1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2015 Joyent, Inc. All rights reserved. 26 * Copyright 2018 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/errno.h> 31 #include <sys/vfs.h> 32 #include <sys/vnode.h> 33 #include <sys/cred.h> 34 #include <sys/cmn_err.h> 35 #include <sys/systm.h> 36 #include <sys/kmem.h> 37 #include <sys/pathname.h> 38 #include <sys/utsname.h> 39 #include <sys/debug.h> 40 #include <sys/door.h> 41 #include <sys/sdt.h> 42 #include <sys/thread.h> 43 #include <sys/avl.h> 44 45 #include <rpc/types.h> 46 #include <rpc/auth.h> 47 #include <rpc/clnt.h> 48 49 #include <nfs/nfs.h> 50 #include <nfs/export.h> 51 #include <nfs/nfs_clnt.h> 52 #include <nfs/auth.h> 53 54 static struct kmem_cache *exi_cache_handle; 55 static void exi_cache_reclaim(void *); 56 static void exi_cache_reclaim_zone(nfs_globals_t *); 57 static void exi_cache_trim(struct exportinfo *exi); 58 59 extern pri_t minclsyspri; 60 61 /* NFS auth cache statistics */ 62 volatile uint_t nfsauth_cache_hit; 63 volatile uint_t nfsauth_cache_miss; 64 volatile uint_t nfsauth_cache_refresh; 65 volatile uint_t nfsauth_cache_reclaim; 66 volatile uint_t exi_cache_auth_reclaim_failed; 67 volatile uint_t exi_cache_clnt_reclaim_failed; 68 69 /* 70 * The lifetime of an auth cache entry: 71 * ------------------------------------ 72 * 73 * An auth cache entry is created with both the auth_time 74 * and auth_freshness times set to the current time. 75 * 76 * Upon every client access which results in a hit, the 77 * auth_time will be updated. 78 * 79 * If a client access determines that the auth_freshness 80 * indicates that the entry is STALE, then it will be 81 * refreshed. Note that this will explicitly reset 82 * auth_time. 83 * 84 * When the REFRESH successfully occurs, then the 85 * auth_freshness is updated. 86 * 87 * There are two ways for an entry to leave the cache: 88 * 89 * 1) Purged by an action on the export (remove or changed) 90 * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM) 91 * 92 * For 2) we check the timeout value against auth_time. 93 */ 94 95 /* 96 * Number of seconds until we mark for refresh an auth cache entry. 97 */ 98 #define NFSAUTH_CACHE_REFRESH 600 99 100 /* 101 * Number of idle seconds until we yield to backpressure 102 * to trim a cache entry. 103 */ 104 #define NFSAUTH_CACHE_TRIM 3600 105 106 /* 107 * While we could encapuslate the exi_list inside the 108 * exi structure, we can't do that for the auth_list. 109 * So, to keep things looking clean, we keep them both 110 * in these external lists. 111 */ 112 typedef struct refreshq_exi_node { 113 struct exportinfo *ren_exi; 114 list_t ren_authlist; 115 list_node_t ren_node; 116 } refreshq_exi_node_t; 117 118 typedef struct refreshq_auth_node { 119 struct auth_cache *ran_auth; 120 char *ran_netid; 121 list_node_t ran_node; 122 } refreshq_auth_node_t; 123 124 /* 125 * Used to manipulate things on the refreshq_queue. Note that the refresh 126 * thread will effectively pop a node off of the queue, at which point it 127 * will no longer need to hold the mutex. 128 */ 129 static kmutex_t refreshq_lock; 130 static list_t refreshq_queue; 131 static kcondvar_t refreshq_cv; 132 133 /* 134 * If there is ever a problem with loading the module, then nfsauth_fini() 135 * needs to be called to remove state. In that event, since the refreshq 136 * thread has been started, they need to work together to get rid of state. 137 */ 138 typedef enum nfsauth_refreshq_thread_state { 139 REFRESHQ_THREAD_RUNNING, 140 REFRESHQ_THREAD_FINI_REQ, 141 REFRESHQ_THREAD_HALTED, 142 REFRESHQ_THREAD_NEED_CREATE 143 } nfsauth_refreshq_thread_state_t; 144 145 typedef struct nfsauth_globals { 146 kmutex_t mountd_lock; 147 door_handle_t mountd_dh; 148 149 /* 150 * Used to manipulate things on the refreshq_queue. Note that the 151 * refresh thread will effectively pop a node off of the queue, 152 * at which point it will no longer need to hold the mutex. 153 */ 154 kmutex_t refreshq_lock; 155 list_t refreshq_queue; 156 kcondvar_t refreshq_cv; 157 158 /* 159 * A list_t would be overkill. These are auth_cache entries which are 160 * no longer linked to an exi. It should be the case that all of their 161 * states are NFS_AUTH_INVALID, i.e., the only way to be put on this 162 * list is iff their state indicated that they had been placed on the 163 * refreshq_queue. 164 * 165 * Note that while there is no link from the exi or back to the exi, 166 * the exi can not go away until these entries are harvested. 167 */ 168 struct auth_cache *refreshq_dead_entries; 169 nfsauth_refreshq_thread_state_t refreshq_thread_state; 170 171 } nfsauth_globals_t; 172 173 static void nfsauth_free_node(struct auth_cache *); 174 static void nfsauth_refresh_thread(nfsauth_globals_t *); 175 176 static int nfsauth_cache_compar(const void *, const void *); 177 178 static nfsauth_globals_t * 179 nfsauth_get_zg(void) 180 { 181 nfs_globals_t *ng = nfs_srv_getzg(); 182 nfsauth_globals_t *nag = ng->nfs_auth; 183 ASSERT(nag != NULL); 184 return (nag); 185 } 186 187 void 188 mountd_args(uint_t did) 189 { 190 nfsauth_globals_t *nag; 191 192 nag = nfsauth_get_zg(); 193 mutex_enter(&nag->mountd_lock); 194 if (nag->mountd_dh != NULL) 195 door_ki_rele(nag->mountd_dh); 196 nag->mountd_dh = door_ki_lookup(did); 197 mutex_exit(&nag->mountd_lock); 198 } 199 200 void 201 nfsauth_init(void) 202 { 203 exi_cache_handle = kmem_cache_create("exi_cache_handle", 204 sizeof (struct auth_cache), 0, NULL, NULL, 205 exi_cache_reclaim, NULL, NULL, 0); 206 } 207 208 void 209 nfsauth_fini(void) 210 { 211 kmem_cache_destroy(exi_cache_handle); 212 } 213 214 void 215 nfsauth_zone_init(nfs_globals_t *ng) 216 { 217 nfsauth_globals_t *nag; 218 219 nag = kmem_zalloc(sizeof (*nag), KM_SLEEP); 220 221 /* 222 * mountd can be restarted by smf(7). We need to make sure 223 * the updated door handle will safely make it to mountd_dh. 224 */ 225 mutex_init(&nag->mountd_lock, NULL, MUTEX_DEFAULT, NULL); 226 mutex_init(&nag->refreshq_lock, NULL, MUTEX_DEFAULT, NULL); 227 list_create(&nag->refreshq_queue, sizeof (refreshq_exi_node_t), 228 offsetof(refreshq_exi_node_t, ren_node)); 229 cv_init(&nag->refreshq_cv, NULL, CV_DEFAULT, NULL); 230 nag->refreshq_thread_state = REFRESHQ_THREAD_NEED_CREATE; 231 232 ng->nfs_auth = nag; 233 } 234 235 void 236 nfsauth_zone_shutdown(nfs_globals_t *ng) 237 { 238 refreshq_exi_node_t *ren; 239 nfsauth_globals_t *nag = ng->nfs_auth; 240 241 /* Prevent the nfsauth_refresh_thread from getting new work */ 242 mutex_enter(&nag->refreshq_lock); 243 if (nag->refreshq_thread_state == REFRESHQ_THREAD_RUNNING) { 244 nag->refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ; 245 cv_broadcast(&nag->refreshq_cv); 246 247 /* Wait for nfsauth_refresh_thread() to exit */ 248 while (nag->refreshq_thread_state != REFRESHQ_THREAD_HALTED) 249 cv_wait(&nag->refreshq_cv, &nag->refreshq_lock); 250 } 251 mutex_exit(&nag->refreshq_lock); 252 253 /* 254 * Walk the exi_list and in turn, walk the auth_lists and free all 255 * lists. In addition, free INVALID auth_cache entries. 256 */ 257 while ((ren = list_remove_head(&nag->refreshq_queue))) { 258 refreshq_auth_node_t *ran; 259 260 while ((ran = list_remove_head(&ren->ren_authlist)) != NULL) { 261 struct auth_cache *p = ran->ran_auth; 262 if (p->auth_state == NFS_AUTH_INVALID) 263 nfsauth_free_node(p); 264 strfree(ran->ran_netid); 265 kmem_free(ran, sizeof (*ran)); 266 } 267 268 list_destroy(&ren->ren_authlist); 269 exi_rele(ren->ren_exi); 270 kmem_free(ren, sizeof (*ren)); 271 } 272 } 273 274 void 275 nfsauth_zone_fini(nfs_globals_t *ng) 276 { 277 nfsauth_globals_t *nag = ng->nfs_auth; 278 279 ng->nfs_auth = NULL; 280 281 list_destroy(&nag->refreshq_queue); 282 cv_destroy(&nag->refreshq_cv); 283 mutex_destroy(&nag->refreshq_lock); 284 mutex_destroy(&nag->mountd_lock); 285 /* Extra cleanup. */ 286 if (nag->mountd_dh != NULL) 287 door_ki_rele(nag->mountd_dh); 288 kmem_free(nag, sizeof (*nag)); 289 } 290 291 /* 292 * Convert the address in a netbuf to 293 * a hash index for the auth_cache table. 294 */ 295 static int 296 hash(struct netbuf *a) 297 { 298 int i, h = 0; 299 300 for (i = 0; i < a->len; i++) 301 h ^= a->buf[i]; 302 303 return (h & (AUTH_TABLESIZE - 1)); 304 } 305 306 /* 307 * Mask out the components of an 308 * address that do not identify 309 * a host. For socket addresses the 310 * masking gets rid of the port number. 311 */ 312 static void 313 addrmask(struct netbuf *addr, struct netbuf *mask) 314 { 315 int i; 316 317 for (i = 0; i < addr->len; i++) 318 addr->buf[i] &= mask->buf[i]; 319 } 320 321 /* 322 * nfsauth4_access is used for NFS V4 auth checking. Besides doing 323 * the common nfsauth_access(), it will check if the client can 324 * have a limited access to this vnode even if the security flavor 325 * used does not meet the policy. 326 */ 327 int 328 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req, 329 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids) 330 { 331 int access; 332 333 access = nfsauth_access(exi, req, cr, uid, gid, ngids, gids); 334 335 /* 336 * There are cases that the server needs to allow the client 337 * to have a limited view. 338 * 339 * e.g. 340 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw" 341 * /export/home is shared as "sec=sys,rw" 342 * 343 * When the client mounts /export with sec=sys, the client 344 * would get a limited view with RO access on /export to see 345 * "home" only because the client is allowed to access 346 * /export/home with auth_sys. 347 */ 348 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) { 349 /* 350 * Allow ro permission with LIMITED view if there is a 351 * sub-dir exported under vp. 352 */ 353 if (has_visible(exi, vp)) 354 return (NFSAUTH_LIMITED); 355 } 356 357 return (access); 358 } 359 360 static void 361 sys_log(const char *msg) 362 { 363 static time_t tstamp = 0; 364 time_t now; 365 366 /* 367 * msg is shown (at most) once per minute 368 */ 369 now = gethrestime_sec(); 370 if ((tstamp + 60) < now) { 371 tstamp = now; 372 cmn_err(CE_WARN, msg); 373 } 374 } 375 376 /* 377 * Callup to the mountd to get access information in the kernel. 378 */ 379 static bool_t 380 nfsauth_retrieve(nfsauth_globals_t *nag, struct exportinfo *exi, 381 char *req_netid, int flavor, struct netbuf *addr, int *access, 382 cred_t *clnt_cred, uid_t *srv_uid, gid_t *srv_gid, uint_t *srv_gids_cnt, 383 gid_t **srv_gids) 384 { 385 varg_t varg = {0}; 386 nfsauth_res_t res = {0}; 387 XDR xdrs; 388 size_t absz; 389 caddr_t abuf; 390 int last = 0; 391 door_arg_t da; 392 door_info_t di; 393 door_handle_t dh; 394 uint_t ntries = 0; 395 396 /* 397 * No entry in the cache for this client/flavor 398 * so we need to call the nfsauth service in the 399 * mount daemon. 400 */ 401 402 varg.vers = V_PROTO; 403 varg.arg_u.arg.cmd = NFSAUTH_ACCESS; 404 varg.arg_u.arg.areq.req_client.n_len = addr->len; 405 varg.arg_u.arg.areq.req_client.n_bytes = addr->buf; 406 varg.arg_u.arg.areq.req_netid = req_netid; 407 varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path; 408 varg.arg_u.arg.areq.req_flavor = flavor; 409 varg.arg_u.arg.areq.req_clnt_uid = crgetuid(clnt_cred); 410 varg.arg_u.arg.areq.req_clnt_gid = crgetgid(clnt_cred); 411 varg.arg_u.arg.areq.req_clnt_gids.len = crgetngroups(clnt_cred); 412 varg.arg_u.arg.areq.req_clnt_gids.val = (gid_t *)crgetgroups(clnt_cred); 413 414 DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg); 415 416 /* 417 * Setup the XDR stream for encoding the arguments. Notice that 418 * in addition to the args having variable fields (req_netid and 419 * req_path), the argument data structure is itself versioned, 420 * so we need to make sure we can size the arguments buffer 421 * appropriately to encode all the args. If we can't get sizing 422 * info _or_ properly encode the arguments, there's really no 423 * point in continuting, so we fail the request. 424 */ 425 if ((absz = xdr_sizeof(xdr_varg, &varg)) == 0) { 426 *access = NFSAUTH_DENIED; 427 return (FALSE); 428 } 429 430 abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP); 431 xdrmem_create(&xdrs, abuf, absz, XDR_ENCODE); 432 if (!xdr_varg(&xdrs, &varg)) { 433 XDR_DESTROY(&xdrs); 434 goto fail; 435 } 436 XDR_DESTROY(&xdrs); 437 438 /* 439 * Prepare the door arguments 440 * 441 * We don't know the size of the message the daemon 442 * will pass back to us. By setting rbuf to NULL, 443 * we force the door code to allocate a buf of the 444 * appropriate size. We must set rsize > 0, however, 445 * else the door code acts as if no response was 446 * expected and doesn't pass the data to us. 447 */ 448 da.data_ptr = (char *)abuf; 449 da.data_size = absz; 450 da.desc_ptr = NULL; 451 da.desc_num = 0; 452 da.rbuf = NULL; 453 da.rsize = 1; 454 455 retry: 456 mutex_enter(&nag->mountd_lock); 457 dh = nag->mountd_dh; 458 if (dh != NULL) 459 door_ki_hold(dh); 460 mutex_exit(&nag->mountd_lock); 461 462 if (dh == NULL) { 463 /* 464 * The rendezvous point has not been established yet! 465 * This could mean that either mountd(8) has not yet 466 * been started or that _this_ routine nuked the door 467 * handle after receiving an EINTR for a REVOKED door. 468 * 469 * Returning NFSAUTH_DROP will cause the NFS client 470 * to retransmit the request, so let's try to be more 471 * rescillient and attempt for ntries before we bail. 472 */ 473 if (++ntries % NFSAUTH_DR_TRYCNT) { 474 delay(hz); 475 goto retry; 476 } 477 478 kmem_free(abuf, absz); 479 480 sys_log("nfsauth: mountd has not established door"); 481 *access = NFSAUTH_DROP; 482 return (FALSE); 483 } 484 485 ntries = 0; 486 487 /* 488 * Now that we've got what we need, place the call. 489 */ 490 switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) { 491 case 0: /* Success */ 492 door_ki_rele(dh); 493 494 if (da.data_ptr == NULL && da.data_size == 0) { 495 /* 496 * The door_return that contained the data 497 * failed! We're here because of the 2nd 498 * door_return (w/o data) such that we can 499 * get control of the thread (and exit 500 * gracefully). 501 */ 502 DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil, 503 door_arg_t *, &da); 504 goto fail; 505 } 506 507 break; 508 509 case EAGAIN: 510 /* 511 * Server out of resources; back off for a bit 512 */ 513 door_ki_rele(dh); 514 delay(hz); 515 goto retry; 516 /* NOTREACHED */ 517 518 case EINTR: 519 if (!door_ki_info(dh, &di)) { 520 door_ki_rele(dh); 521 522 if (di.di_attributes & DOOR_REVOKED) { 523 /* 524 * The server barfed and revoked 525 * the (existing) door on us; we 526 * want to wait to give smf(7) a 527 * chance to restart mountd(8) 528 * and establish a new door handle. 529 */ 530 mutex_enter(&nag->mountd_lock); 531 if (dh == nag->mountd_dh) { 532 door_ki_rele(nag->mountd_dh); 533 nag->mountd_dh = NULL; 534 } 535 mutex_exit(&nag->mountd_lock); 536 delay(hz); 537 goto retry; 538 } 539 /* 540 * If the door was _not_ revoked on us, 541 * then more than likely we took an INTR, 542 * so we need to fail the operation. 543 */ 544 goto fail; 545 } 546 /* 547 * The only failure that can occur from getting 548 * the door info is EINVAL, so we let the code 549 * below handle it. 550 */ 551 /* FALLTHROUGH */ 552 553 case EBADF: 554 case EINVAL: 555 default: 556 /* 557 * If we have a stale door handle, give smf a last 558 * chance to start it by sleeping for a little bit. 559 * If we're still hosed, we'll fail the call. 560 * 561 * Since we're going to reacquire the door handle 562 * upon the retry, we opt to sleep for a bit and 563 * _not_ to clear mountd_dh. If mountd restarted 564 * and was able to set mountd_dh, we should see 565 * the new instance; if not, we won't get caught 566 * up in the retry/DELAY loop. 567 */ 568 door_ki_rele(dh); 569 if (!last) { 570 delay(hz); 571 last++; 572 goto retry; 573 } 574 sys_log("nfsauth: stale mountd door handle"); 575 goto fail; 576 } 577 578 ASSERT(da.rbuf != NULL); 579 580 /* 581 * No door errors encountered; setup the XDR stream for decoding 582 * the results. If we fail to decode the results, we've got no 583 * other recourse than to fail the request. 584 */ 585 xdrmem_create(&xdrs, da.rbuf, da.rsize, XDR_DECODE); 586 if (!xdr_nfsauth_res(&xdrs, &res)) { 587 xdr_free(xdr_nfsauth_res, (char *)&res); 588 XDR_DESTROY(&xdrs); 589 kmem_free(da.rbuf, da.rsize); 590 goto fail; 591 } 592 XDR_DESTROY(&xdrs); 593 kmem_free(da.rbuf, da.rsize); 594 595 DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res); 596 switch (res.stat) { 597 case NFSAUTH_DR_OKAY: 598 *access = res.ares.auth_perm; 599 *srv_uid = res.ares.auth_srv_uid; 600 *srv_gid = res.ares.auth_srv_gid; 601 602 if ((*srv_gids_cnt = res.ares.auth_srv_gids.len) != 0) { 603 *srv_gids = kmem_alloc(*srv_gids_cnt * 604 sizeof (gid_t), KM_SLEEP); 605 bcopy(res.ares.auth_srv_gids.val, *srv_gids, 606 *srv_gids_cnt * sizeof (gid_t)); 607 } else { 608 *srv_gids = NULL; 609 } 610 611 break; 612 613 case NFSAUTH_DR_EFAIL: 614 case NFSAUTH_DR_DECERR: 615 case NFSAUTH_DR_BADCMD: 616 default: 617 xdr_free(xdr_nfsauth_res, (char *)&res); 618 fail: 619 *access = NFSAUTH_DENIED; 620 kmem_free(abuf, absz); 621 return (FALSE); 622 /* NOTREACHED */ 623 } 624 625 xdr_free(xdr_nfsauth_res, (char *)&res); 626 kmem_free(abuf, absz); 627 628 return (TRUE); 629 } 630 631 static void 632 nfsauth_refresh_thread(nfsauth_globals_t *nag) 633 { 634 refreshq_exi_node_t *ren; 635 refreshq_auth_node_t *ran; 636 637 struct exportinfo *exi; 638 639 int access; 640 bool_t retrieval; 641 642 callb_cpr_t cprinfo; 643 644 CALLB_CPR_INIT(&cprinfo, &nag->refreshq_lock, callb_generic_cpr, 645 "nfsauth_refresh"); 646 647 for (;;) { 648 mutex_enter(&nag->refreshq_lock); 649 if (nag->refreshq_thread_state != REFRESHQ_THREAD_RUNNING) { 650 /* Keep the hold on the lock! */ 651 break; 652 } 653 654 ren = list_remove_head(&nag->refreshq_queue); 655 if (ren == NULL) { 656 CALLB_CPR_SAFE_BEGIN(&cprinfo); 657 cv_wait(&nag->refreshq_cv, &nag->refreshq_lock); 658 CALLB_CPR_SAFE_END(&cprinfo, &nag->refreshq_lock); 659 mutex_exit(&nag->refreshq_lock); 660 continue; 661 } 662 mutex_exit(&nag->refreshq_lock); 663 664 exi = ren->ren_exi; 665 ASSERT(exi != NULL); 666 667 /* 668 * Since the ren was removed from the refreshq_queue above, 669 * this is the only thread aware about the ren existence, so we 670 * have the exclusive ownership of it and we do not need to 671 * protect it by any lock. 672 */ 673 while ((ran = list_remove_head(&ren->ren_authlist))) { 674 uid_t uid; 675 gid_t gid; 676 uint_t ngids; 677 gid_t *gids; 678 struct auth_cache *p = ran->ran_auth; 679 char *netid = ran->ran_netid; 680 681 ASSERT(p != NULL); 682 ASSERT(netid != NULL); 683 684 kmem_free(ran, sizeof (refreshq_auth_node_t)); 685 686 mutex_enter(&p->auth_lock); 687 688 /* 689 * Once the entry goes INVALID, it can not change 690 * state. 691 * 692 * No need to refresh entries also in a case we are 693 * just shutting down. 694 * 695 * In general, there is no need to hold the 696 * refreshq_lock to test the refreshq_thread_state. We 697 * do hold it at other places because there is some 698 * related thread synchronization (or some other tasks) 699 * close to the refreshq_thread_state check. 700 * 701 * The check for the refreshq_thread_state value here 702 * is purely advisory to allow the faster 703 * nfsauth_refresh_thread() shutdown. In a case we 704 * will miss such advisory, nothing catastrophic 705 * happens: we will just spin longer here before the 706 * shutdown. 707 */ 708 if (p->auth_state == NFS_AUTH_INVALID || 709 nag->refreshq_thread_state != 710 REFRESHQ_THREAD_RUNNING) { 711 mutex_exit(&p->auth_lock); 712 713 if (p->auth_state == NFS_AUTH_INVALID) 714 nfsauth_free_node(p); 715 716 strfree(netid); 717 718 continue; 719 } 720 721 /* 722 * Make sure the state is valid. Note that once we 723 * change the state to NFS_AUTH_REFRESHING, no other 724 * thread will be able to work on this entry. 725 */ 726 ASSERT(p->auth_state == NFS_AUTH_STALE); 727 728 p->auth_state = NFS_AUTH_REFRESHING; 729 mutex_exit(&p->auth_lock); 730 731 DTRACE_PROBE2(nfsauth__debug__cache__refresh, 732 struct exportinfo *, exi, 733 struct auth_cache *, p); 734 735 /* 736 * The first caching of the access rights 737 * is done with the netid pulled out of the 738 * request from the client. All subsequent 739 * users of the cache may or may not have 740 * the same netid. It doesn't matter. So 741 * when we refresh, we simply use the netid 742 * of the request which triggered the 743 * refresh attempt. 744 */ 745 retrieval = nfsauth_retrieve(nag, exi, netid, 746 p->auth_flavor, &p->auth_clnt->authc_addr, &access, 747 p->auth_clnt_cred, &uid, &gid, &ngids, &gids); 748 749 /* 750 * This can only be set in one other place 751 * and the state has to be NFS_AUTH_FRESH. 752 */ 753 strfree(netid); 754 755 mutex_enter(&p->auth_lock); 756 if (p->auth_state == NFS_AUTH_INVALID) { 757 mutex_exit(&p->auth_lock); 758 nfsauth_free_node(p); 759 if (retrieval == TRUE) 760 kmem_free(gids, ngids * sizeof (gid_t)); 761 } else { 762 /* 763 * If we got an error, do not reset the 764 * time. This will cause the next access 765 * check for the client to reschedule this 766 * node. 767 */ 768 if (retrieval == TRUE) { 769 p->auth_access = access; 770 771 p->auth_srv_uid = uid; 772 p->auth_srv_gid = gid; 773 kmem_free(p->auth_srv_gids, 774 p->auth_srv_ngids * sizeof (gid_t)); 775 p->auth_srv_ngids = ngids; 776 p->auth_srv_gids = gids; 777 778 p->auth_freshness = gethrestime_sec(); 779 } 780 p->auth_state = NFS_AUTH_FRESH; 781 782 cv_broadcast(&p->auth_cv); 783 mutex_exit(&p->auth_lock); 784 } 785 } 786 787 list_destroy(&ren->ren_authlist); 788 exi_rele(ren->ren_exi); 789 kmem_free(ren, sizeof (refreshq_exi_node_t)); 790 } 791 792 nag->refreshq_thread_state = REFRESHQ_THREAD_HALTED; 793 cv_broadcast(&nag->refreshq_cv); 794 CALLB_CPR_EXIT(&cprinfo); 795 DTRACE_PROBE(nfsauth__nfsauth__refresh__thread__exit); 796 zthread_exit(); 797 } 798 799 int 800 nfsauth_cache_clnt_compar(const void *v1, const void *v2) 801 { 802 int c; 803 804 const struct auth_cache_clnt *a1 = (const struct auth_cache_clnt *)v1; 805 const struct auth_cache_clnt *a2 = (const struct auth_cache_clnt *)v2; 806 807 if (a1->authc_addr.len < a2->authc_addr.len) 808 return (-1); 809 if (a1->authc_addr.len > a2->authc_addr.len) 810 return (1); 811 812 c = memcmp(a1->authc_addr.buf, a2->authc_addr.buf, a1->authc_addr.len); 813 if (c < 0) 814 return (-1); 815 if (c > 0) 816 return (1); 817 818 return (0); 819 } 820 821 static int 822 nfsauth_cache_compar(const void *v1, const void *v2) 823 { 824 int c; 825 826 const struct auth_cache *a1 = (const struct auth_cache *)v1; 827 const struct auth_cache *a2 = (const struct auth_cache *)v2; 828 829 if (a1->auth_flavor < a2->auth_flavor) 830 return (-1); 831 if (a1->auth_flavor > a2->auth_flavor) 832 return (1); 833 834 if (crgetuid(a1->auth_clnt_cred) < crgetuid(a2->auth_clnt_cred)) 835 return (-1); 836 if (crgetuid(a1->auth_clnt_cred) > crgetuid(a2->auth_clnt_cred)) 837 return (1); 838 839 if (crgetgid(a1->auth_clnt_cred) < crgetgid(a2->auth_clnt_cred)) 840 return (-1); 841 if (crgetgid(a1->auth_clnt_cred) > crgetgid(a2->auth_clnt_cred)) 842 return (1); 843 844 if (crgetngroups(a1->auth_clnt_cred) < crgetngroups(a2->auth_clnt_cred)) 845 return (-1); 846 if (crgetngroups(a1->auth_clnt_cred) > crgetngroups(a2->auth_clnt_cred)) 847 return (1); 848 849 c = memcmp(crgetgroups(a1->auth_clnt_cred), 850 crgetgroups(a2->auth_clnt_cred), crgetngroups(a1->auth_clnt_cred)); 851 if (c < 0) 852 return (-1); 853 if (c > 0) 854 return (1); 855 856 return (0); 857 } 858 859 /* 860 * Get the access information from the cache or callup to the mountd 861 * to get and cache the access information in the kernel. 862 */ 863 static int 864 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor, 865 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids) 866 { 867 nfsauth_globals_t *nag; 868 struct netbuf *taddrmask; 869 struct netbuf addr; /* temporary copy of client's address */ 870 const struct netbuf *claddr; 871 avl_tree_t *tree; 872 struct auth_cache ac; /* used as a template for avl_find() */ 873 struct auth_cache_clnt *c; 874 struct auth_cache_clnt acc; /* used as a template for avl_find() */ 875 struct auth_cache *p = NULL; 876 int access; 877 878 uid_t tmpuid; 879 gid_t tmpgid; 880 uint_t tmpngids; 881 gid_t *tmpgids; 882 883 avl_index_t where; /* used for avl_find()/avl_insert() */ 884 885 ASSERT(cr != NULL); 886 887 ASSERT3P(curzone->zone_id, ==, exi->exi_zoneid); 888 nag = nfsauth_get_zg(); 889 890 /* 891 * Now check whether this client already 892 * has an entry for this flavor in the cache 893 * for this export. 894 * Get the caller's address, mask off the 895 * parts of the address that do not identify 896 * the host (port number, etc), and then hash 897 * it to find the chain of cache entries. 898 */ 899 900 claddr = svc_getrpccaller(req->rq_xprt); 901 addr = *claddr; 902 if (claddr->len != 0) { 903 addr.buf = kmem_alloc(addr.maxlen, KM_SLEEP); 904 bcopy(claddr->buf, addr.buf, claddr->len); 905 } else { 906 addr.buf = NULL; 907 } 908 909 SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask); 910 ASSERT(taddrmask != NULL); 911 addrmask(&addr, taddrmask); 912 913 acc.authc_addr = addr; 914 915 tree = exi->exi_cache[hash(&addr)]; 916 917 rw_enter(&exi->exi_cache_lock, RW_READER); 918 c = (struct auth_cache_clnt *)avl_find(tree, &acc, NULL); 919 920 if (c == NULL) { 921 struct auth_cache_clnt *nc; 922 923 rw_exit(&exi->exi_cache_lock); 924 925 nc = kmem_alloc(sizeof (*nc), KM_NOSLEEP_LAZY); 926 if (nc == NULL) 927 goto retrieve; 928 929 /* 930 * Initialize the new auth_cache_clnt 931 */ 932 nc->authc_addr = addr; 933 nc->authc_addr.buf = kmem_alloc(addr.maxlen, KM_NOSLEEP_LAZY); 934 if (addr.maxlen != 0 && nc->authc_addr.buf == NULL) { 935 kmem_free(nc, sizeof (*nc)); 936 goto retrieve; 937 } 938 bcopy(addr.buf, nc->authc_addr.buf, addr.len); 939 rw_init(&nc->authc_lock, NULL, RW_DEFAULT, NULL); 940 avl_create(&nc->authc_tree, nfsauth_cache_compar, 941 sizeof (struct auth_cache), 942 offsetof(struct auth_cache, auth_link)); 943 944 rw_enter(&exi->exi_cache_lock, RW_WRITER); 945 c = (struct auth_cache_clnt *)avl_find(tree, &acc, &where); 946 if (c == NULL) { 947 avl_insert(tree, nc, where); 948 rw_downgrade(&exi->exi_cache_lock); 949 c = nc; 950 } else { 951 rw_downgrade(&exi->exi_cache_lock); 952 953 avl_destroy(&nc->authc_tree); 954 rw_destroy(&nc->authc_lock); 955 kmem_free(nc->authc_addr.buf, nc->authc_addr.maxlen); 956 kmem_free(nc, sizeof (*nc)); 957 } 958 } 959 960 ASSERT(c != NULL); 961 962 rw_enter(&c->authc_lock, RW_READER); 963 964 ac.auth_flavor = flavor; 965 ac.auth_clnt_cred = cr; 966 967 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, NULL); 968 969 if (p == NULL) { 970 struct auth_cache *np; 971 972 rw_exit(&c->authc_lock); 973 974 np = kmem_cache_alloc(exi_cache_handle, KM_NOSLEEP_LAZY); 975 if (np == NULL) { 976 rw_exit(&exi->exi_cache_lock); 977 goto retrieve; 978 } 979 980 /* 981 * Initialize the new auth_cache 982 */ 983 np->auth_clnt = c; 984 np->auth_flavor = flavor; 985 np->auth_clnt_cred = crdup(cr); 986 np->auth_srv_ngids = 0; 987 np->auth_srv_gids = NULL; 988 np->auth_time = np->auth_freshness = gethrestime_sec(); 989 np->auth_state = NFS_AUTH_NEW; 990 mutex_init(&np->auth_lock, NULL, MUTEX_DEFAULT, NULL); 991 cv_init(&np->auth_cv, NULL, CV_DEFAULT, NULL); 992 993 rw_enter(&c->authc_lock, RW_WRITER); 994 rw_exit(&exi->exi_cache_lock); 995 996 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, &where); 997 if (p == NULL) { 998 avl_insert(&c->authc_tree, np, where); 999 rw_downgrade(&c->authc_lock); 1000 p = np; 1001 } else { 1002 rw_downgrade(&c->authc_lock); 1003 1004 cv_destroy(&np->auth_cv); 1005 mutex_destroy(&np->auth_lock); 1006 crfree(np->auth_clnt_cred); 1007 kmem_cache_free(exi_cache_handle, np); 1008 } 1009 } else { 1010 rw_exit(&exi->exi_cache_lock); 1011 } 1012 1013 mutex_enter(&p->auth_lock); 1014 rw_exit(&c->authc_lock); 1015 1016 /* 1017 * If the entry is in the WAITING state then some other thread is just 1018 * retrieving the required info. The entry was either NEW, or the list 1019 * of client's supplemental groups is going to be changed (either by 1020 * this thread, or by some other thread). We need to wait until the 1021 * nfsauth_retrieve() is done. 1022 */ 1023 while (p->auth_state == NFS_AUTH_WAITING) 1024 cv_wait(&p->auth_cv, &p->auth_lock); 1025 1026 /* 1027 * Here the entry cannot be in WAITING or INVALID state. 1028 */ 1029 ASSERT(p->auth_state != NFS_AUTH_WAITING); 1030 ASSERT(p->auth_state != NFS_AUTH_INVALID); 1031 1032 /* 1033 * If the cache entry is not valid yet, we need to retrieve the 1034 * info ourselves. 1035 */ 1036 if (p->auth_state == NFS_AUTH_NEW) { 1037 bool_t res; 1038 /* 1039 * NFS_AUTH_NEW is the default output auth_state value in a 1040 * case we failed somewhere below. 1041 */ 1042 auth_state_t state = NFS_AUTH_NEW; 1043 1044 p->auth_state = NFS_AUTH_WAITING; 1045 mutex_exit(&p->auth_lock); 1046 kmem_free(addr.buf, addr.maxlen); 1047 addr = p->auth_clnt->authc_addr; 1048 1049 atomic_inc_uint(&nfsauth_cache_miss); 1050 1051 res = nfsauth_retrieve(nag, exi, svc_getnetid(req->rq_xprt), 1052 flavor, &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids, 1053 &tmpgids); 1054 1055 p->auth_access = access; 1056 p->auth_time = p->auth_freshness = gethrestime_sec(); 1057 1058 if (res == TRUE) { 1059 if (uid != NULL) 1060 *uid = tmpuid; 1061 if (gid != NULL) 1062 *gid = tmpgid; 1063 if (ngids != NULL && gids != NULL) { 1064 *ngids = tmpngids; 1065 *gids = tmpgids; 1066 1067 /* 1068 * We need a copy of gids for the 1069 * auth_cache entry 1070 */ 1071 tmpgids = kmem_alloc(tmpngids * sizeof (gid_t), 1072 KM_NOSLEEP_LAZY); 1073 if (tmpgids != NULL) 1074 bcopy(*gids, tmpgids, 1075 tmpngids * sizeof (gid_t)); 1076 } 1077 1078 if (tmpgids != NULL || tmpngids == 0) { 1079 p->auth_srv_uid = tmpuid; 1080 p->auth_srv_gid = tmpgid; 1081 p->auth_srv_ngids = tmpngids; 1082 p->auth_srv_gids = tmpgids; 1083 1084 state = NFS_AUTH_FRESH; 1085 } 1086 } 1087 1088 /* 1089 * Set the auth_state and notify waiters. 1090 */ 1091 mutex_enter(&p->auth_lock); 1092 p->auth_state = state; 1093 cv_broadcast(&p->auth_cv); 1094 mutex_exit(&p->auth_lock); 1095 } else { 1096 uint_t nach; 1097 time_t refresh; 1098 1099 refresh = gethrestime_sec() - p->auth_freshness; 1100 1101 p->auth_time = gethrestime_sec(); 1102 1103 if (uid != NULL) 1104 *uid = p->auth_srv_uid; 1105 if (gid != NULL) 1106 *gid = p->auth_srv_gid; 1107 if (ngids != NULL && gids != NULL) { 1108 if ((*ngids = p->auth_srv_ngids) != 0) { 1109 size_t sz = *ngids * sizeof (gid_t); 1110 *gids = kmem_alloc(sz, KM_SLEEP); 1111 bcopy(p->auth_srv_gids, *gids, sz); 1112 } else { 1113 *gids = NULL; 1114 } 1115 } 1116 1117 access = p->auth_access; 1118 1119 if ((refresh > NFSAUTH_CACHE_REFRESH) && 1120 p->auth_state == NFS_AUTH_FRESH) { 1121 refreshq_auth_node_t *ran; 1122 uint_t nacr; 1123 1124 p->auth_state = NFS_AUTH_STALE; 1125 mutex_exit(&p->auth_lock); 1126 1127 nacr = atomic_inc_uint_nv(&nfsauth_cache_refresh); 1128 DTRACE_PROBE3(nfsauth__debug__cache__stale, 1129 struct exportinfo *, exi, 1130 struct auth_cache *, p, 1131 uint_t, nacr); 1132 1133 ran = kmem_alloc(sizeof (refreshq_auth_node_t), 1134 KM_SLEEP); 1135 ran->ran_auth = p; 1136 ran->ran_netid = strdup(svc_getnetid(req->rq_xprt)); 1137 1138 mutex_enter(&nag->refreshq_lock); 1139 1140 if (nag->refreshq_thread_state == 1141 REFRESHQ_THREAD_NEED_CREATE) { 1142 /* Launch nfsauth refresh thread */ 1143 nag->refreshq_thread_state = 1144 REFRESHQ_THREAD_RUNNING; 1145 (void) zthread_create(NULL, 0, 1146 nfsauth_refresh_thread, nag, 0, 1147 minclsyspri); 1148 } 1149 1150 /* 1151 * We should not add a work queue item if the thread 1152 * is not accepting them. 1153 */ 1154 if (nag->refreshq_thread_state == 1155 REFRESHQ_THREAD_RUNNING) { 1156 refreshq_exi_node_t *ren; 1157 1158 /* 1159 * Is there an existing exi_list? 1160 */ 1161 for (ren = list_head(&nag->refreshq_queue); 1162 ren != NULL; 1163 ren = list_next(&nag->refreshq_queue, 1164 ren)) { 1165 if (ren->ren_exi == exi) { 1166 list_insert_tail( 1167 &ren->ren_authlist, ran); 1168 break; 1169 } 1170 } 1171 1172 if (ren == NULL) { 1173 ren = kmem_alloc( 1174 sizeof (refreshq_exi_node_t), 1175 KM_SLEEP); 1176 1177 exi_hold(exi); 1178 ren->ren_exi = exi; 1179 1180 list_create(&ren->ren_authlist, 1181 sizeof (refreshq_auth_node_t), 1182 offsetof(refreshq_auth_node_t, 1183 ran_node)); 1184 1185 list_insert_tail(&ren->ren_authlist, 1186 ran); 1187 list_insert_tail(&nag->refreshq_queue, 1188 ren); 1189 } 1190 1191 cv_broadcast(&nag->refreshq_cv); 1192 } else { 1193 strfree(ran->ran_netid); 1194 kmem_free(ran, sizeof (refreshq_auth_node_t)); 1195 } 1196 1197 mutex_exit(&nag->refreshq_lock); 1198 } else { 1199 mutex_exit(&p->auth_lock); 1200 } 1201 1202 nach = atomic_inc_uint_nv(&nfsauth_cache_hit); 1203 DTRACE_PROBE2(nfsauth__debug__cache__hit, 1204 uint_t, nach, 1205 time_t, refresh); 1206 1207 kmem_free(addr.buf, addr.maxlen); 1208 } 1209 1210 return (access); 1211 1212 retrieve: 1213 1214 /* 1215 * Retrieve the required data without caching. 1216 */ 1217 1218 ASSERT(p == NULL); 1219 1220 atomic_inc_uint(&nfsauth_cache_miss); 1221 1222 if (nfsauth_retrieve(nag, exi, svc_getnetid(req->rq_xprt), flavor, 1223 &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids, &tmpgids)) { 1224 if (uid != NULL) 1225 *uid = tmpuid; 1226 if (gid != NULL) 1227 *gid = tmpgid; 1228 if (ngids != NULL && gids != NULL) { 1229 *ngids = tmpngids; 1230 *gids = tmpgids; 1231 } else { 1232 kmem_free(tmpgids, tmpngids * sizeof (gid_t)); 1233 } 1234 } 1235 1236 kmem_free(addr.buf, addr.maxlen); 1237 1238 return (access); 1239 } 1240 1241 /* 1242 * Check if the requesting client has access to the filesystem with 1243 * a given nfs flavor number which is an explicitly shared flavor. 1244 */ 1245 int 1246 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req, 1247 int flavor, int perm, cred_t *cr) 1248 { 1249 int access; 1250 1251 if (! (perm & M_4SEC_EXPORTED)) { 1252 return (NFSAUTH_DENIED); 1253 } 1254 1255 /* 1256 * Optimize if there are no lists 1257 */ 1258 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) { 1259 perm &= ~M_4SEC_EXPORTED; 1260 if (perm == M_RO) 1261 return (NFSAUTH_RO); 1262 if (perm == M_RW) 1263 return (NFSAUTH_RW); 1264 } 1265 1266 access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL, NULL, 1267 NULL); 1268 1269 return (access); 1270 } 1271 1272 int 1273 nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr, 1274 uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids) 1275 { 1276 int access, mapaccess; 1277 struct secinfo *sp; 1278 int i, flavor, perm; 1279 int authnone_entry = -1; 1280 1281 /* 1282 * By default root is mapped to anonymous user. 1283 * This might get overriden later in nfsauth_cache_get(). 1284 */ 1285 if (crgetuid(cr) == 0) { 1286 if (uid != NULL) 1287 *uid = exi->exi_export.ex_anon; 1288 if (gid != NULL) 1289 *gid = exi->exi_export.ex_anon; 1290 } else { 1291 if (uid != NULL) 1292 *uid = crgetuid(cr); 1293 if (gid != NULL) 1294 *gid = crgetgid(cr); 1295 } 1296 1297 if (ngids != NULL) 1298 *ngids = 0; 1299 if (gids != NULL) 1300 *gids = NULL; 1301 1302 /* 1303 * Get the nfs flavor number from xprt. 1304 */ 1305 flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie; 1306 1307 /* 1308 * First check the access restrictions on the filesystem. If 1309 * there are no lists associated with this flavor then there's no 1310 * need to make an expensive call to the nfsauth service or to 1311 * cache anything. 1312 */ 1313 1314 sp = exi->exi_export.ex_secinfo; 1315 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 1316 if (flavor != sp[i].s_secinfo.sc_nfsnum) { 1317 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) 1318 authnone_entry = i; 1319 continue; 1320 } 1321 break; 1322 } 1323 1324 mapaccess = 0; 1325 1326 if (i >= exi->exi_export.ex_seccnt) { 1327 /* 1328 * Flavor not found, but use AUTH_NONE if it exists 1329 */ 1330 if (authnone_entry == -1) 1331 return (NFSAUTH_DENIED); 1332 flavor = AUTH_NONE; 1333 mapaccess = NFSAUTH_MAPNONE; 1334 i = authnone_entry; 1335 } 1336 1337 /* 1338 * If the flavor is in the ex_secinfo list, but not an explicitly 1339 * shared flavor by the user, it is a result of the nfsv4 server 1340 * namespace setup. We will grant an RO permission similar for 1341 * a pseudo node except that this node is a shared one. 1342 * 1343 * e.g. flavor in (flavor) indicates that it is not explictly 1344 * shared by the user: 1345 * 1346 * / (sys, krb5) 1347 * | 1348 * export #share -o sec=sys (krb5) 1349 * | 1350 * secure #share -o sec=krb5 1351 * 1352 * In this case, when a krb5 request coming in to access 1353 * /export, RO permission is granted. 1354 */ 1355 if (!(sp[i].s_flags & M_4SEC_EXPORTED)) 1356 return (mapaccess | NFSAUTH_RO); 1357 1358 /* 1359 * Optimize if there are no lists. 1360 * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups. 1361 */ 1362 perm = sp[i].s_flags; 1363 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0 && (ngroups_max <= NGRPS || 1364 flavor != AUTH_SYS || crgetngroups(cr) < NGRPS)) { 1365 perm &= ~M_4SEC_EXPORTED; 1366 if (perm == M_RO) 1367 return (mapaccess | NFSAUTH_RO); 1368 if (perm == M_RW) 1369 return (mapaccess | NFSAUTH_RW); 1370 } 1371 1372 access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid, ngids, gids); 1373 1374 /* 1375 * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about 1376 * the supplemental groups. 1377 */ 1378 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) { 1379 if (ngids != NULL && gids != NULL) { 1380 kmem_free(*gids, *ngids * sizeof (gid_t)); 1381 *ngids = 0; 1382 *gids = NULL; 1383 } 1384 } 1385 1386 /* 1387 * Client's security flavor doesn't match with "ro" or 1388 * "rw" list. Try again using AUTH_NONE if present. 1389 */ 1390 if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) { 1391 /* 1392 * Have we already encountered AUTH_NONE ? 1393 */ 1394 if (authnone_entry != -1) { 1395 mapaccess = NFSAUTH_MAPNONE; 1396 access = nfsauth_cache_get(exi, req, AUTH_NONE, cr, 1397 NULL, NULL, NULL, NULL); 1398 } else { 1399 /* 1400 * Check for AUTH_NONE presence. 1401 */ 1402 for (; i < exi->exi_export.ex_seccnt; i++) { 1403 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) { 1404 mapaccess = NFSAUTH_MAPNONE; 1405 access = nfsauth_cache_get(exi, req, 1406 AUTH_NONE, cr, NULL, NULL, NULL, 1407 NULL); 1408 break; 1409 } 1410 } 1411 } 1412 } 1413 1414 if (access & NFSAUTH_DENIED) 1415 access = NFSAUTH_DENIED; 1416 1417 return (access | mapaccess); 1418 } 1419 1420 static void 1421 nfsauth_free_clnt_node(struct auth_cache_clnt *p) 1422 { 1423 void *cookie = NULL; 1424 struct auth_cache *node; 1425 1426 while ((node = avl_destroy_nodes(&p->authc_tree, &cookie)) != NULL) 1427 nfsauth_free_node(node); 1428 avl_destroy(&p->authc_tree); 1429 1430 kmem_free(p->authc_addr.buf, p->authc_addr.maxlen); 1431 rw_destroy(&p->authc_lock); 1432 1433 kmem_free(p, sizeof (*p)); 1434 } 1435 1436 static void 1437 nfsauth_free_node(struct auth_cache *p) 1438 { 1439 crfree(p->auth_clnt_cred); 1440 kmem_free(p->auth_srv_gids, p->auth_srv_ngids * sizeof (gid_t)); 1441 mutex_destroy(&p->auth_lock); 1442 cv_destroy(&p->auth_cv); 1443 kmem_cache_free(exi_cache_handle, p); 1444 } 1445 1446 /* 1447 * Free the nfsauth cache for a given export 1448 */ 1449 void 1450 nfsauth_cache_free(struct exportinfo *exi) 1451 { 1452 int i; 1453 1454 /* 1455 * The only way we got here was with an exi_rele, which means that no 1456 * auth cache entry is being refreshed. 1457 */ 1458 1459 for (i = 0; i < AUTH_TABLESIZE; i++) { 1460 avl_tree_t *tree = exi->exi_cache[i]; 1461 void *cookie = NULL; 1462 struct auth_cache_clnt *node; 1463 1464 while ((node = avl_destroy_nodes(tree, &cookie)) != NULL) 1465 nfsauth_free_clnt_node(node); 1466 } 1467 } 1468 1469 /* 1470 * Called by the kernel memory allocator when memory is low. 1471 * Free unused cache entries. If that's not enough, the VM system 1472 * will call again for some more. 1473 * 1474 * This needs to operate on all zones, so we take a reader lock 1475 * on the list of zones and walk the list. This is OK here 1476 * becuase exi_cache_trim doesn't block or cause new objects 1477 * to be allocated (basically just frees lots of stuff). 1478 * Use care if nfssrv_globals_rwl is taken as reader in any 1479 * other cases because it will block nfs_server_zone_init 1480 * and nfs_server_zone_fini, which enter as writer. 1481 */ 1482 /*ARGSUSED*/ 1483 void 1484 exi_cache_reclaim(void *cdrarg) 1485 { 1486 nfs_globals_t *ng; 1487 1488 rw_enter(&nfssrv_globals_rwl, RW_READER); 1489 1490 ng = list_head(&nfssrv_globals_list); 1491 while (ng != NULL) { 1492 exi_cache_reclaim_zone(ng); 1493 ng = list_next(&nfssrv_globals_list, ng); 1494 } 1495 1496 rw_exit(&nfssrv_globals_rwl); 1497 } 1498 1499 static void 1500 exi_cache_reclaim_zone(nfs_globals_t *ng) 1501 { 1502 int i; 1503 struct exportinfo *exi; 1504 nfs_export_t *ne = ng->nfs_export; 1505 1506 rw_enter(&ne->exported_lock, RW_READER); 1507 1508 for (i = 0; i < EXPTABLESIZE; i++) { 1509 for (exi = ne->exptable[i]; exi; exi = exi->fid_hash.next) 1510 exi_cache_trim(exi); 1511 } 1512 1513 rw_exit(&ne->exported_lock); 1514 1515 atomic_inc_uint(&nfsauth_cache_reclaim); 1516 } 1517 1518 static void 1519 exi_cache_trim(struct exportinfo *exi) 1520 { 1521 struct auth_cache_clnt *c; 1522 struct auth_cache_clnt *nextc; 1523 struct auth_cache *p; 1524 struct auth_cache *next; 1525 int i; 1526 time_t stale_time; 1527 avl_tree_t *tree; 1528 1529 for (i = 0; i < AUTH_TABLESIZE; i++) { 1530 tree = exi->exi_cache[i]; 1531 stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM; 1532 rw_enter(&exi->exi_cache_lock, RW_READER); 1533 1534 /* 1535 * Free entries that have not been 1536 * used for NFSAUTH_CACHE_TRIM seconds. 1537 */ 1538 for (c = avl_first(tree); c != NULL; c = AVL_NEXT(tree, c)) { 1539 /* 1540 * We are being called by the kmem subsystem to reclaim 1541 * memory so don't block if we can't get the lock. 1542 */ 1543 if (rw_tryenter(&c->authc_lock, RW_WRITER) == 0) { 1544 exi_cache_auth_reclaim_failed++; 1545 rw_exit(&exi->exi_cache_lock); 1546 return; 1547 } 1548 1549 for (p = avl_first(&c->authc_tree); p != NULL; 1550 p = next) { 1551 next = AVL_NEXT(&c->authc_tree, p); 1552 1553 ASSERT(p->auth_state != NFS_AUTH_INVALID); 1554 1555 mutex_enter(&p->auth_lock); 1556 1557 /* 1558 * We won't trim recently used and/or WAITING 1559 * entries. 1560 */ 1561 if (p->auth_time > stale_time || 1562 p->auth_state == NFS_AUTH_WAITING) { 1563 mutex_exit(&p->auth_lock); 1564 continue; 1565 } 1566 1567 DTRACE_PROBE1(nfsauth__debug__trim__state, 1568 auth_state_t, p->auth_state); 1569 1570 /* 1571 * STALE and REFRESHING entries needs to be 1572 * marked INVALID only because they are 1573 * referenced by some other structures or 1574 * threads. They will be freed later. 1575 */ 1576 if (p->auth_state == NFS_AUTH_STALE || 1577 p->auth_state == NFS_AUTH_REFRESHING) { 1578 p->auth_state = NFS_AUTH_INVALID; 1579 mutex_exit(&p->auth_lock); 1580 1581 avl_remove(&c->authc_tree, p); 1582 } else { 1583 mutex_exit(&p->auth_lock); 1584 1585 avl_remove(&c->authc_tree, p); 1586 nfsauth_free_node(p); 1587 } 1588 } 1589 rw_exit(&c->authc_lock); 1590 } 1591 1592 if (rw_tryupgrade(&exi->exi_cache_lock) == 0) { 1593 rw_exit(&exi->exi_cache_lock); 1594 exi_cache_clnt_reclaim_failed++; 1595 continue; 1596 } 1597 1598 for (c = avl_first(tree); c != NULL; c = nextc) { 1599 nextc = AVL_NEXT(tree, c); 1600 1601 if (avl_is_empty(&c->authc_tree) == B_FALSE) 1602 continue; 1603 1604 avl_remove(tree, c); 1605 1606 nfsauth_free_clnt_node(c); 1607 } 1608 1609 rw_exit(&exi->exi_cache_lock); 1610 } 1611 } 1612