1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * Copyright 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T. 27 * All rights reserved. 28 */ 29 30 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/time.h> 34 #include <sys/vfs.h> 35 #include <sys/vnode.h> 36 #include <sys/socket.h> 37 #include <sys/errno.h> 38 #include <sys/uio.h> 39 #include <sys/proc.h> 40 #include <sys/user.h> 41 #include <sys/file.h> 42 #include <sys/tiuser.h> 43 #include <sys/kmem.h> 44 #include <sys/pathname.h> 45 #include <sys/debug.h> 46 #include <sys/vtrace.h> 47 #include <sys/cmn_err.h> 48 #include <sys/acl.h> 49 #include <sys/utsname.h> 50 #include <sys/sdt.h> 51 #include <netinet/in.h> 52 53 #include <rpc/types.h> 54 #include <rpc/auth.h> 55 #include <rpc/svc.h> 56 57 #include <nfs/nfs.h> 58 #include <nfs/export.h> 59 #include <nfs/nfssys.h> 60 #include <nfs/nfs_clnt.h> 61 #include <nfs/nfs_acl.h> 62 #include <nfs/nfs_log.h> 63 #include <nfs/lm.h> 64 #include <sys/sunddi.h> 65 66 treenode_t *ns_root; 67 68 struct exportinfo *exptable[EXPTABLESIZE]; 69 70 static int unexport(fsid_t *, fid_t *, vnode_t *); 71 static void exportfree(exportinfo_t *); 72 static int loadindex(exportdata_t *); 73 74 extern void nfsauth_cache_free(exportinfo_t *); 75 extern int sec_svc_loadrootnames(int, int, caddr_t **, model_t); 76 extern void sec_svc_freerootnames(int, int, caddr_t *); 77 78 static int build_seclist_nodups(exportdata_t *, secinfo_t *, int); 79 static void srv_secinfo_add(secinfo_t **, int *, secinfo_t *, int, int); 80 static void srv_secinfo_remove(secinfo_t **, int *, secinfo_t *, int); 81 static void srv_secinfo_treeclimb(exportinfo_t *, secinfo_t *, int, int); 82 83 #ifdef VOLATILE_FH_TEST 84 static struct ex_vol_rename *find_volrnm_fh(exportinfo_t *, nfs_fh4 *); 85 static uint32_t find_volrnm_fh_id(exportinfo_t *, nfs_fh4 *); 86 static void free_volrnm_list(exportinfo_t *); 87 #endif /* VOLATILE_FH_TEST */ 88 89 /* 90 * exported_lock Read/Write lock that protects the exportinfo list. 91 * This lock must be held when searching or modifiying 92 * the exportinfo list. 93 */ 94 krwlock_t exported_lock; 95 96 /* 97 * "public" and default (root) location for public filehandle 98 */ 99 struct exportinfo *exi_public, *exi_root; 100 101 fid_t exi_rootfid; /* for checking the default public file handle */ 102 103 fhandle_t nullfh2; /* for comparing V2 filehandles */ 104 105 /* 106 * macro for static dtrace probes to trace server namespace ref count mods. 107 */ 108 #define SECREF_TRACE(seclist, tag, flav, aftcnt) \ 109 DTRACE_PROBE4(nfss__i__nmspc__secref, struct secinfo *, (seclist), \ 110 char *, (tag), int, (int)(flav), int, (int)(aftcnt)) 111 112 113 #define exptablehash(fsid, fid) (nfs_fhhash((fsid), (fid)) & (EXPTABLESIZE - 1)) 114 115 /* 116 * File handle hash function, good for producing hash values 16 bits wide. 117 */ 118 int 119 nfs_fhhash(fsid_t *fsid, fid_t *fid) 120 { 121 short *data; 122 int i, len; 123 short h; 124 125 ASSERT(fid != NULL); 126 127 data = (short *)fid->fid_data; 128 129 /* fid_data must be aligned on a short */ 130 ASSERT((((uintptr_t)data) & (sizeof (short) - 1)) == 0); 131 132 if (fid->fid_len == 10) { 133 /* 134 * probably ufs: hash on bytes 4,5 and 8,9 135 */ 136 return (fsid->val[0] ^ data[2] ^ data[4]); 137 } 138 139 if (fid->fid_len == 6) { 140 /* 141 * probably hsfs: hash on bytes 0,1 and 4,5 142 */ 143 return ((fsid->val[0] ^ data[0] ^ data[2])); 144 } 145 146 /* 147 * Some other file system. Assume that every byte is 148 * worth hashing. 149 */ 150 h = (short)fsid->val[0]; 151 152 /* 153 * Sanity check the length before using it 154 * blindly in case the client trashed it. 155 */ 156 if (fid->fid_len > NFS_FHMAXDATA) 157 len = 0; 158 else 159 len = fid->fid_len / sizeof (short); 160 161 /* 162 * This will ignore one byte if len is not a multiple of 163 * of sizeof (short). No big deal since we at least get some 164 * variation with fsid->val[0]; 165 */ 166 for (i = 0; i < len; i++) 167 h ^= data[i]; 168 169 return ((int)h); 170 } 171 172 /* 173 * Free the memory allocated within a secinfo entry. 174 */ 175 void 176 srv_secinfo_entry_free(struct secinfo *secp) 177 { 178 if (secp->s_rootcnt > 0 && secp->s_rootnames != NULL) { 179 sec_svc_freerootnames(secp->s_secinfo.sc_rpcnum, 180 secp->s_rootcnt, secp->s_rootnames); 181 secp->s_rootcnt = 0; 182 } 183 184 if ((secp->s_secinfo.sc_rpcnum == RPCSEC_GSS) && 185 (secp->s_secinfo.sc_gss_mech_type)) { 186 kmem_free(secp->s_secinfo.sc_gss_mech_type->elements, 187 secp->s_secinfo.sc_gss_mech_type->length); 188 kmem_free(secp->s_secinfo.sc_gss_mech_type, 189 sizeof (rpc_gss_OID_desc)); 190 secp->s_secinfo.sc_gss_mech_type = NULL; 191 } 192 193 } 194 195 /* 196 * Free a list of secinfo allocated in the exportdata structure. 197 */ 198 void 199 srv_secinfo_list_free(struct secinfo *secinfo, int cnt) 200 { 201 int i; 202 203 if (cnt == 0) 204 return; 205 206 for (i = 0; i < cnt; i++) 207 srv_secinfo_entry_free(&secinfo[i]); 208 209 kmem_free(secinfo, cnt * sizeof (struct secinfo)); 210 } 211 212 /* 213 * Allocate and copy a secinfo data from "from" to "to". 214 * 215 * This routine is used by srv_secinfo_add() to add a new flavor to an 216 * ancestor's export node. The rootnames are not copied because the 217 * allowable rootname access only applies to the explicit exported node, 218 * not its ancestor's. 219 * 220 * "to" should have already been allocated and zeroed before calling 221 * this routine. 222 * 223 * This routine is used under the protection of exported_lock (RW_WRITER). 224 */ 225 void 226 srv_secinfo_copy(struct secinfo *from, struct secinfo *to) 227 { 228 to->s_secinfo.sc_nfsnum = from->s_secinfo.sc_nfsnum; 229 to->s_secinfo.sc_rpcnum = from->s_secinfo.sc_rpcnum; 230 231 if (from->s_secinfo.sc_rpcnum == RPCSEC_GSS) { 232 to->s_secinfo.sc_service = from->s_secinfo.sc_service; 233 bcopy(from->s_secinfo.sc_name, to->s_secinfo.sc_name, 234 strlen(from->s_secinfo.sc_name)); 235 bcopy(from->s_secinfo.sc_gss_mech, to->s_secinfo.sc_gss_mech, 236 strlen(from->s_secinfo.sc_gss_mech)); 237 238 /* copy mechanism oid */ 239 to->s_secinfo.sc_gss_mech_type = 240 kmem_alloc(sizeof (rpc_gss_OID_desc), KM_SLEEP); 241 to->s_secinfo.sc_gss_mech_type->length = 242 from->s_secinfo.sc_gss_mech_type->length; 243 to->s_secinfo.sc_gss_mech_type->elements = 244 kmem_alloc(from->s_secinfo.sc_gss_mech_type->length, 245 KM_SLEEP); 246 bcopy(from->s_secinfo.sc_gss_mech_type->elements, 247 to->s_secinfo.sc_gss_mech_type->elements, 248 from->s_secinfo.sc_gss_mech_type->length); 249 } 250 251 to->s_refcnt = from->s_refcnt; 252 to->s_window = from->s_window; 253 /* no need to copy the mode bits - s_flags */ 254 } 255 256 /* 257 * Create a secinfo array without duplicates. The condensed 258 * flavor list is used to propagate flavor ref counts to an 259 * export's ancestor pseudonodes. 260 */ 261 static int 262 build_seclist_nodups(exportdata_t *exd, secinfo_t *nodups, int exponly) 263 { 264 int ccnt, c; 265 int ncnt, n; 266 struct secinfo *cursec; 267 268 ncnt = 0; 269 ccnt = exd->ex_seccnt; 270 cursec = exd->ex_secinfo; 271 272 for (c = 0; c < ccnt; c++) { 273 274 if (exponly && ! SEC_REF_EXPORTED(&cursec[c])) 275 continue; 276 277 for (n = 0; n < ncnt; n++) { 278 if (nodups[n].s_secinfo.sc_nfsnum == 279 cursec[c].s_secinfo.sc_nfsnum) 280 break; 281 } 282 283 /* 284 * The structure copy below also copys ptrs embedded 285 * within struct secinfo. The ptrs are copied but 286 * they are never freed from the nodups array. If 287 * an ancestor's secinfo array doesn't contain one 288 * of the nodups flavors, then the entry is properly 289 * copied into the ancestor's secinfo array. 290 * (see srv_secinfo_copy) 291 */ 292 if (n == ncnt) { 293 nodups[n] = cursec[c]; 294 ncnt++; 295 } 296 } 297 return (ncnt); 298 } 299 300 /* 301 * Add the new security flavors from newdata to the current list, pcursec. 302 * Upon return, *pcursec has the newly merged secinfo list. 303 * 304 * There should be at least 1 secinfo entry in newsec. 305 * 306 * This routine is used under the protection of exported_lock (RW_WRITER). 307 */ 308 static void 309 srv_secinfo_add(secinfo_t **pcursec, int *pcurcnt, secinfo_t *newsec, 310 int newcnt, int is_pseudo) 311 { 312 int ccnt, c; /* sec count in current data - curdata */ 313 int n; /* index for newsec - newsecinfo */ 314 int tcnt; /* total sec count after merge */ 315 int mcnt; /* total sec count after merge */ 316 struct secinfo *msec; /* merged secinfo list */ 317 struct secinfo *cursec; 318 319 cursec = *pcursec; 320 ccnt = *pcurcnt; 321 322 ASSERT(newcnt > 0); 323 tcnt = ccnt + newcnt; 324 325 for (n = 0; n < newcnt; n++) { 326 for (c = 0; c < ccnt; c++) { 327 if (newsec[n].s_secinfo.sc_nfsnum == 328 cursec[c].s_secinfo.sc_nfsnum) { 329 cursec[c].s_refcnt += newsec[n].s_refcnt; 330 SECREF_TRACE(cursec, "add_ref", 331 cursec[c].s_secinfo.sc_nfsnum, 332 cursec[c].s_refcnt); 333 tcnt--; 334 break; 335 } 336 } 337 } 338 339 if (tcnt == ccnt) 340 return; /* no change; no new flavors */ 341 342 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 343 344 /* move current secinfo list data to the new list */ 345 for (c = 0; c < ccnt; c++) 346 msec[c] = cursec[c]; 347 348 /* Add the flavor that's not in the current data */ 349 mcnt = ccnt; 350 for (n = 0; n < newcnt; n++) { 351 for (c = 0; c < ccnt; c++) { 352 if (newsec[n].s_secinfo.sc_nfsnum == 353 cursec[c].s_secinfo.sc_nfsnum) 354 break; 355 } 356 357 /* This is the one. Add it. */ 358 if (c == ccnt) { 359 srv_secinfo_copy(&newsec[n], &msec[mcnt]); 360 361 if (is_pseudo) 362 msec[mcnt].s_flags = M_RO; 363 364 SECREF_TRACE(msec, "new_ref", 365 msec[mcnt].s_secinfo.sc_nfsnum, 366 msec[mcnt].s_refcnt); 367 mcnt++; 368 } 369 } 370 371 ASSERT(mcnt == tcnt); 372 373 /* 374 * Done. Update curdata. Free the old secinfo list in 375 * curdata and return the new sec array info 376 */ 377 if (ccnt > 0) 378 kmem_free(cursec, ccnt * sizeof (struct secinfo)); 379 *pcurcnt = tcnt; 380 *pcursec = msec; 381 } 382 383 /* 384 * For NFS V4. 385 * Remove the security data of the unexported node from its ancestors. 386 * Assume there is at least one flavor entry in the current sec list 387 * (pcursec). 388 * 389 * This routine is used under the protection of exported_lock (RW_WRITER). 390 * 391 * Every element of remsec is an explicitly exported flavor. If 392 * srv_secinfo_remove() is called fom an exportfs error path, then 393 * the flavor list was derived from the user's share cmdline, 394 * and all flavors are explicit. If it was called from the unshare path, 395 * build_seclist_nodups() was called with the exponly flag. 396 */ 397 static void 398 srv_secinfo_remove(secinfo_t **pcursec, int *pcurcnt, secinfo_t *remsec, 399 int remcnt) 400 { 401 int ccnt, c; /* sec count in current data - cursec */ 402 int r; /* sec count in removal data - remsec */ 403 int tcnt, mcnt; /* total sec count after removing */ 404 struct secinfo *msec; /* final secinfo list after removing */ 405 struct secinfo *cursec; 406 407 cursec = *pcursec; 408 ccnt = *pcurcnt; 409 tcnt = ccnt; 410 411 for (r = 0; r < remcnt; r++) { 412 /* 413 * At unshare/reshare time, only explicitly shared flavor ref 414 * counts are decremented and propagated to ancestors. 415 * Implicit flavor refs came from shared descendants, and 416 * they must be kept. 417 */ 418 if (! SEC_REF_EXPORTED(&remsec[r])) 419 continue; 420 421 for (c = 0; c < ccnt; c++) { 422 if (remsec[r].s_secinfo.sc_nfsnum == 423 cursec[c].s_secinfo.sc_nfsnum) { 424 425 /* 426 * Decrement secinfo reference count by 1. 427 * If this entry is invalid after decrementing 428 * the count (i.e. count < 1), this entry will 429 * be removed. 430 */ 431 cursec[c].s_refcnt--; 432 433 SECREF_TRACE(cursec, "del_ref", 434 cursec[c].s_secinfo.sc_nfsnum, 435 cursec[c].s_refcnt); 436 437 ASSERT(cursec[c].s_refcnt >= 0); 438 439 if (SEC_REF_INVALID(&cursec[c])) 440 tcnt--; 441 break; 442 } 443 } 444 } 445 446 ASSERT(tcnt >= 0); 447 if (tcnt == ccnt) 448 return; /* no change; no flavors to remove */ 449 450 if (tcnt == 0) { 451 srv_secinfo_list_free(cursec, ccnt); 452 *pcurcnt = 0; 453 *pcursec = NULL; 454 return; 455 } 456 457 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 458 459 /* walk thru the given secinfo list to remove the flavors */ 460 mcnt = 0; 461 for (c = 0; c < ccnt; c++) { 462 if (SEC_REF_INVALID(&cursec[c])) { 463 srv_secinfo_entry_free(&cursec[c]); 464 } else { 465 msec[mcnt] = cursec[c]; 466 mcnt++; 467 } 468 } 469 470 ASSERT(mcnt == tcnt); 471 /* 472 * Done. Update curdata. 473 * Free the existing secinfo list in curdata. All pointers 474 * within the list have either been moved to msec or freed 475 * if it's invalid. 476 */ 477 kmem_free(*pcursec, ccnt * sizeof (struct secinfo)); 478 *pcursec = msec; 479 *pcurcnt = tcnt; 480 } 481 482 483 /* 484 * For the reshare case, sec flavor accounting happens in 3 steps: 485 * 1) propagate addition of new flavor refs up the ancestor tree 486 * 2) transfer flavor refs of descendants to new/reshared exportdata 487 * 3) propagate removal of old flavor refs up the ancestor tree 488 * 489 * srv_secinfo_exp2exp() implements step 2 of a reshare. At this point, 490 * the new flavor list has already been propagated up through the 491 * ancestor tree via srv_secinfo_treeclimb(). 492 * 493 * If there is more than 1 export reference to an old flavor (i.e. some 494 * of its children shared with this flavor), this flavor information 495 * needs to be transferred to the new exportdata struct. A flavor in 496 * the old exportdata has descendant refs when its s_refcnt > 1 or it 497 * is implicitly shared (M_SEC4_EXPORTED not set in s_flags). 498 * 499 * SEC_REF_EXPORTED() is only true when M_SEC4_EXPORTED is set 500 * SEC_REF_SELF() is only true when both M_SEC4_EXPORTED is set and s_refcnt==1 501 * 502 * Transferring descendant flavor refcnts happens in 2 passes: 503 * a) flavors used before (oldsecinfo) and after (curdata->ex_secinfo) reshare 504 * b) flavors used before but not after reshare 505 * 506 * This routine is used under the protection of exported_lock (RW_WRITER). 507 */ 508 void 509 srv_secinfo_exp2exp(exportdata_t *curdata, secinfo_t *oldsecinfo, int ocnt) 510 { 511 int ccnt, c; /* sec count in current data - curdata */ 512 int o; /* sec count in old data - oldsecinfo */ 513 int tcnt, mcnt; /* total sec count after the transfer */ 514 struct secinfo *msec; /* merged secinfo list */ 515 516 ccnt = curdata->ex_seccnt; 517 518 ASSERT(ocnt > 0); 519 ASSERT(!(curdata->ex_flags & EX_PSEUDO)); 520 521 /* 522 * If the oldsecinfo has flavors with more than 1 reference count 523 * and the flavor is specified in the reshare, transfer the flavor 524 * refs to the new seclist (curdata.ex_secinfo). 525 */ 526 tcnt = ccnt + ocnt; 527 528 for (o = 0; o < ocnt; o++) { 529 530 if (SEC_REF_SELF(&oldsecinfo[o])) { 531 tcnt--; 532 continue; 533 } 534 535 for (c = 0; c < ccnt; c++) { 536 if (oldsecinfo[o].s_secinfo.sc_nfsnum == 537 curdata->ex_secinfo[c].s_secinfo.sc_nfsnum) { 538 539 /* 540 * add old reference to the current 541 * secinfo count 542 */ 543 curdata->ex_secinfo[c].s_refcnt += 544 oldsecinfo[o].s_refcnt; 545 546 /* 547 * Delete the old export flavor 548 * reference. The initial reference 549 * was created during srv_secinfo_add, 550 * and the count is decremented below 551 * to account for the initial reference. 552 */ 553 if (SEC_REF_EXPORTED(&oldsecinfo[o])) 554 curdata->ex_secinfo[c].s_refcnt--; 555 556 SECREF_TRACE(curdata->ex_path, 557 "reshare_xfer_common_child_refs", 558 curdata->ex_secinfo[c].s_secinfo.sc_nfsnum, 559 curdata->ex_secinfo[c].s_refcnt); 560 561 ASSERT(curdata->ex_secinfo[c].s_refcnt >= 0); 562 563 tcnt--; 564 break; 565 } 566 } 567 } 568 569 if (tcnt == ccnt) 570 return; /* no more transfer to do */ 571 572 /* 573 * oldsecinfo has flavors referenced by its children that are not 574 * in the current (new) export flavor list. Add these flavors. 575 */ 576 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 577 578 /* move current secinfo list data to the new list */ 579 for (c = 0; c < ccnt; c++) 580 msec[c] = curdata->ex_secinfo[c]; 581 582 /* 583 * Add the flavor that's not in the new export, but still 584 * referenced by its children. 585 */ 586 mcnt = ccnt; 587 for (o = 0; o < ocnt; o++) { 588 if (! SEC_REF_SELF(&oldsecinfo[o])) { 589 for (c = 0; c < ccnt; c++) { 590 if (oldsecinfo[o].s_secinfo.sc_nfsnum == 591 curdata->ex_secinfo[c].s_secinfo.sc_nfsnum) 592 break; 593 } 594 595 /* 596 * This is the one. Add it. Decrement the ref count 597 * by 1 if the flavor is an explicitly shared flavor 598 * for the oldsecinfo export node. 599 */ 600 if (c == ccnt) { 601 srv_secinfo_copy(&oldsecinfo[o], &msec[mcnt]); 602 if (SEC_REF_EXPORTED(&oldsecinfo[o])) 603 msec[mcnt].s_refcnt--; 604 605 SECREF_TRACE(curdata, 606 "reshare_xfer_implicit_child_refs", 607 msec[mcnt].s_secinfo.sc_nfsnum, 608 msec[mcnt].s_refcnt); 609 610 ASSERT(msec[mcnt].s_refcnt >= 0); 611 mcnt++; 612 } 613 } 614 } 615 616 ASSERT(mcnt == tcnt); 617 /* 618 * Done. Update curdata, free the existing secinfo list in 619 * curdata and set the new value. 620 */ 621 if (ccnt > 0) 622 kmem_free(curdata->ex_secinfo, ccnt * sizeof (struct secinfo)); 623 curdata->ex_seccnt = tcnt; 624 curdata->ex_secinfo = msec; 625 } 626 627 /* 628 * When unsharing an old export node and the old node becomes a pseudo node, 629 * if there is more than 1 export reference to an old flavor (i.e. some of 630 * its children shared with this flavor), this flavor information needs to 631 * be transferred to the new shared node. 632 * 633 * This routine is used under the protection of exported_lock (RW_WRITER). 634 */ 635 void 636 srv_secinfo_exp2pseu(exportdata_t *curdata, exportdata_t *olddata) 637 { 638 int ocnt, o; /* sec count in transfer data - trandata */ 639 int tcnt, mcnt; /* total sec count after transfer */ 640 struct secinfo *msec; /* merged secinfo list */ 641 642 ASSERT(curdata->ex_flags & EX_PSEUDO); 643 ASSERT(curdata->ex_seccnt == 0); 644 645 ocnt = olddata->ex_seccnt; 646 647 /* 648 * If the olddata has flavors with more than 1 reference count, 649 * transfer the information to the curdata. 650 */ 651 tcnt = ocnt; 652 653 for (o = 0; o < ocnt; o++) { 654 if (SEC_REF_SELF(&olddata->ex_secinfo[o])) 655 tcnt--; 656 } 657 658 if (tcnt == 0) 659 return; /* no transfer to do */ 660 661 msec = kmem_zalloc(tcnt * sizeof (struct secinfo), KM_SLEEP); 662 663 mcnt = 0; 664 for (o = 0; o < ocnt; o++) { 665 if (! SEC_REF_SELF(&olddata->ex_secinfo[o])) { 666 667 /* 668 * Decrement the reference count by 1 if the flavor is 669 * an explicitly shared flavor for the olddata export 670 * node. 671 */ 672 srv_secinfo_copy(&olddata->ex_secinfo[o], &msec[mcnt]); 673 msec[mcnt].s_flags = M_RO; 674 if (SEC_REF_EXPORTED(&olddata->ex_secinfo[o])) 675 msec[mcnt].s_refcnt--; 676 677 SECREF_TRACE(curdata, "unshare_morph_pseudo", 678 msec[mcnt].s_secinfo.sc_nfsnum, 679 msec[mcnt].s_refcnt); 680 681 ASSERT(msec[mcnt].s_refcnt >= 0); 682 mcnt++; 683 } 684 } 685 686 ASSERT(mcnt == tcnt); 687 /* 688 * Done. Update curdata. 689 * Free up the existing secinfo list in curdata and 690 * set the new value. 691 */ 692 curdata->ex_seccnt = tcnt; 693 curdata->ex_secinfo = msec; 694 } 695 696 /* 697 * Find for given treenode the exportinfo which has its 698 * exp_visible linked on its exi_visible list. 699 * 700 * Note: We could add new pointer either to treenode or 701 * to exp_visible, which will point there directly. 702 * This would buy some speed for some memory. 703 */ 704 exportinfo_t * 705 vis2exi(treenode_t *tnode) 706 { 707 exportinfo_t *exi_ret = NULL; 708 709 for (;;) { 710 tnode = tnode->tree_parent; 711 if (TREE_ROOT(tnode)) { 712 exi_ret = tnode->tree_exi; 713 break; 714 } 715 } 716 717 ASSERT(exi_ret); /* Every visible should have its home exportinfo */ 718 return (exi_ret); 719 } 720 721 /* 722 * For NFS V4. 723 * Add or remove the newly exported or unexported security flavors of the 724 * given exportinfo from its ancestors upto the system root. 725 */ 726 void 727 srv_secinfo_treeclimb(exportinfo_t *exip, secinfo_t *sec, int seccnt, int isadd) 728 { 729 treenode_t *tnode = exip->exi_tree; 730 731 ASSERT(RW_WRITE_HELD(&exported_lock)); 732 ASSERT(tnode); 733 734 if (seccnt == 0) 735 return; 736 737 /* 738 * If flavors are being added and the new export root isn't 739 * also VROOT, its implicitly allowed flavors are inherited from 740 * from its pseudonode. 741 * Note - for VROOT exports the implicitly allowed flavors were 742 * transferred from the PSEUDO export in exportfs() 743 */ 744 if (isadd && !(exip->exi_vp->v_flag & VROOT) && 745 tnode->tree_vis->vis_seccnt > 0) { 746 srv_secinfo_add(&exip->exi_export.ex_secinfo, 747 &exip->exi_export.ex_seccnt, tnode->tree_vis->vis_secinfo, 748 tnode->tree_vis->vis_seccnt, FALSE); 749 } 750 751 /* 752 * Move to parent node and propagate sec flavor 753 * to exportinfo and to visible structures. 754 */ 755 tnode = tnode->tree_parent; 756 757 while (tnode) { 758 759 /* If there is exportinfo, update it */ 760 if (tnode->tree_exi) { 761 secinfo_t **pxsec = 762 &tnode->tree_exi->exi_export.ex_secinfo; 763 int *pxcnt = &tnode->tree_exi->exi_export.ex_seccnt; 764 int is_pseudo = PSEUDO(tnode->tree_exi); 765 if (isadd) 766 srv_secinfo_add(pxsec, pxcnt, sec, seccnt, 767 is_pseudo); 768 else 769 srv_secinfo_remove(pxsec, pxcnt, sec, seccnt); 770 } 771 772 /* Update every visible - only root node has no visible */ 773 if (tnode->tree_vis) { 774 secinfo_t **pxsec = &tnode->tree_vis->vis_secinfo; 775 int *pxcnt = &tnode->tree_vis->vis_seccnt; 776 if (isadd) 777 srv_secinfo_add(pxsec, pxcnt, sec, seccnt, 778 FALSE); 779 else 780 srv_secinfo_remove(pxsec, pxcnt, sec, seccnt); 781 } 782 tnode = tnode->tree_parent; 783 } 784 } 785 786 void 787 export_link(exportinfo_t *exi) { 788 int exporthash; 789 790 exporthash = exptablehash(&exi->exi_fsid, &exi->exi_fid); 791 exi->exi_hash = exptable[exporthash]; 792 exptable[exporthash] = exi; 793 } 794 795 /* 796 * Initialization routine for export routines. Should only be called once. 797 */ 798 int 799 nfs_exportinit(void) 800 { 801 int error; 802 803 rw_init(&exported_lock, NULL, RW_DEFAULT, NULL); 804 805 /* 806 * Allocate the place holder for the public file handle, which 807 * is all zeroes. It is initially set to the root filesystem. 808 */ 809 exi_root = kmem_zalloc(sizeof (*exi_root), KM_SLEEP); 810 exi_public = exi_root; 811 812 exi_root->exi_export.ex_flags = EX_PUBLIC; 813 exi_root->exi_export.ex_pathlen = 1; /* length of "/" */ 814 exi_root->exi_export.ex_path = 815 kmem_alloc(exi_root->exi_export.ex_pathlen + 1, KM_SLEEP); 816 exi_root->exi_export.ex_path[0] = '/'; 817 exi_root->exi_export.ex_path[1] = '\0'; 818 819 exi_root->exi_count = 1; 820 mutex_init(&exi_root->exi_lock, NULL, MUTEX_DEFAULT, NULL); 821 822 exi_root->exi_vp = rootdir; 823 exi_rootfid.fid_len = MAXFIDSZ; 824 error = vop_fid_pseudo(exi_root->exi_vp, &exi_rootfid); 825 if (error) { 826 mutex_destroy(&exi_root->exi_lock); 827 kmem_free(exi_root, sizeof (*exi_root)); 828 return (error); 829 } 830 831 /* setup the fhandle template */ 832 exi_root->exi_fh.fh_fsid = rootdir->v_vfsp->vfs_fsid; 833 exi_root->exi_fh.fh_xlen = exi_rootfid.fid_len; 834 bcopy(exi_rootfid.fid_data, exi_root->exi_fh.fh_xdata, 835 exi_rootfid.fid_len); 836 exi_root->exi_fh.fh_len = sizeof (exi_root->exi_fh.fh_data); 837 838 /* 839 * Publish the exportinfo in the hash table 840 */ 841 export_link(exi_root); 842 843 nfslog_init(); 844 ns_root = NULL; 845 846 return (0); 847 } 848 849 /* 850 * Finalization routine for export routines. Called to cleanup previously 851 * initialization work when the NFS server module could not be loaded correctly. 852 */ 853 void 854 nfs_exportfini(void) 855 { 856 /* 857 * Deallocate the place holder for the public file handle. 858 */ 859 srv_secinfo_list_free(exi_root->exi_export.ex_secinfo, 860 exi_root->exi_export.ex_seccnt); 861 mutex_destroy(&exi_root->exi_lock); 862 kmem_free(exi_root, sizeof (*exi_root)); 863 864 rw_destroy(&exported_lock); 865 } 866 867 /* 868 * Check if 2 gss mechanism identifiers are the same. 869 * 870 * return FALSE if not the same. 871 * return TRUE if the same. 872 */ 873 static bool_t 874 nfs_mech_equal(rpc_gss_OID mech1, rpc_gss_OID mech2) 875 { 876 if ((mech1->length == 0) && (mech2->length == 0)) 877 return (TRUE); 878 879 if (mech1->length != mech2->length) 880 return (FALSE); 881 882 return (bcmp(mech1->elements, mech2->elements, mech1->length) == 0); 883 } 884 885 /* 886 * This routine is used by rpc to map rpc security number 887 * to nfs specific security flavor number. 888 * 889 * The gss callback prototype is 890 * callback(struct svc_req *, gss_cred_id_t *, gss_ctx_id_t *, 891 * rpc_gss_lock_t *, void **), 892 * since nfs does not use the gss_cred_id_t/gss_ctx_id_t arguments 893 * we cast them to void. 894 */ 895 /*ARGSUSED*/ 896 bool_t 897 rfs_gsscallback(struct svc_req *req, gss_cred_id_t deleg, void *gss_context, 898 rpc_gss_lock_t *lock, void **cookie) 899 { 900 int i, j; 901 rpc_gss_rawcred_t *raw_cred; 902 struct exportinfo *exi; 903 904 /* 905 * We don't deal with delegated credentials. 906 */ 907 if (deleg != GSS_C_NO_CREDENTIAL) 908 return (FALSE); 909 910 raw_cred = lock->raw_cred; 911 *cookie = NULL; 912 913 rw_enter(&exported_lock, RW_READER); 914 for (i = 0; i < EXPTABLESIZE; i++) { 915 exi = exptable[i]; 916 while (exi) { 917 if (exi->exi_export.ex_seccnt > 0) { 918 struct secinfo *secp; 919 seconfig_t *se; 920 int seccnt; 921 922 secp = exi->exi_export.ex_secinfo; 923 seccnt = exi->exi_export.ex_seccnt; 924 for (j = 0; j < seccnt; j++) { 925 /* 926 * If there is a map of the triplet 927 * (mechanism, service, qop) between 928 * raw_cred and the exported flavor, 929 * get the psudo flavor number. 930 * Also qop should not be NULL, it 931 * should be "default" or something 932 * else. 933 */ 934 se = &secp[j].s_secinfo; 935 if ((se->sc_rpcnum == RPCSEC_GSS) && 936 937 (nfs_mech_equal( 938 se->sc_gss_mech_type, 939 raw_cred->mechanism)) && 940 941 (se->sc_service == 942 raw_cred->service) && 943 (raw_cred->qop == se->sc_qop)) { 944 945 *cookie = (void *)(uintptr_t) 946 se->sc_nfsnum; 947 goto done; 948 } 949 } 950 } 951 exi = exi->exi_hash; 952 } 953 } 954 done: 955 rw_exit(&exported_lock); 956 957 /* 958 * If no nfs pseudo number mapping can be found in the export 959 * table, assign the nfsflavor to NFS_FLAVOR_NOMAP. In V4, we may 960 * recover the flavor mismatch from NFS layer (NFS4ERR_WRONGSEC). 961 * 962 * For example: 963 * server first shares with krb5i; 964 * client mounts with krb5i; 965 * server re-shares with krb5p; 966 * client tries with krb5i, but no mapping can be found; 967 * rpcsec_gss module calls this routine to do the mapping, 968 * if this routine fails, request is rejected from 969 * the rpc layer. 970 * What we need is to let the nfs layer rejects the request. 971 * For V4, we can reject with NFS4ERR_WRONGSEC and the client 972 * may recover from it by getting the new flavor via SECINFO. 973 * 974 * nfs pseudo number for RPCSEC_GSS mapping (see nfssec.conf) 975 * is owned by IANA (see RFC 2623). 976 * 977 * XXX NFS_FLAVOR_NOMAP is defined in Solaris to work around 978 * the implementation issue. This number should not overlap with 979 * any new IANA defined pseudo flavor numbers. 980 */ 981 if (*cookie == NULL) 982 *cookie = (void *)NFS_FLAVOR_NOMAP; 983 984 lock->locked = TRUE; 985 986 return (TRUE); 987 } 988 989 990 /* 991 * Exportfs system call; credentials should be checked before 992 * calling this function. 993 */ 994 int 995 exportfs(struct exportfs_args *args, model_t model, cred_t *cr) 996 { 997 vnode_t *vp; 998 vnode_t *dvp; 999 struct exportdata *kex; 1000 struct exportinfo *exi = NULL; 1001 struct exportinfo *ex, *prev; 1002 fid_t fid; 1003 fsid_t fsid; 1004 int error; 1005 size_t allocsize; 1006 struct secinfo *sp; 1007 struct secinfo *exs; 1008 rpc_gss_callback_t cb; 1009 char *pathbuf; 1010 char *log_buffer; 1011 char *tagbuf; 1012 int callback; 1013 int allocd_seccnt; 1014 STRUCT_HANDLE(exportfs_args, uap); 1015 STRUCT_DECL(exportdata, uexi); 1016 struct secinfo newsec[MAX_FLAVORS]; 1017 int newcnt; 1018 struct secinfo oldsec[MAX_FLAVORS]; 1019 int oldcnt; 1020 int i; 1021 1022 STRUCT_SET_HANDLE(uap, model, args); 1023 1024 error = lookupname(STRUCT_FGETP(uap, dname), UIO_USERSPACE, 1025 FOLLOW, &dvp, &vp); 1026 if (error == EINVAL) { 1027 /* 1028 * if fname resolves to / we get EINVAL error 1029 * since we wanted the parent vnode. Try again 1030 * with NULL dvp. 1031 */ 1032 error = lookupname(STRUCT_FGETP(uap, dname), UIO_USERSPACE, 1033 FOLLOW, NULL, &vp); 1034 dvp = NULL; 1035 } 1036 if (!error && vp == NULL) { 1037 /* 1038 * Last component of fname not found 1039 */ 1040 if (dvp != NULL) { 1041 VN_RELE(dvp); 1042 } 1043 error = ENOENT; 1044 } 1045 1046 if (error) { 1047 /* 1048 * If this is a request to unexport, indicated by the 1049 * uex pointer being NULL, it is possible that the 1050 * directory has already been removed or shared filesystem 1051 * could have been forcibly unmounted. In which case 1052 * we scan the export list which records the pathname 1053 * originally exported. 1054 */ 1055 if (STRUCT_FGETP(uap, uex) == NULL) { 1056 char namebuf[TYPICALMAXPATHLEN]; 1057 struct pathname lookpn; 1058 int i; 1059 1060 /* Read in pathname from userspace */ 1061 error = pn_get_buf(STRUCT_FGETP(uap, dname), 1062 UIO_USERSPACE, &lookpn, namebuf, sizeof (namebuf)); 1063 if (error == ENAMETOOLONG) { 1064 /* 1065 * pathname > TYPICALMAXPATHLEN, use 1066 * pn_get() instead. Remember to 1067 * pn_free() afterwards. 1068 */ 1069 error = pn_get(STRUCT_FGETP(uap, dname), 1070 UIO_USERSPACE, &lookpn); 1071 } 1072 1073 if (error) 1074 return (error); 1075 1076 /* Walk the export list looking for that pathname */ 1077 rw_enter(&exported_lock, RW_READER); 1078 for (i = 0; i < EXPTABLESIZE; i++) { 1079 exi = exptable[i]; 1080 while (exi) { 1081 if (strcmp(exi->exi_export.ex_path, 1082 lookpn.pn_path) == 0) { 1083 goto exi_scan_end; 1084 } 1085 exi = exi->exi_hash; 1086 } 1087 } 1088 exi_scan_end: 1089 rw_exit(&exported_lock); 1090 if (exi) { 1091 /* Found a match, use it. */ 1092 vp = exi->exi_vp; 1093 dvp = exi->exi_dvp; 1094 DTRACE_PROBE2(nfss__i__nmspc__tree, 1095 char *, 1096 "unsharing removed dir/unmounted fs", 1097 char *, lookpn.pn_path); 1098 VN_HOLD(vp); 1099 VN_HOLD(dvp); 1100 error = 0; 1101 } else { 1102 /* Still no match, set error */ 1103 error = ENOENT; 1104 } 1105 if (lookpn.pn_buf != namebuf) { 1106 /* 1107 * We didn't use namebuf, so make 1108 * sure we free the allocated memory 1109 */ 1110 pn_free(&lookpn); 1111 } 1112 } 1113 } 1114 1115 if (error) 1116 return (error); 1117 1118 /* 1119 * 'vp' may be an AUTOFS node, so we perform a 1120 * VOP_ACCESS() to trigger the mount of the 1121 * intended filesystem, so we can share the intended 1122 * filesystem instead of the AUTOFS filesystem. 1123 */ 1124 (void) VOP_ACCESS(vp, 0, 0, cr, NULL); 1125 1126 /* 1127 * We're interested in the top most filesystem. 1128 * This is specially important when uap->dname is a trigger 1129 * AUTOFS node, since we're really interested in sharing the 1130 * filesystem AUTOFS mounted as result of the VOP_ACCESS() 1131 * call not the AUTOFS node itself. 1132 */ 1133 if (vn_mountedvfs(vp) != NULL) { 1134 if (error = traverse(&vp)) { 1135 VN_RELE(vp); 1136 if (dvp != NULL) 1137 VN_RELE(dvp); 1138 return (error); 1139 } 1140 } 1141 1142 /* 1143 * Get the vfs id 1144 */ 1145 bzero(&fid, sizeof (fid)); 1146 fid.fid_len = MAXFIDSZ; 1147 error = VOP_FID(vp, &fid, NULL); 1148 fsid = vp->v_vfsp->vfs_fsid; 1149 1150 /* 1151 * Allow unshare request for forcibly unmounted shared filesystem. 1152 */ 1153 if (error == EIO && exi) { 1154 fid = exi->exi_fid; 1155 fsid = exi->exi_fsid; 1156 } else if (error) { 1157 VN_RELE(vp); 1158 if (dvp != NULL) 1159 VN_RELE(dvp); 1160 /* 1161 * If VOP_FID returns ENOSPC then the fid supplied 1162 * is too small. For now we simply return EREMOTE. 1163 */ 1164 if (error == ENOSPC) 1165 error = EREMOTE; 1166 return (error); 1167 } 1168 1169 if (STRUCT_FGETP(uap, uex) == NULL) { 1170 error = unexport(&fsid, &fid, vp); 1171 VN_RELE(vp); 1172 if (dvp != NULL) 1173 VN_RELE(dvp); 1174 return (error); 1175 } 1176 1177 exi = kmem_zalloc(sizeof (*exi), KM_SLEEP); 1178 exi->exi_fsid = fsid; 1179 exi->exi_fid = fid; 1180 exi->exi_vp = vp; 1181 exi->exi_count = 1; 1182 exi->exi_volatile_dev = (vfssw[vp->v_vfsp->vfs_fstype].vsw_flag & 1183 VSW_VOLATILEDEV) ? 1 : 0; 1184 mutex_init(&exi->exi_lock, NULL, MUTEX_DEFAULT, NULL); 1185 exi->exi_dvp = dvp; 1186 1187 /* 1188 * Initialize auth cache lock 1189 */ 1190 rw_init(&exi->exi_cache_lock, NULL, RW_DEFAULT, NULL); 1191 1192 /* 1193 * Build up the template fhandle 1194 */ 1195 exi->exi_fh.fh_fsid = fsid; 1196 if (exi->exi_fid.fid_len > sizeof (exi->exi_fh.fh_xdata)) { 1197 error = EREMOTE; 1198 goto out1; 1199 } 1200 exi->exi_fh.fh_xlen = exi->exi_fid.fid_len; 1201 bcopy(exi->exi_fid.fid_data, exi->exi_fh.fh_xdata, 1202 exi->exi_fid.fid_len); 1203 1204 exi->exi_fh.fh_len = sizeof (exi->exi_fh.fh_data); 1205 1206 kex = &exi->exi_export; 1207 1208 /* 1209 * Load in everything, and do sanity checking 1210 */ 1211 STRUCT_INIT(uexi, model); 1212 if (copyin(STRUCT_FGETP(uap, uex), STRUCT_BUF(uexi), 1213 STRUCT_SIZE(uexi))) { 1214 error = EFAULT; 1215 goto out1; 1216 } 1217 1218 kex->ex_version = STRUCT_FGET(uexi, ex_version); 1219 if (kex->ex_version != EX_CURRENT_VERSION) { 1220 error = EINVAL; 1221 cmn_err(CE_WARN, 1222 "NFS: exportfs requires export struct version 2 - got %d\n", 1223 kex->ex_version); 1224 goto out1; 1225 } 1226 1227 /* 1228 * Must have at least one security entry 1229 */ 1230 kex->ex_seccnt = STRUCT_FGET(uexi, ex_seccnt); 1231 if (kex->ex_seccnt < 1) { 1232 error = EINVAL; 1233 goto out1; 1234 } 1235 1236 kex->ex_path = STRUCT_FGETP(uexi, ex_path); 1237 kex->ex_pathlen = STRUCT_FGET(uexi, ex_pathlen); 1238 kex->ex_flags = STRUCT_FGET(uexi, ex_flags); 1239 kex->ex_anon = STRUCT_FGET(uexi, ex_anon); 1240 kex->ex_secinfo = STRUCT_FGETP(uexi, ex_secinfo); 1241 kex->ex_index = STRUCT_FGETP(uexi, ex_index); 1242 kex->ex_log_buffer = STRUCT_FGETP(uexi, ex_log_buffer); 1243 kex->ex_log_bufferlen = STRUCT_FGET(uexi, ex_log_bufferlen); 1244 kex->ex_tag = STRUCT_FGETP(uexi, ex_tag); 1245 kex->ex_taglen = STRUCT_FGET(uexi, ex_taglen); 1246 1247 /* 1248 * Copy the exported pathname into 1249 * an appropriately sized buffer. 1250 */ 1251 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1252 if (copyinstr(kex->ex_path, pathbuf, MAXPATHLEN, &kex->ex_pathlen)) { 1253 kmem_free(pathbuf, MAXPATHLEN); 1254 error = EFAULT; 1255 goto out1; 1256 } 1257 kex->ex_path = kmem_alloc(kex->ex_pathlen + 1, KM_SLEEP); 1258 bcopy(pathbuf, kex->ex_path, kex->ex_pathlen); 1259 kex->ex_path[kex->ex_pathlen] = '\0'; 1260 kmem_free(pathbuf, MAXPATHLEN); 1261 1262 /* 1263 * Get the path to the logging buffer and the tag 1264 */ 1265 if (kex->ex_flags & EX_LOG) { 1266 log_buffer = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1267 if (copyinstr(kex->ex_log_buffer, log_buffer, MAXPATHLEN, 1268 &kex->ex_log_bufferlen)) { 1269 kmem_free(log_buffer, MAXPATHLEN); 1270 error = EFAULT; 1271 goto out2; 1272 } 1273 kex->ex_log_buffer = 1274 kmem_alloc(kex->ex_log_bufferlen + 1, KM_SLEEP); 1275 bcopy(log_buffer, kex->ex_log_buffer, kex->ex_log_bufferlen); 1276 kex->ex_log_buffer[kex->ex_log_bufferlen] = '\0'; 1277 kmem_free(log_buffer, MAXPATHLEN); 1278 1279 tagbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1280 if (copyinstr(kex->ex_tag, tagbuf, MAXPATHLEN, 1281 &kex->ex_taglen)) { 1282 kmem_free(tagbuf, MAXPATHLEN); 1283 error = EFAULT; 1284 goto out3; 1285 } 1286 kex->ex_tag = kmem_alloc(kex->ex_taglen + 1, KM_SLEEP); 1287 bcopy(tagbuf, kex->ex_tag, kex->ex_taglen); 1288 kex->ex_tag[kex->ex_taglen] = '\0'; 1289 kmem_free(tagbuf, MAXPATHLEN); 1290 } 1291 1292 /* 1293 * Load the security information for each flavor 1294 */ 1295 allocsize = kex->ex_seccnt * SIZEOF_STRUCT(secinfo, model); 1296 sp = kmem_zalloc(allocsize, KM_SLEEP); 1297 if (copyin(kex->ex_secinfo, sp, allocsize)) { 1298 kmem_free(sp, allocsize); 1299 error = EFAULT; 1300 goto out4; 1301 } 1302 1303 /* 1304 * All of these nested structures need to be converted to 1305 * the kernel native format. 1306 */ 1307 if (model != DATAMODEL_NATIVE) { 1308 size_t allocsize2; 1309 struct secinfo *sp2; 1310 1311 allocsize2 = kex->ex_seccnt * sizeof (struct secinfo); 1312 sp2 = kmem_zalloc(allocsize2, KM_SLEEP); 1313 1314 for (i = 0; i < kex->ex_seccnt; i++) { 1315 STRUCT_HANDLE(secinfo, usi); 1316 1317 STRUCT_SET_HANDLE(usi, model, 1318 (struct secinfo *)((caddr_t)sp + 1319 (i * SIZEOF_STRUCT(secinfo, model)))); 1320 bcopy(STRUCT_FGET(usi, s_secinfo.sc_name), 1321 sp2[i].s_secinfo.sc_name, MAX_NAME_LEN); 1322 sp2[i].s_secinfo.sc_nfsnum = 1323 STRUCT_FGET(usi, s_secinfo.sc_nfsnum); 1324 sp2[i].s_secinfo.sc_rpcnum = 1325 STRUCT_FGET(usi, s_secinfo.sc_rpcnum); 1326 bcopy(STRUCT_FGET(usi, s_secinfo.sc_gss_mech), 1327 sp2[i].s_secinfo.sc_gss_mech, MAX_NAME_LEN); 1328 sp2[i].s_secinfo.sc_gss_mech_type = 1329 STRUCT_FGETP(usi, s_secinfo.sc_gss_mech_type); 1330 sp2[i].s_secinfo.sc_qop = 1331 STRUCT_FGET(usi, s_secinfo.sc_qop); 1332 sp2[i].s_secinfo.sc_service = 1333 STRUCT_FGET(usi, s_secinfo.sc_service); 1334 1335 sp2[i].s_flags = STRUCT_FGET(usi, s_flags); 1336 sp2[i].s_window = STRUCT_FGET(usi, s_window); 1337 sp2[i].s_rootid = STRUCT_FGET(usi, s_rootid); 1338 sp2[i].s_rootcnt = STRUCT_FGET(usi, s_rootcnt); 1339 sp2[i].s_rootnames = STRUCT_FGETP(usi, s_rootnames); 1340 } 1341 kmem_free(sp, allocsize); 1342 sp = sp2; 1343 allocsize = allocsize2; 1344 } 1345 1346 kex->ex_secinfo = sp; 1347 1348 /* 1349 * And now copy rootnames for each individual secinfo. 1350 */ 1351 callback = 0; 1352 allocd_seccnt = 0; 1353 while (allocd_seccnt < kex->ex_seccnt) { 1354 1355 exs = &sp[allocd_seccnt]; 1356 if (exs->s_rootcnt > 0) { 1357 if (!sec_svc_loadrootnames(exs->s_secinfo.sc_rpcnum, 1358 exs->s_rootcnt, &exs->s_rootnames, model)) { 1359 error = EFAULT; 1360 goto out5; 1361 } 1362 } 1363 1364 if (exs->s_secinfo.sc_rpcnum == RPCSEC_GSS) { 1365 rpc_gss_OID mech_tmp; 1366 STRUCT_DECL(rpc_gss_OID_s, umech_tmp); 1367 caddr_t elements_tmp; 1368 1369 /* Copyin mechanism type */ 1370 STRUCT_INIT(umech_tmp, model); 1371 mech_tmp = kmem_alloc(sizeof (*mech_tmp), KM_SLEEP); 1372 if (copyin(exs->s_secinfo.sc_gss_mech_type, 1373 STRUCT_BUF(umech_tmp), STRUCT_SIZE(umech_tmp))) { 1374 kmem_free(mech_tmp, sizeof (*mech_tmp)); 1375 error = EFAULT; 1376 goto out5; 1377 } 1378 mech_tmp->length = STRUCT_FGET(umech_tmp, length); 1379 mech_tmp->elements = STRUCT_FGETP(umech_tmp, elements); 1380 1381 elements_tmp = kmem_alloc(mech_tmp->length, KM_SLEEP); 1382 if (copyin(mech_tmp->elements, elements_tmp, 1383 mech_tmp->length)) { 1384 kmem_free(elements_tmp, mech_tmp->length); 1385 kmem_free(mech_tmp, sizeof (*mech_tmp)); 1386 error = EFAULT; 1387 goto out5; 1388 } 1389 mech_tmp->elements = elements_tmp; 1390 exs->s_secinfo.sc_gss_mech_type = mech_tmp; 1391 allocd_seccnt++; 1392 1393 callback = 1; 1394 } else 1395 allocd_seccnt++; 1396 } 1397 1398 /* 1399 * Init the secinfo reference count and mark these flavors 1400 * explicitly exported flavors. 1401 */ 1402 for (i = 0; i < kex->ex_seccnt; i++) { 1403 kex->ex_secinfo[i].s_flags |= M_4SEC_EXPORTED; 1404 kex->ex_secinfo[i].s_refcnt = 1; 1405 } 1406 1407 /* 1408 * Set up rpcsec_gss callback routine entry if any. 1409 */ 1410 if (callback) { 1411 cb.callback = rfs_gsscallback; 1412 cb.program = NFS_ACL_PROGRAM; 1413 for (cb.version = NFS_ACL_VERSMIN; 1414 cb.version <= NFS_ACL_VERSMAX; cb.version++) { 1415 (void) sec_svc_control(RPC_SVC_SET_GSS_CALLBACK, 1416 (void *)&cb); 1417 } 1418 1419 cb.program = NFS_PROGRAM; 1420 for (cb.version = NFS_VERSMIN; 1421 cb.version <= NFS_VERSMAX; cb.version++) { 1422 (void) sec_svc_control(RPC_SVC_SET_GSS_CALLBACK, 1423 (void *)&cb); 1424 } 1425 } 1426 1427 /* 1428 * Check the index flag. Do this here to avoid holding the 1429 * lock while dealing with the index option (as we do with 1430 * the public option). 1431 */ 1432 if (kex->ex_flags & EX_INDEX) { 1433 if (!kex->ex_index) { /* sanity check */ 1434 error = EINVAL; 1435 goto out5; 1436 } 1437 if (error = loadindex(kex)) 1438 goto out5; 1439 } 1440 1441 if (kex->ex_flags & EX_LOG) { 1442 if (error = nfslog_setup(exi)) 1443 goto out6; 1444 } 1445 1446 /* 1447 * Insert the new entry at the front of the export list 1448 */ 1449 rw_enter(&exported_lock, RW_WRITER); 1450 1451 export_link(exi); 1452 1453 /* 1454 * Check the rest of the list for an old entry for the fs. 1455 * If one is found then unlink it, wait until this is the 1456 * only reference and then free it. 1457 */ 1458 prev = exi; 1459 for (ex = prev->exi_hash; ex != NULL; prev = ex, ex = ex->exi_hash) { 1460 if (ex != exi_root && VN_CMP(ex->exi_vp, vp)) { 1461 prev->exi_hash = ex->exi_hash; 1462 break; 1463 } 1464 } 1465 1466 /* 1467 * If the public filehandle is pointing at the 1468 * old entry, then point it back at the root. 1469 */ 1470 if (ex != NULL && ex == exi_public) 1471 exi_public = exi_root; 1472 1473 /* 1474 * If the public flag is on, make the global exi_public 1475 * point to this entry and turn off the public bit so that 1476 * we can distinguish it from the place holder export. 1477 */ 1478 if (kex->ex_flags & EX_PUBLIC) { 1479 exi_public = exi; 1480 kex->ex_flags &= ~EX_PUBLIC; 1481 } 1482 1483 #ifdef VOLATILE_FH_TEST 1484 /* 1485 * Set up the volatile_id value if volatile on share. 1486 * The list of volatile renamed filehandles is always destroyed, 1487 * if the fs was reshared. 1488 */ 1489 if (kex->ex_flags & EX_VOLFH) 1490 exi->exi_volatile_id = gethrestime_sec(); 1491 1492 mutex_init(&exi->exi_vol_rename_lock, NULL, MUTEX_DEFAULT, NULL); 1493 #endif /* VOLATILE_FH_TEST */ 1494 1495 /* 1496 * If this is a new export, then climb up 1497 * the tree and check if any pseudo exports 1498 * need to be created to provide a path for 1499 * NFS v4 clients. 1500 */ 1501 if (ex == NULL) { 1502 error = treeclimb_export(exi); 1503 if (error) 1504 goto out7; 1505 } else { 1506 /* If it's a re-export update namespace tree */ 1507 exi->exi_tree = ex->exi_tree; 1508 exi->exi_tree->tree_exi = exi; 1509 } 1510 1511 /* 1512 * build a unique flavor list from the flavors specified 1513 * in the share cmd. unique means that each flavor only 1514 * appears once in the secinfo list -- no duplicates allowed. 1515 */ 1516 newcnt = build_seclist_nodups(&exi->exi_export, newsec, FALSE); 1517 1518 srv_secinfo_treeclimb(exi, newsec, newcnt, TRUE); 1519 1520 /* 1521 * If re-sharing an old export entry, update the secinfo data 1522 * depending on if the old entry is a pseudo node or not. 1523 */ 1524 if (ex != NULL) { 1525 oldcnt = build_seclist_nodups(&ex->exi_export, oldsec, FALSE); 1526 if (PSEUDO(ex)) { 1527 /* 1528 * The dir being shared is a pseudo export root (which 1529 * will be transformed into a real export root). The 1530 * flavor(s) of the new share were propagated to the 1531 * ancestors by srv_secinfo_treeclimb() above. Now 1532 * transfer the implicit flavor refs from the old 1533 * pseudo exprot root to the new (real) export root. 1534 */ 1535 srv_secinfo_add(&exi->exi_export.ex_secinfo, 1536 &exi->exi_export.ex_seccnt, oldsec, oldcnt, TRUE); 1537 } else { 1538 /* 1539 * First transfer implicit flavor refs to new export. 1540 * Remove old flavor refs last. 1541 */ 1542 srv_secinfo_exp2exp(&exi->exi_export, oldsec, oldcnt); 1543 srv_secinfo_treeclimb(ex, oldsec, oldcnt, FALSE); 1544 } 1545 } 1546 1547 /* 1548 * If it's a re-export and the old entry has a pseudonode list, 1549 * transfer it to the new export. 1550 */ 1551 if (ex != NULL && (ex->exi_visible != NULL)) { 1552 exi->exi_visible = ex->exi_visible; 1553 ex->exi_visible = NULL; 1554 } 1555 1556 rw_exit(&exported_lock); 1557 1558 if (exi_public == exi || kex->ex_flags & EX_LOG) { 1559 /* 1560 * Log share operation to this buffer only. 1561 */ 1562 nfslog_share_record(exi, cr); 1563 } 1564 1565 if (ex != NULL) 1566 exi_rele(ex); 1567 1568 return (0); 1569 1570 out7: 1571 /* Unlink the new export in exptable. */ 1572 (void) export_unlink(&exi->exi_fsid, &exi->exi_fid, exi->exi_vp, NULL); 1573 rw_exit(&exported_lock); 1574 out6: 1575 if (kex->ex_flags & EX_INDEX) 1576 kmem_free(kex->ex_index, strlen(kex->ex_index) + 1); 1577 out5: 1578 /* free partially completed allocation */ 1579 while (--allocd_seccnt >= 0) { 1580 exs = &kex->ex_secinfo[allocd_seccnt]; 1581 srv_secinfo_entry_free(exs); 1582 } 1583 1584 if (kex->ex_secinfo) { 1585 kmem_free(kex->ex_secinfo, 1586 kex->ex_seccnt * sizeof (struct secinfo)); 1587 } 1588 1589 out4: 1590 if ((kex->ex_flags & EX_LOG) && kex->ex_tag != NULL) 1591 kmem_free(kex->ex_tag, kex->ex_taglen + 1); 1592 out3: 1593 if ((kex->ex_flags & EX_LOG) && kex->ex_log_buffer != NULL) 1594 kmem_free(kex->ex_log_buffer, kex->ex_log_bufferlen + 1); 1595 out2: 1596 kmem_free(kex->ex_path, kex->ex_pathlen + 1); 1597 out1: 1598 VN_RELE(vp); 1599 if (dvp != NULL) 1600 VN_RELE(dvp); 1601 mutex_destroy(&exi->exi_lock); 1602 rw_destroy(&exi->exi_cache_lock); 1603 kmem_free(exi, sizeof (*exi)); 1604 return (error); 1605 } 1606 1607 /* 1608 * Remove the exportinfo from the export list 1609 */ 1610 int 1611 export_unlink(fsid_t *fsid, fid_t *fid, vnode_t *vp, struct exportinfo **exip) 1612 { 1613 struct exportinfo **tail; 1614 1615 ASSERT(RW_WRITE_HELD(&exported_lock)); 1616 1617 tail = &exptable[exptablehash(fsid, fid)]; 1618 while (*tail != NULL) { 1619 if (exportmatch(*tail, fsid, fid)) { 1620 /* 1621 * If vp is given, check if vp is the 1622 * same vnode as the exported node. 1623 * 1624 * Since VOP_FID of a lofs node returns the 1625 * fid of its real node (ufs), the exported 1626 * node for lofs and (pseudo) ufs may have 1627 * the same fsid and fid. 1628 */ 1629 if (vp == NULL || vp == (*tail)->exi_vp) { 1630 1631 if (exip != NULL) 1632 *exip = *tail; 1633 *tail = (*tail)->exi_hash; 1634 1635 return (0); 1636 } 1637 } 1638 tail = &(*tail)->exi_hash; 1639 } 1640 1641 return (EINVAL); 1642 } 1643 1644 /* 1645 * Unexport an exported filesystem 1646 */ 1647 int 1648 unexport(fsid_t *fsid, fid_t *fid, vnode_t *vp) 1649 { 1650 struct exportinfo *exi = NULL; 1651 int error; 1652 struct secinfo cursec[MAX_FLAVORS]; 1653 int curcnt; 1654 1655 rw_enter(&exported_lock, RW_WRITER); 1656 1657 error = export_unlink(fsid, fid, vp, &exi); 1658 1659 if (error) { 1660 rw_exit(&exported_lock); 1661 return (error); 1662 } 1663 1664 /* pseudo node is not a real exported filesystem */ 1665 if (PSEUDO(exi)) { 1666 /* 1667 * Put the pseudo node back into the export table 1668 * before erroring out. 1669 */ 1670 export_link(exi); 1671 rw_exit(&exported_lock); 1672 return (EINVAL); 1673 } 1674 1675 /* 1676 * Remove security flavors before treeclimb_unexport() is called 1677 * because srv_secinfo_treeclimb needs the namespace tree 1678 */ 1679 curcnt = build_seclist_nodups(&exi->exi_export, cursec, TRUE); 1680 1681 srv_secinfo_treeclimb(exi, cursec, curcnt, FALSE); 1682 1683 /* 1684 * If there's a visible list, then need to leave 1685 * a pseudo export here to retain the visible list 1686 * for paths to exports below. 1687 */ 1688 if (exi->exi_visible) { 1689 struct exportinfo *newexi; 1690 1691 error = pseudo_exportfs(exi->exi_vp, exi->exi_visible, 1692 &exi->exi_export, &newexi); 1693 if (error) 1694 goto done; 1695 1696 exi->exi_visible = NULL; 1697 /* 1698 * pseudo_exportfs() has allocated new exportinfo, 1699 * update the treenode. 1700 */ 1701 newexi->exi_tree = exi->exi_tree; 1702 newexi->exi_tree->tree_exi = newexi; 1703 1704 } else { 1705 treeclimb_unexport(exi); 1706 } 1707 1708 rw_exit(&exported_lock); 1709 1710 /* 1711 * Need to call into the NFSv4 server and release all data 1712 * held on this particular export. This is important since 1713 * the v4 server may be holding file locks or vnodes under 1714 * this export. 1715 */ 1716 rfs4_clean_state_exi(exi); 1717 1718 /* 1719 * Notify the lock manager that the filesystem is being 1720 * unexported. 1721 */ 1722 lm_unexport(exi); 1723 1724 /* 1725 * If this was a public export, restore 1726 * the public filehandle to the root. 1727 */ 1728 if (exi == exi_public) { 1729 exi_public = exi_root; 1730 1731 nfslog_share_record(exi_public, CRED()); 1732 } 1733 1734 if (exi->exi_export.ex_flags & EX_LOG) { 1735 nfslog_unshare_record(exi, CRED()); 1736 } 1737 1738 exi_rele(exi); 1739 return (error); 1740 1741 done: 1742 rw_exit(&exported_lock); 1743 exi_rele(exi); 1744 return (error); 1745 } 1746 1747 /* 1748 * Get file handle system call. 1749 * Takes file name and returns a file handle for it. 1750 * Credentials must be verified before calling. 1751 */ 1752 int 1753 nfs_getfh(struct nfs_getfh_args *args, model_t model, cred_t *cr) 1754 { 1755 nfs_fh3 fh; 1756 char buf[NFS3_MAXFHSIZE]; 1757 char *logptr, logbuf[NFS3_MAXFHSIZE]; 1758 int l = NFS3_MAXFHSIZE; 1759 vnode_t *vp; 1760 vnode_t *dvp; 1761 struct exportinfo *exi; 1762 int error; 1763 int vers; 1764 STRUCT_HANDLE(nfs_getfh_args, uap); 1765 1766 #ifdef lint 1767 model = model; /* STRUCT macros don't always use it */ 1768 #endif 1769 1770 STRUCT_SET_HANDLE(uap, model, args); 1771 1772 error = lookupname(STRUCT_FGETP(uap, fname), UIO_USERSPACE, 1773 FOLLOW, &dvp, &vp); 1774 if (error == EINVAL) { 1775 /* 1776 * if fname resolves to / we get EINVAL error 1777 * since we wanted the parent vnode. Try again 1778 * with NULL dvp. 1779 */ 1780 error = lookupname(STRUCT_FGETP(uap, fname), UIO_USERSPACE, 1781 FOLLOW, NULL, &vp); 1782 dvp = NULL; 1783 } 1784 if (!error && vp == NULL) { 1785 /* 1786 * Last component of fname not found 1787 */ 1788 if (dvp != NULL) { 1789 VN_RELE(dvp); 1790 } 1791 error = ENOENT; 1792 } 1793 if (error) 1794 return (error); 1795 1796 /* 1797 * 'vp' may be an AUTOFS node, so we perform a 1798 * VOP_ACCESS() to trigger the mount of the 1799 * intended filesystem, so we can share the intended 1800 * filesystem instead of the AUTOFS filesystem. 1801 */ 1802 (void) VOP_ACCESS(vp, 0, 0, cr, NULL); 1803 1804 /* 1805 * We're interested in the top most filesystem. 1806 * This is specially important when uap->dname is a trigger 1807 * AUTOFS node, since we're really interested in sharing the 1808 * filesystem AUTOFS mounted as result of the VOP_ACCESS() 1809 * call not the AUTOFS node itself. 1810 */ 1811 if (vn_mountedvfs(vp) != NULL) { 1812 if (error = traverse(&vp)) { 1813 VN_RELE(vp); 1814 if (dvp != NULL) 1815 VN_RELE(dvp); 1816 return (error); 1817 } 1818 } 1819 1820 vers = STRUCT_FGET(uap, vers); 1821 exi = nfs_vptoexi(dvp, vp, cr, NULL, &error, FALSE); 1822 if (!error) { 1823 if (vers == NFS_VERSION) { 1824 error = makefh((fhandle_t *)buf, vp, exi); 1825 l = NFS_FHSIZE; 1826 logptr = buf; 1827 } else if (vers == NFS_V3) { 1828 int i, sz, pad; 1829 1830 error = makefh3(&fh, vp, exi); 1831 l = fh.fh3_length; 1832 logptr = logbuf; 1833 if (!error) { 1834 i = 0; 1835 sz = sizeof (fsid_t); 1836 bcopy(&fh.fh3_fsid, &buf[i], sz); 1837 i += sz; 1838 1839 /* 1840 * For backwards compatibility, the 1841 * fid length may be less than 1842 * NFS_FHMAXDATA, but it was always 1843 * encoded as NFS_FHMAXDATA bytes. 1844 */ 1845 1846 sz = sizeof (ushort_t); 1847 bcopy(&fh.fh3_len, &buf[i], sz); 1848 i += sz; 1849 bcopy(fh.fh3_data, &buf[i], fh.fh3_len); 1850 i += fh.fh3_len; 1851 pad = (NFS_FHMAXDATA - fh.fh3_len); 1852 if (pad > 0) { 1853 bzero(&buf[i], pad); 1854 i += pad; 1855 l += pad; 1856 } 1857 1858 sz = sizeof (ushort_t); 1859 bcopy(&fh.fh3_xlen, &buf[i], sz); 1860 i += sz; 1861 bcopy(fh.fh3_xdata, &buf[i], fh.fh3_xlen); 1862 i += fh.fh3_xlen; 1863 pad = (NFS_FHMAXDATA - fh.fh3_xlen); 1864 if (pad > 0) { 1865 bzero(&buf[i], pad); 1866 i += pad; 1867 l += pad; 1868 } 1869 } 1870 /* 1871 * If we need to do NFS logging, the filehandle 1872 * must be downsized to 32 bytes. 1873 */ 1874 if (!error && exi->exi_export.ex_flags & EX_LOG) { 1875 i = 0; 1876 sz = sizeof (fsid_t); 1877 bcopy(&fh.fh3_fsid, &logbuf[i], sz); 1878 i += sz; 1879 sz = sizeof (ushort_t); 1880 bcopy(&fh.fh3_len, &logbuf[i], sz); 1881 i += sz; 1882 sz = NFS_FHMAXDATA; 1883 bcopy(fh.fh3_data, &logbuf[i], sz); 1884 i += sz; 1885 sz = sizeof (ushort_t); 1886 bcopy(&fh.fh3_xlen, &logbuf[i], sz); 1887 i += sz; 1888 sz = NFS_FHMAXDATA; 1889 bcopy(fh.fh3_xdata, &logbuf[i], sz); 1890 i += sz; 1891 } 1892 } 1893 if (!error && exi->exi_export.ex_flags & EX_LOG) { 1894 nfslog_getfh(exi, (fhandle_t *)logptr, 1895 STRUCT_FGETP(uap, fname), UIO_USERSPACE, cr); 1896 } 1897 exi_rele(exi); 1898 if (!error) { 1899 if (copyout(&l, STRUCT_FGETP(uap, lenp), sizeof (int))) 1900 error = EFAULT; 1901 if (copyout(buf, STRUCT_FGETP(uap, fhp), l)) 1902 error = EFAULT; 1903 } 1904 } 1905 VN_RELE(vp); 1906 if (dvp != NULL) { 1907 VN_RELE(dvp); 1908 } 1909 return (error); 1910 } 1911 1912 /* 1913 * Strategy: if vp is in the export list, then 1914 * return the associated file handle. Otherwise, ".." 1915 * once up the vp and try again, until the root of the 1916 * filesystem is reached. 1917 */ 1918 struct exportinfo * 1919 nfs_vptoexi(vnode_t *dvp, vnode_t *vp, cred_t *cr, int *walk, 1920 int *err, bool_t v4srv) 1921 { 1922 fid_t fid; 1923 int error; 1924 struct exportinfo *exi; 1925 1926 ASSERT(vp); 1927 VN_HOLD(vp); 1928 if (dvp != NULL) { 1929 VN_HOLD(dvp); 1930 } 1931 if (walk != NULL) 1932 *walk = 0; 1933 1934 for (;;) { 1935 bzero(&fid, sizeof (fid)); 1936 fid.fid_len = MAXFIDSZ; 1937 error = vop_fid_pseudo(vp, &fid); 1938 if (error) { 1939 /* 1940 * If vop_fid_pseudo returns ENOSPC then the fid 1941 * supplied is too small. For now we simply 1942 * return EREMOTE. 1943 */ 1944 if (error == ENOSPC) 1945 error = EREMOTE; 1946 break; 1947 } 1948 1949 if (v4srv) 1950 exi = checkexport4(&vp->v_vfsp->vfs_fsid, &fid, vp); 1951 else 1952 exi = checkexport(&vp->v_vfsp->vfs_fsid, &fid); 1953 1954 if (exi != NULL) { 1955 /* 1956 * Found the export info 1957 */ 1958 break; 1959 } 1960 1961 /* 1962 * We have just failed finding a matching export. 1963 * If we're at the root of this filesystem, then 1964 * it's time to stop (with failure). 1965 */ 1966 if (vp->v_flag & VROOT) { 1967 error = EINVAL; 1968 break; 1969 } 1970 1971 if (walk != NULL) 1972 (*walk)++; 1973 1974 /* 1975 * Now, do a ".." up vp. If dvp is supplied, use it, 1976 * otherwise, look it up. 1977 */ 1978 if (dvp == NULL) { 1979 error = VOP_LOOKUP(vp, "..", &dvp, NULL, 0, NULL, cr, 1980 NULL, NULL, NULL); 1981 if (error) 1982 break; 1983 } 1984 VN_RELE(vp); 1985 vp = dvp; 1986 dvp = NULL; 1987 } 1988 VN_RELE(vp); 1989 if (dvp != NULL) { 1990 VN_RELE(dvp); 1991 } 1992 if (error != 0) { 1993 if (err != NULL) 1994 *err = error; 1995 return (NULL); 1996 } 1997 return (exi); 1998 } 1999 2000 int 2001 chk_clnt_sec(exportinfo_t *exi, struct svc_req *req) 2002 { 2003 int i, nfsflavor; 2004 struct secinfo *sp; 2005 2006 /* 2007 * Get the nfs flavor number from xprt. 2008 */ 2009 nfsflavor = (int)(uintptr_t)req->rq_xprt->xp_cookie; 2010 2011 sp = exi->exi_export.ex_secinfo; 2012 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2013 if ((nfsflavor == sp[i].s_secinfo.sc_nfsnum) && 2014 SEC_REF_EXPORTED(sp + i)) 2015 return (TRUE); 2016 } 2017 return (FALSE); 2018 } 2019 2020 /* 2021 * Make an fhandle from a vnode 2022 */ 2023 int 2024 makefh(fhandle_t *fh, vnode_t *vp, exportinfo_t *exi) 2025 { 2026 int error; 2027 2028 *fh = exi->exi_fh; /* struct copy */ 2029 2030 error = VOP_FID(vp, (fid_t *)&fh->fh_len, NULL); 2031 if (error) { 2032 /* 2033 * Should be something other than EREMOTE 2034 */ 2035 return (EREMOTE); 2036 } 2037 return (0); 2038 } 2039 2040 /* 2041 * This routine makes an overloaded V2 fhandle which contains 2042 * sec modes. 2043 * 2044 * Note that the first four octets contain the length octet, 2045 * the status octet, and two padded octets to make them XDR 2046 * four-octet aligned. 2047 * 2048 * 1 2 3 4 32 2049 * +---+---+---+---+---+---+---+---+ +---+---+---+---+ +---+ 2050 * | l | s | | | sec_1 |...| sec_n |...| | 2051 * +---+---+---+---+---+---+---+---+ +---+---+---+---+ +---+ 2052 * 2053 * where 2054 * 2055 * the status octet s indicates whether there are more security 2056 * flavors (1 means yes, 0 means no) that require the client to 2057 * perform another 0x81 LOOKUP to get them, 2058 * 2059 * the length octet l is the length describing the number of 2060 * valid octets that follow. (l = 4 * n, where n is the number 2061 * of security flavors sent in the current overloaded filehandle.) 2062 * 2063 * sec_index should always be in the inclusive range: [1 - ex_seccnt], 2064 * and it tells server where to start within the secinfo array. 2065 * Usually it will always be 1; however, if more flavors are used 2066 * for the public export than can be encoded in the overloaded FH 2067 * (7 for NFS2), subsequent SNEGO MCLs will have a larger index 2068 * so the server will pick up where it left off from the previous 2069 * MCL reply. 2070 * 2071 * With NFS4 support, implicitly allowed flavors are also in 2072 * the secinfo array; however, they should not be returned in 2073 * SNEGO MCL replies. 2074 */ 2075 int 2076 makefh_ol(fhandle_t *fh, exportinfo_t *exi, uint_t sec_index) 2077 { 2078 secinfo_t sec[MAX_FLAVORS]; 2079 int totalcnt, i, *ipt, cnt, seccnt, secidx, fh_max_cnt; 2080 char *c; 2081 2082 if (fh == NULL || exi == NULL || sec_index < 1) 2083 return (EREMOTE); 2084 2085 /* 2086 * WebNFS clients need to know the unique set of explicitly 2087 * shared flavors in used for the public export. When 2088 * "TRUE" is passed to build_seclist_nodups(), only explicitly 2089 * shared flavors are included in the list. 2090 */ 2091 seccnt = build_seclist_nodups(&exi->exi_export, sec, TRUE); 2092 if (sec_index > seccnt) 2093 return (EREMOTE); 2094 2095 fh_max_cnt = (NFS_FHSIZE / sizeof (int)) - 1; 2096 totalcnt = seccnt - sec_index + 1; 2097 cnt = totalcnt > fh_max_cnt ? fh_max_cnt : totalcnt; 2098 2099 c = (char *)fh; 2100 /* 2101 * Encode the length octet representing the number of 2102 * security flavors (in bytes) in this overloaded fh. 2103 */ 2104 *c = cnt * sizeof (int); 2105 2106 /* 2107 * Encode the status octet that indicates whether there 2108 * are more security flavors the client needs to get. 2109 */ 2110 *(c + 1) = totalcnt > fh_max_cnt; 2111 2112 /* 2113 * put security flavors in the overloaded fh 2114 */ 2115 ipt = (int *)(c + sizeof (int32_t)); 2116 secidx = sec_index - 1; 2117 for (i = 0; i < cnt; i++) { 2118 ipt[i] = htonl(sec[i + secidx].s_secinfo.sc_nfsnum); 2119 } 2120 return (0); 2121 } 2122 2123 /* 2124 * Make an nfs_fh3 from a vnode 2125 */ 2126 int 2127 makefh3(nfs_fh3 *fh, vnode_t *vp, struct exportinfo *exi) 2128 { 2129 int error; 2130 fid_t fid; 2131 2132 bzero(&fid, sizeof (fid)); 2133 fid.fid_len = MAXFIDSZ; 2134 error = VOP_FID(vp, &fid, NULL); 2135 if (error) 2136 return (EREMOTE); 2137 2138 bzero(fh, sizeof (nfs_fh3)); 2139 fh->fh3_fsid = exi->exi_fsid; 2140 fh->fh3_len = fid.fid_len; 2141 bcopy(fid.fid_data, fh->fh3_data, fh->fh3_len); 2142 fh->fh3_xlen = exi->exi_fid.fid_len; 2143 bcopy(exi->exi_fid.fid_data, fh->fh3_xdata, fh->fh3_xlen); 2144 fh->fh3_length = sizeof (fsid_t) 2145 + sizeof (ushort_t) + fh->fh3_len 2146 + sizeof (ushort_t) + fh->fh3_xlen; 2147 fh->fh3_flags = 0; 2148 return (0); 2149 } 2150 2151 /* 2152 * This routine makes an overloaded V3 fhandle which contains 2153 * sec modes. 2154 * 2155 * 1 4 2156 * +--+--+--+--+ 2157 * | len | 2158 * +--+--+--+--+ 2159 * up to 64 2160 * +--+--+--+--+--+--+--+--+--+--+--+--+ +--+--+--+--+ 2161 * |s | | | | sec_1 | sec_2 | ... | sec_n | 2162 * +--+--+--+--+--+--+--+--+--+--+--+--+ +--+--+--+--+ 2163 * 2164 * len = 4 * (n+1), where n is the number of security flavors 2165 * sent in the current overloaded filehandle. 2166 * 2167 * the status octet s indicates whether there are more security 2168 * mechanisms (1 means yes, 0 means no) that require the client 2169 * to perform another 0x81 LOOKUP to get them. 2170 * 2171 * Three octets are padded after the status octet. 2172 */ 2173 int 2174 makefh3_ol(nfs_fh3 *fh, struct exportinfo *exi, uint_t sec_index) 2175 { 2176 secinfo_t sec[MAX_FLAVORS]; 2177 int totalcnt, cnt, *ipt, i, seccnt, fh_max_cnt, secidx; 2178 char *c; 2179 2180 if (fh == NULL || exi == NULL || sec_index < 1) 2181 return (EREMOTE); 2182 2183 /* 2184 * WebNFS clients need to know the unique set of explicitly 2185 * shared flavors in used for the public export. When 2186 * "TRUE" is passed to build_seclist_nodups(), only explicitly 2187 * shared flavors are included in the list. 2188 */ 2189 seccnt = build_seclist_nodups(&exi->exi_export, sec, TRUE); 2190 2191 if (sec_index > seccnt) 2192 return (EREMOTE); 2193 2194 fh_max_cnt = (NFS3_FHSIZE / sizeof (int)) - 1; 2195 totalcnt = seccnt - sec_index + 1; 2196 cnt = totalcnt > fh_max_cnt ? fh_max_cnt : totalcnt; 2197 2198 /* 2199 * Place the length in fh3_length representing the number 2200 * of security flavors (in bytes) in this overloaded fh. 2201 */ 2202 fh->fh3_flags = FH_WEBNFS; 2203 fh->fh3_length = (cnt+1) * sizeof (int32_t); 2204 2205 c = (char *)&fh->fh3_u.nfs_fh3_i.fh3_i; 2206 /* 2207 * Encode the status octet that indicates whether there 2208 * are more security flavors the client needs to get. 2209 */ 2210 *c = totalcnt > fh_max_cnt; 2211 2212 /* 2213 * put security flavors in the overloaded fh 2214 */ 2215 secidx = sec_index - 1; 2216 ipt = (int *)(c + sizeof (int32_t)); 2217 for (i = 0; i < cnt; i++) { 2218 ipt[i] = htonl(sec[i + secidx].s_secinfo.sc_nfsnum); 2219 } 2220 return (0); 2221 } 2222 2223 /* 2224 * Make an nfs_fh4 from a vnode 2225 */ 2226 int 2227 makefh4(nfs_fh4 *fh, vnode_t *vp, struct exportinfo *exi) 2228 { 2229 int error; 2230 nfs_fh4_fmt_t *fh_fmtp = (nfs_fh4_fmt_t *)fh->nfs_fh4_val; 2231 fid_t fid; 2232 2233 bzero(&fid, sizeof (fid)); 2234 fid.fid_len = MAXFIDSZ; 2235 /* 2236 * vop_fid_pseudo() is used to set up NFSv4 namespace, so 2237 * use vop_fid_pseudo() here to get the fid instead of VOP_FID. 2238 */ 2239 error = vop_fid_pseudo(vp, &fid); 2240 if (error) 2241 return (error); 2242 2243 fh->nfs_fh4_len = NFS_FH4_LEN; 2244 2245 fh_fmtp->fh4_i.fhx_fsid = exi->exi_fh.fh_fsid; 2246 fh_fmtp->fh4_i.fhx_xlen = exi->exi_fh.fh_xlen; 2247 2248 bzero(fh_fmtp->fh4_i.fhx_data, sizeof (fh_fmtp->fh4_i.fhx_data)); 2249 bzero(fh_fmtp->fh4_i.fhx_xdata, sizeof (fh_fmtp->fh4_i.fhx_xdata)); 2250 bcopy(exi->exi_fh.fh_xdata, fh_fmtp->fh4_i.fhx_xdata, 2251 exi->exi_fh.fh_xlen); 2252 2253 fh_fmtp->fh4_len = fid.fid_len; 2254 ASSERT(fid.fid_len <= sizeof (fh_fmtp->fh4_data)); 2255 bcopy(fid.fid_data, fh_fmtp->fh4_data, fid.fid_len); 2256 fh_fmtp->fh4_flag = 0; 2257 2258 #ifdef VOLATILE_FH_TEST 2259 /* 2260 * XXX (temporary?) 2261 * Use the rnode volatile_id value to add volatility to the fh. 2262 * 2263 * For testing purposes there are currently two scenarios, based 2264 * on whether the filesystem was shared with "volatile_fh" 2265 * or "expire_on_rename". In the first case, use the value of 2266 * export struct share_time as the volatile_id. In the second 2267 * case use the vnode volatile_id value (which is set to the 2268 * time in which the file was renamed). 2269 * 2270 * Note that the above are temporary constructs for testing only 2271 * XXX 2272 */ 2273 if (exi->exi_export.ex_flags & EX_VOLRNM) { 2274 fh_fmtp->fh4_volatile_id = find_volrnm_fh_id(exi, fh); 2275 } else if (exi->exi_export.ex_flags & EX_VOLFH) { 2276 fh_fmtp->fh4_volatile_id = exi->exi_volatile_id; 2277 } else { 2278 fh_fmtp->fh4_volatile_id = 0; 2279 } 2280 #endif /* VOLATILE_FH_TEST */ 2281 2282 return (0); 2283 } 2284 2285 /* 2286 * Convert an fhandle into a vnode. 2287 * Uses the file id (fh_len + fh_data) in the fhandle to get the vnode. 2288 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2289 * are done with it. 2290 */ 2291 vnode_t * 2292 nfs_fhtovp(fhandle_t *fh, struct exportinfo *exi) 2293 { 2294 vfs_t *vfsp; 2295 vnode_t *vp; 2296 int error; 2297 fid_t *fidp; 2298 2299 TRACE_0(TR_FAC_NFS, TR_FHTOVP_START, 2300 "fhtovp_start"); 2301 2302 if (exi == NULL) { 2303 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2304 "fhtovp_end:(%S)", "exi NULL"); 2305 return (NULL); /* not exported */ 2306 } 2307 2308 ASSERT(exi->exi_vp != NULL); 2309 2310 if (PUBLIC_FH2(fh)) { 2311 if (exi->exi_export.ex_flags & EX_PUBLIC) { 2312 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2313 "fhtovp_end:(%S)", "root not exported"); 2314 return (NULL); 2315 } 2316 vp = exi->exi_vp; 2317 VN_HOLD(vp); 2318 return (vp); 2319 } 2320 2321 vfsp = exi->exi_vp->v_vfsp; 2322 ASSERT(vfsp != NULL); 2323 fidp = (fid_t *)&fh->fh_len; 2324 2325 error = VFS_VGET(vfsp, &vp, fidp); 2326 if (error || vp == NULL) { 2327 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2328 "fhtovp_end:(%S)", "VFS_GET failed or vp NULL"); 2329 return (NULL); 2330 } 2331 TRACE_1(TR_FAC_NFS, TR_FHTOVP_END, 2332 "fhtovp_end:(%S)", "end"); 2333 return (vp); 2334 } 2335 2336 /* 2337 * Convert an fhandle into a vnode. 2338 * Uses the file id (fh_len + fh_data) in the fhandle to get the vnode. 2339 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2340 * are done with it. 2341 * This is just like nfs_fhtovp() but without the exportinfo argument. 2342 */ 2343 2344 vnode_t * 2345 lm_fhtovp(fhandle_t *fh) 2346 { 2347 register vfs_t *vfsp; 2348 vnode_t *vp; 2349 int error; 2350 2351 vfsp = getvfs(&fh->fh_fsid); 2352 if (vfsp == NULL) 2353 return (NULL); 2354 2355 error = VFS_VGET(vfsp, &vp, (fid_t *)&(fh->fh_len)); 2356 VFS_RELE(vfsp); 2357 if (error || vp == NULL) 2358 return (NULL); 2359 2360 return (vp); 2361 } 2362 2363 /* 2364 * Convert an nfs_fh3 into a vnode. 2365 * Uses the file id (fh_len + fh_data) in the file handle to get the vnode. 2366 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2367 * are done with it. 2368 */ 2369 vnode_t * 2370 nfs3_fhtovp(nfs_fh3 *fh, struct exportinfo *exi) 2371 { 2372 vfs_t *vfsp; 2373 vnode_t *vp; 2374 int error; 2375 fid_t *fidp; 2376 2377 if (exi == NULL) 2378 return (NULL); /* not exported */ 2379 2380 ASSERT(exi->exi_vp != NULL); 2381 2382 if (PUBLIC_FH3(fh)) { 2383 if (exi->exi_export.ex_flags & EX_PUBLIC) 2384 return (NULL); 2385 vp = exi->exi_vp; 2386 VN_HOLD(vp); 2387 return (vp); 2388 } 2389 2390 if (fh->fh3_length < NFS3_OLDFHSIZE || 2391 fh->fh3_length > NFS3_MAXFHSIZE) 2392 return (NULL); 2393 2394 vfsp = exi->exi_vp->v_vfsp; 2395 ASSERT(vfsp != NULL); 2396 fidp = FH3TOFIDP(fh); 2397 2398 error = VFS_VGET(vfsp, &vp, fidp); 2399 if (error || vp == NULL) 2400 return (NULL); 2401 2402 return (vp); 2403 } 2404 2405 /* 2406 * Convert an nfs_fh3 into a vnode. 2407 * Uses the file id (fh_len + fh_data) in the file handle to get the vnode. 2408 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2409 * are done with it. 2410 * BTW: This is just like nfs3_fhtovp() but without the exportinfo arg. 2411 * Also, vfsp is accessed through getvfs() rather using exportinfo !! 2412 */ 2413 2414 vnode_t * 2415 lm_nfs3_fhtovp(nfs_fh3 *fh) 2416 { 2417 vfs_t *vfsp; 2418 vnode_t *vp; 2419 int error; 2420 fid_t *fidp; 2421 2422 if (fh->fh3_length < NFS3_OLDFHSIZE || 2423 fh->fh3_length > NFS3_MAXFHSIZE) 2424 return (NULL); 2425 2426 vfsp = getvfs(&fh->fh3_fsid); 2427 if (vfsp == NULL) 2428 return (NULL); 2429 fidp = FH3TOFIDP(fh); 2430 2431 error = VFS_VGET(vfsp, &vp, fidp); 2432 VFS_RELE(vfsp); 2433 if (error || vp == NULL) 2434 return (NULL); 2435 2436 return (vp); 2437 } 2438 2439 /* 2440 * Convert an nfs_fh4 into a vnode. 2441 * Uses the file id (fh_len + fh_data) in the file handle to get the vnode. 2442 * WARNING: users of this routine must do a VN_RELE on the vnode when they 2443 * are done with it. 2444 */ 2445 vnode_t * 2446 nfs4_fhtovp(nfs_fh4 *fh, struct exportinfo *exi, nfsstat4 *statp) 2447 { 2448 vfs_t *vfsp; 2449 vnode_t *vp = NULL; 2450 int error; 2451 fid_t *fidp; 2452 nfs_fh4_fmt_t *fh_fmtp; 2453 #ifdef VOLATILE_FH_TEST 2454 uint32_t volatile_id = 0; 2455 #endif /* VOLATILE_FH_TEST */ 2456 2457 if (exi == NULL) { 2458 *statp = NFS4ERR_STALE; 2459 return (NULL); /* not exported */ 2460 } 2461 ASSERT(exi->exi_vp != NULL); 2462 2463 /* caller should have checked this */ 2464 ASSERT(fh->nfs_fh4_len >= NFS_FH4_LEN); 2465 2466 fh_fmtp = (nfs_fh4_fmt_t *)fh->nfs_fh4_val; 2467 vfsp = exi->exi_vp->v_vfsp; 2468 ASSERT(vfsp != NULL); 2469 fidp = (fid_t *)&fh_fmtp->fh4_len; 2470 2471 #ifdef VOLATILE_FH_TEST 2472 /* XXX check if volatile - should be changed later */ 2473 if (exi->exi_export.ex_flags & (EX_VOLRNM | EX_VOLFH)) { 2474 /* 2475 * Filesystem is shared with volatile filehandles 2476 */ 2477 if (exi->exi_export.ex_flags & EX_VOLRNM) 2478 volatile_id = find_volrnm_fh_id(exi, fh); 2479 else 2480 volatile_id = exi->exi_volatile_id; 2481 2482 if (fh_fmtp->fh4_volatile_id != volatile_id) { 2483 *statp = NFS4ERR_FHEXPIRED; 2484 return (NULL); 2485 } 2486 } 2487 /* 2488 * XXX even if test_volatile_fh false, the fh may contain a 2489 * volatile id if obtained when the test was set. 2490 */ 2491 fh_fmtp->fh4_volatile_id = (uchar_t)0; 2492 #endif /* VOLATILE_FH_TEST */ 2493 2494 error = VFS_VGET(vfsp, &vp, fidp); 2495 /* 2496 * If we can not get vp from VFS_VGET, perhaps this is 2497 * an nfs v2/v3/v4 node in an nfsv4 pseudo filesystem. 2498 * Check it out. 2499 */ 2500 if (error && PSEUDO(exi)) 2501 error = nfs4_vget_pseudo(exi, &vp, fidp); 2502 2503 if (error || vp == NULL) { 2504 *statp = NFS4ERR_STALE; 2505 return (NULL); 2506 } 2507 /* XXX - disgusting hack */ 2508 if (vp->v_type == VNON && vp->v_flag & V_XATTRDIR) 2509 vp->v_type = VDIR; 2510 *statp = NFS4_OK; 2511 return (vp); 2512 } 2513 2514 /* 2515 * Find the export structure associated with the given filesystem. 2516 * If found, then increment the ref count (exi_count). 2517 */ 2518 struct exportinfo * 2519 checkexport(fsid_t *fsid, fid_t *fid) 2520 { 2521 struct exportinfo *exi; 2522 2523 rw_enter(&exported_lock, RW_READER); 2524 for (exi = exptable[exptablehash(fsid, fid)]; 2525 exi != NULL; 2526 exi = exi->exi_hash) { 2527 if (exportmatch(exi, fsid, fid)) { 2528 /* 2529 * If this is the place holder for the 2530 * public file handle, then return the 2531 * real export entry for the public file 2532 * handle. 2533 */ 2534 if (exi->exi_export.ex_flags & EX_PUBLIC) { 2535 exi = exi_public; 2536 } 2537 2538 exi_hold(exi); 2539 rw_exit(&exported_lock); 2540 return (exi); 2541 } 2542 } 2543 rw_exit(&exported_lock); 2544 return (NULL); 2545 } 2546 2547 2548 /* 2549 * "old school" version of checkexport() for NFS4. NFS4 2550 * rfs4_compound holds exported_lock for duration of compound 2551 * processing. This version doesn't manipulate exi_count 2552 * since NFS4 breaks fundamental assumptions in the exi_count 2553 * design. 2554 */ 2555 struct exportinfo * 2556 checkexport4(fsid_t *fsid, fid_t *fid, vnode_t *vp) 2557 { 2558 struct exportinfo *exi; 2559 2560 ASSERT(RW_LOCK_HELD(&exported_lock)); 2561 2562 for (exi = exptable[exptablehash(fsid, fid)]; 2563 exi != NULL; 2564 exi = exi->exi_hash) { 2565 if (exportmatch(exi, fsid, fid)) { 2566 /* 2567 * If this is the place holder for the 2568 * public file handle, then return the 2569 * real export entry for the public file 2570 * handle. 2571 */ 2572 if (exi->exi_export.ex_flags & EX_PUBLIC) { 2573 exi = exi_public; 2574 } 2575 2576 /* 2577 * If vp is given, check if vp is the 2578 * same vnode as the exported node. 2579 * 2580 * Since VOP_FID of a lofs node returns the 2581 * fid of its real node (ufs), the exported 2582 * node for lofs and (pseudo) ufs may have 2583 * the same fsid and fid. 2584 */ 2585 if (vp == NULL || vp == exi->exi_vp) 2586 return (exi); 2587 } 2588 } 2589 2590 return (NULL); 2591 } 2592 2593 /* 2594 * Free an entire export list node 2595 */ 2596 void 2597 exportfree(struct exportinfo *exi) 2598 { 2599 struct exportdata *ex; 2600 struct charset_cache *cache; 2601 2602 ex = &exi->exi_export; 2603 2604 ASSERT(exi->exi_vp != NULL && !(exi->exi_export.ex_flags & EX_PUBLIC)); 2605 VN_RELE(exi->exi_vp); 2606 if (exi->exi_dvp != NULL) 2607 VN_RELE(exi->exi_dvp); 2608 2609 if (ex->ex_flags & EX_INDEX) 2610 kmem_free(ex->ex_index, strlen(ex->ex_index) + 1); 2611 2612 kmem_free(ex->ex_path, ex->ex_pathlen + 1); 2613 nfsauth_cache_free(exi); 2614 2615 /* 2616 * if there is a character set mapping cached, clean it up. 2617 */ 2618 for (cache = exi->exi_charset; cache != NULL; 2619 cache = exi->exi_charset) { 2620 if (cache->inbound != (kiconv_t)-1) 2621 (void) kiconv_close(cache->inbound); 2622 if (cache->outbound != (kiconv_t)-1) 2623 (void) kiconv_close(cache->outbound); 2624 exi->exi_charset = cache->next; 2625 kmem_free(cache, sizeof (struct charset_cache)); 2626 } 2627 2628 if (exi->exi_logbuffer != NULL) 2629 nfslog_disable(exi); 2630 2631 if (ex->ex_flags & EX_LOG) { 2632 kmem_free(ex->ex_log_buffer, ex->ex_log_bufferlen + 1); 2633 kmem_free(ex->ex_tag, ex->ex_taglen + 1); 2634 } 2635 2636 if (exi->exi_visible) 2637 free_visible(exi->exi_visible); 2638 2639 srv_secinfo_list_free(ex->ex_secinfo, ex->ex_seccnt); 2640 2641 #ifdef VOLATILE_FH_TEST 2642 free_volrnm_list(exi); 2643 mutex_destroy(&exi->exi_vol_rename_lock); 2644 #endif /* VOLATILE_FH_TEST */ 2645 2646 mutex_destroy(&exi->exi_lock); 2647 rw_destroy(&exi->exi_cache_lock); 2648 2649 kmem_free(exi, sizeof (*exi)); 2650 } 2651 2652 /* 2653 * load the index file from user space into kernel space. 2654 */ 2655 static int 2656 loadindex(struct exportdata *kex) 2657 { 2658 int error; 2659 char index[MAXNAMELEN+1]; 2660 size_t len; 2661 2662 /* 2663 * copyinstr copies the complete string including the NULL and 2664 * returns the len with the NULL byte included in the calculation 2665 * as long as the max length is not exceeded. 2666 */ 2667 if (error = copyinstr(kex->ex_index, index, sizeof (index), &len)) 2668 return (error); 2669 2670 kex->ex_index = kmem_alloc(len, KM_SLEEP); 2671 bcopy(index, kex->ex_index, len); 2672 2673 return (0); 2674 } 2675 2676 void 2677 exi_hold(struct exportinfo *exi) 2678 { 2679 mutex_enter(&exi->exi_lock); 2680 exi->exi_count++; 2681 mutex_exit(&exi->exi_lock); 2682 } 2683 2684 /* 2685 * When a thread completes using exi, it should call exi_rele(). 2686 * exi_rele() decrements exi_count. It releases exi if exi_count == 0, i.e. 2687 * if this is the last user of exi and exi is not on exportinfo list anymore 2688 */ 2689 void 2690 exi_rele(struct exportinfo *exi) 2691 { 2692 mutex_enter(&exi->exi_lock); 2693 exi->exi_count--; 2694 if (exi->exi_count == 0) { 2695 mutex_exit(&exi->exi_lock); 2696 exportfree(exi); 2697 } else 2698 mutex_exit(&exi->exi_lock); 2699 } 2700 2701 #ifdef VOLATILE_FH_TEST 2702 /* 2703 * Test for volatile fh's - add file handle to list and set its volatile id 2704 * to time it was renamed. If EX_VOLFH is also on and the fs is reshared, 2705 * the vol_rename queue is purged. 2706 * 2707 * XXX This code is for unit testing purposes only... To correctly use it, it 2708 * needs to tie a rename list to the export struct and (more 2709 * important), protect access to the exi rename list using a write lock. 2710 */ 2711 2712 /* 2713 * get the fh vol record if it's in the volatile on rename list. Don't check 2714 * volatile_id in the file handle - compare only the file handles. 2715 */ 2716 static struct ex_vol_rename * 2717 find_volrnm_fh(struct exportinfo *exi, nfs_fh4 *fh4p) 2718 { 2719 struct ex_vol_rename *p = NULL; 2720 fhandle4_t *fhp; 2721 2722 /* XXX shouldn't we assert &exported_lock held? */ 2723 ASSERT(MUTEX_HELD(&exi->exi_vol_rename_lock)); 2724 2725 if (fh4p->nfs_fh4_len != NFS_FH4_LEN) { 2726 return (NULL); 2727 } 2728 fhp = &((nfs_fh4_fmt_t *)fh4p->nfs_fh4_val)->fh4_i; 2729 for (p = exi->exi_vol_rename; p != NULL; p = p->vrn_next) { 2730 if (bcmp(fhp, &p->vrn_fh_fmt.fh4_i, 2731 sizeof (fhandle4_t)) == 0) 2732 break; 2733 } 2734 return (p); 2735 } 2736 2737 /* 2738 * get the volatile id for the fh (if there is - else return 0). Ignore the 2739 * volatile_id in the file handle - compare only the file handles. 2740 */ 2741 static uint32_t 2742 find_volrnm_fh_id(struct exportinfo *exi, nfs_fh4 *fh4p) 2743 { 2744 struct ex_vol_rename *p; 2745 uint32_t volatile_id; 2746 2747 mutex_enter(&exi->exi_vol_rename_lock); 2748 p = find_volrnm_fh(exi, fh4p); 2749 volatile_id = (p ? p->vrn_fh_fmt.fh4_volatile_id : 2750 exi->exi_volatile_id); 2751 mutex_exit(&exi->exi_vol_rename_lock); 2752 return (volatile_id); 2753 } 2754 2755 /* 2756 * Free the volatile on rename list - will be called if a filesystem is 2757 * unshared or reshared without EX_VOLRNM 2758 */ 2759 static void 2760 free_volrnm_list(struct exportinfo *exi) 2761 { 2762 struct ex_vol_rename *p, *pnext; 2763 2764 /* no need to hold mutex lock - this one is called from exportfree */ 2765 for (p = exi->exi_vol_rename; p != NULL; p = pnext) { 2766 pnext = p->vrn_next; 2767 kmem_free(p, sizeof (*p)); 2768 } 2769 exi->exi_vol_rename = NULL; 2770 } 2771 2772 /* 2773 * Add a file handle to the volatile on rename list. 2774 */ 2775 void 2776 add_volrnm_fh(struct exportinfo *exi, vnode_t *vp) 2777 { 2778 struct ex_vol_rename *p; 2779 char fhbuf[NFS4_FHSIZE]; 2780 nfs_fh4 fh4; 2781 int error; 2782 2783 fh4.nfs_fh4_val = fhbuf; 2784 error = makefh4(&fh4, vp, exi); 2785 if ((error) || (fh4.nfs_fh4_len != sizeof (p->vrn_fh_fmt))) { 2786 return; 2787 } 2788 2789 mutex_enter(&exi->exi_vol_rename_lock); 2790 2791 p = find_volrnm_fh(exi, &fh4); 2792 2793 if (p == NULL) { 2794 p = kmem_alloc(sizeof (*p), KM_SLEEP); 2795 bcopy(fh4.nfs_fh4_val, &p->vrn_fh_fmt, sizeof (p->vrn_fh_fmt)); 2796 p->vrn_next = exi->exi_vol_rename; 2797 exi->exi_vol_rename = p; 2798 } 2799 2800 p->vrn_fh_fmt.fh4_volatile_id = gethrestime_sec(); 2801 mutex_exit(&exi->exi_vol_rename_lock); 2802 } 2803 2804 #endif /* VOLATILE_FH_TEST */ 2805