xref: /illumos-gate/usr/src/uts/common/fs/nfs/nfs_vfsops.c (revision 3d393ee6c37fa10ac512ed6d36109ad616dc7c1a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  *	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
26  *	All rights reserved.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include <sys/param.h>
32 #include <sys/types.h>
33 #include <sys/systm.h>
34 #include <sys/cred.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/vnode.h>
38 #include <sys/pathname.h>
39 #include <sys/sysmacros.h>
40 #include <sys/kmem.h>
41 #include <sys/mkdev.h>
42 #include <sys/mount.h>
43 #include <sys/mntent.h>
44 #include <sys/statvfs.h>
45 #include <sys/errno.h>
46 #include <sys/debug.h>
47 #include <sys/cmn_err.h>
48 #include <sys/utsname.h>
49 #include <sys/bootconf.h>
50 #include <sys/modctl.h>
51 #include <sys/acl.h>
52 #include <sys/flock.h>
53 #include <sys/policy.h>
54 #include <sys/zone.h>
55 #include <sys/class.h>
56 #include <sys/socket.h>
57 #include <sys/netconfig.h>
58 #include <sys/mntent.h>
59 #include <sys/tsol/label.h>
60 
61 #include <rpc/types.h>
62 #include <rpc/auth.h>
63 #include <rpc/clnt.h>
64 
65 #include <nfs/nfs.h>
66 #include <nfs/nfs_clnt.h>
67 #include <nfs/rnode.h>
68 #include <nfs/mount.h>
69 #include <nfs/nfs_acl.h>
70 
71 #include <fs/fs_subr.h>
72 
73 /*
74  * From rpcsec module (common/rpcsec).
75  */
76 extern int sec_clnt_loadinfo(struct sec_data *, struct sec_data **, model_t);
77 extern void sec_clnt_freeinfo(struct sec_data *);
78 
79 static int pathconf_copyin(struct nfs_args *, struct pathcnf *);
80 static int pathconf_get(struct mntinfo *, struct nfs_args *);
81 static void pathconf_rele(struct mntinfo *);
82 
83 /*
84  * The order and contents of this structure must be kept in sync with that of
85  * rfsreqcnt_v2_tmpl in nfs_stats.c
86  */
87 static char *rfsnames_v2[] = {
88 	"null", "getattr", "setattr", "unused", "lookup", "readlink", "read",
89 	"unused", "write", "create", "remove", "rename", "link", "symlink",
90 	"mkdir", "rmdir", "readdir", "fsstat"
91 };
92 
93 /*
94  * This table maps from NFS protocol number into call type.
95  * Zero means a "Lookup" type call
96  * One  means a "Read" type call
97  * Two  means a "Write" type call
98  * This is used to select a default time-out.
99  */
100 static uchar_t call_type_v2[] = {
101 	0, 0, 1, 0, 0, 0, 1,
102 	0, 2, 2, 2, 2, 2, 2,
103 	2, 2, 1, 0
104 };
105 
106 /*
107  * Similar table, but to determine which timer to use
108  * (only real reads and writes!)
109  */
110 static uchar_t timer_type_v2[] = {
111 	0, 0, 0, 0, 0, 0, 1,
112 	0, 2, 0, 0, 0, 0, 0,
113 	0, 0, 1, 0
114 };
115 
116 /*
117  * This table maps from NFS protocol number into a call type
118  * for the semisoft mount option.
119  * Zero means do not repeat operation.
120  * One  means repeat.
121  */
122 static uchar_t ss_call_type_v2[] = {
123 	0, 0, 1, 0, 0, 0, 0,
124 	0, 1, 1, 1, 1, 1, 1,
125 	1, 1, 0, 0
126 };
127 
128 /*
129  * nfs vfs operations.
130  */
131 static int	nfs_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *);
132 static int	nfs_unmount(vfs_t *, int, cred_t *);
133 static int	nfs_root(vfs_t *, vnode_t **);
134 static int	nfs_statvfs(vfs_t *, struct statvfs64 *);
135 static int	nfs_sync(vfs_t *, short, cred_t *);
136 static int	nfs_vget(vfs_t *, vnode_t **, fid_t *);
137 static int	nfs_mountroot(vfs_t *, whymountroot_t);
138 static void	nfs_freevfs(vfs_t *);
139 
140 static int	nfsrootvp(vnode_t **, vfs_t *, struct servinfo *,
141 		    int, cred_t *, zone_t *);
142 
143 /*
144  * Initialize the vfs structure
145  */
146 
147 int nfsfstyp;
148 vfsops_t *nfs_vfsops;
149 
150 /*
151  * Debug variable to check for rdma based
152  * transport startup and cleanup. Controlled
153  * through /etc/system. Off by default.
154  */
155 int rdma_debug = 0;
156 
157 int
158 nfsinit(int fstyp, char *name)
159 {
160 	static const fs_operation_def_t nfs_vfsops_template[] = {
161 		VFSNAME_MOUNT,		{ .vfs_mount = nfs_mount },
162 		VFSNAME_UNMOUNT,	{ .vfs_unmount = nfs_unmount },
163 		VFSNAME_ROOT,		{ .vfs_root = nfs_root },
164 		VFSNAME_STATVFS,	{ .vfs_statvfs = nfs_statvfs },
165 		VFSNAME_SYNC,		{ .vfs_sync = nfs_sync },
166 		VFSNAME_VGET,		{ .vfs_vget = nfs_vget },
167 		VFSNAME_MOUNTROOT,	{ .vfs_mountroot = nfs_mountroot },
168 		VFSNAME_FREEVFS,	{ .vfs_freevfs = nfs_freevfs },
169 		NULL,			NULL
170 	};
171 	int error;
172 
173 	error = vfs_setfsops(fstyp, nfs_vfsops_template, &nfs_vfsops);
174 	if (error != 0) {
175 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
176 		    "nfsinit: bad vfs ops template");
177 		return (error);
178 	}
179 
180 	error = vn_make_ops(name, nfs_vnodeops_template, &nfs_vnodeops);
181 	if (error != 0) {
182 		(void) vfs_freevfsops_by_type(fstyp);
183 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
184 		    "nfsinit: bad vnode ops template");
185 		return (error);
186 	}
187 
188 
189 	nfsfstyp = fstyp;
190 
191 	return (0);
192 }
193 
194 void
195 nfsfini(void)
196 {
197 }
198 
199 static void
200 nfs_free_args(struct nfs_args *nargs, nfs_fhandle *fh)
201 {
202 
203 	if (fh)
204 		kmem_free(fh, sizeof (*fh));
205 
206 	if (nargs->pathconf) {
207 		kmem_free(nargs->pathconf, sizeof (struct pathcnf));
208 		nargs->pathconf = NULL;
209 	}
210 
211 	if (nargs->knconf) {
212 		if (nargs->knconf->knc_protofmly)
213 			kmem_free(nargs->knconf->knc_protofmly,
214 				KNC_STRSIZE);
215 		if (nargs->knconf->knc_proto)
216 			kmem_free(nargs->knconf->knc_proto, KNC_STRSIZE);
217 		kmem_free(nargs->knconf, sizeof (*nargs->knconf));
218 		nargs->knconf = NULL;
219 	}
220 
221 	if (nargs->fh) {
222 		kmem_free(nargs->fh, strlen(nargs->fh) + 1);
223 		nargs->fh = NULL;
224 	}
225 
226 	if (nargs->hostname) {
227 		kmem_free(nargs->hostname, strlen(nargs->hostname) + 1);
228 		nargs->hostname = NULL;
229 	}
230 
231 	if (nargs->addr) {
232 		if (nargs->addr->buf) {
233 			ASSERT(nargs->addr->len);
234 			kmem_free(nargs->addr->buf, nargs->addr->len);
235 		}
236 		kmem_free(nargs->addr, sizeof (struct netbuf));
237 		nargs->addr = NULL;
238 	}
239 
240 	if (nargs->syncaddr) {
241 		ASSERT(nargs->syncaddr->len);
242 		if (nargs->syncaddr->buf) {
243 			ASSERT(nargs->syncaddr->len);
244 			kmem_free(nargs->syncaddr->buf, nargs->syncaddr->len);
245 		}
246 		kmem_free(nargs->syncaddr, sizeof (struct netbuf));
247 		nargs->syncaddr = NULL;
248 	}
249 
250 	if (nargs->netname) {
251 		kmem_free(nargs->netname, strlen(nargs->netname) + 1);
252 		nargs->netname = NULL;
253 	}
254 
255 	if (nargs->nfs_ext_u.nfs_extA.secdata) {
256 		sec_clnt_freeinfo(
257 			nargs->nfs_ext_u.nfs_extA.secdata);
258 		nargs->nfs_ext_u.nfs_extA.secdata = NULL;
259 	}
260 }
261 
262 static int
263 nfs_copyin(char *data, int datalen, struct nfs_args *nargs, nfs_fhandle *fh)
264 {
265 
266 	int error;
267 	size_t nlen;			/* length of netname */
268 	size_t hlen;			/* length of hostname */
269 	char netname[MAXNETNAMELEN+1];	/* server's netname */
270 	struct netbuf addr;		/* server's address */
271 	struct netbuf syncaddr;		/* AUTH_DES time sync addr */
272 	struct knetconfig *knconf;	/* transport knetconfig structure */
273 	struct sec_data *secdata = NULL;	/* security data */
274 	STRUCT_DECL(nfs_args, args);		/* nfs mount arguments */
275 	STRUCT_DECL(knetconfig, knconf_tmp);
276 	STRUCT_DECL(netbuf, addr_tmp);
277 	int flags;
278 	struct pathcnf	*pc;		/* Pathconf */
279 	char *p, *pf;
280 	char *userbufptr;
281 
282 
283 	bzero(nargs, sizeof (*nargs));
284 
285 	STRUCT_INIT(args, get_udatamodel());
286 	bzero(STRUCT_BUF(args), SIZEOF_STRUCT(nfs_args, DATAMODEL_NATIVE));
287 	if (copyin(data, STRUCT_BUF(args), MIN(datalen,
288 		STRUCT_SIZE(args))))
289 		return (EFAULT);
290 
291 	nargs->wsize = STRUCT_FGET(args, wsize);
292 	nargs->rsize = STRUCT_FGET(args, rsize);
293 	nargs->timeo = STRUCT_FGET(args, timeo);
294 	nargs->retrans = STRUCT_FGET(args, retrans);
295 	nargs->acregmin = STRUCT_FGET(args, acregmin);
296 	nargs->acregmax = STRUCT_FGET(args, acregmax);
297 	nargs->acdirmin = STRUCT_FGET(args, acdirmin);
298 	nargs->acdirmax = STRUCT_FGET(args, acdirmax);
299 
300 	flags = STRUCT_FGET(args, flags);
301 	nargs->flags = flags;
302 
303 
304 	addr.buf = NULL;
305 	syncaddr.buf = NULL;
306 
307 	/*
308 	 * Allocate space for a knetconfig structure and
309 	 * its strings and copy in from user-land.
310 	 */
311 	knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP);
312 	STRUCT_INIT(knconf_tmp, get_udatamodel());
313 	if (copyin(STRUCT_FGETP(args, knconf), STRUCT_BUF(knconf_tmp),
314 		STRUCT_SIZE(knconf_tmp))) {
315 		kmem_free(knconf, sizeof (*knconf));
316 		return (EFAULT);
317 	}
318 
319 	knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics);
320 	knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly);
321 	knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto);
322 	if (get_udatamodel() != DATAMODEL_LP64) {
323 		knconf->knc_rdev = expldev(STRUCT_FGET(knconf_tmp, knc_rdev));
324 	} else {
325 		knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev);
326 	}
327 
328 	pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
329 	p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
330 	error = copyinstr(knconf->knc_protofmly, pf, KNC_STRSIZE, NULL);
331 	if (error) {
332 		kmem_free(pf, KNC_STRSIZE);
333 		kmem_free(p, KNC_STRSIZE);
334 		kmem_free(knconf, sizeof (*knconf));
335 		return (error);
336 	}
337 
338 	error = copyinstr(knconf->knc_proto, p, KNC_STRSIZE, NULL);
339 	if (error) {
340 		kmem_free(pf, KNC_STRSIZE);
341 		kmem_free(p, KNC_STRSIZE);
342 		kmem_free(knconf, sizeof (*knconf));
343 		return (error);
344 	}
345 
346 
347 	knconf->knc_protofmly = pf;
348 	knconf->knc_proto = p;
349 
350 	nargs->knconf = knconf;
351 
352 	/* Copyin pathconf if there is one */
353 	if (STRUCT_FGETP(args, pathconf) != NULL) {
354 		pc = kmem_alloc(sizeof (*pc), KM_SLEEP);
355 		error = pathconf_copyin(STRUCT_BUF(args), pc);
356 		nargs->pathconf = pc;
357 		if (error)
358 			goto errout;
359 	}
360 
361 	/*
362 	 * Get server address
363 	 */
364 	STRUCT_INIT(addr_tmp, get_udatamodel());
365 	if (copyin(STRUCT_FGETP(args, addr), STRUCT_BUF(addr_tmp),
366 		STRUCT_SIZE(addr_tmp))) {
367 		error = EFAULT;
368 		goto errout;
369 	}
370 	nargs->addr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP);
371 	userbufptr = STRUCT_FGETP(addr_tmp, buf);
372 	addr.len = STRUCT_FGET(addr_tmp, len);
373 	addr.buf = kmem_alloc(addr.len, KM_SLEEP);
374 	addr.maxlen = addr.len;
375 	if (copyin(userbufptr, addr.buf, addr.len)) {
376 		kmem_free(addr.buf, addr.len);
377 		error = EFAULT;
378 		goto errout;
379 	}
380 	bcopy(&addr, nargs->addr, sizeof (struct netbuf));
381 
382 	/*
383 	 * Get the root fhandle
384 	 */
385 
386 	if (copyin(STRUCT_FGETP(args, fh), &fh->fh_buf, NFS_FHSIZE)) {
387 		error = EFAULT;
388 		goto errout;
389 	}
390 	fh->fh_len = NFS_FHSIZE;
391 
392 	/*
393 	 * Get server's hostname
394 	 */
395 	if (flags & NFSMNT_HOSTNAME) {
396 		error = copyinstr(STRUCT_FGETP(args, hostname),
397 			netname, sizeof (netname), &hlen);
398 		if (error)
399 			goto errout;
400 		nargs->hostname = kmem_zalloc(hlen, KM_SLEEP);
401 		(void) strcpy(nargs->hostname, netname);
402 
403 	} else {
404 		nargs->hostname = NULL;
405 	}
406 
407 
408 	/*
409 	 * If there are syncaddr and netname data, load them in. This is
410 	 * to support data needed for NFSV4 when AUTH_DH is the negotiated
411 	 * flavor via SECINFO. (instead of using MOUNT protocol in V3).
412 	 */
413 	netname[0] = '\0';
414 	if (flags & NFSMNT_SECURE) {
415 		if (STRUCT_FGETP(args, syncaddr) == NULL) {
416 			error = EINVAL;
417 			goto errout;
418 		}
419 		/* get syncaddr */
420 		STRUCT_INIT(addr_tmp, get_udatamodel());
421 		if (copyin(STRUCT_FGETP(args, syncaddr), STRUCT_BUF(addr_tmp),
422 			STRUCT_SIZE(addr_tmp))) {
423 			error = EINVAL;
424 			goto errout;
425 		}
426 		userbufptr = STRUCT_FGETP(addr_tmp, buf);
427 		syncaddr.len = STRUCT_FGET(addr_tmp, len);
428 		syncaddr.buf = kmem_alloc(syncaddr.len, KM_SLEEP);
429 		syncaddr.maxlen = syncaddr.len;
430 		if (copyin(userbufptr, syncaddr.buf, syncaddr.len)) {
431 			kmem_free(syncaddr.buf, syncaddr.len);
432 			error = EFAULT;
433 			goto errout;
434 		}
435 
436 		nargs->syncaddr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP);
437 		bcopy(&syncaddr, nargs->syncaddr, sizeof (struct netbuf));
438 
439 		ASSERT(STRUCT_FGETP(args, netname));
440 		if (copyinstr(STRUCT_FGETP(args, netname), netname,
441 			sizeof (netname), &nlen)) {
442 			error = EFAULT;
443 			goto errout;
444 		}
445 
446 		netname[nlen] = '\0';
447 		nargs->netname = kmem_zalloc(nlen, KM_SLEEP);
448 		(void) strcpy(nargs->netname, netname);
449 	}
450 
451 	/*
452 	 * Get the extention data which has the security data structure.
453 	 * This includes data for AUTH_SYS as well.
454 	 */
455 	if (flags & NFSMNT_NEWARGS) {
456 		nargs->nfs_args_ext = STRUCT_FGET(args, nfs_args_ext);
457 		if (nargs->nfs_args_ext == NFS_ARGS_EXTA ||
458 			nargs->nfs_args_ext == NFS_ARGS_EXTB) {
459 			/*
460 			 * Indicating the application is using the new
461 			 * sec_data structure to pass in the security
462 			 * data.
463 			 */
464 			if (STRUCT_FGETP(args,
465 				nfs_ext_u.nfs_extA.secdata) != NULL) {
466 				error = sec_clnt_loadinfo(
467 					(struct sec_data *)STRUCT_FGETP(args,
468 						nfs_ext_u.nfs_extA.secdata),
469 						&secdata, get_udatamodel());
470 			}
471 			nargs->nfs_ext_u.nfs_extA.secdata = secdata;
472 		}
473 	}
474 
475 	if (error)
476 		goto errout;
477 
478 	/*
479 	 * Failover support:
480 	 *
481 	 * We may have a linked list of nfs_args structures,
482 	 * which means the user is looking for failover.  If
483 	 * the mount is either not "read-only" or "soft",
484 	 * we want to bail out with EINVAL.
485 	 */
486 	if (nargs->nfs_args_ext == NFS_ARGS_EXTB)
487 		nargs->nfs_ext_u.nfs_extB.next =
488 			STRUCT_FGETP(args, nfs_ext_u.nfs_extB.next);
489 
490 errout:
491 	if (error)
492 		nfs_free_args(nargs, fh);
493 
494 	return (error);
495 }
496 
497 
498 /*
499  * nfs mount vfsop
500  * Set up mount info record and attach it to vfs struct.
501  */
502 static int
503 nfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
504 {
505 	char *data = uap->dataptr;
506 	int error;
507 	vnode_t *rtvp;			/* the server's root */
508 	mntinfo_t *mi;			/* mount info, pointed at by vfs */
509 	size_t nlen;			/* length of netname */
510 	struct knetconfig *knconf;	/* transport knetconfig structure */
511 	struct knetconfig *rdma_knconf;	/* rdma transport structure */
512 	rnode_t *rp;
513 	struct servinfo *svp;		/* nfs server info */
514 	struct servinfo *svp_tail = NULL; /* previous nfs server info */
515 	struct servinfo *svp_head;	/* first nfs server info */
516 	struct servinfo *svp_2ndlast;	/* 2nd last in the server info list */
517 	struct sec_data *secdata;	/* security data */
518 	struct nfs_args	*args = NULL;
519 	int flags, addr_type;
520 	zone_t *zone = nfs_zone();
521 	zone_t *mntzone = NULL;
522 	nfs_fhandle	*fhandle = NULL;
523 
524 	if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
525 		return (error);
526 
527 	if (mvp->v_type != VDIR)
528 		return (ENOTDIR);
529 
530 	/*
531 	 * get arguments
532 	 *
533 	 * nfs_args is now versioned and is extensible, so
534 	 * uap->datalen might be different from sizeof (args)
535 	 * in a compatible situation.
536 	 */
537 more:
538 
539 	if (!(uap->flags & MS_SYSSPACE)) {
540 		if (args == NULL)
541 			args = kmem_alloc(sizeof (struct nfs_args), KM_SLEEP);
542 		else {
543 			nfs_free_args(args, fhandle);
544 			fhandle = NULL;
545 		}
546 		if (fhandle == NULL)
547 			fhandle = kmem_zalloc(sizeof (nfs_fhandle), KM_SLEEP);
548 		error = nfs_copyin(data, uap->datalen, args, fhandle);
549 		if (error)  {
550 			if (args)
551 				kmem_free(args, sizeof (*args));
552 			return (error);
553 		}
554 	} else {
555 		args = (struct nfs_args *)data;
556 		fhandle = (nfs_fhandle *)args->fh;
557 	}
558 
559 
560 	flags = args->flags;
561 
562 	if (uap->flags & MS_REMOUNT) {
563 		size_t n;
564 		char name[FSTYPSZ];
565 
566 		if (uap->flags & MS_SYSSPACE)
567 			error = copystr(uap->fstype, name, FSTYPSZ, &n);
568 		else
569 			error = copyinstr(uap->fstype, name, FSTYPSZ, &n);
570 
571 		if (error) {
572 			if (error == ENAMETOOLONG)
573 				return (EINVAL);
574 			return (error);
575 		}
576 
577 
578 		/*
579 		 * This check is to ensure that the request is a
580 		 * genuine nfs remount request.
581 		 */
582 
583 		if (strncmp(name, "nfs", 3) != 0)
584 			return (EINVAL);
585 
586 		/*
587 		 * If the request changes the locking type, disallow the
588 		 * remount,
589 		 * because it's questionable whether we can transfer the
590 		 * locking state correctly.
591 		 *
592 		 * Remounts need to save the pathconf information.
593 		 * Part of the infamous static kludge.
594 		 */
595 
596 		if ((mi = VFTOMI(vfsp)) != NULL) {
597 			uint_t new_mi_llock;
598 			uint_t old_mi_llock;
599 
600 			new_mi_llock = (flags & NFSMNT_LLOCK) ? 1 : 0;
601 			old_mi_llock = (mi->mi_flags & MI_LLOCK) ? 1 : 0;
602 			if (old_mi_llock != new_mi_llock)
603 				return (EBUSY);
604 		}
605 		error = pathconf_get((struct mntinfo *)vfsp->vfs_data, args);
606 
607 		if (!(uap->flags & MS_SYSSPACE)) {
608 			nfs_free_args(args, fhandle);
609 			kmem_free(args, sizeof (*args));
610 		}
611 
612 		return (error);
613 	}
614 
615 	mutex_enter(&mvp->v_lock);
616 	if (!(uap->flags & MS_OVERLAY) &&
617 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
618 		mutex_exit(&mvp->v_lock);
619 		if (!(uap->flags & MS_SYSSPACE)) {
620 			nfs_free_args(args, fhandle);
621 			kmem_free(args, sizeof (*args));
622 		}
623 		return (EBUSY);
624 	}
625 	mutex_exit(&mvp->v_lock);
626 
627 	/* make sure things are zeroed for errout: */
628 	rtvp = NULL;
629 	mi = NULL;
630 	secdata = NULL;
631 
632 	/*
633 	 * A valid knetconfig structure is required.
634 	 */
635 	if (!(flags & NFSMNT_KNCONF)) {
636 		if (!(uap->flags & MS_SYSSPACE)) {
637 			nfs_free_args(args, fhandle);
638 			kmem_free(args, sizeof (*args));
639 		}
640 		return (EINVAL);
641 	}
642 
643 	if ((strlen(args->knconf->knc_protofmly) >= KNC_STRSIZE) ||
644 		(strlen(args->knconf->knc_proto) >= KNC_STRSIZE)) {
645 		if (!(uap->flags & MS_SYSSPACE)) {
646 			nfs_free_args(args, fhandle);
647 			kmem_free(args, sizeof (*args));
648 		}
649 		return (EINVAL);
650 	}
651 
652 
653 	/*
654 	 * Allocate a servinfo struct.
655 	 */
656 	svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
657 	mutex_init(&svp->sv_lock, NULL, MUTEX_DEFAULT, NULL);
658 	if (svp_tail) {
659 		svp_2ndlast = svp_tail;
660 		svp_tail->sv_next = svp;
661 	} else {
662 		svp_head = svp;
663 		svp_2ndlast = svp;
664 	}
665 
666 	svp_tail = svp;
667 
668 	/*
669 	 * Get knetconfig and server address
670 	 */
671 	svp->sv_knconf = args->knconf;
672 	args->knconf = NULL;
673 
674 	if (args->addr == NULL || args->addr->buf == NULL) {
675 		error = EINVAL;
676 		goto errout;
677 	}
678 
679 	svp->sv_addr.maxlen = args->addr->maxlen;
680 	svp->sv_addr.len = args->addr->len;
681 	svp->sv_addr.buf = args->addr->buf;
682 	args->addr->buf = NULL;
683 
684 	/*
685 	 * Get the root fhandle
686 	 */
687 	ASSERT(fhandle);
688 
689 	bcopy(&fhandle->fh_buf, &svp->sv_fhandle.fh_buf, fhandle->fh_len);
690 	svp->sv_fhandle.fh_len = fhandle->fh_len;
691 
692 	/*
693 	 * Get server's hostname
694 	 */
695 	if (flags & NFSMNT_HOSTNAME) {
696 		if (args->hostname == NULL) {
697 			error = EINVAL;
698 			goto errout;
699 		}
700 		svp->sv_hostnamelen = strlen(args->hostname) + 1;
701 		svp->sv_hostname = args->hostname;
702 		args->hostname = NULL;
703 	} else {
704 		char *p = "unknown-host";
705 		svp->sv_hostnamelen = strlen(p) + 1;
706 		svp->sv_hostname = kmem_zalloc(svp->sv_hostnamelen, KM_SLEEP);
707 		(void) strcpy(svp->sv_hostname, p);
708 	}
709 
710 
711 	/*
712 	 * RDMA MOUNT SUPPORT FOR NFS v2:
713 	 * Establish, is it possible to use RDMA, if so overload the
714 	 * knconf with rdma specific knconf and free the orignal.
715 	 */
716 	if ((flags & NFSMNT_TRYRDMA) || (flags & NFSMNT_DORDMA)) {
717 		/*
718 		 * Determine the addr type for RDMA, IPv4 or v6.
719 		 */
720 		if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET) == 0)
721 			addr_type = AF_INET;
722 		else if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET6) == 0)
723 			addr_type = AF_INET6;
724 
725 		if (rdma_reachable(addr_type, &svp->sv_addr,
726 			&rdma_knconf) == 0) {
727 			/*
728 			 * If successful, hijack, the orignal knconf and
729 			 * replace with a new one, depending on the flags.
730 			 */
731 			svp->sv_origknconf = svp->sv_knconf;
732 			svp->sv_knconf = rdma_knconf;
733 			knconf = rdma_knconf;
734 		} else {
735 			if (flags & NFSMNT_TRYRDMA) {
736 #ifdef	DEBUG
737 				if (rdma_debug)
738 					zcmn_err(getzoneid(), CE_WARN,
739 					    "no RDMA onboard, revert\n");
740 #endif
741 			}
742 
743 			if (flags & NFSMNT_DORDMA) {
744 				/*
745 				 * If proto=rdma is specified and no RDMA
746 				 * path to this server is avialable then
747 				 * ditch this server.
748 				 * This is not included in the mountable
749 				 * server list or the replica list.
750 				 * Check if more servers are specified;
751 				 * Failover case, otherwise bail out of mount.
752 				 */
753 				if (args->nfs_args_ext ==
754 				    NFS_ARGS_EXTB &&
755 					args->nfs_ext_u.nfs_extB.next
756 					!= NULL) {
757 					data = (char *)
758 						args->nfs_ext_u.nfs_extB.next;
759 					if (uap->flags & MS_RDONLY &&
760 					    !(flags & NFSMNT_SOFT)) {
761 						if (svp_head->sv_next == NULL) {
762 							svp_tail = NULL;
763 							svp_2ndlast = NULL;
764 							sv_free(svp_head);
765 							goto more;
766 						} else {
767 							svp_tail = svp_2ndlast;
768 							svp_2ndlast->sv_next =
769 							    NULL;
770 							sv_free(svp);
771 							goto more;
772 						}
773 					}
774 				} else {
775 					/*
776 					 * This is the last server specified
777 					 * in the nfs_args list passed down
778 					 * and its not rdma capable.
779 					 */
780 					if (svp_head->sv_next == NULL) {
781 						/*
782 						 * Is this the only one
783 						 */
784 						error = EINVAL;
785 #ifdef	DEBUG
786 						if (rdma_debug)
787 							zcmn_err(getzoneid(),
788 							    CE_WARN,
789 							    "No RDMA srv");
790 #endif
791 						goto errout;
792 					} else {
793 						/*
794 						 * There is list, since some
795 						 * servers specified before
796 						 * this passed all requirements
797 						 */
798 						svp_tail = svp_2ndlast;
799 						svp_2ndlast->sv_next = NULL;
800 						sv_free(svp);
801 						goto proceed;
802 					}
803 				}
804 			}
805 		}
806 	}
807 
808 	/*
809 	 * Get the extention data which has the new security data structure.
810 	 */
811 	if (flags & NFSMNT_NEWARGS) {
812 		switch (args->nfs_args_ext) {
813 		case NFS_ARGS_EXTA:
814 		case NFS_ARGS_EXTB:
815 			/*
816 			 * Indicating the application is using the new
817 			 * sec_data structure to pass in the security
818 			 * data.
819 			 */
820 			secdata = args->nfs_ext_u.nfs_extA.secdata;
821 			if (secdata == NULL) {
822 				error = EINVAL;
823 			} else {
824 				/*
825 				 * Need to validate the flavor here if
826 				 * sysspace, userspace was already
827 				 * validate from the nfs_copyin function.
828 				 */
829 				switch (secdata->rpcflavor) {
830 					case AUTH_NONE:
831 					case AUTH_UNIX:
832 					case AUTH_LOOPBACK:
833 					case AUTH_DES:
834 					case RPCSEC_GSS:
835 						break;
836 					default:
837 						error = EINVAL;
838 						goto errout;
839 				}
840 			}
841 			args->nfs_ext_u.nfs_extA.secdata = NULL;
842 			break;
843 
844 		default:
845 			error = EINVAL;
846 			break;
847 		}
848 	} else if (flags & NFSMNT_SECURE) {
849 		/*
850 		 * Keep this for backward compatibility to support
851 		 * NFSMNT_SECURE/NFSMNT_RPCTIMESYNC flags.
852 		 */
853 		if (args->syncaddr == NULL || args->syncaddr->buf == NULL) {
854 			error = EINVAL;
855 			goto errout;
856 		}
857 
858 		/*
859 		 * get time sync address.
860 		 */
861 		if (args->syncaddr == NULL) {
862 			error = EFAULT;
863 			goto errout;
864 		}
865 
866 		/*
867 		 * Move security related data to the sec_data structure.
868 		 */
869 		{
870 			dh_k4_clntdata_t *data;
871 			char *pf, *p;
872 
873 			secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
874 			if (flags & NFSMNT_RPCTIMESYNC)
875 				secdata->flags |= AUTH_F_RPCTIMESYNC;
876 			data = kmem_alloc(sizeof (*data), KM_SLEEP);
877 			bcopy(args->syncaddr, &data->syncaddr,
878 				sizeof (*args->syncaddr));
879 
880 
881 			/*
882 			 * duplicate the knconf information for the
883 			 * new opaque data.
884 			 */
885 			data->knconf = kmem_alloc(sizeof (*knconf), KM_SLEEP);
886 			*data->knconf = *knconf;
887 			pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
888 			p = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
889 			bcopy(knconf->knc_protofmly, pf, KNC_STRSIZE);
890 			bcopy(knconf->knc_proto, pf, KNC_STRSIZE);
891 			data->knconf->knc_protofmly = pf;
892 			data->knconf->knc_proto = p;
893 
894 			/* move server netname to the sec_data structure */
895 			nlen = strlen(args->hostname) + 1;
896 			if (nlen != 0) {
897 				data->netname = kmem_alloc(nlen, KM_SLEEP);
898 				bcopy(args->hostname, data->netname, nlen);
899 				data->netnamelen = (int)nlen;
900 			}
901 			secdata->secmod = secdata->rpcflavor = AUTH_DES;
902 			secdata->data = (caddr_t)data;
903 		}
904 	} else {
905 		secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP);
906 		secdata->secmod = secdata->rpcflavor = AUTH_UNIX;
907 		secdata->data = NULL;
908 	}
909 	svp->sv_secdata = secdata;
910 
911 	/*
912 	 * See bug 1180236.
913 	 * If mount secure failed, we will fall back to AUTH_NONE
914 	 * and try again.  nfs3rootvp() will turn this back off.
915 	 *
916 	 * The NFS Version 2 mount uses GETATTR and STATFS procedures.
917 	 * The server does not care if these procedures have the proper
918 	 * authentication flavor, so if mount retries using AUTH_NONE
919 	 * that does not require a credential setup for root then the
920 	 * automounter would work without requiring root to be
921 	 * keylogged into AUTH_DES.
922 	 */
923 	if (secdata->rpcflavor != AUTH_UNIX &&
924 	    secdata->rpcflavor != AUTH_LOOPBACK)
925 		secdata->flags |= AUTH_F_TRYNONE;
926 
927 	/*
928 	 * Failover support:
929 	 *
930 	 * We may have a linked list of nfs_args structures,
931 	 * which means the user is looking for failover.  If
932 	 * the mount is either not "read-only" or "soft",
933 	 * we want to bail out with EINVAL.
934 	 */
935 	if (args->nfs_args_ext == NFS_ARGS_EXTB &&
936 	    args->nfs_ext_u.nfs_extB.next != NULL) {
937 		if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) {
938 			data = (char *)args->nfs_ext_u.nfs_extB.next;
939 			goto more;
940 		}
941 		error = EINVAL;
942 		goto errout;
943 	}
944 
945 	/*
946 	 * Determine the zone we're being mounted into.
947 	 */
948 	zone_hold(mntzone = zone);		/* start with this assumption */
949 	if (getzoneid() == GLOBAL_ZONEID) {
950 		zone_rele(mntzone);
951 		mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
952 		ASSERT(mntzone != NULL);
953 		if (mntzone != zone) {
954 			error = EBUSY;
955 			goto errout;
956 		}
957 	}
958 
959 	if (is_system_labeled()) {
960 		error = nfs_mount_label_policy(vfsp, &svp->sv_addr,
961 		    svp->sv_knconf, cr);
962 
963 		if (error > 0)
964 			goto errout;
965 
966 		if (error == -1) {
967 			/* change mount to read-only to prevent write-down */
968 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
969 		}
970 	}
971 
972 	/*
973 	 * Stop the mount from going any further if the zone is going away.
974 	 */
975 	if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) {
976 		error = EBUSY;
977 		goto errout;
978 	}
979 
980 	/*
981 	 * Get root vnode.
982 	 */
983 proceed:
984 	error = nfsrootvp(&rtvp, vfsp, svp_head, flags, cr, mntzone);
985 
986 	if (error)
987 		goto errout;
988 
989 	/*
990 	 * Set option fields in the mount info record
991 	 */
992 	mi = VTOMI(rtvp);
993 
994 	if (svp_head->sv_next)
995 		mi->mi_flags |= MI_LLOCK;
996 
997 	error = nfs_setopts(rtvp, DATAMODEL_NATIVE, args);
998 	if (!error) {
999 		/* static pathconf kludge */
1000 		error = pathconf_get(mi, args);
1001 	}
1002 
1003 errout:
1004 	if (error) {
1005 		if (rtvp != NULL) {
1006 			rp = VTOR(rtvp);
1007 			if (rp->r_flags & RHASHED)
1008 				rp_rmhash(rp);
1009 		}
1010 		sv_free(svp_head);
1011 		if (mi != NULL) {
1012 			nfs_async_stop(vfsp);
1013 			nfs_async_manager_stop(vfsp);
1014 			if (mi->mi_io_kstats) {
1015 				kstat_delete(mi->mi_io_kstats);
1016 				mi->mi_io_kstats = NULL;
1017 			}
1018 			if (mi->mi_ro_kstats) {
1019 				kstat_delete(mi->mi_ro_kstats);
1020 				mi->mi_ro_kstats = NULL;
1021 			}
1022 			nfs_free_mi(mi);
1023 		}
1024 	}
1025 
1026 	if (!(uap->flags & MS_SYSSPACE)) {
1027 		nfs_free_args(args, fhandle);
1028 		kmem_free(args, sizeof (*args));
1029 	}
1030 
1031 	if (rtvp != NULL)
1032 		VN_RELE(rtvp);
1033 
1034 	if (mntzone != NULL)
1035 		zone_rele(mntzone);
1036 
1037 	return (error);
1038 }
1039 
1040 /*
1041  * The pathconf information is kept on a linked list of kmem_alloc'ed
1042  * structs. We search the list & add a new struct iff there is no other
1043  * struct with the same information.
1044  * See sys/pathconf.h for ``the rest of the story.''
1045  */
1046 static struct pathcnf *allpc = NULL;
1047 
1048 static int
1049 pathconf_copyin(struct nfs_args *args, struct pathcnf *pc)
1050 {
1051 	STRUCT_DECL(pathcnf, pc_tmp);
1052 	STRUCT_HANDLE(nfs_args, ap);
1053 	int i;
1054 	model_t	model;
1055 
1056 	model = get_udatamodel();
1057 	STRUCT_INIT(pc_tmp, model);
1058 	STRUCT_SET_HANDLE(ap, model, args);
1059 
1060 	if ((STRUCT_FGET(ap, flags) & NFSMNT_POSIX) &&
1061 	    STRUCT_FGETP(ap, pathconf) != NULL) {
1062 		if (copyin(STRUCT_FGETP(ap, pathconf), STRUCT_BUF(pc_tmp),
1063 		    STRUCT_SIZE(pc_tmp)))
1064 			return (EFAULT);
1065 		if (_PC_ISSET(_PC_ERROR, STRUCT_FGET(pc_tmp, pc_mask)))
1066 			return (EINVAL);
1067 
1068 		pc->pc_link_max = STRUCT_FGET(pc_tmp, pc_link_max);
1069 		pc->pc_max_canon = STRUCT_FGET(pc_tmp, pc_max_canon);
1070 		pc->pc_max_input = STRUCT_FGET(pc_tmp, pc_max_input);
1071 		pc->pc_name_max = STRUCT_FGET(pc_tmp, pc_name_max);
1072 		pc->pc_path_max = STRUCT_FGET(pc_tmp, pc_path_max);
1073 		pc->pc_pipe_buf = STRUCT_FGET(pc_tmp, pc_pipe_buf);
1074 		pc->pc_vdisable = STRUCT_FGET(pc_tmp, pc_vdisable);
1075 		pc->pc_xxx = STRUCT_FGET(pc_tmp, pc_xxx);
1076 		for (i = 0; i < _PC_N; i++)
1077 			pc->pc_mask[i] = STRUCT_FGET(pc_tmp, pc_mask[i]);
1078 	}
1079 	return (0);
1080 }
1081 
1082 static int
1083 pathconf_get(struct mntinfo *mi, struct nfs_args *args)
1084 {
1085 	struct pathcnf *p, *pc;
1086 
1087 	pc = args->pathconf;
1088 	if (mi->mi_pathconf != NULL) {
1089 		pathconf_rele(mi);
1090 		mi->mi_pathconf = NULL;
1091 	}
1092 	if (args->flags & NFSMNT_POSIX &&
1093 		args->pathconf != NULL) {
1094 
1095 		if (_PC_ISSET(_PC_ERROR, pc->pc_mask))
1096 			return (EINVAL);
1097 
1098 		for (p = allpc; p != NULL; p = p->pc_next) {
1099 			if (PCCMP(p, pc) == 0)
1100 				break;
1101 		}
1102 		if (p != NULL) {
1103 			mi->mi_pathconf = p;
1104 			p->pc_refcnt++;
1105 		} else {
1106 			p = kmem_alloc(sizeof (*p), KM_SLEEP);
1107 			bcopy(pc, p, sizeof (struct pathcnf));
1108 			p->pc_next = allpc;
1109 			p->pc_refcnt = 1;
1110 			allpc = mi->mi_pathconf = p;
1111 		}
1112 	}
1113 	return (0);
1114 }
1115 
1116 /*
1117  * release the static pathconf information
1118  */
1119 static void
1120 pathconf_rele(struct mntinfo *mi)
1121 {
1122 	if (mi->mi_pathconf != NULL) {
1123 		if (--mi->mi_pathconf->pc_refcnt == 0) {
1124 			struct pathcnf *p;
1125 			struct pathcnf *p2;
1126 
1127 			p2 = p = allpc;
1128 			while (p != NULL && p != mi->mi_pathconf) {
1129 				p2 = p;
1130 				p = p->pc_next;
1131 			}
1132 			if (p == NULL) {
1133 				panic("mi->pathconf");
1134 				/*NOTREACHED*/
1135 			}
1136 			if (p == allpc)
1137 				allpc = p->pc_next;
1138 			else
1139 				p2->pc_next = p->pc_next;
1140 			kmem_free(p, sizeof (*p));
1141 			mi->mi_pathconf = NULL;
1142 		}
1143 	}
1144 }
1145 
1146 static int nfs_dynamic = 1;	/* global variable to enable dynamic retrans. */
1147 static ushort_t nfs_max_threads = 8;	/* max number of active async threads */
1148 static uint_t nfs_async_clusters = 1;	/* # of reqs from each async queue */
1149 static uint_t nfs_cots_timeo = NFS_COTS_TIMEO;
1150 
1151 static int
1152 nfsrootvp(vnode_t **rtvpp, vfs_t *vfsp, struct servinfo *svp,
1153 	int flags, cred_t *cr, zone_t *zone)
1154 {
1155 	vnode_t *rtvp;
1156 	mntinfo_t *mi;
1157 	dev_t nfs_dev;
1158 	struct vattr va;
1159 	int error;
1160 	rnode_t *rp;
1161 	int i;
1162 	struct nfs_stats *nfsstatsp;
1163 	cred_t *lcr = NULL, *tcr = cr;
1164 
1165 	nfsstatsp = zone_getspecific(nfsstat_zone_key, nfs_zone());
1166 	ASSERT(nfsstatsp != NULL);
1167 
1168 	/*
1169 	 * Create a mount record and link it to the vfs struct.
1170 	 */
1171 	mi = kmem_zalloc(sizeof (*mi), KM_SLEEP);
1172 	mutex_init(&mi->mi_lock, NULL, MUTEX_DEFAULT, NULL);
1173 	mutex_init(&mi->mi_remap_lock, NULL, MUTEX_DEFAULT, NULL);
1174 	mi->mi_flags = MI_ACL | MI_EXTATTR;
1175 	if (!(flags & NFSMNT_SOFT))
1176 		mi->mi_flags |= MI_HARD;
1177 	if ((flags & NFSMNT_SEMISOFT))
1178 		mi->mi_flags |= MI_SEMISOFT;
1179 	if ((flags & NFSMNT_NOPRINT))
1180 		mi->mi_flags |= MI_NOPRINT;
1181 	if (flags & NFSMNT_INT)
1182 		mi->mi_flags |= MI_INT;
1183 	mi->mi_retrans = NFS_RETRIES;
1184 	if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD ||
1185 	    svp->sv_knconf->knc_semantics == NC_TPI_COTS)
1186 		mi->mi_timeo = nfs_cots_timeo;
1187 	else
1188 		mi->mi_timeo = NFS_TIMEO;
1189 	mi->mi_prog = NFS_PROGRAM;
1190 	mi->mi_vers = NFS_VERSION;
1191 	mi->mi_rfsnames = rfsnames_v2;
1192 	mi->mi_reqs = nfsstatsp->nfs_stats_v2.rfsreqcnt_ptr;
1193 	mi->mi_call_type = call_type_v2;
1194 	mi->mi_ss_call_type = ss_call_type_v2;
1195 	mi->mi_timer_type = timer_type_v2;
1196 	mi->mi_aclnames = aclnames_v2;
1197 	mi->mi_aclreqs = nfsstatsp->nfs_stats_v2.aclreqcnt_ptr;
1198 	mi->mi_acl_call_type = acl_call_type_v2;
1199 	mi->mi_acl_ss_call_type = acl_ss_call_type_v2;
1200 	mi->mi_acl_timer_type = acl_timer_type_v2;
1201 	cv_init(&mi->mi_failover_cv, NULL, CV_DEFAULT, NULL);
1202 	mi->mi_servers = svp;
1203 	mi->mi_curr_serv = svp;
1204 	mi->mi_acregmin = SEC2HR(ACREGMIN);
1205 	mi->mi_acregmax = SEC2HR(ACREGMAX);
1206 	mi->mi_acdirmin = SEC2HR(ACDIRMIN);
1207 	mi->mi_acdirmax = SEC2HR(ACDIRMAX);
1208 
1209 	if (nfs_dynamic)
1210 		mi->mi_flags |= MI_DYNAMIC;
1211 
1212 	if (flags & NFSMNT_DIRECTIO)
1213 		mi->mi_flags |= MI_DIRECTIO;
1214 
1215 	/*
1216 	 * Make a vfs struct for nfs.  We do this here instead of below
1217 	 * because rtvp needs a vfs before we can do a getattr on it.
1218 	 *
1219 	 * Assign a unique device id to the mount
1220 	 */
1221 	mutex_enter(&nfs_minor_lock);
1222 	do {
1223 		nfs_minor = (nfs_minor + 1) & MAXMIN32;
1224 		nfs_dev = makedevice(nfs_major, nfs_minor);
1225 	} while (vfs_devismounted(nfs_dev));
1226 	mutex_exit(&nfs_minor_lock);
1227 
1228 	vfsp->vfs_dev = nfs_dev;
1229 	vfs_make_fsid(&vfsp->vfs_fsid, nfs_dev, nfsfstyp);
1230 	vfsp->vfs_data = (caddr_t)mi;
1231 	vfsp->vfs_fstype = nfsfstyp;
1232 	vfsp->vfs_bsize = NFS_MAXDATA;
1233 
1234 	/*
1235 	 * Initialize fields used to support async putpage operations.
1236 	 */
1237 	for (i = 0; i < NFS_ASYNC_TYPES; i++)
1238 		mi->mi_async_clusters[i] = nfs_async_clusters;
1239 	mi->mi_async_init_clusters = nfs_async_clusters;
1240 	mi->mi_async_curr = &mi->mi_async_reqs[0];
1241 	mi->mi_max_threads = nfs_max_threads;
1242 	mutex_init(&mi->mi_async_lock, NULL, MUTEX_DEFAULT, NULL);
1243 	cv_init(&mi->mi_async_reqs_cv, NULL, CV_DEFAULT, NULL);
1244 	cv_init(&mi->mi_async_work_cv, NULL, CV_DEFAULT, NULL);
1245 	cv_init(&mi->mi_async_cv, NULL, CV_DEFAULT, NULL);
1246 
1247 	mi->mi_vfsp = vfsp;
1248 	zone_hold(mi->mi_zone = zone);
1249 	nfs_mi_zonelist_add(mi);
1250 
1251 	/*
1252 	 * Make the root vnode, use it to get attributes,
1253 	 * then remake it with the attributes.
1254 	 */
1255 	rtvp = makenfsnode((fhandle_t *)svp->sv_fhandle.fh_buf,
1256 	    NULL, vfsp, gethrtime(), cr, NULL, NULL);
1257 
1258 	va.va_mask = AT_ALL;
1259 
1260 	/*
1261 	 * If the uid is set then set the creds for secure mounts
1262 	 * by proxy processes such as automountd.
1263 	 */
1264 	if (svp->sv_secdata->uid != 0 &&
1265 	    svp->sv_secdata->rpcflavor == RPCSEC_GSS) {
1266 		lcr = crdup(cr);
1267 		(void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr));
1268 		tcr = lcr;
1269 	}
1270 
1271 	error = nfsgetattr(rtvp, &va, tcr);
1272 	if (error)
1273 		goto bad;
1274 	rtvp->v_type = va.va_type;
1275 
1276 	/*
1277 	 * Poll every server to get the filesystem stats; we're
1278 	 * only interested in the server's transfer size, and we
1279 	 * want the minimum.
1280 	 *
1281 	 * While we're looping, we'll turn off AUTH_F_TRYNONE,
1282 	 * which is only for the mount operation.
1283 	 */
1284 
1285 	mi->mi_tsize = MIN(NFS_MAXDATA, nfstsize());
1286 	mi->mi_stsize = MIN(NFS_MAXDATA, nfstsize());
1287 
1288 	for (svp = mi->mi_servers; svp != NULL; svp = svp->sv_next) {
1289 		struct nfsstatfs fs;
1290 		int douprintf;
1291 
1292 		douprintf = 1;
1293 		mi->mi_curr_serv = svp;
1294 
1295 		error = rfs2call(mi, RFS_STATFS,
1296 			xdr_fhandle, (caddr_t)svp->sv_fhandle.fh_buf,
1297 			xdr_statfs, (caddr_t)&fs, tcr, &douprintf,
1298 			&fs.fs_status, 0, NULL);
1299 		if (error)
1300 			goto bad;
1301 		mi->mi_stsize = MIN(mi->mi_stsize, fs.fs_tsize);
1302 		svp->sv_secdata->flags &= ~AUTH_F_TRYNONE;
1303 	}
1304 	mi->mi_curr_serv = mi->mi_servers;
1305 	mi->mi_curread = mi->mi_tsize;
1306 	mi->mi_curwrite = mi->mi_stsize;
1307 
1308 	/*
1309 	 * Start the manager thread responsible for handling async worker
1310 	 * threads.
1311 	 */
1312 	VFS_HOLD(vfsp);	/* add reference for thread */
1313 	mi->mi_manager_thread = zthread_create(NULL, 0, nfs_async_manager,
1314 					vfsp, 0, minclsyspri);
1315 	ASSERT(mi->mi_manager_thread != NULL);
1316 
1317 	/*
1318 	 * Initialize kstats
1319 	 */
1320 	nfs_mnt_kstat_init(vfsp);
1321 
1322 	mi->mi_type = rtvp->v_type;
1323 
1324 	*rtvpp = rtvp;
1325 	if (lcr != NULL)
1326 		crfree(lcr);
1327 
1328 	return (0);
1329 bad:
1330 	/*
1331 	 * An error occurred somewhere, need to clean up...
1332 	 * We need to release our reference to the root vnode and
1333 	 * destroy the mntinfo struct that we just created.
1334 	 */
1335 	if (lcr != NULL)
1336 		crfree(lcr);
1337 	rp = VTOR(rtvp);
1338 	if (rp->r_flags & RHASHED)
1339 		rp_rmhash(rp);
1340 	VN_RELE(rtvp);
1341 	nfs_async_stop(vfsp);
1342 	nfs_async_manager_stop(vfsp);
1343 	if (mi->mi_io_kstats) {
1344 		kstat_delete(mi->mi_io_kstats);
1345 		mi->mi_io_kstats = NULL;
1346 	}
1347 	if (mi->mi_ro_kstats) {
1348 		kstat_delete(mi->mi_ro_kstats);
1349 		mi->mi_ro_kstats = NULL;
1350 	}
1351 	nfs_free_mi(mi);
1352 	*rtvpp = NULL;
1353 	return (error);
1354 }
1355 
1356 /*
1357  * vfs operations
1358  */
1359 static int
1360 nfs_unmount(vfs_t *vfsp, int flag, cred_t *cr)
1361 {
1362 	mntinfo_t *mi;
1363 	ushort_t omax;
1364 
1365 	if (secpolicy_fs_unmount(cr, vfsp) != 0)
1366 		return (EPERM);
1367 
1368 	mi = VFTOMI(vfsp);
1369 	if (flag & MS_FORCE) {
1370 
1371 		vfsp->vfs_flag |= VFS_UNMOUNTED;
1372 
1373 		/*
1374 		 * We are about to stop the async manager.
1375 		 * Let every one know not to schedule any
1376 		 * more async requests.
1377 		 */
1378 		mutex_enter(&mi->mi_async_lock);
1379 		mi->mi_max_threads = 0;
1380 		cv_broadcast(&mi->mi_async_work_cv);
1381 		mutex_exit(&mi->mi_async_lock);
1382 
1383 		/*
1384 		 * We need to stop the manager thread explicitly; the worker
1385 		 * threads can time out and exit on their own.
1386 		 */
1387 		nfs_async_manager_stop(vfsp);
1388 		destroy_rtable(vfsp, cr);
1389 		if (mi->mi_io_kstats) {
1390 			kstat_delete(mi->mi_io_kstats);
1391 			mi->mi_io_kstats = NULL;
1392 		}
1393 		if (mi->mi_ro_kstats) {
1394 			kstat_delete(mi->mi_ro_kstats);
1395 			mi->mi_ro_kstats = NULL;
1396 		}
1397 		return (0);
1398 	}
1399 	/*
1400 	 * Wait until all asynchronous putpage operations on
1401 	 * this file system are complete before flushing rnodes
1402 	 * from the cache.
1403 	 */
1404 	omax = mi->mi_max_threads;
1405 	if (nfs_async_stop_sig(vfsp)) {
1406 		return (EINTR);
1407 	}
1408 	rflush(vfsp, cr);
1409 	/*
1410 	 * If there are any active vnodes on this file system,
1411 	 * then the file system is busy and can't be umounted.
1412 	 */
1413 	if (check_rtable(vfsp)) {
1414 		mutex_enter(&mi->mi_async_lock);
1415 		mi->mi_max_threads = omax;
1416 		mutex_exit(&mi->mi_async_lock);
1417 		return (EBUSY);
1418 	}
1419 	/*
1420 	 * The unmount can't fail from now on; stop the manager thread.
1421 	 */
1422 	nfs_async_manager_stop(vfsp);
1423 	/*
1424 	 * Destroy all rnodes belonging to this file system from the
1425 	 * rnode hash queues and purge any resources allocated to
1426 	 * them.
1427 	 */
1428 	destroy_rtable(vfsp, cr);
1429 	if (mi->mi_io_kstats) {
1430 		kstat_delete(mi->mi_io_kstats);
1431 		mi->mi_io_kstats = NULL;
1432 	}
1433 	if (mi->mi_ro_kstats) {
1434 		kstat_delete(mi->mi_ro_kstats);
1435 		mi->mi_ro_kstats = NULL;
1436 	}
1437 	return (0);
1438 }
1439 
1440 /*
1441  * find root of nfs
1442  */
1443 static int
1444 nfs_root(vfs_t *vfsp, vnode_t **vpp)
1445 {
1446 	mntinfo_t *mi;
1447 	vnode_t *vp;
1448 	servinfo_t *svp;
1449 	rnode_t *rp;
1450 	int error = 0;
1451 
1452 	mi = VFTOMI(vfsp);
1453 
1454 	if (nfs_zone() != mi->mi_zone)
1455 		return (EPERM);
1456 
1457 	svp = mi->mi_curr_serv;
1458 	if (svp && (svp->sv_flags & SV_ROOT_STALE)) {
1459 		mutex_enter(&svp->sv_lock);
1460 		svp->sv_flags &= ~SV_ROOT_STALE;
1461 		mutex_exit(&svp->sv_lock);
1462 		error = ENOENT;
1463 	}
1464 
1465 	vp = makenfsnode((fhandle_t *)mi->mi_curr_serv->sv_fhandle.fh_buf,
1466 	    NULL, vfsp, gethrtime(), CRED(), NULL, NULL);
1467 
1468 	/*
1469 	 * if the SV_ROOT_STALE flag was reset above, reset the
1470 	 * RSTALE flag if needed and return an error
1471 	 */
1472 	if (error == ENOENT) {
1473 		rp = VTOR(vp);
1474 		if (svp && rp->r_flags & RSTALE) {
1475 			mutex_enter(&rp->r_statelock);
1476 			rp->r_flags &= ~RSTALE;
1477 			mutex_exit(&rp->r_statelock);
1478 		}
1479 		VN_RELE(vp);
1480 		return (error);
1481 	}
1482 
1483 	ASSERT(vp->v_type == VNON || vp->v_type == mi->mi_type);
1484 
1485 	vp->v_type = mi->mi_type;
1486 
1487 	*vpp = vp;
1488 
1489 	return (0);
1490 }
1491 
1492 /*
1493  * Get file system statistics.
1494  */
1495 static int
1496 nfs_statvfs(vfs_t *vfsp, struct statvfs64 *sbp)
1497 {
1498 	int error;
1499 	mntinfo_t *mi;
1500 	struct nfsstatfs fs;
1501 	int douprintf;
1502 	failinfo_t fi;
1503 	vnode_t *vp;
1504 
1505 	error = nfs_root(vfsp, &vp);
1506 	if (error)
1507 		return (error);
1508 
1509 	mi = VFTOMI(vfsp);
1510 	douprintf = 1;
1511 	fi.vp = vp;
1512 	fi.fhp = NULL;		/* no need to update, filehandle not copied */
1513 	fi.copyproc = nfscopyfh;
1514 	fi.lookupproc = nfslookup;
1515 	fi.xattrdirproc = acl_getxattrdir2;
1516 
1517 	error = rfs2call(mi, RFS_STATFS,
1518 			xdr_fhandle, (caddr_t)VTOFH(vp),
1519 			xdr_statfs, (caddr_t)&fs, CRED(), &douprintf,
1520 			&fs.fs_status, 0, &fi);
1521 
1522 	if (!error) {
1523 		error = geterrno(fs.fs_status);
1524 		if (!error) {
1525 			mutex_enter(&mi->mi_lock);
1526 			if (mi->mi_stsize) {
1527 				mi->mi_stsize = MIN(mi->mi_stsize, fs.fs_tsize);
1528 			} else {
1529 				mi->mi_stsize = fs.fs_tsize;
1530 				mi->mi_curwrite = mi->mi_stsize;
1531 			}
1532 			mutex_exit(&mi->mi_lock);
1533 			sbp->f_bsize = fs.fs_bsize;
1534 			sbp->f_frsize = fs.fs_bsize;
1535 			sbp->f_blocks = (fsblkcnt64_t)fs.fs_blocks;
1536 			sbp->f_bfree = (fsblkcnt64_t)fs.fs_bfree;
1537 			/*
1538 			 * Some servers may return negative available
1539 			 * block counts.  They may do this because they
1540 			 * calculate the number of available blocks by
1541 			 * subtracting the number of used blocks from
1542 			 * the total number of blocks modified by the
1543 			 * minimum free value.  For example, if the
1544 			 * minumum free percentage is 10 and the file
1545 			 * system is greater than 90 percent full, then
1546 			 * 90 percent of the total blocks minus the
1547 			 * actual number of used blocks may be a
1548 			 * negative number.
1549 			 *
1550 			 * In this case, we need to sign extend the
1551 			 * negative number through the assignment from
1552 			 * the 32 bit bavail count to the 64 bit bavail
1553 			 * count.
1554 			 *
1555 			 * We need to be able to discern between there
1556 			 * just being a lot of available blocks on the
1557 			 * file system and the case described above.
1558 			 * We are making the assumption that it does
1559 			 * not make sense to have more available blocks
1560 			 * than there are free blocks.  So, if there
1561 			 * are, then we treat the number as if it were
1562 			 * a negative number and arrange to have it
1563 			 * sign extended when it is converted from 32
1564 			 * bits to 64 bits.
1565 			 */
1566 			if (fs.fs_bavail <= fs.fs_bfree)
1567 				sbp->f_bavail = (fsblkcnt64_t)fs.fs_bavail;
1568 			else {
1569 				sbp->f_bavail =
1570 					(fsblkcnt64_t)((long)fs.fs_bavail);
1571 			}
1572 			sbp->f_files = (fsfilcnt64_t)-1;
1573 			sbp->f_ffree = (fsfilcnt64_t)-1;
1574 			sbp->f_favail = (fsfilcnt64_t)-1;
1575 			sbp->f_fsid = (unsigned long)vfsp->vfs_fsid.val[0];
1576 			(void) strncpy(sbp->f_basetype,
1577 				vfssw[vfsp->vfs_fstype].vsw_name, FSTYPSZ);
1578 			sbp->f_flag = vf_to_stf(vfsp->vfs_flag);
1579 			sbp->f_namemax = (uint32_t)-1;
1580 		} else {
1581 			PURGE_STALE_FH(error, vp, CRED());
1582 		}
1583 	}
1584 
1585 	VN_RELE(vp);
1586 
1587 	return (error);
1588 }
1589 
1590 static kmutex_t nfs_syncbusy;
1591 
1592 /*
1593  * Flush dirty nfs files for file system vfsp.
1594  * If vfsp == NULL, all nfs files are flushed.
1595  */
1596 /* ARGSUSED */
1597 static int
1598 nfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
1599 {
1600 	/*
1601 	 * Cross-zone calls are OK here, since this translates to a
1602 	 * VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone.
1603 	 */
1604 	if (!(flag & SYNC_ATTR) && mutex_tryenter(&nfs_syncbusy) != 0) {
1605 		rflush(vfsp, cr);
1606 		mutex_exit(&nfs_syncbusy);
1607 	}
1608 	return (0);
1609 }
1610 
1611 /* ARGSUSED */
1612 static int
1613 nfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1614 {
1615 	int error;
1616 	vnode_t *vp;
1617 	struct vattr va;
1618 	struct nfs_fid *nfsfidp = (struct nfs_fid *)fidp;
1619 	zoneid_t zoneid = VFTOMI(vfsp)->mi_zone->zone_id;
1620 
1621 	if (nfs_zone() != VFTOMI(vfsp)->mi_zone)
1622 		return (EPERM);
1623 	if (fidp->fid_len != (sizeof (*nfsfidp) - sizeof (short))) {
1624 #ifdef DEBUG
1625 		zcmn_err(zoneid, CE_WARN,
1626 		    "nfs_vget: bad fid len, %d/%d", fidp->fid_len,
1627 		    (int)(sizeof (*nfsfidp) - sizeof (short)));
1628 #endif
1629 		*vpp = NULL;
1630 		return (ESTALE);
1631 	}
1632 
1633 	vp = makenfsnode((fhandle_t *)(nfsfidp->nf_data), NULL, vfsp,
1634 	    gethrtime(), CRED(), NULL, NULL);
1635 
1636 	if (VTOR(vp)->r_flags & RSTALE) {
1637 		VN_RELE(vp);
1638 		*vpp = NULL;
1639 		return (ENOENT);
1640 	}
1641 
1642 	if (vp->v_type == VNON) {
1643 		va.va_mask = AT_ALL;
1644 		error = nfsgetattr(vp, &va, CRED());
1645 		if (error) {
1646 			VN_RELE(vp);
1647 			*vpp = NULL;
1648 			return (error);
1649 		}
1650 		vp->v_type = va.va_type;
1651 	}
1652 
1653 	*vpp = vp;
1654 
1655 	return (0);
1656 }
1657 
1658 /* ARGSUSED */
1659 static int
1660 nfs_mountroot(vfs_t *vfsp, whymountroot_t why)
1661 {
1662 	vnode_t *rtvp;
1663 	char root_hostname[SYS_NMLN+1];
1664 	struct servinfo *svp;
1665 	int error;
1666 	int vfsflags;
1667 	size_t size;
1668 	char *root_path;
1669 	struct pathname pn;
1670 	char *name;
1671 	cred_t *cr;
1672 	struct nfs_args args;		/* nfs mount arguments */
1673 	static char token[10];
1674 
1675 	bzero(&args, sizeof (args));
1676 
1677 	/* do this BEFORE getfile which causes xid stamps to be initialized */
1678 	clkset(-1L);		/* hack for now - until we get time svc? */
1679 
1680 	if (why == ROOT_REMOUNT) {
1681 		/*
1682 		 * Shouldn't happen.
1683 		 */
1684 		panic("nfs_mountroot: why == ROOT_REMOUNT");
1685 	}
1686 
1687 	if (why == ROOT_UNMOUNT) {
1688 		/*
1689 		 * Nothing to do for NFS.
1690 		 */
1691 		return (0);
1692 	}
1693 
1694 	/*
1695 	 * why == ROOT_INIT
1696 	 */
1697 
1698 	name = token;
1699 	*name = 0;
1700 	getfsname("root", name, sizeof (token));
1701 
1702 	pn_alloc(&pn);
1703 	root_path = pn.pn_path;
1704 
1705 	svp = kmem_zalloc(sizeof (*svp), KM_SLEEP);
1706 	svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP);
1707 	svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
1708 	svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP);
1709 
1710 	/*
1711 	 * Get server address
1712 	 * Get the root fhandle
1713 	 * Get server's transport
1714 	 * Get server's hostname
1715 	 * Get options
1716 	 */
1717 	args.addr = &svp->sv_addr;
1718 	args.fh = (char *)&svp->sv_fhandle.fh_buf;
1719 	args.knconf = svp->sv_knconf;
1720 	args.hostname = root_hostname;
1721 	vfsflags = 0;
1722 	if (error = mount_root(*name ? name : "root", root_path, NFS_VERSION,
1723 	    &args, &vfsflags)) {
1724 		nfs_cmn_err(error, CE_WARN,
1725 		    "nfs_mountroot: mount_root failed: %m");
1726 		sv_free(svp);
1727 		pn_free(&pn);
1728 		return (error);
1729 	}
1730 	svp->sv_fhandle.fh_len = NFS_FHSIZE;
1731 	svp->sv_hostnamelen = (int)(strlen(root_hostname) + 1);
1732 	svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP);
1733 	(void) strcpy(svp->sv_hostname, root_hostname);
1734 
1735 	/*
1736 	 * Force root partition to always be mounted with AUTH_UNIX for now
1737 	 */
1738 	svp->sv_secdata = kmem_alloc(sizeof (*svp->sv_secdata), KM_SLEEP);
1739 	svp->sv_secdata->secmod = AUTH_UNIX;
1740 	svp->sv_secdata->rpcflavor = AUTH_UNIX;
1741 	svp->sv_secdata->data = NULL;
1742 
1743 	cr = crgetcred();
1744 	rtvp = NULL;
1745 
1746 	error = nfsrootvp(&rtvp, vfsp, svp, args.flags, cr, global_zone);
1747 
1748 	crfree(cr);
1749 
1750 	if (error) {
1751 		pn_free(&pn);
1752 		sv_free(svp);
1753 		return (error);
1754 	}
1755 
1756 	error = nfs_setopts(rtvp, DATAMODEL_NATIVE, &args);
1757 	if (error) {
1758 		nfs_cmn_err(error, CE_WARN,
1759 		    "nfs_mountroot: invalid root mount options");
1760 		pn_free(&pn);
1761 		goto errout;
1762 	}
1763 
1764 	(void) vfs_lock_wait(vfsp);
1765 	vfs_add(NULL, vfsp, vfsflags);
1766 	vfs_unlock(vfsp);
1767 
1768 	size = strlen(svp->sv_hostname);
1769 	(void) strcpy(rootfs.bo_name, svp->sv_hostname);
1770 	rootfs.bo_name[size] = ':';
1771 	(void) strcpy(&rootfs.bo_name[size + 1], root_path);
1772 
1773 	pn_free(&pn);
1774 
1775 errout:
1776 	if (error) {
1777 		sv_free(svp);
1778 		nfs_async_stop(vfsp);
1779 		nfs_async_manager_stop(vfsp);
1780 	}
1781 
1782 	if (rtvp != NULL)
1783 		VN_RELE(rtvp);
1784 
1785 	return (error);
1786 }
1787 
1788 /*
1789  * Initialization routine for VFS routines.  Should only be called once
1790  */
1791 int
1792 nfs_vfsinit(void)
1793 {
1794 	mutex_init(&nfs_syncbusy, NULL, MUTEX_DEFAULT, NULL);
1795 	return (0);
1796 }
1797 
1798 void
1799 nfs_vfsfini(void)
1800 {
1801 	mutex_destroy(&nfs_syncbusy);
1802 }
1803 
1804 void
1805 nfs_freevfs(vfs_t *vfsp)
1806 {
1807 	mntinfo_t *mi;
1808 	servinfo_t *svp;
1809 
1810 	/* free up the resources */
1811 	mi = VFTOMI(vfsp);
1812 	pathconf_rele(mi);
1813 	svp = mi->mi_servers;
1814 	mi->mi_servers = mi->mi_curr_serv = NULL;
1815 	sv_free(svp);
1816 
1817 	/*
1818 	 * By this time we should have already deleted the
1819 	 * mi kstats in the unmount code. If they are still around
1820 	 * somethings wrong
1821 	 */
1822 	ASSERT(mi->mi_io_kstats == NULL);
1823 	nfs_free_mi(mi);
1824 }
1825