1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T. 28 * All rights reserved. 29 */ 30 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/types.h> 35 #include <sys/param.h> 36 #include <sys/time.h> 37 #include <sys/vfs.h> 38 #include <sys/vnode.h> 39 #include <sys/socket.h> 40 #include <sys/errno.h> 41 #include <sys/uio.h> 42 #include <sys/proc.h> 43 #include <sys/user.h> 44 #include <sys/file.h> 45 #include <sys/tiuser.h> 46 #include <sys/kmem.h> 47 #include <sys/pathname.h> 48 #include <sys/debug.h> 49 #include <sys/vtrace.h> 50 #include <sys/cmn_err.h> 51 #include <sys/acl.h> 52 #include <sys/utsname.h> 53 #include <sys/sdt.h> 54 #include <netinet/in.h> 55 56 #include <rpc/types.h> 57 #include <rpc/auth.h> 58 #include <rpc/svc.h> 59 60 #include <nfs/nfs.h> 61 #include <nfs/export.h> 62 #include <nfs/nfssys.h> 63 #include <nfs/nfs_clnt.h> 64 #include <nfs/nfs_acl.h> 65 #include <nfs/nfs_log.h> 66 #include <nfs/lm.h> 67 68 #define EXPTABLESIZE 16 69 70 struct exportinfo *exptable[EXPTABLESIZE]; 71 72 static int unexport(fsid_t *, fid_t *, vnode_t *); 73 static void exportfree(exportinfo_t *); 74 static int loadindex(exportdata_t *); 75 76 extern void nfsauth_cache_free(exportinfo_t *); 77 extern int sec_svc_loadrootnames(int, int, caddr_t **, model_t); 78 extern void sec_svc_freerootnames(int, int, caddr_t *); 79 80 static int build_seclist_nodups(exportdata_t *, secinfo_t *, int); 81 static void srv_secinfo_add(secinfo_t **, int *, secinfo_t *, int, int); 82 static void srv_secinfo_remove(secinfo_t **, int *, secinfo_t *, int); 83 static void pseudo_secinfo_add(exportinfo_t *, exp_visible_t *, exportinfo_t *); 84 static void pseudo_secinfo_remove(exportinfo_t *, exp_visible_t *); 85 static void free_pseudoanc(struct exp_visible *); 86 static int srv_secinfo_treeclimb(exportinfo_t *, secinfo_t *, int, int); 87 88 #ifdef VOLATILE_FH_TEST 89 static struct ex_vol_rename *find_volrnm_fh(exportinfo_t *, nfs_fh4 *); 90 static uint32_t find_volrnm_fh_id(exportinfo_t *, nfs_fh4 *); 91 static void free_volrnm_list(exportinfo_t *); 92 #endif /* VOLATILE_FH_TEST */ 93 94 /* 95 * exported_lock Read/Write lock that protects the exportinfo list. 96 * This lock must be held when searching or modifiying 97 * the exportinfo list. 98 */ 99 krwlock_t exported_lock; 100 101 /* 102 * "public" and default (root) location for public filehandle 103 */ 104 struct exportinfo *exi_public, *exi_root; 105 106 fid_t exi_rootfid; /* for checking the default public file handle */ 107 108 fhandle_t nullfh2; /* for comparing V2 filehandles */ 109 110 /* 111 * macro for static dtrace probes to trace server namespace ref count mods. 112 */ 113 #define SECREF_TRACE(seclist, tag, flav, aftcnt) \ 114 DTRACE_PROBE4(nfss__d__nmspc__secref, struct secinfo *, (seclist), \ 115 char *, (tag), int, (int)(flav), int, (int)(aftcnt)) 116 117 118 #define exptablehash(fsid, fid) (nfs_fhhash((fsid), (fid)) & (EXPTABLESIZE - 1)) 119 120 /* 121 * File handle hash function, good for producing hash values 16 bits wide. 122 */ 123 int 124 nfs_fhhash(fsid_t *fsid, fid_t *fid) 125 { 126 short *data; 127 int i, len; 128 short h; 129 130 ASSERT(fid != NULL); 131 132 data = (short *)fid->fid_data; 133 134 /* fid_data must be aligned on a short */ 135 ASSERT((((uintptr_t)data) & (sizeof (short) - 1)) == 0); 136 137 if (fid->fid_len == 10) { 138 /* 139 * probably ufs: hash on bytes 4,5 and 8,9 140 */ 141 return (fsid->val[0] ^ data[2] ^ data[4]); 142 } 143 144 if (fid->fid_len == 6) { 145 /* 146 * probably hsfs: hash on bytes 0,1 and 4,5 147 */ 148 return ((fsid->val[0] ^ data[0] ^ data[2])); 149 } 150 151 /* 152 * Some other file system. Assume that every byte is 153 * worth hashing. 154 */ 155 h = (short)fsid->val[0]; 156 157 /* 158 * Sanity check the length before using it 159 * blindly in case the client trashed it. 160 */ 161 if (fid->fid_len > NFS_FHMAXDATA) 162 len = 0; 163 else 164 len = fid->fid_len / sizeof (short); 165 166 /* 167 * This will ignore one byte if len is not a multiple of 168 * of sizeof (short). No big deal since we at least get some 169 * variation with fsid->val[0]; 170 */ 171 for (i = 0; i < len; i++) 172 h ^= data[i]; 173 174 return ((int)h); 175 } 176 177 /* 178 * Free the memory allocated within a secinfo entry. 179 */ 180 void 181 srv_secinfo_entry_free(struct secinfo *secp) 182 { 183 if (secp->s_rootcnt > 0 && secp->s_rootnames != NULL) { 184 sec_svc_freerootnames(secp->s_secinfo.sc_rpcnum, 185 secp->s_rootcnt, secp->s_rootnames); 186 secp->s_rootcnt = 0; 187 } 188 189 if ((secp->s_secinfo.sc_rpcnum == RPCSEC_GSS) && 190 (secp->s_secinfo.sc_gss_mech_type)) { 191 kmem_free(secp->s_secinfo.sc_gss_mech_type->elements, 192 secp->s_secinfo.sc_gss_mech_type->length); 193 kmem_free(secp->s_secinfo.sc_gss_mech_type, 194 sizeof (rpc_gss_OID_desc)); 195 secp->s_secinfo.sc_gss_mech_type = NULL; 196 } 197 198 } 199 200 /* 201 * Free a list of secinfo allocated in the exportdata structure. 202 */ 203 void 204 srv_secinfo_list_free(struct secinfo *secinfo, int cnt) 205 { 206 int i; 207 208 if (cnt == 0) 209 return; 210 211 for (i = 0; i < cnt; i++) 212 srv_secinfo_entry_free(&secinfo[i]); 213 214 kmem_free(secinfo, cnt * sizeof (struct secinfo)); 215 } 216 217 /* 218 * Allocate and copy a secinfo data from "from" to "to". 219 * 220 * This routine is used by srv_secinfo_add() to add a new flavor to an 221 * ancestor's export node. The rootnames are not copied because the 222 * allowable rootname access only applies to the explicit exported node, 223 * not its ancestor's. 224 * 225 * "to" should have already been allocated and zeroed before calling 226 * this routine. 227 * 228 * This routine is used under the protection of exported_lock (RW_WRITER). 229 */ 230 void 231 srv_secinfo_copy(struct secinfo *from, struct secinfo *to) 232 { 233 to->s_secinfo.sc_nfsnum = from->s_secinfo.sc_nfsnum; 234 to->s_secinfo.sc_rpcnum = from->s_secinfo.sc_rpcnum; 235 236 if (from->s_secinfo.sc_rpcnum == RPCSEC_GSS) { 237 to->s_secinfo.sc_service = from->s_secinfo.sc_service; 238 bcopy(from->s_secinfo.sc_name, to->s_secinfo.sc_name, 239 strlen(from->s_secinfo.sc_name)); 240 bcopy(from->s_secinfo.sc_gss_mech, to->s_secinfo.sc_gss_mech, 241 strlen(from->s_secinfo.sc_gss_mech)); 242 243 /* copy mechanism oid */ 244 to->s_secinfo.sc_gss_mech_type = 245 kmem_alloc(sizeof (rpc_gss_OID_desc), KM_SLEEP); 246 to->s_secinfo.sc_gss_mech_type->length = 247 from->s_secinfo.sc_gss_mech_type->length; 248 to->s_secinfo.sc_gss_mech_type->elements = 249 kmem_alloc(from->s_secinfo.sc_gss_mech_type->length, 250 KM_SLEEP); 251 bcopy(from->s_secinfo.sc_gss_mech_type->elements, 252 to->s_secinfo.sc_gss_mech_type->elements, 253 from->s_secinfo.sc_gss_mech_type->length); 254 } 255 256 to->s_refcnt = from->s_refcnt; 257 to->s_window = from->s_window; 258 /* no need to copy the mode bits - s_flags */ 259 } 260 261 /* 262 * Create a secinfo array without duplicates. The condensed 263 * flavor list is used to propagate flavor ref counts to an 264 * export's ancestor pseudonodes. 265 */ 266 static int 267 build_seclist_nodups(exportdata_t *exd, secinfo_t *nodups, int exponly) 268 { 269 int ccnt, c; 270 int ncnt, n; 271 struct secinfo *cursec; 272 273 ncnt = 0; 274 ccnt = exd->ex_seccnt; 275 cursec = exd->ex_secinfo; 276 277 for (c = 0; c < ccnt; c++) { 278 279 if (exponly && ! SEC_REF_EXPORTED(&cursec[c])) 280 continue; 281 282 for (n = 0; n < ncnt; n++) { 283 if (nodups[n].s_secinfo.sc_nfsnum == 284 cursec[c].s_secinfo.sc_nfsnum) 285 break; 286 } 287 288 /* 289 * The structure copy below also copys ptrs embedded 290 * within struct secinfo. The ptrs are copied but 291 * they are never freed from the nodups array. If 292 * an ancestor's secinfo array doesn't contain one 293 * of the nodups flavors, then the entry is properly 294 * copied into the ancestor's secinfo array. 295 * (see srv_secinfo_copy) 296 */ 297 if (n == ncnt) { 298 nodups[n] = cursec[c]; 299 ncnt++; 300 } 301 } 302 return (ncnt); 303 } 304 305 /* 306 * Add the new security flavors from newdata to the current list, pcursec. 307 * Upon return, *pcursec has the newly merged secinfo list. 308 * 309 * There should be at least 1 secinfo entry in newsec. 310 * 311 * This routine is used under the protection of exported_lock (RW_WRITER). 312 */ 313 static void 314 srv_secinfo_add(secinfo_t **pcursec, int *pcurcnt, secinfo_t *newsec, 315 int newcnt, int is_pseudo) 316 { 317 int ccnt, c; /* sec count in current data - curdata */ 318 int n; /* index for newsec - newsecinfo */ 319 int tcnt; /* total sec count after merge */ 320 int mcnt; /* total sec count after merge */ 321 struct secinfo *msec; /* merged secinfo list */ 322 struct secinfo *cursec; 323 324 cursec = *pcursec; 325 ccnt = *pcurcnt; 326 327 ASSERT(newcnt > 0); 328 tcnt = ccnt + newcnt; 329 330 for (n = 0; n < newcnt; n++) { 331 for (c = 0; c < ccnt; c++) { 332 if (newsec[n].s_secinfo.sc_nfsnum == 333 cursec[c].s_secinfo.sc_nfsnum) { 334 cursec[c].s_refcnt++; 335 SECREF_TRACE(cursec, "add_ref", 336 cursec[c].s_secinfo.sc_nfsnum, 337 cursec[c].s_refcnt); 338 tcnt--; 339 break; 340 } 341 } 342 } 343 344 if (tcnt == ccnt) 345 return; /* no change; no new flavors */ 346 347 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 348 349 /* move current secinfo list data to the new list */ 350 for (c = 0; c < ccnt; c++) 351 msec[c] = cursec[c]; 352 353 /* Add the flavor that's not in the current data */ 354 mcnt = ccnt; 355 for (n = 0; n < newcnt; n++) { 356 for (c = 0; c < ccnt; c++) { 357 if (newsec[n].s_secinfo.sc_nfsnum == 358 cursec[c].s_secinfo.sc_nfsnum) 359 break; 360 } 361 362 /* This is the one. Add it. */ 363 if (c == ccnt) { 364 srv_secinfo_copy(&newsec[n], &msec[mcnt]); 365 366 if (is_pseudo) 367 msec[mcnt].s_flags = M_RO; 368 369 SECREF_TRACE(msec, "new_ref", 370 msec[mcnt].s_secinfo.sc_nfsnum, 371 msec[mcnt].s_refcnt); 372 mcnt++; 373 } 374 } 375 376 ASSERT(mcnt == tcnt); 377 378 /* 379 * Done. Update curdata. Free the old secinfo list in 380 * curdata and return the new sec array info 381 */ 382 if (ccnt > 0) 383 kmem_free(cursec, ccnt * sizeof (struct secinfo)); 384 *pcurcnt = tcnt; 385 *pcursec = msec; 386 } 387 388 /* 389 * For NFS V4. 390 * Remove the security data of the unexported node from its ancestors. 391 * Assume there is at least one flavor entry in the current sec list 392 * (pcursec). 393 * 394 * This routine is used under the protection of exported_lock (RW_WRITER). 395 * 396 * Every element of remsec is an explicitly exported flavor. If 397 * srv_secinfo_remove() is called fom an exportfs error path, then 398 * the flavor list was derived from the user's share cmdline, 399 * and all flavors are explicit. If it was called from the unshare path, 400 * build_seclist_nodups() was called with the exponly flag. 401 */ 402 static void 403 srv_secinfo_remove(secinfo_t **pcursec, int *pcurcnt, secinfo_t *remsec, 404 int remcnt) 405 { 406 int ccnt, c; /* sec count in current data - curdata */ 407 int r; /* sec count in removal data - remsecinfo */ 408 int tcnt, mcnt; /* total sec count after removing */ 409 struct secinfo *msec; /* final secinfo list after removing */ 410 struct secinfo *cursec; 411 412 cursec = *pcursec; 413 ccnt = *pcurcnt; 414 tcnt = ccnt; 415 416 for (r = 0; r < remcnt; r++) { 417 /* 418 * Remove a flavor only if the flavor was a shared flavor for 419 * the remsecinfo exported node that's being unshared. 420 * Otherwise, this flavor is for the children of remsecinfo, 421 * need to keep it. 422 */ 423 for (c = 0; c < ccnt; c++) { 424 if (remsec[r].s_secinfo.sc_nfsnum == 425 cursec[c].s_secinfo.sc_nfsnum) { 426 427 /* 428 * Decrement secinfo reference count by 1. 429 * If this entry is invalid after decrementing 430 * the count (i.e. count < 1), this entry will 431 * be removed. 432 */ 433 cursec[c].s_refcnt--; 434 435 SECREF_TRACE(cursec, "del_ref", 436 cursec[c].s_secinfo.sc_nfsnum, 437 cursec[c].s_refcnt); 438 439 ASSERT(cursec[c].s_refcnt >= 0); 440 441 if (SEC_REF_INVALID(&cursec[c])) 442 tcnt--; 443 break; 444 } 445 } 446 } 447 448 ASSERT(tcnt >= 0); 449 if (tcnt == ccnt) 450 return; /* no change; no flavors to remove */ 451 452 if (tcnt == 0) { 453 srv_secinfo_list_free(cursec, ccnt); 454 *pcurcnt = 0; 455 *pcursec = NULL; 456 return; 457 } 458 459 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 460 461 /* walk thru the given secinfo list to remove the flavors */ 462 mcnt = 0; 463 for (c = 0; c < ccnt; c++) { 464 if (SEC_REF_INVALID(&cursec[c])) { 465 srv_secinfo_entry_free(&cursec[c]); 466 } else { 467 msec[mcnt] = cursec[c]; 468 mcnt++; 469 } 470 } 471 472 ASSERT(mcnt == tcnt); 473 /* 474 * Done. Update curdata. 475 * Free the existing secinfo list in curdata. All pointers 476 * within the list have either been moved to msec or freed 477 * if it's invalid. 478 */ 479 kmem_free(*pcursec, ccnt * sizeof (struct secinfo)); 480 *pcursec = msec; 481 *pcurcnt = tcnt; 482 } 483 484 485 /* 486 * pseudo_secinfo_add 487 * ancexi: ancestor exportinfo 488 * ancpseudo: linked list of ancestor pseudnodes 489 * newexi: new export that needs to inherit implicitly allowed flavors 490 * 491 * Increment secflavor ref counts in ancestor pseudonodes. If newexi 492 * is non-NULL, then also set newexi's implicitly allowed flavors by 493 * copy the flavors in its pseudonode. 494 * 495 * There's no work to do if either the ancexi's pseudonode list 496 * or ancpseudo is empty. 497 * 498 * ancexi->exi_visible could be NULL because sec flavor refs are 499 * propagated after the namespace has been changed for the new 500 * share/unshare. In the unshare case, the pseudnodes leading to 501 * this export have already been dereferenced and possibly destroyed. 502 * If the parent export had no other shared descendants, then its 503 * pseudonode list would be empty. 504 */ 505 static void 506 pseudo_secinfo_add(exportinfo_t *ancexi, exp_visible_t *ancpseudo, 507 exportinfo_t *newexi) 508 { 509 exp_visible_t *av, *v; 510 fid_t *nxfid = NULL; 511 secinfo_t **pnewsec = NULL; 512 int *pnewcnt = NULL; 513 int is_pseudo; 514 515 516 if (ancexi->exi_visible == NULL || ancpseudo == NULL) 517 return; 518 519 is_pseudo = PSEUDO(ancexi); 520 521 /* 522 * Prepare to set newexi's implicitly allowed flavors by 523 * inheriting flavors from newexi's pseudnode. 524 * nxfid : used to find the newexi's pseudonode 525 * pnewsec: newexi's secinfo array 526 * pnewcnt: newexi's secinfo count 527 */ 528 if (newexi) { 529 nxfid = &newexi->exi_fid; 530 pnewsec = &newexi->exi_export.ex_secinfo; 531 pnewcnt = &newexi->exi_export.ex_seccnt; 532 } 533 534 /* 535 * find the pseudonodes which correspond to the ones in ancvis. 536 */ 537 for (av = ancpseudo; av != NULL; av = av->vis_next) { 538 for (v = ancexi->exi_visible; v != NULL; v = v->vis_next) { 539 540 if (EQFID(&av->vis_fid, &v->vis_fid)) { 541 /* 542 * It's a match. First check to see if newexi 543 * needs to get implicitly allowed flavors from 544 * its pseudonode. 545 * 546 * ancpseudo is built [by srv_secinfo_treeclimb] 547 * such that vis_exported is only set for the 548 * pseudonode corresponding to newexi's root. 549 */ 550 if (nxfid && av->vis_exported && 551 v->vis_seccnt > 0) { 552 553 srv_secinfo_add(pnewsec, pnewcnt, 554 v->vis_secinfo, v->vis_seccnt, 555 is_pseudo); 556 557 nxfid = NULL; 558 } 559 560 /* 561 * Apply flavor refs for the new export to 562 * each of the parexi's pseudonodes 563 */ 564 srv_secinfo_add(&v->vis_secinfo, &v->vis_seccnt, 565 av->vis_secinfo, av->vis_seccnt, is_pseudo); 566 567 break; 568 } 569 } 570 } 571 } 572 573 574 /* 575 * pseudo_secinfo_remove 576 * ancexi: ancestor exportinfo 577 * ancpseudo: linked list of ancestor pseudnodes 578 * 579 * Decrement secflavor ref counts in ancestor pseudonodes. 580 */ 581 static void 582 pseudo_secinfo_remove(exportinfo_t *ancexi, exp_visible_t *ancpseudo) 583 { 584 exp_visible_t *av, *v; 585 586 if (ancexi->exi_visible == NULL || ancpseudo == NULL) 587 return; 588 589 /* 590 * find the pseudonodes which correspond to the ones in ancvis. 591 */ 592 for (av = ancpseudo; av != NULL; av = av->vis_next) { 593 for (v = ancexi->exi_visible; v != NULL; v = v->vis_next) { 594 if (EQFID(&av->vis_fid, &v->vis_fid)) { 595 596 srv_secinfo_remove(&v->vis_secinfo, 597 &v->vis_seccnt, av->vis_secinfo, 598 av->vis_seccnt); 599 600 break; 601 } 602 } 603 } 604 } 605 606 607 608 /* 609 * For the reshare case, sec flavor accounting happens in 3 steps: 610 * 1) propagate addition of new flavor refs up the ancestor tree 611 * 2) transfer flavor refs of descendants to new/reshared exportdata 612 * 3) propagate removal of old flavor refs up the ancestor tree 613 * 614 * srv_secinfo_exp2exp() implements step 2 of a reshare. At this point, 615 * the new flavor list has already been propagated up through the 616 * ancestor tree via srv_secinfo_treeclimb(). 617 * 618 * If there is more than 1 export reference to an old flavor (i.e. some 619 * of its children shared with this flavor), this flavor information 620 * needs to be transfered to the new exportdata struct. A flavor in 621 * the old exportdata has descendant refs when s_refcnt > 1. 622 * 623 * Transferring descendant flavor refcnts happens in 2 passes: 624 * a) flavors used before (oldsecinfo) and after (curdata->ex_secinfo) reshare 625 * b) flavors used before but not after reshare 626 * 627 * This routine is used under the protection of exported_lock (RW_WRITER). 628 */ 629 void 630 srv_secinfo_exp2exp(exportdata_t *curdata, secinfo_t *oldsecinfo, int ocnt) 631 { 632 int ccnt, c; /* sec count in current data - curdata */ 633 int o; /* sec count in old data - oldsecinfo */ 634 int tcnt, mcnt; /* total sec count after the transfer */ 635 struct secinfo *msec; /* merged secinfo list */ 636 637 ccnt = curdata->ex_seccnt; 638 639 ASSERT(ocnt > 0); 640 ASSERT(!(curdata->ex_flags & EX_PSEUDO)); 641 642 /* 643 * If the oldsecinfo has flavors with more than 1 reference count 644 * and the flavor is specified in the reshare, transfer the flavor 645 * refs to the new seclist (curdata.ex_secinfo). 646 */ 647 tcnt = ccnt + ocnt; 648 649 for (o = 0; o < ocnt; o++) { 650 651 if (SEC_REF_SELF(&oldsecinfo[o])) { 652 tcnt--; 653 continue; 654 } 655 656 for (c = 0; c < ccnt; c++) { 657 if (oldsecinfo[o].s_secinfo.sc_nfsnum == 658 curdata->ex_secinfo[c].s_secinfo.sc_nfsnum) { 659 660 /* 661 * add old reference to the current 662 * secinfo count 663 */ 664 curdata->ex_secinfo[c].s_refcnt += 665 oldsecinfo[o].s_refcnt; 666 667 /* 668 * Delete the old export flavor 669 * reference. The initial reference 670 * was created during srv_secinfo_add, 671 * and the count is decremented below 672 * to account for the initial reference. 673 */ 674 if (SEC_REF_EXPORTED(&oldsecinfo[o])) 675 curdata->ex_secinfo[c].s_refcnt--; 676 677 SECREF_TRACE(curdata->ex_path, 678 "reshare_xfer_common_child_refs", 679 curdata->ex_secinfo[c].s_secinfo.sc_nfsnum, 680 curdata->ex_secinfo[c].s_refcnt); 681 682 ASSERT(curdata->ex_secinfo[c].s_refcnt >= 0); 683 684 tcnt--; 685 break; 686 } 687 } 688 } 689 690 if (tcnt == ccnt) 691 return; /* no more transfer to do */ 692 693 /* 694 * oldsecinfo has flavors referenced by its children that are not 695 * in the current (new) export flavor list. Add these flavors. 696 */ 697 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 698 699 /* move current secinfo list data to the new list */ 700 for (c = 0; c < ccnt; c++) 701 msec[c] = curdata->ex_secinfo[c]; 702 703 /* 704 * Add the flavor that's not in the new export, but still 705 * referenced by its children. 706 */ 707 mcnt = ccnt; 708 for (o = 0; o < ocnt; o++) { 709 if (! SEC_REF_SELF(&oldsecinfo[o])) { 710 for (c = 0; c < ccnt; c++) { 711 if (oldsecinfo[o].s_secinfo.sc_nfsnum == 712 curdata->ex_secinfo[c].s_secinfo.sc_nfsnum) 713 break; 714 } 715 716 /* 717 * This is the one. Add it. Decrement the ref count 718 * by 1 if the flavor is an explicitly shared flavor 719 * for the oldsecinfo export node. 720 */ 721 if (c == ccnt) { 722 srv_secinfo_copy(&oldsecinfo[o], &msec[mcnt]); 723 if (SEC_REF_EXPORTED(&oldsecinfo[o])) 724 msec[mcnt].s_refcnt--; 725 726 SECREF_TRACE(curdata, 727 "reshare_xfer_implicit_child_refs", 728 msec[mcnt].s_secinfo.sc_nfsnum, 729 msec[mcnt].s_refcnt); 730 731 ASSERT(msec[mcnt].s_refcnt >= 0); 732 mcnt++; 733 } 734 } 735 } 736 737 ASSERT(mcnt == tcnt); 738 /* 739 * Done. Update curdata, free the existing secinfo list in 740 * curdata and set the new value. 741 */ 742 if (ccnt > 0) 743 kmem_free(curdata->ex_secinfo, ccnt * sizeof (struct secinfo)); 744 curdata->ex_seccnt = tcnt; 745 curdata->ex_secinfo = msec; 746 } 747 748 /* 749 * When unsharing an old export node and the old node becomes a pseudo node, 750 * if there is more than 1 export reference to an old flavor (i.e. some of 751 * its children shared with this flavor), this flavor information needs to 752 * be transfered to the new shared node. 753 * 754 * This routine is used under the protection of exported_lock (RW_WRITER). 755 */ 756 void 757 srv_secinfo_exp2pseu(exportdata_t *curdata, exportdata_t *olddata) 758 { 759 int ocnt, o; /* sec count in transfer data - trandata */ 760 int tcnt, mcnt; /* total sec count after transfer */ 761 struct secinfo *msec; /* merged secinfo list */ 762 763 ASSERT(curdata->ex_flags & EX_PSEUDO); 764 ASSERT(curdata->ex_seccnt == 0); 765 766 ocnt = olddata->ex_seccnt; 767 768 /* 769 * If the olddata has flavors with more than 1 reference count, 770 * transfer the information to the curdata. 771 */ 772 tcnt = ocnt; 773 774 for (o = 0; o < ocnt; o++) { 775 if (SEC_REF_SELF(&olddata->ex_secinfo[o])) 776 tcnt--; 777 } 778 779 if (tcnt == 0) 780 return; /* no transfer to do */ 781 782 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 783 784 mcnt = 0; 785 for (o = 0; o < ocnt; o++) { 786 if (! SEC_REF_SELF(&olddata->ex_secinfo[o])) { 787 788 /* 789 * Decrement the reference count by 1 if the flavor is 790 * an explicitly shared flavor for the olddata export 791 * node. 792 */ 793 srv_secinfo_copy(&olddata->ex_secinfo[o], &msec[mcnt]); 794 msec[mcnt].s_flags = M_RO; 795 if (SEC_REF_EXPORTED(&olddata->ex_secinfo[o])) 796 msec[mcnt].s_refcnt--; 797 798 SECREF_TRACE(curdata, "unshare_morph_pseudo", 799 msec[mcnt].s_secinfo.sc_nfsnum, 800 msec[mcnt].s_refcnt); 801 802 ASSERT(msec[mcnt].s_refcnt >= 0); 803 mcnt++; 804 } 805 } 806 807 ASSERT(mcnt == tcnt); 808 /* 809 * Done. Update curdata. 810 * Free up the existing secinfo list in curdata and 811 * set the new value. 812 */ 813 curdata->ex_seccnt = tcnt; 814 curdata->ex_secinfo = msec; 815 } 816 817 818 /* 819 * For NFS V4. 820 * Add or remove the newly exported or unexported security flavors of the 821 * given exportinfo from its ancestors upto the system root. 822 */ 823 int 824 srv_secinfo_treeclimb(exportinfo_t *exip, secinfo_t *sec, int seccnt, int isadd) 825 { 826 vnode_t *dvp, *vp; 827 fid_t fid; 828 int error = 0; 829 int exportdir, set_implicit_flav; 830 struct exportinfo *exi = NULL; 831 exp_visible_t *anc_head = NULL, *anc; 832 833 ASSERT(RW_WRITE_HELD(&exported_lock)); 834 835 if (seccnt == 0) 836 return (0); 837 838 vp = exip->exi_vp; 839 VN_HOLD(vp); 840 exportdir = 1; 841 842 /* 843 * If flavors are being added and the new export root isn't 844 * also VROOT, its implicitly allowed flavors are inherited from 845 * from its pseudonode. 846 */ 847 set_implicit_flav = (isadd && !(vp->v_flag & VROOT)) ? 1 : 0; 848 849 anc_head = NULL; 850 anc = NULL; 851 for (;;) { 852 bzero(&fid, sizeof (fid)); 853 fid.fid_len = MAXFIDSZ; 854 error = vop_fid_pseudo(vp, &fid); 855 if (error) 856 break; 857 858 if (! exportdir) { 859 860 exi = checkexport4(&vp->v_vfsp->vfs_fsid, &fid, vp); 861 862 if (exi != NULL) { 863 secinfo_t **pxsec = &exi->exi_export.ex_secinfo; 864 int *pxcnt = &exi->exi_export.ex_seccnt; 865 866 if (isadd) 867 srv_secinfo_add(pxsec, pxcnt, sec, 868 seccnt, PSEUDO(exi)); 869 else 870 srv_secinfo_remove(pxsec, pxcnt, sec, 871 seccnt); 872 } 873 } 874 875 /* 876 * If we're at the root of the filesystem: 877 * - manage pseudnode sec flavors 878 * - traverse mountpoint and continue treeclimb from the stub 879 */ 880 if (vp->v_flag & VROOT) { 881 882 if (exi != NULL) { 883 if (isadd) { 884 if (set_implicit_flav) { 885 pseudo_secinfo_add(exi, 886 anc_head, exip); 887 set_implicit_flav = 0; 888 } else 889 pseudo_secinfo_add(exi, 890 anc_head, NULL); 891 } else 892 pseudo_secinfo_remove(exi, anc_head); 893 } 894 895 if (anc_head) { 896 free_pseudoanc(anc_head); 897 anc_head = NULL; 898 } 899 900 if (VN_CMP(vp, rootdir)) { 901 /* at system root */ 902 break; 903 } 904 905 vp = untraverse(vp); 906 exportdir = 0; 907 continue; 908 } 909 910 /* 911 * Build a temporary list of ancestor pseudonodes leading to 912 * the ancestor VROOT export. vis_exported identifies the 913 * pseudonode that corresponds to root of export being 914 * shared/unshared. 915 */ 916 anc = kmem_alloc(sizeof (exp_visible_t), KM_SLEEP); 917 anc->vis_next = anc_head; 918 VN_HOLD(vp); 919 anc->vis_vp = vp; 920 anc->vis_fid = fid; 921 anc->vis_ino = 0; 922 anc->vis_count = 1; 923 anc->vis_seccnt = seccnt; 924 anc->vis_secinfo = sec; 925 anc->vis_exported = exportdir; 926 anc_head = anc; 927 928 /* 929 * Now, do a ".." to find parent dir of vp. 930 */ 931 error = VOP_LOOKUP(vp, "..", &dvp, NULL, 0, NULL, CRED()); 932 933 if (error == ENOTDIR && exportdir) { 934 dvp = exip->exi_dvp; 935 ASSERT(dvp != NULL); 936 VN_HOLD(dvp); 937 error = 0; 938 } 939 940 if (error) 941 break; 942 943 exportdir = 0; 944 VN_RELE(vp); 945 vp = dvp; 946 } 947 948 VN_RELE(vp); 949 950 if (anc_head) 951 free_pseudoanc(anc_head); 952 953 return (error); 954 } 955 956 /* 957 * Free a list of visible directories 958 */ 959 static void 960 free_pseudoanc(struct exp_visible *head) 961 { 962 struct exp_visible *visp, *next; 963 964 for (visp = head; visp; visp = next) { 965 if (visp->vis_vp != NULL) 966 VN_RELE(visp->vis_vp); 967 /* 968 * we don't free vis_secinfo from the temporary pseudonode 969 * ancestor list because it was never kmem_alloc'd. 970 * srv_secinfo_treeclimb set it to point to the nodups 971 * secinfo array (which is a stack var). 972 */ 973 next = visp->vis_next; 974 kmem_free(visp, sizeof (*visp)); 975 } 976 } 977 978 979 void 980 export_link(exportinfo_t *exi) { 981 int exporthash; 982 983 exporthash = exptablehash(&exi->exi_fsid, &exi->exi_fid); 984 exi->exi_hash = exptable[exporthash]; 985 exptable[exporthash] = exi; 986 } 987 988 /* 989 * Initialization routine for export routines. Should only be called once. 990 */ 991 int 992 nfs_exportinit(void) 993 { 994 int error; 995 996 rw_init(&exported_lock, NULL, RW_DEFAULT, NULL); 997 998 /* 999 * Allocate the place holder for the public file handle, which 1000 * is all zeroes. It is initially set to the root filesystem. 1001 */ 1002 exi_root = kmem_zalloc(sizeof (*exi_root), KM_SLEEP); 1003 exi_public = exi_root; 1004 1005 exi_root->exi_export.ex_flags = EX_PUBLIC; 1006 exi_root->exi_export.ex_pathlen = 1; /* length of "/" */ 1007 exi_root->exi_export.ex_path = 1008 kmem_alloc(exi_root->exi_export.ex_pathlen + 1, KM_SLEEP); 1009 exi_root->exi_export.ex_path[0] = '/'; 1010 exi_root->exi_export.ex_path[1] = '\0'; 1011 1012 exi_root->exi_count = 1; 1013 mutex_init(&exi_root->exi_lock, NULL, MUTEX_DEFAULT, NULL); 1014 1015 exi_root->exi_vp = rootdir; 1016 exi_rootfid.fid_len = MAXFIDSZ; 1017 error = vop_fid_pseudo(exi_root->exi_vp, &exi_rootfid); 1018 if (error) { 1019 mutex_destroy(&exi_root->exi_lock); 1020 kmem_free(exi_root, sizeof (*exi_root)); 1021 return (error); 1022 } 1023 1024 /* setup the fhandle template */ 1025 exi_root->exi_fh.fh_fsid = rootdir->v_vfsp->vfs_fsid; 1026 exi_root->exi_fh.fh_xlen = exi_rootfid.fid_len; 1027 bcopy(exi_rootfid.fid_data, exi_root->exi_fh.fh_xdata, 1028 exi_rootfid.fid_len); 1029 exi_root->exi_fh.fh_len = sizeof (exi_root->exi_fh.fh_data); 1030 1031 /* 1032 * Publish the exportinfo in the hash table 1033 */ 1034 export_link(exi_root); 1035 1036 nfslog_init(); 1037 1038 return (0); 1039 } 1040 1041 /* 1042 * Finalization routine for export routines. Called to cleanup previoulsy 1043 * initializtion work when the NFS server module could not be loaded correctly. 1044 */ 1045 void 1046 nfs_exportfini(void) 1047 { 1048 /* 1049 * Deallocate the place holder for the public file handle. 1050 */ 1051 srv_secinfo_list_free(exi_root->exi_export.ex_secinfo, 1052 exi_root->exi_export.ex_seccnt); 1053 mutex_destroy(&exi_root->exi_lock); 1054 kmem_free(exi_root, sizeof (*exi_root)); 1055 1056 rw_destroy(&exported_lock); 1057 } 1058 1059 /* 1060 * Check if 2 gss mechanism identifiers are the same. 1061 * 1062 * return FALSE if not the same. 1063 * return TRUE if the same. 1064 */ 1065 static bool_t 1066 nfs_mech_equal(rpc_gss_OID mech1, rpc_gss_OID mech2) 1067 { 1068 if ((mech1->length == 0) && (mech2->length == 0)) 1069 return (TRUE); 1070 1071 if (mech1->length != mech2->length) 1072 return (FALSE); 1073 1074 return (bcmp(mech1->elements, mech2->elements, mech1->length) == 0); 1075 } 1076 1077 /* 1078 * This routine is used by rpc to map rpc security number 1079 * to nfs specific security flavor number. 1080 * 1081 * The gss callback prototype is 1082 * callback(struct svc_req *, gss_cred_id_t *, gss_ctx_id_t *, 1083 * rpc_gss_lock_t *, void **), 1084 * since nfs does not use the gss_cred_id_t/gss_ctx_id_t arguments 1085 * we cast them to void. 1086 */ 1087 /*ARGSUSED*/ 1088 bool_t 1089 rfs_gsscallback(struct svc_req *req, gss_cred_id_t deleg, void *gss_context, 1090 rpc_gss_lock_t *lock, void **cookie) 1091 { 1092 int i, j; 1093 rpc_gss_rawcred_t *raw_cred; 1094 struct exportinfo *exi; 1095 1096 /* 1097 * We don't deal with delegated credentials. 1098 */ 1099 if (deleg != GSS_C_NO_CREDENTIAL) 1100 return (FALSE); 1101 1102 raw_cred = lock->raw_cred; 1103 *cookie = NULL; 1104 1105 rw_enter(&exported_lock, RW_READER); 1106 for (i = 0; i < EXPTABLESIZE; i++) { 1107 exi = exptable[i]; 1108 while (exi) { 1109 if (exi->exi_export.ex_seccnt > 0) { 1110 struct secinfo *secp; 1111 seconfig_t *se; 1112 int seccnt; 1113 1114 secp = exi->exi_export.ex_secinfo; 1115 seccnt = exi->exi_export.ex_seccnt; 1116 for (j = 0; j < seccnt; j++) { 1117 /* 1118 * If there is a map of the triplet 1119 * (mechanism, service, qop) between 1120 * raw_cred and the exported flavor, 1121 * get the psudo flavor number. 1122 * Also qop should not be NULL, it 1123 * should be "default" or something 1124 * else. 1125 */ 1126 se = &secp[j].s_secinfo; 1127 if ((se->sc_rpcnum == RPCSEC_GSS) && 1128 1129 (nfs_mech_equal( 1130 se->sc_gss_mech_type, 1131 raw_cred->mechanism)) && 1132 1133 (se->sc_service == 1134 raw_cred->service) && 1135 (raw_cred->qop == se->sc_qop)) { 1136 1137 *cookie = (void *)(uintptr_t) 1138 se->sc_nfsnum; 1139 goto done; 1140 } 1141 } 1142 } 1143 exi = exi->exi_hash; 1144 } 1145 } 1146 done: 1147 rw_exit(&exported_lock); 1148 1149 /* 1150 * If no nfs pseudo number mapping can be found in the export 1151 * table, assign the nfsflavor to NFS_FLAVOR_NOMAP. In V4, we may 1152 * recover the flavor mismatch from NFS layer (NFS4ERR_WRONGSEC). 1153 * 1154 * For example: 1155 * server first shares with krb5i; 1156 * client mounts with krb5i; 1157 * server re-shares with krb5p; 1158 * client tries with krb5i, but no mapping can be found; 1159 * rpcsec_gss module calls this routine to do the mapping, 1160 * if this routine fails, request is rejected from 1161 * the rpc layer. 1162 * What we need is to let the nfs layer rejects the request. 1163 * For V4, we can reject with NFS4ERR_WRONGSEC and the client 1164 * may recover from it by getting the new flavor via SECINFO. 1165 * 1166 * nfs pseudo number for RPCSEC_GSS mapping (see nfssec.conf) 1167 * is owned by IANA (see RFC 2623). 1168 * 1169 * XXX NFS_FLAVOR_NOMAP is defined in Solaris to work around 1170 * the implementation issue. This number should not overlap with 1171 * any new IANA defined pseudo flavor numbers. 1172 */ 1173 if (*cookie == NULL) 1174 *cookie = (void *)NFS_FLAVOR_NOMAP; 1175 1176 lock->locked = TRUE; 1177 1178 return (TRUE); 1179 } 1180 1181 1182 /* 1183 * Exportfs system call; credentials should be checked before 1184 * calling this function. 1185 */ 1186 int 1187 exportfs(struct exportfs_args *args, model_t model, cred_t *cr) 1188 { 1189 vnode_t *vp; 1190 vnode_t *dvp; 1191 struct exportdata *kex; 1192 struct exportinfo *exi; 1193 struct exportinfo *ex, *prev; 1194 fid_t fid; 1195 fsid_t fsid; 1196 int error; 1197 size_t allocsize; 1198 struct secinfo *sp; 1199 struct secinfo *exs; 1200 rpc_gss_callback_t cb; 1201 char *pathbuf; 1202 char *log_buffer; 1203 char *tagbuf; 1204 int callback; 1205 int allocd_seccnt; 1206 STRUCT_HANDLE(exportfs_args, uap); 1207 STRUCT_DECL(exportdata, uexi); 1208 struct secinfo newsec[MAX_FLAVORS]; 1209 int newcnt; 1210 struct secinfo oldsec[MAX_FLAVORS]; 1211 int oldcnt; 1212 int i; 1213 1214 STRUCT_SET_HANDLE(uap, model, args); 1215 1216 error = lookupname(STRUCT_FGETP(uap, dname), UIO_USERSPACE, 1217 FOLLOW, &dvp, &vp); 1218 if (error == EINVAL) { 1219 /* 1220 * if fname resolves to / we get EINVAL error 1221 * since we wanted the parent vnode. Try again 1222 * with NULL dvp. 1223 */ 1224 error = lookupname(STRUCT_FGETP(uap, dname), UIO_USERSPACE, 1225 FOLLOW, NULL, &vp); 1226 dvp = NULL; 1227 } 1228 if (!error && vp == NULL) { 1229 /* 1230 * Last component of fname not found 1231 */ 1232 if (dvp != NULL) { 1233 VN_RELE(dvp); 1234 } 1235 error = ENOENT; 1236 } 1237 if (error) 1238 return (error); 1239 1240 /* 1241 * 'vp' may be an AUTOFS node, so we perform a 1242 * VOP_ACCESS() to trigger the mount of the 1243 * intended filesystem, so we can share the intended 1244 * filesystem instead of the AUTOFS filesystem. 1245 */ 1246 (void) VOP_ACCESS(vp, 0, 0, cr); 1247 1248 /* 1249 * We're interested in the top most filesystem. 1250 * This is specially important when uap->dname is a trigger 1251 * AUTOFS node, since we're really interested in sharing the 1252 * filesystem AUTOFS mounted as result of the VOP_ACCESS() 1253 * call not the AUTOFS node itself. 1254 */ 1255 if (vn_mountedvfs(vp) != NULL) { 1256 if (error = traverse(&vp)) { 1257 VN_RELE(vp); 1258 if (dvp != NULL) 1259 VN_RELE(dvp); 1260 return (error); 1261 } 1262 } 1263 1264 /* 1265 * Get the vfs id 1266 */ 1267 bzero(&fid, sizeof (fid)); 1268 fid.fid_len = MAXFIDSZ; 1269 error = VOP_FID(vp, &fid); 1270 fsid = vp->v_vfsp->vfs_fsid; 1271 if (error) { 1272 VN_RELE(vp); 1273 if (dvp != NULL) 1274 VN_RELE(dvp); 1275 /* 1276 * If VOP_FID returns ENOSPC then the fid supplied 1277 * is too small. For now we simply return EREMOTE. 1278 */ 1279 if (error == ENOSPC) 1280 error = EREMOTE; 1281 return (error); 1282 } 1283 1284 if (STRUCT_FGETP(uap, uex) == NULL) { 1285 error = unexport(&fsid, &fid, vp); 1286 VN_RELE(vp); 1287 if (dvp != NULL) 1288 VN_RELE(dvp); 1289 return (error); 1290 } 1291 1292 exi = kmem_zalloc(sizeof (*exi), KM_SLEEP); 1293 exi->exi_fsid = fsid; 1294 exi->exi_fid = fid; 1295 exi->exi_vp = vp; 1296 exi->exi_count = 1; 1297 exi->exi_volatile_dev = (vfssw[vp->v_vfsp->vfs_fstype].vsw_flag & 1298 VSW_VOLATILEDEV) ? 1 : 0; 1299 mutex_init(&exi->exi_lock, NULL, MUTEX_DEFAULT, NULL); 1300 exi->exi_dvp = dvp; 1301 1302 /* 1303 * Initialize auth cache lock 1304 */ 1305 rw_init(&exi->exi_cache_lock, NULL, RW_DEFAULT, NULL); 1306 1307 /* 1308 * Build up the template fhandle 1309 */ 1310 exi->exi_fh.fh_fsid = fsid; 1311 if (exi->exi_fid.fid_len > sizeof (exi->exi_fh.fh_xdata)) { 1312 error = EREMOTE; 1313 goto out1; 1314 } 1315 exi->exi_fh.fh_xlen = exi->exi_fid.fid_len; 1316 bcopy(exi->exi_fid.fid_data, exi->exi_fh.fh_xdata, 1317 exi->exi_fid.fid_len); 1318 1319 exi->exi_fh.fh_len = sizeof (exi->exi_fh.fh_data); 1320 1321 kex = &exi->exi_export; 1322 1323 /* 1324 * Load in everything, and do sanity checking 1325 */ 1326 STRUCT_INIT(uexi, model); 1327 if (copyin(STRUCT_FGETP(uap, uex), STRUCT_BUF(uexi), 1328 STRUCT_SIZE(uexi))) { 1329 error = EFAULT; 1330 goto out1; 1331 } 1332 1333 kex->ex_version = STRUCT_FGET(uexi, ex_version); 1334 if (kex->ex_version != EX_CURRENT_VERSION) { 1335 error = EINVAL; 1336 cmn_err(CE_WARN, 1337 "NFS: exportfs requires export struct version 2 - got %d\n", 1338 kex->ex_version); 1339 goto out1; 1340 } 1341 1342 /* 1343 * Must have at least one security entry 1344 */ 1345 kex->ex_seccnt = STRUCT_FGET(uexi, ex_seccnt); 1346 if (kex->ex_seccnt < 1) { 1347 error = EINVAL; 1348 goto out1; 1349 } 1350 1351 kex->ex_path = STRUCT_FGETP(uexi, ex_path); 1352 kex->ex_pathlen = STRUCT_FGET(uexi, ex_pathlen); 1353 kex->ex_flags = STRUCT_FGET(uexi, ex_flags); 1354 kex->ex_anon = STRUCT_FGET(uexi, ex_anon); 1355 kex->ex_secinfo = STRUCT_FGETP(uexi, ex_secinfo); 1356 kex->ex_index = STRUCT_FGETP(uexi, ex_index); 1357 kex->ex_log_buffer = STRUCT_FGETP(uexi, ex_log_buffer); 1358 kex->ex_log_bufferlen = STRUCT_FGET(uexi, ex_log_bufferlen); 1359 kex->ex_tag = STRUCT_FGETP(uexi, ex_tag); 1360 kex->ex_taglen = STRUCT_FGET(uexi, ex_taglen); 1361 1362 /* 1363 * Copy the exported pathname into 1364 * an appropriately sized buffer. 1365 */ 1366 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1367 if (copyinstr(kex->ex_path, pathbuf, MAXPATHLEN, &kex->ex_pathlen)) { 1368 kmem_free(pathbuf, MAXPATHLEN); 1369 error = EFAULT; 1370 goto out1; 1371 } 1372 kex->ex_path = kmem_alloc(kex->ex_pathlen + 1, KM_SLEEP); 1373 bcopy(pathbuf, kex->ex_path, kex->ex_pathlen); 1374 kex->ex_path[kex->ex_pathlen] = '\0'; 1375 kmem_free(pathbuf, MAXPATHLEN); 1376 1377 /* 1378 * Get the path to the logging buffer and the tag 1379 */ 1380 if (kex->ex_flags & EX_LOG) { 1381 log_buffer = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1382 if (copyinstr(kex->ex_log_buffer, log_buffer, MAXPATHLEN, 1383 &kex->ex_log_bufferlen)) { 1384 kmem_free(log_buffer, MAXPATHLEN); 1385 error = EFAULT; 1386 goto out2; 1387 } 1388 kex->ex_log_buffer = 1389 kmem_alloc(kex->ex_log_bufferlen + 1, KM_SLEEP); 1390 bcopy(log_buffer, kex->ex_log_buffer, kex->ex_log_bufferlen); 1391 kex->ex_log_buffer[kex->ex_log_bufferlen] = '\0'; 1392 kmem_free(log_buffer, MAXPATHLEN); 1393 1394 tagbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1395 if (copyinstr(kex->ex_tag, tagbuf, MAXPATHLEN, 1396 &kex->ex_taglen)) { 1397 kmem_free(tagbuf, MAXPATHLEN); 1398 error = EFAULT; 1399 goto out3; 1400 } 1401 kex->ex_tag = kmem_alloc(kex->ex_taglen + 1, KM_SLEEP); 1402 bcopy(tagbuf, kex->ex_tag, kex->ex_taglen); 1403 kex->ex_tag[kex->ex_taglen] = '\0'; 1404 kmem_free(tagbuf, MAXPATHLEN); 1405 } 1406 1407 /* 1408 * Load the security information for each flavor 1409 */ 1410 allocsize = kex->ex_seccnt * SIZEOF_STRUCT(secinfo, model); 1411 sp = kmem_zalloc(allocsize, KM_SLEEP); 1412 if (copyin(kex->ex_secinfo, sp, allocsize)) { 1413 kmem_free(sp, allocsize); 1414 error = EFAULT; 1415 goto out4; 1416 } 1417 1418 /* 1419 * All of these nested structures need to be converted to 1420 * the kernel native format. 1421 */ 1422 if (model != DATAMODEL_NATIVE) { 1423 size_t allocsize2; 1424 struct secinfo *sp2; 1425 1426 allocsize2 = kex->ex_seccnt * sizeof (struct secinfo); 1427 sp2 = kmem_zalloc(allocsize2, KM_SLEEP); 1428 1429 for (i = 0; i < kex->ex_seccnt; i++) { 1430 STRUCT_HANDLE(secinfo, usi); 1431 1432 STRUCT_SET_HANDLE(usi, model, 1433 (struct secinfo *)((caddr_t)sp + 1434 (i * SIZEOF_STRUCT(secinfo, model)))); 1435 bcopy(STRUCT_FGET(usi, s_secinfo.sc_name), 1436 sp2[i].s_secinfo.sc_name, MAX_NAME_LEN); 1437 sp2[i].s_secinfo.sc_nfsnum = 1438 STRUCT_FGET(usi, s_secinfo.sc_nfsnum); 1439 sp2[i].s_secinfo.sc_rpcnum = 1440 STRUCT_FGET(usi, s_secinfo.sc_rpcnum); 1441 bcopy(STRUCT_FGET(usi, s_secinfo.sc_gss_mech), 1442 sp2[i].s_secinfo.sc_gss_mech, MAX_NAME_LEN); 1443 sp2[i].s_secinfo.sc_gss_mech_type = 1444 STRUCT_FGETP(usi, s_secinfo.sc_gss_mech_type); 1445 sp2[i].s_secinfo.sc_qop = 1446 STRUCT_FGET(usi, s_secinfo.sc_qop); 1447 sp2[i].s_secinfo.sc_service = 1448 STRUCT_FGET(usi, s_secinfo.sc_service); 1449 1450 sp2[i].s_flags = STRUCT_FGET(usi, s_flags); 1451 sp2[i].s_window = STRUCT_FGET(usi, s_window); 1452 sp2[i].s_rootcnt = STRUCT_FGET(usi, s_rootcnt); 1453 sp2[i].s_rootnames = STRUCT_FGETP(usi, s_rootnames); 1454 } 1455 kmem_free(sp, allocsize); 1456 sp = sp2; 1457 allocsize = allocsize2; 1458 } 1459 1460 kex->ex_secinfo = sp; 1461 1462 /* 1463 * And now copy rootnames for each individual secinfo. 1464 */ 1465 callback = 0; 1466 allocd_seccnt = 0; 1467 while (allocd_seccnt < kex->ex_seccnt) { 1468 1469 exs = &sp[allocd_seccnt]; 1470 if (exs->s_rootcnt > 0) { 1471 if (!sec_svc_loadrootnames(exs->s_secinfo.sc_rpcnum, 1472 exs->s_rootcnt, &exs->s_rootnames, model)) { 1473 error = EFAULT; 1474 goto out5; 1475 } 1476 } 1477 1478 if (exs->s_secinfo.sc_rpcnum == RPCSEC_GSS) { 1479 rpc_gss_OID mech_tmp; 1480 STRUCT_DECL(rpc_gss_OID_s, umech_tmp); 1481 caddr_t elements_tmp; 1482 1483 /* Copyin mechanism type */ 1484 STRUCT_INIT(umech_tmp, model); 1485 mech_tmp = kmem_alloc(sizeof (*mech_tmp), KM_SLEEP); 1486 if (copyin(exs->s_secinfo.sc_gss_mech_type, 1487 STRUCT_BUF(umech_tmp), STRUCT_SIZE(umech_tmp))) { 1488 kmem_free(mech_tmp, sizeof (*mech_tmp)); 1489 error = EFAULT; 1490 goto out5; 1491 } 1492 mech_tmp->length = STRUCT_FGET(umech_tmp, length); 1493 mech_tmp->elements = STRUCT_FGETP(umech_tmp, elements); 1494 1495 elements_tmp = kmem_alloc(mech_tmp->length, KM_SLEEP); 1496 if (copyin(mech_tmp->elements, elements_tmp, 1497 mech_tmp->length)) { 1498 kmem_free(elements_tmp, mech_tmp->length); 1499 kmem_free(mech_tmp, sizeof (*mech_tmp)); 1500 error = EFAULT; 1501 goto out5; 1502 } 1503 mech_tmp->elements = elements_tmp; 1504 exs->s_secinfo.sc_gss_mech_type = mech_tmp; 1505 allocd_seccnt++; 1506 1507 callback = 1; 1508 } else 1509 allocd_seccnt++; 1510 } 1511 1512 /* 1513 * Init the secinfo reference count and mark these flavors 1514 * explicitly exported flavors. 1515 */ 1516 for (i = 0; i < kex->ex_seccnt; i++) { 1517 kex->ex_secinfo[i].s_flags |= M_4SEC_EXPORTED; 1518 kex->ex_secinfo[i].s_refcnt = 1; 1519 } 1520 1521 /* 1522 * Set up rpcsec_gss callback routine entry if any. 1523 */ 1524 if (callback) { 1525 cb.callback = rfs_gsscallback; 1526 cb.program = NFS_ACL_PROGRAM; 1527 for (cb.version = NFS_ACL_VERSMIN; 1528 cb.version <= NFS_ACL_VERSMAX; cb.version++) { 1529 (void) sec_svc_control(RPC_SVC_SET_GSS_CALLBACK, 1530 (void *)&cb); 1531 } 1532 1533 cb.program = NFS_PROGRAM; 1534 for (cb.version = NFS_VERSMIN; 1535 cb.version <= NFS_VERSMAX; cb.version++) { 1536 (void) sec_svc_control(RPC_SVC_SET_GSS_CALLBACK, 1537 (void *)&cb); 1538 } 1539 } 1540 1541 /* 1542 * Check the index flag. Do this here to avoid holding the 1543 * lock while dealing with the index option (as we do with 1544 * the public option). 1545 */ 1546 if (kex->ex_flags & EX_INDEX) { 1547 if (!kex->ex_index) { /* sanity check */ 1548 error = EINVAL; 1549 goto out5; 1550 } 1551 if (error = loadindex(kex)) 1552 goto out5; 1553 } 1554 1555 if (kex->ex_flags & EX_LOG) { 1556 if (error = nfslog_setup(exi)) 1557 goto out6; 1558 } 1559 1560 /* 1561 * Insert the new entry at the front of the export list 1562 */ 1563 rw_enter(&exported_lock, RW_WRITER); 1564 1565 export_link(exi); 1566 1567 /* 1568 * Check the rest of the list for an old entry for the fs. 1569 * If one is found then unlink it, wait until this is the 1570 * only reference and then free it. 1571 */ 1572 prev = exi; 1573 for (ex = prev->exi_hash; ex != NULL; prev = ex, ex = ex->exi_hash) { 1574 if (ex != exi_root && VN_CMP(ex->exi_vp, vp)) { 1575 prev->exi_hash = ex->exi_hash; 1576 break; 1577 } 1578 } 1579 1580 /* 1581 * If the public filehandle is pointing at the 1582 * old entry, then point it back at the root. 1583 */ 1584 if (ex != NULL && ex == exi_public) 1585 exi_public = exi_root; 1586 1587 /* 1588 * If the public flag is on, make the global exi_public 1589 * point to this entry and turn off the public bit so that 1590 * we can distinguish it from the place holder export. 1591 */ 1592 if (kex->ex_flags & EX_PUBLIC) { 1593 exi_public = exi; 1594 kex->ex_flags &= ~EX_PUBLIC; 1595 } 1596 1597 #ifdef VOLATILE_FH_TEST 1598 /* 1599 * Set up the volatile_id value if volatile on share. 1600 * The list of volatile renamed filehandles is always destroyed, 1601 * if the fs was reshared. 1602 */ 1603 if (kex->ex_flags & EX_VOLFH) 1604 exi->exi_volatile_id = gethrestime_sec(); 1605 1606 mutex_init(&exi->exi_vol_rename_lock, NULL, MUTEX_DEFAULT, NULL); 1607 #endif /* VOLATILE_FH_TEST */ 1608 1609 /* 1610 * If this is a new export, then climb up 1611 * the tree and check if any pseudo exports 1612 * need to be created to provide a path for 1613 * NFS v4 clients. 1614 */ 1615 if (ex == NULL) 1616 error = treeclimb_export(exi); 1617 1618 /* 1619 * build a unique flavor list from the flavors specified 1620 * in the share cmd. unique means that each flavor only 1621 * appears once in the secinfo list -- no duplicates allowed. 1622 */ 1623 newcnt = build_seclist_nodups(&exi->exi_export, newsec, FALSE); 1624 1625 if (!error) 1626 error = srv_secinfo_treeclimb(exi, newsec, newcnt, TRUE); 1627 1628 /* 1629 * If re-sharing an old export entry, update the secinfo data 1630 * depending on if the old entry is a pseudo node or not. 1631 */ 1632 if (!error && ex != NULL) { 1633 oldcnt = build_seclist_nodups(&ex->exi_export, oldsec, FALSE); 1634 if (PSEUDO(ex)) { 1635 /* 1636 * The dir being shared is a pseudo export root (which 1637 * will be transformed into a real export root). The 1638 * flavor(s) of the new share were propagated to the 1639 * ancestors by srv_secinfo_treeclimb() above. Now 1640 * transfer the implicit flavor refs from the old 1641 * pseudo exprot root to the new (real) export root. 1642 */ 1643 srv_secinfo_add(&exi->exi_export.ex_secinfo, 1644 &exi->exi_export.ex_seccnt, oldsec, oldcnt, TRUE); 1645 } else { 1646 /* 1647 * First transfer implicit flavor refs to new export. 1648 * Remove old flavor refs last. 1649 */ 1650 srv_secinfo_exp2exp(&exi->exi_export, oldsec, oldcnt); 1651 error = srv_secinfo_treeclimb(ex, oldsec, oldcnt, 1652 FALSE); 1653 } 1654 } 1655 1656 if (error) 1657 goto out7; 1658 1659 /* 1660 * If it's a re-export and the old entry has a pseudnode list, 1661 * transfer it to the new export. 1662 */ 1663 if (ex != NULL && (ex->exi_visible != NULL)) { 1664 exi->exi_visible = ex->exi_visible; 1665 ex->exi_visible = NULL; 1666 } 1667 1668 rw_exit(&exported_lock); 1669 1670 if (exi_public == exi || kex->ex_flags & EX_LOG) { 1671 /* 1672 * Log share operation to this buffer only. 1673 */ 1674 nfslog_share_record(exi, cr); 1675 } 1676 1677 if (ex != NULL) 1678 exi_rele(ex); 1679 1680 return (0); 1681 1682 out7: 1683 /* 1684 * Cleaning up the tree. Assuming *treeclimb* routines 1685 * will fail at the same place in the tree. 1686 */ 1687 (void) treeclimb_unexport(exi); 1688 (void) srv_secinfo_treeclimb(exi, newsec, newcnt, FALSE); 1689 1690 /* 1691 * Unlink and re-link the new and old export in exptable. 1692 */ 1693 (void) export_unlink(&exi->exi_fsid, &exi->exi_fid, exi->exi_vp, NULL); 1694 if (ex != NULL) 1695 export_link(ex); 1696 1697 rw_exit(&exported_lock); 1698 out6: 1699 if (kex->ex_flags & EX_INDEX) 1700 kmem_free(kex->ex_index, strlen(kex->ex_index) + 1); 1701 out5: 1702 /* free partially completed allocation */ 1703 while (--allocd_seccnt >= 0) { 1704 exs = &kex->ex_secinfo[allocd_seccnt]; 1705 srv_secinfo_entry_free(exs); 1706 } 1707 1708 if (kex->ex_secinfo) { 1709 kmem_free(kex->ex_secinfo, 1710 kex->ex_seccnt * sizeof (struct secinfo)); 1711 } 1712 1713 out4: 1714 if ((kex->ex_flags & EX_LOG) && kex->ex_tag != NULL) 1715 kmem_free(kex->ex_tag, kex->ex_taglen + 1); 1716 out3: 1717 if ((kex->ex_flags & EX_LOG) && kex->ex_log_buffer != NULL) 1718 kmem_free(kex->ex_log_buffer, kex->ex_log_bufferlen + 1); 1719 out2: 1720 kmem_free(kex->ex_path, kex->ex_pathlen + 1); 1721 out1: 1722 VN_RELE(vp); 1723 if (dvp != NULL) 1724 VN_RELE(dvp); 1725 mutex_destroy(&exi->exi_lock); 1726 rw_destroy(&exi->exi_cache_lock); 1727 kmem_free(exi, sizeof (*exi)); 1728 return (error); 1729 } 1730 1731 /* 1732 * Remove the exportinfo from the export list 1733 */ 1734 int 1735 export_unlink(fsid_t *fsid, fid_t *fid, vnode_t *vp, struct exportinfo **exip) 1736 { 1737 struct exportinfo **tail; 1738 1739 ASSERT(RW_WRITE_HELD(&exported_lock)); 1740 1741 tail = &exptable[exptablehash(fsid, fid)]; 1742 while (*tail != NULL) { 1743 if (exportmatch(*tail, fsid, fid)) { 1744 /* 1745 * If vp is given, check if vp is the 1746 * same vnode as the exported node. 1747 * 1748 * Since VOP_FID of a lofs node returns the 1749 * fid of its real node (ufs), the exported 1750 * node for lofs and (pseudo) ufs may have 1751 * the same fsid and fid. 1752 */ 1753 if (vp == NULL || vp == (*tail)->exi_vp) { 1754 1755 if (exip != NULL) 1756 *exip = *tail; 1757 *tail = (*tail)->exi_hash; 1758 1759 return (0); 1760 } 1761 } 1762 tail = &(*tail)->exi_hash; 1763 } 1764 1765 return (EINVAL); 1766 } 1767 1768 /* 1769 * Unexport an exported filesystem 1770 */ 1771 int 1772 unexport(fsid_t *fsid, fid_t *fid, vnode_t *vp) 1773 { 1774 struct exportinfo *exi = NULL; 1775 int error; 1776 struct secinfo cursec[MAX_FLAVORS]; 1777 int curcnt; 1778 1779 rw_enter(&exported_lock, RW_WRITER); 1780 1781 error = export_unlink(fsid, fid, vp, &exi); 1782 1783 if (error) { 1784 rw_exit(&exported_lock); 1785 return (error); 1786 } 1787 1788 /* pseudo node is not a real exported filesystem */ 1789 if (PSEUDO(exi)) { 1790 /* 1791 * Put the pseudo node back into the export table 1792 * before erroring out. 1793 */ 1794 export_link(exi); 1795 rw_exit(&exported_lock); 1796 return (EINVAL); 1797 } 1798 1799 /* 1800 * If there's a visible list, then need to leave 1801 * a pseudo export here to retain the visible list 1802 * for paths to exports below. 1803 */ 1804 if (exi->exi_visible) { 1805 error = pseudo_exportfs(exi->exi_vp, exi->exi_visible, 1806 &exi->exi_export); 1807 if (error) 1808 goto done; 1809 1810 exi->exi_visible = NULL; 1811 } else { 1812 error = treeclimb_unexport(exi); 1813 if (error) 1814 goto done; 1815 } 1816 1817 curcnt = build_seclist_nodups(&exi->exi_export, cursec, TRUE); 1818 1819 error = srv_secinfo_treeclimb(exi, cursec, curcnt, FALSE); 1820 if (error) 1821 goto done; 1822 1823 rw_exit(&exported_lock); 1824 1825 /* 1826 * Need to call into the NFSv4 server and release all data 1827 * held on this particular export. This is important since 1828 * the v4 server may be holding file locks or vnodes under 1829 * this export. 1830 */ 1831 rfs4_clean_state_exi(exi); 1832 1833 /* 1834 * Notify the lock manager that the filesystem is being 1835 * unexported. 1836 */ 1837 lm_unexport(exi); 1838 1839 /* 1840 * If this was a public export, restore 1841 * the public filehandle to the root. 1842 */ 1843 if (exi == exi_public) { 1844 exi_public = exi_root; 1845 1846 nfslog_share_record(exi_public, CRED()); 1847 } 1848 1849 if (exi->exi_export.ex_flags & EX_LOG) { 1850 nfslog_unshare_record(exi, CRED()); 1851 } 1852 1853 exi_rele(exi); 1854 return (error); 1855 1856 done: 1857 rw_exit(&exported_lock); 1858 exi_rele(exi); 1859 return (error); 1860 } 1861 1862 /* 1863 * Get file handle system call. 1864 * Takes file name and returns a file handle for it. 1865 * Credentials must be verified before calling. 1866 */ 1867 int 1868 nfs_getfh(struct nfs_getfh_args *args, model_t model, cred_t *cr) 1869 { 1870 nfs_fh3 fh; 1871 char buf[NFS3_MAXFHSIZE]; 1872 char *logptr, logbuf[NFS3_MAXFHSIZE]; 1873 int l = NFS3_MAXFHSIZE; 1874 vnode_t *vp; 1875 vnode_t *dvp; 1876 struct exportinfo *exi; 1877 int error; 1878 int vers; 1879 STRUCT_HANDLE(nfs_getfh_args, uap); 1880 1881 #ifdef lint 1882 model = model; /* STRUCT macros don't always use it */ 1883 #endif 1884 1885 STRUCT_SET_HANDLE(uap, model, args); 1886 1887 error = lookupname(STRUCT_FGETP(uap, fname), UIO_USERSPACE, 1888 FOLLOW, &dvp, &vp); 1889 if (error == EINVAL) { 1890 /* 1891 * if fname resolves to / we get EINVAL error 1892 * since we wanted the parent vnode. Try again 1893 * with NULL dvp. 1894 */ 1895 error = lookupname(STRUCT_FGETP(uap, fname), UIO_USERSPACE, 1896 FOLLOW, NULL, &vp); 1897 dvp = NULL; 1898 } 1899 if (!error && vp == NULL) { 1900 /* 1901 * Last component of fname not found 1902 */ 1903 if (dvp != NULL) { 1904 VN_RELE(dvp); 1905 } 1906 error = ENOENT; 1907 } 1908 if (error) 1909 return (error); 1910 1911 /* 1912 * 'vp' may be an AUTOFS node, so we perform a 1913 * VOP_ACCESS() to trigger the mount of the 1914 * intended filesystem, so we can share the intended 1915 * filesystem instead of the AUTOFS filesystem. 1916 */ 1917 (void) VOP_ACCESS(vp, 0, 0, cr); 1918 1919 /* 1920 * We're interested in the top most filesystem. 1921 * This is specially important when uap->dname is a trigger 1922 * AUTOFS node, since we're really interested in sharing the 1923 * filesystem AUTOFS mounted as result of the VOP_ACCESS() 1924 * call not the AUTOFS node itself. 1925 */ 1926 if (vn_mountedvfs(vp) != NULL) { 1927 if (error = traverse(&vp)) { 1928 VN_RELE(vp); 1929 if (dvp != NULL) 1930 VN_RELE(dvp); 1931 return (error); 1932 } 1933 } 1934 1935 vers = STRUCT_FGET(uap, vers); 1936 exi = nfs_vptoexi(dvp, vp, cr, NULL, &error, FALSE); 1937 if (!error) { 1938 if (vers == NFS_VERSION) { 1939 error = makefh((fhandle_t *)buf, vp, exi); 1940 l = NFS_FHSIZE; 1941 logptr = buf; 1942 } else if (vers == NFS_V3) { 1943 int i, sz, pad; 1944 1945 error = makefh3(&fh, vp, exi); 1946 l = fh.fh3_length; 1947 logptr = logbuf; 1948 if (!error) { 1949 i = 0; 1950 sz = sizeof (fsid_t); 1951 bcopy(&fh.fh3_fsid, &buf[i], sz); 1952 i += sz; 1953 1954 /* 1955 * For backwards compatability, the 1956 * fid length may be less than 1957 * NFS_FHMAXDATA, but it was always 1958 * encoded as NFS_FHMAXDATA bytes. 1959 */ 1960 1961 sz = sizeof (ushort_t); 1962 bcopy(&fh.fh3_len, &buf[i], sz); 1963 i += sz; 1964 bcopy(fh.fh3_data, &buf[i], fh.fh3_len); 1965 i += fh.fh3_len; 1966 pad = (NFS_FHMAXDATA - fh.fh3_len); 1967 if (pad > 0) { 1968 bzero(&buf[i], pad); 1969 i += pad; 1970 l += pad; 1971 } 1972 1973 sz = sizeof (ushort_t); 1974 bcopy(&fh.fh3_xlen, &buf[i], sz); 1975 i += sz; 1976 bcopy(fh.fh3_xdata, &buf[i], fh.fh3_xlen); 1977 i += fh.fh3_xlen; 1978 pad = (NFS_FHMAXDATA - fh.fh3_xlen); 1979 if (pad > 0) { 1980 bzero(&buf[i], pad); 1981 i += pad; 1982 l += pad; 1983 } 1984 } 1985 /* 1986 * If we need to do NFS logging, the filehandle 1987 * must be downsized to 32 bytes. 1988 */ 1989 if (!error && exi->exi_export.ex_flags & EX_LOG) { 1990 i = 0; 1991 sz = sizeof (fsid_t); 1992 bcopy(&fh.fh3_fsid, &logbuf[i], sz); 1993 i += sz; 1994 sz = sizeof (ushort_t); 1995 bcopy(&fh.fh3_len, &logbuf[i], sz); 1996 i += sz; 1997 sz = NFS_FHMAXDATA; 1998 bcopy(fh.fh3_data, &logbuf[i], sz); 1999 i += sz; 2000 sz = sizeof (ushort_t); 2001 bcopy(&fh.fh3_xlen, &logbuf[i], sz); 2002 i += sz; 2003 sz = NFS_FHMAXDATA; 2004 bcopy(fh.fh3_xdata, &logbuf[i], sz); 2005 i += sz; 2006 } 2007 } 2008 if (!error && exi->exi_export.ex_flags & EX_LOG) { 2009 nfslog_getfh(exi, (fhandle_t *)logptr, 2010 STRUCT_FGETP(uap, fname), UIO_USERSPACE, cr); 2011 } 2012 exi_rele(exi); 2013 if (!error) { 2014 if (copyout(&l, STRUCT_FGETP(uap, lenp), sizeof (int))) 2015 error = EFAULT; 2016 if (copyout(buf, STRUCT_FGETP(uap, fhp), l)) 2017 error = EFAULT; 2018 } 2019 } 2020 VN_RELE(vp); 2021 if (dvp != NULL) { 2022 VN_RELE(dvp); 2023 } 2024 return (error); 2025 } 2026 2027 /* 2028 * Strategy: if vp is in the export list, then 2029 * return the associated file handle. Otherwise, ".." 2030 * once up the vp and try again, until the root of the 2031 * filesystem is reached. 2032 */ 2033 struct exportinfo * 2034 nfs_vptoexi(vnode_t *dvp, vnode_t *vp, cred_t *cr, int *walk, 2035 int *err, bool_t v4srv) 2036 { 2037 fid_t fid; 2038 int error; 2039 struct exportinfo *exi; 2040 2041 ASSERT(vp); 2042 VN_HOLD(vp); 2043 if (dvp != NULL) { 2044 VN_HOLD(dvp); 2045 } 2046 if (walk != NULL) 2047 *walk = 0; 2048 2049 for (;;) { 2050 bzero(&fid, sizeof (fid)); 2051 fid.fid_len = MAXFIDSZ; 2052 error = vop_fid_pseudo(vp, &fid); 2053 if (error) { 2054 /* 2055 * If vop_fid_pseudo returns ENOSPC then the fid 2056 * supplied is too small. For now we simply 2057 * return EREMOTE. 2058 */ 2059 if (error == ENOSPC) 2060 error = EREMOTE; 2061 break; 2062 } 2063 2064 if (v4srv) 2065 exi = checkexport4(&vp->v_vfsp->vfs_fsid, &fid, vp); 2066 else 2067 exi = checkexport(&vp->v_vfsp->vfs_fsid, &fid); 2068 2069 if (exi != NULL) { 2070 /* 2071 * Found the export info 2072 */ 2073 break; 2074 } 2075 2076 /* 2077 * We have just failed finding a matching export. 2078 * If we're at the root of this filesystem, then 2079 * it's time to stop (with failure). 2080 */ 2081 if (vp->v_flag & VROOT) { 2082 error = EINVAL; 2083 break; 2084 } 2085 2086 if (walk != NULL) 2087 (*walk)++; 2088 2089 /* 2090 * Now, do a ".." up vp. If dvp is supplied, use it, 2091 * otherwise, look it up. 2092 */ 2093 if (dvp == NULL) { 2094 error = VOP_LOOKUP(vp, "..", &dvp, NULL, 0, NULL, cr); 2095 if (error) 2096 break; 2097 } 2098 VN_RELE(vp); 2099 vp = dvp; 2100 dvp = NULL; 2101 } 2102 VN_RELE(vp); 2103 if (dvp != NULL) { 2104 VN_RELE(dvp); 2105 } 2106 if (error != 0) { 2107 if (err != NULL) 2108 *err = error; 2109 return (NULL); 2110 } 2111 return (exi); 2112 } 2113 2114 int 2115 chk_clnt_sec(exportinfo_t *exi, struct svc_req *req) 2116 { 2117 int i, nfsflavor; 2118 struct secinfo *sp; 2119 2120 /* 2121 * Get the nfs flavor number from xprt. 2122 */ 2123 nfsflavor = (int)(uintptr_t)req->rq_xprt->xp_cookie; 2124 2125 sp = exi->exi_export.ex_secinfo; 2126 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2127 if ((nfsflavor == sp[i].s_secinfo.sc_nfsnum) && 2128 SEC_REF_EXPORTED(sp + i)) 2129 return (TRUE); 2130 } 2131 return (FALSE); 2132 } 2133 2134 /* 2135 * Make an fhandle from a vnode 2136 */ 2137 int 2138 makefh(fhandle_t *fh, vnode_t *vp, exportinfo_t *exi) 2139 { 2140 int error; 2141 2142 *fh = exi->exi_fh; /* struct copy */ 2143 2144 error = VOP_FID(vp, (fid_t *)&fh->fh_len); 2145 if (error) { 2146 /* 2147 * Should be something other than EREMOTE 2148 */ 2149 return (EREMOTE); 2150 } 2151 return (0); 2152 } 2153 2154 /* 2155 * This routine makes an overloaded V2 fhandle which contains 2156 * sec modes. 2157 * 2158 * Note that the first four octets contain the length octet, 2159 * the status octet, and two padded octets to make them XDR 2160 * four-octet aligned. 2161 * 2162 * 1 2 3 4 32 2163 * +---+---+---+---+---+---+---+---+ +---+---+---+---+ +---+ 2164 * | l | s | | | sec_1 |...| sec_n |...| | 2165 * +---+---+---+---+---+---+---+---+ +---+---+---+---+ +---+ 2166 * 2167 * where 2168 * 2169 * the status octet s indicates whether there are more security 2170 * flavors (1 means yes, 0 means no) that require the client to 2171 * perform another 0x81 LOOKUP to get them, 2172 * 2173 * the length octet l is the length describing the number of 2174 * valid octets that follow. (l = 4 * n, where n is the number 2175 * of security flavors sent in the current overloaded filehandle.) 2176 * 2177 * sec_index should always be in the inclusive range: [1 - ex_seccnt], 2178 * and it tells server where to start within the secinfo array. 2179 * Usually it will always be 1; however, if more flavors are used 2180 * for the public export than can be encoded in the overloaded FH 2181 * (7 for NFS2), subsequent SNEGO MCLs will have a larger index 2182 * so the server will pick up where it left off from the previous 2183 * MCL reply. 2184 * 2185 * With NFS4 support, implicitly allowed flavors are also in 2186 * the secinfo array; however, they should not be returned in 2187 * SNEGO MCL replies. 2188 */ 2189 int 2190 makefh_ol(fhandle_t *fh, exportinfo_t *exi, uint_t sec_index) 2191 { 2192 secinfo_t sec[MAX_FLAVORS]; 2193 int totalcnt, i, *ipt, cnt, seccnt, secidx, fh_max_cnt; 2194 char *c; 2195 2196 if (fh == NULL || exi == NULL || sec_index < 1) 2197 return (EREMOTE); 2198 2199 /* 2200 * WebNFS clients need to know the unique set of explicitly 2201 * shared flavors in used for the public export. When 2202 * "TRUE" is passed to build_seclist_nodups(), only explicitly 2203 * shared flavors are included in the list. 2204 */ 2205 seccnt = build_seclist_nodups(&exi->exi_export, sec, TRUE); 2206 if (sec_index > seccnt) 2207 return (EREMOTE); 2208 2209 fh_max_cnt = (NFS_FHSIZE / sizeof (int)) - 1; 2210 totalcnt = seccnt - sec_index + 1; 2211 cnt = totalcnt > fh_max_cnt ? fh_max_cnt : totalcnt; 2212 2213 c = (char *)fh; 2214 /* 2215 * Encode the length octet representing the number of 2216 * security flavors (in bytes) in this overloaded fh. 2217 */ 2218 *c = cnt * sizeof (int); 2219 2220 /* 2221 * Encode the status octet that indicates whether there 2222 * are more security flavors the client needs to get. 2223 */ 2224 *(c + 1) = totalcnt > fh_max_cnt; 2225 2226 /* 2227 * put security flavors in the overloaded fh 2228 */ 2229 ipt = (int *)(c + sizeof (int32_t)); 2230 secidx = sec_index - 1; 2231 for (i = 0; i < cnt; i++) { 2232 ipt[i] = htonl(sec[i + secidx].s_secinfo.sc_nfsnum); 2233 } 2234 return (0); 2235 } 2236 2237 /* 2238 * Make an nfs_fh3 from a vnode 2239 */ 2240 int 2241 makefh3(nfs_fh3 *fh, vnode_t *vp, struct exportinfo *exi) 2242 { 2243 int error; 2244 fid_t fid; 2245 2246 bzero(&fid, sizeof (fid)); 2247 fid.fid_len = MAXFIDSZ; 2248 error = VOP_FID(vp, &fid); 2249 if (error) 2250 return (EREMOTE); 2251 2252 bzero(fh, sizeof (nfs_fh3)); 2253 fh->fh3_fsid = exi->exi_fsid; 2254 fh->fh3_len = fid.fid_len; 2255 bcopy(fid.fid_data, fh->fh3_data, fh->fh3_len); 2256 fh->fh3_xlen = exi->exi_fid.fid_len; 2257 bcopy(exi->exi_fid.fid_data, fh->fh3_xdata, fh->fh3_xlen); 2258 fh->fh3_length = sizeof (fsid_t) 2259 + sizeof (ushort_t) + fh->fh3_len 2260 + sizeof (ushort_t) + fh->fh3_xlen; 2261 fh->fh3_flags = 0; 2262 return (0); 2263 } 2264 2265 /* 2266 * This routine makes an overloaded V3 fhandle which contains 2267 * sec modes. 2268 * 2269 * 1 4 2270 * +--+--+--+--+ 2271 * | len | 2272 * +--+--+--+--+ 2273 * up to 64 2274 * +--+--+--+--+--+--+--+--+--+--+--+--+ +--+--+--+--+ 2275 * |s | | | | sec_1 | sec_2 | ... | sec_n | 2276 * +--+--+--+--+--+--+--+--+--+--+--+--+ +--+--+--+--+ 2277 * 2278 * len = 4 * (n+1), where n is the number of security flavors 2279 * sent in the current overloaded filehandle. 2280 * 2281 * the status octet s indicates whether there are more security 2282 * mechanisms (1 means yes, 0 means no) that require the client 2283 * to perform another 0x81 LOOKUP to get them. 2284 * 2285 * Three octets are padded after the status octet. 2286 */ 2287 int 2288 makefh3_ol(nfs_fh3 *fh, struct exportinfo *exi, uint_t sec_index) 2289 { 2290 secinfo_t sec[MAX_FLAVORS]; 2291 int totalcnt, cnt, *ipt, i, seccnt, fh_max_cnt, secidx; 2292 char *c; 2293 2294 if (fh == NULL || exi == NULL || sec_index < 1) 2295 return (EREMOTE); 2296 2297 /* 2298 * WebNFS clients need to know the unique set of explicitly 2299 * shared flavors in used for the public export. When 2300 * "TRUE" is passed to build_seclist_nodups(), only explicitly 2301 * shared flavors are included in the list. 2302 */ 2303 seccnt = build_seclist_nodups(&exi->exi_export, sec, TRUE); 2304 2305 if (sec_index > seccnt) 2306 return (EREMOTE); 2307 2308 fh_max_cnt = (NFS3_FHSIZE / sizeof (int)) - 1; 2309 totalcnt = seccnt - sec_index + 1; 2310 cnt = totalcnt > fh_max_cnt ? fh_max_cnt : totalcnt; 2311 2312 /* 2313 * Place the length in fh3_length representing the number 2314 * of security flavors (in bytes) in this overloaded fh. 2315 */ 2316 fh->fh3_flags = FH_WEBNFS; 2317 fh->fh3_length = (cnt+1) * sizeof (int32_t); 2318 2319 c = (char *)&fh->fh3_u.nfs_fh3_i.fh3_i; 2320 /* 2321 * Encode the status octet that indicates whether there 2322 * are more security flavors the client needs to get. 2323 */ 2324 *c = totalcnt > fh_max_cnt; 2325 2326 /* 2327 * put security flavors in the overloaded fh 2328 */ 2329 secidx = sec_index - 1; 2330 ipt = (int *)(c + sizeof (int32_t)); 2331 for (i = 0; i < cnt; i++) { 2332 ipt[i] = htonl(sec[i + secidx].s_secinfo.sc_nfsnum); 2333 } 2334 return (0); 2335 } 2336 2337 /* 2338 * Make an nfs_fh4 from a vnode 2339 */ 2340 int 2341 makefh4(nfs_fh4 *fh, vnode_t *vp, struct exportinfo *exi) 2342 { 2343 int error; 2344 nfs_fh4_fmt_t *fh_fmtp = (nfs_fh4_fmt_t *)fh->nfs_fh4_val; 2345 fid_t fid; 2346 2347 bzero(&fid, sizeof (fid)); 2348 fid.fid_len = MAXFIDSZ; 2349 /* 2350 * vop_fid_pseudo() is used to set up NFSv4 namespace, so 2351 * use vop_fid_pseudo() here to get the fid instead of VOP_FID. 2352 */ 2353 error = vop_fid_pseudo(vp, &fid); 2354 if (error) 2355 return (error); 2356 2357 fh->nfs_fh4_len = NFS_FH4_LEN; 2358 2359 fh_fmtp->fh4_i.fhx_fsid = exi->exi_fh.fh_fsid; 2360 fh_fmtp->fh4_i.fhx_xlen = exi->exi_fh.fh_xlen; 2361 2362 bzero(fh_fmtp->fh4_i.fhx_data, sizeof (fh_fmtp->fh4_i.fhx_data)); 2363 bzero(fh_fmtp->fh4_i.fhx_xdata, sizeof (fh_fmtp->fh4_i.fhx_xdata)); 2364 bcopy(exi->exi_fh.fh_xdata, fh_fmtp->fh4_i.fhx_xdata, 2365 exi->exi_fh.fh_xlen); 2366 2367 fh_fmtp->fh4_len = fid.fid_len; 2368 ASSERT(fid.fid_len <= sizeof (fh_fmtp->fh4_data)); 2369 bcopy(fid.fid_data, fh_fmtp->fh4_data, fid.fid_len); 2370 fh_fmtp->fh4_flag = 0; 2371 2372 #ifdef VOLATILE_FH_TEST 2373 /* 2374 * XXX (temporary?) 2375 * Use the rnode volatile_id value to add volatility to the fh. 2376 * 2377 * For testing purposes there are currently two scenarios, based 2378 * on whether the filesystem was shared with "volatile_fh" 2379 * or "expire_on_rename". In the first case, use the value of 2380 * export struct share_time as the volatile_id. In the second 2381 * case use the vnode volatile_id value (which is set to the 2382 * time in which the file was renamed). 2383 * 2384 * Note that the above are temporary constructs for testing only 2385 * XXX 2386 */ 2387 if (exi->exi_export.ex_flags & EX_VOLRNM) { 2388 fh_fmtp->fh4_volatile_id = find_volrnm_fh_id(exi, fh); 2389 } else if (exi->exi_export.ex_flags & EX_VOLFH) { 2390 fh_fmtp->fh4_volatile_id = exi->exi_volatile_id; 2391 } else { 2392 fh_fmtp->fh4_volatile_id = 0; 2393 } 2394 #endif /* VOLATILE_FH_TEST */ 2395 2396 return (0); 2397 } 2398 2399 /* 2400 * Convert an fhandle into a vnode. 2401 * Uses the file id (fh_len + fh_data) in the fhandle to get the vnode. 2402 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2403 * are done with it. 2404 */ 2405 vnode_t * 2406 nfs_fhtovp(fhandle_t *fh, struct exportinfo *exi) 2407 { 2408 vfs_t *vfsp; 2409 vnode_t *vp; 2410 int error; 2411 fid_t *fidp; 2412 2413 TRACE_0(TR_FAC_NFS, TR_FHTOVP_START, 2414 "fhtovp_start"); 2415 2416 if (exi == NULL) { 2417 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2418 "fhtovp_end:(%S)", "exi NULL"); 2419 return (NULL); /* not exported */ 2420 } 2421 2422 ASSERT(exi->exi_vp != NULL); 2423 2424 if (PUBLIC_FH2(fh)) { 2425 if (exi->exi_export.ex_flags & EX_PUBLIC) { 2426 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2427 "fhtovp_end:(%S)", "root not exported"); 2428 return (NULL); 2429 } 2430 vp = exi->exi_vp; 2431 VN_HOLD(vp); 2432 return (vp); 2433 } 2434 2435 vfsp = exi->exi_vp->v_vfsp; 2436 ASSERT(vfsp != NULL); 2437 fidp = (fid_t *)&fh->fh_len; 2438 2439 error = VFS_VGET(vfsp, &vp, fidp); 2440 if (error || vp == NULL) { 2441 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2442 "fhtovp_end:(%S)", "VFS_GET failed or vp NULL"); 2443 return (NULL); 2444 } 2445 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2446 "fhtovp_end:(%S)", "end"); 2447 return (vp); 2448 } 2449 2450 /* 2451 * Convert an fhandle into a vnode. 2452 * Uses the file id (fh_len + fh_data) in the fhandle to get the vnode. 2453 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2454 * are done with it. 2455 * This is just like nfs_fhtovp() but without the exportinfo argument. 2456 */ 2457 2458 vnode_t * 2459 lm_fhtovp(fhandle_t *fh) 2460 { 2461 register vfs_t *vfsp; 2462 vnode_t *vp; 2463 int error; 2464 2465 vfsp = getvfs(&fh->fh_fsid); 2466 if (vfsp == NULL) 2467 return (NULL); 2468 2469 error = VFS_VGET(vfsp, &vp, (fid_t *)&(fh->fh_len)); 2470 VFS_RELE(vfsp); 2471 if (error || vp == NULL) 2472 return (NULL); 2473 2474 return (vp); 2475 } 2476 2477 /* 2478 * Convert an nfs_fh3 into a vnode. 2479 * Uses the file id (fh_len + fh_data) in the file handle to get the vnode. 2480 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2481 * are done with it. 2482 */ 2483 vnode_t * 2484 nfs3_fhtovp(nfs_fh3 *fh, struct exportinfo *exi) 2485 { 2486 vfs_t *vfsp; 2487 vnode_t *vp; 2488 int error; 2489 fid_t *fidp; 2490 2491 if (exi == NULL) 2492 return (NULL); /* not exported */ 2493 2494 ASSERT(exi->exi_vp != NULL); 2495 2496 if (PUBLIC_FH3(fh)) { 2497 if (exi->exi_export.ex_flags & EX_PUBLIC) 2498 return (NULL); 2499 vp = exi->exi_vp; 2500 VN_HOLD(vp); 2501 return (vp); 2502 } 2503 2504 if (fh->fh3_length < NFS3_OLDFHSIZE || 2505 fh->fh3_length > NFS3_MAXFHSIZE) 2506 return (NULL); 2507 2508 vfsp = exi->exi_vp->v_vfsp; 2509 ASSERT(vfsp != NULL); 2510 fidp = FH3TOFIDP(fh); 2511 2512 error = VFS_VGET(vfsp, &vp, fidp); 2513 if (error || vp == NULL) 2514 return (NULL); 2515 2516 return (vp); 2517 } 2518 2519 /* 2520 * Convert an nfs_fh3 into a vnode. 2521 * Uses the file id (fh_len + fh_data) in the file handle to get the vnode. 2522 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2523 * are done with it. 2524 * BTW: This is just like nfs3_fhtovp() but without the exportinfo arg. 2525 * Also, vfsp is accessed through getvfs() rather using exportinfo !! 2526 */ 2527 2528 vnode_t * 2529 lm_nfs3_fhtovp(nfs_fh3 *fh) 2530 { 2531 vfs_t *vfsp; 2532 vnode_t *vp; 2533 int error; 2534 fid_t *fidp; 2535 2536 if (fh->fh3_length < NFS3_OLDFHSIZE || 2537 fh->fh3_length > NFS3_MAXFHSIZE) 2538 return (NULL); 2539 2540 vfsp = getvfs(&fh->fh3_fsid); 2541 if (vfsp == NULL) 2542 return (NULL); 2543 fidp = FH3TOFIDP(fh); 2544 2545 error = VFS_VGET(vfsp, &vp, fidp); 2546 VFS_RELE(vfsp); 2547 if (error || vp == NULL) 2548 return (NULL); 2549 2550 return (vp); 2551 } 2552 2553 /* 2554 * Convert an nfs_fh4 into a vnode. 2555 * Uses the file id (fh_len + fh_data) in the file handle to get the vnode. 2556 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2557 * are done with it. 2558 */ 2559 vnode_t * 2560 nfs4_fhtovp(nfs_fh4 *fh, struct exportinfo *exi, nfsstat4 *statp) 2561 { 2562 vfs_t *vfsp; 2563 vnode_t *vp = NULL; 2564 int error; 2565 fid_t *fidp; 2566 nfs_fh4_fmt_t *fh_fmtp; 2567 #ifdef VOLATILE_FH_TEST 2568 uint32_t volatile_id = 0; 2569 #endif /* VOLATILE_FH_TEST */ 2570 2571 if (exi == NULL) { 2572 *statp = NFS4ERR_STALE; 2573 return (NULL); /* not exported */ 2574 } 2575 ASSERT(exi->exi_vp != NULL); 2576 2577 /* caller should have checked this */ 2578 ASSERT(fh->nfs_fh4_len >= NFS_FH4_LEN); 2579 2580 fh_fmtp = (nfs_fh4_fmt_t *)fh->nfs_fh4_val; 2581 vfsp = exi->exi_vp->v_vfsp; 2582 ASSERT(vfsp != NULL); 2583 fidp = (fid_t *)&fh_fmtp->fh4_len; 2584 2585 #ifdef VOLATILE_FH_TEST 2586 /* XXX check if volatile - should be changed later */ 2587 if (exi->exi_export.ex_flags & (EX_VOLRNM | EX_VOLFH)) { 2588 /* 2589 * Filesystem is shared with volatile filehandles 2590 */ 2591 if (exi->exi_export.ex_flags & EX_VOLRNM) 2592 volatile_id = find_volrnm_fh_id(exi, fh); 2593 else 2594 volatile_id = exi->exi_volatile_id; 2595 2596 if (fh_fmtp->fh4_volatile_id != volatile_id) { 2597 *statp = NFS4ERR_FHEXPIRED; 2598 return (NULL); 2599 } 2600 } 2601 /* 2602 * XXX even if test_volatile_fh false, the fh may contain a 2603 * volatile id if obtained when the test was set. 2604 */ 2605 fh_fmtp->fh4_volatile_id = (uchar_t)0; 2606 #endif /* VOLATILE_FH_TEST */ 2607 2608 error = VFS_VGET(vfsp, &vp, fidp); 2609 /* 2610 * If we can not get vp from VFS_VGET, perhaps this is 2611 * an nfs v2/v3/v4 node in an nfsv4 pseudo filesystem. 2612 * Check it out. 2613 */ 2614 if (error && PSEUDO(exi)) 2615 error = nfs4_vget_pseudo(exi, &vp, fidp); 2616 2617 if (error || vp == NULL) { 2618 *statp = NFS4ERR_STALE; 2619 return (NULL); 2620 } 2621 /* XXX - disgusting hack */ 2622 if (vp->v_type == VNON && vp->v_flag & V_XATTRDIR) 2623 vp->v_type = VDIR; 2624 *statp = NFS4_OK; 2625 return (vp); 2626 } 2627 2628 /* 2629 * Find the export structure associated with the given filesystem. 2630 * If found, then increment the ref count (exi_count). 2631 */ 2632 struct exportinfo * 2633 checkexport(fsid_t *fsid, fid_t *fid) 2634 { 2635 struct exportinfo *exi; 2636 2637 rw_enter(&exported_lock, RW_READER); 2638 for (exi = exptable[exptablehash(fsid, fid)]; 2639 exi != NULL; 2640 exi = exi->exi_hash) { 2641 if (exportmatch(exi, fsid, fid)) { 2642 /* 2643 * If this is the place holder for the 2644 * public file handle, then return the 2645 * real export entry for the public file 2646 * handle. 2647 */ 2648 if (exi->exi_export.ex_flags & EX_PUBLIC) { 2649 exi = exi_public; 2650 } 2651 mutex_enter(&exi->exi_lock); 2652 exi->exi_count++; 2653 mutex_exit(&exi->exi_lock); 2654 rw_exit(&exported_lock); 2655 return (exi); 2656 } 2657 } 2658 rw_exit(&exported_lock); 2659 return (NULL); 2660 } 2661 2662 2663 /* 2664 * "old school" version of checkexport() for NFS4. NFS4 2665 * rfs4_compound holds exported_lock for duration of compound 2666 * processing. This version doesn't manipulate exi_count 2667 * since NFS4 breaks fundamental assumptions in the exi_count 2668 * design. 2669 */ 2670 struct exportinfo * 2671 checkexport4(fsid_t *fsid, fid_t *fid, vnode_t *vp) 2672 { 2673 struct exportinfo *exi; 2674 2675 ASSERT(RW_LOCK_HELD(&exported_lock)); 2676 2677 for (exi = exptable[exptablehash(fsid, fid)]; 2678 exi != NULL; 2679 exi = exi->exi_hash) { 2680 if (exportmatch(exi, fsid, fid)) { 2681 /* 2682 * If this is the place holder for the 2683 * public file handle, then return the 2684 * real export entry for the public file 2685 * handle. 2686 */ 2687 if (exi->exi_export.ex_flags & EX_PUBLIC) { 2688 exi = exi_public; 2689 } 2690 2691 /* 2692 * If vp is given, check if vp is the 2693 * same vnode as the exported node. 2694 * 2695 * Since VOP_FID of a lofs node returns the 2696 * fid of its real node (ufs), the exported 2697 * node for lofs and (pseudo) ufs may have 2698 * the same fsid and fid. 2699 */ 2700 if (vp == NULL || vp == exi->exi_vp) 2701 return (exi); 2702 } 2703 } 2704 2705 return (NULL); 2706 } 2707 2708 /* 2709 * Free an entire export list node 2710 */ 2711 void 2712 exportfree(struct exportinfo *exi) 2713 { 2714 struct exportdata *ex; 2715 2716 ex = &exi->exi_export; 2717 2718 ASSERT(exi->exi_vp != NULL && !(exi->exi_export.ex_flags & EX_PUBLIC)); 2719 VN_RELE(exi->exi_vp); 2720 if (exi->exi_dvp != NULL) 2721 VN_RELE(exi->exi_dvp); 2722 2723 if (ex->ex_flags & EX_INDEX) 2724 kmem_free(ex->ex_index, strlen(ex->ex_index) + 1); 2725 2726 kmem_free(ex->ex_path, ex->ex_pathlen + 1); 2727 nfsauth_cache_free(exi); 2728 2729 if (exi->exi_logbuffer != NULL) 2730 nfslog_disable(exi); 2731 2732 if (ex->ex_flags & EX_LOG) { 2733 kmem_free(ex->ex_log_buffer, ex->ex_log_bufferlen + 1); 2734 kmem_free(ex->ex_tag, ex->ex_taglen + 1); 2735 } 2736 2737 if (exi->exi_visible) 2738 free_visible(exi->exi_visible); 2739 2740 srv_secinfo_list_free(ex->ex_secinfo, ex->ex_seccnt); 2741 2742 #ifdef VOLATILE_FH_TEST 2743 free_volrnm_list(exi); 2744 mutex_destroy(&exi->exi_vol_rename_lock); 2745 #endif /* VOLATILE_FH_TEST */ 2746 2747 mutex_destroy(&exi->exi_lock); 2748 rw_destroy(&exi->exi_cache_lock); 2749 2750 kmem_free(exi, sizeof (*exi)); 2751 } 2752 2753 /* 2754 * load the index file from user space into kernel space. 2755 */ 2756 static int 2757 loadindex(struct exportdata *kex) 2758 { 2759 int error; 2760 char index[MAXNAMELEN+1]; 2761 size_t len; 2762 2763 /* 2764 * copyinstr copies the complete string including the NULL and 2765 * returns the len with the NULL byte included in the calculation 2766 * as long as the max length is not exceeded. 2767 */ 2768 if (error = copyinstr(kex->ex_index, index, sizeof (index), &len)) 2769 return (error); 2770 2771 kex->ex_index = kmem_alloc(len, KM_SLEEP); 2772 bcopy(index, kex->ex_index, len); 2773 2774 return (0); 2775 } 2776 2777 /* 2778 * When a thread completes using exi, it should call exi_rele(). 2779 * exi_rele() decrements exi_count. It releases exi if exi_count == 0, i.e. 2780 * if this is the last user of exi and exi is not on exportinfo list anymore 2781 */ 2782 void 2783 exi_rele(struct exportinfo *exi) 2784 { 2785 mutex_enter(&exi->exi_lock); 2786 exi->exi_count--; 2787 if (exi->exi_count == 0) { 2788 mutex_exit(&exi->exi_lock); 2789 exportfree(exi); 2790 } else 2791 mutex_exit(&exi->exi_lock); 2792 } 2793 2794 #ifdef VOLATILE_FH_TEST 2795 /* 2796 * Test for volatile fh's - add file handle to list and set its volatile id 2797 * to time it was renamed. If EX_VOLFH is also on and the fs is reshared, 2798 * the vol_rename queue is purged. 2799 * 2800 * XXX This code is for unit testing purposes only... To correctly use it, it 2801 * needs to tie a rename list to the export struct and (more 2802 * important), protect access to the exi rename list using a write lock. 2803 */ 2804 2805 /* 2806 * get the fh vol record if it's in the volatile on rename list. Don't check 2807 * volatile_id in the file handle - compare only the file handles. 2808 */ 2809 static struct ex_vol_rename * 2810 find_volrnm_fh(struct exportinfo *exi, nfs_fh4 *fh4p) 2811 { 2812 struct ex_vol_rename *p = NULL; 2813 fhandle4_t *fhp; 2814 2815 /* XXX shouldn't we assert &exported_lock held? */ 2816 ASSERT(MUTEX_HELD(&exi->exi_vol_rename_lock)); 2817 2818 if (fh4p->nfs_fh4_len != NFS_FH4_LEN) { 2819 return (NULL); 2820 } 2821 fhp = &((nfs_fh4_fmt_t *)fh4p->nfs_fh4_val)->fh4_i; 2822 for (p = exi->exi_vol_rename; p != NULL; p = p->vrn_next) { 2823 if (bcmp(fhp, &p->vrn_fh_fmt.fh4_i, 2824 sizeof (fhandle4_t)) == 0) 2825 break; 2826 } 2827 return (p); 2828 } 2829 2830 /* 2831 * get the volatile id for the fh (if there is - else return 0). Ignore the 2832 * volatile_id in the file handle - compare only the file handles. 2833 */ 2834 static uint32_t 2835 find_volrnm_fh_id(struct exportinfo *exi, nfs_fh4 *fh4p) 2836 { 2837 struct ex_vol_rename *p; 2838 uint32_t volatile_id; 2839 2840 mutex_enter(&exi->exi_vol_rename_lock); 2841 p = find_volrnm_fh(exi, fh4p); 2842 volatile_id = (p ? p->vrn_fh_fmt.fh4_volatile_id : 2843 exi->exi_volatile_id); 2844 mutex_exit(&exi->exi_vol_rename_lock); 2845 return (volatile_id); 2846 } 2847 2848 /* 2849 * Free the volatile on rename list - will be called if a filesystem is 2850 * unshared or reshared without EX_VOLRNM 2851 */ 2852 static void 2853 free_volrnm_list(struct exportinfo *exi) 2854 { 2855 struct ex_vol_rename *p, *pnext; 2856 2857 /* no need to hold mutex lock - this one is called from exportfree */ 2858 for (p = exi->exi_vol_rename; p != NULL; p = pnext) { 2859 pnext = p->vrn_next; 2860 kmem_free(p, sizeof (*p)); 2861 } 2862 exi->exi_vol_rename = NULL; 2863 } 2864 2865 /* 2866 * Add a file handle to the volatile on rename list. 2867 */ 2868 void 2869 add_volrnm_fh(struct exportinfo *exi, vnode_t *vp) 2870 { 2871 struct ex_vol_rename *p; 2872 char fhbuf[NFS4_FHSIZE]; 2873 nfs_fh4 fh4; 2874 int error; 2875 2876 fh4.nfs_fh4_val = fhbuf; 2877 error = makefh4(&fh4, vp, exi); 2878 if ((error) || (fh4.nfs_fh4_len != sizeof (p->vrn_fh_fmt))) { 2879 return; 2880 } 2881 2882 mutex_enter(&exi->exi_vol_rename_lock); 2883 2884 p = find_volrnm_fh(exi, &fh4); 2885 2886 if (p == NULL) { 2887 p = kmem_alloc(sizeof (*p), KM_SLEEP); 2888 bcopy(fh4.nfs_fh4_val, &p->vrn_fh_fmt, sizeof (p->vrn_fh_fmt)); 2889 p->vrn_next = exi->exi_vol_rename; 2890 exi->exi_vol_rename = p; 2891 } 2892 2893 p->vrn_fh_fmt.fh4_volatile_id = gethrestime_sec(); 2894 mutex_exit(&exi->exi_vol_rename_lock); 2895 } 2896 2897 #endif /* VOLATILE_FH_TEST */ 2898