1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T. 28 * All rights reserved. 29 */ 30 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/time.h> 35 #include <sys/vfs.h> 36 #include <sys/vnode.h> 37 #include <sys/socket.h> 38 #include <sys/errno.h> 39 #include <sys/uio.h> 40 #include <sys/proc.h> 41 #include <sys/user.h> 42 #include <sys/file.h> 43 #include <sys/tiuser.h> 44 #include <sys/kmem.h> 45 #include <sys/pathname.h> 46 #include <sys/debug.h> 47 #include <sys/vtrace.h> 48 #include <sys/cmn_err.h> 49 #include <sys/acl.h> 50 #include <sys/utsname.h> 51 #include <sys/sdt.h> 52 #include <netinet/in.h> 53 54 #include <rpc/types.h> 55 #include <rpc/auth.h> 56 #include <rpc/svc.h> 57 58 #include <nfs/nfs.h> 59 #include <nfs/export.h> 60 #include <nfs/nfssys.h> 61 #include <nfs/nfs_clnt.h> 62 #include <nfs/nfs_acl.h> 63 #include <nfs/nfs_log.h> 64 #include <nfs/lm.h> 65 #include <sys/sunddi.h> 66 67 treenode_t *ns_root; 68 69 struct exportinfo *exptable[EXPTABLESIZE]; 70 71 static int unexport(fsid_t *, fid_t *, vnode_t *); 72 static void exportfree(exportinfo_t *); 73 static int loadindex(exportdata_t *); 74 75 extern void nfsauth_cache_free(exportinfo_t *); 76 extern int sec_svc_loadrootnames(int, int, caddr_t **, model_t); 77 extern void sec_svc_freerootnames(int, int, caddr_t *); 78 79 static int build_seclist_nodups(exportdata_t *, secinfo_t *, int); 80 static void srv_secinfo_add(secinfo_t **, int *, secinfo_t *, int, int); 81 static void srv_secinfo_remove(secinfo_t **, int *, secinfo_t *, int); 82 static void srv_secinfo_treeclimb(exportinfo_t *, secinfo_t *, int, int); 83 84 #ifdef VOLATILE_FH_TEST 85 static struct ex_vol_rename *find_volrnm_fh(exportinfo_t *, nfs_fh4 *); 86 static uint32_t find_volrnm_fh_id(exportinfo_t *, nfs_fh4 *); 87 static void free_volrnm_list(exportinfo_t *); 88 #endif /* VOLATILE_FH_TEST */ 89 90 /* 91 * exported_lock Read/Write lock that protects the exportinfo list. 92 * This lock must be held when searching or modifiying 93 * the exportinfo list. 94 */ 95 krwlock_t exported_lock; 96 97 /* 98 * "public" and default (root) location for public filehandle 99 */ 100 struct exportinfo *exi_public, *exi_root; 101 102 fid_t exi_rootfid; /* for checking the default public file handle */ 103 104 fhandle_t nullfh2; /* for comparing V2 filehandles */ 105 106 /* 107 * macro for static dtrace probes to trace server namespace ref count mods. 108 */ 109 #define SECREF_TRACE(seclist, tag, flav, aftcnt) \ 110 DTRACE_PROBE4(nfss__i__nmspc__secref, struct secinfo *, (seclist), \ 111 char *, (tag), int, (int)(flav), int, (int)(aftcnt)) 112 113 114 #define exptablehash(fsid, fid) (nfs_fhhash((fsid), (fid)) & (EXPTABLESIZE - 1)) 115 116 /* 117 * File handle hash function, good for producing hash values 16 bits wide. 118 */ 119 int 120 nfs_fhhash(fsid_t *fsid, fid_t *fid) 121 { 122 short *data; 123 int i, len; 124 short h; 125 126 ASSERT(fid != NULL); 127 128 data = (short *)fid->fid_data; 129 130 /* fid_data must be aligned on a short */ 131 ASSERT((((uintptr_t)data) & (sizeof (short) - 1)) == 0); 132 133 if (fid->fid_len == 10) { 134 /* 135 * probably ufs: hash on bytes 4,5 and 8,9 136 */ 137 return (fsid->val[0] ^ data[2] ^ data[4]); 138 } 139 140 if (fid->fid_len == 6) { 141 /* 142 * probably hsfs: hash on bytes 0,1 and 4,5 143 */ 144 return ((fsid->val[0] ^ data[0] ^ data[2])); 145 } 146 147 /* 148 * Some other file system. Assume that every byte is 149 * worth hashing. 150 */ 151 h = (short)fsid->val[0]; 152 153 /* 154 * Sanity check the length before using it 155 * blindly in case the client trashed it. 156 */ 157 if (fid->fid_len > NFS_FHMAXDATA) 158 len = 0; 159 else 160 len = fid->fid_len / sizeof (short); 161 162 /* 163 * This will ignore one byte if len is not a multiple of 164 * of sizeof (short). No big deal since we at least get some 165 * variation with fsid->val[0]; 166 */ 167 for (i = 0; i < len; i++) 168 h ^= data[i]; 169 170 return ((int)h); 171 } 172 173 /* 174 * Free the memory allocated within a secinfo entry. 175 */ 176 void 177 srv_secinfo_entry_free(struct secinfo *secp) 178 { 179 if (secp->s_rootcnt > 0 && secp->s_rootnames != NULL) { 180 sec_svc_freerootnames(secp->s_secinfo.sc_rpcnum, 181 secp->s_rootcnt, secp->s_rootnames); 182 secp->s_rootcnt = 0; 183 } 184 185 if ((secp->s_secinfo.sc_rpcnum == RPCSEC_GSS) && 186 (secp->s_secinfo.sc_gss_mech_type)) { 187 kmem_free(secp->s_secinfo.sc_gss_mech_type->elements, 188 secp->s_secinfo.sc_gss_mech_type->length); 189 kmem_free(secp->s_secinfo.sc_gss_mech_type, 190 sizeof (rpc_gss_OID_desc)); 191 secp->s_secinfo.sc_gss_mech_type = NULL; 192 } 193 194 } 195 196 /* 197 * Free a list of secinfo allocated in the exportdata structure. 198 */ 199 void 200 srv_secinfo_list_free(struct secinfo *secinfo, int cnt) 201 { 202 int i; 203 204 if (cnt == 0) 205 return; 206 207 for (i = 0; i < cnt; i++) 208 srv_secinfo_entry_free(&secinfo[i]); 209 210 kmem_free(secinfo, cnt * sizeof (struct secinfo)); 211 } 212 213 /* 214 * Allocate and copy a secinfo data from "from" to "to". 215 * 216 * This routine is used by srv_secinfo_add() to add a new flavor to an 217 * ancestor's export node. The rootnames are not copied because the 218 * allowable rootname access only applies to the explicit exported node, 219 * not its ancestor's. 220 * 221 * "to" should have already been allocated and zeroed before calling 222 * this routine. 223 * 224 * This routine is used under the protection of exported_lock (RW_WRITER). 225 */ 226 void 227 srv_secinfo_copy(struct secinfo *from, struct secinfo *to) 228 { 229 to->s_secinfo.sc_nfsnum = from->s_secinfo.sc_nfsnum; 230 to->s_secinfo.sc_rpcnum = from->s_secinfo.sc_rpcnum; 231 232 if (from->s_secinfo.sc_rpcnum == RPCSEC_GSS) { 233 to->s_secinfo.sc_service = from->s_secinfo.sc_service; 234 bcopy(from->s_secinfo.sc_name, to->s_secinfo.sc_name, 235 strlen(from->s_secinfo.sc_name)); 236 bcopy(from->s_secinfo.sc_gss_mech, to->s_secinfo.sc_gss_mech, 237 strlen(from->s_secinfo.sc_gss_mech)); 238 239 /* copy mechanism oid */ 240 to->s_secinfo.sc_gss_mech_type = 241 kmem_alloc(sizeof (rpc_gss_OID_desc), KM_SLEEP); 242 to->s_secinfo.sc_gss_mech_type->length = 243 from->s_secinfo.sc_gss_mech_type->length; 244 to->s_secinfo.sc_gss_mech_type->elements = 245 kmem_alloc(from->s_secinfo.sc_gss_mech_type->length, 246 KM_SLEEP); 247 bcopy(from->s_secinfo.sc_gss_mech_type->elements, 248 to->s_secinfo.sc_gss_mech_type->elements, 249 from->s_secinfo.sc_gss_mech_type->length); 250 } 251 252 to->s_refcnt = from->s_refcnt; 253 to->s_window = from->s_window; 254 /* no need to copy the mode bits - s_flags */ 255 } 256 257 /* 258 * Create a secinfo array without duplicates. The condensed 259 * flavor list is used to propagate flavor ref counts to an 260 * export's ancestor pseudonodes. 261 */ 262 static int 263 build_seclist_nodups(exportdata_t *exd, secinfo_t *nodups, int exponly) 264 { 265 int ccnt, c; 266 int ncnt, n; 267 struct secinfo *cursec; 268 269 ncnt = 0; 270 ccnt = exd->ex_seccnt; 271 cursec = exd->ex_secinfo; 272 273 for (c = 0; c < ccnt; c++) { 274 275 if (exponly && ! SEC_REF_EXPORTED(&cursec[c])) 276 continue; 277 278 for (n = 0; n < ncnt; n++) { 279 if (nodups[n].s_secinfo.sc_nfsnum == 280 cursec[c].s_secinfo.sc_nfsnum) 281 break; 282 } 283 284 /* 285 * The structure copy below also copys ptrs embedded 286 * within struct secinfo. The ptrs are copied but 287 * they are never freed from the nodups array. If 288 * an ancestor's secinfo array doesn't contain one 289 * of the nodups flavors, then the entry is properly 290 * copied into the ancestor's secinfo array. 291 * (see srv_secinfo_copy) 292 */ 293 if (n == ncnt) { 294 nodups[n] = cursec[c]; 295 ncnt++; 296 } 297 } 298 return (ncnt); 299 } 300 301 /* 302 * Add the new security flavors from newdata to the current list, pcursec. 303 * Upon return, *pcursec has the newly merged secinfo list. 304 * 305 * There should be at least 1 secinfo entry in newsec. 306 * 307 * This routine is used under the protection of exported_lock (RW_WRITER). 308 */ 309 static void 310 srv_secinfo_add(secinfo_t **pcursec, int *pcurcnt, secinfo_t *newsec, 311 int newcnt, int is_pseudo) 312 { 313 int ccnt, c; /* sec count in current data - curdata */ 314 int n; /* index for newsec - newsecinfo */ 315 int tcnt; /* total sec count after merge */ 316 int mcnt; /* total sec count after merge */ 317 struct secinfo *msec; /* merged secinfo list */ 318 struct secinfo *cursec; 319 320 cursec = *pcursec; 321 ccnt = *pcurcnt; 322 323 ASSERT(newcnt > 0); 324 tcnt = ccnt + newcnt; 325 326 for (n = 0; n < newcnt; n++) { 327 for (c = 0; c < ccnt; c++) { 328 if (newsec[n].s_secinfo.sc_nfsnum == 329 cursec[c].s_secinfo.sc_nfsnum) { 330 cursec[c].s_refcnt += newsec[n].s_refcnt; 331 SECREF_TRACE(cursec, "add_ref", 332 cursec[c].s_secinfo.sc_nfsnum, 333 cursec[c].s_refcnt); 334 tcnt--; 335 break; 336 } 337 } 338 } 339 340 if (tcnt == ccnt) 341 return; /* no change; no new flavors */ 342 343 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 344 345 /* move current secinfo list data to the new list */ 346 for (c = 0; c < ccnt; c++) 347 msec[c] = cursec[c]; 348 349 /* Add the flavor that's not in the current data */ 350 mcnt = ccnt; 351 for (n = 0; n < newcnt; n++) { 352 for (c = 0; c < ccnt; c++) { 353 if (newsec[n].s_secinfo.sc_nfsnum == 354 cursec[c].s_secinfo.sc_nfsnum) 355 break; 356 } 357 358 /* This is the one. Add it. */ 359 if (c == ccnt) { 360 srv_secinfo_copy(&newsec[n], &msec[mcnt]); 361 362 if (is_pseudo) 363 msec[mcnt].s_flags = M_RO; 364 365 SECREF_TRACE(msec, "new_ref", 366 msec[mcnt].s_secinfo.sc_nfsnum, 367 msec[mcnt].s_refcnt); 368 mcnt++; 369 } 370 } 371 372 ASSERT(mcnt == tcnt); 373 374 /* 375 * Done. Update curdata. Free the old secinfo list in 376 * curdata and return the new sec array info 377 */ 378 if (ccnt > 0) 379 kmem_free(cursec, ccnt * sizeof (struct secinfo)); 380 *pcurcnt = tcnt; 381 *pcursec = msec; 382 } 383 384 /* 385 * For NFS V4. 386 * Remove the security data of the unexported node from its ancestors. 387 * Assume there is at least one flavor entry in the current sec list 388 * (pcursec). 389 * 390 * This routine is used under the protection of exported_lock (RW_WRITER). 391 * 392 * Every element of remsec is an explicitly exported flavor. If 393 * srv_secinfo_remove() is called fom an exportfs error path, then 394 * the flavor list was derived from the user's share cmdline, 395 * and all flavors are explicit. If it was called from the unshare path, 396 * build_seclist_nodups() was called with the exponly flag. 397 */ 398 static void 399 srv_secinfo_remove(secinfo_t **pcursec, int *pcurcnt, secinfo_t *remsec, 400 int remcnt) 401 { 402 int ccnt, c; /* sec count in current data - cursec */ 403 int r; /* sec count in removal data - remsec */ 404 int tcnt, mcnt; /* total sec count after removing */ 405 struct secinfo *msec; /* final secinfo list after removing */ 406 struct secinfo *cursec; 407 408 cursec = *pcursec; 409 ccnt = *pcurcnt; 410 tcnt = ccnt; 411 412 for (r = 0; r < remcnt; r++) { 413 /* 414 * At unshare/reshare time, only explicitly shared flavor ref 415 * counts are decremented and propagated to ancestors. 416 * Implicit flavor refs came from shared descendants, and 417 * they must be kept. 418 */ 419 if (! SEC_REF_EXPORTED(&remsec[r])) 420 continue; 421 422 for (c = 0; c < ccnt; c++) { 423 if (remsec[r].s_secinfo.sc_nfsnum == 424 cursec[c].s_secinfo.sc_nfsnum) { 425 426 /* 427 * Decrement secinfo reference count by 1. 428 * If this entry is invalid after decrementing 429 * the count (i.e. count < 1), this entry will 430 * be removed. 431 */ 432 cursec[c].s_refcnt--; 433 434 SECREF_TRACE(cursec, "del_ref", 435 cursec[c].s_secinfo.sc_nfsnum, 436 cursec[c].s_refcnt); 437 438 ASSERT(cursec[c].s_refcnt >= 0); 439 440 if (SEC_REF_INVALID(&cursec[c])) 441 tcnt--; 442 break; 443 } 444 } 445 } 446 447 ASSERT(tcnt >= 0); 448 if (tcnt == ccnt) 449 return; /* no change; no flavors to remove */ 450 451 if (tcnt == 0) { 452 srv_secinfo_list_free(cursec, ccnt); 453 *pcurcnt = 0; 454 *pcursec = NULL; 455 return; 456 } 457 458 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 459 460 /* walk thru the given secinfo list to remove the flavors */ 461 mcnt = 0; 462 for (c = 0; c < ccnt; c++) { 463 if (SEC_REF_INVALID(&cursec[c])) { 464 srv_secinfo_entry_free(&cursec[c]); 465 } else { 466 msec[mcnt] = cursec[c]; 467 mcnt++; 468 } 469 } 470 471 ASSERT(mcnt == tcnt); 472 /* 473 * Done. Update curdata. 474 * Free the existing secinfo list in curdata. All pointers 475 * within the list have either been moved to msec or freed 476 * if it's invalid. 477 */ 478 kmem_free(*pcursec, ccnt * sizeof (struct secinfo)); 479 *pcursec = msec; 480 *pcurcnt = tcnt; 481 } 482 483 484 /* 485 * For the reshare case, sec flavor accounting happens in 3 steps: 486 * 1) propagate addition of new flavor refs up the ancestor tree 487 * 2) transfer flavor refs of descendants to new/reshared exportdata 488 * 3) propagate removal of old flavor refs up the ancestor tree 489 * 490 * srv_secinfo_exp2exp() implements step 2 of a reshare. At this point, 491 * the new flavor list has already been propagated up through the 492 * ancestor tree via srv_secinfo_treeclimb(). 493 * 494 * If there is more than 1 export reference to an old flavor (i.e. some 495 * of its children shared with this flavor), this flavor information 496 * needs to be transferred to the new exportdata struct. A flavor in 497 * the old exportdata has descendant refs when its s_refcnt > 1 or it 498 * is implicitly shared (M_SEC4_EXPORTED not set in s_flags). 499 * 500 * SEC_REF_EXPORTED() is only true when M_SEC4_EXPORTED is set 501 * SEC_REF_SELF() is only true when both M_SEC4_EXPORTED is set and s_refcnt==1 502 * 503 * Transferring descendant flavor refcnts happens in 2 passes: 504 * a) flavors used before (oldsecinfo) and after (curdata->ex_secinfo) reshare 505 * b) flavors used before but not after reshare 506 * 507 * This routine is used under the protection of exported_lock (RW_WRITER). 508 */ 509 void 510 srv_secinfo_exp2exp(exportdata_t *curdata, secinfo_t *oldsecinfo, int ocnt) 511 { 512 int ccnt, c; /* sec count in current data - curdata */ 513 int o; /* sec count in old data - oldsecinfo */ 514 int tcnt, mcnt; /* total sec count after the transfer */ 515 struct secinfo *msec; /* merged secinfo list */ 516 517 ccnt = curdata->ex_seccnt; 518 519 ASSERT(ocnt > 0); 520 ASSERT(!(curdata->ex_flags & EX_PSEUDO)); 521 522 /* 523 * If the oldsecinfo has flavors with more than 1 reference count 524 * and the flavor is specified in the reshare, transfer the flavor 525 * refs to the new seclist (curdata.ex_secinfo). 526 */ 527 tcnt = ccnt + ocnt; 528 529 for (o = 0; o < ocnt; o++) { 530 531 if (SEC_REF_SELF(&oldsecinfo[o])) { 532 tcnt--; 533 continue; 534 } 535 536 for (c = 0; c < ccnt; c++) { 537 if (oldsecinfo[o].s_secinfo.sc_nfsnum == 538 curdata->ex_secinfo[c].s_secinfo.sc_nfsnum) { 539 540 /* 541 * add old reference to the current 542 * secinfo count 543 */ 544 curdata->ex_secinfo[c].s_refcnt += 545 oldsecinfo[o].s_refcnt; 546 547 /* 548 * Delete the old export flavor 549 * reference. The initial reference 550 * was created during srv_secinfo_add, 551 * and the count is decremented below 552 * to account for the initial reference. 553 */ 554 if (SEC_REF_EXPORTED(&oldsecinfo[o])) 555 curdata->ex_secinfo[c].s_refcnt--; 556 557 SECREF_TRACE(curdata->ex_path, 558 "reshare_xfer_common_child_refs", 559 curdata->ex_secinfo[c].s_secinfo.sc_nfsnum, 560 curdata->ex_secinfo[c].s_refcnt); 561 562 ASSERT(curdata->ex_secinfo[c].s_refcnt >= 0); 563 564 tcnt--; 565 break; 566 } 567 } 568 } 569 570 if (tcnt == ccnt) 571 return; /* no more transfer to do */ 572 573 /* 574 * oldsecinfo has flavors referenced by its children that are not 575 * in the current (new) export flavor list. Add these flavors. 576 */ 577 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 578 579 /* move current secinfo list data to the new list */ 580 for (c = 0; c < ccnt; c++) 581 msec[c] = curdata->ex_secinfo[c]; 582 583 /* 584 * Add the flavor that's not in the new export, but still 585 * referenced by its children. 586 */ 587 mcnt = ccnt; 588 for (o = 0; o < ocnt; o++) { 589 if (! SEC_REF_SELF(&oldsecinfo[o])) { 590 for (c = 0; c < ccnt; c++) { 591 if (oldsecinfo[o].s_secinfo.sc_nfsnum == 592 curdata->ex_secinfo[c].s_secinfo.sc_nfsnum) 593 break; 594 } 595 596 /* 597 * This is the one. Add it. Decrement the ref count 598 * by 1 if the flavor is an explicitly shared flavor 599 * for the oldsecinfo export node. 600 */ 601 if (c == ccnt) { 602 srv_secinfo_copy(&oldsecinfo[o], &msec[mcnt]); 603 if (SEC_REF_EXPORTED(&oldsecinfo[o])) 604 msec[mcnt].s_refcnt--; 605 606 SECREF_TRACE(curdata, 607 "reshare_xfer_implicit_child_refs", 608 msec[mcnt].s_secinfo.sc_nfsnum, 609 msec[mcnt].s_refcnt); 610 611 ASSERT(msec[mcnt].s_refcnt >= 0); 612 mcnt++; 613 } 614 } 615 } 616 617 ASSERT(mcnt == tcnt); 618 /* 619 * Done. Update curdata, free the existing secinfo list in 620 * curdata and set the new value. 621 */ 622 if (ccnt > 0) 623 kmem_free(curdata->ex_secinfo, ccnt * sizeof (struct secinfo)); 624 curdata->ex_seccnt = tcnt; 625 curdata->ex_secinfo = msec; 626 } 627 628 /* 629 * When unsharing an old export node and the old node becomes a pseudo node, 630 * if there is more than 1 export reference to an old flavor (i.e. some of 631 * its children shared with this flavor), this flavor information needs to 632 * be transferred to the new shared node. 633 * 634 * This routine is used under the protection of exported_lock (RW_WRITER). 635 */ 636 void 637 srv_secinfo_exp2pseu(exportdata_t *curdata, exportdata_t *olddata) 638 { 639 int ocnt, o; /* sec count in transfer data - trandata */ 640 int tcnt, mcnt; /* total sec count after transfer */ 641 struct secinfo *msec; /* merged secinfo list */ 642 643 ASSERT(curdata->ex_flags & EX_PSEUDO); 644 ASSERT(curdata->ex_seccnt == 0); 645 646 ocnt = olddata->ex_seccnt; 647 648 /* 649 * If the olddata has flavors with more than 1 reference count, 650 * transfer the information to the curdata. 651 */ 652 tcnt = ocnt; 653 654 for (o = 0; o < ocnt; o++) { 655 if (SEC_REF_SELF(&olddata->ex_secinfo[o])) 656 tcnt--; 657 } 658 659 if (tcnt == 0) 660 return; /* no transfer to do */ 661 662 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 663 664 mcnt = 0; 665 for (o = 0; o < ocnt; o++) { 666 if (! SEC_REF_SELF(&olddata->ex_secinfo[o])) { 667 668 /* 669 * Decrement the reference count by 1 if the flavor is 670 * an explicitly shared flavor for the olddata export 671 * node. 672 */ 673 srv_secinfo_copy(&olddata->ex_secinfo[o], &msec[mcnt]); 674 msec[mcnt].s_flags = M_RO; 675 if (SEC_REF_EXPORTED(&olddata->ex_secinfo[o])) 676 msec[mcnt].s_refcnt--; 677 678 SECREF_TRACE(curdata, "unshare_morph_pseudo", 679 msec[mcnt].s_secinfo.sc_nfsnum, 680 msec[mcnt].s_refcnt); 681 682 ASSERT(msec[mcnt].s_refcnt >= 0); 683 mcnt++; 684 } 685 } 686 687 ASSERT(mcnt == tcnt); 688 /* 689 * Done. Update curdata. 690 * Free up the existing secinfo list in curdata and 691 * set the new value. 692 */ 693 curdata->ex_seccnt = tcnt; 694 curdata->ex_secinfo = msec; 695 } 696 697 /* 698 * Find for given exp_visible the exportinfo which has it 699 * linked on its exi_visible list. 700 * 701 * Note: We could add new pointer either to treenode or 702 * to exp_visible, which will point there directly. 703 * This would buy some speed for some memory. 704 */ 705 exportinfo_t * 706 vis2exi(struct exp_visible *vis) 707 { 708 exportinfo_t *exi_ret = NULL; 709 treenode_t *tnode = vis->vis_tree; 710 711 for (;;) { 712 tnode = tnode->tree_parent; 713 if (TREE_ROOT(tnode)) { 714 exi_ret = tnode->tree_exi; 715 break; 716 } 717 } 718 719 ASSERT(exi_ret); /* Every visible should have its home exportinfo */ 720 return (exi_ret); 721 } 722 723 /* 724 * For NFS V4. 725 * Add or remove the newly exported or unexported security flavors of the 726 * given exportinfo from its ancestors upto the system root. 727 */ 728 void 729 srv_secinfo_treeclimb(exportinfo_t *exip, secinfo_t *sec, int seccnt, int isadd) 730 { 731 treenode_t *tnode = exip->exi_tree; 732 733 ASSERT(RW_WRITE_HELD(&exported_lock)); 734 ASSERT(tnode); 735 736 if (seccnt == 0) 737 return; 738 739 /* 740 * If flavors are being added and the new export root isn't 741 * also VROOT, its implicitly allowed flavors are inherited from 742 * from its pseudonode. 743 * Note - for VROOT exports the implicitly allowed flavors were 744 * transferred from the PSEUDO export in exportfs() 745 */ 746 if (isadd && !(exip->exi_vp->v_flag & VROOT) && 747 tnode->tree_vis->vis_seccnt > 0) { 748 srv_secinfo_add(&exip->exi_export.ex_secinfo, 749 &exip->exi_export.ex_seccnt, tnode->tree_vis->vis_secinfo, 750 tnode->tree_vis->vis_seccnt, FALSE); 751 } 752 753 /* 754 * Move to parent node and propagate sec flavor 755 * to exportinfo and to visible structures. 756 */ 757 tnode = tnode->tree_parent; 758 759 while (tnode) { 760 761 /* If there is exportinfo, update it */ 762 if (tnode->tree_exi) { 763 secinfo_t **pxsec = 764 &tnode->tree_exi->exi_export.ex_secinfo; 765 int *pxcnt = &tnode->tree_exi->exi_export.ex_seccnt; 766 int is_pseudo = PSEUDO(tnode->tree_exi); 767 if (isadd) 768 srv_secinfo_add(pxsec, pxcnt, sec, seccnt, 769 is_pseudo); 770 else 771 srv_secinfo_remove(pxsec, pxcnt, sec, seccnt); 772 } 773 774 /* Update every visible - only root node has no visible */ 775 if (tnode->tree_vis) { 776 secinfo_t **pxsec = &tnode->tree_vis->vis_secinfo; 777 int *pxcnt = &tnode->tree_vis->vis_seccnt; 778 if (isadd) 779 srv_secinfo_add(pxsec, pxcnt, sec, seccnt, 780 FALSE); 781 else 782 srv_secinfo_remove(pxsec, pxcnt, sec, seccnt); 783 } 784 tnode = tnode->tree_parent; 785 } 786 } 787 788 void 789 export_link(exportinfo_t *exi) { 790 int exporthash; 791 792 exporthash = exptablehash(&exi->exi_fsid, &exi->exi_fid); 793 exi->exi_hash = exptable[exporthash]; 794 exptable[exporthash] = exi; 795 } 796 797 /* 798 * Initialization routine for export routines. Should only be called once. 799 */ 800 int 801 nfs_exportinit(void) 802 { 803 int error; 804 805 rw_init(&exported_lock, NULL, RW_DEFAULT, NULL); 806 807 /* 808 * Allocate the place holder for the public file handle, which 809 * is all zeroes. It is initially set to the root filesystem. 810 */ 811 exi_root = kmem_zalloc(sizeof (*exi_root), KM_SLEEP); 812 exi_public = exi_root; 813 814 exi_root->exi_export.ex_flags = EX_PUBLIC; 815 exi_root->exi_export.ex_pathlen = 1; /* length of "/" */ 816 exi_root->exi_export.ex_path = 817 kmem_alloc(exi_root->exi_export.ex_pathlen + 1, KM_SLEEP); 818 exi_root->exi_export.ex_path[0] = '/'; 819 exi_root->exi_export.ex_path[1] = '\0'; 820 821 exi_root->exi_count = 1; 822 mutex_init(&exi_root->exi_lock, NULL, MUTEX_DEFAULT, NULL); 823 824 exi_root->exi_vp = rootdir; 825 exi_rootfid.fid_len = MAXFIDSZ; 826 error = vop_fid_pseudo(exi_root->exi_vp, &exi_rootfid); 827 if (error) { 828 mutex_destroy(&exi_root->exi_lock); 829 kmem_free(exi_root, sizeof (*exi_root)); 830 return (error); 831 } 832 833 /* setup the fhandle template */ 834 exi_root->exi_fh.fh_fsid = rootdir->v_vfsp->vfs_fsid; 835 exi_root->exi_fh.fh_xlen = exi_rootfid.fid_len; 836 bcopy(exi_rootfid.fid_data, exi_root->exi_fh.fh_xdata, 837 exi_rootfid.fid_len); 838 exi_root->exi_fh.fh_len = sizeof (exi_root->exi_fh.fh_data); 839 840 /* 841 * Publish the exportinfo in the hash table 842 */ 843 export_link(exi_root); 844 845 nfslog_init(); 846 ns_root = NULL; 847 848 return (0); 849 } 850 851 /* 852 * Finalization routine for export routines. Called to cleanup previously 853 * initialization work when the NFS server module could not be loaded correctly. 854 */ 855 void 856 nfs_exportfini(void) 857 { 858 /* 859 * Deallocate the place holder for the public file handle. 860 */ 861 srv_secinfo_list_free(exi_root->exi_export.ex_secinfo, 862 exi_root->exi_export.ex_seccnt); 863 mutex_destroy(&exi_root->exi_lock); 864 kmem_free(exi_root, sizeof (*exi_root)); 865 866 rw_destroy(&exported_lock); 867 } 868 869 /* 870 * Check if 2 gss mechanism identifiers are the same. 871 * 872 * return FALSE if not the same. 873 * return TRUE if the same. 874 */ 875 static bool_t 876 nfs_mech_equal(rpc_gss_OID mech1, rpc_gss_OID mech2) 877 { 878 if ((mech1->length == 0) && (mech2->length == 0)) 879 return (TRUE); 880 881 if (mech1->length != mech2->length) 882 return (FALSE); 883 884 return (bcmp(mech1->elements, mech2->elements, mech1->length) == 0); 885 } 886 887 /* 888 * This routine is used by rpc to map rpc security number 889 * to nfs specific security flavor number. 890 * 891 * The gss callback prototype is 892 * callback(struct svc_req *, gss_cred_id_t *, gss_ctx_id_t *, 893 * rpc_gss_lock_t *, void **), 894 * since nfs does not use the gss_cred_id_t/gss_ctx_id_t arguments 895 * we cast them to void. 896 */ 897 /*ARGSUSED*/ 898 bool_t 899 rfs_gsscallback(struct svc_req *req, gss_cred_id_t deleg, void *gss_context, 900 rpc_gss_lock_t *lock, void **cookie) 901 { 902 int i, j; 903 rpc_gss_rawcred_t *raw_cred; 904 struct exportinfo *exi; 905 906 /* 907 * We don't deal with delegated credentials. 908 */ 909 if (deleg != GSS_C_NO_CREDENTIAL) 910 return (FALSE); 911 912 raw_cred = lock->raw_cred; 913 *cookie = NULL; 914 915 rw_enter(&exported_lock, RW_READER); 916 for (i = 0; i < EXPTABLESIZE; i++) { 917 exi = exptable[i]; 918 while (exi) { 919 if (exi->exi_export.ex_seccnt > 0) { 920 struct secinfo *secp; 921 seconfig_t *se; 922 int seccnt; 923 924 secp = exi->exi_export.ex_secinfo; 925 seccnt = exi->exi_export.ex_seccnt; 926 for (j = 0; j < seccnt; j++) { 927 /* 928 * If there is a map of the triplet 929 * (mechanism, service, qop) between 930 * raw_cred and the exported flavor, 931 * get the psudo flavor number. 932 * Also qop should not be NULL, it 933 * should be "default" or something 934 * else. 935 */ 936 se = &secp[j].s_secinfo; 937 if ((se->sc_rpcnum == RPCSEC_GSS) && 938 939 (nfs_mech_equal( 940 se->sc_gss_mech_type, 941 raw_cred->mechanism)) && 942 943 (se->sc_service == 944 raw_cred->service) && 945 (raw_cred->qop == se->sc_qop)) { 946 947 *cookie = (void *)(uintptr_t) 948 se->sc_nfsnum; 949 goto done; 950 } 951 } 952 } 953 exi = exi->exi_hash; 954 } 955 } 956 done: 957 rw_exit(&exported_lock); 958 959 /* 960 * If no nfs pseudo number mapping can be found in the export 961 * table, assign the nfsflavor to NFS_FLAVOR_NOMAP. In V4, we may 962 * recover the flavor mismatch from NFS layer (NFS4ERR_WRONGSEC). 963 * 964 * For example: 965 * server first shares with krb5i; 966 * client mounts with krb5i; 967 * server re-shares with krb5p; 968 * client tries with krb5i, but no mapping can be found; 969 * rpcsec_gss module calls this routine to do the mapping, 970 * if this routine fails, request is rejected from 971 * the rpc layer. 972 * What we need is to let the nfs layer rejects the request. 973 * For V4, we can reject with NFS4ERR_WRONGSEC and the client 974 * may recover from it by getting the new flavor via SECINFO. 975 * 976 * nfs pseudo number for RPCSEC_GSS mapping (see nfssec.conf) 977 * is owned by IANA (see RFC 2623). 978 * 979 * XXX NFS_FLAVOR_NOMAP is defined in Solaris to work around 980 * the implementation issue. This number should not overlap with 981 * any new IANA defined pseudo flavor numbers. 982 */ 983 if (*cookie == NULL) 984 *cookie = (void *)NFS_FLAVOR_NOMAP; 985 986 lock->locked = TRUE; 987 988 return (TRUE); 989 } 990 991 992 /* 993 * Exportfs system call; credentials should be checked before 994 * calling this function. 995 */ 996 int 997 exportfs(struct exportfs_args *args, model_t model, cred_t *cr) 998 { 999 vnode_t *vp; 1000 vnode_t *dvp; 1001 struct exportdata *kex; 1002 struct exportinfo *exi = NULL; 1003 struct exportinfo *ex, *prev; 1004 fid_t fid; 1005 fsid_t fsid; 1006 int error; 1007 size_t allocsize; 1008 struct secinfo *sp; 1009 struct secinfo *exs; 1010 rpc_gss_callback_t cb; 1011 char *pathbuf; 1012 char *log_buffer; 1013 char *tagbuf; 1014 int callback; 1015 int allocd_seccnt; 1016 STRUCT_HANDLE(exportfs_args, uap); 1017 STRUCT_DECL(exportdata, uexi); 1018 struct secinfo newsec[MAX_FLAVORS]; 1019 int newcnt; 1020 struct secinfo oldsec[MAX_FLAVORS]; 1021 int oldcnt; 1022 int i; 1023 1024 STRUCT_SET_HANDLE(uap, model, args); 1025 1026 error = lookupname(STRUCT_FGETP(uap, dname), UIO_USERSPACE, 1027 FOLLOW, &dvp, &vp); 1028 if (error == EINVAL) { 1029 /* 1030 * if fname resolves to / we get EINVAL error 1031 * since we wanted the parent vnode. Try again 1032 * with NULL dvp. 1033 */ 1034 error = lookupname(STRUCT_FGETP(uap, dname), UIO_USERSPACE, 1035 FOLLOW, NULL, &vp); 1036 dvp = NULL; 1037 } 1038 if (!error && vp == NULL) { 1039 /* 1040 * Last component of fname not found 1041 */ 1042 if (dvp != NULL) { 1043 VN_RELE(dvp); 1044 } 1045 error = ENOENT; 1046 } 1047 1048 if (error) { 1049 /* 1050 * If this is a request to unexport, indicated by the 1051 * uex pointer being NULL, it is possible that the 1052 * directory has already been removed or shared filesystem 1053 * could have been forcibly unmounted. In which case 1054 * we scan the export list which records the pathname 1055 * originally exported. 1056 */ 1057 if (STRUCT_FGETP(uap, uex) == NULL) { 1058 char namebuf[TYPICALMAXPATHLEN]; 1059 struct pathname lookpn; 1060 int i; 1061 1062 /* Read in pathname from userspace */ 1063 error = pn_get_buf(STRUCT_FGETP(uap, dname), 1064 UIO_USERSPACE, &lookpn, namebuf, sizeof (namebuf)); 1065 if (error == ENAMETOOLONG) { 1066 /* 1067 * pathname > TYPICALMAXPATHLEN, use 1068 * pn_get() instead. Remember to 1069 * pn_free() afterwards. 1070 */ 1071 error = pn_get(STRUCT_FGETP(uap, dname), 1072 UIO_USERSPACE, &lookpn); 1073 } 1074 1075 if (error) 1076 return (error); 1077 1078 /* Walk the export list looking for that pathname */ 1079 rw_enter(&exported_lock, RW_READER); 1080 for (i = 0; i < EXPTABLESIZE; i++) { 1081 exi = exptable[i]; 1082 while (exi) { 1083 if (strcmp(exi->exi_export.ex_path, 1084 lookpn.pn_path) == 0) { 1085 goto exi_scan_end; 1086 } 1087 exi = exi->exi_hash; 1088 } 1089 } 1090 exi_scan_end: 1091 rw_exit(&exported_lock); 1092 if (exi) { 1093 /* Found a match, use it. */ 1094 vp = exi->exi_vp; 1095 dvp = exi->exi_dvp; 1096 DTRACE_PROBE2(nfss__i__nmspc__tree, 1097 char *, 1098 "unsharing removed dir/unmounted fs", 1099 char *, lookpn.pn_path); 1100 VN_HOLD(vp); 1101 VN_HOLD(dvp); 1102 error = 0; 1103 } else { 1104 /* Still no match, set error */ 1105 error = ENOENT; 1106 } 1107 if (lookpn.pn_buf != namebuf) { 1108 /* 1109 * We didn't use namebuf, so make 1110 * sure we free the allocated memory 1111 */ 1112 pn_free(&lookpn); 1113 } 1114 } 1115 } 1116 1117 if (error) 1118 return (error); 1119 1120 /* 1121 * 'vp' may be an AUTOFS node, so we perform a 1122 * VOP_ACCESS() to trigger the mount of the 1123 * intended filesystem, so we can share the intended 1124 * filesystem instead of the AUTOFS filesystem. 1125 */ 1126 (void) VOP_ACCESS(vp, 0, 0, cr, NULL); 1127 1128 /* 1129 * We're interested in the top most filesystem. 1130 * This is specially important when uap->dname is a trigger 1131 * AUTOFS node, since we're really interested in sharing the 1132 * filesystem AUTOFS mounted as result of the VOP_ACCESS() 1133 * call not the AUTOFS node itself. 1134 */ 1135 if (vn_mountedvfs(vp) != NULL) { 1136 if (error = traverse(&vp)) { 1137 VN_RELE(vp); 1138 if (dvp != NULL) 1139 VN_RELE(dvp); 1140 return (error); 1141 } 1142 } 1143 1144 /* 1145 * Get the vfs id 1146 */ 1147 bzero(&fid, sizeof (fid)); 1148 fid.fid_len = MAXFIDSZ; 1149 error = VOP_FID(vp, &fid, NULL); 1150 fsid = vp->v_vfsp->vfs_fsid; 1151 1152 /* 1153 * Allow unshare request for forcibly unmounted shared filesystem. 1154 */ 1155 if (error == EIO && exi) { 1156 fid = exi->exi_fid; 1157 fsid = exi->exi_fsid; 1158 } else if (error) { 1159 VN_RELE(vp); 1160 if (dvp != NULL) 1161 VN_RELE(dvp); 1162 /* 1163 * If VOP_FID returns ENOSPC then the fid supplied 1164 * is too small. For now we simply return EREMOTE. 1165 */ 1166 if (error == ENOSPC) 1167 error = EREMOTE; 1168 return (error); 1169 } 1170 1171 if (STRUCT_FGETP(uap, uex) == NULL) { 1172 error = unexport(&fsid, &fid, vp); 1173 VN_RELE(vp); 1174 if (dvp != NULL) 1175 VN_RELE(dvp); 1176 return (error); 1177 } 1178 1179 exi = kmem_zalloc(sizeof (*exi), KM_SLEEP); 1180 exi->exi_fsid = fsid; 1181 exi->exi_fid = fid; 1182 exi->exi_vp = vp; 1183 exi->exi_count = 1; 1184 exi->exi_volatile_dev = (vfssw[vp->v_vfsp->vfs_fstype].vsw_flag & 1185 VSW_VOLATILEDEV) ? 1 : 0; 1186 mutex_init(&exi->exi_lock, NULL, MUTEX_DEFAULT, NULL); 1187 exi->exi_dvp = dvp; 1188 1189 /* 1190 * Initialize auth cache lock 1191 */ 1192 rw_init(&exi->exi_cache_lock, NULL, RW_DEFAULT, NULL); 1193 1194 /* 1195 * Build up the template fhandle 1196 */ 1197 exi->exi_fh.fh_fsid = fsid; 1198 if (exi->exi_fid.fid_len > sizeof (exi->exi_fh.fh_xdata)) { 1199 error = EREMOTE; 1200 goto out1; 1201 } 1202 exi->exi_fh.fh_xlen = exi->exi_fid.fid_len; 1203 bcopy(exi->exi_fid.fid_data, exi->exi_fh.fh_xdata, 1204 exi->exi_fid.fid_len); 1205 1206 exi->exi_fh.fh_len = sizeof (exi->exi_fh.fh_data); 1207 1208 kex = &exi->exi_export; 1209 1210 /* 1211 * Load in everything, and do sanity checking 1212 */ 1213 STRUCT_INIT(uexi, model); 1214 if (copyin(STRUCT_FGETP(uap, uex), STRUCT_BUF(uexi), 1215 STRUCT_SIZE(uexi))) { 1216 error = EFAULT; 1217 goto out1; 1218 } 1219 1220 kex->ex_version = STRUCT_FGET(uexi, ex_version); 1221 if (kex->ex_version != EX_CURRENT_VERSION) { 1222 error = EINVAL; 1223 cmn_err(CE_WARN, 1224 "NFS: exportfs requires export struct version 2 - got %d\n", 1225 kex->ex_version); 1226 goto out1; 1227 } 1228 1229 /* 1230 * Must have at least one security entry 1231 */ 1232 kex->ex_seccnt = STRUCT_FGET(uexi, ex_seccnt); 1233 if (kex->ex_seccnt < 1) { 1234 error = EINVAL; 1235 goto out1; 1236 } 1237 1238 kex->ex_path = STRUCT_FGETP(uexi, ex_path); 1239 kex->ex_pathlen = STRUCT_FGET(uexi, ex_pathlen); 1240 kex->ex_flags = STRUCT_FGET(uexi, ex_flags); 1241 kex->ex_anon = STRUCT_FGET(uexi, ex_anon); 1242 kex->ex_secinfo = STRUCT_FGETP(uexi, ex_secinfo); 1243 kex->ex_index = STRUCT_FGETP(uexi, ex_index); 1244 kex->ex_log_buffer = STRUCT_FGETP(uexi, ex_log_buffer); 1245 kex->ex_log_bufferlen = STRUCT_FGET(uexi, ex_log_bufferlen); 1246 kex->ex_tag = STRUCT_FGETP(uexi, ex_tag); 1247 kex->ex_taglen = STRUCT_FGET(uexi, ex_taglen); 1248 1249 /* 1250 * Copy the exported pathname into 1251 * an appropriately sized buffer. 1252 */ 1253 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1254 if (copyinstr(kex->ex_path, pathbuf, MAXPATHLEN, &kex->ex_pathlen)) { 1255 kmem_free(pathbuf, MAXPATHLEN); 1256 error = EFAULT; 1257 goto out1; 1258 } 1259 kex->ex_path = kmem_alloc(kex->ex_pathlen + 1, KM_SLEEP); 1260 bcopy(pathbuf, kex->ex_path, kex->ex_pathlen); 1261 kex->ex_path[kex->ex_pathlen] = '\0'; 1262 kmem_free(pathbuf, MAXPATHLEN); 1263 1264 /* 1265 * Get the path to the logging buffer and the tag 1266 */ 1267 if (kex->ex_flags & EX_LOG) { 1268 log_buffer = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1269 if (copyinstr(kex->ex_log_buffer, log_buffer, MAXPATHLEN, 1270 &kex->ex_log_bufferlen)) { 1271 kmem_free(log_buffer, MAXPATHLEN); 1272 error = EFAULT; 1273 goto out2; 1274 } 1275 kex->ex_log_buffer = 1276 kmem_alloc(kex->ex_log_bufferlen + 1, KM_SLEEP); 1277 bcopy(log_buffer, kex->ex_log_buffer, kex->ex_log_bufferlen); 1278 kex->ex_log_buffer[kex->ex_log_bufferlen] = '\0'; 1279 kmem_free(log_buffer, MAXPATHLEN); 1280 1281 tagbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1282 if (copyinstr(kex->ex_tag, tagbuf, MAXPATHLEN, 1283 &kex->ex_taglen)) { 1284 kmem_free(tagbuf, MAXPATHLEN); 1285 error = EFAULT; 1286 goto out3; 1287 } 1288 kex->ex_tag = kmem_alloc(kex->ex_taglen + 1, KM_SLEEP); 1289 bcopy(tagbuf, kex->ex_tag, kex->ex_taglen); 1290 kex->ex_tag[kex->ex_taglen] = '\0'; 1291 kmem_free(tagbuf, MAXPATHLEN); 1292 } 1293 1294 /* 1295 * Load the security information for each flavor 1296 */ 1297 allocsize = kex->ex_seccnt * SIZEOF_STRUCT(secinfo, model); 1298 sp = kmem_zalloc(allocsize, KM_SLEEP); 1299 if (copyin(kex->ex_secinfo, sp, allocsize)) { 1300 kmem_free(sp, allocsize); 1301 error = EFAULT; 1302 goto out4; 1303 } 1304 1305 /* 1306 * All of these nested structures need to be converted to 1307 * the kernel native format. 1308 */ 1309 if (model != DATAMODEL_NATIVE) { 1310 size_t allocsize2; 1311 struct secinfo *sp2; 1312 1313 allocsize2 = kex->ex_seccnt * sizeof (struct secinfo); 1314 sp2 = kmem_zalloc(allocsize2, KM_SLEEP); 1315 1316 for (i = 0; i < kex->ex_seccnt; i++) { 1317 STRUCT_HANDLE(secinfo, usi); 1318 1319 STRUCT_SET_HANDLE(usi, model, 1320 (struct secinfo *)((caddr_t)sp + 1321 (i * SIZEOF_STRUCT(secinfo, model)))); 1322 bcopy(STRUCT_FGET(usi, s_secinfo.sc_name), 1323 sp2[i].s_secinfo.sc_name, MAX_NAME_LEN); 1324 sp2[i].s_secinfo.sc_nfsnum = 1325 STRUCT_FGET(usi, s_secinfo.sc_nfsnum); 1326 sp2[i].s_secinfo.sc_rpcnum = 1327 STRUCT_FGET(usi, s_secinfo.sc_rpcnum); 1328 bcopy(STRUCT_FGET(usi, s_secinfo.sc_gss_mech), 1329 sp2[i].s_secinfo.sc_gss_mech, MAX_NAME_LEN); 1330 sp2[i].s_secinfo.sc_gss_mech_type = 1331 STRUCT_FGETP(usi, s_secinfo.sc_gss_mech_type); 1332 sp2[i].s_secinfo.sc_qop = 1333 STRUCT_FGET(usi, s_secinfo.sc_qop); 1334 sp2[i].s_secinfo.sc_service = 1335 STRUCT_FGET(usi, s_secinfo.sc_service); 1336 1337 sp2[i].s_flags = STRUCT_FGET(usi, s_flags); 1338 sp2[i].s_window = STRUCT_FGET(usi, s_window); 1339 sp2[i].s_rootid = STRUCT_FGET(usi, s_rootid); 1340 sp2[i].s_rootcnt = STRUCT_FGET(usi, s_rootcnt); 1341 sp2[i].s_rootnames = STRUCT_FGETP(usi, s_rootnames); 1342 } 1343 kmem_free(sp, allocsize); 1344 sp = sp2; 1345 allocsize = allocsize2; 1346 } 1347 1348 kex->ex_secinfo = sp; 1349 1350 /* 1351 * And now copy rootnames for each individual secinfo. 1352 */ 1353 callback = 0; 1354 allocd_seccnt = 0; 1355 while (allocd_seccnt < kex->ex_seccnt) { 1356 1357 exs = &sp[allocd_seccnt]; 1358 if (exs->s_rootcnt > 0) { 1359 if (!sec_svc_loadrootnames(exs->s_secinfo.sc_rpcnum, 1360 exs->s_rootcnt, &exs->s_rootnames, model)) { 1361 error = EFAULT; 1362 goto out5; 1363 } 1364 } 1365 1366 if (exs->s_secinfo.sc_rpcnum == RPCSEC_GSS) { 1367 rpc_gss_OID mech_tmp; 1368 STRUCT_DECL(rpc_gss_OID_s, umech_tmp); 1369 caddr_t elements_tmp; 1370 1371 /* Copyin mechanism type */ 1372 STRUCT_INIT(umech_tmp, model); 1373 mech_tmp = kmem_alloc(sizeof (*mech_tmp), KM_SLEEP); 1374 if (copyin(exs->s_secinfo.sc_gss_mech_type, 1375 STRUCT_BUF(umech_tmp), STRUCT_SIZE(umech_tmp))) { 1376 kmem_free(mech_tmp, sizeof (*mech_tmp)); 1377 error = EFAULT; 1378 goto out5; 1379 } 1380 mech_tmp->length = STRUCT_FGET(umech_tmp, length); 1381 mech_tmp->elements = STRUCT_FGETP(umech_tmp, elements); 1382 1383 elements_tmp = kmem_alloc(mech_tmp->length, KM_SLEEP); 1384 if (copyin(mech_tmp->elements, elements_tmp, 1385 mech_tmp->length)) { 1386 kmem_free(elements_tmp, mech_tmp->length); 1387 kmem_free(mech_tmp, sizeof (*mech_tmp)); 1388 error = EFAULT; 1389 goto out5; 1390 } 1391 mech_tmp->elements = elements_tmp; 1392 exs->s_secinfo.sc_gss_mech_type = mech_tmp; 1393 allocd_seccnt++; 1394 1395 callback = 1; 1396 } else 1397 allocd_seccnt++; 1398 } 1399 1400 /* 1401 * Init the secinfo reference count and mark these flavors 1402 * explicitly exported flavors. 1403 */ 1404 for (i = 0; i < kex->ex_seccnt; i++) { 1405 kex->ex_secinfo[i].s_flags |= M_4SEC_EXPORTED; 1406 kex->ex_secinfo[i].s_refcnt = 1; 1407 } 1408 1409 /* 1410 * Set up rpcsec_gss callback routine entry if any. 1411 */ 1412 if (callback) { 1413 cb.callback = rfs_gsscallback; 1414 cb.program = NFS_ACL_PROGRAM; 1415 for (cb.version = NFS_ACL_VERSMIN; 1416 cb.version <= NFS_ACL_VERSMAX; cb.version++) { 1417 (void) sec_svc_control(RPC_SVC_SET_GSS_CALLBACK, 1418 (void *)&cb); 1419 } 1420 1421 cb.program = NFS_PROGRAM; 1422 for (cb.version = NFS_VERSMIN; 1423 cb.version <= NFS_VERSMAX; cb.version++) { 1424 (void) sec_svc_control(RPC_SVC_SET_GSS_CALLBACK, 1425 (void *)&cb); 1426 } 1427 } 1428 1429 /* 1430 * Check the index flag. Do this here to avoid holding the 1431 * lock while dealing with the index option (as we do with 1432 * the public option). 1433 */ 1434 if (kex->ex_flags & EX_INDEX) { 1435 if (!kex->ex_index) { /* sanity check */ 1436 error = EINVAL; 1437 goto out5; 1438 } 1439 if (error = loadindex(kex)) 1440 goto out5; 1441 } 1442 1443 if (kex->ex_flags & EX_LOG) { 1444 if (error = nfslog_setup(exi)) 1445 goto out6; 1446 } 1447 1448 /* 1449 * Insert the new entry at the front of the export list 1450 */ 1451 rw_enter(&exported_lock, RW_WRITER); 1452 1453 export_link(exi); 1454 1455 /* 1456 * Check the rest of the list for an old entry for the fs. 1457 * If one is found then unlink it, wait until this is the 1458 * only reference and then free it. 1459 */ 1460 prev = exi; 1461 for (ex = prev->exi_hash; ex != NULL; prev = ex, ex = ex->exi_hash) { 1462 if (ex != exi_root && VN_CMP(ex->exi_vp, vp)) { 1463 prev->exi_hash = ex->exi_hash; 1464 break; 1465 } 1466 } 1467 1468 /* 1469 * If the public filehandle is pointing at the 1470 * old entry, then point it back at the root. 1471 */ 1472 if (ex != NULL && ex == exi_public) 1473 exi_public = exi_root; 1474 1475 /* 1476 * If the public flag is on, make the global exi_public 1477 * point to this entry and turn off the public bit so that 1478 * we can distinguish it from the place holder export. 1479 */ 1480 if (kex->ex_flags & EX_PUBLIC) { 1481 exi_public = exi; 1482 kex->ex_flags &= ~EX_PUBLIC; 1483 } 1484 1485 #ifdef VOLATILE_FH_TEST 1486 /* 1487 * Set up the volatile_id value if volatile on share. 1488 * The list of volatile renamed filehandles is always destroyed, 1489 * if the fs was reshared. 1490 */ 1491 if (kex->ex_flags & EX_VOLFH) 1492 exi->exi_volatile_id = gethrestime_sec(); 1493 1494 mutex_init(&exi->exi_vol_rename_lock, NULL, MUTEX_DEFAULT, NULL); 1495 #endif /* VOLATILE_FH_TEST */ 1496 1497 /* 1498 * If this is a new export, then climb up 1499 * the tree and check if any pseudo exports 1500 * need to be created to provide a path for 1501 * NFS v4 clients. 1502 */ 1503 if (ex == NULL) { 1504 error = treeclimb_export(exi); 1505 if (error) 1506 goto out7; 1507 } else { 1508 /* If it's a re-export update namespace tree */ 1509 exi->exi_tree = ex->exi_tree; 1510 exi->exi_tree->tree_exi = exi; 1511 } 1512 1513 /* 1514 * build a unique flavor list from the flavors specified 1515 * in the share cmd. unique means that each flavor only 1516 * appears once in the secinfo list -- no duplicates allowed. 1517 */ 1518 newcnt = build_seclist_nodups(&exi->exi_export, newsec, FALSE); 1519 1520 srv_secinfo_treeclimb(exi, newsec, newcnt, TRUE); 1521 1522 /* 1523 * If re-sharing an old export entry, update the secinfo data 1524 * depending on if the old entry is a pseudo node or not. 1525 */ 1526 if (ex != NULL) { 1527 oldcnt = build_seclist_nodups(&ex->exi_export, oldsec, FALSE); 1528 if (PSEUDO(ex)) { 1529 /* 1530 * The dir being shared is a pseudo export root (which 1531 * will be transformed into a real export root). The 1532 * flavor(s) of the new share were propagated to the 1533 * ancestors by srv_secinfo_treeclimb() above. Now 1534 * transfer the implicit flavor refs from the old 1535 * pseudo exprot root to the new (real) export root. 1536 */ 1537 srv_secinfo_add(&exi->exi_export.ex_secinfo, 1538 &exi->exi_export.ex_seccnt, oldsec, oldcnt, TRUE); 1539 } else { 1540 /* 1541 * First transfer implicit flavor refs to new export. 1542 * Remove old flavor refs last. 1543 */ 1544 srv_secinfo_exp2exp(&exi->exi_export, oldsec, oldcnt); 1545 srv_secinfo_treeclimb(ex, oldsec, oldcnt, FALSE); 1546 } 1547 } 1548 1549 /* 1550 * If it's a re-export and the old entry has a pseudonode list, 1551 * transfer it to the new export. 1552 */ 1553 if (ex != NULL && (ex->exi_visible != NULL)) { 1554 exi->exi_visible = ex->exi_visible; 1555 ex->exi_visible = NULL; 1556 } 1557 1558 rw_exit(&exported_lock); 1559 1560 if (exi_public == exi || kex->ex_flags & EX_LOG) { 1561 /* 1562 * Log share operation to this buffer only. 1563 */ 1564 nfslog_share_record(exi, cr); 1565 } 1566 1567 if (ex != NULL) 1568 exi_rele(ex); 1569 1570 return (0); 1571 1572 out7: 1573 /* 1574 * Unlink and re-link the new and old export in exptable. 1575 */ 1576 (void) export_unlink(&exi->exi_fsid, &exi->exi_fid, exi->exi_vp, NULL); 1577 if (ex != NULL) 1578 export_link(ex); 1579 1580 rw_exit(&exported_lock); 1581 out6: 1582 if (kex->ex_flags & EX_INDEX) 1583 kmem_free(kex->ex_index, strlen(kex->ex_index) + 1); 1584 out5: 1585 /* free partially completed allocation */ 1586 while (--allocd_seccnt >= 0) { 1587 exs = &kex->ex_secinfo[allocd_seccnt]; 1588 srv_secinfo_entry_free(exs); 1589 } 1590 1591 if (kex->ex_secinfo) { 1592 kmem_free(kex->ex_secinfo, 1593 kex->ex_seccnt * sizeof (struct secinfo)); 1594 } 1595 1596 out4: 1597 if ((kex->ex_flags & EX_LOG) && kex->ex_tag != NULL) 1598 kmem_free(kex->ex_tag, kex->ex_taglen + 1); 1599 out3: 1600 if ((kex->ex_flags & EX_LOG) && kex->ex_log_buffer != NULL) 1601 kmem_free(kex->ex_log_buffer, kex->ex_log_bufferlen + 1); 1602 out2: 1603 kmem_free(kex->ex_path, kex->ex_pathlen + 1); 1604 out1: 1605 VN_RELE(vp); 1606 if (dvp != NULL) 1607 VN_RELE(dvp); 1608 mutex_destroy(&exi->exi_lock); 1609 rw_destroy(&exi->exi_cache_lock); 1610 kmem_free(exi, sizeof (*exi)); 1611 return (error); 1612 } 1613 1614 /* 1615 * Remove the exportinfo from the export list 1616 */ 1617 int 1618 export_unlink(fsid_t *fsid, fid_t *fid, vnode_t *vp, struct exportinfo **exip) 1619 { 1620 struct exportinfo **tail; 1621 1622 ASSERT(RW_WRITE_HELD(&exported_lock)); 1623 1624 tail = &exptable[exptablehash(fsid, fid)]; 1625 while (*tail != NULL) { 1626 if (exportmatch(*tail, fsid, fid)) { 1627 /* 1628 * If vp is given, check if vp is the 1629 * same vnode as the exported node. 1630 * 1631 * Since VOP_FID of a lofs node returns the 1632 * fid of its real node (ufs), the exported 1633 * node for lofs and (pseudo) ufs may have 1634 * the same fsid and fid. 1635 */ 1636 if (vp == NULL || vp == (*tail)->exi_vp) { 1637 1638 if (exip != NULL) 1639 *exip = *tail; 1640 *tail = (*tail)->exi_hash; 1641 1642 return (0); 1643 } 1644 } 1645 tail = &(*tail)->exi_hash; 1646 } 1647 1648 return (EINVAL); 1649 } 1650 1651 /* 1652 * Unexport an exported filesystem 1653 */ 1654 int 1655 unexport(fsid_t *fsid, fid_t *fid, vnode_t *vp) 1656 { 1657 struct exportinfo *exi = NULL; 1658 int error; 1659 struct secinfo cursec[MAX_FLAVORS]; 1660 int curcnt; 1661 1662 rw_enter(&exported_lock, RW_WRITER); 1663 1664 error = export_unlink(fsid, fid, vp, &exi); 1665 1666 if (error) { 1667 rw_exit(&exported_lock); 1668 return (error); 1669 } 1670 1671 /* pseudo node is not a real exported filesystem */ 1672 if (PSEUDO(exi)) { 1673 /* 1674 * Put the pseudo node back into the export table 1675 * before erroring out. 1676 */ 1677 export_link(exi); 1678 rw_exit(&exported_lock); 1679 return (EINVAL); 1680 } 1681 1682 /* 1683 * Remove security flavors before treeclimb_unexport() is called 1684 * because srv_secinfo_treeclimb needs the namespace tree 1685 */ 1686 curcnt = build_seclist_nodups(&exi->exi_export, cursec, TRUE); 1687 1688 srv_secinfo_treeclimb(exi, cursec, curcnt, FALSE); 1689 1690 /* 1691 * If there's a visible list, then need to leave 1692 * a pseudo export here to retain the visible list 1693 * for paths to exports below. 1694 */ 1695 if (exi->exi_visible) { 1696 struct exportinfo *newexi; 1697 1698 error = pseudo_exportfs(exi->exi_vp, exi->exi_visible, 1699 &exi->exi_export, &newexi); 1700 if (error) 1701 goto done; 1702 1703 exi->exi_visible = NULL; 1704 /* 1705 * pseudo_exportfs() has allocated new exportinfo, 1706 * update the treenode. 1707 */ 1708 newexi->exi_tree = exi->exi_tree; 1709 newexi->exi_tree->tree_exi = newexi; 1710 1711 } else { 1712 treeclimb_unexport(exi); 1713 } 1714 1715 rw_exit(&exported_lock); 1716 1717 /* 1718 * Need to call into the NFSv4 server and release all data 1719 * held on this particular export. This is important since 1720 * the v4 server may be holding file locks or vnodes under 1721 * this export. 1722 */ 1723 rfs4_clean_state_exi(exi); 1724 1725 /* 1726 * Notify the lock manager that the filesystem is being 1727 * unexported. 1728 */ 1729 lm_unexport(exi); 1730 1731 /* 1732 * If this was a public export, restore 1733 * the public filehandle to the root. 1734 */ 1735 if (exi == exi_public) { 1736 exi_public = exi_root; 1737 1738 nfslog_share_record(exi_public, CRED()); 1739 } 1740 1741 if (exi->exi_export.ex_flags & EX_LOG) { 1742 nfslog_unshare_record(exi, CRED()); 1743 } 1744 1745 exi_rele(exi); 1746 return (error); 1747 1748 done: 1749 rw_exit(&exported_lock); 1750 exi_rele(exi); 1751 return (error); 1752 } 1753 1754 /* 1755 * Get file handle system call. 1756 * Takes file name and returns a file handle for it. 1757 * Credentials must be verified before calling. 1758 */ 1759 int 1760 nfs_getfh(struct nfs_getfh_args *args, model_t model, cred_t *cr) 1761 { 1762 nfs_fh3 fh; 1763 char buf[NFS3_MAXFHSIZE]; 1764 char *logptr, logbuf[NFS3_MAXFHSIZE]; 1765 int l = NFS3_MAXFHSIZE; 1766 vnode_t *vp; 1767 vnode_t *dvp; 1768 struct exportinfo *exi; 1769 int error; 1770 int vers; 1771 STRUCT_HANDLE(nfs_getfh_args, uap); 1772 1773 #ifdef lint 1774 model = model; /* STRUCT macros don't always use it */ 1775 #endif 1776 1777 STRUCT_SET_HANDLE(uap, model, args); 1778 1779 error = lookupname(STRUCT_FGETP(uap, fname), UIO_USERSPACE, 1780 FOLLOW, &dvp, &vp); 1781 if (error == EINVAL) { 1782 /* 1783 * if fname resolves to / we get EINVAL error 1784 * since we wanted the parent vnode. Try again 1785 * with NULL dvp. 1786 */ 1787 error = lookupname(STRUCT_FGETP(uap, fname), UIO_USERSPACE, 1788 FOLLOW, NULL, &vp); 1789 dvp = NULL; 1790 } 1791 if (!error && vp == NULL) { 1792 /* 1793 * Last component of fname not found 1794 */ 1795 if (dvp != NULL) { 1796 VN_RELE(dvp); 1797 } 1798 error = ENOENT; 1799 } 1800 if (error) 1801 return (error); 1802 1803 /* 1804 * 'vp' may be an AUTOFS node, so we perform a 1805 * VOP_ACCESS() to trigger the mount of the 1806 * intended filesystem, so we can share the intended 1807 * filesystem instead of the AUTOFS filesystem. 1808 */ 1809 (void) VOP_ACCESS(vp, 0, 0, cr, NULL); 1810 1811 /* 1812 * We're interested in the top most filesystem. 1813 * This is specially important when uap->dname is a trigger 1814 * AUTOFS node, since we're really interested in sharing the 1815 * filesystem AUTOFS mounted as result of the VOP_ACCESS() 1816 * call not the AUTOFS node itself. 1817 */ 1818 if (vn_mountedvfs(vp) != NULL) { 1819 if (error = traverse(&vp)) { 1820 VN_RELE(vp); 1821 if (dvp != NULL) 1822 VN_RELE(dvp); 1823 return (error); 1824 } 1825 } 1826 1827 vers = STRUCT_FGET(uap, vers); 1828 exi = nfs_vptoexi(dvp, vp, cr, NULL, &error, FALSE); 1829 if (!error) { 1830 if (vers == NFS_VERSION) { 1831 error = makefh((fhandle_t *)buf, vp, exi); 1832 l = NFS_FHSIZE; 1833 logptr = buf; 1834 } else if (vers == NFS_V3) { 1835 int i, sz, pad; 1836 1837 error = makefh3(&fh, vp, exi); 1838 l = fh.fh3_length; 1839 logptr = logbuf; 1840 if (!error) { 1841 i = 0; 1842 sz = sizeof (fsid_t); 1843 bcopy(&fh.fh3_fsid, &buf[i], sz); 1844 i += sz; 1845 1846 /* 1847 * For backwards compatibility, the 1848 * fid length may be less than 1849 * NFS_FHMAXDATA, but it was always 1850 * encoded as NFS_FHMAXDATA bytes. 1851 */ 1852 1853 sz = sizeof (ushort_t); 1854 bcopy(&fh.fh3_len, &buf[i], sz); 1855 i += sz; 1856 bcopy(fh.fh3_data, &buf[i], fh.fh3_len); 1857 i += fh.fh3_len; 1858 pad = (NFS_FHMAXDATA - fh.fh3_len); 1859 if (pad > 0) { 1860 bzero(&buf[i], pad); 1861 i += pad; 1862 l += pad; 1863 } 1864 1865 sz = sizeof (ushort_t); 1866 bcopy(&fh.fh3_xlen, &buf[i], sz); 1867 i += sz; 1868 bcopy(fh.fh3_xdata, &buf[i], fh.fh3_xlen); 1869 i += fh.fh3_xlen; 1870 pad = (NFS_FHMAXDATA - fh.fh3_xlen); 1871 if (pad > 0) { 1872 bzero(&buf[i], pad); 1873 i += pad; 1874 l += pad; 1875 } 1876 } 1877 /* 1878 * If we need to do NFS logging, the filehandle 1879 * must be downsized to 32 bytes. 1880 */ 1881 if (!error && exi->exi_export.ex_flags & EX_LOG) { 1882 i = 0; 1883 sz = sizeof (fsid_t); 1884 bcopy(&fh.fh3_fsid, &logbuf[i], sz); 1885 i += sz; 1886 sz = sizeof (ushort_t); 1887 bcopy(&fh.fh3_len, &logbuf[i], sz); 1888 i += sz; 1889 sz = NFS_FHMAXDATA; 1890 bcopy(fh.fh3_data, &logbuf[i], sz); 1891 i += sz; 1892 sz = sizeof (ushort_t); 1893 bcopy(&fh.fh3_xlen, &logbuf[i], sz); 1894 i += sz; 1895 sz = NFS_FHMAXDATA; 1896 bcopy(fh.fh3_xdata, &logbuf[i], sz); 1897 i += sz; 1898 } 1899 } 1900 if (!error && exi->exi_export.ex_flags & EX_LOG) { 1901 nfslog_getfh(exi, (fhandle_t *)logptr, 1902 STRUCT_FGETP(uap, fname), UIO_USERSPACE, cr); 1903 } 1904 exi_rele(exi); 1905 if (!error) { 1906 if (copyout(&l, STRUCT_FGETP(uap, lenp), sizeof (int))) 1907 error = EFAULT; 1908 if (copyout(buf, STRUCT_FGETP(uap, fhp), l)) 1909 error = EFAULT; 1910 } 1911 } 1912 VN_RELE(vp); 1913 if (dvp != NULL) { 1914 VN_RELE(dvp); 1915 } 1916 return (error); 1917 } 1918 1919 /* 1920 * Strategy: if vp is in the export list, then 1921 * return the associated file handle. Otherwise, ".." 1922 * once up the vp and try again, until the root of the 1923 * filesystem is reached. 1924 */ 1925 struct exportinfo * 1926 nfs_vptoexi(vnode_t *dvp, vnode_t *vp, cred_t *cr, int *walk, 1927 int *err, bool_t v4srv) 1928 { 1929 fid_t fid; 1930 int error; 1931 struct exportinfo *exi; 1932 1933 ASSERT(vp); 1934 VN_HOLD(vp); 1935 if (dvp != NULL) { 1936 VN_HOLD(dvp); 1937 } 1938 if (walk != NULL) 1939 *walk = 0; 1940 1941 for (;;) { 1942 bzero(&fid, sizeof (fid)); 1943 fid.fid_len = MAXFIDSZ; 1944 error = vop_fid_pseudo(vp, &fid); 1945 if (error) { 1946 /* 1947 * If vop_fid_pseudo returns ENOSPC then the fid 1948 * supplied is too small. For now we simply 1949 * return EREMOTE. 1950 */ 1951 if (error == ENOSPC) 1952 error = EREMOTE; 1953 break; 1954 } 1955 1956 if (v4srv) 1957 exi = checkexport4(&vp->v_vfsp->vfs_fsid, &fid, vp); 1958 else 1959 exi = checkexport(&vp->v_vfsp->vfs_fsid, &fid); 1960 1961 if (exi != NULL) { 1962 /* 1963 * Found the export info 1964 */ 1965 break; 1966 } 1967 1968 /* 1969 * We have just failed finding a matching export. 1970 * If we're at the root of this filesystem, then 1971 * it's time to stop (with failure). 1972 */ 1973 if (vp->v_flag & VROOT) { 1974 error = EINVAL; 1975 break; 1976 } 1977 1978 if (walk != NULL) 1979 (*walk)++; 1980 1981 /* 1982 * Now, do a ".." up vp. If dvp is supplied, use it, 1983 * otherwise, look it up. 1984 */ 1985 if (dvp == NULL) { 1986 error = VOP_LOOKUP(vp, "..", &dvp, NULL, 0, NULL, cr, 1987 NULL, NULL, NULL); 1988 if (error) 1989 break; 1990 } 1991 VN_RELE(vp); 1992 vp = dvp; 1993 dvp = NULL; 1994 } 1995 VN_RELE(vp); 1996 if (dvp != NULL) { 1997 VN_RELE(dvp); 1998 } 1999 if (error != 0) { 2000 if (err != NULL) 2001 *err = error; 2002 return (NULL); 2003 } 2004 return (exi); 2005 } 2006 2007 int 2008 chk_clnt_sec(exportinfo_t *exi, struct svc_req *req) 2009 { 2010 int i, nfsflavor; 2011 struct secinfo *sp; 2012 2013 /* 2014 * Get the nfs flavor number from xprt. 2015 */ 2016 nfsflavor = (int)(uintptr_t)req->rq_xprt->xp_cookie; 2017 2018 sp = exi->exi_export.ex_secinfo; 2019 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2020 if ((nfsflavor == sp[i].s_secinfo.sc_nfsnum) && 2021 SEC_REF_EXPORTED(sp + i)) 2022 return (TRUE); 2023 } 2024 return (FALSE); 2025 } 2026 2027 /* 2028 * Make an fhandle from a vnode 2029 */ 2030 int 2031 makefh(fhandle_t *fh, vnode_t *vp, exportinfo_t *exi) 2032 { 2033 int error; 2034 2035 *fh = exi->exi_fh; /* struct copy */ 2036 2037 error = VOP_FID(vp, (fid_t *)&fh->fh_len, NULL); 2038 if (error) { 2039 /* 2040 * Should be something other than EREMOTE 2041 */ 2042 return (EREMOTE); 2043 } 2044 return (0); 2045 } 2046 2047 /* 2048 * This routine makes an overloaded V2 fhandle which contains 2049 * sec modes. 2050 * 2051 * Note that the first four octets contain the length octet, 2052 * the status octet, and two padded octets to make them XDR 2053 * four-octet aligned. 2054 * 2055 * 1 2 3 4 32 2056 * +---+---+---+---+---+---+---+---+ +---+---+---+---+ +---+ 2057 * | l | s | | | sec_1 |...| sec_n |...| | 2058 * +---+---+---+---+---+---+---+---+ +---+---+---+---+ +---+ 2059 * 2060 * where 2061 * 2062 * the status octet s indicates whether there are more security 2063 * flavors (1 means yes, 0 means no) that require the client to 2064 * perform another 0x81 LOOKUP to get them, 2065 * 2066 * the length octet l is the length describing the number of 2067 * valid octets that follow. (l = 4 * n, where n is the number 2068 * of security flavors sent in the current overloaded filehandle.) 2069 * 2070 * sec_index should always be in the inclusive range: [1 - ex_seccnt], 2071 * and it tells server where to start within the secinfo array. 2072 * Usually it will always be 1; however, if more flavors are used 2073 * for the public export than can be encoded in the overloaded FH 2074 * (7 for NFS2), subsequent SNEGO MCLs will have a larger index 2075 * so the server will pick up where it left off from the previous 2076 * MCL reply. 2077 * 2078 * With NFS4 support, implicitly allowed flavors are also in 2079 * the secinfo array; however, they should not be returned in 2080 * SNEGO MCL replies. 2081 */ 2082 int 2083 makefh_ol(fhandle_t *fh, exportinfo_t *exi, uint_t sec_index) 2084 { 2085 secinfo_t sec[MAX_FLAVORS]; 2086 int totalcnt, i, *ipt, cnt, seccnt, secidx, fh_max_cnt; 2087 char *c; 2088 2089 if (fh == NULL || exi == NULL || sec_index < 1) 2090 return (EREMOTE); 2091 2092 /* 2093 * WebNFS clients need to know the unique set of explicitly 2094 * shared flavors in used for the public export. When 2095 * "TRUE" is passed to build_seclist_nodups(), only explicitly 2096 * shared flavors are included in the list. 2097 */ 2098 seccnt = build_seclist_nodups(&exi->exi_export, sec, TRUE); 2099 if (sec_index > seccnt) 2100 return (EREMOTE); 2101 2102 fh_max_cnt = (NFS_FHSIZE / sizeof (int)) - 1; 2103 totalcnt = seccnt - sec_index + 1; 2104 cnt = totalcnt > fh_max_cnt ? fh_max_cnt : totalcnt; 2105 2106 c = (char *)fh; 2107 /* 2108 * Encode the length octet representing the number of 2109 * security flavors (in bytes) in this overloaded fh. 2110 */ 2111 *c = cnt * sizeof (int); 2112 2113 /* 2114 * Encode the status octet that indicates whether there 2115 * are more security flavors the client needs to get. 2116 */ 2117 *(c + 1) = totalcnt > fh_max_cnt; 2118 2119 /* 2120 * put security flavors in the overloaded fh 2121 */ 2122 ipt = (int *)(c + sizeof (int32_t)); 2123 secidx = sec_index - 1; 2124 for (i = 0; i < cnt; i++) { 2125 ipt[i] = htonl(sec[i + secidx].s_secinfo.sc_nfsnum); 2126 } 2127 return (0); 2128 } 2129 2130 /* 2131 * Make an nfs_fh3 from a vnode 2132 */ 2133 int 2134 makefh3(nfs_fh3 *fh, vnode_t *vp, struct exportinfo *exi) 2135 { 2136 int error; 2137 fid_t fid; 2138 2139 bzero(&fid, sizeof (fid)); 2140 fid.fid_len = MAXFIDSZ; 2141 error = VOP_FID(vp, &fid, NULL); 2142 if (error) 2143 return (EREMOTE); 2144 2145 bzero(fh, sizeof (nfs_fh3)); 2146 fh->fh3_fsid = exi->exi_fsid; 2147 fh->fh3_len = fid.fid_len; 2148 bcopy(fid.fid_data, fh->fh3_data, fh->fh3_len); 2149 fh->fh3_xlen = exi->exi_fid.fid_len; 2150 bcopy(exi->exi_fid.fid_data, fh->fh3_xdata, fh->fh3_xlen); 2151 fh->fh3_length = sizeof (fsid_t) 2152 + sizeof (ushort_t) + fh->fh3_len 2153 + sizeof (ushort_t) + fh->fh3_xlen; 2154 fh->fh3_flags = 0; 2155 return (0); 2156 } 2157 2158 /* 2159 * This routine makes an overloaded V3 fhandle which contains 2160 * sec modes. 2161 * 2162 * 1 4 2163 * +--+--+--+--+ 2164 * | len | 2165 * +--+--+--+--+ 2166 * up to 64 2167 * +--+--+--+--+--+--+--+--+--+--+--+--+ +--+--+--+--+ 2168 * |s | | | | sec_1 | sec_2 | ... | sec_n | 2169 * +--+--+--+--+--+--+--+--+--+--+--+--+ +--+--+--+--+ 2170 * 2171 * len = 4 * (n+1), where n is the number of security flavors 2172 * sent in the current overloaded filehandle. 2173 * 2174 * the status octet s indicates whether there are more security 2175 * mechanisms (1 means yes, 0 means no) that require the client 2176 * to perform another 0x81 LOOKUP to get them. 2177 * 2178 * Three octets are padded after the status octet. 2179 */ 2180 int 2181 makefh3_ol(nfs_fh3 *fh, struct exportinfo *exi, uint_t sec_index) 2182 { 2183 secinfo_t sec[MAX_FLAVORS]; 2184 int totalcnt, cnt, *ipt, i, seccnt, fh_max_cnt, secidx; 2185 char *c; 2186 2187 if (fh == NULL || exi == NULL || sec_index < 1) 2188 return (EREMOTE); 2189 2190 /* 2191 * WebNFS clients need to know the unique set of explicitly 2192 * shared flavors in used for the public export. When 2193 * "TRUE" is passed to build_seclist_nodups(), only explicitly 2194 * shared flavors are included in the list. 2195 */ 2196 seccnt = build_seclist_nodups(&exi->exi_export, sec, TRUE); 2197 2198 if (sec_index > seccnt) 2199 return (EREMOTE); 2200 2201 fh_max_cnt = (NFS3_FHSIZE / sizeof (int)) - 1; 2202 totalcnt = seccnt - sec_index + 1; 2203 cnt = totalcnt > fh_max_cnt ? fh_max_cnt : totalcnt; 2204 2205 /* 2206 * Place the length in fh3_length representing the number 2207 * of security flavors (in bytes) in this overloaded fh. 2208 */ 2209 fh->fh3_flags = FH_WEBNFS; 2210 fh->fh3_length = (cnt+1) * sizeof (int32_t); 2211 2212 c = (char *)&fh->fh3_u.nfs_fh3_i.fh3_i; 2213 /* 2214 * Encode the status octet that indicates whether there 2215 * are more security flavors the client needs to get. 2216 */ 2217 *c = totalcnt > fh_max_cnt; 2218 2219 /* 2220 * put security flavors in the overloaded fh 2221 */ 2222 secidx = sec_index - 1; 2223 ipt = (int *)(c + sizeof (int32_t)); 2224 for (i = 0; i < cnt; i++) { 2225 ipt[i] = htonl(sec[i + secidx].s_secinfo.sc_nfsnum); 2226 } 2227 return (0); 2228 } 2229 2230 /* 2231 * Make an nfs_fh4 from a vnode 2232 */ 2233 int 2234 makefh4(nfs_fh4 *fh, vnode_t *vp, struct exportinfo *exi) 2235 { 2236 int error; 2237 nfs_fh4_fmt_t *fh_fmtp = (nfs_fh4_fmt_t *)fh->nfs_fh4_val; 2238 fid_t fid; 2239 2240 bzero(&fid, sizeof (fid)); 2241 fid.fid_len = MAXFIDSZ; 2242 /* 2243 * vop_fid_pseudo() is used to set up NFSv4 namespace, so 2244 * use vop_fid_pseudo() here to get the fid instead of VOP_FID. 2245 */ 2246 error = vop_fid_pseudo(vp, &fid); 2247 if (error) 2248 return (error); 2249 2250 fh->nfs_fh4_len = NFS_FH4_LEN; 2251 2252 fh_fmtp->fh4_i.fhx_fsid = exi->exi_fh.fh_fsid; 2253 fh_fmtp->fh4_i.fhx_xlen = exi->exi_fh.fh_xlen; 2254 2255 bzero(fh_fmtp->fh4_i.fhx_data, sizeof (fh_fmtp->fh4_i.fhx_data)); 2256 bzero(fh_fmtp->fh4_i.fhx_xdata, sizeof (fh_fmtp->fh4_i.fhx_xdata)); 2257 bcopy(exi->exi_fh.fh_xdata, fh_fmtp->fh4_i.fhx_xdata, 2258 exi->exi_fh.fh_xlen); 2259 2260 fh_fmtp->fh4_len = fid.fid_len; 2261 ASSERT(fid.fid_len <= sizeof (fh_fmtp->fh4_data)); 2262 bcopy(fid.fid_data, fh_fmtp->fh4_data, fid.fid_len); 2263 fh_fmtp->fh4_flag = 0; 2264 2265 #ifdef VOLATILE_FH_TEST 2266 /* 2267 * XXX (temporary?) 2268 * Use the rnode volatile_id value to add volatility to the fh. 2269 * 2270 * For testing purposes there are currently two scenarios, based 2271 * on whether the filesystem was shared with "volatile_fh" 2272 * or "expire_on_rename". In the first case, use the value of 2273 * export struct share_time as the volatile_id. In the second 2274 * case use the vnode volatile_id value (which is set to the 2275 * time in which the file was renamed). 2276 * 2277 * Note that the above are temporary constructs for testing only 2278 * XXX 2279 */ 2280 if (exi->exi_export.ex_flags & EX_VOLRNM) { 2281 fh_fmtp->fh4_volatile_id = find_volrnm_fh_id(exi, fh); 2282 } else if (exi->exi_export.ex_flags & EX_VOLFH) { 2283 fh_fmtp->fh4_volatile_id = exi->exi_volatile_id; 2284 } else { 2285 fh_fmtp->fh4_volatile_id = 0; 2286 } 2287 #endif /* VOLATILE_FH_TEST */ 2288 2289 return (0); 2290 } 2291 2292 /* 2293 * Convert an fhandle into a vnode. 2294 * Uses the file id (fh_len + fh_data) in the fhandle to get the vnode. 2295 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2296 * are done with it. 2297 */ 2298 vnode_t * 2299 nfs_fhtovp(fhandle_t *fh, struct exportinfo *exi) 2300 { 2301 vfs_t *vfsp; 2302 vnode_t *vp; 2303 int error; 2304 fid_t *fidp; 2305 2306 TRACE_0(TR_FAC_NFS, TR_FHTOVP_START, 2307 "fhtovp_start"); 2308 2309 if (exi == NULL) { 2310 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2311 "fhtovp_end:(%S)", "exi NULL"); 2312 return (NULL); /* not exported */ 2313 } 2314 2315 ASSERT(exi->exi_vp != NULL); 2316 2317 if (PUBLIC_FH2(fh)) { 2318 if (exi->exi_export.ex_flags & EX_PUBLIC) { 2319 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2320 "fhtovp_end:(%S)", "root not exported"); 2321 return (NULL); 2322 } 2323 vp = exi->exi_vp; 2324 VN_HOLD(vp); 2325 return (vp); 2326 } 2327 2328 vfsp = exi->exi_vp->v_vfsp; 2329 ASSERT(vfsp != NULL); 2330 fidp = (fid_t *)&fh->fh_len; 2331 2332 error = VFS_VGET(vfsp, &vp, fidp); 2333 if (error || vp == NULL) { 2334 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2335 "fhtovp_end:(%S)", "VFS_GET failed or vp NULL"); 2336 return (NULL); 2337 } 2338 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2339 "fhtovp_end:(%S)", "end"); 2340 return (vp); 2341 } 2342 2343 /* 2344 * Convert an fhandle into a vnode. 2345 * Uses the file id (fh_len + fh_data) in the fhandle to get the vnode. 2346 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2347 * are done with it. 2348 * This is just like nfs_fhtovp() but without the exportinfo argument. 2349 */ 2350 2351 vnode_t * 2352 lm_fhtovp(fhandle_t *fh) 2353 { 2354 register vfs_t *vfsp; 2355 vnode_t *vp; 2356 int error; 2357 2358 vfsp = getvfs(&fh->fh_fsid); 2359 if (vfsp == NULL) 2360 return (NULL); 2361 2362 error = VFS_VGET(vfsp, &vp, (fid_t *)&(fh->fh_len)); 2363 VFS_RELE(vfsp); 2364 if (error || vp == NULL) 2365 return (NULL); 2366 2367 return (vp); 2368 } 2369 2370 /* 2371 * Convert an nfs_fh3 into a vnode. 2372 * Uses the file id (fh_len + fh_data) in the file handle to get the vnode. 2373 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2374 * are done with it. 2375 */ 2376 vnode_t * 2377 nfs3_fhtovp(nfs_fh3 *fh, struct exportinfo *exi) 2378 { 2379 vfs_t *vfsp; 2380 vnode_t *vp; 2381 int error; 2382 fid_t *fidp; 2383 2384 if (exi == NULL) 2385 return (NULL); /* not exported */ 2386 2387 ASSERT(exi->exi_vp != NULL); 2388 2389 if (PUBLIC_FH3(fh)) { 2390 if (exi->exi_export.ex_flags & EX_PUBLIC) 2391 return (NULL); 2392 vp = exi->exi_vp; 2393 VN_HOLD(vp); 2394 return (vp); 2395 } 2396 2397 if (fh->fh3_length < NFS3_OLDFHSIZE || 2398 fh->fh3_length > NFS3_MAXFHSIZE) 2399 return (NULL); 2400 2401 vfsp = exi->exi_vp->v_vfsp; 2402 ASSERT(vfsp != NULL); 2403 fidp = FH3TOFIDP(fh); 2404 2405 error = VFS_VGET(vfsp, &vp, fidp); 2406 if (error || vp == NULL) 2407 return (NULL); 2408 2409 return (vp); 2410 } 2411 2412 /* 2413 * Convert an nfs_fh3 into a vnode. 2414 * Uses the file id (fh_len + fh_data) in the file handle to get the vnode. 2415 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2416 * are done with it. 2417 * BTW: This is just like nfs3_fhtovp() but without the exportinfo arg. 2418 * Also, vfsp is accessed through getvfs() rather using exportinfo !! 2419 */ 2420 2421 vnode_t * 2422 lm_nfs3_fhtovp(nfs_fh3 *fh) 2423 { 2424 vfs_t *vfsp; 2425 vnode_t *vp; 2426 int error; 2427 fid_t *fidp; 2428 2429 if (fh->fh3_length < NFS3_OLDFHSIZE || 2430 fh->fh3_length > NFS3_MAXFHSIZE) 2431 return (NULL); 2432 2433 vfsp = getvfs(&fh->fh3_fsid); 2434 if (vfsp == NULL) 2435 return (NULL); 2436 fidp = FH3TOFIDP(fh); 2437 2438 error = VFS_VGET(vfsp, &vp, fidp); 2439 VFS_RELE(vfsp); 2440 if (error || vp == NULL) 2441 return (NULL); 2442 2443 return (vp); 2444 } 2445 2446 /* 2447 * Convert an nfs_fh4 into a vnode. 2448 * Uses the file id (fh_len + fh_data) in the file handle to get the vnode. 2449 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2450 * are done with it. 2451 */ 2452 vnode_t * 2453 nfs4_fhtovp(nfs_fh4 *fh, struct exportinfo *exi, nfsstat4 *statp) 2454 { 2455 vfs_t *vfsp; 2456 vnode_t *vp = NULL; 2457 int error; 2458 fid_t *fidp; 2459 nfs_fh4_fmt_t *fh_fmtp; 2460 #ifdef VOLATILE_FH_TEST 2461 uint32_t volatile_id = 0; 2462 #endif /* VOLATILE_FH_TEST */ 2463 2464 if (exi == NULL) { 2465 *statp = NFS4ERR_STALE; 2466 return (NULL); /* not exported */ 2467 } 2468 ASSERT(exi->exi_vp != NULL); 2469 2470 /* caller should have checked this */ 2471 ASSERT(fh->nfs_fh4_len >= NFS_FH4_LEN); 2472 2473 fh_fmtp = (nfs_fh4_fmt_t *)fh->nfs_fh4_val; 2474 vfsp = exi->exi_vp->v_vfsp; 2475 ASSERT(vfsp != NULL); 2476 fidp = (fid_t *)&fh_fmtp->fh4_len; 2477 2478 #ifdef VOLATILE_FH_TEST 2479 /* XXX check if volatile - should be changed later */ 2480 if (exi->exi_export.ex_flags & (EX_VOLRNM | EX_VOLFH)) { 2481 /* 2482 * Filesystem is shared with volatile filehandles 2483 */ 2484 if (exi->exi_export.ex_flags & EX_VOLRNM) 2485 volatile_id = find_volrnm_fh_id(exi, fh); 2486 else 2487 volatile_id = exi->exi_volatile_id; 2488 2489 if (fh_fmtp->fh4_volatile_id != volatile_id) { 2490 *statp = NFS4ERR_FHEXPIRED; 2491 return (NULL); 2492 } 2493 } 2494 /* 2495 * XXX even if test_volatile_fh false, the fh may contain a 2496 * volatile id if obtained when the test was set. 2497 */ 2498 fh_fmtp->fh4_volatile_id = (uchar_t)0; 2499 #endif /* VOLATILE_FH_TEST */ 2500 2501 error = VFS_VGET(vfsp, &vp, fidp); 2502 /* 2503 * If we can not get vp from VFS_VGET, perhaps this is 2504 * an nfs v2/v3/v4 node in an nfsv4 pseudo filesystem. 2505 * Check it out. 2506 */ 2507 if (error && PSEUDO(exi)) 2508 error = nfs4_vget_pseudo(exi, &vp, fidp); 2509 2510 if (error || vp == NULL) { 2511 *statp = NFS4ERR_STALE; 2512 return (NULL); 2513 } 2514 /* XXX - disgusting hack */ 2515 if (vp->v_type == VNON && vp->v_flag & V_XATTRDIR) 2516 vp->v_type = VDIR; 2517 *statp = NFS4_OK; 2518 return (vp); 2519 } 2520 2521 /* 2522 * Find the export structure associated with the given filesystem. 2523 * If found, then increment the ref count (exi_count). 2524 */ 2525 struct exportinfo * 2526 checkexport(fsid_t *fsid, fid_t *fid) 2527 { 2528 struct exportinfo *exi; 2529 2530 rw_enter(&exported_lock, RW_READER); 2531 for (exi = exptable[exptablehash(fsid, fid)]; 2532 exi != NULL; 2533 exi = exi->exi_hash) { 2534 if (exportmatch(exi, fsid, fid)) { 2535 /* 2536 * If this is the place holder for the 2537 * public file handle, then return the 2538 * real export entry for the public file 2539 * handle. 2540 */ 2541 if (exi->exi_export.ex_flags & EX_PUBLIC) { 2542 exi = exi_public; 2543 } 2544 mutex_enter(&exi->exi_lock); 2545 exi->exi_count++; 2546 mutex_exit(&exi->exi_lock); 2547 rw_exit(&exported_lock); 2548 return (exi); 2549 } 2550 } 2551 rw_exit(&exported_lock); 2552 return (NULL); 2553 } 2554 2555 2556 /* 2557 * "old school" version of checkexport() for NFS4. NFS4 2558 * rfs4_compound holds exported_lock for duration of compound 2559 * processing. This version doesn't manipulate exi_count 2560 * since NFS4 breaks fundamental assumptions in the exi_count 2561 * design. 2562 */ 2563 struct exportinfo * 2564 checkexport4(fsid_t *fsid, fid_t *fid, vnode_t *vp) 2565 { 2566 struct exportinfo *exi; 2567 2568 ASSERT(RW_LOCK_HELD(&exported_lock)); 2569 2570 for (exi = exptable[exptablehash(fsid, fid)]; 2571 exi != NULL; 2572 exi = exi->exi_hash) { 2573 if (exportmatch(exi, fsid, fid)) { 2574 /* 2575 * If this is the place holder for the 2576 * public file handle, then return the 2577 * real export entry for the public file 2578 * handle. 2579 */ 2580 if (exi->exi_export.ex_flags & EX_PUBLIC) { 2581 exi = exi_public; 2582 } 2583 2584 /* 2585 * If vp is given, check if vp is the 2586 * same vnode as the exported node. 2587 * 2588 * Since VOP_FID of a lofs node returns the 2589 * fid of its real node (ufs), the exported 2590 * node for lofs and (pseudo) ufs may have 2591 * the same fsid and fid. 2592 */ 2593 if (vp == NULL || vp == exi->exi_vp) 2594 return (exi); 2595 } 2596 } 2597 2598 return (NULL); 2599 } 2600 2601 /* 2602 * Free an entire export list node 2603 */ 2604 void 2605 exportfree(struct exportinfo *exi) 2606 { 2607 struct exportdata *ex; 2608 struct charset_cache *cache; 2609 2610 ex = &exi->exi_export; 2611 2612 ASSERT(exi->exi_vp != NULL && !(exi->exi_export.ex_flags & EX_PUBLIC)); 2613 VN_RELE(exi->exi_vp); 2614 if (exi->exi_dvp != NULL) 2615 VN_RELE(exi->exi_dvp); 2616 2617 if (ex->ex_flags & EX_INDEX) 2618 kmem_free(ex->ex_index, strlen(ex->ex_index) + 1); 2619 2620 kmem_free(ex->ex_path, ex->ex_pathlen + 1); 2621 nfsauth_cache_free(exi); 2622 2623 /* 2624 * if there is a character set mapping cached, clean it up. 2625 */ 2626 for (cache = exi->exi_charset; cache != NULL; 2627 cache = exi->exi_charset) { 2628 if (cache->inbound != (kiconv_t)-1) 2629 (void) kiconv_close(cache->inbound); 2630 if (cache->outbound != (kiconv_t)-1) 2631 (void) kiconv_close(cache->outbound); 2632 exi->exi_charset = cache->next; 2633 kmem_free(cache, sizeof (struct charset_cache)); 2634 } 2635 2636 if (exi->exi_logbuffer != NULL) 2637 nfslog_disable(exi); 2638 2639 if (ex->ex_flags & EX_LOG) { 2640 kmem_free(ex->ex_log_buffer, ex->ex_log_bufferlen + 1); 2641 kmem_free(ex->ex_tag, ex->ex_taglen + 1); 2642 } 2643 2644 if (exi->exi_visible) 2645 free_visible(exi->exi_visible); 2646 2647 srv_secinfo_list_free(ex->ex_secinfo, ex->ex_seccnt); 2648 2649 #ifdef VOLATILE_FH_TEST 2650 free_volrnm_list(exi); 2651 mutex_destroy(&exi->exi_vol_rename_lock); 2652 #endif /* VOLATILE_FH_TEST */ 2653 2654 mutex_destroy(&exi->exi_lock); 2655 rw_destroy(&exi->exi_cache_lock); 2656 2657 kmem_free(exi, sizeof (*exi)); 2658 } 2659 2660 /* 2661 * load the index file from user space into kernel space. 2662 */ 2663 static int 2664 loadindex(struct exportdata *kex) 2665 { 2666 int error; 2667 char index[MAXNAMELEN+1]; 2668 size_t len; 2669 2670 /* 2671 * copyinstr copies the complete string including the NULL and 2672 * returns the len with the NULL byte included in the calculation 2673 * as long as the max length is not exceeded. 2674 */ 2675 if (error = copyinstr(kex->ex_index, index, sizeof (index), &len)) 2676 return (error); 2677 2678 kex->ex_index = kmem_alloc(len, KM_SLEEP); 2679 bcopy(index, kex->ex_index, len); 2680 2681 return (0); 2682 } 2683 2684 /* 2685 * When a thread completes using exi, it should call exi_rele(). 2686 * exi_rele() decrements exi_count. It releases exi if exi_count == 0, i.e. 2687 * if this is the last user of exi and exi is not on exportinfo list anymore 2688 */ 2689 void 2690 exi_rele(struct exportinfo *exi) 2691 { 2692 mutex_enter(&exi->exi_lock); 2693 exi->exi_count--; 2694 if (exi->exi_count == 0) { 2695 mutex_exit(&exi->exi_lock); 2696 exportfree(exi); 2697 } else 2698 mutex_exit(&exi->exi_lock); 2699 } 2700 2701 #ifdef VOLATILE_FH_TEST 2702 /* 2703 * Test for volatile fh's - add file handle to list and set its volatile id 2704 * to time it was renamed. If EX_VOLFH is also on and the fs is reshared, 2705 * the vol_rename queue is purged. 2706 * 2707 * XXX This code is for unit testing purposes only... To correctly use it, it 2708 * needs to tie a rename list to the export struct and (more 2709 * important), protect access to the exi rename list using a write lock. 2710 */ 2711 2712 /* 2713 * get the fh vol record if it's in the volatile on rename list. Don't check 2714 * volatile_id in the file handle - compare only the file handles. 2715 */ 2716 static struct ex_vol_rename * 2717 find_volrnm_fh(struct exportinfo *exi, nfs_fh4 *fh4p) 2718 { 2719 struct ex_vol_rename *p = NULL; 2720 fhandle4_t *fhp; 2721 2722 /* XXX shouldn't we assert &exported_lock held? */ 2723 ASSERT(MUTEX_HELD(&exi->exi_vol_rename_lock)); 2724 2725 if (fh4p->nfs_fh4_len != NFS_FH4_LEN) { 2726 return (NULL); 2727 } 2728 fhp = &((nfs_fh4_fmt_t *)fh4p->nfs_fh4_val)->fh4_i; 2729 for (p = exi->exi_vol_rename; p != NULL; p = p->vrn_next) { 2730 if (bcmp(fhp, &p->vrn_fh_fmt.fh4_i, 2731 sizeof (fhandle4_t)) == 0) 2732 break; 2733 } 2734 return (p); 2735 } 2736 2737 /* 2738 * get the volatile id for the fh (if there is - else return 0). Ignore the 2739 * volatile_id in the file handle - compare only the file handles. 2740 */ 2741 static uint32_t 2742 find_volrnm_fh_id(struct exportinfo *exi, nfs_fh4 *fh4p) 2743 { 2744 struct ex_vol_rename *p; 2745 uint32_t volatile_id; 2746 2747 mutex_enter(&exi->exi_vol_rename_lock); 2748 p = find_volrnm_fh(exi, fh4p); 2749 volatile_id = (p ? p->vrn_fh_fmt.fh4_volatile_id : 2750 exi->exi_volatile_id); 2751 mutex_exit(&exi->exi_vol_rename_lock); 2752 return (volatile_id); 2753 } 2754 2755 /* 2756 * Free the volatile on rename list - will be called if a filesystem is 2757 * unshared or reshared without EX_VOLRNM 2758 */ 2759 static void 2760 free_volrnm_list(struct exportinfo *exi) 2761 { 2762 struct ex_vol_rename *p, *pnext; 2763 2764 /* no need to hold mutex lock - this one is called from exportfree */ 2765 for (p = exi->exi_vol_rename; p != NULL; p = pnext) { 2766 pnext = p->vrn_next; 2767 kmem_free(p, sizeof (*p)); 2768 } 2769 exi->exi_vol_rename = NULL; 2770 } 2771 2772 /* 2773 * Add a file handle to the volatile on rename list. 2774 */ 2775 void 2776 add_volrnm_fh(struct exportinfo *exi, vnode_t *vp) 2777 { 2778 struct ex_vol_rename *p; 2779 char fhbuf[NFS4_FHSIZE]; 2780 nfs_fh4 fh4; 2781 int error; 2782 2783 fh4.nfs_fh4_val = fhbuf; 2784 error = makefh4(&fh4, vp, exi); 2785 if ((error) || (fh4.nfs_fh4_len != sizeof (p->vrn_fh_fmt))) { 2786 return; 2787 } 2788 2789 mutex_enter(&exi->exi_vol_rename_lock); 2790 2791 p = find_volrnm_fh(exi, &fh4); 2792 2793 if (p == NULL) { 2794 p = kmem_alloc(sizeof (*p), KM_SLEEP); 2795 bcopy(fh4.nfs_fh4_val, &p->vrn_fh_fmt, sizeof (p->vrn_fh_fmt)); 2796 p->vrn_next = exi->exi_vol_rename; 2797 exi->exi_vol_rename = p; 2798 } 2799 2800 p->vrn_fh_fmt.fh4_volatile_id = gethrestime_sec(); 2801 mutex_exit(&exi->exi_vol_rename_lock); 2802 } 2803 2804 #endif /* VOLATILE_FH_TEST */ 2805