1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T. 28 * All rights reserved. 29 */ 30 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/types.h> 35 #include <sys/param.h> 36 #include <sys/time.h> 37 #include <sys/vfs.h> 38 #include <sys/vnode.h> 39 #include <sys/socket.h> 40 #include <sys/errno.h> 41 #include <sys/uio.h> 42 #include <sys/proc.h> 43 #include <sys/user.h> 44 #include <sys/file.h> 45 #include <sys/tiuser.h> 46 #include <sys/kmem.h> 47 #include <sys/pathname.h> 48 #include <sys/debug.h> 49 #include <sys/vtrace.h> 50 #include <sys/cmn_err.h> 51 #include <sys/acl.h> 52 #include <sys/utsname.h> 53 #include <sys/sdt.h> 54 #include <netinet/in.h> 55 56 #include <rpc/types.h> 57 #include <rpc/auth.h> 58 #include <rpc/svc.h> 59 60 #include <nfs/nfs.h> 61 #include <nfs/export.h> 62 #include <nfs/nfssys.h> 63 #include <nfs/nfs_clnt.h> 64 #include <nfs/nfs_acl.h> 65 #include <nfs/nfs_log.h> 66 #include <nfs/lm.h> 67 68 #define EXPTABLESIZE 16 69 70 struct exportinfo *exptable[EXPTABLESIZE]; 71 72 static int unexport(fsid_t *, fid_t *, vnode_t *); 73 static void exportfree(exportinfo_t *); 74 static int loadindex(exportdata_t *); 75 76 extern void nfsauth_cache_free(exportinfo_t *); 77 extern int sec_svc_loadrootnames(int, int, caddr_t **, model_t); 78 extern void sec_svc_freerootnames(int, int, caddr_t *); 79 80 static int build_seclist_nodups(exportdata_t *, secinfo_t *, int); 81 static void srv_secinfo_add(secinfo_t **, int *, secinfo_t *, int, int); 82 static void srv_secinfo_remove(secinfo_t **, int *, secinfo_t *, int); 83 static void pseudo_secinfo_add(exportinfo_t *, exp_visible_t *, exportinfo_t *); 84 static void pseudo_secinfo_remove(exportinfo_t *, exp_visible_t *); 85 static void free_pseudoanc(struct exp_visible *); 86 static int srv_secinfo_treeclimb(exportinfo_t *, secinfo_t *, int, int); 87 88 #ifdef VOLATILE_FH_TEST 89 static struct ex_vol_rename *find_volrnm_fh(exportinfo_t *, nfs_fh4 *); 90 static uint32_t find_volrnm_fh_id(exportinfo_t *, nfs_fh4 *); 91 static void free_volrnm_list(exportinfo_t *); 92 #endif /* VOLATILE_FH_TEST */ 93 94 /* 95 * exported_lock Read/Write lock that protects the exportinfo list. 96 * This lock must be held when searching or modifiying 97 * the exportinfo list. 98 */ 99 krwlock_t exported_lock; 100 101 /* 102 * "public" and default (root) location for public filehandle 103 */ 104 struct exportinfo *exi_public, *exi_root; 105 106 fid_t exi_rootfid; /* for checking the default public file handle */ 107 108 fhandle_t nullfh2; /* for comparing V2 filehandles */ 109 110 /* 111 * macro for static dtrace probes to trace server namespace ref count mods. 112 */ 113 #define SECREF_TRACE(seclist, tag, flav, aftcnt) \ 114 DTRACE_PROBE4(nfss__d__nmspc__secref, struct secinfo *, (seclist), \ 115 char *, (tag), int, (int)(flav), int, (int)(aftcnt)) 116 117 118 #define exptablehash(fsid, fid) (nfs_fhhash((fsid), (fid)) & (EXPTABLESIZE - 1)) 119 120 /* 121 * File handle hash function, good for producing hash values 16 bits wide. 122 */ 123 int 124 nfs_fhhash(fsid_t *fsid, fid_t *fid) 125 { 126 short *data; 127 int i, len; 128 short h; 129 130 ASSERT(fid != NULL); 131 132 data = (short *)fid->fid_data; 133 134 /* fid_data must be aligned on a short */ 135 ASSERT((((uintptr_t)data) & (sizeof (short) - 1)) == 0); 136 137 if (fid->fid_len == 10) { 138 /* 139 * probably ufs: hash on bytes 4,5 and 8,9 140 */ 141 return (fsid->val[0] ^ data[2] ^ data[4]); 142 } 143 144 if (fid->fid_len == 6) { 145 /* 146 * probably hsfs: hash on bytes 0,1 and 4,5 147 */ 148 return ((fsid->val[0] ^ data[0] ^ data[2])); 149 } 150 151 /* 152 * Some other file system. Assume that every byte is 153 * worth hashing. 154 */ 155 h = (short)fsid->val[0]; 156 157 /* 158 * Sanity check the length before using it 159 * blindly in case the client trashed it. 160 */ 161 if (fid->fid_len > NFS_FHMAXDATA) 162 len = 0; 163 else 164 len = fid->fid_len / sizeof (short); 165 166 /* 167 * This will ignore one byte if len is not a multiple of 168 * of sizeof (short). No big deal since we at least get some 169 * variation with fsid->val[0]; 170 */ 171 for (i = 0; i < len; i++) 172 h ^= data[i]; 173 174 return ((int)h); 175 } 176 177 /* 178 * Free the memory allocated within a secinfo entry. 179 */ 180 void 181 srv_secinfo_entry_free(struct secinfo *secp) 182 { 183 if (secp->s_rootcnt > 0 && secp->s_rootnames != NULL) { 184 sec_svc_freerootnames(secp->s_secinfo.sc_rpcnum, 185 secp->s_rootcnt, secp->s_rootnames); 186 secp->s_rootcnt = 0; 187 } 188 189 if ((secp->s_secinfo.sc_rpcnum == RPCSEC_GSS) && 190 (secp->s_secinfo.sc_gss_mech_type)) { 191 kmem_free(secp->s_secinfo.sc_gss_mech_type->elements, 192 secp->s_secinfo.sc_gss_mech_type->length); 193 kmem_free(secp->s_secinfo.sc_gss_mech_type, 194 sizeof (rpc_gss_OID_desc)); 195 secp->s_secinfo.sc_gss_mech_type = NULL; 196 } 197 198 } 199 200 /* 201 * Free a list of secinfo allocated in the exportdata structure. 202 */ 203 void 204 srv_secinfo_list_free(struct secinfo *secinfo, int cnt) 205 { 206 int i; 207 208 if (cnt == 0) 209 return; 210 211 for (i = 0; i < cnt; i++) 212 srv_secinfo_entry_free(&secinfo[i]); 213 214 kmem_free(secinfo, cnt * sizeof (struct secinfo)); 215 } 216 217 /* 218 * Allocate and copy a secinfo data from "from" to "to". 219 * 220 * This routine is used by srv_secinfo_add() to add a new flavor to an 221 * ancestor's export node. The rootnames are not copied because the 222 * allowable rootname access only applies to the explicit exported node, 223 * not its ancestor's. 224 * 225 * "to" should have already been allocated and zeroed before calling 226 * this routine. 227 * 228 * This routine is used under the protection of exported_lock (RW_WRITER). 229 */ 230 void 231 srv_secinfo_copy(struct secinfo *from, struct secinfo *to) 232 { 233 to->s_secinfo.sc_nfsnum = from->s_secinfo.sc_nfsnum; 234 to->s_secinfo.sc_rpcnum = from->s_secinfo.sc_rpcnum; 235 236 if (from->s_secinfo.sc_rpcnum == RPCSEC_GSS) { 237 to->s_secinfo.sc_service = from->s_secinfo.sc_service; 238 bcopy(from->s_secinfo.sc_name, to->s_secinfo.sc_name, 239 strlen(from->s_secinfo.sc_name)); 240 bcopy(from->s_secinfo.sc_gss_mech, to->s_secinfo.sc_gss_mech, 241 strlen(from->s_secinfo.sc_gss_mech)); 242 243 /* copy mechanism oid */ 244 to->s_secinfo.sc_gss_mech_type = 245 kmem_alloc(sizeof (rpc_gss_OID_desc), KM_SLEEP); 246 to->s_secinfo.sc_gss_mech_type->length = 247 from->s_secinfo.sc_gss_mech_type->length; 248 to->s_secinfo.sc_gss_mech_type->elements = 249 kmem_alloc(from->s_secinfo.sc_gss_mech_type->length, 250 KM_SLEEP); 251 bcopy(from->s_secinfo.sc_gss_mech_type->elements, 252 to->s_secinfo.sc_gss_mech_type->elements, 253 from->s_secinfo.sc_gss_mech_type->length); 254 } 255 256 to->s_refcnt = from->s_refcnt; 257 to->s_window = from->s_window; 258 /* no need to copy the mode bits - s_flags */ 259 } 260 261 /* 262 * Create a secinfo array without duplicates. The condensed 263 * flavor list is used to propagate flavor ref counts to an 264 * export's ancestor pseudonodes. 265 */ 266 static int 267 build_seclist_nodups(exportdata_t *exd, secinfo_t *nodups, int exponly) 268 { 269 int ccnt, c; 270 int ncnt, n; 271 struct secinfo *cursec; 272 273 ncnt = 0; 274 ccnt = exd->ex_seccnt; 275 cursec = exd->ex_secinfo; 276 277 for (c = 0; c < ccnt; c++) { 278 279 if (exponly && ! SEC_REF_EXPORTED(&cursec[c])) 280 continue; 281 282 for (n = 0; n < ncnt; n++) { 283 if (nodups[n].s_secinfo.sc_nfsnum == 284 cursec[c].s_secinfo.sc_nfsnum) 285 break; 286 } 287 288 /* 289 * The structure copy below also copys ptrs embedded 290 * within struct secinfo. The ptrs are copied but 291 * they are never freed from the nodups array. If 292 * an ancestor's secinfo array doesn't contain one 293 * of the nodups flavors, then the entry is properly 294 * copied into the ancestor's secinfo array. 295 * (see srv_secinfo_copy) 296 */ 297 if (n == ncnt) { 298 nodups[n] = cursec[c]; 299 ncnt++; 300 } 301 } 302 return (ncnt); 303 } 304 305 /* 306 * Add the new security flavors from newdata to the current list, pcursec. 307 * Upon return, *pcursec has the newly merged secinfo list. 308 * 309 * There should be at least 1 secinfo entry in newsec. 310 * 311 * This routine is used under the protection of exported_lock (RW_WRITER). 312 */ 313 static void 314 srv_secinfo_add(secinfo_t **pcursec, int *pcurcnt, secinfo_t *newsec, 315 int newcnt, int is_pseudo) 316 { 317 int ccnt, c; /* sec count in current data - curdata */ 318 int n; /* index for newsec - newsecinfo */ 319 int tcnt; /* total sec count after merge */ 320 int mcnt; /* total sec count after merge */ 321 struct secinfo *msec; /* merged secinfo list */ 322 struct secinfo *cursec; 323 324 cursec = *pcursec; 325 ccnt = *pcurcnt; 326 327 ASSERT(newcnt > 0); 328 tcnt = ccnt + newcnt; 329 330 for (n = 0; n < newcnt; n++) { 331 for (c = 0; c < ccnt; c++) { 332 if (newsec[n].s_secinfo.sc_nfsnum == 333 cursec[c].s_secinfo.sc_nfsnum) { 334 cursec[c].s_refcnt++; 335 SECREF_TRACE(cursec, "add_ref", 336 cursec[c].s_secinfo.sc_nfsnum, 337 cursec[c].s_refcnt); 338 tcnt--; 339 break; 340 } 341 } 342 } 343 344 if (tcnt == ccnt) 345 return; /* no change; no new flavors */ 346 347 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 348 349 /* move current secinfo list data to the new list */ 350 for (c = 0; c < ccnt; c++) 351 msec[c] = cursec[c]; 352 353 /* Add the flavor that's not in the current data */ 354 mcnt = ccnt; 355 for (n = 0; n < newcnt; n++) { 356 for (c = 0; c < ccnt; c++) { 357 if (newsec[n].s_secinfo.sc_nfsnum == 358 cursec[c].s_secinfo.sc_nfsnum) 359 break; 360 } 361 362 /* This is the one. Add it. */ 363 if (c == ccnt) { 364 srv_secinfo_copy(&newsec[n], &msec[mcnt]); 365 366 if (is_pseudo) 367 msec[mcnt].s_flags = M_RO; 368 369 SECREF_TRACE(msec, "new_ref", 370 msec[mcnt].s_secinfo.sc_nfsnum, 371 msec[mcnt].s_refcnt); 372 mcnt++; 373 } 374 } 375 376 ASSERT(mcnt == tcnt); 377 378 /* 379 * Done. Update curdata. Free the old secinfo list in 380 * curdata and return the new sec array info 381 */ 382 if (ccnt > 0) 383 kmem_free(cursec, ccnt * sizeof (struct secinfo)); 384 *pcurcnt = tcnt; 385 *pcursec = msec; 386 } 387 388 /* 389 * For NFS V4. 390 * Remove the security data of the unexported node from its ancestors. 391 * Assume there is at least one flavor entry in the current sec list 392 * (pcursec). 393 * 394 * This routine is used under the protection of exported_lock (RW_WRITER). 395 * 396 * Every element of remsec is an explicitly exported flavor. If 397 * srv_secinfo_remove() is called fom an exportfs error path, then 398 * the flavor list was derived from the user's share cmdline, 399 * and all flavors are explicit. If it was called from the unshare path, 400 * build_seclist_nodups() was called with the exponly flag. 401 */ 402 static void 403 srv_secinfo_remove(secinfo_t **pcursec, int *pcurcnt, secinfo_t *remsec, 404 int remcnt) 405 { 406 int ccnt, c; /* sec count in current data - curdata */ 407 int r; /* sec count in removal data - remsecinfo */ 408 int tcnt, mcnt; /* total sec count after removing */ 409 struct secinfo *msec; /* final secinfo list after removing */ 410 struct secinfo *cursec; 411 412 cursec = *pcursec; 413 ccnt = *pcurcnt; 414 tcnt = ccnt; 415 416 for (r = 0; r < remcnt; r++) { 417 /* 418 * Remove a flavor only if the flavor was a shared flavor for 419 * the remsecinfo exported node that's being unshared. 420 * Otherwise, this flavor is for the children of remsecinfo, 421 * need to keep it. 422 */ 423 for (c = 0; c < ccnt; c++) { 424 if (remsec[r].s_secinfo.sc_nfsnum == 425 cursec[c].s_secinfo.sc_nfsnum) { 426 427 /* 428 * Decrement secinfo reference count by 1. 429 * If this entry is invalid after decrementing 430 * the count (i.e. count < 1), this entry will 431 * be removed. 432 */ 433 cursec[c].s_refcnt--; 434 435 SECREF_TRACE(cursec, "del_ref", 436 cursec[c].s_secinfo.sc_nfsnum, 437 cursec[c].s_refcnt); 438 439 ASSERT(cursec[c].s_refcnt >= 0); 440 441 if (SEC_REF_INVALID(&cursec[c])) 442 tcnt--; 443 break; 444 } 445 } 446 } 447 448 ASSERT(tcnt >= 0); 449 if (tcnt == ccnt) 450 return; /* no change; no flavors to remove */ 451 452 if (tcnt == 0) { 453 srv_secinfo_list_free(cursec, ccnt); 454 *pcurcnt = 0; 455 *pcursec = NULL; 456 return; 457 } 458 459 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 460 461 /* walk thru the given secinfo list to remove the flavors */ 462 mcnt = 0; 463 for (c = 0; c < ccnt; c++) { 464 if (SEC_REF_INVALID(&cursec[c])) { 465 srv_secinfo_entry_free(&cursec[c]); 466 } else { 467 msec[mcnt] = cursec[c]; 468 mcnt++; 469 } 470 } 471 472 ASSERT(mcnt == tcnt); 473 /* 474 * Done. Update curdata. 475 * Free the existing secinfo list in curdata. All pointers 476 * within the list have either been moved to msec or freed 477 * if it's invalid. 478 */ 479 kmem_free(*pcursec, ccnt * sizeof (struct secinfo)); 480 *pcursec = msec; 481 *pcurcnt = tcnt; 482 } 483 484 485 /* 486 * pseudo_secinfo_add 487 * ancexi: ancestor exportinfo 488 * ancpseudo: linked list of ancestor pseudnodes 489 * newexi: new export that needs to inherit implicitly allowed flavors 490 * 491 * Increment secflavor ref counts in ancestor pseudonodes. If newexi 492 * is non-NULL, then also set newexi's implicitly allowed flavors by 493 * copy the flavors in its pseudonode. 494 * 495 * There's no work to do if either the ancexi's pseudonode list 496 * or ancpseudo is empty. 497 * 498 * ancexi->exi_visible could be NULL because sec flavor refs are 499 * propagated after the namespace has been changed for the new 500 * share/unshare. In the unshare case, the pseudnodes leading to 501 * this export have already been dereferenced and possibly destroyed. 502 * If the parent export had no other shared descendants, then its 503 * pseudonode list would be empty. 504 */ 505 static void 506 pseudo_secinfo_add(exportinfo_t *ancexi, exp_visible_t *ancpseudo, 507 exportinfo_t *newexi) 508 { 509 exp_visible_t *av, *v; 510 fid_t *nxfid = NULL; 511 secinfo_t **pnewsec = NULL; 512 int *pnewcnt = NULL; 513 int is_pseudo; 514 515 516 if (ancexi->exi_visible == NULL || ancpseudo == NULL) 517 return; 518 519 is_pseudo = PSEUDO(ancexi); 520 521 /* 522 * Prepare to set newexi's implicitly allowed flavors by 523 * inheriting flavors from newexi's pseudnode. 524 * nxfid : used to find the newexi's pseudonode 525 * pnewsec: newexi's secinfo array 526 * pnewcnt: newexi's secinfo count 527 */ 528 if (newexi) { 529 nxfid = &newexi->exi_fid; 530 pnewsec = &newexi->exi_export.ex_secinfo; 531 pnewcnt = &newexi->exi_export.ex_seccnt; 532 } 533 534 /* 535 * find the pseudonodes which correspond to the ones in ancvis. 536 */ 537 for (av = ancpseudo; av != NULL; av = av->vis_next) { 538 for (v = ancexi->exi_visible; v != NULL; v = v->vis_next) { 539 540 if (EQFID(&av->vis_fid, &v->vis_fid)) { 541 /* 542 * It's a match. First check to see if newexi 543 * needs to get implicitly allowed flavors from 544 * its pseudonode. 545 * 546 * ancpseudo is built [by srv_secinfo_treeclimb] 547 * such that vis_exported is only set for the 548 * pseudonode corresponding to newexi's root. 549 */ 550 if (nxfid && av->vis_exported && 551 v->vis_seccnt > 0) { 552 553 srv_secinfo_add(pnewsec, pnewcnt, 554 v->vis_secinfo, v->vis_seccnt, 555 is_pseudo); 556 557 nxfid = NULL; 558 } 559 560 /* 561 * Apply flavor refs for the new export to 562 * each of the parexi's pseudonodes 563 */ 564 srv_secinfo_add(&v->vis_secinfo, &v->vis_seccnt, 565 av->vis_secinfo, av->vis_seccnt, is_pseudo); 566 567 break; 568 } 569 } 570 } 571 } 572 573 574 /* 575 * pseudo_secinfo_remove 576 * ancexi: ancestor exportinfo 577 * ancpseudo: linked list of ancestor pseudnodes 578 * 579 * Decrement secflavor ref counts in ancestor pseudonodes. 580 */ 581 static void 582 pseudo_secinfo_remove(exportinfo_t *ancexi, exp_visible_t *ancpseudo) 583 { 584 exp_visible_t *av, *v; 585 586 if (ancexi->exi_visible == NULL || ancpseudo == NULL) 587 return; 588 589 /* 590 * find the pseudonodes which correspond to the ones in ancvis. 591 */ 592 for (av = ancpseudo; av != NULL; av = av->vis_next) { 593 for (v = ancexi->exi_visible; v != NULL; v = v->vis_next) { 594 if (EQFID(&av->vis_fid, &v->vis_fid)) { 595 596 srv_secinfo_remove(&v->vis_secinfo, 597 &v->vis_seccnt, av->vis_secinfo, 598 av->vis_seccnt); 599 600 break; 601 } 602 } 603 } 604 } 605 606 607 608 /* 609 * For the reshare case, sec flavor accounting happens in 3 steps: 610 * 1) propagate addition of new flavor refs up the ancestor tree 611 * 2) transfer flavor refs of descendants to new/reshared exportdata 612 * 3) propagate removal of old flavor refs up the ancestor tree 613 * 614 * srv_secinfo_exp2exp() implements step 2 of a reshare. At this point, 615 * the new flavor list has already been propagated up through the 616 * ancestor tree via srv_secinfo_treeclimb(). 617 * 618 * If there is more than 1 export reference to an old flavor (i.e. some 619 * of its children shared with this flavor), this flavor information 620 * needs to be transferred to the new exportdata struct. A flavor in 621 * the old exportdata has descendant refs when s_refcnt > 1. 622 * 623 * Transferring descendant flavor refcnts happens in 2 passes: 624 * a) flavors used before (oldsecinfo) and after (curdata->ex_secinfo) reshare 625 * b) flavors used before but not after reshare 626 * 627 * This routine is used under the protection of exported_lock (RW_WRITER). 628 */ 629 void 630 srv_secinfo_exp2exp(exportdata_t *curdata, secinfo_t *oldsecinfo, int ocnt) 631 { 632 int ccnt, c; /* sec count in current data - curdata */ 633 int o; /* sec count in old data - oldsecinfo */ 634 int tcnt, mcnt; /* total sec count after the transfer */ 635 struct secinfo *msec; /* merged secinfo list */ 636 637 ccnt = curdata->ex_seccnt; 638 639 ASSERT(ocnt > 0); 640 ASSERT(!(curdata->ex_flags & EX_PSEUDO)); 641 642 /* 643 * If the oldsecinfo has flavors with more than 1 reference count 644 * and the flavor is specified in the reshare, transfer the flavor 645 * refs to the new seclist (curdata.ex_secinfo). 646 */ 647 tcnt = ccnt + ocnt; 648 649 for (o = 0; o < ocnt; o++) { 650 651 if (SEC_REF_SELF(&oldsecinfo[o])) { 652 tcnt--; 653 continue; 654 } 655 656 for (c = 0; c < ccnt; c++) { 657 if (oldsecinfo[o].s_secinfo.sc_nfsnum == 658 curdata->ex_secinfo[c].s_secinfo.sc_nfsnum) { 659 660 /* 661 * add old reference to the current 662 * secinfo count 663 */ 664 curdata->ex_secinfo[c].s_refcnt += 665 oldsecinfo[o].s_refcnt; 666 667 /* 668 * Delete the old export flavor 669 * reference. The initial reference 670 * was created during srv_secinfo_add, 671 * and the count is decremented below 672 * to account for the initial reference. 673 */ 674 if (SEC_REF_EXPORTED(&oldsecinfo[o])) 675 curdata->ex_secinfo[c].s_refcnt--; 676 677 SECREF_TRACE(curdata->ex_path, 678 "reshare_xfer_common_child_refs", 679 curdata->ex_secinfo[c].s_secinfo.sc_nfsnum, 680 curdata->ex_secinfo[c].s_refcnt); 681 682 ASSERT(curdata->ex_secinfo[c].s_refcnt >= 0); 683 684 tcnt--; 685 break; 686 } 687 } 688 } 689 690 if (tcnt == ccnt) 691 return; /* no more transfer to do */ 692 693 /* 694 * oldsecinfo has flavors referenced by its children that are not 695 * in the current (new) export flavor list. Add these flavors. 696 */ 697 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 698 699 /* move current secinfo list data to the new list */ 700 for (c = 0; c < ccnt; c++) 701 msec[c] = curdata->ex_secinfo[c]; 702 703 /* 704 * Add the flavor that's not in the new export, but still 705 * referenced by its children. 706 */ 707 mcnt = ccnt; 708 for (o = 0; o < ocnt; o++) { 709 if (! SEC_REF_SELF(&oldsecinfo[o])) { 710 for (c = 0; c < ccnt; c++) { 711 if (oldsecinfo[o].s_secinfo.sc_nfsnum == 712 curdata->ex_secinfo[c].s_secinfo.sc_nfsnum) 713 break; 714 } 715 716 /* 717 * This is the one. Add it. Decrement the ref count 718 * by 1 if the flavor is an explicitly shared flavor 719 * for the oldsecinfo export node. 720 */ 721 if (c == ccnt) { 722 srv_secinfo_copy(&oldsecinfo[o], &msec[mcnt]); 723 if (SEC_REF_EXPORTED(&oldsecinfo[o])) 724 msec[mcnt].s_refcnt--; 725 726 SECREF_TRACE(curdata, 727 "reshare_xfer_implicit_child_refs", 728 msec[mcnt].s_secinfo.sc_nfsnum, 729 msec[mcnt].s_refcnt); 730 731 ASSERT(msec[mcnt].s_refcnt >= 0); 732 mcnt++; 733 } 734 } 735 } 736 737 ASSERT(mcnt == tcnt); 738 /* 739 * Done. Update curdata, free the existing secinfo list in 740 * curdata and set the new value. 741 */ 742 if (ccnt > 0) 743 kmem_free(curdata->ex_secinfo, ccnt * sizeof (struct secinfo)); 744 curdata->ex_seccnt = tcnt; 745 curdata->ex_secinfo = msec; 746 } 747 748 /* 749 * When unsharing an old export node and the old node becomes a pseudo node, 750 * if there is more than 1 export reference to an old flavor (i.e. some of 751 * its children shared with this flavor), this flavor information needs to 752 * be transferred to the new shared node. 753 * 754 * This routine is used under the protection of exported_lock (RW_WRITER). 755 */ 756 void 757 srv_secinfo_exp2pseu(exportdata_t *curdata, exportdata_t *olddata) 758 { 759 int ocnt, o; /* sec count in transfer data - trandata */ 760 int tcnt, mcnt; /* total sec count after transfer */ 761 struct secinfo *msec; /* merged secinfo list */ 762 763 ASSERT(curdata->ex_flags & EX_PSEUDO); 764 ASSERT(curdata->ex_seccnt == 0); 765 766 ocnt = olddata->ex_seccnt; 767 768 /* 769 * If the olddata has flavors with more than 1 reference count, 770 * transfer the information to the curdata. 771 */ 772 tcnt = ocnt; 773 774 for (o = 0; o < ocnt; o++) { 775 if (SEC_REF_SELF(&olddata->ex_secinfo[o])) 776 tcnt--; 777 } 778 779 if (tcnt == 0) 780 return; /* no transfer to do */ 781 782 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 783 784 mcnt = 0; 785 for (o = 0; o < ocnt; o++) { 786 if (! SEC_REF_SELF(&olddata->ex_secinfo[o])) { 787 788 /* 789 * Decrement the reference count by 1 if the flavor is 790 * an explicitly shared flavor for the olddata export 791 * node. 792 */ 793 srv_secinfo_copy(&olddata->ex_secinfo[o], &msec[mcnt]); 794 msec[mcnt].s_flags = M_RO; 795 if (SEC_REF_EXPORTED(&olddata->ex_secinfo[o])) 796 msec[mcnt].s_refcnt--; 797 798 SECREF_TRACE(curdata, "unshare_morph_pseudo", 799 msec[mcnt].s_secinfo.sc_nfsnum, 800 msec[mcnt].s_refcnt); 801 802 ASSERT(msec[mcnt].s_refcnt >= 0); 803 mcnt++; 804 } 805 } 806 807 ASSERT(mcnt == tcnt); 808 /* 809 * Done. Update curdata. 810 * Free up the existing secinfo list in curdata and 811 * set the new value. 812 */ 813 curdata->ex_seccnt = tcnt; 814 curdata->ex_secinfo = msec; 815 } 816 817 818 /* 819 * For NFS V4. 820 * Add or remove the newly exported or unexported security flavors of the 821 * given exportinfo from its ancestors upto the system root. 822 */ 823 int 824 srv_secinfo_treeclimb(exportinfo_t *exip, secinfo_t *sec, int seccnt, int isadd) 825 { 826 vnode_t *dvp, *vp; 827 fid_t fid; 828 int error = 0; 829 int exportdir, set_implicit_flav; 830 struct exportinfo *exi = NULL; 831 exp_visible_t *anc_head = NULL, *anc; 832 833 ASSERT(RW_WRITE_HELD(&exported_lock)); 834 835 if (seccnt == 0) 836 return (0); 837 838 vp = exip->exi_vp; 839 VN_HOLD(vp); 840 exportdir = 1; 841 842 /* 843 * If flavors are being added and the new export root isn't 844 * also VROOT, its implicitly allowed flavors are inherited from 845 * from its pseudonode. 846 */ 847 set_implicit_flav = (isadd && !(vp->v_flag & VROOT)) ? 1 : 0; 848 849 anc_head = NULL; 850 anc = NULL; 851 for (;;) { 852 bzero(&fid, sizeof (fid)); 853 fid.fid_len = MAXFIDSZ; 854 error = vop_fid_pseudo(vp, &fid); 855 if (error) 856 break; 857 858 if (! exportdir) { 859 860 exi = checkexport4(&vp->v_vfsp->vfs_fsid, &fid, vp); 861 862 if (exi != NULL) { 863 secinfo_t **pxsec = &exi->exi_export.ex_secinfo; 864 int *pxcnt = &exi->exi_export.ex_seccnt; 865 866 if (isadd) 867 srv_secinfo_add(pxsec, pxcnt, sec, 868 seccnt, PSEUDO(exi)); 869 else 870 srv_secinfo_remove(pxsec, pxcnt, sec, 871 seccnt); 872 } 873 } 874 875 /* 876 * If we're at the root of the filesystem: 877 * - manage pseudnode sec flavors 878 * - traverse mountpoint and continue treeclimb from the stub 879 */ 880 if (vp->v_flag & VROOT) { 881 882 if (exi != NULL) { 883 if (isadd) { 884 if (set_implicit_flav) { 885 pseudo_secinfo_add(exi, 886 anc_head, exip); 887 set_implicit_flav = 0; 888 } else 889 pseudo_secinfo_add(exi, 890 anc_head, NULL); 891 } else 892 pseudo_secinfo_remove(exi, anc_head); 893 } 894 895 if (anc_head) { 896 free_pseudoanc(anc_head); 897 anc_head = NULL; 898 } 899 900 if (VN_CMP(vp, rootdir)) { 901 /* at system root */ 902 break; 903 } 904 905 vp = untraverse(vp); 906 exportdir = 0; 907 continue; 908 } 909 910 /* 911 * Build a temporary list of ancestor pseudonodes leading to 912 * the ancestor VROOT export. vis_exported identifies the 913 * pseudonode that corresponds to root of export being 914 * shared/unshared. 915 */ 916 anc = kmem_alloc(sizeof (exp_visible_t), KM_SLEEP); 917 anc->vis_next = anc_head; 918 VN_HOLD(vp); 919 anc->vis_vp = vp; 920 anc->vis_fid = fid; 921 anc->vis_ino = 0; 922 anc->vis_count = 1; 923 anc->vis_seccnt = seccnt; 924 anc->vis_secinfo = sec; 925 anc->vis_exported = exportdir; 926 anc_head = anc; 927 928 /* 929 * Now, do a ".." to find parent dir of vp. 930 */ 931 error = VOP_LOOKUP(vp, "..", &dvp, NULL, 0, NULL, CRED(), 932 NULL, NULL, NULL); 933 934 if (error == ENOTDIR && exportdir) { 935 dvp = exip->exi_dvp; 936 ASSERT(dvp != NULL); 937 VN_HOLD(dvp); 938 error = 0; 939 } 940 941 if (error) 942 break; 943 944 exportdir = 0; 945 VN_RELE(vp); 946 vp = dvp; 947 } 948 949 VN_RELE(vp); 950 951 if (anc_head) 952 free_pseudoanc(anc_head); 953 954 return (error); 955 } 956 957 /* 958 * Free a list of visible directories 959 */ 960 static void 961 free_pseudoanc(struct exp_visible *head) 962 { 963 struct exp_visible *visp, *next; 964 965 for (visp = head; visp; visp = next) { 966 if (visp->vis_vp != NULL) 967 VN_RELE(visp->vis_vp); 968 /* 969 * we don't free vis_secinfo from the temporary pseudonode 970 * ancestor list because it was never kmem_alloc'd. 971 * srv_secinfo_treeclimb set it to point to the nodups 972 * secinfo array (which is a stack var). 973 */ 974 next = visp->vis_next; 975 kmem_free(visp, sizeof (*visp)); 976 } 977 } 978 979 980 void 981 export_link(exportinfo_t *exi) { 982 int exporthash; 983 984 exporthash = exptablehash(&exi->exi_fsid, &exi->exi_fid); 985 exi->exi_hash = exptable[exporthash]; 986 exptable[exporthash] = exi; 987 } 988 989 /* 990 * Initialization routine for export routines. Should only be called once. 991 */ 992 int 993 nfs_exportinit(void) 994 { 995 int error; 996 997 rw_init(&exported_lock, NULL, RW_DEFAULT, NULL); 998 999 /* 1000 * Allocate the place holder for the public file handle, which 1001 * is all zeroes. It is initially set to the root filesystem. 1002 */ 1003 exi_root = kmem_zalloc(sizeof (*exi_root), KM_SLEEP); 1004 exi_public = exi_root; 1005 1006 exi_root->exi_export.ex_flags = EX_PUBLIC; 1007 exi_root->exi_export.ex_pathlen = 1; /* length of "/" */ 1008 exi_root->exi_export.ex_path = 1009 kmem_alloc(exi_root->exi_export.ex_pathlen + 1, KM_SLEEP); 1010 exi_root->exi_export.ex_path[0] = '/'; 1011 exi_root->exi_export.ex_path[1] = '\0'; 1012 1013 exi_root->exi_count = 1; 1014 mutex_init(&exi_root->exi_lock, NULL, MUTEX_DEFAULT, NULL); 1015 1016 exi_root->exi_vp = rootdir; 1017 exi_rootfid.fid_len = MAXFIDSZ; 1018 error = vop_fid_pseudo(exi_root->exi_vp, &exi_rootfid); 1019 if (error) { 1020 mutex_destroy(&exi_root->exi_lock); 1021 kmem_free(exi_root, sizeof (*exi_root)); 1022 return (error); 1023 } 1024 1025 /* setup the fhandle template */ 1026 exi_root->exi_fh.fh_fsid = rootdir->v_vfsp->vfs_fsid; 1027 exi_root->exi_fh.fh_xlen = exi_rootfid.fid_len; 1028 bcopy(exi_rootfid.fid_data, exi_root->exi_fh.fh_xdata, 1029 exi_rootfid.fid_len); 1030 exi_root->exi_fh.fh_len = sizeof (exi_root->exi_fh.fh_data); 1031 1032 /* 1033 * Publish the exportinfo in the hash table 1034 */ 1035 export_link(exi_root); 1036 1037 nfslog_init(); 1038 1039 return (0); 1040 } 1041 1042 /* 1043 * Finalization routine for export routines. Called to cleanup previously 1044 * initialization work when the NFS server module could not be loaded correctly. 1045 */ 1046 void 1047 nfs_exportfini(void) 1048 { 1049 /* 1050 * Deallocate the place holder for the public file handle. 1051 */ 1052 srv_secinfo_list_free(exi_root->exi_export.ex_secinfo, 1053 exi_root->exi_export.ex_seccnt); 1054 mutex_destroy(&exi_root->exi_lock); 1055 kmem_free(exi_root, sizeof (*exi_root)); 1056 1057 rw_destroy(&exported_lock); 1058 } 1059 1060 /* 1061 * Check if 2 gss mechanism identifiers are the same. 1062 * 1063 * return FALSE if not the same. 1064 * return TRUE if the same. 1065 */ 1066 static bool_t 1067 nfs_mech_equal(rpc_gss_OID mech1, rpc_gss_OID mech2) 1068 { 1069 if ((mech1->length == 0) && (mech2->length == 0)) 1070 return (TRUE); 1071 1072 if (mech1->length != mech2->length) 1073 return (FALSE); 1074 1075 return (bcmp(mech1->elements, mech2->elements, mech1->length) == 0); 1076 } 1077 1078 /* 1079 * This routine is used by rpc to map rpc security number 1080 * to nfs specific security flavor number. 1081 * 1082 * The gss callback prototype is 1083 * callback(struct svc_req *, gss_cred_id_t *, gss_ctx_id_t *, 1084 * rpc_gss_lock_t *, void **), 1085 * since nfs does not use the gss_cred_id_t/gss_ctx_id_t arguments 1086 * we cast them to void. 1087 */ 1088 /*ARGSUSED*/ 1089 bool_t 1090 rfs_gsscallback(struct svc_req *req, gss_cred_id_t deleg, void *gss_context, 1091 rpc_gss_lock_t *lock, void **cookie) 1092 { 1093 int i, j; 1094 rpc_gss_rawcred_t *raw_cred; 1095 struct exportinfo *exi; 1096 1097 /* 1098 * We don't deal with delegated credentials. 1099 */ 1100 if (deleg != GSS_C_NO_CREDENTIAL) 1101 return (FALSE); 1102 1103 raw_cred = lock->raw_cred; 1104 *cookie = NULL; 1105 1106 rw_enter(&exported_lock, RW_READER); 1107 for (i = 0; i < EXPTABLESIZE; i++) { 1108 exi = exptable[i]; 1109 while (exi) { 1110 if (exi->exi_export.ex_seccnt > 0) { 1111 struct secinfo *secp; 1112 seconfig_t *se; 1113 int seccnt; 1114 1115 secp = exi->exi_export.ex_secinfo; 1116 seccnt = exi->exi_export.ex_seccnt; 1117 for (j = 0; j < seccnt; j++) { 1118 /* 1119 * If there is a map of the triplet 1120 * (mechanism, service, qop) between 1121 * raw_cred and the exported flavor, 1122 * get the psudo flavor number. 1123 * Also qop should not be NULL, it 1124 * should be "default" or something 1125 * else. 1126 */ 1127 se = &secp[j].s_secinfo; 1128 if ((se->sc_rpcnum == RPCSEC_GSS) && 1129 1130 (nfs_mech_equal( 1131 se->sc_gss_mech_type, 1132 raw_cred->mechanism)) && 1133 1134 (se->sc_service == 1135 raw_cred->service) && 1136 (raw_cred->qop == se->sc_qop)) { 1137 1138 *cookie = (void *)(uintptr_t) 1139 se->sc_nfsnum; 1140 goto done; 1141 } 1142 } 1143 } 1144 exi = exi->exi_hash; 1145 } 1146 } 1147 done: 1148 rw_exit(&exported_lock); 1149 1150 /* 1151 * If no nfs pseudo number mapping can be found in the export 1152 * table, assign the nfsflavor to NFS_FLAVOR_NOMAP. In V4, we may 1153 * recover the flavor mismatch from NFS layer (NFS4ERR_WRONGSEC). 1154 * 1155 * For example: 1156 * server first shares with krb5i; 1157 * client mounts with krb5i; 1158 * server re-shares with krb5p; 1159 * client tries with krb5i, but no mapping can be found; 1160 * rpcsec_gss module calls this routine to do the mapping, 1161 * if this routine fails, request is rejected from 1162 * the rpc layer. 1163 * What we need is to let the nfs layer rejects the request. 1164 * For V4, we can reject with NFS4ERR_WRONGSEC and the client 1165 * may recover from it by getting the new flavor via SECINFO. 1166 * 1167 * nfs pseudo number for RPCSEC_GSS mapping (see nfssec.conf) 1168 * is owned by IANA (see RFC 2623). 1169 * 1170 * XXX NFS_FLAVOR_NOMAP is defined in Solaris to work around 1171 * the implementation issue. This number should not overlap with 1172 * any new IANA defined pseudo flavor numbers. 1173 */ 1174 if (*cookie == NULL) 1175 *cookie = (void *)NFS_FLAVOR_NOMAP; 1176 1177 lock->locked = TRUE; 1178 1179 return (TRUE); 1180 } 1181 1182 1183 /* 1184 * Exportfs system call; credentials should be checked before 1185 * calling this function. 1186 */ 1187 int 1188 exportfs(struct exportfs_args *args, model_t model, cred_t *cr) 1189 { 1190 vnode_t *vp; 1191 vnode_t *dvp; 1192 struct exportdata *kex; 1193 struct exportinfo *exi; 1194 struct exportinfo *ex, *prev; 1195 fid_t fid; 1196 fsid_t fsid; 1197 int error; 1198 size_t allocsize; 1199 struct secinfo *sp; 1200 struct secinfo *exs; 1201 rpc_gss_callback_t cb; 1202 char *pathbuf; 1203 char *log_buffer; 1204 char *tagbuf; 1205 int callback; 1206 int allocd_seccnt; 1207 STRUCT_HANDLE(exportfs_args, uap); 1208 STRUCT_DECL(exportdata, uexi); 1209 struct secinfo newsec[MAX_FLAVORS]; 1210 int newcnt; 1211 struct secinfo oldsec[MAX_FLAVORS]; 1212 int oldcnt; 1213 int i; 1214 1215 STRUCT_SET_HANDLE(uap, model, args); 1216 1217 error = lookupname(STRUCT_FGETP(uap, dname), UIO_USERSPACE, 1218 FOLLOW, &dvp, &vp); 1219 if (error == EINVAL) { 1220 /* 1221 * if fname resolves to / we get EINVAL error 1222 * since we wanted the parent vnode. Try again 1223 * with NULL dvp. 1224 */ 1225 error = lookupname(STRUCT_FGETP(uap, dname), UIO_USERSPACE, 1226 FOLLOW, NULL, &vp); 1227 dvp = NULL; 1228 } 1229 if (!error && vp == NULL) { 1230 /* 1231 * Last component of fname not found 1232 */ 1233 if (dvp != NULL) { 1234 VN_RELE(dvp); 1235 } 1236 error = ENOENT; 1237 } 1238 if (error) 1239 return (error); 1240 1241 /* 1242 * 'vp' may be an AUTOFS node, so we perform a 1243 * VOP_ACCESS() to trigger the mount of the 1244 * intended filesystem, so we can share the intended 1245 * filesystem instead of the AUTOFS filesystem. 1246 */ 1247 (void) VOP_ACCESS(vp, 0, 0, cr, NULL); 1248 1249 /* 1250 * We're interested in the top most filesystem. 1251 * This is specially important when uap->dname is a trigger 1252 * AUTOFS node, since we're really interested in sharing the 1253 * filesystem AUTOFS mounted as result of the VOP_ACCESS() 1254 * call not the AUTOFS node itself. 1255 */ 1256 if (vn_mountedvfs(vp) != NULL) { 1257 if (error = traverse(&vp)) { 1258 VN_RELE(vp); 1259 if (dvp != NULL) 1260 VN_RELE(dvp); 1261 return (error); 1262 } 1263 } 1264 1265 /* 1266 * Get the vfs id 1267 */ 1268 bzero(&fid, sizeof (fid)); 1269 fid.fid_len = MAXFIDSZ; 1270 error = VOP_FID(vp, &fid, NULL); 1271 fsid = vp->v_vfsp->vfs_fsid; 1272 if (error) { 1273 VN_RELE(vp); 1274 if (dvp != NULL) 1275 VN_RELE(dvp); 1276 /* 1277 * If VOP_FID returns ENOSPC then the fid supplied 1278 * is too small. For now we simply return EREMOTE. 1279 */ 1280 if (error == ENOSPC) 1281 error = EREMOTE; 1282 return (error); 1283 } 1284 1285 if (STRUCT_FGETP(uap, uex) == NULL) { 1286 error = unexport(&fsid, &fid, vp); 1287 VN_RELE(vp); 1288 if (dvp != NULL) 1289 VN_RELE(dvp); 1290 return (error); 1291 } 1292 1293 exi = kmem_zalloc(sizeof (*exi), KM_SLEEP); 1294 exi->exi_fsid = fsid; 1295 exi->exi_fid = fid; 1296 exi->exi_vp = vp; 1297 exi->exi_count = 1; 1298 exi->exi_volatile_dev = (vfssw[vp->v_vfsp->vfs_fstype].vsw_flag & 1299 VSW_VOLATILEDEV) ? 1 : 0; 1300 mutex_init(&exi->exi_lock, NULL, MUTEX_DEFAULT, NULL); 1301 exi->exi_dvp = dvp; 1302 1303 /* 1304 * Initialize auth cache lock 1305 */ 1306 rw_init(&exi->exi_cache_lock, NULL, RW_DEFAULT, NULL); 1307 1308 /* 1309 * Build up the template fhandle 1310 */ 1311 exi->exi_fh.fh_fsid = fsid; 1312 if (exi->exi_fid.fid_len > sizeof (exi->exi_fh.fh_xdata)) { 1313 error = EREMOTE; 1314 goto out1; 1315 } 1316 exi->exi_fh.fh_xlen = exi->exi_fid.fid_len; 1317 bcopy(exi->exi_fid.fid_data, exi->exi_fh.fh_xdata, 1318 exi->exi_fid.fid_len); 1319 1320 exi->exi_fh.fh_len = sizeof (exi->exi_fh.fh_data); 1321 1322 kex = &exi->exi_export; 1323 1324 /* 1325 * Load in everything, and do sanity checking 1326 */ 1327 STRUCT_INIT(uexi, model); 1328 if (copyin(STRUCT_FGETP(uap, uex), STRUCT_BUF(uexi), 1329 STRUCT_SIZE(uexi))) { 1330 error = EFAULT; 1331 goto out1; 1332 } 1333 1334 kex->ex_version = STRUCT_FGET(uexi, ex_version); 1335 if (kex->ex_version != EX_CURRENT_VERSION) { 1336 error = EINVAL; 1337 cmn_err(CE_WARN, 1338 "NFS: exportfs requires export struct version 2 - got %d\n", 1339 kex->ex_version); 1340 goto out1; 1341 } 1342 1343 /* 1344 * Must have at least one security entry 1345 */ 1346 kex->ex_seccnt = STRUCT_FGET(uexi, ex_seccnt); 1347 if (kex->ex_seccnt < 1) { 1348 error = EINVAL; 1349 goto out1; 1350 } 1351 1352 kex->ex_path = STRUCT_FGETP(uexi, ex_path); 1353 kex->ex_pathlen = STRUCT_FGET(uexi, ex_pathlen); 1354 kex->ex_flags = STRUCT_FGET(uexi, ex_flags); 1355 kex->ex_anon = STRUCT_FGET(uexi, ex_anon); 1356 kex->ex_secinfo = STRUCT_FGETP(uexi, ex_secinfo); 1357 kex->ex_index = STRUCT_FGETP(uexi, ex_index); 1358 kex->ex_log_buffer = STRUCT_FGETP(uexi, ex_log_buffer); 1359 kex->ex_log_bufferlen = STRUCT_FGET(uexi, ex_log_bufferlen); 1360 kex->ex_tag = STRUCT_FGETP(uexi, ex_tag); 1361 kex->ex_taglen = STRUCT_FGET(uexi, ex_taglen); 1362 1363 /* 1364 * Copy the exported pathname into 1365 * an appropriately sized buffer. 1366 */ 1367 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1368 if (copyinstr(kex->ex_path, pathbuf, MAXPATHLEN, &kex->ex_pathlen)) { 1369 kmem_free(pathbuf, MAXPATHLEN); 1370 error = EFAULT; 1371 goto out1; 1372 } 1373 kex->ex_path = kmem_alloc(kex->ex_pathlen + 1, KM_SLEEP); 1374 bcopy(pathbuf, kex->ex_path, kex->ex_pathlen); 1375 kex->ex_path[kex->ex_pathlen] = '\0'; 1376 kmem_free(pathbuf, MAXPATHLEN); 1377 1378 /* 1379 * Get the path to the logging buffer and the tag 1380 */ 1381 if (kex->ex_flags & EX_LOG) { 1382 log_buffer = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1383 if (copyinstr(kex->ex_log_buffer, log_buffer, MAXPATHLEN, 1384 &kex->ex_log_bufferlen)) { 1385 kmem_free(log_buffer, MAXPATHLEN); 1386 error = EFAULT; 1387 goto out2; 1388 } 1389 kex->ex_log_buffer = 1390 kmem_alloc(kex->ex_log_bufferlen + 1, KM_SLEEP); 1391 bcopy(log_buffer, kex->ex_log_buffer, kex->ex_log_bufferlen); 1392 kex->ex_log_buffer[kex->ex_log_bufferlen] = '\0'; 1393 kmem_free(log_buffer, MAXPATHLEN); 1394 1395 tagbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1396 if (copyinstr(kex->ex_tag, tagbuf, MAXPATHLEN, 1397 &kex->ex_taglen)) { 1398 kmem_free(tagbuf, MAXPATHLEN); 1399 error = EFAULT; 1400 goto out3; 1401 } 1402 kex->ex_tag = kmem_alloc(kex->ex_taglen + 1, KM_SLEEP); 1403 bcopy(tagbuf, kex->ex_tag, kex->ex_taglen); 1404 kex->ex_tag[kex->ex_taglen] = '\0'; 1405 kmem_free(tagbuf, MAXPATHLEN); 1406 } 1407 1408 /* 1409 * Load the security information for each flavor 1410 */ 1411 allocsize = kex->ex_seccnt * SIZEOF_STRUCT(secinfo, model); 1412 sp = kmem_zalloc(allocsize, KM_SLEEP); 1413 if (copyin(kex->ex_secinfo, sp, allocsize)) { 1414 kmem_free(sp, allocsize); 1415 error = EFAULT; 1416 goto out4; 1417 } 1418 1419 /* 1420 * All of these nested structures need to be converted to 1421 * the kernel native format. 1422 */ 1423 if (model != DATAMODEL_NATIVE) { 1424 size_t allocsize2; 1425 struct secinfo *sp2; 1426 1427 allocsize2 = kex->ex_seccnt * sizeof (struct secinfo); 1428 sp2 = kmem_zalloc(allocsize2, KM_SLEEP); 1429 1430 for (i = 0; i < kex->ex_seccnt; i++) { 1431 STRUCT_HANDLE(secinfo, usi); 1432 1433 STRUCT_SET_HANDLE(usi, model, 1434 (struct secinfo *)((caddr_t)sp + 1435 (i * SIZEOF_STRUCT(secinfo, model)))); 1436 bcopy(STRUCT_FGET(usi, s_secinfo.sc_name), 1437 sp2[i].s_secinfo.sc_name, MAX_NAME_LEN); 1438 sp2[i].s_secinfo.sc_nfsnum = 1439 STRUCT_FGET(usi, s_secinfo.sc_nfsnum); 1440 sp2[i].s_secinfo.sc_rpcnum = 1441 STRUCT_FGET(usi, s_secinfo.sc_rpcnum); 1442 bcopy(STRUCT_FGET(usi, s_secinfo.sc_gss_mech), 1443 sp2[i].s_secinfo.sc_gss_mech, MAX_NAME_LEN); 1444 sp2[i].s_secinfo.sc_gss_mech_type = 1445 STRUCT_FGETP(usi, s_secinfo.sc_gss_mech_type); 1446 sp2[i].s_secinfo.sc_qop = 1447 STRUCT_FGET(usi, s_secinfo.sc_qop); 1448 sp2[i].s_secinfo.sc_service = 1449 STRUCT_FGET(usi, s_secinfo.sc_service); 1450 1451 sp2[i].s_flags = STRUCT_FGET(usi, s_flags); 1452 sp2[i].s_window = STRUCT_FGET(usi, s_window); 1453 sp2[i].s_rootcnt = STRUCT_FGET(usi, s_rootcnt); 1454 sp2[i].s_rootnames = STRUCT_FGETP(usi, s_rootnames); 1455 } 1456 kmem_free(sp, allocsize); 1457 sp = sp2; 1458 allocsize = allocsize2; 1459 } 1460 1461 kex->ex_secinfo = sp; 1462 1463 /* 1464 * And now copy rootnames for each individual secinfo. 1465 */ 1466 callback = 0; 1467 allocd_seccnt = 0; 1468 while (allocd_seccnt < kex->ex_seccnt) { 1469 1470 exs = &sp[allocd_seccnt]; 1471 if (exs->s_rootcnt > 0) { 1472 if (!sec_svc_loadrootnames(exs->s_secinfo.sc_rpcnum, 1473 exs->s_rootcnt, &exs->s_rootnames, model)) { 1474 error = EFAULT; 1475 goto out5; 1476 } 1477 } 1478 1479 if (exs->s_secinfo.sc_rpcnum == RPCSEC_GSS) { 1480 rpc_gss_OID mech_tmp; 1481 STRUCT_DECL(rpc_gss_OID_s, umech_tmp); 1482 caddr_t elements_tmp; 1483 1484 /* Copyin mechanism type */ 1485 STRUCT_INIT(umech_tmp, model); 1486 mech_tmp = kmem_alloc(sizeof (*mech_tmp), KM_SLEEP); 1487 if (copyin(exs->s_secinfo.sc_gss_mech_type, 1488 STRUCT_BUF(umech_tmp), STRUCT_SIZE(umech_tmp))) { 1489 kmem_free(mech_tmp, sizeof (*mech_tmp)); 1490 error = EFAULT; 1491 goto out5; 1492 } 1493 mech_tmp->length = STRUCT_FGET(umech_tmp, length); 1494 mech_tmp->elements = STRUCT_FGETP(umech_tmp, elements); 1495 1496 elements_tmp = kmem_alloc(mech_tmp->length, KM_SLEEP); 1497 if (copyin(mech_tmp->elements, elements_tmp, 1498 mech_tmp->length)) { 1499 kmem_free(elements_tmp, mech_tmp->length); 1500 kmem_free(mech_tmp, sizeof (*mech_tmp)); 1501 error = EFAULT; 1502 goto out5; 1503 } 1504 mech_tmp->elements = elements_tmp; 1505 exs->s_secinfo.sc_gss_mech_type = mech_tmp; 1506 allocd_seccnt++; 1507 1508 callback = 1; 1509 } else 1510 allocd_seccnt++; 1511 } 1512 1513 /* 1514 * Init the secinfo reference count and mark these flavors 1515 * explicitly exported flavors. 1516 */ 1517 for (i = 0; i < kex->ex_seccnt; i++) { 1518 kex->ex_secinfo[i].s_flags |= M_4SEC_EXPORTED; 1519 kex->ex_secinfo[i].s_refcnt = 1; 1520 } 1521 1522 /* 1523 * Set up rpcsec_gss callback routine entry if any. 1524 */ 1525 if (callback) { 1526 cb.callback = rfs_gsscallback; 1527 cb.program = NFS_ACL_PROGRAM; 1528 for (cb.version = NFS_ACL_VERSMIN; 1529 cb.version <= NFS_ACL_VERSMAX; cb.version++) { 1530 (void) sec_svc_control(RPC_SVC_SET_GSS_CALLBACK, 1531 (void *)&cb); 1532 } 1533 1534 cb.program = NFS_PROGRAM; 1535 for (cb.version = NFS_VERSMIN; 1536 cb.version <= NFS_VERSMAX; cb.version++) { 1537 (void) sec_svc_control(RPC_SVC_SET_GSS_CALLBACK, 1538 (void *)&cb); 1539 } 1540 } 1541 1542 /* 1543 * Check the index flag. Do this here to avoid holding the 1544 * lock while dealing with the index option (as we do with 1545 * the public option). 1546 */ 1547 if (kex->ex_flags & EX_INDEX) { 1548 if (!kex->ex_index) { /* sanity check */ 1549 error = EINVAL; 1550 goto out5; 1551 } 1552 if (error = loadindex(kex)) 1553 goto out5; 1554 } 1555 1556 if (kex->ex_flags & EX_LOG) { 1557 if (error = nfslog_setup(exi)) 1558 goto out6; 1559 } 1560 1561 /* 1562 * Insert the new entry at the front of the export list 1563 */ 1564 rw_enter(&exported_lock, RW_WRITER); 1565 1566 export_link(exi); 1567 1568 /* 1569 * Check the rest of the list for an old entry for the fs. 1570 * If one is found then unlink it, wait until this is the 1571 * only reference and then free it. 1572 */ 1573 prev = exi; 1574 for (ex = prev->exi_hash; ex != NULL; prev = ex, ex = ex->exi_hash) { 1575 if (ex != exi_root && VN_CMP(ex->exi_vp, vp)) { 1576 prev->exi_hash = ex->exi_hash; 1577 break; 1578 } 1579 } 1580 1581 /* 1582 * If the public filehandle is pointing at the 1583 * old entry, then point it back at the root. 1584 */ 1585 if (ex != NULL && ex == exi_public) 1586 exi_public = exi_root; 1587 1588 /* 1589 * If the public flag is on, make the global exi_public 1590 * point to this entry and turn off the public bit so that 1591 * we can distinguish it from the place holder export. 1592 */ 1593 if (kex->ex_flags & EX_PUBLIC) { 1594 exi_public = exi; 1595 kex->ex_flags &= ~EX_PUBLIC; 1596 } 1597 1598 #ifdef VOLATILE_FH_TEST 1599 /* 1600 * Set up the volatile_id value if volatile on share. 1601 * The list of volatile renamed filehandles is always destroyed, 1602 * if the fs was reshared. 1603 */ 1604 if (kex->ex_flags & EX_VOLFH) 1605 exi->exi_volatile_id = gethrestime_sec(); 1606 1607 mutex_init(&exi->exi_vol_rename_lock, NULL, MUTEX_DEFAULT, NULL); 1608 #endif /* VOLATILE_FH_TEST */ 1609 1610 /* 1611 * If this is a new export, then climb up 1612 * the tree and check if any pseudo exports 1613 * need to be created to provide a path for 1614 * NFS v4 clients. 1615 */ 1616 if (ex == NULL) 1617 error = treeclimb_export(exi); 1618 1619 /* 1620 * build a unique flavor list from the flavors specified 1621 * in the share cmd. unique means that each flavor only 1622 * appears once in the secinfo list -- no duplicates allowed. 1623 */ 1624 newcnt = build_seclist_nodups(&exi->exi_export, newsec, FALSE); 1625 1626 if (!error) 1627 error = srv_secinfo_treeclimb(exi, newsec, newcnt, TRUE); 1628 1629 /* 1630 * If re-sharing an old export entry, update the secinfo data 1631 * depending on if the old entry is a pseudo node or not. 1632 */ 1633 if (!error && ex != NULL) { 1634 oldcnt = build_seclist_nodups(&ex->exi_export, oldsec, FALSE); 1635 if (PSEUDO(ex)) { 1636 /* 1637 * The dir being shared is a pseudo export root (which 1638 * will be transformed into a real export root). The 1639 * flavor(s) of the new share were propagated to the 1640 * ancestors by srv_secinfo_treeclimb() above. Now 1641 * transfer the implicit flavor refs from the old 1642 * pseudo exprot root to the new (real) export root. 1643 */ 1644 srv_secinfo_add(&exi->exi_export.ex_secinfo, 1645 &exi->exi_export.ex_seccnt, oldsec, oldcnt, TRUE); 1646 } else { 1647 /* 1648 * First transfer implicit flavor refs to new export. 1649 * Remove old flavor refs last. 1650 */ 1651 srv_secinfo_exp2exp(&exi->exi_export, oldsec, oldcnt); 1652 error = srv_secinfo_treeclimb(ex, oldsec, oldcnt, 1653 FALSE); 1654 } 1655 } 1656 1657 if (error) 1658 goto out7; 1659 1660 /* 1661 * If it's a re-export and the old entry has a pseudnode list, 1662 * transfer it to the new export. 1663 */ 1664 if (ex != NULL && (ex->exi_visible != NULL)) { 1665 exi->exi_visible = ex->exi_visible; 1666 ex->exi_visible = NULL; 1667 } 1668 1669 rw_exit(&exported_lock); 1670 1671 if (exi_public == exi || kex->ex_flags & EX_LOG) { 1672 /* 1673 * Log share operation to this buffer only. 1674 */ 1675 nfslog_share_record(exi, cr); 1676 } 1677 1678 if (ex != NULL) 1679 exi_rele(ex); 1680 1681 return (0); 1682 1683 out7: 1684 /* 1685 * Cleaning up the tree. Assuming *treeclimb* routines 1686 * will fail at the same place in the tree. 1687 */ 1688 (void) treeclimb_unexport(exi); 1689 (void) srv_secinfo_treeclimb(exi, newsec, newcnt, FALSE); 1690 1691 /* 1692 * Unlink and re-link the new and old export in exptable. 1693 */ 1694 (void) export_unlink(&exi->exi_fsid, &exi->exi_fid, exi->exi_vp, NULL); 1695 if (ex != NULL) 1696 export_link(ex); 1697 1698 rw_exit(&exported_lock); 1699 out6: 1700 if (kex->ex_flags & EX_INDEX) 1701 kmem_free(kex->ex_index, strlen(kex->ex_index) + 1); 1702 out5: 1703 /* free partially completed allocation */ 1704 while (--allocd_seccnt >= 0) { 1705 exs = &kex->ex_secinfo[allocd_seccnt]; 1706 srv_secinfo_entry_free(exs); 1707 } 1708 1709 if (kex->ex_secinfo) { 1710 kmem_free(kex->ex_secinfo, 1711 kex->ex_seccnt * sizeof (struct secinfo)); 1712 } 1713 1714 out4: 1715 if ((kex->ex_flags & EX_LOG) && kex->ex_tag != NULL) 1716 kmem_free(kex->ex_tag, kex->ex_taglen + 1); 1717 out3: 1718 if ((kex->ex_flags & EX_LOG) && kex->ex_log_buffer != NULL) 1719 kmem_free(kex->ex_log_buffer, kex->ex_log_bufferlen + 1); 1720 out2: 1721 kmem_free(kex->ex_path, kex->ex_pathlen + 1); 1722 out1: 1723 VN_RELE(vp); 1724 if (dvp != NULL) 1725 VN_RELE(dvp); 1726 mutex_destroy(&exi->exi_lock); 1727 rw_destroy(&exi->exi_cache_lock); 1728 kmem_free(exi, sizeof (*exi)); 1729 return (error); 1730 } 1731 1732 /* 1733 * Remove the exportinfo from the export list 1734 */ 1735 int 1736 export_unlink(fsid_t *fsid, fid_t *fid, vnode_t *vp, struct exportinfo **exip) 1737 { 1738 struct exportinfo **tail; 1739 1740 ASSERT(RW_WRITE_HELD(&exported_lock)); 1741 1742 tail = &exptable[exptablehash(fsid, fid)]; 1743 while (*tail != NULL) { 1744 if (exportmatch(*tail, fsid, fid)) { 1745 /* 1746 * If vp is given, check if vp is the 1747 * same vnode as the exported node. 1748 * 1749 * Since VOP_FID of a lofs node returns the 1750 * fid of its real node (ufs), the exported 1751 * node for lofs and (pseudo) ufs may have 1752 * the same fsid and fid. 1753 */ 1754 if (vp == NULL || vp == (*tail)->exi_vp) { 1755 1756 if (exip != NULL) 1757 *exip = *tail; 1758 *tail = (*tail)->exi_hash; 1759 1760 return (0); 1761 } 1762 } 1763 tail = &(*tail)->exi_hash; 1764 } 1765 1766 return (EINVAL); 1767 } 1768 1769 /* 1770 * Unexport an exported filesystem 1771 */ 1772 int 1773 unexport(fsid_t *fsid, fid_t *fid, vnode_t *vp) 1774 { 1775 struct exportinfo *exi = NULL; 1776 int error; 1777 struct secinfo cursec[MAX_FLAVORS]; 1778 int curcnt; 1779 1780 rw_enter(&exported_lock, RW_WRITER); 1781 1782 error = export_unlink(fsid, fid, vp, &exi); 1783 1784 if (error) { 1785 rw_exit(&exported_lock); 1786 return (error); 1787 } 1788 1789 /* pseudo node is not a real exported filesystem */ 1790 if (PSEUDO(exi)) { 1791 /* 1792 * Put the pseudo node back into the export table 1793 * before erroring out. 1794 */ 1795 export_link(exi); 1796 rw_exit(&exported_lock); 1797 return (EINVAL); 1798 } 1799 1800 /* 1801 * If there's a visible list, then need to leave 1802 * a pseudo export here to retain the visible list 1803 * for paths to exports below. 1804 */ 1805 if (exi->exi_visible) { 1806 error = pseudo_exportfs(exi->exi_vp, exi->exi_visible, 1807 &exi->exi_export); 1808 if (error) 1809 goto done; 1810 1811 exi->exi_visible = NULL; 1812 } else { 1813 error = treeclimb_unexport(exi); 1814 if (error) 1815 goto done; 1816 } 1817 1818 curcnt = build_seclist_nodups(&exi->exi_export, cursec, TRUE); 1819 1820 error = srv_secinfo_treeclimb(exi, cursec, curcnt, FALSE); 1821 if (error) 1822 goto done; 1823 1824 rw_exit(&exported_lock); 1825 1826 /* 1827 * Need to call into the NFSv4 server and release all data 1828 * held on this particular export. This is important since 1829 * the v4 server may be holding file locks or vnodes under 1830 * this export. 1831 */ 1832 rfs4_clean_state_exi(exi); 1833 1834 /* 1835 * Notify the lock manager that the filesystem is being 1836 * unexported. 1837 */ 1838 lm_unexport(exi); 1839 1840 /* 1841 * If this was a public export, restore 1842 * the public filehandle to the root. 1843 */ 1844 if (exi == exi_public) { 1845 exi_public = exi_root; 1846 1847 nfslog_share_record(exi_public, CRED()); 1848 } 1849 1850 if (exi->exi_export.ex_flags & EX_LOG) { 1851 nfslog_unshare_record(exi, CRED()); 1852 } 1853 1854 exi_rele(exi); 1855 return (error); 1856 1857 done: 1858 rw_exit(&exported_lock); 1859 exi_rele(exi); 1860 return (error); 1861 } 1862 1863 /* 1864 * Get file handle system call. 1865 * Takes file name and returns a file handle for it. 1866 * Credentials must be verified before calling. 1867 */ 1868 int 1869 nfs_getfh(struct nfs_getfh_args *args, model_t model, cred_t *cr) 1870 { 1871 nfs_fh3 fh; 1872 char buf[NFS3_MAXFHSIZE]; 1873 char *logptr, logbuf[NFS3_MAXFHSIZE]; 1874 int l = NFS3_MAXFHSIZE; 1875 vnode_t *vp; 1876 vnode_t *dvp; 1877 struct exportinfo *exi; 1878 int error; 1879 int vers; 1880 STRUCT_HANDLE(nfs_getfh_args, uap); 1881 1882 #ifdef lint 1883 model = model; /* STRUCT macros don't always use it */ 1884 #endif 1885 1886 STRUCT_SET_HANDLE(uap, model, args); 1887 1888 error = lookupname(STRUCT_FGETP(uap, fname), UIO_USERSPACE, 1889 FOLLOW, &dvp, &vp); 1890 if (error == EINVAL) { 1891 /* 1892 * if fname resolves to / we get EINVAL error 1893 * since we wanted the parent vnode. Try again 1894 * with NULL dvp. 1895 */ 1896 error = lookupname(STRUCT_FGETP(uap, fname), UIO_USERSPACE, 1897 FOLLOW, NULL, &vp); 1898 dvp = NULL; 1899 } 1900 if (!error && vp == NULL) { 1901 /* 1902 * Last component of fname not found 1903 */ 1904 if (dvp != NULL) { 1905 VN_RELE(dvp); 1906 } 1907 error = ENOENT; 1908 } 1909 if (error) 1910 return (error); 1911 1912 /* 1913 * 'vp' may be an AUTOFS node, so we perform a 1914 * VOP_ACCESS() to trigger the mount of the 1915 * intended filesystem, so we can share the intended 1916 * filesystem instead of the AUTOFS filesystem. 1917 */ 1918 (void) VOP_ACCESS(vp, 0, 0, cr, NULL); 1919 1920 /* 1921 * We're interested in the top most filesystem. 1922 * This is specially important when uap->dname is a trigger 1923 * AUTOFS node, since we're really interested in sharing the 1924 * filesystem AUTOFS mounted as result of the VOP_ACCESS() 1925 * call not the AUTOFS node itself. 1926 */ 1927 if (vn_mountedvfs(vp) != NULL) { 1928 if (error = traverse(&vp)) { 1929 VN_RELE(vp); 1930 if (dvp != NULL) 1931 VN_RELE(dvp); 1932 return (error); 1933 } 1934 } 1935 1936 vers = STRUCT_FGET(uap, vers); 1937 exi = nfs_vptoexi(dvp, vp, cr, NULL, &error, FALSE); 1938 if (!error) { 1939 if (vers == NFS_VERSION) { 1940 error = makefh((fhandle_t *)buf, vp, exi); 1941 l = NFS_FHSIZE; 1942 logptr = buf; 1943 } else if (vers == NFS_V3) { 1944 int i, sz, pad; 1945 1946 error = makefh3(&fh, vp, exi); 1947 l = fh.fh3_length; 1948 logptr = logbuf; 1949 if (!error) { 1950 i = 0; 1951 sz = sizeof (fsid_t); 1952 bcopy(&fh.fh3_fsid, &buf[i], sz); 1953 i += sz; 1954 1955 /* 1956 * For backwards compatibility, the 1957 * fid length may be less than 1958 * NFS_FHMAXDATA, but it was always 1959 * encoded as NFS_FHMAXDATA bytes. 1960 */ 1961 1962 sz = sizeof (ushort_t); 1963 bcopy(&fh.fh3_len, &buf[i], sz); 1964 i += sz; 1965 bcopy(fh.fh3_data, &buf[i], fh.fh3_len); 1966 i += fh.fh3_len; 1967 pad = (NFS_FHMAXDATA - fh.fh3_len); 1968 if (pad > 0) { 1969 bzero(&buf[i], pad); 1970 i += pad; 1971 l += pad; 1972 } 1973 1974 sz = sizeof (ushort_t); 1975 bcopy(&fh.fh3_xlen, &buf[i], sz); 1976 i += sz; 1977 bcopy(fh.fh3_xdata, &buf[i], fh.fh3_xlen); 1978 i += fh.fh3_xlen; 1979 pad = (NFS_FHMAXDATA - fh.fh3_xlen); 1980 if (pad > 0) { 1981 bzero(&buf[i], pad); 1982 i += pad; 1983 l += pad; 1984 } 1985 } 1986 /* 1987 * If we need to do NFS logging, the filehandle 1988 * must be downsized to 32 bytes. 1989 */ 1990 if (!error && exi->exi_export.ex_flags & EX_LOG) { 1991 i = 0; 1992 sz = sizeof (fsid_t); 1993 bcopy(&fh.fh3_fsid, &logbuf[i], sz); 1994 i += sz; 1995 sz = sizeof (ushort_t); 1996 bcopy(&fh.fh3_len, &logbuf[i], sz); 1997 i += sz; 1998 sz = NFS_FHMAXDATA; 1999 bcopy(fh.fh3_data, &logbuf[i], sz); 2000 i += sz; 2001 sz = sizeof (ushort_t); 2002 bcopy(&fh.fh3_xlen, &logbuf[i], sz); 2003 i += sz; 2004 sz = NFS_FHMAXDATA; 2005 bcopy(fh.fh3_xdata, &logbuf[i], sz); 2006 i += sz; 2007 } 2008 } 2009 if (!error && exi->exi_export.ex_flags & EX_LOG) { 2010 nfslog_getfh(exi, (fhandle_t *)logptr, 2011 STRUCT_FGETP(uap, fname), UIO_USERSPACE, cr); 2012 } 2013 exi_rele(exi); 2014 if (!error) { 2015 if (copyout(&l, STRUCT_FGETP(uap, lenp), sizeof (int))) 2016 error = EFAULT; 2017 if (copyout(buf, STRUCT_FGETP(uap, fhp), l)) 2018 error = EFAULT; 2019 } 2020 } 2021 VN_RELE(vp); 2022 if (dvp != NULL) { 2023 VN_RELE(dvp); 2024 } 2025 return (error); 2026 } 2027 2028 /* 2029 * Strategy: if vp is in the export list, then 2030 * return the associated file handle. Otherwise, ".." 2031 * once up the vp and try again, until the root of the 2032 * filesystem is reached. 2033 */ 2034 struct exportinfo * 2035 nfs_vptoexi(vnode_t *dvp, vnode_t *vp, cred_t *cr, int *walk, 2036 int *err, bool_t v4srv) 2037 { 2038 fid_t fid; 2039 int error; 2040 struct exportinfo *exi; 2041 2042 ASSERT(vp); 2043 VN_HOLD(vp); 2044 if (dvp != NULL) { 2045 VN_HOLD(dvp); 2046 } 2047 if (walk != NULL) 2048 *walk = 0; 2049 2050 for (;;) { 2051 bzero(&fid, sizeof (fid)); 2052 fid.fid_len = MAXFIDSZ; 2053 error = vop_fid_pseudo(vp, &fid); 2054 if (error) { 2055 /* 2056 * If vop_fid_pseudo returns ENOSPC then the fid 2057 * supplied is too small. For now we simply 2058 * return EREMOTE. 2059 */ 2060 if (error == ENOSPC) 2061 error = EREMOTE; 2062 break; 2063 } 2064 2065 if (v4srv) 2066 exi = checkexport4(&vp->v_vfsp->vfs_fsid, &fid, vp); 2067 else 2068 exi = checkexport(&vp->v_vfsp->vfs_fsid, &fid); 2069 2070 if (exi != NULL) { 2071 /* 2072 * Found the export info 2073 */ 2074 break; 2075 } 2076 2077 /* 2078 * We have just failed finding a matching export. 2079 * If we're at the root of this filesystem, then 2080 * it's time to stop (with failure). 2081 */ 2082 if (vp->v_flag & VROOT) { 2083 error = EINVAL; 2084 break; 2085 } 2086 2087 if (walk != NULL) 2088 (*walk)++; 2089 2090 /* 2091 * Now, do a ".." up vp. If dvp is supplied, use it, 2092 * otherwise, look it up. 2093 */ 2094 if (dvp == NULL) { 2095 error = VOP_LOOKUP(vp, "..", &dvp, NULL, 0, NULL, cr, 2096 NULL, NULL, NULL); 2097 if (error) 2098 break; 2099 } 2100 VN_RELE(vp); 2101 vp = dvp; 2102 dvp = NULL; 2103 } 2104 VN_RELE(vp); 2105 if (dvp != NULL) { 2106 VN_RELE(dvp); 2107 } 2108 if (error != 0) { 2109 if (err != NULL) 2110 *err = error; 2111 return (NULL); 2112 } 2113 return (exi); 2114 } 2115 2116 int 2117 chk_clnt_sec(exportinfo_t *exi, struct svc_req *req) 2118 { 2119 int i, nfsflavor; 2120 struct secinfo *sp; 2121 2122 /* 2123 * Get the nfs flavor number from xprt. 2124 */ 2125 nfsflavor = (int)(uintptr_t)req->rq_xprt->xp_cookie; 2126 2127 sp = exi->exi_export.ex_secinfo; 2128 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2129 if ((nfsflavor == sp[i].s_secinfo.sc_nfsnum) && 2130 SEC_REF_EXPORTED(sp + i)) 2131 return (TRUE); 2132 } 2133 return (FALSE); 2134 } 2135 2136 /* 2137 * Make an fhandle from a vnode 2138 */ 2139 int 2140 makefh(fhandle_t *fh, vnode_t *vp, exportinfo_t *exi) 2141 { 2142 int error; 2143 2144 *fh = exi->exi_fh; /* struct copy */ 2145 2146 error = VOP_FID(vp, (fid_t *)&fh->fh_len, NULL); 2147 if (error) { 2148 /* 2149 * Should be something other than EREMOTE 2150 */ 2151 return (EREMOTE); 2152 } 2153 return (0); 2154 } 2155 2156 /* 2157 * This routine makes an overloaded V2 fhandle which contains 2158 * sec modes. 2159 * 2160 * Note that the first four octets contain the length octet, 2161 * the status octet, and two padded octets to make them XDR 2162 * four-octet aligned. 2163 * 2164 * 1 2 3 4 32 2165 * +---+---+---+---+---+---+---+---+ +---+---+---+---+ +---+ 2166 * | l | s | | | sec_1 |...| sec_n |...| | 2167 * +---+---+---+---+---+---+---+---+ +---+---+---+---+ +---+ 2168 * 2169 * where 2170 * 2171 * the status octet s indicates whether there are more security 2172 * flavors (1 means yes, 0 means no) that require the client to 2173 * perform another 0x81 LOOKUP to get them, 2174 * 2175 * the length octet l is the length describing the number of 2176 * valid octets that follow. (l = 4 * n, where n is the number 2177 * of security flavors sent in the current overloaded filehandle.) 2178 * 2179 * sec_index should always be in the inclusive range: [1 - ex_seccnt], 2180 * and it tells server where to start within the secinfo array. 2181 * Usually it will always be 1; however, if more flavors are used 2182 * for the public export than can be encoded in the overloaded FH 2183 * (7 for NFS2), subsequent SNEGO MCLs will have a larger index 2184 * so the server will pick up where it left off from the previous 2185 * MCL reply. 2186 * 2187 * With NFS4 support, implicitly allowed flavors are also in 2188 * the secinfo array; however, they should not be returned in 2189 * SNEGO MCL replies. 2190 */ 2191 int 2192 makefh_ol(fhandle_t *fh, exportinfo_t *exi, uint_t sec_index) 2193 { 2194 secinfo_t sec[MAX_FLAVORS]; 2195 int totalcnt, i, *ipt, cnt, seccnt, secidx, fh_max_cnt; 2196 char *c; 2197 2198 if (fh == NULL || exi == NULL || sec_index < 1) 2199 return (EREMOTE); 2200 2201 /* 2202 * WebNFS clients need to know the unique set of explicitly 2203 * shared flavors in used for the public export. When 2204 * "TRUE" is passed to build_seclist_nodups(), only explicitly 2205 * shared flavors are included in the list. 2206 */ 2207 seccnt = build_seclist_nodups(&exi->exi_export, sec, TRUE); 2208 if (sec_index > seccnt) 2209 return (EREMOTE); 2210 2211 fh_max_cnt = (NFS_FHSIZE / sizeof (int)) - 1; 2212 totalcnt = seccnt - sec_index + 1; 2213 cnt = totalcnt > fh_max_cnt ? fh_max_cnt : totalcnt; 2214 2215 c = (char *)fh; 2216 /* 2217 * Encode the length octet representing the number of 2218 * security flavors (in bytes) in this overloaded fh. 2219 */ 2220 *c = cnt * sizeof (int); 2221 2222 /* 2223 * Encode the status octet that indicates whether there 2224 * are more security flavors the client needs to get. 2225 */ 2226 *(c + 1) = totalcnt > fh_max_cnt; 2227 2228 /* 2229 * put security flavors in the overloaded fh 2230 */ 2231 ipt = (int *)(c + sizeof (int32_t)); 2232 secidx = sec_index - 1; 2233 for (i = 0; i < cnt; i++) { 2234 ipt[i] = htonl(sec[i + secidx].s_secinfo.sc_nfsnum); 2235 } 2236 return (0); 2237 } 2238 2239 /* 2240 * Make an nfs_fh3 from a vnode 2241 */ 2242 int 2243 makefh3(nfs_fh3 *fh, vnode_t *vp, struct exportinfo *exi) 2244 { 2245 int error; 2246 fid_t fid; 2247 2248 bzero(&fid, sizeof (fid)); 2249 fid.fid_len = MAXFIDSZ; 2250 error = VOP_FID(vp, &fid, NULL); 2251 if (error) 2252 return (EREMOTE); 2253 2254 bzero(fh, sizeof (nfs_fh3)); 2255 fh->fh3_fsid = exi->exi_fsid; 2256 fh->fh3_len = fid.fid_len; 2257 bcopy(fid.fid_data, fh->fh3_data, fh->fh3_len); 2258 fh->fh3_xlen = exi->exi_fid.fid_len; 2259 bcopy(exi->exi_fid.fid_data, fh->fh3_xdata, fh->fh3_xlen); 2260 fh->fh3_length = sizeof (fsid_t) 2261 + sizeof (ushort_t) + fh->fh3_len 2262 + sizeof (ushort_t) + fh->fh3_xlen; 2263 fh->fh3_flags = 0; 2264 return (0); 2265 } 2266 2267 /* 2268 * This routine makes an overloaded V3 fhandle which contains 2269 * sec modes. 2270 * 2271 * 1 4 2272 * +--+--+--+--+ 2273 * | len | 2274 * +--+--+--+--+ 2275 * up to 64 2276 * +--+--+--+--+--+--+--+--+--+--+--+--+ +--+--+--+--+ 2277 * |s | | | | sec_1 | sec_2 | ... | sec_n | 2278 * +--+--+--+--+--+--+--+--+--+--+--+--+ +--+--+--+--+ 2279 * 2280 * len = 4 * (n+1), where n is the number of security flavors 2281 * sent in the current overloaded filehandle. 2282 * 2283 * the status octet s indicates whether there are more security 2284 * mechanisms (1 means yes, 0 means no) that require the client 2285 * to perform another 0x81 LOOKUP to get them. 2286 * 2287 * Three octets are padded after the status octet. 2288 */ 2289 int 2290 makefh3_ol(nfs_fh3 *fh, struct exportinfo *exi, uint_t sec_index) 2291 { 2292 secinfo_t sec[MAX_FLAVORS]; 2293 int totalcnt, cnt, *ipt, i, seccnt, fh_max_cnt, secidx; 2294 char *c; 2295 2296 if (fh == NULL || exi == NULL || sec_index < 1) 2297 return (EREMOTE); 2298 2299 /* 2300 * WebNFS clients need to know the unique set of explicitly 2301 * shared flavors in used for the public export. When 2302 * "TRUE" is passed to build_seclist_nodups(), only explicitly 2303 * shared flavors are included in the list. 2304 */ 2305 seccnt = build_seclist_nodups(&exi->exi_export, sec, TRUE); 2306 2307 if (sec_index > seccnt) 2308 return (EREMOTE); 2309 2310 fh_max_cnt = (NFS3_FHSIZE / sizeof (int)) - 1; 2311 totalcnt = seccnt - sec_index + 1; 2312 cnt = totalcnt > fh_max_cnt ? fh_max_cnt : totalcnt; 2313 2314 /* 2315 * Place the length in fh3_length representing the number 2316 * of security flavors (in bytes) in this overloaded fh. 2317 */ 2318 fh->fh3_flags = FH_WEBNFS; 2319 fh->fh3_length = (cnt+1) * sizeof (int32_t); 2320 2321 c = (char *)&fh->fh3_u.nfs_fh3_i.fh3_i; 2322 /* 2323 * Encode the status octet that indicates whether there 2324 * are more security flavors the client needs to get. 2325 */ 2326 *c = totalcnt > fh_max_cnt; 2327 2328 /* 2329 * put security flavors in the overloaded fh 2330 */ 2331 secidx = sec_index - 1; 2332 ipt = (int *)(c + sizeof (int32_t)); 2333 for (i = 0; i < cnt; i++) { 2334 ipt[i] = htonl(sec[i + secidx].s_secinfo.sc_nfsnum); 2335 } 2336 return (0); 2337 } 2338 2339 /* 2340 * Make an nfs_fh4 from a vnode 2341 */ 2342 int 2343 makefh4(nfs_fh4 *fh, vnode_t *vp, struct exportinfo *exi) 2344 { 2345 int error; 2346 nfs_fh4_fmt_t *fh_fmtp = (nfs_fh4_fmt_t *)fh->nfs_fh4_val; 2347 fid_t fid; 2348 2349 bzero(&fid, sizeof (fid)); 2350 fid.fid_len = MAXFIDSZ; 2351 /* 2352 * vop_fid_pseudo() is used to set up NFSv4 namespace, so 2353 * use vop_fid_pseudo() here to get the fid instead of VOP_FID. 2354 */ 2355 error = vop_fid_pseudo(vp, &fid); 2356 if (error) 2357 return (error); 2358 2359 fh->nfs_fh4_len = NFS_FH4_LEN; 2360 2361 fh_fmtp->fh4_i.fhx_fsid = exi->exi_fh.fh_fsid; 2362 fh_fmtp->fh4_i.fhx_xlen = exi->exi_fh.fh_xlen; 2363 2364 bzero(fh_fmtp->fh4_i.fhx_data, sizeof (fh_fmtp->fh4_i.fhx_data)); 2365 bzero(fh_fmtp->fh4_i.fhx_xdata, sizeof (fh_fmtp->fh4_i.fhx_xdata)); 2366 bcopy(exi->exi_fh.fh_xdata, fh_fmtp->fh4_i.fhx_xdata, 2367 exi->exi_fh.fh_xlen); 2368 2369 fh_fmtp->fh4_len = fid.fid_len; 2370 ASSERT(fid.fid_len <= sizeof (fh_fmtp->fh4_data)); 2371 bcopy(fid.fid_data, fh_fmtp->fh4_data, fid.fid_len); 2372 fh_fmtp->fh4_flag = 0; 2373 2374 #ifdef VOLATILE_FH_TEST 2375 /* 2376 * XXX (temporary?) 2377 * Use the rnode volatile_id value to add volatility to the fh. 2378 * 2379 * For testing purposes there are currently two scenarios, based 2380 * on whether the filesystem was shared with "volatile_fh" 2381 * or "expire_on_rename". In the first case, use the value of 2382 * export struct share_time as the volatile_id. In the second 2383 * case use the vnode volatile_id value (which is set to the 2384 * time in which the file was renamed). 2385 * 2386 * Note that the above are temporary constructs for testing only 2387 * XXX 2388 */ 2389 if (exi->exi_export.ex_flags & EX_VOLRNM) { 2390 fh_fmtp->fh4_volatile_id = find_volrnm_fh_id(exi, fh); 2391 } else if (exi->exi_export.ex_flags & EX_VOLFH) { 2392 fh_fmtp->fh4_volatile_id = exi->exi_volatile_id; 2393 } else { 2394 fh_fmtp->fh4_volatile_id = 0; 2395 } 2396 #endif /* VOLATILE_FH_TEST */ 2397 2398 return (0); 2399 } 2400 2401 /* 2402 * Convert an fhandle into a vnode. 2403 * Uses the file id (fh_len + fh_data) in the fhandle to get the vnode. 2404 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2405 * are done with it. 2406 */ 2407 vnode_t * 2408 nfs_fhtovp(fhandle_t *fh, struct exportinfo *exi) 2409 { 2410 vfs_t *vfsp; 2411 vnode_t *vp; 2412 int error; 2413 fid_t *fidp; 2414 2415 TRACE_0(TR_FAC_NFS, TR_FHTOVP_START, 2416 "fhtovp_start"); 2417 2418 if (exi == NULL) { 2419 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2420 "fhtovp_end:(%S)", "exi NULL"); 2421 return (NULL); /* not exported */ 2422 } 2423 2424 ASSERT(exi->exi_vp != NULL); 2425 2426 if (PUBLIC_FH2(fh)) { 2427 if (exi->exi_export.ex_flags & EX_PUBLIC) { 2428 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2429 "fhtovp_end:(%S)", "root not exported"); 2430 return (NULL); 2431 } 2432 vp = exi->exi_vp; 2433 VN_HOLD(vp); 2434 return (vp); 2435 } 2436 2437 vfsp = exi->exi_vp->v_vfsp; 2438 ASSERT(vfsp != NULL); 2439 fidp = (fid_t *)&fh->fh_len; 2440 2441 error = VFS_VGET(vfsp, &vp, fidp); 2442 if (error || vp == NULL) { 2443 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2444 "fhtovp_end:(%S)", "VFS_GET failed or vp NULL"); 2445 return (NULL); 2446 } 2447 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2448 "fhtovp_end:(%S)", "end"); 2449 return (vp); 2450 } 2451 2452 /* 2453 * Convert an fhandle into a vnode. 2454 * Uses the file id (fh_len + fh_data) in the fhandle to get the vnode. 2455 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2456 * are done with it. 2457 * This is just like nfs_fhtovp() but without the exportinfo argument. 2458 */ 2459 2460 vnode_t * 2461 lm_fhtovp(fhandle_t *fh) 2462 { 2463 register vfs_t *vfsp; 2464 vnode_t *vp; 2465 int error; 2466 2467 vfsp = getvfs(&fh->fh_fsid); 2468 if (vfsp == NULL) 2469 return (NULL); 2470 2471 error = VFS_VGET(vfsp, &vp, (fid_t *)&(fh->fh_len)); 2472 VFS_RELE(vfsp); 2473 if (error || vp == NULL) 2474 return (NULL); 2475 2476 return (vp); 2477 } 2478 2479 /* 2480 * Convert an nfs_fh3 into a vnode. 2481 * Uses the file id (fh_len + fh_data) in the file handle to get the vnode. 2482 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2483 * are done with it. 2484 */ 2485 vnode_t * 2486 nfs3_fhtovp(nfs_fh3 *fh, struct exportinfo *exi) 2487 { 2488 vfs_t *vfsp; 2489 vnode_t *vp; 2490 int error; 2491 fid_t *fidp; 2492 2493 if (exi == NULL) 2494 return (NULL); /* not exported */ 2495 2496 ASSERT(exi->exi_vp != NULL); 2497 2498 if (PUBLIC_FH3(fh)) { 2499 if (exi->exi_export.ex_flags & EX_PUBLIC) 2500 return (NULL); 2501 vp = exi->exi_vp; 2502 VN_HOLD(vp); 2503 return (vp); 2504 } 2505 2506 if (fh->fh3_length < NFS3_OLDFHSIZE || 2507 fh->fh3_length > NFS3_MAXFHSIZE) 2508 return (NULL); 2509 2510 vfsp = exi->exi_vp->v_vfsp; 2511 ASSERT(vfsp != NULL); 2512 fidp = FH3TOFIDP(fh); 2513 2514 error = VFS_VGET(vfsp, &vp, fidp); 2515 if (error || vp == NULL) 2516 return (NULL); 2517 2518 return (vp); 2519 } 2520 2521 /* 2522 * Convert an nfs_fh3 into a vnode. 2523 * Uses the file id (fh_len + fh_data) in the file handle to get the vnode. 2524 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2525 * are done with it. 2526 * BTW: This is just like nfs3_fhtovp() but without the exportinfo arg. 2527 * Also, vfsp is accessed through getvfs() rather using exportinfo !! 2528 */ 2529 2530 vnode_t * 2531 lm_nfs3_fhtovp(nfs_fh3 *fh) 2532 { 2533 vfs_t *vfsp; 2534 vnode_t *vp; 2535 int error; 2536 fid_t *fidp; 2537 2538 if (fh->fh3_length < NFS3_OLDFHSIZE || 2539 fh->fh3_length > NFS3_MAXFHSIZE) 2540 return (NULL); 2541 2542 vfsp = getvfs(&fh->fh3_fsid); 2543 if (vfsp == NULL) 2544 return (NULL); 2545 fidp = FH3TOFIDP(fh); 2546 2547 error = VFS_VGET(vfsp, &vp, fidp); 2548 VFS_RELE(vfsp); 2549 if (error || vp == NULL) 2550 return (NULL); 2551 2552 return (vp); 2553 } 2554 2555 /* 2556 * Convert an nfs_fh4 into a vnode. 2557 * Uses the file id (fh_len + fh_data) in the file handle to get the vnode. 2558 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2559 * are done with it. 2560 */ 2561 vnode_t * 2562 nfs4_fhtovp(nfs_fh4 *fh, struct exportinfo *exi, nfsstat4 *statp) 2563 { 2564 vfs_t *vfsp; 2565 vnode_t *vp = NULL; 2566 int error; 2567 fid_t *fidp; 2568 nfs_fh4_fmt_t *fh_fmtp; 2569 #ifdef VOLATILE_FH_TEST 2570 uint32_t volatile_id = 0; 2571 #endif /* VOLATILE_FH_TEST */ 2572 2573 if (exi == NULL) { 2574 *statp = NFS4ERR_STALE; 2575 return (NULL); /* not exported */ 2576 } 2577 ASSERT(exi->exi_vp != NULL); 2578 2579 /* caller should have checked this */ 2580 ASSERT(fh->nfs_fh4_len >= NFS_FH4_LEN); 2581 2582 fh_fmtp = (nfs_fh4_fmt_t *)fh->nfs_fh4_val; 2583 vfsp = exi->exi_vp->v_vfsp; 2584 ASSERT(vfsp != NULL); 2585 fidp = (fid_t *)&fh_fmtp->fh4_len; 2586 2587 #ifdef VOLATILE_FH_TEST 2588 /* XXX check if volatile - should be changed later */ 2589 if (exi->exi_export.ex_flags & (EX_VOLRNM | EX_VOLFH)) { 2590 /* 2591 * Filesystem is shared with volatile filehandles 2592 */ 2593 if (exi->exi_export.ex_flags & EX_VOLRNM) 2594 volatile_id = find_volrnm_fh_id(exi, fh); 2595 else 2596 volatile_id = exi->exi_volatile_id; 2597 2598 if (fh_fmtp->fh4_volatile_id != volatile_id) { 2599 *statp = NFS4ERR_FHEXPIRED; 2600 return (NULL); 2601 } 2602 } 2603 /* 2604 * XXX even if test_volatile_fh false, the fh may contain a 2605 * volatile id if obtained when the test was set. 2606 */ 2607 fh_fmtp->fh4_volatile_id = (uchar_t)0; 2608 #endif /* VOLATILE_FH_TEST */ 2609 2610 error = VFS_VGET(vfsp, &vp, fidp); 2611 /* 2612 * If we can not get vp from VFS_VGET, perhaps this is 2613 * an nfs v2/v3/v4 node in an nfsv4 pseudo filesystem. 2614 * Check it out. 2615 */ 2616 if (error && PSEUDO(exi)) 2617 error = nfs4_vget_pseudo(exi, &vp, fidp); 2618 2619 if (error || vp == NULL) { 2620 *statp = NFS4ERR_STALE; 2621 return (NULL); 2622 } 2623 /* XXX - disgusting hack */ 2624 if (vp->v_type == VNON && vp->v_flag & V_XATTRDIR) 2625 vp->v_type = VDIR; 2626 *statp = NFS4_OK; 2627 return (vp); 2628 } 2629 2630 /* 2631 * Find the export structure associated with the given filesystem. 2632 * If found, then increment the ref count (exi_count). 2633 */ 2634 struct exportinfo * 2635 checkexport(fsid_t *fsid, fid_t *fid) 2636 { 2637 struct exportinfo *exi; 2638 2639 rw_enter(&exported_lock, RW_READER); 2640 for (exi = exptable[exptablehash(fsid, fid)]; 2641 exi != NULL; 2642 exi = exi->exi_hash) { 2643 if (exportmatch(exi, fsid, fid)) { 2644 /* 2645 * If this is the place holder for the 2646 * public file handle, then return the 2647 * real export entry for the public file 2648 * handle. 2649 */ 2650 if (exi->exi_export.ex_flags & EX_PUBLIC) { 2651 exi = exi_public; 2652 } 2653 mutex_enter(&exi->exi_lock); 2654 exi->exi_count++; 2655 mutex_exit(&exi->exi_lock); 2656 rw_exit(&exported_lock); 2657 return (exi); 2658 } 2659 } 2660 rw_exit(&exported_lock); 2661 return (NULL); 2662 } 2663 2664 2665 /* 2666 * "old school" version of checkexport() for NFS4. NFS4 2667 * rfs4_compound holds exported_lock for duration of compound 2668 * processing. This version doesn't manipulate exi_count 2669 * since NFS4 breaks fundamental assumptions in the exi_count 2670 * design. 2671 */ 2672 struct exportinfo * 2673 checkexport4(fsid_t *fsid, fid_t *fid, vnode_t *vp) 2674 { 2675 struct exportinfo *exi; 2676 2677 ASSERT(RW_LOCK_HELD(&exported_lock)); 2678 2679 for (exi = exptable[exptablehash(fsid, fid)]; 2680 exi != NULL; 2681 exi = exi->exi_hash) { 2682 if (exportmatch(exi, fsid, fid)) { 2683 /* 2684 * If this is the place holder for the 2685 * public file handle, then return the 2686 * real export entry for the public file 2687 * handle. 2688 */ 2689 if (exi->exi_export.ex_flags & EX_PUBLIC) { 2690 exi = exi_public; 2691 } 2692 2693 /* 2694 * If vp is given, check if vp is the 2695 * same vnode as the exported node. 2696 * 2697 * Since VOP_FID of a lofs node returns the 2698 * fid of its real node (ufs), the exported 2699 * node for lofs and (pseudo) ufs may have 2700 * the same fsid and fid. 2701 */ 2702 if (vp == NULL || vp == exi->exi_vp) 2703 return (exi); 2704 } 2705 } 2706 2707 return (NULL); 2708 } 2709 2710 /* 2711 * Free an entire export list node 2712 */ 2713 void 2714 exportfree(struct exportinfo *exi) 2715 { 2716 struct exportdata *ex; 2717 2718 ex = &exi->exi_export; 2719 2720 ASSERT(exi->exi_vp != NULL && !(exi->exi_export.ex_flags & EX_PUBLIC)); 2721 VN_RELE(exi->exi_vp); 2722 if (exi->exi_dvp != NULL) 2723 VN_RELE(exi->exi_dvp); 2724 2725 if (ex->ex_flags & EX_INDEX) 2726 kmem_free(ex->ex_index, strlen(ex->ex_index) + 1); 2727 2728 kmem_free(ex->ex_path, ex->ex_pathlen + 1); 2729 nfsauth_cache_free(exi); 2730 2731 if (exi->exi_logbuffer != NULL) 2732 nfslog_disable(exi); 2733 2734 if (ex->ex_flags & EX_LOG) { 2735 kmem_free(ex->ex_log_buffer, ex->ex_log_bufferlen + 1); 2736 kmem_free(ex->ex_tag, ex->ex_taglen + 1); 2737 } 2738 2739 if (exi->exi_visible) 2740 free_visible(exi->exi_visible); 2741 2742 srv_secinfo_list_free(ex->ex_secinfo, ex->ex_seccnt); 2743 2744 #ifdef VOLATILE_FH_TEST 2745 free_volrnm_list(exi); 2746 mutex_destroy(&exi->exi_vol_rename_lock); 2747 #endif /* VOLATILE_FH_TEST */ 2748 2749 mutex_destroy(&exi->exi_lock); 2750 rw_destroy(&exi->exi_cache_lock); 2751 2752 kmem_free(exi, sizeof (*exi)); 2753 } 2754 2755 /* 2756 * load the index file from user space into kernel space. 2757 */ 2758 static int 2759 loadindex(struct exportdata *kex) 2760 { 2761 int error; 2762 char index[MAXNAMELEN+1]; 2763 size_t len; 2764 2765 /* 2766 * copyinstr copies the complete string including the NULL and 2767 * returns the len with the NULL byte included in the calculation 2768 * as long as the max length is not exceeded. 2769 */ 2770 if (error = copyinstr(kex->ex_index, index, sizeof (index), &len)) 2771 return (error); 2772 2773 kex->ex_index = kmem_alloc(len, KM_SLEEP); 2774 bcopy(index, kex->ex_index, len); 2775 2776 return (0); 2777 } 2778 2779 /* 2780 * When a thread completes using exi, it should call exi_rele(). 2781 * exi_rele() decrements exi_count. It releases exi if exi_count == 0, i.e. 2782 * if this is the last user of exi and exi is not on exportinfo list anymore 2783 */ 2784 void 2785 exi_rele(struct exportinfo *exi) 2786 { 2787 mutex_enter(&exi->exi_lock); 2788 exi->exi_count--; 2789 if (exi->exi_count == 0) { 2790 mutex_exit(&exi->exi_lock); 2791 exportfree(exi); 2792 } else 2793 mutex_exit(&exi->exi_lock); 2794 } 2795 2796 #ifdef VOLATILE_FH_TEST 2797 /* 2798 * Test for volatile fh's - add file handle to list and set its volatile id 2799 * to time it was renamed. If EX_VOLFH is also on and the fs is reshared, 2800 * the vol_rename queue is purged. 2801 * 2802 * XXX This code is for unit testing purposes only... To correctly use it, it 2803 * needs to tie a rename list to the export struct and (more 2804 * important), protect access to the exi rename list using a write lock. 2805 */ 2806 2807 /* 2808 * get the fh vol record if it's in the volatile on rename list. Don't check 2809 * volatile_id in the file handle - compare only the file handles. 2810 */ 2811 static struct ex_vol_rename * 2812 find_volrnm_fh(struct exportinfo *exi, nfs_fh4 *fh4p) 2813 { 2814 struct ex_vol_rename *p = NULL; 2815 fhandle4_t *fhp; 2816 2817 /* XXX shouldn't we assert &exported_lock held? */ 2818 ASSERT(MUTEX_HELD(&exi->exi_vol_rename_lock)); 2819 2820 if (fh4p->nfs_fh4_len != NFS_FH4_LEN) { 2821 return (NULL); 2822 } 2823 fhp = &((nfs_fh4_fmt_t *)fh4p->nfs_fh4_val)->fh4_i; 2824 for (p = exi->exi_vol_rename; p != NULL; p = p->vrn_next) { 2825 if (bcmp(fhp, &p->vrn_fh_fmt.fh4_i, 2826 sizeof (fhandle4_t)) == 0) 2827 break; 2828 } 2829 return (p); 2830 } 2831 2832 /* 2833 * get the volatile id for the fh (if there is - else return 0). Ignore the 2834 * volatile_id in the file handle - compare only the file handles. 2835 */ 2836 static uint32_t 2837 find_volrnm_fh_id(struct exportinfo *exi, nfs_fh4 *fh4p) 2838 { 2839 struct ex_vol_rename *p; 2840 uint32_t volatile_id; 2841 2842 mutex_enter(&exi->exi_vol_rename_lock); 2843 p = find_volrnm_fh(exi, fh4p); 2844 volatile_id = (p ? p->vrn_fh_fmt.fh4_volatile_id : 2845 exi->exi_volatile_id); 2846 mutex_exit(&exi->exi_vol_rename_lock); 2847 return (volatile_id); 2848 } 2849 2850 /* 2851 * Free the volatile on rename list - will be called if a filesystem is 2852 * unshared or reshared without EX_VOLRNM 2853 */ 2854 static void 2855 free_volrnm_list(struct exportinfo *exi) 2856 { 2857 struct ex_vol_rename *p, *pnext; 2858 2859 /* no need to hold mutex lock - this one is called from exportfree */ 2860 for (p = exi->exi_vol_rename; p != NULL; p = pnext) { 2861 pnext = p->vrn_next; 2862 kmem_free(p, sizeof (*p)); 2863 } 2864 exi->exi_vol_rename = NULL; 2865 } 2866 2867 /* 2868 * Add a file handle to the volatile on rename list. 2869 */ 2870 void 2871 add_volrnm_fh(struct exportinfo *exi, vnode_t *vp) 2872 { 2873 struct ex_vol_rename *p; 2874 char fhbuf[NFS4_FHSIZE]; 2875 nfs_fh4 fh4; 2876 int error; 2877 2878 fh4.nfs_fh4_val = fhbuf; 2879 error = makefh4(&fh4, vp, exi); 2880 if ((error) || (fh4.nfs_fh4_len != sizeof (p->vrn_fh_fmt))) { 2881 return; 2882 } 2883 2884 mutex_enter(&exi->exi_vol_rename_lock); 2885 2886 p = find_volrnm_fh(exi, &fh4); 2887 2888 if (p == NULL) { 2889 p = kmem_alloc(sizeof (*p), KM_SLEEP); 2890 bcopy(fh4.nfs_fh4_val, &p->vrn_fh_fmt, sizeof (p->vrn_fh_fmt)); 2891 p->vrn_next = exi->exi_vol_rename; 2892 exi->exi_vol_rename = p; 2893 } 2894 2895 p->vrn_fh_fmt.fh4_volatile_id = gethrestime_sec(); 2896 mutex_exit(&exi->exi_vol_rename_lock); 2897 } 2898 2899 #endif /* VOLATILE_FH_TEST */ 2900