xref: /illumos-gate/usr/src/uts/common/fs/nfs/nfs_auth.c (revision c1de7575521deda5ee777b8054a9c5b12f15b1ee)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
25  */
26 
27 #include <sys/param.h>
28 #include <sys/errno.h>
29 #include <sys/vfs.h>
30 #include <sys/vnode.h>
31 #include <sys/cred.h>
32 #include <sys/cmn_err.h>
33 #include <sys/systm.h>
34 #include <sys/kmem.h>
35 #include <sys/pathname.h>
36 #include <sys/utsname.h>
37 #include <sys/debug.h>
38 #include <sys/door.h>
39 #include <sys/sdt.h>
40 #include <sys/thread.h>
41 #include <sys/avl.h>
42 
43 #include <rpc/types.h>
44 #include <rpc/auth.h>
45 #include <rpc/clnt.h>
46 
47 #include <nfs/nfs.h>
48 #include <nfs/export.h>
49 #include <nfs/nfs_clnt.h>
50 #include <nfs/auth.h>
51 
52 static struct kmem_cache *exi_cache_handle;
53 static void exi_cache_reclaim(void *);
54 static void exi_cache_trim(struct exportinfo *exi);
55 
56 extern pri_t minclsyspri;
57 
58 volatile uint_t nfsauth_cache_hit;
59 volatile uint_t nfsauth_cache_miss;
60 volatile uint_t nfsauth_cache_refresh;
61 volatile uint_t nfsauth_cache_reclaim;
62 
63 /*
64  * The lifetime of an auth cache entry:
65  * ------------------------------------
66  *
67  * An auth cache entry is created with both the auth_time
68  * and auth_freshness times set to the current time.
69  *
70  * Upon every client access which results in a hit, the
71  * auth_time will be updated.
72  *
73  * If a client access determines that the auth_freshness
74  * indicates that the entry is STALE, then it will be
75  * refreshed. Note that this will explicitly reset
76  * auth_time.
77  *
78  * When the REFRESH successfully occurs, then the
79  * auth_freshness is updated.
80  *
81  * There are two ways for an entry to leave the cache:
82  *
83  * 1) Purged by an action on the export (remove or changed)
84  * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM)
85  *
86  * For 2) we check the timeout value against auth_time.
87  */
88 
89 /*
90  * Number of seconds until we mark for refresh an auth cache entry.
91  */
92 #define	NFSAUTH_CACHE_REFRESH 600
93 
94 /*
95  * Number of idle seconds until we yield to backpressure
96  * to trim a cache entry.
97  */
98 #define	NFSAUTH_CACHE_TRIM 3600
99 
100 /*
101  * While we could encapuslate the exi_list inside the
102  * exi structure, we can't do that for the auth_list.
103  * So, to keep things looking clean, we keep them both
104  * in these external lists.
105  */
106 typedef struct refreshq_exi_node {
107 	struct exportinfo	*ren_exi;
108 	list_t			ren_authlist;
109 	list_node_t		ren_node;
110 } refreshq_exi_node_t;
111 
112 typedef struct refreshq_auth_node {
113 	struct auth_cache	*ran_auth;
114 	char			*ran_netid;
115 	list_node_t		ran_node;
116 } refreshq_auth_node_t;
117 
118 /*
119  * Used to manipulate things on the refreshq_queue.
120  * Note that the refresh thread will effectively
121  * pop a node off of the queue, at which point it
122  * will no longer need to hold the mutex.
123  */
124 static kmutex_t refreshq_lock;
125 static list_t refreshq_queue;
126 static kcondvar_t refreshq_cv;
127 
128 /*
129  * If there is ever a problem with loading the
130  * module, then nfsauth_fini() needs to be called
131  * to remove state. In that event, since the
132  * refreshq thread has been started, they need to
133  * work together to get rid of state.
134  */
135 typedef enum nfsauth_refreshq_thread_state {
136 	REFRESHQ_THREAD_RUNNING,
137 	REFRESHQ_THREAD_FINI_REQ,
138 	REFRESHQ_THREAD_HALTED
139 } nfsauth_refreshq_thread_state_t;
140 
141 nfsauth_refreshq_thread_state_t
142 refreshq_thread_state = REFRESHQ_THREAD_HALTED;
143 
144 static void nfsauth_free_node(struct auth_cache *);
145 static void nfsauth_refresh_thread(void);
146 
147 static int nfsauth_cache_compar(const void *, const void *);
148 
149 /*
150  * mountd is a server-side only daemon. This will need to be
151  * revisited if the NFS server is ever made zones-aware.
152  */
153 kmutex_t	mountd_lock;
154 door_handle_t   mountd_dh;
155 
156 void
157 mountd_args(uint_t did)
158 {
159 	mutex_enter(&mountd_lock);
160 	if (mountd_dh != NULL)
161 		door_ki_rele(mountd_dh);
162 	mountd_dh = door_ki_lookup(did);
163 	mutex_exit(&mountd_lock);
164 }
165 
166 void
167 nfsauth_init(void)
168 {
169 	/*
170 	 * mountd can be restarted by smf(5). We need to make sure
171 	 * the updated door handle will safely make it to mountd_dh
172 	 */
173 	mutex_init(&mountd_lock, NULL, MUTEX_DEFAULT, NULL);
174 
175 	mutex_init(&refreshq_lock, NULL, MUTEX_DEFAULT, NULL);
176 	list_create(&refreshq_queue, sizeof (refreshq_exi_node_t),
177 	    offsetof(refreshq_exi_node_t, ren_node));
178 
179 	cv_init(&refreshq_cv, NULL, CV_DEFAULT, NULL);
180 
181 	/*
182 	 * Allocate nfsauth cache handle
183 	 */
184 	exi_cache_handle = kmem_cache_create("exi_cache_handle",
185 	    sizeof (struct auth_cache), 0, NULL, NULL,
186 	    exi_cache_reclaim, NULL, NULL, 0);
187 
188 	refreshq_thread_state = REFRESHQ_THREAD_RUNNING;
189 	(void) zthread_create(NULL, 0, nfsauth_refresh_thread,
190 	    NULL, 0, minclsyspri);
191 }
192 
193 /*
194  * Finalization routine for nfsauth. It is important to call this routine
195  * before destroying the exported_lock.
196  */
197 void
198 nfsauth_fini(void)
199 {
200 	refreshq_exi_node_t	*ren;
201 
202 	/*
203 	 * Prevent the nfsauth_refresh_thread from getting new
204 	 * work.
205 	 */
206 	mutex_enter(&refreshq_lock);
207 	if (refreshq_thread_state != REFRESHQ_THREAD_HALTED) {
208 		refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ;
209 		cv_broadcast(&refreshq_cv);
210 
211 		/*
212 		 * Also, wait for nfsauth_refresh_thread() to exit.
213 		 */
214 		while (refreshq_thread_state != REFRESHQ_THREAD_HALTED) {
215 			cv_wait(&refreshq_cv, &refreshq_lock);
216 		}
217 	}
218 	mutex_exit(&refreshq_lock);
219 
220 	/*
221 	 * Walk the exi_list and in turn, walk the auth_lists and free all
222 	 * lists.  In addition, free INVALID auth_cache entries.
223 	 */
224 	while ((ren = list_remove_head(&refreshq_queue))) {
225 		refreshq_auth_node_t *ran;
226 
227 		while ((ran = list_remove_head(&ren->ren_authlist)) != NULL) {
228 			struct auth_cache *p = ran->ran_auth;
229 			if (p->auth_state == NFS_AUTH_INVALID)
230 				nfsauth_free_node(p);
231 			strfree(ran->ran_netid);
232 			kmem_free(ran, sizeof (refreshq_auth_node_t));
233 		}
234 
235 		list_destroy(&ren->ren_authlist);
236 		exi_rele(ren->ren_exi);
237 		kmem_free(ren, sizeof (refreshq_exi_node_t));
238 	}
239 	list_destroy(&refreshq_queue);
240 
241 	cv_destroy(&refreshq_cv);
242 	mutex_destroy(&refreshq_lock);
243 
244 	mutex_destroy(&mountd_lock);
245 
246 	/*
247 	 * Deallocate nfsauth cache handle
248 	 */
249 	kmem_cache_destroy(exi_cache_handle);
250 }
251 
252 /*
253  * Convert the address in a netbuf to
254  * a hash index for the auth_cache table.
255  */
256 static int
257 hash(struct netbuf *a)
258 {
259 	int i, h = 0;
260 
261 	for (i = 0; i < a->len; i++)
262 		h ^= a->buf[i];
263 
264 	return (h & (AUTH_TABLESIZE - 1));
265 }
266 
267 /*
268  * Mask out the components of an
269  * address that do not identify
270  * a host. For socket addresses the
271  * masking gets rid of the port number.
272  */
273 static void
274 addrmask(struct netbuf *addr, struct netbuf *mask)
275 {
276 	int i;
277 
278 	for (i = 0; i < addr->len; i++)
279 		addr->buf[i] &= mask->buf[i];
280 }
281 
282 /*
283  * nfsauth4_access is used for NFS V4 auth checking. Besides doing
284  * the common nfsauth_access(), it will check if the client can
285  * have a limited access to this vnode even if the security flavor
286  * used does not meet the policy.
287  */
288 int
289 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req,
290     cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
291 {
292 	int access;
293 
294 	access = nfsauth_access(exi, req, cr, uid, gid, ngids, gids);
295 
296 	/*
297 	 * There are cases that the server needs to allow the client
298 	 * to have a limited view.
299 	 *
300 	 * e.g.
301 	 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw"
302 	 * /export/home is shared as "sec=sys,rw"
303 	 *
304 	 * When the client mounts /export with sec=sys, the client
305 	 * would get a limited view with RO access on /export to see
306 	 * "home" only because the client is allowed to access
307 	 * /export/home with auth_sys.
308 	 */
309 	if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
310 		/*
311 		 * Allow ro permission with LIMITED view if there is a
312 		 * sub-dir exported under vp.
313 		 */
314 		if (has_visible(exi, vp))
315 			return (NFSAUTH_LIMITED);
316 	}
317 
318 	return (access);
319 }
320 
321 static void
322 sys_log(const char *msg)
323 {
324 	static time_t	tstamp = 0;
325 	time_t		now;
326 
327 	/*
328 	 * msg is shown (at most) once per minute
329 	 */
330 	now = gethrestime_sec();
331 	if ((tstamp + 60) < now) {
332 		tstamp = now;
333 		cmn_err(CE_WARN, msg);
334 	}
335 }
336 
337 /*
338  * Callup to the mountd to get access information in the kernel.
339  */
340 static bool_t
341 nfsauth_retrieve(struct exportinfo *exi, char *req_netid, int flavor,
342     struct netbuf *addr, int *access, cred_t *clnt_cred, uid_t *srv_uid,
343     gid_t *srv_gid, uint_t *srv_gids_cnt, gid_t **srv_gids)
344 {
345 	varg_t			  varg = {0};
346 	nfsauth_res_t		  res = {0};
347 	XDR			  xdrs;
348 	size_t			  absz;
349 	caddr_t			  abuf;
350 	int			  last = 0;
351 	door_arg_t		  da;
352 	door_info_t		  di;
353 	door_handle_t		  dh;
354 	uint_t			  ntries = 0;
355 
356 	/*
357 	 * No entry in the cache for this client/flavor
358 	 * so we need to call the nfsauth service in the
359 	 * mount daemon.
360 	 */
361 
362 	varg.vers = V_PROTO;
363 	varg.arg_u.arg.cmd = NFSAUTH_ACCESS;
364 	varg.arg_u.arg.areq.req_client.n_len = addr->len;
365 	varg.arg_u.arg.areq.req_client.n_bytes = addr->buf;
366 	varg.arg_u.arg.areq.req_netid = req_netid;
367 	varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path;
368 	varg.arg_u.arg.areq.req_flavor = flavor;
369 	varg.arg_u.arg.areq.req_clnt_uid = crgetuid(clnt_cred);
370 	varg.arg_u.arg.areq.req_clnt_gid = crgetgid(clnt_cred);
371 	varg.arg_u.arg.areq.req_clnt_gids.len = crgetngroups(clnt_cred);
372 	varg.arg_u.arg.areq.req_clnt_gids.val = (gid_t *)crgetgroups(clnt_cred);
373 
374 	DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg);
375 
376 	/*
377 	 * Setup the XDR stream for encoding the arguments. Notice that
378 	 * in addition to the args having variable fields (req_netid and
379 	 * req_path), the argument data structure is itself versioned,
380 	 * so we need to make sure we can size the arguments buffer
381 	 * appropriately to encode all the args. If we can't get sizing
382 	 * info _or_ properly encode the arguments, there's really no
383 	 * point in continuting, so we fail the request.
384 	 */
385 	if ((absz = xdr_sizeof(xdr_varg, &varg)) == 0) {
386 		*access = NFSAUTH_DENIED;
387 		return (FALSE);
388 	}
389 
390 	abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP);
391 	xdrmem_create(&xdrs, abuf, absz, XDR_ENCODE);
392 	if (!xdr_varg(&xdrs, &varg)) {
393 		XDR_DESTROY(&xdrs);
394 		goto fail;
395 	}
396 	XDR_DESTROY(&xdrs);
397 
398 	/*
399 	 * Prepare the door arguments
400 	 *
401 	 * We don't know the size of the message the daemon
402 	 * will pass back to us.  By setting rbuf to NULL,
403 	 * we force the door code to allocate a buf of the
404 	 * appropriate size.  We must set rsize > 0, however,
405 	 * else the door code acts as if no response was
406 	 * expected and doesn't pass the data to us.
407 	 */
408 	da.data_ptr = (char *)abuf;
409 	da.data_size = absz;
410 	da.desc_ptr = NULL;
411 	da.desc_num = 0;
412 	da.rbuf = NULL;
413 	da.rsize = 1;
414 
415 retry:
416 	mutex_enter(&mountd_lock);
417 	dh = mountd_dh;
418 	if (dh != NULL)
419 		door_ki_hold(dh);
420 	mutex_exit(&mountd_lock);
421 
422 	if (dh == NULL) {
423 		/*
424 		 * The rendezvous point has not been established yet!
425 		 * This could mean that either mountd(1m) has not yet
426 		 * been started or that _this_ routine nuked the door
427 		 * handle after receiving an EINTR for a REVOKED door.
428 		 *
429 		 * Returning NFSAUTH_DROP will cause the NFS client
430 		 * to retransmit the request, so let's try to be more
431 		 * rescillient and attempt for ntries before we bail.
432 		 */
433 		if (++ntries % NFSAUTH_DR_TRYCNT) {
434 			delay(hz);
435 			goto retry;
436 		}
437 
438 		kmem_free(abuf, absz);
439 
440 		sys_log("nfsauth: mountd has not established door");
441 		*access = NFSAUTH_DROP;
442 		return (FALSE);
443 	}
444 
445 	ntries = 0;
446 
447 	/*
448 	 * Now that we've got what we need, place the call.
449 	 */
450 	switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) {
451 	case 0:				/* Success */
452 		door_ki_rele(dh);
453 
454 		if (da.data_ptr == NULL && da.data_size == 0) {
455 			/*
456 			 * The door_return that contained the data
457 			 * failed! We're here because of the 2nd
458 			 * door_return (w/o data) such that we can
459 			 * get control of the thread (and exit
460 			 * gracefully).
461 			 */
462 			DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil,
463 			    door_arg_t *, &da);
464 			goto fail;
465 		}
466 
467 		break;
468 
469 	case EAGAIN:
470 		/*
471 		 * Server out of resources; back off for a bit
472 		 */
473 		door_ki_rele(dh);
474 		delay(hz);
475 		goto retry;
476 		/* NOTREACHED */
477 
478 	case EINTR:
479 		if (!door_ki_info(dh, &di)) {
480 			door_ki_rele(dh);
481 
482 			if (di.di_attributes & DOOR_REVOKED) {
483 				/*
484 				 * The server barfed and revoked
485 				 * the (existing) door on us; we
486 				 * want to wait to give smf(5) a
487 				 * chance to restart mountd(1m)
488 				 * and establish a new door handle.
489 				 */
490 				mutex_enter(&mountd_lock);
491 				if (dh == mountd_dh) {
492 					door_ki_rele(mountd_dh);
493 					mountd_dh = NULL;
494 				}
495 				mutex_exit(&mountd_lock);
496 				delay(hz);
497 				goto retry;
498 			}
499 			/*
500 			 * If the door was _not_ revoked on us,
501 			 * then more than likely we took an INTR,
502 			 * so we need to fail the operation.
503 			 */
504 			goto fail;
505 		}
506 		/*
507 		 * The only failure that can occur from getting
508 		 * the door info is EINVAL, so we let the code
509 		 * below handle it.
510 		 */
511 		/* FALLTHROUGH */
512 
513 	case EBADF:
514 	case EINVAL:
515 	default:
516 		/*
517 		 * If we have a stale door handle, give smf a last
518 		 * chance to start it by sleeping for a little bit.
519 		 * If we're still hosed, we'll fail the call.
520 		 *
521 		 * Since we're going to reacquire the door handle
522 		 * upon the retry, we opt to sleep for a bit and
523 		 * _not_ to clear mountd_dh. If mountd restarted
524 		 * and was able to set mountd_dh, we should see
525 		 * the new instance; if not, we won't get caught
526 		 * up in the retry/DELAY loop.
527 		 */
528 		door_ki_rele(dh);
529 		if (!last) {
530 			delay(hz);
531 			last++;
532 			goto retry;
533 		}
534 		sys_log("nfsauth: stale mountd door handle");
535 		goto fail;
536 	}
537 
538 	ASSERT(da.rbuf != NULL);
539 
540 	/*
541 	 * No door errors encountered; setup the XDR stream for decoding
542 	 * the results. If we fail to decode the results, we've got no
543 	 * other recourse than to fail the request.
544 	 */
545 	xdrmem_create(&xdrs, da.rbuf, da.rsize, XDR_DECODE);
546 	if (!xdr_nfsauth_res(&xdrs, &res)) {
547 		xdr_free(xdr_nfsauth_res, (char *)&res);
548 		XDR_DESTROY(&xdrs);
549 		kmem_free(da.rbuf, da.rsize);
550 		goto fail;
551 	}
552 	XDR_DESTROY(&xdrs);
553 	kmem_free(da.rbuf, da.rsize);
554 
555 	DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res);
556 	switch (res.stat) {
557 		case NFSAUTH_DR_OKAY:
558 			*access = res.ares.auth_perm;
559 			*srv_uid = res.ares.auth_srv_uid;
560 			*srv_gid = res.ares.auth_srv_gid;
561 			*srv_gids_cnt = res.ares.auth_srv_gids.len;
562 			*srv_gids = kmem_alloc(*srv_gids_cnt * sizeof (gid_t),
563 			    KM_SLEEP);
564 			bcopy(res.ares.auth_srv_gids.val, *srv_gids,
565 			    *srv_gids_cnt * sizeof (gid_t));
566 			break;
567 
568 		case NFSAUTH_DR_EFAIL:
569 		case NFSAUTH_DR_DECERR:
570 		case NFSAUTH_DR_BADCMD:
571 		default:
572 			xdr_free(xdr_nfsauth_res, (char *)&res);
573 fail:
574 			*access = NFSAUTH_DENIED;
575 			kmem_free(abuf, absz);
576 			return (FALSE);
577 			/* NOTREACHED */
578 	}
579 
580 	xdr_free(xdr_nfsauth_res, (char *)&res);
581 	kmem_free(abuf, absz);
582 
583 	return (TRUE);
584 }
585 
586 static void
587 nfsauth_refresh_thread(void)
588 {
589 	refreshq_exi_node_t	*ren;
590 	refreshq_auth_node_t	*ran;
591 
592 	struct exportinfo	*exi;
593 
594 	int			access;
595 	bool_t			retrieval;
596 
597 	callb_cpr_t		cprinfo;
598 
599 	CALLB_CPR_INIT(&cprinfo, &refreshq_lock, callb_generic_cpr,
600 	    "nfsauth_refresh");
601 
602 	for (;;) {
603 		mutex_enter(&refreshq_lock);
604 		if (refreshq_thread_state != REFRESHQ_THREAD_RUNNING) {
605 			/* Keep the hold on the lock! */
606 			break;
607 		}
608 
609 		ren = list_remove_head(&refreshq_queue);
610 		if (ren == NULL) {
611 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
612 			cv_wait(&refreshq_cv, &refreshq_lock);
613 			CALLB_CPR_SAFE_END(&cprinfo, &refreshq_lock);
614 			mutex_exit(&refreshq_lock);
615 			continue;
616 		}
617 		mutex_exit(&refreshq_lock);
618 
619 		exi = ren->ren_exi;
620 		ASSERT(exi != NULL);
621 
622 		/*
623 		 * Since the ren was removed from the refreshq_queue above,
624 		 * this is the only thread aware about the ren existence, so we
625 		 * have the exclusive ownership of it and we do not need to
626 		 * protect it by any lock.
627 		 */
628 		while ((ran = list_remove_head(&ren->ren_authlist))) {
629 			uid_t uid;
630 			gid_t gid;
631 			uint_t ngids;
632 			gid_t *gids;
633 			struct auth_cache *p = ran->ran_auth;
634 			char *netid = ran->ran_netid;
635 
636 			ASSERT(p != NULL);
637 			ASSERT(netid != NULL);
638 
639 			kmem_free(ran, sizeof (refreshq_auth_node_t));
640 
641 			mutex_enter(&p->auth_lock);
642 
643 			/*
644 			 * Once the entry goes INVALID, it can not change
645 			 * state.
646 			 *
647 			 * No need to refresh entries also in a case we are
648 			 * just shutting down.
649 			 *
650 			 * In general, there is no need to hold the
651 			 * refreshq_lock to test the refreshq_thread_state.  We
652 			 * do hold it at other places because there is some
653 			 * related thread synchronization (or some other tasks)
654 			 * close to the refreshq_thread_state check.
655 			 *
656 			 * The check for the refreshq_thread_state value here
657 			 * is purely advisory to allow the faster
658 			 * nfsauth_refresh_thread() shutdown.  In a case we
659 			 * will miss such advisory, nothing catastrophic
660 			 * happens: we will just spin longer here before the
661 			 * shutdown.
662 			 */
663 			if (p->auth_state == NFS_AUTH_INVALID ||
664 			    refreshq_thread_state != REFRESHQ_THREAD_RUNNING) {
665 				mutex_exit(&p->auth_lock);
666 
667 				if (p->auth_state == NFS_AUTH_INVALID)
668 					nfsauth_free_node(p);
669 
670 				strfree(netid);
671 
672 				continue;
673 			}
674 
675 			/*
676 			 * Make sure the state is valid.  Note that once we
677 			 * change the state to NFS_AUTH_REFRESHING, no other
678 			 * thread will be able to work on this entry.
679 			 */
680 			ASSERT(p->auth_state == NFS_AUTH_STALE);
681 
682 			p->auth_state = NFS_AUTH_REFRESHING;
683 			mutex_exit(&p->auth_lock);
684 
685 			DTRACE_PROBE2(nfsauth__debug__cache__refresh,
686 			    struct exportinfo *, exi,
687 			    struct auth_cache *, p);
688 
689 			/*
690 			 * The first caching of the access rights
691 			 * is done with the netid pulled out of the
692 			 * request from the client. All subsequent
693 			 * users of the cache may or may not have
694 			 * the same netid. It doesn't matter. So
695 			 * when we refresh, we simply use the netid
696 			 * of the request which triggered the
697 			 * refresh attempt.
698 			 */
699 			retrieval = nfsauth_retrieve(exi, netid,
700 			    p->auth_flavor, &p->auth_clnt->authc_addr, &access,
701 			    p->auth_clnt_cred, &uid, &gid, &ngids, &gids);
702 
703 			/*
704 			 * This can only be set in one other place
705 			 * and the state has to be NFS_AUTH_FRESH.
706 			 */
707 			strfree(netid);
708 
709 			mutex_enter(&p->auth_lock);
710 			if (p->auth_state == NFS_AUTH_INVALID) {
711 				mutex_exit(&p->auth_lock);
712 				nfsauth_free_node(p);
713 				if (retrieval == TRUE)
714 					kmem_free(gids, ngids * sizeof (gid_t));
715 			} else {
716 				/*
717 				 * If we got an error, do not reset the
718 				 * time. This will cause the next access
719 				 * check for the client to reschedule this
720 				 * node.
721 				 */
722 				if (retrieval == TRUE) {
723 					p->auth_access = access;
724 
725 					p->auth_srv_uid = uid;
726 					p->auth_srv_gid = gid;
727 					kmem_free(p->auth_srv_gids,
728 					    p->auth_srv_ngids * sizeof (gid_t));
729 					p->auth_srv_ngids = ngids;
730 					p->auth_srv_gids = gids;
731 
732 					p->auth_freshness = gethrestime_sec();
733 				}
734 				p->auth_state = NFS_AUTH_FRESH;
735 
736 				cv_broadcast(&p->auth_cv);
737 				mutex_exit(&p->auth_lock);
738 			}
739 		}
740 
741 		list_destroy(&ren->ren_authlist);
742 		exi_rele(ren->ren_exi);
743 		kmem_free(ren, sizeof (refreshq_exi_node_t));
744 	}
745 
746 	refreshq_thread_state = REFRESHQ_THREAD_HALTED;
747 	cv_broadcast(&refreshq_cv);
748 	CALLB_CPR_EXIT(&cprinfo);
749 	zthread_exit();
750 }
751 
752 int
753 nfsauth_cache_clnt_compar(const void *v1, const void *v2)
754 {
755 	int c;
756 
757 	const struct auth_cache_clnt *a1 = (const struct auth_cache_clnt *)v1;
758 	const struct auth_cache_clnt *a2 = (const struct auth_cache_clnt *)v2;
759 
760 	if (a1->authc_addr.len < a2->authc_addr.len)
761 		return (-1);
762 	if (a1->authc_addr.len > a2->authc_addr.len)
763 		return (1);
764 
765 	c = memcmp(a1->authc_addr.buf, a2->authc_addr.buf, a1->authc_addr.len);
766 	if (c < 0)
767 		return (-1);
768 	if (c > 0)
769 		return (1);
770 
771 	return (0);
772 }
773 
774 static int
775 nfsauth_cache_compar(const void *v1, const void *v2)
776 {
777 	int c;
778 
779 	const struct auth_cache *a1 = (const struct auth_cache *)v1;
780 	const struct auth_cache *a2 = (const struct auth_cache *)v2;
781 
782 	if (a1->auth_flavor < a2->auth_flavor)
783 		return (-1);
784 	if (a1->auth_flavor > a2->auth_flavor)
785 		return (1);
786 
787 	if (crgetuid(a1->auth_clnt_cred) < crgetuid(a2->auth_clnt_cred))
788 		return (-1);
789 	if (crgetuid(a1->auth_clnt_cred) > crgetuid(a2->auth_clnt_cred))
790 		return (1);
791 
792 	if (crgetgid(a1->auth_clnt_cred) < crgetgid(a2->auth_clnt_cred))
793 		return (-1);
794 	if (crgetgid(a1->auth_clnt_cred) > crgetgid(a2->auth_clnt_cred))
795 		return (1);
796 
797 	if (crgetngroups(a1->auth_clnt_cred) < crgetngroups(a2->auth_clnt_cred))
798 		return (-1);
799 	if (crgetngroups(a1->auth_clnt_cred) > crgetngroups(a2->auth_clnt_cred))
800 		return (1);
801 
802 	c = memcmp(crgetgroups(a1->auth_clnt_cred),
803 	    crgetgroups(a2->auth_clnt_cred), crgetngroups(a1->auth_clnt_cred));
804 	if (c < 0)
805 		return (-1);
806 	if (c > 0)
807 		return (1);
808 
809 	return (0);
810 }
811 
812 /*
813  * Get the access information from the cache or callup to the mountd
814  * to get and cache the access information in the kernel.
815  */
816 static int
817 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor,
818     cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
819 {
820 	struct netbuf		*taddrmask;
821 	struct netbuf		addr;	/* temporary copy of client's address */
822 	const struct netbuf	*claddr;
823 	avl_tree_t		*tree;
824 	struct auth_cache	ac;	/* used as a template for avl_find() */
825 	struct auth_cache_clnt	*c;
826 	struct auth_cache_clnt	acc;	/* used as a template for avl_find() */
827 	struct auth_cache	*p = NULL;
828 	int			access;
829 
830 	uid_t			tmpuid;
831 	gid_t			tmpgid;
832 	uint_t			tmpngids;
833 	gid_t			*tmpgids;
834 
835 	avl_index_t		where;	/* used for avl_find()/avl_insert() */
836 
837 	ASSERT(cr != NULL);
838 
839 	/*
840 	 * Now check whether this client already
841 	 * has an entry for this flavor in the cache
842 	 * for this export.
843 	 * Get the caller's address, mask off the
844 	 * parts of the address that do not identify
845 	 * the host (port number, etc), and then hash
846 	 * it to find the chain of cache entries.
847 	 */
848 
849 	claddr = svc_getrpccaller(req->rq_xprt);
850 	addr = *claddr;
851 	addr.buf = kmem_alloc(addr.maxlen, KM_SLEEP);
852 	bcopy(claddr->buf, addr.buf, claddr->len);
853 
854 	SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask);
855 	ASSERT(taddrmask != NULL);
856 	addrmask(&addr, taddrmask);
857 
858 	ac.auth_flavor = flavor;
859 	ac.auth_clnt_cred = crdup(cr);
860 
861 	acc.authc_addr = addr;
862 
863 	tree = exi->exi_cache[hash(&addr)];
864 
865 	rw_enter(&exi->exi_cache_lock, RW_READER);
866 	c = (struct auth_cache_clnt *)avl_find(tree, &acc, NULL);
867 
868 	if (c == NULL) {
869 		struct auth_cache_clnt *nc;
870 
871 		rw_exit(&exi->exi_cache_lock);
872 
873 		nc = kmem_alloc(sizeof (*nc), KM_NOSLEEP | KM_NORMALPRI);
874 		if (nc == NULL)
875 			goto retrieve;
876 
877 		/*
878 		 * Initialize the new auth_cache_clnt
879 		 */
880 		nc->authc_addr = addr;
881 		nc->authc_addr.buf = kmem_alloc(addr.maxlen,
882 		    KM_NOSLEEP | KM_NORMALPRI);
883 		if (addr.maxlen != 0 && nc->authc_addr.buf == NULL) {
884 			kmem_free(nc, sizeof (*nc));
885 			goto retrieve;
886 		}
887 		bcopy(addr.buf, nc->authc_addr.buf, addr.len);
888 		rw_init(&nc->authc_lock, NULL, RW_DEFAULT, NULL);
889 		avl_create(&nc->authc_tree, nfsauth_cache_compar,
890 		    sizeof (struct auth_cache),
891 		    offsetof(struct auth_cache, auth_link));
892 
893 		rw_enter(&exi->exi_cache_lock, RW_WRITER);
894 		c = (struct auth_cache_clnt *)avl_find(tree, &acc, &where);
895 		if (c == NULL) {
896 			avl_insert(tree, nc, where);
897 			rw_downgrade(&exi->exi_cache_lock);
898 			c = nc;
899 		} else {
900 			rw_downgrade(&exi->exi_cache_lock);
901 
902 			avl_destroy(&nc->authc_tree);
903 			rw_destroy(&nc->authc_lock);
904 			kmem_free(nc->authc_addr.buf, nc->authc_addr.maxlen);
905 			kmem_free(nc, sizeof (*nc));
906 		}
907 	}
908 
909 	ASSERT(c != NULL);
910 
911 	rw_enter(&c->authc_lock, RW_READER);
912 	p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, NULL);
913 
914 	if (p == NULL) {
915 		struct auth_cache *np;
916 
917 		rw_exit(&c->authc_lock);
918 
919 		np = kmem_cache_alloc(exi_cache_handle,
920 		    KM_NOSLEEP | KM_NORMALPRI);
921 		if (np == NULL) {
922 			rw_exit(&exi->exi_cache_lock);
923 			goto retrieve;
924 		}
925 
926 		/*
927 		 * Initialize the new auth_cache
928 		 */
929 		np->auth_clnt = c;
930 		np->auth_flavor = flavor;
931 		np->auth_clnt_cred = ac.auth_clnt_cred;
932 		np->auth_srv_ngids = 0;
933 		np->auth_srv_gids = NULL;
934 		np->auth_time = np->auth_freshness = gethrestime_sec();
935 		np->auth_state = NFS_AUTH_NEW;
936 		mutex_init(&np->auth_lock, NULL, MUTEX_DEFAULT, NULL);
937 		cv_init(&np->auth_cv, NULL, CV_DEFAULT, NULL);
938 
939 		rw_enter(&c->authc_lock, RW_WRITER);
940 		rw_exit(&exi->exi_cache_lock);
941 
942 		p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, &where);
943 		if (p == NULL) {
944 			avl_insert(&c->authc_tree, np, where);
945 			rw_downgrade(&c->authc_lock);
946 			p = np;
947 		} else {
948 			rw_downgrade(&c->authc_lock);
949 
950 			cv_destroy(&np->auth_cv);
951 			mutex_destroy(&np->auth_lock);
952 			crfree(ac.auth_clnt_cred);
953 			kmem_cache_free(exi_cache_handle, np);
954 		}
955 	} else {
956 		rw_exit(&exi->exi_cache_lock);
957 		crfree(ac.auth_clnt_cred);
958 	}
959 
960 	mutex_enter(&p->auth_lock);
961 	rw_exit(&c->authc_lock);
962 
963 	/*
964 	 * If the entry is in the WAITING state then some other thread is just
965 	 * retrieving the required info.  The entry was either NEW, or the list
966 	 * of client's supplemental groups is going to be changed (either by
967 	 * this thread, or by some other thread).  We need to wait until the
968 	 * nfsauth_retrieve() is done.
969 	 */
970 	while (p->auth_state == NFS_AUTH_WAITING)
971 		cv_wait(&p->auth_cv, &p->auth_lock);
972 
973 	/*
974 	 * Here the entry cannot be in WAITING or INVALID state.
975 	 */
976 	ASSERT(p->auth_state != NFS_AUTH_WAITING);
977 	ASSERT(p->auth_state != NFS_AUTH_INVALID);
978 
979 	/*
980 	 * If the cache entry is not valid yet, we need to retrieve the
981 	 * info ourselves.
982 	 */
983 	if (p->auth_state == NFS_AUTH_NEW) {
984 		bool_t res;
985 		/*
986 		 * NFS_AUTH_NEW is the default output auth_state value in a
987 		 * case we failed somewhere below.
988 		 */
989 		auth_state_t state = NFS_AUTH_NEW;
990 
991 		p->auth_state = NFS_AUTH_WAITING;
992 		mutex_exit(&p->auth_lock);
993 		kmem_free(addr.buf, addr.maxlen);
994 		addr = p->auth_clnt->authc_addr;
995 
996 		atomic_inc_uint(&nfsauth_cache_miss);
997 
998 		res = nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor,
999 		    &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids, &tmpgids);
1000 
1001 		p->auth_access = access;
1002 		p->auth_time = p->auth_freshness = gethrestime_sec();
1003 
1004 		if (res == TRUE) {
1005 			if (uid != NULL)
1006 				*uid = tmpuid;
1007 			if (gid != NULL)
1008 				*gid = tmpgid;
1009 			if (ngids != NULL && gids != NULL) {
1010 				*ngids = tmpngids;
1011 				*gids = tmpgids;
1012 
1013 				/*
1014 				 * We need a copy of gids for the
1015 				 * auth_cache entry
1016 				 */
1017 				tmpgids = kmem_alloc(tmpngids * sizeof (gid_t),
1018 				    KM_NOSLEEP | KM_NORMALPRI);
1019 				if (tmpgids != NULL)
1020 					bcopy(*gids, tmpgids,
1021 					    tmpngids * sizeof (gid_t));
1022 			}
1023 
1024 			if (tmpgids != NULL || tmpngids == 0) {
1025 				p->auth_srv_uid = tmpuid;
1026 				p->auth_srv_gid = tmpgid;
1027 				p->auth_srv_ngids = tmpngids;
1028 				p->auth_srv_gids = tmpgids;
1029 
1030 				state = NFS_AUTH_FRESH;
1031 			}
1032 		}
1033 
1034 		/*
1035 		 * Set the auth_state and notify waiters.
1036 		 */
1037 		mutex_enter(&p->auth_lock);
1038 		p->auth_state = state;
1039 		cv_broadcast(&p->auth_cv);
1040 		mutex_exit(&p->auth_lock);
1041 	} else {
1042 		uint_t nach;
1043 		time_t refresh;
1044 
1045 		refresh = gethrestime_sec() - p->auth_freshness;
1046 
1047 		p->auth_time = gethrestime_sec();
1048 
1049 		if (uid != NULL)
1050 			*uid = p->auth_srv_uid;
1051 		if (gid != NULL)
1052 			*gid = p->auth_srv_gid;
1053 		if (ngids != NULL && gids != NULL) {
1054 			*ngids = p->auth_srv_ngids;
1055 			*gids = kmem_alloc(*ngids * sizeof (gid_t), KM_SLEEP);
1056 			bcopy(p->auth_srv_gids, *gids, *ngids * sizeof (gid_t));
1057 		}
1058 
1059 		access = p->auth_access;
1060 
1061 		if ((refresh > NFSAUTH_CACHE_REFRESH) &&
1062 		    p->auth_state == NFS_AUTH_FRESH) {
1063 			refreshq_auth_node_t *ran;
1064 			uint_t nacr;
1065 
1066 			p->auth_state = NFS_AUTH_STALE;
1067 			mutex_exit(&p->auth_lock);
1068 
1069 			nacr = atomic_inc_uint_nv(&nfsauth_cache_refresh);
1070 			DTRACE_PROBE3(nfsauth__debug__cache__stale,
1071 			    struct exportinfo *, exi,
1072 			    struct auth_cache *, p,
1073 			    uint_t, nacr);
1074 
1075 			ran = kmem_alloc(sizeof (refreshq_auth_node_t),
1076 			    KM_SLEEP);
1077 			ran->ran_auth = p;
1078 			ran->ran_netid = strdup(svc_getnetid(req->rq_xprt));
1079 
1080 			mutex_enter(&refreshq_lock);
1081 			/*
1082 			 * We should not add a work queue
1083 			 * item if the thread is not
1084 			 * accepting them.
1085 			 */
1086 			if (refreshq_thread_state == REFRESHQ_THREAD_RUNNING) {
1087 				refreshq_exi_node_t *ren;
1088 
1089 				/*
1090 				 * Is there an existing exi_list?
1091 				 */
1092 				for (ren = list_head(&refreshq_queue);
1093 				    ren != NULL;
1094 				    ren = list_next(&refreshq_queue, ren)) {
1095 					if (ren->ren_exi == exi) {
1096 						list_insert_tail(
1097 						    &ren->ren_authlist, ran);
1098 						break;
1099 					}
1100 				}
1101 
1102 				if (ren == NULL) {
1103 					ren = kmem_alloc(
1104 					    sizeof (refreshq_exi_node_t),
1105 					    KM_SLEEP);
1106 
1107 					exi_hold(exi);
1108 					ren->ren_exi = exi;
1109 
1110 					list_create(&ren->ren_authlist,
1111 					    sizeof (refreshq_auth_node_t),
1112 					    offsetof(refreshq_auth_node_t,
1113 					    ran_node));
1114 
1115 					list_insert_tail(&ren->ren_authlist,
1116 					    ran);
1117 					list_insert_tail(&refreshq_queue, ren);
1118 				}
1119 
1120 				cv_broadcast(&refreshq_cv);
1121 			} else {
1122 				strfree(ran->ran_netid);
1123 				kmem_free(ran, sizeof (refreshq_auth_node_t));
1124 			}
1125 
1126 			mutex_exit(&refreshq_lock);
1127 		} else {
1128 			mutex_exit(&p->auth_lock);
1129 		}
1130 
1131 		nach = atomic_inc_uint_nv(&nfsauth_cache_hit);
1132 		DTRACE_PROBE2(nfsauth__debug__cache__hit,
1133 		    uint_t, nach,
1134 		    time_t, refresh);
1135 
1136 		kmem_free(addr.buf, addr.maxlen);
1137 	}
1138 
1139 	return (access);
1140 
1141 retrieve:
1142 	crfree(ac.auth_clnt_cred);
1143 
1144 	/*
1145 	 * Retrieve the required data without caching.
1146 	 */
1147 
1148 	ASSERT(p == NULL);
1149 
1150 	atomic_inc_uint(&nfsauth_cache_miss);
1151 
1152 	if (nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor, &addr,
1153 	    &access, cr, &tmpuid, &tmpgid, &tmpngids, &tmpgids)) {
1154 		if (uid != NULL)
1155 			*uid = tmpuid;
1156 		if (gid != NULL)
1157 			*gid = tmpgid;
1158 		if (ngids != NULL && gids != NULL) {
1159 			*ngids = tmpngids;
1160 			*gids = tmpgids;
1161 		} else {
1162 			kmem_free(tmpgids, tmpngids * sizeof (gid_t));
1163 		}
1164 	}
1165 
1166 	kmem_free(addr.buf, addr.maxlen);
1167 
1168 	return (access);
1169 }
1170 
1171 /*
1172  * Check if the requesting client has access to the filesystem with
1173  * a given nfs flavor number which is an explicitly shared flavor.
1174  */
1175 int
1176 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req,
1177     int flavor, int perm, cred_t *cr)
1178 {
1179 	int access;
1180 
1181 	if (! (perm & M_4SEC_EXPORTED)) {
1182 		return (NFSAUTH_DENIED);
1183 	}
1184 
1185 	/*
1186 	 * Optimize if there are no lists
1187 	 */
1188 	if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) {
1189 		perm &= ~M_4SEC_EXPORTED;
1190 		if (perm == M_RO)
1191 			return (NFSAUTH_RO);
1192 		if (perm == M_RW)
1193 			return (NFSAUTH_RW);
1194 	}
1195 
1196 	access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL, NULL,
1197 	    NULL);
1198 
1199 	return (access);
1200 }
1201 
1202 int
1203 nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr,
1204     uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
1205 {
1206 	int access, mapaccess;
1207 	struct secinfo *sp;
1208 	int i, flavor, perm;
1209 	int authnone_entry = -1;
1210 
1211 	/*
1212 	 * By default root is mapped to anonymous user.
1213 	 * This might get overriden later in nfsauth_cache_get().
1214 	 */
1215 	if (crgetuid(cr) == 0) {
1216 		if (uid != NULL)
1217 			*uid = exi->exi_export.ex_anon;
1218 		if (gid != NULL)
1219 			*gid = exi->exi_export.ex_anon;
1220 	} else {
1221 		if (uid != NULL)
1222 			*uid = crgetuid(cr);
1223 		if (gid != NULL)
1224 			*gid = crgetgid(cr);
1225 	}
1226 
1227 	if (ngids != NULL)
1228 		*ngids = 0;
1229 	if (gids != NULL)
1230 		*gids = NULL;
1231 
1232 	/*
1233 	 *  Get the nfs flavor number from xprt.
1234 	 */
1235 	flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie;
1236 
1237 	/*
1238 	 * First check the access restrictions on the filesystem.  If
1239 	 * there are no lists associated with this flavor then there's no
1240 	 * need to make an expensive call to the nfsauth service or to
1241 	 * cache anything.
1242 	 */
1243 
1244 	sp = exi->exi_export.ex_secinfo;
1245 	for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
1246 		if (flavor != sp[i].s_secinfo.sc_nfsnum) {
1247 			if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE)
1248 				authnone_entry = i;
1249 			continue;
1250 		}
1251 		break;
1252 	}
1253 
1254 	mapaccess = 0;
1255 
1256 	if (i >= exi->exi_export.ex_seccnt) {
1257 		/*
1258 		 * Flavor not found, but use AUTH_NONE if it exists
1259 		 */
1260 		if (authnone_entry == -1)
1261 			return (NFSAUTH_DENIED);
1262 		flavor = AUTH_NONE;
1263 		mapaccess = NFSAUTH_MAPNONE;
1264 		i = authnone_entry;
1265 	}
1266 
1267 	/*
1268 	 * If the flavor is in the ex_secinfo list, but not an explicitly
1269 	 * shared flavor by the user, it is a result of the nfsv4 server
1270 	 * namespace setup. We will grant an RO permission similar for
1271 	 * a pseudo node except that this node is a shared one.
1272 	 *
1273 	 * e.g. flavor in (flavor) indicates that it is not explictly
1274 	 *	shared by the user:
1275 	 *
1276 	 *		/	(sys, krb5)
1277 	 *		|
1278 	 *		export  #share -o sec=sys (krb5)
1279 	 *		|
1280 	 *		secure  #share -o sec=krb5
1281 	 *
1282 	 *	In this case, when a krb5 request coming in to access
1283 	 *	/export, RO permission is granted.
1284 	 */
1285 	if (!(sp[i].s_flags & M_4SEC_EXPORTED))
1286 		return (mapaccess | NFSAUTH_RO);
1287 
1288 	/*
1289 	 * Optimize if there are no lists.
1290 	 * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups.
1291 	 */
1292 	perm = sp[i].s_flags;
1293 	if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0 && (ngroups_max <= NGRPS ||
1294 	    flavor != AUTH_SYS || crgetngroups(cr) < NGRPS)) {
1295 		perm &= ~M_4SEC_EXPORTED;
1296 		if (perm == M_RO)
1297 			return (mapaccess | NFSAUTH_RO);
1298 		if (perm == M_RW)
1299 			return (mapaccess | NFSAUTH_RW);
1300 	}
1301 
1302 	access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid, ngids, gids);
1303 
1304 	/*
1305 	 * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about
1306 	 * the supplemental groups.
1307 	 */
1308 	if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
1309 		if (ngids != NULL && gids != NULL) {
1310 			kmem_free(*gids, *ngids * sizeof (gid_t));
1311 			*ngids = 0;
1312 			*gids = NULL;
1313 		}
1314 	}
1315 
1316 	/*
1317 	 * Client's security flavor doesn't match with "ro" or
1318 	 * "rw" list. Try again using AUTH_NONE if present.
1319 	 */
1320 	if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) {
1321 		/*
1322 		 * Have we already encountered AUTH_NONE ?
1323 		 */
1324 		if (authnone_entry != -1) {
1325 			mapaccess = NFSAUTH_MAPNONE;
1326 			access = nfsauth_cache_get(exi, req, AUTH_NONE, cr,
1327 			    NULL, NULL, NULL, NULL);
1328 		} else {
1329 			/*
1330 			 * Check for AUTH_NONE presence.
1331 			 */
1332 			for (; i < exi->exi_export.ex_seccnt; i++) {
1333 				if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) {
1334 					mapaccess = NFSAUTH_MAPNONE;
1335 					access = nfsauth_cache_get(exi, req,
1336 					    AUTH_NONE, cr, NULL, NULL, NULL,
1337 					    NULL);
1338 					break;
1339 				}
1340 			}
1341 		}
1342 	}
1343 
1344 	if (access & NFSAUTH_DENIED)
1345 		access = NFSAUTH_DENIED;
1346 
1347 	return (access | mapaccess);
1348 }
1349 
1350 static void
1351 nfsauth_free_clnt_node(struct auth_cache_clnt *p)
1352 {
1353 	void *cookie = NULL;
1354 	struct auth_cache *node;
1355 
1356 	while ((node = avl_destroy_nodes(&p->authc_tree, &cookie)) != NULL)
1357 		nfsauth_free_node(node);
1358 	avl_destroy(&p->authc_tree);
1359 
1360 	kmem_free(p->authc_addr.buf, p->authc_addr.maxlen);
1361 	rw_destroy(&p->authc_lock);
1362 
1363 	kmem_free(p, sizeof (*p));
1364 }
1365 
1366 static void
1367 nfsauth_free_node(struct auth_cache *p)
1368 {
1369 	crfree(p->auth_clnt_cred);
1370 	kmem_free(p->auth_srv_gids, p->auth_srv_ngids * sizeof (gid_t));
1371 	mutex_destroy(&p->auth_lock);
1372 	cv_destroy(&p->auth_cv);
1373 	kmem_cache_free(exi_cache_handle, p);
1374 }
1375 
1376 /*
1377  * Free the nfsauth cache for a given export
1378  */
1379 void
1380 nfsauth_cache_free(struct exportinfo *exi)
1381 {
1382 	int i;
1383 
1384 	/*
1385 	 * The only way we got here was with an exi_rele, which means that no
1386 	 * auth cache entry is being refreshed.
1387 	 */
1388 
1389 	for (i = 0; i < AUTH_TABLESIZE; i++) {
1390 		avl_tree_t *tree = exi->exi_cache[i];
1391 		void *cookie = NULL;
1392 		struct auth_cache_clnt *node;
1393 
1394 		while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
1395 			nfsauth_free_clnt_node(node);
1396 	}
1397 }
1398 
1399 /*
1400  * Called by the kernel memory allocator when
1401  * memory is low. Free unused cache entries.
1402  * If that's not enough, the VM system will
1403  * call again for some more.
1404  */
1405 /*ARGSUSED*/
1406 void
1407 exi_cache_reclaim(void *cdrarg)
1408 {
1409 	int i;
1410 	struct exportinfo *exi;
1411 
1412 	rw_enter(&exported_lock, RW_READER);
1413 
1414 	for (i = 0; i < EXPTABLESIZE; i++) {
1415 		for (exi = exptable[i]; exi; exi = exi->fid_hash.next) {
1416 			exi_cache_trim(exi);
1417 		}
1418 	}
1419 
1420 	rw_exit(&exported_lock);
1421 
1422 	atomic_inc_uint(&nfsauth_cache_reclaim);
1423 }
1424 
1425 void
1426 exi_cache_trim(struct exportinfo *exi)
1427 {
1428 	struct auth_cache_clnt *c;
1429 	struct auth_cache_clnt *nextc;
1430 	struct auth_cache *p;
1431 	struct auth_cache *next;
1432 	int i;
1433 	time_t stale_time;
1434 	avl_tree_t *tree;
1435 
1436 	for (i = 0; i < AUTH_TABLESIZE; i++) {
1437 
1438 		tree = exi->exi_cache[i];
1439 		stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM;
1440 
1441 		rw_enter(&exi->exi_cache_lock, RW_READER);
1442 
1443 		/*
1444 		 * Free entries that have not been
1445 		 * used for NFSAUTH_CACHE_TRIM seconds.
1446 		 */
1447 		for (c = avl_first(tree); c != NULL; c = AVL_NEXT(tree, c)) {
1448 			rw_enter(&c->authc_lock, RW_WRITER);
1449 			for (p = avl_first(&c->authc_tree); p != NULL;
1450 			    p = next) {
1451 				next = AVL_NEXT(&c->authc_tree, p);
1452 
1453 				ASSERT(p->auth_state != NFS_AUTH_INVALID);
1454 
1455 				mutex_enter(&p->auth_lock);
1456 
1457 				/*
1458 				 * We won't trim recently used and/or WAITING
1459 				 * entries.
1460 				 */
1461 				if (p->auth_time > stale_time ||
1462 				    p->auth_state == NFS_AUTH_WAITING) {
1463 					mutex_exit(&p->auth_lock);
1464 					continue;
1465 				}
1466 
1467 				DTRACE_PROBE1(nfsauth__debug__trim__state,
1468 				    auth_state_t, p->auth_state);
1469 
1470 				/*
1471 				 * STALE and REFRESHING entries needs to be
1472 				 * marked INVALID only because they are
1473 				 * referenced by some other structures or
1474 				 * threads.  They will be freed later.
1475 				 */
1476 				if (p->auth_state == NFS_AUTH_STALE ||
1477 				    p->auth_state == NFS_AUTH_REFRESHING) {
1478 					p->auth_state = NFS_AUTH_INVALID;
1479 					mutex_exit(&p->auth_lock);
1480 
1481 					avl_remove(&c->authc_tree, p);
1482 				} else {
1483 					mutex_exit(&p->auth_lock);
1484 
1485 					avl_remove(&c->authc_tree, p);
1486 					nfsauth_free_node(p);
1487 				}
1488 			}
1489 			rw_exit(&c->authc_lock);
1490 		}
1491 
1492 		if (rw_tryupgrade(&exi->exi_cache_lock) == 0) {
1493 			rw_exit(&exi->exi_cache_lock);
1494 			rw_enter(&exi->exi_cache_lock, RW_WRITER);
1495 		}
1496 
1497 		for (c = avl_first(tree); c != NULL; c = nextc) {
1498 			nextc = AVL_NEXT(tree, c);
1499 
1500 			if (avl_is_empty(&c->authc_tree) == B_FALSE)
1501 				continue;
1502 
1503 			avl_remove(tree, c);
1504 
1505 			nfsauth_free_clnt_node(c);
1506 		}
1507 
1508 		rw_exit(&exi->exi_cache_lock);
1509 	}
1510 }
1511