= PORTGET_ALERT;
1128 			cv_signal(&pgetp->portget_cv);
1129 		}
1130 	} while ((pgetp = pgetp->portget_next) != portq->portq_thread);
1131 	mutex_exit(&portq->portq_mutex);
1132 	return (0);
1133 }
1134 
1135 /*
1136  * Clear alert state of the port
1137  */
1138 static void
1139 port_remove_alert(port_queue_t *portq)
1140 {
1141 	mutex_enter(&portq->portq_mutex);
1142 	portq->portq_flags &= ~PORTQ_ALERT;
1143 	mutex_exit(&portq->portq_mutex);
1144 }
1145 
1146 /*
1147  * The port_getn() function is used to retrieve events from a port.
1148  *
1149  * The port_getn() function returns immediately if there are enough events
1150  * available in the port to satisfy the request or if the port is in alert
1151  * mode (see port_alert(3c)).
1152  * The timeout argument of port_getn(3c) -which is embedded in the
1153  * port_gettimer_t structure- specifies if the system call should block or if it
1154  * should return immediately depending on the number of events available.
1155  * This function is internally used by port_getn(3c) as well as by
1156  * port_get(3c).
1157  */
1158 static int
1159 port_getn(port_t *pp, port_event_t *uevp, uint_t max, uint_t *nget,
1160     port_gettimer_t *pgt)
1161 {
1162 	port_queue_t	*portq;
1163 	port_kevent_t 	*pev;
1164 	port_kevent_t 	*lev;
1165 	int		error = 0;
1166 	uint_t		nmax;
1167 	uint_t		nevents;
1168 	uint_t		eventsz;
1169 	port_event_t	*kevp;
1170 	list_t		*glist;
1171 	uint_t		tnent;
1172 	int		rval;
1173 	int		blocking = -1;
1174 	int		timecheck;
1175 	int		flag;
1176 	timespec_t	rqtime;
1177 	timespec_t	*rqtp = NULL;
1178 	portget_t	*pgetp;
1179 	void		*results;
1180 	model_t		model = get_udatamodel();
1181 
1182 	flag = pgt->pgt_flags;
1183 
1184 	if (*nget > max && max > 0)
1185 		return (EINVAL);
1186 
1187 	portq = &pp->port_queue;
1188 	mutex_enter(&portq->portq_mutex);
1189 	if (max == 0) {
1190 		/*
1191 		 * Return number of objects with events.
1192 		 * The port_block() call is required to synchronize this
1193 		 * thread with another possible thread, which could be
1194 		 * retrieving events from the port queue.
1195 		 */
1196 		port_block(portq);
1197 		/*
1198 		 * Check if a second thread is currently retrieving events
1199 		 * and it is using the temporary event queue.
1200 		 */
1201 		if (portq->portq_tnent) {
1202 			/* put remaining events back to the port queue */
1203 			port_push_eventq(portq);
1204 		}
1205 		*nget = portq->portq_nent;
1206 		port_unblock(portq);
1207 		mutex_exit(&portq->portq_mutex);
1208 		return (0);
1209 	}
1210 
1211 	if (uevp == NULL) {
1212 		mutex_exit(&portq->portq_mutex);
1213 		return (EFAULT);
1214 	}
1215 	if (*nget == 0) {		/* no events required */
1216 		mutex_exit(&portq->portq_mutex);
1217 		return (0);
1218 	}
1219 
1220 	/* port is being closed ... */
1221 	if (portq->portq_flags & PORTQ_CLOSE) {
1222 		mutex_exit(&portq->portq_mutex);
1223 		return (EBADFD);
1224 	}
1225 
1226 	/* return immediately if port in alert mode */
1227 	if (portq->portq_flags & PORTQ_ALERT) {
1228 		error = port_get_alert(&portq->portq_alert, uevp);
1229 		if (error == 0)
1230 			*nget = 1;
1231 		mutex_exit(&portq->portq_mutex);
1232 		return (error);
1233 	}
1234 
1235 	portq->portq_thrcnt++;
1236 
1237 	/*
1238 	 * Now check if the completed events satisfy the
1239 	 * "wait" requirements of the current thread:
1240 	 */
1241 
1242 	if (pgt->pgt_loop) {
1243 		/*
1244 		 * loop entry of same thread
1245 		 * pgt_loop is set when the current thread returns
1246 		 * prematurely from this function. That could happen
1247 		 * when a port is being shared between processes and
1248 		 * this thread could not find events to return.
1249 		 * It is not allowed to a thread to retrieve non-shareable
1250 		 * events generated in other processes.
1251 		 * PORTQ_WAIT_EVENTS is set when a thread already
1252 		 * checked the current event queue and no new events
1253 		 * are added to the queue.
1254 		 */
1255 		if (((portq->portq_flags & PORTQ_WAIT_EVENTS) == 0) &&
1256 		    (portq->portq_nent >= *nget)) {
1257 			/* some new events arrived ...check them */
1258 			goto portnowait;
1259 		}
1260 		rqtp = pgt->pgt_rqtp;
1261 		timecheck = pgt->pgt_timecheck;
1262 		pgt->pgt_flags |= PORTGET_WAIT_EVENTS;
1263 	} else {
1264 		/* check if enough events are available ... */
1265 		if (portq->portq_nent >= *nget)
1266 			goto portnowait;
1267 		/*
1268 		 * There are not enough events available to satisfy
1269 		 * the request, check timeout value and wait for
1270 		 * incoming events.
1271 		 */
1272 		error = port_get_timeout(pgt->pgt_timeout, &rqtime, &rqtp,
1273 		    &blocking, flag);
1274 		if (error) {
1275 			port_check_return_cond(portq);
1276 			mutex_exit(&portq->portq_mutex);
1277 			return (error);
1278 		}
1279 
1280 		if (blocking == 0) /* don't block, check fired events */
1281 			goto portnowait;
1282 
1283 		if (rqtp != NULL) {
1284 			timespec_t	now;
1285 			timecheck = timechanged;
1286 			gethrestime(&now);
1287 			timespecadd(rqtp, &now);
1288 		}
1289 	}
1290 
1291 	/* enqueue thread in the list of waiting threads */
1292 	pgetp = port_queue_thread(portq, *nget);
1293 
1294 
1295 	/* Wait here until return conditions met */
1296 	for (;;) {
1297 		if (pgetp->portget_state & PORTGET_ALERT) {
1298 			/* reap alert event and return */
1299 			error = port_get_alert(&pgetp->portget_alert, uevp);
1300 			if (error)
1301 				*nget = 0;
1302 			else
1303 				*nget = 1;
1304 			port_dequeue_thread(&pp->port_queue, pgetp);
1305 			portq->portq_thrcnt--;
1306 			mutex_exit(&portq->portq_mutex);
1307 			return (error);
1308 		}
1309 
1310 		/*
1311 		 * Check if some other thread is already retrieving
1312 		 * events (portq_getn > 0).
1313 		 */
1314 
1315 		if ((portq->portq_getn  == 0) &&
1316 		    ((portq)->portq_nent >= *nget) &&
1317 		    (!((pgt)->pgt_flags & PORTGET_WAIT_EVENTS) ||
1318 		    !((portq)->portq_flags & PORTQ_WAIT_EVENTS)))
1319 			break;
1320 
1321 		if (portq->portq_flags & PORTQ_CLOSE) {
1322 			error = EBADFD;
1323 			break;
1324 		}
1325 
1326 		rval = cv_waituntil_sig(&pgetp->portget_cv, &portq->portq_mutex,
1327 		    rqtp, timecheck);
1328 
1329 		if (rval <= 0) {
1330 			error = (rval == 0) ? EINTR : ETIME;
1331 			break;
1332 		}
1333 	}
1334 
1335 	/* take thread out of the wait queue */
1336 	port_dequeue_thread(portq, pgetp);
1337 
1338 	if (error != 0 && (error == EINTR || error == EBADFD ||
1339 	    (error == ETIME && flag))) {
1340 		/* return without events */
1341 		port_check_return_cond(portq);
1342 		mutex_exit(&portq->portq_mutex);
1343 		return (error);
1344 	}
1345 
1346 portnowait:
1347 	/*
1348 	 * Move port event queue to a temporary event queue .
1349 	 * New incoming events will be continue be posted to the event queue
1350 	 * and they will not be considered by the current thread.
1351 	 * The idea is to avoid lock contentions or an often locking/unlocking
1352 	 * of the port queue mutex. The contention and performance degradation
1353 	 * could happen because:
1354 	 * a) incoming events use the port queue mutex to enqueue new events and
1355 	 * b) before the event can be delivered to the application it is
1356 	 *    necessary to notify the event sources about the event delivery.
1357 	 *    Sometimes the event sources can require a long time to return and
1358 	 *    the queue mutex would block incoming events.
1359 	 * During this time incoming events (port_send_event()) do not need
1360 	 * to awake threads waiting for events. Before the current thread
1361 	 * returns it will check the conditions to awake other waiting threads.
1362 	 */
1363 	portq->portq_getn++;	/* number of threads retrieving events */
1364 	port_block(portq);	/* block other threads here */
1365 	nmax = max < portq->portq_nent ? max : portq->portq_nent;
1366 
1367 	if (portq->portq_tnent) {
1368 		/*
1369 		 * Move remaining events from previous thread back to the
1370 		 * port event queue.
1371 		 */
1372 		port_push_eventq(portq);
1373 	}
1374 	/* move port event queue to a temporary queue */
1375 	list_move_tail(&portq->portq_get_list, &portq->portq_list);
1376 	glist = &portq->portq_get_list;	/* use temporary event queue */
1377 	tnent = portq->portq_nent;	/* get current number of events */
1378 	portq->portq_nent = 0;		/* no events in the port event queue */
1379 	portq->portq_flags |= PORTQ_WAIT_EVENTS; /* detect incoming events */
1380 	mutex_exit(&portq->portq_mutex);    /* event queue can be reused now */
1381 
1382 	if (model == DATAMODEL_NATIVE) {
1383 		eventsz = sizeof (port_event_t);
1384 		kevp = kmem_alloc(eventsz * nmax, KM_NOSLEEP);
1385 		if (kevp == NULL) {
1386 			if (nmax > pp->port_max_list)
1387 				nmax = pp->port_max_list;
1388 			kevp = kmem_alloc(eventsz * nmax, KM_SLEEP);
1389 		}
1390 		results = kevp;
1391 		lev = NULL;	/* start with first event in the queue */
1392 		for (nevents = 0; nevents < nmax; ) {
1393 			pev = port_get_kevent(glist, lev);
1394 			if (pev == NULL)	/* no more events available */
1395 				break;
1396 			if (pev->portkev_flags & PORT_KEV_FREE) {
1397 				/* Just discard event */
1398 				list_remove(glist, pev);
1399 				pev->portkev_flags &= ~(PORT_CLEANUP_DONE);
1400 				if (PORT_FREE_EVENT(pev))
1401 					port_free_event_local(pev, 0);
1402 				tnent--;
1403 				continue;
1404 			}
1405 
1406 			/* move event data to copyout list */
1407 			if (port_copy_event(&kevp[nevents], pev, glist)) {
1408 				/*
1409 				 * Event can not be delivered to the
1410 				 * current process.
1411 				 */
1412 				if (lev != NULL)
1413 					list_insert_after(glist, lev, pev);
1414 				else
1415 					list_insert_head(glist, pev);
1416 				lev = pev;  /* last checked event */
1417 			} else {
1418 				nevents++;	/* # of events ready */
1419 			}
1420 		}
1421 #ifdef	_SYSCALL32_IMPL
1422 	} else {
1423 		port_event32_t	*kevp32;
1424 
1425 		eventsz = sizeof (port_event32_t);
1426 		kevp32 = kmem_alloc(eventsz * nmax, KM_NOSLEEP);
1427 		if (kevp32 == NULL) {
1428 			if (nmax > pp->port_max_list)
1429 				nmax = pp->port_max_list;
1430 			kevp32 = kmem_alloc(eventsz * nmax, KM_SLEEP);
1431 		}
1432 		results = kevp32;
1433 		lev = NULL;	/* start with first event in the queue */
1434 		for (nevents = 0; nevents < nmax; ) {
1435 			pev = port_get_kevent(glist, lev);
1436 			if (pev == NULL)	/* no more events available */
1437 				break;
1438 			if (pev->portkev_flags & PORT_KEV_FREE) {
1439 				/* Just discard event */
1440 				list_remove(glist, pev);
1441 				pev->portkev_flags &= ~(PORT_CLEANUP_DONE);
1442 				if (PORT_FREE_EVENT(pev))
1443 					port_free_event_local(pev, 0);
1444 				tnent--;
1445 				continue;
1446 			}
1447 
1448 			/* move event data to copyout list */
1449 			if (port_copy_event32(&kevp32[nevents], pev, glist)) {
1450 				/*
1451 				 * Event can not be delivered to the
1452 				 * current process.
1453 				 */
1454 				if (lev != NULL)
1455 					list_insert_after(glist, lev, pev);
1456 				else
1457 					list_insert_head(glist, pev);
1458 				lev = pev;  /* last checked event */
1459 			} else {
1460 				nevents++;	/* # of events ready */
1461 			}
1462 		}
1463 #endif	/* _SYSCALL32_IMPL */
1464 	}
1465 
1466 	/*
1467 	 *  Remember number of remaining events in the temporary event queue.
1468 	 */
1469 	portq->portq_tnent = tnent - nevents;
1470 
1471 	/*
1472 	 * Work to do before return :
1473 	 * - push list of remaining events back to the top of the standard
1474 	 *   port queue.
1475 	 * - if this is the last thread calling port_get(n) then wakeup the
1476 	 *   thread waiting on close(2).
1477 	 * - check for a deferred cv_signal from port_send_event() and wakeup
1478 	 *   the sleeping thread.
1479 	 */
1480 
1481 	mutex_enter(&portq->portq_mutex);
1482 	port_unblock(portq);
1483 	if (portq->portq_tnent) {
1484 		/*
1485 		 * move remaining events in the temporary event queue back
1486 		 * to the port event queue
1487 		 */
1488 		port_push_eventq(portq);
1489 	}
1490 	portq->portq_getn--;	/* update # of threads retrieving events */
1491 	if (--portq->portq_thrcnt == 0) { /* # of threads waiting ... */
1492 		/* Last thread => check close(2) conditions ... */
1493 		if (portq->portq_flags & PORTQ_CLOSE) {
1494 			cv_signal(&portq->portq_closecv);
1495 			mutex_exit(&portq->portq_mutex);
1496 			kmem_free(results, eventsz * nmax);
1497 			/* do not copyout events */
1498 			*nget = 0;
1499 			return (EBADFD);
1500 		}
1501 	} else if (portq->portq_getn == 0) {
1502 		/*
1503 		 * no other threads retrieving events ...
1504 		 * check wakeup conditions of sleeping threads
1505 		 */
1506 		if ((portq->portq_thread != NULL) &&
1507 		    (portq->portq_nent >= portq->portq_nget))
1508 			cv_signal(&portq->portq_thread->portget_cv);
1509 	}
1510 
1511 	/*
1512 	 * Check PORTQ_POLLIN here because the current thread set temporarily
1513 	 * the number of events in the queue to zero.
1514 	 */
1515 	if (portq->portq_flags & PORTQ_POLLIN) {
1516 		portq->portq_flags &= ~PORTQ_POLLIN;
1517 		mutex_exit(&portq->portq_mutex);
1518 		pollwakeup(&pp->port_pollhd, POLLIN);
1519 	} else {
1520 		mutex_exit(&portq->portq_mutex);
1521 	}
1522 
1523 	/* now copyout list of user event structures to user space */
1524 	if (nevents) {
1525 		if (copyout(results, uevp, nevents * eventsz))
1526 			error = EFAULT;
1527 	}
1528 	kmem_free(results, eventsz * nmax);
1529 
1530 	if (nevents == 0 && error == 0 && pgt->pgt_loop == 0 && blocking != 0) {
1531 		/* no events retrieved: check loop conditions */
1532 		if (blocking == -1) {
1533 			/* no timeout checked */
1534 			error = port_get_timeout(pgt->pgt_timeout,
1535 			    &pgt->pgt_rqtime, &rqtp, &blocking, flag);
1536 			if (error) {
1537 				*nget = nevents;
1538 				return (error);
1539 			}
1540 			if (rqtp != NULL) {
1541 				timespec_t	now;
1542 				pgt->pgt_timecheck = timechanged;
1543 				gethrestime(&now);
1544 				timespecadd(&pgt->pgt_rqtime, &now);
1545 			}
1546 			pgt->pgt_rqtp = rqtp;
1547 		} else {
1548 			/* timeout already checked -> remember values */
1549 			pgt->pgt_rqtp = rqtp;
1550 			if (rqtp != NULL) {
1551 				pgt->pgt_timecheck = timecheck;
1552 				pgt->pgt_rqtime = *rqtp;
1553 			}
1554 		}
1555 		if (blocking)
1556 			/* timeout remaining */
1557 			pgt->pgt_loop = 1;
1558 	}
1559 
1560 	/* set number of user event structures completed */
1561 	*nget = nevents;
1562 	return (error);
1563 }
1564 
1565 /*
1566  * 1. copy kernel event structure to user event structure.
1567  * 2. PORT_KEV_WIRED event structures will be reused by the "source"
1568  * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue)
1569  * 4. Other types of event structures can be delivered back to the port cache
1570  *    (port_free_event_local()).
1571  * 5. The event source callback function is the last opportunity for the
1572  *    event source to update events, to free local resources associated with
1573  *    the event or to deny the delivery of the event.
1574  */
1575 static int
1576 port_copy_event(port_event_t *puevp, port_kevent_t *pkevp, list_t *list)
1577 {
1578 	int	free_event = 0;
1579 	int	flags;
1580 	int	error;
1581 
1582 	puevp->portev_source = pkevp->portkev_source;
1583 	puevp->portev_object = pkevp->portkev_object;
1584 	puevp->portev_user = pkevp->portkev_user;
1585 	puevp->portev_events = pkevp->portkev_events;
1586 
1587 	/* remove event from the queue */
1588 	list_remove(list, pkevp);
1589 
1590 	/*
1591 	 * Events of type PORT_KEV_WIRED remain allocated by the
1592 	 * event source.
1593 	 */
1594 	flags = pkevp->portkev_flags;
1595 	if (pkevp->portkev_flags & PORT_KEV_WIRED)
1596 		pkevp->portkev_flags &= ~PORT_KEV_DONEQ;
1597 	else
1598 		free_event = 1;
1599 
1600 	if (pkevp->portkev_callback) {
1601 		error = (*pkevp->portkev_callback)(pkevp->portkev_arg,
1602 		    &puevp->portev_events, pkevp->portkev_pid,
1603 		    PORT_CALLBACK_DEFAULT, pkevp);
1604 
1605 		if (error) {
1606 			/*
1607 			 * Event can not be delivered.
1608 			 * Caller must reinsert the event into the queue.
1609 			 */
1610 			pkevp->portkev_flags = flags;
1611 			return (error);
1612 		}
1613 	}
1614 	if (free_event)
1615 		port_free_event_local(pkevp, 0);
1616 	return (0);
1617 }
1618 
1619 #ifdef	_SYSCALL32_IMPL
1620 /*
1621  * 1. copy kernel event structure to user event structure.
1622  * 2. PORT_KEV_WIRED event structures will be reused by the "source"
1623  * 3. Remove PORT_KEV_DONEQ flag (event removed from the event queue)
1624  * 4. Other types of event structures can be delivered back to the port cache
1625  *    (port_free_event_local()).
1626  * 5. The event source callback function is the last opportunity for the
1627  *    event source to update events, to free local resources associated with
1628  *    the event or to deny the delivery of the event.
1629  */
1630 static int
1631 port_copy_event32(port_event32_t *puevp, port_kevent_t *pkevp, list_t *list)
1632 {
1633 	int	free_event = 0;
1634 	int	error;
1635 	int	flags;
1636 
1637 	puevp->portev_source = pkevp->portkev_source;
1638 	puevp->portev_object = (daddr32_t)pkevp->portkev_object;
1639 	puevp->portev_user = (caddr32_t)(uintptr_t)pkevp->portkev_user;
1640 	puevp->portev_events = pkevp->portkev_events;
1641 
1642 	/* remove event from the queue */
1643 	list_remove(list, pkevp);
1644 
1645 	/*
1646 	 * Events if type PORT_KEV_WIRED remain allocated by the
1647 	 * sub-system (source).
1648 	 */
1649 
1650 	flags = pkevp->portkev_flags;
1651 	if (pkevp->portkev_flags & PORT_KEV_WIRED)
1652 		pkevp->portkev_flags &= ~PORT_KEV_DONEQ;
1653 	else
1654 		free_event = 1;
1655 
1656 	if (pkevp->portkev_callback != NULL) {
1657 		error = (*pkevp->portkev_callback)(pkevp->portkev_arg,
1658 		    &puevp->portev_events, pkevp->portkev_pid,
1659 		    PORT_CALLBACK_DEFAULT, pkevp);
1660 		if (error) {
1661 			/*
1662 			 * Event can not be delivered.
1663 			 * Caller must reinsert the event into the queue.
1664 			 */
1665 			pkevp->portkev_flags = flags;
1666 			return (error);
1667 		}
1668 	}
1669 	if (free_event)
1670 		port_free_event_local(pkevp, 0);
1671 	return (0);
1672 }
1673 #endif	/* _SYSCALL32_IMPL */
1674 
1675 /*
1676  * copyout alert event.
1677  */
1678 static int
1679 port_get_alert(port_alert_t *pa, port_event_t *uevp)
1680 {
1681 	model_t	model = get_udatamodel();
1682 
1683 	/* copyout alert event structures to user space */
1684 	if (model == DATAMODEL_NATIVE) {
1685 		port_event_t	uev;
1686 		uev.portev_source = PORT_SOURCE_ALERT;
1687 		uev.portev_object = pa->portal_object;
1688 		uev.portev_events = pa->portal_events;
1689 		uev.portev_user = pa->portal_user;
1690 		if (copyout(&uev, uevp, sizeof (port_event_t)))
1691 			return (EFAULT);
1692 #ifdef	_SYSCALL32_IMPL
1693 	} else {
1694 		port_event32_t	uev32;
1695 		uev32.portev_source = PORT_SOURCE_ALERT;
1696 		uev32.portev_object = (daddr32_t)pa->portal_object;
1697 		uev32.portev_events = pa->portal_events;
1698 		uev32.portev_user = (daddr32_t)(uintptr_t)pa->portal_user;
1699 		if (copyout(&uev32, uevp, sizeof (port_event32_t)))
1700 			return (EFAULT);
1701 #endif	/* _SYSCALL32_IMPL */
1702 	}
1703 	return (0);
1704 }
1705 
1706 /*
1707  * Check return conditions :
1708  * - pending port close(2)
1709  * - threads waiting for events
1710  */
1711 static void
1712 port_check_return_cond(port_queue_t *portq)
1713 {
1714 	ASSERT(MUTEX_HELD(&portq->portq_mutex));
1715 	portq->portq_thrcnt--;
1716 	if (portq->portq_flags & PORTQ_CLOSE) {
1717 		if (portq->portq_thrcnt == 0)
1718 			cv_signal(&portq->portq_closecv);
1719 		else
1720 			cv_signal(&portq->portq_thread->portget_cv);
1721 	}
1722 }
1723 
1724 /*
1725  * The port_get_kevent() function returns
1726  * - the event located at the head of the queue if 'last' pointer is NULL
1727  * - the next event after the event pointed by 'last'
1728  * The caller of this function is responsible for the integrity of the queue
1729  * in use:
1730  * - port_getn() is using a temporary queue protected with port_block().
1731  * - port_close_events() is working on the global event queue and protects
1732  *   the queue with portq->portq_mutex.
1733  */
1734 port_kevent_t *
1735 port_get_kevent(list_t *list, port_kevent_t *last)
1736 {
1737 	if (last == NULL)
1738 		return (list_head(list));
1739 	else
1740 		return (list_next(list, last));
1741 }
1742 
1743 /*
1744  * The port_get_timeout() function gets the timeout data from user space
1745  * and converts that info into a corresponding internal representation.
1746  * The kerneldata flag means that the timeout data is already loaded.
1747  */
1748 static int
1749 port_get_timeout(timespec_t *timeout, timespec_t *rqtime, timespec_t **rqtp,
1750     int *blocking, int kerneldata)
1751 {
1752 	model_t	model = get_udatamodel();
1753 
1754 	*rqtp = NULL;
1755 	if (timeout == NULL) {
1756 		*blocking = 1;
1757 		return (0);
1758 	}
1759 
1760 	if (kerneldata) {
1761 		*rqtime = *timeout;
1762 	} else {
1763 		if (model == DATAMODEL_NATIVE) {
1764 			if (copyin(timeout, rqtime, sizeof (*rqtime)))
1765 				return (EFAULT);
1766 #ifdef	_SYSCALL32_IMPL
1767 		} else {
1768 			timespec32_t 	wait_time_32;
1769 			if (copyin(timeout, &wait_time_32,
1770 			    sizeof (wait_time_32)))
1771 				return (EFAULT);
1772 			TIMESPEC32_TO_TIMESPEC(rqtime, &wait_time_32);
1773 #endif  /* _SYSCALL32_IMPL */
1774 		}
1775 	}
1776 
1777 	if (rqtime->tv_sec == 0 && rqtime->tv_nsec == 0) {
1778 		*blocking = 0;
1779 		return (0);
1780 	}
1781 
1782 	if (rqtime->tv_sec < 0 ||
1783 	    rqtime->tv_nsec < 0 || rqtime->tv_nsec >= NANOSEC)
1784 		return (EINVAL);
1785 
1786 	*rqtp = rqtime;
1787 	*blocking = 1;
1788 	return (0);
1789 }
1790 
1791 /*
1792  * port_queue_thread()
1793  * Threads requiring more events than available will be put in a wait queue.
1794  * There is a "thread wait queue" per port.
1795  * Threads requiring less events get a higher priority than others and they
1796  * will be awoken first.
1797  */
1798 static portget_t *
1799 port_queue_thread(port_queue_t *portq, uint_t nget)
1800 {
1801 	portget_t	*pgetp;
1802 	portget_t	*ttp;
1803 	portget_t	*htp;
1804 
1805 	pgetp = kmem_zalloc(sizeof (portget_t), KM_SLEEP);
1806 	pgetp->portget_nget = nget;
1807 	pgetp->portget_pid = curproc->p_pid;
1808 	if (portq->portq_thread == NULL) {
1809 		/* first waiting thread */
1810 		portq->portq_thread = pgetp;
1811 		portq->portq_nget = nget;
1812 		pgetp->portget_prev = pgetp;
1813 		pgetp->portget_next = pgetp;
1814 		return (pgetp);
1815 	}
1816 
1817 	/*
1818 	 * thread waiting for less events will be set on top of the queue.
1819 	 */
1820 	ttp = portq->portq_thread;
1821 	htp = ttp;
1822 	for (;;) {
1823 		if (nget <= ttp->portget_nget)
1824 			break;
1825 		if (htp == ttp->portget_next)
1826 			break;	/* last event */
1827 		ttp = ttp->portget_next;
1828 	}
1829 
1830 	/* add thread to the queue */
1831 	pgetp->portget_next = ttp;
1832 	pgetp->portget_prev = ttp->portget_prev;
1833 	ttp->portget_prev->portget_next = pgetp;
1834 	ttp->portget_prev = pgetp;
1835 	if (portq->portq_thread == ttp)
1836 		portq->portq_thread = pgetp;
1837 	portq->portq_nget = portq->portq_thread->portget_nget;
1838 	return (pgetp);
1839 }
1840 
1841 /*
1842  * Take thread out of the queue.
1843  */
1844 static void
1845 port_dequeue_thread(port_queue_t *portq, portget_t *pgetp)
1846 {
1847 	if (pgetp->portget_next == pgetp) {
1848 		/* last (single) waiting thread */
1849 		portq->portq_thread = NULL;
1850 		portq->portq_nget = 0;
1851 	} else {
1852 		pgetp->portget_prev->portget_next = pgetp->portget_next;
1853 		pgetp->portget_next->portget_prev = pgetp->portget_prev;
1854 		if (portq->portq_thread == pgetp)
1855 			portq->portq_thread = pgetp->portget_next;
1856 		portq->portq_nget = portq->portq_thread->portget_nget;
1857 	}
1858 	kmem_free(pgetp, sizeof (portget_t));
1859 }
1860 
1861 /*
1862  * Set up event port kstats.
1863  */
1864 static void
1865 port_kstat_init()
1866 {
1867 	kstat_t	*ksp;
1868 	uint_t	ndata;
1869 
1870 	ndata = sizeof (port_kstat) / sizeof (kstat_named_t);
1871 	ksp = kstat_create("portfs", 0, "Event Ports", "misc",
1872 	    KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_VIRTUAL);
1873 	if (ksp) {
1874 		ksp->ks_data = &port_kstat;
1875 		kstat_install(ksp);
1876 	}
1877 }
1878