1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016 STRATO AG. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 /* 31 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 32 * Use is subject to license terms. 33 */ 34 35 /* 36 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 37 * All Rights Reserved 38 */ 39 40 /* 41 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 42 */ 43 44 #include <sys/param.h> 45 #include <sys/types.h> 46 #include <sys/systm.h> 47 #include <sys/cred.h> 48 #include <sys/time.h> 49 #include <sys/vnode.h> 50 #include <sys/vfs.h> 51 #include <sys/vfs_opreg.h> 52 #include <sys/file.h> 53 #include <sys/filio.h> 54 #include <sys/uio.h> 55 #include <sys/buf.h> 56 #include <sys/mman.h> 57 #include <sys/pathname.h> 58 #include <sys/dirent.h> 59 #include <sys/debug.h> 60 #include <sys/vmsystm.h> 61 #include <sys/fcntl.h> 62 #include <sys/flock.h> 63 #include <sys/swap.h> 64 #include <sys/errno.h> 65 #include <sys/strsubr.h> 66 #include <sys/sysmacros.h> 67 #include <sys/kmem.h> 68 #include <sys/cmn_err.h> 69 #include <sys/pathconf.h> 70 #include <sys/utsname.h> 71 #include <sys/dnlc.h> 72 #include <sys/acl.h> 73 #include <sys/systeminfo.h> 74 #include <sys/policy.h> 75 #include <sys/sdt.h> 76 #include <sys/list.h> 77 #include <sys/stat.h> 78 #include <sys/zone.h> 79 80 #include <rpc/types.h> 81 #include <rpc/auth.h> 82 #include <rpc/clnt.h> 83 84 #include <nfs/nfs.h> 85 #include <nfs/nfs_clnt.h> 86 #include <nfs/nfs_acl.h> 87 #include <nfs/lm.h> 88 #include <nfs/nfs4.h> 89 #include <nfs/nfs4_kprot.h> 90 #include <nfs/rnode4.h> 91 #include <nfs/nfs4_clnt.h> 92 93 #include <vm/hat.h> 94 #include <vm/as.h> 95 #include <vm/page.h> 96 #include <vm/pvn.h> 97 #include <vm/seg.h> 98 #include <vm/seg_map.h> 99 #include <vm/seg_kpm.h> 100 #include <vm/seg_vn.h> 101 102 #include <fs/fs_subr.h> 103 104 #include <sys/ddi.h> 105 #include <sys/int_fmtio.h> 106 #include <sys/fs/autofs.h> 107 108 typedef struct { 109 nfs4_ga_res_t *di_garp; 110 cred_t *di_cred; 111 hrtime_t di_time_call; 112 } dirattr_info_t; 113 114 typedef enum nfs4_acl_op { 115 NFS4_ACL_GET, 116 NFS4_ACL_SET 117 } nfs4_acl_op_t; 118 119 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *); 120 121 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 122 char *, dirattr_info_t *); 123 124 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 125 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 126 nfs4_error_t *, int *); 127 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 128 cred_t *); 129 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 130 stable_how4 *); 131 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 132 cred_t *, bool_t, struct uio *); 133 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 134 vsecattr_t *); 135 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 136 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 137 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 138 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 139 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 140 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 141 int, vnode_t **, cred_t *); 142 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 143 cred_t *, int, int, enum createmode4, int); 144 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 145 caller_context_t *); 146 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 147 vnode_t *, char *, cred_t *, nfsstat4 *); 148 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 149 vnode_t *, char *, cred_t *, nfsstat4 *); 150 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 151 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 152 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 153 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 154 page_t *[], size_t, struct seg *, caddr_t, 155 enum seg_rw, cred_t *); 156 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 157 cred_t *); 158 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 159 int, cred_t *); 160 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 161 int, cred_t *); 162 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 163 static void nfs4_set_mod(vnode_t *); 164 static void nfs4_get_commit(vnode_t *); 165 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 166 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 167 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 168 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 169 cred_t *); 170 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 171 cred_t *); 172 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 173 hrtime_t, vnode_t *, cred_t *); 174 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 175 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 176 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 177 u_offset_t); 178 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 179 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 180 static cred_t *state_to_cred(nfs4_open_stream_t *); 181 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 182 static pid_t lo_to_pid(lock_owner4 *); 183 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 184 cred_t *, nfs4_lock_owner_t *); 185 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 186 nfs4_lock_owner_t *); 187 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 188 static void nfs4_delmap_callback(struct as *, void *, uint_t); 189 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 190 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 191 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 192 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 193 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 194 uid_t, gid_t, int); 195 196 /* 197 * Routines that implement the setting of v4 args for the misc. ops 198 */ 199 static void nfs4args_lock_free(nfs_argop4 *); 200 static void nfs4args_lockt_free(nfs_argop4 *); 201 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 202 int, rnode4_t *, cred_t *, bitmap4, int *, 203 nfs4_stateid_types_t *); 204 static void nfs4args_setattr_free(nfs_argop4 *); 205 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 206 bitmap4); 207 static void nfs4args_verify_free(nfs_argop4 *); 208 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 209 WRITE4args **, nfs4_stateid_types_t *); 210 211 /* 212 * These are the vnode ops functions that implement the vnode interface to 213 * the networked file system. See more comments below at nfs4_vnodeops. 214 */ 215 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 216 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 217 caller_context_t *); 218 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 219 caller_context_t *); 220 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 221 caller_context_t *); 222 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 223 caller_context_t *); 224 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 225 caller_context_t *); 226 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 227 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 228 caller_context_t *); 229 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 230 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 231 int, vnode_t **, cred_t *, int, caller_context_t *, 232 vsecattr_t *); 233 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 234 int); 235 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 236 caller_context_t *, int); 237 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 238 caller_context_t *, int); 239 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 240 cred_t *, caller_context_t *, int, vsecattr_t *); 241 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 242 caller_context_t *, int); 243 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 244 cred_t *, caller_context_t *, int); 245 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 246 caller_context_t *, int); 247 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 248 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 249 page_t *[], size_t, struct seg *, caddr_t, 250 enum seg_rw, cred_t *, caller_context_t *); 251 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 252 caller_context_t *); 253 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 254 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 255 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 256 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 257 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 258 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 259 struct flk_callback *, cred_t *, caller_context_t *); 260 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 261 cred_t *, caller_context_t *); 262 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 263 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 264 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 265 cred_t *, caller_context_t *); 266 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 267 caller_context_t *); 268 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 269 caller_context_t *); 270 /* 271 * These vnode ops are required to be called from outside this source file, 272 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 273 * as static. 274 */ 275 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 276 caller_context_t *); 277 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 278 int nfs4_lookup(vnode_t *, char *, vnode_t **, 279 struct pathname *, int, vnode_t *, cred_t *, 280 caller_context_t *, int *, pathname_t *); 281 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 282 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 283 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 284 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 285 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 286 caller_context_t *); 287 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 288 caller_context_t *); 289 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 290 caller_context_t *); 291 292 /* 293 * Used for nfs4_commit_vp() to indicate if we should 294 * wait on pending writes. 295 */ 296 #define NFS4_WRITE_NOWAIT 0 297 #define NFS4_WRITE_WAIT 1 298 299 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 300 301 /* 302 * Error flags used to pass information about certain special errors 303 * which need to be handled specially. 304 */ 305 #define NFS_EOF -98 306 #define NFS_VERF_MISMATCH -97 307 308 /* 309 * Flags used to differentiate between which operation drove the 310 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 311 */ 312 #define NFS4_CLOSE_OP 0x1 313 #define NFS4_DELMAP_OP 0x2 314 #define NFS4_INACTIVE_OP 0x3 315 316 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 317 318 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 319 #define ALIGN64(x, ptr, sz) \ 320 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 321 if (x) { \ 322 x = sizeof (uint64_t) - (x); \ 323 sz -= (x); \ 324 ptr += (x); \ 325 } 326 327 #ifdef DEBUG 328 int nfs4_client_attr_debug = 0; 329 int nfs4_client_state_debug = 0; 330 int nfs4_client_shadow_debug = 0; 331 int nfs4_client_lock_debug = 0; 332 int nfs4_seqid_sync = 0; 333 int nfs4_client_map_debug = 0; 334 static int nfs4_pageio_debug = 0; 335 int nfs4_client_inactive_debug = 0; 336 int nfs4_client_recov_debug = 0; 337 int nfs4_client_failover_debug = 0; 338 int nfs4_client_call_debug = 0; 339 int nfs4_client_lookup_debug = 0; 340 int nfs4_client_zone_debug = 0; 341 int nfs4_lost_rqst_debug = 0; 342 int nfs4_rdattrerr_debug = 0; 343 int nfs4_open_stream_debug = 0; 344 345 int nfs4read_error_inject; 346 347 static int nfs4_create_misses = 0; 348 349 static int nfs4_readdir_cache_shorts = 0; 350 static int nfs4_readdir_readahead = 0; 351 352 static int nfs4_bio_do_stop = 0; 353 354 static int nfs4_lostpage = 0; /* number of times we lost original page */ 355 356 int nfs4_mmap_debug = 0; 357 358 static int nfs4_pathconf_cache_hits = 0; 359 static int nfs4_pathconf_cache_misses = 0; 360 361 int nfs4close_all_cnt; 362 int nfs4close_one_debug = 0; 363 int nfs4close_notw_debug = 0; 364 365 int denied_to_flk_debug = 0; 366 void *lockt_denied_debug; 367 368 #endif 369 370 /* 371 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 372 * or NFS4ERR_RESOURCE. 373 */ 374 static int confirm_retry_sec = 30; 375 376 static int nfs4_lookup_neg_cache = 1; 377 378 /* 379 * number of pages to read ahead 380 * optimized for 100 base-T. 381 */ 382 static int nfs4_nra = 4; 383 384 static int nfs4_do_symlink_cache = 1; 385 386 static int nfs4_pathconf_disable_cache = 0; 387 388 /* 389 * These are the vnode ops routines which implement the vnode interface to 390 * the networked file system. These routines just take their parameters, 391 * make them look networkish by putting the right info into interface structs, 392 * and then calling the appropriate remote routine(s) to do the work. 393 * 394 * Note on directory name lookup cacheing: If we detect a stale fhandle, 395 * we purge the directory cache relative to that vnode. This way, the 396 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 397 * more details on rnode locking. 398 */ 399 400 struct vnodeops *nfs4_vnodeops; 401 402 const fs_operation_def_t nfs4_vnodeops_template[] = { 403 VOPNAME_OPEN, { .vop_open = nfs4_open }, 404 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 405 VOPNAME_READ, { .vop_read = nfs4_read }, 406 VOPNAME_WRITE, { .vop_write = nfs4_write }, 407 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 408 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 409 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 410 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 411 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 412 VOPNAME_CREATE, { .vop_create = nfs4_create }, 413 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 414 VOPNAME_LINK, { .vop_link = nfs4_link }, 415 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 416 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 417 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 418 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 419 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 420 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 421 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 422 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 423 VOPNAME_FID, { .vop_fid = nfs4_fid }, 424 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 425 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 426 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 427 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 428 VOPNAME_SPACE, { .vop_space = nfs4_space }, 429 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 430 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 431 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 432 VOPNAME_MAP, { .vop_map = nfs4_map }, 433 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 434 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 435 /* no separate nfs4_dump */ 436 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 437 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 438 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 439 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 440 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 441 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 442 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 443 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 444 NULL, NULL 445 }; 446 447 /* 448 * The following are subroutines and definitions to set args or get res 449 * for the different nfsv4 ops 450 */ 451 452 void 453 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 454 { 455 int i; 456 457 for (i = 0; i < arglen; i++) { 458 if (argop[i].argop == OP_LOOKUP) { 459 kmem_free( 460 argop[i].nfs_argop4_u.oplookup. 461 objname.utf8string_val, 462 argop[i].nfs_argop4_u.oplookup. 463 objname.utf8string_len); 464 } 465 } 466 } 467 468 static void 469 nfs4args_lock_free(nfs_argop4 *argop) 470 { 471 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 472 473 if (locker->new_lock_owner == TRUE) { 474 open_to_lock_owner4 *open_owner; 475 476 open_owner = &locker->locker4_u.open_owner; 477 if (open_owner->lock_owner.owner_val != NULL) { 478 kmem_free(open_owner->lock_owner.owner_val, 479 open_owner->lock_owner.owner_len); 480 } 481 } 482 } 483 484 static void 485 nfs4args_lockt_free(nfs_argop4 *argop) 486 { 487 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 488 489 if (lowner->owner_val != NULL) { 490 kmem_free(lowner->owner_val, lowner->owner_len); 491 } 492 } 493 494 static void 495 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 496 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 497 nfs4_stateid_types_t *sid_types) 498 { 499 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 500 mntinfo4_t *mi; 501 502 argop->argop = OP_SETATTR; 503 /* 504 * The stateid is set to 0 if client is not modifying the size 505 * and otherwise to whatever nfs4_get_stateid() returns. 506 * 507 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 508 * state struct could be found for the process/file pair. We may 509 * want to change this in the future (by OPENing the file). See 510 * bug # 4474852. 511 */ 512 if (vap->va_mask & AT_SIZE) { 513 514 ASSERT(rp != NULL); 515 mi = VTOMI4(RTOV4(rp)); 516 517 argop->nfs_argop4_u.opsetattr.stateid = 518 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 519 OP_SETATTR, sid_types, FALSE); 520 } else { 521 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 522 sizeof (stateid4)); 523 } 524 525 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 526 if (*error) 527 bzero(attr, sizeof (*attr)); 528 } 529 530 static void 531 nfs4args_setattr_free(nfs_argop4 *argop) 532 { 533 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 534 } 535 536 static int 537 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 538 bitmap4 supp) 539 { 540 fattr4 *attr; 541 int error = 0; 542 543 argop->argop = op; 544 switch (op) { 545 case OP_VERIFY: 546 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 547 break; 548 case OP_NVERIFY: 549 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 550 break; 551 default: 552 return (EINVAL); 553 } 554 if (!error) 555 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 556 if (error) 557 bzero(attr, sizeof (*attr)); 558 return (error); 559 } 560 561 static void 562 nfs4args_verify_free(nfs_argop4 *argop) 563 { 564 switch (argop->argop) { 565 case OP_VERIFY: 566 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 567 break; 568 case OP_NVERIFY: 569 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 570 break; 571 default: 572 break; 573 } 574 } 575 576 static void 577 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 578 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 579 { 580 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 581 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 582 583 argop->argop = OP_WRITE; 584 wargs->stable = stable; 585 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 586 mi, OP_WRITE, sid_tp); 587 wargs->mblk = NULL; 588 *wargs_pp = wargs; 589 } 590 591 void 592 nfs4args_copen_free(OPEN4cargs *open_args) 593 { 594 if (open_args->owner.owner_val) { 595 kmem_free(open_args->owner.owner_val, 596 open_args->owner.owner_len); 597 } 598 if ((open_args->opentype == OPEN4_CREATE) && 599 (open_args->mode != EXCLUSIVE4)) { 600 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 601 } 602 } 603 604 /* 605 * XXX: This is referenced in modstubs.s 606 */ 607 struct vnodeops * 608 nfs4_getvnodeops(void) 609 { 610 return (nfs4_vnodeops); 611 } 612 613 /* 614 * The OPEN operation opens a regular file. 615 */ 616 /*ARGSUSED3*/ 617 static int 618 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 619 { 620 vnode_t *dvp = NULL; 621 rnode4_t *rp, *drp; 622 int error; 623 int just_been_created; 624 char fn[MAXNAMELEN]; 625 626 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 627 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 628 return (EIO); 629 rp = VTOR4(*vpp); 630 631 /* 632 * Check to see if opening something besides a regular file; 633 * if so skip the OTW call 634 */ 635 if ((*vpp)->v_type != VREG) { 636 error = nfs4_open_non_reg_file(vpp, flag, cr); 637 return (error); 638 } 639 640 /* 641 * XXX - would like a check right here to know if the file is 642 * executable or not, so as to skip OTW 643 */ 644 645 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 646 return (error); 647 648 drp = VTOR4(dvp); 649 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 650 return (EINTR); 651 652 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 653 nfs_rw_exit(&drp->r_rwlock); 654 return (error); 655 } 656 657 /* 658 * See if this file has just been CREATEd. 659 * If so, clear the flag and update the dnlc, which was previously 660 * skipped in nfs4_create. 661 * XXX need better serilization on this. 662 * XXX move this into the nf4open_otw call, after we have 663 * XXX acquired the open owner seqid sync. 664 */ 665 mutex_enter(&rp->r_statev4_lock); 666 if (rp->created_v4) { 667 rp->created_v4 = 0; 668 mutex_exit(&rp->r_statev4_lock); 669 670 dnlc_update(dvp, fn, *vpp); 671 /* This is needed so we don't bump the open ref count */ 672 just_been_created = 1; 673 } else { 674 mutex_exit(&rp->r_statev4_lock); 675 just_been_created = 0; 676 } 677 678 /* 679 * If caller specified O_TRUNC/FTRUNC, then be sure to set 680 * FWRITE (to drive successful setattr(size=0) after open) 681 */ 682 if (flag & FTRUNC) 683 flag |= FWRITE; 684 685 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 686 just_been_created); 687 688 if (!error && !((*vpp)->v_flag & VROOT)) 689 dnlc_update(dvp, fn, *vpp); 690 691 nfs_rw_exit(&drp->r_rwlock); 692 693 /* release the hold from vtodv */ 694 VN_RELE(dvp); 695 696 /* exchange the shadow for the master vnode, if needed */ 697 698 if (error == 0 && IS_SHADOW(*vpp, rp)) 699 sv_exchange(vpp); 700 701 return (error); 702 } 703 704 /* 705 * See if there's a "lost open" request to be saved and recovered. 706 */ 707 static void 708 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 709 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 710 vnode_t *dvp, OPEN4cargs *open_args) 711 { 712 vfs_t *vfsp; 713 char *srccfp; 714 715 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 716 717 if (error != ETIMEDOUT && error != EINTR && 718 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 719 lost_rqstp->lr_op = 0; 720 return; 721 } 722 723 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 724 "nfs4open_save_lost_rqst: error %d", error)); 725 726 lost_rqstp->lr_op = OP_OPEN; 727 728 /* 729 * The vp (if it is not NULL) and dvp are held and rele'd via 730 * the recovery code. See nfs4_save_lost_rqst. 731 */ 732 lost_rqstp->lr_vp = vp; 733 lost_rqstp->lr_dvp = dvp; 734 lost_rqstp->lr_oop = oop; 735 lost_rqstp->lr_osp = NULL; 736 lost_rqstp->lr_lop = NULL; 737 lost_rqstp->lr_cr = cr; 738 lost_rqstp->lr_flk = NULL; 739 lost_rqstp->lr_oacc = open_args->share_access; 740 lost_rqstp->lr_odeny = open_args->share_deny; 741 lost_rqstp->lr_oclaim = open_args->claim; 742 if (open_args->claim == CLAIM_DELEGATE_CUR) { 743 lost_rqstp->lr_ostateid = 744 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 745 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 746 } else { 747 srccfp = open_args->open_claim4_u.cfile; 748 } 749 lost_rqstp->lr_ofile.utf8string_len = 0; 750 lost_rqstp->lr_ofile.utf8string_val = NULL; 751 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 752 lost_rqstp->lr_putfirst = FALSE; 753 } 754 755 struct nfs4_excl_time { 756 uint32 seconds; 757 uint32 nseconds; 758 }; 759 760 /* 761 * The OPEN operation creates and/or opens a regular file 762 * 763 * ARGSUSED 764 */ 765 static int 766 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 767 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 768 enum createmode4 createmode, int file_just_been_created) 769 { 770 rnode4_t *rp; 771 rnode4_t *drp = VTOR4(dvp); 772 vnode_t *vp = NULL; 773 vnode_t *vpi = *vpp; 774 bool_t needrecov = FALSE; 775 776 int doqueue = 1; 777 778 COMPOUND4args_clnt args; 779 COMPOUND4res_clnt res; 780 nfs_argop4 *argop; 781 nfs_resop4 *resop; 782 int argoplist_size; 783 int idx_open, idx_fattr; 784 785 GETFH4res *gf_res = NULL; 786 OPEN4res *op_res = NULL; 787 nfs4_ga_res_t *garp; 788 fattr4 *attr = NULL; 789 struct nfs4_excl_time verf; 790 bool_t did_excl_setup = FALSE; 791 int created_osp; 792 793 OPEN4cargs *open_args; 794 nfs4_open_owner_t *oop = NULL; 795 nfs4_open_stream_t *osp = NULL; 796 seqid4 seqid = 0; 797 bool_t retry_open = FALSE; 798 nfs4_recov_state_t recov_state; 799 nfs4_lost_rqst_t lost_rqst; 800 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 801 hrtime_t t; 802 int acc = 0; 803 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 804 cred_t *ncr = NULL; 805 806 nfs4_sharedfh_t *otw_sfh; 807 nfs4_sharedfh_t *orig_sfh; 808 int fh_differs = 0; 809 int numops, setgid_flag; 810 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 811 812 /* 813 * Make sure we properly deal with setting the right gid on 814 * a newly created file to reflect the parent's setgid bit 815 */ 816 setgid_flag = 0; 817 if (create_flag && in_va) { 818 819 /* 820 * If there is grpid mount flag used or 821 * the parent's directory has the setgid bit set 822 * _and_ the client was able to get a valid mapping 823 * for the parent dir's owner_group, we want to 824 * append NVERIFY(owner_group == dva.va_gid) and 825 * SETATTR to the CREATE compound. 826 */ 827 mutex_enter(&drp->r_statelock); 828 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID || 829 drp->r_attr.va_mode & VSGID) && 830 drp->r_attr.va_gid != GID_NOBODY) { 831 in_va->va_mask |= AT_GID; 832 in_va->va_gid = drp->r_attr.va_gid; 833 setgid_flag = 1; 834 } 835 mutex_exit(&drp->r_statelock); 836 } 837 838 /* 839 * Normal/non-create compound: 840 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 841 * 842 * Open(create) compound no setgid: 843 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 844 * RESTOREFH + GETATTR 845 * 846 * Open(create) setgid: 847 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 848 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 849 * NVERIFY(grp) + SETATTR 850 */ 851 if (setgid_flag) { 852 numops = 10; 853 idx_open = 1; 854 idx_fattr = 3; 855 } else if (create_flag) { 856 numops = 7; 857 idx_open = 2; 858 idx_fattr = 4; 859 } else { 860 numops = 4; 861 idx_open = 1; 862 idx_fattr = 3; 863 } 864 865 args.array_len = numops; 866 argoplist_size = numops * sizeof (nfs_argop4); 867 argop = kmem_alloc(argoplist_size, KM_SLEEP); 868 869 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 870 "open %s open flag 0x%x cred %p", file_name, open_flag, 871 (void *)cr)); 872 873 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 874 if (create_flag) { 875 /* 876 * We are to create a file. Initialize the passed in vnode 877 * pointer. 878 */ 879 vpi = NULL; 880 } else { 881 /* 882 * Check to see if the client owns a read delegation and is 883 * trying to open for write. If so, then return the delegation 884 * to avoid the server doing a cb_recall and returning DELAY. 885 * NB - we don't use the statev4_lock here because we'd have 886 * to drop the lock anyway and the result would be stale. 887 */ 888 if ((open_flag & FWRITE) && 889 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 890 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 891 892 /* 893 * If the file has a delegation, then do an access check up 894 * front. This avoids having to an access check later after 895 * we've already done start_op, which could deadlock. 896 */ 897 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 898 if (open_flag & FREAD && 899 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 900 acc |= VREAD; 901 if (open_flag & FWRITE && 902 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 903 acc |= VWRITE; 904 } 905 } 906 907 drp = VTOR4(dvp); 908 909 recov_state.rs_flags = 0; 910 recov_state.rs_num_retry_despite_err = 0; 911 cred_otw = cr; 912 913 recov_retry: 914 fh_differs = 0; 915 nfs4_error_zinit(&e); 916 917 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 918 if (e.error) { 919 if (ncr != NULL) 920 crfree(ncr); 921 kmem_free(argop, argoplist_size); 922 return (e.error); 923 } 924 925 args.ctag = TAG_OPEN; 926 args.array_len = numops; 927 args.array = argop; 928 929 /* putfh directory fh */ 930 argop[0].argop = OP_CPUTFH; 931 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 932 933 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 934 argop[idx_open].argop = OP_COPEN; 935 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 936 open_args->claim = CLAIM_NULL; 937 938 /* name of file */ 939 open_args->open_claim4_u.cfile = file_name; 940 open_args->owner.owner_len = 0; 941 open_args->owner.owner_val = NULL; 942 943 if (create_flag) { 944 /* CREATE a file */ 945 open_args->opentype = OPEN4_CREATE; 946 open_args->mode = createmode; 947 if (createmode == EXCLUSIVE4) { 948 if (did_excl_setup == FALSE) { 949 verf.seconds = zone_get_hostid(NULL); 950 if (verf.seconds != 0) 951 verf.nseconds = newnum(); 952 else { 953 timestruc_t now; 954 955 gethrestime(&now); 956 verf.seconds = now.tv_sec; 957 verf.nseconds = now.tv_nsec; 958 } 959 /* 960 * Since the server will use this value for the 961 * mtime, make sure that it can't overflow. Zero 962 * out the MSB. The actual value does not matter 963 * here, only its uniqeness. 964 */ 965 verf.seconds &= INT32_MAX; 966 did_excl_setup = TRUE; 967 } 968 969 /* Now copy over verifier to OPEN4args. */ 970 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 971 } else { 972 int v_error; 973 bitmap4 supp_attrs; 974 servinfo4_t *svp; 975 976 attr = &open_args->createhow4_u.createattrs; 977 978 svp = drp->r_server; 979 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 980 supp_attrs = svp->sv_supp_attrs; 981 nfs_rw_exit(&svp->sv_lock); 982 983 /* GUARDED4 or UNCHECKED4 */ 984 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 985 supp_attrs); 986 if (v_error) { 987 bzero(attr, sizeof (*attr)); 988 nfs4args_copen_free(open_args); 989 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 990 &recov_state, FALSE); 991 if (ncr != NULL) 992 crfree(ncr); 993 kmem_free(argop, argoplist_size); 994 return (v_error); 995 } 996 } 997 } else { 998 /* NO CREATE */ 999 open_args->opentype = OPEN4_NOCREATE; 1000 } 1001 1002 if (recov_state.rs_sp != NULL) { 1003 mutex_enter(&recov_state.rs_sp->s_lock); 1004 open_args->owner.clientid = recov_state.rs_sp->clientid; 1005 mutex_exit(&recov_state.rs_sp->s_lock); 1006 } else { 1007 /* XXX should we just fail here? */ 1008 open_args->owner.clientid = 0; 1009 } 1010 1011 /* 1012 * This increments oop's ref count or creates a temporary 'just_created' 1013 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 1014 * completes. 1015 */ 1016 mutex_enter(&VTOMI4(dvp)->mi_lock); 1017 1018 /* See if a permanent or just created open owner exists */ 1019 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1020 if (!oop) { 1021 /* 1022 * This open owner does not exist so create a temporary 1023 * just created one. 1024 */ 1025 oop = create_open_owner(cr, VTOMI4(dvp)); 1026 ASSERT(oop != NULL); 1027 } 1028 mutex_exit(&VTOMI4(dvp)->mi_lock); 1029 1030 /* this length never changes, do alloc before seqid sync */ 1031 open_args->owner.owner_len = sizeof (oop->oo_name); 1032 open_args->owner.owner_val = 1033 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1034 1035 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1036 if (e.error == EAGAIN) { 1037 open_owner_rele(oop); 1038 nfs4args_copen_free(open_args); 1039 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1040 if (ncr != NULL) { 1041 crfree(ncr); 1042 ncr = NULL; 1043 } 1044 goto recov_retry; 1045 } 1046 1047 /* Check to see if we need to do the OTW call */ 1048 if (!create_flag) { 1049 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1050 file_just_been_created, &e.error, acc, &recov_state)) { 1051 1052 /* 1053 * The OTW open is not necessary. Either 1054 * the open can succeed without it (eg. 1055 * delegation, error == 0) or the open 1056 * must fail due to an access failure 1057 * (error != 0). In either case, tidy 1058 * up and return. 1059 */ 1060 1061 nfs4_end_open_seqid_sync(oop); 1062 open_owner_rele(oop); 1063 nfs4args_copen_free(open_args); 1064 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1065 if (ncr != NULL) 1066 crfree(ncr); 1067 kmem_free(argop, argoplist_size); 1068 return (e.error); 1069 } 1070 } 1071 1072 bcopy(&oop->oo_name, open_args->owner.owner_val, 1073 open_args->owner.owner_len); 1074 1075 seqid = nfs4_get_open_seqid(oop) + 1; 1076 open_args->seqid = seqid; 1077 open_args->share_access = 0; 1078 if (open_flag & FREAD) 1079 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1080 if (open_flag & FWRITE) 1081 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1082 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1083 1084 1085 1086 /* 1087 * getfh w/sanity check for idx_open/idx_fattr 1088 */ 1089 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1090 argop[idx_open + 1].argop = OP_GETFH; 1091 1092 /* getattr */ 1093 argop[idx_fattr].argop = OP_GETATTR; 1094 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1095 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1096 1097 if (setgid_flag) { 1098 vattr_t _v; 1099 servinfo4_t *svp; 1100 bitmap4 supp_attrs; 1101 1102 svp = drp->r_server; 1103 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1104 supp_attrs = svp->sv_supp_attrs; 1105 nfs_rw_exit(&svp->sv_lock); 1106 1107 /* 1108 * For setgid case, we need to: 1109 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1110 */ 1111 argop[4].argop = OP_SAVEFH; 1112 1113 argop[5].argop = OP_CPUTFH; 1114 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1115 1116 argop[6].argop = OP_GETATTR; 1117 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1118 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1119 1120 argop[7].argop = OP_RESTOREFH; 1121 1122 /* 1123 * nverify 1124 */ 1125 _v.va_mask = AT_GID; 1126 _v.va_gid = in_va->va_gid; 1127 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1128 supp_attrs))) { 1129 1130 /* 1131 * setattr 1132 * 1133 * We _know_ we're not messing with AT_SIZE or 1134 * AT_XTIME, so no need for stateid or flags. 1135 * Also we specify NULL rp since we're only 1136 * interested in setting owner_group attributes. 1137 */ 1138 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1139 supp_attrs, &e.error, 0); 1140 if (e.error) 1141 nfs4args_verify_free(&argop[8]); 1142 } 1143 1144 if (e.error) { 1145 /* 1146 * XXX - Revisit the last argument to nfs4_end_op() 1147 * once 5020486 is fixed. 1148 */ 1149 nfs4_end_open_seqid_sync(oop); 1150 open_owner_rele(oop); 1151 nfs4args_copen_free(open_args); 1152 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1153 if (ncr != NULL) 1154 crfree(ncr); 1155 kmem_free(argop, argoplist_size); 1156 return (e.error); 1157 } 1158 } else if (create_flag) { 1159 argop[1].argop = OP_SAVEFH; 1160 1161 argop[5].argop = OP_RESTOREFH; 1162 1163 argop[6].argop = OP_GETATTR; 1164 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1165 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1166 } 1167 1168 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1169 "nfs4open_otw: %s call, nm %s, rp %s", 1170 needrecov ? "recov" : "first", file_name, 1171 rnode4info(VTOR4(dvp)))); 1172 1173 t = gethrtime(); 1174 1175 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1176 1177 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1178 nfs4_set_open_seqid(seqid, oop, args.ctag); 1179 1180 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1181 1182 if (e.error || needrecov) { 1183 bool_t abort = FALSE; 1184 1185 if (needrecov) { 1186 nfs4_bseqid_entry_t *bsep = NULL; 1187 1188 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1189 cred_otw, vpi, dvp, open_args); 1190 1191 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1192 bsep = nfs4_create_bseqid_entry(oop, NULL, 1193 vpi, 0, args.ctag, open_args->seqid); 1194 num_bseqid_retry--; 1195 } 1196 1197 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1198 NULL, lost_rqst.lr_op == OP_OPEN ? 1199 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL); 1200 1201 if (bsep) 1202 kmem_free(bsep, sizeof (*bsep)); 1203 /* give up if we keep getting BAD_SEQID */ 1204 if (num_bseqid_retry == 0) 1205 abort = TRUE; 1206 if (abort == TRUE && e.error == 0) 1207 e.error = geterrno4(res.status); 1208 } 1209 nfs4_end_open_seqid_sync(oop); 1210 open_owner_rele(oop); 1211 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1212 nfs4args_copen_free(open_args); 1213 if (setgid_flag) { 1214 nfs4args_verify_free(&argop[8]); 1215 nfs4args_setattr_free(&argop[9]); 1216 } 1217 if (!e.error) 1218 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1219 if (ncr != NULL) { 1220 crfree(ncr); 1221 ncr = NULL; 1222 } 1223 if (!needrecov || abort == TRUE || e.error == EINTR || 1224 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1225 kmem_free(argop, argoplist_size); 1226 return (e.error); 1227 } 1228 goto recov_retry; 1229 } 1230 1231 /* 1232 * Will check and update lease after checking the rflag for 1233 * OPEN_CONFIRM in the successful OPEN call. 1234 */ 1235 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1236 1237 /* 1238 * XXX what if we're crossing mount points from server1:/drp 1239 * to server2:/drp/rp. 1240 */ 1241 1242 /* Signal our end of use of the open seqid */ 1243 nfs4_end_open_seqid_sync(oop); 1244 1245 /* 1246 * This will destroy the open owner if it was just created, 1247 * and no one else has put a reference on it. 1248 */ 1249 open_owner_rele(oop); 1250 if (create_flag && (createmode != EXCLUSIVE4) && 1251 res.status == NFS4ERR_BADOWNER) 1252 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1253 1254 e.error = geterrno4(res.status); 1255 nfs4args_copen_free(open_args); 1256 if (setgid_flag) { 1257 nfs4args_verify_free(&argop[8]); 1258 nfs4args_setattr_free(&argop[9]); 1259 } 1260 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1261 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1262 /* 1263 * If the reply is NFS4ERR_ACCESS, it may be because 1264 * we are root (no root net access). If the real uid 1265 * is not root, then retry with the real uid instead. 1266 */ 1267 if (ncr != NULL) { 1268 crfree(ncr); 1269 ncr = NULL; 1270 } 1271 if (res.status == NFS4ERR_ACCESS && 1272 (ncr = crnetadjust(cred_otw)) != NULL) { 1273 cred_otw = ncr; 1274 goto recov_retry; 1275 } 1276 kmem_free(argop, argoplist_size); 1277 return (e.error); 1278 } 1279 1280 resop = &res.array[idx_open]; /* open res */ 1281 op_res = &resop->nfs_resop4_u.opopen; 1282 1283 #ifdef DEBUG 1284 /* 1285 * verify attrset bitmap 1286 */ 1287 if (create_flag && 1288 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1289 /* make sure attrset returned is what we asked for */ 1290 /* XXX Ignore this 'error' for now */ 1291 if (attr->attrmask != op_res->attrset) 1292 /* EMPTY */; 1293 } 1294 #endif 1295 1296 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1297 mutex_enter(&VTOMI4(dvp)->mi_lock); 1298 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1299 mutex_exit(&VTOMI4(dvp)->mi_lock); 1300 } 1301 1302 resop = &res.array[idx_open + 1]; /* getfh res */ 1303 gf_res = &resop->nfs_resop4_u.opgetfh; 1304 1305 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1306 1307 /* 1308 * The open stateid has been updated on the server but not 1309 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1310 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1311 * WRITE call. That, however, will use the old stateid, so go ahead 1312 * and upate the open stateid now, before any call to makenfs4node. 1313 */ 1314 if (vpi) { 1315 nfs4_open_stream_t *tmp_osp; 1316 rnode4_t *tmp_rp = VTOR4(vpi); 1317 1318 tmp_osp = find_open_stream(oop, tmp_rp); 1319 if (tmp_osp) { 1320 tmp_osp->open_stateid = op_res->stateid; 1321 mutex_exit(&tmp_osp->os_sync_lock); 1322 open_stream_rele(tmp_osp, tmp_rp); 1323 } 1324 1325 /* 1326 * We must determine if the file handle given by the otw open 1327 * is the same as the file handle which was passed in with 1328 * *vpp. This case can be reached if the file we are trying 1329 * to open has been removed and another file has been created 1330 * having the same file name. The passed in vnode is released 1331 * later. 1332 */ 1333 orig_sfh = VTOR4(vpi)->r_fh; 1334 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1335 } 1336 1337 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1338 1339 if (create_flag || fh_differs) { 1340 int rnode_err = 0; 1341 1342 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1343 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh)); 1344 1345 if (e.error) 1346 PURGE_ATTRCACHE4(vp); 1347 /* 1348 * For the newly created vp case, make sure the rnode 1349 * isn't bad before using it. 1350 */ 1351 mutex_enter(&(VTOR4(vp))->r_statelock); 1352 if (VTOR4(vp)->r_flags & R4RECOVERR) 1353 rnode_err = EIO; 1354 mutex_exit(&(VTOR4(vp))->r_statelock); 1355 1356 if (rnode_err) { 1357 nfs4_end_open_seqid_sync(oop); 1358 nfs4args_copen_free(open_args); 1359 if (setgid_flag) { 1360 nfs4args_verify_free(&argop[8]); 1361 nfs4args_setattr_free(&argop[9]); 1362 } 1363 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1364 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1365 needrecov); 1366 open_owner_rele(oop); 1367 VN_RELE(vp); 1368 if (ncr != NULL) 1369 crfree(ncr); 1370 sfh4_rele(&otw_sfh); 1371 kmem_free(argop, argoplist_size); 1372 return (EIO); 1373 } 1374 } else { 1375 vp = vpi; 1376 } 1377 sfh4_rele(&otw_sfh); 1378 1379 /* 1380 * It seems odd to get a full set of attrs and then not update 1381 * the object's attrcache in the non-create case. Create case uses 1382 * the attrs since makenfs4node checks to see if the attrs need to 1383 * be updated (and then updates them). The non-create case should 1384 * update attrs also. 1385 */ 1386 if (! create_flag && ! fh_differs && !e.error) { 1387 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1388 } 1389 1390 nfs4_error_zinit(&e); 1391 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1392 /* This does not do recovery for vp explicitly. */ 1393 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1394 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1395 1396 if (e.error || e.stat) { 1397 nfs4_end_open_seqid_sync(oop); 1398 nfs4args_copen_free(open_args); 1399 if (setgid_flag) { 1400 nfs4args_verify_free(&argop[8]); 1401 nfs4args_setattr_free(&argop[9]); 1402 } 1403 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1404 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1405 needrecov); 1406 open_owner_rele(oop); 1407 if (create_flag || fh_differs) { 1408 /* rele the makenfs4node */ 1409 VN_RELE(vp); 1410 } 1411 if (ncr != NULL) { 1412 crfree(ncr); 1413 ncr = NULL; 1414 } 1415 if (retry_open == TRUE) { 1416 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1417 "nfs4open_otw: retry the open since OPEN " 1418 "CONFIRM failed with error %d stat %d", 1419 e.error, e.stat)); 1420 if (create_flag && createmode == GUARDED4) { 1421 NFS4_DEBUG(nfs4_client_recov_debug, 1422 (CE_NOTE, "nfs4open_otw: switch " 1423 "createmode from GUARDED4 to " 1424 "UNCHECKED4")); 1425 createmode = UNCHECKED4; 1426 } 1427 goto recov_retry; 1428 } 1429 if (!e.error) { 1430 if (create_flag && (createmode != EXCLUSIVE4) && 1431 e.stat == NFS4ERR_BADOWNER) 1432 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1433 1434 e.error = geterrno4(e.stat); 1435 } 1436 kmem_free(argop, argoplist_size); 1437 return (e.error); 1438 } 1439 } 1440 1441 rp = VTOR4(vp); 1442 1443 mutex_enter(&rp->r_statev4_lock); 1444 if (create_flag) 1445 rp->created_v4 = 1; 1446 mutex_exit(&rp->r_statev4_lock); 1447 1448 mutex_enter(&oop->oo_lock); 1449 /* Doesn't matter if 'oo_just_created' already was set as this */ 1450 oop->oo_just_created = NFS4_PERM_CREATED; 1451 if (oop->oo_cred_otw) 1452 crfree(oop->oo_cred_otw); 1453 oop->oo_cred_otw = cred_otw; 1454 crhold(oop->oo_cred_otw); 1455 mutex_exit(&oop->oo_lock); 1456 1457 /* returns with 'os_sync_lock' held */ 1458 osp = find_or_create_open_stream(oop, rp, &created_osp); 1459 if (!osp) { 1460 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1461 "nfs4open_otw: failed to create an open stream")); 1462 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1463 "signal our end of use of the open seqid")); 1464 1465 nfs4_end_open_seqid_sync(oop); 1466 open_owner_rele(oop); 1467 nfs4args_copen_free(open_args); 1468 if (setgid_flag) { 1469 nfs4args_verify_free(&argop[8]); 1470 nfs4args_setattr_free(&argop[9]); 1471 } 1472 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1473 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1474 if (create_flag || fh_differs) 1475 VN_RELE(vp); 1476 if (ncr != NULL) 1477 crfree(ncr); 1478 1479 kmem_free(argop, argoplist_size); 1480 return (EINVAL); 1481 1482 } 1483 1484 osp->open_stateid = op_res->stateid; 1485 1486 if (open_flag & FREAD) 1487 osp->os_share_acc_read++; 1488 if (open_flag & FWRITE) 1489 osp->os_share_acc_write++; 1490 osp->os_share_deny_none++; 1491 1492 /* 1493 * Need to reset this bitfield for the possible case where we were 1494 * going to OTW CLOSE the file, got a non-recoverable error, and before 1495 * we could retry the CLOSE, OPENed the file again. 1496 */ 1497 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1498 osp->os_final_close = 0; 1499 osp->os_force_close = 0; 1500 #ifdef DEBUG 1501 if (osp->os_failed_reopen) 1502 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1503 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1504 (void *)osp, (void *)cr, rnode4info(rp))); 1505 #endif 1506 osp->os_failed_reopen = 0; 1507 1508 mutex_exit(&osp->os_sync_lock); 1509 1510 nfs4_end_open_seqid_sync(oop); 1511 1512 if (created_osp && recov_state.rs_sp != NULL) { 1513 mutex_enter(&recov_state.rs_sp->s_lock); 1514 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1515 mutex_exit(&recov_state.rs_sp->s_lock); 1516 } 1517 1518 /* get rid of our reference to find oop */ 1519 open_owner_rele(oop); 1520 1521 open_stream_rele(osp, rp); 1522 1523 /* accept delegation, if any */ 1524 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1525 1526 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1527 1528 if (createmode == EXCLUSIVE4 && 1529 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1530 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1531 " EXCLUSIVE4: sending a SETATTR")); 1532 /* 1533 * If doing an exclusive create, then generate 1534 * a SETATTR to set the initial attributes. 1535 * Try to set the mtime and the atime to the 1536 * server's current time. It is somewhat 1537 * expected that these fields will be used to 1538 * store the exclusive create cookie. If not, 1539 * server implementors will need to know that 1540 * a SETATTR will follow an exclusive create 1541 * and the cookie should be destroyed if 1542 * appropriate. 1543 * 1544 * The AT_GID and AT_SIZE bits are turned off 1545 * so that the SETATTR request will not attempt 1546 * to process these. The gid will be set 1547 * separately if appropriate. The size is turned 1548 * off because it is assumed that a new file will 1549 * be created empty and if the file wasn't empty, 1550 * then the exclusive create will have failed 1551 * because the file must have existed already. 1552 * Therefore, no truncate operation is needed. 1553 */ 1554 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1555 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1556 1557 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1558 if (e.error) { 1559 /* 1560 * Couldn't correct the attributes of 1561 * the newly created file and the 1562 * attributes are wrong. Remove the 1563 * file and return an error to the 1564 * application. 1565 */ 1566 /* XXX will this take care of client state ? */ 1567 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1568 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1569 " remove file", e.error)); 1570 VN_RELE(vp); 1571 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1572 /* 1573 * Since we've reled the vnode and removed 1574 * the file we now need to return the error. 1575 * At this point we don't want to update the 1576 * dircaches, call nfs4_waitfor_purge_complete 1577 * or set vpp to vp so we need to skip these 1578 * as well. 1579 */ 1580 goto skip_update_dircaches; 1581 } 1582 } 1583 1584 /* 1585 * If we created or found the correct vnode, due to create_flag or 1586 * fh_differs being set, then update directory cache attribute, readdir 1587 * and dnlc caches. 1588 */ 1589 if (create_flag || fh_differs) { 1590 dirattr_info_t dinfo, *dinfop; 1591 1592 /* 1593 * Make sure getattr succeeded before using results. 1594 * note: op 7 is getattr(dir) for both flavors of 1595 * open(create). 1596 */ 1597 if (create_flag && res.status == NFS4_OK) { 1598 dinfo.di_time_call = t; 1599 dinfo.di_cred = cr; 1600 dinfo.di_garp = 1601 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1602 dinfop = &dinfo; 1603 } else { 1604 dinfop = NULL; 1605 } 1606 1607 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1608 dinfop); 1609 } 1610 1611 /* 1612 * If the page cache for this file was flushed from actions 1613 * above, it was done asynchronously and if that is true, 1614 * there is a need to wait here for it to complete. This must 1615 * be done outside of start_fop/end_fop. 1616 */ 1617 (void) nfs4_waitfor_purge_complete(vp); 1618 1619 /* 1620 * It is implicit that we are in the open case (create_flag == 0) since 1621 * fh_differs can only be set to a non-zero value in the open case. 1622 */ 1623 if (fh_differs != 0 && vpi != NULL) 1624 VN_RELE(vpi); 1625 1626 /* 1627 * Be sure to set *vpp to the correct value before returning. 1628 */ 1629 *vpp = vp; 1630 1631 skip_update_dircaches: 1632 1633 nfs4args_copen_free(open_args); 1634 if (setgid_flag) { 1635 nfs4args_verify_free(&argop[8]); 1636 nfs4args_setattr_free(&argop[9]); 1637 } 1638 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1639 1640 if (ncr) 1641 crfree(ncr); 1642 kmem_free(argop, argoplist_size); 1643 return (e.error); 1644 } 1645 1646 /* 1647 * Reopen an open instance. cf. nfs4open_otw(). 1648 * 1649 * Errors are returned by the nfs4_error_t parameter. 1650 * - ep->error contains an errno value or zero. 1651 * - if it is zero, ep->stat is set to an NFS status code, if any. 1652 * If the file could not be reopened, but the caller should continue, the 1653 * file is marked dead and no error values are returned. If the caller 1654 * should stop recovering open files and start over, either the ep->error 1655 * value or ep->stat will indicate an error (either something that requires 1656 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1657 * filehandles) may be handled silently by this routine. 1658 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1659 * will be started, so the caller should not do it. 1660 * 1661 * Gotos: 1662 * - kill_file : reopen failed in such a fashion to constitute marking the 1663 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1664 * is for cases where recovery is not possible. 1665 * - failed_reopen : same as above, except that the file has already been 1666 * marked dead, so no need to do it again. 1667 * - bailout : reopen failed but we are able to recover and retry the reopen - 1668 * either within this function immediately or via the calling function. 1669 */ 1670 1671 void 1672 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1673 open_claim_type4 claim, bool_t frc_use_claim_previous, 1674 bool_t is_recov) 1675 { 1676 COMPOUND4args_clnt args; 1677 COMPOUND4res_clnt res; 1678 nfs_argop4 argop[4]; 1679 nfs_resop4 *resop; 1680 OPEN4res *op_res = NULL; 1681 OPEN4cargs *open_args; 1682 GETFH4res *gf_res; 1683 rnode4_t *rp = VTOR4(vp); 1684 int doqueue = 1; 1685 cred_t *cr = NULL, *cred_otw = NULL; 1686 nfs4_open_owner_t *oop = NULL; 1687 seqid4 seqid; 1688 nfs4_ga_res_t *garp; 1689 char fn[MAXNAMELEN]; 1690 nfs4_recov_state_t recov = {NULL, 0}; 1691 nfs4_lost_rqst_t lost_rqst; 1692 mntinfo4_t *mi = VTOMI4(vp); 1693 bool_t abort; 1694 char *failed_msg = ""; 1695 int fh_different; 1696 hrtime_t t; 1697 nfs4_bseqid_entry_t *bsep = NULL; 1698 1699 ASSERT(nfs4_consistent_type(vp)); 1700 ASSERT(nfs_zone() == mi->mi_zone); 1701 1702 nfs4_error_zinit(ep); 1703 1704 /* this is the cred used to find the open owner */ 1705 cr = state_to_cred(osp); 1706 if (cr == NULL) { 1707 failed_msg = "Couldn't reopen: no cred"; 1708 goto kill_file; 1709 } 1710 /* use this cred for OTW operations */ 1711 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1712 1713 top: 1714 nfs4_error_zinit(ep); 1715 1716 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1717 /* File system has been unmounted, quit */ 1718 ep->error = EIO; 1719 failed_msg = "Couldn't reopen: file system has been unmounted"; 1720 goto kill_file; 1721 } 1722 1723 oop = osp->os_open_owner; 1724 1725 ASSERT(oop != NULL); 1726 if (oop == NULL) { /* be defensive in non-DEBUG */ 1727 failed_msg = "can't reopen: no open owner"; 1728 goto kill_file; 1729 } 1730 open_owner_hold(oop); 1731 1732 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1733 if (ep->error) { 1734 open_owner_rele(oop); 1735 oop = NULL; 1736 goto bailout; 1737 } 1738 1739 /* 1740 * If the rnode has a delegation and the delegation has been 1741 * recovered and the server didn't request a recall and the caller 1742 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1743 * recovery) and the rnode hasn't been marked dead, then install 1744 * the delegation stateid in the open stream. Otherwise, proceed 1745 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1746 */ 1747 mutex_enter(&rp->r_statev4_lock); 1748 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1749 !rp->r_deleg_return_pending && 1750 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1751 !rp->r_deleg_needs_recall && 1752 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1753 !(rp->r_flags & R4RECOVERR)) { 1754 mutex_enter(&osp->os_sync_lock); 1755 osp->os_delegation = 1; 1756 osp->open_stateid = rp->r_deleg_stateid; 1757 mutex_exit(&osp->os_sync_lock); 1758 mutex_exit(&rp->r_statev4_lock); 1759 goto bailout; 1760 } 1761 mutex_exit(&rp->r_statev4_lock); 1762 1763 /* 1764 * If the file failed recovery, just quit. This failure need not 1765 * affect other reopens, so don't return an error. 1766 */ 1767 mutex_enter(&rp->r_statelock); 1768 if (rp->r_flags & R4RECOVERR) { 1769 mutex_exit(&rp->r_statelock); 1770 ep->error = 0; 1771 goto failed_reopen; 1772 } 1773 mutex_exit(&rp->r_statelock); 1774 1775 /* 1776 * argop is empty here 1777 * 1778 * PUTFH, OPEN, GETATTR 1779 */ 1780 args.ctag = TAG_REOPEN; 1781 args.array_len = 4; 1782 args.array = argop; 1783 1784 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1785 "nfs4_reopen: file is type %d, id %s", 1786 vp->v_type, rnode4info(VTOR4(vp)))); 1787 1788 argop[0].argop = OP_CPUTFH; 1789 1790 if (claim != CLAIM_PREVIOUS) { 1791 /* 1792 * if this is a file mount then 1793 * use the mntinfo parentfh 1794 */ 1795 argop[0].nfs_argop4_u.opcputfh.sfh = 1796 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1797 VTOSV(vp)->sv_dfh; 1798 } else { 1799 /* putfh fh to reopen */ 1800 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1801 } 1802 1803 argop[1].argop = OP_COPEN; 1804 open_args = &argop[1].nfs_argop4_u.opcopen; 1805 open_args->claim = claim; 1806 1807 if (claim == CLAIM_NULL) { 1808 1809 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1810 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1811 "failed for vp 0x%p for CLAIM_NULL with %m", 1812 (void *)vp); 1813 failed_msg = "Couldn't reopen: vtoname failed for " 1814 "CLAIM_NULL"; 1815 /* nothing allocated yet */ 1816 goto kill_file; 1817 } 1818 1819 open_args->open_claim4_u.cfile = fn; 1820 } else if (claim == CLAIM_PREVIOUS) { 1821 1822 /* 1823 * We have two cases to deal with here: 1824 * 1) We're being called to reopen files in order to satisfy 1825 * a lock operation request which requires us to explicitly 1826 * reopen files which were opened under a delegation. If 1827 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1828 * that case, frc_use_claim_previous is TRUE and we must 1829 * use the rnode's current delegation type (r_deleg_type). 1830 * 2) We're reopening files during some form of recovery. 1831 * In this case, frc_use_claim_previous is FALSE and we 1832 * use the delegation type appropriate for recovery 1833 * (r_deleg_needs_recovery). 1834 */ 1835 mutex_enter(&rp->r_statev4_lock); 1836 open_args->open_claim4_u.delegate_type = 1837 frc_use_claim_previous ? 1838 rp->r_deleg_type : 1839 rp->r_deleg_needs_recovery; 1840 mutex_exit(&rp->r_statev4_lock); 1841 1842 } else if (claim == CLAIM_DELEGATE_CUR) { 1843 1844 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1845 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1846 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1847 "with %m", (void *)vp); 1848 failed_msg = "Couldn't reopen: vtoname failed for " 1849 "CLAIM_DELEGATE_CUR"; 1850 /* nothing allocated yet */ 1851 goto kill_file; 1852 } 1853 1854 mutex_enter(&rp->r_statev4_lock); 1855 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1856 rp->r_deleg_stateid; 1857 mutex_exit(&rp->r_statev4_lock); 1858 1859 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1860 } 1861 open_args->opentype = OPEN4_NOCREATE; 1862 open_args->owner.clientid = mi2clientid(mi); 1863 open_args->owner.owner_len = sizeof (oop->oo_name); 1864 open_args->owner.owner_val = 1865 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1866 bcopy(&oop->oo_name, open_args->owner.owner_val, 1867 open_args->owner.owner_len); 1868 open_args->share_access = 0; 1869 open_args->share_deny = 0; 1870 1871 mutex_enter(&osp->os_sync_lock); 1872 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1873 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1874 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1875 (void *)osp, (void *)rp, osp->os_share_acc_read, 1876 osp->os_share_acc_write, osp->os_open_ref_count, 1877 osp->os_mmap_read, osp->os_mmap_write, claim)); 1878 1879 if (osp->os_share_acc_read || osp->os_mmap_read) 1880 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1881 if (osp->os_share_acc_write || osp->os_mmap_write) 1882 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1883 if (osp->os_share_deny_read) 1884 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1885 if (osp->os_share_deny_write) 1886 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1887 mutex_exit(&osp->os_sync_lock); 1888 1889 seqid = nfs4_get_open_seqid(oop) + 1; 1890 open_args->seqid = seqid; 1891 1892 /* Construct the getfh part of the compound */ 1893 argop[2].argop = OP_GETFH; 1894 1895 /* Construct the getattr part of the compound */ 1896 argop[3].argop = OP_GETATTR; 1897 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1898 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1899 1900 t = gethrtime(); 1901 1902 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1903 1904 if (ep->error) { 1905 if (!is_recov && !frc_use_claim_previous && 1906 (ep->error == EINTR || ep->error == ETIMEDOUT || 1907 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1908 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1909 cred_otw, vp, NULL, open_args); 1910 abort = nfs4_start_recovery(ep, 1911 VTOMI4(vp), vp, NULL, NULL, 1912 lost_rqst.lr_op == OP_OPEN ? 1913 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL); 1914 nfs4args_copen_free(open_args); 1915 goto bailout; 1916 } 1917 1918 nfs4args_copen_free(open_args); 1919 1920 if (ep->error == EACCES && cred_otw != cr) { 1921 crfree(cred_otw); 1922 cred_otw = cr; 1923 crhold(cred_otw); 1924 nfs4_end_open_seqid_sync(oop); 1925 open_owner_rele(oop); 1926 oop = NULL; 1927 goto top; 1928 } 1929 if (ep->error == ETIMEDOUT) 1930 goto bailout; 1931 failed_msg = "Couldn't reopen: rpc error"; 1932 goto kill_file; 1933 } 1934 1935 if (nfs4_need_to_bump_seqid(&res)) 1936 nfs4_set_open_seqid(seqid, oop, args.ctag); 1937 1938 switch (res.status) { 1939 case NFS4_OK: 1940 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1941 mutex_enter(&rp->r_statelock); 1942 rp->r_delay_interval = 0; 1943 mutex_exit(&rp->r_statelock); 1944 } 1945 break; 1946 case NFS4ERR_BAD_SEQID: 1947 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1948 args.ctag, open_args->seqid); 1949 1950 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1951 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1952 NULL, OP_OPEN, bsep, NULL, NULL); 1953 1954 nfs4args_copen_free(open_args); 1955 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1956 nfs4_end_open_seqid_sync(oop); 1957 open_owner_rele(oop); 1958 oop = NULL; 1959 kmem_free(bsep, sizeof (*bsep)); 1960 1961 goto kill_file; 1962 case NFS4ERR_NO_GRACE: 1963 nfs4args_copen_free(open_args); 1964 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1965 nfs4_end_open_seqid_sync(oop); 1966 open_owner_rele(oop); 1967 oop = NULL; 1968 if (claim == CLAIM_PREVIOUS) { 1969 /* 1970 * Retry as a plain open. We don't need to worry about 1971 * checking the changeinfo: it is acceptable for a 1972 * client to re-open a file and continue processing 1973 * (in the absence of locks). 1974 */ 1975 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1976 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1977 "will retry as CLAIM_NULL")); 1978 claim = CLAIM_NULL; 1979 nfs4_mi_kstat_inc_no_grace(mi); 1980 goto top; 1981 } 1982 failed_msg = 1983 "Couldn't reopen: tried reclaim outside grace period. "; 1984 goto kill_file; 1985 case NFS4ERR_GRACE: 1986 nfs4_set_grace_wait(mi); 1987 nfs4args_copen_free(open_args); 1988 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1989 nfs4_end_open_seqid_sync(oop); 1990 open_owner_rele(oop); 1991 oop = NULL; 1992 ep->error = nfs4_wait_for_grace(mi, &recov); 1993 if (ep->error != 0) 1994 goto bailout; 1995 goto top; 1996 case NFS4ERR_DELAY: 1997 nfs4_set_delay_wait(vp); 1998 nfs4args_copen_free(open_args); 1999 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2000 nfs4_end_open_seqid_sync(oop); 2001 open_owner_rele(oop); 2002 oop = NULL; 2003 ep->error = nfs4_wait_for_delay(vp, &recov); 2004 nfs4_mi_kstat_inc_delay(mi); 2005 if (ep->error != 0) 2006 goto bailout; 2007 goto top; 2008 case NFS4ERR_FHEXPIRED: 2009 /* recover filehandle and retry */ 2010 abort = nfs4_start_recovery(ep, 2011 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL); 2012 nfs4args_copen_free(open_args); 2013 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2014 nfs4_end_open_seqid_sync(oop); 2015 open_owner_rele(oop); 2016 oop = NULL; 2017 if (abort == FALSE) 2018 goto top; 2019 failed_msg = "Couldn't reopen: recovery aborted"; 2020 goto kill_file; 2021 case NFS4ERR_RESOURCE: 2022 case NFS4ERR_STALE_CLIENTID: 2023 case NFS4ERR_WRONGSEC: 2024 case NFS4ERR_EXPIRED: 2025 /* 2026 * Do not mark the file dead and let the calling 2027 * function initiate recovery. 2028 */ 2029 nfs4args_copen_free(open_args); 2030 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2031 nfs4_end_open_seqid_sync(oop); 2032 open_owner_rele(oop); 2033 oop = NULL; 2034 goto bailout; 2035 case NFS4ERR_ACCESS: 2036 if (cred_otw != cr) { 2037 crfree(cred_otw); 2038 cred_otw = cr; 2039 crhold(cred_otw); 2040 nfs4args_copen_free(open_args); 2041 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2042 nfs4_end_open_seqid_sync(oop); 2043 open_owner_rele(oop); 2044 oop = NULL; 2045 goto top; 2046 } 2047 /* fall through */ 2048 default: 2049 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2050 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2051 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2052 rnode4info(VTOR4(vp)))); 2053 failed_msg = "Couldn't reopen: NFSv4 error"; 2054 nfs4args_copen_free(open_args); 2055 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2056 goto kill_file; 2057 } 2058 2059 resop = &res.array[1]; /* open res */ 2060 op_res = &resop->nfs_resop4_u.opopen; 2061 2062 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2063 2064 /* 2065 * Check if the path we reopened really is the same 2066 * file. We could end up in a situation where the file 2067 * was removed and a new file created with the same name. 2068 */ 2069 resop = &res.array[2]; 2070 gf_res = &resop->nfs_resop4_u.opgetfh; 2071 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2072 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2073 if (fh_different) { 2074 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2075 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2076 /* Oops, we don't have the same file */ 2077 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2078 failed_msg = "Couldn't reopen: Persistent " 2079 "file handle changed"; 2080 else 2081 failed_msg = "Couldn't reopen: Volatile " 2082 "(no expire on open) file handle changed"; 2083 2084 nfs4args_copen_free(open_args); 2085 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2086 nfs_rw_exit(&mi->mi_fh_lock); 2087 goto kill_file; 2088 2089 } else { 2090 /* 2091 * We have volatile file handles that don't compare. 2092 * If the fids are the same then we assume that the 2093 * file handle expired but the rnode still refers to 2094 * the same file object. 2095 * 2096 * First check that we have fids or not. 2097 * If we don't we have a dumb server so we will 2098 * just assume every thing is ok for now. 2099 */ 2100 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2101 rp->r_attr.va_mask & AT_NODEID && 2102 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2103 /* 2104 * We have fids, but they don't 2105 * compare. So kill the file. 2106 */ 2107 failed_msg = 2108 "Couldn't reopen: file handle changed" 2109 " due to mismatched fids"; 2110 nfs4args_copen_free(open_args); 2111 (void) xdr_free(xdr_COMPOUND4res_clnt, 2112 (caddr_t)&res); 2113 nfs_rw_exit(&mi->mi_fh_lock); 2114 goto kill_file; 2115 } else { 2116 /* 2117 * We have volatile file handles that refers 2118 * to the same file (at least they have the 2119 * same fid) or we don't have fids so we 2120 * can't tell. :(. We'll be a kind and accepting 2121 * client so we'll update the rnode's file 2122 * handle with the otw handle. 2123 * 2124 * We need to drop mi->mi_fh_lock since 2125 * sh4_update acquires it. Since there is 2126 * only one recovery thread there is no 2127 * race. 2128 */ 2129 nfs_rw_exit(&mi->mi_fh_lock); 2130 sfh4_update(rp->r_fh, &gf_res->object); 2131 } 2132 } 2133 } else { 2134 nfs_rw_exit(&mi->mi_fh_lock); 2135 } 2136 2137 ASSERT(nfs4_consistent_type(vp)); 2138 2139 /* 2140 * If the server wanted an OPEN_CONFIRM but that fails, just start 2141 * over. Presumably if there is a persistent error it will show up 2142 * when we resend the OPEN. 2143 */ 2144 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2145 bool_t retry_open = FALSE; 2146 2147 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2148 cred_otw, is_recov, &retry_open, 2149 oop, FALSE, ep, NULL); 2150 if (ep->error || ep->stat) { 2151 nfs4args_copen_free(open_args); 2152 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2153 nfs4_end_open_seqid_sync(oop); 2154 open_owner_rele(oop); 2155 oop = NULL; 2156 goto top; 2157 } 2158 } 2159 2160 mutex_enter(&osp->os_sync_lock); 2161 osp->open_stateid = op_res->stateid; 2162 osp->os_delegation = 0; 2163 /* 2164 * Need to reset this bitfield for the possible case where we were 2165 * going to OTW CLOSE the file, got a non-recoverable error, and before 2166 * we could retry the CLOSE, OPENed the file again. 2167 */ 2168 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2169 osp->os_final_close = 0; 2170 osp->os_force_close = 0; 2171 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2172 osp->os_dc_openacc = open_args->share_access; 2173 mutex_exit(&osp->os_sync_lock); 2174 2175 nfs4_end_open_seqid_sync(oop); 2176 2177 /* accept delegation, if any */ 2178 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2179 2180 nfs4args_copen_free(open_args); 2181 2182 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2183 2184 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2185 2186 ASSERT(nfs4_consistent_type(vp)); 2187 2188 open_owner_rele(oop); 2189 crfree(cr); 2190 crfree(cred_otw); 2191 return; 2192 2193 kill_file: 2194 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2195 failed_reopen: 2196 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2197 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2198 (void *)osp, (void *)cr, rnode4info(rp))); 2199 mutex_enter(&osp->os_sync_lock); 2200 osp->os_failed_reopen = 1; 2201 mutex_exit(&osp->os_sync_lock); 2202 bailout: 2203 if (oop != NULL) { 2204 nfs4_end_open_seqid_sync(oop); 2205 open_owner_rele(oop); 2206 } 2207 if (cr != NULL) 2208 crfree(cr); 2209 if (cred_otw != NULL) 2210 crfree(cred_otw); 2211 } 2212 2213 /* for . and .. OPENs */ 2214 /* ARGSUSED */ 2215 static int 2216 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2217 { 2218 rnode4_t *rp; 2219 nfs4_ga_res_t gar; 2220 2221 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2222 2223 /* 2224 * If close-to-open consistency checking is turned off or 2225 * if there is no cached data, we can avoid 2226 * the over the wire getattr. Otherwise, force a 2227 * call to the server to get fresh attributes and to 2228 * check caches. This is required for close-to-open 2229 * consistency. 2230 */ 2231 rp = VTOR4(*vpp); 2232 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2233 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2234 return (0); 2235 2236 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2237 } 2238 2239 /* 2240 * CLOSE a file 2241 */ 2242 /* ARGSUSED */ 2243 static int 2244 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2245 caller_context_t *ct) 2246 { 2247 rnode4_t *rp; 2248 int error = 0; 2249 int r_error = 0; 2250 int n4error = 0; 2251 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2252 2253 /* 2254 * Remove client state for this (lockowner, file) pair. 2255 * Issue otw v4 call to have the server do the same. 2256 */ 2257 2258 rp = VTOR4(vp); 2259 2260 /* 2261 * zone_enter(2) prevents processes from changing zones with NFS files 2262 * open; if we happen to get here from the wrong zone we can't do 2263 * anything over the wire. 2264 */ 2265 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2266 /* 2267 * We could attempt to clean up locks, except we're sure 2268 * that the current process didn't acquire any locks on 2269 * the file: any attempt to lock a file belong to another zone 2270 * will fail, and one can't lock an NFS file and then change 2271 * zones, as that fails too. 2272 * 2273 * Returning an error here is the sane thing to do. A 2274 * subsequent call to VN_RELE() which translates to a 2275 * nfs4_inactive() will clean up state: if the zone of the 2276 * vnode's origin is still alive and kicking, the inactive 2277 * thread will handle the request (from the correct zone), and 2278 * everything (minus the OTW close call) should be OK. If the 2279 * zone is going away nfs4_async_inactive() will throw away 2280 * delegations, open streams and cached pages inline. 2281 */ 2282 return (EIO); 2283 } 2284 2285 /* 2286 * If we are using local locking for this filesystem, then 2287 * release all of the SYSV style record locks. Otherwise, 2288 * we are doing network locking and we need to release all 2289 * of the network locks. All of the locks held by this 2290 * process on this file are released no matter what the 2291 * incoming reference count is. 2292 */ 2293 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2294 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2295 cleanshares(vp, ttoproc(curthread)->p_pid); 2296 } else 2297 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2298 2299 if (e.error) { 2300 struct lm_sysid *lmsid; 2301 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2302 if (lmsid == NULL) { 2303 DTRACE_PROBE2(unknown__sysid, int, e.error, 2304 vnode_t *, vp); 2305 } else { 2306 cleanlocks(vp, ttoproc(curthread)->p_pid, 2307 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2308 2309 lm_rel_sysid(lmsid); 2310 } 2311 return (e.error); 2312 } 2313 2314 if (count > 1) 2315 return (0); 2316 2317 /* 2318 * If the file has been `unlinked', then purge the 2319 * DNLC so that this vnode will get reycled quicker 2320 * and the .nfs* file on the server will get removed. 2321 */ 2322 if (rp->r_unldvp != NULL) 2323 dnlc_purge_vp(vp); 2324 2325 /* 2326 * If the file was open for write and there are pages, 2327 * do a synchronous flush and commit of all of the 2328 * dirty and uncommitted pages. 2329 */ 2330 ASSERT(!e.error); 2331 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2332 error = nfs4_putpage_commit(vp, 0, 0, cr); 2333 2334 mutex_enter(&rp->r_statelock); 2335 r_error = rp->r_error; 2336 rp->r_error = 0; 2337 mutex_exit(&rp->r_statelock); 2338 2339 /* 2340 * If this file type is one for which no explicit 'open' was 2341 * done, then bail now (ie. no need for protocol 'close'). If 2342 * there was an error w/the vm subsystem, return _that_ error, 2343 * otherwise, return any errors that may've been reported via 2344 * the rnode. 2345 */ 2346 if (vp->v_type != VREG) 2347 return (error ? error : r_error); 2348 2349 /* 2350 * The sync putpage commit may have failed above, but since 2351 * we're working w/a regular file, we need to do the protocol 2352 * 'close' (nfs4close_one will figure out if an otw close is 2353 * needed or not). Report any errors _after_ doing the protocol 2354 * 'close'. 2355 */ 2356 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2357 n4error = e.error ? e.error : geterrno4(e.stat); 2358 2359 /* 2360 * Error reporting prio (Hi -> Lo) 2361 * 2362 * i) nfs4_putpage_commit (error) 2363 * ii) rnode's (r_error) 2364 * iii) nfs4close_one (n4error) 2365 */ 2366 return (error ? error : (r_error ? r_error : n4error)); 2367 } 2368 2369 /* 2370 * Initialize *lost_rqstp. 2371 */ 2372 2373 static void 2374 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2375 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2376 vnode_t *vp) 2377 { 2378 if (error != ETIMEDOUT && error != EINTR && 2379 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2380 lost_rqstp->lr_op = 0; 2381 return; 2382 } 2383 2384 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2385 "nfs4close_save_lost_rqst: error %d", error)); 2386 2387 lost_rqstp->lr_op = OP_CLOSE; 2388 /* 2389 * The vp is held and rele'd via the recovery code. 2390 * See nfs4_save_lost_rqst. 2391 */ 2392 lost_rqstp->lr_vp = vp; 2393 lost_rqstp->lr_dvp = NULL; 2394 lost_rqstp->lr_oop = oop; 2395 lost_rqstp->lr_osp = osp; 2396 ASSERT(osp != NULL); 2397 ASSERT(mutex_owned(&osp->os_sync_lock)); 2398 osp->os_pending_close = 1; 2399 lost_rqstp->lr_lop = NULL; 2400 lost_rqstp->lr_cr = cr; 2401 lost_rqstp->lr_flk = NULL; 2402 lost_rqstp->lr_putfirst = FALSE; 2403 } 2404 2405 /* 2406 * Assumes you already have the open seqid sync grabbed as well as the 2407 * 'os_sync_lock'. Note: this will release the open seqid sync and 2408 * 'os_sync_lock' if client recovery starts. Calling functions have to 2409 * be prepared to handle this. 2410 * 2411 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2412 * was needed and was started, and that the calling function should retry 2413 * this function; otherwise it is returned as 0. 2414 * 2415 * Errors are returned via the nfs4_error_t parameter. 2416 */ 2417 static void 2418 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2419 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2420 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2421 { 2422 COMPOUND4args_clnt args; 2423 COMPOUND4res_clnt res; 2424 CLOSE4args *close_args; 2425 nfs_resop4 *resop; 2426 nfs_argop4 argop[3]; 2427 int doqueue = 1; 2428 mntinfo4_t *mi; 2429 seqid4 seqid; 2430 vnode_t *vp; 2431 bool_t needrecov = FALSE; 2432 nfs4_lost_rqst_t lost_rqst; 2433 hrtime_t t; 2434 2435 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2436 2437 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2438 2439 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2440 2441 /* Only set this to 1 if recovery is started */ 2442 *recov = 0; 2443 2444 /* do the OTW call to close the file */ 2445 2446 if (close_type == CLOSE_RESEND) 2447 args.ctag = TAG_CLOSE_LOST; 2448 else if (close_type == CLOSE_AFTER_RESEND) 2449 args.ctag = TAG_CLOSE_UNDO; 2450 else 2451 args.ctag = TAG_CLOSE; 2452 2453 args.array_len = 3; 2454 args.array = argop; 2455 2456 vp = RTOV4(rp); 2457 2458 mi = VTOMI4(vp); 2459 2460 /* putfh target fh */ 2461 argop[0].argop = OP_CPUTFH; 2462 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2463 2464 argop[1].argop = OP_GETATTR; 2465 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2466 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2467 2468 argop[2].argop = OP_CLOSE; 2469 close_args = &argop[2].nfs_argop4_u.opclose; 2470 2471 seqid = nfs4_get_open_seqid(oop) + 1; 2472 2473 close_args->seqid = seqid; 2474 close_args->open_stateid = osp->open_stateid; 2475 2476 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2477 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2478 rnode4info(rp))); 2479 2480 t = gethrtime(); 2481 2482 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2483 2484 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2485 nfs4_set_open_seqid(seqid, oop, args.ctag); 2486 } 2487 2488 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2489 if (ep->error && !needrecov) { 2490 /* 2491 * if there was an error and no recovery is to be done 2492 * then then set up the file to flush its cache if 2493 * needed for the next caller. 2494 */ 2495 mutex_enter(&rp->r_statelock); 2496 PURGE_ATTRCACHE4_LOCKED(rp); 2497 rp->r_flags &= ~R4WRITEMODIFIED; 2498 mutex_exit(&rp->r_statelock); 2499 return; 2500 } 2501 2502 if (needrecov) { 2503 bool_t abort; 2504 nfs4_bseqid_entry_t *bsep = NULL; 2505 2506 if (close_type != CLOSE_RESEND) 2507 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2508 osp, cred_otw, vp); 2509 2510 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2511 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2512 0, args.ctag, close_args->seqid); 2513 2514 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2515 "nfs4close_otw: initiating recovery. error %d " 2516 "res.status %d", ep->error, res.status)); 2517 2518 /* 2519 * Drop the 'os_sync_lock' here so we don't hit 2520 * a potential recursive mutex_enter via an 2521 * 'open_stream_hold()'. 2522 */ 2523 mutex_exit(&osp->os_sync_lock); 2524 *have_sync_lockp = 0; 2525 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2526 (close_type != CLOSE_RESEND && 2527 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2528 OP_CLOSE, bsep, NULL, NULL); 2529 2530 /* drop open seq sync, and let the calling function regrab it */ 2531 nfs4_end_open_seqid_sync(oop); 2532 *did_start_seqid_syncp = 0; 2533 2534 if (bsep) 2535 kmem_free(bsep, sizeof (*bsep)); 2536 /* 2537 * For signals, the caller wants to quit, so don't say to 2538 * retry. For forced unmount, if it's a user thread, it 2539 * wants to quit. If it's a recovery thread, the retry 2540 * will happen higher-up on the call stack. Either way, 2541 * don't say to retry. 2542 */ 2543 if (abort == FALSE && ep->error != EINTR && 2544 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2545 close_type != CLOSE_RESEND && 2546 close_type != CLOSE_AFTER_RESEND) 2547 *recov = 1; 2548 else 2549 *recov = 0; 2550 2551 if (!ep->error) 2552 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2553 return; 2554 } 2555 2556 if (res.status) { 2557 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2558 return; 2559 } 2560 2561 mutex_enter(&rp->r_statev4_lock); 2562 rp->created_v4 = 0; 2563 mutex_exit(&rp->r_statev4_lock); 2564 2565 resop = &res.array[2]; 2566 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2567 osp->os_valid = 0; 2568 2569 /* 2570 * This removes the reference obtained at OPEN; ie, when the 2571 * open stream structure was created. 2572 * 2573 * We don't have to worry about calling 'open_stream_rele' 2574 * since we our currently holding a reference to the open 2575 * stream which means the count cannot go to 0 with this 2576 * decrement. 2577 */ 2578 ASSERT(osp->os_ref_count >= 2); 2579 osp->os_ref_count--; 2580 2581 if (ep->error == 0) { 2582 /* 2583 * Avoid a deadlock with the r_serial thread waiting for 2584 * os_sync_lock in nfs4_get_otw_cred_by_osp() which might be 2585 * held by us. We will wait in nfs4_attr_cache() for the 2586 * completion of the r_serial thread. 2587 */ 2588 mutex_exit(&osp->os_sync_lock); 2589 *have_sync_lockp = 0; 2590 2591 nfs4_attr_cache(vp, 2592 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2593 t, cred_otw, TRUE, NULL); 2594 } 2595 2596 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2597 " returning %d", ep->error)); 2598 2599 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2600 } 2601 2602 /* ARGSUSED */ 2603 static int 2604 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2605 caller_context_t *ct) 2606 { 2607 rnode4_t *rp; 2608 u_offset_t off; 2609 offset_t diff; 2610 uint_t on; 2611 uint_t n; 2612 caddr_t base; 2613 uint_t flags; 2614 int error; 2615 mntinfo4_t *mi; 2616 2617 rp = VTOR4(vp); 2618 2619 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2620 2621 if (IS_SHADOW(vp, rp)) 2622 vp = RTOV4(rp); 2623 2624 if (vp->v_type != VREG) 2625 return (EISDIR); 2626 2627 mi = VTOMI4(vp); 2628 2629 if (nfs_zone() != mi->mi_zone) 2630 return (EIO); 2631 2632 if (uiop->uio_resid == 0) 2633 return (0); 2634 2635 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2636 return (EINVAL); 2637 2638 mutex_enter(&rp->r_statelock); 2639 if (rp->r_flags & R4RECOVERRP) 2640 error = (rp->r_error ? rp->r_error : EIO); 2641 else 2642 error = 0; 2643 mutex_exit(&rp->r_statelock); 2644 if (error) 2645 return (error); 2646 2647 /* 2648 * Bypass VM if caching has been disabled (e.g., locking) or if 2649 * using client-side direct I/O and the file is not mmap'd and 2650 * there are no cached pages. 2651 */ 2652 if ((vp->v_flag & VNOCACHE) || 2653 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2654 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2655 size_t resid = 0; 2656 2657 return (nfs4read(vp, NULL, uiop->uio_loffset, 2658 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2659 } 2660 2661 error = 0; 2662 2663 do { 2664 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2665 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2666 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2667 2668 if (error = nfs4_validate_caches(vp, cr)) 2669 break; 2670 2671 mutex_enter(&rp->r_statelock); 2672 while (rp->r_flags & R4INCACHEPURGE) { 2673 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2674 mutex_exit(&rp->r_statelock); 2675 return (EINTR); 2676 } 2677 } 2678 diff = rp->r_size - uiop->uio_loffset; 2679 mutex_exit(&rp->r_statelock); 2680 if (diff <= 0) 2681 break; 2682 if (diff < n) 2683 n = (uint_t)diff; 2684 2685 if (vpm_enable) { 2686 /* 2687 * Copy data. 2688 */ 2689 error = vpm_data_copy(vp, off + on, n, uiop, 2690 1, NULL, 0, S_READ); 2691 } else { 2692 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2693 S_READ); 2694 2695 error = uiomove(base + on, n, UIO_READ, uiop); 2696 } 2697 2698 if (!error) { 2699 /* 2700 * If read a whole block or read to eof, 2701 * won't need this buffer again soon. 2702 */ 2703 mutex_enter(&rp->r_statelock); 2704 if (n + on == MAXBSIZE || 2705 uiop->uio_loffset == rp->r_size) 2706 flags = SM_DONTNEED; 2707 else 2708 flags = 0; 2709 mutex_exit(&rp->r_statelock); 2710 if (vpm_enable) { 2711 error = vpm_sync_pages(vp, off, n, flags); 2712 } else { 2713 error = segmap_release(segkmap, base, flags); 2714 } 2715 } else { 2716 if (vpm_enable) { 2717 (void) vpm_sync_pages(vp, off, n, 0); 2718 } else { 2719 (void) segmap_release(segkmap, base, 0); 2720 } 2721 } 2722 } while (!error && uiop->uio_resid > 0); 2723 2724 return (error); 2725 } 2726 2727 /* ARGSUSED */ 2728 static int 2729 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2730 caller_context_t *ct) 2731 { 2732 rlim64_t limit = uiop->uio_llimit; 2733 rnode4_t *rp; 2734 u_offset_t off; 2735 caddr_t base; 2736 uint_t flags; 2737 int remainder; 2738 size_t n; 2739 int on; 2740 int error; 2741 int resid; 2742 u_offset_t offset; 2743 mntinfo4_t *mi; 2744 uint_t bsize; 2745 2746 rp = VTOR4(vp); 2747 2748 if (IS_SHADOW(vp, rp)) 2749 vp = RTOV4(rp); 2750 2751 if (vp->v_type != VREG) 2752 return (EISDIR); 2753 2754 mi = VTOMI4(vp); 2755 2756 if (nfs_zone() != mi->mi_zone) 2757 return (EIO); 2758 2759 if (uiop->uio_resid == 0) 2760 return (0); 2761 2762 mutex_enter(&rp->r_statelock); 2763 if (rp->r_flags & R4RECOVERRP) 2764 error = (rp->r_error ? rp->r_error : EIO); 2765 else 2766 error = 0; 2767 mutex_exit(&rp->r_statelock); 2768 if (error) 2769 return (error); 2770 2771 if (ioflag & FAPPEND) { 2772 struct vattr va; 2773 2774 /* 2775 * Must serialize if appending. 2776 */ 2777 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2778 nfs_rw_exit(&rp->r_rwlock); 2779 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2780 INTR4(vp))) 2781 return (EINTR); 2782 } 2783 2784 va.va_mask = AT_SIZE; 2785 error = nfs4getattr(vp, &va, cr); 2786 if (error) 2787 return (error); 2788 uiop->uio_loffset = va.va_size; 2789 } 2790 2791 offset = uiop->uio_loffset + uiop->uio_resid; 2792 2793 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2794 return (EINVAL); 2795 2796 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2797 limit = MAXOFFSET_T; 2798 2799 /* 2800 * Check to make sure that the process will not exceed 2801 * its limit on file size. It is okay to write up to 2802 * the limit, but not beyond. Thus, the write which 2803 * reaches the limit will be short and the next write 2804 * will return an error. 2805 */ 2806 remainder = 0; 2807 if (offset > uiop->uio_llimit) { 2808 remainder = offset - uiop->uio_llimit; 2809 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2810 if (uiop->uio_resid <= 0) { 2811 proc_t *p = ttoproc(curthread); 2812 2813 uiop->uio_resid += remainder; 2814 mutex_enter(&p->p_lock); 2815 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2816 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2817 mutex_exit(&p->p_lock); 2818 return (EFBIG); 2819 } 2820 } 2821 2822 /* update the change attribute, if we have a write delegation */ 2823 2824 mutex_enter(&rp->r_statev4_lock); 2825 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2826 rp->r_deleg_change++; 2827 2828 mutex_exit(&rp->r_statev4_lock); 2829 2830 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2831 return (EINTR); 2832 2833 /* 2834 * Bypass VM if caching has been disabled (e.g., locking) or if 2835 * using client-side direct I/O and the file is not mmap'd and 2836 * there are no cached pages. 2837 */ 2838 if ((vp->v_flag & VNOCACHE) || 2839 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2840 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2841 size_t bufsize; 2842 int count; 2843 u_offset_t org_offset; 2844 stable_how4 stab_comm; 2845 nfs4_fwrite: 2846 if (rp->r_flags & R4STALE) { 2847 resid = uiop->uio_resid; 2848 offset = uiop->uio_loffset; 2849 error = rp->r_error; 2850 /* 2851 * A close may have cleared r_error, if so, 2852 * propagate ESTALE error return properly 2853 */ 2854 if (error == 0) 2855 error = ESTALE; 2856 goto bottom; 2857 } 2858 2859 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2860 base = kmem_alloc(bufsize, KM_SLEEP); 2861 do { 2862 if (ioflag & FDSYNC) 2863 stab_comm = DATA_SYNC4; 2864 else 2865 stab_comm = FILE_SYNC4; 2866 resid = uiop->uio_resid; 2867 offset = uiop->uio_loffset; 2868 count = MIN(uiop->uio_resid, bufsize); 2869 org_offset = uiop->uio_loffset; 2870 error = uiomove(base, count, UIO_WRITE, uiop); 2871 if (!error) { 2872 error = nfs4write(vp, base, org_offset, 2873 count, cr, &stab_comm); 2874 if (!error) { 2875 mutex_enter(&rp->r_statelock); 2876 if (rp->r_size < uiop->uio_loffset) 2877 rp->r_size = uiop->uio_loffset; 2878 mutex_exit(&rp->r_statelock); 2879 } 2880 } 2881 } while (!error && uiop->uio_resid > 0); 2882 kmem_free(base, bufsize); 2883 goto bottom; 2884 } 2885 2886 bsize = vp->v_vfsp->vfs_bsize; 2887 2888 do { 2889 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2890 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2891 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2892 2893 resid = uiop->uio_resid; 2894 offset = uiop->uio_loffset; 2895 2896 if (rp->r_flags & R4STALE) { 2897 error = rp->r_error; 2898 /* 2899 * A close may have cleared r_error, if so, 2900 * propagate ESTALE error return properly 2901 */ 2902 if (error == 0) 2903 error = ESTALE; 2904 break; 2905 } 2906 2907 /* 2908 * Don't create dirty pages faster than they 2909 * can be cleaned so that the system doesn't 2910 * get imbalanced. If the async queue is 2911 * maxed out, then wait for it to drain before 2912 * creating more dirty pages. Also, wait for 2913 * any threads doing pagewalks in the vop_getattr 2914 * entry points so that they don't block for 2915 * long periods. 2916 */ 2917 mutex_enter(&rp->r_statelock); 2918 while ((mi->mi_max_threads != 0 && 2919 rp->r_awcount > 2 * mi->mi_max_threads) || 2920 rp->r_gcount > 0) { 2921 if (INTR4(vp)) { 2922 klwp_t *lwp = ttolwp(curthread); 2923 2924 if (lwp != NULL) 2925 lwp->lwp_nostop++; 2926 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2927 mutex_exit(&rp->r_statelock); 2928 if (lwp != NULL) 2929 lwp->lwp_nostop--; 2930 error = EINTR; 2931 goto bottom; 2932 } 2933 if (lwp != NULL) 2934 lwp->lwp_nostop--; 2935 } else 2936 cv_wait(&rp->r_cv, &rp->r_statelock); 2937 } 2938 mutex_exit(&rp->r_statelock); 2939 2940 /* 2941 * Touch the page and fault it in if it is not in core 2942 * before segmap_getmapflt or vpm_data_copy can lock it. 2943 * This is to avoid the deadlock if the buffer is mapped 2944 * to the same file through mmap which we want to write. 2945 */ 2946 uio_prefaultpages((long)n, uiop); 2947 2948 if (vpm_enable) { 2949 /* 2950 * It will use kpm mappings, so no need to 2951 * pass an address. 2952 */ 2953 error = writerp4(rp, NULL, n, uiop, 0); 2954 } else { 2955 if (segmap_kpm) { 2956 int pon = uiop->uio_loffset & PAGEOFFSET; 2957 size_t pn = MIN(PAGESIZE - pon, 2958 uiop->uio_resid); 2959 int pagecreate; 2960 2961 mutex_enter(&rp->r_statelock); 2962 pagecreate = (pon == 0) && (pn == PAGESIZE || 2963 uiop->uio_loffset + pn >= rp->r_size); 2964 mutex_exit(&rp->r_statelock); 2965 2966 base = segmap_getmapflt(segkmap, vp, off + on, 2967 pn, !pagecreate, S_WRITE); 2968 2969 error = writerp4(rp, base + pon, n, uiop, 2970 pagecreate); 2971 2972 } else { 2973 base = segmap_getmapflt(segkmap, vp, off + on, 2974 n, 0, S_READ); 2975 error = writerp4(rp, base + on, n, uiop, 0); 2976 } 2977 } 2978 2979 if (!error) { 2980 if (mi->mi_flags & MI4_NOAC) 2981 flags = SM_WRITE; 2982 else if ((uiop->uio_loffset % bsize) == 0 || 2983 IS_SWAPVP(vp)) { 2984 /* 2985 * Have written a whole block. 2986 * Start an asynchronous write 2987 * and mark the buffer to 2988 * indicate that it won't be 2989 * needed again soon. 2990 */ 2991 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2992 } else 2993 flags = 0; 2994 if ((ioflag & (FSYNC|FDSYNC)) || 2995 (rp->r_flags & R4OUTOFSPACE)) { 2996 flags &= ~SM_ASYNC; 2997 flags |= SM_WRITE; 2998 } 2999 if (vpm_enable) { 3000 error = vpm_sync_pages(vp, off, n, flags); 3001 } else { 3002 error = segmap_release(segkmap, base, flags); 3003 } 3004 } else { 3005 if (vpm_enable) { 3006 (void) vpm_sync_pages(vp, off, n, 0); 3007 } else { 3008 (void) segmap_release(segkmap, base, 0); 3009 } 3010 /* 3011 * In the event that we got an access error while 3012 * faulting in a page for a write-only file just 3013 * force a write. 3014 */ 3015 if (error == EACCES) 3016 goto nfs4_fwrite; 3017 } 3018 } while (!error && uiop->uio_resid > 0); 3019 3020 bottom: 3021 if (error) { 3022 uiop->uio_resid = resid + remainder; 3023 uiop->uio_loffset = offset; 3024 } else { 3025 uiop->uio_resid += remainder; 3026 3027 mutex_enter(&rp->r_statev4_lock); 3028 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 3029 gethrestime(&rp->r_attr.va_mtime); 3030 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3031 } 3032 mutex_exit(&rp->r_statev4_lock); 3033 } 3034 3035 nfs_rw_exit(&rp->r_lkserlock); 3036 3037 return (error); 3038 } 3039 3040 /* 3041 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 3042 */ 3043 static int 3044 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 3045 int flags, cred_t *cr) 3046 { 3047 struct buf *bp; 3048 int error; 3049 page_t *savepp; 3050 uchar_t fsdata; 3051 stable_how4 stab_comm; 3052 3053 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3054 bp = pageio_setup(pp, len, vp, flags); 3055 ASSERT(bp != NULL); 3056 3057 /* 3058 * pageio_setup should have set b_addr to 0. This 3059 * is correct since we want to do I/O on a page 3060 * boundary. bp_mapin will use this addr to calculate 3061 * an offset, and then set b_addr to the kernel virtual 3062 * address it allocated for us. 3063 */ 3064 ASSERT(bp->b_un.b_addr == 0); 3065 3066 bp->b_edev = 0; 3067 bp->b_dev = 0; 3068 bp->b_lblkno = lbtodb(off); 3069 bp->b_file = vp; 3070 bp->b_offset = (offset_t)off; 3071 bp_mapin(bp); 3072 3073 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3074 freemem > desfree) 3075 stab_comm = UNSTABLE4; 3076 else 3077 stab_comm = FILE_SYNC4; 3078 3079 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3080 3081 bp_mapout(bp); 3082 pageio_done(bp); 3083 3084 if (stab_comm == UNSTABLE4) 3085 fsdata = C_DELAYCOMMIT; 3086 else 3087 fsdata = C_NOCOMMIT; 3088 3089 savepp = pp; 3090 do { 3091 pp->p_fsdata = fsdata; 3092 } while ((pp = pp->p_next) != savepp); 3093 3094 return (error); 3095 } 3096 3097 /* 3098 */ 3099 static int 3100 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3101 { 3102 nfs4_open_owner_t *oop; 3103 nfs4_open_stream_t *osp; 3104 rnode4_t *rp = VTOR4(vp); 3105 mntinfo4_t *mi = VTOMI4(vp); 3106 int reopen_needed; 3107 3108 ASSERT(nfs_zone() == mi->mi_zone); 3109 3110 3111 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3112 if (!oop) 3113 return (EIO); 3114 3115 /* returns with 'os_sync_lock' held */ 3116 osp = find_open_stream(oop, rp); 3117 if (!osp) { 3118 open_owner_rele(oop); 3119 return (EIO); 3120 } 3121 3122 if (osp->os_failed_reopen) { 3123 mutex_exit(&osp->os_sync_lock); 3124 open_stream_rele(osp, rp); 3125 open_owner_rele(oop); 3126 return (EIO); 3127 } 3128 3129 /* 3130 * Determine whether a reopen is needed. If this 3131 * is a delegation open stream, then the os_delegation bit 3132 * should be set. 3133 */ 3134 3135 reopen_needed = osp->os_delegation; 3136 3137 mutex_exit(&osp->os_sync_lock); 3138 open_owner_rele(oop); 3139 3140 if (reopen_needed) { 3141 nfs4_error_zinit(ep); 3142 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3143 mutex_enter(&osp->os_sync_lock); 3144 if (ep->error || ep->stat || osp->os_failed_reopen) { 3145 mutex_exit(&osp->os_sync_lock); 3146 open_stream_rele(osp, rp); 3147 return (EIO); 3148 } 3149 mutex_exit(&osp->os_sync_lock); 3150 } 3151 open_stream_rele(osp, rp); 3152 3153 return (0); 3154 } 3155 3156 /* 3157 * Write to file. Writes to remote server in largest size 3158 * chunks that the server can handle. Write is synchronous. 3159 */ 3160 static int 3161 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3162 stable_how4 *stab_comm) 3163 { 3164 mntinfo4_t *mi; 3165 COMPOUND4args_clnt args; 3166 COMPOUND4res_clnt res; 3167 WRITE4args *wargs; 3168 WRITE4res *wres; 3169 nfs_argop4 argop[2]; 3170 nfs_resop4 *resop; 3171 int tsize; 3172 stable_how4 stable; 3173 rnode4_t *rp; 3174 int doqueue = 1; 3175 bool_t needrecov; 3176 nfs4_recov_state_t recov_state; 3177 nfs4_stateid_types_t sid_types; 3178 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3179 int recov; 3180 3181 rp = VTOR4(vp); 3182 mi = VTOMI4(vp); 3183 3184 ASSERT(nfs_zone() == mi->mi_zone); 3185 3186 stable = *stab_comm; 3187 *stab_comm = FILE_SYNC4; 3188 3189 needrecov = FALSE; 3190 recov_state.rs_flags = 0; 3191 recov_state.rs_num_retry_despite_err = 0; 3192 nfs4_init_stateid_types(&sid_types); 3193 3194 /* Is curthread the recovery thread? */ 3195 mutex_enter(&mi->mi_lock); 3196 recov = (mi->mi_recovthread == curthread); 3197 mutex_exit(&mi->mi_lock); 3198 3199 recov_retry: 3200 args.ctag = TAG_WRITE; 3201 args.array_len = 2; 3202 args.array = argop; 3203 3204 if (!recov) { 3205 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3206 &recov_state, NULL); 3207 if (e.error) 3208 return (e.error); 3209 } 3210 3211 /* 0. putfh target fh */ 3212 argop[0].argop = OP_CPUTFH; 3213 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3214 3215 /* 1. write */ 3216 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3217 3218 do { 3219 3220 wargs->offset = (offset4)offset; 3221 wargs->data_val = base; 3222 3223 if (mi->mi_io_kstats) { 3224 mutex_enter(&mi->mi_lock); 3225 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3226 mutex_exit(&mi->mi_lock); 3227 } 3228 3229 if ((vp->v_flag & VNOCACHE) || 3230 (rp->r_flags & R4DIRECTIO) || 3231 (mi->mi_flags & MI4_DIRECTIO)) 3232 tsize = MIN(mi->mi_stsize, count); 3233 else 3234 tsize = MIN(mi->mi_curwrite, count); 3235 wargs->data_len = (uint_t)tsize; 3236 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3237 3238 if (mi->mi_io_kstats) { 3239 mutex_enter(&mi->mi_lock); 3240 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3241 mutex_exit(&mi->mi_lock); 3242 } 3243 3244 if (!recov) { 3245 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3246 if (e.error && !needrecov) { 3247 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3248 &recov_state, needrecov); 3249 return (e.error); 3250 } 3251 } else { 3252 if (e.error) 3253 return (e.error); 3254 } 3255 3256 /* 3257 * Do handling of OLD_STATEID outside 3258 * of the normal recovery framework. 3259 * 3260 * If write receives a BAD stateid error while using a 3261 * delegation stateid, retry using the open stateid (if it 3262 * exists). If it doesn't have an open stateid, reopen the 3263 * file first, then retry. 3264 */ 3265 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3266 sid_types.cur_sid_type != SPEC_SID) { 3267 nfs4_save_stateid(&wargs->stateid, &sid_types); 3268 if (!recov) 3269 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3270 &recov_state, needrecov); 3271 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3272 goto recov_retry; 3273 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3274 sid_types.cur_sid_type == DEL_SID) { 3275 nfs4_save_stateid(&wargs->stateid, &sid_types); 3276 mutex_enter(&rp->r_statev4_lock); 3277 rp->r_deleg_return_pending = TRUE; 3278 mutex_exit(&rp->r_statev4_lock); 3279 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3280 if (!recov) 3281 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3282 &recov_state, needrecov); 3283 (void) xdr_free(xdr_COMPOUND4res_clnt, 3284 (caddr_t)&res); 3285 return (EIO); 3286 } 3287 if (!recov) 3288 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3289 &recov_state, needrecov); 3290 /* hold needed for nfs4delegreturn_thread */ 3291 VN_HOLD(vp); 3292 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3293 NFS4_DR_DISCARD), FALSE); 3294 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3295 goto recov_retry; 3296 } 3297 3298 if (needrecov) { 3299 bool_t abort; 3300 3301 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3302 "nfs4write: client got error %d, res.status %d" 3303 ", so start recovery", e.error, res.status)); 3304 3305 abort = nfs4_start_recovery(&e, 3306 VTOMI4(vp), vp, NULL, &wargs->stateid, 3307 NULL, OP_WRITE, NULL, NULL, NULL); 3308 if (!e.error) { 3309 e.error = geterrno4(res.status); 3310 (void) xdr_free(xdr_COMPOUND4res_clnt, 3311 (caddr_t)&res); 3312 } 3313 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3314 &recov_state, needrecov); 3315 if (abort == FALSE) 3316 goto recov_retry; 3317 return (e.error); 3318 } 3319 3320 if (res.status) { 3321 e.error = geterrno4(res.status); 3322 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3323 if (!recov) 3324 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3325 &recov_state, needrecov); 3326 return (e.error); 3327 } 3328 3329 resop = &res.array[1]; /* write res */ 3330 wres = &resop->nfs_resop4_u.opwrite; 3331 3332 if ((int)wres->count > tsize) { 3333 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3334 3335 zcmn_err(getzoneid(), CE_WARN, 3336 "nfs4write: server wrote %u, requested was %u", 3337 (int)wres->count, tsize); 3338 if (!recov) 3339 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3340 &recov_state, needrecov); 3341 return (EIO); 3342 } 3343 if (wres->committed == UNSTABLE4) { 3344 *stab_comm = UNSTABLE4; 3345 if (wargs->stable == DATA_SYNC4 || 3346 wargs->stable == FILE_SYNC4) { 3347 (void) xdr_free(xdr_COMPOUND4res_clnt, 3348 (caddr_t)&res); 3349 zcmn_err(getzoneid(), CE_WARN, 3350 "nfs4write: server %s did not commit " 3351 "to stable storage", 3352 rp->r_server->sv_hostname); 3353 if (!recov) 3354 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3355 OH_WRITE, &recov_state, needrecov); 3356 return (EIO); 3357 } 3358 } 3359 3360 tsize = (int)wres->count; 3361 count -= tsize; 3362 base += tsize; 3363 offset += tsize; 3364 if (mi->mi_io_kstats) { 3365 mutex_enter(&mi->mi_lock); 3366 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3367 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3368 tsize; 3369 mutex_exit(&mi->mi_lock); 3370 } 3371 lwp_stat_update(LWP_STAT_OUBLK, 1); 3372 mutex_enter(&rp->r_statelock); 3373 if (rp->r_flags & R4HAVEVERF) { 3374 if (rp->r_writeverf != wres->writeverf) { 3375 nfs4_set_mod(vp); 3376 rp->r_writeverf = wres->writeverf; 3377 } 3378 } else { 3379 rp->r_writeverf = wres->writeverf; 3380 rp->r_flags |= R4HAVEVERF; 3381 } 3382 PURGE_ATTRCACHE4_LOCKED(rp); 3383 rp->r_flags |= R4WRITEMODIFIED; 3384 gethrestime(&rp->r_attr.va_mtime); 3385 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3386 mutex_exit(&rp->r_statelock); 3387 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3388 } while (count); 3389 3390 if (!recov) 3391 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3392 needrecov); 3393 3394 return (e.error); 3395 } 3396 3397 /* 3398 * Read from a file. Reads data in largest chunks our interface can handle. 3399 */ 3400 static int 3401 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3402 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3403 { 3404 mntinfo4_t *mi; 3405 COMPOUND4args_clnt args; 3406 COMPOUND4res_clnt res; 3407 READ4args *rargs; 3408 nfs_argop4 argop[2]; 3409 int tsize; 3410 int doqueue; 3411 rnode4_t *rp; 3412 int data_len; 3413 bool_t is_eof; 3414 bool_t needrecov = FALSE; 3415 nfs4_recov_state_t recov_state; 3416 nfs4_stateid_types_t sid_types; 3417 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3418 3419 rp = VTOR4(vp); 3420 mi = VTOMI4(vp); 3421 doqueue = 1; 3422 3423 ASSERT(nfs_zone() == mi->mi_zone); 3424 3425 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3426 3427 args.array_len = 2; 3428 args.array = argop; 3429 3430 nfs4_init_stateid_types(&sid_types); 3431 3432 recov_state.rs_flags = 0; 3433 recov_state.rs_num_retry_despite_err = 0; 3434 3435 recov_retry: 3436 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3437 &recov_state, NULL); 3438 if (e.error) 3439 return (e.error); 3440 3441 /* putfh target fh */ 3442 argop[0].argop = OP_CPUTFH; 3443 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3444 3445 /* read */ 3446 argop[1].argop = OP_READ; 3447 rargs = &argop[1].nfs_argop4_u.opread; 3448 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3449 OP_READ, &sid_types, async); 3450 3451 do { 3452 if (mi->mi_io_kstats) { 3453 mutex_enter(&mi->mi_lock); 3454 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3455 mutex_exit(&mi->mi_lock); 3456 } 3457 3458 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3459 "nfs4read: %s call, rp %s", 3460 needrecov ? "recov" : "first", 3461 rnode4info(rp))); 3462 3463 if ((vp->v_flag & VNOCACHE) || 3464 (rp->r_flags & R4DIRECTIO) || 3465 (mi->mi_flags & MI4_DIRECTIO)) 3466 tsize = MIN(mi->mi_tsize, count); 3467 else 3468 tsize = MIN(mi->mi_curread, count); 3469 3470 rargs->offset = (offset4)offset; 3471 rargs->count = (count4)tsize; 3472 rargs->res_data_val_alt = NULL; 3473 rargs->res_mblk = NULL; 3474 rargs->res_uiop = NULL; 3475 rargs->res_maxsize = 0; 3476 rargs->wlist = NULL; 3477 3478 if (uiop) 3479 rargs->res_uiop = uiop; 3480 else 3481 rargs->res_data_val_alt = base; 3482 rargs->res_maxsize = tsize; 3483 3484 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3485 #ifdef DEBUG 3486 if (nfs4read_error_inject) { 3487 res.status = nfs4read_error_inject; 3488 nfs4read_error_inject = 0; 3489 } 3490 #endif 3491 3492 if (mi->mi_io_kstats) { 3493 mutex_enter(&mi->mi_lock); 3494 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3495 mutex_exit(&mi->mi_lock); 3496 } 3497 3498 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3499 if (e.error != 0 && !needrecov) { 3500 nfs4_end_fop(mi, vp, NULL, OH_READ, 3501 &recov_state, needrecov); 3502 return (e.error); 3503 } 3504 3505 /* 3506 * Do proper retry for OLD and BAD stateid errors outside 3507 * of the normal recovery framework. There are two differences 3508 * between async and sync reads. The first is that we allow 3509 * retry on BAD_STATEID for async reads, but not sync reads. 3510 * The second is that we mark the file dead for a failed 3511 * attempt with a special stateid for sync reads, but just 3512 * return EIO for async reads. 3513 * 3514 * If a sync read receives a BAD stateid error while using a 3515 * delegation stateid, retry using the open stateid (if it 3516 * exists). If it doesn't have an open stateid, reopen the 3517 * file first, then retry. 3518 */ 3519 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3520 res.status == NFS4ERR_BAD_STATEID) && async) { 3521 nfs4_end_fop(mi, vp, NULL, OH_READ, 3522 &recov_state, needrecov); 3523 if (sid_types.cur_sid_type == SPEC_SID) { 3524 (void) xdr_free(xdr_COMPOUND4res_clnt, 3525 (caddr_t)&res); 3526 return (EIO); 3527 } 3528 nfs4_save_stateid(&rargs->stateid, &sid_types); 3529 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3530 goto recov_retry; 3531 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3532 !async && sid_types.cur_sid_type != SPEC_SID) { 3533 nfs4_save_stateid(&rargs->stateid, &sid_types); 3534 nfs4_end_fop(mi, vp, NULL, OH_READ, 3535 &recov_state, needrecov); 3536 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3537 goto recov_retry; 3538 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3539 sid_types.cur_sid_type == DEL_SID) { 3540 nfs4_save_stateid(&rargs->stateid, &sid_types); 3541 mutex_enter(&rp->r_statev4_lock); 3542 rp->r_deleg_return_pending = TRUE; 3543 mutex_exit(&rp->r_statev4_lock); 3544 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3545 nfs4_end_fop(mi, vp, NULL, OH_READ, 3546 &recov_state, needrecov); 3547 (void) xdr_free(xdr_COMPOUND4res_clnt, 3548 (caddr_t)&res); 3549 return (EIO); 3550 } 3551 nfs4_end_fop(mi, vp, NULL, OH_READ, 3552 &recov_state, needrecov); 3553 /* hold needed for nfs4delegreturn_thread */ 3554 VN_HOLD(vp); 3555 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3556 NFS4_DR_DISCARD), FALSE); 3557 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3558 goto recov_retry; 3559 } 3560 if (needrecov) { 3561 bool_t abort; 3562 3563 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3564 "nfs4read: initiating recovery\n")); 3565 abort = nfs4_start_recovery(&e, 3566 mi, vp, NULL, &rargs->stateid, 3567 NULL, OP_READ, NULL, NULL, NULL); 3568 nfs4_end_fop(mi, vp, NULL, OH_READ, 3569 &recov_state, needrecov); 3570 /* 3571 * Do not retry if we got OLD_STATEID using a special 3572 * stateid. This avoids looping with a broken server. 3573 */ 3574 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3575 sid_types.cur_sid_type == SPEC_SID) 3576 abort = TRUE; 3577 3578 if (abort == FALSE) { 3579 /* 3580 * Need to retry all possible stateids in 3581 * case the recovery error wasn't stateid 3582 * related or the stateids have become 3583 * stale (server reboot). 3584 */ 3585 nfs4_init_stateid_types(&sid_types); 3586 (void) xdr_free(xdr_COMPOUND4res_clnt, 3587 (caddr_t)&res); 3588 goto recov_retry; 3589 } 3590 3591 if (!e.error) { 3592 e.error = geterrno4(res.status); 3593 (void) xdr_free(xdr_COMPOUND4res_clnt, 3594 (caddr_t)&res); 3595 } 3596 return (e.error); 3597 } 3598 3599 if (res.status) { 3600 e.error = geterrno4(res.status); 3601 nfs4_end_fop(mi, vp, NULL, OH_READ, 3602 &recov_state, needrecov); 3603 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3604 return (e.error); 3605 } 3606 3607 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3608 count -= data_len; 3609 if (base) 3610 base += data_len; 3611 offset += data_len; 3612 if (mi->mi_io_kstats) { 3613 mutex_enter(&mi->mi_lock); 3614 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3615 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3616 mutex_exit(&mi->mi_lock); 3617 } 3618 lwp_stat_update(LWP_STAT_INBLK, 1); 3619 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3620 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3621 3622 } while (count && !is_eof); 3623 3624 *residp = count; 3625 3626 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3627 3628 return (e.error); 3629 } 3630 3631 /* ARGSUSED */ 3632 static int 3633 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3634 caller_context_t *ct) 3635 { 3636 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3637 return (EIO); 3638 switch (cmd) { 3639 case _FIODIRECTIO: 3640 return (nfs4_directio(vp, (int)arg, cr)); 3641 default: 3642 return (ENOTTY); 3643 } 3644 } 3645 3646 /* ARGSUSED */ 3647 int 3648 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3649 caller_context_t *ct) 3650 { 3651 int error; 3652 rnode4_t *rp = VTOR4(vp); 3653 3654 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3655 return (EIO); 3656 /* 3657 * If it has been specified that the return value will 3658 * just be used as a hint, and we are only being asked 3659 * for size, fsid or rdevid, then return the client's 3660 * notion of these values without checking to make sure 3661 * that the attribute cache is up to date. 3662 * The whole point is to avoid an over the wire GETATTR 3663 * call. 3664 */ 3665 if (flags & ATTR_HINT) { 3666 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) { 3667 mutex_enter(&rp->r_statelock); 3668 if (vap->va_mask & AT_SIZE) 3669 vap->va_size = rp->r_size; 3670 if (vap->va_mask & AT_FSID) 3671 vap->va_fsid = rp->r_attr.va_fsid; 3672 if (vap->va_mask & AT_RDEV) 3673 vap->va_rdev = rp->r_attr.va_rdev; 3674 mutex_exit(&rp->r_statelock); 3675 return (0); 3676 } 3677 } 3678 3679 /* 3680 * Only need to flush pages if asking for the mtime 3681 * and if there any dirty pages or any outstanding 3682 * asynchronous (write) requests for this file. 3683 */ 3684 if (vap->va_mask & AT_MTIME) { 3685 rp = VTOR4(vp); 3686 if (nfs4_has_pages(vp)) { 3687 mutex_enter(&rp->r_statev4_lock); 3688 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3689 mutex_exit(&rp->r_statev4_lock); 3690 if (rp->r_flags & R4DIRTY || 3691 rp->r_awcount > 0) { 3692 mutex_enter(&rp->r_statelock); 3693 rp->r_gcount++; 3694 mutex_exit(&rp->r_statelock); 3695 error = 3696 nfs4_putpage(vp, (u_offset_t)0, 3697 0, 0, cr, NULL); 3698 mutex_enter(&rp->r_statelock); 3699 if (error && (error == ENOSPC || 3700 error == EDQUOT)) { 3701 if (!rp->r_error) 3702 rp->r_error = error; 3703 } 3704 if (--rp->r_gcount == 0) 3705 cv_broadcast(&rp->r_cv); 3706 mutex_exit(&rp->r_statelock); 3707 } 3708 } else { 3709 mutex_exit(&rp->r_statev4_lock); 3710 } 3711 } 3712 } 3713 return (nfs4getattr(vp, vap, cr)); 3714 } 3715 3716 int 3717 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3718 { 3719 /* 3720 * If these are the only two bits cleared 3721 * on the server then return 0 (OK) else 3722 * return 1 (BAD). 3723 */ 3724 on_client &= ~(S_ISUID|S_ISGID); 3725 if (on_client == from_server) 3726 return (0); 3727 else 3728 return (1); 3729 } 3730 3731 /*ARGSUSED4*/ 3732 static int 3733 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3734 caller_context_t *ct) 3735 { 3736 int error; 3737 3738 if (vap->va_mask & AT_NOSET) 3739 return (EINVAL); 3740 3741 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3742 return (EIO); 3743 3744 /* 3745 * Don't call secpolicy_vnode_setattr, the client cannot 3746 * use its cached attributes to make security decisions 3747 * as the server may be faking mode bits or mapping uid/gid. 3748 * Always just let the server to the checking. 3749 * If we provide the ability to remove basic priviledges 3750 * to setattr (e.g. basic without chmod) then we will 3751 * need to add a check here before calling the server. 3752 */ 3753 error = nfs4setattr(vp, vap, flags, cr, NULL); 3754 3755 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) 3756 vnevent_truncate(vp, ct); 3757 3758 return (error); 3759 } 3760 3761 /* 3762 * To replace the "guarded" version 3 setattr, we use two types of compound 3763 * setattr requests: 3764 * 1. The "normal" setattr, used when the size of the file isn't being 3765 * changed - { Putfh <fh>; Setattr; Getattr }/ 3766 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3767 * with only ctime as the argument. If the server ctime differs from 3768 * what is cached on the client, the verify will fail, but we would 3769 * already have the ctime from the preceding getattr, so just set it 3770 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3771 * Setattr; Getattr }. 3772 * 3773 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3774 * this setattr and NULL if they are not. 3775 */ 3776 static int 3777 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3778 vsecattr_t *vsap) 3779 { 3780 COMPOUND4args_clnt args; 3781 COMPOUND4res_clnt res, *resp = NULL; 3782 nfs4_ga_res_t *garp = NULL; 3783 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3784 nfs_argop4 argop[5]; 3785 int verify_argop = -1; 3786 int setattr_argop = 1; 3787 nfs_resop4 *resop; 3788 vattr_t va; 3789 rnode4_t *rp; 3790 int doqueue = 1; 3791 uint_t mask = vap->va_mask; 3792 mode_t omode; 3793 vsecattr_t *vsp; 3794 timestruc_t ctime; 3795 bool_t needrecov = FALSE; 3796 nfs4_recov_state_t recov_state; 3797 nfs4_stateid_types_t sid_types; 3798 stateid4 stateid; 3799 hrtime_t t; 3800 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3801 servinfo4_t *svp; 3802 bitmap4 supp_attrs; 3803 3804 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3805 rp = VTOR4(vp); 3806 nfs4_init_stateid_types(&sid_types); 3807 3808 /* 3809 * Only need to flush pages if there are any pages and 3810 * if the file is marked as dirty in some fashion. The 3811 * file must be flushed so that we can accurately 3812 * determine the size of the file and the cached data 3813 * after the SETATTR returns. A file is considered to 3814 * be dirty if it is either marked with R4DIRTY, has 3815 * outstanding i/o's active, or is mmap'd. In this 3816 * last case, we can't tell whether there are dirty 3817 * pages, so we flush just to be sure. 3818 */ 3819 if (nfs4_has_pages(vp) && 3820 ((rp->r_flags & R4DIRTY) || 3821 rp->r_count > 0 || 3822 rp->r_mapcnt > 0)) { 3823 ASSERT(vp->v_type != VCHR); 3824 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3825 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3826 mutex_enter(&rp->r_statelock); 3827 if (!rp->r_error) 3828 rp->r_error = e.error; 3829 mutex_exit(&rp->r_statelock); 3830 } 3831 } 3832 3833 if (mask & AT_SIZE) { 3834 /* 3835 * Verification setattr compound for non-deleg AT_SIZE: 3836 * { Putfh; Getattr; Verify; Setattr; Getattr } 3837 * Set ctime local here (outside the do_again label) 3838 * so that subsequent retries (after failed VERIFY) 3839 * will use ctime from GETATTR results (from failed 3840 * verify compound) as VERIFY arg. 3841 * If file has delegation, then VERIFY(time_metadata) 3842 * is of little added value, so don't bother. 3843 */ 3844 mutex_enter(&rp->r_statev4_lock); 3845 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3846 rp->r_deleg_return_pending) { 3847 numops = 5; 3848 ctime = rp->r_attr.va_ctime; 3849 } 3850 mutex_exit(&rp->r_statev4_lock); 3851 } 3852 3853 recov_state.rs_flags = 0; 3854 recov_state.rs_num_retry_despite_err = 0; 3855 3856 args.ctag = TAG_SETATTR; 3857 do_again: 3858 recov_retry: 3859 setattr_argop = numops - 2; 3860 3861 args.array = argop; 3862 args.array_len = numops; 3863 3864 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3865 if (e.error) 3866 return (e.error); 3867 3868 3869 /* putfh target fh */ 3870 argop[0].argop = OP_CPUTFH; 3871 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3872 3873 if (numops == 5) { 3874 /* 3875 * We only care about the ctime, but need to get mtime 3876 * and size for proper cache update. 3877 */ 3878 /* getattr */ 3879 argop[1].argop = OP_GETATTR; 3880 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3881 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3882 3883 /* verify - set later in loop */ 3884 verify_argop = 2; 3885 } 3886 3887 /* setattr */ 3888 svp = rp->r_server; 3889 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3890 supp_attrs = svp->sv_supp_attrs; 3891 nfs_rw_exit(&svp->sv_lock); 3892 3893 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3894 supp_attrs, &e.error, &sid_types); 3895 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3896 if (e.error) { 3897 /* req time field(s) overflow - return immediately */ 3898 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3899 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3900 opsetattr.obj_attributes); 3901 return (e.error); 3902 } 3903 omode = rp->r_attr.va_mode; 3904 3905 /* getattr */ 3906 argop[numops-1].argop = OP_GETATTR; 3907 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3908 /* 3909 * If we are setting the ACL (indicated only by vsap != NULL), request 3910 * the ACL in this getattr. The ACL returned from this getattr will be 3911 * used in updating the ACL cache. 3912 */ 3913 if (vsap != NULL) 3914 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3915 FATTR4_ACL_MASK; 3916 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3917 3918 /* 3919 * setattr iterates if the object size is set and the cached ctime 3920 * does not match the file ctime. In that case, verify the ctime first. 3921 */ 3922 3923 do { 3924 if (verify_argop != -1) { 3925 /* 3926 * Verify that the ctime match before doing setattr. 3927 */ 3928 va.va_mask = AT_CTIME; 3929 va.va_ctime = ctime; 3930 svp = rp->r_server; 3931 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3932 supp_attrs = svp->sv_supp_attrs; 3933 nfs_rw_exit(&svp->sv_lock); 3934 e.error = nfs4args_verify(&argop[verify_argop], &va, 3935 OP_VERIFY, supp_attrs); 3936 if (e.error) { 3937 /* req time field(s) overflow - return */ 3938 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3939 needrecov); 3940 break; 3941 } 3942 } 3943 3944 doqueue = 1; 3945 3946 t = gethrtime(); 3947 3948 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3949 3950 /* 3951 * Purge the access cache and ACL cache if changing either the 3952 * owner of the file, the group owner, or the mode. These may 3953 * change the access permissions of the file, so purge old 3954 * information and start over again. 3955 */ 3956 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3957 (void) nfs4_access_purge_rp(rp); 3958 if (rp->r_secattr != NULL) { 3959 mutex_enter(&rp->r_statelock); 3960 vsp = rp->r_secattr; 3961 rp->r_secattr = NULL; 3962 mutex_exit(&rp->r_statelock); 3963 if (vsp != NULL) 3964 nfs4_acl_free_cache(vsp); 3965 } 3966 } 3967 3968 /* 3969 * If res.array_len == numops, then everything succeeded, 3970 * except for possibly the final getattr. If only the 3971 * last getattr failed, give up, and don't try recovery. 3972 */ 3973 if (res.array_len == numops) { 3974 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3975 needrecov); 3976 if (! e.error) 3977 resp = &res; 3978 break; 3979 } 3980 3981 /* 3982 * if either rpc call failed or completely succeeded - done 3983 */ 3984 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3985 if (e.error) { 3986 PURGE_ATTRCACHE4(vp); 3987 if (!needrecov) { 3988 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3989 needrecov); 3990 break; 3991 } 3992 } 3993 3994 /* 3995 * Do proper retry for OLD_STATEID outside of the normal 3996 * recovery framework. 3997 */ 3998 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3999 sid_types.cur_sid_type != SPEC_SID && 4000 sid_types.cur_sid_type != NO_SID) { 4001 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4002 needrecov); 4003 nfs4_save_stateid(&stateid, &sid_types); 4004 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4005 opsetattr.obj_attributes); 4006 if (verify_argop != -1) { 4007 nfs4args_verify_free(&argop[verify_argop]); 4008 verify_argop = -1; 4009 } 4010 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4011 goto recov_retry; 4012 } 4013 4014 if (needrecov) { 4015 bool_t abort; 4016 4017 abort = nfs4_start_recovery(&e, 4018 VTOMI4(vp), vp, NULL, NULL, NULL, 4019 OP_SETATTR, NULL, NULL, NULL); 4020 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4021 needrecov); 4022 /* 4023 * Do not retry if we failed with OLD_STATEID using 4024 * a special stateid. This is done to avoid looping 4025 * with a broken server. 4026 */ 4027 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4028 (sid_types.cur_sid_type == SPEC_SID || 4029 sid_types.cur_sid_type == NO_SID)) 4030 abort = TRUE; 4031 if (!e.error) { 4032 if (res.status == NFS4ERR_BADOWNER) 4033 nfs4_log_badowner(VTOMI4(vp), 4034 OP_SETATTR); 4035 4036 e.error = geterrno4(res.status); 4037 (void) xdr_free(xdr_COMPOUND4res_clnt, 4038 (caddr_t)&res); 4039 } 4040 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4041 opsetattr.obj_attributes); 4042 if (verify_argop != -1) { 4043 nfs4args_verify_free(&argop[verify_argop]); 4044 verify_argop = -1; 4045 } 4046 if (abort == FALSE) { 4047 /* 4048 * Need to retry all possible stateids in 4049 * case the recovery error wasn't stateid 4050 * related or the stateids have become 4051 * stale (server reboot). 4052 */ 4053 nfs4_init_stateid_types(&sid_types); 4054 goto recov_retry; 4055 } 4056 return (e.error); 4057 } 4058 4059 /* 4060 * Need to call nfs4_end_op before nfs4getattr to 4061 * avoid potential nfs4_start_op deadlock. See RFE 4062 * 4777612. Calls to nfs4_invalidate_pages() and 4063 * nfs4_purge_stale_fh() might also generate over the 4064 * wire calls which my cause nfs4_start_op() deadlock. 4065 */ 4066 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4067 4068 /* 4069 * Check to update lease. 4070 */ 4071 resp = &res; 4072 if (res.status == NFS4_OK) { 4073 break; 4074 } 4075 4076 /* 4077 * Check if verify failed to see if try again 4078 */ 4079 if ((verify_argop == -1) || (res.array_len != 3)) { 4080 /* 4081 * can't continue... 4082 */ 4083 if (res.status == NFS4ERR_BADOWNER) 4084 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4085 4086 e.error = geterrno4(res.status); 4087 } else { 4088 /* 4089 * When the verify request fails, the client ctime is 4090 * not in sync with the server. This is the same as 4091 * the version 3 "not synchronized" error, and we 4092 * handle it in a similar manner (XXX do we need to???). 4093 * Use the ctime returned in the first getattr for 4094 * the input to the next verify. 4095 * If we couldn't get the attributes, then we give up 4096 * because we can't complete the operation as required. 4097 */ 4098 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4099 } 4100 if (e.error) { 4101 PURGE_ATTRCACHE4(vp); 4102 nfs4_purge_stale_fh(e.error, vp, cr); 4103 } else { 4104 /* 4105 * retry with a new verify value 4106 */ 4107 ctime = garp->n4g_va.va_ctime; 4108 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4109 resp = NULL; 4110 } 4111 if (!e.error) { 4112 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4113 opsetattr.obj_attributes); 4114 if (verify_argop != -1) { 4115 nfs4args_verify_free(&argop[verify_argop]); 4116 verify_argop = -1; 4117 } 4118 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4119 goto do_again; 4120 } 4121 } while (!e.error); 4122 4123 if (e.error) { 4124 /* 4125 * If we are here, rfs4call has an irrecoverable error - return 4126 */ 4127 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4128 opsetattr.obj_attributes); 4129 if (verify_argop != -1) { 4130 nfs4args_verify_free(&argop[verify_argop]); 4131 verify_argop = -1; 4132 } 4133 if (resp) 4134 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4135 return (e.error); 4136 } 4137 4138 4139 4140 /* 4141 * If changing the size of the file, invalidate 4142 * any local cached data which is no longer part 4143 * of the file. We also possibly invalidate the 4144 * last page in the file. We could use 4145 * pvn_vpzero(), but this would mark the page as 4146 * modified and require it to be written back to 4147 * the server for no particularly good reason. 4148 * This way, if we access it, then we bring it 4149 * back in. A read should be cheaper than a 4150 * write. 4151 */ 4152 if (mask & AT_SIZE) { 4153 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4154 } 4155 4156 /* either no error or one of the postop getattr failed */ 4157 4158 /* 4159 * XXX Perform a simplified version of wcc checking. Instead of 4160 * have another getattr to get pre-op, just purge cache if 4161 * any of the ops prior to and including the getattr failed. 4162 * If the getattr succeeded then update the attrcache accordingly. 4163 */ 4164 4165 garp = NULL; 4166 if (res.status == NFS4_OK) { 4167 /* 4168 * Last getattr 4169 */ 4170 resop = &res.array[numops - 1]; 4171 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4172 } 4173 /* 4174 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4175 * rather than filling it. See the function itself for details. 4176 */ 4177 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4178 if (garp != NULL) { 4179 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4180 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4181 vs_ace4_destroy(&garp->n4g_vsa); 4182 } else { 4183 if (vsap != NULL) { 4184 /* 4185 * The ACL was supposed to be set and to be 4186 * returned in the last getattr of this 4187 * compound, but for some reason the getattr 4188 * result doesn't contain the ACL. In this 4189 * case, purge the ACL cache. 4190 */ 4191 if (rp->r_secattr != NULL) { 4192 mutex_enter(&rp->r_statelock); 4193 vsp = rp->r_secattr; 4194 rp->r_secattr = NULL; 4195 mutex_exit(&rp->r_statelock); 4196 if (vsp != NULL) 4197 nfs4_acl_free_cache(vsp); 4198 } 4199 } 4200 } 4201 } 4202 4203 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4204 /* 4205 * Set the size, rather than relying on getting it updated 4206 * via a GETATTR. With delegations the client tries to 4207 * suppress GETATTR calls. 4208 */ 4209 mutex_enter(&rp->r_statelock); 4210 rp->r_size = vap->va_size; 4211 mutex_exit(&rp->r_statelock); 4212 } 4213 4214 /* 4215 * Can free up request args and res 4216 */ 4217 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4218 opsetattr.obj_attributes); 4219 if (verify_argop != -1) { 4220 nfs4args_verify_free(&argop[verify_argop]); 4221 verify_argop = -1; 4222 } 4223 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4224 4225 /* 4226 * Some servers will change the mode to clear the setuid 4227 * and setgid bits when changing the uid or gid. The 4228 * client needs to compensate appropriately. 4229 */ 4230 if (mask & (AT_UID | AT_GID)) { 4231 int terror, do_setattr; 4232 4233 do_setattr = 0; 4234 va.va_mask = AT_MODE; 4235 terror = nfs4getattr(vp, &va, cr); 4236 if (!terror && 4237 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4238 (!(mask & AT_MODE) && va.va_mode != omode))) { 4239 va.va_mask = AT_MODE; 4240 if (mask & AT_MODE) { 4241 /* 4242 * We asked the mode to be changed and what 4243 * we just got from the server in getattr is 4244 * not what we wanted it to be, so set it now. 4245 */ 4246 va.va_mode = vap->va_mode; 4247 do_setattr = 1; 4248 } else { 4249 /* 4250 * We did not ask the mode to be changed, 4251 * Check to see that the server just cleared 4252 * I_SUID and I_GUID from it. If not then 4253 * set mode to omode with UID/GID cleared. 4254 */ 4255 if (nfs4_compare_modes(va.va_mode, omode)) { 4256 omode &= ~(S_ISUID|S_ISGID); 4257 va.va_mode = omode; 4258 do_setattr = 1; 4259 } 4260 } 4261 4262 if (do_setattr) 4263 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4264 } 4265 } 4266 4267 return (e.error); 4268 } 4269 4270 /* ARGSUSED */ 4271 static int 4272 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4273 { 4274 COMPOUND4args_clnt args; 4275 COMPOUND4res_clnt res; 4276 int doqueue; 4277 uint32_t acc, resacc, argacc; 4278 rnode4_t *rp; 4279 cred_t *cred, *ncr, *ncrfree = NULL; 4280 nfs4_access_type_t cacc; 4281 int num_ops; 4282 nfs_argop4 argop[3]; 4283 nfs_resop4 *resop; 4284 bool_t needrecov = FALSE, do_getattr; 4285 nfs4_recov_state_t recov_state; 4286 int rpc_error; 4287 hrtime_t t; 4288 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4289 mntinfo4_t *mi = VTOMI4(vp); 4290 4291 if (nfs_zone() != mi->mi_zone) 4292 return (EIO); 4293 4294 acc = 0; 4295 if (mode & VREAD) 4296 acc |= ACCESS4_READ; 4297 if (mode & VWRITE) { 4298 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4299 return (EROFS); 4300 if (vp->v_type == VDIR) 4301 acc |= ACCESS4_DELETE; 4302 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4303 } 4304 if (mode & VEXEC) { 4305 if (vp->v_type == VDIR) 4306 acc |= ACCESS4_LOOKUP; 4307 else 4308 acc |= ACCESS4_EXECUTE; 4309 } 4310 4311 if (VTOR4(vp)->r_acache != NULL) { 4312 e.error = nfs4_validate_caches(vp, cr); 4313 if (e.error) 4314 return (e.error); 4315 } 4316 4317 rp = VTOR4(vp); 4318 if (vp->v_type == VDIR) 4319 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4320 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4321 else 4322 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4323 ACCESS4_EXECUTE; 4324 recov_state.rs_flags = 0; 4325 recov_state.rs_num_retry_despite_err = 0; 4326 4327 cred = cr; 4328 /* 4329 * ncr and ncrfree both initially 4330 * point to the memory area returned 4331 * by crnetadjust(); 4332 * ncrfree not NULL when exiting means 4333 * that we need to release it 4334 */ 4335 ncr = crnetadjust(cred); 4336 ncrfree = ncr; 4337 4338 tryagain: 4339 cacc = nfs4_access_check(rp, acc, cred); 4340 if (cacc == NFS4_ACCESS_ALLOWED) { 4341 if (ncrfree != NULL) 4342 crfree(ncrfree); 4343 return (0); 4344 } 4345 if (cacc == NFS4_ACCESS_DENIED) { 4346 /* 4347 * If the cred can be adjusted, try again 4348 * with the new cred. 4349 */ 4350 if (ncr != NULL) { 4351 cred = ncr; 4352 ncr = NULL; 4353 goto tryagain; 4354 } 4355 if (ncrfree != NULL) 4356 crfree(ncrfree); 4357 return (EACCES); 4358 } 4359 4360 recov_retry: 4361 /* 4362 * Don't take with r_statev4_lock here. r_deleg_type could 4363 * change as soon as lock is released. Since it is an int, 4364 * there is no atomicity issue. 4365 */ 4366 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4367 num_ops = do_getattr ? 3 : 2; 4368 4369 args.ctag = TAG_ACCESS; 4370 4371 args.array_len = num_ops; 4372 args.array = argop; 4373 4374 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4375 &recov_state, NULL)) { 4376 if (ncrfree != NULL) 4377 crfree(ncrfree); 4378 return (e.error); 4379 } 4380 4381 /* putfh target fh */ 4382 argop[0].argop = OP_CPUTFH; 4383 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4384 4385 /* access */ 4386 argop[1].argop = OP_ACCESS; 4387 argop[1].nfs_argop4_u.opaccess.access = argacc; 4388 4389 /* getattr */ 4390 if (do_getattr) { 4391 argop[2].argop = OP_GETATTR; 4392 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4393 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4394 } 4395 4396 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4397 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4398 rnode4info(VTOR4(vp)))); 4399 4400 doqueue = 1; 4401 t = gethrtime(); 4402 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4403 rpc_error = e.error; 4404 4405 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4406 if (needrecov) { 4407 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4408 "nfs4_access: initiating recovery\n")); 4409 4410 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4411 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) { 4412 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4413 &recov_state, needrecov); 4414 if (!e.error) 4415 (void) xdr_free(xdr_COMPOUND4res_clnt, 4416 (caddr_t)&res); 4417 goto recov_retry; 4418 } 4419 } 4420 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4421 4422 if (e.error) 4423 goto out; 4424 4425 if (res.status) { 4426 e.error = geterrno4(res.status); 4427 /* 4428 * This might generate over the wire calls throught 4429 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4430 * here to avoid a deadlock. 4431 */ 4432 nfs4_purge_stale_fh(e.error, vp, cr); 4433 goto out; 4434 } 4435 resop = &res.array[1]; /* access res */ 4436 4437 resacc = resop->nfs_resop4_u.opaccess.access; 4438 4439 if (do_getattr) { 4440 resop++; /* getattr res */ 4441 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4442 t, cr, FALSE, NULL); 4443 } 4444 4445 if (!e.error) { 4446 nfs4_access_cache(rp, argacc, resacc, cred); 4447 /* 4448 * we just cached results with cred; if cred is the 4449 * adjusted credentials from crnetadjust, we do not want 4450 * to release them before exiting: hence setting ncrfree 4451 * to NULL 4452 */ 4453 if (cred != cr) 4454 ncrfree = NULL; 4455 /* XXX check the supported bits too? */ 4456 if ((acc & resacc) != acc) { 4457 /* 4458 * The following code implements the semantic 4459 * that a setuid root program has *at least* the 4460 * permissions of the user that is running the 4461 * program. See rfs3call() for more portions 4462 * of the implementation of this functionality. 4463 */ 4464 /* XXX-LP */ 4465 if (ncr != NULL) { 4466 (void) xdr_free(xdr_COMPOUND4res_clnt, 4467 (caddr_t)&res); 4468 cred = ncr; 4469 ncr = NULL; 4470 goto tryagain; 4471 } 4472 e.error = EACCES; 4473 } 4474 } 4475 4476 out: 4477 if (!rpc_error) 4478 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4479 4480 if (ncrfree != NULL) 4481 crfree(ncrfree); 4482 4483 return (e.error); 4484 } 4485 4486 /* ARGSUSED */ 4487 static int 4488 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4489 { 4490 COMPOUND4args_clnt args; 4491 COMPOUND4res_clnt res; 4492 int doqueue; 4493 rnode4_t *rp; 4494 nfs_argop4 argop[3]; 4495 nfs_resop4 *resop; 4496 READLINK4res *lr_res; 4497 nfs4_ga_res_t *garp; 4498 uint_t len; 4499 char *linkdata; 4500 bool_t needrecov = FALSE; 4501 nfs4_recov_state_t recov_state; 4502 hrtime_t t; 4503 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4504 4505 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4506 return (EIO); 4507 /* 4508 * Can't readlink anything other than a symbolic link. 4509 */ 4510 if (vp->v_type != VLNK) 4511 return (EINVAL); 4512 4513 rp = VTOR4(vp); 4514 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4515 e.error = nfs4_validate_caches(vp, cr); 4516 if (e.error) 4517 return (e.error); 4518 mutex_enter(&rp->r_statelock); 4519 if (rp->r_symlink.contents != NULL) { 4520 e.error = uiomove(rp->r_symlink.contents, 4521 rp->r_symlink.len, UIO_READ, uiop); 4522 mutex_exit(&rp->r_statelock); 4523 return (e.error); 4524 } 4525 mutex_exit(&rp->r_statelock); 4526 } 4527 recov_state.rs_flags = 0; 4528 recov_state.rs_num_retry_despite_err = 0; 4529 4530 recov_retry: 4531 args.array_len = 3; 4532 args.array = argop; 4533 args.ctag = TAG_READLINK; 4534 4535 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4536 if (e.error) { 4537 return (e.error); 4538 } 4539 4540 /* 0. putfh symlink fh */ 4541 argop[0].argop = OP_CPUTFH; 4542 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4543 4544 /* 1. readlink */ 4545 argop[1].argop = OP_READLINK; 4546 4547 /* 2. getattr */ 4548 argop[2].argop = OP_GETATTR; 4549 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4550 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4551 4552 doqueue = 1; 4553 4554 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4555 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4556 rnode4info(VTOR4(vp)))); 4557 4558 t = gethrtime(); 4559 4560 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4561 4562 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4563 if (needrecov) { 4564 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4565 "nfs4_readlink: initiating recovery\n")); 4566 4567 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4568 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) { 4569 if (!e.error) 4570 (void) xdr_free(xdr_COMPOUND4res_clnt, 4571 (caddr_t)&res); 4572 4573 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4574 needrecov); 4575 goto recov_retry; 4576 } 4577 } 4578 4579 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4580 4581 if (e.error) 4582 return (e.error); 4583 4584 /* 4585 * There is an path in the code below which calls 4586 * nfs4_purge_stale_fh(), which may generate otw calls through 4587 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4588 * here to avoid nfs4_start_op() deadlock. 4589 */ 4590 4591 if (res.status && (res.array_len < args.array_len)) { 4592 /* 4593 * either Putfh or Link failed 4594 */ 4595 e.error = geterrno4(res.status); 4596 nfs4_purge_stale_fh(e.error, vp, cr); 4597 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4598 return (e.error); 4599 } 4600 4601 resop = &res.array[1]; /* readlink res */ 4602 lr_res = &resop->nfs_resop4_u.opreadlink; 4603 4604 /* 4605 * treat symlink names as data 4606 */ 4607 linkdata = utf8_to_str((utf8string *)&lr_res->link, &len, NULL); 4608 if (linkdata != NULL) { 4609 int uio_len = len - 1; 4610 /* len includes null byte, which we won't uiomove */ 4611 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4612 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4613 mutex_enter(&rp->r_statelock); 4614 if (rp->r_symlink.contents == NULL) { 4615 rp->r_symlink.contents = linkdata; 4616 rp->r_symlink.len = uio_len; 4617 rp->r_symlink.size = len; 4618 mutex_exit(&rp->r_statelock); 4619 } else { 4620 mutex_exit(&rp->r_statelock); 4621 kmem_free(linkdata, len); 4622 } 4623 } else { 4624 kmem_free(linkdata, len); 4625 } 4626 } 4627 if (res.status == NFS4_OK) { 4628 resop++; /* getattr res */ 4629 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4630 } 4631 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4632 4633 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4634 4635 /* 4636 * The over the wire error for attempting to readlink something 4637 * other than a symbolic link is ENXIO. However, we need to 4638 * return EINVAL instead of ENXIO, so we map it here. 4639 */ 4640 return (e.error == ENXIO ? EINVAL : e.error); 4641 } 4642 4643 /* 4644 * Flush local dirty pages to stable storage on the server. 4645 * 4646 * If FNODSYNC is specified, then there is nothing to do because 4647 * metadata changes are not cached on the client before being 4648 * sent to the server. 4649 */ 4650 /* ARGSUSED */ 4651 static int 4652 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4653 { 4654 int error; 4655 4656 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4657 return (0); 4658 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4659 return (EIO); 4660 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4661 if (!error) 4662 error = VTOR4(vp)->r_error; 4663 return (error); 4664 } 4665 4666 /* 4667 * Weirdness: if the file was removed or the target of a rename 4668 * operation while it was open, it got renamed instead. Here we 4669 * remove the renamed file. 4670 */ 4671 /* ARGSUSED */ 4672 void 4673 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4674 { 4675 rnode4_t *rp; 4676 4677 ASSERT(vp != DNLC_NO_VNODE); 4678 4679 rp = VTOR4(vp); 4680 4681 if (IS_SHADOW(vp, rp)) { 4682 sv_inactive(vp); 4683 return; 4684 } 4685 4686 /* 4687 * If this is coming from the wrong zone, we let someone in the right 4688 * zone take care of it asynchronously. We can get here due to 4689 * VN_RELE() being called from pageout() or fsflush(). This call may 4690 * potentially turn into an expensive no-op if, for instance, v_count 4691 * gets incremented in the meantime, but it's still correct. 4692 */ 4693 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4694 nfs4_async_inactive(vp, cr); 4695 return; 4696 } 4697 4698 /* 4699 * Some of the cleanup steps might require over-the-wire 4700 * operations. Since VOP_INACTIVE can get called as a result of 4701 * other over-the-wire operations (e.g., an attribute cache update 4702 * can lead to a DNLC purge), doing those steps now would lead to a 4703 * nested call to the recovery framework, which can deadlock. So 4704 * do any over-the-wire cleanups asynchronously, in a separate 4705 * thread. 4706 */ 4707 4708 mutex_enter(&rp->r_os_lock); 4709 mutex_enter(&rp->r_statelock); 4710 mutex_enter(&rp->r_statev4_lock); 4711 4712 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4713 mutex_exit(&rp->r_statev4_lock); 4714 mutex_exit(&rp->r_statelock); 4715 mutex_exit(&rp->r_os_lock); 4716 nfs4_async_inactive(vp, cr); 4717 return; 4718 } 4719 4720 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4721 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4722 mutex_exit(&rp->r_statev4_lock); 4723 mutex_exit(&rp->r_statelock); 4724 mutex_exit(&rp->r_os_lock); 4725 nfs4_async_inactive(vp, cr); 4726 return; 4727 } 4728 4729 if (rp->r_unldvp != NULL) { 4730 mutex_exit(&rp->r_statev4_lock); 4731 mutex_exit(&rp->r_statelock); 4732 mutex_exit(&rp->r_os_lock); 4733 nfs4_async_inactive(vp, cr); 4734 return; 4735 } 4736 mutex_exit(&rp->r_statev4_lock); 4737 mutex_exit(&rp->r_statelock); 4738 mutex_exit(&rp->r_os_lock); 4739 4740 rp4_addfree(rp, cr); 4741 } 4742 4743 /* 4744 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4745 * various bits of state. The caller must not refer to vp after this call. 4746 */ 4747 4748 void 4749 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4750 { 4751 rnode4_t *rp = VTOR4(vp); 4752 nfs4_recov_state_t recov_state; 4753 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4754 vnode_t *unldvp; 4755 char *unlname; 4756 cred_t *unlcred; 4757 COMPOUND4args_clnt args; 4758 COMPOUND4res_clnt res, *resp; 4759 nfs_argop4 argop[2]; 4760 int doqueue; 4761 #ifdef DEBUG 4762 char *name; 4763 #endif 4764 4765 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4766 ASSERT(!IS_SHADOW(vp, rp)); 4767 4768 #ifdef DEBUG 4769 name = fn_name(VTOSV(vp)->sv_name); 4770 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4771 "release vnode %s", name)); 4772 kmem_free(name, MAXNAMELEN); 4773 #endif 4774 4775 if (vp->v_type == VREG) { 4776 bool_t recov_failed = FALSE; 4777 4778 e.error = nfs4close_all(vp, cr); 4779 if (e.error) { 4780 /* Check to see if recovery failed */ 4781 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4782 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4783 recov_failed = TRUE; 4784 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4785 if (!recov_failed) { 4786 mutex_enter(&rp->r_statelock); 4787 if (rp->r_flags & R4RECOVERR) 4788 recov_failed = TRUE; 4789 mutex_exit(&rp->r_statelock); 4790 } 4791 if (recov_failed) { 4792 NFS4_DEBUG(nfs4_client_recov_debug, 4793 (CE_NOTE, "nfs4_inactive_otw: " 4794 "close failed (recovery failure)")); 4795 } 4796 } 4797 } 4798 4799 redo: 4800 if (rp->r_unldvp == NULL) { 4801 rp4_addfree(rp, cr); 4802 return; 4803 } 4804 4805 /* 4806 * Save the vnode pointer for the directory where the 4807 * unlinked-open file got renamed, then set it to NULL 4808 * to prevent another thread from getting here before 4809 * we're done with the remove. While we have the 4810 * statelock, make local copies of the pertinent rnode 4811 * fields. If we weren't to do this in an atomic way, the 4812 * the unl* fields could become inconsistent with respect 4813 * to each other due to a race condition between this 4814 * code and nfs_remove(). See bug report 1034328. 4815 */ 4816 mutex_enter(&rp->r_statelock); 4817 if (rp->r_unldvp == NULL) { 4818 mutex_exit(&rp->r_statelock); 4819 rp4_addfree(rp, cr); 4820 return; 4821 } 4822 4823 unldvp = rp->r_unldvp; 4824 rp->r_unldvp = NULL; 4825 unlname = rp->r_unlname; 4826 rp->r_unlname = NULL; 4827 unlcred = rp->r_unlcred; 4828 rp->r_unlcred = NULL; 4829 mutex_exit(&rp->r_statelock); 4830 4831 /* 4832 * If there are any dirty pages left, then flush 4833 * them. This is unfortunate because they just 4834 * may get thrown away during the remove operation, 4835 * but we have to do this for correctness. 4836 */ 4837 if (nfs4_has_pages(vp) && 4838 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4839 ASSERT(vp->v_type != VCHR); 4840 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4841 if (e.error) { 4842 mutex_enter(&rp->r_statelock); 4843 if (!rp->r_error) 4844 rp->r_error = e.error; 4845 mutex_exit(&rp->r_statelock); 4846 } 4847 } 4848 4849 recov_state.rs_flags = 0; 4850 recov_state.rs_num_retry_despite_err = 0; 4851 recov_retry_remove: 4852 /* 4853 * Do the remove operation on the renamed file 4854 */ 4855 args.ctag = TAG_INACTIVE; 4856 4857 /* 4858 * Remove ops: putfh dir; remove 4859 */ 4860 args.array_len = 2; 4861 args.array = argop; 4862 4863 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4864 if (e.error) { 4865 kmem_free(unlname, MAXNAMELEN); 4866 crfree(unlcred); 4867 VN_RELE(unldvp); 4868 /* 4869 * Try again; this time around r_unldvp will be NULL, so we'll 4870 * just call rp4_addfree() and return. 4871 */ 4872 goto redo; 4873 } 4874 4875 /* putfh directory */ 4876 argop[0].argop = OP_CPUTFH; 4877 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4878 4879 /* remove */ 4880 argop[1].argop = OP_CREMOVE; 4881 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4882 4883 doqueue = 1; 4884 resp = &res; 4885 4886 #if 0 /* notyet */ 4887 /* 4888 * Can't do this yet. We may be being called from 4889 * dnlc_purge_XXX while that routine is holding a 4890 * mutex lock to the nc_rele list. The calls to 4891 * nfs3_cache_wcc_data may result in calls to 4892 * dnlc_purge_XXX. This will result in a deadlock. 4893 */ 4894 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4895 if (e.error) { 4896 PURGE_ATTRCACHE4(unldvp); 4897 resp = NULL; 4898 } else if (res.status) { 4899 e.error = geterrno4(res.status); 4900 PURGE_ATTRCACHE4(unldvp); 4901 /* 4902 * This code is inactive right now 4903 * but if made active there should 4904 * be a nfs4_end_op() call before 4905 * nfs4_purge_stale_fh to avoid start_op() 4906 * deadlock. See BugId: 4948726 4907 */ 4908 nfs4_purge_stale_fh(error, unldvp, cr); 4909 } else { 4910 nfs_resop4 *resop; 4911 REMOVE4res *rm_res; 4912 4913 resop = &res.array[1]; 4914 rm_res = &resop->nfs_resop4_u.opremove; 4915 /* 4916 * Update directory cache attribute, 4917 * readdir and dnlc caches. 4918 */ 4919 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4920 } 4921 #else 4922 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4923 4924 PURGE_ATTRCACHE4(unldvp); 4925 #endif 4926 4927 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4928 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4929 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 4930 if (!e.error) 4931 (void) xdr_free(xdr_COMPOUND4res_clnt, 4932 (caddr_t)&res); 4933 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4934 &recov_state, TRUE); 4935 goto recov_retry_remove; 4936 } 4937 } 4938 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4939 4940 /* 4941 * Release stuff held for the remove 4942 */ 4943 VN_RELE(unldvp); 4944 if (!e.error && resp) 4945 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4946 4947 kmem_free(unlname, MAXNAMELEN); 4948 crfree(unlcred); 4949 goto redo; 4950 } 4951 4952 /* 4953 * Remote file system operations having to do with directory manipulation. 4954 */ 4955 /* ARGSUSED3 */ 4956 int 4957 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4958 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4959 int *direntflags, pathname_t *realpnp) 4960 { 4961 int error; 4962 vnode_t *vp, *avp = NULL; 4963 rnode4_t *drp; 4964 4965 *vpp = NULL; 4966 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4967 return (EPERM); 4968 /* 4969 * if LOOKUP_XATTR, must replace dvp (object) with 4970 * object's attrdir before continuing with lookup 4971 */ 4972 if (flags & LOOKUP_XATTR) { 4973 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4974 if (error) 4975 return (error); 4976 4977 dvp = avp; 4978 4979 /* 4980 * If lookup is for "", just return dvp now. The attrdir 4981 * has already been activated (from nfs4lookup_xattr), and 4982 * the caller will RELE the original dvp -- not 4983 * the attrdir. So, set vpp and return. 4984 * Currently, when the LOOKUP_XATTR flag is 4985 * passed to VOP_LOOKUP, the name is always empty, and 4986 * shortcircuiting here avoids 3 unneeded lock/unlock 4987 * pairs. 4988 * 4989 * If a non-empty name was provided, then it is the 4990 * attribute name, and it will be looked up below. 4991 */ 4992 if (*nm == '\0') { 4993 *vpp = dvp; 4994 return (0); 4995 } 4996 4997 /* 4998 * The vfs layer never sends a name when asking for the 4999 * attrdir, so we should never get here (unless of course 5000 * name is passed at some time in future -- at which time 5001 * we'll blow up here). 5002 */ 5003 ASSERT(0); 5004 } 5005 5006 drp = VTOR4(dvp); 5007 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5008 return (EINTR); 5009 5010 error = nfs4lookup(dvp, nm, vpp, cr, 0); 5011 nfs_rw_exit(&drp->r_rwlock); 5012 5013 /* 5014 * If vnode is a device, create special vnode. 5015 */ 5016 if (!error && ISVDEV((*vpp)->v_type)) { 5017 vp = *vpp; 5018 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 5019 VN_RELE(vp); 5020 } 5021 5022 return (error); 5023 } 5024 5025 /* ARGSUSED */ 5026 static int 5027 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 5028 { 5029 int error; 5030 rnode4_t *drp; 5031 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 5032 mntinfo4_t *mi; 5033 5034 mi = VTOMI4(dvp); 5035 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 5036 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS)) 5037 return (EINVAL); 5038 5039 drp = VTOR4(dvp); 5040 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5041 return (EINTR); 5042 5043 mutex_enter(&drp->r_statelock); 5044 /* 5045 * If the server doesn't support xattrs just return EINVAL 5046 */ 5047 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 5048 mutex_exit(&drp->r_statelock); 5049 nfs_rw_exit(&drp->r_rwlock); 5050 return (EINVAL); 5051 } 5052 5053 /* 5054 * If there is a cached xattr directory entry, 5055 * use it as long as the attributes are valid. If the 5056 * attributes are not valid, take the simple approach and 5057 * free the cached value and re-fetch a new value. 5058 * 5059 * We don't negative entry cache for now, if we did we 5060 * would need to check if the file has changed on every 5061 * lookup. But xattrs don't exist very often and failing 5062 * an openattr is not much more expensive than and NVERIFY or GETATTR 5063 * so do an openattr over the wire for now. 5064 */ 5065 if (drp->r_xattr_dir != NULL) { 5066 if (ATTRCACHE4_VALID(dvp)) { 5067 VN_HOLD(drp->r_xattr_dir); 5068 *vpp = drp->r_xattr_dir; 5069 mutex_exit(&drp->r_statelock); 5070 nfs_rw_exit(&drp->r_rwlock); 5071 return (0); 5072 } 5073 VN_RELE(drp->r_xattr_dir); 5074 drp->r_xattr_dir = NULL; 5075 } 5076 mutex_exit(&drp->r_statelock); 5077 5078 error = nfs4openattr(dvp, vpp, cflag, cr); 5079 5080 nfs_rw_exit(&drp->r_rwlock); 5081 5082 return (error); 5083 } 5084 5085 static int 5086 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5087 { 5088 int error; 5089 rnode4_t *drp; 5090 5091 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5092 5093 /* 5094 * If lookup is for "", just return dvp. Don't need 5095 * to send it over the wire, look it up in the dnlc, 5096 * or perform any access checks. 5097 */ 5098 if (*nm == '\0') { 5099 VN_HOLD(dvp); 5100 *vpp = dvp; 5101 return (0); 5102 } 5103 5104 /* 5105 * Can't do lookups in non-directories. 5106 */ 5107 if (dvp->v_type != VDIR) 5108 return (ENOTDIR); 5109 5110 /* 5111 * If lookup is for ".", just return dvp. Don't need 5112 * to send it over the wire or look it up in the dnlc, 5113 * just need to check access. 5114 */ 5115 if (nm[0] == '.' && nm[1] == '\0') { 5116 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5117 if (error) 5118 return (error); 5119 VN_HOLD(dvp); 5120 *vpp = dvp; 5121 return (0); 5122 } 5123 5124 drp = VTOR4(dvp); 5125 if (!(drp->r_flags & R4LOOKUP)) { 5126 mutex_enter(&drp->r_statelock); 5127 drp->r_flags |= R4LOOKUP; 5128 mutex_exit(&drp->r_statelock); 5129 } 5130 5131 *vpp = NULL; 5132 /* 5133 * Lookup this name in the DNLC. If there is no entry 5134 * lookup over the wire. 5135 */ 5136 if (!skipdnlc) 5137 *vpp = dnlc_lookup(dvp, nm); 5138 if (*vpp == NULL) { 5139 /* 5140 * We need to go over the wire to lookup the name. 5141 */ 5142 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5143 } 5144 5145 /* 5146 * We hit on the dnlc 5147 */ 5148 if (*vpp != DNLC_NO_VNODE || 5149 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5150 /* 5151 * But our attrs may not be valid. 5152 */ 5153 if (ATTRCACHE4_VALID(dvp)) { 5154 error = nfs4_waitfor_purge_complete(dvp); 5155 if (error) { 5156 VN_RELE(*vpp); 5157 *vpp = NULL; 5158 return (error); 5159 } 5160 5161 /* 5162 * If after the purge completes, check to make sure 5163 * our attrs are still valid. 5164 */ 5165 if (ATTRCACHE4_VALID(dvp)) { 5166 /* 5167 * If we waited for a purge we may have 5168 * lost our vnode so look it up again. 5169 */ 5170 VN_RELE(*vpp); 5171 *vpp = dnlc_lookup(dvp, nm); 5172 if (*vpp == NULL) 5173 return (nfs4lookupnew_otw(dvp, 5174 nm, vpp, cr)); 5175 5176 /* 5177 * The access cache should almost always hit 5178 */ 5179 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5180 5181 if (error) { 5182 VN_RELE(*vpp); 5183 *vpp = NULL; 5184 return (error); 5185 } 5186 if (*vpp == DNLC_NO_VNODE) { 5187 VN_RELE(*vpp); 5188 *vpp = NULL; 5189 return (ENOENT); 5190 } 5191 return (0); 5192 } 5193 } 5194 } 5195 5196 ASSERT(*vpp != NULL); 5197 5198 /* 5199 * We may have gotten here we have one of the following cases: 5200 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5201 * need to validate them. 5202 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5203 * must validate. 5204 * 5205 * Go to the server and check if the directory has changed, if 5206 * it hasn't we are done and can use the dnlc entry. 5207 */ 5208 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5209 } 5210 5211 /* 5212 * Go to the server and check if the directory has changed, if 5213 * it hasn't we are done and can use the dnlc entry. If it 5214 * has changed we get a new copy of its attributes and check 5215 * the access for VEXEC, then relookup the filename and 5216 * get its filehandle and attributes. 5217 * 5218 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5219 * if the NVERIFY failed we must 5220 * purge the caches 5221 * cache new attributes (will set r_time_attr_inval) 5222 * cache new access 5223 * recheck VEXEC access 5224 * add name to dnlc, possibly negative 5225 * if LOOKUP succeeded 5226 * cache new attributes 5227 * else 5228 * set a new r_time_attr_inval for dvp 5229 * check to make sure we have access 5230 * 5231 * The vpp returned is the vnode passed in if the directory is valid, 5232 * a new vnode if successful lookup, or NULL on error. 5233 */ 5234 static int 5235 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5236 { 5237 COMPOUND4args_clnt args; 5238 COMPOUND4res_clnt res; 5239 fattr4 *ver_fattr; 5240 fattr4_change dchange; 5241 int32_t *ptr; 5242 int argoplist_size = 7 * sizeof (nfs_argop4); 5243 nfs_argop4 *argop; 5244 int doqueue; 5245 mntinfo4_t *mi; 5246 nfs4_recov_state_t recov_state; 5247 hrtime_t t; 5248 int isdotdot; 5249 vnode_t *nvp; 5250 nfs_fh4 *fhp; 5251 nfs4_sharedfh_t *sfhp; 5252 nfs4_access_type_t cacc; 5253 rnode4_t *nrp; 5254 rnode4_t *drp = VTOR4(dvp); 5255 nfs4_ga_res_t *garp = NULL; 5256 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5257 5258 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5259 ASSERT(nm != NULL); 5260 ASSERT(nm[0] != '\0'); 5261 ASSERT(dvp->v_type == VDIR); 5262 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5263 ASSERT(*vpp != NULL); 5264 5265 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5266 isdotdot = 1; 5267 args.ctag = TAG_LOOKUP_VPARENT; 5268 } else { 5269 /* 5270 * If dvp were a stub, it should have triggered and caused 5271 * a mount for us to get this far. 5272 */ 5273 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5274 5275 isdotdot = 0; 5276 args.ctag = TAG_LOOKUP_VALID; 5277 } 5278 5279 mi = VTOMI4(dvp); 5280 recov_state.rs_flags = 0; 5281 recov_state.rs_num_retry_despite_err = 0; 5282 5283 nvp = NULL; 5284 5285 /* Save the original mount point security information */ 5286 (void) save_mnt_secinfo(mi->mi_curr_serv); 5287 5288 recov_retry: 5289 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5290 &recov_state, NULL); 5291 if (e.error) { 5292 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5293 VN_RELE(*vpp); 5294 *vpp = NULL; 5295 return (e.error); 5296 } 5297 5298 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5299 5300 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5301 args.array_len = 7; 5302 args.array = argop; 5303 5304 /* 0. putfh file */ 5305 argop[0].argop = OP_CPUTFH; 5306 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5307 5308 /* 1. nverify the change info */ 5309 argop[1].argop = OP_NVERIFY; 5310 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5311 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5312 ver_fattr->attrlist4 = (char *)&dchange; 5313 ptr = (int32_t *)&dchange; 5314 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5315 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5316 5317 /* 2. getattr directory */ 5318 argop[2].argop = OP_GETATTR; 5319 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5320 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5321 5322 /* 3. access directory */ 5323 argop[3].argop = OP_ACCESS; 5324 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5325 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5326 5327 /* 4. lookup name */ 5328 if (isdotdot) { 5329 argop[4].argop = OP_LOOKUPP; 5330 } else { 5331 argop[4].argop = OP_CLOOKUP; 5332 argop[4].nfs_argop4_u.opclookup.cname = nm; 5333 } 5334 5335 /* 5. resulting file handle */ 5336 argop[5].argop = OP_GETFH; 5337 5338 /* 6. resulting file attributes */ 5339 argop[6].argop = OP_GETATTR; 5340 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5341 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5342 5343 doqueue = 1; 5344 t = gethrtime(); 5345 5346 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5347 5348 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5349 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5350 if (e.error != 0 && *vpp != NULL) 5351 VN_RELE(*vpp); 5352 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5353 &recov_state, FALSE); 5354 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5355 kmem_free(argop, argoplist_size); 5356 return (e.error); 5357 } 5358 5359 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5360 /* 5361 * For WRONGSEC of a non-dotdot case, send secinfo directly 5362 * from this thread, do not go thru the recovery thread since 5363 * we need the nm information. 5364 * 5365 * Not doing dotdot case because there is no specification 5366 * for (PUTFH, SECINFO "..") yet. 5367 */ 5368 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5369 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5370 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5371 &recov_state, FALSE); 5372 else 5373 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5374 &recov_state, TRUE); 5375 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5376 kmem_free(argop, argoplist_size); 5377 if (!e.error) 5378 goto recov_retry; 5379 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5380 VN_RELE(*vpp); 5381 *vpp = NULL; 5382 return (e.error); 5383 } 5384 5385 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5386 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5387 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5388 &recov_state, TRUE); 5389 5390 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5391 kmem_free(argop, argoplist_size); 5392 goto recov_retry; 5393 } 5394 } 5395 5396 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5397 5398 if (e.error || res.array_len == 0) { 5399 /* 5400 * If e.error isn't set, then reply has no ops (or we couldn't 5401 * be here). The only legal way to reply without an op array 5402 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5403 * be in the reply for all other status values. 5404 * 5405 * For valid replies without an ops array, return ENOTSUP 5406 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5407 * return EIO -- don't trust status. 5408 */ 5409 if (e.error == 0) 5410 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5411 ENOTSUP : EIO; 5412 VN_RELE(*vpp); 5413 *vpp = NULL; 5414 kmem_free(argop, argoplist_size); 5415 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5416 return (e.error); 5417 } 5418 5419 if (res.status != NFS4ERR_SAME) { 5420 e.error = geterrno4(res.status); 5421 5422 /* 5423 * The NVERIFY "failed" so the directory has changed 5424 * First make sure PUTFH succeeded and NVERIFY "failed" 5425 * cleanly. 5426 */ 5427 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5428 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5429 nfs4_purge_stale_fh(e.error, dvp, cr); 5430 VN_RELE(*vpp); 5431 *vpp = NULL; 5432 goto exit; 5433 } 5434 5435 /* 5436 * We know the NVERIFY "failed" so we must: 5437 * purge the caches (access and indirectly dnlc if needed) 5438 */ 5439 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5440 5441 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5442 nfs4_purge_stale_fh(e.error, dvp, cr); 5443 VN_RELE(*vpp); 5444 *vpp = NULL; 5445 goto exit; 5446 } 5447 5448 /* 5449 * Install new cached attributes for the directory 5450 */ 5451 nfs4_attr_cache(dvp, 5452 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5453 t, cr, FALSE, NULL); 5454 5455 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5456 nfs4_purge_stale_fh(e.error, dvp, cr); 5457 VN_RELE(*vpp); 5458 *vpp = NULL; 5459 e.error = geterrno4(res.status); 5460 goto exit; 5461 } 5462 5463 /* 5464 * Now we know the directory is valid, 5465 * cache new directory access 5466 */ 5467 nfs4_access_cache(drp, 5468 args.array[3].nfs_argop4_u.opaccess.access, 5469 res.array[3].nfs_resop4_u.opaccess.access, cr); 5470 5471 /* 5472 * recheck VEXEC access 5473 */ 5474 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5475 if (cacc != NFS4_ACCESS_ALLOWED) { 5476 /* 5477 * Directory permissions might have been revoked 5478 */ 5479 if (cacc == NFS4_ACCESS_DENIED) { 5480 e.error = EACCES; 5481 VN_RELE(*vpp); 5482 *vpp = NULL; 5483 goto exit; 5484 } 5485 5486 /* 5487 * Somehow we must not have asked for enough 5488 * so try a singleton ACCESS, should never happen. 5489 */ 5490 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5491 if (e.error) { 5492 VN_RELE(*vpp); 5493 *vpp = NULL; 5494 goto exit; 5495 } 5496 } 5497 5498 e.error = geterrno4(res.status); 5499 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5500 /* 5501 * The lookup failed, probably no entry 5502 */ 5503 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5504 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5505 } else { 5506 /* 5507 * Might be some other error, so remove 5508 * the dnlc entry to make sure we start all 5509 * over again, next time. 5510 */ 5511 dnlc_remove(dvp, nm); 5512 } 5513 VN_RELE(*vpp); 5514 *vpp = NULL; 5515 goto exit; 5516 } 5517 5518 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5519 /* 5520 * The file exists but we can't get its fh for 5521 * some unknown reason. Remove it from the dnlc 5522 * and error out to be safe. 5523 */ 5524 dnlc_remove(dvp, nm); 5525 VN_RELE(*vpp); 5526 *vpp = NULL; 5527 goto exit; 5528 } 5529 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5530 if (fhp->nfs_fh4_len == 0) { 5531 /* 5532 * The file exists but a bogus fh 5533 * some unknown reason. Remove it from the dnlc 5534 * and error out to be safe. 5535 */ 5536 e.error = ENOENT; 5537 dnlc_remove(dvp, nm); 5538 VN_RELE(*vpp); 5539 *vpp = NULL; 5540 goto exit; 5541 } 5542 sfhp = sfh4_get(fhp, mi); 5543 5544 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5545 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5546 5547 /* 5548 * Make the new rnode 5549 */ 5550 if (isdotdot) { 5551 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5552 if (e.error) { 5553 sfh4_rele(&sfhp); 5554 VN_RELE(*vpp); 5555 *vpp = NULL; 5556 goto exit; 5557 } 5558 /* 5559 * XXX if nfs4_make_dotdot uses an existing rnode 5560 * XXX it doesn't update the attributes. 5561 * XXX for now just save them again to save an OTW 5562 */ 5563 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5564 } else { 5565 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5566 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5567 /* 5568 * If v_type == VNON, then garp was NULL because 5569 * the last op in the compound failed and makenfs4node 5570 * could not find the vnode for sfhp. It created 5571 * a new vnode, so we have nothing to purge here. 5572 */ 5573 if (nvp->v_type == VNON) { 5574 vattr_t vattr; 5575 5576 vattr.va_mask = AT_TYPE; 5577 /* 5578 * N.B. We've already called nfs4_end_fop above. 5579 */ 5580 e.error = nfs4getattr(nvp, &vattr, cr); 5581 if (e.error) { 5582 sfh4_rele(&sfhp); 5583 VN_RELE(*vpp); 5584 *vpp = NULL; 5585 VN_RELE(nvp); 5586 goto exit; 5587 } 5588 nvp->v_type = vattr.va_type; 5589 } 5590 } 5591 sfh4_rele(&sfhp); 5592 5593 nrp = VTOR4(nvp); 5594 mutex_enter(&nrp->r_statev4_lock); 5595 if (!nrp->created_v4) { 5596 mutex_exit(&nrp->r_statev4_lock); 5597 dnlc_update(dvp, nm, nvp); 5598 } else 5599 mutex_exit(&nrp->r_statev4_lock); 5600 5601 VN_RELE(*vpp); 5602 *vpp = nvp; 5603 } else { 5604 hrtime_t now; 5605 hrtime_t delta = 0; 5606 5607 e.error = 0; 5608 5609 /* 5610 * Because the NVERIFY "succeeded" we know that the 5611 * directory attributes are still valid 5612 * so update r_time_attr_inval 5613 */ 5614 now = gethrtime(); 5615 mutex_enter(&drp->r_statelock); 5616 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5617 delta = now - drp->r_time_attr_saved; 5618 if (delta < mi->mi_acdirmin) 5619 delta = mi->mi_acdirmin; 5620 else if (delta > mi->mi_acdirmax) 5621 delta = mi->mi_acdirmax; 5622 } 5623 drp->r_time_attr_inval = now + delta; 5624 mutex_exit(&drp->r_statelock); 5625 dnlc_update(dvp, nm, *vpp); 5626 5627 /* 5628 * Even though we have a valid directory attr cache 5629 * and dnlc entry, we may not have access. 5630 * This should almost always hit the cache. 5631 */ 5632 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5633 if (e.error) { 5634 VN_RELE(*vpp); 5635 *vpp = NULL; 5636 } 5637 5638 if (*vpp == DNLC_NO_VNODE) { 5639 VN_RELE(*vpp); 5640 *vpp = NULL; 5641 e.error = ENOENT; 5642 } 5643 } 5644 5645 exit: 5646 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5647 kmem_free(argop, argoplist_size); 5648 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5649 return (e.error); 5650 } 5651 5652 /* 5653 * We need to go over the wire to lookup the name, but 5654 * while we are there verify the directory has not 5655 * changed but if it has, get new attributes and check access 5656 * 5657 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5658 * NVERIFY GETATTR ACCESS 5659 * 5660 * With the results: 5661 * if the NVERIFY failed we must purge the caches, add new attributes, 5662 * and cache new access. 5663 * set a new r_time_attr_inval 5664 * add name to dnlc, possibly negative 5665 * if LOOKUP succeeded 5666 * cache new attributes 5667 */ 5668 static int 5669 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5670 { 5671 COMPOUND4args_clnt args; 5672 COMPOUND4res_clnt res; 5673 fattr4 *ver_fattr; 5674 fattr4_change dchange; 5675 int32_t *ptr; 5676 nfs4_ga_res_t *garp = NULL; 5677 int argoplist_size = 9 * sizeof (nfs_argop4); 5678 nfs_argop4 *argop; 5679 int doqueue; 5680 mntinfo4_t *mi; 5681 nfs4_recov_state_t recov_state; 5682 hrtime_t t; 5683 int isdotdot; 5684 vnode_t *nvp; 5685 nfs_fh4 *fhp; 5686 nfs4_sharedfh_t *sfhp; 5687 nfs4_access_type_t cacc; 5688 rnode4_t *nrp; 5689 rnode4_t *drp = VTOR4(dvp); 5690 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5691 5692 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5693 ASSERT(nm != NULL); 5694 ASSERT(nm[0] != '\0'); 5695 ASSERT(dvp->v_type == VDIR); 5696 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5697 ASSERT(*vpp == NULL); 5698 5699 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5700 isdotdot = 1; 5701 args.ctag = TAG_LOOKUP_PARENT; 5702 } else { 5703 /* 5704 * If dvp were a stub, it should have triggered and caused 5705 * a mount for us to get this far. 5706 */ 5707 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5708 5709 isdotdot = 0; 5710 args.ctag = TAG_LOOKUP; 5711 } 5712 5713 mi = VTOMI4(dvp); 5714 recov_state.rs_flags = 0; 5715 recov_state.rs_num_retry_despite_err = 0; 5716 5717 nvp = NULL; 5718 5719 /* Save the original mount point security information */ 5720 (void) save_mnt_secinfo(mi->mi_curr_serv); 5721 5722 recov_retry: 5723 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5724 &recov_state, NULL); 5725 if (e.error) { 5726 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5727 return (e.error); 5728 } 5729 5730 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5731 5732 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5733 args.array_len = 9; 5734 args.array = argop; 5735 5736 /* 0. putfh file */ 5737 argop[0].argop = OP_CPUTFH; 5738 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5739 5740 /* 1. savefh for the nverify */ 5741 argop[1].argop = OP_SAVEFH; 5742 5743 /* 2. lookup name */ 5744 if (isdotdot) { 5745 argop[2].argop = OP_LOOKUPP; 5746 } else { 5747 argop[2].argop = OP_CLOOKUP; 5748 argop[2].nfs_argop4_u.opclookup.cname = nm; 5749 } 5750 5751 /* 3. resulting file handle */ 5752 argop[3].argop = OP_GETFH; 5753 5754 /* 4. resulting file attributes */ 5755 argop[4].argop = OP_GETATTR; 5756 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5757 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5758 5759 /* 5. restorefh back the directory for the nverify */ 5760 argop[5].argop = OP_RESTOREFH; 5761 5762 /* 6. nverify the change info */ 5763 argop[6].argop = OP_NVERIFY; 5764 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5765 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5766 ver_fattr->attrlist4 = (char *)&dchange; 5767 ptr = (int32_t *)&dchange; 5768 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5769 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5770 5771 /* 7. getattr directory */ 5772 argop[7].argop = OP_GETATTR; 5773 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5774 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5775 5776 /* 8. access directory */ 5777 argop[8].argop = OP_ACCESS; 5778 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5779 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5780 5781 doqueue = 1; 5782 t = gethrtime(); 5783 5784 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5785 5786 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5787 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5788 if (e.error != 0 && *vpp != NULL) 5789 VN_RELE(*vpp); 5790 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5791 &recov_state, FALSE); 5792 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5793 kmem_free(argop, argoplist_size); 5794 return (e.error); 5795 } 5796 5797 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5798 /* 5799 * For WRONGSEC of a non-dotdot case, send secinfo directly 5800 * from this thread, do not go thru the recovery thread since 5801 * we need the nm information. 5802 * 5803 * Not doing dotdot case because there is no specification 5804 * for (PUTFH, SECINFO "..") yet. 5805 */ 5806 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5807 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5808 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5809 &recov_state, FALSE); 5810 else 5811 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5812 &recov_state, TRUE); 5813 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5814 kmem_free(argop, argoplist_size); 5815 if (!e.error) 5816 goto recov_retry; 5817 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5818 return (e.error); 5819 } 5820 5821 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5822 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5823 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5824 &recov_state, TRUE); 5825 5826 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5827 kmem_free(argop, argoplist_size); 5828 goto recov_retry; 5829 } 5830 } 5831 5832 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5833 5834 if (e.error || res.array_len == 0) { 5835 /* 5836 * If e.error isn't set, then reply has no ops (or we couldn't 5837 * be here). The only legal way to reply without an op array 5838 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5839 * be in the reply for all other status values. 5840 * 5841 * For valid replies without an ops array, return ENOTSUP 5842 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5843 * return EIO -- don't trust status. 5844 */ 5845 if (e.error == 0) 5846 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5847 ENOTSUP : EIO; 5848 5849 kmem_free(argop, argoplist_size); 5850 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5851 return (e.error); 5852 } 5853 5854 e.error = geterrno4(res.status); 5855 5856 /* 5857 * The PUTFH and SAVEFH may have failed. 5858 */ 5859 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5860 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5861 nfs4_purge_stale_fh(e.error, dvp, cr); 5862 goto exit; 5863 } 5864 5865 /* 5866 * Check if the file exists, if it does delay entering 5867 * into the dnlc until after we update the directory 5868 * attributes so we don't cause it to get purged immediately. 5869 */ 5870 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5871 /* 5872 * The lookup failed, probably no entry 5873 */ 5874 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5875 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5876 goto exit; 5877 } 5878 5879 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5880 /* 5881 * The file exists but we can't get its fh for 5882 * some unknown reason. Error out to be safe. 5883 */ 5884 goto exit; 5885 } 5886 5887 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5888 if (fhp->nfs_fh4_len == 0) { 5889 /* 5890 * The file exists but a bogus fh 5891 * some unknown reason. Error out to be safe. 5892 */ 5893 e.error = EIO; 5894 goto exit; 5895 } 5896 sfhp = sfh4_get(fhp, mi); 5897 5898 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5899 sfh4_rele(&sfhp); 5900 goto exit; 5901 } 5902 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5903 5904 /* 5905 * The RESTOREFH may have failed 5906 */ 5907 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5908 sfh4_rele(&sfhp); 5909 e.error = EIO; 5910 goto exit; 5911 } 5912 5913 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5914 /* 5915 * First make sure the NVERIFY failed as we expected, 5916 * if it didn't then be conservative and error out 5917 * as we can't trust the directory. 5918 */ 5919 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5920 sfh4_rele(&sfhp); 5921 e.error = EIO; 5922 goto exit; 5923 } 5924 5925 /* 5926 * We know the NVERIFY "failed" so the directory has changed, 5927 * so we must: 5928 * purge the caches (access and indirectly dnlc if needed) 5929 */ 5930 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5931 5932 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5933 sfh4_rele(&sfhp); 5934 goto exit; 5935 } 5936 nfs4_attr_cache(dvp, 5937 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5938 t, cr, FALSE, NULL); 5939 5940 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5941 nfs4_purge_stale_fh(e.error, dvp, cr); 5942 sfh4_rele(&sfhp); 5943 e.error = geterrno4(res.status); 5944 goto exit; 5945 } 5946 5947 /* 5948 * Now we know the directory is valid, 5949 * cache new directory access 5950 */ 5951 nfs4_access_cache(drp, 5952 args.array[8].nfs_argop4_u.opaccess.access, 5953 res.array[8].nfs_resop4_u.opaccess.access, cr); 5954 5955 /* 5956 * recheck VEXEC access 5957 */ 5958 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5959 if (cacc != NFS4_ACCESS_ALLOWED) { 5960 /* 5961 * Directory permissions might have been revoked 5962 */ 5963 if (cacc == NFS4_ACCESS_DENIED) { 5964 sfh4_rele(&sfhp); 5965 e.error = EACCES; 5966 goto exit; 5967 } 5968 5969 /* 5970 * Somehow we must not have asked for enough 5971 * so try a singleton ACCESS should never happen 5972 */ 5973 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5974 if (e.error) { 5975 sfh4_rele(&sfhp); 5976 goto exit; 5977 } 5978 } 5979 5980 e.error = geterrno4(res.status); 5981 } else { 5982 hrtime_t now; 5983 hrtime_t delta = 0; 5984 5985 e.error = 0; 5986 5987 /* 5988 * Because the NVERIFY "succeeded" we know that the 5989 * directory attributes are still valid 5990 * so update r_time_attr_inval 5991 */ 5992 now = gethrtime(); 5993 mutex_enter(&drp->r_statelock); 5994 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5995 delta = now - drp->r_time_attr_saved; 5996 if (delta < mi->mi_acdirmin) 5997 delta = mi->mi_acdirmin; 5998 else if (delta > mi->mi_acdirmax) 5999 delta = mi->mi_acdirmax; 6000 } 6001 drp->r_time_attr_inval = now + delta; 6002 mutex_exit(&drp->r_statelock); 6003 6004 /* 6005 * Even though we have a valid directory attr cache, 6006 * we may not have access. 6007 * This should almost always hit the cache. 6008 */ 6009 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 6010 if (e.error) { 6011 sfh4_rele(&sfhp); 6012 goto exit; 6013 } 6014 } 6015 6016 /* 6017 * Now we have successfully completed the lookup, if the 6018 * directory has changed we now have the valid attributes. 6019 * We also know we have directory access. 6020 * Create the new rnode and insert it in the dnlc. 6021 */ 6022 if (isdotdot) { 6023 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 6024 if (e.error) { 6025 sfh4_rele(&sfhp); 6026 goto exit; 6027 } 6028 /* 6029 * XXX if nfs4_make_dotdot uses an existing rnode 6030 * XXX it doesn't update the attributes. 6031 * XXX for now just save them again to save an OTW 6032 */ 6033 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 6034 } else { 6035 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 6036 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 6037 } 6038 sfh4_rele(&sfhp); 6039 6040 nrp = VTOR4(nvp); 6041 mutex_enter(&nrp->r_statev4_lock); 6042 if (!nrp->created_v4) { 6043 mutex_exit(&nrp->r_statev4_lock); 6044 dnlc_update(dvp, nm, nvp); 6045 } else 6046 mutex_exit(&nrp->r_statev4_lock); 6047 6048 *vpp = nvp; 6049 6050 exit: 6051 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6052 kmem_free(argop, argoplist_size); 6053 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 6054 return (e.error); 6055 } 6056 6057 #ifdef DEBUG 6058 void 6059 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 6060 { 6061 uint_t i, len; 6062 zoneid_t zoneid = getzoneid(); 6063 char *s; 6064 6065 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 6066 for (i = 0; i < argcnt; i++) { 6067 nfs_argop4 *op = &argbase[i]; 6068 switch (op->argop) { 6069 case OP_CPUTFH: 6070 case OP_PUTFH: 6071 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 6072 break; 6073 case OP_PUTROOTFH: 6074 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 6075 break; 6076 case OP_CLOOKUP: 6077 s = op->nfs_argop4_u.opclookup.cname; 6078 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6079 break; 6080 case OP_LOOKUP: 6081 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 6082 &len, NULL); 6083 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6084 kmem_free(s, len); 6085 break; 6086 case OP_LOOKUPP: 6087 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6088 break; 6089 case OP_GETFH: 6090 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6091 break; 6092 case OP_GETATTR: 6093 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6094 break; 6095 case OP_OPENATTR: 6096 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6097 break; 6098 default: 6099 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6100 op->argop); 6101 break; 6102 } 6103 } 6104 } 6105 #endif 6106 6107 /* 6108 * nfs4lookup_setup - constructs a multi-lookup compound request. 6109 * 6110 * Given the path "nm1/nm2/.../nmn", the following compound requests 6111 * may be created: 6112 * 6113 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6114 * is faster, for now. 6115 * 6116 * l4_getattrs indicates the type of compound requested. 6117 * 6118 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6119 * 6120 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6121 * 6122 * total number of ops is n + 1. 6123 * 6124 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6125 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6126 * before the last component, and only get attributes 6127 * for the last component. Note that the second-to-last 6128 * pathname component is XATTR_RPATH, which does NOT go 6129 * over-the-wire as a lookup. 6130 * 6131 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6132 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6133 * 6134 * and total number of ops is n + 5. 6135 * 6136 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6137 * attribute directory: create lookups plus an OPENATTR 6138 * replacing the last lookup. Note that the last pathname 6139 * component is XATTR_RPATH, which does NOT go over-the-wire 6140 * as a lookup. 6141 * 6142 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6143 * Openattr; Getfh; Getattr } 6144 * 6145 * and total number of ops is n + 5. 6146 * 6147 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6148 * nodes too. 6149 * 6150 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6151 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6152 * 6153 * and total number of ops is 3*n + 1. 6154 * 6155 * All cases: returns the index in the arg array of the final LOOKUP op, or 6156 * -1 if no LOOKUPs were used. 6157 */ 6158 int 6159 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6160 { 6161 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6162 nfs_argop4 *argbase, *argop; 6163 int arglen, argcnt; 6164 int n = 1; /* number of components */ 6165 int nga = 1; /* number of Getattr's in request */ 6166 char c = '\0', *s, *p; 6167 int lookup_idx = -1; 6168 int argoplist_size; 6169 6170 /* set lookuparg response result to 0 */ 6171 lookupargp->resp->status = NFS4_OK; 6172 6173 /* skip leading "/" or "." e.g. ".//./" if there is */ 6174 for (; ; nm++) { 6175 if (*nm != '/' && *nm != '.') 6176 break; 6177 6178 /* ".." is counted as 1 component */ 6179 if (*nm == '.' && *(nm + 1) != '/') 6180 break; 6181 } 6182 6183 /* 6184 * Find n = number of components - nm must be null terminated 6185 * Skip "." components. 6186 */ 6187 if (*nm != '\0') 6188 for (n = 1, s = nm; *s != '\0'; s++) { 6189 if ((*s == '/') && (*(s + 1) != '/') && 6190 (*(s + 1) != '\0') && 6191 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6192 *(s + 2) == '\0'))) 6193 n++; 6194 } 6195 else 6196 n = 0; 6197 6198 /* 6199 * nga is number of components that need Getfh+Getattr 6200 */ 6201 switch (l4_getattrs) { 6202 case LKP4_NO_ATTRIBUTES: 6203 nga = 0; 6204 break; 6205 case LKP4_ALL_ATTRIBUTES: 6206 nga = n; 6207 /* 6208 * Always have at least 1 getfh, getattr pair 6209 */ 6210 if (nga == 0) 6211 nga++; 6212 break; 6213 case LKP4_LAST_ATTRDIR: 6214 case LKP4_LAST_NAMED_ATTR: 6215 nga = n+1; 6216 break; 6217 } 6218 6219 /* 6220 * If change to use the filehandle attr instead of getfh 6221 * the following line can be deleted. 6222 */ 6223 nga *= 2; 6224 6225 /* 6226 * calculate number of ops in request as 6227 * header + trailer + lookups + getattrs 6228 */ 6229 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6230 6231 argoplist_size = arglen * sizeof (nfs_argop4); 6232 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6233 lookupargp->argsp->array = argop; 6234 6235 argcnt = lookupargp->header_len; 6236 argop += argcnt; 6237 6238 /* 6239 * loop and create a lookup op and possibly getattr/getfh for 6240 * each component. Skip "." components. 6241 */ 6242 for (s = nm; *s != '\0'; s = p) { 6243 /* 6244 * Set up a pathname struct for each component if needed 6245 */ 6246 while (*s == '/') 6247 s++; 6248 if (*s == '\0') 6249 break; 6250 6251 for (p = s; (*p != '/') && (*p != '\0'); p++) 6252 ; 6253 c = *p; 6254 *p = '\0'; 6255 6256 if (s[0] == '.' && s[1] == '\0') { 6257 *p = c; 6258 continue; 6259 } 6260 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6261 strcmp(s, XATTR_RPATH) == 0) { 6262 /* getfh XXX may not be needed in future */ 6263 argop->argop = OP_GETFH; 6264 argop++; 6265 argcnt++; 6266 6267 /* getattr */ 6268 argop->argop = OP_GETATTR; 6269 argop->nfs_argop4_u.opgetattr.attr_request = 6270 lookupargp->ga_bits; 6271 argop->nfs_argop4_u.opgetattr.mi = 6272 lookupargp->mi; 6273 argop++; 6274 argcnt++; 6275 6276 /* openattr */ 6277 argop->argop = OP_OPENATTR; 6278 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6279 strcmp(s, XATTR_RPATH) == 0) { 6280 /* openattr */ 6281 argop->argop = OP_OPENATTR; 6282 argop++; 6283 argcnt++; 6284 6285 /* getfh XXX may not be needed in future */ 6286 argop->argop = OP_GETFH; 6287 argop++; 6288 argcnt++; 6289 6290 /* getattr */ 6291 argop->argop = OP_GETATTR; 6292 argop->nfs_argop4_u.opgetattr.attr_request = 6293 lookupargp->ga_bits; 6294 argop->nfs_argop4_u.opgetattr.mi = 6295 lookupargp->mi; 6296 argop++; 6297 argcnt++; 6298 *p = c; 6299 continue; 6300 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6301 /* lookupp */ 6302 argop->argop = OP_LOOKUPP; 6303 } else { 6304 /* lookup */ 6305 argop->argop = OP_LOOKUP; 6306 (void) str_to_utf8(s, 6307 &argop->nfs_argop4_u.oplookup.objname); 6308 } 6309 lookup_idx = argcnt; 6310 argop++; 6311 argcnt++; 6312 6313 *p = c; 6314 6315 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6316 /* getfh XXX may not be needed in future */ 6317 argop->argop = OP_GETFH; 6318 argop++; 6319 argcnt++; 6320 6321 /* getattr */ 6322 argop->argop = OP_GETATTR; 6323 argop->nfs_argop4_u.opgetattr.attr_request = 6324 lookupargp->ga_bits; 6325 argop->nfs_argop4_u.opgetattr.mi = 6326 lookupargp->mi; 6327 argop++; 6328 argcnt++; 6329 } 6330 } 6331 6332 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6333 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6334 if (needgetfh) { 6335 /* stick in a post-lookup getfh */ 6336 argop->argop = OP_GETFH; 6337 argcnt++; 6338 argop++; 6339 } 6340 /* post-lookup getattr */ 6341 argop->argop = OP_GETATTR; 6342 argop->nfs_argop4_u.opgetattr.attr_request = 6343 lookupargp->ga_bits; 6344 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6345 argcnt++; 6346 } 6347 argcnt += lookupargp->trailer_len; /* actual op count */ 6348 lookupargp->argsp->array_len = argcnt; 6349 lookupargp->arglen = arglen; 6350 6351 #ifdef DEBUG 6352 if (nfs4_client_lookup_debug) 6353 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6354 #endif 6355 6356 return (lookup_idx); 6357 } 6358 6359 static int 6360 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6361 { 6362 COMPOUND4args_clnt args; 6363 COMPOUND4res_clnt res; 6364 GETFH4res *gf_res = NULL; 6365 nfs_argop4 argop[4]; 6366 nfs_resop4 *resop = NULL; 6367 nfs4_sharedfh_t *sfhp; 6368 hrtime_t t; 6369 nfs4_error_t e; 6370 6371 rnode4_t *drp; 6372 int doqueue = 1; 6373 vnode_t *vp; 6374 int needrecov = 0; 6375 nfs4_recov_state_t recov_state; 6376 6377 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6378 6379 *avp = NULL; 6380 recov_state.rs_flags = 0; 6381 recov_state.rs_num_retry_despite_err = 0; 6382 6383 recov_retry: 6384 /* COMPOUND: putfh, openattr, getfh, getattr */ 6385 args.array_len = 4; 6386 args.array = argop; 6387 args.ctag = TAG_OPENATTR; 6388 6389 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6390 if (e.error) 6391 return (e.error); 6392 6393 drp = VTOR4(dvp); 6394 6395 /* putfh */ 6396 argop[0].argop = OP_CPUTFH; 6397 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6398 6399 /* openattr */ 6400 argop[1].argop = OP_OPENATTR; 6401 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6402 6403 /* getfh */ 6404 argop[2].argop = OP_GETFH; 6405 6406 /* getattr */ 6407 argop[3].argop = OP_GETATTR; 6408 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6409 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6410 6411 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6412 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6413 rnode4info(drp))); 6414 6415 t = gethrtime(); 6416 6417 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6418 6419 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6420 if (needrecov) { 6421 bool_t abort; 6422 6423 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6424 "nfs4openattr: initiating recovery\n")); 6425 6426 abort = nfs4_start_recovery(&e, 6427 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6428 OP_OPENATTR, NULL, NULL, NULL); 6429 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6430 if (!e.error) { 6431 e.error = geterrno4(res.status); 6432 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6433 } 6434 if (abort == FALSE) 6435 goto recov_retry; 6436 return (e.error); 6437 } 6438 6439 if (e.error) { 6440 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6441 return (e.error); 6442 } 6443 6444 if (res.status) { 6445 /* 6446 * If OTW errro is NOTSUPP, then it should be 6447 * translated to EINVAL. All Solaris file system 6448 * implementations return EINVAL to the syscall layer 6449 * when the attrdir cannot be created due to an 6450 * implementation restriction or noxattr mount option. 6451 */ 6452 if (res.status == NFS4ERR_NOTSUPP) { 6453 mutex_enter(&drp->r_statelock); 6454 if (drp->r_xattr_dir) 6455 VN_RELE(drp->r_xattr_dir); 6456 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6457 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6458 mutex_exit(&drp->r_statelock); 6459 6460 e.error = EINVAL; 6461 } else { 6462 e.error = geterrno4(res.status); 6463 } 6464 6465 if (e.error) { 6466 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6467 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6468 needrecov); 6469 return (e.error); 6470 } 6471 } 6472 6473 resop = &res.array[0]; /* putfh res */ 6474 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6475 6476 resop = &res.array[1]; /* openattr res */ 6477 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6478 6479 resop = &res.array[2]; /* getfh res */ 6480 gf_res = &resop->nfs_resop4_u.opgetfh; 6481 if (gf_res->object.nfs_fh4_len == 0) { 6482 *avp = NULL; 6483 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6484 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6485 return (ENOENT); 6486 } 6487 6488 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6489 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6490 dvp->v_vfsp, t, cr, dvp, 6491 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp)); 6492 sfh4_rele(&sfhp); 6493 6494 if (e.error) 6495 PURGE_ATTRCACHE4(vp); 6496 6497 mutex_enter(&vp->v_lock); 6498 vp->v_flag |= V_XATTRDIR; 6499 mutex_exit(&vp->v_lock); 6500 6501 *avp = vp; 6502 6503 mutex_enter(&drp->r_statelock); 6504 if (drp->r_xattr_dir) 6505 VN_RELE(drp->r_xattr_dir); 6506 VN_HOLD(vp); 6507 drp->r_xattr_dir = vp; 6508 6509 /* 6510 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6511 * NULL. xattrs could be created at any time, and we have no 6512 * way to update pc4_xattr_exists in the base object if/when 6513 * it happens. 6514 */ 6515 drp->r_pathconf.pc4_xattr_valid = 0; 6516 6517 mutex_exit(&drp->r_statelock); 6518 6519 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6520 6521 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6522 6523 return (0); 6524 } 6525 6526 /* ARGSUSED */ 6527 static int 6528 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6529 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6530 vsecattr_t *vsecp) 6531 { 6532 int error; 6533 vnode_t *vp = NULL; 6534 rnode4_t *rp; 6535 struct vattr vattr; 6536 rnode4_t *drp; 6537 vnode_t *tempvp; 6538 enum createmode4 createmode; 6539 bool_t must_trunc = FALSE; 6540 int truncating = 0; 6541 6542 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6543 return (EPERM); 6544 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6545 return (EINVAL); 6546 } 6547 6548 /* . and .. have special meaning in the protocol, reject them. */ 6549 6550 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6551 return (EISDIR); 6552 6553 drp = VTOR4(dvp); 6554 6555 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6556 return (EINTR); 6557 6558 top: 6559 /* 6560 * We make a copy of the attributes because the caller does not 6561 * expect us to change what va points to. 6562 */ 6563 vattr = *va; 6564 6565 /* 6566 * If the pathname is "", then dvp is the root vnode of 6567 * a remote file mounted over a local directory. 6568 * All that needs to be done is access 6569 * checking and truncation. Note that we avoid doing 6570 * open w/ create because the parent directory might 6571 * be in pseudo-fs and the open would fail. 6572 */ 6573 if (*nm == '\0') { 6574 error = 0; 6575 VN_HOLD(dvp); 6576 vp = dvp; 6577 must_trunc = TRUE; 6578 } else { 6579 /* 6580 * We need to go over the wire, just to be sure whether the 6581 * file exists or not. Using the DNLC can be dangerous in 6582 * this case when making a decision regarding existence. 6583 */ 6584 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6585 } 6586 6587 if (exclusive) 6588 createmode = EXCLUSIVE4; 6589 else 6590 createmode = GUARDED4; 6591 6592 /* 6593 * error would be set if the file does not exist on the 6594 * server, so lets go create it. 6595 */ 6596 if (error) { 6597 goto create_otw; 6598 } 6599 6600 /* 6601 * File does exist on the server 6602 */ 6603 if (exclusive == EXCL) 6604 error = EEXIST; 6605 else if (vp->v_type == VDIR && (mode & VWRITE)) 6606 error = EISDIR; 6607 else { 6608 /* 6609 * If vnode is a device, create special vnode. 6610 */ 6611 if (ISVDEV(vp->v_type)) { 6612 tempvp = vp; 6613 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6614 VN_RELE(tempvp); 6615 } 6616 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6617 if ((vattr.va_mask & AT_SIZE) && 6618 vp->v_type == VREG) { 6619 rp = VTOR4(vp); 6620 /* 6621 * Check here for large file handled 6622 * by LF-unaware process (as 6623 * ufs_create() does) 6624 */ 6625 if (!(flags & FOFFMAX)) { 6626 mutex_enter(&rp->r_statelock); 6627 if (rp->r_size > MAXOFF32_T) 6628 error = EOVERFLOW; 6629 mutex_exit(&rp->r_statelock); 6630 } 6631 6632 /* if error is set then we need to return */ 6633 if (error) { 6634 nfs_rw_exit(&drp->r_rwlock); 6635 VN_RELE(vp); 6636 return (error); 6637 } 6638 6639 if (must_trunc) { 6640 vattr.va_mask = AT_SIZE; 6641 error = nfs4setattr(vp, &vattr, 0, cr, 6642 NULL); 6643 } else { 6644 /* 6645 * we know we have a regular file that already 6646 * exists and we may end up truncating the file 6647 * as a result of the open_otw, so flush out 6648 * any dirty pages for this file first. 6649 */ 6650 if (nfs4_has_pages(vp) && 6651 ((rp->r_flags & R4DIRTY) || 6652 rp->r_count > 0 || 6653 rp->r_mapcnt > 0)) { 6654 error = nfs4_putpage(vp, 6655 (offset_t)0, 0, 0, cr, ct); 6656 if (error && (error == ENOSPC || 6657 error == EDQUOT)) { 6658 mutex_enter( 6659 &rp->r_statelock); 6660 if (!rp->r_error) 6661 rp->r_error = 6662 error; 6663 mutex_exit( 6664 &rp->r_statelock); 6665 } 6666 } 6667 vattr.va_mask = (AT_SIZE | 6668 AT_TYPE | AT_MODE); 6669 vattr.va_type = VREG; 6670 createmode = UNCHECKED4; 6671 truncating = 1; 6672 goto create_otw; 6673 } 6674 } 6675 } 6676 } 6677 nfs_rw_exit(&drp->r_rwlock); 6678 if (error) { 6679 VN_RELE(vp); 6680 } else { 6681 vnode_t *tvp; 6682 rnode4_t *trp; 6683 tvp = vp; 6684 if (vp->v_type == VREG) { 6685 trp = VTOR4(vp); 6686 if (IS_SHADOW(vp, trp)) 6687 tvp = RTOV4(trp); 6688 } 6689 6690 if (must_trunc) { 6691 /* 6692 * existing file got truncated, notify. 6693 */ 6694 vnevent_create(tvp, ct); 6695 } 6696 6697 *vpp = vp; 6698 } 6699 return (error); 6700 6701 create_otw: 6702 dnlc_remove(dvp, nm); 6703 6704 ASSERT(vattr.va_mask & AT_TYPE); 6705 6706 /* 6707 * If not a regular file let nfs4mknod() handle it. 6708 */ 6709 if (vattr.va_type != VREG) { 6710 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6711 nfs_rw_exit(&drp->r_rwlock); 6712 return (error); 6713 } 6714 6715 /* 6716 * It _is_ a regular file. 6717 */ 6718 ASSERT(vattr.va_mask & AT_MODE); 6719 if (MANDMODE(vattr.va_mode)) { 6720 nfs_rw_exit(&drp->r_rwlock); 6721 return (EACCES); 6722 } 6723 6724 /* 6725 * If this happens to be a mknod of a regular file, then flags will 6726 * have neither FREAD or FWRITE. However, we must set at least one 6727 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6728 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6729 * set (based on openmode specified by app). 6730 */ 6731 if ((flags & (FREAD|FWRITE)) == 0) 6732 flags |= (FREAD|FWRITE); 6733 6734 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6735 6736 if (vp != NULL) { 6737 /* if create was successful, throw away the file's pages */ 6738 if (!error && (vattr.va_mask & AT_SIZE)) 6739 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6740 cr); 6741 /* release the lookup hold */ 6742 VN_RELE(vp); 6743 vp = NULL; 6744 } 6745 6746 /* 6747 * validate that we opened a regular file. This handles a misbehaving 6748 * server that returns an incorrect FH. 6749 */ 6750 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6751 error = EISDIR; 6752 VN_RELE(*vpp); 6753 } 6754 6755 /* 6756 * If this is not an exclusive create, then the CREATE 6757 * request will be made with the GUARDED mode set. This 6758 * means that the server will return EEXIST if the file 6759 * exists. The file could exist because of a retransmitted 6760 * request. In this case, we recover by starting over and 6761 * checking to see whether the file exists. This second 6762 * time through it should and a CREATE request will not be 6763 * sent. 6764 * 6765 * This handles the problem of a dangling CREATE request 6766 * which contains attributes which indicate that the file 6767 * should be truncated. This retransmitted request could 6768 * possibly truncate valid data in the file if not caught 6769 * by the duplicate request mechanism on the server or if 6770 * not caught by other means. The scenario is: 6771 * 6772 * Client transmits CREATE request with size = 0 6773 * Client times out, retransmits request. 6774 * Response to the first request arrives from the server 6775 * and the client proceeds on. 6776 * Client writes data to the file. 6777 * The server now processes retransmitted CREATE request 6778 * and truncates file. 6779 * 6780 * The use of the GUARDED CREATE request prevents this from 6781 * happening because the retransmitted CREATE would fail 6782 * with EEXIST and would not truncate the file. 6783 */ 6784 if (error == EEXIST && exclusive == NONEXCL) { 6785 #ifdef DEBUG 6786 nfs4_create_misses++; 6787 #endif 6788 goto top; 6789 } 6790 nfs_rw_exit(&drp->r_rwlock); 6791 if (truncating && !error && *vpp) { 6792 vnode_t *tvp; 6793 rnode4_t *trp; 6794 /* 6795 * existing file got truncated, notify. 6796 */ 6797 tvp = *vpp; 6798 trp = VTOR4(tvp); 6799 if (IS_SHADOW(tvp, trp)) 6800 tvp = RTOV4(trp); 6801 vnevent_create(tvp, ct); 6802 } 6803 return (error); 6804 } 6805 6806 /* 6807 * Create compound (for mkdir, mknod, symlink): 6808 * { Putfh <dfh>; Create; Getfh; Getattr } 6809 * It's okay if setattr failed to set gid - this is not considered 6810 * an error, but purge attrs in that case. 6811 */ 6812 static int 6813 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6814 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6815 { 6816 int need_end_op = FALSE; 6817 COMPOUND4args_clnt args; 6818 COMPOUND4res_clnt res, *resp = NULL; 6819 nfs_argop4 *argop; 6820 nfs_resop4 *resop; 6821 int doqueue; 6822 mntinfo4_t *mi; 6823 rnode4_t *drp = VTOR4(dvp); 6824 change_info4 *cinfo; 6825 GETFH4res *gf_res; 6826 struct vattr vattr; 6827 vnode_t *vp; 6828 fattr4 *crattr; 6829 bool_t needrecov = FALSE; 6830 nfs4_recov_state_t recov_state; 6831 nfs4_sharedfh_t *sfhp = NULL; 6832 hrtime_t t; 6833 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6834 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6835 dirattr_info_t dinfo, *dinfop; 6836 servinfo4_t *svp; 6837 bitmap4 supp_attrs; 6838 6839 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6840 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6841 6842 mi = VTOMI4(dvp); 6843 6844 /* 6845 * Make sure we properly deal with setting the right gid 6846 * on a new directory to reflect the parent's setgid bit 6847 */ 6848 setgid_flag = 0; 6849 if (type == NF4DIR) { 6850 struct vattr dva; 6851 6852 va->va_mode &= ~VSGID; 6853 dva.va_mask = AT_MODE | AT_GID; 6854 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6855 6856 /* 6857 * If the parent's directory has the setgid bit set 6858 * _and_ the client was able to get a valid mapping 6859 * for the parent dir's owner_group, we want to 6860 * append NVERIFY(owner_group == dva.va_gid) and 6861 * SETTATTR to the CREATE compound. 6862 */ 6863 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6864 setgid_flag = 1; 6865 va->va_mode |= VSGID; 6866 if (dva.va_gid != GID_NOBODY) { 6867 va->va_mask |= AT_GID; 6868 va->va_gid = dva.va_gid; 6869 } 6870 } 6871 } 6872 } 6873 6874 /* 6875 * Create ops: 6876 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6877 * 5:restorefh(dir) 6:getattr(dir) 6878 * 6879 * if (setgid) 6880 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6881 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6882 * 8:nverify 9:setattr 6883 */ 6884 if (setgid_flag) { 6885 numops = 10; 6886 idx_create = 1; 6887 idx_fattr = 3; 6888 } else { 6889 numops = 7; 6890 idx_create = 2; 6891 idx_fattr = 4; 6892 } 6893 6894 ASSERT(nfs_zone() == mi->mi_zone); 6895 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6896 return (EINTR); 6897 } 6898 recov_state.rs_flags = 0; 6899 recov_state.rs_num_retry_despite_err = 0; 6900 6901 argoplist_size = numops * sizeof (nfs_argop4); 6902 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6903 6904 recov_retry: 6905 if (type == NF4LNK) 6906 args.ctag = TAG_SYMLINK; 6907 else if (type == NF4DIR) 6908 args.ctag = TAG_MKDIR; 6909 else 6910 args.ctag = TAG_MKNOD; 6911 6912 args.array_len = numops; 6913 args.array = argop; 6914 6915 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6916 nfs_rw_exit(&drp->r_rwlock); 6917 kmem_free(argop, argoplist_size); 6918 return (e.error); 6919 } 6920 need_end_op = TRUE; 6921 6922 6923 /* 0: putfh directory */ 6924 argop[0].argop = OP_CPUTFH; 6925 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6926 6927 /* 1/2: Create object */ 6928 argop[idx_create].argop = OP_CCREATE; 6929 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6930 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6931 if (type == NF4LNK) { 6932 /* 6933 * symlink, treat name as data 6934 */ 6935 ASSERT(data != NULL); 6936 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6937 (char *)data; 6938 } 6939 if (type == NF4BLK || type == NF4CHR) { 6940 ASSERT(data != NULL); 6941 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6942 *((specdata4 *)data); 6943 } 6944 6945 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6946 6947 svp = drp->r_server; 6948 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6949 supp_attrs = svp->sv_supp_attrs; 6950 nfs_rw_exit(&svp->sv_lock); 6951 6952 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6953 nfs_rw_exit(&drp->r_rwlock); 6954 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6955 e.error = EINVAL; 6956 kmem_free(argop, argoplist_size); 6957 return (e.error); 6958 } 6959 6960 /* 2/3: getfh fh of created object */ 6961 ASSERT(idx_create + 1 == idx_fattr - 1); 6962 argop[idx_create + 1].argop = OP_GETFH; 6963 6964 /* 3/4: getattr of new object */ 6965 argop[idx_fattr].argop = OP_GETATTR; 6966 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6967 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6968 6969 if (setgid_flag) { 6970 vattr_t _v; 6971 6972 argop[4].argop = OP_SAVEFH; 6973 6974 argop[5].argop = OP_CPUTFH; 6975 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6976 6977 argop[6].argop = OP_GETATTR; 6978 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6979 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6980 6981 argop[7].argop = OP_RESTOREFH; 6982 6983 /* 6984 * nverify 6985 * 6986 * XXX - Revisit the last argument to nfs4_end_op() 6987 * once 5020486 is fixed. 6988 */ 6989 _v.va_mask = AT_GID; 6990 _v.va_gid = va->va_gid; 6991 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6992 supp_attrs)) { 6993 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6994 nfs_rw_exit(&drp->r_rwlock); 6995 nfs4_fattr4_free(crattr); 6996 kmem_free(argop, argoplist_size); 6997 return (e.error); 6998 } 6999 7000 /* 7001 * setattr 7002 * 7003 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 7004 * so no need for stateid or flags. Also we specify NULL 7005 * rp since we're only interested in setting owner_group 7006 * attributes. 7007 */ 7008 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 7009 &e.error, 0); 7010 7011 if (e.error) { 7012 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 7013 nfs_rw_exit(&drp->r_rwlock); 7014 nfs4_fattr4_free(crattr); 7015 nfs4args_verify_free(&argop[8]); 7016 kmem_free(argop, argoplist_size); 7017 return (e.error); 7018 } 7019 } else { 7020 argop[1].argop = OP_SAVEFH; 7021 7022 argop[5].argop = OP_RESTOREFH; 7023 7024 argop[6].argop = OP_GETATTR; 7025 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7026 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7027 } 7028 7029 dnlc_remove(dvp, nm); 7030 7031 doqueue = 1; 7032 t = gethrtime(); 7033 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7034 7035 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7036 if (e.error) { 7037 PURGE_ATTRCACHE4(dvp); 7038 if (!needrecov) 7039 goto out; 7040 } 7041 7042 if (needrecov) { 7043 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 7044 OP_CREATE, NULL, NULL, NULL) == FALSE) { 7045 nfs4_end_op(mi, dvp, NULL, &recov_state, 7046 needrecov); 7047 need_end_op = FALSE; 7048 nfs4_fattr4_free(crattr); 7049 if (setgid_flag) { 7050 nfs4args_verify_free(&argop[8]); 7051 nfs4args_setattr_free(&argop[9]); 7052 } 7053 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7054 goto recov_retry; 7055 } 7056 } 7057 7058 resp = &res; 7059 7060 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 7061 7062 if (res.status == NFS4ERR_BADOWNER) 7063 nfs4_log_badowner(mi, OP_CREATE); 7064 7065 e.error = geterrno4(res.status); 7066 7067 /* 7068 * This check is left over from when create was implemented 7069 * using a setattr op (instead of createattrs). If the 7070 * putfh/create/getfh failed, the error was returned. If 7071 * setattr/getattr failed, we keep going. 7072 * 7073 * It might be better to get rid of the GETFH also, and just 7074 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 7075 * Then if any of the operations failed, we could return the 7076 * error now, and remove much of the error code below. 7077 */ 7078 if (res.array_len <= idx_fattr) { 7079 /* 7080 * Either Putfh, Create or Getfh failed. 7081 */ 7082 PURGE_ATTRCACHE4(dvp); 7083 /* 7084 * nfs4_purge_stale_fh() may generate otw calls through 7085 * nfs4_invalidate_pages. Hence the need to call 7086 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 7087 */ 7088 nfs4_end_op(mi, dvp, NULL, &recov_state, 7089 needrecov); 7090 need_end_op = FALSE; 7091 nfs4_purge_stale_fh(e.error, dvp, cr); 7092 goto out; 7093 } 7094 } 7095 7096 resop = &res.array[idx_create]; /* create res */ 7097 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7098 7099 resop = &res.array[idx_create + 1]; /* getfh res */ 7100 gf_res = &resop->nfs_resop4_u.opgetfh; 7101 7102 sfhp = sfh4_get(&gf_res->object, mi); 7103 if (e.error) { 7104 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7105 fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7106 if (vp->v_type == VNON) { 7107 vattr.va_mask = AT_TYPE; 7108 /* 7109 * Need to call nfs4_end_op before nfs4getattr to avoid 7110 * potential nfs4_start_op deadlock. See RFE 4777612. 7111 */ 7112 nfs4_end_op(mi, dvp, NULL, &recov_state, 7113 needrecov); 7114 need_end_op = FALSE; 7115 e.error = nfs4getattr(vp, &vattr, cr); 7116 if (e.error) { 7117 VN_RELE(vp); 7118 *vpp = NULL; 7119 goto out; 7120 } 7121 vp->v_type = vattr.va_type; 7122 } 7123 e.error = 0; 7124 } else { 7125 *vpp = vp = makenfs4node(sfhp, 7126 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7127 dvp->v_vfsp, t, cr, 7128 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7129 } 7130 7131 /* 7132 * If compound succeeded, then update dir attrs 7133 */ 7134 if (res.status == NFS4_OK) { 7135 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7136 dinfo.di_cred = cr; 7137 dinfo.di_time_call = t; 7138 dinfop = &dinfo; 7139 } else 7140 dinfop = NULL; 7141 7142 /* Update directory cache attribute, readdir and dnlc caches */ 7143 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7144 7145 out: 7146 if (sfhp != NULL) 7147 sfh4_rele(&sfhp); 7148 nfs_rw_exit(&drp->r_rwlock); 7149 nfs4_fattr4_free(crattr); 7150 if (setgid_flag) { 7151 nfs4args_verify_free(&argop[8]); 7152 nfs4args_setattr_free(&argop[9]); 7153 } 7154 if (resp) 7155 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7156 if (need_end_op) 7157 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7158 7159 kmem_free(argop, argoplist_size); 7160 return (e.error); 7161 } 7162 7163 /* ARGSUSED */ 7164 static int 7165 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7166 int mode, vnode_t **vpp, cred_t *cr) 7167 { 7168 int error; 7169 vnode_t *vp; 7170 nfs_ftype4 type; 7171 specdata4 spec, *specp = NULL; 7172 7173 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7174 7175 switch (va->va_type) { 7176 case VCHR: 7177 case VBLK: 7178 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7179 spec.specdata1 = getmajor(va->va_rdev); 7180 spec.specdata2 = getminor(va->va_rdev); 7181 specp = &spec; 7182 break; 7183 7184 case VFIFO: 7185 type = NF4FIFO; 7186 break; 7187 case VSOCK: 7188 type = NF4SOCK; 7189 break; 7190 7191 default: 7192 return (EINVAL); 7193 } 7194 7195 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7196 if (error) { 7197 return (error); 7198 } 7199 7200 /* 7201 * This might not be needed any more; special case to deal 7202 * with problematic v2/v3 servers. Since create was unable 7203 * to set group correctly, not sure what hope setattr has. 7204 */ 7205 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7206 va->va_mask = AT_GID; 7207 (void) nfs4setattr(vp, va, 0, cr, NULL); 7208 } 7209 7210 /* 7211 * If vnode is a device create special vnode 7212 */ 7213 if (ISVDEV(vp->v_type)) { 7214 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7215 VN_RELE(vp); 7216 } else { 7217 *vpp = vp; 7218 } 7219 return (error); 7220 } 7221 7222 /* 7223 * Remove requires that the current fh be the target directory. 7224 * After the operation, the current fh is unchanged. 7225 * The compound op structure is: 7226 * PUTFH(targetdir), REMOVE 7227 * 7228 * Weirdness: if the vnode to be removed is open 7229 * we rename it instead of removing it and nfs_inactive 7230 * will remove the new name. 7231 */ 7232 /* ARGSUSED */ 7233 static int 7234 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7235 { 7236 COMPOUND4args_clnt args; 7237 COMPOUND4res_clnt res, *resp = NULL; 7238 REMOVE4res *rm_res; 7239 nfs_argop4 argop[3]; 7240 nfs_resop4 *resop; 7241 vnode_t *vp; 7242 char *tmpname; 7243 int doqueue; 7244 mntinfo4_t *mi; 7245 rnode4_t *rp; 7246 rnode4_t *drp; 7247 int needrecov = 0; 7248 nfs4_recov_state_t recov_state; 7249 int isopen; 7250 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7251 dirattr_info_t dinfo; 7252 7253 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7254 return (EPERM); 7255 drp = VTOR4(dvp); 7256 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7257 return (EINTR); 7258 7259 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7260 if (e.error) { 7261 nfs_rw_exit(&drp->r_rwlock); 7262 return (e.error); 7263 } 7264 7265 if (vp->v_type == VDIR) { 7266 VN_RELE(vp); 7267 nfs_rw_exit(&drp->r_rwlock); 7268 return (EISDIR); 7269 } 7270 7271 /* 7272 * First just remove the entry from the name cache, as it 7273 * is most likely the only entry for this vp. 7274 */ 7275 dnlc_remove(dvp, nm); 7276 7277 rp = VTOR4(vp); 7278 7279 /* 7280 * For regular file types, check to see if the file is open by looking 7281 * at the open streams. 7282 * For all other types, check the reference count on the vnode. Since 7283 * they are not opened OTW they never have an open stream. 7284 * 7285 * If the file is open, rename it to .nfsXXXX. 7286 */ 7287 if (vp->v_type != VREG) { 7288 /* 7289 * If the file has a v_count > 1 then there may be more than one 7290 * entry in the name cache due multiple links or an open file, 7291 * but we don't have the real reference count so flush all 7292 * possible entries. 7293 */ 7294 if (vp->v_count > 1) 7295 dnlc_purge_vp(vp); 7296 7297 /* 7298 * Now we have the real reference count. 7299 */ 7300 isopen = vp->v_count > 1; 7301 } else { 7302 mutex_enter(&rp->r_os_lock); 7303 isopen = list_head(&rp->r_open_streams) != NULL; 7304 mutex_exit(&rp->r_os_lock); 7305 } 7306 7307 mutex_enter(&rp->r_statelock); 7308 if (isopen && 7309 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7310 mutex_exit(&rp->r_statelock); 7311 tmpname = newname(); 7312 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7313 if (e.error) 7314 kmem_free(tmpname, MAXNAMELEN); 7315 else { 7316 mutex_enter(&rp->r_statelock); 7317 if (rp->r_unldvp == NULL) { 7318 VN_HOLD(dvp); 7319 rp->r_unldvp = dvp; 7320 if (rp->r_unlcred != NULL) 7321 crfree(rp->r_unlcred); 7322 crhold(cr); 7323 rp->r_unlcred = cr; 7324 rp->r_unlname = tmpname; 7325 } else { 7326 kmem_free(rp->r_unlname, MAXNAMELEN); 7327 rp->r_unlname = tmpname; 7328 } 7329 mutex_exit(&rp->r_statelock); 7330 } 7331 VN_RELE(vp); 7332 nfs_rw_exit(&drp->r_rwlock); 7333 return (e.error); 7334 } 7335 /* 7336 * Actually remove the file/dir 7337 */ 7338 mutex_exit(&rp->r_statelock); 7339 7340 /* 7341 * We need to flush any dirty pages which happen to 7342 * be hanging around before removing the file. 7343 * This shouldn't happen very often since in NFSv4 7344 * we should be close to open consistent. 7345 */ 7346 if (nfs4_has_pages(vp) && 7347 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7348 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7349 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7350 mutex_enter(&rp->r_statelock); 7351 if (!rp->r_error) 7352 rp->r_error = e.error; 7353 mutex_exit(&rp->r_statelock); 7354 } 7355 } 7356 7357 mi = VTOMI4(dvp); 7358 7359 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7360 recov_state.rs_flags = 0; 7361 recov_state.rs_num_retry_despite_err = 0; 7362 7363 recov_retry: 7364 /* 7365 * Remove ops: putfh dir; remove 7366 */ 7367 args.ctag = TAG_REMOVE; 7368 args.array_len = 3; 7369 args.array = argop; 7370 7371 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7372 if (e.error) { 7373 nfs_rw_exit(&drp->r_rwlock); 7374 VN_RELE(vp); 7375 return (e.error); 7376 } 7377 7378 /* putfh directory */ 7379 argop[0].argop = OP_CPUTFH; 7380 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7381 7382 /* remove */ 7383 argop[1].argop = OP_CREMOVE; 7384 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7385 7386 /* getattr dir */ 7387 argop[2].argop = OP_GETATTR; 7388 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7389 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7390 7391 doqueue = 1; 7392 dinfo.di_time_call = gethrtime(); 7393 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7394 7395 PURGE_ATTRCACHE4(vp); 7396 7397 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7398 if (e.error) 7399 PURGE_ATTRCACHE4(dvp); 7400 7401 if (needrecov) { 7402 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7403 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 7404 if (!e.error) 7405 (void) xdr_free(xdr_COMPOUND4res_clnt, 7406 (caddr_t)&res); 7407 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7408 needrecov); 7409 goto recov_retry; 7410 } 7411 } 7412 7413 /* 7414 * Matching nfs4_end_op() for start_op() above. 7415 * There is a path in the code below which calls 7416 * nfs4_purge_stale_fh(), which may generate otw calls through 7417 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7418 * here to avoid nfs4_start_op() deadlock. 7419 */ 7420 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7421 7422 if (!e.error) { 7423 resp = &res; 7424 7425 if (res.status) { 7426 e.error = geterrno4(res.status); 7427 PURGE_ATTRCACHE4(dvp); 7428 nfs4_purge_stale_fh(e.error, dvp, cr); 7429 } else { 7430 resop = &res.array[1]; /* remove res */ 7431 rm_res = &resop->nfs_resop4_u.opremove; 7432 7433 dinfo.di_garp = 7434 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7435 dinfo.di_cred = cr; 7436 7437 /* Update directory attr, readdir and dnlc caches */ 7438 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7439 &dinfo); 7440 } 7441 } 7442 nfs_rw_exit(&drp->r_rwlock); 7443 if (resp) 7444 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7445 7446 if (e.error == 0) { 7447 vnode_t *tvp; 7448 rnode4_t *trp; 7449 trp = VTOR4(vp); 7450 tvp = vp; 7451 if (IS_SHADOW(vp, trp)) 7452 tvp = RTOV4(trp); 7453 vnevent_remove(tvp, dvp, nm, ct); 7454 } 7455 VN_RELE(vp); 7456 return (e.error); 7457 } 7458 7459 /* 7460 * Link requires that the current fh be the target directory and the 7461 * saved fh be the source fh. After the operation, the current fh is unchanged. 7462 * Thus the compound op structure is: 7463 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7464 * GETATTR(file) 7465 */ 7466 /* ARGSUSED */ 7467 static int 7468 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7469 caller_context_t *ct, int flags) 7470 { 7471 COMPOUND4args_clnt args; 7472 COMPOUND4res_clnt res, *resp = NULL; 7473 LINK4res *ln_res; 7474 int argoplist_size = 7 * sizeof (nfs_argop4); 7475 nfs_argop4 *argop; 7476 nfs_resop4 *resop; 7477 vnode_t *realvp, *nvp; 7478 int doqueue; 7479 mntinfo4_t *mi; 7480 rnode4_t *tdrp; 7481 bool_t needrecov = FALSE; 7482 nfs4_recov_state_t recov_state; 7483 hrtime_t t; 7484 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7485 dirattr_info_t dinfo; 7486 7487 ASSERT(*tnm != '\0'); 7488 ASSERT(tdvp->v_type == VDIR); 7489 ASSERT(nfs4_consistent_type(tdvp)); 7490 ASSERT(nfs4_consistent_type(svp)); 7491 7492 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7493 return (EPERM); 7494 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7495 svp = realvp; 7496 ASSERT(nfs4_consistent_type(svp)); 7497 } 7498 7499 tdrp = VTOR4(tdvp); 7500 mi = VTOMI4(svp); 7501 7502 if (!(mi->mi_flags & MI4_LINK)) { 7503 return (EOPNOTSUPP); 7504 } 7505 recov_state.rs_flags = 0; 7506 recov_state.rs_num_retry_despite_err = 0; 7507 7508 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7509 return (EINTR); 7510 7511 recov_retry: 7512 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7513 7514 args.ctag = TAG_LINK; 7515 7516 /* 7517 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7518 * restorefh; getattr(fl) 7519 */ 7520 args.array_len = 7; 7521 args.array = argop; 7522 7523 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7524 if (e.error) { 7525 kmem_free(argop, argoplist_size); 7526 nfs_rw_exit(&tdrp->r_rwlock); 7527 return (e.error); 7528 } 7529 7530 /* 0. putfh file */ 7531 argop[0].argop = OP_CPUTFH; 7532 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7533 7534 /* 1. save current fh to free up the space for the dir */ 7535 argop[1].argop = OP_SAVEFH; 7536 7537 /* 2. putfh targetdir */ 7538 argop[2].argop = OP_CPUTFH; 7539 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7540 7541 /* 3. link: current_fh is targetdir, saved_fh is source */ 7542 argop[3].argop = OP_CLINK; 7543 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7544 7545 /* 4. Get attributes of dir */ 7546 argop[4].argop = OP_GETATTR; 7547 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7548 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7549 7550 /* 5. If link was successful, restore current vp to file */ 7551 argop[5].argop = OP_RESTOREFH; 7552 7553 /* 6. Get attributes of linked object */ 7554 argop[6].argop = OP_GETATTR; 7555 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7556 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7557 7558 dnlc_remove(tdvp, tnm); 7559 7560 doqueue = 1; 7561 t = gethrtime(); 7562 7563 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7564 7565 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7566 if (e.error != 0 && !needrecov) { 7567 PURGE_ATTRCACHE4(tdvp); 7568 PURGE_ATTRCACHE4(svp); 7569 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7570 goto out; 7571 } 7572 7573 if (needrecov) { 7574 bool_t abort; 7575 7576 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7577 NULL, NULL, OP_LINK, NULL, NULL, NULL); 7578 if (abort == FALSE) { 7579 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7580 needrecov); 7581 kmem_free(argop, argoplist_size); 7582 if (!e.error) 7583 (void) xdr_free(xdr_COMPOUND4res_clnt, 7584 (caddr_t)&res); 7585 goto recov_retry; 7586 } else { 7587 if (e.error != 0) { 7588 PURGE_ATTRCACHE4(tdvp); 7589 PURGE_ATTRCACHE4(svp); 7590 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7591 &recov_state, needrecov); 7592 goto out; 7593 } 7594 /* fall through for res.status case */ 7595 } 7596 } 7597 7598 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7599 7600 resp = &res; 7601 if (res.status) { 7602 /* If link succeeded, then don't return error */ 7603 e.error = geterrno4(res.status); 7604 if (res.array_len <= 4) { 7605 /* 7606 * Either Putfh, Savefh, Putfh dir, or Link failed 7607 */ 7608 PURGE_ATTRCACHE4(svp); 7609 PURGE_ATTRCACHE4(tdvp); 7610 if (e.error == EOPNOTSUPP) { 7611 mutex_enter(&mi->mi_lock); 7612 mi->mi_flags &= ~MI4_LINK; 7613 mutex_exit(&mi->mi_lock); 7614 } 7615 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7616 /* XXX-LP */ 7617 if (e.error == EISDIR && crgetuid(cr) != 0) 7618 e.error = EPERM; 7619 goto out; 7620 } 7621 } 7622 7623 /* either no error or one of the postop getattr failed */ 7624 7625 /* 7626 * XXX - if LINK succeeded, but no attrs were returned for link 7627 * file, purge its cache. 7628 * 7629 * XXX Perform a simplified version of wcc checking. Instead of 7630 * have another getattr to get pre-op, just purge cache if 7631 * any of the ops prior to and including the getattr failed. 7632 * If the getattr succeeded then update the attrcache accordingly. 7633 */ 7634 7635 /* 7636 * update cache with link file postattrs. 7637 * Note: at this point resop points to link res. 7638 */ 7639 resop = &res.array[3]; /* link res */ 7640 ln_res = &resop->nfs_resop4_u.oplink; 7641 if (res.status == NFS4_OK) 7642 e.error = nfs4_update_attrcache(res.status, 7643 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7644 t, svp, cr); 7645 7646 /* 7647 * Call makenfs4node to create the new shadow vp for tnm. 7648 * We pass NULL attrs because we just cached attrs for 7649 * the src object. All we're trying to accomplish is to 7650 * to create the new shadow vnode. 7651 */ 7652 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7653 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh)); 7654 7655 /* Update target cache attribute, readdir and dnlc caches */ 7656 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7657 dinfo.di_time_call = t; 7658 dinfo.di_cred = cr; 7659 7660 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7661 ASSERT(nfs4_consistent_type(tdvp)); 7662 ASSERT(nfs4_consistent_type(svp)); 7663 ASSERT(nfs4_consistent_type(nvp)); 7664 VN_RELE(nvp); 7665 7666 if (!e.error) { 7667 vnode_t *tvp; 7668 rnode4_t *trp; 7669 /* 7670 * Notify the source file of this link operation. 7671 */ 7672 trp = VTOR4(svp); 7673 tvp = svp; 7674 if (IS_SHADOW(svp, trp)) 7675 tvp = RTOV4(trp); 7676 vnevent_link(tvp, ct); 7677 } 7678 out: 7679 kmem_free(argop, argoplist_size); 7680 if (resp) 7681 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7682 7683 nfs_rw_exit(&tdrp->r_rwlock); 7684 7685 return (e.error); 7686 } 7687 7688 /* ARGSUSED */ 7689 static int 7690 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7691 caller_context_t *ct, int flags) 7692 { 7693 vnode_t *realvp; 7694 7695 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7696 return (EPERM); 7697 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7698 ndvp = realvp; 7699 7700 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7701 } 7702 7703 /* 7704 * nfs4rename does the real work of renaming in NFS Version 4. 7705 * 7706 * A file handle is considered volatile for renaming purposes if either 7707 * of the volatile bits are turned on. However, the compound may differ 7708 * based on the likelihood of the filehandle to change during rename. 7709 */ 7710 static int 7711 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7712 caller_context_t *ct) 7713 { 7714 int error; 7715 mntinfo4_t *mi; 7716 vnode_t *nvp = NULL; 7717 vnode_t *ovp = NULL; 7718 char *tmpname = NULL; 7719 rnode4_t *rp; 7720 rnode4_t *odrp; 7721 rnode4_t *ndrp; 7722 int did_link = 0; 7723 int do_link = 1; 7724 nfsstat4 stat = NFS4_OK; 7725 7726 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7727 ASSERT(nfs4_consistent_type(odvp)); 7728 ASSERT(nfs4_consistent_type(ndvp)); 7729 7730 if (onm[0] == '.' && (onm[1] == '\0' || 7731 (onm[1] == '.' && onm[2] == '\0'))) 7732 return (EINVAL); 7733 7734 if (nnm[0] == '.' && (nnm[1] == '\0' || 7735 (nnm[1] == '.' && nnm[2] == '\0'))) 7736 return (EINVAL); 7737 7738 odrp = VTOR4(odvp); 7739 ndrp = VTOR4(ndvp); 7740 if ((intptr_t)odrp < (intptr_t)ndrp) { 7741 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7742 return (EINTR); 7743 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7744 nfs_rw_exit(&odrp->r_rwlock); 7745 return (EINTR); 7746 } 7747 } else { 7748 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7749 return (EINTR); 7750 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7751 nfs_rw_exit(&ndrp->r_rwlock); 7752 return (EINTR); 7753 } 7754 } 7755 7756 /* 7757 * Lookup the target file. If it exists, it needs to be 7758 * checked to see whether it is a mount point and whether 7759 * it is active (open). 7760 */ 7761 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7762 if (!error) { 7763 int isactive; 7764 7765 ASSERT(nfs4_consistent_type(nvp)); 7766 /* 7767 * If this file has been mounted on, then just 7768 * return busy because renaming to it would remove 7769 * the mounted file system from the name space. 7770 */ 7771 if (vn_ismntpt(nvp)) { 7772 VN_RELE(nvp); 7773 nfs_rw_exit(&odrp->r_rwlock); 7774 nfs_rw_exit(&ndrp->r_rwlock); 7775 return (EBUSY); 7776 } 7777 7778 /* 7779 * First just remove the entry from the name cache, as it 7780 * is most likely the only entry for this vp. 7781 */ 7782 dnlc_remove(ndvp, nnm); 7783 7784 rp = VTOR4(nvp); 7785 7786 if (nvp->v_type != VREG) { 7787 /* 7788 * Purge the name cache of all references to this vnode 7789 * so that we can check the reference count to infer 7790 * whether it is active or not. 7791 */ 7792 if (nvp->v_count > 1) 7793 dnlc_purge_vp(nvp); 7794 7795 isactive = nvp->v_count > 1; 7796 } else { 7797 mutex_enter(&rp->r_os_lock); 7798 isactive = list_head(&rp->r_open_streams) != NULL; 7799 mutex_exit(&rp->r_os_lock); 7800 } 7801 7802 /* 7803 * If the vnode is active and is not a directory, 7804 * arrange to rename it to a 7805 * temporary file so that it will continue to be 7806 * accessible. This implements the "unlink-open-file" 7807 * semantics for the target of a rename operation. 7808 * Before doing this though, make sure that the 7809 * source and target files are not already the same. 7810 */ 7811 if (isactive && nvp->v_type != VDIR) { 7812 /* 7813 * Lookup the source name. 7814 */ 7815 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7816 7817 /* 7818 * The source name *should* already exist. 7819 */ 7820 if (error) { 7821 VN_RELE(nvp); 7822 nfs_rw_exit(&odrp->r_rwlock); 7823 nfs_rw_exit(&ndrp->r_rwlock); 7824 return (error); 7825 } 7826 7827 ASSERT(nfs4_consistent_type(ovp)); 7828 7829 /* 7830 * Compare the two vnodes. If they are the same, 7831 * just release all held vnodes and return success. 7832 */ 7833 if (VN_CMP(ovp, nvp)) { 7834 VN_RELE(ovp); 7835 VN_RELE(nvp); 7836 nfs_rw_exit(&odrp->r_rwlock); 7837 nfs_rw_exit(&ndrp->r_rwlock); 7838 return (0); 7839 } 7840 7841 /* 7842 * Can't mix and match directories and non- 7843 * directories in rename operations. We already 7844 * know that the target is not a directory. If 7845 * the source is a directory, return an error. 7846 */ 7847 if (ovp->v_type == VDIR) { 7848 VN_RELE(ovp); 7849 VN_RELE(nvp); 7850 nfs_rw_exit(&odrp->r_rwlock); 7851 nfs_rw_exit(&ndrp->r_rwlock); 7852 return (ENOTDIR); 7853 } 7854 link_call: 7855 /* 7856 * The target file exists, is not the same as 7857 * the source file, and is active. We first 7858 * try to Link it to a temporary filename to 7859 * avoid having the server removing the file 7860 * completely (which could cause data loss to 7861 * the user's POV in the event the Rename fails 7862 * -- see bug 1165874). 7863 */ 7864 /* 7865 * The do_link and did_link booleans are 7866 * introduced in the event we get NFS4ERR_FILE_OPEN 7867 * returned for the Rename. Some servers can 7868 * not Rename over an Open file, so they return 7869 * this error. The client needs to Remove the 7870 * newly created Link and do two Renames, just 7871 * as if the server didn't support LINK. 7872 */ 7873 tmpname = newname(); 7874 error = 0; 7875 7876 if (do_link) { 7877 error = nfs4_link(ndvp, nvp, tmpname, cr, 7878 NULL, 0); 7879 } 7880 if (error == EOPNOTSUPP || !do_link) { 7881 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7882 cr, NULL, 0); 7883 did_link = 0; 7884 } else { 7885 did_link = 1; 7886 } 7887 if (error) { 7888 kmem_free(tmpname, MAXNAMELEN); 7889 VN_RELE(ovp); 7890 VN_RELE(nvp); 7891 nfs_rw_exit(&odrp->r_rwlock); 7892 nfs_rw_exit(&ndrp->r_rwlock); 7893 return (error); 7894 } 7895 7896 mutex_enter(&rp->r_statelock); 7897 if (rp->r_unldvp == NULL) { 7898 VN_HOLD(ndvp); 7899 rp->r_unldvp = ndvp; 7900 if (rp->r_unlcred != NULL) 7901 crfree(rp->r_unlcred); 7902 crhold(cr); 7903 rp->r_unlcred = cr; 7904 rp->r_unlname = tmpname; 7905 } else { 7906 if (rp->r_unlname) 7907 kmem_free(rp->r_unlname, MAXNAMELEN); 7908 rp->r_unlname = tmpname; 7909 } 7910 mutex_exit(&rp->r_statelock); 7911 } 7912 7913 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7914 7915 ASSERT(nfs4_consistent_type(nvp)); 7916 } 7917 7918 if (ovp == NULL) { 7919 /* 7920 * When renaming directories to be a subdirectory of a 7921 * different parent, the dnlc entry for ".." will no 7922 * longer be valid, so it must be removed. 7923 * 7924 * We do a lookup here to determine whether we are renaming 7925 * a directory and we need to check if we are renaming 7926 * an unlinked file. This might have already been done 7927 * in previous code, so we check ovp == NULL to avoid 7928 * doing it twice. 7929 */ 7930 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7931 /* 7932 * The source name *should* already exist. 7933 */ 7934 if (error) { 7935 nfs_rw_exit(&odrp->r_rwlock); 7936 nfs_rw_exit(&ndrp->r_rwlock); 7937 if (nvp) { 7938 VN_RELE(nvp); 7939 } 7940 return (error); 7941 } 7942 ASSERT(ovp != NULL); 7943 ASSERT(nfs4_consistent_type(ovp)); 7944 } 7945 7946 /* 7947 * Is the object being renamed a dir, and if so, is 7948 * it being renamed to a child of itself? The underlying 7949 * fs should ultimately return EINVAL for this case; 7950 * however, buggy beta non-Solaris NFSv4 servers at 7951 * interop testing events have allowed this behavior, 7952 * and it caused our client to panic due to a recursive 7953 * mutex_enter in fn_move. 7954 * 7955 * The tedious locking in fn_move could be changed to 7956 * deal with this case, and the client could avoid the 7957 * panic; however, the client would just confuse itself 7958 * later and misbehave. A better way to handle the broken 7959 * server is to detect this condition and return EINVAL 7960 * without ever sending the the bogus rename to the server. 7961 * We know the rename is invalid -- just fail it now. 7962 */ 7963 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7964 VN_RELE(ovp); 7965 nfs_rw_exit(&odrp->r_rwlock); 7966 nfs_rw_exit(&ndrp->r_rwlock); 7967 if (nvp) { 7968 VN_RELE(nvp); 7969 } 7970 return (EINVAL); 7971 } 7972 7973 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7974 7975 /* 7976 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7977 * possible for the filehandle to change due to the rename. 7978 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7979 * the fh will not change because of the rename, but we still need 7980 * to update its rnode entry with the new name for 7981 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7982 * has no effect on these for now, but for future improvements, 7983 * we might want to use it too to simplify handling of files 7984 * that are open with that flag on. (XXX) 7985 */ 7986 mi = VTOMI4(odvp); 7987 if (NFS4_VOLATILE_FH(mi)) 7988 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7989 &stat); 7990 else 7991 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7992 &stat); 7993 7994 ASSERT(nfs4_consistent_type(odvp)); 7995 ASSERT(nfs4_consistent_type(ndvp)); 7996 ASSERT(nfs4_consistent_type(ovp)); 7997 7998 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7999 do_link = 0; 8000 /* 8001 * Before the 'link_call' code, we did a nfs4_lookup 8002 * that puts a VN_HOLD on nvp. After the nfs4_link 8003 * call we call VN_RELE to match that hold. We need 8004 * to place an additional VN_HOLD here since we will 8005 * be hitting that VN_RELE again. 8006 */ 8007 VN_HOLD(nvp); 8008 8009 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 8010 8011 /* Undo the unlinked file naming stuff we just did */ 8012 mutex_enter(&rp->r_statelock); 8013 if (rp->r_unldvp) { 8014 VN_RELE(ndvp); 8015 rp->r_unldvp = NULL; 8016 if (rp->r_unlcred != NULL) 8017 crfree(rp->r_unlcred); 8018 rp->r_unlcred = NULL; 8019 /* rp->r_unlanme points to tmpname */ 8020 if (rp->r_unlname) 8021 kmem_free(rp->r_unlname, MAXNAMELEN); 8022 rp->r_unlname = NULL; 8023 } 8024 mutex_exit(&rp->r_statelock); 8025 8026 if (nvp) { 8027 VN_RELE(nvp); 8028 } 8029 goto link_call; 8030 } 8031 8032 if (error) { 8033 VN_RELE(ovp); 8034 nfs_rw_exit(&odrp->r_rwlock); 8035 nfs_rw_exit(&ndrp->r_rwlock); 8036 if (nvp) { 8037 VN_RELE(nvp); 8038 } 8039 return (error); 8040 } 8041 8042 /* 8043 * when renaming directories to be a subdirectory of a 8044 * different parent, the dnlc entry for ".." will no 8045 * longer be valid, so it must be removed 8046 */ 8047 rp = VTOR4(ovp); 8048 if (ndvp != odvp) { 8049 if (ovp->v_type == VDIR) { 8050 dnlc_remove(ovp, ".."); 8051 if (rp->r_dir != NULL) 8052 nfs4_purge_rddir_cache(ovp); 8053 } 8054 } 8055 8056 /* 8057 * If we are renaming the unlinked file, update the 8058 * r_unldvp and r_unlname as needed. 8059 */ 8060 mutex_enter(&rp->r_statelock); 8061 if (rp->r_unldvp != NULL) { 8062 if (strcmp(rp->r_unlname, onm) == 0) { 8063 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 8064 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 8065 if (ndvp != rp->r_unldvp) { 8066 VN_RELE(rp->r_unldvp); 8067 rp->r_unldvp = ndvp; 8068 VN_HOLD(ndvp); 8069 } 8070 } 8071 } 8072 mutex_exit(&rp->r_statelock); 8073 8074 /* 8075 * Notify the rename vnevents to source vnode, and to the target 8076 * vnode if it already existed. 8077 */ 8078 if (error == 0) { 8079 vnode_t *tvp; 8080 rnode4_t *trp; 8081 /* 8082 * Notify the vnode. Each links is represented by 8083 * a different vnode, in nfsv4. 8084 */ 8085 if (nvp) { 8086 trp = VTOR4(nvp); 8087 tvp = nvp; 8088 if (IS_SHADOW(nvp, trp)) 8089 tvp = RTOV4(trp); 8090 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8091 } 8092 8093 /* 8094 * if the source and destination directory are not the 8095 * same notify the destination directory. 8096 */ 8097 if (VTOR4(odvp) != VTOR4(ndvp)) { 8098 trp = VTOR4(ndvp); 8099 tvp = ndvp; 8100 if (IS_SHADOW(ndvp, trp)) 8101 tvp = RTOV4(trp); 8102 vnevent_rename_dest_dir(tvp, ct); 8103 } 8104 8105 trp = VTOR4(ovp); 8106 tvp = ovp; 8107 if (IS_SHADOW(ovp, trp)) 8108 tvp = RTOV4(trp); 8109 vnevent_rename_src(tvp, odvp, onm, ct); 8110 } 8111 8112 if (nvp) { 8113 VN_RELE(nvp); 8114 } 8115 VN_RELE(ovp); 8116 8117 nfs_rw_exit(&odrp->r_rwlock); 8118 nfs_rw_exit(&ndrp->r_rwlock); 8119 8120 return (error); 8121 } 8122 8123 /* 8124 * When the parent directory has changed, sv_dfh must be updated 8125 */ 8126 static void 8127 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp) 8128 { 8129 svnode_t *sv = VTOSV(vp); 8130 nfs4_sharedfh_t *old_dfh = sv->sv_dfh; 8131 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh; 8132 8133 sfh4_hold(new_dfh); 8134 sv->sv_dfh = new_dfh; 8135 sfh4_rele(&old_dfh); 8136 } 8137 8138 /* 8139 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8140 * when it is known that the filehandle is persistent through rename. 8141 * 8142 * Rename requires that the current fh be the target directory and the 8143 * saved fh be the source directory. After the operation, the current fh 8144 * is unchanged. 8145 * The compound op structure for persistent fh rename is: 8146 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8147 * Rather than bother with the directory postop args, we'll simply 8148 * update that a change occurred in the cache, so no post-op getattrs. 8149 */ 8150 static int 8151 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8152 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8153 { 8154 COMPOUND4args_clnt args; 8155 COMPOUND4res_clnt res, *resp = NULL; 8156 nfs_argop4 *argop; 8157 nfs_resop4 *resop; 8158 int doqueue, argoplist_size; 8159 mntinfo4_t *mi; 8160 rnode4_t *odrp = VTOR4(odvp); 8161 rnode4_t *ndrp = VTOR4(ndvp); 8162 RENAME4res *rn_res; 8163 bool_t needrecov; 8164 nfs4_recov_state_t recov_state; 8165 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8166 dirattr_info_t dinfo, *dinfop; 8167 8168 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8169 8170 recov_state.rs_flags = 0; 8171 recov_state.rs_num_retry_despite_err = 0; 8172 8173 /* 8174 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8175 * 8176 * If source/target are different dirs, then append putfh(src); getattr 8177 */ 8178 args.array_len = (odvp == ndvp) ? 5 : 7; 8179 argoplist_size = args.array_len * sizeof (nfs_argop4); 8180 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8181 8182 recov_retry: 8183 *statp = NFS4_OK; 8184 8185 /* No need to Lookup the file, persistent fh */ 8186 args.ctag = TAG_RENAME; 8187 8188 mi = VTOMI4(odvp); 8189 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8190 if (e.error) { 8191 kmem_free(argop, argoplist_size); 8192 return (e.error); 8193 } 8194 8195 /* 0: putfh source directory */ 8196 argop[0].argop = OP_CPUTFH; 8197 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8198 8199 /* 1: Save source fh to free up current for target */ 8200 argop[1].argop = OP_SAVEFH; 8201 8202 /* 2: putfh targetdir */ 8203 argop[2].argop = OP_CPUTFH; 8204 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8205 8206 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8207 argop[3].argop = OP_CRENAME; 8208 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8209 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8210 8211 /* 4: getattr (targetdir) */ 8212 argop[4].argop = OP_GETATTR; 8213 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8214 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8215 8216 if (ndvp != odvp) { 8217 8218 /* 5: putfh (sourcedir) */ 8219 argop[5].argop = OP_CPUTFH; 8220 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8221 8222 /* 6: getattr (sourcedir) */ 8223 argop[6].argop = OP_GETATTR; 8224 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8225 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8226 } 8227 8228 dnlc_remove(odvp, onm); 8229 dnlc_remove(ndvp, nnm); 8230 8231 doqueue = 1; 8232 dinfo.di_time_call = gethrtime(); 8233 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8234 8235 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8236 if (e.error) { 8237 PURGE_ATTRCACHE4(odvp); 8238 PURGE_ATTRCACHE4(ndvp); 8239 } else { 8240 *statp = res.status; 8241 } 8242 8243 if (needrecov) { 8244 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8245 OP_RENAME, NULL, NULL, NULL) == FALSE) { 8246 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8247 if (!e.error) 8248 (void) xdr_free(xdr_COMPOUND4res_clnt, 8249 (caddr_t)&res); 8250 goto recov_retry; 8251 } 8252 } 8253 8254 if (!e.error) { 8255 resp = &res; 8256 /* 8257 * as long as OP_RENAME 8258 */ 8259 if (res.status != NFS4_OK && res.array_len <= 4) { 8260 e.error = geterrno4(res.status); 8261 PURGE_ATTRCACHE4(odvp); 8262 PURGE_ATTRCACHE4(ndvp); 8263 /* 8264 * System V defines rename to return EEXIST, not 8265 * ENOTEMPTY if the target directory is not empty. 8266 * Over the wire, the error is NFSERR_ENOTEMPTY 8267 * which geterrno4 maps to ENOTEMPTY. 8268 */ 8269 if (e.error == ENOTEMPTY) 8270 e.error = EEXIST; 8271 } else { 8272 8273 resop = &res.array[3]; /* rename res */ 8274 rn_res = &resop->nfs_resop4_u.oprename; 8275 8276 if (res.status == NFS4_OK) { 8277 /* 8278 * Update target attribute, readdir and dnlc 8279 * caches. 8280 */ 8281 dinfo.di_garp = 8282 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8283 dinfo.di_cred = cr; 8284 dinfop = &dinfo; 8285 } else 8286 dinfop = NULL; 8287 8288 nfs4_update_dircaches(&rn_res->target_cinfo, 8289 ndvp, NULL, NULL, dinfop); 8290 8291 /* 8292 * Update source attribute, readdir and dnlc caches 8293 * 8294 */ 8295 if (ndvp != odvp) { 8296 update_parentdir_sfh(renvp, ndvp); 8297 8298 if (dinfop) 8299 dinfo.di_garp = 8300 &(res.array[6].nfs_resop4_u. 8301 opgetattr.ga_res); 8302 8303 nfs4_update_dircaches(&rn_res->source_cinfo, 8304 odvp, NULL, NULL, dinfop); 8305 } 8306 8307 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8308 nnm); 8309 } 8310 } 8311 8312 if (resp) 8313 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8314 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8315 kmem_free(argop, argoplist_size); 8316 8317 return (e.error); 8318 } 8319 8320 /* 8321 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8322 * it is possible for the filehandle to change due to the rename. 8323 * 8324 * The compound req in this case includes a post-rename lookup and getattr 8325 * to ensure that we have the correct fh and attributes for the object. 8326 * 8327 * Rename requires that the current fh be the target directory and the 8328 * saved fh be the source directory. After the operation, the current fh 8329 * is unchanged. 8330 * 8331 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8332 * update the filehandle for the renamed object. We also get the old 8333 * filehandle for historical reasons; this should be taken out sometime. 8334 * This results in a rather cumbersome compound... 8335 * 8336 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8337 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8338 * 8339 */ 8340 static int 8341 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8342 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8343 { 8344 COMPOUND4args_clnt args; 8345 COMPOUND4res_clnt res, *resp = NULL; 8346 int argoplist_size; 8347 nfs_argop4 *argop; 8348 nfs_resop4 *resop; 8349 int doqueue; 8350 mntinfo4_t *mi; 8351 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8352 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8353 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8354 RENAME4res *rn_res; 8355 GETFH4res *ngf_res; 8356 bool_t needrecov; 8357 nfs4_recov_state_t recov_state; 8358 hrtime_t t; 8359 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8360 dirattr_info_t dinfo, *dinfop = &dinfo; 8361 8362 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8363 8364 recov_state.rs_flags = 0; 8365 recov_state.rs_num_retry_despite_err = 0; 8366 8367 recov_retry: 8368 *statp = NFS4_OK; 8369 8370 /* 8371 * There is a window between the RPC and updating the path and 8372 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8373 * code, so that it doesn't try to use the old path during that 8374 * window. 8375 */ 8376 mutex_enter(&orp->r_statelock); 8377 while (orp->r_flags & R4RECEXPFH) { 8378 klwp_t *lwp = ttolwp(curthread); 8379 8380 if (lwp != NULL) 8381 lwp->lwp_nostop++; 8382 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8383 mutex_exit(&orp->r_statelock); 8384 if (lwp != NULL) 8385 lwp->lwp_nostop--; 8386 return (EINTR); 8387 } 8388 if (lwp != NULL) 8389 lwp->lwp_nostop--; 8390 } 8391 orp->r_flags |= R4RECEXPFH; 8392 mutex_exit(&orp->r_statelock); 8393 8394 mi = VTOMI4(odvp); 8395 8396 args.ctag = TAG_RENAME_VFH; 8397 args.array_len = (odvp == ndvp) ? 10 : 12; 8398 argoplist_size = args.array_len * sizeof (nfs_argop4); 8399 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8400 8401 /* 8402 * Rename ops: 8403 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8404 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8405 * LOOKUP(trgt), GETFH(new), GETATTR, 8406 * 8407 * if (odvp != ndvp) 8408 * add putfh(sourcedir), getattr(sourcedir) } 8409 */ 8410 args.array = argop; 8411 8412 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8413 &recov_state, NULL); 8414 if (e.error) { 8415 kmem_free(argop, argoplist_size); 8416 mutex_enter(&orp->r_statelock); 8417 orp->r_flags &= ~R4RECEXPFH; 8418 cv_broadcast(&orp->r_cv); 8419 mutex_exit(&orp->r_statelock); 8420 return (e.error); 8421 } 8422 8423 /* 0: putfh source directory */ 8424 argop[0].argop = OP_CPUTFH; 8425 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8426 8427 /* 1: Save source fh to free up current for target */ 8428 argop[1].argop = OP_SAVEFH; 8429 8430 /* 2: Lookup pre-rename fh of renamed object */ 8431 argop[2].argop = OP_CLOOKUP; 8432 argop[2].nfs_argop4_u.opclookup.cname = onm; 8433 8434 /* 3: getfh fh of renamed object (before rename) */ 8435 argop[3].argop = OP_GETFH; 8436 8437 /* 4: putfh targetdir */ 8438 argop[4].argop = OP_CPUTFH; 8439 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8440 8441 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8442 argop[5].argop = OP_CRENAME; 8443 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8444 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8445 8446 /* 6: getattr of target dir (post op attrs) */ 8447 argop[6].argop = OP_GETATTR; 8448 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8449 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8450 8451 /* 7: Lookup post-rename fh of renamed object */ 8452 argop[7].argop = OP_CLOOKUP; 8453 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8454 8455 /* 8: getfh fh of renamed object (after rename) */ 8456 argop[8].argop = OP_GETFH; 8457 8458 /* 9: getattr of renamed object */ 8459 argop[9].argop = OP_GETATTR; 8460 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8461 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8462 8463 /* 8464 * If source/target dirs are different, then get new post-op 8465 * attrs for source dir also. 8466 */ 8467 if (ndvp != odvp) { 8468 /* 10: putfh (sourcedir) */ 8469 argop[10].argop = OP_CPUTFH; 8470 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8471 8472 /* 11: getattr (sourcedir) */ 8473 argop[11].argop = OP_GETATTR; 8474 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8475 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8476 } 8477 8478 dnlc_remove(odvp, onm); 8479 dnlc_remove(ndvp, nnm); 8480 8481 doqueue = 1; 8482 t = gethrtime(); 8483 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8484 8485 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8486 if (e.error) { 8487 PURGE_ATTRCACHE4(odvp); 8488 PURGE_ATTRCACHE4(ndvp); 8489 if (!needrecov) { 8490 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8491 &recov_state, needrecov); 8492 goto out; 8493 } 8494 } else { 8495 *statp = res.status; 8496 } 8497 8498 if (needrecov) { 8499 bool_t abort; 8500 8501 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8502 OP_RENAME, NULL, NULL, NULL); 8503 if (abort == FALSE) { 8504 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8505 &recov_state, needrecov); 8506 kmem_free(argop, argoplist_size); 8507 if (!e.error) 8508 (void) xdr_free(xdr_COMPOUND4res_clnt, 8509 (caddr_t)&res); 8510 mutex_enter(&orp->r_statelock); 8511 orp->r_flags &= ~R4RECEXPFH; 8512 cv_broadcast(&orp->r_cv); 8513 mutex_exit(&orp->r_statelock); 8514 goto recov_retry; 8515 } else { 8516 if (e.error != 0) { 8517 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8518 &recov_state, needrecov); 8519 goto out; 8520 } 8521 /* fall through for res.status case */ 8522 } 8523 } 8524 8525 resp = &res; 8526 /* 8527 * If OP_RENAME (or any prev op) failed, then return an error. 8528 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8529 */ 8530 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8531 /* 8532 * Error in an op other than last Getattr 8533 */ 8534 e.error = geterrno4(res.status); 8535 PURGE_ATTRCACHE4(odvp); 8536 PURGE_ATTRCACHE4(ndvp); 8537 /* 8538 * System V defines rename to return EEXIST, not 8539 * ENOTEMPTY if the target directory is not empty. 8540 * Over the wire, the error is NFSERR_ENOTEMPTY 8541 * which geterrno4 maps to ENOTEMPTY. 8542 */ 8543 if (e.error == ENOTEMPTY) 8544 e.error = EEXIST; 8545 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8546 needrecov); 8547 goto out; 8548 } 8549 8550 /* rename results */ 8551 rn_res = &res.array[5].nfs_resop4_u.oprename; 8552 8553 if (res.status == NFS4_OK) { 8554 /* Update target attribute, readdir and dnlc caches */ 8555 dinfo.di_garp = 8556 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8557 dinfo.di_cred = cr; 8558 dinfo.di_time_call = t; 8559 } else 8560 dinfop = NULL; 8561 8562 /* Update source cache attribute, readdir and dnlc caches */ 8563 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8564 8565 /* Update source cache attribute, readdir and dnlc caches */ 8566 if (ndvp != odvp) { 8567 update_parentdir_sfh(ovp, ndvp); 8568 8569 /* 8570 * If dinfop is non-NULL, then compound succeded, so 8571 * set di_garp to attrs for source dir. dinfop is only 8572 * set to NULL when compound fails. 8573 */ 8574 if (dinfop) 8575 dinfo.di_garp = 8576 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8577 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8578 dinfop); 8579 } 8580 8581 /* 8582 * Update the rnode with the new component name and args, 8583 * and if the file handle changed, also update it with the new fh. 8584 * This is only necessary if the target object has an rnode 8585 * entry and there is no need to create one for it. 8586 */ 8587 resop = &res.array[8]; /* getfh new res */ 8588 ngf_res = &resop->nfs_resop4_u.opgetfh; 8589 8590 /* 8591 * Update the path and filehandle for the renamed object. 8592 */ 8593 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8594 8595 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8596 8597 if (res.status == NFS4_OK) { 8598 resop++; /* getattr res */ 8599 e.error = nfs4_update_attrcache(res.status, 8600 &resop->nfs_resop4_u.opgetattr.ga_res, 8601 t, ovp, cr); 8602 } 8603 8604 out: 8605 kmem_free(argop, argoplist_size); 8606 if (resp) 8607 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8608 mutex_enter(&orp->r_statelock); 8609 orp->r_flags &= ~R4RECEXPFH; 8610 cv_broadcast(&orp->r_cv); 8611 mutex_exit(&orp->r_statelock); 8612 8613 return (e.error); 8614 } 8615 8616 /* ARGSUSED */ 8617 static int 8618 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8619 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8620 { 8621 int error; 8622 vnode_t *vp; 8623 8624 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8625 return (EPERM); 8626 /* 8627 * As ".." has special meaning and rather than send a mkdir 8628 * over the wire to just let the server freak out, we just 8629 * short circuit it here and return EEXIST 8630 */ 8631 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8632 return (EEXIST); 8633 8634 /* 8635 * Decision to get the right gid and setgid bit of the 8636 * new directory is now made in call_nfs4_create_req. 8637 */ 8638 va->va_mask |= AT_MODE; 8639 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8640 if (error) 8641 return (error); 8642 8643 *vpp = vp; 8644 return (0); 8645 } 8646 8647 8648 /* 8649 * rmdir is using the same remove v4 op as does remove. 8650 * Remove requires that the current fh be the target directory. 8651 * After the operation, the current fh is unchanged. 8652 * The compound op structure is: 8653 * PUTFH(targetdir), REMOVE 8654 */ 8655 /*ARGSUSED4*/ 8656 static int 8657 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8658 caller_context_t *ct, int flags) 8659 { 8660 int need_end_op = FALSE; 8661 COMPOUND4args_clnt args; 8662 COMPOUND4res_clnt res, *resp = NULL; 8663 REMOVE4res *rm_res; 8664 nfs_argop4 argop[3]; 8665 nfs_resop4 *resop; 8666 vnode_t *vp; 8667 int doqueue; 8668 mntinfo4_t *mi; 8669 rnode4_t *drp; 8670 bool_t needrecov = FALSE; 8671 nfs4_recov_state_t recov_state; 8672 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8673 dirattr_info_t dinfo, *dinfop; 8674 8675 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8676 return (EPERM); 8677 /* 8678 * As ".." has special meaning and rather than send a rmdir 8679 * over the wire to just let the server freak out, we just 8680 * short circuit it here and return EEXIST 8681 */ 8682 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8683 return (EEXIST); 8684 8685 drp = VTOR4(dvp); 8686 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8687 return (EINTR); 8688 8689 /* 8690 * Attempt to prevent a rmdir(".") from succeeding. 8691 */ 8692 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8693 if (e.error) { 8694 nfs_rw_exit(&drp->r_rwlock); 8695 return (e.error); 8696 } 8697 if (vp == cdir) { 8698 VN_RELE(vp); 8699 nfs_rw_exit(&drp->r_rwlock); 8700 return (EINVAL); 8701 } 8702 8703 /* 8704 * Since nfsv4 remove op works on both files and directories, 8705 * check that the removed object is indeed a directory. 8706 */ 8707 if (vp->v_type != VDIR) { 8708 VN_RELE(vp); 8709 nfs_rw_exit(&drp->r_rwlock); 8710 return (ENOTDIR); 8711 } 8712 8713 /* 8714 * First just remove the entry from the name cache, as it 8715 * is most likely an entry for this vp. 8716 */ 8717 dnlc_remove(dvp, nm); 8718 8719 /* 8720 * If there vnode reference count is greater than one, then 8721 * there may be additional references in the DNLC which will 8722 * need to be purged. First, trying removing the entry for 8723 * the parent directory and see if that removes the additional 8724 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8725 * to completely remove any references to the directory which 8726 * might still exist in the DNLC. 8727 */ 8728 if (vp->v_count > 1) { 8729 dnlc_remove(vp, ".."); 8730 if (vp->v_count > 1) 8731 dnlc_purge_vp(vp); 8732 } 8733 8734 mi = VTOMI4(dvp); 8735 recov_state.rs_flags = 0; 8736 recov_state.rs_num_retry_despite_err = 0; 8737 8738 recov_retry: 8739 args.ctag = TAG_RMDIR; 8740 8741 /* 8742 * Rmdir ops: putfh dir; remove 8743 */ 8744 args.array_len = 3; 8745 args.array = argop; 8746 8747 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8748 if (e.error) { 8749 nfs_rw_exit(&drp->r_rwlock); 8750 return (e.error); 8751 } 8752 need_end_op = TRUE; 8753 8754 /* putfh directory */ 8755 argop[0].argop = OP_CPUTFH; 8756 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8757 8758 /* remove */ 8759 argop[1].argop = OP_CREMOVE; 8760 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8761 8762 /* getattr (postop attrs for dir that contained removed dir) */ 8763 argop[2].argop = OP_GETATTR; 8764 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8765 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8766 8767 dinfo.di_time_call = gethrtime(); 8768 doqueue = 1; 8769 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8770 8771 PURGE_ATTRCACHE4(vp); 8772 8773 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8774 if (e.error) { 8775 PURGE_ATTRCACHE4(dvp); 8776 } 8777 8778 if (needrecov) { 8779 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8780 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 8781 if (!e.error) 8782 (void) xdr_free(xdr_COMPOUND4res_clnt, 8783 (caddr_t)&res); 8784 8785 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8786 needrecov); 8787 need_end_op = FALSE; 8788 goto recov_retry; 8789 } 8790 } 8791 8792 if (!e.error) { 8793 resp = &res; 8794 8795 /* 8796 * Only return error if first 2 ops (OP_REMOVE or earlier) 8797 * failed. 8798 */ 8799 if (res.status != NFS4_OK && res.array_len <= 2) { 8800 e.error = geterrno4(res.status); 8801 PURGE_ATTRCACHE4(dvp); 8802 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8803 &recov_state, needrecov); 8804 need_end_op = FALSE; 8805 nfs4_purge_stale_fh(e.error, dvp, cr); 8806 /* 8807 * System V defines rmdir to return EEXIST, not 8808 * ENOTEMPTY if the directory is not empty. Over 8809 * the wire, the error is NFSERR_ENOTEMPTY which 8810 * geterrno4 maps to ENOTEMPTY. 8811 */ 8812 if (e.error == ENOTEMPTY) 8813 e.error = EEXIST; 8814 } else { 8815 resop = &res.array[1]; /* remove res */ 8816 rm_res = &resop->nfs_resop4_u.opremove; 8817 8818 if (res.status == NFS4_OK) { 8819 resop = &res.array[2]; /* dir attrs */ 8820 dinfo.di_garp = 8821 &resop->nfs_resop4_u.opgetattr.ga_res; 8822 dinfo.di_cred = cr; 8823 dinfop = &dinfo; 8824 } else 8825 dinfop = NULL; 8826 8827 /* Update dir attribute, readdir and dnlc caches */ 8828 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8829 dinfop); 8830 8831 /* destroy rddir cache for dir that was removed */ 8832 if (VTOR4(vp)->r_dir != NULL) 8833 nfs4_purge_rddir_cache(vp); 8834 } 8835 } 8836 8837 if (need_end_op) 8838 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8839 8840 nfs_rw_exit(&drp->r_rwlock); 8841 8842 if (resp) 8843 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8844 8845 if (e.error == 0) { 8846 vnode_t *tvp; 8847 rnode4_t *trp; 8848 trp = VTOR4(vp); 8849 tvp = vp; 8850 if (IS_SHADOW(vp, trp)) 8851 tvp = RTOV4(trp); 8852 vnevent_rmdir(tvp, dvp, nm, ct); 8853 } 8854 8855 VN_RELE(vp); 8856 8857 return (e.error); 8858 } 8859 8860 /* ARGSUSED */ 8861 static int 8862 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8863 caller_context_t *ct, int flags) 8864 { 8865 int error; 8866 vnode_t *vp; 8867 rnode4_t *rp; 8868 char *contents; 8869 mntinfo4_t *mi = VTOMI4(dvp); 8870 8871 if (nfs_zone() != mi->mi_zone) 8872 return (EPERM); 8873 if (!(mi->mi_flags & MI4_SYMLINK)) 8874 return (EOPNOTSUPP); 8875 8876 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8877 if (error) 8878 return (error); 8879 8880 ASSERT(nfs4_consistent_type(vp)); 8881 rp = VTOR4(vp); 8882 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8883 8884 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8885 8886 if (contents != NULL) { 8887 mutex_enter(&rp->r_statelock); 8888 if (rp->r_symlink.contents == NULL) { 8889 rp->r_symlink.len = strlen(tnm); 8890 bcopy(tnm, contents, rp->r_symlink.len); 8891 rp->r_symlink.contents = contents; 8892 rp->r_symlink.size = MAXPATHLEN; 8893 mutex_exit(&rp->r_statelock); 8894 } else { 8895 mutex_exit(&rp->r_statelock); 8896 kmem_free((void *)contents, MAXPATHLEN); 8897 } 8898 } 8899 } 8900 VN_RELE(vp); 8901 8902 return (error); 8903 } 8904 8905 8906 /* 8907 * Read directory entries. 8908 * There are some weird things to look out for here. The uio_loffset 8909 * field is either 0 or it is the offset returned from a previous 8910 * readdir. It is an opaque value used by the server to find the 8911 * correct directory block to read. The count field is the number 8912 * of blocks to read on the server. This is advisory only, the server 8913 * may return only one block's worth of entries. Entries may be compressed 8914 * on the server. 8915 */ 8916 /* ARGSUSED */ 8917 static int 8918 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8919 caller_context_t *ct, int flags) 8920 { 8921 int error; 8922 uint_t count; 8923 rnode4_t *rp; 8924 rddir4_cache *rdc; 8925 rddir4_cache *rrdc; 8926 8927 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8928 return (EIO); 8929 rp = VTOR4(vp); 8930 8931 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8932 8933 /* 8934 * Make sure that the directory cache is valid. 8935 */ 8936 if (rp->r_dir != NULL) { 8937 if (nfs_disable_rddir_cache != 0) { 8938 /* 8939 * Setting nfs_disable_rddir_cache in /etc/system 8940 * allows interoperability with servers that do not 8941 * properly update the attributes of directories. 8942 * Any cached information gets purged before an 8943 * access is made to it. 8944 */ 8945 nfs4_purge_rddir_cache(vp); 8946 } 8947 8948 error = nfs4_validate_caches(vp, cr); 8949 if (error) 8950 return (error); 8951 } 8952 8953 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8954 8955 /* 8956 * Short circuit last readdir which always returns 0 bytes. 8957 * This can be done after the directory has been read through 8958 * completely at least once. This will set r_direof which 8959 * can be used to find the value of the last cookie. 8960 */ 8961 mutex_enter(&rp->r_statelock); 8962 if (rp->r_direof != NULL && 8963 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8964 mutex_exit(&rp->r_statelock); 8965 #ifdef DEBUG 8966 nfs4_readdir_cache_shorts++; 8967 #endif 8968 if (eofp) 8969 *eofp = 1; 8970 return (0); 8971 } 8972 8973 /* 8974 * Look for a cache entry. Cache entries are identified 8975 * by the NFS cookie value and the byte count requested. 8976 */ 8977 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8978 8979 /* 8980 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8981 */ 8982 if (rdc == NULL) { 8983 mutex_exit(&rp->r_statelock); 8984 return (EINTR); 8985 } 8986 8987 /* 8988 * Check to see if we need to fill this entry in. 8989 */ 8990 if (rdc->flags & RDDIRREQ) { 8991 rdc->flags &= ~RDDIRREQ; 8992 rdc->flags |= RDDIR; 8993 mutex_exit(&rp->r_statelock); 8994 8995 /* 8996 * Do the readdir. 8997 */ 8998 nfs4readdir(vp, rdc, cr); 8999 9000 /* 9001 * Reacquire the lock, so that we can continue 9002 */ 9003 mutex_enter(&rp->r_statelock); 9004 /* 9005 * The entry is now complete 9006 */ 9007 rdc->flags &= ~RDDIR; 9008 } 9009 9010 ASSERT(!(rdc->flags & RDDIR)); 9011 9012 /* 9013 * If an error occurred while attempting 9014 * to fill the cache entry, mark the entry invalid and 9015 * just return the error. 9016 */ 9017 if (rdc->error) { 9018 error = rdc->error; 9019 rdc->flags |= RDDIRREQ; 9020 rddir4_cache_rele(rp, rdc); 9021 mutex_exit(&rp->r_statelock); 9022 return (error); 9023 } 9024 9025 /* 9026 * The cache entry is complete and good, 9027 * copyout the dirent structs to the calling 9028 * thread. 9029 */ 9030 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 9031 9032 /* 9033 * If no error occurred during the copyout, 9034 * update the offset in the uio struct to 9035 * contain the value of the next NFS 4 cookie 9036 * and set the eof value appropriately. 9037 */ 9038 if (!error) { 9039 uiop->uio_loffset = rdc->nfs4_ncookie; 9040 if (eofp) 9041 *eofp = rdc->eof; 9042 } 9043 9044 /* 9045 * Decide whether to do readahead. Don't if we 9046 * have already read to the end of directory. 9047 */ 9048 if (rdc->eof) { 9049 /* 9050 * Make the entry the direof only if it is cached 9051 */ 9052 if (rdc->flags & RDDIRCACHED) 9053 rp->r_direof = rdc; 9054 rddir4_cache_rele(rp, rdc); 9055 mutex_exit(&rp->r_statelock); 9056 return (error); 9057 } 9058 9059 /* Determine if a readdir readahead should be done */ 9060 if (!(rp->r_flags & R4LOOKUP)) { 9061 rddir4_cache_rele(rp, rdc); 9062 mutex_exit(&rp->r_statelock); 9063 return (error); 9064 } 9065 9066 /* 9067 * Now look for a readahead entry. 9068 * 9069 * Check to see whether we found an entry for the readahead. 9070 * If so, we don't need to do anything further, so free the new 9071 * entry if one was allocated. Otherwise, allocate a new entry, add 9072 * it to the cache, and then initiate an asynchronous readdir 9073 * operation to fill it. 9074 */ 9075 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 9076 9077 /* 9078 * A readdir cache entry could not be obtained for the readahead. In 9079 * this case we skip the readahead and return. 9080 */ 9081 if (rrdc == NULL) { 9082 rddir4_cache_rele(rp, rdc); 9083 mutex_exit(&rp->r_statelock); 9084 return (error); 9085 } 9086 9087 /* 9088 * Check to see if we need to fill this entry in. 9089 */ 9090 if (rrdc->flags & RDDIRREQ) { 9091 rrdc->flags &= ~RDDIRREQ; 9092 rrdc->flags |= RDDIR; 9093 rddir4_cache_rele(rp, rdc); 9094 mutex_exit(&rp->r_statelock); 9095 #ifdef DEBUG 9096 nfs4_readdir_readahead++; 9097 #endif 9098 /* 9099 * Do the readdir. 9100 */ 9101 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 9102 return (error); 9103 } 9104 9105 rddir4_cache_rele(rp, rrdc); 9106 rddir4_cache_rele(rp, rdc); 9107 mutex_exit(&rp->r_statelock); 9108 return (error); 9109 } 9110 9111 static int 9112 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9113 { 9114 int error; 9115 rnode4_t *rp; 9116 9117 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9118 9119 rp = VTOR4(vp); 9120 9121 /* 9122 * Obtain the readdir results for the caller. 9123 */ 9124 nfs4readdir(vp, rdc, cr); 9125 9126 mutex_enter(&rp->r_statelock); 9127 /* 9128 * The entry is now complete 9129 */ 9130 rdc->flags &= ~RDDIR; 9131 9132 error = rdc->error; 9133 if (error) 9134 rdc->flags |= RDDIRREQ; 9135 rddir4_cache_rele(rp, rdc); 9136 mutex_exit(&rp->r_statelock); 9137 9138 return (error); 9139 } 9140 9141 /* 9142 * Read directory entries. 9143 * There are some weird things to look out for here. The uio_loffset 9144 * field is either 0 or it is the offset returned from a previous 9145 * readdir. It is an opaque value used by the server to find the 9146 * correct directory block to read. The count field is the number 9147 * of blocks to read on the server. This is advisory only, the server 9148 * may return only one block's worth of entries. Entries may be compressed 9149 * on the server. 9150 * 9151 * Generates the following compound request: 9152 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9153 * must include a Lookupp as well. In this case, send: 9154 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9155 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9156 * 9157 * Get complete attributes and filehandles for entries if this is the 9158 * first read of the directory. Otherwise, just get fileid's. 9159 */ 9160 static void 9161 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9162 { 9163 COMPOUND4args_clnt args; 9164 COMPOUND4res_clnt res; 9165 READDIR4args *rargs; 9166 READDIR4res_clnt *rd_res; 9167 bitmap4 rd_bitsval; 9168 nfs_argop4 argop[5]; 9169 nfs_resop4 *resop; 9170 rnode4_t *rp = VTOR4(vp); 9171 mntinfo4_t *mi = VTOMI4(vp); 9172 int doqueue; 9173 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9174 vnode_t *dvp; 9175 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9176 int num_ops, res_opcnt; 9177 bool_t needrecov = FALSE; 9178 nfs4_recov_state_t recov_state; 9179 hrtime_t t; 9180 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9181 9182 ASSERT(nfs_zone() == mi->mi_zone); 9183 ASSERT(rdc->flags & RDDIR); 9184 ASSERT(rdc->entries == NULL); 9185 9186 /* 9187 * If rp were a stub, it should have triggered and caused 9188 * a mount for us to get this far. 9189 */ 9190 ASSERT(!RP_ISSTUB(rp)); 9191 9192 num_ops = 2; 9193 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9194 /* 9195 * Since nfsv4 readdir may not return entries for "." and "..", 9196 * the client must recreate them: 9197 * To find the correct nodeid, do the following: 9198 * For current node, get nodeid from dnlc. 9199 * - if current node is rootvp, set pnodeid to nodeid. 9200 * - else if parent is in the dnlc, get its nodeid from there. 9201 * - else add LOOKUPP+GETATTR to compound. 9202 */ 9203 nodeid = rp->r_attr.va_nodeid; 9204 if (vp->v_flag & VROOT) { 9205 pnodeid = nodeid; /* root of mount point */ 9206 } else { 9207 dvp = dnlc_lookup(vp, ".."); 9208 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9209 /* parent in dnlc cache - no need for otw */ 9210 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9211 } else { 9212 /* 9213 * parent not in dnlc cache, 9214 * do lookupp to get its id 9215 */ 9216 num_ops = 5; 9217 pnodeid = 0; /* set later by getattr parent */ 9218 } 9219 if (dvp) 9220 VN_RELE(dvp); 9221 } 9222 } 9223 recov_state.rs_flags = 0; 9224 recov_state.rs_num_retry_despite_err = 0; 9225 9226 /* Save the original mount point security flavor */ 9227 (void) save_mnt_secinfo(mi->mi_curr_serv); 9228 9229 recov_retry: 9230 args.ctag = TAG_READDIR; 9231 9232 args.array = argop; 9233 args.array_len = num_ops; 9234 9235 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9236 &recov_state, NULL)) { 9237 /* 9238 * If readdir a node that is a stub for a crossed mount point, 9239 * keep the original secinfo flavor for the current file 9240 * system, not the crossed one. 9241 */ 9242 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9243 rdc->error = e.error; 9244 return; 9245 } 9246 9247 /* 9248 * Determine which attrs to request for dirents. This code 9249 * must be protected by nfs4_start/end_fop because of r_server 9250 * (which will change during failover recovery). 9251 * 9252 */ 9253 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9254 /* 9255 * Get all vattr attrs plus filehandle and rdattr_error 9256 */ 9257 rd_bitsval = NFS4_VATTR_MASK | 9258 FATTR4_RDATTR_ERROR_MASK | 9259 FATTR4_FILEHANDLE_MASK; 9260 9261 if (rp->r_flags & R4READDIRWATTR) { 9262 mutex_enter(&rp->r_statelock); 9263 rp->r_flags &= ~R4READDIRWATTR; 9264 mutex_exit(&rp->r_statelock); 9265 } 9266 } else { 9267 servinfo4_t *svp = rp->r_server; 9268 9269 /* 9270 * Already read directory. Use readdir with 9271 * no attrs (except for mounted_on_fileid) for updates. 9272 */ 9273 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9274 9275 /* 9276 * request mounted on fileid if supported, else request 9277 * fileid. maybe we should verify that fileid is supported 9278 * and request something else if not. 9279 */ 9280 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9281 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9282 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9283 nfs_rw_exit(&svp->sv_lock); 9284 } 9285 9286 /* putfh directory fh */ 9287 argop[0].argop = OP_CPUTFH; 9288 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9289 9290 argop[1].argop = OP_READDIR; 9291 rargs = &argop[1].nfs_argop4_u.opreaddir; 9292 /* 9293 * 1 and 2 are reserved for client "." and ".." entry offset. 9294 * cookie 0 should be used over-the-wire to start reading at 9295 * the beginning of the directory excluding "." and "..". 9296 */ 9297 if (rdc->nfs4_cookie == 0 || 9298 rdc->nfs4_cookie == 1 || 9299 rdc->nfs4_cookie == 2) { 9300 rargs->cookie = (nfs_cookie4)0; 9301 rargs->cookieverf = 0; 9302 } else { 9303 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9304 mutex_enter(&rp->r_statelock); 9305 rargs->cookieverf = rp->r_cookieverf4; 9306 mutex_exit(&rp->r_statelock); 9307 } 9308 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9309 rargs->maxcount = mi->mi_tsize; 9310 rargs->attr_request = rd_bitsval; 9311 rargs->rdc = rdc; 9312 rargs->dvp = vp; 9313 rargs->mi = mi; 9314 rargs->cr = cr; 9315 9316 9317 /* 9318 * If count < than the minimum required, we return no entries 9319 * and fail with EINVAL 9320 */ 9321 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9322 rdc->error = EINVAL; 9323 goto out; 9324 } 9325 9326 if (args.array_len == 5) { 9327 /* 9328 * Add lookupp and getattr for parent nodeid. 9329 */ 9330 argop[2].argop = OP_LOOKUPP; 9331 9332 argop[3].argop = OP_GETFH; 9333 9334 /* getattr parent */ 9335 argop[4].argop = OP_GETATTR; 9336 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9337 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9338 } 9339 9340 doqueue = 1; 9341 9342 if (mi->mi_io_kstats) { 9343 mutex_enter(&mi->mi_lock); 9344 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9345 mutex_exit(&mi->mi_lock); 9346 } 9347 9348 /* capture the time of this call */ 9349 rargs->t = t = gethrtime(); 9350 9351 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9352 9353 if (mi->mi_io_kstats) { 9354 mutex_enter(&mi->mi_lock); 9355 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9356 mutex_exit(&mi->mi_lock); 9357 } 9358 9359 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9360 9361 /* 9362 * If RPC error occurred and it isn't an error that 9363 * triggers recovery, then go ahead and fail now. 9364 */ 9365 if (e.error != 0 && !needrecov) { 9366 rdc->error = e.error; 9367 goto out; 9368 } 9369 9370 if (needrecov) { 9371 bool_t abort; 9372 9373 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9374 "nfs4readdir: initiating recovery.\n")); 9375 9376 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9377 NULL, OP_READDIR, NULL, NULL, NULL); 9378 if (abort == FALSE) { 9379 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9380 &recov_state, needrecov); 9381 if (!e.error) 9382 (void) xdr_free(xdr_COMPOUND4res_clnt, 9383 (caddr_t)&res); 9384 if (rdc->entries != NULL) { 9385 kmem_free(rdc->entries, rdc->entlen); 9386 rdc->entries = NULL; 9387 } 9388 goto recov_retry; 9389 } 9390 9391 if (e.error != 0) { 9392 rdc->error = e.error; 9393 goto out; 9394 } 9395 9396 /* fall through for res.status case */ 9397 } 9398 9399 res_opcnt = res.array_len; 9400 9401 /* 9402 * If compound failed first 2 ops (PUTFH+READDIR), then return 9403 * failure here. Subsequent ops are for filling out dot-dot 9404 * dirent, and if they fail, we still want to give the caller 9405 * the dirents returned by (the successful) READDIR op, so we need 9406 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9407 * 9408 * One example where PUTFH+READDIR ops would succeed but 9409 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9410 * but lacks x. In this case, a POSIX server's VOP_READDIR 9411 * would succeed; however, VOP_LOOKUP(..) would fail since no 9412 * x perm. We need to come up with a non-vendor-specific way 9413 * for a POSIX server to return d_ino from dotdot's dirent if 9414 * client only requests mounted_on_fileid, and just say the 9415 * LOOKUPP succeeded and fill out the GETATTR. However, if 9416 * client requested any mandatory attrs, server would be required 9417 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9418 * for dotdot. 9419 */ 9420 9421 if (res.status) { 9422 if (res_opcnt <= 2) { 9423 e.error = geterrno4(res.status); 9424 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9425 &recov_state, needrecov); 9426 nfs4_purge_stale_fh(e.error, vp, cr); 9427 rdc->error = e.error; 9428 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9429 if (rdc->entries != NULL) { 9430 kmem_free(rdc->entries, rdc->entlen); 9431 rdc->entries = NULL; 9432 } 9433 /* 9434 * If readdir a node that is a stub for a 9435 * crossed mount point, keep the original 9436 * secinfo flavor for the current file system, 9437 * not the crossed one. 9438 */ 9439 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9440 return; 9441 } 9442 } 9443 9444 resop = &res.array[1]; /* readdir res */ 9445 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9446 9447 mutex_enter(&rp->r_statelock); 9448 rp->r_cookieverf4 = rd_res->cookieverf; 9449 mutex_exit(&rp->r_statelock); 9450 9451 /* 9452 * For "." and ".." entries 9453 * e.g. 9454 * seek(cookie=0) -> "." entry with d_off = 1 9455 * seek(cookie=1) -> ".." entry with d_off = 2 9456 */ 9457 if (cookie == (nfs_cookie4) 0) { 9458 if (rd_res->dotp) 9459 rd_res->dotp->d_ino = nodeid; 9460 if (rd_res->dotdotp) 9461 rd_res->dotdotp->d_ino = pnodeid; 9462 } 9463 if (cookie == (nfs_cookie4) 1) { 9464 if (rd_res->dotdotp) 9465 rd_res->dotdotp->d_ino = pnodeid; 9466 } 9467 9468 9469 /* LOOKUPP+GETATTR attemped */ 9470 if (args.array_len == 5 && rd_res->dotdotp) { 9471 if (res.status == NFS4_OK && res_opcnt == 5) { 9472 nfs_fh4 *fhp; 9473 nfs4_sharedfh_t *sfhp; 9474 vnode_t *pvp; 9475 nfs4_ga_res_t *garp; 9476 9477 resop++; /* lookupp */ 9478 resop++; /* getfh */ 9479 fhp = &resop->nfs_resop4_u.opgetfh.object; 9480 9481 resop++; /* getattr of parent */ 9482 9483 /* 9484 * First, take care of finishing the 9485 * readdir results. 9486 */ 9487 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9488 /* 9489 * The d_ino of .. must be the inode number 9490 * of the mounted filesystem. 9491 */ 9492 if (garp->n4g_va.va_mask & AT_NODEID) 9493 rd_res->dotdotp->d_ino = 9494 garp->n4g_va.va_nodeid; 9495 9496 9497 /* 9498 * Next, create the ".." dnlc entry 9499 */ 9500 sfhp = sfh4_get(fhp, mi); 9501 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9502 dnlc_update(vp, "..", pvp); 9503 VN_RELE(pvp); 9504 } 9505 sfh4_rele(&sfhp); 9506 } 9507 } 9508 9509 if (mi->mi_io_kstats) { 9510 mutex_enter(&mi->mi_lock); 9511 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9512 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9513 mutex_exit(&mi->mi_lock); 9514 } 9515 9516 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9517 9518 out: 9519 /* 9520 * If readdir a node that is a stub for a crossed mount point, 9521 * keep the original secinfo flavor for the current file system, 9522 * not the crossed one. 9523 */ 9524 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9525 9526 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9527 } 9528 9529 9530 static int 9531 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9532 { 9533 rnode4_t *rp = VTOR4(bp->b_vp); 9534 int count; 9535 int error; 9536 cred_t *cred_otw = NULL; 9537 offset_t offset; 9538 nfs4_open_stream_t *osp = NULL; 9539 bool_t first_time = TRUE; /* first time getting otw cred */ 9540 bool_t last_time = FALSE; /* last time getting otw cred */ 9541 9542 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9543 9544 DTRACE_IO1(start, struct buf *, bp); 9545 offset = ldbtob(bp->b_lblkno); 9546 9547 if (bp->b_flags & B_READ) { 9548 read_again: 9549 /* 9550 * Releases the osp, if it is provided. 9551 * Puts a hold on the cred_otw and the new osp (if found). 9552 */ 9553 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9554 &first_time, &last_time); 9555 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9556 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9557 readahead, NULL); 9558 crfree(cred_otw); 9559 if (!error) { 9560 if (bp->b_resid) { 9561 /* 9562 * Didn't get it all because we hit EOF, 9563 * zero all the memory beyond the EOF. 9564 */ 9565 /* bzero(rdaddr + */ 9566 bzero(bp->b_un.b_addr + 9567 bp->b_bcount - bp->b_resid, bp->b_resid); 9568 } 9569 mutex_enter(&rp->r_statelock); 9570 if (bp->b_resid == bp->b_bcount && 9571 offset >= rp->r_size) { 9572 /* 9573 * We didn't read anything at all as we are 9574 * past EOF. Return an error indicator back 9575 * but don't destroy the pages (yet). 9576 */ 9577 error = NFS_EOF; 9578 } 9579 mutex_exit(&rp->r_statelock); 9580 } else if (error == EACCES && last_time == FALSE) { 9581 goto read_again; 9582 } 9583 } else { 9584 if (!(rp->r_flags & R4STALE)) { 9585 write_again: 9586 /* 9587 * Releases the osp, if it is provided. 9588 * Puts a hold on the cred_otw and the new 9589 * osp (if found). 9590 */ 9591 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9592 &first_time, &last_time); 9593 mutex_enter(&rp->r_statelock); 9594 count = MIN(bp->b_bcount, rp->r_size - offset); 9595 mutex_exit(&rp->r_statelock); 9596 if (count < 0) 9597 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9598 #ifdef DEBUG 9599 if (count == 0) { 9600 zoneid_t zoneid = getzoneid(); 9601 9602 zcmn_err(zoneid, CE_WARN, 9603 "nfs4_bio: zero length write at %lld", 9604 offset); 9605 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9606 "b_bcount=%ld, file size=%lld", 9607 rp->r_flags, (long)bp->b_bcount, 9608 rp->r_size); 9609 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9610 if (nfs4_bio_do_stop) 9611 debug_enter("nfs4_bio"); 9612 } 9613 #endif 9614 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9615 count, cred_otw, stab_comm); 9616 if (error == EACCES && last_time == FALSE) { 9617 crfree(cred_otw); 9618 goto write_again; 9619 } 9620 bp->b_error = error; 9621 if (error && error != EINTR && 9622 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9623 /* 9624 * Don't print EDQUOT errors on the console. 9625 * Don't print asynchronous EACCES errors. 9626 * Don't print EFBIG errors. 9627 * Print all other write errors. 9628 */ 9629 if (error != EDQUOT && error != EFBIG && 9630 (error != EACCES || 9631 !(bp->b_flags & B_ASYNC))) 9632 nfs4_write_error(bp->b_vp, 9633 error, cred_otw); 9634 /* 9635 * Update r_error and r_flags as appropriate. 9636 * If the error was ESTALE, then mark the 9637 * rnode as not being writeable and save 9638 * the error status. Otherwise, save any 9639 * errors which occur from asynchronous 9640 * page invalidations. Any errors occurring 9641 * from other operations should be saved 9642 * by the caller. 9643 */ 9644 mutex_enter(&rp->r_statelock); 9645 if (error == ESTALE) { 9646 rp->r_flags |= R4STALE; 9647 if (!rp->r_error) 9648 rp->r_error = error; 9649 } else if (!rp->r_error && 9650 (bp->b_flags & 9651 (B_INVAL|B_FORCE|B_ASYNC)) == 9652 (B_INVAL|B_FORCE|B_ASYNC)) { 9653 rp->r_error = error; 9654 } 9655 mutex_exit(&rp->r_statelock); 9656 } 9657 crfree(cred_otw); 9658 } else { 9659 error = rp->r_error; 9660 /* 9661 * A close may have cleared r_error, if so, 9662 * propagate ESTALE error return properly 9663 */ 9664 if (error == 0) 9665 error = ESTALE; 9666 } 9667 } 9668 9669 if (error != 0 && error != NFS_EOF) 9670 bp->b_flags |= B_ERROR; 9671 9672 if (osp) 9673 open_stream_rele(osp, rp); 9674 9675 DTRACE_IO1(done, struct buf *, bp); 9676 9677 return (error); 9678 } 9679 9680 /* ARGSUSED */ 9681 int 9682 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9683 { 9684 return (EREMOTE); 9685 } 9686 9687 /* ARGSUSED2 */ 9688 int 9689 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9690 { 9691 rnode4_t *rp = VTOR4(vp); 9692 9693 if (!write_lock) { 9694 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9695 return (V_WRITELOCK_FALSE); 9696 } 9697 9698 if ((rp->r_flags & R4DIRECTIO) || 9699 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9700 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9701 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9702 return (V_WRITELOCK_FALSE); 9703 nfs_rw_exit(&rp->r_rwlock); 9704 } 9705 9706 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9707 return (V_WRITELOCK_TRUE); 9708 } 9709 9710 /* ARGSUSED */ 9711 void 9712 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9713 { 9714 rnode4_t *rp = VTOR4(vp); 9715 9716 nfs_rw_exit(&rp->r_rwlock); 9717 } 9718 9719 /* ARGSUSED */ 9720 static int 9721 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9722 { 9723 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9724 return (EIO); 9725 9726 /* 9727 * Because we stuff the readdir cookie into the offset field 9728 * someone may attempt to do an lseek with the cookie which 9729 * we want to succeed. 9730 */ 9731 if (vp->v_type == VDIR) 9732 return (0); 9733 if (*noffp < 0) 9734 return (EINVAL); 9735 return (0); 9736 } 9737 9738 9739 /* 9740 * Return all the pages from [off..off+len) in file 9741 */ 9742 /* ARGSUSED */ 9743 static int 9744 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9745 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9746 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9747 { 9748 rnode4_t *rp; 9749 int error; 9750 mntinfo4_t *mi; 9751 9752 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9753 return (EIO); 9754 rp = VTOR4(vp); 9755 if (IS_SHADOW(vp, rp)) 9756 vp = RTOV4(rp); 9757 9758 if (vp->v_flag & VNOMAP) 9759 return (ENOSYS); 9760 9761 if (protp != NULL) 9762 *protp = PROT_ALL; 9763 9764 /* 9765 * Now validate that the caches are up to date. 9766 */ 9767 if (error = nfs4_validate_caches(vp, cr)) 9768 return (error); 9769 9770 mi = VTOMI4(vp); 9771 retry: 9772 mutex_enter(&rp->r_statelock); 9773 9774 /* 9775 * Don't create dirty pages faster than they 9776 * can be cleaned so that the system doesn't 9777 * get imbalanced. If the async queue is 9778 * maxed out, then wait for it to drain before 9779 * creating more dirty pages. Also, wait for 9780 * any threads doing pagewalks in the vop_getattr 9781 * entry points so that they don't block for 9782 * long periods. 9783 */ 9784 if (rw == S_CREATE) { 9785 while ((mi->mi_max_threads != 0 && 9786 rp->r_awcount > 2 * mi->mi_max_threads) || 9787 rp->r_gcount > 0) 9788 cv_wait(&rp->r_cv, &rp->r_statelock); 9789 } 9790 9791 /* 9792 * If we are getting called as a side effect of an nfs_write() 9793 * operation the local file size might not be extended yet. 9794 * In this case we want to be able to return pages of zeroes. 9795 */ 9796 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9797 NFS4_DEBUG(nfs4_pageio_debug, 9798 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9799 "len=%llu, size=%llu, attrsize =%llu", off, 9800 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9801 mutex_exit(&rp->r_statelock); 9802 return (EFAULT); /* beyond EOF */ 9803 } 9804 9805 mutex_exit(&rp->r_statelock); 9806 9807 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9808 pl, plsz, seg, addr, rw, cr); 9809 NFS4_DEBUG(nfs4_pageio_debug && error, 9810 (CE_NOTE, "getpages error %d; off=%lld, len=%lld", 9811 error, off, (u_longlong_t)len)); 9812 9813 switch (error) { 9814 case NFS_EOF: 9815 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9816 goto retry; 9817 case ESTALE: 9818 nfs4_purge_stale_fh(error, vp, cr); 9819 } 9820 9821 return (error); 9822 } 9823 9824 /* 9825 * Called from pvn_getpages to get a particular page. 9826 */ 9827 /* ARGSUSED */ 9828 static int 9829 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9830 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9831 enum seg_rw rw, cred_t *cr) 9832 { 9833 rnode4_t *rp; 9834 uint_t bsize; 9835 struct buf *bp; 9836 page_t *pp; 9837 u_offset_t lbn; 9838 u_offset_t io_off; 9839 u_offset_t blkoff; 9840 u_offset_t rablkoff; 9841 size_t io_len; 9842 uint_t blksize; 9843 int error; 9844 int readahead; 9845 int readahead_issued = 0; 9846 int ra_window; /* readahead window */ 9847 page_t *pagefound; 9848 page_t *savepp; 9849 9850 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9851 return (EIO); 9852 9853 rp = VTOR4(vp); 9854 ASSERT(!IS_SHADOW(vp, rp)); 9855 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9856 9857 reread: 9858 bp = NULL; 9859 pp = NULL; 9860 pagefound = NULL; 9861 9862 if (pl != NULL) 9863 pl[0] = NULL; 9864 9865 error = 0; 9866 lbn = off / bsize; 9867 blkoff = lbn * bsize; 9868 9869 /* 9870 * Queueing up the readahead before doing the synchronous read 9871 * results in a significant increase in read throughput because 9872 * of the increased parallelism between the async threads and 9873 * the process context. 9874 */ 9875 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9876 rw != S_CREATE && 9877 !(vp->v_flag & VNOCACHE)) { 9878 mutex_enter(&rp->r_statelock); 9879 9880 /* 9881 * Calculate the number of readaheads to do. 9882 * a) No readaheads at offset = 0. 9883 * b) Do maximum(nfs4_nra) readaheads when the readahead 9884 * window is closed. 9885 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9886 * upon how far the readahead window is open or close. 9887 * d) No readaheads if rp->r_nextr is not within the scope 9888 * of the readahead window (random i/o). 9889 */ 9890 9891 if (off == 0) 9892 readahead = 0; 9893 else if (blkoff == rp->r_nextr) 9894 readahead = nfs4_nra; 9895 else if (rp->r_nextr > blkoff && 9896 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9897 <= (nfs4_nra - 1))) 9898 readahead = nfs4_nra - ra_window; 9899 else 9900 readahead = 0; 9901 9902 rablkoff = rp->r_nextr; 9903 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9904 mutex_exit(&rp->r_statelock); 9905 if (nfs4_async_readahead(vp, rablkoff + bsize, 9906 addr + (rablkoff + bsize - off), 9907 seg, cr, nfs4_readahead) < 0) { 9908 mutex_enter(&rp->r_statelock); 9909 break; 9910 } 9911 readahead--; 9912 rablkoff += bsize; 9913 /* 9914 * Indicate that we did a readahead so 9915 * readahead offset is not updated 9916 * by the synchronous read below. 9917 */ 9918 readahead_issued = 1; 9919 mutex_enter(&rp->r_statelock); 9920 /* 9921 * set readahead offset to 9922 * offset of last async readahead 9923 * request. 9924 */ 9925 rp->r_nextr = rablkoff; 9926 } 9927 mutex_exit(&rp->r_statelock); 9928 } 9929 9930 again: 9931 if ((pagefound = page_exists(vp, off)) == NULL) { 9932 if (pl == NULL) { 9933 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9934 nfs4_readahead); 9935 } else if (rw == S_CREATE) { 9936 /* 9937 * Block for this page is not allocated, or the offset 9938 * is beyond the current allocation size, or we're 9939 * allocating a swap slot and the page was not found, 9940 * so allocate it and return a zero page. 9941 */ 9942 if ((pp = page_create_va(vp, off, 9943 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9944 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9945 io_len = PAGESIZE; 9946 mutex_enter(&rp->r_statelock); 9947 rp->r_nextr = off + PAGESIZE; 9948 mutex_exit(&rp->r_statelock); 9949 } else { 9950 /* 9951 * Need to go to server to get a block 9952 */ 9953 mutex_enter(&rp->r_statelock); 9954 if (blkoff < rp->r_size && 9955 blkoff + bsize > rp->r_size) { 9956 /* 9957 * If less than a block left in 9958 * file read less than a block. 9959 */ 9960 if (rp->r_size <= off) { 9961 /* 9962 * Trying to access beyond EOF, 9963 * set up to get at least one page. 9964 */ 9965 blksize = off + PAGESIZE - blkoff; 9966 } else 9967 blksize = rp->r_size - blkoff; 9968 } else if ((off == 0) || 9969 (off != rp->r_nextr && !readahead_issued)) { 9970 blksize = PAGESIZE; 9971 blkoff = off; /* block = page here */ 9972 } else 9973 blksize = bsize; 9974 mutex_exit(&rp->r_statelock); 9975 9976 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9977 &io_len, blkoff, blksize, 0); 9978 9979 /* 9980 * Some other thread has entered the page, 9981 * so just use it. 9982 */ 9983 if (pp == NULL) 9984 goto again; 9985 9986 /* 9987 * Now round the request size up to page boundaries. 9988 * This ensures that the entire page will be 9989 * initialized to zeroes if EOF is encountered. 9990 */ 9991 io_len = ptob(btopr(io_len)); 9992 9993 bp = pageio_setup(pp, io_len, vp, B_READ); 9994 ASSERT(bp != NULL); 9995 9996 /* 9997 * pageio_setup should have set b_addr to 0. This 9998 * is correct since we want to do I/O on a page 9999 * boundary. bp_mapin will use this addr to calculate 10000 * an offset, and then set b_addr to the kernel virtual 10001 * address it allocated for us. 10002 */ 10003 ASSERT(bp->b_un.b_addr == 0); 10004 10005 bp->b_edev = 0; 10006 bp->b_dev = 0; 10007 bp->b_lblkno = lbtodb(io_off); 10008 bp->b_file = vp; 10009 bp->b_offset = (offset_t)off; 10010 bp_mapin(bp); 10011 10012 /* 10013 * If doing a write beyond what we believe is EOF, 10014 * don't bother trying to read the pages from the 10015 * server, we'll just zero the pages here. We 10016 * don't check that the rw flag is S_WRITE here 10017 * because some implementations may attempt a 10018 * read access to the buffer before copying data. 10019 */ 10020 mutex_enter(&rp->r_statelock); 10021 if (io_off >= rp->r_size && seg == segkmap) { 10022 mutex_exit(&rp->r_statelock); 10023 bzero(bp->b_un.b_addr, io_len); 10024 } else { 10025 mutex_exit(&rp->r_statelock); 10026 error = nfs4_bio(bp, NULL, cr, FALSE); 10027 } 10028 10029 /* 10030 * Unmap the buffer before freeing it. 10031 */ 10032 bp_mapout(bp); 10033 pageio_done(bp); 10034 10035 savepp = pp; 10036 do { 10037 pp->p_fsdata = C_NOCOMMIT; 10038 } while ((pp = pp->p_next) != savepp); 10039 10040 if (error == NFS_EOF) { 10041 /* 10042 * If doing a write system call just return 10043 * zeroed pages, else user tried to get pages 10044 * beyond EOF, return error. We don't check 10045 * that the rw flag is S_WRITE here because 10046 * some implementations may attempt a read 10047 * access to the buffer before copying data. 10048 */ 10049 if (seg == segkmap) 10050 error = 0; 10051 else 10052 error = EFAULT; 10053 } 10054 10055 if (!readahead_issued && !error) { 10056 mutex_enter(&rp->r_statelock); 10057 rp->r_nextr = io_off + io_len; 10058 mutex_exit(&rp->r_statelock); 10059 } 10060 } 10061 } 10062 10063 out: 10064 if (pl == NULL) 10065 return (error); 10066 10067 if (error) { 10068 if (pp != NULL) 10069 pvn_read_done(pp, B_ERROR); 10070 return (error); 10071 } 10072 10073 if (pagefound) { 10074 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 10075 10076 /* 10077 * Page exists in the cache, acquire the appropriate lock. 10078 * If this fails, start all over again. 10079 */ 10080 if ((pp = page_lookup(vp, off, se)) == NULL) { 10081 #ifdef DEBUG 10082 nfs4_lostpage++; 10083 #endif 10084 goto reread; 10085 } 10086 pl[0] = pp; 10087 pl[1] = NULL; 10088 return (0); 10089 } 10090 10091 if (pp != NULL) 10092 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 10093 10094 return (error); 10095 } 10096 10097 static void 10098 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 10099 cred_t *cr) 10100 { 10101 int error; 10102 page_t *pp; 10103 u_offset_t io_off; 10104 size_t io_len; 10105 struct buf *bp; 10106 uint_t bsize, blksize; 10107 rnode4_t *rp = VTOR4(vp); 10108 page_t *savepp; 10109 10110 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10111 10112 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10113 10114 mutex_enter(&rp->r_statelock); 10115 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10116 /* 10117 * If less than a block left in file read less 10118 * than a block. 10119 */ 10120 blksize = rp->r_size - blkoff; 10121 } else 10122 blksize = bsize; 10123 mutex_exit(&rp->r_statelock); 10124 10125 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10126 &io_off, &io_len, blkoff, blksize, 1); 10127 /* 10128 * The isra flag passed to the kluster function is 1, we may have 10129 * gotten a return value of NULL for a variety of reasons (# of free 10130 * pages < minfree, someone entered the page on the vnode etc). In all 10131 * cases, we want to punt on the readahead. 10132 */ 10133 if (pp == NULL) 10134 return; 10135 10136 /* 10137 * Now round the request size up to page boundaries. 10138 * This ensures that the entire page will be 10139 * initialized to zeroes if EOF is encountered. 10140 */ 10141 io_len = ptob(btopr(io_len)); 10142 10143 bp = pageio_setup(pp, io_len, vp, B_READ); 10144 ASSERT(bp != NULL); 10145 10146 /* 10147 * pageio_setup should have set b_addr to 0. This is correct since 10148 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10149 * to calculate an offset, and then set b_addr to the kernel virtual 10150 * address it allocated for us. 10151 */ 10152 ASSERT(bp->b_un.b_addr == 0); 10153 10154 bp->b_edev = 0; 10155 bp->b_dev = 0; 10156 bp->b_lblkno = lbtodb(io_off); 10157 bp->b_file = vp; 10158 bp->b_offset = (offset_t)blkoff; 10159 bp_mapin(bp); 10160 10161 /* 10162 * If doing a write beyond what we believe is EOF, don't bother trying 10163 * to read the pages from the server, we'll just zero the pages here. 10164 * We don't check that the rw flag is S_WRITE here because some 10165 * implementations may attempt a read access to the buffer before 10166 * copying data. 10167 */ 10168 mutex_enter(&rp->r_statelock); 10169 if (io_off >= rp->r_size && seg == segkmap) { 10170 mutex_exit(&rp->r_statelock); 10171 bzero(bp->b_un.b_addr, io_len); 10172 error = 0; 10173 } else { 10174 mutex_exit(&rp->r_statelock); 10175 error = nfs4_bio(bp, NULL, cr, TRUE); 10176 if (error == NFS_EOF) 10177 error = 0; 10178 } 10179 10180 /* 10181 * Unmap the buffer before freeing it. 10182 */ 10183 bp_mapout(bp); 10184 pageio_done(bp); 10185 10186 savepp = pp; 10187 do { 10188 pp->p_fsdata = C_NOCOMMIT; 10189 } while ((pp = pp->p_next) != savepp); 10190 10191 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10192 10193 /* 10194 * In case of error set readahead offset 10195 * to the lowest offset. 10196 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10197 */ 10198 if (error && rp->r_nextr > io_off) { 10199 mutex_enter(&rp->r_statelock); 10200 if (rp->r_nextr > io_off) 10201 rp->r_nextr = io_off; 10202 mutex_exit(&rp->r_statelock); 10203 } 10204 } 10205 10206 /* 10207 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10208 * If len == 0, do from off to EOF. 10209 * 10210 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10211 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10212 * (from pageout). 10213 */ 10214 /* ARGSUSED */ 10215 static int 10216 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10217 caller_context_t *ct) 10218 { 10219 int error; 10220 rnode4_t *rp; 10221 10222 ASSERT(cr != NULL); 10223 10224 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10225 return (EIO); 10226 10227 rp = VTOR4(vp); 10228 if (IS_SHADOW(vp, rp)) 10229 vp = RTOV4(rp); 10230 10231 /* 10232 * XXX - Why should this check be made here? 10233 */ 10234 if (vp->v_flag & VNOMAP) 10235 return (ENOSYS); 10236 10237 if (len == 0 && !(flags & B_INVAL) && 10238 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10239 return (0); 10240 10241 mutex_enter(&rp->r_statelock); 10242 rp->r_count++; 10243 mutex_exit(&rp->r_statelock); 10244 error = nfs4_putpages(vp, off, len, flags, cr); 10245 mutex_enter(&rp->r_statelock); 10246 rp->r_count--; 10247 cv_broadcast(&rp->r_cv); 10248 mutex_exit(&rp->r_statelock); 10249 10250 return (error); 10251 } 10252 10253 /* 10254 * Write out a single page, possibly klustering adjacent dirty pages. 10255 */ 10256 int 10257 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10258 int flags, cred_t *cr) 10259 { 10260 u_offset_t io_off; 10261 u_offset_t lbn_off; 10262 u_offset_t lbn; 10263 size_t io_len; 10264 uint_t bsize; 10265 int error; 10266 rnode4_t *rp; 10267 10268 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10269 ASSERT(pp != NULL); 10270 ASSERT(cr != NULL); 10271 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10272 10273 rp = VTOR4(vp); 10274 ASSERT(rp->r_count > 0); 10275 ASSERT(!IS_SHADOW(vp, rp)); 10276 10277 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10278 lbn = pp->p_offset / bsize; 10279 lbn_off = lbn * bsize; 10280 10281 /* 10282 * Find a kluster that fits in one block, or in 10283 * one page if pages are bigger than blocks. If 10284 * there is less file space allocated than a whole 10285 * page, we'll shorten the i/o request below. 10286 */ 10287 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10288 roundup(bsize, PAGESIZE), flags); 10289 10290 /* 10291 * pvn_write_kluster shouldn't have returned a page with offset 10292 * behind the original page we were given. Verify that. 10293 */ 10294 ASSERT((pp->p_offset / bsize) >= lbn); 10295 10296 /* 10297 * Now pp will have the list of kept dirty pages marked for 10298 * write back. It will also handle invalidation and freeing 10299 * of pages that are not dirty. Check for page length rounding 10300 * problems. 10301 */ 10302 if (io_off + io_len > lbn_off + bsize) { 10303 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10304 io_len = lbn_off + bsize - io_off; 10305 } 10306 /* 10307 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10308 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10309 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10310 * progress and the r_size has not been made consistent with the 10311 * new size of the file. When the uiomove() completes the r_size is 10312 * updated and the R4MODINPROGRESS flag is cleared. 10313 * 10314 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10315 * consistent value of r_size. Without this handshaking, it is 10316 * possible that nfs4_bio() picks up the old value of r_size 10317 * before the uiomove() in writerp4() completes. This will result 10318 * in the write through nfs4_bio() being dropped. 10319 * 10320 * More precisely, there is a window between the time the uiomove() 10321 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10322 * operation intervenes in this window, the page will be picked up, 10323 * because it is dirty (it will be unlocked, unless it was 10324 * pagecreate'd). When the page is picked up as dirty, the dirty 10325 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10326 * checked. This will still be the old size. Therefore the page will 10327 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10328 * the page will be found to be clean and the write will be dropped. 10329 */ 10330 if (rp->r_flags & R4MODINPROGRESS) { 10331 mutex_enter(&rp->r_statelock); 10332 if ((rp->r_flags & R4MODINPROGRESS) && 10333 rp->r_modaddr + MAXBSIZE > io_off && 10334 rp->r_modaddr < io_off + io_len) { 10335 page_t *plist; 10336 /* 10337 * A write is in progress for this region of the file. 10338 * If we did not detect R4MODINPROGRESS here then this 10339 * path through nfs_putapage() would eventually go to 10340 * nfs4_bio() and may not write out all of the data 10341 * in the pages. We end up losing data. So we decide 10342 * to set the modified bit on each page in the page 10343 * list and mark the rnode with R4DIRTY. This write 10344 * will be restarted at some later time. 10345 */ 10346 plist = pp; 10347 while (plist != NULL) { 10348 pp = plist; 10349 page_sub(&plist, pp); 10350 hat_setmod(pp); 10351 page_io_unlock(pp); 10352 page_unlock(pp); 10353 } 10354 rp->r_flags |= R4DIRTY; 10355 mutex_exit(&rp->r_statelock); 10356 if (offp) 10357 *offp = io_off; 10358 if (lenp) 10359 *lenp = io_len; 10360 return (0); 10361 } 10362 mutex_exit(&rp->r_statelock); 10363 } 10364 10365 if (flags & B_ASYNC) { 10366 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10367 nfs4_sync_putapage); 10368 } else 10369 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10370 10371 if (offp) 10372 *offp = io_off; 10373 if (lenp) 10374 *lenp = io_len; 10375 return (error); 10376 } 10377 10378 static int 10379 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10380 int flags, cred_t *cr) 10381 { 10382 int error; 10383 rnode4_t *rp; 10384 10385 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10386 10387 flags |= B_WRITE; 10388 10389 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10390 10391 rp = VTOR4(vp); 10392 10393 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10394 error == EACCES) && 10395 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10396 if (!(rp->r_flags & R4OUTOFSPACE)) { 10397 mutex_enter(&rp->r_statelock); 10398 rp->r_flags |= R4OUTOFSPACE; 10399 mutex_exit(&rp->r_statelock); 10400 } 10401 flags |= B_ERROR; 10402 pvn_write_done(pp, flags); 10403 /* 10404 * If this was not an async thread, then try again to 10405 * write out the pages, but this time, also destroy 10406 * them whether or not the write is successful. This 10407 * will prevent memory from filling up with these 10408 * pages and destroying them is the only alternative 10409 * if they can't be written out. 10410 * 10411 * Don't do this if this is an async thread because 10412 * when the pages are unlocked in pvn_write_done, 10413 * some other thread could have come along, locked 10414 * them, and queued for an async thread. It would be 10415 * possible for all of the async threads to be tied 10416 * up waiting to lock the pages again and they would 10417 * all already be locked and waiting for an async 10418 * thread to handle them. Deadlock. 10419 */ 10420 if (!(flags & B_ASYNC)) { 10421 error = nfs4_putpage(vp, io_off, io_len, 10422 B_INVAL | B_FORCE, cr, NULL); 10423 } 10424 } else { 10425 if (error) 10426 flags |= B_ERROR; 10427 else if (rp->r_flags & R4OUTOFSPACE) { 10428 mutex_enter(&rp->r_statelock); 10429 rp->r_flags &= ~R4OUTOFSPACE; 10430 mutex_exit(&rp->r_statelock); 10431 } 10432 pvn_write_done(pp, flags); 10433 if (freemem < desfree) 10434 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10435 NFS4_WRITE_NOWAIT); 10436 } 10437 10438 return (error); 10439 } 10440 10441 #ifdef DEBUG 10442 int nfs4_force_open_before_mmap = 0; 10443 #endif 10444 10445 /* ARGSUSED */ 10446 static int 10447 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10448 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10449 caller_context_t *ct) 10450 { 10451 struct segvn_crargs vn_a; 10452 int error = 0; 10453 rnode4_t *rp = VTOR4(vp); 10454 mntinfo4_t *mi = VTOMI4(vp); 10455 10456 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10457 return (EIO); 10458 10459 if (vp->v_flag & VNOMAP) 10460 return (ENOSYS); 10461 10462 if (off < 0 || (off + len) < 0) 10463 return (ENXIO); 10464 10465 if (vp->v_type != VREG) 10466 return (ENODEV); 10467 10468 /* 10469 * If the file is delegated to the client don't do anything. 10470 * If the file is not delegated, then validate the data cache. 10471 */ 10472 mutex_enter(&rp->r_statev4_lock); 10473 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10474 mutex_exit(&rp->r_statev4_lock); 10475 error = nfs4_validate_caches(vp, cr); 10476 if (error) 10477 return (error); 10478 } else { 10479 mutex_exit(&rp->r_statev4_lock); 10480 } 10481 10482 /* 10483 * Check to see if the vnode is currently marked as not cachable. 10484 * This means portions of the file are locked (through VOP_FRLOCK). 10485 * In this case the map request must be refused. We use 10486 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10487 * 10488 * Atomically increment r_inmap after acquiring r_rwlock. The 10489 * idea here is to acquire r_rwlock to block read/write and 10490 * not to protect r_inmap. r_inmap will inform nfs4_read/write() 10491 * that we are in nfs4_map(). Now, r_rwlock is acquired in order 10492 * and we can prevent the deadlock that would have occurred 10493 * when nfs4_addmap() would have acquired it out of order. 10494 * 10495 * Since we are not protecting r_inmap by any lock, we do not 10496 * hold any lock when we decrement it. We atomically decrement 10497 * r_inmap after we release r_lkserlock. 10498 */ 10499 10500 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp))) 10501 return (EINTR); 10502 atomic_inc_uint(&rp->r_inmap); 10503 nfs_rw_exit(&rp->r_rwlock); 10504 10505 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) { 10506 atomic_dec_uint(&rp->r_inmap); 10507 return (EINTR); 10508 } 10509 10510 if (vp->v_flag & VNOCACHE) { 10511 error = EAGAIN; 10512 goto done; 10513 } 10514 10515 /* 10516 * Don't allow concurrent locks and mapping if mandatory locking is 10517 * enabled. 10518 */ 10519 if (flk_has_remote_locks(vp)) { 10520 struct vattr va; 10521 va.va_mask = AT_MODE; 10522 error = nfs4getattr(vp, &va, cr); 10523 if (error != 0) 10524 goto done; 10525 if (MANDLOCK(vp, va.va_mode)) { 10526 error = EAGAIN; 10527 goto done; 10528 } 10529 } 10530 10531 /* 10532 * It is possible that the rnode has a lost lock request that we 10533 * are still trying to recover, and that the request conflicts with 10534 * this map request. 10535 * 10536 * An alternative approach would be for nfs4_safemap() to consider 10537 * queued lock requests when deciding whether to set or clear 10538 * VNOCACHE. This would require the frlock code path to call 10539 * nfs4_safemap() after enqueing a lost request. 10540 */ 10541 if (nfs4_map_lost_lock_conflict(vp)) { 10542 error = EAGAIN; 10543 goto done; 10544 } 10545 10546 as_rangelock(as); 10547 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 10548 if (error != 0) { 10549 as_rangeunlock(as); 10550 goto done; 10551 } 10552 10553 if (vp->v_type == VREG) { 10554 /* 10555 * We need to retrieve the open stream 10556 */ 10557 nfs4_open_stream_t *osp = NULL; 10558 nfs4_open_owner_t *oop = NULL; 10559 10560 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10561 if (oop != NULL) { 10562 /* returns with 'os_sync_lock' held */ 10563 osp = find_open_stream(oop, rp); 10564 open_owner_rele(oop); 10565 } 10566 if (osp == NULL) { 10567 #ifdef DEBUG 10568 if (nfs4_force_open_before_mmap) { 10569 error = EIO; 10570 goto done; 10571 } 10572 #endif 10573 /* returns with 'os_sync_lock' held */ 10574 error = open_and_get_osp(vp, cr, &osp); 10575 if (osp == NULL) { 10576 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10577 "nfs4_map: we tried to OPEN the file " 10578 "but again no osp, so fail with EIO")); 10579 goto done; 10580 } 10581 } 10582 10583 if (osp->os_failed_reopen) { 10584 mutex_exit(&osp->os_sync_lock); 10585 open_stream_rele(osp, rp); 10586 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10587 "nfs4_map: os_failed_reopen set on " 10588 "osp %p, cr %p, rp %s", (void *)osp, 10589 (void *)cr, rnode4info(rp))); 10590 error = EIO; 10591 goto done; 10592 } 10593 mutex_exit(&osp->os_sync_lock); 10594 open_stream_rele(osp, rp); 10595 } 10596 10597 vn_a.vp = vp; 10598 vn_a.offset = off; 10599 vn_a.type = (flags & MAP_TYPE); 10600 vn_a.prot = (uchar_t)prot; 10601 vn_a.maxprot = (uchar_t)maxprot; 10602 vn_a.flags = (flags & ~MAP_TYPE); 10603 vn_a.cred = cr; 10604 vn_a.amp = NULL; 10605 vn_a.szc = 0; 10606 vn_a.lgrp_mem_policy_flags = 0; 10607 10608 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10609 as_rangeunlock(as); 10610 10611 done: 10612 nfs_rw_exit(&rp->r_lkserlock); 10613 atomic_dec_uint(&rp->r_inmap); 10614 return (error); 10615 } 10616 10617 /* 10618 * We're most likely dealing with a kernel module that likes to READ 10619 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10620 * officially OPEN the file to create the necessary client state 10621 * for bookkeeping of os_mmap_read/write counts. 10622 * 10623 * Since VOP_MAP only passes in a pointer to the vnode rather than 10624 * a double pointer, we can't handle the case where nfs4open_otw() 10625 * returns a different vnode than the one passed into VOP_MAP (since 10626 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10627 * we return NULL and let nfs4_map() fail. Note: the only case where 10628 * this should happen is if the file got removed and replaced with the 10629 * same name on the server (in addition to the fact that we're trying 10630 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10631 */ 10632 static int 10633 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10634 { 10635 rnode4_t *rp, *drp; 10636 vnode_t *dvp, *open_vp; 10637 char file_name[MAXNAMELEN]; 10638 int just_created; 10639 nfs4_open_stream_t *osp; 10640 nfs4_open_owner_t *oop; 10641 int error; 10642 10643 *ospp = NULL; 10644 open_vp = map_vp; 10645 10646 rp = VTOR4(open_vp); 10647 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10648 return (error); 10649 drp = VTOR4(dvp); 10650 10651 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10652 VN_RELE(dvp); 10653 return (EINTR); 10654 } 10655 10656 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10657 nfs_rw_exit(&drp->r_rwlock); 10658 VN_RELE(dvp); 10659 return (error); 10660 } 10661 10662 mutex_enter(&rp->r_statev4_lock); 10663 if (rp->created_v4) { 10664 rp->created_v4 = 0; 10665 mutex_exit(&rp->r_statev4_lock); 10666 10667 dnlc_update(dvp, file_name, open_vp); 10668 /* This is needed so we don't bump the open ref count */ 10669 just_created = 1; 10670 } else { 10671 mutex_exit(&rp->r_statev4_lock); 10672 just_created = 0; 10673 } 10674 10675 VN_HOLD(map_vp); 10676 10677 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10678 just_created); 10679 if (error) { 10680 nfs_rw_exit(&drp->r_rwlock); 10681 VN_RELE(dvp); 10682 VN_RELE(map_vp); 10683 return (error); 10684 } 10685 10686 nfs_rw_exit(&drp->r_rwlock); 10687 VN_RELE(dvp); 10688 10689 /* 10690 * If nfs4open_otw() returned a different vnode then "undo" 10691 * the open and return failure to the caller. 10692 */ 10693 if (!VN_CMP(open_vp, map_vp)) { 10694 nfs4_error_t e; 10695 10696 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10697 "open returned a different vnode")); 10698 /* 10699 * If there's an error, ignore it, 10700 * and let VOP_INACTIVE handle it. 10701 */ 10702 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10703 CLOSE_NORM, 0, 0, 0); 10704 VN_RELE(map_vp); 10705 return (EIO); 10706 } 10707 10708 VN_RELE(map_vp); 10709 10710 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10711 if (!oop) { 10712 nfs4_error_t e; 10713 10714 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10715 "no open owner")); 10716 /* 10717 * If there's an error, ignore it, 10718 * and let VOP_INACTIVE handle it. 10719 */ 10720 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10721 CLOSE_NORM, 0, 0, 0); 10722 return (EIO); 10723 } 10724 osp = find_open_stream(oop, rp); 10725 open_owner_rele(oop); 10726 *ospp = osp; 10727 return (0); 10728 } 10729 10730 /* 10731 * Please be aware that when this function is called, the address space write 10732 * a_lock is held. Do not put over the wire calls in this function. 10733 */ 10734 /* ARGSUSED */ 10735 static int 10736 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10737 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10738 caller_context_t *ct) 10739 { 10740 rnode4_t *rp; 10741 int error = 0; 10742 mntinfo4_t *mi; 10743 10744 mi = VTOMI4(vp); 10745 rp = VTOR4(vp); 10746 10747 if (nfs_zone() != mi->mi_zone) 10748 return (EIO); 10749 if (vp->v_flag & VNOMAP) 10750 return (ENOSYS); 10751 10752 /* 10753 * Don't need to update the open stream first, since this 10754 * mmap can't add any additional share access that isn't 10755 * already contained in the open stream (for the case where we 10756 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10757 * take into account os_mmap_read[write] counts). 10758 */ 10759 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10760 10761 if (vp->v_type == VREG) { 10762 /* 10763 * We need to retrieve the open stream and update the counts. 10764 * If there is no open stream here, something is wrong. 10765 */ 10766 nfs4_open_stream_t *osp = NULL; 10767 nfs4_open_owner_t *oop = NULL; 10768 10769 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10770 if (oop != NULL) { 10771 /* returns with 'os_sync_lock' held */ 10772 osp = find_open_stream(oop, rp); 10773 open_owner_rele(oop); 10774 } 10775 if (osp == NULL) { 10776 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10777 "nfs4_addmap: we should have an osp" 10778 "but we don't, so fail with EIO")); 10779 error = EIO; 10780 goto out; 10781 } 10782 10783 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10784 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10785 10786 /* 10787 * Update the map count in the open stream. 10788 * This is necessary in the case where we 10789 * open/mmap/close/, then the server reboots, and we 10790 * attempt to reopen. If the mmap doesn't add share 10791 * access then we send an invalid reopen with 10792 * access = NONE. 10793 * 10794 * We need to specifically check each PROT_* so a mmap 10795 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10796 * read and write access. A simple comparison of prot 10797 * to ~PROT_WRITE to determine read access is insufficient 10798 * since prot can be |= with PROT_USER, etc. 10799 */ 10800 10801 /* 10802 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10803 */ 10804 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10805 osp->os_mmap_write += btopr(len); 10806 if (maxprot & PROT_READ) 10807 osp->os_mmap_read += btopr(len); 10808 if (maxprot & PROT_EXEC) 10809 osp->os_mmap_read += btopr(len); 10810 /* 10811 * Ensure that os_mmap_read gets incremented, even if 10812 * maxprot were to look like PROT_NONE. 10813 */ 10814 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10815 !(maxprot & PROT_EXEC)) 10816 osp->os_mmap_read += btopr(len); 10817 osp->os_mapcnt += btopr(len); 10818 mutex_exit(&osp->os_sync_lock); 10819 open_stream_rele(osp, rp); 10820 } 10821 10822 out: 10823 /* 10824 * If we got an error, then undo our 10825 * incrementing of 'r_mapcnt'. 10826 */ 10827 10828 if (error) { 10829 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10830 ASSERT(rp->r_mapcnt >= 0); 10831 } 10832 return (error); 10833 } 10834 10835 /* ARGSUSED */ 10836 static int 10837 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10838 { 10839 10840 return (VTOR4(vp1) == VTOR4(vp2)); 10841 } 10842 10843 /* ARGSUSED */ 10844 static int 10845 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10846 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10847 caller_context_t *ct) 10848 { 10849 int rc; 10850 u_offset_t start, end; 10851 rnode4_t *rp; 10852 int error = 0, intr = INTR4(vp); 10853 nfs4_error_t e; 10854 10855 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10856 return (EIO); 10857 10858 /* check for valid cmd parameter */ 10859 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10860 return (EINVAL); 10861 10862 /* Verify l_type. */ 10863 switch (bfp->l_type) { 10864 case F_RDLCK: 10865 if (cmd != F_GETLK && !(flag & FREAD)) 10866 return (EBADF); 10867 break; 10868 case F_WRLCK: 10869 if (cmd != F_GETLK && !(flag & FWRITE)) 10870 return (EBADF); 10871 break; 10872 case F_UNLCK: 10873 intr = 0; 10874 break; 10875 10876 default: 10877 return (EINVAL); 10878 } 10879 10880 /* check the validity of the lock range */ 10881 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10882 return (rc); 10883 if (rc = flk_check_lock_data(start, end, MAXEND)) 10884 return (rc); 10885 10886 /* 10887 * If the filesystem is mounted using local locking, pass the 10888 * request off to the local locking code. 10889 */ 10890 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10891 if (cmd == F_SETLK || cmd == F_SETLKW) { 10892 /* 10893 * For complete safety, we should be holding 10894 * r_lkserlock. However, we can't call 10895 * nfs4_safelock and then fs_frlock while 10896 * holding r_lkserlock, so just invoke 10897 * nfs4_safelock and expect that this will 10898 * catch enough of the cases. 10899 */ 10900 if (!nfs4_safelock(vp, bfp, cr)) 10901 return (EAGAIN); 10902 } 10903 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10904 } 10905 10906 rp = VTOR4(vp); 10907 10908 /* 10909 * Check whether the given lock request can proceed, given the 10910 * current file mappings. 10911 */ 10912 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10913 return (EINTR); 10914 if (cmd == F_SETLK || cmd == F_SETLKW) { 10915 if (!nfs4_safelock(vp, bfp, cr)) { 10916 rc = EAGAIN; 10917 goto done; 10918 } 10919 } 10920 10921 /* 10922 * Flush the cache after waiting for async I/O to finish. For new 10923 * locks, this is so that the process gets the latest bits from the 10924 * server. For unlocks, this is so that other clients see the 10925 * latest bits once the file has been unlocked. If currently dirty 10926 * pages can't be flushed, then don't allow a lock to be set. But 10927 * allow unlocks to succeed, to avoid having orphan locks on the 10928 * server. 10929 */ 10930 if (cmd != F_GETLK) { 10931 mutex_enter(&rp->r_statelock); 10932 while (rp->r_count > 0) { 10933 if (intr) { 10934 klwp_t *lwp = ttolwp(curthread); 10935 10936 if (lwp != NULL) 10937 lwp->lwp_nostop++; 10938 if (cv_wait_sig(&rp->r_cv, 10939 &rp->r_statelock) == 0) { 10940 if (lwp != NULL) 10941 lwp->lwp_nostop--; 10942 rc = EINTR; 10943 break; 10944 } 10945 if (lwp != NULL) 10946 lwp->lwp_nostop--; 10947 } else { 10948 cv_wait(&rp->r_cv, &rp->r_statelock); 10949 } 10950 } 10951 mutex_exit(&rp->r_statelock); 10952 if (rc != 0) 10953 goto done; 10954 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10955 if (error) { 10956 if (error == ENOSPC || error == EDQUOT) { 10957 mutex_enter(&rp->r_statelock); 10958 if (!rp->r_error) 10959 rp->r_error = error; 10960 mutex_exit(&rp->r_statelock); 10961 } 10962 if (bfp->l_type != F_UNLCK) { 10963 rc = ENOLCK; 10964 goto done; 10965 } 10966 } 10967 } 10968 10969 /* 10970 * Call the lock manager to do the real work of contacting 10971 * the server and obtaining the lock. 10972 */ 10973 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10974 cr, &e, NULL, NULL); 10975 rc = e.error; 10976 10977 if (rc == 0) 10978 nfs4_lockcompletion(vp, cmd); 10979 10980 done: 10981 nfs_rw_exit(&rp->r_lkserlock); 10982 10983 return (rc); 10984 } 10985 10986 /* 10987 * Free storage space associated with the specified vnode. The portion 10988 * to be freed is specified by bfp->l_start and bfp->l_len (already 10989 * normalized to a "whence" of 0). 10990 * 10991 * This is an experimental facility whose continued existence is not 10992 * guaranteed. Currently, we only support the special case 10993 * of l_len == 0, meaning free to end of file. 10994 */ 10995 /* ARGSUSED */ 10996 static int 10997 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10998 offset_t offset, cred_t *cr, caller_context_t *ct) 10999 { 11000 int error; 11001 11002 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11003 return (EIO); 11004 ASSERT(vp->v_type == VREG); 11005 if (cmd != F_FREESP) 11006 return (EINVAL); 11007 11008 error = convoff(vp, bfp, 0, offset); 11009 if (!error) { 11010 ASSERT(bfp->l_start >= 0); 11011 if (bfp->l_len == 0) { 11012 struct vattr va; 11013 11014 va.va_mask = AT_SIZE; 11015 va.va_size = bfp->l_start; 11016 error = nfs4setattr(vp, &va, 0, cr, NULL); 11017 11018 if (error == 0 && bfp->l_start == 0) 11019 vnevent_truncate(vp, ct); 11020 } else 11021 error = EINVAL; 11022 } 11023 11024 return (error); 11025 } 11026 11027 /* ARGSUSED */ 11028 int 11029 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 11030 { 11031 rnode4_t *rp; 11032 rp = VTOR4(vp); 11033 11034 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 11035 vp = RTOV4(rp); 11036 } 11037 *vpp = vp; 11038 return (0); 11039 } 11040 11041 /* 11042 * Setup and add an address space callback to do the work of the delmap call. 11043 * The callback will (and must be) deleted in the actual callback function. 11044 * 11045 * This is done in order to take care of the problem that we have with holding 11046 * the address space's a_lock for a long period of time (e.g. if the NFS server 11047 * is down). Callbacks will be executed in the address space code while the 11048 * a_lock is not held. Holding the address space's a_lock causes things such 11049 * as ps and fork to hang because they are trying to acquire this lock as well. 11050 */ 11051 /* ARGSUSED */ 11052 static int 11053 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 11054 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 11055 caller_context_t *ct) 11056 { 11057 int caller_found; 11058 int error; 11059 rnode4_t *rp; 11060 nfs4_delmap_args_t *dmapp; 11061 nfs4_delmapcall_t *delmap_call; 11062 11063 if (vp->v_flag & VNOMAP) 11064 return (ENOSYS); 11065 11066 /* 11067 * A process may not change zones if it has NFS pages mmap'ed 11068 * in, so we can't legitimately get here from the wrong zone. 11069 */ 11070 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11071 11072 rp = VTOR4(vp); 11073 11074 /* 11075 * The way that the address space of this process deletes its mapping 11076 * of this file is via the following call chains: 11077 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11078 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11079 * 11080 * With the use of address space callbacks we are allowed to drop the 11081 * address space lock, a_lock, while executing the NFS operations that 11082 * need to go over the wire. Returning EAGAIN to the caller of this 11083 * function is what drives the execution of the callback that we add 11084 * below. The callback will be executed by the address space code 11085 * after dropping the a_lock. When the callback is finished, since 11086 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 11087 * is called again on the same segment to finish the rest of the work 11088 * that needs to happen during unmapping. 11089 * 11090 * This action of calling back into the segment driver causes 11091 * nfs4_delmap() to get called again, but since the callback was 11092 * already executed at this point, it already did the work and there 11093 * is nothing left for us to do. 11094 * 11095 * To Summarize: 11096 * - The first time nfs4_delmap is called by the current thread is when 11097 * we add the caller associated with this delmap to the delmap caller 11098 * list, add the callback, and return EAGAIN. 11099 * - The second time in this call chain when nfs4_delmap is called we 11100 * will find this caller in the delmap caller list and realize there 11101 * is no more work to do thus removing this caller from the list and 11102 * returning the error that was set in the callback execution. 11103 */ 11104 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 11105 if (caller_found) { 11106 /* 11107 * 'error' is from the actual delmap operations. To avoid 11108 * hangs, we need to handle the return of EAGAIN differently 11109 * since this is what drives the callback execution. 11110 * In this case, we don't want to return EAGAIN and do the 11111 * callback execution because there are none to execute. 11112 */ 11113 if (error == EAGAIN) 11114 return (0); 11115 else 11116 return (error); 11117 } 11118 11119 /* current caller was not in the list */ 11120 delmap_call = nfs4_init_delmapcall(); 11121 11122 mutex_enter(&rp->r_statelock); 11123 list_insert_tail(&rp->r_indelmap, delmap_call); 11124 mutex_exit(&rp->r_statelock); 11125 11126 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11127 11128 dmapp->vp = vp; 11129 dmapp->off = off; 11130 dmapp->addr = addr; 11131 dmapp->len = len; 11132 dmapp->prot = prot; 11133 dmapp->maxprot = maxprot; 11134 dmapp->flags = flags; 11135 dmapp->cr = cr; 11136 dmapp->caller = delmap_call; 11137 11138 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11139 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11140 11141 return (error ? error : EAGAIN); 11142 } 11143 11144 static nfs4_delmapcall_t * 11145 nfs4_init_delmapcall() 11146 { 11147 nfs4_delmapcall_t *delmap_call; 11148 11149 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11150 delmap_call->call_id = curthread; 11151 delmap_call->error = 0; 11152 11153 return (delmap_call); 11154 } 11155 11156 static void 11157 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11158 { 11159 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11160 } 11161 11162 /* 11163 * Searches for the current delmap caller (based on curthread) in the list of 11164 * callers. If it is found, we remove it and free the delmap caller. 11165 * Returns: 11166 * 0 if the caller wasn't found 11167 * 1 if the caller was found, removed and freed. *errp will be set 11168 * to what the result of the delmap was. 11169 */ 11170 static int 11171 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11172 { 11173 nfs4_delmapcall_t *delmap_call; 11174 11175 /* 11176 * If the list doesn't exist yet, we create it and return 11177 * that the caller wasn't found. No list = no callers. 11178 */ 11179 mutex_enter(&rp->r_statelock); 11180 if (!(rp->r_flags & R4DELMAPLIST)) { 11181 /* The list does not exist */ 11182 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11183 offsetof(nfs4_delmapcall_t, call_node)); 11184 rp->r_flags |= R4DELMAPLIST; 11185 mutex_exit(&rp->r_statelock); 11186 return (0); 11187 } else { 11188 /* The list exists so search it */ 11189 for (delmap_call = list_head(&rp->r_indelmap); 11190 delmap_call != NULL; 11191 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11192 if (delmap_call->call_id == curthread) { 11193 /* current caller is in the list */ 11194 *errp = delmap_call->error; 11195 list_remove(&rp->r_indelmap, delmap_call); 11196 mutex_exit(&rp->r_statelock); 11197 nfs4_free_delmapcall(delmap_call); 11198 return (1); 11199 } 11200 } 11201 } 11202 mutex_exit(&rp->r_statelock); 11203 return (0); 11204 } 11205 11206 /* 11207 * Remove some pages from an mmap'd vnode. Just update the 11208 * count of pages. If doing close-to-open, then flush and 11209 * commit all of the pages associated with this file. 11210 * Otherwise, start an asynchronous page flush to write out 11211 * any dirty pages. This will also associate a credential 11212 * with the rnode which can be used to write the pages. 11213 */ 11214 /* ARGSUSED */ 11215 static void 11216 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11217 { 11218 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11219 rnode4_t *rp; 11220 mntinfo4_t *mi; 11221 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11222 11223 rp = VTOR4(dmapp->vp); 11224 mi = VTOMI4(dmapp->vp); 11225 11226 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11227 ASSERT(rp->r_mapcnt >= 0); 11228 11229 /* 11230 * Initiate a page flush and potential commit if there are 11231 * pages, the file system was not mounted readonly, the segment 11232 * was mapped shared, and the pages themselves were writeable. 11233 */ 11234 if (nfs4_has_pages(dmapp->vp) && 11235 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11236 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11237 mutex_enter(&rp->r_statelock); 11238 rp->r_flags |= R4DIRTY; 11239 mutex_exit(&rp->r_statelock); 11240 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11241 dmapp->len, dmapp->cr); 11242 if (!e.error) { 11243 mutex_enter(&rp->r_statelock); 11244 e.error = rp->r_error; 11245 rp->r_error = 0; 11246 mutex_exit(&rp->r_statelock); 11247 } 11248 } else 11249 e.error = 0; 11250 11251 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11252 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11253 B_INVAL, dmapp->cr, NULL); 11254 11255 if (e.error) { 11256 e.stat = puterrno4(e.error); 11257 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11258 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11259 dmapp->caller->error = e.error; 11260 } 11261 11262 /* Check to see if we need to close the file */ 11263 11264 if (dmapp->vp->v_type == VREG) { 11265 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11266 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11267 11268 if (e.error != 0 || e.stat != NFS4_OK) { 11269 /* 11270 * Since it is possible that e.error == 0 and 11271 * e.stat != NFS4_OK (and vice versa), 11272 * we do the proper checking in order to get both 11273 * e.error and e.stat reporting the correct info. 11274 */ 11275 if (e.stat == NFS4_OK) 11276 e.stat = puterrno4(e.error); 11277 if (e.error == 0) 11278 e.error = geterrno4(e.stat); 11279 11280 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11281 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11282 dmapp->caller->error = e.error; 11283 } 11284 } 11285 11286 (void) as_delete_callback(as, arg); 11287 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11288 } 11289 11290 11291 static uint_t 11292 fattr4_maxfilesize_to_bits(uint64_t ll) 11293 { 11294 uint_t l = 1; 11295 11296 if (ll == 0) { 11297 return (0); 11298 } 11299 11300 if (ll & 0xffffffff00000000) { 11301 l += 32; ll >>= 32; 11302 } 11303 if (ll & 0xffff0000) { 11304 l += 16; ll >>= 16; 11305 } 11306 if (ll & 0xff00) { 11307 l += 8; ll >>= 8; 11308 } 11309 if (ll & 0xf0) { 11310 l += 4; ll >>= 4; 11311 } 11312 if (ll & 0xc) { 11313 l += 2; ll >>= 2; 11314 } 11315 if (ll & 0x2) { 11316 l += 1; 11317 } 11318 return (l); 11319 } 11320 11321 static int 11322 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr) 11323 { 11324 vnode_t *avp = NULL; 11325 int error; 11326 11327 if ((error = nfs4lookup_xattr(vp, "", &avp, 11328 LOOKUP_XATTR, cr)) == 0) 11329 error = do_xattr_exists_check(avp, valp, cr); 11330 if (avp) 11331 VN_RELE(avp); 11332 11333 return (error); 11334 } 11335 11336 /* ARGSUSED */ 11337 int 11338 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11339 caller_context_t *ct) 11340 { 11341 int error; 11342 hrtime_t t; 11343 rnode4_t *rp; 11344 nfs4_ga_res_t gar; 11345 nfs4_ga_ext_res_t ger; 11346 11347 gar.n4g_ext_res = &ger; 11348 11349 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11350 return (EIO); 11351 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11352 *valp = MAXPATHLEN; 11353 return (0); 11354 } 11355 if (cmd == _PC_ACL_ENABLED) { 11356 *valp = _ACL_ACE_ENABLED; 11357 return (0); 11358 } 11359 11360 rp = VTOR4(vp); 11361 if (cmd == _PC_XATTR_EXISTS) { 11362 /* 11363 * The existence of the xattr directory is not sufficient 11364 * for determining whether generic user attributes exists. 11365 * The attribute directory could only be a transient directory 11366 * used for Solaris sysattr support. Do a small readdir 11367 * to verify if the only entries are sysattrs or not. 11368 * 11369 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11370 * is NULL. Once the xadir vp exists, we can create xattrs, 11371 * and we don't have any way to update the "base" object's 11372 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11373 * could help out. 11374 */ 11375 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11376 rp->r_xattr_dir == NULL) { 11377 return (nfs4_have_xattrs(vp, valp, cr)); 11378 } 11379 } else { /* OLD CODE */ 11380 if (ATTRCACHE4_VALID(vp)) { 11381 mutex_enter(&rp->r_statelock); 11382 if (rp->r_pathconf.pc4_cache_valid) { 11383 error = 0; 11384 switch (cmd) { 11385 case _PC_FILESIZEBITS: 11386 *valp = 11387 rp->r_pathconf.pc4_filesizebits; 11388 break; 11389 case _PC_LINK_MAX: 11390 *valp = 11391 rp->r_pathconf.pc4_link_max; 11392 break; 11393 case _PC_NAME_MAX: 11394 *valp = 11395 rp->r_pathconf.pc4_name_max; 11396 break; 11397 case _PC_CHOWN_RESTRICTED: 11398 *valp = 11399 rp->r_pathconf.pc4_chown_restricted; 11400 break; 11401 case _PC_NO_TRUNC: 11402 *valp = 11403 rp->r_pathconf.pc4_no_trunc; 11404 break; 11405 default: 11406 error = EINVAL; 11407 break; 11408 } 11409 mutex_exit(&rp->r_statelock); 11410 #ifdef DEBUG 11411 nfs4_pathconf_cache_hits++; 11412 #endif 11413 return (error); 11414 } 11415 mutex_exit(&rp->r_statelock); 11416 } 11417 } 11418 #ifdef DEBUG 11419 nfs4_pathconf_cache_misses++; 11420 #endif 11421 11422 t = gethrtime(); 11423 11424 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11425 11426 if (error) { 11427 mutex_enter(&rp->r_statelock); 11428 rp->r_pathconf.pc4_cache_valid = FALSE; 11429 rp->r_pathconf.pc4_xattr_valid = FALSE; 11430 mutex_exit(&rp->r_statelock); 11431 return (error); 11432 } 11433 11434 /* interpret the max filesize */ 11435 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11436 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11437 11438 /* Store the attributes we just received */ 11439 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11440 11441 switch (cmd) { 11442 case _PC_FILESIZEBITS: 11443 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11444 break; 11445 case _PC_LINK_MAX: 11446 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11447 break; 11448 case _PC_NAME_MAX: 11449 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11450 break; 11451 case _PC_CHOWN_RESTRICTED: 11452 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11453 break; 11454 case _PC_NO_TRUNC: 11455 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11456 break; 11457 case _PC_XATTR_EXISTS: 11458 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) { 11459 if (error = nfs4_have_xattrs(vp, valp, cr)) 11460 return (error); 11461 } 11462 break; 11463 default: 11464 return (EINVAL); 11465 } 11466 11467 return (0); 11468 } 11469 11470 /* 11471 * Called by async thread to do synchronous pageio. Do the i/o, wait 11472 * for it to complete, and cleanup the page list when done. 11473 */ 11474 static int 11475 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11476 int flags, cred_t *cr) 11477 { 11478 int error; 11479 11480 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11481 11482 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11483 if (flags & B_READ) 11484 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11485 else 11486 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11487 return (error); 11488 } 11489 11490 /* ARGSUSED */ 11491 static int 11492 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11493 int flags, cred_t *cr, caller_context_t *ct) 11494 { 11495 int error; 11496 rnode4_t *rp; 11497 11498 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11499 return (EIO); 11500 11501 if (pp == NULL) 11502 return (EINVAL); 11503 11504 rp = VTOR4(vp); 11505 mutex_enter(&rp->r_statelock); 11506 rp->r_count++; 11507 mutex_exit(&rp->r_statelock); 11508 11509 if (flags & B_ASYNC) { 11510 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11511 nfs4_sync_pageio); 11512 } else 11513 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11514 mutex_enter(&rp->r_statelock); 11515 rp->r_count--; 11516 cv_broadcast(&rp->r_cv); 11517 mutex_exit(&rp->r_statelock); 11518 return (error); 11519 } 11520 11521 /* ARGSUSED */ 11522 static void 11523 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11524 caller_context_t *ct) 11525 { 11526 int error; 11527 rnode4_t *rp; 11528 page_t *plist; 11529 page_t *pptr; 11530 offset3 offset; 11531 count3 len; 11532 k_sigset_t smask; 11533 11534 /* 11535 * We should get called with fl equal to either B_FREE or 11536 * B_INVAL. Any other value is illegal. 11537 * 11538 * The page that we are either supposed to free or destroy 11539 * should be exclusive locked and its io lock should not 11540 * be held. 11541 */ 11542 ASSERT(fl == B_FREE || fl == B_INVAL); 11543 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11544 11545 rp = VTOR4(vp); 11546 11547 /* 11548 * If the page doesn't need to be committed or we shouldn't 11549 * even bother attempting to commit it, then just make sure 11550 * that the p_fsdata byte is clear and then either free or 11551 * destroy the page as appropriate. 11552 */ 11553 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11554 pp->p_fsdata = C_NOCOMMIT; 11555 if (fl == B_FREE) 11556 page_free(pp, dn); 11557 else 11558 page_destroy(pp, dn); 11559 return; 11560 } 11561 11562 /* 11563 * If there is a page invalidation operation going on, then 11564 * if this is one of the pages being destroyed, then just 11565 * clear the p_fsdata byte and then either free or destroy 11566 * the page as appropriate. 11567 */ 11568 mutex_enter(&rp->r_statelock); 11569 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11570 mutex_exit(&rp->r_statelock); 11571 pp->p_fsdata = C_NOCOMMIT; 11572 if (fl == B_FREE) 11573 page_free(pp, dn); 11574 else 11575 page_destroy(pp, dn); 11576 return; 11577 } 11578 11579 /* 11580 * If we are freeing this page and someone else is already 11581 * waiting to do a commit, then just unlock the page and 11582 * return. That other thread will take care of commiting 11583 * this page. The page can be freed sometime after the 11584 * commit has finished. Otherwise, if the page is marked 11585 * as delay commit, then we may be getting called from 11586 * pvn_write_done, one page at a time. This could result 11587 * in one commit per page, so we end up doing lots of small 11588 * commits instead of fewer larger commits. This is bad, 11589 * we want do as few commits as possible. 11590 */ 11591 if (fl == B_FREE) { 11592 if (rp->r_flags & R4COMMITWAIT) { 11593 page_unlock(pp); 11594 mutex_exit(&rp->r_statelock); 11595 return; 11596 } 11597 if (pp->p_fsdata == C_DELAYCOMMIT) { 11598 pp->p_fsdata = C_COMMIT; 11599 page_unlock(pp); 11600 mutex_exit(&rp->r_statelock); 11601 return; 11602 } 11603 } 11604 11605 /* 11606 * Check to see if there is a signal which would prevent an 11607 * attempt to commit the pages from being successful. If so, 11608 * then don't bother with all of the work to gather pages and 11609 * generate the unsuccessful RPC. Just return from here and 11610 * let the page be committed at some later time. 11611 */ 11612 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11613 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11614 sigunintr(&smask); 11615 page_unlock(pp); 11616 mutex_exit(&rp->r_statelock); 11617 return; 11618 } 11619 sigunintr(&smask); 11620 11621 /* 11622 * We are starting to need to commit pages, so let's try 11623 * to commit as many as possible at once to reduce the 11624 * overhead. 11625 * 11626 * Set the `commit inprogress' state bit. We must 11627 * first wait until any current one finishes. Then 11628 * we initialize the c_pages list with this page. 11629 */ 11630 while (rp->r_flags & R4COMMIT) { 11631 rp->r_flags |= R4COMMITWAIT; 11632 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11633 rp->r_flags &= ~R4COMMITWAIT; 11634 } 11635 rp->r_flags |= R4COMMIT; 11636 mutex_exit(&rp->r_statelock); 11637 ASSERT(rp->r_commit.c_pages == NULL); 11638 rp->r_commit.c_pages = pp; 11639 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11640 rp->r_commit.c_commlen = PAGESIZE; 11641 11642 /* 11643 * Gather together all other pages which can be committed. 11644 * They will all be chained off r_commit.c_pages. 11645 */ 11646 nfs4_get_commit(vp); 11647 11648 /* 11649 * Clear the `commit inprogress' status and disconnect 11650 * the list of pages to be committed from the rnode. 11651 * At this same time, we also save the starting offset 11652 * and length of data to be committed on the server. 11653 */ 11654 plist = rp->r_commit.c_pages; 11655 rp->r_commit.c_pages = NULL; 11656 offset = rp->r_commit.c_commbase; 11657 len = rp->r_commit.c_commlen; 11658 mutex_enter(&rp->r_statelock); 11659 rp->r_flags &= ~R4COMMIT; 11660 cv_broadcast(&rp->r_commit.c_cv); 11661 mutex_exit(&rp->r_statelock); 11662 11663 if (curproc == proc_pageout || curproc == proc_fsflush || 11664 nfs_zone() != VTOMI4(vp)->mi_zone) { 11665 nfs4_async_commit(vp, plist, offset, len, 11666 cr, do_nfs4_async_commit); 11667 return; 11668 } 11669 11670 /* 11671 * Actually generate the COMMIT op over the wire operation. 11672 */ 11673 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11674 11675 /* 11676 * If we got an error during the commit, just unlock all 11677 * of the pages. The pages will get retransmitted to the 11678 * server during a putpage operation. 11679 */ 11680 if (error) { 11681 while (plist != NULL) { 11682 pptr = plist; 11683 page_sub(&plist, pptr); 11684 page_unlock(pptr); 11685 } 11686 return; 11687 } 11688 11689 /* 11690 * We've tried as hard as we can to commit the data to stable 11691 * storage on the server. We just unlock the rest of the pages 11692 * and clear the commit required state. They will be put 11693 * onto the tail of the cachelist if they are nolonger 11694 * mapped. 11695 */ 11696 while (plist != pp) { 11697 pptr = plist; 11698 page_sub(&plist, pptr); 11699 pptr->p_fsdata = C_NOCOMMIT; 11700 page_unlock(pptr); 11701 } 11702 11703 /* 11704 * It is possible that nfs4_commit didn't return error but 11705 * some other thread has modified the page we are going 11706 * to free/destroy. 11707 * In this case we need to rewrite the page. Do an explicit check 11708 * before attempting to free/destroy the page. If modified, needs to 11709 * be rewritten so unlock the page and return. 11710 */ 11711 if (hat_ismod(pp)) { 11712 pp->p_fsdata = C_NOCOMMIT; 11713 page_unlock(pp); 11714 return; 11715 } 11716 11717 /* 11718 * Now, as appropriate, either free or destroy the page 11719 * that we were called with. 11720 */ 11721 pp->p_fsdata = C_NOCOMMIT; 11722 if (fl == B_FREE) 11723 page_free(pp, dn); 11724 else 11725 page_destroy(pp, dn); 11726 } 11727 11728 /* 11729 * Commit requires that the current fh be the file written to. 11730 * The compound op structure is: 11731 * PUTFH(file), COMMIT 11732 */ 11733 static int 11734 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11735 { 11736 COMPOUND4args_clnt args; 11737 COMPOUND4res_clnt res; 11738 COMMIT4res *cm_res; 11739 nfs_argop4 argop[2]; 11740 nfs_resop4 *resop; 11741 int doqueue; 11742 mntinfo4_t *mi; 11743 rnode4_t *rp; 11744 cred_t *cred_otw = NULL; 11745 bool_t needrecov = FALSE; 11746 nfs4_recov_state_t recov_state; 11747 nfs4_open_stream_t *osp = NULL; 11748 bool_t first_time = TRUE; /* first time getting OTW cred */ 11749 bool_t last_time = FALSE; /* last time getting OTW cred */ 11750 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11751 11752 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11753 11754 rp = VTOR4(vp); 11755 11756 mi = VTOMI4(vp); 11757 recov_state.rs_flags = 0; 11758 recov_state.rs_num_retry_despite_err = 0; 11759 get_commit_cred: 11760 /* 11761 * Releases the osp, if a valid open stream is provided. 11762 * Puts a hold on the cred_otw and the new osp (if found). 11763 */ 11764 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11765 &first_time, &last_time); 11766 args.ctag = TAG_COMMIT; 11767 recov_retry: 11768 /* 11769 * Commit ops: putfh file; commit 11770 */ 11771 args.array_len = 2; 11772 args.array = argop; 11773 11774 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11775 &recov_state, NULL); 11776 if (e.error) { 11777 crfree(cred_otw); 11778 if (osp != NULL) 11779 open_stream_rele(osp, rp); 11780 return (e.error); 11781 } 11782 11783 /* putfh directory */ 11784 argop[0].argop = OP_CPUTFH; 11785 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11786 11787 /* commit */ 11788 argop[1].argop = OP_COMMIT; 11789 argop[1].nfs_argop4_u.opcommit.offset = offset; 11790 argop[1].nfs_argop4_u.opcommit.count = count; 11791 11792 doqueue = 1; 11793 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11794 11795 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11796 if (!needrecov && e.error) { 11797 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11798 needrecov); 11799 crfree(cred_otw); 11800 if (e.error == EACCES && last_time == FALSE) 11801 goto get_commit_cred; 11802 if (osp != NULL) 11803 open_stream_rele(osp, rp); 11804 return (e.error); 11805 } 11806 11807 if (needrecov) { 11808 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11809 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) { 11810 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11811 &recov_state, needrecov); 11812 if (!e.error) 11813 (void) xdr_free(xdr_COMPOUND4res_clnt, 11814 (caddr_t)&res); 11815 goto recov_retry; 11816 } 11817 if (e.error) { 11818 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11819 &recov_state, needrecov); 11820 crfree(cred_otw); 11821 if (osp != NULL) 11822 open_stream_rele(osp, rp); 11823 return (e.error); 11824 } 11825 /* fall through for res.status case */ 11826 } 11827 11828 if (res.status) { 11829 e.error = geterrno4(res.status); 11830 if (e.error == EACCES && last_time == FALSE) { 11831 crfree(cred_otw); 11832 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11833 &recov_state, needrecov); 11834 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11835 goto get_commit_cred; 11836 } 11837 /* 11838 * Can't do a nfs4_purge_stale_fh here because this 11839 * can cause a deadlock. nfs4_commit can 11840 * be called from nfs4_dispose which can be called 11841 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11842 * can call back to pvn_vplist_dirty. 11843 */ 11844 if (e.error == ESTALE) { 11845 mutex_enter(&rp->r_statelock); 11846 rp->r_flags |= R4STALE; 11847 if (!rp->r_error) 11848 rp->r_error = e.error; 11849 mutex_exit(&rp->r_statelock); 11850 PURGE_ATTRCACHE4(vp); 11851 } else { 11852 mutex_enter(&rp->r_statelock); 11853 if (!rp->r_error) 11854 rp->r_error = e.error; 11855 mutex_exit(&rp->r_statelock); 11856 } 11857 } else { 11858 ASSERT(rp->r_flags & R4HAVEVERF); 11859 resop = &res.array[1]; /* commit res */ 11860 cm_res = &resop->nfs_resop4_u.opcommit; 11861 mutex_enter(&rp->r_statelock); 11862 if (cm_res->writeverf == rp->r_writeverf) { 11863 mutex_exit(&rp->r_statelock); 11864 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11865 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11866 &recov_state, needrecov); 11867 crfree(cred_otw); 11868 if (osp != NULL) 11869 open_stream_rele(osp, rp); 11870 return (0); 11871 } 11872 nfs4_set_mod(vp); 11873 rp->r_writeverf = cm_res->writeverf; 11874 mutex_exit(&rp->r_statelock); 11875 e.error = NFS_VERF_MISMATCH; 11876 } 11877 11878 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11879 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11880 crfree(cred_otw); 11881 if (osp != NULL) 11882 open_stream_rele(osp, rp); 11883 11884 return (e.error); 11885 } 11886 11887 static void 11888 nfs4_set_mod(vnode_t *vp) 11889 { 11890 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11891 11892 /* make sure we're looking at the master vnode, not a shadow */ 11893 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check); 11894 } 11895 11896 /* 11897 * This function is used to gather a page list of the pages which 11898 * can be committed on the server. 11899 * 11900 * The calling thread must have set R4COMMIT. This bit is used to 11901 * serialize access to the commit structure in the rnode. As long 11902 * as the thread has set R4COMMIT, then it can manipulate the commit 11903 * structure without requiring any other locks. 11904 * 11905 * When this function is called from nfs4_dispose() the page passed 11906 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11907 * will skip it. This is not a problem since we initially add the 11908 * page to the r_commit page list. 11909 * 11910 */ 11911 static void 11912 nfs4_get_commit(vnode_t *vp) 11913 { 11914 rnode4_t *rp; 11915 page_t *pp; 11916 kmutex_t *vphm; 11917 11918 rp = VTOR4(vp); 11919 11920 ASSERT(rp->r_flags & R4COMMIT); 11921 11922 /* make sure we're looking at the master vnode, not a shadow */ 11923 11924 if (IS_SHADOW(vp, rp)) 11925 vp = RTOV4(rp); 11926 11927 vphm = page_vnode_mutex(vp); 11928 mutex_enter(vphm); 11929 11930 /* 11931 * If there are no pages associated with this vnode, then 11932 * just return. 11933 */ 11934 if ((pp = vp->v_pages) == NULL) { 11935 mutex_exit(vphm); 11936 return; 11937 } 11938 11939 /* 11940 * Step through all of the pages associated with this vnode 11941 * looking for pages which need to be committed. 11942 */ 11943 do { 11944 /* Skip marker pages. */ 11945 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 11946 continue; 11947 11948 /* 11949 * First short-cut everything (without the page_lock) 11950 * and see if this page does not need to be committed 11951 * or is modified if so then we'll just skip it. 11952 */ 11953 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11954 continue; 11955 11956 /* 11957 * Attempt to lock the page. If we can't, then 11958 * someone else is messing with it or we have been 11959 * called from nfs4_dispose and this is the page that 11960 * nfs4_dispose was called with.. anyway just skip it. 11961 */ 11962 if (!page_trylock(pp, SE_EXCL)) 11963 continue; 11964 11965 /* 11966 * Lets check again now that we have the page lock. 11967 */ 11968 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11969 page_unlock(pp); 11970 continue; 11971 } 11972 11973 /* this had better not be a free page */ 11974 ASSERT(PP_ISFREE(pp) == 0); 11975 11976 /* 11977 * The page needs to be committed and we locked it. 11978 * Update the base and length parameters and add it 11979 * to r_pages. 11980 */ 11981 if (rp->r_commit.c_pages == NULL) { 11982 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11983 rp->r_commit.c_commlen = PAGESIZE; 11984 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11985 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11986 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11987 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11988 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11989 <= pp->p_offset) { 11990 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11991 rp->r_commit.c_commbase + PAGESIZE; 11992 } 11993 page_add(&rp->r_commit.c_pages, pp); 11994 } while ((pp = pp->p_vpnext) != vp->v_pages); 11995 11996 mutex_exit(vphm); 11997 } 11998 11999 /* 12000 * This routine is used to gather together a page list of the pages 12001 * which are to be committed on the server. This routine must not 12002 * be called if the calling thread holds any locked pages. 12003 * 12004 * The calling thread must have set R4COMMIT. This bit is used to 12005 * serialize access to the commit structure in the rnode. As long 12006 * as the thread has set R4COMMIT, then it can manipulate the commit 12007 * structure without requiring any other locks. 12008 */ 12009 static void 12010 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 12011 { 12012 12013 rnode4_t *rp; 12014 page_t *pp; 12015 u_offset_t end; 12016 u_offset_t off; 12017 ASSERT(len != 0); 12018 rp = VTOR4(vp); 12019 ASSERT(rp->r_flags & R4COMMIT); 12020 12021 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12022 12023 /* make sure we're looking at the master vnode, not a shadow */ 12024 12025 if (IS_SHADOW(vp, rp)) 12026 vp = RTOV4(rp); 12027 12028 /* 12029 * If there are no pages associated with this vnode, then 12030 * just return. 12031 */ 12032 if ((pp = vp->v_pages) == NULL) 12033 return; 12034 /* 12035 * Calculate the ending offset. 12036 */ 12037 end = soff + len; 12038 for (off = soff; off < end; off += PAGESIZE) { 12039 /* 12040 * Lookup each page by vp, offset. 12041 */ 12042 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 12043 continue; 12044 /* 12045 * If this page does not need to be committed or is 12046 * modified, then just skip it. 12047 */ 12048 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12049 page_unlock(pp); 12050 continue; 12051 } 12052 12053 ASSERT(PP_ISFREE(pp) == 0); 12054 /* 12055 * The page needs to be committed and we locked it. 12056 * Update the base and length parameters and add it 12057 * to r_pages. 12058 */ 12059 if (rp->r_commit.c_pages == NULL) { 12060 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12061 rp->r_commit.c_commlen = PAGESIZE; 12062 } else { 12063 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12064 rp->r_commit.c_commbase + PAGESIZE; 12065 } 12066 page_add(&rp->r_commit.c_pages, pp); 12067 } 12068 } 12069 12070 /* 12071 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 12072 * Flushes and commits data to the server. 12073 */ 12074 static int 12075 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 12076 { 12077 int error; 12078 verifier4 write_verf; 12079 rnode4_t *rp = VTOR4(vp); 12080 12081 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12082 12083 /* 12084 * Flush the data portion of the file and then commit any 12085 * portions which need to be committed. This may need to 12086 * be done twice if the server has changed state since 12087 * data was last written. The data will need to be 12088 * rewritten to the server and then a new commit done. 12089 * 12090 * In fact, this may need to be done several times if the 12091 * server is having problems and crashing while we are 12092 * attempting to do this. 12093 */ 12094 12095 top: 12096 /* 12097 * Do a flush based on the poff and plen arguments. This 12098 * will synchronously write out any modified pages in the 12099 * range specified by (poff, plen). This starts all of the 12100 * i/o operations which will be waited for in the next 12101 * call to nfs4_putpage 12102 */ 12103 12104 mutex_enter(&rp->r_statelock); 12105 write_verf = rp->r_writeverf; 12106 mutex_exit(&rp->r_statelock); 12107 12108 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 12109 if (error == EAGAIN) 12110 error = 0; 12111 12112 /* 12113 * Do a flush based on the poff and plen arguments. This 12114 * will synchronously write out any modified pages in the 12115 * range specified by (poff, plen) and wait until all of 12116 * the asynchronous i/o's in that range are done as well. 12117 */ 12118 if (!error) 12119 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12120 12121 if (error) 12122 return (error); 12123 12124 mutex_enter(&rp->r_statelock); 12125 if (rp->r_writeverf != write_verf) { 12126 mutex_exit(&rp->r_statelock); 12127 goto top; 12128 } 12129 mutex_exit(&rp->r_statelock); 12130 12131 /* 12132 * Now commit any pages which might need to be committed. 12133 * If the error, NFS_VERF_MISMATCH, is returned, then 12134 * start over with the flush operation. 12135 */ 12136 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12137 12138 if (error == NFS_VERF_MISMATCH) 12139 goto top; 12140 12141 return (error); 12142 } 12143 12144 /* 12145 * nfs4_commit_vp() will wait for other pending commits and 12146 * will either commit the whole file or a range, plen dictates 12147 * if we commit whole file. a value of zero indicates the whole 12148 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12149 */ 12150 static int 12151 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12152 cred_t *cr, int wait_on_writes) 12153 { 12154 rnode4_t *rp; 12155 page_t *plist; 12156 offset3 offset; 12157 count3 len; 12158 12159 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12160 12161 rp = VTOR4(vp); 12162 12163 /* 12164 * before we gather commitable pages make 12165 * sure there are no outstanding async writes 12166 */ 12167 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12168 mutex_enter(&rp->r_statelock); 12169 while (rp->r_count > 0) { 12170 cv_wait(&rp->r_cv, &rp->r_statelock); 12171 } 12172 mutex_exit(&rp->r_statelock); 12173 } 12174 12175 /* 12176 * Set the `commit inprogress' state bit. We must 12177 * first wait until any current one finishes. 12178 */ 12179 mutex_enter(&rp->r_statelock); 12180 while (rp->r_flags & R4COMMIT) { 12181 rp->r_flags |= R4COMMITWAIT; 12182 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12183 rp->r_flags &= ~R4COMMITWAIT; 12184 } 12185 rp->r_flags |= R4COMMIT; 12186 mutex_exit(&rp->r_statelock); 12187 12188 /* 12189 * Gather all of the pages which need to be 12190 * committed. 12191 */ 12192 if (plen == 0) 12193 nfs4_get_commit(vp); 12194 else 12195 nfs4_get_commit_range(vp, poff, plen); 12196 12197 /* 12198 * Clear the `commit inprogress' bit and disconnect the 12199 * page list which was gathered by nfs4_get_commit. 12200 */ 12201 plist = rp->r_commit.c_pages; 12202 rp->r_commit.c_pages = NULL; 12203 offset = rp->r_commit.c_commbase; 12204 len = rp->r_commit.c_commlen; 12205 mutex_enter(&rp->r_statelock); 12206 rp->r_flags &= ~R4COMMIT; 12207 cv_broadcast(&rp->r_commit.c_cv); 12208 mutex_exit(&rp->r_statelock); 12209 12210 /* 12211 * If any pages need to be committed, commit them and 12212 * then unlock them so that they can be freed some 12213 * time later. 12214 */ 12215 if (plist == NULL) 12216 return (0); 12217 12218 /* 12219 * No error occurred during the flush portion 12220 * of this operation, so now attempt to commit 12221 * the data to stable storage on the server. 12222 * 12223 * This will unlock all of the pages on the list. 12224 */ 12225 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12226 } 12227 12228 static int 12229 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12230 cred_t *cr) 12231 { 12232 int error; 12233 page_t *pp; 12234 12235 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12236 12237 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12238 12239 /* 12240 * If we got an error, then just unlock all of the pages 12241 * on the list. 12242 */ 12243 if (error) { 12244 while (plist != NULL) { 12245 pp = plist; 12246 page_sub(&plist, pp); 12247 page_unlock(pp); 12248 } 12249 return (error); 12250 } 12251 /* 12252 * We've tried as hard as we can to commit the data to stable 12253 * storage on the server. We just unlock the pages and clear 12254 * the commit required state. They will get freed later. 12255 */ 12256 while (plist != NULL) { 12257 pp = plist; 12258 page_sub(&plist, pp); 12259 pp->p_fsdata = C_NOCOMMIT; 12260 page_unlock(pp); 12261 } 12262 12263 return (error); 12264 } 12265 12266 static void 12267 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12268 cred_t *cr) 12269 { 12270 12271 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12272 } 12273 12274 /*ARGSUSED*/ 12275 static int 12276 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12277 caller_context_t *ct) 12278 { 12279 int error = 0; 12280 mntinfo4_t *mi; 12281 vattr_t va; 12282 vsecattr_t nfsace4_vsap; 12283 12284 mi = VTOMI4(vp); 12285 if (nfs_zone() != mi->mi_zone) 12286 return (EIO); 12287 if (mi->mi_flags & MI4_ACL) { 12288 /* if we have a delegation, return it */ 12289 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12290 (void) nfs4delegreturn(VTOR4(vp), 12291 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12292 12293 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12294 NFS4_ACL_SET); 12295 if (error) /* EINVAL */ 12296 return (error); 12297 12298 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12299 /* 12300 * These are aclent_t type entries. 12301 */ 12302 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12303 vp->v_type == VDIR, FALSE); 12304 if (error) 12305 return (error); 12306 } else { 12307 /* 12308 * These are ace_t type entries. 12309 */ 12310 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12311 FALSE); 12312 if (error) 12313 return (error); 12314 } 12315 bzero(&va, sizeof (va)); 12316 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12317 vs_ace4_destroy(&nfsace4_vsap); 12318 return (error); 12319 } 12320 return (ENOSYS); 12321 } 12322 12323 /* ARGSUSED */ 12324 int 12325 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12326 caller_context_t *ct) 12327 { 12328 int error; 12329 mntinfo4_t *mi; 12330 nfs4_ga_res_t gar; 12331 rnode4_t *rp = VTOR4(vp); 12332 12333 mi = VTOMI4(vp); 12334 if (nfs_zone() != mi->mi_zone) 12335 return (EIO); 12336 12337 bzero(&gar, sizeof (gar)); 12338 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12339 12340 /* 12341 * vsecattr->vsa_mask holds the original acl request mask. 12342 * This is needed when determining what to return. 12343 * (See: nfs4_create_getsecattr_return()) 12344 */ 12345 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12346 if (error) /* EINVAL */ 12347 return (error); 12348 12349 /* 12350 * If this is a referral stub, don't try to go OTW for an ACL 12351 */ 12352 if (RP_ISSTUB_REFERRAL(VTOR4(vp))) 12353 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 12354 12355 if (mi->mi_flags & MI4_ACL) { 12356 /* 12357 * Check if the data is cached and the cache is valid. If it 12358 * is we don't go over the wire. 12359 */ 12360 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12361 mutex_enter(&rp->r_statelock); 12362 if (rp->r_secattr != NULL) { 12363 error = nfs4_create_getsecattr_return( 12364 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12365 rp->r_attr.va_gid, 12366 vp->v_type == VDIR); 12367 if (!error) { /* error == 0 - Success! */ 12368 mutex_exit(&rp->r_statelock); 12369 return (error); 12370 } 12371 } 12372 mutex_exit(&rp->r_statelock); 12373 } 12374 12375 /* 12376 * The getattr otw call will always get both the acl, in 12377 * the form of a list of nfsace4's, and the number of acl 12378 * entries; independent of the value of gar.n4g_va.va_mask. 12379 */ 12380 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12381 if (error) { 12382 vs_ace4_destroy(&gar.n4g_vsa); 12383 if (error == ENOTSUP || error == EOPNOTSUPP) 12384 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12385 return (error); 12386 } 12387 12388 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12389 /* 12390 * No error was returned, but according to the response 12391 * bitmap, neither was an acl. 12392 */ 12393 vs_ace4_destroy(&gar.n4g_vsa); 12394 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12395 return (error); 12396 } 12397 12398 /* 12399 * Update the cache with the ACL. 12400 */ 12401 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12402 12403 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12404 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12405 vp->v_type == VDIR); 12406 vs_ace4_destroy(&gar.n4g_vsa); 12407 if ((error) && (vsecattr->vsa_mask & 12408 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12409 (error != EACCES)) { 12410 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12411 } 12412 return (error); 12413 } 12414 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12415 return (error); 12416 } 12417 12418 /* 12419 * The function returns: 12420 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12421 * - EINVAL if the passed in "acl_mask" is an invalid request. 12422 * 12423 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12424 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12425 * 12426 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12427 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12428 * - We have a count field set without the corresponding acl field set. (e.g. - 12429 * VSA_ACECNT is set, but VSA_ACE is not) 12430 */ 12431 static int 12432 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12433 { 12434 /* Shortcut the masks that are always valid. */ 12435 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12436 return (0); 12437 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12438 return (0); 12439 12440 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12441 /* 12442 * We can't have any VSA_ACL type stuff in the mask now. 12443 */ 12444 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12445 VSA_DFACLCNT)) 12446 return (EINVAL); 12447 12448 if (op == NFS4_ACL_SET) { 12449 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12450 return (EINVAL); 12451 } 12452 } 12453 12454 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12455 /* 12456 * We can't have any VSA_ACE type stuff in the mask now. 12457 */ 12458 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12459 return (EINVAL); 12460 12461 if (op == NFS4_ACL_SET) { 12462 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12463 return (EINVAL); 12464 12465 if ((acl_mask & VSA_DFACLCNT) && 12466 !(acl_mask & VSA_DFACL)) 12467 return (EINVAL); 12468 } 12469 } 12470 return (0); 12471 } 12472 12473 /* 12474 * The theory behind creating the correct getsecattr return is simply this: 12475 * "Don't return anything that the caller is not expecting to have to free." 12476 */ 12477 static int 12478 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12479 uid_t uid, gid_t gid, int isdir) 12480 { 12481 int error = 0; 12482 /* Save the mask since the translators modify it. */ 12483 uint_t orig_mask = vsap->vsa_mask; 12484 12485 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12486 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE); 12487 12488 if (error) 12489 return (error); 12490 12491 /* 12492 * If the caller only asked for the ace count (VSA_ACECNT) 12493 * don't give them the full acl (VSA_ACE), free it. 12494 */ 12495 if (!orig_mask & VSA_ACE) { 12496 if (vsap->vsa_aclentp != NULL) { 12497 kmem_free(vsap->vsa_aclentp, 12498 vsap->vsa_aclcnt * sizeof (ace_t)); 12499 vsap->vsa_aclentp = NULL; 12500 } 12501 } 12502 vsap->vsa_mask = orig_mask; 12503 12504 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12505 VSA_DFACLCNT)) { 12506 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12507 isdir, FALSE); 12508 12509 if (error) 12510 return (error); 12511 12512 /* 12513 * If the caller only asked for the acl count (VSA_ACLCNT) 12514 * and/or the default acl count (VSA_DFACLCNT) don't give them 12515 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12516 */ 12517 if (!orig_mask & VSA_ACL) { 12518 if (vsap->vsa_aclentp != NULL) { 12519 kmem_free(vsap->vsa_aclentp, 12520 vsap->vsa_aclcnt * sizeof (aclent_t)); 12521 vsap->vsa_aclentp = NULL; 12522 } 12523 } 12524 12525 if (!orig_mask & VSA_DFACL) { 12526 if (vsap->vsa_dfaclentp != NULL) { 12527 kmem_free(vsap->vsa_dfaclentp, 12528 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12529 vsap->vsa_dfaclentp = NULL; 12530 } 12531 } 12532 vsap->vsa_mask = orig_mask; 12533 } 12534 return (0); 12535 } 12536 12537 /* ARGSUSED */ 12538 int 12539 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12540 caller_context_t *ct) 12541 { 12542 int error; 12543 12544 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12545 return (EIO); 12546 /* 12547 * check for valid cmd parameter 12548 */ 12549 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12550 return (EINVAL); 12551 12552 /* 12553 * Check access permissions 12554 */ 12555 if ((cmd & F_SHARE) && 12556 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12557 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12558 return (EBADF); 12559 12560 /* 12561 * If the filesystem is mounted using local locking, pass the 12562 * request off to the local share code. 12563 */ 12564 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12565 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12566 12567 switch (cmd) { 12568 case F_SHARE: 12569 case F_UNSHARE: 12570 /* 12571 * This will be properly implemented later, 12572 * see RFE: 4823948 . 12573 */ 12574 error = EAGAIN; 12575 break; 12576 12577 case F_HASREMOTELOCKS: 12578 /* 12579 * NFS client can't store remote locks itself 12580 */ 12581 shr->s_access = 0; 12582 error = 0; 12583 break; 12584 12585 default: 12586 error = EINVAL; 12587 break; 12588 } 12589 12590 return (error); 12591 } 12592 12593 /* 12594 * Common code called by directory ops to update the attrcache 12595 */ 12596 static int 12597 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12598 hrtime_t t, vnode_t *vp, cred_t *cr) 12599 { 12600 int error = 0; 12601 12602 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12603 12604 if (status != NFS4_OK) { 12605 /* getattr not done or failed */ 12606 PURGE_ATTRCACHE4(vp); 12607 return (error); 12608 } 12609 12610 if (garp) { 12611 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12612 } else { 12613 PURGE_ATTRCACHE4(vp); 12614 } 12615 return (error); 12616 } 12617 12618 /* 12619 * Update directory caches for directory modification ops (link, rename, etc.) 12620 * When dinfo is NULL, manage dircaches in the old way. 12621 */ 12622 static void 12623 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12624 dirattr_info_t *dinfo) 12625 { 12626 rnode4_t *drp = VTOR4(dvp); 12627 12628 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12629 12630 /* Purge rddir cache for dir since it changed */ 12631 if (drp->r_dir != NULL) 12632 nfs4_purge_rddir_cache(dvp); 12633 12634 /* 12635 * If caller provided dinfo, then use it to manage dir caches. 12636 */ 12637 if (dinfo != NULL) { 12638 if (vp != NULL) { 12639 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12640 if (!VTOR4(vp)->created_v4) { 12641 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12642 dnlc_update(dvp, nm, vp); 12643 } else { 12644 /* 12645 * XXX don't update if the created_v4 flag is 12646 * set 12647 */ 12648 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12649 NFS4_DEBUG(nfs4_client_state_debug, 12650 (CE_NOTE, "nfs4_update_dircaches: " 12651 "don't update dnlc: created_v4 flag")); 12652 } 12653 } 12654 12655 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12656 dinfo->di_cred, FALSE, cinfo); 12657 12658 return; 12659 } 12660 12661 /* 12662 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12663 * Since caller modified dir but didn't receive post-dirmod-op dir 12664 * attrs, the dir's attrs must be purged. 12665 * 12666 * XXX this check and dnlc update/purge should really be atomic, 12667 * XXX but can't use rnode statelock because it'll deadlock in 12668 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12669 * XXX does occur. 12670 * 12671 * XXX We also may want to check that atomic is true in the 12672 * XXX change_info struct. If it is not, the change_info may 12673 * XXX reflect changes by more than one clients which means that 12674 * XXX our cache may not be valid. 12675 */ 12676 PURGE_ATTRCACHE4(dvp); 12677 if (drp->r_change == cinfo->before) { 12678 /* no changes took place in the directory prior to our link */ 12679 if (vp != NULL) { 12680 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12681 if (!VTOR4(vp)->created_v4) { 12682 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12683 dnlc_update(dvp, nm, vp); 12684 } else { 12685 /* 12686 * XXX dont' update if the created_v4 flag 12687 * is set 12688 */ 12689 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12690 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12691 "nfs4_update_dircaches: don't" 12692 " update dnlc: created_v4 flag")); 12693 } 12694 } 12695 } else { 12696 /* Another client modified directory - purge its dnlc cache */ 12697 dnlc_purge_vp(dvp); 12698 } 12699 } 12700 12701 /* 12702 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12703 * file. 12704 * 12705 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12706 * file (ie: client recovery) and otherwise set to FALSE. 12707 * 12708 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12709 * initiated) calling functions. 12710 * 12711 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12712 * of resending a 'lost' open request. 12713 * 12714 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12715 * server that hands out BAD_SEQID on open confirm. 12716 * 12717 * Errors are returned via the nfs4_error_t parameter. 12718 */ 12719 void 12720 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12721 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12722 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12723 { 12724 COMPOUND4args_clnt args; 12725 COMPOUND4res_clnt res; 12726 nfs_argop4 argop[2]; 12727 nfs_resop4 *resop; 12728 int doqueue = 1; 12729 mntinfo4_t *mi; 12730 OPEN_CONFIRM4args *open_confirm_args; 12731 int needrecov; 12732 12733 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12734 #if DEBUG 12735 mutex_enter(&oop->oo_lock); 12736 ASSERT(oop->oo_seqid_inuse); 12737 mutex_exit(&oop->oo_lock); 12738 #endif 12739 12740 recov_retry_confirm: 12741 nfs4_error_zinit(ep); 12742 *retry_open = FALSE; 12743 12744 if (resend) 12745 args.ctag = TAG_OPEN_CONFIRM_LOST; 12746 else 12747 args.ctag = TAG_OPEN_CONFIRM; 12748 12749 args.array_len = 2; 12750 args.array = argop; 12751 12752 /* putfh target fh */ 12753 argop[0].argop = OP_CPUTFH; 12754 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12755 12756 argop[1].argop = OP_OPEN_CONFIRM; 12757 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12758 12759 (*seqid) += 1; 12760 open_confirm_args->seqid = *seqid; 12761 open_confirm_args->open_stateid = *stateid; 12762 12763 mi = VTOMI4(vp); 12764 12765 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12766 12767 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12768 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12769 } 12770 12771 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12772 if (!needrecov && ep->error) 12773 return; 12774 12775 if (needrecov) { 12776 bool_t abort = FALSE; 12777 12778 if (reopening_file == FALSE) { 12779 nfs4_bseqid_entry_t *bsep = NULL; 12780 12781 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12782 bsep = nfs4_create_bseqid_entry(oop, NULL, 12783 vp, 0, args.ctag, 12784 open_confirm_args->seqid); 12785 12786 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 12787 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL); 12788 if (bsep) { 12789 kmem_free(bsep, sizeof (*bsep)); 12790 if (num_bseqid_retryp && 12791 --(*num_bseqid_retryp) == 0) 12792 abort = TRUE; 12793 } 12794 } 12795 if ((ep->error == ETIMEDOUT || 12796 res.status == NFS4ERR_RESOURCE) && 12797 abort == FALSE && resend == FALSE) { 12798 if (!ep->error) 12799 (void) xdr_free(xdr_COMPOUND4res_clnt, 12800 (caddr_t)&res); 12801 12802 delay(SEC_TO_TICK(confirm_retry_sec)); 12803 goto recov_retry_confirm; 12804 } 12805 /* State may have changed so retry the entire OPEN op */ 12806 if (abort == FALSE) 12807 *retry_open = TRUE; 12808 else 12809 *retry_open = FALSE; 12810 if (!ep->error) 12811 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12812 return; 12813 } 12814 12815 if (res.status) { 12816 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12817 return; 12818 } 12819 12820 resop = &res.array[1]; /* open confirm res */ 12821 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12822 stateid, sizeof (*stateid)); 12823 12824 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12825 } 12826 12827 /* 12828 * Return the credentials associated with a client state object. The 12829 * caller is responsible for freeing the credentials. 12830 */ 12831 12832 static cred_t * 12833 state_to_cred(nfs4_open_stream_t *osp) 12834 { 12835 cred_t *cr; 12836 12837 /* 12838 * It's ok to not lock the open stream and open owner to get 12839 * the oo_cred since this is only written once (upon creation) 12840 * and will not change. 12841 */ 12842 cr = osp->os_open_owner->oo_cred; 12843 crhold(cr); 12844 12845 return (cr); 12846 } 12847 12848 /* 12849 * nfs4_find_sysid 12850 * 12851 * Find the sysid for the knetconfig associated with the given mi. 12852 */ 12853 static struct lm_sysid * 12854 nfs4_find_sysid(mntinfo4_t *mi) 12855 { 12856 ASSERT(nfs_zone() == mi->mi_zone); 12857 12858 /* 12859 * Switch from RDMA knconf to original mount knconf 12860 */ 12861 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12862 mi->mi_curr_serv->sv_hostname, NULL)); 12863 } 12864 12865 #ifdef DEBUG 12866 /* 12867 * Return a string version of the call type for easy reading. 12868 */ 12869 static char * 12870 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12871 { 12872 switch (ctype) { 12873 case NFS4_LCK_CTYPE_NORM: 12874 return ("NORMAL"); 12875 case NFS4_LCK_CTYPE_RECLAIM: 12876 return ("RECLAIM"); 12877 case NFS4_LCK_CTYPE_RESEND: 12878 return ("RESEND"); 12879 case NFS4_LCK_CTYPE_REINSTATE: 12880 return ("REINSTATE"); 12881 default: 12882 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12883 "type %d", ctype); 12884 return (""); 12885 } 12886 } 12887 #endif 12888 12889 /* 12890 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12891 * Unlock requests don't have an over-the-wire locktype, so we just return 12892 * something non-threatening. 12893 */ 12894 12895 static nfs_lock_type4 12896 flk_to_locktype(int cmd, int l_type) 12897 { 12898 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12899 12900 switch (l_type) { 12901 case F_UNLCK: 12902 return (READ_LT); 12903 case F_RDLCK: 12904 if (cmd == F_SETLK) 12905 return (READ_LT); 12906 else 12907 return (READW_LT); 12908 case F_WRLCK: 12909 if (cmd == F_SETLK) 12910 return (WRITE_LT); 12911 else 12912 return (WRITEW_LT); 12913 } 12914 panic("flk_to_locktype"); 12915 /*NOTREACHED*/ 12916 } 12917 12918 /* 12919 * Do some preliminary checks for nfs4frlock. 12920 */ 12921 static int 12922 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12923 u_offset_t offset) 12924 { 12925 int error = 0; 12926 12927 /* 12928 * If we are setting a lock, check that the file is opened 12929 * with the correct mode. 12930 */ 12931 if (cmd == F_SETLK || cmd == F_SETLKW) { 12932 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12933 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12934 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12935 "nfs4frlock_validate_args: file was opened with " 12936 "incorrect mode")); 12937 return (EBADF); 12938 } 12939 } 12940 12941 /* Convert the offset. It may need to be restored before returning. */ 12942 if (error = convoff(vp, flk, 0, offset)) { 12943 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12944 "nfs4frlock_validate_args: convoff => error= %d\n", 12945 error)); 12946 return (error); 12947 } 12948 12949 return (error); 12950 } 12951 12952 /* 12953 * Set the flock64's lm_sysid for nfs4frlock. 12954 */ 12955 static int 12956 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12957 { 12958 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12959 12960 /* Find the lm_sysid */ 12961 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12962 12963 if (*lspp == NULL) { 12964 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12965 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12966 return (ENOLCK); 12967 } 12968 12969 flk->l_sysid = lm_sysidt(*lspp); 12970 12971 return (0); 12972 } 12973 12974 /* 12975 * Do the remaining preliminary setup for nfs4frlock. 12976 */ 12977 static void 12978 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12979 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12980 cred_t **cred_otw) 12981 { 12982 /* 12983 * set tick_delay to the base delay time. 12984 * (NFS4_BASE_WAIT_TIME is in secs) 12985 */ 12986 12987 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12988 12989 /* 12990 * If lock is relative to EOF, we need the newest length of the 12991 * file. Therefore invalidate the ATTR_CACHE. 12992 */ 12993 12994 *whencep = flk->l_whence; 12995 12996 if (*whencep == 2) /* SEEK_END */ 12997 PURGE_ATTRCACHE4(vp); 12998 12999 recov_statep->rs_flags = 0; 13000 recov_statep->rs_num_retry_despite_err = 0; 13001 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 13002 } 13003 13004 /* 13005 * Initialize and allocate the data structures necessary for 13006 * the nfs4frlock call. 13007 * Allocates argsp's op array. 13008 */ 13009 static void 13010 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 13011 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 13012 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 13013 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 13014 { 13015 int argoplist_size; 13016 int num_ops = 2; 13017 13018 *retry = FALSE; 13019 *did_start_fop = FALSE; 13020 *skip_get_err = FALSE; 13021 lost_rqstp->lr_op = 0; 13022 argoplist_size = num_ops * sizeof (nfs_argop4); 13023 /* fill array with zero */ 13024 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 13025 13026 *argspp = argsp; 13027 *respp = NULL; 13028 13029 argsp->array_len = num_ops; 13030 argsp->array = *argopp; 13031 13032 /* initialize in case of error; will get real value down below */ 13033 argsp->ctag = TAG_NONE; 13034 13035 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 13036 *op_hintp = OH_LOCKU; 13037 else 13038 *op_hintp = OH_OTHER; 13039 } 13040 13041 /* 13042 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 13043 * the proper nfs4_server_t for this instance of nfs4frlock. 13044 * Returns 0 (success) or an errno value. 13045 */ 13046 static int 13047 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 13048 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 13049 bool_t *did_start_fop, bool_t *startrecovp) 13050 { 13051 int error = 0; 13052 rnode4_t *rp; 13053 13054 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13055 13056 if (ctype == NFS4_LCK_CTYPE_NORM) { 13057 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 13058 recov_statep, startrecovp); 13059 if (error) 13060 return (error); 13061 *did_start_fop = TRUE; 13062 } else { 13063 *did_start_fop = FALSE; 13064 *startrecovp = FALSE; 13065 } 13066 13067 if (!error) { 13068 rp = VTOR4(vp); 13069 13070 /* If the file failed recovery, just quit. */ 13071 mutex_enter(&rp->r_statelock); 13072 if (rp->r_flags & R4RECOVERR) { 13073 error = EIO; 13074 } 13075 mutex_exit(&rp->r_statelock); 13076 } 13077 13078 return (error); 13079 } 13080 13081 /* 13082 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 13083 * resend nfs4frlock call is initiated by the recovery framework. 13084 * Acquires the lop and oop seqid synchronization. 13085 */ 13086 static void 13087 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 13088 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 13089 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13090 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 13091 { 13092 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 13093 int error; 13094 13095 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 13096 (CE_NOTE, 13097 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 13098 ASSERT(resend_rqstp != NULL); 13099 ASSERT(resend_rqstp->lr_op == OP_LOCK || 13100 resend_rqstp->lr_op == OP_LOCKU); 13101 13102 *oopp = resend_rqstp->lr_oop; 13103 if (resend_rqstp->lr_oop) { 13104 open_owner_hold(resend_rqstp->lr_oop); 13105 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 13106 ASSERT(error == 0); /* recov thread always succeeds */ 13107 } 13108 13109 /* Must resend this lost lock/locku request. */ 13110 ASSERT(resend_rqstp->lr_lop != NULL); 13111 *lopp = resend_rqstp->lr_lop; 13112 lock_owner_hold(resend_rqstp->lr_lop); 13113 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13114 ASSERT(error == 0); /* recov thread always succeeds */ 13115 13116 *ospp = resend_rqstp->lr_osp; 13117 if (*ospp) 13118 open_stream_hold(resend_rqstp->lr_osp); 13119 13120 if (resend_rqstp->lr_op == OP_LOCK) { 13121 LOCK4args *lock_args; 13122 13123 argop->argop = OP_LOCK; 13124 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13125 lock_args->locktype = resend_rqstp->lr_locktype; 13126 lock_args->reclaim = 13127 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13128 lock_args->offset = resend_rqstp->lr_flk->l_start; 13129 lock_args->length = resend_rqstp->lr_flk->l_len; 13130 if (lock_args->length == 0) 13131 lock_args->length = ~lock_args->length; 13132 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13133 mi2clientid(mi), &lock_args->locker); 13134 13135 switch (resend_rqstp->lr_ctype) { 13136 case NFS4_LCK_CTYPE_RESEND: 13137 argsp->ctag = TAG_LOCK_RESEND; 13138 break; 13139 case NFS4_LCK_CTYPE_REINSTATE: 13140 argsp->ctag = TAG_LOCK_REINSTATE; 13141 break; 13142 case NFS4_LCK_CTYPE_RECLAIM: 13143 argsp->ctag = TAG_LOCK_RECLAIM; 13144 break; 13145 default: 13146 argsp->ctag = TAG_LOCK_UNKNOWN; 13147 break; 13148 } 13149 } else { 13150 LOCKU4args *locku_args; 13151 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13152 13153 argop->argop = OP_LOCKU; 13154 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13155 locku_args->locktype = READ_LT; 13156 locku_args->seqid = lop->lock_seqid + 1; 13157 mutex_enter(&lop->lo_lock); 13158 locku_args->lock_stateid = lop->lock_stateid; 13159 mutex_exit(&lop->lo_lock); 13160 locku_args->offset = resend_rqstp->lr_flk->l_start; 13161 locku_args->length = resend_rqstp->lr_flk->l_len; 13162 if (locku_args->length == 0) 13163 locku_args->length = ~locku_args->length; 13164 13165 switch (resend_rqstp->lr_ctype) { 13166 case NFS4_LCK_CTYPE_RESEND: 13167 argsp->ctag = TAG_LOCKU_RESEND; 13168 break; 13169 case NFS4_LCK_CTYPE_REINSTATE: 13170 argsp->ctag = TAG_LOCKU_REINSTATE; 13171 break; 13172 default: 13173 argsp->ctag = TAG_LOCK_UNKNOWN; 13174 break; 13175 } 13176 } 13177 } 13178 13179 /* 13180 * Setup the LOCKT4 arguments. 13181 */ 13182 static void 13183 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13184 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13185 rnode4_t *rp) 13186 { 13187 LOCKT4args *lockt_args; 13188 13189 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13190 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13191 argop->argop = OP_LOCKT; 13192 argsp->ctag = TAG_LOCKT; 13193 lockt_args = &argop->nfs_argop4_u.oplockt; 13194 13195 /* 13196 * The locktype will be READ_LT unless it's 13197 * a write lock. We do this because the Solaris 13198 * system call allows the combination of 13199 * F_UNLCK and F_GETLK* and so in that case the 13200 * unlock is mapped to a read. 13201 */ 13202 if (flk->l_type == F_WRLCK) 13203 lockt_args->locktype = WRITE_LT; 13204 else 13205 lockt_args->locktype = READ_LT; 13206 13207 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13208 /* set the lock owner4 args */ 13209 nfs4_setlockowner_args(&lockt_args->owner, rp, 13210 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13211 flk->l_pid); 13212 lockt_args->offset = flk->l_start; 13213 lockt_args->length = flk->l_len; 13214 if (flk->l_len == 0) 13215 lockt_args->length = ~lockt_args->length; 13216 13217 *lockt_argsp = lockt_args; 13218 } 13219 13220 /* 13221 * If the client is holding a delegation, and the open stream to be used 13222 * with this lock request is a delegation open stream, then re-open the stream. 13223 * Sets the nfs4_error_t to all zeros unless the open stream has already 13224 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13225 * means the caller should retry (like a recovery retry). 13226 */ 13227 static void 13228 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13229 { 13230 open_delegation_type4 dt; 13231 bool_t reopen_needed, force; 13232 nfs4_open_stream_t *osp; 13233 open_claim_type4 oclaim; 13234 rnode4_t *rp = VTOR4(vp); 13235 mntinfo4_t *mi = VTOMI4(vp); 13236 13237 ASSERT(nfs_zone() == mi->mi_zone); 13238 13239 nfs4_error_zinit(ep); 13240 13241 mutex_enter(&rp->r_statev4_lock); 13242 dt = rp->r_deleg_type; 13243 mutex_exit(&rp->r_statev4_lock); 13244 13245 if (dt != OPEN_DELEGATE_NONE) { 13246 nfs4_open_owner_t *oop; 13247 13248 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13249 if (!oop) { 13250 ep->stat = NFS4ERR_IO; 13251 return; 13252 } 13253 /* returns with 'os_sync_lock' held */ 13254 osp = find_open_stream(oop, rp); 13255 if (!osp) { 13256 open_owner_rele(oop); 13257 ep->stat = NFS4ERR_IO; 13258 return; 13259 } 13260 13261 if (osp->os_failed_reopen) { 13262 NFS4_DEBUG((nfs4_open_stream_debug || 13263 nfs4_client_lock_debug), (CE_NOTE, 13264 "nfs4frlock_check_deleg: os_failed_reopen set " 13265 "for osp %p, cr %p, rp %s", (void *)osp, 13266 (void *)cr, rnode4info(rp))); 13267 mutex_exit(&osp->os_sync_lock); 13268 open_stream_rele(osp, rp); 13269 open_owner_rele(oop); 13270 ep->stat = NFS4ERR_IO; 13271 return; 13272 } 13273 13274 /* 13275 * Determine whether a reopen is needed. If this 13276 * is a delegation open stream, then send the open 13277 * to the server to give visibility to the open owner. 13278 * Even if it isn't a delegation open stream, we need 13279 * to check if the previous open CLAIM_DELEGATE_CUR 13280 * was sufficient. 13281 */ 13282 13283 reopen_needed = osp->os_delegation || 13284 ((lt == F_RDLCK && 13285 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13286 (lt == F_WRLCK && 13287 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13288 13289 mutex_exit(&osp->os_sync_lock); 13290 open_owner_rele(oop); 13291 13292 if (reopen_needed) { 13293 /* 13294 * Always use CLAIM_PREVIOUS after server reboot. 13295 * The server will reject CLAIM_DELEGATE_CUR if 13296 * it is used during the grace period. 13297 */ 13298 mutex_enter(&mi->mi_lock); 13299 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13300 oclaim = CLAIM_PREVIOUS; 13301 force = TRUE; 13302 } else { 13303 oclaim = CLAIM_DELEGATE_CUR; 13304 force = FALSE; 13305 } 13306 mutex_exit(&mi->mi_lock); 13307 13308 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13309 if (ep->error == EAGAIN) { 13310 nfs4_error_zinit(ep); 13311 ep->stat = NFS4ERR_DELAY; 13312 } 13313 } 13314 open_stream_rele(osp, rp); 13315 osp = NULL; 13316 } 13317 } 13318 13319 /* 13320 * Setup the LOCKU4 arguments. 13321 * Returns errors via the nfs4_error_t. 13322 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13323 * over-the-wire. The caller must release the 13324 * reference on *lopp. 13325 * NFS4ERR_DELAY caller should retry (like recovery retry) 13326 * (other) unrecoverable error. 13327 */ 13328 static void 13329 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13330 LOCKU4args **locku_argsp, flock64_t *flk, 13331 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13332 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13333 bool_t *skip_get_err, bool_t *go_otwp) 13334 { 13335 nfs4_lock_owner_t *lop = NULL; 13336 LOCKU4args *locku_args; 13337 pid_t pid; 13338 bool_t is_spec = FALSE; 13339 rnode4_t *rp = VTOR4(vp); 13340 13341 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13342 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13343 13344 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13345 if (ep->error || ep->stat) 13346 return; 13347 13348 argop->argop = OP_LOCKU; 13349 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13350 argsp->ctag = TAG_LOCKU_REINSTATE; 13351 else 13352 argsp->ctag = TAG_LOCKU; 13353 locku_args = &argop->nfs_argop4_u.oplocku; 13354 *locku_argsp = locku_args; 13355 13356 /* locktype should be set to any legal value */ 13357 locku_args->locktype = READ_LT; 13358 13359 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13360 flk->l_pid; 13361 13362 /* 13363 * Get the lock owner stateid. If no lock owner 13364 * exists, return success. 13365 */ 13366 lop = find_lock_owner(rp, pid, LOWN_ANY); 13367 *lopp = lop; 13368 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13369 is_spec = TRUE; 13370 if (!lop || is_spec) { 13371 /* 13372 * No lock owner so no locks to unlock. 13373 * Return success. If there was a failed 13374 * reclaim earlier, the lock might still be 13375 * registered with the local locking code, 13376 * so notify it of the unlock. 13377 * 13378 * If the lockowner is using a special stateid, 13379 * then the original lock request (that created 13380 * this lockowner) was never successful, so we 13381 * have no lock to undo OTW. 13382 */ 13383 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13384 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13385 "(%ld) so return success", (long)pid)); 13386 13387 if (ctype == NFS4_LCK_CTYPE_NORM) 13388 flk->l_pid = curproc->p_pid; 13389 nfs4_register_lock_locally(vp, flk, flag, offset); 13390 /* 13391 * Release our hold and NULL out so final_cleanup 13392 * doesn't try to end a lock seqid sync we 13393 * never started. 13394 */ 13395 if (is_spec) { 13396 lock_owner_rele(lop); 13397 *lopp = NULL; 13398 } 13399 *skip_get_err = TRUE; 13400 *go_otwp = FALSE; 13401 return; 13402 } 13403 13404 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13405 if (ep->error == EAGAIN) { 13406 lock_owner_rele(lop); 13407 *lopp = NULL; 13408 return; 13409 } 13410 13411 mutex_enter(&lop->lo_lock); 13412 locku_args->lock_stateid = lop->lock_stateid; 13413 mutex_exit(&lop->lo_lock); 13414 locku_args->seqid = lop->lock_seqid + 1; 13415 13416 /* leave the ref count on lop, rele after RPC call */ 13417 13418 locku_args->offset = flk->l_start; 13419 locku_args->length = flk->l_len; 13420 if (flk->l_len == 0) 13421 locku_args->length = ~locku_args->length; 13422 13423 *go_otwp = TRUE; 13424 } 13425 13426 /* 13427 * Setup the LOCK4 arguments. 13428 * 13429 * Returns errors via the nfs4_error_t. 13430 * NFS4_OK no problems 13431 * NFS4ERR_DELAY caller should retry (like recovery retry) 13432 * (other) unrecoverable error 13433 */ 13434 static void 13435 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13436 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13437 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13438 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13439 { 13440 LOCK4args *lock_args; 13441 nfs4_open_owner_t *oop = NULL; 13442 nfs4_open_stream_t *osp = NULL; 13443 nfs4_lock_owner_t *lop = NULL; 13444 pid_t pid; 13445 rnode4_t *rp = VTOR4(vp); 13446 13447 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13448 13449 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13450 if (ep->error || ep->stat != NFS4_OK) 13451 return; 13452 13453 argop->argop = OP_LOCK; 13454 if (ctype == NFS4_LCK_CTYPE_NORM) 13455 argsp->ctag = TAG_LOCK; 13456 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13457 argsp->ctag = TAG_RELOCK; 13458 else 13459 argsp->ctag = TAG_LOCK_REINSTATE; 13460 lock_args = &argop->nfs_argop4_u.oplock; 13461 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13462 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13463 /* 13464 * Get the lock owner. If no lock owner exists, 13465 * create a 'temporary' one and grab the open seqid 13466 * synchronization (which puts a hold on the open 13467 * owner and open stream). 13468 * This also grabs the lock seqid synchronization. 13469 */ 13470 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13471 ep->stat = 13472 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13473 13474 if (ep->stat != NFS4_OK) 13475 goto out; 13476 13477 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13478 &lock_args->locker); 13479 13480 lock_args->offset = flk->l_start; 13481 lock_args->length = flk->l_len; 13482 if (flk->l_len == 0) 13483 lock_args->length = ~lock_args->length; 13484 *lock_argsp = lock_args; 13485 out: 13486 *oopp = oop; 13487 *ospp = osp; 13488 *lopp = lop; 13489 } 13490 13491 /* 13492 * After we get the reply from the server, record the proper information 13493 * for possible resend lock requests. 13494 */ 13495 static void 13496 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13497 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13498 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13499 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13500 { 13501 bool_t unlock = (flk->l_type == F_UNLCK); 13502 13503 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13504 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13505 ctype == NFS4_LCK_CTYPE_REINSTATE); 13506 13507 if (error != 0 && !unlock) { 13508 NFS4_DEBUG((nfs4_lost_rqst_debug || 13509 nfs4_client_lock_debug), (CE_NOTE, 13510 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13511 " for lop %p", (void *)lop)); 13512 ASSERT(lop != NULL); 13513 mutex_enter(&lop->lo_lock); 13514 lop->lo_pending_rqsts = 1; 13515 mutex_exit(&lop->lo_lock); 13516 } 13517 13518 lost_rqstp->lr_putfirst = FALSE; 13519 lost_rqstp->lr_op = 0; 13520 13521 /* 13522 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13523 * recovery purposes so that the lock request that was sent 13524 * can be saved and re-issued later. Ditto for EIO from a forced 13525 * unmount. This is done to have the client's local locking state 13526 * match the v4 server's state; that is, the request was 13527 * potentially received and accepted by the server but the client 13528 * thinks it was not. 13529 */ 13530 if (error == ETIMEDOUT || error == EINTR || 13531 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13532 NFS4_DEBUG((nfs4_lost_rqst_debug || 13533 nfs4_client_lock_debug), (CE_NOTE, 13534 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13535 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13536 (void *)lop, (void *)oop, (void *)osp)); 13537 if (unlock) 13538 lost_rqstp->lr_op = OP_LOCKU; 13539 else { 13540 lost_rqstp->lr_op = OP_LOCK; 13541 lost_rqstp->lr_locktype = locktype; 13542 } 13543 /* 13544 * Objects are held and rele'd via the recovery code. 13545 * See nfs4_save_lost_rqst. 13546 */ 13547 lost_rqstp->lr_vp = vp; 13548 lost_rqstp->lr_dvp = NULL; 13549 lost_rqstp->lr_oop = oop; 13550 lost_rqstp->lr_osp = osp; 13551 lost_rqstp->lr_lop = lop; 13552 lost_rqstp->lr_cr = cr; 13553 switch (ctype) { 13554 case NFS4_LCK_CTYPE_NORM: 13555 flk->l_pid = ttoproc(curthread)->p_pid; 13556 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13557 break; 13558 case NFS4_LCK_CTYPE_REINSTATE: 13559 lost_rqstp->lr_putfirst = TRUE; 13560 lost_rqstp->lr_ctype = ctype; 13561 break; 13562 default: 13563 break; 13564 } 13565 lost_rqstp->lr_flk = flk; 13566 } 13567 } 13568 13569 /* 13570 * Update lop's seqid. Also update the seqid stored in a resend request, 13571 * if any. (Some recovery errors increment the seqid, and we may have to 13572 * send the resend request again.) 13573 */ 13574 13575 static void 13576 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13577 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13578 { 13579 if (lock_args) { 13580 if (lock_args->locker.new_lock_owner == TRUE) 13581 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13582 else { 13583 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13584 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13585 } 13586 } else if (locku_args) { 13587 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13588 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13589 } 13590 } 13591 13592 /* 13593 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13594 * COMPOUND4 args/res for calls that need to retry. 13595 * Switches the *cred_otwp to base_cr. 13596 */ 13597 static void 13598 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13599 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13600 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13601 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13602 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13603 { 13604 nfs4_open_owner_t *oop = *oopp; 13605 nfs4_open_stream_t *osp = *ospp; 13606 nfs4_lock_owner_t *lop = *lopp; 13607 nfs_argop4 *argop = (*argspp)->array; 13608 13609 if (*did_start_fop) { 13610 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13611 needrecov); 13612 *did_start_fop = FALSE; 13613 } 13614 ASSERT((*argspp)->array_len == 2); 13615 if (argop[1].argop == OP_LOCK) 13616 nfs4args_lock_free(&argop[1]); 13617 else if (argop[1].argop == OP_LOCKT) 13618 nfs4args_lockt_free(&argop[1]); 13619 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13620 if (!error) 13621 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13622 *argspp = NULL; 13623 *respp = NULL; 13624 13625 if (lop) { 13626 nfs4_end_lock_seqid_sync(lop); 13627 lock_owner_rele(lop); 13628 *lopp = NULL; 13629 } 13630 13631 /* need to free up the reference on osp for lock args */ 13632 if (osp != NULL) { 13633 open_stream_rele(osp, VTOR4(vp)); 13634 *ospp = NULL; 13635 } 13636 13637 /* need to free up the reference on oop for lock args */ 13638 if (oop != NULL) { 13639 nfs4_end_open_seqid_sync(oop); 13640 open_owner_rele(oop); 13641 *oopp = NULL; 13642 } 13643 13644 crfree(*cred_otwp); 13645 *cred_otwp = base_cr; 13646 crhold(*cred_otwp); 13647 } 13648 13649 /* 13650 * Function to process the client's recovery for nfs4frlock. 13651 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13652 * 13653 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13654 * COMPOUND4 args/res for calls that need to retry. 13655 * 13656 * Note: the rp's r_lkserlock is *not* dropped during this path. 13657 */ 13658 static bool_t 13659 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13660 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13661 LOCK4args *lock_args, LOCKU4args *locku_args, 13662 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13663 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13664 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13665 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13666 { 13667 nfs4_open_owner_t *oop = *oopp; 13668 nfs4_open_stream_t *osp = *ospp; 13669 nfs4_lock_owner_t *lop = *lopp; 13670 13671 bool_t abort, retry; 13672 13673 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13674 ASSERT((*argspp) != NULL); 13675 ASSERT((*respp) != NULL); 13676 if (lock_args || locku_args) 13677 ASSERT(lop != NULL); 13678 13679 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13680 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13681 13682 retry = TRUE; 13683 abort = FALSE; 13684 if (needrecov) { 13685 nfs4_bseqid_entry_t *bsep = NULL; 13686 nfs_opnum4 op; 13687 13688 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13689 13690 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13691 seqid4 seqid; 13692 13693 if (lock_args) { 13694 if (lock_args->locker.new_lock_owner == TRUE) 13695 seqid = lock_args->locker.locker4_u. 13696 open_owner.open_seqid; 13697 else 13698 seqid = lock_args->locker.locker4_u. 13699 lock_owner.lock_seqid; 13700 } else if (locku_args) { 13701 seqid = locku_args->seqid; 13702 } else { 13703 seqid = 0; 13704 } 13705 13706 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13707 flk->l_pid, (*argspp)->ctag, seqid); 13708 } 13709 13710 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13711 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13712 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13713 NULL, op, bsep, NULL, NULL); 13714 13715 if (bsep) 13716 kmem_free(bsep, sizeof (*bsep)); 13717 } 13718 13719 /* 13720 * Return that we do not want to retry the request for 3 cases: 13721 * 1. If we received EINTR or are bailing out because of a forced 13722 * unmount, we came into this code path just for the sake of 13723 * initiating recovery, we now need to return the error. 13724 * 2. If we have aborted recovery. 13725 * 3. We received NFS4ERR_BAD_SEQID. 13726 */ 13727 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13728 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13729 retry = FALSE; 13730 13731 if (*did_start_fop == TRUE) { 13732 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13733 needrecov); 13734 *did_start_fop = FALSE; 13735 } 13736 13737 if (retry == TRUE) { 13738 nfs_argop4 *argop; 13739 13740 argop = (*argspp)->array; 13741 ASSERT((*argspp)->array_len == 2); 13742 13743 if (argop[1].argop == OP_LOCK) 13744 nfs4args_lock_free(&argop[1]); 13745 else if (argop[1].argop == OP_LOCKT) 13746 nfs4args_lockt_free(&argop[1]); 13747 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13748 if (!ep->error) 13749 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13750 *respp = NULL; 13751 *argspp = NULL; 13752 } 13753 13754 if (lop != NULL) { 13755 nfs4_end_lock_seqid_sync(lop); 13756 lock_owner_rele(lop); 13757 } 13758 13759 *lopp = NULL; 13760 13761 /* need to free up the reference on osp for lock args */ 13762 if (osp != NULL) { 13763 open_stream_rele(osp, rp); 13764 *ospp = NULL; 13765 } 13766 13767 /* need to free up the reference on oop for lock args */ 13768 if (oop != NULL) { 13769 nfs4_end_open_seqid_sync(oop); 13770 open_owner_rele(oop); 13771 *oopp = NULL; 13772 } 13773 13774 return (retry); 13775 } 13776 13777 /* 13778 * Handles the successful reply from the server for nfs4frlock. 13779 */ 13780 static void 13781 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13782 vnode_t *vp, int flag, u_offset_t offset, 13783 nfs4_lost_rqst_t *resend_rqstp) 13784 { 13785 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13786 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13787 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13788 if (ctype == NFS4_LCK_CTYPE_NORM) { 13789 flk->l_pid = ttoproc(curthread)->p_pid; 13790 /* 13791 * We do not register lost locks locally in 13792 * the 'resend' case since the user/application 13793 * doesn't think we have the lock. 13794 */ 13795 ASSERT(!resend_rqstp); 13796 nfs4_register_lock_locally(vp, flk, flag, offset); 13797 } 13798 } 13799 } 13800 13801 /* 13802 * Handle the DENIED reply from the server for nfs4frlock. 13803 * Returns TRUE if we should retry the request; FALSE otherwise. 13804 * 13805 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13806 * COMPOUND4 args/res for calls that need to retry. Can also 13807 * drop and regrab the r_lkserlock. 13808 */ 13809 static bool_t 13810 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13811 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13812 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13813 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13814 nfs4_recov_state_t *recov_statep, int needrecov, 13815 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13816 clock_t *tick_delayp, short *whencep, int *errorp, 13817 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13818 bool_t *skip_get_err) 13819 { 13820 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13821 13822 if (lock_args) { 13823 nfs4_open_owner_t *oop = *oopp; 13824 nfs4_open_stream_t *osp = *ospp; 13825 nfs4_lock_owner_t *lop = *lopp; 13826 int intr; 13827 13828 /* 13829 * Blocking lock needs to sleep and retry from the request. 13830 * 13831 * Do not block and wait for 'resend' or 'reinstate' 13832 * lock requests, just return the error. 13833 * 13834 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13835 */ 13836 if (cmd == F_SETLKW) { 13837 rnode4_t *rp = VTOR4(vp); 13838 nfs_argop4 *argop = (*argspp)->array; 13839 13840 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13841 13842 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13843 recov_statep, needrecov); 13844 *did_start_fop = FALSE; 13845 ASSERT((*argspp)->array_len == 2); 13846 if (argop[1].argop == OP_LOCK) 13847 nfs4args_lock_free(&argop[1]); 13848 else if (argop[1].argop == OP_LOCKT) 13849 nfs4args_lockt_free(&argop[1]); 13850 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13851 if (*respp) 13852 (void) xdr_free(xdr_COMPOUND4res_clnt, 13853 (caddr_t)*respp); 13854 *argspp = NULL; 13855 *respp = NULL; 13856 nfs4_end_lock_seqid_sync(lop); 13857 lock_owner_rele(lop); 13858 *lopp = NULL; 13859 if (osp != NULL) { 13860 open_stream_rele(osp, rp); 13861 *ospp = NULL; 13862 } 13863 if (oop != NULL) { 13864 nfs4_end_open_seqid_sync(oop); 13865 open_owner_rele(oop); 13866 *oopp = NULL; 13867 } 13868 13869 nfs_rw_exit(&rp->r_lkserlock); 13870 13871 intr = nfs4_block_and_wait(tick_delayp, rp); 13872 13873 if (intr) { 13874 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13875 RW_WRITER, FALSE); 13876 *errorp = EINTR; 13877 return (FALSE); 13878 } 13879 13880 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13881 RW_WRITER, FALSE); 13882 13883 /* 13884 * Make sure we are still safe to lock with 13885 * regards to mmapping. 13886 */ 13887 if (!nfs4_safelock(vp, flk, cr)) { 13888 *errorp = EAGAIN; 13889 return (FALSE); 13890 } 13891 13892 return (TRUE); 13893 } 13894 if (ctype == NFS4_LCK_CTYPE_NORM) 13895 *errorp = EAGAIN; 13896 *skip_get_err = TRUE; 13897 flk->l_whence = 0; 13898 *whencep = 0; 13899 return (FALSE); 13900 } else if (lockt_args) { 13901 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13902 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13903 13904 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13905 flk, lockt_args); 13906 13907 /* according to NLM code */ 13908 *errorp = 0; 13909 *whencep = 0; 13910 *skip_get_err = TRUE; 13911 return (FALSE); 13912 } 13913 return (FALSE); 13914 } 13915 13916 /* 13917 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13918 */ 13919 static void 13920 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13921 { 13922 switch (resp->status) { 13923 case NFS4ERR_ACCESS: 13924 case NFS4ERR_ADMIN_REVOKED: 13925 case NFS4ERR_BADHANDLE: 13926 case NFS4ERR_BAD_RANGE: 13927 case NFS4ERR_BAD_SEQID: 13928 case NFS4ERR_BAD_STATEID: 13929 case NFS4ERR_BADXDR: 13930 case NFS4ERR_DEADLOCK: 13931 case NFS4ERR_DELAY: 13932 case NFS4ERR_EXPIRED: 13933 case NFS4ERR_FHEXPIRED: 13934 case NFS4ERR_GRACE: 13935 case NFS4ERR_INVAL: 13936 case NFS4ERR_ISDIR: 13937 case NFS4ERR_LEASE_MOVED: 13938 case NFS4ERR_LOCK_NOTSUPP: 13939 case NFS4ERR_LOCK_RANGE: 13940 case NFS4ERR_MOVED: 13941 case NFS4ERR_NOFILEHANDLE: 13942 case NFS4ERR_NO_GRACE: 13943 case NFS4ERR_OLD_STATEID: 13944 case NFS4ERR_OPENMODE: 13945 case NFS4ERR_RECLAIM_BAD: 13946 case NFS4ERR_RECLAIM_CONFLICT: 13947 case NFS4ERR_RESOURCE: 13948 case NFS4ERR_SERVERFAULT: 13949 case NFS4ERR_STALE: 13950 case NFS4ERR_STALE_CLIENTID: 13951 case NFS4ERR_STALE_STATEID: 13952 return; 13953 default: 13954 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13955 "nfs4frlock_results_default: got unrecognizable " 13956 "res.status %d", resp->status)); 13957 *errorp = NFS4ERR_INVAL; 13958 } 13959 } 13960 13961 /* 13962 * The lock request was successful, so update the client's state. 13963 */ 13964 static void 13965 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13966 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13967 vnode_t *vp, flock64_t *flk, cred_t *cr, 13968 nfs4_lost_rqst_t *resend_rqstp) 13969 { 13970 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13971 13972 if (lock_args) { 13973 LOCK4res *lock_res; 13974 13975 lock_res = &resop->nfs_resop4_u.oplock; 13976 /* update the stateid with server's response */ 13977 13978 if (lock_args->locker.new_lock_owner == TRUE) { 13979 mutex_enter(&lop->lo_lock); 13980 lop->lo_just_created = NFS4_PERM_CREATED; 13981 mutex_exit(&lop->lo_lock); 13982 } 13983 13984 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13985 13986 /* 13987 * If the lock was the result of a resending a lost 13988 * request, we've synched up the stateid and seqid 13989 * with the server, but now the server might be out of sync 13990 * with what the application thinks it has for locks. 13991 * Clean that up here. It's unclear whether we should do 13992 * this even if the filesystem has been forcibly unmounted. 13993 * For most servers, it's probably wasted effort, but 13994 * RFC 7530 lets servers require that unlocks exactly match 13995 * the locks that are held. 13996 */ 13997 if (resend_rqstp != NULL && 13998 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13999 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 14000 } else { 14001 flk->l_whence = 0; 14002 } 14003 } else if (locku_args) { 14004 LOCKU4res *locku_res; 14005 14006 locku_res = &resop->nfs_resop4_u.oplocku; 14007 14008 /* Update the stateid with the server's response */ 14009 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 14010 } else if (lockt_args) { 14011 /* Switch the lock type to express success, see fcntl */ 14012 flk->l_type = F_UNLCK; 14013 flk->l_whence = 0; 14014 } 14015 } 14016 14017 /* 14018 * Do final cleanup before exiting nfs4frlock. 14019 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 14020 * COMPOUND4 args/res for calls that haven't already. 14021 */ 14022 static void 14023 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 14024 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 14025 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 14026 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 14027 short whence, u_offset_t offset, struct lm_sysid *ls, 14028 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 14029 bool_t did_start_fop, bool_t skip_get_err, 14030 cred_t *cred_otw, cred_t *cred) 14031 { 14032 mntinfo4_t *mi = VTOMI4(vp); 14033 rnode4_t *rp = VTOR4(vp); 14034 int error = *errorp; 14035 nfs_argop4 *argop; 14036 int do_flush_pages = 0; 14037 14038 ASSERT(nfs_zone() == mi->mi_zone); 14039 /* 14040 * The client recovery code wants the raw status information, 14041 * so don't map the NFS status code to an errno value for 14042 * non-normal call types. 14043 */ 14044 if (ctype == NFS4_LCK_CTYPE_NORM) { 14045 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 14046 *errorp = geterrno4(resp->status); 14047 if (did_start_fop == TRUE) 14048 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 14049 needrecov); 14050 14051 /* 14052 * We've established a new lock on the server, so invalidate 14053 * the pages associated with the vnode to get the most up to 14054 * date pages from the server after acquiring the lock. We 14055 * want to be sure that the read operation gets the newest data. 14056 * N.B. 14057 * We used to do this in nfs4frlock_results_ok but that doesn't 14058 * work since VOP_PUTPAGE can call nfs4_commit which calls 14059 * nfs4_start_fop. We flush the pages below after calling 14060 * nfs4_end_fop above 14061 * The flush of the page cache must be done after 14062 * nfs4_end_open_seqid_sync() to avoid a 4-way hang. 14063 */ 14064 if (!error && resp && resp->status == NFS4_OK) 14065 do_flush_pages = 1; 14066 } 14067 if (argsp) { 14068 ASSERT(argsp->array_len == 2); 14069 argop = argsp->array; 14070 if (argop[1].argop == OP_LOCK) 14071 nfs4args_lock_free(&argop[1]); 14072 else if (argop[1].argop == OP_LOCKT) 14073 nfs4args_lockt_free(&argop[1]); 14074 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14075 if (resp) 14076 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 14077 } 14078 14079 /* free the reference on the lock owner */ 14080 if (lop != NULL) { 14081 nfs4_end_lock_seqid_sync(lop); 14082 lock_owner_rele(lop); 14083 } 14084 14085 /* need to free up the reference on osp for lock args */ 14086 if (osp != NULL) 14087 open_stream_rele(osp, rp); 14088 14089 /* need to free up the reference on oop for lock args */ 14090 if (oop != NULL) { 14091 nfs4_end_open_seqid_sync(oop); 14092 open_owner_rele(oop); 14093 } 14094 14095 if (do_flush_pages) 14096 nfs4_flush_pages(vp, cred); 14097 14098 (void) convoff(vp, flk, whence, offset); 14099 14100 lm_rel_sysid(ls); 14101 14102 /* 14103 * Record debug information in the event we get EINVAL. 14104 */ 14105 mutex_enter(&mi->mi_lock); 14106 if (*errorp == EINVAL && (lock_args || locku_args) && 14107 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14108 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14109 zcmn_err(getzoneid(), CE_NOTE, 14110 "%s operation failed with " 14111 "EINVAL probably since the server, %s," 14112 " doesn't support POSIX style locking", 14113 lock_args ? "LOCK" : "LOCKU", 14114 mi->mi_curr_serv->sv_hostname); 14115 mi->mi_flags |= MI4_LOCK_DEBUG; 14116 } 14117 } 14118 mutex_exit(&mi->mi_lock); 14119 14120 if (cred_otw) 14121 crfree(cred_otw); 14122 } 14123 14124 /* 14125 * This calls the server and the local locking code. 14126 * 14127 * Client locks are registerred locally by oring the sysid with 14128 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14129 * We need to distinguish between the two to avoid collision in case one 14130 * machine is used as both client and server. 14131 * 14132 * Blocking lock requests will continually retry to acquire the lock 14133 * forever. 14134 * 14135 * The ctype is defined as follows: 14136 * NFS4_LCK_CTYPE_NORM: normal lock request. 14137 * 14138 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14139 * recovery, get the pid from flk instead of curproc, and don't reregister 14140 * the lock locally. 14141 * 14142 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14143 * that we will use the information passed in via resend_rqstp to setup the 14144 * lock/locku request. This resend is the exact same request as the 'lost 14145 * lock', and is initiated by the recovery framework. A successful resend 14146 * request can initiate one or more reinstate requests. 14147 * 14148 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14149 * does not trigger additional reinstate requests. This lock call type is 14150 * set for setting the v4 server's locking state back to match what the 14151 * client's local locking state is in the event of a received 'lost lock'. 14152 * 14153 * Errors are returned via the nfs4_error_t parameter. 14154 */ 14155 void 14156 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14157 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14158 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14159 { 14160 COMPOUND4args_clnt args, *argsp = NULL; 14161 COMPOUND4res_clnt res, *resp = NULL; 14162 nfs_argop4 *argop; 14163 nfs_resop4 *resop; 14164 rnode4_t *rp; 14165 int doqueue = 1; 14166 clock_t tick_delay; /* delay in clock ticks */ 14167 struct lm_sysid *ls; 14168 LOCK4args *lock_args = NULL; 14169 LOCKU4args *locku_args = NULL; 14170 LOCKT4args *lockt_args = NULL; 14171 nfs4_open_owner_t *oop = NULL; 14172 nfs4_open_stream_t *osp = NULL; 14173 nfs4_lock_owner_t *lop = NULL; 14174 bool_t needrecov = FALSE; 14175 nfs4_recov_state_t recov_state; 14176 short whence; 14177 nfs4_op_hint_t op_hint; 14178 nfs4_lost_rqst_t lost_rqst; 14179 bool_t retry = FALSE; 14180 bool_t did_start_fop = FALSE; 14181 bool_t skip_get_err = FALSE; 14182 cred_t *cred_otw = NULL; 14183 bool_t recovonly; /* just queue request */ 14184 int frc_no_reclaim = 0; 14185 #ifdef DEBUG 14186 char *name; 14187 #endif 14188 14189 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14190 14191 #ifdef DEBUG 14192 name = fn_name(VTOSV(vp)->sv_name); 14193 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14194 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14195 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14196 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14197 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14198 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14199 resend_rqstp ? "TRUE" : "FALSE")); 14200 kmem_free(name, MAXNAMELEN); 14201 #endif 14202 14203 nfs4_error_zinit(ep); 14204 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14205 if (ep->error) 14206 return; 14207 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14208 if (ep->error) 14209 return; 14210 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14211 vp, cr, &cred_otw); 14212 14213 recov_retry: 14214 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14215 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14216 rp = VTOR4(vp); 14217 14218 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14219 &did_start_fop, &recovonly); 14220 14221 if (ep->error) 14222 goto out; 14223 14224 if (recovonly) { 14225 /* 14226 * Leave the request for the recovery system to deal with. 14227 */ 14228 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14229 ASSERT(cmd != F_GETLK); 14230 ASSERT(flk->l_type == F_UNLCK); 14231 14232 nfs4_error_init(ep, EINTR); 14233 needrecov = TRUE; 14234 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14235 if (lop != NULL) { 14236 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14237 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14238 (void) nfs4_start_recovery(ep, 14239 VTOMI4(vp), vp, NULL, NULL, 14240 (lost_rqst.lr_op == OP_LOCK || 14241 lost_rqst.lr_op == OP_LOCKU) ? 14242 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL); 14243 lock_owner_rele(lop); 14244 lop = NULL; 14245 } 14246 flk->l_pid = curproc->p_pid; 14247 nfs4_register_lock_locally(vp, flk, flag, offset); 14248 goto out; 14249 } 14250 14251 /* putfh directory fh */ 14252 argop[0].argop = OP_CPUTFH; 14253 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14254 14255 /* 14256 * Set up the over-the-wire arguments and get references to the 14257 * open owner, etc. 14258 */ 14259 14260 if (ctype == NFS4_LCK_CTYPE_RESEND || 14261 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14262 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14263 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14264 } else { 14265 bool_t go_otw = TRUE; 14266 14267 ASSERT(resend_rqstp == NULL); 14268 14269 switch (cmd) { 14270 case F_GETLK: 14271 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14272 &lockt_args, argsp, flk, rp); 14273 break; 14274 case F_SETLKW: 14275 case F_SETLK: 14276 if (flk->l_type == F_UNLCK) 14277 nfs4frlock_setup_locku_args(ctype, 14278 &argop[1], &locku_args, flk, 14279 &lop, ep, argsp, 14280 vp, flag, offset, cr, 14281 &skip_get_err, &go_otw); 14282 else 14283 nfs4frlock_setup_lock_args(ctype, 14284 &lock_args, &oop, &osp, &lop, &argop[1], 14285 argsp, flk, cmd, vp, cr, ep); 14286 14287 if (ep->error) 14288 goto out; 14289 14290 switch (ep->stat) { 14291 case NFS4_OK: 14292 break; 14293 case NFS4ERR_DELAY: 14294 /* recov thread never gets this error */ 14295 ASSERT(resend_rqstp == NULL); 14296 ASSERT(did_start_fop); 14297 14298 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14299 &recov_state, TRUE); 14300 did_start_fop = FALSE; 14301 if (argop[1].argop == OP_LOCK) 14302 nfs4args_lock_free(&argop[1]); 14303 else if (argop[1].argop == OP_LOCKT) 14304 nfs4args_lockt_free(&argop[1]); 14305 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14306 argsp = NULL; 14307 goto recov_retry; 14308 default: 14309 ep->error = EIO; 14310 goto out; 14311 } 14312 break; 14313 default: 14314 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14315 "nfs4_frlock: invalid cmd %d", cmd)); 14316 ep->error = EINVAL; 14317 goto out; 14318 } 14319 14320 if (!go_otw) 14321 goto out; 14322 } 14323 14324 /* XXX should we use the local reclock as a cache ? */ 14325 /* 14326 * Unregister the lock with the local locking code before 14327 * contacting the server. This avoids a potential race where 14328 * another process gets notified that it has been granted a lock 14329 * before we can unregister ourselves locally. 14330 */ 14331 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14332 if (ctype == NFS4_LCK_CTYPE_NORM) 14333 flk->l_pid = ttoproc(curthread)->p_pid; 14334 nfs4_register_lock_locally(vp, flk, flag, offset); 14335 } 14336 14337 /* 14338 * Send the server the lock request. Continually loop with a delay 14339 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14340 */ 14341 resp = &res; 14342 14343 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14344 (CE_NOTE, 14345 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14346 rnode4info(rp))); 14347 14348 if (lock_args && frc_no_reclaim) { 14349 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14350 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14351 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14352 lock_args->reclaim = FALSE; 14353 if (did_reclaimp) 14354 *did_reclaimp = 0; 14355 } 14356 14357 /* 14358 * Do the OTW call. 14359 */ 14360 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14361 14362 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14363 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14364 14365 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14366 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14367 "nfs4frlock: needrecov %d", needrecov)); 14368 14369 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14370 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14371 args.ctag); 14372 14373 /* 14374 * Check if one of these mutually exclusive error cases has 14375 * happened: 14376 * need to swap credentials due to access error 14377 * recovery is needed 14378 * different error (only known case is missing Kerberos ticket) 14379 */ 14380 14381 if ((ep->error == EACCES || 14382 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14383 cred_otw != cr) { 14384 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14385 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14386 cr, &cred_otw); 14387 goto recov_retry; 14388 } 14389 14390 if (needrecov) { 14391 /* 14392 * LOCKT requests don't need to recover from lost 14393 * requests since they don't create/modify state. 14394 */ 14395 if ((ep->error == EINTR || 14396 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14397 lockt_args) 14398 goto out; 14399 /* 14400 * Do not attempt recovery for requests initiated by 14401 * the recovery framework. Let the framework redrive them. 14402 */ 14403 if (ctype != NFS4_LCK_CTYPE_NORM) 14404 goto out; 14405 else { 14406 ASSERT(resend_rqstp == NULL); 14407 } 14408 14409 nfs4frlock_save_lost_rqst(ctype, ep->error, 14410 flk_to_locktype(cmd, flk->l_type), 14411 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14412 14413 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14414 &resp, lock_args, locku_args, &oop, &osp, &lop, 14415 rp, vp, &recov_state, op_hint, &did_start_fop, 14416 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14417 14418 if (retry) { 14419 ASSERT(oop == NULL); 14420 ASSERT(osp == NULL); 14421 ASSERT(lop == NULL); 14422 goto recov_retry; 14423 } 14424 goto out; 14425 } 14426 14427 /* 14428 * Bail out if have reached this point with ep->error set. Can 14429 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14430 * This happens if Kerberos ticket has expired or has been 14431 * destroyed. 14432 */ 14433 if (ep->error != 0) 14434 goto out; 14435 14436 /* 14437 * Process the reply. 14438 */ 14439 switch (resp->status) { 14440 case NFS4_OK: 14441 resop = &resp->array[1]; 14442 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14443 resend_rqstp); 14444 /* 14445 * Have a successful lock operation, now update state. 14446 */ 14447 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14448 resop, lop, vp, flk, cr, resend_rqstp); 14449 break; 14450 14451 case NFS4ERR_DENIED: 14452 resop = &resp->array[1]; 14453 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14454 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14455 &recov_state, needrecov, &argsp, &resp, 14456 &tick_delay, &whence, &ep->error, resop, cr, 14457 &did_start_fop, &skip_get_err); 14458 14459 if (retry) { 14460 ASSERT(oop == NULL); 14461 ASSERT(osp == NULL); 14462 ASSERT(lop == NULL); 14463 goto recov_retry; 14464 } 14465 break; 14466 /* 14467 * If the server won't let us reclaim, fall-back to trying to lock 14468 * the file from scratch. Code elsewhere will check the changeinfo 14469 * to ensure the file hasn't been changed. 14470 */ 14471 case NFS4ERR_NO_GRACE: 14472 if (lock_args && lock_args->reclaim == TRUE) { 14473 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14474 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14475 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14476 frc_no_reclaim = 1; 14477 /* clean up before retrying */ 14478 needrecov = 0; 14479 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14480 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14481 &recov_state, op_hint, &did_start_fop, NULL, flk); 14482 goto recov_retry; 14483 } 14484 /* FALLTHROUGH */ 14485 14486 default: 14487 nfs4frlock_results_default(resp, &ep->error); 14488 break; 14489 } 14490 out: 14491 /* 14492 * Process and cleanup from error. Make interrupted unlock 14493 * requests look successful, since they will be handled by the 14494 * client recovery code. 14495 */ 14496 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14497 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14498 lock_args, locku_args, did_start_fop, 14499 skip_get_err, cred_otw, cr); 14500 14501 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14502 (cmd == F_SETLK || cmd == F_SETLKW)) 14503 ep->error = 0; 14504 } 14505 14506 /* 14507 * nfs4_safelock: 14508 * 14509 * Return non-zero if the given lock request can be handled without 14510 * violating the constraints on concurrent mapping and locking. 14511 */ 14512 14513 static int 14514 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14515 { 14516 rnode4_t *rp = VTOR4(vp); 14517 struct vattr va; 14518 int error; 14519 14520 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14521 ASSERT(rp->r_mapcnt >= 0); 14522 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14523 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14524 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14525 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14526 14527 if (rp->r_mapcnt == 0) 14528 return (1); /* always safe if not mapped */ 14529 14530 /* 14531 * If the file is already mapped and there are locks, then they 14532 * should be all safe locks. So adding or removing a lock is safe 14533 * as long as the new request is safe (i.e., whole-file, meaning 14534 * length and starting offset are both zero). 14535 */ 14536 14537 if (bfp->l_start != 0 || bfp->l_len != 0) { 14538 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14539 "cannot lock a memory mapped file unless locking the " 14540 "entire file: start %"PRIx64", len %"PRIx64, 14541 bfp->l_start, bfp->l_len)); 14542 return (0); 14543 } 14544 14545 /* mandatory locking and mapping don't mix */ 14546 va.va_mask = AT_MODE; 14547 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14548 if (error != 0) { 14549 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14550 "getattr error %d", error)); 14551 return (0); /* treat errors conservatively */ 14552 } 14553 if (MANDLOCK(vp, va.va_mode)) { 14554 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14555 "cannot mandatory lock and mmap a file")); 14556 return (0); 14557 } 14558 14559 return (1); 14560 } 14561 14562 14563 /* 14564 * Register the lock locally within Solaris. 14565 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14566 * recording locks locally. 14567 * 14568 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14569 * are registered locally. 14570 */ 14571 void 14572 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14573 u_offset_t offset) 14574 { 14575 int oldsysid; 14576 int error; 14577 #ifdef DEBUG 14578 char *name; 14579 #endif 14580 14581 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14582 14583 #ifdef DEBUG 14584 name = fn_name(VTOSV(vp)->sv_name); 14585 NFS4_DEBUG(nfs4_client_lock_debug, 14586 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14587 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14588 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14589 flk->l_sysid)); 14590 kmem_free(name, MAXNAMELEN); 14591 #endif 14592 14593 /* register the lock with local locking */ 14594 oldsysid = flk->l_sysid; 14595 flk->l_sysid |= LM_SYSID_CLIENT; 14596 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14597 #ifdef DEBUG 14598 if (error != 0) { 14599 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14600 "nfs4_register_lock_locally: could not register with" 14601 " local locking")); 14602 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14603 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14604 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14605 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14606 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14607 flk->l_type, flk->l_start, flk->l_len)); 14608 (void) reclock(vp, flk, 0, flag, offset, NULL); 14609 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14610 "blocked by pid %d sysid 0x%x type %d " 14611 "off 0x%" PRIx64 " len 0x%" PRIx64, 14612 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14613 flk->l_len)); 14614 } 14615 #endif 14616 flk->l_sysid = oldsysid; 14617 } 14618 14619 /* 14620 * nfs4_lockrelease: 14621 * 14622 * Release any locks on the given vnode that are held by the current 14623 * process. Also removes the lock owner (if one exists) from the rnode's 14624 * list. 14625 */ 14626 static int 14627 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14628 { 14629 flock64_t ld; 14630 int ret, error; 14631 rnode4_t *rp; 14632 nfs4_lock_owner_t *lop; 14633 nfs4_recov_state_t recov_state; 14634 mntinfo4_t *mi; 14635 bool_t possible_orphan = FALSE; 14636 bool_t recovonly; 14637 14638 ASSERT((uintptr_t)vp > KERNELBASE); 14639 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14640 14641 rp = VTOR4(vp); 14642 mi = VTOMI4(vp); 14643 14644 /* 14645 * If we have not locked anything then we can 14646 * just return since we have no work to do. 14647 */ 14648 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14649 return (0); 14650 } 14651 14652 /* 14653 * We need to comprehend that another thread may 14654 * kick off recovery and the lock_owner we have stashed 14655 * in lop might be invalid so we should NOT cache it 14656 * locally! 14657 */ 14658 recov_state.rs_flags = 0; 14659 recov_state.rs_num_retry_despite_err = 0; 14660 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14661 &recovonly); 14662 if (error) { 14663 mutex_enter(&rp->r_statelock); 14664 rp->r_flags |= R4LODANGLERS; 14665 mutex_exit(&rp->r_statelock); 14666 return (error); 14667 } 14668 14669 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14670 14671 /* 14672 * Check if the lock owner might have a lock (request was sent but 14673 * no response was received). Also check if there are any remote 14674 * locks on the file. (In theory we shouldn't have to make this 14675 * second check if there's no lock owner, but for now we'll be 14676 * conservative and do it anyway.) If either condition is true, 14677 * send an unlock for the entire file to the server. 14678 * 14679 * Note that no explicit synchronization is needed here. At worst, 14680 * flk_has_remote_locks() will return a false positive, in which case 14681 * the unlock call wastes time but doesn't harm correctness. 14682 */ 14683 14684 if (lop) { 14685 mutex_enter(&lop->lo_lock); 14686 possible_orphan = lop->lo_pending_rqsts; 14687 mutex_exit(&lop->lo_lock); 14688 lock_owner_rele(lop); 14689 } 14690 14691 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14692 14693 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14694 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14695 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14696 (void *)lop)); 14697 14698 if (possible_orphan || flk_has_remote_locks(vp)) { 14699 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14700 ld.l_whence = 0; /* unlock from start of file */ 14701 ld.l_start = 0; 14702 ld.l_len = 0; /* do entire file */ 14703 14704 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14705 cr, NULL); 14706 14707 if (ret != 0) { 14708 /* 14709 * If VOP_FRLOCK fails, make sure we unregister 14710 * local locks before we continue. 14711 */ 14712 ld.l_pid = ttoproc(curthread)->p_pid; 14713 nfs4_register_lock_locally(vp, &ld, flag, offset); 14714 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14715 "nfs4_lockrelease: lock release error on vp" 14716 " %p: error %d.\n", (void *)vp, ret)); 14717 } 14718 } 14719 14720 recov_state.rs_flags = 0; 14721 recov_state.rs_num_retry_despite_err = 0; 14722 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14723 &recovonly); 14724 if (error) { 14725 mutex_enter(&rp->r_statelock); 14726 rp->r_flags |= R4LODANGLERS; 14727 mutex_exit(&rp->r_statelock); 14728 return (error); 14729 } 14730 14731 /* 14732 * So, here we're going to need to retrieve the lock-owner 14733 * again (in case recovery has done a switch-a-roo) and 14734 * remove it because we can. 14735 */ 14736 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14737 14738 if (lop) { 14739 nfs4_rnode_remove_lock_owner(rp, lop); 14740 lock_owner_rele(lop); 14741 } 14742 14743 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14744 return (0); 14745 } 14746 14747 /* 14748 * Wait for 'tick_delay' clock ticks. 14749 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14750 * NOTE: lock_lease_time is in seconds. 14751 * 14752 * XXX For future improvements, should implement a waiting queue scheme. 14753 */ 14754 static int 14755 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14756 { 14757 long milliseconds_delay; 14758 time_t lock_lease_time; 14759 14760 /* wait tick_delay clock ticks or siginteruptus */ 14761 if (delay_sig(*tick_delay)) { 14762 return (EINTR); 14763 } 14764 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14765 "reissue the lock request: blocked for %ld clock ticks: %ld " 14766 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14767 14768 /* get the lease time */ 14769 lock_lease_time = r2lease_time(rp); 14770 14771 /* drv_hztousec converts ticks to microseconds */ 14772 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14773 if (milliseconds_delay < lock_lease_time * 1000) { 14774 *tick_delay = 2 * *tick_delay; 14775 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14776 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14777 } 14778 return (0); 14779 } 14780 14781 14782 void 14783 nfs4_vnops_init(void) 14784 { 14785 } 14786 14787 void 14788 nfs4_vnops_fini(void) 14789 { 14790 } 14791 14792 /* 14793 * Return a reference to the directory (parent) vnode for a given vnode, 14794 * using the saved pathname information and the directory file handle. The 14795 * caller is responsible for disposing of the reference. 14796 * Returns zero or an errno value. 14797 * 14798 * Caller should set need_start_op to FALSE if it is the recovery 14799 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14800 */ 14801 int 14802 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14803 { 14804 svnode_t *svnp; 14805 vnode_t *dvp = NULL; 14806 servinfo4_t *svp; 14807 nfs4_fname_t *mfname; 14808 int error; 14809 14810 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14811 14812 if (vp->v_flag & VROOT) { 14813 nfs4_sharedfh_t *sfh; 14814 nfs_fh4 fh; 14815 mntinfo4_t *mi; 14816 14817 ASSERT(vp->v_type == VREG); 14818 14819 mi = VTOMI4(vp); 14820 svp = mi->mi_curr_serv; 14821 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14822 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14823 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14824 sfh = sfh4_get(&fh, VTOMI4(vp)); 14825 nfs_rw_exit(&svp->sv_lock); 14826 mfname = mi->mi_fname; 14827 fn_hold(mfname); 14828 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14829 sfh4_rele(&sfh); 14830 14831 if (dvp->v_type == VNON) 14832 dvp->v_type = VDIR; 14833 *dvpp = dvp; 14834 return (0); 14835 } 14836 14837 svnp = VTOSV(vp); 14838 14839 if (svnp == NULL) { 14840 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14841 "shadow node is NULL")); 14842 return (EINVAL); 14843 } 14844 14845 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14846 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14847 "shadow node name or dfh val == NULL")); 14848 return (EINVAL); 14849 } 14850 14851 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14852 (int)need_start_op); 14853 if (error != 0) { 14854 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14855 "nfs4_make_dotdot returned %d", error)); 14856 return (error); 14857 } 14858 if (!dvp) { 14859 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14860 "nfs4_make_dotdot returned a NULL dvp")); 14861 return (EIO); 14862 } 14863 if (dvp->v_type == VNON) 14864 dvp->v_type = VDIR; 14865 ASSERT(dvp->v_type == VDIR); 14866 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14867 mutex_enter(&dvp->v_lock); 14868 dvp->v_flag |= V_XATTRDIR; 14869 mutex_exit(&dvp->v_lock); 14870 } 14871 *dvpp = dvp; 14872 return (0); 14873 } 14874 14875 /* 14876 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14877 * length that fnamep can accept, including the trailing null. 14878 * Returns 0 if okay, returns an errno value if there was a problem. 14879 */ 14880 14881 int 14882 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14883 { 14884 char *fn; 14885 int err = 0; 14886 servinfo4_t *svp; 14887 svnode_t *shvp; 14888 14889 /* 14890 * If the file being opened has VROOT set, then this is 14891 * a "file" mount. sv_name will not be interesting, so 14892 * go back to the servinfo4 to get the original mount 14893 * path and strip off all but the final edge. Otherwise 14894 * just return the name from the shadow vnode. 14895 */ 14896 14897 if (vp->v_flag & VROOT) { 14898 14899 svp = VTOMI4(vp)->mi_curr_serv; 14900 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14901 14902 fn = strrchr(svp->sv_path, '/'); 14903 if (fn == NULL) 14904 err = EINVAL; 14905 else 14906 fn++; 14907 } else { 14908 shvp = VTOSV(vp); 14909 fn = fn_name(shvp->sv_name); 14910 } 14911 14912 if (err == 0) 14913 if (strlen(fn) < maxlen) 14914 (void) strcpy(fnamep, fn); 14915 else 14916 err = ENAMETOOLONG; 14917 14918 if (vp->v_flag & VROOT) 14919 nfs_rw_exit(&svp->sv_lock); 14920 else 14921 kmem_free(fn, MAXNAMELEN); 14922 14923 return (err); 14924 } 14925 14926 /* 14927 * Bookkeeping for a close that doesn't need to go over the wire. 14928 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14929 * it is left at 1. 14930 */ 14931 void 14932 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14933 { 14934 rnode4_t *rp; 14935 mntinfo4_t *mi; 14936 14937 mi = VTOMI4(vp); 14938 rp = VTOR4(vp); 14939 14940 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14941 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14942 ASSERT(nfs_zone() == mi->mi_zone); 14943 ASSERT(mutex_owned(&osp->os_sync_lock)); 14944 ASSERT(*have_lockp); 14945 14946 if (!osp->os_valid || 14947 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14948 return; 14949 } 14950 14951 /* 14952 * This removes the reference obtained at OPEN; ie, 14953 * when the open stream structure was created. 14954 * 14955 * We don't have to worry about calling 'open_stream_rele' 14956 * since we our currently holding a reference to this 14957 * open stream which means the count can not go to 0 with 14958 * this decrement. 14959 */ 14960 ASSERT(osp->os_ref_count >= 2); 14961 osp->os_ref_count--; 14962 osp->os_valid = 0; 14963 mutex_exit(&osp->os_sync_lock); 14964 *have_lockp = 0; 14965 14966 nfs4_dec_state_ref_count(mi); 14967 } 14968 14969 /* 14970 * Close all remaining open streams on the rnode. These open streams 14971 * could be here because: 14972 * - The close attempted at either close or delmap failed 14973 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14974 * - Someone did mknod on a regular file but never opened it 14975 */ 14976 int 14977 nfs4close_all(vnode_t *vp, cred_t *cr) 14978 { 14979 nfs4_open_stream_t *osp; 14980 int error; 14981 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14982 rnode4_t *rp; 14983 14984 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14985 14986 error = 0; 14987 rp = VTOR4(vp); 14988 14989 /* 14990 * At this point, all we know is that the last time 14991 * someone called vn_rele, the count was 1. Since then, 14992 * the vnode could have been re-activated. We want to 14993 * loop through the open streams and close each one, but 14994 * we have to be careful since once we release the rnode 14995 * hash bucket lock, someone else is free to come in and 14996 * re-activate the rnode and add new open streams. The 14997 * strategy is take the rnode hash bucket lock, verify that 14998 * the count is still 1, grab the open stream off the 14999 * head of the list and mark it invalid, then release the 15000 * rnode hash bucket lock and proceed with that open stream. 15001 * This is ok because nfs4close_one() will acquire the proper 15002 * open/create to close/destroy synchronization for open 15003 * streams, and will ensure that if someone has reopened 15004 * the open stream after we've dropped the hash bucket lock 15005 * then we'll just simply return without destroying the 15006 * open stream. 15007 * Repeat until the list is empty. 15008 */ 15009 15010 for (;;) { 15011 15012 /* make sure vnode hasn't been reactivated */ 15013 rw_enter(&rp->r_hashq->r_lock, RW_READER); 15014 mutex_enter(&vp->v_lock); 15015 if (vp->v_count > 1) { 15016 mutex_exit(&vp->v_lock); 15017 rw_exit(&rp->r_hashq->r_lock); 15018 break; 15019 } 15020 /* 15021 * Grabbing r_os_lock before releasing v_lock prevents 15022 * a window where the rnode/open stream could get 15023 * reactivated (and os_force_close set to 0) before we 15024 * had a chance to set os_force_close to 1. 15025 */ 15026 mutex_enter(&rp->r_os_lock); 15027 mutex_exit(&vp->v_lock); 15028 15029 osp = list_head(&rp->r_open_streams); 15030 if (!osp) { 15031 /* nothing left to CLOSE OTW, so return */ 15032 mutex_exit(&rp->r_os_lock); 15033 rw_exit(&rp->r_hashq->r_lock); 15034 break; 15035 } 15036 15037 mutex_enter(&rp->r_statev4_lock); 15038 /* the file can't still be mem mapped */ 15039 ASSERT(rp->r_mapcnt == 0); 15040 if (rp->created_v4) 15041 rp->created_v4 = 0; 15042 mutex_exit(&rp->r_statev4_lock); 15043 15044 /* 15045 * Grab a ref on this open stream; nfs4close_one 15046 * will mark it as invalid 15047 */ 15048 mutex_enter(&osp->os_sync_lock); 15049 osp->os_ref_count++; 15050 osp->os_force_close = 1; 15051 mutex_exit(&osp->os_sync_lock); 15052 mutex_exit(&rp->r_os_lock); 15053 rw_exit(&rp->r_hashq->r_lock); 15054 15055 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 15056 15057 /* Update error if it isn't already non-zero */ 15058 if (error == 0) { 15059 if (e.error) 15060 error = e.error; 15061 else if (e.stat) 15062 error = geterrno4(e.stat); 15063 } 15064 15065 #ifdef DEBUG 15066 nfs4close_all_cnt++; 15067 #endif 15068 /* Release the ref on osp acquired above. */ 15069 open_stream_rele(osp, rp); 15070 15071 /* Proceed to the next open stream, if any */ 15072 } 15073 return (error); 15074 } 15075 15076 /* 15077 * nfs4close_one - close one open stream for a file if needed. 15078 * 15079 * "close_type" indicates which close path this is: 15080 * CLOSE_NORM: close initiated via VOP_CLOSE. 15081 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 15082 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 15083 * the close and release of client state for this open stream 15084 * (unless someone else has the open stream open). 15085 * CLOSE_RESEND: indicates the request is a replay of an earlier request 15086 * (e.g., due to abort because of a signal). 15087 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 15088 * 15089 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 15090 * recovery. Instead, the caller is expected to deal with retries. 15091 * 15092 * The caller can either pass in the osp ('provided_osp') or not. 15093 * 15094 * 'access_bits' represents the access we are closing/downgrading. 15095 * 15096 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 15097 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 15098 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15099 * 15100 * Errors are returned via the nfs4_error_t. 15101 */ 15102 void 15103 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15104 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15105 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15106 uint_t mmap_flags) 15107 { 15108 nfs4_open_owner_t *oop; 15109 nfs4_open_stream_t *osp = NULL; 15110 int retry = 0; 15111 int num_retries = NFS4_NUM_RECOV_RETRIES; 15112 rnode4_t *rp; 15113 mntinfo4_t *mi; 15114 nfs4_recov_state_t recov_state; 15115 cred_t *cred_otw = NULL; 15116 bool_t recovonly = FALSE; 15117 int isrecov; 15118 int force_close; 15119 int close_failed = 0; 15120 int did_dec_count = 0; 15121 int did_start_op = 0; 15122 int did_force_recovlock = 0; 15123 int did_start_seqid_sync = 0; 15124 int have_sync_lock = 0; 15125 15126 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15127 15128 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15129 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15130 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15131 len, maxprot, mmap_flags, access_bits)); 15132 15133 nfs4_error_zinit(ep); 15134 rp = VTOR4(vp); 15135 mi = VTOMI4(vp); 15136 isrecov = (close_type == CLOSE_RESEND || 15137 close_type == CLOSE_AFTER_RESEND); 15138 15139 /* 15140 * First get the open owner. 15141 */ 15142 if (!provided_osp) { 15143 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15144 } else { 15145 oop = provided_osp->os_open_owner; 15146 ASSERT(oop != NULL); 15147 open_owner_hold(oop); 15148 } 15149 15150 if (!oop) { 15151 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15152 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15153 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15154 (void *)provided_osp, close_type)); 15155 ep->error = EIO; 15156 goto out; 15157 } 15158 15159 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15160 recov_retry: 15161 osp = NULL; 15162 close_failed = 0; 15163 force_close = (close_type == CLOSE_FORCE); 15164 retry = 0; 15165 did_start_op = 0; 15166 did_force_recovlock = 0; 15167 did_start_seqid_sync = 0; 15168 have_sync_lock = 0; 15169 recovonly = FALSE; 15170 recov_state.rs_flags = 0; 15171 recov_state.rs_num_retry_despite_err = 0; 15172 15173 /* 15174 * Second synchronize with recovery. 15175 */ 15176 if (!isrecov) { 15177 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15178 &recov_state, &recovonly); 15179 if (!ep->error) { 15180 did_start_op = 1; 15181 } else { 15182 close_failed = 1; 15183 /* 15184 * If we couldn't get start_fop, but have to 15185 * cleanup state, then at least acquire the 15186 * mi_recovlock so we can synchronize with 15187 * recovery. 15188 */ 15189 if (close_type == CLOSE_FORCE) { 15190 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15191 RW_READER, FALSE); 15192 did_force_recovlock = 1; 15193 } else 15194 goto out; 15195 } 15196 } 15197 15198 /* 15199 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15200 * set 'recovonly' to TRUE since most likely this is due to 15201 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15202 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15203 * to retry, causing us to loop until recovery finishes. Plus we 15204 * don't need protection over the open seqid since we're not going 15205 * OTW, hence don't need to use the seqid. 15206 */ 15207 if (recovonly == FALSE) { 15208 /* need to grab the open owner sync before 'os_sync_lock' */ 15209 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15210 if (ep->error == EAGAIN) { 15211 ASSERT(!isrecov); 15212 if (did_start_op) 15213 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15214 &recov_state, TRUE); 15215 if (did_force_recovlock) 15216 nfs_rw_exit(&mi->mi_recovlock); 15217 goto recov_retry; 15218 } 15219 did_start_seqid_sync = 1; 15220 } 15221 15222 /* 15223 * Third get an open stream and acquire 'os_sync_lock' to 15224 * sychronize the opening/creating of an open stream with the 15225 * closing/destroying of an open stream. 15226 */ 15227 if (!provided_osp) { 15228 /* returns with 'os_sync_lock' held */ 15229 osp = find_open_stream(oop, rp); 15230 if (!osp) { 15231 ep->error = EIO; 15232 goto out; 15233 } 15234 } else { 15235 osp = provided_osp; 15236 open_stream_hold(osp); 15237 mutex_enter(&osp->os_sync_lock); 15238 } 15239 have_sync_lock = 1; 15240 15241 ASSERT(oop == osp->os_open_owner); 15242 15243 /* 15244 * Fourth, do any special pre-OTW CLOSE processing 15245 * based on the specific close type. 15246 */ 15247 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15248 !did_dec_count) { 15249 ASSERT(osp->os_open_ref_count > 0); 15250 osp->os_open_ref_count--; 15251 did_dec_count = 1; 15252 if (osp->os_open_ref_count == 0) 15253 osp->os_final_close = 1; 15254 } 15255 15256 if (close_type == CLOSE_FORCE) { 15257 /* see if somebody reopened the open stream. */ 15258 if (!osp->os_force_close) { 15259 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15260 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15261 "was reopened, vp %p", (void *)osp, (void *)vp)); 15262 ep->error = 0; 15263 ep->stat = NFS4_OK; 15264 goto out; 15265 } 15266 15267 if (!osp->os_final_close && !did_dec_count) { 15268 osp->os_open_ref_count--; 15269 did_dec_count = 1; 15270 } 15271 15272 /* 15273 * We can't depend on os_open_ref_count being 0 due to the 15274 * way executables are opened (VN_RELE to match a VOP_OPEN). 15275 */ 15276 #ifdef NOTYET 15277 ASSERT(osp->os_open_ref_count == 0); 15278 #endif 15279 if (osp->os_open_ref_count != 0) { 15280 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15281 "nfs4close_one: should panic here on an " 15282 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15283 "since this is probably the exec problem.")); 15284 15285 osp->os_open_ref_count = 0; 15286 } 15287 15288 /* 15289 * There is the possibility that nfs4close_one() 15290 * for close_type == CLOSE_DELMAP couldn't find the 15291 * open stream, thus couldn't decrement its os_mapcnt; 15292 * therefore we can't use this ASSERT yet. 15293 */ 15294 #ifdef NOTYET 15295 ASSERT(osp->os_mapcnt == 0); 15296 #endif 15297 osp->os_mapcnt = 0; 15298 } 15299 15300 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15301 ASSERT(osp->os_mapcnt >= btopr(len)); 15302 15303 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15304 osp->os_mmap_write -= btopr(len); 15305 if (maxprot & PROT_READ) 15306 osp->os_mmap_read -= btopr(len); 15307 if (maxprot & PROT_EXEC) 15308 osp->os_mmap_read -= btopr(len); 15309 /* mirror the PROT_NONE check in nfs4_addmap() */ 15310 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15311 !(maxprot & PROT_EXEC)) 15312 osp->os_mmap_read -= btopr(len); 15313 osp->os_mapcnt -= btopr(len); 15314 did_dec_count = 1; 15315 } 15316 15317 if (recovonly) { 15318 nfs4_lost_rqst_t lost_rqst; 15319 15320 /* request should not already be in recovery queue */ 15321 ASSERT(lrp == NULL); 15322 nfs4_error_init(ep, EINTR); 15323 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15324 osp, cred_otw, vp); 15325 mutex_exit(&osp->os_sync_lock); 15326 have_sync_lock = 0; 15327 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15328 lost_rqst.lr_op == OP_CLOSE ? 15329 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL); 15330 close_failed = 1; 15331 force_close = 0; 15332 goto close_cleanup; 15333 } 15334 15335 /* 15336 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15337 * we stopped operating on the open owner's <old oo_name, old seqid> 15338 * space, which means we stopped operating on the open stream 15339 * too. So don't go OTW (as the seqid is likely bad, and the 15340 * stateid could be stale, potentially triggering a false 15341 * setclientid), and just clean up the client's internal state. 15342 */ 15343 if (osp->os_orig_oo_name != oop->oo_name) { 15344 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15345 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15346 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15347 "oo_name %" PRIx64")", 15348 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15349 oop->oo_name)); 15350 close_failed = 1; 15351 } 15352 15353 /* If the file failed recovery, just quit. */ 15354 mutex_enter(&rp->r_statelock); 15355 if (rp->r_flags & R4RECOVERR) { 15356 close_failed = 1; 15357 } 15358 mutex_exit(&rp->r_statelock); 15359 15360 /* 15361 * If the force close path failed to obtain start_fop 15362 * then skip the OTW close and just remove the state. 15363 */ 15364 if (close_failed) 15365 goto close_cleanup; 15366 15367 /* 15368 * Fifth, check to see if there are still mapped pages or other 15369 * opens using this open stream. If there are then we can't 15370 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15371 */ 15372 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15373 nfs4_lost_rqst_t new_lost_rqst; 15374 bool_t needrecov = FALSE; 15375 cred_t *odg_cred_otw = NULL; 15376 seqid4 open_dg_seqid = 0; 15377 15378 if (osp->os_delegation) { 15379 /* 15380 * If this open stream was never OPENed OTW then we 15381 * surely can't DOWNGRADE it (especially since the 15382 * osp->open_stateid is really a delegation stateid 15383 * when os_delegation is 1). 15384 */ 15385 if (access_bits & FREAD) 15386 osp->os_share_acc_read--; 15387 if (access_bits & FWRITE) 15388 osp->os_share_acc_write--; 15389 osp->os_share_deny_none--; 15390 nfs4_error_zinit(ep); 15391 goto out; 15392 } 15393 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15394 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15395 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15396 if (needrecov && !isrecov) { 15397 bool_t abort; 15398 nfs4_bseqid_entry_t *bsep = NULL; 15399 15400 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15401 bsep = nfs4_create_bseqid_entry(oop, NULL, 15402 vp, 0, 15403 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15404 open_dg_seqid); 15405 15406 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15407 oop, osp, odg_cred_otw, vp, access_bits, 0); 15408 mutex_exit(&osp->os_sync_lock); 15409 have_sync_lock = 0; 15410 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15411 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15412 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15413 bsep, NULL, NULL); 15414 if (odg_cred_otw) 15415 crfree(odg_cred_otw); 15416 if (bsep) 15417 kmem_free(bsep, sizeof (*bsep)); 15418 15419 if (abort == TRUE) 15420 goto out; 15421 15422 if (did_start_seqid_sync) { 15423 nfs4_end_open_seqid_sync(oop); 15424 did_start_seqid_sync = 0; 15425 } 15426 open_stream_rele(osp, rp); 15427 15428 if (did_start_op) 15429 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15430 &recov_state, FALSE); 15431 if (did_force_recovlock) 15432 nfs_rw_exit(&mi->mi_recovlock); 15433 15434 goto recov_retry; 15435 } else { 15436 if (odg_cred_otw) 15437 crfree(odg_cred_otw); 15438 } 15439 goto out; 15440 } 15441 15442 /* 15443 * If this open stream was created as the results of an open 15444 * while holding a delegation, then just release it; no need 15445 * to do an OTW close. Otherwise do a "normal" OTW close. 15446 */ 15447 if (osp->os_delegation) { 15448 nfs4close_notw(vp, osp, &have_sync_lock); 15449 nfs4_error_zinit(ep); 15450 goto out; 15451 } 15452 15453 /* 15454 * If this stream is not valid, we're done. 15455 */ 15456 if (!osp->os_valid) { 15457 nfs4_error_zinit(ep); 15458 goto out; 15459 } 15460 15461 /* 15462 * Last open or mmap ref has vanished, need to do an OTW close. 15463 * First check to see if a close is still necessary. 15464 */ 15465 if (osp->os_failed_reopen) { 15466 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15467 "don't close OTW osp %p since reopen failed.", 15468 (void *)osp)); 15469 /* 15470 * Reopen of the open stream failed, hence the 15471 * stateid of the open stream is invalid/stale, and 15472 * sending this OTW would incorrectly cause another 15473 * round of recovery. In this case, we need to set 15474 * the 'os_valid' bit to 0 so another thread doesn't 15475 * come in and re-open this open stream before 15476 * this "closing" thread cleans up state (decrementing 15477 * the nfs4_server_t's state_ref_count and decrementing 15478 * the os_ref_count). 15479 */ 15480 osp->os_valid = 0; 15481 /* 15482 * This removes the reference obtained at OPEN; ie, 15483 * when the open stream structure was created. 15484 * 15485 * We don't have to worry about calling 'open_stream_rele' 15486 * since we our currently holding a reference to this 15487 * open stream which means the count can not go to 0 with 15488 * this decrement. 15489 */ 15490 ASSERT(osp->os_ref_count >= 2); 15491 osp->os_ref_count--; 15492 nfs4_error_zinit(ep); 15493 close_failed = 0; 15494 goto close_cleanup; 15495 } 15496 15497 ASSERT(osp->os_ref_count > 1); 15498 15499 /* 15500 * Sixth, try the CLOSE OTW. 15501 */ 15502 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15503 close_type, ep, &have_sync_lock); 15504 15505 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15506 /* 15507 * Let the recovery thread be responsible for 15508 * removing the state for CLOSE. 15509 */ 15510 close_failed = 1; 15511 force_close = 0; 15512 retry = 0; 15513 } 15514 15515 /* See if we need to retry with a different cred */ 15516 if ((ep->error == EACCES || 15517 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15518 cred_otw != cr) { 15519 crfree(cred_otw); 15520 cred_otw = cr; 15521 crhold(cred_otw); 15522 retry = 1; 15523 } 15524 15525 if (ep->error || ep->stat) 15526 close_failed = 1; 15527 15528 if (retry && !isrecov && num_retries-- > 0) { 15529 if (have_sync_lock) { 15530 mutex_exit(&osp->os_sync_lock); 15531 have_sync_lock = 0; 15532 } 15533 if (did_start_seqid_sync) { 15534 nfs4_end_open_seqid_sync(oop); 15535 did_start_seqid_sync = 0; 15536 } 15537 open_stream_rele(osp, rp); 15538 15539 if (did_start_op) 15540 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15541 &recov_state, FALSE); 15542 if (did_force_recovlock) 15543 nfs_rw_exit(&mi->mi_recovlock); 15544 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15545 "nfs4close_one: need to retry the close " 15546 "operation")); 15547 goto recov_retry; 15548 } 15549 close_cleanup: 15550 /* 15551 * Seventh and lastly, process our results. 15552 */ 15553 if (close_failed && force_close) { 15554 /* 15555 * It's ok to drop and regrab the 'os_sync_lock' since 15556 * nfs4close_notw() will recheck to make sure the 15557 * "close"/removal of state should happen. 15558 */ 15559 if (!have_sync_lock) { 15560 mutex_enter(&osp->os_sync_lock); 15561 have_sync_lock = 1; 15562 } 15563 /* 15564 * This is last call, remove the ref on the open 15565 * stream created by open and clean everything up. 15566 */ 15567 osp->os_pending_close = 0; 15568 nfs4close_notw(vp, osp, &have_sync_lock); 15569 nfs4_error_zinit(ep); 15570 } 15571 15572 if (!close_failed) { 15573 if (have_sync_lock) { 15574 osp->os_pending_close = 0; 15575 mutex_exit(&osp->os_sync_lock); 15576 have_sync_lock = 0; 15577 } else { 15578 mutex_enter(&osp->os_sync_lock); 15579 osp->os_pending_close = 0; 15580 mutex_exit(&osp->os_sync_lock); 15581 } 15582 if (did_start_op && recov_state.rs_sp != NULL) { 15583 mutex_enter(&recov_state.rs_sp->s_lock); 15584 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15585 mutex_exit(&recov_state.rs_sp->s_lock); 15586 } else { 15587 nfs4_dec_state_ref_count(mi); 15588 } 15589 nfs4_error_zinit(ep); 15590 } 15591 15592 out: 15593 if (have_sync_lock) 15594 mutex_exit(&osp->os_sync_lock); 15595 if (did_start_op) 15596 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15597 recovonly ? TRUE : FALSE); 15598 if (did_force_recovlock) 15599 nfs_rw_exit(&mi->mi_recovlock); 15600 if (cred_otw) 15601 crfree(cred_otw); 15602 if (osp) 15603 open_stream_rele(osp, rp); 15604 if (oop) { 15605 if (did_start_seqid_sync) 15606 nfs4_end_open_seqid_sync(oop); 15607 open_owner_rele(oop); 15608 } 15609 } 15610 15611 /* 15612 * Convert information returned by the server in the LOCK4denied 15613 * structure to the form required by fcntl. 15614 */ 15615 static void 15616 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15617 { 15618 nfs4_lo_name_t *lo; 15619 15620 #ifdef DEBUG 15621 if (denied_to_flk_debug) { 15622 lockt_denied_debug = lockt_denied; 15623 debug_enter("lockt_denied"); 15624 } 15625 #endif 15626 15627 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15628 flk->l_whence = 0; /* aka SEEK_SET */ 15629 flk->l_start = lockt_denied->offset; 15630 flk->l_len = lockt_denied->length; 15631 15632 /* 15633 * If the blocking clientid matches our client id, then we can 15634 * interpret the lockowner (since we built it). If not, then 15635 * fabricate a sysid and pid. Note that the l_sysid field 15636 * in *flk already has the local sysid. 15637 */ 15638 15639 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15640 15641 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15642 lo = (nfs4_lo_name_t *) 15643 lockt_denied->owner.owner_val; 15644 15645 flk->l_pid = lo->ln_pid; 15646 } else { 15647 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15648 "denied_to_flk: bad lock owner length\n")); 15649 15650 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15651 } 15652 } else { 15653 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15654 "denied_to_flk: foreign clientid\n")); 15655 15656 /* 15657 * Construct a new sysid which should be different from 15658 * sysids of other systems. 15659 */ 15660 15661 flk->l_sysid++; 15662 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15663 } 15664 } 15665 15666 static pid_t 15667 lo_to_pid(lock_owner4 *lop) 15668 { 15669 pid_t pid = 0; 15670 uchar_t *cp; 15671 int i; 15672 15673 cp = (uchar_t *)&lop->clientid; 15674 15675 for (i = 0; i < sizeof (lop->clientid); i++) 15676 pid += (pid_t)*cp++; 15677 15678 cp = (uchar_t *)lop->owner_val; 15679 15680 for (i = 0; i < lop->owner_len; i++) 15681 pid += (pid_t)*cp++; 15682 15683 return (pid); 15684 } 15685 15686 /* 15687 * Given a lock pointer, returns the length of that lock. 15688 * "end" is the last locked offset the "l_len" covers from 15689 * the start of the lock. 15690 */ 15691 static off64_t 15692 lock_to_end(flock64_t *lock) 15693 { 15694 off64_t lock_end; 15695 15696 if (lock->l_len == 0) 15697 lock_end = (off64_t)MAXEND; 15698 else 15699 lock_end = lock->l_start + lock->l_len - 1; 15700 15701 return (lock_end); 15702 } 15703 15704 /* 15705 * Given the end of a lock, it will return you the length "l_len" for that lock. 15706 */ 15707 static off64_t 15708 end_to_len(off64_t start, off64_t end) 15709 { 15710 off64_t lock_len; 15711 15712 ASSERT(end >= start); 15713 if (end == MAXEND) 15714 lock_len = 0; 15715 else 15716 lock_len = end - start + 1; 15717 15718 return (lock_len); 15719 } 15720 15721 /* 15722 * On given end for a lock it determines if it is the last locked offset 15723 * or not, if so keeps it as is, else adds one to return the length for 15724 * valid start. 15725 */ 15726 static off64_t 15727 start_check(off64_t x) 15728 { 15729 if (x == MAXEND) 15730 return (x); 15731 else 15732 return (x + 1); 15733 } 15734 15735 /* 15736 * See if these two locks overlap, and if so return 1; 15737 * otherwise, return 0. 15738 */ 15739 static int 15740 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15741 { 15742 off64_t llfp_end, curfp_end; 15743 15744 llfp_end = lock_to_end(llfp); 15745 curfp_end = lock_to_end(curfp); 15746 15747 if (((llfp_end >= curfp->l_start) && 15748 (llfp->l_start <= curfp->l_start)) || 15749 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15750 return (1); 15751 return (0); 15752 } 15753 15754 /* 15755 * Determine what the intersecting lock region is, and add that to the 15756 * 'nl_llpp' locklist in increasing order (by l_start). 15757 */ 15758 static void 15759 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15760 locklist_t **nl_llpp, vnode_t *vp) 15761 { 15762 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15763 off64_t lost_flp_end, local_flp_end, len, start; 15764 15765 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15766 15767 if (!locks_intersect(lost_flp, local_flp)) 15768 return; 15769 15770 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15771 "locks intersect")); 15772 15773 lost_flp_end = lock_to_end(lost_flp); 15774 local_flp_end = lock_to_end(local_flp); 15775 15776 /* Find the starting point of the intersecting region */ 15777 if (local_flp->l_start > lost_flp->l_start) 15778 start = local_flp->l_start; 15779 else 15780 start = lost_flp->l_start; 15781 15782 /* Find the lenght of the intersecting region */ 15783 if (lost_flp_end < local_flp_end) 15784 len = end_to_len(start, lost_flp_end); 15785 else 15786 len = end_to_len(start, local_flp_end); 15787 15788 /* 15789 * Prepare the flock structure for the intersection found and insert 15790 * it into the new list in increasing l_start order. This list contains 15791 * intersections of locks registered by the client with the local host 15792 * and the lost lock. 15793 * The lock type of this lock is the same as that of the local_flp. 15794 */ 15795 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15796 intersect_llp->ll_flock.l_start = start; 15797 intersect_llp->ll_flock.l_len = len; 15798 intersect_llp->ll_flock.l_type = local_flp->l_type; 15799 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15800 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15801 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15802 intersect_llp->ll_vp = vp; 15803 15804 tmp_fllp = *nl_llpp; 15805 cur_fllp = NULL; 15806 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15807 intersect_llp->ll_flock.l_start) { 15808 cur_fllp = tmp_fllp; 15809 tmp_fllp = tmp_fllp->ll_next; 15810 } 15811 if (cur_fllp == NULL) { 15812 /* first on the list */ 15813 intersect_llp->ll_next = *nl_llpp; 15814 *nl_llpp = intersect_llp; 15815 } else { 15816 intersect_llp->ll_next = cur_fllp->ll_next; 15817 cur_fllp->ll_next = intersect_llp; 15818 } 15819 15820 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15821 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15822 intersect_llp->ll_flock.l_start, 15823 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15824 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15825 } 15826 15827 /* 15828 * Our local locking current state is potentially different than 15829 * what the NFSv4 server thinks we have due to a lost lock that was 15830 * resent and then received. We need to reset our "NFSv4" locking 15831 * state to match the current local locking state for this pid since 15832 * that is what the user/application sees as what the world is. 15833 * 15834 * We cannot afford to drop the open/lock seqid sync since then we can 15835 * get confused about what the current local locking state "is" versus 15836 * "was". 15837 * 15838 * If we are unable to fix up the locks, we send SIGLOST to the affected 15839 * process. This is not done if the filesystem has been forcibly 15840 * unmounted, in case the process has already exited and a new process 15841 * exists with the same pid. 15842 */ 15843 static void 15844 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15845 nfs4_lock_owner_t *lop) 15846 { 15847 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15848 mntinfo4_t *mi = VTOMI4(vp); 15849 const int cmd = F_SETLK; 15850 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15851 flock64_t ul_fl; 15852 15853 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15854 "nfs4_reinstitute_local_lock_state")); 15855 15856 /* 15857 * Find active locks for this vp from the local locking code. 15858 * Scan through this list and find out the locks that intersect with 15859 * the lost lock. Once we find the lock that intersects, add the 15860 * intersection area as a new lock to a new list "ri_llp". The lock 15861 * type of the intersection region lock added to ri_llp is the same 15862 * as that found in the active lock list, "list". The intersecting 15863 * region locks are added to ri_llp in increasing l_start order. 15864 */ 15865 ASSERT(nfs_zone() == mi->mi_zone); 15866 15867 locks = flk_active_locks_for_vp(vp); 15868 ri_llp = NULL; 15869 15870 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15871 ASSERT(llp->ll_vp == vp); 15872 /* 15873 * Pick locks that belong to this pid/lockowner 15874 */ 15875 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15876 continue; 15877 15878 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15879 } 15880 15881 /* 15882 * Now we have the list of intersections with the lost lock. These are 15883 * the locks that were/are active before the server replied to the 15884 * last/lost lock. Issue these locks to the server here. Playing these 15885 * locks to the server will re-establish our current local locking state 15886 * with the v4 server. 15887 * If we get an error, send SIGLOST to the application for that lock. 15888 */ 15889 15890 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15891 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15892 "nfs4_reinstitute_local_lock_state: need to issue " 15893 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15894 llp->ll_flock.l_start, 15895 llp->ll_flock.l_start + llp->ll_flock.l_len, 15896 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15897 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15898 /* 15899 * No need to relock what we already have 15900 */ 15901 if (llp->ll_flock.l_type == lost_flp->l_type) 15902 continue; 15903 15904 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15905 } 15906 15907 /* 15908 * Now keeping the start of the lost lock as our reference parse the 15909 * newly created ri_llp locklist to find the ranges that we have locked 15910 * with the v4 server but not in the current local locking. We need 15911 * to unlock these ranges. 15912 * These ranges can also be reffered to as those ranges, where the lost 15913 * lock does not overlap with the locks in the ri_llp but are locked 15914 * since the server replied to the lost lock. 15915 */ 15916 cur_start = lost_flp->l_start; 15917 lost_flp_end = lock_to_end(lost_flp); 15918 15919 ul_fl.l_type = F_UNLCK; 15920 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15921 ul_fl.l_sysid = lost_flp->l_sysid; 15922 ul_fl.l_pid = lost_flp->l_pid; 15923 15924 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15925 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15926 15927 if (llp->ll_flock.l_start <= cur_start) { 15928 cur_start = start_check(llp_ll_flock_end); 15929 continue; 15930 } 15931 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15932 "nfs4_reinstitute_local_lock_state: " 15933 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15934 cur_start, llp->ll_flock.l_start)); 15935 15936 ul_fl.l_start = cur_start; 15937 ul_fl.l_len = end_to_len(cur_start, 15938 (llp->ll_flock.l_start - 1)); 15939 15940 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15941 cur_start = start_check(llp_ll_flock_end); 15942 } 15943 15944 /* 15945 * In the case where the lost lock ends after all intersecting locks, 15946 * unlock the last part of the lost lock range. 15947 */ 15948 if (cur_start != start_check(lost_flp_end)) { 15949 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15950 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15951 "lost lock region [%"PRIx64" - %"PRIx64"]", 15952 cur_start, lost_flp->l_start + lost_flp->l_len)); 15953 15954 ul_fl.l_start = cur_start; 15955 /* 15956 * Is it an to-EOF lock? if so unlock till the end 15957 */ 15958 if (lost_flp->l_len == 0) 15959 ul_fl.l_len = 0; 15960 else 15961 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15962 15963 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15964 } 15965 15966 if (locks != NULL) 15967 flk_free_locklist(locks); 15968 15969 /* Free up our newly created locklist */ 15970 for (llp = ri_llp; llp != NULL; ) { 15971 tmp_llp = llp->ll_next; 15972 kmem_free(llp, sizeof (locklist_t)); 15973 llp = tmp_llp; 15974 } 15975 15976 /* 15977 * Now return back to the original calling nfs4frlock() 15978 * and let us naturally drop our seqid syncs. 15979 */ 15980 } 15981 15982 /* 15983 * Create a lost state record for the given lock reinstantiation request 15984 * and push it onto the lost state queue. 15985 */ 15986 static void 15987 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15988 nfs4_lock_owner_t *lop) 15989 { 15990 nfs4_lost_rqst_t req; 15991 nfs_lock_type4 locktype; 15992 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15993 15994 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15995 15996 locktype = flk_to_locktype(cmd, flk->l_type); 15997 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15998 NULL, NULL, lop, flk, &req, cr, vp); 15999 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 16000 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 16001 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 16002 NULL, NULL, NULL); 16003 } 16004