xref: /illumos-gate/usr/src/uts/common/fs/nfs/nfs_auth.c (revision 598f4ceed9327d2d6c2325dd67cae3aa06f7fea6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
24  */
25 
26 #include <sys/param.h>
27 #include <sys/errno.h>
28 #include <sys/vfs.h>
29 #include <sys/vnode.h>
30 #include <sys/cred.h>
31 #include <sys/cmn_err.h>
32 #include <sys/systm.h>
33 #include <sys/kmem.h>
34 #include <sys/pathname.h>
35 #include <sys/utsname.h>
36 #include <sys/debug.h>
37 #include <sys/door.h>
38 #include <sys/sdt.h>
39 #include <sys/thread.h>
40 
41 #include <rpc/types.h>
42 #include <rpc/auth.h>
43 #include <rpc/clnt.h>
44 
45 #include <nfs/nfs.h>
46 #include <nfs/export.h>
47 #include <nfs/nfs_clnt.h>
48 #include <nfs/auth.h>
49 
50 #define	EQADDR(a1, a2)  \
51 	(bcmp((char *)(a1)->buf, (char *)(a2)->buf, (a1)->len) == 0 && \
52 	(a1)->len == (a2)->len)
53 
54 static struct knetconfig auth_knconf;
55 static servinfo_t svp;
56 static clinfo_t ci;
57 
58 static struct kmem_cache *exi_cache_handle;
59 static void exi_cache_reclaim(void *);
60 static void exi_cache_trim(struct exportinfo *exi);
61 
62 extern pri_t minclsyspri;
63 
64 int nfsauth_cache_hit;
65 int nfsauth_cache_miss;
66 int nfsauth_cache_refresh;
67 int nfsauth_cache_reclaim;
68 
69 /*
70  * The lifetime of an auth cache entry:
71  * ------------------------------------
72  *
73  * An auth cache entry is created with both the auth_time
74  * and auth_freshness times set to the current time.
75  *
76  * Upon every client access which results in a hit, the
77  * auth_time will be updated.
78  *
79  * If a client access determines that the auth_freshness
80  * indicates that the entry is STALE, then it will be
81  * refreshed. Note that this will explicitly reset
82  * auth_time.
83  *
84  * When the REFRESH successfully occurs, then the
85  * auth_freshness is updated.
86  *
87  * There are two ways for an entry to leave the cache:
88  *
89  * 1) Purged by an action on the export (remove or changed)
90  * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM)
91  *
92  * For 2) we check the timeout value against auth_time.
93  */
94 
95 /*
96  * Number of seconds until we mark for refresh an auth cache entry.
97  */
98 #define	NFSAUTH_CACHE_REFRESH 600
99 
100 /*
101  * Number of idle seconds until we yield to backpressure
102  * to trim a cache entry.
103  */
104 #define	NFSAUTH_CACHE_TRIM 3600
105 
106 /*
107  * While we could encapuslate the exi_list inside the
108  * exi structure, we can't do that for the auth_list.
109  * So, to keep things looking clean, we keep them both
110  * in these external lists.
111  */
112 typedef struct refreshq_exi_node {
113 	struct exportinfo	*ren_exi;
114 	list_t			ren_authlist;
115 	list_node_t		ren_node;
116 } refreshq_exi_node_t;
117 
118 typedef struct refreshq_auth_node {
119 	struct auth_cache	*ran_auth;
120 	list_node_t		ran_node;
121 } refreshq_auth_node_t;
122 
123 /*
124  * Used to manipulate things on the refreshq_queue.
125  * Note that the refresh thread will effectively
126  * pop a node off of the queue, at which point it
127  * will no longer need to hold the mutex.
128  */
129 static kmutex_t refreshq_lock;
130 static list_t refreshq_queue;
131 static kcondvar_t refreshq_cv;
132 
133 /*
134  * A list_t would be overkill. These are auth_cache
135  * entries which are no longer linked to an exi.
136  * It should be the case that all of their states
137  * are NFS_AUTH_INVALID.
138  *
139  * I.e., the only way to be put on this list is
140  * iff their state indicated that they had been placed
141  * on the refreshq_queue.
142  *
143  * Note that while there is no link from the exi or
144  * back to the exi, the exi can not go away until
145  * these entries are harvested.
146  */
147 static struct auth_cache	*refreshq_dead_entries;
148 
149 /*
150  * If there is ever a problem with loading the
151  * module, then nfsauth_fini() needs to be called
152  * to remove state. In that event, since the
153  * refreshq thread has been started, they need to
154  * work together to get rid of state.
155  */
156 typedef enum nfsauth_refreshq_thread_state {
157 	REFRESHQ_THREAD_RUNNING,
158 	REFRESHQ_THREAD_FINI_REQ,
159 	REFRESHQ_THREAD_HALTED
160 } nfsauth_refreshq_thread_state_t;
161 
162 nfsauth_refreshq_thread_state_t
163 refreshq_thread_state = REFRESHQ_THREAD_HALTED;
164 
165 static void nfsauth_free_node(struct auth_cache *);
166 static void nfsauth_remove_dead_entry(struct auth_cache *);
167 static void nfsauth_refresh_thread(void);
168 
169 /*
170  * mountd is a server-side only daemon. This will need to be
171  * revisited if the NFS server is ever made zones-aware.
172  */
173 kmutex_t	mountd_lock;
174 door_handle_t   mountd_dh;
175 
176 void
177 mountd_args(uint_t did)
178 {
179 	mutex_enter(&mountd_lock);
180 	if (mountd_dh)
181 		door_ki_rele(mountd_dh);
182 	mountd_dh = door_ki_lookup(did);
183 	mutex_exit(&mountd_lock);
184 }
185 
186 void
187 nfsauth_init(void)
188 {
189 	/*
190 	 * mountd can be restarted by smf(5). We need to make sure
191 	 * the updated door handle will safely make it to mountd_dh
192 	 */
193 	mutex_init(&mountd_lock, NULL, MUTEX_DEFAULT, NULL);
194 
195 	mutex_init(&refreshq_lock, NULL, MUTEX_DEFAULT, NULL);
196 	list_create(&refreshq_queue, sizeof (refreshq_exi_node_t),
197 	    offsetof(refreshq_exi_node_t, ren_node));
198 	refreshq_dead_entries = NULL;
199 
200 	cv_init(&refreshq_cv, NULL, CV_DEFAULT, NULL);
201 
202 	/*
203 	 * Allocate nfsauth cache handle
204 	 */
205 	exi_cache_handle = kmem_cache_create("exi_cache_handle",
206 	    sizeof (struct auth_cache), 0, NULL, NULL,
207 	    exi_cache_reclaim, NULL, NULL, 0);
208 
209 	refreshq_thread_state = REFRESHQ_THREAD_RUNNING;
210 	(void) zthread_create(NULL, 0, nfsauth_refresh_thread,
211 	    NULL, 0, minclsyspri);
212 }
213 
214 /*
215  * Finalization routine for nfsauth. It is important to call this routine
216  * before destroying the exported_lock.
217  */
218 void
219 nfsauth_fini(void)
220 {
221 	refreshq_exi_node_t	*ren;
222 	refreshq_auth_node_t	*ran;
223 	struct auth_cache	*p;
224 	struct auth_cache	*auth_next;
225 
226 	/*
227 	 * Prevent the refreshq_thread from getting new
228 	 * work.
229 	 */
230 	mutex_enter(&refreshq_lock);
231 	if (refreshq_thread_state != REFRESHQ_THREAD_HALTED) {
232 		refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ;
233 		cv_broadcast(&refreshq_cv);
234 
235 		/*
236 		 * Also, wait for nfsauth_refresh_thread() to exit.
237 		 */
238 		while (refreshq_thread_state != REFRESHQ_THREAD_HALTED) {
239 			cv_wait(&refreshq_cv, &refreshq_lock);
240 		}
241 	}
242 
243 	/*
244 	 * Walk the exi_list and in turn, walk the
245 	 * auth_lists.
246 	 */
247 	while ((ren = list_remove_head(&refreshq_queue))) {
248 		while ((ran = list_remove_head(&ren->ren_authlist))) {
249 			kmem_free(ran, sizeof (refreshq_auth_node_t));
250 		}
251 
252 		list_destroy(&ren->ren_authlist);
253 		exi_rele(ren->ren_exi);
254 		kmem_free(ren, sizeof (refreshq_exi_node_t));
255 	}
256 
257 	/*
258 	 * Okay, now that the lists are deleted, we
259 	 * need to see if there are any dead entries
260 	 * to harvest.
261 	 */
262 	for (p = refreshq_dead_entries; p != NULL; p = auth_next) {
263 		auth_next = p->auth_next;
264 		nfsauth_free_node(p);
265 	}
266 
267 	mutex_exit(&refreshq_lock);
268 
269 	list_destroy(&refreshq_queue);
270 
271 	cv_destroy(&refreshq_cv);
272 	mutex_destroy(&refreshq_lock);
273 
274 	mutex_destroy(&mountd_lock);
275 
276 	/*
277 	 * Deallocate nfsauth cache handle
278 	 */
279 	kmem_cache_destroy(exi_cache_handle);
280 }
281 
282 /*
283  * Convert the address in a netbuf to
284  * a hash index for the auth_cache table.
285  */
286 static int
287 hash(struct netbuf *a)
288 {
289 	int i, h = 0;
290 
291 	for (i = 0; i < a->len; i++)
292 		h ^= a->buf[i];
293 
294 	return (h & (AUTH_TABLESIZE - 1));
295 }
296 
297 /*
298  * Mask out the components of an
299  * address that do not identify
300  * a host. For socket addresses the
301  * masking gets rid of the port number.
302  */
303 static void
304 addrmask(struct netbuf *addr, struct netbuf *mask)
305 {
306 	int i;
307 
308 	for (i = 0; i < addr->len; i++)
309 		addr->buf[i] &= mask->buf[i];
310 }
311 
312 /*
313  * nfsauth4_access is used for NFS V4 auth checking. Besides doing
314  * the common nfsauth_access(), it will check if the client can
315  * have a limited access to this vnode even if the security flavor
316  * used does not meet the policy.
317  */
318 int
319 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req)
320 {
321 	int access;
322 
323 	access = nfsauth_access(exi, req);
324 
325 	/*
326 	 * There are cases that the server needs to allow the client
327 	 * to have a limited view.
328 	 *
329 	 * e.g.
330 	 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw"
331 	 * /export/home is shared as "sec=sys,rw"
332 	 *
333 	 * When the client mounts /export with sec=sys, the client
334 	 * would get a limited view with RO access on /export to see
335 	 * "home" only because the client is allowed to access
336 	 * /export/home with auth_sys.
337 	 */
338 	if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
339 		/*
340 		 * Allow ro permission with LIMITED view if there is a
341 		 * sub-dir exported under vp.
342 		 */
343 		if (has_visible(exi, vp))
344 			return (NFSAUTH_LIMITED);
345 	}
346 
347 	return (access);
348 }
349 
350 static void
351 sys_log(const char *msg)
352 {
353 	static time_t	tstamp = 0;
354 	time_t		now;
355 
356 	/*
357 	 * msg is shown (at most) once per minute
358 	 */
359 	now = gethrestime_sec();
360 	if ((tstamp + 60) < now) {
361 		tstamp = now;
362 		cmn_err(CE_WARN, msg);
363 	}
364 }
365 
366 /*
367  * Callup to the mountd to get access information in the kernel.
368  */
369 static bool_t
370 nfsauth_retrieve(struct exportinfo *exi, char *req_netid, int flavor,
371     struct netbuf *addr, int *access)
372 {
373 	varg_t			  varg = {0};
374 	nfsauth_res_t		  res = {0};
375 	XDR			  xdrs_a;
376 	XDR			  xdrs_r;
377 	size_t			  absz;
378 	caddr_t			  abuf;
379 	size_t			  rbsz = (size_t)(BYTES_PER_XDR_UNIT * 2);
380 	char			  result[BYTES_PER_XDR_UNIT * 2] = {0};
381 	caddr_t			  rbuf = (caddr_t)&result;
382 	int			  last = 0;
383 	door_arg_t		  da;
384 	door_info_t		  di;
385 	door_handle_t		  dh;
386 	uint_t			  ntries = 0;
387 
388 	/*
389 	 * No entry in the cache for this client/flavor
390 	 * so we need to call the nfsauth service in the
391 	 * mount daemon.
392 	 */
393 retry:
394 	mutex_enter(&mountd_lock);
395 	dh = mountd_dh;
396 	if (dh)
397 		door_ki_hold(dh);
398 	mutex_exit(&mountd_lock);
399 
400 	if (dh == NULL) {
401 		/*
402 		 * The rendezvous point has not been established yet !
403 		 * This could mean that either mountd(1m) has not yet
404 		 * been started or that _this_ routine nuked the door
405 		 * handle after receiving an EINTR for a REVOKED door.
406 		 *
407 		 * Returning NFSAUTH_DROP will cause the NFS client
408 		 * to retransmit the request, so let's try to be more
409 		 * rescillient and attempt for ntries before we bail.
410 		 */
411 		if (++ntries % NFSAUTH_DR_TRYCNT) {
412 			delay(hz);
413 			goto retry;
414 		}
415 
416 		sys_log("nfsauth: mountd has not established door");
417 		*access = NFSAUTH_DROP;
418 		return (FALSE);
419 	}
420 
421 	ntries = 0;
422 	varg.vers = V_PROTO;
423 	varg.arg_u.arg.cmd = NFSAUTH_ACCESS;
424 	varg.arg_u.arg.areq.req_client.n_len = addr->len;
425 	varg.arg_u.arg.areq.req_client.n_bytes = addr->buf;
426 	varg.arg_u.arg.areq.req_netid = req_netid;
427 	varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path;
428 	varg.arg_u.arg.areq.req_flavor = flavor;
429 
430 	/*
431 	 * Setup the XDR stream for encoding the arguments. Notice that
432 	 * in addition to the args having variable fields (req_netid and
433 	 * req_path), the argument data structure is itself versioned,
434 	 * so we need to make sure we can size the arguments buffer
435 	 * appropriately to encode all the args. If we can't get sizing
436 	 * info _or_ properly encode the arguments, there's really no
437 	 * point in continuting, so we fail the request.
438 	 */
439 	DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg);
440 	if ((absz = xdr_sizeof(xdr_varg, (void *)&varg)) == 0) {
441 		door_ki_rele(dh);
442 		*access = NFSAUTH_DENIED;
443 		return (FALSE);
444 	}
445 
446 	abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP);
447 	xdrmem_create(&xdrs_a, abuf, absz, XDR_ENCODE);
448 	if (!xdr_varg(&xdrs_a, &varg)) {
449 		door_ki_rele(dh);
450 		goto fail;
451 	}
452 	XDR_DESTROY(&xdrs_a);
453 
454 	/*
455 	 * The result (nfsauth_res_t) is always two int's, so we don't
456 	 * have to dynamically size (or allocate) the results buffer.
457 	 * Now that we've got what we need, we prep the door arguments
458 	 * and place the call.
459 	 */
460 	da.data_ptr = (char *)abuf;
461 	da.data_size = absz;
462 	da.desc_ptr = NULL;
463 	da.desc_num = 0;
464 	da.rbuf = (char *)rbuf;
465 	da.rsize = rbsz;
466 
467 	switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) {
468 		case 0:				/* Success */
469 			if (da.data_ptr != da.rbuf && da.data_size == 0) {
470 				/*
471 				 * The door_return that contained the data
472 				 * failed ! We're here because of the 2nd
473 				 * door_return (w/o data) such that we can
474 				 * get control of the thread (and exit
475 				 * gracefully).
476 				 */
477 				DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil,
478 				    door_arg_t *, &da);
479 				door_ki_rele(dh);
480 				goto fail;
481 
482 			} else if (rbuf != da.rbuf) {
483 				/*
484 				 * The only time this should be true
485 				 * is iff userland wanted to hand us
486 				 * a bigger response than what we
487 				 * expect; that should not happen
488 				 * (nfsauth_res_t is only 2 int's),
489 				 * but we check nevertheless.
490 				 */
491 				rbuf = da.rbuf;
492 				rbsz = da.rsize;
493 
494 			} else if (rbsz > da.data_size) {
495 				/*
496 				 * We were expecting two int's; but if
497 				 * userland fails in encoding the XDR
498 				 * stream, we detect that here, since
499 				 * the mountd forces down only one byte
500 				 * in such scenario.
501 				 */
502 				door_ki_rele(dh);
503 				goto fail;
504 			}
505 			door_ki_rele(dh);
506 			break;
507 
508 		case EAGAIN:
509 			/*
510 			 * Server out of resources; back off for a bit
511 			 */
512 			door_ki_rele(dh);
513 			kmem_free(abuf, absz);
514 			delay(hz);
515 			goto retry;
516 			/* NOTREACHED */
517 
518 		case EINTR:
519 			if (!door_ki_info(dh, &di)) {
520 				if (di.di_attributes & DOOR_REVOKED) {
521 					/*
522 					 * The server barfed and revoked
523 					 * the (existing) door on us; we
524 					 * want to wait to give smf(5) a
525 					 * chance to restart mountd(1m)
526 					 * and establish a new door handle.
527 					 */
528 					mutex_enter(&mountd_lock);
529 					if (dh == mountd_dh)
530 						mountd_dh = NULL;
531 					mutex_exit(&mountd_lock);
532 					door_ki_rele(dh);
533 					kmem_free(abuf, absz);
534 					delay(hz);
535 					goto retry;
536 				}
537 				/*
538 				 * If the door was _not_ revoked on us,
539 				 * then more than likely we took an INTR,
540 				 * so we need to fail the operation.
541 				 */
542 				door_ki_rele(dh);
543 				goto fail;
544 			}
545 			/*
546 			 * The only failure that can occur from getting
547 			 * the door info is EINVAL, so we let the code
548 			 * below handle it.
549 			 */
550 			/* FALLTHROUGH */
551 
552 		case EBADF:
553 		case EINVAL:
554 		default:
555 			/*
556 			 * If we have a stale door handle, give smf a last
557 			 * chance to start it by sleeping for a little bit.
558 			 * If we're still hosed, we'll fail the call.
559 			 *
560 			 * Since we're going to reacquire the door handle
561 			 * upon the retry, we opt to sleep for a bit and
562 			 * _not_ to clear mountd_dh. If mountd restarted
563 			 * and was able to set mountd_dh, we should see
564 			 * the new instance; if not, we won't get caught
565 			 * up in the retry/DELAY loop.
566 			 */
567 			door_ki_rele(dh);
568 			if (!last) {
569 				delay(hz);
570 				last++;
571 				goto retry;
572 			}
573 			sys_log("nfsauth: stale mountd door handle");
574 			goto fail;
575 	}
576 
577 	/*
578 	 * No door errors encountered; setup the XDR stream for decoding
579 	 * the results. If we fail to decode the results, we've got no
580 	 * other recourse than to fail the request.
581 	 */
582 	xdrmem_create(&xdrs_r, rbuf, rbsz, XDR_DECODE);
583 	if (!xdr_nfsauth_res(&xdrs_r, &res))
584 		goto fail;
585 	XDR_DESTROY(&xdrs_r);
586 
587 	DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res);
588 	switch (res.stat) {
589 		case NFSAUTH_DR_OKAY:
590 			*access = res.ares.auth_perm;
591 			kmem_free(abuf, absz);
592 			break;
593 
594 		case NFSAUTH_DR_EFAIL:
595 		case NFSAUTH_DR_DECERR:
596 		case NFSAUTH_DR_BADCMD:
597 		default:
598 fail:
599 			*access = NFSAUTH_DENIED;
600 			kmem_free(abuf, absz);
601 			return (FALSE);
602 			/* NOTREACHED */
603 	}
604 
605 	return (TRUE);
606 }
607 
608 static void
609 nfsauth_refresh_thread(void)
610 {
611 	refreshq_exi_node_t	*ren;
612 	refreshq_auth_node_t	*ran;
613 
614 	struct exportinfo	*exi;
615 
616 	int			access;
617 	bool_t			retrieval;
618 
619 	callb_cpr_t		cprinfo;
620 
621 	CALLB_CPR_INIT(&cprinfo, &refreshq_lock, callb_generic_cpr,
622 	    "nfsauth_refresh");
623 
624 	for (;;) {
625 		mutex_enter(&refreshq_lock);
626 		if (refreshq_thread_state != REFRESHQ_THREAD_RUNNING) {
627 			/* Keep the hold on the lock! */
628 			break;
629 		}
630 
631 		ren = list_remove_head(&refreshq_queue);
632 		if (ren == NULL) {
633 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
634 			cv_wait(&refreshq_cv, &refreshq_lock);
635 			CALLB_CPR_SAFE_END(&cprinfo, &refreshq_lock);
636 			mutex_exit(&refreshq_lock);
637 			continue;
638 		}
639 		mutex_exit(&refreshq_lock);
640 
641 		exi = ren->ren_exi;
642 		ASSERT(exi != NULL);
643 
644 		/*
645 		 * Since the ren was removed from the refreshq_queue above,
646 		 * this is the only thread aware about the ren existence, so we
647 		 * have the exclusive ownership of it and we do not need to
648 		 * protect it by any lock.
649 		 */
650 		while ((ran = list_remove_head(&ren->ren_authlist))) {
651 
652 			struct auth_cache *p = ran->ran_auth;
653 
654 			ASSERT(p != NULL);
655 			kmem_free(ran, sizeof (refreshq_auth_node_t));
656 
657 			/*
658 			 * We are shutting down. No need to refresh
659 			 * entries which are about to be nuked.
660 			 *
661 			 * So just throw them away until we are done
662 			 * with this exi node...
663 			 */
664 			if (refreshq_thread_state != REFRESHQ_THREAD_RUNNING)
665 				continue;
666 
667 			mutex_enter(&p->auth_lock);
668 
669 			/*
670 			 * Make sure the state is valid now that
671 			 * we have the lock. Note that once we
672 			 * change the state to NFS_AUTH_REFRESHING,
673 			 * no other thread will be able to work on
674 			 * this entry.
675 			 */
676 			if (p->auth_state != NFS_AUTH_STALE) {
677 				/*
678 				 * Once it goes INVALID, it can not
679 				 * change state.
680 				 */
681 				if (p->auth_state == NFS_AUTH_INVALID) {
682 					mutex_exit(&p->auth_lock);
683 					nfsauth_remove_dead_entry(p);
684 				} else
685 					mutex_exit(&p->auth_lock);
686 
687 				continue;
688 			}
689 
690 			p->auth_state = NFS_AUTH_REFRESHING;
691 			mutex_exit(&p->auth_lock);
692 
693 			DTRACE_PROBE2(nfsauth__debug__cache__refresh,
694 			    struct exportinfo *, exi,
695 			    struct auth_cache *, p);
696 
697 			/*
698 			 * The first caching of the access rights
699 			 * is done with the netid pulled out of the
700 			 * request from the client. All subsequent
701 			 * users of the cache may or may not have
702 			 * the same netid. It doesn't matter. So
703 			 * when we refresh, we simply use the netid
704 			 * of the request which triggered the
705 			 * refresh attempt.
706 			 */
707 			ASSERT(p->auth_netid != NULL);
708 
709 			retrieval = nfsauth_retrieve(exi, p->auth_netid,
710 			    p->auth_flavor, &p->auth_addr, &access);
711 
712 			/*
713 			 * This can only be set in one other place
714 			 * and the state has to be NFS_AUTH_FRESH.
715 			 */
716 			kmem_free(p->auth_netid, strlen(p->auth_netid) + 1);
717 			p->auth_netid = NULL;
718 
719 			mutex_enter(&p->auth_lock);
720 			if (p->auth_state == NFS_AUTH_INVALID) {
721 				mutex_exit(&p->auth_lock);
722 				nfsauth_remove_dead_entry(p);
723 			} else {
724 				/*
725 				 * If we got an error, do not reset the
726 				 * time. This will cause the next access
727 				 * check for the client to reschedule this
728 				 * node.
729 				 */
730 				if (retrieval == TRUE) {
731 					p->auth_access = access;
732 					p->auth_freshness = gethrestime_sec();
733 				}
734 				p->auth_state = NFS_AUTH_FRESH;
735 				mutex_exit(&p->auth_lock);
736 			}
737 		}
738 
739 		list_destroy(&ren->ren_authlist);
740 		exi_rele(ren->ren_exi);
741 		kmem_free(ren, sizeof (refreshq_exi_node_t));
742 	}
743 
744 	refreshq_thread_state = REFRESHQ_THREAD_HALTED;
745 	cv_broadcast(&refreshq_cv);
746 	CALLB_CPR_EXIT(&cprinfo);
747 	zthread_exit();
748 }
749 
750 /*
751  * Get the access information from the cache or callup to the mountd
752  * to get and cache the access information in the kernel.
753  */
754 int
755 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor)
756 {
757 	struct netbuf		*taddrmask;
758 	struct netbuf		addr;
759 	struct netbuf		*claddr;
760 	struct auth_cache	**head;
761 	struct auth_cache	*p;
762 	int			access;
763 	time_t			refresh;
764 
765 	refreshq_exi_node_t	*ren;
766 	refreshq_auth_node_t	*ran;
767 
768 	/*
769 	 * Now check whether this client already
770 	 * has an entry for this flavor in the cache
771 	 * for this export.
772 	 * Get the caller's address, mask off the
773 	 * parts of the address that do not identify
774 	 * the host (port number, etc), and then hash
775 	 * it to find the chain of cache entries.
776 	 */
777 
778 	claddr = svc_getrpccaller(req->rq_xprt);
779 	addr = *claddr;
780 	addr.buf = kmem_alloc(addr.len, KM_SLEEP);
781 	bcopy(claddr->buf, addr.buf, claddr->len);
782 	SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask);
783 	ASSERT(taddrmask != NULL);
784 	if (taddrmask)
785 		addrmask(&addr, taddrmask);
786 
787 	rw_enter(&exi->exi_cache_lock, RW_READER);
788 	head = &exi->exi_cache[hash(&addr)];
789 	for (p = *head; p; p = p->auth_next) {
790 		if (EQADDR(&addr, &p->auth_addr) && flavor == p->auth_flavor)
791 			break;
792 	}
793 
794 	if (p != NULL) {
795 		nfsauth_cache_hit++;
796 
797 		refresh = gethrestime_sec() - p->auth_freshness;
798 		DTRACE_PROBE2(nfsauth__debug__cache__hit,
799 		    int, nfsauth_cache_hit,
800 		    time_t, refresh);
801 
802 		mutex_enter(&p->auth_lock);
803 		if ((refresh > NFSAUTH_CACHE_REFRESH) &&
804 		    p->auth_state == NFS_AUTH_FRESH) {
805 			p->auth_state = NFS_AUTH_STALE;
806 			mutex_exit(&p->auth_lock);
807 
808 			ASSERT(p->auth_netid == NULL);
809 			p->auth_netid =
810 			    strdup(svc_getnetid(req->rq_xprt));
811 
812 			nfsauth_cache_refresh++;
813 
814 			DTRACE_PROBE3(nfsauth__debug__cache__stale,
815 			    struct exportinfo *, exi,
816 			    struct auth_cache *, p,
817 			    int, nfsauth_cache_refresh);
818 
819 			ran = kmem_alloc(sizeof (refreshq_auth_node_t),
820 			    KM_SLEEP);
821 			ran->ran_auth = p;
822 
823 			mutex_enter(&refreshq_lock);
824 			/*
825 			 * We should not add a work queue
826 			 * item if the thread is not
827 			 * accepting them.
828 			 */
829 			if (refreshq_thread_state == REFRESHQ_THREAD_RUNNING) {
830 				/*
831 				 * Is there an existing exi_list?
832 				 */
833 				for (ren = list_head(&refreshq_queue);
834 				    ren != NULL;
835 				    ren = list_next(&refreshq_queue, ren)) {
836 					if (ren->ren_exi == exi) {
837 						list_insert_tail(
838 						    &ren->ren_authlist, ran);
839 						break;
840 					}
841 				}
842 
843 				if (ren == NULL) {
844 					ren = kmem_alloc(
845 					    sizeof (refreshq_exi_node_t),
846 					    KM_SLEEP);
847 
848 					exi_hold(exi);
849 					ren->ren_exi = exi;
850 
851 					list_create(&ren->ren_authlist,
852 					    sizeof (refreshq_auth_node_t),
853 					    offsetof(refreshq_auth_node_t,
854 					    ran_node));
855 
856 					list_insert_tail(&ren->ren_authlist,
857 					    ran);
858 					list_insert_tail(&refreshq_queue, ren);
859 				}
860 
861 				cv_broadcast(&refreshq_cv);
862 			} else {
863 				kmem_free(ran, sizeof (refreshq_auth_node_t));
864 			}
865 
866 			mutex_exit(&refreshq_lock);
867 		} else {
868 			mutex_exit(&p->auth_lock);
869 		}
870 
871 		access = p->auth_access;
872 		p->auth_time = gethrestime_sec();
873 
874 		rw_exit(&exi->exi_cache_lock);
875 		kmem_free(addr.buf, addr.len);
876 
877 		return (access);
878 	}
879 
880 	rw_exit(&exi->exi_cache_lock);
881 
882 	nfsauth_cache_miss++;
883 
884 	if (!nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor,
885 	    &addr, &access)) {
886 		kmem_free(addr.buf, addr.len);
887 		return (access);
888 	}
889 
890 	/*
891 	 * Now cache the result on the cache chain
892 	 * for this export (if there's enough memory)
893 	 */
894 	p = kmem_cache_alloc(exi_cache_handle, KM_NOSLEEP);
895 	if (p != NULL) {
896 		p->auth_addr = addr;
897 		p->auth_flavor = flavor;
898 		p->auth_access = access;
899 		p->auth_time = p->auth_freshness = gethrestime_sec();
900 		p->auth_state = NFS_AUTH_FRESH;
901 		p->auth_netid = NULL;
902 		mutex_init(&p->auth_lock, NULL, MUTEX_DEFAULT, NULL);
903 
904 		rw_enter(&exi->exi_cache_lock, RW_WRITER);
905 		p->auth_next = *head;
906 		*head = p;
907 		rw_exit(&exi->exi_cache_lock);
908 	} else {
909 		kmem_free(addr.buf, addr.len);
910 	}
911 
912 	return (access);
913 }
914 
915 /*
916  * Check if the requesting client has access to the filesystem with
917  * a given nfs flavor number which is an explicitly shared flavor.
918  */
919 int
920 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req,
921 			int flavor, int perm)
922 {
923 	int access;
924 
925 	if (! (perm & M_4SEC_EXPORTED)) {
926 		return (NFSAUTH_DENIED);
927 	}
928 
929 	/*
930 	 * Optimize if there are no lists
931 	 */
932 	if ((perm & (M_ROOT|M_NONE)) == 0) {
933 		perm &= ~M_4SEC_EXPORTED;
934 		if (perm == M_RO)
935 			return (NFSAUTH_RO);
936 		if (perm == M_RW)
937 			return (NFSAUTH_RW);
938 	}
939 
940 	access = nfsauth_cache_get(exi, req, flavor);
941 
942 	return (access);
943 }
944 
945 int
946 nfsauth_access(struct exportinfo *exi, struct svc_req *req)
947 {
948 	int access, mapaccess;
949 	struct secinfo *sp;
950 	int i, flavor, perm;
951 	int authnone_entry = -1;
952 
953 	/*
954 	 *  Get the nfs flavor number from xprt.
955 	 */
956 	flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie;
957 
958 	/*
959 	 * First check the access restrictions on the filesystem.  If
960 	 * there are no lists associated with this flavor then there's no
961 	 * need to make an expensive call to the nfsauth service or to
962 	 * cache anything.
963 	 */
964 
965 	sp = exi->exi_export.ex_secinfo;
966 	for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
967 		if (flavor != sp[i].s_secinfo.sc_nfsnum) {
968 			if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE)
969 				authnone_entry = i;
970 			continue;
971 		}
972 		break;
973 	}
974 
975 	mapaccess = 0;
976 
977 	if (i >= exi->exi_export.ex_seccnt) {
978 		/*
979 		 * Flavor not found, but use AUTH_NONE if it exists
980 		 */
981 		if (authnone_entry == -1)
982 			return (NFSAUTH_DENIED);
983 		flavor = AUTH_NONE;
984 		mapaccess = NFSAUTH_MAPNONE;
985 		i = authnone_entry;
986 	}
987 
988 	/*
989 	 * If the flavor is in the ex_secinfo list, but not an explicitly
990 	 * shared flavor by the user, it is a result of the nfsv4 server
991 	 * namespace setup. We will grant an RO permission similar for
992 	 * a pseudo node except that this node is a shared one.
993 	 *
994 	 * e.g. flavor in (flavor) indicates that it is not explictly
995 	 *	shared by the user:
996 	 *
997 	 *		/	(sys, krb5)
998 	 *		|
999 	 *		export  #share -o sec=sys (krb5)
1000 	 *		|
1001 	 *		secure  #share -o sec=krb5
1002 	 *
1003 	 *	In this case, when a krb5 request coming in to access
1004 	 *	/export, RO permission is granted.
1005 	 */
1006 	if (!(sp[i].s_flags & M_4SEC_EXPORTED))
1007 		return (mapaccess | NFSAUTH_RO);
1008 
1009 	/*
1010 	 * Optimize if there are no lists
1011 	 */
1012 	perm = sp[i].s_flags;
1013 	if ((perm & (M_ROOT|M_NONE)) == 0) {
1014 		perm &= ~M_4SEC_EXPORTED;
1015 		if (perm == M_RO)
1016 			return (mapaccess | NFSAUTH_RO);
1017 		if (perm == M_RW)
1018 			return (mapaccess | NFSAUTH_RW);
1019 	}
1020 
1021 	access = nfsauth_cache_get(exi, req, flavor);
1022 
1023 	/*
1024 	 * Client's security flavor doesn't match with "ro" or
1025 	 * "rw" list. Try again using AUTH_NONE if present.
1026 	 */
1027 	if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) {
1028 		/*
1029 		 * Have we already encountered AUTH_NONE ?
1030 		 */
1031 		if (authnone_entry != -1) {
1032 			mapaccess = NFSAUTH_MAPNONE;
1033 			access = nfsauth_cache_get(exi, req, AUTH_NONE);
1034 		} else {
1035 			/*
1036 			 * Check for AUTH_NONE presence.
1037 			 */
1038 			for (; i < exi->exi_export.ex_seccnt; i++) {
1039 				if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) {
1040 					mapaccess = NFSAUTH_MAPNONE;
1041 					access = nfsauth_cache_get(exi, req,
1042 					    AUTH_NONE);
1043 					break;
1044 				}
1045 			}
1046 		}
1047 	}
1048 
1049 	if (access & NFSAUTH_DENIED)
1050 		access = NFSAUTH_DENIED;
1051 
1052 	return (access | mapaccess);
1053 }
1054 
1055 static void
1056 nfsauth_free_node(struct auth_cache *p)
1057 {
1058 	if (p->auth_netid != NULL)
1059 		kmem_free(p->auth_netid, strlen(p->auth_netid) + 1);
1060 	kmem_free(p->auth_addr.buf, p->auth_addr.len);
1061 	mutex_destroy(&p->auth_lock);
1062 	kmem_cache_free(exi_cache_handle, (void *)p);
1063 }
1064 
1065 /*
1066  * Remove the dead entry from the refreshq_dead_entries
1067  * list.
1068  */
1069 static void
1070 nfsauth_remove_dead_entry(struct auth_cache *dead)
1071 {
1072 	struct auth_cache	*p;
1073 	struct auth_cache	*prev;
1074 	struct auth_cache	*next;
1075 
1076 	mutex_enter(&refreshq_lock);
1077 	prev = NULL;
1078 	for (p = refreshq_dead_entries; p != NULL; p = next) {
1079 		next = p->auth_next;
1080 
1081 		if (p == dead) {
1082 			if (prev == NULL)
1083 				refreshq_dead_entries = next;
1084 			else
1085 				prev->auth_next = next;
1086 
1087 			nfsauth_free_node(dead);
1088 			break;
1089 		}
1090 
1091 		prev = p;
1092 	}
1093 	mutex_exit(&refreshq_lock);
1094 }
1095 
1096 /*
1097  * Free the nfsauth cache for a given export
1098  */
1099 void
1100 nfsauth_cache_free(struct exportinfo *exi)
1101 {
1102 	int i;
1103 	struct auth_cache *p, *next;
1104 
1105 	for (i = 0; i < AUTH_TABLESIZE; i++) {
1106 		for (p = exi->exi_cache[i]; p; p = next) {
1107 			next = p->auth_next;
1108 
1109 			/*
1110 			 * The only way we got here
1111 			 * was with an exi_rele, which
1112 			 * means that no auth cache entry
1113 			 * is being refreshed.
1114 			 */
1115 			nfsauth_free_node(p);
1116 		}
1117 	}
1118 }
1119 
1120 /*
1121  * Called by the kernel memory allocator when
1122  * memory is low. Free unused cache entries.
1123  * If that's not enough, the VM system will
1124  * call again for some more.
1125  */
1126 /*ARGSUSED*/
1127 void
1128 exi_cache_reclaim(void *cdrarg)
1129 {
1130 	int i;
1131 	struct exportinfo *exi;
1132 
1133 	rw_enter(&exported_lock, RW_READER);
1134 
1135 	for (i = 0; i < EXPTABLESIZE; i++) {
1136 		for (exi = exptable[i]; exi; exi = exi->fid_hash.next) {
1137 			exi_cache_trim(exi);
1138 		}
1139 	}
1140 	nfsauth_cache_reclaim++;
1141 
1142 	rw_exit(&exported_lock);
1143 }
1144 
1145 void
1146 exi_cache_trim(struct exportinfo *exi)
1147 {
1148 	struct auth_cache *p;
1149 	struct auth_cache *prev, *next;
1150 	int i;
1151 	time_t stale_time;
1152 
1153 	stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM;
1154 
1155 	rw_enter(&exi->exi_cache_lock, RW_WRITER);
1156 
1157 	for (i = 0; i < AUTH_TABLESIZE; i++) {
1158 
1159 		/*
1160 		 * Free entries that have not been
1161 		 * used for NFSAUTH_CACHE_TRIM seconds.
1162 		 */
1163 		prev = NULL;
1164 		for (p = exi->exi_cache[i]; p; p = next) {
1165 			next = p->auth_next;
1166 			if (p->auth_time > stale_time) {
1167 				prev = p;
1168 				continue;
1169 			}
1170 
1171 			mutex_enter(&p->auth_lock);
1172 			DTRACE_PROBE1(nfsauth__debug__trim__state,
1173 			    auth_state_t, p->auth_state);
1174 
1175 			if (p->auth_state != NFS_AUTH_FRESH) {
1176 				p->auth_state = NFS_AUTH_INVALID;
1177 				mutex_exit(&p->auth_lock);
1178 
1179 				mutex_enter(&refreshq_lock);
1180 				p->auth_next = refreshq_dead_entries;
1181 				refreshq_dead_entries = p;
1182 				mutex_exit(&refreshq_lock);
1183 			} else {
1184 				mutex_exit(&p->auth_lock);
1185 				nfsauth_free_node(p);
1186 			}
1187 
1188 			if (prev == NULL)
1189 				exi->exi_cache[i] = next;
1190 			else
1191 				prev->auth_next = next;
1192 		}
1193 	}
1194 
1195 	rw_exit(&exi->exi_cache_lock);
1196 }
1197