1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * 25 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 26 * All rights reserved. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/types.h> 31 #include <sys/systm.h> 32 #include <sys/thread.h> 33 #include <sys/t_lock.h> 34 #include <sys/time.h> 35 #include <sys/vnode.h> 36 #include <sys/vfs.h> 37 #include <sys/errno.h> 38 #include <sys/buf.h> 39 #include <sys/stat.h> 40 #include <sys/cred.h> 41 #include <sys/kmem.h> 42 #include <sys/debug.h> 43 #include <sys/dnlc.h> 44 #include <sys/vmsystm.h> 45 #include <sys/flock.h> 46 #include <sys/share.h> 47 #include <sys/cmn_err.h> 48 #include <sys/tiuser.h> 49 #include <sys/sysmacros.h> 50 #include <sys/callb.h> 51 #include <sys/acl.h> 52 #include <sys/kstat.h> 53 #include <sys/signal.h> 54 #include <sys/list.h> 55 #include <sys/zone.h> 56 57 #include <rpc/types.h> 58 #include <rpc/xdr.h> 59 #include <rpc/auth.h> 60 #include <rpc/clnt.h> 61 62 #include <nfs/nfs.h> 63 #include <nfs/nfs_clnt.h> 64 65 #include <nfs/rnode.h> 66 #include <nfs/nfs_acl.h> 67 #include <nfs/lm.h> 68 69 #include <vm/hat.h> 70 #include <vm/as.h> 71 #include <vm/page.h> 72 #include <vm/pvn.h> 73 #include <vm/seg.h> 74 #include <vm/seg_map.h> 75 #include <vm/seg_vn.h> 76 77 static void nfs3_attr_cache(vnode_t *, vattr_t *, vattr_t *, hrtime_t, 78 cred_t *); 79 static int nfs_getattr_cache(vnode_t *, struct vattr *); 80 static int nfs_remove_locking_id(vnode_t *, int, char *, char *, int *); 81 82 struct mi_globals { 83 kmutex_t mig_lock; /* lock protecting mig_list */ 84 list_t mig_list; /* list of NFS v2 or v3 mounts in zone */ 85 boolean_t mig_destructor_called; 86 }; 87 88 static zone_key_t mi_list_key; 89 90 /* Debugging flag for PC file shares. */ 91 extern int share_debug; 92 93 /* 94 * Attributes caching: 95 * 96 * Attributes are cached in the rnode in struct vattr form. 97 * There is a time associated with the cached attributes (r_attrtime) 98 * which tells whether the attributes are valid. The time is initialized 99 * to the difference between current time and the modify time of the vnode 100 * when new attributes are cached. This allows the attributes for 101 * files that have changed recently to be timed out sooner than for files 102 * that have not changed for a long time. There are minimum and maximum 103 * timeout values that can be set per mount point. 104 */ 105 106 int 107 nfs_waitfor_purge_complete(vnode_t *vp) 108 { 109 rnode_t *rp; 110 k_sigset_t smask; 111 112 rp = VTOR(vp); 113 if (rp->r_serial != NULL && rp->r_serial != curthread) { 114 mutex_enter(&rp->r_statelock); 115 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 116 while (rp->r_serial != NULL) { 117 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 118 sigunintr(&smask); 119 mutex_exit(&rp->r_statelock); 120 return (EINTR); 121 } 122 } 123 sigunintr(&smask); 124 mutex_exit(&rp->r_statelock); 125 } 126 return (0); 127 } 128 129 /* 130 * Validate caches by checking cached attributes. If the cached 131 * attributes have timed out, then get new attributes from the server. 132 * As a side affect, this will do cache invalidation if the attributes 133 * have changed. 134 * 135 * If the attributes have not timed out and if there is a cache 136 * invalidation being done by some other thread, then wait until that 137 * thread has completed the cache invalidation. 138 */ 139 int 140 nfs_validate_caches(vnode_t *vp, cred_t *cr) 141 { 142 int error; 143 struct vattr va; 144 145 if (ATTRCACHE_VALID(vp)) { 146 error = nfs_waitfor_purge_complete(vp); 147 if (error) 148 return (error); 149 return (0); 150 } 151 152 va.va_mask = AT_ALL; 153 return (nfs_getattr_otw(vp, &va, cr)); 154 } 155 156 /* 157 * Validate caches by checking cached attributes. If the cached 158 * attributes have timed out, then get new attributes from the server. 159 * As a side affect, this will do cache invalidation if the attributes 160 * have changed. 161 * 162 * If the attributes have not timed out and if there is a cache 163 * invalidation being done by some other thread, then wait until that 164 * thread has completed the cache invalidation. 165 */ 166 int 167 nfs3_validate_caches(vnode_t *vp, cred_t *cr) 168 { 169 int error; 170 struct vattr va; 171 172 if (ATTRCACHE_VALID(vp)) { 173 error = nfs_waitfor_purge_complete(vp); 174 if (error) 175 return (error); 176 return (0); 177 } 178 179 va.va_mask = AT_ALL; 180 return (nfs3_getattr_otw(vp, &va, cr)); 181 } 182 183 /* 184 * Purge all of the various NFS `data' caches. 185 */ 186 void 187 nfs_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr) 188 { 189 rnode_t *rp; 190 char *contents; 191 int size; 192 int error; 193 194 /* 195 * Purge the DNLC for any entries which refer to this file. 196 * Avoid recursive entry into dnlc_purge_vp() in case of a directory. 197 */ 198 rp = VTOR(vp); 199 mutex_enter(&rp->r_statelock); 200 if (vp->v_count > 1 && 201 (vp->v_type == VDIR || purge_dnlc == NFS_PURGE_DNLC) && 202 !(rp->r_flags & RINDNLCPURGE)) { 203 /* 204 * Set the RINDNLCPURGE flag to prevent recursive entry 205 * into dnlc_purge_vp() 206 */ 207 if (vp->v_type == VDIR) 208 rp->r_flags |= RINDNLCPURGE; 209 mutex_exit(&rp->r_statelock); 210 dnlc_purge_vp(vp); 211 mutex_enter(&rp->r_statelock); 212 if (rp->r_flags & RINDNLCPURGE) 213 rp->r_flags &= ~RINDNLCPURGE; 214 } 215 216 /* 217 * Clear any readdir state bits and purge the readlink response cache. 218 */ 219 contents = rp->r_symlink.contents; 220 size = rp->r_symlink.size; 221 rp->r_symlink.contents = NULL; 222 mutex_exit(&rp->r_statelock); 223 224 if (contents != NULL) { 225 226 kmem_free((void *)contents, size); 227 } 228 229 /* 230 * Flush the page cache. 231 */ 232 if (vn_has_cached_data(vp)) { 233 error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL); 234 if (error && (error == ENOSPC || error == EDQUOT)) { 235 mutex_enter(&rp->r_statelock); 236 if (!rp->r_error) 237 rp->r_error = error; 238 mutex_exit(&rp->r_statelock); 239 } 240 } 241 242 /* 243 * Flush the readdir response cache. 244 */ 245 if (HAVE_RDDIR_CACHE(rp)) 246 nfs_purge_rddir_cache(vp); 247 } 248 249 /* 250 * Purge the readdir cache of all entries 251 */ 252 void 253 nfs_purge_rddir_cache(vnode_t *vp) 254 { 255 rnode_t *rp; 256 rddir_cache *rdc; 257 rddir_cache *nrdc; 258 259 rp = VTOR(vp); 260 top: 261 mutex_enter(&rp->r_statelock); 262 rp->r_direof = NULL; 263 rp->r_flags &= ~RLOOKUP; 264 rp->r_flags |= RREADDIRPLUS; 265 rdc = avl_first(&rp->r_dir); 266 while (rdc != NULL) { 267 nrdc = AVL_NEXT(&rp->r_dir, rdc); 268 avl_remove(&rp->r_dir, rdc); 269 rddir_cache_rele(rdc); 270 rdc = nrdc; 271 } 272 mutex_exit(&rp->r_statelock); 273 } 274 275 /* 276 * Do a cache check based on the post-operation attributes. 277 * Then make them the new cached attributes. If no attributes 278 * were returned, then mark the attributes as timed out. 279 */ 280 void 281 nfs3_cache_post_op_attr(vnode_t *vp, post_op_attr *poap, hrtime_t t, cred_t *cr) 282 { 283 vattr_t attr; 284 285 if (!poap->attributes) { 286 PURGE_ATTRCACHE(vp); 287 return; 288 } 289 (void) nfs3_cache_fattr3(vp, &poap->attr, &attr, t, cr); 290 } 291 292 /* 293 * Same as above, but using a vattr 294 */ 295 void 296 nfs3_cache_post_op_vattr(vnode_t *vp, post_op_vattr *poap, hrtime_t t, 297 cred_t *cr) 298 { 299 if (!poap->attributes) { 300 PURGE_ATTRCACHE(vp); 301 return; 302 } 303 nfs_attr_cache(vp, poap->fres.vap, t, cr); 304 } 305 306 /* 307 * Do a cache check based on the weak cache consistency attributes. 308 * These consist of a small set of pre-operation attributes and the 309 * full set of post-operation attributes. 310 * 311 * If we are given the pre-operation attributes, then use them to 312 * check the validity of the various caches. Then, if we got the 313 * post-operation attributes, make them the new cached attributes. 314 * If we didn't get the post-operation attributes, then mark the 315 * attribute cache as timed out so that the next reference will 316 * cause a GETATTR to the server to refresh with the current 317 * attributes. 318 * 319 * Otherwise, if we didn't get the pre-operation attributes, but 320 * we did get the post-operation attributes, then use these 321 * attributes to check the validity of the various caches. This 322 * will probably cause a flush of the caches because if the 323 * operation succeeded, the attributes of the object were changed 324 * in some way from the old post-operation attributes. This 325 * should be okay because it is the safe thing to do. After 326 * checking the data caches, then we make these the new cached 327 * attributes. 328 * 329 * Otherwise, we didn't get either the pre- or post-operation 330 * attributes. Simply mark the attribute cache as timed out so 331 * the next reference will cause a GETATTR to the server to 332 * refresh with the current attributes. 333 * 334 * If an error occurred trying to convert the over the wire 335 * attributes to a vattr, then simply mark the attribute cache as 336 * timed out. 337 */ 338 void 339 nfs3_cache_wcc_data(vnode_t *vp, wcc_data *wccp, hrtime_t t, cred_t *cr) 340 { 341 vattr_t bva; 342 vattr_t ava; 343 344 if (wccp->after.attributes) { 345 if (fattr3_to_vattr(vp, &wccp->after.attr, &ava)) { 346 PURGE_ATTRCACHE(vp); 347 return; 348 } 349 if (wccp->before.attributes) { 350 bva.va_ctime.tv_sec = wccp->before.attr.ctime.seconds; 351 bva.va_ctime.tv_nsec = wccp->before.attr.ctime.nseconds; 352 bva.va_mtime.tv_sec = wccp->before.attr.mtime.seconds; 353 bva.va_mtime.tv_nsec = wccp->before.attr.mtime.nseconds; 354 bva.va_size = wccp->before.attr.size; 355 nfs3_attr_cache(vp, &bva, &ava, t, cr); 356 } else 357 nfs_attr_cache(vp, &ava, t, cr); 358 } else { 359 PURGE_ATTRCACHE(vp); 360 } 361 } 362 363 /* 364 * Set attributes cache for given vnode using nfsattr. 365 * 366 * This routine does not do cache validation with the attributes. 367 * 368 * If an error occurred trying to convert the over the wire 369 * attributes to a vattr, then simply mark the attribute cache as 370 * timed out. 371 */ 372 void 373 nfs_attrcache(vnode_t *vp, struct nfsfattr *na, hrtime_t t) 374 { 375 rnode_t *rp; 376 struct vattr va; 377 378 if (!nattr_to_vattr(vp, na, &va)) { 379 rp = VTOR(vp); 380 mutex_enter(&rp->r_statelock); 381 if (rp->r_mtime <= t) 382 nfs_attrcache_va(vp, &va); 383 mutex_exit(&rp->r_statelock); 384 } else { 385 PURGE_ATTRCACHE(vp); 386 } 387 } 388 389 /* 390 * Set attributes cache for given vnode using fattr3. 391 * 392 * This routine does not do cache validation with the attributes. 393 * 394 * If an error occurred trying to convert the over the wire 395 * attributes to a vattr, then simply mark the attribute cache as 396 * timed out. 397 */ 398 void 399 nfs3_attrcache(vnode_t *vp, fattr3 *na, hrtime_t t) 400 { 401 rnode_t *rp; 402 struct vattr va; 403 404 if (!fattr3_to_vattr(vp, na, &va)) { 405 rp = VTOR(vp); 406 mutex_enter(&rp->r_statelock); 407 if (rp->r_mtime <= t) 408 nfs_attrcache_va(vp, &va); 409 mutex_exit(&rp->r_statelock); 410 } else { 411 PURGE_ATTRCACHE(vp); 412 } 413 } 414 415 /* 416 * Do a cache check based on attributes returned over the wire. The 417 * new attributes are cached. 418 * 419 * If an error occurred trying to convert the over the wire attributes 420 * to a vattr, then just return that error. 421 * 422 * As a side affect, the vattr argument is filled in with the converted 423 * attributes. 424 */ 425 int 426 nfs_cache_fattr(vnode_t *vp, struct nfsfattr *na, vattr_t *vap, hrtime_t t, 427 cred_t *cr) 428 { 429 int error; 430 431 error = nattr_to_vattr(vp, na, vap); 432 if (error) 433 return (error); 434 nfs_attr_cache(vp, vap, t, cr); 435 return (0); 436 } 437 438 /* 439 * Do a cache check based on attributes returned over the wire. The 440 * new attributes are cached. 441 * 442 * If an error occurred trying to convert the over the wire attributes 443 * to a vattr, then just return that error. 444 * 445 * As a side affect, the vattr argument is filled in with the converted 446 * attributes. 447 */ 448 int 449 nfs3_cache_fattr3(vnode_t *vp, fattr3 *na, vattr_t *vap, hrtime_t t, cred_t *cr) 450 { 451 int error; 452 453 error = fattr3_to_vattr(vp, na, vap); 454 if (error) 455 return (error); 456 nfs_attr_cache(vp, vap, t, cr); 457 return (0); 458 } 459 460 /* 461 * Use the passed in virtual attributes to check to see whether the 462 * data and metadata caches are valid, cache the new attributes, and 463 * then do the cache invalidation if required. 464 * 465 * The cache validation and caching of the new attributes is done 466 * atomically via the use of the mutex, r_statelock. If required, 467 * the cache invalidation is done atomically w.r.t. the cache 468 * validation and caching of the attributes via the pseudo lock, 469 * r_serial. 470 * 471 * This routine is used to do cache validation and attributes caching 472 * for operations with a single set of post operation attributes. 473 */ 474 void 475 nfs_attr_cache(vnode_t *vp, vattr_t *vap, hrtime_t t, cred_t *cr) 476 { 477 rnode_t *rp; 478 int mtime_changed = 0; 479 int ctime_changed = 0; 480 vsecattr_t *vsp; 481 int was_serial; 482 len_t preattr_rsize; 483 boolean_t writeattr_set = B_FALSE; 484 boolean_t cachepurge_set = B_FALSE; 485 486 rp = VTOR(vp); 487 488 mutex_enter(&rp->r_statelock); 489 490 if (rp->r_serial != curthread) { 491 klwp_t *lwp = ttolwp(curthread); 492 493 was_serial = 0; 494 if (lwp != NULL) 495 lwp->lwp_nostop++; 496 while (rp->r_serial != NULL) { 497 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 498 mutex_exit(&rp->r_statelock); 499 if (lwp != NULL) 500 lwp->lwp_nostop--; 501 return; 502 } 503 } 504 if (lwp != NULL) 505 lwp->lwp_nostop--; 506 } else 507 was_serial = 1; 508 509 if (rp->r_mtime > t) { 510 if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size)) 511 PURGE_ATTRCACHE_LOCKED(rp); 512 mutex_exit(&rp->r_statelock); 513 return; 514 } 515 516 /* 517 * Write thread after writing data to file on remote server, 518 * will always set RWRITEATTR to indicate that file on remote 519 * server was modified with a WRITE operation and would have 520 * marked attribute cache as timed out. If RWRITEATTR 521 * is set, then do not check for mtime and ctime change. 522 */ 523 if (!(rp->r_flags & RWRITEATTR)) { 524 if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size)) 525 mtime_changed = 1; 526 527 if (rp->r_attr.va_ctime.tv_sec != vap->va_ctime.tv_sec || 528 rp->r_attr.va_ctime.tv_nsec != vap->va_ctime.tv_nsec) 529 ctime_changed = 1; 530 } else { 531 writeattr_set = B_TRUE; 532 } 533 534 preattr_rsize = rp->r_size; 535 536 nfs_attrcache_va(vp, vap); 537 538 /* 539 * If we have updated filesize in nfs_attrcache_va, as soon as we 540 * drop statelock we will be in transition of purging all 541 * our caches and updating them. It is possible for another 542 * thread to pick this new file size and read in zeroed data. 543 * stall other threads till cache purge is complete. 544 */ 545 if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) { 546 /* 547 * If RWRITEATTR was set and we have updated the file 548 * size, Server's returned file size need not necessarily 549 * be because of this Client's WRITE. We need to purge 550 * all caches. 551 */ 552 if (writeattr_set) 553 mtime_changed = 1; 554 555 if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) { 556 rp->r_flags |= RINCACHEPURGE; 557 cachepurge_set = B_TRUE; 558 } 559 } 560 561 if (!mtime_changed && !ctime_changed) { 562 mutex_exit(&rp->r_statelock); 563 return; 564 } 565 566 rp->r_serial = curthread; 567 568 mutex_exit(&rp->r_statelock); 569 570 if (mtime_changed) 571 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 572 573 if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) { 574 mutex_enter(&rp->r_statelock); 575 rp->r_flags &= ~RINCACHEPURGE; 576 cv_broadcast(&rp->r_cv); 577 mutex_exit(&rp->r_statelock); 578 cachepurge_set = B_FALSE; 579 } 580 581 if (ctime_changed) { 582 (void) nfs_access_purge_rp(rp); 583 if (rp->r_secattr != NULL) { 584 mutex_enter(&rp->r_statelock); 585 vsp = rp->r_secattr; 586 rp->r_secattr = NULL; 587 mutex_exit(&rp->r_statelock); 588 if (vsp != NULL) 589 nfs_acl_free(vsp); 590 } 591 } 592 593 if (!was_serial) { 594 mutex_enter(&rp->r_statelock); 595 rp->r_serial = NULL; 596 cv_broadcast(&rp->r_cv); 597 mutex_exit(&rp->r_statelock); 598 } 599 } 600 601 /* 602 * Use the passed in "before" virtual attributes to check to see 603 * whether the data and metadata caches are valid, cache the "after" 604 * new attributes, and then do the cache invalidation if required. 605 * 606 * The cache validation and caching of the new attributes is done 607 * atomically via the use of the mutex, r_statelock. If required, 608 * the cache invalidation is done atomically w.r.t. the cache 609 * validation and caching of the attributes via the pseudo lock, 610 * r_serial. 611 * 612 * This routine is used to do cache validation and attributes caching 613 * for operations with both pre operation attributes and post operation 614 * attributes. 615 */ 616 static void 617 nfs3_attr_cache(vnode_t *vp, vattr_t *bvap, vattr_t *avap, hrtime_t t, 618 cred_t *cr) 619 { 620 rnode_t *rp; 621 int mtime_changed = 0; 622 int ctime_changed = 0; 623 vsecattr_t *vsp; 624 int was_serial; 625 len_t preattr_rsize; 626 boolean_t writeattr_set = B_FALSE; 627 boolean_t cachepurge_set = B_FALSE; 628 629 rp = VTOR(vp); 630 631 mutex_enter(&rp->r_statelock); 632 633 if (rp->r_serial != curthread) { 634 klwp_t *lwp = ttolwp(curthread); 635 636 was_serial = 0; 637 if (lwp != NULL) 638 lwp->lwp_nostop++; 639 while (rp->r_serial != NULL) { 640 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 641 mutex_exit(&rp->r_statelock); 642 if (lwp != NULL) 643 lwp->lwp_nostop--; 644 return; 645 } 646 } 647 if (lwp != NULL) 648 lwp->lwp_nostop--; 649 } else 650 was_serial = 1; 651 652 if (rp->r_mtime > t) { 653 if (!CACHE_VALID(rp, avap->va_mtime, avap->va_size)) 654 PURGE_ATTRCACHE_LOCKED(rp); 655 mutex_exit(&rp->r_statelock); 656 return; 657 } 658 659 /* 660 * Write thread after writing data to file on remote server, 661 * will always set RWRITEATTR to indicate that file on remote 662 * server was modified with a WRITE operation and would have 663 * marked attribute cache as timed out. If RWRITEATTR 664 * is set, then do not check for mtime and ctime change. 665 */ 666 if (!(rp->r_flags & RWRITEATTR)) { 667 if (!CACHE_VALID(rp, bvap->va_mtime, bvap->va_size)) 668 mtime_changed = 1; 669 670 if (rp->r_attr.va_ctime.tv_sec != bvap->va_ctime.tv_sec || 671 rp->r_attr.va_ctime.tv_nsec != bvap->va_ctime.tv_nsec) 672 ctime_changed = 1; 673 } else { 674 writeattr_set = B_TRUE; 675 } 676 677 preattr_rsize = rp->r_size; 678 679 nfs_attrcache_va(vp, avap); 680 681 /* 682 * If we have updated filesize in nfs_attrcache_va, as soon as we 683 * drop statelock we will be in transition of purging all 684 * our caches and updating them. It is possible for another 685 * thread to pick this new file size and read in zeroed data. 686 * stall other threads till cache purge is complete. 687 */ 688 if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) { 689 /* 690 * If RWRITEATTR was set and we have updated the file 691 * size, Server's returned file size need not necessarily 692 * be because of this Client's WRITE. We need to purge 693 * all caches. 694 */ 695 if (writeattr_set) 696 mtime_changed = 1; 697 698 if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) { 699 rp->r_flags |= RINCACHEPURGE; 700 cachepurge_set = B_TRUE; 701 } 702 } 703 704 if (!mtime_changed && !ctime_changed) { 705 mutex_exit(&rp->r_statelock); 706 return; 707 } 708 709 rp->r_serial = curthread; 710 711 mutex_exit(&rp->r_statelock); 712 713 if (mtime_changed) 714 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 715 716 if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) { 717 mutex_enter(&rp->r_statelock); 718 rp->r_flags &= ~RINCACHEPURGE; 719 cv_broadcast(&rp->r_cv); 720 mutex_exit(&rp->r_statelock); 721 cachepurge_set = B_FALSE; 722 } 723 724 if (ctime_changed) { 725 (void) nfs_access_purge_rp(rp); 726 if (rp->r_secattr != NULL) { 727 mutex_enter(&rp->r_statelock); 728 vsp = rp->r_secattr; 729 rp->r_secattr = NULL; 730 mutex_exit(&rp->r_statelock); 731 if (vsp != NULL) 732 nfs_acl_free(vsp); 733 } 734 } 735 736 if (!was_serial) { 737 mutex_enter(&rp->r_statelock); 738 rp->r_serial = NULL; 739 cv_broadcast(&rp->r_cv); 740 mutex_exit(&rp->r_statelock); 741 } 742 } 743 744 /* 745 * Set attributes cache for given vnode using virtual attributes. 746 * 747 * Set the timeout value on the attribute cache and fill it 748 * with the passed in attributes. 749 * 750 * The caller must be holding r_statelock. 751 */ 752 void 753 nfs_attrcache_va(vnode_t *vp, struct vattr *va) 754 { 755 rnode_t *rp; 756 mntinfo_t *mi; 757 hrtime_t delta; 758 hrtime_t now; 759 760 rp = VTOR(vp); 761 762 ASSERT(MUTEX_HELD(&rp->r_statelock)); 763 764 now = gethrtime(); 765 766 mi = VTOMI(vp); 767 768 /* 769 * Delta is the number of nanoseconds that we will 770 * cache the attributes of the file. It is based on 771 * the number of nanoseconds since the last time that 772 * we detected a change. The assumption is that files 773 * that changed recently are likely to change again. 774 * There is a minimum and a maximum for regular files 775 * and for directories which is enforced though. 776 * 777 * Using the time since last change was detected 778 * eliminates direct comparison or calculation 779 * using mixed client and server times. NFS does 780 * not make any assumptions regarding the client 781 * and server clocks being synchronized. 782 */ 783 if (va->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec || 784 va->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec || 785 va->va_size != rp->r_attr.va_size) 786 rp->r_mtime = now; 787 788 if ((mi->mi_flags & MI_NOAC) || (vp->v_flag & VNOCACHE)) 789 delta = 0; 790 else { 791 delta = now - rp->r_mtime; 792 if (vp->v_type == VDIR) { 793 if (delta < mi->mi_acdirmin) 794 delta = mi->mi_acdirmin; 795 else if (delta > mi->mi_acdirmax) 796 delta = mi->mi_acdirmax; 797 } else { 798 if (delta < mi->mi_acregmin) 799 delta = mi->mi_acregmin; 800 else if (delta > mi->mi_acregmax) 801 delta = mi->mi_acregmax; 802 } 803 } 804 rp->r_attrtime = now + delta; 805 rp->r_attr = *va; 806 /* 807 * Update the size of the file if there is no cached data or if 808 * the cached data is clean and there is no data being written 809 * out. 810 */ 811 if (rp->r_size != va->va_size && 812 (!vn_has_cached_data(vp) || 813 (!(rp->r_flags & RDIRTY) && rp->r_count == 0))) 814 rp->r_size = va->va_size; 815 nfs_setswaplike(vp, va); 816 rp->r_flags &= ~RWRITEATTR; 817 } 818 819 /* 820 * Fill in attribute from the cache. 821 * If valid, then return 0 to indicate that no error occurred, 822 * otherwise return 1 to indicate that an error occurred. 823 */ 824 static int 825 nfs_getattr_cache(vnode_t *vp, struct vattr *vap) 826 { 827 rnode_t *rp; 828 829 rp = VTOR(vp); 830 mutex_enter(&rp->r_statelock); 831 if (ATTRCACHE_VALID(vp)) { 832 /* 833 * Cached attributes are valid 834 */ 835 *vap = rp->r_attr; 836 mutex_exit(&rp->r_statelock); 837 return (0); 838 } 839 mutex_exit(&rp->r_statelock); 840 return (1); 841 } 842 843 /* 844 * Get attributes over-the-wire and update attributes cache 845 * if no error occurred in the over-the-wire operation. 846 * Return 0 if successful, otherwise error. 847 */ 848 int 849 nfs_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr) 850 { 851 int error; 852 struct nfsattrstat ns; 853 int douprintf; 854 mntinfo_t *mi; 855 failinfo_t fi; 856 hrtime_t t; 857 858 mi = VTOMI(vp); 859 fi.vp = vp; 860 fi.fhp = NULL; /* no need to update, filehandle not copied */ 861 fi.copyproc = nfscopyfh; 862 fi.lookupproc = nfslookup; 863 fi.xattrdirproc = acl_getxattrdir2; 864 865 if (mi->mi_flags & MI_ACL) { 866 error = acl_getattr2_otw(vp, vap, cr); 867 if (mi->mi_flags & MI_ACL) 868 return (error); 869 } 870 871 douprintf = 1; 872 873 t = gethrtime(); 874 875 error = rfs2call(mi, RFS_GETATTR, xdr_fhandle, (caddr_t)VTOFH(vp), 876 xdr_attrstat, (caddr_t)&ns, cr, &douprintf, &ns.ns_status, 0, &fi); 877 878 if (!error) { 879 error = geterrno(ns.ns_status); 880 if (!error) 881 error = nfs_cache_fattr(vp, &ns.ns_attr, vap, t, cr); 882 else { 883 PURGE_STALE_FH(error, vp, cr); 884 } 885 } 886 887 return (error); 888 } 889 890 /* 891 * Return either cached ot remote attributes. If get remote attr 892 * use them to check and invalidate caches, then cache the new attributes. 893 */ 894 int 895 nfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr) 896 { 897 int error; 898 rnode_t *rp; 899 900 /* 901 * If we've got cached attributes, we're done, otherwise go 902 * to the server to get attributes, which will update the cache 903 * in the process. 904 */ 905 error = nfs_getattr_cache(vp, vap); 906 if (error) 907 error = nfs_getattr_otw(vp, vap, cr); 908 909 /* Return the client's view of file size */ 910 rp = VTOR(vp); 911 mutex_enter(&rp->r_statelock); 912 vap->va_size = rp->r_size; 913 mutex_exit(&rp->r_statelock); 914 915 return (error); 916 } 917 918 /* 919 * Get attributes over-the-wire and update attributes cache 920 * if no error occurred in the over-the-wire operation. 921 * Return 0 if successful, otherwise error. 922 */ 923 int 924 nfs3_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr) 925 { 926 int error; 927 GETATTR3args args; 928 GETATTR3vres res; 929 int douprintf; 930 failinfo_t fi; 931 hrtime_t t; 932 933 args.object = *VTOFH3(vp); 934 fi.vp = vp; 935 fi.fhp = (caddr_t)&args.object; 936 fi.copyproc = nfs3copyfh; 937 fi.lookupproc = nfs3lookup; 938 fi.xattrdirproc = acl_getxattrdir3; 939 res.fres.vp = vp; 940 res.fres.vap = vap; 941 942 douprintf = 1; 943 944 t = gethrtime(); 945 946 error = rfs3call(VTOMI(vp), NFSPROC3_GETATTR, 947 xdr_nfs_fh3, (caddr_t)&args, 948 xdr_GETATTR3vres, (caddr_t)&res, cr, 949 &douprintf, &res.status, 0, &fi); 950 951 if (error) 952 return (error); 953 954 error = geterrno3(res.status); 955 if (error) { 956 PURGE_STALE_FH(error, vp, cr); 957 return (error); 958 } 959 960 /* 961 * Catch status codes that indicate fattr3 to vattr translation failure 962 */ 963 if (res.fres.status) 964 return (res.fres.status); 965 966 nfs_attr_cache(vp, vap, t, cr); 967 return (0); 968 } 969 970 /* 971 * Return either cached or remote attributes. If get remote attr 972 * use them to check and invalidate caches, then cache the new attributes. 973 */ 974 int 975 nfs3getattr(vnode_t *vp, struct vattr *vap, cred_t *cr) 976 { 977 int error; 978 rnode_t *rp; 979 980 /* 981 * If we've got cached attributes, we're done, otherwise go 982 * to the server to get attributes, which will update the cache 983 * in the process. 984 */ 985 error = nfs_getattr_cache(vp, vap); 986 if (error) 987 error = nfs3_getattr_otw(vp, vap, cr); 988 989 /* Return the client's view of file size */ 990 rp = VTOR(vp); 991 mutex_enter(&rp->r_statelock); 992 vap->va_size = rp->r_size; 993 mutex_exit(&rp->r_statelock); 994 995 return (error); 996 } 997 998 vtype_t nf_to_vt[] = { 999 VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK 1000 }; 1001 /* 1002 * Convert NFS Version 2 over the network attributes to the local 1003 * virtual attributes. The mapping between the UID_NOBODY/GID_NOBODY 1004 * network representation and the local representation is done here. 1005 * Returns 0 for success, error if failed due to overflow. 1006 */ 1007 int 1008 nattr_to_vattr(vnode_t *vp, struct nfsfattr *na, struct vattr *vap) 1009 { 1010 /* overflow in time attributes? */ 1011 #ifndef _LP64 1012 if (!NFS2_FATTR_TIME_OK(na)) 1013 return (EOVERFLOW); 1014 #endif 1015 1016 if (na->na_type < NFNON || na->na_type > NFSOC) 1017 vap->va_type = VBAD; 1018 else 1019 vap->va_type = nf_to_vt[na->na_type]; 1020 vap->va_mode = na->na_mode; 1021 vap->va_uid = (na->na_uid == NFS_UID_NOBODY) ? UID_NOBODY : na->na_uid; 1022 vap->va_gid = (na->na_gid == NFS_GID_NOBODY) ? GID_NOBODY : na->na_gid; 1023 vap->va_fsid = vp->v_vfsp->vfs_dev; 1024 vap->va_nodeid = na->na_nodeid; 1025 vap->va_nlink = na->na_nlink; 1026 vap->va_size = na->na_size; /* keep for cache validation */ 1027 /* 1028 * nfs protocol defines times as unsigned so don't extend sign, 1029 * unless sysadmin set nfs_allow_preepoch_time. 1030 */ 1031 NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->na_atime.tv_sec); 1032 vap->va_atime.tv_nsec = (uint32_t)(na->na_atime.tv_usec * 1000); 1033 NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->na_mtime.tv_sec); 1034 vap->va_mtime.tv_nsec = (uint32_t)(na->na_mtime.tv_usec * 1000); 1035 NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->na_ctime.tv_sec); 1036 vap->va_ctime.tv_nsec = (uint32_t)(na->na_ctime.tv_usec * 1000); 1037 /* 1038 * Shannon's law - uncompress the received dev_t 1039 * if the top half of is zero indicating a response 1040 * from an `older style' OS. Except for when it is a 1041 * `new style' OS sending the maj device of zero, 1042 * in which case the algorithm still works because the 1043 * fact that it is a new style server 1044 * is hidden by the minor device not being greater 1045 * than 255 (a requirement in this case). 1046 */ 1047 if ((na->na_rdev & 0xffff0000) == 0) 1048 vap->va_rdev = nfsv2_expdev(na->na_rdev); 1049 else 1050 vap->va_rdev = expldev(na->na_rdev); 1051 1052 vap->va_nblocks = na->na_blocks; 1053 switch (na->na_type) { 1054 case NFBLK: 1055 vap->va_blksize = DEV_BSIZE; 1056 break; 1057 1058 case NFCHR: 1059 vap->va_blksize = MAXBSIZE; 1060 break; 1061 1062 case NFSOC: 1063 default: 1064 vap->va_blksize = na->na_blocksize; 1065 break; 1066 } 1067 /* 1068 * This bit of ugliness is a hack to preserve the 1069 * over-the-wire protocols for named-pipe vnodes. 1070 * It remaps the special over-the-wire type to the 1071 * VFIFO type. (see note in nfs.h) 1072 */ 1073 if (NA_ISFIFO(na)) { 1074 vap->va_type = VFIFO; 1075 vap->va_mode = (vap->va_mode & ~S_IFMT) | S_IFIFO; 1076 vap->va_rdev = 0; 1077 vap->va_blksize = na->na_blocksize; 1078 } 1079 vap->va_seq = 0; 1080 return (0); 1081 } 1082 1083 /* 1084 * Convert NFS Version 3 over the network attributes to the local 1085 * virtual attributes. The mapping between the UID_NOBODY/GID_NOBODY 1086 * network representation and the local representation is done here. 1087 */ 1088 vtype_t nf3_to_vt[] = { 1089 VBAD, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO 1090 }; 1091 1092 int 1093 fattr3_to_vattr(vnode_t *vp, fattr3 *na, struct vattr *vap) 1094 { 1095 1096 #ifndef _LP64 1097 /* overflow in time attributes? */ 1098 if (!NFS3_FATTR_TIME_OK(na)) 1099 return (EOVERFLOW); 1100 #endif 1101 if (!NFS3_SIZE_OK(na->size)) 1102 /* file too big */ 1103 return (EFBIG); 1104 1105 vap->va_mask = AT_ALL; 1106 1107 if (na->type < NF3REG || na->type > NF3FIFO) 1108 vap->va_type = VBAD; 1109 else 1110 vap->va_type = nf3_to_vt[na->type]; 1111 vap->va_mode = na->mode; 1112 vap->va_uid = (na->uid == NFS_UID_NOBODY) ? UID_NOBODY : (uid_t)na->uid; 1113 vap->va_gid = (na->gid == NFS_GID_NOBODY) ? GID_NOBODY : (gid_t)na->gid; 1114 vap->va_fsid = vp->v_vfsp->vfs_dev; 1115 vap->va_nodeid = na->fileid; 1116 vap->va_nlink = na->nlink; 1117 vap->va_size = na->size; 1118 1119 /* 1120 * nfs protocol defines times as unsigned so don't extend sign, 1121 * unless sysadmin set nfs_allow_preepoch_time. 1122 */ 1123 NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->atime.seconds); 1124 vap->va_atime.tv_nsec = (uint32_t)na->atime.nseconds; 1125 NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->mtime.seconds); 1126 vap->va_mtime.tv_nsec = (uint32_t)na->mtime.nseconds; 1127 NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->ctime.seconds); 1128 vap->va_ctime.tv_nsec = (uint32_t)na->ctime.nseconds; 1129 1130 switch (na->type) { 1131 case NF3BLK: 1132 vap->va_rdev = makedevice(na->rdev.specdata1, 1133 na->rdev.specdata2); 1134 vap->va_blksize = DEV_BSIZE; 1135 vap->va_nblocks = 0; 1136 break; 1137 case NF3CHR: 1138 vap->va_rdev = makedevice(na->rdev.specdata1, 1139 na->rdev.specdata2); 1140 vap->va_blksize = MAXBSIZE; 1141 vap->va_nblocks = 0; 1142 break; 1143 case NF3REG: 1144 case NF3DIR: 1145 case NF3LNK: 1146 vap->va_rdev = 0; 1147 vap->va_blksize = MAXBSIZE; 1148 vap->va_nblocks = (u_longlong_t) 1149 ((na->used + (size3)DEV_BSIZE - (size3)1) / 1150 (size3)DEV_BSIZE); 1151 break; 1152 case NF3SOCK: 1153 case NF3FIFO: 1154 default: 1155 vap->va_rdev = 0; 1156 vap->va_blksize = MAXBSIZE; 1157 vap->va_nblocks = 0; 1158 break; 1159 } 1160 vap->va_seq = 0; 1161 return (0); 1162 } 1163 1164 /* 1165 * Asynchronous I/O parameters. nfs_async_threads is the high-water mark 1166 * for the demand-based allocation of async threads per-mount. The 1167 * nfs_async_timeout is the amount of time a thread will live after it 1168 * becomes idle, unless new I/O requests are received before the thread 1169 * dies. See nfs_async_putpage and nfs_async_start. 1170 */ 1171 1172 int nfs_async_timeout = -1; /* uninitialized */ 1173 1174 static void nfs_async_start(struct vfs *); 1175 1176 static void 1177 free_async_args(struct nfs_async_reqs *args) 1178 { 1179 rnode_t *rp; 1180 1181 if (args->a_io != NFS_INACTIVE) { 1182 rp = VTOR(args->a_vp); 1183 mutex_enter(&rp->r_statelock); 1184 rp->r_count--; 1185 if (args->a_io == NFS_PUTAPAGE || 1186 args->a_io == NFS_PAGEIO) 1187 rp->r_awcount--; 1188 cv_broadcast(&rp->r_cv); 1189 mutex_exit(&rp->r_statelock); 1190 VN_RELE(args->a_vp); 1191 } 1192 crfree(args->a_cred); 1193 kmem_free(args, sizeof (*args)); 1194 } 1195 1196 /* 1197 * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and 1198 * pageout(), running in the global zone, have legitimate reasons to do 1199 * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts. We avoid the problem by 1200 * use of a a per-mount "asynchronous requests manager thread" which is 1201 * signaled by the various asynchronous work routines when there is 1202 * asynchronous work to be done. It is responsible for creating new 1203 * worker threads if necessary, and notifying existing worker threads 1204 * that there is work to be done. 1205 * 1206 * In other words, it will "take the specifications from the customers and 1207 * give them to the engineers." 1208 * 1209 * Worker threads die off of their own accord if they are no longer 1210 * needed. 1211 * 1212 * This thread is killed when the zone is going away or the filesystem 1213 * is being unmounted. 1214 */ 1215 void 1216 nfs_async_manager(vfs_t *vfsp) 1217 { 1218 callb_cpr_t cprinfo; 1219 mntinfo_t *mi; 1220 uint_t max_threads; 1221 1222 mi = VFTOMI(vfsp); 1223 1224 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, 1225 "nfs_async_manager"); 1226 1227 mutex_enter(&mi->mi_async_lock); 1228 /* 1229 * We want to stash the max number of threads that this mount was 1230 * allowed so we can use it later when the variable is set to zero as 1231 * part of the zone/mount going away. 1232 * 1233 * We want to be able to create at least one thread to handle 1234 * asynchronous inactive calls. 1235 */ 1236 max_threads = MAX(mi->mi_max_threads, 1); 1237 mutex_enter(&mi->mi_lock); 1238 /* 1239 * We don't want to wait for mi_max_threads to go to zero, since that 1240 * happens as part of a failed unmount, but this thread should only 1241 * exit when the mount/zone is really going away. 1242 * 1243 * Once MI_ASYNC_MGR_STOP is set, no more async operations will be 1244 * attempted: the various _async_*() functions know to do things 1245 * inline if mi_max_threads == 0. Henceforth we just drain out the 1246 * outstanding requests. 1247 * 1248 * Note that we still create zthreads even if we notice the zone is 1249 * shutting down (MI_ASYNC_MGR_STOP is set); this may cause the zone 1250 * shutdown sequence to take slightly longer in some cases, but 1251 * doesn't violate the protocol, as all threads will exit as soon as 1252 * they're done processing the remaining requests. 1253 */ 1254 while (!(mi->mi_flags & MI_ASYNC_MGR_STOP) || 1255 mi->mi_async_req_count > 0) { 1256 mutex_exit(&mi->mi_lock); 1257 while (mi->mi_async_req_count > 0) { 1258 /* 1259 * Paranoia: If the mount started out having 1260 * (mi->mi_max_threads == 0), and the value was 1261 * later changed (via a debugger or somesuch), 1262 * we could be confused since we will think we 1263 * can't create any threads, and the calling 1264 * code (which looks at the current value of 1265 * mi->mi_max_threads, now non-zero) thinks we 1266 * can. 1267 * 1268 * So, because we're paranoid, we create threads 1269 * up to the maximum of the original and the 1270 * current value. This means that future 1271 * (debugger-induced) lowerings of 1272 * mi->mi_max_threads are ignored for our 1273 * purposes, but who told them they could change 1274 * random values on a live kernel anyhow? 1275 */ 1276 if (mi->mi_threads < 1277 MAX(mi->mi_max_threads, max_threads)) { 1278 mi->mi_threads++; 1279 mutex_exit(&mi->mi_async_lock); 1280 VFS_HOLD(vfsp); /* hold for new thread */ 1281 (void) zthread_create(NULL, 0, nfs_async_start, 1282 vfsp, 0, minclsyspri); 1283 mutex_enter(&mi->mi_async_lock); 1284 } 1285 cv_signal(&mi->mi_async_work_cv); 1286 ASSERT(mi->mi_async_req_count != 0); 1287 mi->mi_async_req_count--; 1288 } 1289 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1290 cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock); 1291 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 1292 mutex_enter(&mi->mi_lock); 1293 } 1294 mutex_exit(&mi->mi_lock); 1295 /* 1296 * Let everyone know we're done. 1297 */ 1298 mi->mi_manager_thread = NULL; 1299 cv_broadcast(&mi->mi_async_cv); 1300 1301 /* 1302 * There is no explicit call to mutex_exit(&mi->mi_async_lock) 1303 * since CALLB_CPR_EXIT is actually responsible for releasing 1304 * 'mi_async_lock'. 1305 */ 1306 CALLB_CPR_EXIT(&cprinfo); 1307 VFS_RELE(vfsp); /* release thread's hold */ 1308 zthread_exit(); 1309 } 1310 1311 /* 1312 * Signal (and wait for) the async manager thread to clean up and go away. 1313 */ 1314 void 1315 nfs_async_manager_stop(vfs_t *vfsp) 1316 { 1317 mntinfo_t *mi = VFTOMI(vfsp); 1318 1319 mutex_enter(&mi->mi_async_lock); 1320 mutex_enter(&mi->mi_lock); 1321 mi->mi_flags |= MI_ASYNC_MGR_STOP; 1322 mutex_exit(&mi->mi_lock); 1323 cv_broadcast(&mi->mi_async_reqs_cv); 1324 while (mi->mi_manager_thread != NULL) 1325 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 1326 mutex_exit(&mi->mi_async_lock); 1327 } 1328 1329 int 1330 nfs_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, 1331 struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *, 1332 u_offset_t, caddr_t, struct seg *, cred_t *)) 1333 { 1334 rnode_t *rp; 1335 mntinfo_t *mi; 1336 struct nfs_async_reqs *args; 1337 1338 rp = VTOR(vp); 1339 ASSERT(rp->r_freef == NULL); 1340 1341 mi = VTOMI(vp); 1342 1343 /* 1344 * If addr falls in a different segment, don't bother doing readahead. 1345 */ 1346 if (addr >= seg->s_base + seg->s_size) 1347 return (-1); 1348 1349 /* 1350 * If we can't allocate a request structure, punt on the readahead. 1351 */ 1352 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1353 return (-1); 1354 1355 /* 1356 * If a lock operation is pending, don't initiate any new 1357 * readaheads. Otherwise, bump r_count to indicate the new 1358 * asynchronous I/O. 1359 */ 1360 if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) { 1361 kmem_free(args, sizeof (*args)); 1362 return (-1); 1363 } 1364 mutex_enter(&rp->r_statelock); 1365 rp->r_count++; 1366 mutex_exit(&rp->r_statelock); 1367 nfs_rw_exit(&rp->r_lkserlock); 1368 1369 args->a_next = NULL; 1370 #ifdef DEBUG 1371 args->a_queuer = curthread; 1372 #endif 1373 VN_HOLD(vp); 1374 args->a_vp = vp; 1375 ASSERT(cr != NULL); 1376 crhold(cr); 1377 args->a_cred = cr; 1378 args->a_io = NFS_READ_AHEAD; 1379 args->a_nfs_readahead = readahead; 1380 args->a_nfs_blkoff = blkoff; 1381 args->a_nfs_seg = seg; 1382 args->a_nfs_addr = addr; 1383 1384 mutex_enter(&mi->mi_async_lock); 1385 1386 /* 1387 * If asyncio has been disabled, don't bother readahead. 1388 */ 1389 if (mi->mi_max_threads == 0) { 1390 mutex_exit(&mi->mi_async_lock); 1391 goto noasync; 1392 } 1393 1394 /* 1395 * Link request structure into the async list and 1396 * wakeup async thread to do the i/o. 1397 */ 1398 if (mi->mi_async_reqs[NFS_READ_AHEAD] == NULL) { 1399 mi->mi_async_reqs[NFS_READ_AHEAD] = args; 1400 mi->mi_async_tail[NFS_READ_AHEAD] = args; 1401 } else { 1402 mi->mi_async_tail[NFS_READ_AHEAD]->a_next = args; 1403 mi->mi_async_tail[NFS_READ_AHEAD] = args; 1404 } 1405 1406 if (mi->mi_io_kstats) { 1407 mutex_enter(&mi->mi_lock); 1408 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1409 mutex_exit(&mi->mi_lock); 1410 } 1411 1412 mi->mi_async_req_count++; 1413 ASSERT(mi->mi_async_req_count != 0); 1414 cv_signal(&mi->mi_async_reqs_cv); 1415 mutex_exit(&mi->mi_async_lock); 1416 return (0); 1417 1418 noasync: 1419 mutex_enter(&rp->r_statelock); 1420 rp->r_count--; 1421 cv_broadcast(&rp->r_cv); 1422 mutex_exit(&rp->r_statelock); 1423 VN_RELE(vp); 1424 crfree(cr); 1425 kmem_free(args, sizeof (*args)); 1426 return (-1); 1427 } 1428 1429 int 1430 nfs_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 1431 int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *, 1432 u_offset_t, size_t, int, cred_t *)) 1433 { 1434 rnode_t *rp; 1435 mntinfo_t *mi; 1436 struct nfs_async_reqs *args; 1437 1438 ASSERT(flags & B_ASYNC); 1439 ASSERT(vp->v_vfsp != NULL); 1440 1441 rp = VTOR(vp); 1442 ASSERT(rp->r_count > 0); 1443 1444 mi = VTOMI(vp); 1445 1446 /* 1447 * If we can't allocate a request structure, do the putpage 1448 * operation synchronously in this thread's context. 1449 */ 1450 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1451 goto noasync; 1452 1453 args->a_next = NULL; 1454 #ifdef DEBUG 1455 args->a_queuer = curthread; 1456 #endif 1457 VN_HOLD(vp); 1458 args->a_vp = vp; 1459 ASSERT(cr != NULL); 1460 crhold(cr); 1461 args->a_cred = cr; 1462 args->a_io = NFS_PUTAPAGE; 1463 args->a_nfs_putapage = putapage; 1464 args->a_nfs_pp = pp; 1465 args->a_nfs_off = off; 1466 args->a_nfs_len = (uint_t)len; 1467 args->a_nfs_flags = flags; 1468 1469 mutex_enter(&mi->mi_async_lock); 1470 1471 /* 1472 * If asyncio has been disabled, then make a synchronous request. 1473 * This check is done a second time in case async io was diabled 1474 * while this thread was blocked waiting for memory pressure to 1475 * reduce or for the queue to drain. 1476 */ 1477 if (mi->mi_max_threads == 0) { 1478 mutex_exit(&mi->mi_async_lock); 1479 goto noasync; 1480 } 1481 1482 /* 1483 * Link request structure into the async list and 1484 * wakeup async thread to do the i/o. 1485 */ 1486 if (mi->mi_async_reqs[NFS_PUTAPAGE] == NULL) { 1487 mi->mi_async_reqs[NFS_PUTAPAGE] = args; 1488 mi->mi_async_tail[NFS_PUTAPAGE] = args; 1489 } else { 1490 mi->mi_async_tail[NFS_PUTAPAGE]->a_next = args; 1491 mi->mi_async_tail[NFS_PUTAPAGE] = args; 1492 } 1493 1494 mutex_enter(&rp->r_statelock); 1495 rp->r_count++; 1496 rp->r_awcount++; 1497 mutex_exit(&rp->r_statelock); 1498 1499 if (mi->mi_io_kstats) { 1500 mutex_enter(&mi->mi_lock); 1501 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1502 mutex_exit(&mi->mi_lock); 1503 } 1504 1505 mi->mi_async_req_count++; 1506 ASSERT(mi->mi_async_req_count != 0); 1507 cv_signal(&mi->mi_async_reqs_cv); 1508 mutex_exit(&mi->mi_async_lock); 1509 return (0); 1510 1511 noasync: 1512 if (args != NULL) { 1513 VN_RELE(vp); 1514 crfree(cr); 1515 kmem_free(args, sizeof (*args)); 1516 } 1517 1518 if (curproc == proc_pageout || curproc == proc_fsflush) { 1519 /* 1520 * If we get here in the context of the pageout/fsflush, 1521 * we refuse to do a sync write, because this may hang 1522 * pageout (and the machine). In this case, we just 1523 * re-mark the page as dirty and punt on the page. 1524 * 1525 * Make sure B_FORCE isn't set. We can re-mark the 1526 * pages as dirty and unlock the pages in one swoop by 1527 * passing in B_ERROR to pvn_write_done(). However, 1528 * we should make sure B_FORCE isn't set - we don't 1529 * want the page tossed before it gets written out. 1530 */ 1531 if (flags & B_FORCE) 1532 flags &= ~(B_INVAL | B_FORCE); 1533 pvn_write_done(pp, flags | B_ERROR); 1534 return (0); 1535 } 1536 if (nfs_zone() != mi->mi_zone) { 1537 /* 1538 * So this was a cross-zone sync putpage. We pass in B_ERROR 1539 * to pvn_write_done() to re-mark the pages as dirty and unlock 1540 * them. 1541 * 1542 * We don't want to clear B_FORCE here as the caller presumably 1543 * knows what they're doing if they set it. 1544 */ 1545 pvn_write_done(pp, flags | B_ERROR); 1546 return (EPERM); 1547 } 1548 return ((*putapage)(vp, pp, off, len, flags, cr)); 1549 } 1550 1551 int 1552 nfs_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 1553 int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t, 1554 size_t, int, cred_t *)) 1555 { 1556 rnode_t *rp; 1557 mntinfo_t *mi; 1558 struct nfs_async_reqs *args; 1559 1560 ASSERT(flags & B_ASYNC); 1561 ASSERT(vp->v_vfsp != NULL); 1562 1563 rp = VTOR(vp); 1564 ASSERT(rp->r_count > 0); 1565 1566 mi = VTOMI(vp); 1567 1568 /* 1569 * If we can't allocate a request structure, do the pageio 1570 * request synchronously in this thread's context. 1571 */ 1572 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1573 goto noasync; 1574 1575 args->a_next = NULL; 1576 #ifdef DEBUG 1577 args->a_queuer = curthread; 1578 #endif 1579 VN_HOLD(vp); 1580 args->a_vp = vp; 1581 ASSERT(cr != NULL); 1582 crhold(cr); 1583 args->a_cred = cr; 1584 args->a_io = NFS_PAGEIO; 1585 args->a_nfs_pageio = pageio; 1586 args->a_nfs_pp = pp; 1587 args->a_nfs_off = io_off; 1588 args->a_nfs_len = (uint_t)io_len; 1589 args->a_nfs_flags = flags; 1590 1591 mutex_enter(&mi->mi_async_lock); 1592 1593 /* 1594 * If asyncio has been disabled, then make a synchronous request. 1595 * This check is done a second time in case async io was diabled 1596 * while this thread was blocked waiting for memory pressure to 1597 * reduce or for the queue to drain. 1598 */ 1599 if (mi->mi_max_threads == 0) { 1600 mutex_exit(&mi->mi_async_lock); 1601 goto noasync; 1602 } 1603 1604 /* 1605 * Link request structure into the async list and 1606 * wakeup async thread to do the i/o. 1607 */ 1608 if (mi->mi_async_reqs[NFS_PAGEIO] == NULL) { 1609 mi->mi_async_reqs[NFS_PAGEIO] = args; 1610 mi->mi_async_tail[NFS_PAGEIO] = args; 1611 } else { 1612 mi->mi_async_tail[NFS_PAGEIO]->a_next = args; 1613 mi->mi_async_tail[NFS_PAGEIO] = args; 1614 } 1615 1616 mutex_enter(&rp->r_statelock); 1617 rp->r_count++; 1618 rp->r_awcount++; 1619 mutex_exit(&rp->r_statelock); 1620 1621 if (mi->mi_io_kstats) { 1622 mutex_enter(&mi->mi_lock); 1623 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1624 mutex_exit(&mi->mi_lock); 1625 } 1626 1627 mi->mi_async_req_count++; 1628 ASSERT(mi->mi_async_req_count != 0); 1629 cv_signal(&mi->mi_async_reqs_cv); 1630 mutex_exit(&mi->mi_async_lock); 1631 return (0); 1632 1633 noasync: 1634 if (args != NULL) { 1635 VN_RELE(vp); 1636 crfree(cr); 1637 kmem_free(args, sizeof (*args)); 1638 } 1639 1640 /* 1641 * If we can't do it ASYNC, for reads we do nothing (but cleanup 1642 * the page list), for writes we do it synchronously, except for 1643 * proc_pageout/proc_fsflush as described below. 1644 */ 1645 if (flags & B_READ) { 1646 pvn_read_done(pp, flags | B_ERROR); 1647 return (0); 1648 } 1649 1650 if (curproc == proc_pageout || curproc == proc_fsflush) { 1651 /* 1652 * If we get here in the context of the pageout/fsflush, 1653 * we refuse to do a sync write, because this may hang 1654 * pageout/fsflush (and the machine). In this case, we just 1655 * re-mark the page as dirty and punt on the page. 1656 * 1657 * Make sure B_FORCE isn't set. We can re-mark the 1658 * pages as dirty and unlock the pages in one swoop by 1659 * passing in B_ERROR to pvn_write_done(). However, 1660 * we should make sure B_FORCE isn't set - we don't 1661 * want the page tossed before it gets written out. 1662 */ 1663 if (flags & B_FORCE) 1664 flags &= ~(B_INVAL | B_FORCE); 1665 pvn_write_done(pp, flags | B_ERROR); 1666 return (0); 1667 } 1668 1669 if (nfs_zone() != mi->mi_zone) { 1670 /* 1671 * So this was a cross-zone sync pageio. We pass in B_ERROR 1672 * to pvn_write_done() to re-mark the pages as dirty and unlock 1673 * them. 1674 * 1675 * We don't want to clear B_FORCE here as the caller presumably 1676 * knows what they're doing if they set it. 1677 */ 1678 pvn_write_done(pp, flags | B_ERROR); 1679 return (EPERM); 1680 } 1681 return ((*pageio)(vp, pp, io_off, io_len, flags, cr)); 1682 } 1683 1684 void 1685 nfs_async_readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr, 1686 int (*readdir)(vnode_t *, rddir_cache *, cred_t *)) 1687 { 1688 rnode_t *rp; 1689 mntinfo_t *mi; 1690 struct nfs_async_reqs *args; 1691 1692 rp = VTOR(vp); 1693 ASSERT(rp->r_freef == NULL); 1694 1695 mi = VTOMI(vp); 1696 1697 /* 1698 * If we can't allocate a request structure, do the readdir 1699 * operation synchronously in this thread's context. 1700 */ 1701 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1702 goto noasync; 1703 1704 args->a_next = NULL; 1705 #ifdef DEBUG 1706 args->a_queuer = curthread; 1707 #endif 1708 VN_HOLD(vp); 1709 args->a_vp = vp; 1710 ASSERT(cr != NULL); 1711 crhold(cr); 1712 args->a_cred = cr; 1713 args->a_io = NFS_READDIR; 1714 args->a_nfs_readdir = readdir; 1715 args->a_nfs_rdc = rdc; 1716 1717 mutex_enter(&mi->mi_async_lock); 1718 1719 /* 1720 * If asyncio has been disabled, then make a synchronous request. 1721 */ 1722 if (mi->mi_max_threads == 0) { 1723 mutex_exit(&mi->mi_async_lock); 1724 goto noasync; 1725 } 1726 1727 /* 1728 * Link request structure into the async list and 1729 * wakeup async thread to do the i/o. 1730 */ 1731 if (mi->mi_async_reqs[NFS_READDIR] == NULL) { 1732 mi->mi_async_reqs[NFS_READDIR] = args; 1733 mi->mi_async_tail[NFS_READDIR] = args; 1734 } else { 1735 mi->mi_async_tail[NFS_READDIR]->a_next = args; 1736 mi->mi_async_tail[NFS_READDIR] = args; 1737 } 1738 1739 mutex_enter(&rp->r_statelock); 1740 rp->r_count++; 1741 mutex_exit(&rp->r_statelock); 1742 1743 if (mi->mi_io_kstats) { 1744 mutex_enter(&mi->mi_lock); 1745 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1746 mutex_exit(&mi->mi_lock); 1747 } 1748 1749 mi->mi_async_req_count++; 1750 ASSERT(mi->mi_async_req_count != 0); 1751 cv_signal(&mi->mi_async_reqs_cv); 1752 mutex_exit(&mi->mi_async_lock); 1753 return; 1754 1755 noasync: 1756 if (args != NULL) { 1757 VN_RELE(vp); 1758 crfree(cr); 1759 kmem_free(args, sizeof (*args)); 1760 } 1761 1762 rdc->entries = NULL; 1763 mutex_enter(&rp->r_statelock); 1764 ASSERT(rdc->flags & RDDIR); 1765 rdc->flags &= ~RDDIR; 1766 rdc->flags |= RDDIRREQ; 1767 /* 1768 * Check the flag to see if RDDIRWAIT is set. If RDDIRWAIT 1769 * is set, wakeup the thread sleeping in cv_wait_sig(). 1770 * The woken up thread will reset the flag to RDDIR and will 1771 * continue with the readdir opeartion. 1772 */ 1773 if (rdc->flags & RDDIRWAIT) { 1774 rdc->flags &= ~RDDIRWAIT; 1775 cv_broadcast(&rdc->cv); 1776 } 1777 mutex_exit(&rp->r_statelock); 1778 rddir_cache_rele(rdc); 1779 } 1780 1781 void 1782 nfs_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 1783 cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3, 1784 cred_t *)) 1785 { 1786 rnode_t *rp; 1787 mntinfo_t *mi; 1788 struct nfs_async_reqs *args; 1789 page_t *pp; 1790 1791 rp = VTOR(vp); 1792 mi = VTOMI(vp); 1793 1794 /* 1795 * If we can't allocate a request structure, do the commit 1796 * operation synchronously in this thread's context. 1797 */ 1798 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL) 1799 goto noasync; 1800 1801 args->a_next = NULL; 1802 #ifdef DEBUG 1803 args->a_queuer = curthread; 1804 #endif 1805 VN_HOLD(vp); 1806 args->a_vp = vp; 1807 ASSERT(cr != NULL); 1808 crhold(cr); 1809 args->a_cred = cr; 1810 args->a_io = NFS_COMMIT; 1811 args->a_nfs_commit = commit; 1812 args->a_nfs_plist = plist; 1813 args->a_nfs_offset = offset; 1814 args->a_nfs_count = count; 1815 1816 mutex_enter(&mi->mi_async_lock); 1817 1818 /* 1819 * If asyncio has been disabled, then make a synchronous request. 1820 * This check is done a second time in case async io was diabled 1821 * while this thread was blocked waiting for memory pressure to 1822 * reduce or for the queue to drain. 1823 */ 1824 if (mi->mi_max_threads == 0) { 1825 mutex_exit(&mi->mi_async_lock); 1826 goto noasync; 1827 } 1828 1829 /* 1830 * Link request structure into the async list and 1831 * wakeup async thread to do the i/o. 1832 */ 1833 if (mi->mi_async_reqs[NFS_COMMIT] == NULL) { 1834 mi->mi_async_reqs[NFS_COMMIT] = args; 1835 mi->mi_async_tail[NFS_COMMIT] = args; 1836 } else { 1837 mi->mi_async_tail[NFS_COMMIT]->a_next = args; 1838 mi->mi_async_tail[NFS_COMMIT] = args; 1839 } 1840 1841 mutex_enter(&rp->r_statelock); 1842 rp->r_count++; 1843 mutex_exit(&rp->r_statelock); 1844 1845 if (mi->mi_io_kstats) { 1846 mutex_enter(&mi->mi_lock); 1847 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1848 mutex_exit(&mi->mi_lock); 1849 } 1850 1851 mi->mi_async_req_count++; 1852 ASSERT(mi->mi_async_req_count != 0); 1853 cv_signal(&mi->mi_async_reqs_cv); 1854 mutex_exit(&mi->mi_async_lock); 1855 return; 1856 1857 noasync: 1858 if (args != NULL) { 1859 VN_RELE(vp); 1860 crfree(cr); 1861 kmem_free(args, sizeof (*args)); 1862 } 1863 1864 if (curproc == proc_pageout || curproc == proc_fsflush || 1865 nfs_zone() != mi->mi_zone) { 1866 while (plist != NULL) { 1867 pp = plist; 1868 page_sub(&plist, pp); 1869 pp->p_fsdata = C_COMMIT; 1870 page_unlock(pp); 1871 } 1872 return; 1873 } 1874 (*commit)(vp, plist, offset, count, cr); 1875 } 1876 1877 void 1878 nfs_async_inactive(vnode_t *vp, cred_t *cr, 1879 void (*inactive)(vnode_t *, cred_t *, caller_context_t *)) 1880 { 1881 mntinfo_t *mi; 1882 struct nfs_async_reqs *args; 1883 1884 mi = VTOMI(vp); 1885 1886 args = kmem_alloc(sizeof (*args), KM_SLEEP); 1887 args->a_next = NULL; 1888 #ifdef DEBUG 1889 args->a_queuer = curthread; 1890 #endif 1891 args->a_vp = vp; 1892 ASSERT(cr != NULL); 1893 crhold(cr); 1894 args->a_cred = cr; 1895 args->a_io = NFS_INACTIVE; 1896 args->a_nfs_inactive = inactive; 1897 1898 /* 1899 * Note that we don't check mi->mi_max_threads here, since we 1900 * *need* to get rid of this vnode regardless of whether someone 1901 * set nfs3_max_threads/nfs_max_threads to zero in /etc/system. 1902 * 1903 * The manager thread knows about this and is willing to create 1904 * at least one thread to accommodate us. 1905 */ 1906 mutex_enter(&mi->mi_async_lock); 1907 if (mi->mi_manager_thread == NULL) { 1908 rnode_t *rp = VTOR(vp); 1909 1910 mutex_exit(&mi->mi_async_lock); 1911 crfree(cr); /* drop our reference */ 1912 kmem_free(args, sizeof (*args)); 1913 /* 1914 * We can't do an over-the-wire call since we're in the wrong 1915 * zone, so we need to clean up state as best we can and then 1916 * throw away the vnode. 1917 */ 1918 mutex_enter(&rp->r_statelock); 1919 if (rp->r_unldvp != NULL) { 1920 vnode_t *unldvp; 1921 char *unlname; 1922 cred_t *unlcred; 1923 1924 unldvp = rp->r_unldvp; 1925 rp->r_unldvp = NULL; 1926 unlname = rp->r_unlname; 1927 rp->r_unlname = NULL; 1928 unlcred = rp->r_unlcred; 1929 rp->r_unlcred = NULL; 1930 mutex_exit(&rp->r_statelock); 1931 1932 VN_RELE(unldvp); 1933 kmem_free(unlname, MAXNAMELEN); 1934 crfree(unlcred); 1935 } else { 1936 mutex_exit(&rp->r_statelock); 1937 } 1938 /* 1939 * No need to explicitly throw away any cached pages. The 1940 * eventual rinactive() will attempt a synchronous 1941 * VOP_PUTPAGE() which will immediately fail since the request 1942 * is coming from the wrong zone, and then will proceed to call 1943 * nfs_invalidate_pages() which will clean things up for us. 1944 */ 1945 rp_addfree(VTOR(vp), cr); 1946 return; 1947 } 1948 1949 if (mi->mi_async_reqs[NFS_INACTIVE] == NULL) { 1950 mi->mi_async_reqs[NFS_INACTIVE] = args; 1951 } else { 1952 mi->mi_async_tail[NFS_INACTIVE]->a_next = args; 1953 } 1954 mi->mi_async_tail[NFS_INACTIVE] = args; 1955 /* 1956 * Don't increment r_count, since we're trying to get rid of the vnode. 1957 */ 1958 1959 mi->mi_async_req_count++; 1960 ASSERT(mi->mi_async_req_count != 0); 1961 cv_signal(&mi->mi_async_reqs_cv); 1962 mutex_exit(&mi->mi_async_lock); 1963 } 1964 1965 /* 1966 * The async queues for each mounted file system are arranged as a 1967 * set of queues, one for each async i/o type. Requests are taken 1968 * from the queues in a round-robin fashion. A number of consecutive 1969 * requests are taken from each queue before moving on to the next 1970 * queue. This functionality may allow the NFS Version 2 server to do 1971 * write clustering, even if the client is mixing writes and reads 1972 * because it will take multiple write requests from the queue 1973 * before processing any of the other async i/o types. 1974 * 1975 * XXX The nfs_async_start thread is unsafe in the light of the present 1976 * model defined by cpr to suspend the system. Specifically over the 1977 * wire calls are cpr-unsafe. The thread should be reevaluated in 1978 * case of future updates to the cpr model. 1979 */ 1980 static void 1981 nfs_async_start(struct vfs *vfsp) 1982 { 1983 struct nfs_async_reqs *args; 1984 mntinfo_t *mi = VFTOMI(vfsp); 1985 clock_t time_left = 1; 1986 callb_cpr_t cprinfo; 1987 int i; 1988 1989 /* 1990 * Dynamic initialization of nfs_async_timeout to allow nfs to be 1991 * built in an implementation independent manner. 1992 */ 1993 if (nfs_async_timeout == -1) 1994 nfs_async_timeout = NFS_ASYNC_TIMEOUT; 1995 1996 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas"); 1997 1998 mutex_enter(&mi->mi_async_lock); 1999 for (;;) { 2000 /* 2001 * Find the next queue containing an entry. We start 2002 * at the current queue pointer and then round robin 2003 * through all of them until we either find a non-empty 2004 * queue or have looked through all of them. 2005 */ 2006 for (i = 0; i < NFS_ASYNC_TYPES; i++) { 2007 args = *mi->mi_async_curr; 2008 if (args != NULL) 2009 break; 2010 mi->mi_async_curr++; 2011 if (mi->mi_async_curr == 2012 &mi->mi_async_reqs[NFS_ASYNC_TYPES]) 2013 mi->mi_async_curr = &mi->mi_async_reqs[0]; 2014 } 2015 /* 2016 * If we didn't find a entry, then block until woken up 2017 * again and then look through the queues again. 2018 */ 2019 if (args == NULL) { 2020 /* 2021 * Exiting is considered to be safe for CPR as well 2022 */ 2023 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2024 2025 /* 2026 * Wakeup thread waiting to unmount the file 2027 * system only if all async threads are inactive. 2028 * 2029 * If we've timed-out and there's nothing to do, 2030 * then get rid of this thread. 2031 */ 2032 if (mi->mi_max_threads == 0 || time_left <= 0) { 2033 if (--mi->mi_threads == 0) 2034 cv_signal(&mi->mi_async_cv); 2035 CALLB_CPR_EXIT(&cprinfo); 2036 VFS_RELE(vfsp); /* release thread's hold */ 2037 zthread_exit(); 2038 /* NOTREACHED */ 2039 } 2040 time_left = cv_timedwait(&mi->mi_async_work_cv, 2041 &mi->mi_async_lock, nfs_async_timeout + lbolt); 2042 2043 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock); 2044 2045 continue; 2046 } 2047 time_left = 1; 2048 2049 /* 2050 * Remove the request from the async queue and then 2051 * update the current async request queue pointer. If 2052 * the current queue is empty or we have removed enough 2053 * consecutive entries from it, then reset the counter 2054 * for this queue and then move the current pointer to 2055 * the next queue. 2056 */ 2057 *mi->mi_async_curr = args->a_next; 2058 if (*mi->mi_async_curr == NULL || 2059 --mi->mi_async_clusters[args->a_io] == 0) { 2060 mi->mi_async_clusters[args->a_io] = 2061 mi->mi_async_init_clusters; 2062 mi->mi_async_curr++; 2063 if (mi->mi_async_curr == 2064 &mi->mi_async_reqs[NFS_ASYNC_TYPES]) 2065 mi->mi_async_curr = &mi->mi_async_reqs[0]; 2066 } 2067 2068 if (args->a_io != NFS_INACTIVE && mi->mi_io_kstats) { 2069 mutex_enter(&mi->mi_lock); 2070 kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 2071 mutex_exit(&mi->mi_lock); 2072 } 2073 2074 mutex_exit(&mi->mi_async_lock); 2075 2076 /* 2077 * Obtain arguments from the async request structure. 2078 */ 2079 if (args->a_io == NFS_READ_AHEAD && mi->mi_max_threads > 0) { 2080 (*args->a_nfs_readahead)(args->a_vp, args->a_nfs_blkoff, 2081 args->a_nfs_addr, args->a_nfs_seg, args->a_cred); 2082 } else if (args->a_io == NFS_PUTAPAGE) { 2083 (void) (*args->a_nfs_putapage)(args->a_vp, 2084 args->a_nfs_pp, args->a_nfs_off, args->a_nfs_len, 2085 args->a_nfs_flags, args->a_cred); 2086 } else if (args->a_io == NFS_PAGEIO) { 2087 (void) (*args->a_nfs_pageio)(args->a_vp, args->a_nfs_pp, 2088 args->a_nfs_off, args->a_nfs_len, args->a_nfs_flags, 2089 args->a_cred); 2090 } else if (args->a_io == NFS_READDIR) { 2091 (void) ((*args->a_nfs_readdir)(args->a_vp, 2092 args->a_nfs_rdc, args->a_cred)); 2093 } else if (args->a_io == NFS_COMMIT) { 2094 (*args->a_nfs_commit)(args->a_vp, args->a_nfs_plist, 2095 args->a_nfs_offset, args->a_nfs_count, 2096 args->a_cred); 2097 } else if (args->a_io == NFS_INACTIVE) { 2098 (*args->a_nfs_inactive)(args->a_vp, args->a_cred, NULL); 2099 } 2100 2101 /* 2102 * Now, release the vnode and free the credentials 2103 * structure. 2104 */ 2105 free_async_args(args); 2106 /* 2107 * Reacquire the mutex because it will be needed above. 2108 */ 2109 mutex_enter(&mi->mi_async_lock); 2110 } 2111 } 2112 2113 void 2114 nfs_async_stop(struct vfs *vfsp) 2115 { 2116 mntinfo_t *mi = VFTOMI(vfsp); 2117 2118 /* 2119 * Wait for all outstanding async operations to complete and for the 2120 * worker threads to exit. 2121 */ 2122 mutex_enter(&mi->mi_async_lock); 2123 mi->mi_max_threads = 0; 2124 cv_broadcast(&mi->mi_async_work_cv); 2125 while (mi->mi_threads != 0) 2126 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock); 2127 mutex_exit(&mi->mi_async_lock); 2128 } 2129 2130 /* 2131 * nfs_async_stop_sig: 2132 * Wait for all outstanding putpage operation to complete. If a signal 2133 * is deliver we will abort and return non-zero. If we can put all the 2134 * pages we will return 0. This routine is called from nfs_unmount and 2135 * nfs3_unmount to make these operations interruptible. 2136 */ 2137 int 2138 nfs_async_stop_sig(struct vfs *vfsp) 2139 { 2140 mntinfo_t *mi = VFTOMI(vfsp); 2141 ushort_t omax; 2142 int rval; 2143 2144 /* 2145 * Wait for all outstanding async operations to complete and for the 2146 * worker threads to exit. 2147 */ 2148 mutex_enter(&mi->mi_async_lock); 2149 omax = mi->mi_max_threads; 2150 mi->mi_max_threads = 0; 2151 /* 2152 * Tell all the worker threads to exit. 2153 */ 2154 cv_broadcast(&mi->mi_async_work_cv); 2155 while (mi->mi_threads != 0) { 2156 if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock)) 2157 break; 2158 } 2159 rval = (mi->mi_threads != 0); /* Interrupted */ 2160 if (rval) 2161 mi->mi_max_threads = omax; 2162 mutex_exit(&mi->mi_async_lock); 2163 2164 return (rval); 2165 } 2166 2167 int 2168 writerp(rnode_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated) 2169 { 2170 int pagecreate; 2171 int n; 2172 int saved_n; 2173 caddr_t saved_base; 2174 u_offset_t offset; 2175 int error; 2176 int sm_error; 2177 vnode_t *vp = RTOV(rp); 2178 2179 ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid); 2180 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER)); 2181 if (!vpm_enable) { 2182 ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE); 2183 } 2184 2185 /* 2186 * Move bytes in at most PAGESIZE chunks. We must avoid 2187 * spanning pages in uiomove() because page faults may cause 2188 * the cache to be invalidated out from under us. The r_size is not 2189 * updated until after the uiomove. If we push the last page of a 2190 * file before r_size is correct, we will lose the data written past 2191 * the current (and invalid) r_size. 2192 */ 2193 do { 2194 offset = uio->uio_loffset; 2195 pagecreate = 0; 2196 2197 /* 2198 * n is the number of bytes required to satisfy the request 2199 * or the number of bytes to fill out the page. 2200 */ 2201 n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount); 2202 2203 /* 2204 * Check to see if we can skip reading in the page 2205 * and just allocate the memory. We can do this 2206 * if we are going to rewrite the entire mapping 2207 * or if we are going to write to or beyond the current 2208 * end of file from the beginning of the mapping. 2209 * 2210 * The read of r_size is now protected by r_statelock. 2211 */ 2212 mutex_enter(&rp->r_statelock); 2213 /* 2214 * When pgcreated is nonzero the caller has already done 2215 * a segmap_getmapflt with forcefault 0 and S_WRITE. With 2216 * segkpm this means we already have at least one page 2217 * created and mapped at base. 2218 */ 2219 pagecreate = pgcreated || 2220 ((offset & PAGEOFFSET) == 0 && 2221 (n == PAGESIZE || ((offset + n) >= rp->r_size))); 2222 2223 mutex_exit(&rp->r_statelock); 2224 if (!vpm_enable && pagecreate) { 2225 /* 2226 * The last argument tells segmap_pagecreate() to 2227 * always lock the page, as opposed to sometimes 2228 * returning with the page locked. This way we avoid a 2229 * fault on the ensuing uiomove(), but also 2230 * more importantly (to fix bug 1094402) we can 2231 * call segmap_fault() to unlock the page in all 2232 * cases. An alternative would be to modify 2233 * segmap_pagecreate() to tell us when it is 2234 * locking a page, but that's a fairly major 2235 * interface change. 2236 */ 2237 if (pgcreated == 0) 2238 (void) segmap_pagecreate(segkmap, base, 2239 (uint_t)n, 1); 2240 saved_base = base; 2241 saved_n = n; 2242 } 2243 2244 /* 2245 * The number of bytes of data in the last page can not 2246 * be accurately be determined while page is being 2247 * uiomove'd to and the size of the file being updated. 2248 * Thus, inform threads which need to know accurately 2249 * how much data is in the last page of the file. They 2250 * will not do the i/o immediately, but will arrange for 2251 * the i/o to happen later when this modify operation 2252 * will have finished. 2253 */ 2254 ASSERT(!(rp->r_flags & RMODINPROGRESS)); 2255 mutex_enter(&rp->r_statelock); 2256 rp->r_flags |= RMODINPROGRESS; 2257 rp->r_modaddr = (offset & MAXBMASK); 2258 mutex_exit(&rp->r_statelock); 2259 2260 if (vpm_enable) { 2261 /* 2262 * Copy data. If new pages are created, part of 2263 * the page that is not written will be initizliazed 2264 * with zeros. 2265 */ 2266 error = vpm_data_copy(vp, offset, n, uio, !pagecreate, 2267 NULL, 0, S_WRITE); 2268 } else { 2269 error = uiomove(base, n, UIO_WRITE, uio); 2270 } 2271 2272 /* 2273 * r_size is the maximum number of 2274 * bytes known to be in the file. 2275 * Make sure it is at least as high as the 2276 * first unwritten byte pointed to by uio_loffset. 2277 */ 2278 mutex_enter(&rp->r_statelock); 2279 if (rp->r_size < uio->uio_loffset) 2280 rp->r_size = uio->uio_loffset; 2281 rp->r_flags &= ~RMODINPROGRESS; 2282 rp->r_flags |= RDIRTY; 2283 mutex_exit(&rp->r_statelock); 2284 2285 /* n = # of bytes written */ 2286 n = (int)(uio->uio_loffset - offset); 2287 2288 if (!vpm_enable) { 2289 base += n; 2290 } 2291 tcount -= n; 2292 /* 2293 * If we created pages w/o initializing them completely, 2294 * we need to zero the part that wasn't set up. 2295 * This happens on a most EOF write cases and if 2296 * we had some sort of error during the uiomove. 2297 */ 2298 if (!vpm_enable && pagecreate) { 2299 if ((uio->uio_loffset & PAGEOFFSET) || n == 0) 2300 (void) kzero(base, PAGESIZE - n); 2301 2302 if (pgcreated) { 2303 /* 2304 * Caller is responsible for this page, 2305 * it was not created in this loop. 2306 */ 2307 pgcreated = 0; 2308 } else { 2309 /* 2310 * For bug 1094402: segmap_pagecreate locks 2311 * page. Unlock it. This also unlocks the 2312 * pages allocated by page_create_va() in 2313 * segmap_pagecreate(). 2314 */ 2315 sm_error = segmap_fault(kas.a_hat, segkmap, 2316 saved_base, saved_n, F_SOFTUNLOCK, S_WRITE); 2317 if (error == 0) 2318 error = sm_error; 2319 } 2320 } 2321 } while (tcount > 0 && error == 0); 2322 2323 return (error); 2324 } 2325 2326 int 2327 nfs_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr) 2328 { 2329 rnode_t *rp; 2330 page_t *pp; 2331 u_offset_t eoff; 2332 u_offset_t io_off; 2333 size_t io_len; 2334 int error; 2335 int rdirty; 2336 int err; 2337 2338 rp = VTOR(vp); 2339 ASSERT(rp->r_count > 0); 2340 2341 if (!vn_has_cached_data(vp)) 2342 return (0); 2343 2344 ASSERT(vp->v_type != VCHR); 2345 2346 /* 2347 * If ROUTOFSPACE is set, then all writes turn into B_INVAL 2348 * writes. B_FORCE is set to force the VM system to actually 2349 * invalidate the pages, even if the i/o failed. The pages 2350 * need to get invalidated because they can't be written out 2351 * because there isn't any space left on either the server's 2352 * file system or in the user's disk quota. The B_FREE bit 2353 * is cleared to avoid confusion as to whether this is a 2354 * request to place the page on the freelist or to destroy 2355 * it. 2356 */ 2357 if ((rp->r_flags & ROUTOFSPACE) || 2358 (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) 2359 flags = (flags & ~B_FREE) | B_INVAL | B_FORCE; 2360 2361 if (len == 0) { 2362 /* 2363 * If doing a full file synchronous operation, then clear 2364 * the RDIRTY bit. If a page gets dirtied while the flush 2365 * is happening, then RDIRTY will get set again. The 2366 * RDIRTY bit must get cleared before the flush so that 2367 * we don't lose this information. 2368 * 2369 * If there are no full file async write operations 2370 * pending and RDIRTY bit is set, clear it. 2371 */ 2372 if (off == (u_offset_t)0 && 2373 !(flags & B_ASYNC) && 2374 (rp->r_flags & RDIRTY)) { 2375 mutex_enter(&rp->r_statelock); 2376 rdirty = (rp->r_flags & RDIRTY); 2377 rp->r_flags &= ~RDIRTY; 2378 mutex_exit(&rp->r_statelock); 2379 } else if (flags & B_ASYNC && off == (u_offset_t)0) { 2380 mutex_enter(&rp->r_statelock); 2381 if (rp->r_flags & RDIRTY && rp->r_awcount == 0) { 2382 rdirty = (rp->r_flags & RDIRTY); 2383 rp->r_flags &= ~RDIRTY; 2384 } 2385 mutex_exit(&rp->r_statelock); 2386 } else 2387 rdirty = 0; 2388 2389 /* 2390 * Search the entire vp list for pages >= off, and flush 2391 * the dirty pages. 2392 */ 2393 error = pvn_vplist_dirty(vp, off, rp->r_putapage, flags, cr); 2394 2395 /* 2396 * If an error occurred and the file was marked as dirty 2397 * before and we aren't forcibly invalidating pages, then 2398 * reset the RDIRTY flag. 2399 */ 2400 if (error && rdirty && 2401 (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) { 2402 mutex_enter(&rp->r_statelock); 2403 rp->r_flags |= RDIRTY; 2404 mutex_exit(&rp->r_statelock); 2405 } 2406 } else { 2407 /* 2408 * Do a range from [off...off + len) looking for pages 2409 * to deal with. 2410 */ 2411 error = 0; 2412 #ifdef lint 2413 io_len = 0; 2414 #endif 2415 eoff = off + len; 2416 mutex_enter(&rp->r_statelock); 2417 for (io_off = off; io_off < eoff && io_off < rp->r_size; 2418 io_off += io_len) { 2419 mutex_exit(&rp->r_statelock); 2420 /* 2421 * If we are not invalidating, synchronously 2422 * freeing or writing pages use the routine 2423 * page_lookup_nowait() to prevent reclaiming 2424 * them from the free list. 2425 */ 2426 if ((flags & B_INVAL) || !(flags & B_ASYNC)) { 2427 pp = page_lookup(vp, io_off, 2428 (flags & (B_INVAL | B_FREE)) ? 2429 SE_EXCL : SE_SHARED); 2430 } else { 2431 pp = page_lookup_nowait(vp, io_off, 2432 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2433 } 2434 2435 if (pp == NULL || !pvn_getdirty(pp, flags)) 2436 io_len = PAGESIZE; 2437 else { 2438 err = (*rp->r_putapage)(vp, pp, &io_off, 2439 &io_len, flags, cr); 2440 if (!error) 2441 error = err; 2442 /* 2443 * "io_off" and "io_len" are returned as 2444 * the range of pages we actually wrote. 2445 * This allows us to skip ahead more quickly 2446 * since several pages may've been dealt 2447 * with by this iteration of the loop. 2448 */ 2449 } 2450 mutex_enter(&rp->r_statelock); 2451 } 2452 mutex_exit(&rp->r_statelock); 2453 } 2454 2455 return (error); 2456 } 2457 2458 void 2459 nfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr) 2460 { 2461 rnode_t *rp; 2462 2463 rp = VTOR(vp); 2464 mutex_enter(&rp->r_statelock); 2465 while (rp->r_flags & RTRUNCATE) 2466 cv_wait(&rp->r_cv, &rp->r_statelock); 2467 rp->r_flags |= RTRUNCATE; 2468 if (off == (u_offset_t)0) { 2469 rp->r_flags &= ~RDIRTY; 2470 if (!(rp->r_flags & RSTALE)) 2471 rp->r_error = 0; 2472 } 2473 rp->r_truncaddr = off; 2474 mutex_exit(&rp->r_statelock); 2475 (void) pvn_vplist_dirty(vp, off, rp->r_putapage, 2476 B_INVAL | B_TRUNC, cr); 2477 mutex_enter(&rp->r_statelock); 2478 rp->r_flags &= ~RTRUNCATE; 2479 cv_broadcast(&rp->r_cv); 2480 mutex_exit(&rp->r_statelock); 2481 } 2482 2483 static int nfs_write_error_to_cons_only = 0; 2484 #define MSG(x) (nfs_write_error_to_cons_only ? (x) : (x) + 1) 2485 2486 /* 2487 * Print a file handle 2488 */ 2489 void 2490 nfs_printfhandle(nfs_fhandle *fhp) 2491 { 2492 int *ip; 2493 char *buf; 2494 size_t bufsize; 2495 char *cp; 2496 2497 /* 2498 * 13 == "(file handle:" 2499 * maximum of NFS_FHANDLE / sizeof (*ip) elements in fh_buf times 2500 * 1 == ' ' 2501 * 8 == maximum strlen of "%x" 2502 * 3 == ")\n\0" 2503 */ 2504 bufsize = 13 + ((NFS_FHANDLE_LEN / sizeof (*ip)) * (1 + 8)) + 3; 2505 buf = kmem_alloc(bufsize, KM_NOSLEEP); 2506 if (buf == NULL) 2507 return; 2508 2509 cp = buf; 2510 (void) strcpy(cp, "(file handle:"); 2511 while (*cp != '\0') 2512 cp++; 2513 for (ip = (int *)fhp->fh_buf; 2514 ip < (int *)&fhp->fh_buf[fhp->fh_len]; 2515 ip++) { 2516 (void) sprintf(cp, " %x", *ip); 2517 while (*cp != '\0') 2518 cp++; 2519 } 2520 (void) strcpy(cp, ")\n"); 2521 2522 zcmn_err(getzoneid(), CE_CONT, MSG("^%s"), buf); 2523 2524 kmem_free(buf, bufsize); 2525 } 2526 2527 /* 2528 * Notify the system administrator that an NFS write error has 2529 * occurred. 2530 */ 2531 2532 /* seconds between ENOSPC/EDQUOT messages */ 2533 clock_t nfs_write_error_interval = 5; 2534 2535 void 2536 nfs_write_error(vnode_t *vp, int error, cred_t *cr) 2537 { 2538 mntinfo_t *mi; 2539 2540 mi = VTOMI(vp); 2541 /* 2542 * In case of forced unmount or zone shutdown, do not print any 2543 * messages since it can flood the console with error messages. 2544 */ 2545 if (FS_OR_ZONE_GONE(mi->mi_vfsp)) 2546 return; 2547 2548 /* 2549 * No use in flooding the console with ENOSPC 2550 * messages from the same file system. 2551 */ 2552 if ((error != ENOSPC && error != EDQUOT) || 2553 lbolt - mi->mi_printftime > 0) { 2554 zoneid_t zoneid = mi->mi_zone->zone_id; 2555 2556 #ifdef DEBUG 2557 nfs_perror(error, "NFS%ld write error on host %s: %m.\n", 2558 mi->mi_vers, VTOR(vp)->r_server->sv_hostname, NULL); 2559 #else 2560 nfs_perror(error, "NFS write error on host %s: %m.\n", 2561 VTOR(vp)->r_server->sv_hostname, NULL); 2562 #endif 2563 if (error == ENOSPC || error == EDQUOT) { 2564 zcmn_err(zoneid, CE_CONT, 2565 MSG("^File: userid=%d, groupid=%d\n"), 2566 crgetuid(cr), crgetgid(cr)); 2567 if (crgetuid(CRED()) != crgetuid(cr) || 2568 crgetgid(CRED()) != crgetgid(cr)) { 2569 zcmn_err(zoneid, CE_CONT, 2570 MSG("^User: userid=%d, groupid=%d\n"), 2571 crgetuid(CRED()), crgetgid(CRED())); 2572 } 2573 mi->mi_printftime = lbolt + 2574 nfs_write_error_interval * hz; 2575 } 2576 nfs_printfhandle(&VTOR(vp)->r_fh); 2577 #ifdef DEBUG 2578 if (error == EACCES) { 2579 zcmn_err(zoneid, CE_CONT, 2580 MSG("^nfs_bio: cred is%s kcred\n"), 2581 cr == kcred ? "" : " not"); 2582 } 2583 #endif 2584 } 2585 } 2586 2587 /* ARGSUSED */ 2588 static void * 2589 nfs_mi_init(zoneid_t zoneid) 2590 { 2591 struct mi_globals *mig; 2592 2593 mig = kmem_alloc(sizeof (*mig), KM_SLEEP); 2594 mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL); 2595 list_create(&mig->mig_list, sizeof (mntinfo_t), 2596 offsetof(mntinfo_t, mi_zone_node)); 2597 mig->mig_destructor_called = B_FALSE; 2598 return (mig); 2599 } 2600 2601 /* 2602 * Callback routine to tell all NFS mounts in the zone to stop creating new 2603 * threads. Existing threads should exit. 2604 */ 2605 /* ARGSUSED */ 2606 static void 2607 nfs_mi_shutdown(zoneid_t zoneid, void *data) 2608 { 2609 struct mi_globals *mig = data; 2610 mntinfo_t *mi; 2611 2612 ASSERT(mig != NULL); 2613 again: 2614 mutex_enter(&mig->mig_lock); 2615 for (mi = list_head(&mig->mig_list); mi != NULL; 2616 mi = list_next(&mig->mig_list, mi)) { 2617 2618 /* 2619 * If we've done the shutdown work for this FS, skip. 2620 * Once we go off the end of the list, we're done. 2621 */ 2622 if (mi->mi_flags & MI_DEAD) 2623 continue; 2624 2625 /* 2626 * We will do work, so not done. Get a hold on the FS. 2627 */ 2628 VFS_HOLD(mi->mi_vfsp); 2629 2630 /* 2631 * purge the DNLC for this filesystem 2632 */ 2633 (void) dnlc_purge_vfsp(mi->mi_vfsp, 0); 2634 2635 mutex_enter(&mi->mi_async_lock); 2636 /* 2637 * Tell existing async worker threads to exit. 2638 */ 2639 mi->mi_max_threads = 0; 2640 cv_broadcast(&mi->mi_async_work_cv); 2641 /* 2642 * Set MI_ASYNC_MGR_STOP so the async manager thread starts 2643 * getting ready to exit when it's done with its current work. 2644 * Also set MI_DEAD to note we've acted on this FS. 2645 */ 2646 mutex_enter(&mi->mi_lock); 2647 mi->mi_flags |= (MI_ASYNC_MGR_STOP|MI_DEAD); 2648 mutex_exit(&mi->mi_lock); 2649 /* 2650 * Wake up the async manager thread. 2651 */ 2652 cv_broadcast(&mi->mi_async_reqs_cv); 2653 mutex_exit(&mi->mi_async_lock); 2654 2655 /* 2656 * Drop lock and release FS, which may change list, then repeat. 2657 * We're done when every mi has been done or the list is empty. 2658 */ 2659 mutex_exit(&mig->mig_lock); 2660 VFS_RELE(mi->mi_vfsp); 2661 goto again; 2662 } 2663 mutex_exit(&mig->mig_lock); 2664 } 2665 2666 static void 2667 nfs_mi_free_globals(struct mi_globals *mig) 2668 { 2669 list_destroy(&mig->mig_list); /* makes sure the list is empty */ 2670 mutex_destroy(&mig->mig_lock); 2671 kmem_free(mig, sizeof (*mig)); 2672 2673 } 2674 2675 /* ARGSUSED */ 2676 static void 2677 nfs_mi_destroy(zoneid_t zoneid, void *data) 2678 { 2679 struct mi_globals *mig = data; 2680 2681 ASSERT(mig != NULL); 2682 mutex_enter(&mig->mig_lock); 2683 if (list_head(&mig->mig_list) != NULL) { 2684 /* Still waiting for VFS_FREEVFS() */ 2685 mig->mig_destructor_called = B_TRUE; 2686 mutex_exit(&mig->mig_lock); 2687 return; 2688 } 2689 nfs_mi_free_globals(mig); 2690 } 2691 2692 /* 2693 * Add an NFS mount to the per-zone list of NFS mounts. 2694 */ 2695 void 2696 nfs_mi_zonelist_add(mntinfo_t *mi) 2697 { 2698 struct mi_globals *mig; 2699 2700 mig = zone_getspecific(mi_list_key, mi->mi_zone); 2701 mutex_enter(&mig->mig_lock); 2702 list_insert_head(&mig->mig_list, mi); 2703 mutex_exit(&mig->mig_lock); 2704 } 2705 2706 /* 2707 * Remove an NFS mount from the per-zone list of NFS mounts. 2708 */ 2709 static void 2710 nfs_mi_zonelist_remove(mntinfo_t *mi) 2711 { 2712 struct mi_globals *mig; 2713 2714 mig = zone_getspecific(mi_list_key, mi->mi_zone); 2715 mutex_enter(&mig->mig_lock); 2716 list_remove(&mig->mig_list, mi); 2717 /* 2718 * We can be called asynchronously by VFS_FREEVFS() after the zone 2719 * shutdown/destroy callbacks have executed; if so, clean up the zone's 2720 * mi globals. 2721 */ 2722 if (list_head(&mig->mig_list) == NULL && 2723 mig->mig_destructor_called == B_TRUE) { 2724 nfs_mi_free_globals(mig); 2725 return; 2726 } 2727 mutex_exit(&mig->mig_lock); 2728 } 2729 2730 /* 2731 * NFS Client initialization routine. This routine should only be called 2732 * once. It performs the following tasks: 2733 * - Initalize all global locks 2734 * - Call sub-initialization routines (localize access to variables) 2735 */ 2736 int 2737 nfs_clntinit(void) 2738 { 2739 #ifdef DEBUG 2740 static boolean_t nfs_clntup = B_FALSE; 2741 #endif 2742 int error; 2743 2744 #ifdef DEBUG 2745 ASSERT(nfs_clntup == B_FALSE); 2746 #endif 2747 2748 error = nfs_subrinit(); 2749 if (error) 2750 return (error); 2751 2752 error = nfs_vfsinit(); 2753 if (error) { 2754 /* 2755 * Cleanup nfs_subrinit() work 2756 */ 2757 nfs_subrfini(); 2758 return (error); 2759 } 2760 zone_key_create(&mi_list_key, nfs_mi_init, nfs_mi_shutdown, 2761 nfs_mi_destroy); 2762 2763 nfs4_clnt_init(); 2764 2765 #ifdef DEBUG 2766 nfs_clntup = B_TRUE; 2767 #endif 2768 2769 return (0); 2770 } 2771 2772 /* 2773 * This routine is only called if the NFS Client has been initialized but 2774 * the module failed to be installed. This routine will cleanup the previously 2775 * allocated/initialized work. 2776 */ 2777 void 2778 nfs_clntfini(void) 2779 { 2780 (void) zone_key_delete(mi_list_key); 2781 nfs_subrfini(); 2782 nfs_vfsfini(); 2783 nfs4_clnt_fini(); 2784 } 2785 2786 /* 2787 * nfs_lockrelease: 2788 * 2789 * Release any locks on the given vnode that are held by the current 2790 * process. 2791 */ 2792 void 2793 nfs_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 2794 { 2795 flock64_t ld; 2796 struct shrlock shr; 2797 char *buf; 2798 int remote_lock_possible; 2799 int ret; 2800 2801 ASSERT((uintptr_t)vp > KERNELBASE); 2802 2803 /* 2804 * Generate an explicit unlock operation for the entire file. As a 2805 * partial optimization, only generate the unlock if there is a 2806 * lock registered for the file. We could check whether this 2807 * particular process has any locks on the file, but that would 2808 * require the local locking code to provide yet another query 2809 * routine. Note that no explicit synchronization is needed here. 2810 * At worst, flk_has_remote_locks() will return a false positive, 2811 * in which case the unlock call wastes time but doesn't harm 2812 * correctness. 2813 * 2814 * In addition, an unlock request is generated if the process 2815 * is listed as possibly having a lock on the file because the 2816 * server and client lock managers may have gotten out of sync. 2817 * N.B. It is important to make sure nfs_remove_locking_id() is 2818 * called here even if flk_has_remote_locks(vp) reports true. 2819 * If it is not called and there is an entry on the process id 2820 * list, that entry will never get removed. 2821 */ 2822 remote_lock_possible = nfs_remove_locking_id(vp, RLMPL_PID, 2823 (char *)&(ttoproc(curthread)->p_pid), NULL, NULL); 2824 if (remote_lock_possible || flk_has_remote_locks(vp)) { 2825 ld.l_type = F_UNLCK; /* set to unlock entire file */ 2826 ld.l_whence = 0; /* unlock from start of file */ 2827 ld.l_start = 0; 2828 ld.l_len = 0; /* do entire file */ 2829 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr, 2830 NULL); 2831 2832 if (ret != 0) { 2833 /* 2834 * If VOP_FRLOCK fails, make sure we unregister 2835 * local locks before we continue. 2836 */ 2837 ld.l_pid = ttoproc(curthread)->p_pid; 2838 lm_register_lock_locally(vp, NULL, &ld, flag, offset); 2839 #ifdef DEBUG 2840 nfs_perror(ret, 2841 "NFS lock release error on vp %p: %m.\n", 2842 (void *)vp, NULL); 2843 #endif 2844 } 2845 2846 /* 2847 * The call to VOP_FRLOCK may put the pid back on the 2848 * list. We need to remove it. 2849 */ 2850 (void) nfs_remove_locking_id(vp, RLMPL_PID, 2851 (char *)&(ttoproc(curthread)->p_pid), NULL, NULL); 2852 } 2853 2854 /* 2855 * As long as the vp has a share matching our pid, 2856 * pluck it off and unshare it. There are circumstances in 2857 * which the call to nfs_remove_locking_id() may put the 2858 * owner back on the list, in which case we simply do a 2859 * redundant and harmless unshare. 2860 */ 2861 buf = kmem_alloc(MAX_SHR_OWNER_LEN, KM_SLEEP); 2862 while (nfs_remove_locking_id(vp, RLMPL_OWNER, 2863 (char *)NULL, buf, &shr.s_own_len)) { 2864 shr.s_owner = buf; 2865 shr.s_access = 0; 2866 shr.s_deny = 0; 2867 shr.s_sysid = 0; 2868 shr.s_pid = curproc->p_pid; 2869 2870 ret = VOP_SHRLOCK(vp, F_UNSHARE, &shr, flag, cr, NULL); 2871 #ifdef DEBUG 2872 if (ret != 0) { 2873 nfs_perror(ret, 2874 "NFS share release error on vp %p: %m.\n", 2875 (void *)vp, NULL); 2876 } 2877 #endif 2878 } 2879 kmem_free(buf, MAX_SHR_OWNER_LEN); 2880 } 2881 2882 /* 2883 * nfs_lockcompletion: 2884 * 2885 * If the vnode has a lock that makes it unsafe to cache the file, mark it 2886 * as non cachable (set VNOCACHE bit). 2887 */ 2888 2889 void 2890 nfs_lockcompletion(vnode_t *vp, int cmd) 2891 { 2892 #ifdef DEBUG 2893 rnode_t *rp = VTOR(vp); 2894 2895 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER)); 2896 #endif 2897 2898 if (cmd == F_SETLK || cmd == F_SETLKW) { 2899 if (!lm_safemap(vp)) { 2900 mutex_enter(&vp->v_lock); 2901 vp->v_flag |= VNOCACHE; 2902 mutex_exit(&vp->v_lock); 2903 } else { 2904 mutex_enter(&vp->v_lock); 2905 vp->v_flag &= ~VNOCACHE; 2906 mutex_exit(&vp->v_lock); 2907 } 2908 } 2909 /* 2910 * The cached attributes of the file are stale after acquiring 2911 * the lock on the file. They were updated when the file was 2912 * opened, but not updated when the lock was acquired. Therefore the 2913 * cached attributes are invalidated after the lock is obtained. 2914 */ 2915 PURGE_ATTRCACHE(vp); 2916 } 2917 2918 /* 2919 * The lock manager holds state making it possible for the client 2920 * and server to be out of sync. For example, if the response from 2921 * the server granting a lock request is lost, the server will think 2922 * the lock is granted and the client will think the lock is lost. 2923 * The client can tell when it is not positive if it is in sync with 2924 * the server. 2925 * 2926 * To deal with this, a list of processes for which the client is 2927 * not sure if the server holds a lock is attached to the rnode. 2928 * When such a process closes the rnode, an unlock request is sent 2929 * to the server to unlock the entire file. 2930 * 2931 * The list is kept as a singularly linked NULL terminated list. 2932 * Because it is only added to under extreme error conditions, the 2933 * list shouldn't get very big. DEBUG kernels print a message if 2934 * the list gets bigger than nfs_lmpl_high_water. This is arbitrarily 2935 * choosen to be 8, but can be tuned at runtime. 2936 */ 2937 #ifdef DEBUG 2938 /* int nfs_lmpl_high_water = 8; */ 2939 int nfs_lmpl_high_water = 128; 2940 int nfs_cnt_add_locking_id = 0; 2941 int nfs_len_add_locking_id = 0; 2942 #endif /* DEBUG */ 2943 2944 /* 2945 * Record that the nfs lock manager server may be holding a lock on 2946 * a vnode for a process. 2947 * 2948 * Because the nfs lock manager server holds state, it is possible 2949 * for the server to get out of sync with the client. This routine is called 2950 * from the client when it is no longer sure if the server is in sync 2951 * with the client. nfs_lockrelease() will then notice this and send 2952 * an unlock request when the file is closed 2953 */ 2954 void 2955 nfs_add_locking_id(vnode_t *vp, pid_t pid, int type, char *id, int len) 2956 { 2957 rnode_t *rp; 2958 lmpl_t *new; 2959 lmpl_t *cur; 2960 lmpl_t **lmplp; 2961 #ifdef DEBUG 2962 int list_len = 1; 2963 #endif /* DEBUG */ 2964 2965 #ifdef DEBUG 2966 ++nfs_cnt_add_locking_id; 2967 #endif /* DEBUG */ 2968 /* 2969 * allocate new lmpl_t now so we don't sleep 2970 * later after grabbing mutexes 2971 */ 2972 ASSERT(len < MAX_SHR_OWNER_LEN); 2973 new = kmem_alloc(sizeof (*new), KM_SLEEP); 2974 new->lmpl_type = type; 2975 new->lmpl_pid = pid; 2976 new->lmpl_owner = kmem_alloc(len, KM_SLEEP); 2977 bcopy(id, new->lmpl_owner, len); 2978 new->lmpl_own_len = len; 2979 new->lmpl_next = (lmpl_t *)NULL; 2980 #ifdef DEBUG 2981 if (type == RLMPL_PID) { 2982 ASSERT(len == sizeof (pid_t)); 2983 ASSERT(pid == *(pid_t *)new->lmpl_owner); 2984 } else { 2985 ASSERT(type == RLMPL_OWNER); 2986 } 2987 #endif 2988 2989 rp = VTOR(vp); 2990 mutex_enter(&rp->r_statelock); 2991 2992 /* 2993 * Add this id to the list for this rnode only if the 2994 * rnode is active and the id is not already there. 2995 */ 2996 ASSERT(rp->r_flags & RHASHED); 2997 lmplp = &(rp->r_lmpl); 2998 for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) { 2999 if (cur->lmpl_pid == pid && 3000 cur->lmpl_type == type && 3001 cur->lmpl_own_len == len && 3002 bcmp(cur->lmpl_owner, new->lmpl_owner, len) == 0) { 3003 kmem_free(new->lmpl_owner, len); 3004 kmem_free(new, sizeof (*new)); 3005 break; 3006 } 3007 lmplp = &cur->lmpl_next; 3008 #ifdef DEBUG 3009 ++list_len; 3010 #endif /* DEBUG */ 3011 } 3012 if (cur == (lmpl_t *)NULL) { 3013 *lmplp = new; 3014 #ifdef DEBUG 3015 if (list_len > nfs_len_add_locking_id) { 3016 nfs_len_add_locking_id = list_len; 3017 } 3018 if (list_len > nfs_lmpl_high_water) { 3019 cmn_err(CE_WARN, "nfs_add_locking_id: long list " 3020 "vp=%p is %d", (void *)vp, list_len); 3021 } 3022 #endif /* DEBUG */ 3023 } 3024 3025 #ifdef DEBUG 3026 if (share_debug) { 3027 int nitems = 0; 3028 int npids = 0; 3029 int nowners = 0; 3030 3031 /* 3032 * Count the number of things left on r_lmpl after the remove. 3033 */ 3034 for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; 3035 cur = cur->lmpl_next) { 3036 nitems++; 3037 if (cur->lmpl_type == RLMPL_PID) { 3038 npids++; 3039 } else if (cur->lmpl_type == RLMPL_OWNER) { 3040 nowners++; 3041 } else { 3042 cmn_err(CE_PANIC, "nfs_add_locking_id: " 3043 "unrecognized lmpl_type %d", 3044 cur->lmpl_type); 3045 } 3046 } 3047 3048 cmn_err(CE_CONT, "nfs_add_locking_id(%s): %d PIDs + %d " 3049 "OWNs = %d items left on r_lmpl\n", 3050 (type == RLMPL_PID) ? "P" : "O", npids, nowners, nitems); 3051 } 3052 #endif 3053 3054 mutex_exit(&rp->r_statelock); 3055 } 3056 3057 /* 3058 * Remove an id from the lock manager id list. 3059 * 3060 * If the id is not in the list return 0. If it was found and 3061 * removed, return 1. 3062 */ 3063 static int 3064 nfs_remove_locking_id(vnode_t *vp, int type, char *id, char *rid, int *rlen) 3065 { 3066 lmpl_t *cur; 3067 lmpl_t **lmplp; 3068 rnode_t *rp; 3069 int rv = 0; 3070 3071 ASSERT(type == RLMPL_PID || type == RLMPL_OWNER); 3072 3073 rp = VTOR(vp); 3074 3075 mutex_enter(&rp->r_statelock); 3076 ASSERT(rp->r_flags & RHASHED); 3077 lmplp = &(rp->r_lmpl); 3078 3079 /* 3080 * Search through the list and remove the entry for this id 3081 * if it is there. The special case id == NULL allows removal 3082 * of the first share on the r_lmpl list belonging to the 3083 * current process (if any), without regard to further details 3084 * of its identity. 3085 */ 3086 for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) { 3087 if (cur->lmpl_type == type && 3088 cur->lmpl_pid == curproc->p_pid && 3089 (id == (char *)NULL || 3090 bcmp(cur->lmpl_owner, id, cur->lmpl_own_len) == 0)) { 3091 *lmplp = cur->lmpl_next; 3092 ASSERT(cur->lmpl_own_len < MAX_SHR_OWNER_LEN); 3093 if (rid != NULL) { 3094 bcopy(cur->lmpl_owner, rid, cur->lmpl_own_len); 3095 *rlen = cur->lmpl_own_len; 3096 } 3097 kmem_free(cur->lmpl_owner, cur->lmpl_own_len); 3098 kmem_free(cur, sizeof (*cur)); 3099 rv = 1; 3100 break; 3101 } 3102 lmplp = &cur->lmpl_next; 3103 } 3104 3105 #ifdef DEBUG 3106 if (share_debug) { 3107 int nitems = 0; 3108 int npids = 0; 3109 int nowners = 0; 3110 3111 /* 3112 * Count the number of things left on r_lmpl after the remove. 3113 */ 3114 for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; 3115 cur = cur->lmpl_next) { 3116 nitems++; 3117 if (cur->lmpl_type == RLMPL_PID) { 3118 npids++; 3119 } else if (cur->lmpl_type == RLMPL_OWNER) { 3120 nowners++; 3121 } else { 3122 cmn_err(CE_PANIC, 3123 "nrli: unrecognized lmpl_type %d", 3124 cur->lmpl_type); 3125 } 3126 } 3127 3128 cmn_err(CE_CONT, 3129 "nrli(%s): %d PIDs + %d OWNs = %d items left on r_lmpl\n", 3130 (type == RLMPL_PID) ? "P" : "O", npids, nowners, nitems); 3131 } 3132 #endif 3133 3134 mutex_exit(&rp->r_statelock); 3135 return (rv); 3136 } 3137 3138 void 3139 nfs_free_mi(mntinfo_t *mi) 3140 { 3141 ASSERT(mi->mi_flags & MI_ASYNC_MGR_STOP); 3142 ASSERT(mi->mi_manager_thread == NULL); 3143 ASSERT(mi->mi_threads == 0); 3144 3145 /* 3146 * Remove the node from the global list before we start tearing it down. 3147 */ 3148 nfs_mi_zonelist_remove(mi); 3149 if (mi->mi_klmconfig) { 3150 lm_free_config(mi->mi_klmconfig); 3151 kmem_free(mi->mi_klmconfig, sizeof (struct knetconfig)); 3152 } 3153 mutex_destroy(&mi->mi_lock); 3154 mutex_destroy(&mi->mi_remap_lock); 3155 mutex_destroy(&mi->mi_async_lock); 3156 cv_destroy(&mi->mi_failover_cv); 3157 cv_destroy(&mi->mi_async_work_cv); 3158 cv_destroy(&mi->mi_async_reqs_cv); 3159 cv_destroy(&mi->mi_async_cv); 3160 zone_rele(mi->mi_zone); 3161 kmem_free(mi, sizeof (*mi)); 3162 } 3163 3164 static int 3165 mnt_kstat_update(kstat_t *ksp, int rw) 3166 { 3167 mntinfo_t *mi; 3168 struct mntinfo_kstat *mik; 3169 vfs_t *vfsp; 3170 int i; 3171 3172 /* this is a read-only kstat. Bail out on a write */ 3173 if (rw == KSTAT_WRITE) 3174 return (EACCES); 3175 3176 /* 3177 * We don't want to wait here as kstat_chain_lock could be held by 3178 * dounmount(). dounmount() takes vfs_reflock before the chain lock 3179 * and thus could lead to a deadlock. 3180 */ 3181 vfsp = (struct vfs *)ksp->ks_private; 3182 3183 3184 mi = VFTOMI(vfsp); 3185 3186 mik = (struct mntinfo_kstat *)ksp->ks_data; 3187 3188 (void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto); 3189 mik->mik_vers = (uint32_t)mi->mi_vers; 3190 mik->mik_flags = mi->mi_flags; 3191 mik->mik_secmod = mi->mi_curr_serv->sv_secdata->secmod; 3192 mik->mik_curread = (uint32_t)mi->mi_curread; 3193 mik->mik_curwrite = (uint32_t)mi->mi_curwrite; 3194 mik->mik_retrans = mi->mi_retrans; 3195 mik->mik_timeo = mi->mi_timeo; 3196 mik->mik_acregmin = HR2SEC(mi->mi_acregmin); 3197 mik->mik_acregmax = HR2SEC(mi->mi_acregmax); 3198 mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin); 3199 mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax); 3200 for (i = 0; i < NFS_CALLTYPES + 1; i++) { 3201 mik->mik_timers[i].srtt = (uint32_t)mi->mi_timers[i].rt_srtt; 3202 mik->mik_timers[i].deviate = 3203 (uint32_t)mi->mi_timers[i].rt_deviate; 3204 mik->mik_timers[i].rtxcur = 3205 (uint32_t)mi->mi_timers[i].rt_rtxcur; 3206 } 3207 mik->mik_noresponse = (uint32_t)mi->mi_noresponse; 3208 mik->mik_failover = (uint32_t)mi->mi_failover; 3209 mik->mik_remap = (uint32_t)mi->mi_remap; 3210 (void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname); 3211 3212 return (0); 3213 } 3214 3215 void 3216 nfs_mnt_kstat_init(struct vfs *vfsp) 3217 { 3218 mntinfo_t *mi = VFTOMI(vfsp); 3219 3220 /* 3221 * Create the version specific kstats. 3222 * 3223 * PSARC 2001/697 Contract Private Interface 3224 * All nfs kstats are under SunMC contract 3225 * Please refer to the PSARC listed above and contact 3226 * SunMC before making any changes! 3227 * 3228 * Changes must be reviewed by Solaris File Sharing 3229 * Changes must be communicated to contract-2001-697@sun.com 3230 * 3231 */ 3232 3233 mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev), 3234 NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id); 3235 if (mi->mi_io_kstats) { 3236 if (mi->mi_zone->zone_id != GLOBAL_ZONEID) 3237 kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID); 3238 mi->mi_io_kstats->ks_lock = &mi->mi_lock; 3239 kstat_install(mi->mi_io_kstats); 3240 } 3241 3242 if ((mi->mi_ro_kstats = kstat_create_zone("nfs", 3243 getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW, 3244 sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) { 3245 if (mi->mi_zone->zone_id != GLOBAL_ZONEID) 3246 kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID); 3247 mi->mi_ro_kstats->ks_update = mnt_kstat_update; 3248 mi->mi_ro_kstats->ks_private = (void *)vfsp; 3249 kstat_install(mi->mi_ro_kstats); 3250 } 3251 } 3252 3253 nfs_delmapcall_t * 3254 nfs_init_delmapcall() 3255 { 3256 nfs_delmapcall_t *delmap_call; 3257 3258 delmap_call = kmem_alloc(sizeof (nfs_delmapcall_t), KM_SLEEP); 3259 delmap_call->call_id = curthread; 3260 delmap_call->error = 0; 3261 3262 return (delmap_call); 3263 } 3264 3265 void 3266 nfs_free_delmapcall(nfs_delmapcall_t *delmap_call) 3267 { 3268 kmem_free(delmap_call, sizeof (nfs_delmapcall_t)); 3269 } 3270 3271 /* 3272 * Searches for the current delmap caller (based on curthread) in the list of 3273 * callers. If it is found, we remove it and free the delmap caller. 3274 * Returns: 3275 * 0 if the caller wasn't found 3276 * 1 if the caller was found, removed and freed. *errp is set to what 3277 * the result of the delmap was. 3278 */ 3279 int 3280 nfs_find_and_delete_delmapcall(rnode_t *rp, int *errp) 3281 { 3282 nfs_delmapcall_t *delmap_call; 3283 3284 /* 3285 * If the list doesn't exist yet, we create it and return 3286 * that the caller wasn't found. No list = no callers. 3287 */ 3288 mutex_enter(&rp->r_statelock); 3289 if (!(rp->r_flags & RDELMAPLIST)) { 3290 /* The list does not exist */ 3291 list_create(&rp->r_indelmap, sizeof (nfs_delmapcall_t), 3292 offsetof(nfs_delmapcall_t, call_node)); 3293 rp->r_flags |= RDELMAPLIST; 3294 mutex_exit(&rp->r_statelock); 3295 return (0); 3296 } else { 3297 /* The list exists so search it */ 3298 for (delmap_call = list_head(&rp->r_indelmap); 3299 delmap_call != NULL; 3300 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 3301 if (delmap_call->call_id == curthread) { 3302 /* current caller is in the list */ 3303 *errp = delmap_call->error; 3304 list_remove(&rp->r_indelmap, delmap_call); 3305 mutex_exit(&rp->r_statelock); 3306 nfs_free_delmapcall(delmap_call); 3307 return (1); 3308 } 3309 } 3310 } 3311 mutex_exit(&rp->r_statelock); 3312 return (0); 3313 } 3314