1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011 Bayard G. Bell. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright (c) 2017 Joyent Inc 26 * Copyright 2019 Nexenta by DDN, Inc. 27 * Copyright 2021 Racktop Systems, Inc. 28 */ 29 30 /* 31 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 32 * All rights reserved. 33 * Use is subject to license terms. 34 */ 35 36 #include <sys/param.h> 37 #include <sys/types.h> 38 #include <sys/systm.h> 39 #include <sys/cred.h> 40 #include <sys/proc.h> 41 #include <sys/user.h> 42 #include <sys/buf.h> 43 #include <sys/vfs.h> 44 #include <sys/vnode.h> 45 #include <sys/pathname.h> 46 #include <sys/uio.h> 47 #include <sys/file.h> 48 #include <sys/stat.h> 49 #include <sys/errno.h> 50 #include <sys/socket.h> 51 #include <sys/sysmacros.h> 52 #include <sys/siginfo.h> 53 #include <sys/tiuser.h> 54 #include <sys/statvfs.h> 55 #include <sys/stream.h> 56 #include <sys/strsun.h> 57 #include <sys/strsubr.h> 58 #include <sys/stropts.h> 59 #include <sys/timod.h> 60 #include <sys/t_kuser.h> 61 #include <sys/kmem.h> 62 #include <sys/kstat.h> 63 #include <sys/dirent.h> 64 #include <sys/cmn_err.h> 65 #include <sys/debug.h> 66 #include <sys/unistd.h> 67 #include <sys/vtrace.h> 68 #include <sys/mode.h> 69 #include <sys/acl.h> 70 #include <sys/sdt.h> 71 #include <sys/debug.h> 72 73 #include <rpc/types.h> 74 #include <rpc/auth.h> 75 #include <rpc/auth_unix.h> 76 #include <rpc/auth_des.h> 77 #include <rpc/svc.h> 78 #include <rpc/xdr.h> 79 #include <rpc/rpc_rdma.h> 80 81 #include <nfs/nfs.h> 82 #include <nfs/export.h> 83 #include <nfs/nfssys.h> 84 #include <nfs/nfs_clnt.h> 85 #include <nfs/nfs_acl.h> 86 #include <nfs/nfs_log.h> 87 #include <nfs/lm.h> 88 #include <nfs/nfs_dispatch.h> 89 #include <nfs/nfs4_drc.h> 90 91 #include <sys/modctl.h> 92 #include <sys/cladm.h> 93 #include <sys/clconf.h> 94 95 #include <sys/tsol/label.h> 96 97 #define MAXHOST 32 98 const char *kinet_ntop6(uchar_t *, char *, size_t); 99 100 /* 101 * Module linkage information. 102 */ 103 104 static struct modlmisc modlmisc = { 105 &mod_miscops, "NFS server module" 106 }; 107 108 static struct modlinkage modlinkage = { 109 MODREV_1, (void *)&modlmisc, NULL 110 }; 111 112 zone_key_t nfssrv_zone_key; 113 list_t nfssrv_globals_list; 114 krwlock_t nfssrv_globals_rwl; 115 116 kmem_cache_t *nfs_xuio_cache; 117 int nfs_loaned_buffers = 0; 118 119 /* array of paths passed-in from nfsd command-line; stored in nvlist */ 120 char **rfs4_dss_newpaths; 121 uint_t rfs4_dss_numnewpaths; 122 123 /* nvlists of all DSS paths: current, and before last warmstart */ 124 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths; 125 126 int 127 _init(void) 128 { 129 int status; 130 131 nfs_srvinit(); 132 133 status = mod_install((struct modlinkage *)&modlinkage); 134 if (status != 0) { 135 /* 136 * Could not load module, cleanup previous 137 * initialization work. 138 */ 139 nfs_srvfini(); 140 141 return (status); 142 } 143 144 /* 145 * Initialise some placeholders for nfssys() calls. These have 146 * to be declared by the nfs module, since that handles nfssys() 147 * calls - also used by NFS clients - but are provided by this 148 * nfssrv module. These also then serve as confirmation to the 149 * relevant code in nfs that nfssrv has been loaded, as they're 150 * initially NULL. 151 */ 152 nfs_srv_quiesce_func = nfs_srv_quiesce_all; 153 nfs_srv_dss_func = rfs4_dss_setpaths; 154 155 /* setup DSS paths here; must be done before initial server startup */ 156 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 157 158 /* initialize the copy reduction caches */ 159 160 nfs_xuio_cache = kmem_cache_create("nfs_xuio_cache", 161 sizeof (nfs_xuio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 162 163 return (status); 164 } 165 166 int 167 _fini() 168 { 169 return (EBUSY); 170 } 171 172 int 173 _info(struct modinfo *modinfop) 174 { 175 return (mod_info(&modlinkage, modinfop)); 176 } 177 178 /* 179 * PUBLICFH_CHECK() checks if the dispatch routine supports 180 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the 181 * incoming request is using the public filehandle. The check duplicates 182 * the exportmatch() call done in checkexport(), and we should consider 183 * modifying those routines to avoid the duplication. For now, we optimize 184 * by calling exportmatch() only after checking that the dispatch routine 185 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported 186 * public (i.e., not the placeholder). 187 */ 188 #define PUBLICFH_CHECK(ne, disp, exi, fsid, xfid) \ 189 ((disp->dis_flags & RPC_PUBLICFH_OK) && \ 190 ((exi->exi_export.ex_flags & EX_PUBLIC) || \ 191 (exi == ne->exi_public && exportmatch(ne->exi_root, \ 192 fsid, xfid)))) 193 194 static void nfs_srv_shutdown_all(int); 195 static void rfs4_server_start(nfs_globals_t *, int); 196 static void nullfree(void); 197 static void rfs_dispatch(struct svc_req *, SVCXPRT *); 198 static void acl_dispatch(struct svc_req *, SVCXPRT *); 199 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int, 200 bool_t, bool_t *); 201 static char *client_name(struct svc_req *req); 202 static char *client_addr(struct svc_req *req, char *buf); 203 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *); 204 static void *nfs_server_zone_init(zoneid_t); 205 static void nfs_server_zone_fini(zoneid_t, void *); 206 static void nfs_server_zone_shutdown(zoneid_t, void *); 207 208 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \ 209 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \ 210 (nb)->len = (xprt)->xp_rtaddr.len; \ 211 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \ 212 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \ 213 } 214 215 /* 216 * Public Filehandle common nfs routines 217 */ 218 static int MCLpath(char **); 219 static void URLparse(char *); 220 221 /* 222 * NFS callout table. 223 * This table is used by svc_getreq() to dispatch a request with 224 * a given prog/vers pair to an appropriate service provider 225 * dispatch routine. 226 * 227 * NOTE: ordering is relied upon below when resetting the version min/max 228 * for NFS_PROGRAM. Careful, if this is ever changed. 229 */ 230 static SVC_CALLOUT __nfs_sc_clts[] = { 231 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 232 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 233 }; 234 235 static SVC_CALLOUT_TABLE nfs_sct_clts = { 236 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE, 237 __nfs_sc_clts 238 }; 239 240 static SVC_CALLOUT __nfs_sc_cots[] = { 241 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 242 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 243 }; 244 245 static SVC_CALLOUT_TABLE nfs_sct_cots = { 246 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots 247 }; 248 249 static SVC_CALLOUT __nfs_sc_rdma[] = { 250 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 251 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 252 }; 253 254 static SVC_CALLOUT_TABLE nfs_sct_rdma = { 255 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma 256 }; 257 258 /* 259 * DSS: distributed stable storage 260 * lists of all DSS paths: current, and before last warmstart 261 */ 262 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths; 263 264 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *); 265 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *); 266 267 /* 268 * Stash NFS zone globals in TSD to avoid some lock contention 269 * from frequent zone_getspecific calls. 270 */ 271 static uint_t nfs_server_tsd_key; 272 273 nfs_globals_t * 274 nfs_srv_getzg(void) 275 { 276 nfs_globals_t *ng; 277 278 ng = tsd_get(nfs_server_tsd_key); 279 if (ng == NULL) { 280 ng = zone_getspecific(nfssrv_zone_key, curzone); 281 (void) tsd_set(nfs_server_tsd_key, ng); 282 } 283 284 return (ng); 285 } 286 287 /* 288 * Will be called at the point the server pool is being unregistered 289 * from the pool list. From that point onwards, the pool is waiting 290 * to be drained and as such the server state is stale and pertains 291 * to the old instantiation of the NFS server pool. 292 */ 293 void 294 nfs_srv_offline(void) 295 { 296 nfs_globals_t *ng; 297 298 ng = nfs_srv_getzg(); 299 300 mutex_enter(&ng->nfs_server_upordown_lock); 301 if (ng->nfs_server_upordown == NFS_SERVER_RUNNING) { 302 ng->nfs_server_upordown = NFS_SERVER_OFFLINE; 303 } 304 mutex_exit(&ng->nfs_server_upordown_lock); 305 } 306 307 /* 308 * Will be called at the point the server pool is being destroyed so 309 * all transports have been closed and no service threads are in 310 * existence. 311 * 312 * If we quiesce the server, we're shutting it down without destroying the 313 * server state. This allows it to warm start subsequently. 314 */ 315 void 316 nfs_srv_stop_all(void) 317 { 318 int quiesce = 0; 319 nfs_srv_shutdown_all(quiesce); 320 } 321 322 /* 323 * This alternative shutdown routine can be requested via nfssys() 324 */ 325 void 326 nfs_srv_quiesce_all(void) 327 { 328 int quiesce = 1; 329 nfs_srv_shutdown_all(quiesce); 330 } 331 332 static void 333 nfs_srv_shutdown_all(int quiesce) 334 { 335 nfs_globals_t *ng = nfs_srv_getzg(); 336 337 mutex_enter(&ng->nfs_server_upordown_lock); 338 if (quiesce) { 339 if (ng->nfs_server_upordown == NFS_SERVER_RUNNING || 340 ng->nfs_server_upordown == NFS_SERVER_OFFLINE) { 341 ng->nfs_server_upordown = NFS_SERVER_QUIESCED; 342 cv_signal(&ng->nfs_server_upordown_cv); 343 344 /* reset DSS state */ 345 rfs4_dss_numnewpaths = 0; 346 rfs4_dss_newpaths = NULL; 347 348 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; " 349 "NFSv4 state has been preserved"); 350 } 351 } else { 352 if (ng->nfs_server_upordown == NFS_SERVER_OFFLINE) { 353 ng->nfs_server_upordown = NFS_SERVER_STOPPING; 354 mutex_exit(&ng->nfs_server_upordown_lock); 355 rfs4_state_zone_fini(); 356 rfs4_fini_drc(); 357 mutex_enter(&ng->nfs_server_upordown_lock); 358 ng->nfs_server_upordown = NFS_SERVER_STOPPED; 359 360 /* reset DSS state */ 361 rfs4_dss_numnewpaths = 0; 362 rfs4_dss_newpaths = NULL; 363 364 cv_signal(&ng->nfs_server_upordown_cv); 365 } 366 } 367 mutex_exit(&ng->nfs_server_upordown_lock); 368 } 369 370 static int 371 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp, 372 rpcvers_t versmin, rpcvers_t versmax) 373 { 374 struct strioctl strioc; 375 struct T_info_ack tinfo; 376 int error, retval; 377 378 /* 379 * Find out what type of transport this is. 380 */ 381 strioc.ic_cmd = TI_GETINFO; 382 strioc.ic_timout = -1; 383 strioc.ic_len = sizeof (tinfo); 384 strioc.ic_dp = (char *)&tinfo; 385 tinfo.PRIM_type = T_INFO_REQ; 386 387 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K, 388 CRED(), &retval); 389 if (error || retval) 390 return (error); 391 392 /* 393 * Based on our query of the transport type... 394 * 395 * Reset the min/max versions based on the caller's request 396 * NOTE: This assumes that NFS_PROGRAM is first in the array!! 397 * And the second entry is the NFS_ACL_PROGRAM. 398 */ 399 switch (tinfo.SERV_type) { 400 case T_CLTS: 401 if (versmax == NFS_V4) 402 return (EINVAL); 403 __nfs_sc_clts[0].sc_versmin = versmin; 404 __nfs_sc_clts[0].sc_versmax = versmax; 405 __nfs_sc_clts[1].sc_versmin = versmin; 406 __nfs_sc_clts[1].sc_versmax = versmax; 407 *sctpp = &nfs_sct_clts; 408 break; 409 case T_COTS: 410 case T_COTS_ORD: 411 __nfs_sc_cots[0].sc_versmin = versmin; 412 __nfs_sc_cots[0].sc_versmax = versmax; 413 /* For the NFS_ACL program, check the max version */ 414 if (versmax > NFS_ACL_VERSMAX) 415 versmax = NFS_ACL_VERSMAX; 416 __nfs_sc_cots[1].sc_versmin = versmin; 417 __nfs_sc_cots[1].sc_versmax = versmax; 418 *sctpp = &nfs_sct_cots; 419 break; 420 default: 421 error = EINVAL; 422 } 423 424 return (error); 425 } 426 427 /* 428 * NFS Server system call. 429 * Does all of the work of running a NFS server. 430 * uap->fd is the fd of an open transport provider 431 */ 432 int 433 nfs_svc(struct nfs_svc_args *arg, model_t model) 434 { 435 nfs_globals_t *ng; 436 file_t *fp; 437 SVCMASTERXPRT *xprt; 438 int error; 439 int readsize; 440 char buf[KNC_STRSIZE]; 441 size_t len; 442 STRUCT_HANDLE(nfs_svc_args, uap); 443 struct netbuf addrmask; 444 SVC_CALLOUT_TABLE *sctp = NULL; 445 446 #ifdef lint 447 model = model; /* STRUCT macros don't always refer to it */ 448 #endif 449 450 ng = nfs_srv_getzg(); 451 STRUCT_SET_HANDLE(uap, model, arg); 452 453 /* Check privileges in nfssys() */ 454 455 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL) 456 return (EBADF); 457 458 /* Setup global file handle in nfs_export */ 459 if ((error = nfs_export_get_rootfh(ng)) != 0) 460 return (error); 461 462 /* 463 * Set read buffer size to rsize 464 * and add room for RPC headers. 465 */ 466 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA); 467 if (readsize < RPC_MAXDATASIZE) 468 readsize = RPC_MAXDATASIZE; 469 470 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf, 471 KNC_STRSIZE, &len); 472 if (error) { 473 releasef(STRUCT_FGET(uap, fd)); 474 return (error); 475 } 476 477 addrmask.len = STRUCT_FGET(uap, addrmask.len); 478 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen); 479 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP); 480 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf, 481 addrmask.len); 482 if (error) { 483 releasef(STRUCT_FGET(uap, fd)); 484 kmem_free(addrmask.buf, addrmask.maxlen); 485 return (error); 486 } 487 488 ng->nfs_versmin = STRUCT_FGET(uap, versmin); 489 ng->nfs_versmax = STRUCT_FGET(uap, versmax); 490 491 /* Double check the vers min/max ranges */ 492 if ((ng->nfs_versmin > ng->nfs_versmax) || 493 (ng->nfs_versmin < NFS_VERSMIN) || 494 (ng->nfs_versmax > NFS_VERSMAX)) { 495 ng->nfs_versmin = NFS_VERSMIN_DEFAULT; 496 ng->nfs_versmax = NFS_VERSMAX_DEFAULT; 497 } 498 499 error = nfs_srv_set_sc_versions(fp, &sctp, ng->nfs_versmin, 500 ng->nfs_versmax); 501 if (error != 0) { 502 releasef(STRUCT_FGET(uap, fd)); 503 kmem_free(addrmask.buf, addrmask.maxlen); 504 return (error); 505 } 506 507 /* Initialize nfsv4 server */ 508 if (ng->nfs_versmax == (rpcvers_t)NFS_V4) 509 rfs4_server_start(ng, STRUCT_FGET(uap, delegation)); 510 511 /* Create a transport handle. */ 512 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt, 513 sctp, NULL, NFS_SVCPOOL_ID, TRUE); 514 515 if (error) 516 kmem_free(addrmask.buf, addrmask.maxlen); 517 518 releasef(STRUCT_FGET(uap, fd)); 519 520 /* HA-NFSv4: save the cluster nodeid */ 521 if (cluster_bootflags & CLUSTER_BOOTED) 522 lm_global_nlmid = clconf_get_nodeid(); 523 524 return (error); 525 } 526 527 static void 528 rfs4_server_start(nfs_globals_t *ng, int nfs4_srv_delegation) 529 { 530 /* 531 * Determine if the server has previously been "started" and 532 * if not, do the per instance initialization 533 */ 534 mutex_enter(&ng->nfs_server_upordown_lock); 535 536 if (ng->nfs_server_upordown != NFS_SERVER_RUNNING) { 537 /* Do we need to stop and wait on the previous server? */ 538 while (ng->nfs_server_upordown == NFS_SERVER_STOPPING || 539 ng->nfs_server_upordown == NFS_SERVER_OFFLINE) 540 cv_wait(&ng->nfs_server_upordown_cv, 541 &ng->nfs_server_upordown_lock); 542 543 if (ng->nfs_server_upordown != NFS_SERVER_RUNNING) { 544 (void) svc_pool_control(NFS_SVCPOOL_ID, 545 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline); 546 (void) svc_pool_control(NFS_SVCPOOL_ID, 547 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all); 548 549 rfs4_do_server_start(ng->nfs_server_upordown, 550 nfs4_srv_delegation, 551 cluster_bootflags & CLUSTER_BOOTED); 552 553 ng->nfs_server_upordown = NFS_SERVER_RUNNING; 554 } 555 cv_signal(&ng->nfs_server_upordown_cv); 556 } 557 mutex_exit(&ng->nfs_server_upordown_lock); 558 } 559 560 /* 561 * If RDMA device available, 562 * start RDMA listener. 563 */ 564 int 565 rdma_start(struct rdma_svc_args *rsa) 566 { 567 nfs_globals_t *ng; 568 int error; 569 rdma_xprt_group_t started_rdma_xprts; 570 rdma_stat stat; 571 int svc_state = 0; 572 573 /* Double check the vers min/max ranges */ 574 if ((rsa->nfs_versmin > rsa->nfs_versmax) || 575 (rsa->nfs_versmin < NFS_VERSMIN) || 576 (rsa->nfs_versmax > NFS_VERSMAX)) { 577 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT; 578 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT; 579 } 580 581 ng = nfs_srv_getzg(); 582 ng->nfs_versmin = rsa->nfs_versmin; 583 ng->nfs_versmax = rsa->nfs_versmax; 584 585 /* Set the versions in the callout table */ 586 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin; 587 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax; 588 /* For the NFS_ACL program, check the max version */ 589 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin; 590 if (rsa->nfs_versmax > NFS_ACL_VERSMAX) 591 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX; 592 else 593 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax; 594 595 /* Initialize nfsv4 server */ 596 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4) 597 rfs4_server_start(ng, rsa->delegation); 598 599 started_rdma_xprts.rtg_count = 0; 600 started_rdma_xprts.rtg_listhead = NULL; 601 started_rdma_xprts.rtg_poolid = rsa->poolid; 602 603 restart: 604 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid, 605 &started_rdma_xprts); 606 607 svc_state = !error; 608 609 while (!error) { 610 611 /* 612 * wait till either interrupted by a signal on 613 * nfs service stop/restart or signalled by a 614 * rdma attach/detatch. 615 */ 616 617 stat = rdma_kwait(); 618 619 /* 620 * stop services if running -- either on a HCA detach event 621 * or if the nfs service is stopped/restarted. 622 */ 623 624 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) && 625 svc_state) { 626 rdma_stop(&started_rdma_xprts); 627 svc_state = 0; 628 } 629 630 /* 631 * nfs service stop/restart, break out of the 632 * wait loop and return; 633 */ 634 if (stat == RDMA_INTR) 635 return (0); 636 637 /* 638 * restart stopped services on a HCA attach event 639 * (if not already running) 640 */ 641 642 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0)) 643 goto restart; 644 645 /* 646 * loop until a nfs service stop/restart 647 */ 648 } 649 650 return (error); 651 } 652 653 /* ARGSUSED */ 654 void 655 rpc_null(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 656 struct svc_req *req, cred_t *cr, bool_t ro) 657 { 658 } 659 660 /* ARGSUSED */ 661 void 662 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 663 struct svc_req *req, cred_t *cr, bool_t ro) 664 { 665 DTRACE_NFSV3_4(op__null__start, struct svc_req *, req, 666 cred_t *, cr, vnode_t *, NULL, struct exportinfo *, exi); 667 DTRACE_NFSV3_4(op__null__done, struct svc_req *, req, 668 cred_t *, cr, vnode_t *, NULL, struct exportinfo *, exi); 669 } 670 671 /* ARGSUSED */ 672 static void 673 rfs_error(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 674 struct svc_req *req, cred_t *cr, bool_t ro) 675 { 676 /* return (EOPNOTSUPP); */ 677 } 678 679 static void 680 nullfree(void) 681 { 682 } 683 684 static char *rfscallnames_v2[] = { 685 "RFS2_NULL", 686 "RFS2_GETATTR", 687 "RFS2_SETATTR", 688 "RFS2_ROOT", 689 "RFS2_LOOKUP", 690 "RFS2_READLINK", 691 "RFS2_READ", 692 "RFS2_WRITECACHE", 693 "RFS2_WRITE", 694 "RFS2_CREATE", 695 "RFS2_REMOVE", 696 "RFS2_RENAME", 697 "RFS2_LINK", 698 "RFS2_SYMLINK", 699 "RFS2_MKDIR", 700 "RFS2_RMDIR", 701 "RFS2_READDIR", 702 "RFS2_STATFS" 703 }; 704 705 static struct rpcdisp rfsdisptab_v2[] = { 706 /* 707 * NFS VERSION 2 708 */ 709 710 /* RFS_NULL = 0 */ 711 {rpc_null, 712 xdr_void, NULL_xdrproc_t, 0, 713 xdr_void, NULL_xdrproc_t, 0, 714 nullfree, RPC_IDEMPOTENT, 715 0}, 716 717 /* RFS_GETATTR = 1 */ 718 {rfs_getattr, 719 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 720 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 721 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 722 rfs_getattr_getfh}, 723 724 /* RFS_SETATTR = 2 */ 725 {rfs_setattr, 726 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs), 727 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 728 nullfree, RPC_MAPRESP, 729 rfs_setattr_getfh}, 730 731 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 732 {rfs_error, 733 xdr_void, NULL_xdrproc_t, 0, 734 xdr_void, NULL_xdrproc_t, 0, 735 nullfree, RPC_IDEMPOTENT, 736 0}, 737 738 /* RFS_LOOKUP = 4 */ 739 {rfs_lookup, 740 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 741 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 742 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK, 743 rfs_lookup_getfh}, 744 745 /* RFS_READLINK = 5 */ 746 {rfs_readlink, 747 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 748 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres), 749 rfs_rlfree, RPC_IDEMPOTENT, 750 rfs_readlink_getfh}, 751 752 /* RFS_READ = 6 */ 753 {rfs_read, 754 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs), 755 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult), 756 rfs_rdfree, RPC_IDEMPOTENT, 757 rfs_read_getfh}, 758 759 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 760 {rfs_error, 761 xdr_void, NULL_xdrproc_t, 0, 762 xdr_void, NULL_xdrproc_t, 0, 763 nullfree, RPC_IDEMPOTENT, 764 0}, 765 766 /* RFS_WRITE = 8 */ 767 {rfs_write, 768 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs), 769 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 770 nullfree, RPC_MAPRESP, 771 rfs_write_getfh}, 772 773 /* RFS_CREATE = 9 */ 774 {rfs_create, 775 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 776 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 777 nullfree, RPC_MAPRESP, 778 rfs_create_getfh}, 779 780 /* RFS_REMOVE = 10 */ 781 {rfs_remove, 782 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 783 #ifdef _LITTLE_ENDIAN 784 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 785 #else 786 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 787 #endif 788 nullfree, RPC_MAPRESP, 789 rfs_remove_getfh}, 790 791 /* RFS_RENAME = 11 */ 792 {rfs_rename, 793 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs), 794 #ifdef _LITTLE_ENDIAN 795 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 796 #else 797 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 798 #endif 799 nullfree, RPC_MAPRESP, 800 rfs_rename_getfh}, 801 802 /* RFS_LINK = 12 */ 803 {rfs_link, 804 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs), 805 #ifdef _LITTLE_ENDIAN 806 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 807 #else 808 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 809 #endif 810 nullfree, RPC_MAPRESP, 811 rfs_link_getfh}, 812 813 /* RFS_SYMLINK = 13 */ 814 {rfs_symlink, 815 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs), 816 #ifdef _LITTLE_ENDIAN 817 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 818 #else 819 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 820 #endif 821 nullfree, RPC_MAPRESP, 822 rfs_symlink_getfh}, 823 824 /* RFS_MKDIR = 14 */ 825 {rfs_mkdir, 826 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 827 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 828 nullfree, RPC_MAPRESP, 829 rfs_mkdir_getfh}, 830 831 /* RFS_RMDIR = 15 */ 832 {rfs_rmdir, 833 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 834 #ifdef _LITTLE_ENDIAN 835 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 836 #else 837 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 838 #endif 839 nullfree, RPC_MAPRESP, 840 rfs_rmdir_getfh}, 841 842 /* RFS_READDIR = 16 */ 843 {rfs_readdir, 844 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs), 845 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres), 846 rfs_rddirfree, RPC_IDEMPOTENT, 847 rfs_readdir_getfh}, 848 849 /* RFS_STATFS = 17 */ 850 {rfs_statfs, 851 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 852 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs), 853 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 854 rfs_statfs_getfh}, 855 }; 856 857 static char *rfscallnames_v3[] = { 858 "RFS3_NULL", 859 "RFS3_GETATTR", 860 "RFS3_SETATTR", 861 "RFS3_LOOKUP", 862 "RFS3_ACCESS", 863 "RFS3_READLINK", 864 "RFS3_READ", 865 "RFS3_WRITE", 866 "RFS3_CREATE", 867 "RFS3_MKDIR", 868 "RFS3_SYMLINK", 869 "RFS3_MKNOD", 870 "RFS3_REMOVE", 871 "RFS3_RMDIR", 872 "RFS3_RENAME", 873 "RFS3_LINK", 874 "RFS3_READDIR", 875 "RFS3_READDIRPLUS", 876 "RFS3_FSSTAT", 877 "RFS3_FSINFO", 878 "RFS3_PATHCONF", 879 "RFS3_COMMIT" 880 }; 881 882 static struct rpcdisp rfsdisptab_v3[] = { 883 /* 884 * NFS VERSION 3 885 */ 886 887 /* RFS_NULL = 0 */ 888 {rpc_null_v3, 889 xdr_void, NULL_xdrproc_t, 0, 890 xdr_void, NULL_xdrproc_t, 0, 891 nullfree, RPC_IDEMPOTENT, 892 0}, 893 894 /* RFS3_GETATTR = 1 */ 895 {rfs3_getattr, 896 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args), 897 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res), 898 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON), 899 rfs3_getattr_getfh}, 900 901 /* RFS3_SETATTR = 2 */ 902 {rfs3_setattr, 903 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args), 904 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res), 905 nullfree, 0, 906 rfs3_setattr_getfh}, 907 908 /* RFS3_LOOKUP = 3 */ 909 {rfs3_lookup, 910 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args), 911 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res), 912 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK), 913 rfs3_lookup_getfh}, 914 915 /* RFS3_ACCESS = 4 */ 916 {rfs3_access, 917 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args), 918 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res), 919 nullfree, RPC_IDEMPOTENT, 920 rfs3_access_getfh}, 921 922 /* RFS3_READLINK = 5 */ 923 {rfs3_readlink, 924 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args), 925 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res), 926 rfs3_readlink_free, RPC_IDEMPOTENT, 927 rfs3_readlink_getfh}, 928 929 /* RFS3_READ = 6 */ 930 {rfs3_read, 931 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args), 932 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res), 933 rfs3_read_free, RPC_IDEMPOTENT, 934 rfs3_read_getfh}, 935 936 /* RFS3_WRITE = 7 */ 937 {rfs3_write, 938 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args), 939 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res), 940 nullfree, 0, 941 rfs3_write_getfh}, 942 943 /* RFS3_CREATE = 8 */ 944 {rfs3_create, 945 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args), 946 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res), 947 nullfree, 0, 948 rfs3_create_getfh}, 949 950 /* RFS3_MKDIR = 9 */ 951 {rfs3_mkdir, 952 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args), 953 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res), 954 nullfree, 0, 955 rfs3_mkdir_getfh}, 956 957 /* RFS3_SYMLINK = 10 */ 958 {rfs3_symlink, 959 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args), 960 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res), 961 nullfree, 0, 962 rfs3_symlink_getfh}, 963 964 /* RFS3_MKNOD = 11 */ 965 {rfs3_mknod, 966 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args), 967 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res), 968 nullfree, 0, 969 rfs3_mknod_getfh}, 970 971 /* RFS3_REMOVE = 12 */ 972 {rfs3_remove, 973 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args), 974 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res), 975 nullfree, 0, 976 rfs3_remove_getfh}, 977 978 /* RFS3_RMDIR = 13 */ 979 {rfs3_rmdir, 980 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args), 981 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res), 982 nullfree, 0, 983 rfs3_rmdir_getfh}, 984 985 /* RFS3_RENAME = 14 */ 986 {rfs3_rename, 987 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args), 988 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res), 989 nullfree, 0, 990 rfs3_rename_getfh}, 991 992 /* RFS3_LINK = 15 */ 993 {rfs3_link, 994 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args), 995 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res), 996 nullfree, 0, 997 rfs3_link_getfh}, 998 999 /* RFS3_READDIR = 16 */ 1000 {rfs3_readdir, 1001 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args), 1002 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res), 1003 rfs3_readdir_free, RPC_IDEMPOTENT, 1004 rfs3_readdir_getfh}, 1005 1006 /* RFS3_READDIRPLUS = 17 */ 1007 {rfs3_readdirplus, 1008 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args), 1009 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res), 1010 rfs3_readdirplus_free, RPC_AVOIDWORK, 1011 rfs3_readdirplus_getfh}, 1012 1013 /* RFS3_FSSTAT = 18 */ 1014 {rfs3_fsstat, 1015 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args), 1016 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res), 1017 nullfree, RPC_IDEMPOTENT, 1018 rfs3_fsstat_getfh}, 1019 1020 /* RFS3_FSINFO = 19 */ 1021 {rfs3_fsinfo, 1022 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args), 1023 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res), 1024 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON, 1025 rfs3_fsinfo_getfh}, 1026 1027 /* RFS3_PATHCONF = 20 */ 1028 {rfs3_pathconf, 1029 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args), 1030 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res), 1031 nullfree, RPC_IDEMPOTENT, 1032 rfs3_pathconf_getfh}, 1033 1034 /* RFS3_COMMIT = 21 */ 1035 {rfs3_commit, 1036 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args), 1037 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res), 1038 nullfree, RPC_IDEMPOTENT, 1039 rfs3_commit_getfh}, 1040 }; 1041 1042 static char *rfscallnames_v4[] = { 1043 "RFS4_NULL", 1044 "RFS4_COMPOUND", 1045 "RFS4_NULL", 1046 "RFS4_NULL", 1047 "RFS4_NULL", 1048 "RFS4_NULL", 1049 "RFS4_NULL", 1050 "RFS4_NULL", 1051 "RFS4_CREATE" 1052 }; 1053 1054 static struct rpcdisp rfsdisptab_v4[] = { 1055 /* 1056 * NFS VERSION 4 1057 */ 1058 1059 /* RFS_NULL = 0 */ 1060 {rpc_null, 1061 xdr_void, NULL_xdrproc_t, 0, 1062 xdr_void, NULL_xdrproc_t, 0, 1063 nullfree, RPC_IDEMPOTENT, 0}, 1064 1065 /* RFS4_compound = 1 */ 1066 {rfs4_compound, 1067 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args), 1068 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res), 1069 rfs4_compound_free, 0, 0}, 1070 }; 1071 1072 union rfs_args { 1073 /* 1074 * NFS VERSION 2 1075 */ 1076 1077 /* RFS_NULL = 0 */ 1078 1079 /* RFS_GETATTR = 1 */ 1080 fhandle_t nfs2_getattr_args; 1081 1082 /* RFS_SETATTR = 2 */ 1083 struct nfssaargs nfs2_setattr_args; 1084 1085 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1086 1087 /* RFS_LOOKUP = 4 */ 1088 struct nfsdiropargs nfs2_lookup_args; 1089 1090 /* RFS_READLINK = 5 */ 1091 fhandle_t nfs2_readlink_args; 1092 1093 /* RFS_READ = 6 */ 1094 struct nfsreadargs nfs2_read_args; 1095 1096 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1097 1098 /* RFS_WRITE = 8 */ 1099 struct nfswriteargs nfs2_write_args; 1100 1101 /* RFS_CREATE = 9 */ 1102 struct nfscreatargs nfs2_create_args; 1103 1104 /* RFS_REMOVE = 10 */ 1105 struct nfsdiropargs nfs2_remove_args; 1106 1107 /* RFS_RENAME = 11 */ 1108 struct nfsrnmargs nfs2_rename_args; 1109 1110 /* RFS_LINK = 12 */ 1111 struct nfslinkargs nfs2_link_args; 1112 1113 /* RFS_SYMLINK = 13 */ 1114 struct nfsslargs nfs2_symlink_args; 1115 1116 /* RFS_MKDIR = 14 */ 1117 struct nfscreatargs nfs2_mkdir_args; 1118 1119 /* RFS_RMDIR = 15 */ 1120 struct nfsdiropargs nfs2_rmdir_args; 1121 1122 /* RFS_READDIR = 16 */ 1123 struct nfsrddirargs nfs2_readdir_args; 1124 1125 /* RFS_STATFS = 17 */ 1126 fhandle_t nfs2_statfs_args; 1127 1128 /* 1129 * NFS VERSION 3 1130 */ 1131 1132 /* RFS_NULL = 0 */ 1133 1134 /* RFS3_GETATTR = 1 */ 1135 GETATTR3args nfs3_getattr_args; 1136 1137 /* RFS3_SETATTR = 2 */ 1138 SETATTR3args nfs3_setattr_args; 1139 1140 /* RFS3_LOOKUP = 3 */ 1141 LOOKUP3args nfs3_lookup_args; 1142 1143 /* RFS3_ACCESS = 4 */ 1144 ACCESS3args nfs3_access_args; 1145 1146 /* RFS3_READLINK = 5 */ 1147 READLINK3args nfs3_readlink_args; 1148 1149 /* RFS3_READ = 6 */ 1150 READ3args nfs3_read_args; 1151 1152 /* RFS3_WRITE = 7 */ 1153 WRITE3args nfs3_write_args; 1154 1155 /* RFS3_CREATE = 8 */ 1156 CREATE3args nfs3_create_args; 1157 1158 /* RFS3_MKDIR = 9 */ 1159 MKDIR3args nfs3_mkdir_args; 1160 1161 /* RFS3_SYMLINK = 10 */ 1162 SYMLINK3args nfs3_symlink_args; 1163 1164 /* RFS3_MKNOD = 11 */ 1165 MKNOD3args nfs3_mknod_args; 1166 1167 /* RFS3_REMOVE = 12 */ 1168 REMOVE3args nfs3_remove_args; 1169 1170 /* RFS3_RMDIR = 13 */ 1171 RMDIR3args nfs3_rmdir_args; 1172 1173 /* RFS3_RENAME = 14 */ 1174 RENAME3args nfs3_rename_args; 1175 1176 /* RFS3_LINK = 15 */ 1177 LINK3args nfs3_link_args; 1178 1179 /* RFS3_READDIR = 16 */ 1180 READDIR3args nfs3_readdir_args; 1181 1182 /* RFS3_READDIRPLUS = 17 */ 1183 READDIRPLUS3args nfs3_readdirplus_args; 1184 1185 /* RFS3_FSSTAT = 18 */ 1186 FSSTAT3args nfs3_fsstat_args; 1187 1188 /* RFS3_FSINFO = 19 */ 1189 FSINFO3args nfs3_fsinfo_args; 1190 1191 /* RFS3_PATHCONF = 20 */ 1192 PATHCONF3args nfs3_pathconf_args; 1193 1194 /* RFS3_COMMIT = 21 */ 1195 COMMIT3args nfs3_commit_args; 1196 1197 /* 1198 * NFS VERSION 4 1199 */ 1200 1201 /* RFS_NULL = 0 */ 1202 1203 /* COMPUND = 1 */ 1204 COMPOUND4args nfs4_compound_args; 1205 }; 1206 1207 union rfs_res { 1208 /* 1209 * NFS VERSION 2 1210 */ 1211 1212 /* RFS_NULL = 0 */ 1213 1214 /* RFS_GETATTR = 1 */ 1215 struct nfsattrstat nfs2_getattr_res; 1216 1217 /* RFS_SETATTR = 2 */ 1218 struct nfsattrstat nfs2_setattr_res; 1219 1220 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1221 1222 /* RFS_LOOKUP = 4 */ 1223 struct nfsdiropres nfs2_lookup_res; 1224 1225 /* RFS_READLINK = 5 */ 1226 struct nfsrdlnres nfs2_readlink_res; 1227 1228 /* RFS_READ = 6 */ 1229 struct nfsrdresult nfs2_read_res; 1230 1231 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1232 1233 /* RFS_WRITE = 8 */ 1234 struct nfsattrstat nfs2_write_res; 1235 1236 /* RFS_CREATE = 9 */ 1237 struct nfsdiropres nfs2_create_res; 1238 1239 /* RFS_REMOVE = 10 */ 1240 enum nfsstat nfs2_remove_res; 1241 1242 /* RFS_RENAME = 11 */ 1243 enum nfsstat nfs2_rename_res; 1244 1245 /* RFS_LINK = 12 */ 1246 enum nfsstat nfs2_link_res; 1247 1248 /* RFS_SYMLINK = 13 */ 1249 enum nfsstat nfs2_symlink_res; 1250 1251 /* RFS_MKDIR = 14 */ 1252 struct nfsdiropres nfs2_mkdir_res; 1253 1254 /* RFS_RMDIR = 15 */ 1255 enum nfsstat nfs2_rmdir_res; 1256 1257 /* RFS_READDIR = 16 */ 1258 struct nfsrddirres nfs2_readdir_res; 1259 1260 /* RFS_STATFS = 17 */ 1261 struct nfsstatfs nfs2_statfs_res; 1262 1263 /* 1264 * NFS VERSION 3 1265 */ 1266 1267 /* RFS_NULL = 0 */ 1268 1269 /* RFS3_GETATTR = 1 */ 1270 GETATTR3res nfs3_getattr_res; 1271 1272 /* RFS3_SETATTR = 2 */ 1273 SETATTR3res nfs3_setattr_res; 1274 1275 /* RFS3_LOOKUP = 3 */ 1276 LOOKUP3res nfs3_lookup_res; 1277 1278 /* RFS3_ACCESS = 4 */ 1279 ACCESS3res nfs3_access_res; 1280 1281 /* RFS3_READLINK = 5 */ 1282 READLINK3res nfs3_readlink_res; 1283 1284 /* RFS3_READ = 6 */ 1285 READ3res nfs3_read_res; 1286 1287 /* RFS3_WRITE = 7 */ 1288 WRITE3res nfs3_write_res; 1289 1290 /* RFS3_CREATE = 8 */ 1291 CREATE3res nfs3_create_res; 1292 1293 /* RFS3_MKDIR = 9 */ 1294 MKDIR3res nfs3_mkdir_res; 1295 1296 /* RFS3_SYMLINK = 10 */ 1297 SYMLINK3res nfs3_symlink_res; 1298 1299 /* RFS3_MKNOD = 11 */ 1300 MKNOD3res nfs3_mknod_res; 1301 1302 /* RFS3_REMOVE = 12 */ 1303 REMOVE3res nfs3_remove_res; 1304 1305 /* RFS3_RMDIR = 13 */ 1306 RMDIR3res nfs3_rmdir_res; 1307 1308 /* RFS3_RENAME = 14 */ 1309 RENAME3res nfs3_rename_res; 1310 1311 /* RFS3_LINK = 15 */ 1312 LINK3res nfs3_link_res; 1313 1314 /* RFS3_READDIR = 16 */ 1315 READDIR3res nfs3_readdir_res; 1316 1317 /* RFS3_READDIRPLUS = 17 */ 1318 READDIRPLUS3res nfs3_readdirplus_res; 1319 1320 /* RFS3_FSSTAT = 18 */ 1321 FSSTAT3res nfs3_fsstat_res; 1322 1323 /* RFS3_FSINFO = 19 */ 1324 FSINFO3res nfs3_fsinfo_res; 1325 1326 /* RFS3_PATHCONF = 20 */ 1327 PATHCONF3res nfs3_pathconf_res; 1328 1329 /* RFS3_COMMIT = 21 */ 1330 COMMIT3res nfs3_commit_res; 1331 1332 /* 1333 * NFS VERSION 4 1334 */ 1335 1336 /* RFS_NULL = 0 */ 1337 1338 /* RFS4_COMPOUND = 1 */ 1339 COMPOUND4res nfs4_compound_res; 1340 1341 }; 1342 1343 static struct rpc_disptable rfs_disptable[] = { 1344 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]), 1345 rfscallnames_v2, 1346 rfsdisptab_v2}, 1347 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]), 1348 rfscallnames_v3, 1349 rfsdisptab_v3}, 1350 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]), 1351 rfscallnames_v4, 1352 rfsdisptab_v4}, 1353 }; 1354 1355 /* 1356 * If nfs_portmon is set, then clients are required to use privileged 1357 * ports (ports < IPPORT_RESERVED) in order to get NFS services. 1358 * 1359 * N.B.: this attempt to carry forward the already ill-conceived notion 1360 * of privileged ports for TCP/UDP is really quite ineffectual. Not only 1361 * is it transport-dependent, it's laughably easy to spoof. If you're 1362 * really interested in security, you must start with secure RPC instead. 1363 */ 1364 static int nfs_portmon = 0; 1365 1366 #ifdef DEBUG 1367 /* 1368 * Debug code to allow disabling of rfs_dispatch() use of 1369 * fastxdrargs() and fastxdrres() calls for testing purposes. 1370 */ 1371 static int rfs_no_fast_xdrargs = 0; 1372 static int rfs_no_fast_xdrres = 0; 1373 #endif 1374 1375 union acl_args { 1376 /* 1377 * ACL VERSION 2 1378 */ 1379 1380 /* ACL2_NULL = 0 */ 1381 1382 /* ACL2_GETACL = 1 */ 1383 GETACL2args acl2_getacl_args; 1384 1385 /* ACL2_SETACL = 2 */ 1386 SETACL2args acl2_setacl_args; 1387 1388 /* ACL2_GETATTR = 3 */ 1389 GETATTR2args acl2_getattr_args; 1390 1391 /* ACL2_ACCESS = 4 */ 1392 ACCESS2args acl2_access_args; 1393 1394 /* ACL2_GETXATTRDIR = 5 */ 1395 GETXATTRDIR2args acl2_getxattrdir_args; 1396 1397 /* 1398 * ACL VERSION 3 1399 */ 1400 1401 /* ACL3_NULL = 0 */ 1402 1403 /* ACL3_GETACL = 1 */ 1404 GETACL3args acl3_getacl_args; 1405 1406 /* ACL3_SETACL = 2 */ 1407 SETACL3args acl3_setacl; 1408 1409 /* ACL3_GETXATTRDIR = 3 */ 1410 GETXATTRDIR3args acl3_getxattrdir_args; 1411 1412 }; 1413 1414 union acl_res { 1415 /* 1416 * ACL VERSION 2 1417 */ 1418 1419 /* ACL2_NULL = 0 */ 1420 1421 /* ACL2_GETACL = 1 */ 1422 GETACL2res acl2_getacl_res; 1423 1424 /* ACL2_SETACL = 2 */ 1425 SETACL2res acl2_setacl_res; 1426 1427 /* ACL2_GETATTR = 3 */ 1428 GETATTR2res acl2_getattr_res; 1429 1430 /* ACL2_ACCESS = 4 */ 1431 ACCESS2res acl2_access_res; 1432 1433 /* ACL2_GETXATTRDIR = 5 */ 1434 GETXATTRDIR2args acl2_getxattrdir_res; 1435 1436 /* 1437 * ACL VERSION 3 1438 */ 1439 1440 /* ACL3_NULL = 0 */ 1441 1442 /* ACL3_GETACL = 1 */ 1443 GETACL3res acl3_getacl_res; 1444 1445 /* ACL3_SETACL = 2 */ 1446 SETACL3res acl3_setacl_res; 1447 1448 /* ACL3_GETXATTRDIR = 3 */ 1449 GETXATTRDIR3res acl3_getxattrdir_res; 1450 1451 }; 1452 1453 static bool_t 1454 auth_tooweak(struct svc_req *req, char *res) 1455 { 1456 1457 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) { 1458 struct nfsdiropres *dr = (struct nfsdiropres *)res; 1459 if ((enum wnfsstat)dr->dr_status == WNFSERR_CLNT_FLAVOR) 1460 return (TRUE); 1461 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) { 1462 LOOKUP3res *resp = (LOOKUP3res *)res; 1463 if ((enum wnfsstat)resp->status == WNFSERR_CLNT_FLAVOR) 1464 return (TRUE); 1465 } 1466 return (FALSE); 1467 } 1468 1469 static void 1470 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers, 1471 rpcvers_t max_vers, char *pgmname, struct rpc_disptable *disptable) 1472 { 1473 int which; 1474 rpcvers_t vers; 1475 char *args; 1476 union { 1477 union rfs_args ra; 1478 union acl_args aa; 1479 } args_buf; 1480 char *res; 1481 union { 1482 union rfs_res rr; 1483 union acl_res ar; 1484 } res_buf; 1485 struct rpcdisp *disp = NULL; 1486 int dis_flags = 0; 1487 cred_t *cr; 1488 int error = 0; 1489 int anon_ok; 1490 struct exportinfo *exi = NULL; 1491 unsigned int nfslog_rec_id; 1492 int dupstat; 1493 struct dupreq *dr; 1494 int authres; 1495 bool_t publicfh_ok = FALSE; 1496 enum_t auth_flavor; 1497 bool_t dupcached = FALSE; 1498 struct netbuf nb; 1499 bool_t logging_enabled = FALSE; 1500 struct exportinfo *nfslog_exi = NULL; 1501 char **procnames; 1502 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1503 bool_t ro = FALSE; 1504 nfs_globals_t *ng = nfs_srv_getzg(); 1505 nfs_export_t *ne = ng->nfs_export; 1506 kstat_named_t *svstat, *procstat; 1507 1508 ASSERT(req->rq_prog == NFS_PROGRAM || req->rq_prog == NFS_ACL_PROGRAM); 1509 1510 vers = req->rq_vers; 1511 1512 svstat = ng->svstat[req->rq_vers]; 1513 procstat = (req->rq_prog == NFS_PROGRAM) ? 1514 ng->rfsproccnt[vers] : ng->aclproccnt[vers]; 1515 1516 if (vers < min_vers || vers > max_vers) { 1517 svcerr_progvers(req->rq_xprt, min_vers, max_vers); 1518 error++; 1519 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers); 1520 goto done; 1521 } 1522 vers -= min_vers; 1523 1524 which = req->rq_proc; 1525 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) { 1526 svcerr_noproc(req->rq_xprt); 1527 error++; 1528 goto done; 1529 } 1530 1531 procstat[which].value.ui64++; 1532 1533 disp = &disptable[(int)vers].dis_table[which]; 1534 procnames = disptable[(int)vers].dis_procnames; 1535 1536 auth_flavor = req->rq_cred.oa_flavor; 1537 1538 /* 1539 * Deserialize into the args struct. 1540 */ 1541 args = (char *)&args_buf; 1542 1543 #ifdef DEBUG 1544 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) || 1545 disp->dis_fastxdrargs == NULL_xdrproc_t || 1546 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1547 #else 1548 if ((auth_flavor == RPCSEC_GSS) || 1549 disp->dis_fastxdrargs == NULL_xdrproc_t || 1550 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1551 #endif 1552 { 1553 bzero(args, disp->dis_argsz); 1554 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) { 1555 error++; 1556 /* 1557 * Check if we are outside our capabilities. 1558 */ 1559 if (rfs4_minorvers_mismatch(req, xprt, (void *)args)) 1560 goto done; 1561 1562 svcerr_decode(xprt); 1563 cmn_err(CE_NOTE, 1564 "Failed to decode arguments for %s version %u " 1565 "procedure %s client %s%s", 1566 pgmname, vers + min_vers, procnames[which], 1567 client_name(req), client_addr(req, cbuf)); 1568 goto done; 1569 } 1570 } 1571 1572 /* 1573 * If Version 4 use that specific dispatch function. 1574 */ 1575 if (req->rq_vers == 4) { 1576 error += rfs4_dispatch(disp, req, xprt, args); 1577 goto done; 1578 } 1579 1580 dis_flags = disp->dis_flags; 1581 1582 /* 1583 * Find export information and check authentication, 1584 * setting the credential if everything is ok. 1585 */ 1586 if (disp->dis_getfh != NULL) { 1587 void *fh; 1588 fsid_t *fsid; 1589 fid_t *fid, *xfid; 1590 fhandle_t *fh2; 1591 nfs_fh3 *fh3; 1592 1593 fh = (*disp->dis_getfh)(args); 1594 switch (req->rq_vers) { 1595 case NFS_VERSION: 1596 fh2 = (fhandle_t *)fh; 1597 fsid = &fh2->fh_fsid; 1598 fid = (fid_t *)&fh2->fh_len; 1599 xfid = (fid_t *)&fh2->fh_xlen; 1600 break; 1601 case NFS_V3: 1602 fh3 = (nfs_fh3 *)fh; 1603 fsid = &fh3->fh3_fsid; 1604 fid = FH3TOFIDP(fh3); 1605 xfid = FH3TOXFIDP(fh3); 1606 break; 1607 } 1608 1609 /* 1610 * Fix for bug 1038302 - corbin 1611 * There is a problem here if anonymous access is 1612 * disallowed. If the current request is part of the 1613 * client's mount process for the requested filesystem, 1614 * then it will carry root (uid 0) credentials on it, and 1615 * will be denied by checkauth if that client does not 1616 * have explicit root=0 permission. This will cause the 1617 * client's mount operation to fail. As a work-around, 1618 * we check here to see if the request is a getattr or 1619 * statfs operation on the exported vnode itself, and 1620 * pass a flag to checkauth with the result of this test. 1621 * 1622 * The filehandle refers to the mountpoint itself if 1623 * the fh_data and fh_xdata portions of the filehandle 1624 * are equal. 1625 * 1626 * Added anon_ok argument to checkauth(). 1627 */ 1628 1629 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid)) 1630 anon_ok = 1; 1631 else 1632 anon_ok = 0; 1633 1634 cr = svc_xprt_cred(xprt); 1635 1636 exi = checkexport(fsid, xfid); 1637 1638 if (exi != NULL) { 1639 publicfh_ok = PUBLICFH_CHECK(ne, disp, exi, fsid, xfid); 1640 1641 /* 1642 * Don't allow non-V4 clients access 1643 * to pseudo exports 1644 */ 1645 if (PSEUDO(exi)) { 1646 svcerr_weakauth(xprt); 1647 error++; 1648 goto done; 1649 } 1650 1651 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok, 1652 &ro); 1653 /* 1654 * authres > 0: authentication OK - proceed 1655 * authres == 0: authentication weak - return error 1656 * authres < 0: authentication timeout - drop 1657 */ 1658 if (authres <= 0) { 1659 if (authres == 0) { 1660 svcerr_weakauth(xprt); 1661 error++; 1662 } 1663 goto done; 1664 } 1665 } 1666 } else 1667 cr = NULL; 1668 1669 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) { 1670 res = (char *)SVC_GETRES(xprt, disp->dis_ressz); 1671 if (res == NULL) 1672 res = (char *)&res_buf; 1673 } else 1674 res = (char *)&res_buf; 1675 1676 if (!(dis_flags & RPC_IDEMPOTENT)) { 1677 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr, 1678 &dupcached); 1679 1680 switch (dupstat) { 1681 case DUP_ERROR: 1682 svcerr_systemerr(xprt); 1683 error++; 1684 goto done; 1685 /* NOTREACHED */ 1686 case DUP_INPROGRESS: 1687 if (res != (char *)&res_buf) 1688 SVC_FREERES(xprt); 1689 error++; 1690 goto done; 1691 /* NOTREACHED */ 1692 case DUP_NEW: 1693 case DUP_DROP: 1694 curthread->t_flag |= T_DONTPEND; 1695 1696 (*disp->dis_proc)(args, res, exi, req, cr, ro); 1697 1698 curthread->t_flag &= ~T_DONTPEND; 1699 if (curthread->t_flag & T_WOULDBLOCK) { 1700 curthread->t_flag &= ~T_WOULDBLOCK; 1701 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1702 disp->dis_ressz, DUP_DROP); 1703 if (res != (char *)&res_buf) 1704 SVC_FREERES(xprt); 1705 error++; 1706 goto done; 1707 } 1708 if (dis_flags & RPC_AVOIDWORK) { 1709 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1710 disp->dis_ressz, DUP_DROP); 1711 } else { 1712 SVC_DUPDONE_EXT(xprt, dr, res, 1713 disp->dis_resfree == nullfree ? NULL : 1714 disp->dis_resfree, 1715 disp->dis_ressz, DUP_DONE); 1716 dupcached = TRUE; 1717 } 1718 break; 1719 case DUP_DONE: 1720 break; 1721 } 1722 1723 } else { 1724 curthread->t_flag |= T_DONTPEND; 1725 1726 (*disp->dis_proc)(args, res, exi, req, cr, ro); 1727 1728 curthread->t_flag &= ~T_DONTPEND; 1729 if (curthread->t_flag & T_WOULDBLOCK) { 1730 curthread->t_flag &= ~T_WOULDBLOCK; 1731 if (res != (char *)&res_buf) 1732 SVC_FREERES(xprt); 1733 error++; 1734 goto done; 1735 } 1736 } 1737 1738 if (auth_tooweak(req, res)) { 1739 svcerr_weakauth(xprt); 1740 error++; 1741 goto done; 1742 } 1743 1744 /* 1745 * Check to see if logging has been enabled on the server. 1746 * If so, then obtain the export info struct to be used for 1747 * the later writing of the log record. This is done for 1748 * the case that a lookup is done across a non-logged public 1749 * file system. 1750 */ 1751 if (nfslog_buffer_list != NULL) { 1752 nfslog_exi = nfslog_get_exi(ne, exi, req, res, &nfslog_rec_id); 1753 /* 1754 * Is logging enabled? 1755 */ 1756 logging_enabled = (nfslog_exi != NULL); 1757 1758 /* 1759 * Copy the netbuf for logging purposes, before it is 1760 * freed by svc_sendreply(). 1761 */ 1762 if (logging_enabled) { 1763 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb); 1764 /* 1765 * If RPC_MAPRESP flag set (i.e. in V2 ops) the 1766 * res gets copied directly into the mbuf and 1767 * may be freed soon after the sendreply. So we 1768 * must copy it here to a safe place... 1769 */ 1770 if (res != (char *)&res_buf) { 1771 bcopy(res, (char *)&res_buf, disp->dis_ressz); 1772 } 1773 } 1774 } 1775 1776 /* 1777 * Serialize and send results struct 1778 */ 1779 #ifdef DEBUG 1780 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf) 1781 #else 1782 if (res != (char *)&res_buf) 1783 #endif 1784 { 1785 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) { 1786 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1787 svcerr_systemerr(xprt); 1788 error++; 1789 } 1790 } else { 1791 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) { 1792 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1793 svcerr_systemerr(xprt); 1794 error++; 1795 } 1796 } 1797 1798 /* 1799 * Log if needed 1800 */ 1801 if (logging_enabled) { 1802 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf, 1803 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER); 1804 exi_rele(nfslog_exi); 1805 kmem_free((&nb)->buf, (&nb)->len); 1806 } 1807 1808 /* 1809 * Free results struct. With the addition of NFS V4 we can 1810 * have non-idempotent procedures with functions. 1811 */ 1812 if (disp->dis_resfree != nullfree && dupcached == FALSE) { 1813 (*disp->dis_resfree)(res); 1814 } 1815 1816 done: 1817 /* 1818 * Free arguments struct 1819 */ 1820 if (disp) { 1821 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) { 1822 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1823 error++; 1824 } 1825 } else { 1826 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) { 1827 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1828 error++; 1829 } 1830 } 1831 1832 if (exi != NULL) 1833 exi_rele(exi); 1834 1835 svstat[NFS_BADCALLS].value.ui64 += error; 1836 svstat[NFS_CALLS].value.ui64++; 1837 } 1838 1839 static void 1840 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt) 1841 { 1842 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX, 1843 "NFS", rfs_disptable); 1844 } 1845 1846 static char *aclcallnames_v2[] = { 1847 "ACL2_NULL", 1848 "ACL2_GETACL", 1849 "ACL2_SETACL", 1850 "ACL2_GETATTR", 1851 "ACL2_ACCESS", 1852 "ACL2_GETXATTRDIR" 1853 }; 1854 1855 static struct rpcdisp acldisptab_v2[] = { 1856 /* 1857 * ACL VERSION 2 1858 */ 1859 1860 /* ACL2_NULL = 0 */ 1861 {rpc_null, 1862 xdr_void, NULL_xdrproc_t, 0, 1863 xdr_void, NULL_xdrproc_t, 0, 1864 nullfree, RPC_IDEMPOTENT, 1865 0}, 1866 1867 /* ACL2_GETACL = 1 */ 1868 {acl2_getacl, 1869 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args), 1870 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res), 1871 acl2_getacl_free, RPC_IDEMPOTENT, 1872 acl2_getacl_getfh}, 1873 1874 /* ACL2_SETACL = 2 */ 1875 {acl2_setacl, 1876 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args), 1877 #ifdef _LITTLE_ENDIAN 1878 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res), 1879 #else 1880 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res), 1881 #endif 1882 nullfree, RPC_MAPRESP, 1883 acl2_setacl_getfh}, 1884 1885 /* ACL2_GETATTR = 3 */ 1886 {acl2_getattr, 1887 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args), 1888 #ifdef _LITTLE_ENDIAN 1889 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res), 1890 #else 1891 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res), 1892 #endif 1893 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 1894 acl2_getattr_getfh}, 1895 1896 /* ACL2_ACCESS = 4 */ 1897 {acl2_access, 1898 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args), 1899 #ifdef _LITTLE_ENDIAN 1900 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res), 1901 #else 1902 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res), 1903 #endif 1904 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP, 1905 acl2_access_getfh}, 1906 1907 /* ACL2_GETXATTRDIR = 5 */ 1908 {acl2_getxattrdir, 1909 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args), 1910 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res), 1911 nullfree, RPC_IDEMPOTENT, 1912 acl2_getxattrdir_getfh}, 1913 }; 1914 1915 static char *aclcallnames_v3[] = { 1916 "ACL3_NULL", 1917 "ACL3_GETACL", 1918 "ACL3_SETACL", 1919 "ACL3_GETXATTRDIR" 1920 }; 1921 1922 static struct rpcdisp acldisptab_v3[] = { 1923 /* 1924 * ACL VERSION 3 1925 */ 1926 1927 /* ACL3_NULL = 0 */ 1928 {rpc_null, 1929 xdr_void, NULL_xdrproc_t, 0, 1930 xdr_void, NULL_xdrproc_t, 0, 1931 nullfree, RPC_IDEMPOTENT, 1932 0}, 1933 1934 /* ACL3_GETACL = 1 */ 1935 {acl3_getacl, 1936 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args), 1937 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res), 1938 acl3_getacl_free, RPC_IDEMPOTENT, 1939 acl3_getacl_getfh}, 1940 1941 /* ACL3_SETACL = 2 */ 1942 {acl3_setacl, 1943 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args), 1944 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res), 1945 nullfree, 0, 1946 acl3_setacl_getfh}, 1947 1948 /* ACL3_GETXATTRDIR = 3 */ 1949 {acl3_getxattrdir, 1950 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args), 1951 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res), 1952 nullfree, RPC_IDEMPOTENT, 1953 acl3_getxattrdir_getfh}, 1954 }; 1955 1956 static struct rpc_disptable acl_disptable[] = { 1957 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]), 1958 aclcallnames_v2, 1959 acldisptab_v2}, 1960 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]), 1961 aclcallnames_v3, 1962 acldisptab_v3}, 1963 }; 1964 1965 static void 1966 acl_dispatch(struct svc_req *req, SVCXPRT *xprt) 1967 { 1968 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, 1969 "ACL", acl_disptable); 1970 } 1971 1972 int 1973 checkwin(int flavor, int window, struct svc_req *req) 1974 { 1975 struct authdes_cred *adc; 1976 1977 switch (flavor) { 1978 case AUTH_DES: 1979 adc = (struct authdes_cred *)req->rq_clntcred; 1980 CTASSERT(sizeof (struct authdes_cred) <= RQCRED_SIZE); 1981 if (adc->adc_fullname.window > window) 1982 return (0); 1983 break; 1984 1985 default: 1986 break; 1987 } 1988 return (1); 1989 } 1990 1991 1992 /* 1993 * checkauth() will check the access permission against the export 1994 * information. Then map root uid/gid to appropriate uid/gid. 1995 * 1996 * This routine is used by NFS V3 and V2 code. 1997 */ 1998 static int 1999 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok, 2000 bool_t publicfh_ok, bool_t *ro) 2001 { 2002 int i, nfsflavor, rpcflavor, stat, access; 2003 struct secinfo *secp; 2004 caddr_t principal; 2005 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 2006 int anon_res = 0; 2007 2008 uid_t uid; 2009 gid_t gid; 2010 uint_t ngids; 2011 gid_t *gids; 2012 2013 /* 2014 * Check for privileged port number 2015 * N.B.: this assumes that we know the format of a netbuf. 2016 */ 2017 if (nfs_portmon) { 2018 struct sockaddr *ca; 2019 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2020 2021 if (ca == NULL) 2022 return (0); 2023 2024 if ((ca->sa_family == AF_INET && 2025 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 2026 IPPORT_RESERVED) || 2027 (ca->sa_family == AF_INET6 && 2028 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 2029 IPPORT_RESERVED)) { 2030 cmn_err(CE_NOTE, 2031 "nfs_server: client %s%ssent NFS request from " 2032 "unprivileged port", 2033 client_name(req), client_addr(req, buf)); 2034 return (0); 2035 } 2036 } 2037 2038 /* 2039 * return 1 on success or 0 on failure 2040 */ 2041 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor); 2042 2043 /* 2044 * A failed AUTH_UNIX sec_svc_getcred() implies we couldn't set 2045 * the credentials; below we map that to anonymous. 2046 */ 2047 if (!stat && nfsflavor != AUTH_UNIX) { 2048 cmn_err(CE_NOTE, 2049 "nfs_server: couldn't get unix cred for %s", 2050 client_name(req)); 2051 return (0); 2052 } 2053 2054 /* 2055 * Short circuit checkauth() on operations that support the 2056 * public filehandle, and if the request for that operation 2057 * is using the public filehandle. Note that we must call 2058 * sec_svc_getcred() first so that xp_cookie is set to the 2059 * right value. Normally xp_cookie is just the RPC flavor 2060 * of the the request, but in the case of RPCSEC_GSS it 2061 * could be a pseudo flavor. 2062 */ 2063 if (publicfh_ok) 2064 return (1); 2065 2066 rpcflavor = req->rq_cred.oa_flavor; 2067 /* 2068 * Check if the auth flavor is valid for this export 2069 */ 2070 access = nfsauth_access(exi, req, cr, &uid, &gid, &ngids, &gids); 2071 if (access & NFSAUTH_DROP) 2072 return (-1); /* drop the request */ 2073 2074 if (access & NFSAUTH_RO) 2075 *ro = TRUE; 2076 2077 if (access & NFSAUTH_DENIED) { 2078 /* 2079 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was 2080 * probably due to the flavor not matching during 2081 * the mount attempt. So map the flavor to AUTH_NONE 2082 * so that the credentials get mapped to the anonymous 2083 * user. 2084 */ 2085 if (anon_ok == 1) 2086 rpcflavor = AUTH_NONE; 2087 else 2088 return (0); /* deny access */ 2089 2090 } else if (access & NFSAUTH_MAPNONE) { 2091 /* 2092 * Access was granted even though the flavor mismatched 2093 * because AUTH_NONE was one of the exported flavors. 2094 */ 2095 rpcflavor = AUTH_NONE; 2096 2097 } else if (access & NFSAUTH_WRONGSEC) { 2098 /* 2099 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here, 2100 * it means a client ignored the list of allowed flavors 2101 * returned via the MOUNT protocol. So we just disallow it! 2102 */ 2103 return (0); 2104 } 2105 2106 if (rpcflavor != AUTH_SYS) 2107 kmem_free(gids, ngids * sizeof (gid_t)); 2108 2109 switch (rpcflavor) { 2110 case AUTH_NONE: 2111 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2112 exi->exi_export.ex_anon); 2113 (void) crsetgroups(cr, 0, NULL); 2114 break; 2115 2116 case AUTH_UNIX: 2117 if (!stat || (crgetuid(cr) == 0 && 2118 !(access & NFSAUTH_UIDMAP))) { 2119 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2120 exi->exi_export.ex_anon); 2121 (void) crsetgroups(cr, 0, NULL); 2122 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) { 2123 /* 2124 * It is root, so apply rootid to get real UID 2125 * Find the secinfo structure. We should be able 2126 * to find it by the time we reach here. 2127 * nfsauth_access() has done the checking. 2128 */ 2129 secp = NULL; 2130 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2131 struct secinfo *sptr; 2132 sptr = &exi->exi_export.ex_secinfo[i]; 2133 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2134 secp = sptr; 2135 break; 2136 } 2137 } 2138 if (secp != NULL) { 2139 (void) crsetugid(cr, secp->s_rootid, 2140 secp->s_rootid); 2141 (void) crsetgroups(cr, 0, NULL); 2142 } 2143 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) { 2144 if (crsetugid(cr, uid, gid) != 0) 2145 anon_res = crsetugid(cr, 2146 exi->exi_export.ex_anon, 2147 exi->exi_export.ex_anon); 2148 (void) crsetgroups(cr, 0, NULL); 2149 } else if (access & NFSAUTH_GROUPS) { 2150 (void) crsetgroups(cr, ngids, gids); 2151 } 2152 2153 kmem_free(gids, ngids * sizeof (gid_t)); 2154 2155 break; 2156 2157 case AUTH_DES: 2158 case RPCSEC_GSS: 2159 /* 2160 * Find the secinfo structure. We should be able 2161 * to find it by the time we reach here. 2162 * nfsauth_access() has done the checking. 2163 */ 2164 secp = NULL; 2165 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2166 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2167 nfsflavor) { 2168 secp = &exi->exi_export.ex_secinfo[i]; 2169 break; 2170 } 2171 } 2172 2173 if (!secp) { 2174 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2175 "no secinfo data for flavor %d", 2176 client_name(req), client_addr(req, buf), 2177 nfsflavor); 2178 return (0); 2179 } 2180 2181 if (!checkwin(rpcflavor, secp->s_window, req)) { 2182 cmn_err(CE_NOTE, 2183 "nfs_server: client %s%sused invalid " 2184 "auth window value", 2185 client_name(req), client_addr(req, buf)); 2186 return (0); 2187 } 2188 2189 /* 2190 * Map root principals listed in the share's root= list to root, 2191 * and map any others principals that were mapped to root by RPC 2192 * to anon. 2193 */ 2194 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2195 secp->s_rootcnt, secp->s_rootnames)) { 2196 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2197 return (1); 2198 2199 2200 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2201 2202 /* 2203 * NOTE: If and when kernel-land privilege tracing is 2204 * added this may have to be replaced with code that 2205 * retrieves root's supplementary groups (e.g., using 2206 * kgss_get_group_info(). In the meantime principals 2207 * mapped to uid 0 get all privileges, so setting cr's 2208 * supplementary groups for them does nothing. 2209 */ 2210 (void) crsetgroups(cr, 0, NULL); 2211 2212 return (1); 2213 } 2214 2215 /* 2216 * Not a root princ, or not in root list, map UID 0/nobody to 2217 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2218 * UID_NOBODY and GID_NOBODY, respectively.) 2219 */ 2220 if (crgetuid(cr) != 0 && 2221 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2222 return (1); 2223 2224 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2225 exi->exi_export.ex_anon); 2226 (void) crsetgroups(cr, 0, NULL); 2227 break; 2228 default: 2229 return (0); 2230 } /* switch on rpcflavor */ 2231 2232 /* 2233 * Even if anon access is disallowed via ex_anon == -1, we allow 2234 * this access if anon_ok is set. So set creds to the default 2235 * "nobody" id. 2236 */ 2237 if (anon_res != 0) { 2238 if (anon_ok == 0) { 2239 cmn_err(CE_NOTE, 2240 "nfs_server: client %s%ssent wrong " 2241 "authentication for %s", 2242 client_name(req), client_addr(req, buf), 2243 exi->exi_export.ex_path ? 2244 exi->exi_export.ex_path : "?"); 2245 return (0); 2246 } 2247 2248 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0) 2249 return (0); 2250 } 2251 2252 return (1); 2253 } 2254 2255 /* 2256 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor, 2257 * and 1 on success 2258 */ 2259 int 2260 checkauth4(struct compound_state *cs, struct svc_req *req) 2261 { 2262 int i, rpcflavor, access; 2263 struct secinfo *secp; 2264 char buf[MAXHOST + 1]; 2265 int anon_res = 0, nfsflavor; 2266 struct exportinfo *exi; 2267 cred_t *cr; 2268 caddr_t principal; 2269 2270 uid_t uid; 2271 gid_t gid; 2272 uint_t ngids; 2273 gid_t *gids; 2274 2275 exi = cs->exi; 2276 cr = cs->cr; 2277 principal = cs->principal; 2278 nfsflavor = cs->nfsflavor; 2279 2280 ASSERT(cr != NULL); 2281 2282 rpcflavor = req->rq_cred.oa_flavor; 2283 cs->access &= ~CS_ACCESS_LIMITED; 2284 2285 /* 2286 * Check for privileged port number 2287 * N.B.: this assumes that we know the format of a netbuf. 2288 */ 2289 if (nfs_portmon) { 2290 struct sockaddr *ca; 2291 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2292 2293 if (ca == NULL) 2294 return (0); 2295 2296 if ((ca->sa_family == AF_INET && 2297 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 2298 IPPORT_RESERVED) || 2299 (ca->sa_family == AF_INET6 && 2300 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 2301 IPPORT_RESERVED)) { 2302 cmn_err(CE_NOTE, 2303 "nfs_server: client %s%ssent NFSv4 request from " 2304 "unprivileged port", 2305 client_name(req), client_addr(req, buf)); 2306 return (0); 2307 } 2308 } 2309 2310 /* 2311 * Check the access right per auth flavor on the vnode of 2312 * this export for the given request. 2313 */ 2314 access = nfsauth4_access(cs->exi, cs->vp, req, cr, &uid, &gid, &ngids, 2315 &gids); 2316 2317 if (access & NFSAUTH_WRONGSEC) 2318 return (-2); /* no access for this security flavor */ 2319 2320 if (access & NFSAUTH_DROP) 2321 return (-1); /* drop the request */ 2322 2323 if (access & NFSAUTH_DENIED) { 2324 2325 if (exi->exi_export.ex_seccnt > 0) 2326 return (0); /* deny access */ 2327 2328 } else if (access & NFSAUTH_LIMITED) { 2329 2330 cs->access |= CS_ACCESS_LIMITED; 2331 2332 } else if (access & NFSAUTH_MAPNONE) { 2333 /* 2334 * Access was granted even though the flavor mismatched 2335 * because AUTH_NONE was one of the exported flavors. 2336 */ 2337 rpcflavor = AUTH_NONE; 2338 } 2339 2340 /* 2341 * XXX probably need to redo some of it for nfsv4? 2342 * return 1 on success or 0 on failure 2343 */ 2344 2345 if (rpcflavor != AUTH_SYS) 2346 kmem_free(gids, ngids * sizeof (gid_t)); 2347 2348 switch (rpcflavor) { 2349 case AUTH_NONE: 2350 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2351 exi->exi_export.ex_anon); 2352 (void) crsetgroups(cr, 0, NULL); 2353 break; 2354 2355 case AUTH_UNIX: 2356 if (crgetuid(cr) == 0 && !(access & NFSAUTH_UIDMAP)) { 2357 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2358 exi->exi_export.ex_anon); 2359 (void) crsetgroups(cr, 0, NULL); 2360 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) { 2361 /* 2362 * It is root, so apply rootid to get real UID 2363 * Find the secinfo structure. We should be able 2364 * to find it by the time we reach here. 2365 * nfsauth_access() has done the checking. 2366 */ 2367 secp = NULL; 2368 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2369 struct secinfo *sptr; 2370 sptr = &exi->exi_export.ex_secinfo[i]; 2371 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2372 secp = &exi->exi_export.ex_secinfo[i]; 2373 break; 2374 } 2375 } 2376 if (secp != NULL) { 2377 (void) crsetugid(cr, secp->s_rootid, 2378 secp->s_rootid); 2379 (void) crsetgroups(cr, 0, NULL); 2380 } 2381 } else if (crgetuid(cr) != uid || crgetgid(cr) != gid) { 2382 if (crsetugid(cr, uid, gid) != 0) 2383 anon_res = crsetugid(cr, 2384 exi->exi_export.ex_anon, 2385 exi->exi_export.ex_anon); 2386 (void) crsetgroups(cr, 0, NULL); 2387 } if (access & NFSAUTH_GROUPS) { 2388 (void) crsetgroups(cr, ngids, gids); 2389 } 2390 2391 kmem_free(gids, ngids * sizeof (gid_t)); 2392 2393 break; 2394 2395 default: 2396 /* 2397 * Find the secinfo structure. We should be able 2398 * to find it by the time we reach here. 2399 * nfsauth_access() has done the checking. 2400 */ 2401 secp = NULL; 2402 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2403 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2404 nfsflavor) { 2405 secp = &exi->exi_export.ex_secinfo[i]; 2406 break; 2407 } 2408 } 2409 2410 if (!secp) { 2411 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2412 "no secinfo data for flavor %d", 2413 client_name(req), client_addr(req, buf), 2414 nfsflavor); 2415 return (0); 2416 } 2417 2418 if (!checkwin(rpcflavor, secp->s_window, req)) { 2419 cmn_err(CE_NOTE, 2420 "nfs_server: client %s%sused invalid " 2421 "auth window value", 2422 client_name(req), client_addr(req, buf)); 2423 return (0); 2424 } 2425 2426 /* 2427 * Map root principals listed in the share's root= list to root, 2428 * and map any others principals that were mapped to root by RPC 2429 * to anon. If not going to anon, set to rootid (root_mapping). 2430 */ 2431 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2432 secp->s_rootcnt, secp->s_rootnames)) { 2433 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2434 return (1); 2435 2436 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2437 2438 /* 2439 * NOTE: If and when kernel-land privilege tracing is 2440 * added this may have to be replaced with code that 2441 * retrieves root's supplementary groups (e.g., using 2442 * kgss_get_group_info(). In the meantime principals 2443 * mapped to uid 0 get all privileges, so setting cr's 2444 * supplementary groups for them does nothing. 2445 */ 2446 (void) crsetgroups(cr, 0, NULL); 2447 2448 return (1); 2449 } 2450 2451 /* 2452 * Not a root princ, or not in root list, map UID 0/nobody to 2453 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2454 * UID_NOBODY and GID_NOBODY, respectively.) 2455 */ 2456 if (crgetuid(cr) != 0 && 2457 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2458 return (1); 2459 2460 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2461 exi->exi_export.ex_anon); 2462 (void) crsetgroups(cr, 0, NULL); 2463 break; 2464 } /* switch on rpcflavor */ 2465 2466 /* 2467 * Even if anon access is disallowed via ex_anon == -1, we allow 2468 * this access if anon_ok is set. So set creds to the default 2469 * "nobody" id. 2470 */ 2471 2472 if (anon_res != 0) { 2473 cmn_err(CE_NOTE, 2474 "nfs_server: client %s%ssent wrong " 2475 "authentication for %s", 2476 client_name(req), client_addr(req, buf), 2477 exi->exi_export.ex_path ? 2478 exi->exi_export.ex_path : "?"); 2479 return (0); 2480 } 2481 2482 return (1); 2483 } 2484 2485 2486 static char * 2487 client_name(struct svc_req *req) 2488 { 2489 char *hostname = NULL; 2490 2491 /* 2492 * If it's a Unix cred then use the 2493 * hostname from the credential. 2494 */ 2495 if (req->rq_cred.oa_flavor == AUTH_UNIX) { 2496 hostname = ((struct authunix_parms *) 2497 req->rq_clntcred)->aup_machname; 2498 } 2499 if (hostname == NULL) 2500 hostname = ""; 2501 2502 return (hostname); 2503 } 2504 2505 static char * 2506 client_addr(struct svc_req *req, char *buf) 2507 { 2508 struct sockaddr *ca; 2509 uchar_t *b; 2510 char *frontspace = ""; 2511 2512 /* 2513 * We assume we are called in tandem with client_name and the 2514 * format string looks like "...client %s%sblah blah..." 2515 * 2516 * If it's a Unix cred then client_name returned 2517 * a host name, so we need insert a space between host name 2518 * and IP address. 2519 */ 2520 if (req->rq_cred.oa_flavor == AUTH_UNIX) 2521 frontspace = " "; 2522 2523 /* 2524 * Convert the caller's IP address to a dotted string 2525 */ 2526 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2527 2528 if (ca->sa_family == AF_INET) { 2529 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 2530 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace, 2531 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 2532 } else if (ca->sa_family == AF_INET6) { 2533 struct sockaddr_in6 *sin6; 2534 sin6 = (struct sockaddr_in6 *)ca; 2535 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 2536 buf, INET6_ADDRSTRLEN); 2537 2538 } else { 2539 2540 /* 2541 * No IP address to print. If there was a host name 2542 * printed, then we print a space. 2543 */ 2544 (void) sprintf(buf, frontspace); 2545 } 2546 2547 return (buf); 2548 } 2549 2550 /* 2551 * NFS Server initialization routine. This routine should only be called 2552 * once. It performs the following tasks: 2553 * - Call sub-initialization routines (localize access to variables) 2554 * - Initialize all locks 2555 * - initialize the version 3 write verifier 2556 */ 2557 void 2558 nfs_srvinit(void) 2559 { 2560 2561 /* Truly global stuff in this module (not per zone) */ 2562 rw_init(&nfssrv_globals_rwl, NULL, RW_DEFAULT, NULL); 2563 list_create(&nfssrv_globals_list, sizeof (nfs_globals_t), 2564 offsetof(nfs_globals_t, nfs_g_link)); 2565 tsd_create(&nfs_server_tsd_key, NULL); 2566 2567 /* The order here is important */ 2568 nfs_exportinit(); 2569 rfs_srvrinit(); 2570 rfs3_srvrinit(); 2571 rfs4_srvrinit(); 2572 nfsauth_init(); 2573 2574 /* 2575 * NFS server zone-specific global variables 2576 * Note the zone_init is called for the GZ here. 2577 */ 2578 zone_key_create(&nfssrv_zone_key, nfs_server_zone_init, 2579 nfs_server_zone_shutdown, nfs_server_zone_fini); 2580 } 2581 2582 /* 2583 * NFS Server finalization routine. This routine is called to cleanup the 2584 * initialization work previously performed if the NFS server module could 2585 * not be loaded correctly. 2586 */ 2587 void 2588 nfs_srvfini(void) 2589 { 2590 2591 /* 2592 * NFS server zone-specific global variables 2593 * Note the zone_fini is called for the GZ here. 2594 */ 2595 (void) zone_key_delete(nfssrv_zone_key); 2596 2597 /* The order here is important (reverse of init) */ 2598 nfsauth_fini(); 2599 rfs4_srvrfini(); 2600 rfs3_srvrfini(); 2601 rfs_srvrfini(); 2602 nfs_exportfini(); 2603 2604 /* Truly global stuff in this module (not per zone) */ 2605 tsd_destroy(&nfs_server_tsd_key); 2606 list_destroy(&nfssrv_globals_list); 2607 rw_destroy(&nfssrv_globals_rwl); 2608 } 2609 2610 /* 2611 * Zone init, shutdown, fini functions for the NFS server 2612 * 2613 * This design is careful to create the entire hierarhcy of 2614 * NFS server "globals" (including those created by various 2615 * per-module *_zone_init functions, etc.) so that all these 2616 * objects have exactly the same lifetime. 2617 * 2618 * These objects are also kept on a list for two reasons: 2619 * 1: It makes finding these in mdb _much_ easier. 2620 * 2: It allows operating across all zone globals for 2621 * functions like nfs_auth.c:exi_cache_reclaim 2622 */ 2623 static void * 2624 nfs_server_zone_init(zoneid_t zoneid) 2625 { 2626 nfs_globals_t *ng; 2627 2628 ng = kmem_zalloc(sizeof (*ng), KM_SLEEP); 2629 2630 ng->nfs_versmin = NFS_VERSMIN_DEFAULT; 2631 ng->nfs_versmax = NFS_VERSMAX_DEFAULT; 2632 2633 /* Init the stuff to control start/stop */ 2634 ng->nfs_server_upordown = NFS_SERVER_STOPPED; 2635 mutex_init(&ng->nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL); 2636 cv_init(&ng->nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL); 2637 mutex_init(&ng->rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL); 2638 cv_init(&ng->rdma_wait_cv, NULL, CV_DEFAULT, NULL); 2639 2640 ng->nfs_zoneid = zoneid; 2641 2642 /* 2643 * Order here is important. 2644 * export init must precede srv init calls. 2645 */ 2646 nfs_export_zone_init(ng); 2647 rfs_stat_zone_init(ng); 2648 rfs_srv_zone_init(ng); 2649 rfs3_srv_zone_init(ng); 2650 rfs4_srv_zone_init(ng); 2651 nfsauth_zone_init(ng); 2652 2653 rw_enter(&nfssrv_globals_rwl, RW_WRITER); 2654 list_insert_tail(&nfssrv_globals_list, ng); 2655 rw_exit(&nfssrv_globals_rwl); 2656 2657 return (ng); 2658 } 2659 2660 /* ARGSUSED */ 2661 static void 2662 nfs_server_zone_shutdown(zoneid_t zoneid, void *data) 2663 { 2664 nfs_globals_t *ng; 2665 2666 ng = (nfs_globals_t *)data; 2667 2668 /* 2669 * Order is like _fini, but only 2670 * some modules need this hook. 2671 */ 2672 nfsauth_zone_shutdown(ng); 2673 nfs_export_zone_shutdown(ng); 2674 } 2675 2676 /* ARGSUSED */ 2677 static void 2678 nfs_server_zone_fini(zoneid_t zoneid, void *data) 2679 { 2680 nfs_globals_t *ng; 2681 2682 ng = (nfs_globals_t *)data; 2683 2684 rw_enter(&nfssrv_globals_rwl, RW_WRITER); 2685 list_remove(&nfssrv_globals_list, ng); 2686 rw_exit(&nfssrv_globals_rwl); 2687 2688 /* 2689 * Order here is important. 2690 * reverse order from init 2691 */ 2692 nfsauth_zone_fini(ng); 2693 rfs4_srv_zone_fini(ng); 2694 rfs3_srv_zone_fini(ng); 2695 rfs_srv_zone_fini(ng); 2696 rfs_stat_zone_fini(ng); 2697 nfs_export_zone_fini(ng); 2698 2699 mutex_destroy(&ng->nfs_server_upordown_lock); 2700 cv_destroy(&ng->nfs_server_upordown_cv); 2701 mutex_destroy(&ng->rdma_wait_mutex); 2702 cv_destroy(&ng->rdma_wait_cv); 2703 2704 kmem_free(ng, sizeof (*ng)); 2705 } 2706 2707 /* 2708 * Set up an iovec array of up to cnt pointers. 2709 */ 2710 void 2711 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp) 2712 { 2713 while (m != NULL && cnt-- > 0) { 2714 iovp->iov_base = (caddr_t)m->b_rptr; 2715 iovp->iov_len = (m->b_wptr - m->b_rptr); 2716 iovp++; 2717 m = m->b_cont; 2718 } 2719 } 2720 2721 /* 2722 * Common code between NFS Version 2 and NFS Version 3 for the public 2723 * filehandle multicomponent lookups. 2724 */ 2725 2726 /* 2727 * Public filehandle evaluation of a multi-component lookup, following 2728 * symbolic links, if necessary. This may result in a vnode in another 2729 * filesystem, which is OK as long as the other filesystem is exported. 2730 * 2731 * Note that the exi will be set either to NULL or a new reference to the 2732 * exportinfo struct that corresponds to the vnode of the multi-component path. 2733 * It is the callers responsibility to release this reference. 2734 */ 2735 int 2736 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp, 2737 struct exportinfo **exi, struct sec_ol *sec) 2738 { 2739 int pathflag; 2740 vnode_t *mc_dvp = NULL; 2741 vnode_t *realvp; 2742 int error; 2743 2744 *exi = NULL; 2745 2746 /* 2747 * check if the given path is a url or native path. Since p is 2748 * modified by MCLpath(), it may be empty after returning from 2749 * there, and should be checked. 2750 */ 2751 if ((pathflag = MCLpath(&p)) == -1) 2752 return (EIO); 2753 2754 /* 2755 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit 2756 * on in sec->sec_flags. This bit will later serve as an 2757 * indication in makefh_ol() or makefh3_ol() to overload the 2758 * filehandle to contain the sec modes used by the server for 2759 * the path. 2760 */ 2761 if (pathflag == SECURITY_QUERY) { 2762 if ((sec->sec_index = (uint_t)(*p)) > 0) { 2763 sec->sec_flags |= SEC_QUERY; 2764 p++; 2765 if ((pathflag = MCLpath(&p)) == -1) 2766 return (EIO); 2767 } else { 2768 cmn_err(CE_NOTE, 2769 "nfs_server: invalid security index %d, " 2770 "violating WebNFS SNEGO protocol.", sec->sec_index); 2771 return (EIO); 2772 } 2773 } 2774 2775 if (p[0] == '\0') { 2776 error = ENOENT; 2777 goto publicfh_done; 2778 } 2779 2780 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag); 2781 2782 /* 2783 * If name resolves to "/" we get EINVAL since we asked for 2784 * the vnode of the directory that the file is in. Try again 2785 * with NULL directory vnode. 2786 */ 2787 if (error == EINVAL) { 2788 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag); 2789 if (!error) { 2790 ASSERT(*vpp != NULL); 2791 if ((*vpp)->v_type == VDIR) { 2792 VN_HOLD(*vpp); 2793 mc_dvp = *vpp; 2794 } else { 2795 /* 2796 * This should not happen, the filesystem is 2797 * in an inconsistent state. Fail the lookup 2798 * at this point. 2799 */ 2800 VN_RELE(*vpp); 2801 error = EINVAL; 2802 } 2803 } 2804 } 2805 2806 if (error) 2807 goto publicfh_done; 2808 2809 if (*vpp == NULL) { 2810 error = ENOENT; 2811 goto publicfh_done; 2812 } 2813 2814 ASSERT(mc_dvp != NULL); 2815 ASSERT(*vpp != NULL); 2816 2817 if ((*vpp)->v_type == VDIR) { 2818 do { 2819 /* 2820 * *vpp may be an AutoFS node, so we perform 2821 * a VOP_ACCESS() to trigger the mount of the intended 2822 * filesystem, so we can perform the lookup in the 2823 * intended filesystem. 2824 */ 2825 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL); 2826 2827 /* 2828 * If vnode is covered, get the 2829 * the topmost vnode. 2830 */ 2831 if (vn_mountedvfs(*vpp) != NULL) { 2832 error = traverse(vpp); 2833 if (error) { 2834 VN_RELE(*vpp); 2835 goto publicfh_done; 2836 } 2837 } 2838 2839 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 && 2840 realvp != *vpp) { 2841 /* 2842 * If realvp is different from *vpp 2843 * then release our reference on *vpp, so that 2844 * the export access check be performed on the 2845 * real filesystem instead. 2846 */ 2847 VN_HOLD(realvp); 2848 VN_RELE(*vpp); 2849 *vpp = realvp; 2850 } else { 2851 break; 2852 } 2853 /* LINTED */ 2854 } while (TRUE); 2855 2856 /* 2857 * Let nfs_vptexi() figure what the real parent is. 2858 */ 2859 VN_RELE(mc_dvp); 2860 mc_dvp = NULL; 2861 2862 } else { 2863 /* 2864 * If vnode is covered, get the 2865 * the topmost vnode. 2866 */ 2867 if (vn_mountedvfs(mc_dvp) != NULL) { 2868 error = traverse(&mc_dvp); 2869 if (error) { 2870 VN_RELE(*vpp); 2871 goto publicfh_done; 2872 } 2873 } 2874 2875 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 && 2876 realvp != mc_dvp) { 2877 /* 2878 * *vpp is a file, obtain realvp of the parent 2879 * directory vnode. 2880 */ 2881 VN_HOLD(realvp); 2882 VN_RELE(mc_dvp); 2883 mc_dvp = realvp; 2884 } 2885 } 2886 2887 /* 2888 * The pathname may take us from the public filesystem to another. 2889 * If that's the case then just set the exportinfo to the new export 2890 * and build filehandle for it. Thanks to per-access checking there's 2891 * no security issues with doing this. If the client is not allowed 2892 * access to this new export then it will get an access error when it 2893 * tries to use the filehandle 2894 */ 2895 error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi); 2896 if (error != 0) { 2897 VN_RELE(*vpp); 2898 goto publicfh_done; 2899 } 2900 2901 /* 2902 * Not allowed access to pseudo exports. 2903 */ 2904 if (PSEUDO(*exi)) { 2905 error = ENOENT; 2906 VN_RELE(*vpp); 2907 goto publicfh_done; 2908 } 2909 2910 /* 2911 * Do a lookup for the index file. We know the index option doesn't 2912 * allow paths through handling in the share command, so mc_dvp will 2913 * be the parent for the index file vnode, if its present. Use 2914 * temporary pointers to preserve and reuse the vnode pointers of the 2915 * original directory in case there's no index file. Note that the 2916 * index file is a native path, and should not be interpreted by 2917 * the URL parser in rfs_pathname() 2918 */ 2919 if (((*exi)->exi_export.ex_flags & EX_INDEX) && 2920 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) { 2921 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */ 2922 2923 tmc_dvp = mc_dvp; 2924 mc_dvp = tvp = *vpp; 2925 2926 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp, 2927 mc_dvp, cr, NATIVEPATH); 2928 2929 if (error == ENOENT) { 2930 *vpp = tvp; 2931 mc_dvp = tmc_dvp; 2932 error = 0; 2933 } else { /* ok or error other than ENOENT */ 2934 if (tmc_dvp) 2935 VN_RELE(tmc_dvp); 2936 if (error) 2937 goto publicfh_done; 2938 2939 /* 2940 * Found a valid vp for index "filename". Sanity check 2941 * for odd case where a directory is provided as index 2942 * option argument and leads us to another filesystem 2943 */ 2944 2945 /* Release the reference on the old exi value */ 2946 ASSERT(*exi != NULL); 2947 exi_rele(*exi); 2948 *exi = NULL; 2949 2950 error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi); 2951 if (error != 0) { 2952 VN_RELE(*vpp); 2953 goto publicfh_done; 2954 } 2955 /* Have a new *exi */ 2956 } 2957 } 2958 2959 publicfh_done: 2960 if (mc_dvp) 2961 VN_RELE(mc_dvp); 2962 2963 return (error); 2964 } 2965 2966 /* 2967 * Evaluate a multi-component path 2968 */ 2969 int 2970 rfs_pathname( 2971 char *path, /* pathname to evaluate */ 2972 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */ 2973 vnode_t **compvpp, /* ret for ptr to component vnode */ 2974 vnode_t *startdvp, /* starting vnode */ 2975 cred_t *cr, /* user's credential */ 2976 int pathflag) /* flag to identify path, e.g. URL */ 2977 { 2978 char namebuf[TYPICALMAXPATHLEN]; 2979 struct pathname pn; 2980 int error; 2981 2982 ASSERT3U(crgetzoneid(cr), ==, curzone->zone_id); 2983 2984 /* 2985 * If pathname starts with '/', then set startdvp to root. 2986 */ 2987 if (*path == '/') { 2988 while (*path == '/') 2989 path++; 2990 2991 startdvp = ZONE_ROOTVP(); 2992 } 2993 2994 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf)); 2995 if (error == 0) { 2996 /* 2997 * Call the URL parser for URL paths to modify the original 2998 * string to handle any '%' encoded characters that exist. 2999 * Done here to avoid an extra bcopy in the lookup. 3000 * We need to be careful about pathlen's. We know that 3001 * rfs_pathname() is called with a non-empty path. However, 3002 * it could be emptied due to the path simply being all /'s, 3003 * which is valid to proceed with the lookup, or due to the 3004 * URL parser finding an encoded null character at the 3005 * beginning of path which should not proceed with the lookup. 3006 */ 3007 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 3008 URLparse(pn.pn_path); 3009 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) 3010 return (ENOENT); 3011 } 3012 VN_HOLD(startdvp); 3013 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 3014 ZONE_ROOTVP(), startdvp, cr); 3015 } 3016 if (error == ENAMETOOLONG) { 3017 /* 3018 * This thread used a pathname > TYPICALMAXPATHLEN bytes long. 3019 */ 3020 error = pn_get(path, UIO_SYSSPACE, &pn); 3021 if (error != 0) 3022 return (error); 3023 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 3024 URLparse(pn.pn_path); 3025 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) { 3026 pn_free(&pn); 3027 return (ENOENT); 3028 } 3029 } 3030 VN_HOLD(startdvp); 3031 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 3032 ZONE_ROOTVP(), startdvp, cr); 3033 pn_free(&pn); 3034 } 3035 3036 return (error); 3037 } 3038 3039 /* 3040 * Adapt the multicomponent lookup path depending on the pathtype 3041 */ 3042 static int 3043 MCLpath(char **path) 3044 { 3045 unsigned char c = (unsigned char)**path; 3046 3047 /* 3048 * If the MCL path is between 0x20 and 0x7E (graphic printable 3049 * character of the US-ASCII coded character set), its a URL path, 3050 * per RFC 1738. 3051 */ 3052 if (c >= 0x20 && c <= 0x7E) 3053 return (URLPATH); 3054 3055 /* 3056 * If the first octet of the MCL path is not an ASCII character 3057 * then it must be interpreted as a tag value that describes the 3058 * format of the remaining octets of the MCL path. 3059 * 3060 * If the first octet of the MCL path is 0x81 it is a query 3061 * for the security info. 3062 */ 3063 switch (c) { 3064 case 0x80: /* native path, i.e. MCL via mount protocol */ 3065 (*path)++; 3066 return (NATIVEPATH); 3067 case 0x81: /* security query */ 3068 (*path)++; 3069 return (SECURITY_QUERY); 3070 default: 3071 return (-1); 3072 } 3073 } 3074 3075 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \ 3076 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\ 3077 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0))) 3078 3079 /* 3080 * The implementation of URLparse guarantees that the final string will 3081 * fit in the original one. Replaces '%' occurrences followed by 2 characters 3082 * with its corresponding hexadecimal character. 3083 */ 3084 static void 3085 URLparse(char *str) 3086 { 3087 char *p, *q; 3088 3089 p = q = str; 3090 while (*p) { 3091 *q = *p; 3092 if (*p++ == '%') { 3093 if (*p) { 3094 *q = fromhex(*p) * 16; 3095 p++; 3096 if (*p) { 3097 *q += fromhex(*p); 3098 p++; 3099 } 3100 } 3101 } 3102 q++; 3103 } 3104 *q = '\0'; 3105 } 3106 3107 3108 /* 3109 * Get the export information for the lookup vnode, and verify its 3110 * useable. 3111 */ 3112 int 3113 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr, 3114 struct exportinfo **exi) 3115 { 3116 int walk; 3117 int error = 0; 3118 3119 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE); 3120 if (*exi == NULL) 3121 error = EACCES; 3122 else { 3123 /* 3124 * If nosub is set for this export then 3125 * a lookup relative to the public fh 3126 * must not terminate below the 3127 * exported directory. 3128 */ 3129 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0) 3130 error = EACCES; 3131 } 3132 3133 return (error); 3134 } 3135 3136 /* 3137 * Used by NFSv3 and NFSv4 server to query label of 3138 * a pathname component during lookup/access ops. 3139 */ 3140 ts_label_t * 3141 nfs_getflabel(vnode_t *vp, struct exportinfo *exi) 3142 { 3143 zone_t *zone; 3144 ts_label_t *zone_label; 3145 char *path; 3146 3147 mutex_enter(&vp->v_lock); 3148 if (vp->v_path != vn_vpath_empty) { 3149 zone = zone_find_by_any_path(vp->v_path, B_FALSE); 3150 mutex_exit(&vp->v_lock); 3151 } else { 3152 /* 3153 * v_path not cached. Fall back on pathname of exported 3154 * file system as we rely on pathname from which we can 3155 * derive a label. The exported file system portion of 3156 * path is sufficient to obtain a label. 3157 */ 3158 path = exi->exi_export.ex_path; 3159 if (path == NULL) { 3160 mutex_exit(&vp->v_lock); 3161 return (NULL); 3162 } 3163 zone = zone_find_by_any_path(path, B_FALSE); 3164 mutex_exit(&vp->v_lock); 3165 } 3166 /* 3167 * Caller has verified that the file is either 3168 * exported or visible. So if the path falls in 3169 * global zone, admin_low is returned; otherwise 3170 * the zone's label is returned. 3171 */ 3172 zone_label = zone->zone_slabel; 3173 label_hold(zone_label); 3174 zone_rele(zone); 3175 return (zone_label); 3176 } 3177 3178 /* 3179 * TX NFS routine used by NFSv3 and NFSv4 to do label check 3180 * on client label and server's file object lable. 3181 */ 3182 boolean_t 3183 do_rfs_label_check(bslabel_t *clabel, vnode_t *vp, int flag, 3184 struct exportinfo *exi) 3185 { 3186 bslabel_t *slabel; 3187 ts_label_t *tslabel; 3188 boolean_t result; 3189 3190 if ((tslabel = nfs_getflabel(vp, exi)) == NULL) { 3191 return (B_FALSE); 3192 } 3193 slabel = label2bslabel(tslabel); 3194 DTRACE_PROBE4(tx__rfs__log__info__labelcheck, char *, 3195 "comparing server's file label(1) with client label(2) (vp(3))", 3196 bslabel_t *, slabel, bslabel_t *, clabel, vnode_t *, vp); 3197 3198 if (flag == EQUALITY_CHECK) 3199 result = blequal(clabel, slabel); 3200 else 3201 result = bldominates(clabel, slabel); 3202 label_rele(tslabel); 3203 return (result); 3204 } 3205 3206 /* 3207 * Callback function to return the loaned buffers. 3208 * Calls VOP_RETZCBUF() only after all uio_iov[] 3209 * buffers are returned. nu_ref maintains the count. 3210 */ 3211 void 3212 rfs_free_xuio(void *free_arg) 3213 { 3214 uint_t ref; 3215 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)free_arg; 3216 3217 ref = atomic_dec_uint_nv(&nfsuiop->nu_ref); 3218 3219 /* 3220 * Call VOP_RETZCBUF() only when all the iov buffers 3221 * are sent OTW. 3222 */ 3223 if (ref != 0) 3224 return; 3225 3226 if (((uio_t *)nfsuiop)->uio_extflg & UIO_XUIO) { 3227 (void) VOP_RETZCBUF(nfsuiop->nu_vp, (xuio_t *)free_arg, NULL, 3228 NULL); 3229 VN_RELE(nfsuiop->nu_vp); 3230 } 3231 3232 kmem_cache_free(nfs_xuio_cache, free_arg); 3233 } 3234 3235 xuio_t * 3236 rfs_setup_xuio(vnode_t *vp) 3237 { 3238 nfs_xuio_t *nfsuiop; 3239 3240 nfsuiop = kmem_cache_alloc(nfs_xuio_cache, KM_SLEEP); 3241 3242 bzero(nfsuiop, sizeof (nfs_xuio_t)); 3243 nfsuiop->nu_vp = vp; 3244 3245 /* 3246 * ref count set to 1. more may be added 3247 * if multiple mblks refer to multiple iov's. 3248 * This is done in uio_to_mblk(). 3249 */ 3250 3251 nfsuiop->nu_ref = 1; 3252 3253 nfsuiop->nu_frtn.free_func = rfs_free_xuio; 3254 nfsuiop->nu_frtn.free_arg = (char *)nfsuiop; 3255 3256 nfsuiop->nu_uio.xu_type = UIOTYPE_ZEROCOPY; 3257 3258 return (&nfsuiop->nu_uio); 3259 } 3260 3261 mblk_t * 3262 uio_to_mblk(uio_t *uiop) 3263 { 3264 struct iovec *iovp; 3265 int i; 3266 mblk_t *mp, *mp1; 3267 nfs_xuio_t *nfsuiop = (nfs_xuio_t *)uiop; 3268 3269 if (uiop->uio_iovcnt == 0) 3270 return (NULL); 3271 3272 iovp = uiop->uio_iov; 3273 mp = mp1 = esballoca((uchar_t *)iovp->iov_base, iovp->iov_len, 3274 BPRI_MED, &nfsuiop->nu_frtn); 3275 ASSERT(mp != NULL); 3276 3277 mp->b_wptr += iovp->iov_len; 3278 mp->b_datap->db_type = M_DATA; 3279 3280 for (i = 1; i < uiop->uio_iovcnt; i++) { 3281 iovp = (uiop->uio_iov + i); 3282 3283 mp1->b_cont = esballoca( 3284 (uchar_t *)iovp->iov_base, iovp->iov_len, BPRI_MED, 3285 &nfsuiop->nu_frtn); 3286 3287 mp1 = mp1->b_cont; 3288 ASSERT(mp1 != NULL); 3289 mp1->b_wptr += iovp->iov_len; 3290 mp1->b_datap->db_type = M_DATA; 3291 } 3292 3293 nfsuiop->nu_ref = uiop->uio_iovcnt; 3294 3295 return (mp); 3296 } 3297 3298 /* 3299 * Allocate memory to hold data for a read request of len bytes. 3300 * 3301 * We don't allocate buffers greater than kmem_max_cached in size to avoid 3302 * allocating memory from the kmem_oversized arena. If we allocate oversized 3303 * buffers, we incur heavy cross-call activity when freeing these large buffers 3304 * in the TCP receive path. Note that we can't set b_wptr here since the 3305 * length of the data returned may differ from the length requested when 3306 * reading the end of a file; we set b_wptr in rfs_rndup_mblks() once the 3307 * length of the read is known. 3308 */ 3309 mblk_t * 3310 rfs_read_alloc(uint_t len, struct iovec **iov, int *iovcnt) 3311 { 3312 struct iovec *iovarr; 3313 mblk_t *mp, **mpp = ∓ 3314 size_t mpsize; 3315 uint_t remain = len; 3316 int i, err = 0; 3317 3318 *iovcnt = howmany(len, kmem_max_cached); 3319 3320 iovarr = kmem_alloc(*iovcnt * sizeof (struct iovec), KM_SLEEP); 3321 *iov = iovarr; 3322 3323 for (i = 0; i < *iovcnt; remain -= mpsize, i++) { 3324 ASSERT(remain <= len); 3325 /* 3326 * We roundup the size we allocate to a multiple of 3327 * BYTES_PER_XDR_UNIT (4 bytes) so that the call to 3328 * xdrmblk_putmblk() never fails. 3329 */ 3330 ASSERT(kmem_max_cached % BYTES_PER_XDR_UNIT == 0); 3331 mpsize = MIN(kmem_max_cached, remain); 3332 *mpp = allocb_wait(RNDUP(mpsize), BPRI_MED, STR_NOSIG, &err); 3333 ASSERT(*mpp != NULL); 3334 ASSERT(err == 0); 3335 3336 iovarr[i].iov_base = (caddr_t)(*mpp)->b_rptr; 3337 iovarr[i].iov_len = mpsize; 3338 mpp = &(*mpp)->b_cont; 3339 } 3340 return (mp); 3341 } 3342 3343 void 3344 rfs_rndup_mblks(mblk_t *mp, uint_t len, int buf_loaned) 3345 { 3346 int i; 3347 int alloc_err = 0; 3348 mblk_t *rmp; 3349 uint_t mpsize, remainder; 3350 3351 remainder = P2NPHASE(len, BYTES_PER_XDR_UNIT); 3352 3353 /* 3354 * Non copy-reduction case. This function assumes that blocks were 3355 * allocated in multiples of BYTES_PER_XDR_UNIT bytes, which makes this 3356 * padding safe without bounds checking. 3357 */ 3358 if (!buf_loaned) { 3359 /* 3360 * Set the size of each mblk in the chain until we've consumed 3361 * the specified length for all but the last one. 3362 */ 3363 while ((mpsize = MBLKSIZE(mp)) < len) { 3364 ASSERT(mpsize % BYTES_PER_XDR_UNIT == 0); 3365 mp->b_wptr += mpsize; 3366 len -= mpsize; 3367 mp = mp->b_cont; 3368 ASSERT(mp != NULL); 3369 } 3370 3371 ASSERT(len + remainder <= mpsize); 3372 mp->b_wptr += len; 3373 for (i = 0; i < remainder; i++) 3374 *mp->b_wptr++ = '\0'; 3375 return; 3376 } 3377 3378 /* 3379 * No remainder mblk required. 3380 */ 3381 if (remainder == 0) 3382 return; 3383 3384 /* 3385 * Get to the last mblk in the chain. 3386 */ 3387 while (mp->b_cont != NULL) 3388 mp = mp->b_cont; 3389 3390 /* 3391 * In case of copy-reduction mblks, the size of the mblks are fixed 3392 * and are of the size of the loaned buffers. Allocate a remainder 3393 * mblk and chain it to the data buffers. This is sub-optimal, but not 3394 * expected to happen commonly. 3395 */ 3396 rmp = allocb_wait(remainder, BPRI_MED, STR_NOSIG, &alloc_err); 3397 ASSERT(rmp != NULL); 3398 ASSERT(alloc_err == 0); 3399 3400 for (i = 0; i < remainder; i++) 3401 *rmp->b_wptr++ = '\0'; 3402 3403 rmp->b_datap->db_type = M_DATA; 3404 mp->b_cont = rmp; 3405 } 3406