1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016 STRATO AG. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 /* 31 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 32 * Use is subject to license terms. 33 */ 34 35 /* 36 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 37 * All Rights Reserved 38 */ 39 40 /* 41 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 42 */ 43 44 #include <sys/param.h> 45 #include <sys/types.h> 46 #include <sys/systm.h> 47 #include <sys/cred.h> 48 #include <sys/time.h> 49 #include <sys/vnode.h> 50 #include <sys/vfs.h> 51 #include <sys/vfs_opreg.h> 52 #include <sys/file.h> 53 #include <sys/filio.h> 54 #include <sys/uio.h> 55 #include <sys/buf.h> 56 #include <sys/mman.h> 57 #include <sys/pathname.h> 58 #include <sys/dirent.h> 59 #include <sys/debug.h> 60 #include <sys/vmsystm.h> 61 #include <sys/fcntl.h> 62 #include <sys/flock.h> 63 #include <sys/swap.h> 64 #include <sys/errno.h> 65 #include <sys/strsubr.h> 66 #include <sys/sysmacros.h> 67 #include <sys/kmem.h> 68 #include <sys/cmn_err.h> 69 #include <sys/pathconf.h> 70 #include <sys/utsname.h> 71 #include <sys/dnlc.h> 72 #include <sys/acl.h> 73 #include <sys/systeminfo.h> 74 #include <sys/policy.h> 75 #include <sys/sdt.h> 76 #include <sys/list.h> 77 #include <sys/stat.h> 78 #include <sys/zone.h> 79 80 #include <rpc/types.h> 81 #include <rpc/auth.h> 82 #include <rpc/clnt.h> 83 84 #include <nfs/nfs.h> 85 #include <nfs/nfs_clnt.h> 86 #include <nfs/nfs_acl.h> 87 #include <nfs/lm.h> 88 #include <nfs/nfs4.h> 89 #include <nfs/nfs4_kprot.h> 90 #include <nfs/rnode4.h> 91 #include <nfs/nfs4_clnt.h> 92 93 #include <vm/hat.h> 94 #include <vm/as.h> 95 #include <vm/page.h> 96 #include <vm/pvn.h> 97 #include <vm/seg.h> 98 #include <vm/seg_map.h> 99 #include <vm/seg_kpm.h> 100 #include <vm/seg_vn.h> 101 102 #include <fs/fs_subr.h> 103 104 #include <sys/ddi.h> 105 #include <sys/int_fmtio.h> 106 #include <sys/fs/autofs.h> 107 108 typedef struct { 109 nfs4_ga_res_t *di_garp; 110 cred_t *di_cred; 111 hrtime_t di_time_call; 112 } dirattr_info_t; 113 114 typedef enum nfs4_acl_op { 115 NFS4_ACL_GET, 116 NFS4_ACL_SET 117 } nfs4_acl_op_t; 118 119 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *); 120 121 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 122 char *, dirattr_info_t *); 123 124 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 125 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 126 nfs4_error_t *, int *); 127 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 128 cred_t *); 129 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 130 stable_how4 *); 131 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 132 cred_t *, bool_t, struct uio *); 133 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 134 vsecattr_t *); 135 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 136 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 137 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 138 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 139 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 140 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 141 int, vnode_t **, cred_t *); 142 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 143 cred_t *, int, int, enum createmode4, int); 144 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 145 caller_context_t *); 146 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 147 vnode_t *, char *, cred_t *, nfsstat4 *); 148 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 149 vnode_t *, char *, cred_t *, nfsstat4 *); 150 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 151 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 152 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 153 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 154 page_t *[], size_t, struct seg *, caddr_t, 155 enum seg_rw, cred_t *); 156 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 157 cred_t *); 158 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 159 int, cred_t *); 160 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 161 int, cred_t *); 162 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 163 static void nfs4_set_mod(vnode_t *); 164 static void nfs4_get_commit(vnode_t *); 165 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 166 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 167 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 168 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 169 cred_t *); 170 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 171 cred_t *); 172 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 173 hrtime_t, vnode_t *, cred_t *); 174 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 175 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 176 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 177 u_offset_t); 178 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 179 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 180 static cred_t *state_to_cred(nfs4_open_stream_t *); 181 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 182 static pid_t lo_to_pid(lock_owner4 *); 183 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 184 cred_t *, nfs4_lock_owner_t *); 185 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 186 nfs4_lock_owner_t *); 187 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 188 static void nfs4_delmap_callback(struct as *, void *, uint_t); 189 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 190 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 191 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 192 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 193 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 194 uid_t, gid_t, int); 195 196 /* 197 * Routines that implement the setting of v4 args for the misc. ops 198 */ 199 static void nfs4args_lock_free(nfs_argop4 *); 200 static void nfs4args_lockt_free(nfs_argop4 *); 201 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 202 int, rnode4_t *, cred_t *, bitmap4, int *, 203 nfs4_stateid_types_t *); 204 static void nfs4args_setattr_free(nfs_argop4 *); 205 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 206 bitmap4); 207 static void nfs4args_verify_free(nfs_argop4 *); 208 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 209 WRITE4args **, nfs4_stateid_types_t *); 210 211 /* 212 * These are the vnode ops functions that implement the vnode interface to 213 * the networked file system. See more comments below at nfs4_vnodeops. 214 */ 215 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 216 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 217 caller_context_t *); 218 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 219 caller_context_t *); 220 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 221 caller_context_t *); 222 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 223 caller_context_t *); 224 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 225 caller_context_t *); 226 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 227 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 228 caller_context_t *); 229 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 230 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 231 int, vnode_t **, cred_t *, int, caller_context_t *, 232 vsecattr_t *); 233 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 234 int); 235 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 236 caller_context_t *, int); 237 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 238 caller_context_t *, int); 239 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 240 cred_t *, caller_context_t *, int, vsecattr_t *); 241 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 242 caller_context_t *, int); 243 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 244 cred_t *, caller_context_t *, int); 245 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 246 caller_context_t *, int); 247 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 248 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 249 page_t *[], size_t, struct seg *, caddr_t, 250 enum seg_rw, cred_t *, caller_context_t *); 251 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 252 caller_context_t *); 253 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 254 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 255 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 256 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 257 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 258 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 259 struct flk_callback *, cred_t *, caller_context_t *); 260 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 261 cred_t *, caller_context_t *); 262 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 263 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 264 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 265 cred_t *, caller_context_t *); 266 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 267 caller_context_t *); 268 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 269 caller_context_t *); 270 /* 271 * These vnode ops are required to be called from outside this source file, 272 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 273 * as static. 274 */ 275 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 276 caller_context_t *); 277 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 278 int nfs4_lookup(vnode_t *, char *, vnode_t **, 279 struct pathname *, int, vnode_t *, cred_t *, 280 caller_context_t *, int *, pathname_t *); 281 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 282 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 283 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 284 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 285 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 286 caller_context_t *); 287 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 288 caller_context_t *); 289 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 290 caller_context_t *); 291 292 /* 293 * Used for nfs4_commit_vp() to indicate if we should 294 * wait on pending writes. 295 */ 296 #define NFS4_WRITE_NOWAIT 0 297 #define NFS4_WRITE_WAIT 1 298 299 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 300 301 /* 302 * Error flags used to pass information about certain special errors 303 * which need to be handled specially. 304 */ 305 #define NFS_EOF -98 306 #define NFS_VERF_MISMATCH -97 307 308 /* 309 * Flags used to differentiate between which operation drove the 310 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 311 */ 312 #define NFS4_CLOSE_OP 0x1 313 #define NFS4_DELMAP_OP 0x2 314 #define NFS4_INACTIVE_OP 0x3 315 316 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 317 318 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 319 #define ALIGN64(x, ptr, sz) \ 320 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 321 if (x) { \ 322 x = sizeof (uint64_t) - (x); \ 323 sz -= (x); \ 324 ptr += (x); \ 325 } 326 327 #ifdef DEBUG 328 int nfs4_client_attr_debug = 0; 329 int nfs4_client_state_debug = 0; 330 int nfs4_client_shadow_debug = 0; 331 int nfs4_client_lock_debug = 0; 332 int nfs4_seqid_sync = 0; 333 int nfs4_client_map_debug = 0; 334 static int nfs4_pageio_debug = 0; 335 int nfs4_client_inactive_debug = 0; 336 int nfs4_client_recov_debug = 0; 337 int nfs4_client_failover_debug = 0; 338 int nfs4_client_call_debug = 0; 339 int nfs4_client_lookup_debug = 0; 340 int nfs4_client_zone_debug = 0; 341 int nfs4_lost_rqst_debug = 0; 342 int nfs4_rdattrerr_debug = 0; 343 int nfs4_open_stream_debug = 0; 344 345 int nfs4read_error_inject; 346 347 static int nfs4_create_misses = 0; 348 349 static int nfs4_readdir_cache_shorts = 0; 350 static int nfs4_readdir_readahead = 0; 351 352 static int nfs4_bio_do_stop = 0; 353 354 static int nfs4_lostpage = 0; /* number of times we lost original page */ 355 356 int nfs4_mmap_debug = 0; 357 358 static int nfs4_pathconf_cache_hits = 0; 359 static int nfs4_pathconf_cache_misses = 0; 360 361 int nfs4close_all_cnt; 362 int nfs4close_one_debug = 0; 363 int nfs4close_notw_debug = 0; 364 365 int denied_to_flk_debug = 0; 366 void *lockt_denied_debug; 367 368 #endif 369 370 /* 371 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 372 * or NFS4ERR_RESOURCE. 373 */ 374 static int confirm_retry_sec = 30; 375 376 static int nfs4_lookup_neg_cache = 1; 377 378 /* 379 * number of pages to read ahead 380 * optimized for 100 base-T. 381 */ 382 static int nfs4_nra = 4; 383 384 static int nfs4_do_symlink_cache = 1; 385 386 static int nfs4_pathconf_disable_cache = 0; 387 388 /* 389 * These are the vnode ops routines which implement the vnode interface to 390 * the networked file system. These routines just take their parameters, 391 * make them look networkish by putting the right info into interface structs, 392 * and then calling the appropriate remote routine(s) to do the work. 393 * 394 * Note on directory name lookup cacheing: If we detect a stale fhandle, 395 * we purge the directory cache relative to that vnode. This way, the 396 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 397 * more details on rnode locking. 398 */ 399 400 struct vnodeops *nfs4_vnodeops; 401 402 const fs_operation_def_t nfs4_vnodeops_template[] = { 403 VOPNAME_OPEN, { .vop_open = nfs4_open }, 404 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 405 VOPNAME_READ, { .vop_read = nfs4_read }, 406 VOPNAME_WRITE, { .vop_write = nfs4_write }, 407 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 408 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 409 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 410 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 411 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 412 VOPNAME_CREATE, { .vop_create = nfs4_create }, 413 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 414 VOPNAME_LINK, { .vop_link = nfs4_link }, 415 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 416 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 417 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 418 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 419 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 420 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 421 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 422 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 423 VOPNAME_FID, { .vop_fid = nfs4_fid }, 424 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 425 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 426 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 427 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 428 VOPNAME_SPACE, { .vop_space = nfs4_space }, 429 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 430 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 431 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 432 VOPNAME_MAP, { .vop_map = nfs4_map }, 433 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 434 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 435 /* no separate nfs4_dump */ 436 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 437 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 438 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 439 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 440 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 441 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 442 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 443 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 444 NULL, NULL 445 }; 446 447 /* 448 * The following are subroutines and definitions to set args or get res 449 * for the different nfsv4 ops 450 */ 451 452 void 453 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 454 { 455 int i; 456 457 for (i = 0; i < arglen; i++) { 458 if (argop[i].argop == OP_LOOKUP) { 459 kmem_free( 460 argop[i].nfs_argop4_u.oplookup. 461 objname.utf8string_val, 462 argop[i].nfs_argop4_u.oplookup. 463 objname.utf8string_len); 464 } 465 } 466 } 467 468 static void 469 nfs4args_lock_free(nfs_argop4 *argop) 470 { 471 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 472 473 if (locker->new_lock_owner == TRUE) { 474 open_to_lock_owner4 *open_owner; 475 476 open_owner = &locker->locker4_u.open_owner; 477 if (open_owner->lock_owner.owner_val != NULL) { 478 kmem_free(open_owner->lock_owner.owner_val, 479 open_owner->lock_owner.owner_len); 480 } 481 } 482 } 483 484 static void 485 nfs4args_lockt_free(nfs_argop4 *argop) 486 { 487 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 488 489 if (lowner->owner_val != NULL) { 490 kmem_free(lowner->owner_val, lowner->owner_len); 491 } 492 } 493 494 static void 495 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 496 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 497 nfs4_stateid_types_t *sid_types) 498 { 499 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 500 mntinfo4_t *mi; 501 502 argop->argop = OP_SETATTR; 503 /* 504 * The stateid is set to 0 if client is not modifying the size 505 * and otherwise to whatever nfs4_get_stateid() returns. 506 * 507 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 508 * state struct could be found for the process/file pair. We may 509 * want to change this in the future (by OPENing the file). See 510 * bug # 4474852. 511 */ 512 if (vap->va_mask & AT_SIZE) { 513 514 ASSERT(rp != NULL); 515 mi = VTOMI4(RTOV4(rp)); 516 517 argop->nfs_argop4_u.opsetattr.stateid = 518 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 519 OP_SETATTR, sid_types, FALSE); 520 } else { 521 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 522 sizeof (stateid4)); 523 } 524 525 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 526 if (*error) 527 bzero(attr, sizeof (*attr)); 528 } 529 530 static void 531 nfs4args_setattr_free(nfs_argop4 *argop) 532 { 533 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 534 } 535 536 static int 537 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 538 bitmap4 supp) 539 { 540 fattr4 *attr; 541 int error = 0; 542 543 argop->argop = op; 544 switch (op) { 545 case OP_VERIFY: 546 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 547 break; 548 case OP_NVERIFY: 549 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 550 break; 551 default: 552 return (EINVAL); 553 } 554 if (!error) 555 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 556 if (error) 557 bzero(attr, sizeof (*attr)); 558 return (error); 559 } 560 561 static void 562 nfs4args_verify_free(nfs_argop4 *argop) 563 { 564 switch (argop->argop) { 565 case OP_VERIFY: 566 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 567 break; 568 case OP_NVERIFY: 569 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 570 break; 571 default: 572 break; 573 } 574 } 575 576 static void 577 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 578 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 579 { 580 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 581 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 582 583 argop->argop = OP_WRITE; 584 wargs->stable = stable; 585 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 586 mi, OP_WRITE, sid_tp); 587 wargs->mblk = NULL; 588 *wargs_pp = wargs; 589 } 590 591 void 592 nfs4args_copen_free(OPEN4cargs *open_args) 593 { 594 if (open_args->owner.owner_val) { 595 kmem_free(open_args->owner.owner_val, 596 open_args->owner.owner_len); 597 } 598 if ((open_args->opentype == OPEN4_CREATE) && 599 (open_args->mode != EXCLUSIVE4)) { 600 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 601 } 602 } 603 604 /* 605 * XXX: This is referenced in modstubs.s 606 */ 607 struct vnodeops * 608 nfs4_getvnodeops(void) 609 { 610 return (nfs4_vnodeops); 611 } 612 613 /* 614 * The OPEN operation opens a regular file. 615 */ 616 /*ARGSUSED3*/ 617 static int 618 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 619 { 620 vnode_t *dvp = NULL; 621 rnode4_t *rp, *drp; 622 int error; 623 int just_been_created; 624 char fn[MAXNAMELEN]; 625 626 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 627 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 628 return (EIO); 629 rp = VTOR4(*vpp); 630 631 /* 632 * Check to see if opening something besides a regular file; 633 * if so skip the OTW call 634 */ 635 if ((*vpp)->v_type != VREG) { 636 error = nfs4_open_non_reg_file(vpp, flag, cr); 637 return (error); 638 } 639 640 /* 641 * XXX - would like a check right here to know if the file is 642 * executable or not, so as to skip OTW 643 */ 644 645 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 646 return (error); 647 648 drp = VTOR4(dvp); 649 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 650 return (EINTR); 651 652 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 653 nfs_rw_exit(&drp->r_rwlock); 654 return (error); 655 } 656 657 /* 658 * See if this file has just been CREATEd. 659 * If so, clear the flag and update the dnlc, which was previously 660 * skipped in nfs4_create. 661 * XXX need better serilization on this. 662 * XXX move this into the nf4open_otw call, after we have 663 * XXX acquired the open owner seqid sync. 664 */ 665 mutex_enter(&rp->r_statev4_lock); 666 if (rp->created_v4) { 667 rp->created_v4 = 0; 668 mutex_exit(&rp->r_statev4_lock); 669 670 dnlc_update(dvp, fn, *vpp); 671 /* This is needed so we don't bump the open ref count */ 672 just_been_created = 1; 673 } else { 674 mutex_exit(&rp->r_statev4_lock); 675 just_been_created = 0; 676 } 677 678 /* 679 * If caller specified O_TRUNC/FTRUNC, then be sure to set 680 * FWRITE (to drive successful setattr(size=0) after open) 681 */ 682 if (flag & FTRUNC) 683 flag |= FWRITE; 684 685 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 686 just_been_created); 687 688 if (!error && !((*vpp)->v_flag & VROOT)) 689 dnlc_update(dvp, fn, *vpp); 690 691 nfs_rw_exit(&drp->r_rwlock); 692 693 /* release the hold from vtodv */ 694 VN_RELE(dvp); 695 696 /* exchange the shadow for the master vnode, if needed */ 697 698 if (error == 0 && IS_SHADOW(*vpp, rp)) 699 sv_exchange(vpp); 700 701 return (error); 702 } 703 704 /* 705 * See if there's a "lost open" request to be saved and recovered. 706 */ 707 static void 708 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 709 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 710 vnode_t *dvp, OPEN4cargs *open_args) 711 { 712 vfs_t *vfsp; 713 char *srccfp; 714 715 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 716 717 if (error != ETIMEDOUT && error != EINTR && 718 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 719 lost_rqstp->lr_op = 0; 720 return; 721 } 722 723 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 724 "nfs4open_save_lost_rqst: error %d", error)); 725 726 lost_rqstp->lr_op = OP_OPEN; 727 728 /* 729 * The vp (if it is not NULL) and dvp are held and rele'd via 730 * the recovery code. See nfs4_save_lost_rqst. 731 */ 732 lost_rqstp->lr_vp = vp; 733 lost_rqstp->lr_dvp = dvp; 734 lost_rqstp->lr_oop = oop; 735 lost_rqstp->lr_osp = NULL; 736 lost_rqstp->lr_lop = NULL; 737 lost_rqstp->lr_cr = cr; 738 lost_rqstp->lr_flk = NULL; 739 lost_rqstp->lr_oacc = open_args->share_access; 740 lost_rqstp->lr_odeny = open_args->share_deny; 741 lost_rqstp->lr_oclaim = open_args->claim; 742 if (open_args->claim == CLAIM_DELEGATE_CUR) { 743 lost_rqstp->lr_ostateid = 744 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 745 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 746 } else { 747 srccfp = open_args->open_claim4_u.cfile; 748 } 749 lost_rqstp->lr_ofile.utf8string_len = 0; 750 lost_rqstp->lr_ofile.utf8string_val = NULL; 751 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 752 lost_rqstp->lr_putfirst = FALSE; 753 } 754 755 struct nfs4_excl_time { 756 uint32 seconds; 757 uint32 nseconds; 758 }; 759 760 /* 761 * The OPEN operation creates and/or opens a regular file 762 * 763 * ARGSUSED 764 */ 765 static int 766 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 767 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 768 enum createmode4 createmode, int file_just_been_created) 769 { 770 rnode4_t *rp; 771 rnode4_t *drp = VTOR4(dvp); 772 vnode_t *vp = NULL; 773 vnode_t *vpi = *vpp; 774 bool_t needrecov = FALSE; 775 776 int doqueue = 1; 777 778 COMPOUND4args_clnt args; 779 COMPOUND4res_clnt res; 780 nfs_argop4 *argop; 781 nfs_resop4 *resop; 782 int argoplist_size; 783 int idx_open, idx_fattr; 784 785 GETFH4res *gf_res = NULL; 786 OPEN4res *op_res = NULL; 787 nfs4_ga_res_t *garp; 788 fattr4 *attr = NULL; 789 struct nfs4_excl_time verf; 790 bool_t did_excl_setup = FALSE; 791 int created_osp; 792 793 OPEN4cargs *open_args; 794 nfs4_open_owner_t *oop = NULL; 795 nfs4_open_stream_t *osp = NULL; 796 seqid4 seqid = 0; 797 bool_t retry_open = FALSE; 798 nfs4_recov_state_t recov_state; 799 nfs4_lost_rqst_t lost_rqst; 800 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 801 hrtime_t t; 802 int acc = 0; 803 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 804 cred_t *ncr = NULL; 805 806 nfs4_sharedfh_t *otw_sfh; 807 nfs4_sharedfh_t *orig_sfh; 808 int fh_differs = 0; 809 int numops, setgid_flag; 810 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 811 812 /* 813 * Make sure we properly deal with setting the right gid on 814 * a newly created file to reflect the parent's setgid bit 815 */ 816 setgid_flag = 0; 817 if (create_flag && in_va) { 818 819 /* 820 * If there is grpid mount flag used or 821 * the parent's directory has the setgid bit set 822 * _and_ the client was able to get a valid mapping 823 * for the parent dir's owner_group, we want to 824 * append NVERIFY(owner_group == dva.va_gid) and 825 * SETATTR to the CREATE compound. 826 */ 827 mutex_enter(&drp->r_statelock); 828 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID || 829 drp->r_attr.va_mode & VSGID) && 830 drp->r_attr.va_gid != GID_NOBODY) { 831 in_va->va_mask |= AT_GID; 832 in_va->va_gid = drp->r_attr.va_gid; 833 setgid_flag = 1; 834 } 835 mutex_exit(&drp->r_statelock); 836 } 837 838 /* 839 * Normal/non-create compound: 840 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 841 * 842 * Open(create) compound no setgid: 843 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 844 * RESTOREFH + GETATTR 845 * 846 * Open(create) setgid: 847 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 848 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 849 * NVERIFY(grp) + SETATTR 850 */ 851 if (setgid_flag) { 852 numops = 10; 853 idx_open = 1; 854 idx_fattr = 3; 855 } else if (create_flag) { 856 numops = 7; 857 idx_open = 2; 858 idx_fattr = 4; 859 } else { 860 numops = 4; 861 idx_open = 1; 862 idx_fattr = 3; 863 } 864 865 args.array_len = numops; 866 argoplist_size = numops * sizeof (nfs_argop4); 867 argop = kmem_alloc(argoplist_size, KM_SLEEP); 868 869 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 870 "open %s open flag 0x%x cred %p", file_name, open_flag, 871 (void *)cr)); 872 873 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 874 if (create_flag) { 875 /* 876 * We are to create a file. Initialize the passed in vnode 877 * pointer. 878 */ 879 vpi = NULL; 880 } else { 881 /* 882 * Check to see if the client owns a read delegation and is 883 * trying to open for write. If so, then return the delegation 884 * to avoid the server doing a cb_recall and returning DELAY. 885 * NB - we don't use the statev4_lock here because we'd have 886 * to drop the lock anyway and the result would be stale. 887 */ 888 if ((open_flag & FWRITE) && 889 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 890 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 891 892 /* 893 * If the file has a delegation, then do an access check up 894 * front. This avoids having to an access check later after 895 * we've already done start_op, which could deadlock. 896 */ 897 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 898 if (open_flag & FREAD && 899 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 900 acc |= VREAD; 901 if (open_flag & FWRITE && 902 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 903 acc |= VWRITE; 904 } 905 } 906 907 drp = VTOR4(dvp); 908 909 recov_state.rs_flags = 0; 910 recov_state.rs_num_retry_despite_err = 0; 911 cred_otw = cr; 912 913 recov_retry: 914 fh_differs = 0; 915 nfs4_error_zinit(&e); 916 917 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 918 if (e.error) { 919 if (ncr != NULL) 920 crfree(ncr); 921 kmem_free(argop, argoplist_size); 922 return (e.error); 923 } 924 925 args.ctag = TAG_OPEN; 926 args.array_len = numops; 927 args.array = argop; 928 929 /* putfh directory fh */ 930 argop[0].argop = OP_CPUTFH; 931 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 932 933 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 934 argop[idx_open].argop = OP_COPEN; 935 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 936 open_args->claim = CLAIM_NULL; 937 938 /* name of file */ 939 open_args->open_claim4_u.cfile = file_name; 940 open_args->owner.owner_len = 0; 941 open_args->owner.owner_val = NULL; 942 943 if (create_flag) { 944 /* CREATE a file */ 945 open_args->opentype = OPEN4_CREATE; 946 open_args->mode = createmode; 947 if (createmode == EXCLUSIVE4) { 948 if (did_excl_setup == FALSE) { 949 verf.seconds = zone_get_hostid(NULL); 950 if (verf.seconds != 0) 951 verf.nseconds = newnum(); 952 else { 953 timestruc_t now; 954 955 gethrestime(&now); 956 verf.seconds = now.tv_sec; 957 verf.nseconds = now.tv_nsec; 958 } 959 /* 960 * Since the server will use this value for the 961 * mtime, make sure that it can't overflow. Zero 962 * out the MSB. The actual value does not matter 963 * here, only its uniqeness. 964 */ 965 verf.seconds &= INT32_MAX; 966 did_excl_setup = TRUE; 967 } 968 969 /* Now copy over verifier to OPEN4args. */ 970 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 971 } else { 972 int v_error; 973 bitmap4 supp_attrs; 974 servinfo4_t *svp; 975 976 attr = &open_args->createhow4_u.createattrs; 977 978 svp = drp->r_server; 979 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 980 supp_attrs = svp->sv_supp_attrs; 981 nfs_rw_exit(&svp->sv_lock); 982 983 /* GUARDED4 or UNCHECKED4 */ 984 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 985 supp_attrs); 986 if (v_error) { 987 bzero(attr, sizeof (*attr)); 988 nfs4args_copen_free(open_args); 989 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 990 &recov_state, FALSE); 991 if (ncr != NULL) 992 crfree(ncr); 993 kmem_free(argop, argoplist_size); 994 return (v_error); 995 } 996 } 997 } else { 998 /* NO CREATE */ 999 open_args->opentype = OPEN4_NOCREATE; 1000 } 1001 1002 if (recov_state.rs_sp != NULL) { 1003 mutex_enter(&recov_state.rs_sp->s_lock); 1004 open_args->owner.clientid = recov_state.rs_sp->clientid; 1005 mutex_exit(&recov_state.rs_sp->s_lock); 1006 } else { 1007 /* XXX should we just fail here? */ 1008 open_args->owner.clientid = 0; 1009 } 1010 1011 /* 1012 * This increments oop's ref count or creates a temporary 'just_created' 1013 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 1014 * completes. 1015 */ 1016 mutex_enter(&VTOMI4(dvp)->mi_lock); 1017 1018 /* See if a permanent or just created open owner exists */ 1019 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1020 if (!oop) { 1021 /* 1022 * This open owner does not exist so create a temporary 1023 * just created one. 1024 */ 1025 oop = create_open_owner(cr, VTOMI4(dvp)); 1026 ASSERT(oop != NULL); 1027 } 1028 mutex_exit(&VTOMI4(dvp)->mi_lock); 1029 1030 /* this length never changes, do alloc before seqid sync */ 1031 open_args->owner.owner_len = sizeof (oop->oo_name); 1032 open_args->owner.owner_val = 1033 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1034 1035 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1036 if (e.error == EAGAIN) { 1037 open_owner_rele(oop); 1038 nfs4args_copen_free(open_args); 1039 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1040 if (ncr != NULL) { 1041 crfree(ncr); 1042 ncr = NULL; 1043 } 1044 goto recov_retry; 1045 } 1046 1047 /* Check to see if we need to do the OTW call */ 1048 if (!create_flag) { 1049 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1050 file_just_been_created, &e.error, acc, &recov_state)) { 1051 1052 /* 1053 * The OTW open is not necessary. Either 1054 * the open can succeed without it (eg. 1055 * delegation, error == 0) or the open 1056 * must fail due to an access failure 1057 * (error != 0). In either case, tidy 1058 * up and return. 1059 */ 1060 1061 nfs4_end_open_seqid_sync(oop); 1062 open_owner_rele(oop); 1063 nfs4args_copen_free(open_args); 1064 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1065 if (ncr != NULL) 1066 crfree(ncr); 1067 kmem_free(argop, argoplist_size); 1068 return (e.error); 1069 } 1070 } 1071 1072 bcopy(&oop->oo_name, open_args->owner.owner_val, 1073 open_args->owner.owner_len); 1074 1075 seqid = nfs4_get_open_seqid(oop) + 1; 1076 open_args->seqid = seqid; 1077 open_args->share_access = 0; 1078 if (open_flag & FREAD) 1079 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1080 if (open_flag & FWRITE) 1081 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1082 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1083 1084 1085 1086 /* 1087 * getfh w/sanity check for idx_open/idx_fattr 1088 */ 1089 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1090 argop[idx_open + 1].argop = OP_GETFH; 1091 1092 /* getattr */ 1093 argop[idx_fattr].argop = OP_GETATTR; 1094 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1095 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1096 1097 if (setgid_flag) { 1098 vattr_t _v; 1099 servinfo4_t *svp; 1100 bitmap4 supp_attrs; 1101 1102 svp = drp->r_server; 1103 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1104 supp_attrs = svp->sv_supp_attrs; 1105 nfs_rw_exit(&svp->sv_lock); 1106 1107 /* 1108 * For setgid case, we need to: 1109 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1110 */ 1111 argop[4].argop = OP_SAVEFH; 1112 1113 argop[5].argop = OP_CPUTFH; 1114 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1115 1116 argop[6].argop = OP_GETATTR; 1117 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1118 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1119 1120 argop[7].argop = OP_RESTOREFH; 1121 1122 /* 1123 * nverify 1124 */ 1125 _v.va_mask = AT_GID; 1126 _v.va_gid = in_va->va_gid; 1127 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1128 supp_attrs))) { 1129 1130 /* 1131 * setattr 1132 * 1133 * We _know_ we're not messing with AT_SIZE or 1134 * AT_XTIME, so no need for stateid or flags. 1135 * Also we specify NULL rp since we're only 1136 * interested in setting owner_group attributes. 1137 */ 1138 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1139 supp_attrs, &e.error, 0); 1140 if (e.error) 1141 nfs4args_verify_free(&argop[8]); 1142 } 1143 1144 if (e.error) { 1145 /* 1146 * XXX - Revisit the last argument to nfs4_end_op() 1147 * once 5020486 is fixed. 1148 */ 1149 nfs4_end_open_seqid_sync(oop); 1150 open_owner_rele(oop); 1151 nfs4args_copen_free(open_args); 1152 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1153 if (ncr != NULL) 1154 crfree(ncr); 1155 kmem_free(argop, argoplist_size); 1156 return (e.error); 1157 } 1158 } else if (create_flag) { 1159 argop[1].argop = OP_SAVEFH; 1160 1161 argop[5].argop = OP_RESTOREFH; 1162 1163 argop[6].argop = OP_GETATTR; 1164 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1165 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1166 } 1167 1168 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1169 "nfs4open_otw: %s call, nm %s, rp %s", 1170 needrecov ? "recov" : "first", file_name, 1171 rnode4info(VTOR4(dvp)))); 1172 1173 t = gethrtime(); 1174 1175 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1176 1177 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1178 nfs4_set_open_seqid(seqid, oop, args.ctag); 1179 1180 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1181 1182 if (e.error || needrecov) { 1183 bool_t abort = FALSE; 1184 1185 if (needrecov) { 1186 nfs4_bseqid_entry_t *bsep = NULL; 1187 1188 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1189 cred_otw, vpi, dvp, open_args); 1190 1191 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1192 bsep = nfs4_create_bseqid_entry(oop, NULL, 1193 vpi, 0, args.ctag, open_args->seqid); 1194 num_bseqid_retry--; 1195 } 1196 1197 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1198 NULL, lost_rqst.lr_op == OP_OPEN ? 1199 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL); 1200 1201 if (bsep) 1202 kmem_free(bsep, sizeof (*bsep)); 1203 /* give up if we keep getting BAD_SEQID */ 1204 if (num_bseqid_retry == 0) 1205 abort = TRUE; 1206 if (abort == TRUE && e.error == 0) 1207 e.error = geterrno4(res.status); 1208 } 1209 nfs4_end_open_seqid_sync(oop); 1210 open_owner_rele(oop); 1211 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1212 nfs4args_copen_free(open_args); 1213 if (setgid_flag) { 1214 nfs4args_verify_free(&argop[8]); 1215 nfs4args_setattr_free(&argop[9]); 1216 } 1217 if (!e.error) 1218 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1219 if (ncr != NULL) { 1220 crfree(ncr); 1221 ncr = NULL; 1222 } 1223 if (!needrecov || abort == TRUE || e.error == EINTR || 1224 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1225 kmem_free(argop, argoplist_size); 1226 return (e.error); 1227 } 1228 goto recov_retry; 1229 } 1230 1231 /* 1232 * Will check and update lease after checking the rflag for 1233 * OPEN_CONFIRM in the successful OPEN call. 1234 */ 1235 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1236 1237 /* 1238 * XXX what if we're crossing mount points from server1:/drp 1239 * to server2:/drp/rp. 1240 */ 1241 1242 /* Signal our end of use of the open seqid */ 1243 nfs4_end_open_seqid_sync(oop); 1244 1245 /* 1246 * This will destroy the open owner if it was just created, 1247 * and no one else has put a reference on it. 1248 */ 1249 open_owner_rele(oop); 1250 if (create_flag && (createmode != EXCLUSIVE4) && 1251 res.status == NFS4ERR_BADOWNER) 1252 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1253 1254 e.error = geterrno4(res.status); 1255 nfs4args_copen_free(open_args); 1256 if (setgid_flag) { 1257 nfs4args_verify_free(&argop[8]); 1258 nfs4args_setattr_free(&argop[9]); 1259 } 1260 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1261 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1262 /* 1263 * If the reply is NFS4ERR_ACCESS, it may be because 1264 * we are root (no root net access). If the real uid 1265 * is not root, then retry with the real uid instead. 1266 */ 1267 if (ncr != NULL) { 1268 crfree(ncr); 1269 ncr = NULL; 1270 } 1271 if (res.status == NFS4ERR_ACCESS && 1272 (ncr = crnetadjust(cred_otw)) != NULL) { 1273 cred_otw = ncr; 1274 goto recov_retry; 1275 } 1276 kmem_free(argop, argoplist_size); 1277 return (e.error); 1278 } 1279 1280 resop = &res.array[idx_open]; /* open res */ 1281 op_res = &resop->nfs_resop4_u.opopen; 1282 1283 #ifdef DEBUG 1284 /* 1285 * verify attrset bitmap 1286 */ 1287 if (create_flag && 1288 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1289 /* make sure attrset returned is what we asked for */ 1290 /* XXX Ignore this 'error' for now */ 1291 if (attr->attrmask != op_res->attrset) 1292 /* EMPTY */; 1293 } 1294 #endif 1295 1296 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1297 mutex_enter(&VTOMI4(dvp)->mi_lock); 1298 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1299 mutex_exit(&VTOMI4(dvp)->mi_lock); 1300 } 1301 1302 resop = &res.array[idx_open + 1]; /* getfh res */ 1303 gf_res = &resop->nfs_resop4_u.opgetfh; 1304 1305 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1306 1307 /* 1308 * The open stateid has been updated on the server but not 1309 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1310 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1311 * WRITE call. That, however, will use the old stateid, so go ahead 1312 * and upate the open stateid now, before any call to makenfs4node. 1313 */ 1314 if (vpi) { 1315 nfs4_open_stream_t *tmp_osp; 1316 rnode4_t *tmp_rp = VTOR4(vpi); 1317 1318 tmp_osp = find_open_stream(oop, tmp_rp); 1319 if (tmp_osp) { 1320 tmp_osp->open_stateid = op_res->stateid; 1321 mutex_exit(&tmp_osp->os_sync_lock); 1322 open_stream_rele(tmp_osp, tmp_rp); 1323 } 1324 1325 /* 1326 * We must determine if the file handle given by the otw open 1327 * is the same as the file handle which was passed in with 1328 * *vpp. This case can be reached if the file we are trying 1329 * to open has been removed and another file has been created 1330 * having the same file name. The passed in vnode is released 1331 * later. 1332 */ 1333 orig_sfh = VTOR4(vpi)->r_fh; 1334 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1335 } 1336 1337 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1338 1339 if (create_flag || fh_differs) { 1340 int rnode_err = 0; 1341 1342 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1343 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh)); 1344 1345 if (e.error) 1346 PURGE_ATTRCACHE4(vp); 1347 /* 1348 * For the newly created vp case, make sure the rnode 1349 * isn't bad before using it. 1350 */ 1351 mutex_enter(&(VTOR4(vp))->r_statelock); 1352 if (VTOR4(vp)->r_flags & R4RECOVERR) 1353 rnode_err = EIO; 1354 mutex_exit(&(VTOR4(vp))->r_statelock); 1355 1356 if (rnode_err) { 1357 nfs4_end_open_seqid_sync(oop); 1358 nfs4args_copen_free(open_args); 1359 if (setgid_flag) { 1360 nfs4args_verify_free(&argop[8]); 1361 nfs4args_setattr_free(&argop[9]); 1362 } 1363 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1364 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1365 needrecov); 1366 open_owner_rele(oop); 1367 VN_RELE(vp); 1368 if (ncr != NULL) 1369 crfree(ncr); 1370 sfh4_rele(&otw_sfh); 1371 kmem_free(argop, argoplist_size); 1372 return (EIO); 1373 } 1374 } else { 1375 vp = vpi; 1376 } 1377 sfh4_rele(&otw_sfh); 1378 1379 /* 1380 * It seems odd to get a full set of attrs and then not update 1381 * the object's attrcache in the non-create case. Create case uses 1382 * the attrs since makenfs4node checks to see if the attrs need to 1383 * be updated (and then updates them). The non-create case should 1384 * update attrs also. 1385 */ 1386 if (! create_flag && ! fh_differs && !e.error) { 1387 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1388 } 1389 1390 nfs4_error_zinit(&e); 1391 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1392 /* This does not do recovery for vp explicitly. */ 1393 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1394 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1395 1396 if (e.error || e.stat) { 1397 nfs4_end_open_seqid_sync(oop); 1398 nfs4args_copen_free(open_args); 1399 if (setgid_flag) { 1400 nfs4args_verify_free(&argop[8]); 1401 nfs4args_setattr_free(&argop[9]); 1402 } 1403 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1404 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1405 needrecov); 1406 open_owner_rele(oop); 1407 if (create_flag || fh_differs) { 1408 /* rele the makenfs4node */ 1409 VN_RELE(vp); 1410 } 1411 if (ncr != NULL) { 1412 crfree(ncr); 1413 ncr = NULL; 1414 } 1415 if (retry_open == TRUE) { 1416 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1417 "nfs4open_otw: retry the open since OPEN " 1418 "CONFIRM failed with error %d stat %d", 1419 e.error, e.stat)); 1420 if (create_flag && createmode == GUARDED4) { 1421 NFS4_DEBUG(nfs4_client_recov_debug, 1422 (CE_NOTE, "nfs4open_otw: switch " 1423 "createmode from GUARDED4 to " 1424 "UNCHECKED4")); 1425 createmode = UNCHECKED4; 1426 } 1427 goto recov_retry; 1428 } 1429 if (!e.error) { 1430 if (create_flag && (createmode != EXCLUSIVE4) && 1431 e.stat == NFS4ERR_BADOWNER) 1432 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1433 1434 e.error = geterrno4(e.stat); 1435 } 1436 kmem_free(argop, argoplist_size); 1437 return (e.error); 1438 } 1439 } 1440 1441 rp = VTOR4(vp); 1442 1443 mutex_enter(&rp->r_statev4_lock); 1444 if (create_flag) 1445 rp->created_v4 = 1; 1446 mutex_exit(&rp->r_statev4_lock); 1447 1448 mutex_enter(&oop->oo_lock); 1449 /* Doesn't matter if 'oo_just_created' already was set as this */ 1450 oop->oo_just_created = NFS4_PERM_CREATED; 1451 if (oop->oo_cred_otw) 1452 crfree(oop->oo_cred_otw); 1453 oop->oo_cred_otw = cred_otw; 1454 crhold(oop->oo_cred_otw); 1455 mutex_exit(&oop->oo_lock); 1456 1457 /* returns with 'os_sync_lock' held */ 1458 osp = find_or_create_open_stream(oop, rp, &created_osp); 1459 if (!osp) { 1460 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1461 "nfs4open_otw: failed to create an open stream")); 1462 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1463 "signal our end of use of the open seqid")); 1464 1465 nfs4_end_open_seqid_sync(oop); 1466 open_owner_rele(oop); 1467 nfs4args_copen_free(open_args); 1468 if (setgid_flag) { 1469 nfs4args_verify_free(&argop[8]); 1470 nfs4args_setattr_free(&argop[9]); 1471 } 1472 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1473 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1474 if (create_flag || fh_differs) 1475 VN_RELE(vp); 1476 if (ncr != NULL) 1477 crfree(ncr); 1478 1479 kmem_free(argop, argoplist_size); 1480 return (EINVAL); 1481 1482 } 1483 1484 osp->open_stateid = op_res->stateid; 1485 1486 if (open_flag & FREAD) 1487 osp->os_share_acc_read++; 1488 if (open_flag & FWRITE) 1489 osp->os_share_acc_write++; 1490 osp->os_share_deny_none++; 1491 1492 /* 1493 * Need to reset this bitfield for the possible case where we were 1494 * going to OTW CLOSE the file, got a non-recoverable error, and before 1495 * we could retry the CLOSE, OPENed the file again. 1496 */ 1497 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1498 osp->os_final_close = 0; 1499 osp->os_force_close = 0; 1500 #ifdef DEBUG 1501 if (osp->os_failed_reopen) 1502 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1503 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1504 (void *)osp, (void *)cr, rnode4info(rp))); 1505 #endif 1506 osp->os_failed_reopen = 0; 1507 1508 mutex_exit(&osp->os_sync_lock); 1509 1510 nfs4_end_open_seqid_sync(oop); 1511 1512 if (created_osp && recov_state.rs_sp != NULL) { 1513 mutex_enter(&recov_state.rs_sp->s_lock); 1514 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1515 mutex_exit(&recov_state.rs_sp->s_lock); 1516 } 1517 1518 /* get rid of our reference to find oop */ 1519 open_owner_rele(oop); 1520 1521 open_stream_rele(osp, rp); 1522 1523 /* accept delegation, if any */ 1524 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1525 1526 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1527 1528 if (createmode == EXCLUSIVE4 && 1529 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1530 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1531 " EXCLUSIVE4: sending a SETATTR")); 1532 /* 1533 * If doing an exclusive create, then generate 1534 * a SETATTR to set the initial attributes. 1535 * Try to set the mtime and the atime to the 1536 * server's current time. It is somewhat 1537 * expected that these fields will be used to 1538 * store the exclusive create cookie. If not, 1539 * server implementors will need to know that 1540 * a SETATTR will follow an exclusive create 1541 * and the cookie should be destroyed if 1542 * appropriate. 1543 * 1544 * The AT_GID and AT_SIZE bits are turned off 1545 * so that the SETATTR request will not attempt 1546 * to process these. The gid will be set 1547 * separately if appropriate. The size is turned 1548 * off because it is assumed that a new file will 1549 * be created empty and if the file wasn't empty, 1550 * then the exclusive create will have failed 1551 * because the file must have existed already. 1552 * Therefore, no truncate operation is needed. 1553 */ 1554 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1555 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1556 1557 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1558 if (e.error) { 1559 nfs4_error_t err; 1560 1561 /* 1562 * Couldn't correct the attributes of 1563 * the newly created file and the 1564 * attributes are wrong. Remove the 1565 * file and return an error to the 1566 * application. 1567 */ 1568 /* XXX will this take care of client state ? */ 1569 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1570 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1571 " remove file", e.error)); 1572 1573 /* 1574 * The file is currently open so try to close it first. 1575 * 1576 * If we do not close the file explicitly here then the 1577 * VN_RELE() would do an (implicit and asynchronous) 1578 * close for us. But such async close could race with 1579 * the nfs4_remove() below. If the async close is 1580 * slower than nfs4_remove() then nfs4_remove() 1581 * wouldn't remove the file but rename it to .nfsXXXX 1582 * instead. 1583 */ 1584 nfs4close_one(vp, NULL, cr, open_flag, NULL, &err, 1585 CLOSE_NORM, 0, 0, 0); 1586 VN_RELE(vp); 1587 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1588 1589 /* 1590 * Since we've reled the vnode and removed 1591 * the file we now need to return the error. 1592 * At this point we don't want to update the 1593 * dircaches, call nfs4_waitfor_purge_complete 1594 * or set vpp to vp so we need to skip these 1595 * as well. 1596 */ 1597 goto skip_update_dircaches; 1598 } 1599 } 1600 1601 /* 1602 * If we created or found the correct vnode, due to create_flag or 1603 * fh_differs being set, then update directory cache attribute, readdir 1604 * and dnlc caches. 1605 */ 1606 if (create_flag || fh_differs) { 1607 dirattr_info_t dinfo, *dinfop; 1608 1609 /* 1610 * Make sure getattr succeeded before using results. 1611 * note: op 7 is getattr(dir) for both flavors of 1612 * open(create). 1613 */ 1614 if (create_flag && res.status == NFS4_OK) { 1615 dinfo.di_time_call = t; 1616 dinfo.di_cred = cr; 1617 dinfo.di_garp = 1618 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1619 dinfop = &dinfo; 1620 } else { 1621 dinfop = NULL; 1622 } 1623 1624 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1625 dinfop); 1626 } 1627 1628 /* 1629 * If the page cache for this file was flushed from actions 1630 * above, it was done asynchronously and if that is true, 1631 * there is a need to wait here for it to complete. This must 1632 * be done outside of start_fop/end_fop. 1633 */ 1634 (void) nfs4_waitfor_purge_complete(vp); 1635 1636 /* 1637 * It is implicit that we are in the open case (create_flag == 0) since 1638 * fh_differs can only be set to a non-zero value in the open case. 1639 */ 1640 if (fh_differs != 0 && vpi != NULL) 1641 VN_RELE(vpi); 1642 1643 /* 1644 * Be sure to set *vpp to the correct value before returning. 1645 */ 1646 *vpp = vp; 1647 1648 skip_update_dircaches: 1649 1650 nfs4args_copen_free(open_args); 1651 if (setgid_flag) { 1652 nfs4args_verify_free(&argop[8]); 1653 nfs4args_setattr_free(&argop[9]); 1654 } 1655 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1656 1657 if (ncr) 1658 crfree(ncr); 1659 kmem_free(argop, argoplist_size); 1660 return (e.error); 1661 } 1662 1663 /* 1664 * Reopen an open instance. cf. nfs4open_otw(). 1665 * 1666 * Errors are returned by the nfs4_error_t parameter. 1667 * - ep->error contains an errno value or zero. 1668 * - if it is zero, ep->stat is set to an NFS status code, if any. 1669 * If the file could not be reopened, but the caller should continue, the 1670 * file is marked dead and no error values are returned. If the caller 1671 * should stop recovering open files and start over, either the ep->error 1672 * value or ep->stat will indicate an error (either something that requires 1673 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1674 * filehandles) may be handled silently by this routine. 1675 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1676 * will be started, so the caller should not do it. 1677 * 1678 * Gotos: 1679 * - kill_file : reopen failed in such a fashion to constitute marking the 1680 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1681 * is for cases where recovery is not possible. 1682 * - failed_reopen : same as above, except that the file has already been 1683 * marked dead, so no need to do it again. 1684 * - bailout : reopen failed but we are able to recover and retry the reopen - 1685 * either within this function immediately or via the calling function. 1686 */ 1687 1688 void 1689 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1690 open_claim_type4 claim, bool_t frc_use_claim_previous, 1691 bool_t is_recov) 1692 { 1693 COMPOUND4args_clnt args; 1694 COMPOUND4res_clnt res; 1695 nfs_argop4 argop[4]; 1696 nfs_resop4 *resop; 1697 OPEN4res *op_res = NULL; 1698 OPEN4cargs *open_args; 1699 GETFH4res *gf_res; 1700 rnode4_t *rp = VTOR4(vp); 1701 int doqueue = 1; 1702 cred_t *cr = NULL, *cred_otw = NULL; 1703 nfs4_open_owner_t *oop = NULL; 1704 seqid4 seqid; 1705 nfs4_ga_res_t *garp; 1706 char fn[MAXNAMELEN]; 1707 nfs4_recov_state_t recov = {NULL, 0}; 1708 nfs4_lost_rqst_t lost_rqst; 1709 mntinfo4_t *mi = VTOMI4(vp); 1710 bool_t abort; 1711 char *failed_msg = ""; 1712 int fh_different; 1713 hrtime_t t; 1714 nfs4_bseqid_entry_t *bsep = NULL; 1715 1716 ASSERT(nfs4_consistent_type(vp)); 1717 ASSERT(nfs_zone() == mi->mi_zone); 1718 1719 nfs4_error_zinit(ep); 1720 1721 /* this is the cred used to find the open owner */ 1722 cr = state_to_cred(osp); 1723 if (cr == NULL) { 1724 failed_msg = "Couldn't reopen: no cred"; 1725 goto kill_file; 1726 } 1727 /* use this cred for OTW operations */ 1728 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1729 1730 top: 1731 nfs4_error_zinit(ep); 1732 1733 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1734 /* File system has been unmounted, quit */ 1735 ep->error = EIO; 1736 failed_msg = "Couldn't reopen: file system has been unmounted"; 1737 goto kill_file; 1738 } 1739 1740 oop = osp->os_open_owner; 1741 1742 ASSERT(oop != NULL); 1743 if (oop == NULL) { /* be defensive in non-DEBUG */ 1744 failed_msg = "can't reopen: no open owner"; 1745 goto kill_file; 1746 } 1747 open_owner_hold(oop); 1748 1749 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1750 if (ep->error) { 1751 open_owner_rele(oop); 1752 oop = NULL; 1753 goto bailout; 1754 } 1755 1756 /* 1757 * If the rnode has a delegation and the delegation has been 1758 * recovered and the server didn't request a recall and the caller 1759 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1760 * recovery) and the rnode hasn't been marked dead, then install 1761 * the delegation stateid in the open stream. Otherwise, proceed 1762 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1763 */ 1764 mutex_enter(&rp->r_statev4_lock); 1765 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1766 !rp->r_deleg_return_pending && 1767 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1768 !rp->r_deleg_needs_recall && 1769 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1770 !(rp->r_flags & R4RECOVERR)) { 1771 mutex_enter(&osp->os_sync_lock); 1772 osp->os_delegation = 1; 1773 osp->open_stateid = rp->r_deleg_stateid; 1774 mutex_exit(&osp->os_sync_lock); 1775 mutex_exit(&rp->r_statev4_lock); 1776 goto bailout; 1777 } 1778 mutex_exit(&rp->r_statev4_lock); 1779 1780 /* 1781 * If the file failed recovery, just quit. This failure need not 1782 * affect other reopens, so don't return an error. 1783 */ 1784 mutex_enter(&rp->r_statelock); 1785 if (rp->r_flags & R4RECOVERR) { 1786 mutex_exit(&rp->r_statelock); 1787 ep->error = 0; 1788 goto failed_reopen; 1789 } 1790 mutex_exit(&rp->r_statelock); 1791 1792 /* 1793 * argop is empty here 1794 * 1795 * PUTFH, OPEN, GETATTR 1796 */ 1797 args.ctag = TAG_REOPEN; 1798 args.array_len = 4; 1799 args.array = argop; 1800 1801 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1802 "nfs4_reopen: file is type %d, id %s", 1803 vp->v_type, rnode4info(VTOR4(vp)))); 1804 1805 argop[0].argop = OP_CPUTFH; 1806 1807 if (claim != CLAIM_PREVIOUS) { 1808 /* 1809 * if this is a file mount then 1810 * use the mntinfo parentfh 1811 */ 1812 argop[0].nfs_argop4_u.opcputfh.sfh = 1813 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1814 VTOSV(vp)->sv_dfh; 1815 } else { 1816 /* putfh fh to reopen */ 1817 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1818 } 1819 1820 argop[1].argop = OP_COPEN; 1821 open_args = &argop[1].nfs_argop4_u.opcopen; 1822 open_args->claim = claim; 1823 1824 if (claim == CLAIM_NULL) { 1825 1826 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1827 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1828 "failed for vp 0x%p for CLAIM_NULL with %m", 1829 (void *)vp); 1830 failed_msg = "Couldn't reopen: vtoname failed for " 1831 "CLAIM_NULL"; 1832 /* nothing allocated yet */ 1833 goto kill_file; 1834 } 1835 1836 open_args->open_claim4_u.cfile = fn; 1837 } else if (claim == CLAIM_PREVIOUS) { 1838 1839 /* 1840 * We have two cases to deal with here: 1841 * 1) We're being called to reopen files in order to satisfy 1842 * a lock operation request which requires us to explicitly 1843 * reopen files which were opened under a delegation. If 1844 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1845 * that case, frc_use_claim_previous is TRUE and we must 1846 * use the rnode's current delegation type (r_deleg_type). 1847 * 2) We're reopening files during some form of recovery. 1848 * In this case, frc_use_claim_previous is FALSE and we 1849 * use the delegation type appropriate for recovery 1850 * (r_deleg_needs_recovery). 1851 */ 1852 mutex_enter(&rp->r_statev4_lock); 1853 open_args->open_claim4_u.delegate_type = 1854 frc_use_claim_previous ? 1855 rp->r_deleg_type : 1856 rp->r_deleg_needs_recovery; 1857 mutex_exit(&rp->r_statev4_lock); 1858 1859 } else if (claim == CLAIM_DELEGATE_CUR) { 1860 1861 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1862 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1863 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1864 "with %m", (void *)vp); 1865 failed_msg = "Couldn't reopen: vtoname failed for " 1866 "CLAIM_DELEGATE_CUR"; 1867 /* nothing allocated yet */ 1868 goto kill_file; 1869 } 1870 1871 mutex_enter(&rp->r_statev4_lock); 1872 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1873 rp->r_deleg_stateid; 1874 mutex_exit(&rp->r_statev4_lock); 1875 1876 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1877 } 1878 open_args->opentype = OPEN4_NOCREATE; 1879 open_args->owner.clientid = mi2clientid(mi); 1880 open_args->owner.owner_len = sizeof (oop->oo_name); 1881 open_args->owner.owner_val = 1882 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1883 bcopy(&oop->oo_name, open_args->owner.owner_val, 1884 open_args->owner.owner_len); 1885 open_args->share_access = 0; 1886 open_args->share_deny = 0; 1887 1888 mutex_enter(&osp->os_sync_lock); 1889 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1890 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1891 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1892 (void *)osp, (void *)rp, osp->os_share_acc_read, 1893 osp->os_share_acc_write, osp->os_open_ref_count, 1894 osp->os_mmap_read, osp->os_mmap_write, claim)); 1895 1896 if (osp->os_share_acc_read || osp->os_mmap_read) 1897 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1898 if (osp->os_share_acc_write || osp->os_mmap_write) 1899 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1900 if (osp->os_share_deny_read) 1901 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1902 if (osp->os_share_deny_write) 1903 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1904 mutex_exit(&osp->os_sync_lock); 1905 1906 seqid = nfs4_get_open_seqid(oop) + 1; 1907 open_args->seqid = seqid; 1908 1909 /* Construct the getfh part of the compound */ 1910 argop[2].argop = OP_GETFH; 1911 1912 /* Construct the getattr part of the compound */ 1913 argop[3].argop = OP_GETATTR; 1914 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1915 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1916 1917 t = gethrtime(); 1918 1919 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1920 1921 if (ep->error) { 1922 if (!is_recov && !frc_use_claim_previous && 1923 (ep->error == EINTR || ep->error == ETIMEDOUT || 1924 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1925 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1926 cred_otw, vp, NULL, open_args); 1927 abort = nfs4_start_recovery(ep, 1928 VTOMI4(vp), vp, NULL, NULL, 1929 lost_rqst.lr_op == OP_OPEN ? 1930 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL); 1931 nfs4args_copen_free(open_args); 1932 goto bailout; 1933 } 1934 1935 nfs4args_copen_free(open_args); 1936 1937 if (ep->error == EACCES && cred_otw != cr) { 1938 crfree(cred_otw); 1939 cred_otw = cr; 1940 crhold(cred_otw); 1941 nfs4_end_open_seqid_sync(oop); 1942 open_owner_rele(oop); 1943 oop = NULL; 1944 goto top; 1945 } 1946 if (ep->error == ETIMEDOUT) 1947 goto bailout; 1948 failed_msg = "Couldn't reopen: rpc error"; 1949 goto kill_file; 1950 } 1951 1952 if (nfs4_need_to_bump_seqid(&res)) 1953 nfs4_set_open_seqid(seqid, oop, args.ctag); 1954 1955 switch (res.status) { 1956 case NFS4_OK: 1957 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1958 mutex_enter(&rp->r_statelock); 1959 rp->r_delay_interval = 0; 1960 mutex_exit(&rp->r_statelock); 1961 } 1962 break; 1963 case NFS4ERR_BAD_SEQID: 1964 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1965 args.ctag, open_args->seqid); 1966 1967 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1968 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1969 NULL, OP_OPEN, bsep, NULL, NULL); 1970 1971 nfs4args_copen_free(open_args); 1972 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1973 nfs4_end_open_seqid_sync(oop); 1974 open_owner_rele(oop); 1975 oop = NULL; 1976 kmem_free(bsep, sizeof (*bsep)); 1977 1978 goto kill_file; 1979 case NFS4ERR_NO_GRACE: 1980 nfs4args_copen_free(open_args); 1981 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1982 nfs4_end_open_seqid_sync(oop); 1983 open_owner_rele(oop); 1984 oop = NULL; 1985 if (claim == CLAIM_PREVIOUS) { 1986 /* 1987 * Retry as a plain open. We don't need to worry about 1988 * checking the changeinfo: it is acceptable for a 1989 * client to re-open a file and continue processing 1990 * (in the absence of locks). 1991 */ 1992 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1993 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1994 "will retry as CLAIM_NULL")); 1995 claim = CLAIM_NULL; 1996 nfs4_mi_kstat_inc_no_grace(mi); 1997 goto top; 1998 } 1999 failed_msg = 2000 "Couldn't reopen: tried reclaim outside grace period. "; 2001 goto kill_file; 2002 case NFS4ERR_GRACE: 2003 nfs4_set_grace_wait(mi); 2004 nfs4args_copen_free(open_args); 2005 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2006 nfs4_end_open_seqid_sync(oop); 2007 open_owner_rele(oop); 2008 oop = NULL; 2009 ep->error = nfs4_wait_for_grace(mi, &recov); 2010 if (ep->error != 0) 2011 goto bailout; 2012 goto top; 2013 case NFS4ERR_DELAY: 2014 nfs4_set_delay_wait(vp); 2015 nfs4args_copen_free(open_args); 2016 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2017 nfs4_end_open_seqid_sync(oop); 2018 open_owner_rele(oop); 2019 oop = NULL; 2020 ep->error = nfs4_wait_for_delay(vp, &recov); 2021 nfs4_mi_kstat_inc_delay(mi); 2022 if (ep->error != 0) 2023 goto bailout; 2024 goto top; 2025 case NFS4ERR_FHEXPIRED: 2026 /* recover filehandle and retry */ 2027 abort = nfs4_start_recovery(ep, 2028 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL); 2029 nfs4args_copen_free(open_args); 2030 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2031 nfs4_end_open_seqid_sync(oop); 2032 open_owner_rele(oop); 2033 oop = NULL; 2034 if (abort == FALSE) 2035 goto top; 2036 failed_msg = "Couldn't reopen: recovery aborted"; 2037 goto kill_file; 2038 case NFS4ERR_RESOURCE: 2039 case NFS4ERR_STALE_CLIENTID: 2040 case NFS4ERR_WRONGSEC: 2041 case NFS4ERR_EXPIRED: 2042 /* 2043 * Do not mark the file dead and let the calling 2044 * function initiate recovery. 2045 */ 2046 nfs4args_copen_free(open_args); 2047 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2048 nfs4_end_open_seqid_sync(oop); 2049 open_owner_rele(oop); 2050 oop = NULL; 2051 goto bailout; 2052 case NFS4ERR_ACCESS: 2053 if (cred_otw != cr) { 2054 crfree(cred_otw); 2055 cred_otw = cr; 2056 crhold(cred_otw); 2057 nfs4args_copen_free(open_args); 2058 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2059 nfs4_end_open_seqid_sync(oop); 2060 open_owner_rele(oop); 2061 oop = NULL; 2062 goto top; 2063 } 2064 /* fall through */ 2065 default: 2066 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2067 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2068 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2069 rnode4info(VTOR4(vp)))); 2070 failed_msg = "Couldn't reopen: NFSv4 error"; 2071 nfs4args_copen_free(open_args); 2072 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2073 goto kill_file; 2074 } 2075 2076 resop = &res.array[1]; /* open res */ 2077 op_res = &resop->nfs_resop4_u.opopen; 2078 2079 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2080 2081 /* 2082 * Check if the path we reopened really is the same 2083 * file. We could end up in a situation where the file 2084 * was removed and a new file created with the same name. 2085 */ 2086 resop = &res.array[2]; 2087 gf_res = &resop->nfs_resop4_u.opgetfh; 2088 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2089 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2090 if (fh_different) { 2091 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2092 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2093 /* Oops, we don't have the same file */ 2094 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2095 failed_msg = "Couldn't reopen: Persistent " 2096 "file handle changed"; 2097 else 2098 failed_msg = "Couldn't reopen: Volatile " 2099 "(no expire on open) file handle changed"; 2100 2101 nfs4args_copen_free(open_args); 2102 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2103 nfs_rw_exit(&mi->mi_fh_lock); 2104 goto kill_file; 2105 2106 } else { 2107 /* 2108 * We have volatile file handles that don't compare. 2109 * If the fids are the same then we assume that the 2110 * file handle expired but the rnode still refers to 2111 * the same file object. 2112 * 2113 * First check that we have fids or not. 2114 * If we don't we have a dumb server so we will 2115 * just assume every thing is ok for now. 2116 */ 2117 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2118 rp->r_attr.va_mask & AT_NODEID && 2119 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2120 /* 2121 * We have fids, but they don't 2122 * compare. So kill the file. 2123 */ 2124 failed_msg = 2125 "Couldn't reopen: file handle changed" 2126 " due to mismatched fids"; 2127 nfs4args_copen_free(open_args); 2128 xdr_free(xdr_COMPOUND4res_clnt, 2129 (caddr_t)&res); 2130 nfs_rw_exit(&mi->mi_fh_lock); 2131 goto kill_file; 2132 } else { 2133 /* 2134 * We have volatile file handles that refers 2135 * to the same file (at least they have the 2136 * same fid) or we don't have fids so we 2137 * can't tell. :(. We'll be a kind and accepting 2138 * client so we'll update the rnode's file 2139 * handle with the otw handle. 2140 * 2141 * We need to drop mi->mi_fh_lock since 2142 * sh4_update acquires it. Since there is 2143 * only one recovery thread there is no 2144 * race. 2145 */ 2146 nfs_rw_exit(&mi->mi_fh_lock); 2147 sfh4_update(rp->r_fh, &gf_res->object); 2148 } 2149 } 2150 } else { 2151 nfs_rw_exit(&mi->mi_fh_lock); 2152 } 2153 2154 ASSERT(nfs4_consistent_type(vp)); 2155 2156 /* 2157 * If the server wanted an OPEN_CONFIRM but that fails, just start 2158 * over. Presumably if there is a persistent error it will show up 2159 * when we resend the OPEN. 2160 */ 2161 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2162 bool_t retry_open = FALSE; 2163 2164 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2165 cred_otw, is_recov, &retry_open, 2166 oop, FALSE, ep, NULL); 2167 if (ep->error || ep->stat) { 2168 nfs4args_copen_free(open_args); 2169 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2170 nfs4_end_open_seqid_sync(oop); 2171 open_owner_rele(oop); 2172 oop = NULL; 2173 goto top; 2174 } 2175 } 2176 2177 mutex_enter(&osp->os_sync_lock); 2178 osp->open_stateid = op_res->stateid; 2179 osp->os_delegation = 0; 2180 /* 2181 * Need to reset this bitfield for the possible case where we were 2182 * going to OTW CLOSE the file, got a non-recoverable error, and before 2183 * we could retry the CLOSE, OPENed the file again. 2184 */ 2185 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2186 osp->os_final_close = 0; 2187 osp->os_force_close = 0; 2188 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2189 osp->os_dc_openacc = open_args->share_access; 2190 mutex_exit(&osp->os_sync_lock); 2191 2192 nfs4_end_open_seqid_sync(oop); 2193 2194 /* accept delegation, if any */ 2195 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2196 2197 nfs4args_copen_free(open_args); 2198 2199 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2200 2201 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2202 2203 ASSERT(nfs4_consistent_type(vp)); 2204 2205 open_owner_rele(oop); 2206 crfree(cr); 2207 crfree(cred_otw); 2208 return; 2209 2210 kill_file: 2211 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2212 failed_reopen: 2213 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2214 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2215 (void *)osp, (void *)cr, rnode4info(rp))); 2216 mutex_enter(&osp->os_sync_lock); 2217 osp->os_failed_reopen = 1; 2218 mutex_exit(&osp->os_sync_lock); 2219 bailout: 2220 if (oop != NULL) { 2221 nfs4_end_open_seqid_sync(oop); 2222 open_owner_rele(oop); 2223 } 2224 if (cr != NULL) 2225 crfree(cr); 2226 if (cred_otw != NULL) 2227 crfree(cred_otw); 2228 } 2229 2230 /* for . and .. OPENs */ 2231 /* ARGSUSED */ 2232 static int 2233 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2234 { 2235 rnode4_t *rp; 2236 nfs4_ga_res_t gar; 2237 2238 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2239 2240 /* 2241 * If close-to-open consistency checking is turned off or 2242 * if there is no cached data, we can avoid 2243 * the over the wire getattr. Otherwise, force a 2244 * call to the server to get fresh attributes and to 2245 * check caches. This is required for close-to-open 2246 * consistency. 2247 */ 2248 rp = VTOR4(*vpp); 2249 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2250 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2251 return (0); 2252 2253 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2254 } 2255 2256 /* 2257 * CLOSE a file 2258 */ 2259 /* ARGSUSED */ 2260 static int 2261 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2262 caller_context_t *ct) 2263 { 2264 rnode4_t *rp; 2265 int error = 0; 2266 int r_error = 0; 2267 int n4error = 0; 2268 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2269 2270 /* 2271 * Remove client state for this (lockowner, file) pair. 2272 * Issue otw v4 call to have the server do the same. 2273 */ 2274 2275 rp = VTOR4(vp); 2276 2277 /* 2278 * zone_enter(2) prevents processes from changing zones with NFS files 2279 * open; if we happen to get here from the wrong zone we can't do 2280 * anything over the wire. 2281 */ 2282 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2283 /* 2284 * We could attempt to clean up locks, except we're sure 2285 * that the current process didn't acquire any locks on 2286 * the file: any attempt to lock a file belong to another zone 2287 * will fail, and one can't lock an NFS file and then change 2288 * zones, as that fails too. 2289 * 2290 * Returning an error here is the sane thing to do. A 2291 * subsequent call to VN_RELE() which translates to a 2292 * nfs4_inactive() will clean up state: if the zone of the 2293 * vnode's origin is still alive and kicking, the inactive 2294 * thread will handle the request (from the correct zone), and 2295 * everything (minus the OTW close call) should be OK. If the 2296 * zone is going away nfs4_async_inactive() will throw away 2297 * delegations, open streams and cached pages inline. 2298 */ 2299 return (EIO); 2300 } 2301 2302 /* 2303 * If we are using local locking for this filesystem, then 2304 * release all of the SYSV style record locks. Otherwise, 2305 * we are doing network locking and we need to release all 2306 * of the network locks. All of the locks held by this 2307 * process on this file are released no matter what the 2308 * incoming reference count is. 2309 */ 2310 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2311 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2312 cleanshares(vp, ttoproc(curthread)->p_pid); 2313 } else 2314 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2315 2316 if (e.error) { 2317 struct lm_sysid *lmsid; 2318 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2319 if (lmsid == NULL) { 2320 DTRACE_PROBE2(unknown__sysid, int, e.error, 2321 vnode_t *, vp); 2322 } else { 2323 cleanlocks(vp, ttoproc(curthread)->p_pid, 2324 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2325 2326 lm_rel_sysid(lmsid); 2327 } 2328 return (e.error); 2329 } 2330 2331 if (count > 1) 2332 return (0); 2333 2334 /* 2335 * If the file has been `unlinked', then purge the 2336 * DNLC so that this vnode will get reycled quicker 2337 * and the .nfs* file on the server will get removed. 2338 */ 2339 if (rp->r_unldvp != NULL) 2340 dnlc_purge_vp(vp); 2341 2342 /* 2343 * If the file was open for write and there are pages, 2344 * do a synchronous flush and commit of all of the 2345 * dirty and uncommitted pages. 2346 */ 2347 ASSERT(!e.error); 2348 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2349 error = nfs4_putpage_commit(vp, 0, 0, cr); 2350 2351 mutex_enter(&rp->r_statelock); 2352 r_error = rp->r_error; 2353 rp->r_error = 0; 2354 mutex_exit(&rp->r_statelock); 2355 2356 /* 2357 * If this file type is one for which no explicit 'open' was 2358 * done, then bail now (ie. no need for protocol 'close'). If 2359 * there was an error w/the vm subsystem, return _that_ error, 2360 * otherwise, return any errors that may've been reported via 2361 * the rnode. 2362 */ 2363 if (vp->v_type != VREG) 2364 return (error ? error : r_error); 2365 2366 /* 2367 * The sync putpage commit may have failed above, but since 2368 * we're working w/a regular file, we need to do the protocol 2369 * 'close' (nfs4close_one will figure out if an otw close is 2370 * needed or not). Report any errors _after_ doing the protocol 2371 * 'close'. 2372 */ 2373 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2374 n4error = e.error ? e.error : geterrno4(e.stat); 2375 2376 /* 2377 * Error reporting prio (Hi -> Lo) 2378 * 2379 * i) nfs4_putpage_commit (error) 2380 * ii) rnode's (r_error) 2381 * iii) nfs4close_one (n4error) 2382 */ 2383 return (error ? error : (r_error ? r_error : n4error)); 2384 } 2385 2386 /* 2387 * Initialize *lost_rqstp. 2388 */ 2389 2390 static void 2391 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2392 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2393 vnode_t *vp) 2394 { 2395 if (error != ETIMEDOUT && error != EINTR && 2396 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2397 lost_rqstp->lr_op = 0; 2398 return; 2399 } 2400 2401 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2402 "nfs4close_save_lost_rqst: error %d", error)); 2403 2404 lost_rqstp->lr_op = OP_CLOSE; 2405 /* 2406 * The vp is held and rele'd via the recovery code. 2407 * See nfs4_save_lost_rqst. 2408 */ 2409 lost_rqstp->lr_vp = vp; 2410 lost_rqstp->lr_dvp = NULL; 2411 lost_rqstp->lr_oop = oop; 2412 lost_rqstp->lr_osp = osp; 2413 ASSERT(osp != NULL); 2414 ASSERT(mutex_owned(&osp->os_sync_lock)); 2415 osp->os_pending_close = 1; 2416 lost_rqstp->lr_lop = NULL; 2417 lost_rqstp->lr_cr = cr; 2418 lost_rqstp->lr_flk = NULL; 2419 lost_rqstp->lr_putfirst = FALSE; 2420 } 2421 2422 /* 2423 * Assumes you already have the open seqid sync grabbed as well as the 2424 * 'os_sync_lock'. Note: this will release the open seqid sync and 2425 * 'os_sync_lock' if client recovery starts. Calling functions have to 2426 * be prepared to handle this. 2427 * 2428 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2429 * was needed and was started, and that the calling function should retry 2430 * this function; otherwise it is returned as 0. 2431 * 2432 * Errors are returned via the nfs4_error_t parameter. 2433 */ 2434 static void 2435 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2436 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2437 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2438 { 2439 COMPOUND4args_clnt args; 2440 COMPOUND4res_clnt res; 2441 CLOSE4args *close_args; 2442 nfs_resop4 *resop; 2443 nfs_argop4 argop[3]; 2444 int doqueue = 1; 2445 mntinfo4_t *mi; 2446 seqid4 seqid; 2447 vnode_t *vp; 2448 bool_t needrecov = FALSE; 2449 nfs4_lost_rqst_t lost_rqst; 2450 hrtime_t t; 2451 2452 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2453 2454 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2455 2456 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2457 2458 /* Only set this to 1 if recovery is started */ 2459 *recov = 0; 2460 2461 /* do the OTW call to close the file */ 2462 2463 if (close_type == CLOSE_RESEND) 2464 args.ctag = TAG_CLOSE_LOST; 2465 else if (close_type == CLOSE_AFTER_RESEND) 2466 args.ctag = TAG_CLOSE_UNDO; 2467 else 2468 args.ctag = TAG_CLOSE; 2469 2470 args.array_len = 3; 2471 args.array = argop; 2472 2473 vp = RTOV4(rp); 2474 2475 mi = VTOMI4(vp); 2476 2477 /* putfh target fh */ 2478 argop[0].argop = OP_CPUTFH; 2479 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2480 2481 argop[1].argop = OP_GETATTR; 2482 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2483 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2484 2485 argop[2].argop = OP_CLOSE; 2486 close_args = &argop[2].nfs_argop4_u.opclose; 2487 2488 seqid = nfs4_get_open_seqid(oop) + 1; 2489 2490 close_args->seqid = seqid; 2491 close_args->open_stateid = osp->open_stateid; 2492 2493 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2494 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2495 rnode4info(rp))); 2496 2497 t = gethrtime(); 2498 2499 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2500 2501 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2502 nfs4_set_open_seqid(seqid, oop, args.ctag); 2503 } 2504 2505 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2506 if (ep->error && !needrecov) { 2507 /* 2508 * if there was an error and no recovery is to be done 2509 * then then set up the file to flush its cache if 2510 * needed for the next caller. 2511 */ 2512 mutex_enter(&rp->r_statelock); 2513 PURGE_ATTRCACHE4_LOCKED(rp); 2514 rp->r_flags &= ~R4WRITEMODIFIED; 2515 mutex_exit(&rp->r_statelock); 2516 return; 2517 } 2518 2519 if (needrecov) { 2520 bool_t abort; 2521 nfs4_bseqid_entry_t *bsep = NULL; 2522 2523 if (close_type != CLOSE_RESEND) 2524 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2525 osp, cred_otw, vp); 2526 2527 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2528 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2529 0, args.ctag, close_args->seqid); 2530 2531 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2532 "nfs4close_otw: initiating recovery. error %d " 2533 "res.status %d", ep->error, res.status)); 2534 2535 /* 2536 * Drop the 'os_sync_lock' here so we don't hit 2537 * a potential recursive mutex_enter via an 2538 * 'open_stream_hold()'. 2539 */ 2540 mutex_exit(&osp->os_sync_lock); 2541 *have_sync_lockp = 0; 2542 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2543 (close_type != CLOSE_RESEND && 2544 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2545 OP_CLOSE, bsep, NULL, NULL); 2546 2547 /* drop open seq sync, and let the calling function regrab it */ 2548 nfs4_end_open_seqid_sync(oop); 2549 *did_start_seqid_syncp = 0; 2550 2551 if (bsep) 2552 kmem_free(bsep, sizeof (*bsep)); 2553 /* 2554 * For signals, the caller wants to quit, so don't say to 2555 * retry. For forced unmount, if it's a user thread, it 2556 * wants to quit. If it's a recovery thread, the retry 2557 * will happen higher-up on the call stack. Either way, 2558 * don't say to retry. 2559 */ 2560 if (abort == FALSE && ep->error != EINTR && 2561 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2562 close_type != CLOSE_RESEND && 2563 close_type != CLOSE_AFTER_RESEND) 2564 *recov = 1; 2565 else 2566 *recov = 0; 2567 2568 if (!ep->error) 2569 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2570 return; 2571 } 2572 2573 if (res.status) { 2574 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2575 return; 2576 } 2577 2578 mutex_enter(&rp->r_statev4_lock); 2579 rp->created_v4 = 0; 2580 mutex_exit(&rp->r_statev4_lock); 2581 2582 resop = &res.array[2]; 2583 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2584 osp->os_valid = 0; 2585 2586 /* 2587 * This removes the reference obtained at OPEN; ie, when the 2588 * open stream structure was created. 2589 * 2590 * We don't have to worry about calling 'open_stream_rele' 2591 * since we our currently holding a reference to the open 2592 * stream which means the count cannot go to 0 with this 2593 * decrement. 2594 */ 2595 ASSERT(osp->os_ref_count >= 2); 2596 osp->os_ref_count--; 2597 2598 if (ep->error == 0) { 2599 mutex_exit(&osp->os_sync_lock); 2600 *have_sync_lockp = 0; 2601 2602 nfs4_attr_cache(vp, 2603 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2604 t, cred_otw, TRUE, NULL); 2605 } 2606 2607 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2608 " returning %d", ep->error)); 2609 2610 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2611 } 2612 2613 /* ARGSUSED */ 2614 static int 2615 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2616 caller_context_t *ct) 2617 { 2618 rnode4_t *rp; 2619 u_offset_t off; 2620 offset_t diff; 2621 uint_t on; 2622 uint_t n; 2623 caddr_t base; 2624 uint_t flags; 2625 int error; 2626 mntinfo4_t *mi; 2627 2628 rp = VTOR4(vp); 2629 2630 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2631 2632 if (IS_SHADOW(vp, rp)) 2633 vp = RTOV4(rp); 2634 2635 if (vp->v_type != VREG) 2636 return (EISDIR); 2637 2638 mi = VTOMI4(vp); 2639 2640 if (nfs_zone() != mi->mi_zone) 2641 return (EIO); 2642 2643 if (uiop->uio_resid == 0) 2644 return (0); 2645 2646 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2647 return (EINVAL); 2648 2649 mutex_enter(&rp->r_statelock); 2650 if (rp->r_flags & R4RECOVERRP) 2651 error = (rp->r_error ? rp->r_error : EIO); 2652 else 2653 error = 0; 2654 mutex_exit(&rp->r_statelock); 2655 if (error) 2656 return (error); 2657 2658 /* 2659 * Bypass VM if caching has been disabled (e.g., locking) or if 2660 * using client-side direct I/O and the file is not mmap'd and 2661 * there are no cached pages. 2662 */ 2663 if ((vp->v_flag & VNOCACHE) || 2664 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2665 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2666 size_t resid = 0; 2667 2668 return (nfs4read(vp, NULL, uiop->uio_loffset, 2669 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2670 } 2671 2672 error = 0; 2673 2674 do { 2675 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2676 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2677 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2678 2679 if (error = nfs4_validate_caches(vp, cr)) 2680 break; 2681 2682 mutex_enter(&rp->r_statelock); 2683 while (rp->r_flags & R4INCACHEPURGE) { 2684 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2685 mutex_exit(&rp->r_statelock); 2686 return (EINTR); 2687 } 2688 } 2689 diff = rp->r_size - uiop->uio_loffset; 2690 mutex_exit(&rp->r_statelock); 2691 if (diff <= 0) 2692 break; 2693 if (diff < n) 2694 n = (uint_t)diff; 2695 2696 if (vpm_enable) { 2697 /* 2698 * Copy data. 2699 */ 2700 error = vpm_data_copy(vp, off + on, n, uiop, 2701 1, NULL, 0, S_READ); 2702 } else { 2703 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2704 S_READ); 2705 2706 error = uiomove(base + on, n, UIO_READ, uiop); 2707 } 2708 2709 if (!error) { 2710 /* 2711 * If read a whole block or read to eof, 2712 * won't need this buffer again soon. 2713 */ 2714 mutex_enter(&rp->r_statelock); 2715 if (n + on == MAXBSIZE || 2716 uiop->uio_loffset == rp->r_size) 2717 flags = SM_DONTNEED; 2718 else 2719 flags = 0; 2720 mutex_exit(&rp->r_statelock); 2721 if (vpm_enable) { 2722 error = vpm_sync_pages(vp, off, n, flags); 2723 } else { 2724 error = segmap_release(segkmap, base, flags); 2725 } 2726 } else { 2727 if (vpm_enable) { 2728 (void) vpm_sync_pages(vp, off, n, 0); 2729 } else { 2730 (void) segmap_release(segkmap, base, 0); 2731 } 2732 } 2733 } while (!error && uiop->uio_resid > 0); 2734 2735 return (error); 2736 } 2737 2738 /* ARGSUSED */ 2739 static int 2740 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2741 caller_context_t *ct) 2742 { 2743 rlim64_t limit = uiop->uio_llimit; 2744 rnode4_t *rp; 2745 u_offset_t off; 2746 caddr_t base; 2747 uint_t flags; 2748 int remainder; 2749 size_t n; 2750 int on; 2751 int error; 2752 int resid; 2753 u_offset_t offset; 2754 mntinfo4_t *mi; 2755 uint_t bsize; 2756 2757 rp = VTOR4(vp); 2758 2759 if (IS_SHADOW(vp, rp)) 2760 vp = RTOV4(rp); 2761 2762 if (vp->v_type != VREG) 2763 return (EISDIR); 2764 2765 mi = VTOMI4(vp); 2766 2767 if (nfs_zone() != mi->mi_zone) 2768 return (EIO); 2769 2770 if (uiop->uio_resid == 0) 2771 return (0); 2772 2773 mutex_enter(&rp->r_statelock); 2774 if (rp->r_flags & R4RECOVERRP) 2775 error = (rp->r_error ? rp->r_error : EIO); 2776 else 2777 error = 0; 2778 mutex_exit(&rp->r_statelock); 2779 if (error) 2780 return (error); 2781 2782 if (ioflag & FAPPEND) { 2783 struct vattr va; 2784 2785 /* 2786 * Must serialize if appending. 2787 */ 2788 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2789 nfs_rw_exit(&rp->r_rwlock); 2790 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2791 INTR4(vp))) 2792 return (EINTR); 2793 } 2794 2795 va.va_mask = AT_SIZE; 2796 error = nfs4getattr(vp, &va, cr); 2797 if (error) 2798 return (error); 2799 uiop->uio_loffset = va.va_size; 2800 } 2801 2802 offset = uiop->uio_loffset + uiop->uio_resid; 2803 2804 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2805 return (EINVAL); 2806 2807 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2808 limit = MAXOFFSET_T; 2809 2810 /* 2811 * Check to make sure that the process will not exceed 2812 * its limit on file size. It is okay to write up to 2813 * the limit, but not beyond. Thus, the write which 2814 * reaches the limit will be short and the next write 2815 * will return an error. 2816 */ 2817 remainder = 0; 2818 if (offset > uiop->uio_llimit) { 2819 remainder = offset - uiop->uio_llimit; 2820 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2821 if (uiop->uio_resid <= 0) { 2822 proc_t *p = ttoproc(curthread); 2823 2824 uiop->uio_resid += remainder; 2825 mutex_enter(&p->p_lock); 2826 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2827 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2828 mutex_exit(&p->p_lock); 2829 return (EFBIG); 2830 } 2831 } 2832 2833 /* update the change attribute, if we have a write delegation */ 2834 2835 mutex_enter(&rp->r_statev4_lock); 2836 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2837 rp->r_deleg_change++; 2838 2839 mutex_exit(&rp->r_statev4_lock); 2840 2841 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2842 return (EINTR); 2843 2844 /* 2845 * Bypass VM if caching has been disabled (e.g., locking) or if 2846 * using client-side direct I/O and the file is not mmap'd and 2847 * there are no cached pages. 2848 */ 2849 if ((vp->v_flag & VNOCACHE) || 2850 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2851 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2852 size_t bufsize; 2853 int count; 2854 u_offset_t org_offset; 2855 stable_how4 stab_comm; 2856 nfs4_fwrite: 2857 if (rp->r_flags & R4STALE) { 2858 resid = uiop->uio_resid; 2859 offset = uiop->uio_loffset; 2860 error = rp->r_error; 2861 /* 2862 * A close may have cleared r_error, if so, 2863 * propagate ESTALE error return properly 2864 */ 2865 if (error == 0) 2866 error = ESTALE; 2867 goto bottom; 2868 } 2869 2870 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2871 base = kmem_alloc(bufsize, KM_SLEEP); 2872 do { 2873 if (ioflag & FDSYNC) 2874 stab_comm = DATA_SYNC4; 2875 else 2876 stab_comm = FILE_SYNC4; 2877 resid = uiop->uio_resid; 2878 offset = uiop->uio_loffset; 2879 count = MIN(uiop->uio_resid, bufsize); 2880 org_offset = uiop->uio_loffset; 2881 error = uiomove(base, count, UIO_WRITE, uiop); 2882 if (!error) { 2883 error = nfs4write(vp, base, org_offset, 2884 count, cr, &stab_comm); 2885 if (!error) { 2886 mutex_enter(&rp->r_statelock); 2887 if (rp->r_size < uiop->uio_loffset) 2888 rp->r_size = uiop->uio_loffset; 2889 mutex_exit(&rp->r_statelock); 2890 } 2891 } 2892 } while (!error && uiop->uio_resid > 0); 2893 kmem_free(base, bufsize); 2894 goto bottom; 2895 } 2896 2897 bsize = vp->v_vfsp->vfs_bsize; 2898 2899 do { 2900 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2901 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2902 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2903 2904 resid = uiop->uio_resid; 2905 offset = uiop->uio_loffset; 2906 2907 if (rp->r_flags & R4STALE) { 2908 error = rp->r_error; 2909 /* 2910 * A close may have cleared r_error, if so, 2911 * propagate ESTALE error return properly 2912 */ 2913 if (error == 0) 2914 error = ESTALE; 2915 break; 2916 } 2917 2918 /* 2919 * Don't create dirty pages faster than they 2920 * can be cleaned so that the system doesn't 2921 * get imbalanced. If the async queue is 2922 * maxed out, then wait for it to drain before 2923 * creating more dirty pages. Also, wait for 2924 * any threads doing pagewalks in the vop_getattr 2925 * entry points so that they don't block for 2926 * long periods. 2927 */ 2928 mutex_enter(&rp->r_statelock); 2929 while ((mi->mi_max_threads != 0 && 2930 rp->r_awcount > 2 * mi->mi_max_threads) || 2931 rp->r_gcount > 0) { 2932 if (INTR4(vp)) { 2933 klwp_t *lwp = ttolwp(curthread); 2934 2935 if (lwp != NULL) 2936 lwp->lwp_nostop++; 2937 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2938 mutex_exit(&rp->r_statelock); 2939 if (lwp != NULL) 2940 lwp->lwp_nostop--; 2941 error = EINTR; 2942 goto bottom; 2943 } 2944 if (lwp != NULL) 2945 lwp->lwp_nostop--; 2946 } else 2947 cv_wait(&rp->r_cv, &rp->r_statelock); 2948 } 2949 mutex_exit(&rp->r_statelock); 2950 2951 /* 2952 * Touch the page and fault it in if it is not in core 2953 * before segmap_getmapflt or vpm_data_copy can lock it. 2954 * This is to avoid the deadlock if the buffer is mapped 2955 * to the same file through mmap which we want to write. 2956 */ 2957 uio_prefaultpages((long)n, uiop); 2958 2959 if (vpm_enable) { 2960 /* 2961 * It will use kpm mappings, so no need to 2962 * pass an address. 2963 */ 2964 error = writerp4(rp, NULL, n, uiop, 0); 2965 } else { 2966 if (segmap_kpm) { 2967 int pon = uiop->uio_loffset & PAGEOFFSET; 2968 size_t pn = MIN(PAGESIZE - pon, 2969 uiop->uio_resid); 2970 int pagecreate; 2971 2972 mutex_enter(&rp->r_statelock); 2973 pagecreate = (pon == 0) && (pn == PAGESIZE || 2974 uiop->uio_loffset + pn >= rp->r_size); 2975 mutex_exit(&rp->r_statelock); 2976 2977 base = segmap_getmapflt(segkmap, vp, off + on, 2978 pn, !pagecreate, S_WRITE); 2979 2980 error = writerp4(rp, base + pon, n, uiop, 2981 pagecreate); 2982 2983 } else { 2984 base = segmap_getmapflt(segkmap, vp, off + on, 2985 n, 0, S_READ); 2986 error = writerp4(rp, base + on, n, uiop, 0); 2987 } 2988 } 2989 2990 if (!error) { 2991 if (mi->mi_flags & MI4_NOAC) 2992 flags = SM_WRITE; 2993 else if ((uiop->uio_loffset % bsize) == 0 || 2994 IS_SWAPVP(vp)) { 2995 /* 2996 * Have written a whole block. 2997 * Start an asynchronous write 2998 * and mark the buffer to 2999 * indicate that it won't be 3000 * needed again soon. 3001 */ 3002 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 3003 } else 3004 flags = 0; 3005 if ((ioflag & (FSYNC|FDSYNC)) || 3006 (rp->r_flags & R4OUTOFSPACE)) { 3007 flags &= ~SM_ASYNC; 3008 flags |= SM_WRITE; 3009 } 3010 if (vpm_enable) { 3011 error = vpm_sync_pages(vp, off, n, flags); 3012 } else { 3013 error = segmap_release(segkmap, base, flags); 3014 } 3015 } else { 3016 if (vpm_enable) { 3017 (void) vpm_sync_pages(vp, off, n, 0); 3018 } else { 3019 (void) segmap_release(segkmap, base, 0); 3020 } 3021 /* 3022 * In the event that we got an access error while 3023 * faulting in a page for a write-only file just 3024 * force a write. 3025 */ 3026 if (error == EACCES) 3027 goto nfs4_fwrite; 3028 } 3029 } while (!error && uiop->uio_resid > 0); 3030 3031 bottom: 3032 if (error) { 3033 uiop->uio_resid = resid + remainder; 3034 uiop->uio_loffset = offset; 3035 } else { 3036 uiop->uio_resid += remainder; 3037 3038 mutex_enter(&rp->r_statev4_lock); 3039 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 3040 gethrestime(&rp->r_attr.va_mtime); 3041 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3042 } 3043 mutex_exit(&rp->r_statev4_lock); 3044 } 3045 3046 nfs_rw_exit(&rp->r_lkserlock); 3047 3048 return (error); 3049 } 3050 3051 /* 3052 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 3053 */ 3054 static int 3055 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 3056 int flags, cred_t *cr) 3057 { 3058 struct buf *bp; 3059 int error; 3060 page_t *savepp; 3061 uchar_t fsdata; 3062 stable_how4 stab_comm; 3063 3064 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3065 bp = pageio_setup(pp, len, vp, flags); 3066 ASSERT(bp != NULL); 3067 3068 /* 3069 * pageio_setup should have set b_addr to 0. This 3070 * is correct since we want to do I/O on a page 3071 * boundary. bp_mapin will use this addr to calculate 3072 * an offset, and then set b_addr to the kernel virtual 3073 * address it allocated for us. 3074 */ 3075 ASSERT(bp->b_un.b_addr == 0); 3076 3077 bp->b_edev = 0; 3078 bp->b_dev = 0; 3079 bp->b_lblkno = lbtodb(off); 3080 bp->b_file = vp; 3081 bp->b_offset = (offset_t)off; 3082 bp_mapin(bp); 3083 3084 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3085 freemem > desfree) 3086 stab_comm = UNSTABLE4; 3087 else 3088 stab_comm = FILE_SYNC4; 3089 3090 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3091 3092 bp_mapout(bp); 3093 pageio_done(bp); 3094 3095 if (stab_comm == UNSTABLE4) 3096 fsdata = C_DELAYCOMMIT; 3097 else 3098 fsdata = C_NOCOMMIT; 3099 3100 savepp = pp; 3101 do { 3102 pp->p_fsdata = fsdata; 3103 } while ((pp = pp->p_next) != savepp); 3104 3105 return (error); 3106 } 3107 3108 /* 3109 */ 3110 static int 3111 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3112 { 3113 nfs4_open_owner_t *oop; 3114 nfs4_open_stream_t *osp; 3115 rnode4_t *rp = VTOR4(vp); 3116 mntinfo4_t *mi = VTOMI4(vp); 3117 int reopen_needed; 3118 3119 ASSERT(nfs_zone() == mi->mi_zone); 3120 3121 3122 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3123 if (!oop) 3124 return (EIO); 3125 3126 /* returns with 'os_sync_lock' held */ 3127 osp = find_open_stream(oop, rp); 3128 if (!osp) { 3129 open_owner_rele(oop); 3130 return (EIO); 3131 } 3132 3133 if (osp->os_failed_reopen) { 3134 mutex_exit(&osp->os_sync_lock); 3135 open_stream_rele(osp, rp); 3136 open_owner_rele(oop); 3137 return (EIO); 3138 } 3139 3140 /* 3141 * Determine whether a reopen is needed. If this 3142 * is a delegation open stream, then the os_delegation bit 3143 * should be set. 3144 */ 3145 3146 reopen_needed = osp->os_delegation; 3147 3148 mutex_exit(&osp->os_sync_lock); 3149 open_owner_rele(oop); 3150 3151 if (reopen_needed) { 3152 nfs4_error_zinit(ep); 3153 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3154 mutex_enter(&osp->os_sync_lock); 3155 if (ep->error || ep->stat || osp->os_failed_reopen) { 3156 mutex_exit(&osp->os_sync_lock); 3157 open_stream_rele(osp, rp); 3158 return (EIO); 3159 } 3160 mutex_exit(&osp->os_sync_lock); 3161 } 3162 open_stream_rele(osp, rp); 3163 3164 return (0); 3165 } 3166 3167 /* 3168 * Write to file. Writes to remote server in largest size 3169 * chunks that the server can handle. Write is synchronous. 3170 */ 3171 static int 3172 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3173 stable_how4 *stab_comm) 3174 { 3175 mntinfo4_t *mi; 3176 COMPOUND4args_clnt args; 3177 COMPOUND4res_clnt res; 3178 WRITE4args *wargs; 3179 WRITE4res *wres; 3180 nfs_argop4 argop[2]; 3181 nfs_resop4 *resop; 3182 int tsize; 3183 stable_how4 stable; 3184 rnode4_t *rp; 3185 int doqueue = 1; 3186 bool_t needrecov; 3187 nfs4_recov_state_t recov_state; 3188 nfs4_stateid_types_t sid_types; 3189 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3190 int recov; 3191 3192 rp = VTOR4(vp); 3193 mi = VTOMI4(vp); 3194 3195 ASSERT(nfs_zone() == mi->mi_zone); 3196 3197 stable = *stab_comm; 3198 *stab_comm = FILE_SYNC4; 3199 3200 needrecov = FALSE; 3201 recov_state.rs_flags = 0; 3202 recov_state.rs_num_retry_despite_err = 0; 3203 nfs4_init_stateid_types(&sid_types); 3204 3205 /* Is curthread the recovery thread? */ 3206 mutex_enter(&mi->mi_lock); 3207 recov = (mi->mi_recovthread == curthread); 3208 mutex_exit(&mi->mi_lock); 3209 3210 recov_retry: 3211 args.ctag = TAG_WRITE; 3212 args.array_len = 2; 3213 args.array = argop; 3214 3215 if (!recov) { 3216 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3217 &recov_state, NULL); 3218 if (e.error) 3219 return (e.error); 3220 } 3221 3222 /* 0. putfh target fh */ 3223 argop[0].argop = OP_CPUTFH; 3224 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3225 3226 /* 1. write */ 3227 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3228 3229 do { 3230 3231 wargs->offset = (offset4)offset; 3232 wargs->data_val = base; 3233 3234 if (mi->mi_io_kstats) { 3235 mutex_enter(&mi->mi_lock); 3236 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3237 mutex_exit(&mi->mi_lock); 3238 } 3239 3240 if ((vp->v_flag & VNOCACHE) || 3241 (rp->r_flags & R4DIRECTIO) || 3242 (mi->mi_flags & MI4_DIRECTIO)) 3243 tsize = MIN(mi->mi_stsize, count); 3244 else 3245 tsize = MIN(mi->mi_curwrite, count); 3246 wargs->data_len = (uint_t)tsize; 3247 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3248 3249 if (mi->mi_io_kstats) { 3250 mutex_enter(&mi->mi_lock); 3251 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3252 mutex_exit(&mi->mi_lock); 3253 } 3254 3255 if (!recov) { 3256 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3257 if (e.error && !needrecov) { 3258 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3259 &recov_state, needrecov); 3260 return (e.error); 3261 } 3262 } else { 3263 if (e.error) 3264 return (e.error); 3265 } 3266 3267 /* 3268 * Do handling of OLD_STATEID outside 3269 * of the normal recovery framework. 3270 * 3271 * If write receives a BAD stateid error while using a 3272 * delegation stateid, retry using the open stateid (if it 3273 * exists). If it doesn't have an open stateid, reopen the 3274 * file first, then retry. 3275 */ 3276 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3277 sid_types.cur_sid_type != SPEC_SID) { 3278 nfs4_save_stateid(&wargs->stateid, &sid_types); 3279 if (!recov) 3280 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3281 &recov_state, needrecov); 3282 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3283 goto recov_retry; 3284 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3285 sid_types.cur_sid_type == DEL_SID) { 3286 nfs4_save_stateid(&wargs->stateid, &sid_types); 3287 mutex_enter(&rp->r_statev4_lock); 3288 rp->r_deleg_return_pending = TRUE; 3289 mutex_exit(&rp->r_statev4_lock); 3290 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3291 if (!recov) 3292 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3293 &recov_state, needrecov); 3294 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3295 return (EIO); 3296 } 3297 if (!recov) 3298 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3299 &recov_state, needrecov); 3300 /* hold needed for nfs4delegreturn_thread */ 3301 VN_HOLD(vp); 3302 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3303 NFS4_DR_DISCARD), FALSE); 3304 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3305 goto recov_retry; 3306 } 3307 3308 if (needrecov) { 3309 bool_t abort; 3310 3311 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3312 "nfs4write: client got error %d, res.status %d" 3313 ", so start recovery", e.error, res.status)); 3314 3315 abort = nfs4_start_recovery(&e, 3316 VTOMI4(vp), vp, NULL, &wargs->stateid, 3317 NULL, OP_WRITE, NULL, NULL, NULL); 3318 if (!e.error) { 3319 e.error = geterrno4(res.status); 3320 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3321 } 3322 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3323 &recov_state, needrecov); 3324 if (abort == FALSE) 3325 goto recov_retry; 3326 return (e.error); 3327 } 3328 3329 if (res.status) { 3330 e.error = geterrno4(res.status); 3331 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3332 if (!recov) 3333 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3334 &recov_state, needrecov); 3335 return (e.error); 3336 } 3337 3338 resop = &res.array[1]; /* write res */ 3339 wres = &resop->nfs_resop4_u.opwrite; 3340 3341 if ((int)wres->count > tsize) { 3342 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3343 3344 zcmn_err(getzoneid(), CE_WARN, 3345 "nfs4write: server wrote %u, requested was %u", 3346 (int)wres->count, tsize); 3347 if (!recov) 3348 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3349 &recov_state, needrecov); 3350 return (EIO); 3351 } 3352 if (wres->committed == UNSTABLE4) { 3353 *stab_comm = UNSTABLE4; 3354 if (wargs->stable == DATA_SYNC4 || 3355 wargs->stable == FILE_SYNC4) { 3356 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3357 zcmn_err(getzoneid(), CE_WARN, 3358 "nfs4write: server %s did not commit " 3359 "to stable storage", 3360 rp->r_server->sv_hostname); 3361 if (!recov) 3362 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3363 OH_WRITE, &recov_state, needrecov); 3364 return (EIO); 3365 } 3366 } 3367 3368 tsize = (int)wres->count; 3369 count -= tsize; 3370 base += tsize; 3371 offset += tsize; 3372 if (mi->mi_io_kstats) { 3373 mutex_enter(&mi->mi_lock); 3374 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3375 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3376 tsize; 3377 mutex_exit(&mi->mi_lock); 3378 } 3379 lwp_stat_update(LWP_STAT_OUBLK, 1); 3380 mutex_enter(&rp->r_statelock); 3381 if (rp->r_flags & R4HAVEVERF) { 3382 if (rp->r_writeverf != wres->writeverf) { 3383 nfs4_set_mod(vp); 3384 rp->r_writeverf = wres->writeverf; 3385 } 3386 } else { 3387 rp->r_writeverf = wres->writeverf; 3388 rp->r_flags |= R4HAVEVERF; 3389 } 3390 PURGE_ATTRCACHE4_LOCKED(rp); 3391 rp->r_flags |= R4WRITEMODIFIED; 3392 gethrestime(&rp->r_attr.va_mtime); 3393 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3394 mutex_exit(&rp->r_statelock); 3395 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3396 } while (count); 3397 3398 if (!recov) 3399 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3400 needrecov); 3401 3402 return (e.error); 3403 } 3404 3405 /* 3406 * Read from a file. Reads data in largest chunks our interface can handle. 3407 */ 3408 static int 3409 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3410 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3411 { 3412 mntinfo4_t *mi; 3413 COMPOUND4args_clnt args; 3414 COMPOUND4res_clnt res; 3415 READ4args *rargs; 3416 nfs_argop4 argop[2]; 3417 int tsize; 3418 int doqueue; 3419 rnode4_t *rp; 3420 int data_len; 3421 bool_t is_eof; 3422 bool_t needrecov = FALSE; 3423 nfs4_recov_state_t recov_state; 3424 nfs4_stateid_types_t sid_types; 3425 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3426 3427 rp = VTOR4(vp); 3428 mi = VTOMI4(vp); 3429 doqueue = 1; 3430 3431 ASSERT(nfs_zone() == mi->mi_zone); 3432 3433 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3434 3435 args.array_len = 2; 3436 args.array = argop; 3437 3438 nfs4_init_stateid_types(&sid_types); 3439 3440 recov_state.rs_flags = 0; 3441 recov_state.rs_num_retry_despite_err = 0; 3442 3443 recov_retry: 3444 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3445 &recov_state, NULL); 3446 if (e.error) 3447 return (e.error); 3448 3449 /* putfh target fh */ 3450 argop[0].argop = OP_CPUTFH; 3451 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3452 3453 /* read */ 3454 argop[1].argop = OP_READ; 3455 rargs = &argop[1].nfs_argop4_u.opread; 3456 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3457 OP_READ, &sid_types, async); 3458 3459 do { 3460 if (mi->mi_io_kstats) { 3461 mutex_enter(&mi->mi_lock); 3462 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3463 mutex_exit(&mi->mi_lock); 3464 } 3465 3466 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3467 "nfs4read: %s call, rp %s", 3468 needrecov ? "recov" : "first", 3469 rnode4info(rp))); 3470 3471 if ((vp->v_flag & VNOCACHE) || 3472 (rp->r_flags & R4DIRECTIO) || 3473 (mi->mi_flags & MI4_DIRECTIO)) 3474 tsize = MIN(mi->mi_tsize, count); 3475 else 3476 tsize = MIN(mi->mi_curread, count); 3477 3478 rargs->offset = (offset4)offset; 3479 rargs->count = (count4)tsize; 3480 rargs->res_data_val_alt = NULL; 3481 rargs->res_mblk = NULL; 3482 rargs->res_uiop = NULL; 3483 rargs->res_maxsize = 0; 3484 rargs->wlist = NULL; 3485 3486 if (uiop) 3487 rargs->res_uiop = uiop; 3488 else 3489 rargs->res_data_val_alt = base; 3490 rargs->res_maxsize = tsize; 3491 3492 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3493 #ifdef DEBUG 3494 if (nfs4read_error_inject) { 3495 res.status = nfs4read_error_inject; 3496 nfs4read_error_inject = 0; 3497 } 3498 #endif 3499 3500 if (mi->mi_io_kstats) { 3501 mutex_enter(&mi->mi_lock); 3502 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3503 mutex_exit(&mi->mi_lock); 3504 } 3505 3506 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3507 if (e.error != 0 && !needrecov) { 3508 nfs4_end_fop(mi, vp, NULL, OH_READ, 3509 &recov_state, needrecov); 3510 return (e.error); 3511 } 3512 3513 /* 3514 * Do proper retry for OLD and BAD stateid errors outside 3515 * of the normal recovery framework. There are two differences 3516 * between async and sync reads. The first is that we allow 3517 * retry on BAD_STATEID for async reads, but not sync reads. 3518 * The second is that we mark the file dead for a failed 3519 * attempt with a special stateid for sync reads, but just 3520 * return EIO for async reads. 3521 * 3522 * If a sync read receives a BAD stateid error while using a 3523 * delegation stateid, retry using the open stateid (if it 3524 * exists). If it doesn't have an open stateid, reopen the 3525 * file first, then retry. 3526 */ 3527 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3528 res.status == NFS4ERR_BAD_STATEID) && async) { 3529 nfs4_end_fop(mi, vp, NULL, OH_READ, 3530 &recov_state, needrecov); 3531 if (sid_types.cur_sid_type == SPEC_SID) { 3532 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3533 return (EIO); 3534 } 3535 nfs4_save_stateid(&rargs->stateid, &sid_types); 3536 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3537 goto recov_retry; 3538 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3539 !async && sid_types.cur_sid_type != SPEC_SID) { 3540 nfs4_save_stateid(&rargs->stateid, &sid_types); 3541 nfs4_end_fop(mi, vp, NULL, OH_READ, 3542 &recov_state, needrecov); 3543 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3544 goto recov_retry; 3545 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3546 sid_types.cur_sid_type == DEL_SID) { 3547 nfs4_save_stateid(&rargs->stateid, &sid_types); 3548 mutex_enter(&rp->r_statev4_lock); 3549 rp->r_deleg_return_pending = TRUE; 3550 mutex_exit(&rp->r_statev4_lock); 3551 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3552 nfs4_end_fop(mi, vp, NULL, OH_READ, 3553 &recov_state, needrecov); 3554 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3555 return (EIO); 3556 } 3557 nfs4_end_fop(mi, vp, NULL, OH_READ, 3558 &recov_state, needrecov); 3559 /* hold needed for nfs4delegreturn_thread */ 3560 VN_HOLD(vp); 3561 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3562 NFS4_DR_DISCARD), FALSE); 3563 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3564 goto recov_retry; 3565 } 3566 if (needrecov) { 3567 bool_t abort; 3568 3569 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3570 "nfs4read: initiating recovery\n")); 3571 abort = nfs4_start_recovery(&e, 3572 mi, vp, NULL, &rargs->stateid, 3573 NULL, OP_READ, NULL, NULL, NULL); 3574 nfs4_end_fop(mi, vp, NULL, OH_READ, 3575 &recov_state, needrecov); 3576 /* 3577 * Do not retry if we got OLD_STATEID using a special 3578 * stateid. This avoids looping with a broken server. 3579 */ 3580 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3581 sid_types.cur_sid_type == SPEC_SID) 3582 abort = TRUE; 3583 3584 if (abort == FALSE) { 3585 /* 3586 * Need to retry all possible stateids in 3587 * case the recovery error wasn't stateid 3588 * related or the stateids have become 3589 * stale (server reboot). 3590 */ 3591 nfs4_init_stateid_types(&sid_types); 3592 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3593 goto recov_retry; 3594 } 3595 3596 if (!e.error) { 3597 e.error = geterrno4(res.status); 3598 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3599 } 3600 return (e.error); 3601 } 3602 3603 if (res.status) { 3604 e.error = geterrno4(res.status); 3605 nfs4_end_fop(mi, vp, NULL, OH_READ, 3606 &recov_state, needrecov); 3607 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3608 return (e.error); 3609 } 3610 3611 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3612 count -= data_len; 3613 if (base) 3614 base += data_len; 3615 offset += data_len; 3616 if (mi->mi_io_kstats) { 3617 mutex_enter(&mi->mi_lock); 3618 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3619 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3620 mutex_exit(&mi->mi_lock); 3621 } 3622 lwp_stat_update(LWP_STAT_INBLK, 1); 3623 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3624 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3625 3626 } while (count && !is_eof); 3627 3628 *residp = count; 3629 3630 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3631 3632 return (e.error); 3633 } 3634 3635 /* ARGSUSED */ 3636 static int 3637 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3638 caller_context_t *ct) 3639 { 3640 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3641 return (EIO); 3642 switch (cmd) { 3643 case _FIODIRECTIO: 3644 return (nfs4_directio(vp, (int)arg, cr)); 3645 default: 3646 return (ENOTTY); 3647 } 3648 } 3649 3650 /* ARGSUSED */ 3651 int 3652 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3653 caller_context_t *ct) 3654 { 3655 int error; 3656 rnode4_t *rp = VTOR4(vp); 3657 3658 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3659 return (EIO); 3660 /* 3661 * If it has been specified that the return value will 3662 * just be used as a hint, and we are only being asked 3663 * for size, fsid or rdevid, then return the client's 3664 * notion of these values without checking to make sure 3665 * that the attribute cache is up to date. 3666 * The whole point is to avoid an over the wire GETATTR 3667 * call. 3668 */ 3669 if (flags & ATTR_HINT) { 3670 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) { 3671 mutex_enter(&rp->r_statelock); 3672 if (vap->va_mask & AT_SIZE) 3673 vap->va_size = rp->r_size; 3674 if (vap->va_mask & AT_FSID) 3675 vap->va_fsid = rp->r_attr.va_fsid; 3676 if (vap->va_mask & AT_RDEV) 3677 vap->va_rdev = rp->r_attr.va_rdev; 3678 mutex_exit(&rp->r_statelock); 3679 return (0); 3680 } 3681 } 3682 3683 /* 3684 * Only need to flush pages if asking for the mtime 3685 * and if there any dirty pages or any outstanding 3686 * asynchronous (write) requests for this file. 3687 */ 3688 if (vap->va_mask & AT_MTIME) { 3689 rp = VTOR4(vp); 3690 if (nfs4_has_pages(vp)) { 3691 mutex_enter(&rp->r_statev4_lock); 3692 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3693 mutex_exit(&rp->r_statev4_lock); 3694 if (rp->r_flags & R4DIRTY || 3695 rp->r_awcount > 0) { 3696 mutex_enter(&rp->r_statelock); 3697 rp->r_gcount++; 3698 mutex_exit(&rp->r_statelock); 3699 error = 3700 nfs4_putpage(vp, (u_offset_t)0, 3701 0, 0, cr, NULL); 3702 mutex_enter(&rp->r_statelock); 3703 if (error && (error == ENOSPC || 3704 error == EDQUOT)) { 3705 if (!rp->r_error) 3706 rp->r_error = error; 3707 } 3708 if (--rp->r_gcount == 0) 3709 cv_broadcast(&rp->r_cv); 3710 mutex_exit(&rp->r_statelock); 3711 } 3712 } else { 3713 mutex_exit(&rp->r_statev4_lock); 3714 } 3715 } 3716 } 3717 return (nfs4getattr(vp, vap, cr)); 3718 } 3719 3720 int 3721 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3722 { 3723 /* 3724 * If these are the only two bits cleared 3725 * on the server then return 0 (OK) else 3726 * return 1 (BAD). 3727 */ 3728 on_client &= ~(S_ISUID|S_ISGID); 3729 if (on_client == from_server) 3730 return (0); 3731 else 3732 return (1); 3733 } 3734 3735 /*ARGSUSED4*/ 3736 static int 3737 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3738 caller_context_t *ct) 3739 { 3740 int error; 3741 3742 if (vap->va_mask & AT_NOSET) 3743 return (EINVAL); 3744 3745 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3746 return (EIO); 3747 3748 /* 3749 * Don't call secpolicy_vnode_setattr, the client cannot 3750 * use its cached attributes to make security decisions 3751 * as the server may be faking mode bits or mapping uid/gid. 3752 * Always just let the server to the checking. 3753 * If we provide the ability to remove basic priviledges 3754 * to setattr (e.g. basic without chmod) then we will 3755 * need to add a check here before calling the server. 3756 */ 3757 error = nfs4setattr(vp, vap, flags, cr, NULL); 3758 3759 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) 3760 vnevent_truncate(vp, ct); 3761 3762 return (error); 3763 } 3764 3765 /* 3766 * To replace the "guarded" version 3 setattr, we use two types of compound 3767 * setattr requests: 3768 * 1. The "normal" setattr, used when the size of the file isn't being 3769 * changed - { Putfh <fh>; Setattr; Getattr }/ 3770 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3771 * with only ctime as the argument. If the server ctime differs from 3772 * what is cached on the client, the verify will fail, but we would 3773 * already have the ctime from the preceding getattr, so just set it 3774 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3775 * Setattr; Getattr }. 3776 * 3777 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3778 * this setattr and NULL if they are not. 3779 */ 3780 static int 3781 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3782 vsecattr_t *vsap) 3783 { 3784 COMPOUND4args_clnt args; 3785 COMPOUND4res_clnt res, *resp = NULL; 3786 nfs4_ga_res_t *garp = NULL; 3787 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3788 nfs_argop4 argop[5]; 3789 int verify_argop = -1; 3790 int setattr_argop = 1; 3791 nfs_resop4 *resop; 3792 vattr_t va; 3793 rnode4_t *rp; 3794 int doqueue = 1; 3795 uint_t mask = vap->va_mask; 3796 mode_t omode; 3797 vsecattr_t *vsp; 3798 timestruc_t ctime; 3799 bool_t needrecov = FALSE; 3800 nfs4_recov_state_t recov_state; 3801 nfs4_stateid_types_t sid_types; 3802 stateid4 stateid; 3803 hrtime_t t; 3804 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3805 servinfo4_t *svp; 3806 bitmap4 supp_attrs; 3807 3808 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3809 rp = VTOR4(vp); 3810 nfs4_init_stateid_types(&sid_types); 3811 3812 /* 3813 * Only need to flush pages if there are any pages and 3814 * if the file is marked as dirty in some fashion. The 3815 * file must be flushed so that we can accurately 3816 * determine the size of the file and the cached data 3817 * after the SETATTR returns. A file is considered to 3818 * be dirty if it is either marked with R4DIRTY, has 3819 * outstanding i/o's active, or is mmap'd. In this 3820 * last case, we can't tell whether there are dirty 3821 * pages, so we flush just to be sure. 3822 */ 3823 if (nfs4_has_pages(vp) && 3824 ((rp->r_flags & R4DIRTY) || 3825 rp->r_count > 0 || 3826 rp->r_mapcnt > 0)) { 3827 ASSERT(vp->v_type != VCHR); 3828 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3829 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3830 mutex_enter(&rp->r_statelock); 3831 if (!rp->r_error) 3832 rp->r_error = e.error; 3833 mutex_exit(&rp->r_statelock); 3834 } 3835 } 3836 3837 if (mask & AT_SIZE) { 3838 /* 3839 * Verification setattr compound for non-deleg AT_SIZE: 3840 * { Putfh; Getattr; Verify; Setattr; Getattr } 3841 * Set ctime local here (outside the do_again label) 3842 * so that subsequent retries (after failed VERIFY) 3843 * will use ctime from GETATTR results (from failed 3844 * verify compound) as VERIFY arg. 3845 * If file has delegation, then VERIFY(time_metadata) 3846 * is of little added value, so don't bother. 3847 */ 3848 mutex_enter(&rp->r_statev4_lock); 3849 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3850 rp->r_deleg_return_pending) { 3851 numops = 5; 3852 ctime = rp->r_attr.va_ctime; 3853 } 3854 mutex_exit(&rp->r_statev4_lock); 3855 } 3856 3857 recov_state.rs_flags = 0; 3858 recov_state.rs_num_retry_despite_err = 0; 3859 3860 args.ctag = TAG_SETATTR; 3861 do_again: 3862 recov_retry: 3863 setattr_argop = numops - 2; 3864 3865 args.array = argop; 3866 args.array_len = numops; 3867 3868 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3869 if (e.error) 3870 return (e.error); 3871 3872 3873 /* putfh target fh */ 3874 argop[0].argop = OP_CPUTFH; 3875 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3876 3877 if (numops == 5) { 3878 /* 3879 * We only care about the ctime, but need to get mtime 3880 * and size for proper cache update. 3881 */ 3882 /* getattr */ 3883 argop[1].argop = OP_GETATTR; 3884 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3885 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3886 3887 /* verify - set later in loop */ 3888 verify_argop = 2; 3889 } 3890 3891 /* setattr */ 3892 svp = rp->r_server; 3893 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3894 supp_attrs = svp->sv_supp_attrs; 3895 nfs_rw_exit(&svp->sv_lock); 3896 3897 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3898 supp_attrs, &e.error, &sid_types); 3899 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3900 if (e.error) { 3901 /* req time field(s) overflow - return immediately */ 3902 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3903 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3904 opsetattr.obj_attributes); 3905 return (e.error); 3906 } 3907 omode = rp->r_attr.va_mode; 3908 3909 /* getattr */ 3910 argop[numops-1].argop = OP_GETATTR; 3911 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3912 /* 3913 * If we are setting the ACL (indicated only by vsap != NULL), request 3914 * the ACL in this getattr. The ACL returned from this getattr will be 3915 * used in updating the ACL cache. 3916 */ 3917 if (vsap != NULL) 3918 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3919 FATTR4_ACL_MASK; 3920 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3921 3922 /* 3923 * setattr iterates if the object size is set and the cached ctime 3924 * does not match the file ctime. In that case, verify the ctime first. 3925 */ 3926 3927 do { 3928 if (verify_argop != -1) { 3929 /* 3930 * Verify that the ctime match before doing setattr. 3931 */ 3932 va.va_mask = AT_CTIME; 3933 va.va_ctime = ctime; 3934 svp = rp->r_server; 3935 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3936 supp_attrs = svp->sv_supp_attrs; 3937 nfs_rw_exit(&svp->sv_lock); 3938 e.error = nfs4args_verify(&argop[verify_argop], &va, 3939 OP_VERIFY, supp_attrs); 3940 if (e.error) { 3941 /* req time field(s) overflow - return */ 3942 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3943 needrecov); 3944 break; 3945 } 3946 } 3947 3948 doqueue = 1; 3949 3950 t = gethrtime(); 3951 3952 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3953 3954 /* 3955 * Purge the access cache and ACL cache if changing either the 3956 * owner of the file, the group owner, or the mode. These may 3957 * change the access permissions of the file, so purge old 3958 * information and start over again. 3959 */ 3960 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3961 (void) nfs4_access_purge_rp(rp); 3962 if (rp->r_secattr != NULL) { 3963 mutex_enter(&rp->r_statelock); 3964 vsp = rp->r_secattr; 3965 rp->r_secattr = NULL; 3966 mutex_exit(&rp->r_statelock); 3967 if (vsp != NULL) 3968 nfs4_acl_free_cache(vsp); 3969 } 3970 } 3971 3972 /* 3973 * If res.array_len == numops, then everything succeeded, 3974 * except for possibly the final getattr. If only the 3975 * last getattr failed, give up, and don't try recovery. 3976 */ 3977 if (res.array_len == numops) { 3978 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3979 needrecov); 3980 if (! e.error) 3981 resp = &res; 3982 break; 3983 } 3984 3985 /* 3986 * if either rpc call failed or completely succeeded - done 3987 */ 3988 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3989 if (e.error) { 3990 PURGE_ATTRCACHE4(vp); 3991 if (!needrecov) { 3992 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3993 needrecov); 3994 break; 3995 } 3996 } 3997 3998 /* 3999 * Do proper retry for OLD_STATEID outside of the normal 4000 * recovery framework. 4001 */ 4002 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4003 sid_types.cur_sid_type != SPEC_SID && 4004 sid_types.cur_sid_type != NO_SID) { 4005 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4006 needrecov); 4007 nfs4_save_stateid(&stateid, &sid_types); 4008 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4009 opsetattr.obj_attributes); 4010 if (verify_argop != -1) { 4011 nfs4args_verify_free(&argop[verify_argop]); 4012 verify_argop = -1; 4013 } 4014 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4015 goto recov_retry; 4016 } 4017 4018 if (needrecov) { 4019 bool_t abort; 4020 4021 abort = nfs4_start_recovery(&e, 4022 VTOMI4(vp), vp, NULL, NULL, NULL, 4023 OP_SETATTR, NULL, NULL, NULL); 4024 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4025 needrecov); 4026 /* 4027 * Do not retry if we failed with OLD_STATEID using 4028 * a special stateid. This is done to avoid looping 4029 * with a broken server. 4030 */ 4031 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4032 (sid_types.cur_sid_type == SPEC_SID || 4033 sid_types.cur_sid_type == NO_SID)) 4034 abort = TRUE; 4035 if (!e.error) { 4036 if (res.status == NFS4ERR_BADOWNER) 4037 nfs4_log_badowner(VTOMI4(vp), 4038 OP_SETATTR); 4039 4040 e.error = geterrno4(res.status); 4041 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4042 } 4043 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4044 opsetattr.obj_attributes); 4045 if (verify_argop != -1) { 4046 nfs4args_verify_free(&argop[verify_argop]); 4047 verify_argop = -1; 4048 } 4049 if (abort == FALSE) { 4050 /* 4051 * Need to retry all possible stateids in 4052 * case the recovery error wasn't stateid 4053 * related or the stateids have become 4054 * stale (server reboot). 4055 */ 4056 nfs4_init_stateid_types(&sid_types); 4057 goto recov_retry; 4058 } 4059 return (e.error); 4060 } 4061 4062 /* 4063 * Need to call nfs4_end_op before nfs4getattr to 4064 * avoid potential nfs4_start_op deadlock. See RFE 4065 * 4777612. Calls to nfs4_invalidate_pages() and 4066 * nfs4_purge_stale_fh() might also generate over the 4067 * wire calls which my cause nfs4_start_op() deadlock. 4068 */ 4069 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4070 4071 /* 4072 * Check to update lease. 4073 */ 4074 resp = &res; 4075 if (res.status == NFS4_OK) { 4076 break; 4077 } 4078 4079 /* 4080 * Check if verify failed to see if try again 4081 */ 4082 if ((verify_argop == -1) || (res.array_len != 3)) { 4083 /* 4084 * can't continue... 4085 */ 4086 if (res.status == NFS4ERR_BADOWNER) 4087 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4088 4089 e.error = geterrno4(res.status); 4090 } else { 4091 /* 4092 * When the verify request fails, the client ctime is 4093 * not in sync with the server. This is the same as 4094 * the version 3 "not synchronized" error, and we 4095 * handle it in a similar manner (XXX do we need to???). 4096 * Use the ctime returned in the first getattr for 4097 * the input to the next verify. 4098 * If we couldn't get the attributes, then we give up 4099 * because we can't complete the operation as required. 4100 */ 4101 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4102 } 4103 if (e.error) { 4104 PURGE_ATTRCACHE4(vp); 4105 nfs4_purge_stale_fh(e.error, vp, cr); 4106 } else { 4107 /* 4108 * retry with a new verify value 4109 */ 4110 ctime = garp->n4g_va.va_ctime; 4111 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4112 resp = NULL; 4113 } 4114 if (!e.error) { 4115 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4116 opsetattr.obj_attributes); 4117 if (verify_argop != -1) { 4118 nfs4args_verify_free(&argop[verify_argop]); 4119 verify_argop = -1; 4120 } 4121 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4122 goto do_again; 4123 } 4124 } while (!e.error); 4125 4126 if (e.error) { 4127 /* 4128 * If we are here, rfs4call has an irrecoverable error - return 4129 */ 4130 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4131 opsetattr.obj_attributes); 4132 if (verify_argop != -1) { 4133 nfs4args_verify_free(&argop[verify_argop]); 4134 verify_argop = -1; 4135 } 4136 if (resp) 4137 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4138 return (e.error); 4139 } 4140 4141 4142 4143 /* 4144 * If changing the size of the file, invalidate 4145 * any local cached data which is no longer part 4146 * of the file. We also possibly invalidate the 4147 * last page in the file. We could use 4148 * pvn_vpzero(), but this would mark the page as 4149 * modified and require it to be written back to 4150 * the server for no particularly good reason. 4151 * This way, if we access it, then we bring it 4152 * back in. A read should be cheaper than a 4153 * write. 4154 */ 4155 if (mask & AT_SIZE) { 4156 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4157 } 4158 4159 /* either no error or one of the postop getattr failed */ 4160 4161 /* 4162 * XXX Perform a simplified version of wcc checking. Instead of 4163 * have another getattr to get pre-op, just purge cache if 4164 * any of the ops prior to and including the getattr failed. 4165 * If the getattr succeeded then update the attrcache accordingly. 4166 */ 4167 4168 garp = NULL; 4169 if (res.status == NFS4_OK) { 4170 /* 4171 * Last getattr 4172 */ 4173 resop = &res.array[numops - 1]; 4174 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4175 } 4176 /* 4177 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4178 * rather than filling it. See the function itself for details. 4179 */ 4180 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4181 if (garp != NULL) { 4182 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4183 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4184 vs_ace4_destroy(&garp->n4g_vsa); 4185 } else { 4186 if (vsap != NULL) { 4187 /* 4188 * The ACL was supposed to be set and to be 4189 * returned in the last getattr of this 4190 * compound, but for some reason the getattr 4191 * result doesn't contain the ACL. In this 4192 * case, purge the ACL cache. 4193 */ 4194 if (rp->r_secattr != NULL) { 4195 mutex_enter(&rp->r_statelock); 4196 vsp = rp->r_secattr; 4197 rp->r_secattr = NULL; 4198 mutex_exit(&rp->r_statelock); 4199 if (vsp != NULL) 4200 nfs4_acl_free_cache(vsp); 4201 } 4202 } 4203 } 4204 } 4205 4206 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4207 /* 4208 * Set the size, rather than relying on getting it updated 4209 * via a GETATTR. With delegations the client tries to 4210 * suppress GETATTR calls. 4211 */ 4212 mutex_enter(&rp->r_statelock); 4213 rp->r_size = vap->va_size; 4214 mutex_exit(&rp->r_statelock); 4215 } 4216 4217 /* 4218 * Can free up request args and res 4219 */ 4220 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4221 opsetattr.obj_attributes); 4222 if (verify_argop != -1) { 4223 nfs4args_verify_free(&argop[verify_argop]); 4224 verify_argop = -1; 4225 } 4226 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4227 4228 /* 4229 * Some servers will change the mode to clear the setuid 4230 * and setgid bits when changing the uid or gid. The 4231 * client needs to compensate appropriately. 4232 */ 4233 if (mask & (AT_UID | AT_GID)) { 4234 int terror, do_setattr; 4235 4236 do_setattr = 0; 4237 va.va_mask = AT_MODE; 4238 terror = nfs4getattr(vp, &va, cr); 4239 if (!terror && 4240 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4241 (!(mask & AT_MODE) && va.va_mode != omode))) { 4242 va.va_mask = AT_MODE; 4243 if (mask & AT_MODE) { 4244 /* 4245 * We asked the mode to be changed and what 4246 * we just got from the server in getattr is 4247 * not what we wanted it to be, so set it now. 4248 */ 4249 va.va_mode = vap->va_mode; 4250 do_setattr = 1; 4251 } else { 4252 /* 4253 * We did not ask the mode to be changed, 4254 * Check to see that the server just cleared 4255 * I_SUID and I_GUID from it. If not then 4256 * set mode to omode with UID/GID cleared. 4257 */ 4258 if (nfs4_compare_modes(va.va_mode, omode)) { 4259 omode &= ~(S_ISUID|S_ISGID); 4260 va.va_mode = omode; 4261 do_setattr = 1; 4262 } 4263 } 4264 4265 if (do_setattr) 4266 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4267 } 4268 } 4269 4270 return (e.error); 4271 } 4272 4273 /* ARGSUSED */ 4274 static int 4275 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4276 { 4277 COMPOUND4args_clnt args; 4278 COMPOUND4res_clnt res; 4279 int doqueue; 4280 uint32_t acc, resacc, argacc; 4281 rnode4_t *rp; 4282 cred_t *cred, *ncr, *ncrfree = NULL; 4283 nfs4_access_type_t cacc; 4284 int num_ops; 4285 nfs_argop4 argop[3]; 4286 nfs_resop4 *resop; 4287 bool_t needrecov = FALSE, do_getattr; 4288 nfs4_recov_state_t recov_state; 4289 int rpc_error; 4290 hrtime_t t; 4291 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4292 mntinfo4_t *mi = VTOMI4(vp); 4293 4294 if (nfs_zone() != mi->mi_zone) 4295 return (EIO); 4296 4297 acc = 0; 4298 if (mode & VREAD) 4299 acc |= ACCESS4_READ; 4300 if (mode & VWRITE) { 4301 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4302 return (EROFS); 4303 if (vp->v_type == VDIR) 4304 acc |= ACCESS4_DELETE; 4305 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4306 } 4307 if (mode & VEXEC) { 4308 if (vp->v_type == VDIR) 4309 acc |= ACCESS4_LOOKUP; 4310 else 4311 acc |= ACCESS4_EXECUTE; 4312 } 4313 4314 if (VTOR4(vp)->r_acache != NULL) { 4315 e.error = nfs4_validate_caches(vp, cr); 4316 if (e.error) 4317 return (e.error); 4318 } 4319 4320 rp = VTOR4(vp); 4321 if (vp->v_type == VDIR) 4322 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4323 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4324 else 4325 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4326 ACCESS4_EXECUTE; 4327 recov_state.rs_flags = 0; 4328 recov_state.rs_num_retry_despite_err = 0; 4329 4330 cred = cr; 4331 /* 4332 * ncr and ncrfree both initially 4333 * point to the memory area returned 4334 * by crnetadjust(); 4335 * ncrfree not NULL when exiting means 4336 * that we need to release it 4337 */ 4338 ncr = crnetadjust(cred); 4339 ncrfree = ncr; 4340 4341 tryagain: 4342 cacc = nfs4_access_check(rp, acc, cred); 4343 if (cacc == NFS4_ACCESS_ALLOWED) { 4344 if (ncrfree != NULL) 4345 crfree(ncrfree); 4346 return (0); 4347 } 4348 if (cacc == NFS4_ACCESS_DENIED) { 4349 /* 4350 * If the cred can be adjusted, try again 4351 * with the new cred. 4352 */ 4353 if (ncr != NULL) { 4354 cred = ncr; 4355 ncr = NULL; 4356 goto tryagain; 4357 } 4358 if (ncrfree != NULL) 4359 crfree(ncrfree); 4360 return (EACCES); 4361 } 4362 4363 recov_retry: 4364 /* 4365 * Don't take with r_statev4_lock here. r_deleg_type could 4366 * change as soon as lock is released. Since it is an int, 4367 * there is no atomicity issue. 4368 */ 4369 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4370 num_ops = do_getattr ? 3 : 2; 4371 4372 args.ctag = TAG_ACCESS; 4373 4374 args.array_len = num_ops; 4375 args.array = argop; 4376 4377 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4378 &recov_state, NULL)) { 4379 if (ncrfree != NULL) 4380 crfree(ncrfree); 4381 return (e.error); 4382 } 4383 4384 /* putfh target fh */ 4385 argop[0].argop = OP_CPUTFH; 4386 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4387 4388 /* access */ 4389 argop[1].argop = OP_ACCESS; 4390 argop[1].nfs_argop4_u.opaccess.access = argacc; 4391 4392 /* getattr */ 4393 if (do_getattr) { 4394 argop[2].argop = OP_GETATTR; 4395 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4396 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4397 } 4398 4399 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4400 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4401 rnode4info(VTOR4(vp)))); 4402 4403 doqueue = 1; 4404 t = gethrtime(); 4405 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4406 rpc_error = e.error; 4407 4408 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4409 if (needrecov) { 4410 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4411 "nfs4_access: initiating recovery\n")); 4412 4413 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4414 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) { 4415 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4416 &recov_state, needrecov); 4417 if (!e.error) 4418 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4419 goto recov_retry; 4420 } 4421 } 4422 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4423 4424 if (e.error) 4425 goto out; 4426 4427 if (res.status) { 4428 e.error = geterrno4(res.status); 4429 /* 4430 * This might generate over the wire calls throught 4431 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4432 * here to avoid a deadlock. 4433 */ 4434 nfs4_purge_stale_fh(e.error, vp, cr); 4435 goto out; 4436 } 4437 resop = &res.array[1]; /* access res */ 4438 4439 resacc = resop->nfs_resop4_u.opaccess.access; 4440 4441 if (do_getattr) { 4442 resop++; /* getattr res */ 4443 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4444 t, cr, FALSE, NULL); 4445 } 4446 4447 if (!e.error) { 4448 nfs4_access_cache(rp, argacc, resacc, cred); 4449 /* 4450 * we just cached results with cred; if cred is the 4451 * adjusted credentials from crnetadjust, we do not want 4452 * to release them before exiting: hence setting ncrfree 4453 * to NULL 4454 */ 4455 if (cred != cr) 4456 ncrfree = NULL; 4457 /* XXX check the supported bits too? */ 4458 if ((acc & resacc) != acc) { 4459 /* 4460 * The following code implements the semantic 4461 * that a setuid root program has *at least* the 4462 * permissions of the user that is running the 4463 * program. See rfs3call() for more portions 4464 * of the implementation of this functionality. 4465 */ 4466 /* XXX-LP */ 4467 if (ncr != NULL) { 4468 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4469 cred = ncr; 4470 ncr = NULL; 4471 goto tryagain; 4472 } 4473 e.error = EACCES; 4474 } 4475 } 4476 4477 out: 4478 if (!rpc_error) 4479 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4480 4481 if (ncrfree != NULL) 4482 crfree(ncrfree); 4483 4484 return (e.error); 4485 } 4486 4487 /* ARGSUSED */ 4488 static int 4489 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4490 { 4491 COMPOUND4args_clnt args; 4492 COMPOUND4res_clnt res; 4493 int doqueue; 4494 rnode4_t *rp; 4495 nfs_argop4 argop[3]; 4496 nfs_resop4 *resop; 4497 READLINK4res *lr_res; 4498 nfs4_ga_res_t *garp; 4499 uint_t len; 4500 char *linkdata; 4501 bool_t needrecov = FALSE; 4502 nfs4_recov_state_t recov_state; 4503 hrtime_t t; 4504 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4505 4506 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4507 return (EIO); 4508 /* 4509 * Can't readlink anything other than a symbolic link. 4510 */ 4511 if (vp->v_type != VLNK) 4512 return (EINVAL); 4513 4514 rp = VTOR4(vp); 4515 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4516 e.error = nfs4_validate_caches(vp, cr); 4517 if (e.error) 4518 return (e.error); 4519 mutex_enter(&rp->r_statelock); 4520 if (rp->r_symlink.contents != NULL) { 4521 e.error = uiomove(rp->r_symlink.contents, 4522 rp->r_symlink.len, UIO_READ, uiop); 4523 mutex_exit(&rp->r_statelock); 4524 return (e.error); 4525 } 4526 mutex_exit(&rp->r_statelock); 4527 } 4528 recov_state.rs_flags = 0; 4529 recov_state.rs_num_retry_despite_err = 0; 4530 4531 recov_retry: 4532 args.array_len = 3; 4533 args.array = argop; 4534 args.ctag = TAG_READLINK; 4535 4536 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4537 if (e.error) { 4538 return (e.error); 4539 } 4540 4541 /* 0. putfh symlink fh */ 4542 argop[0].argop = OP_CPUTFH; 4543 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4544 4545 /* 1. readlink */ 4546 argop[1].argop = OP_READLINK; 4547 4548 /* 2. getattr */ 4549 argop[2].argop = OP_GETATTR; 4550 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4551 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4552 4553 doqueue = 1; 4554 4555 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4556 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4557 rnode4info(VTOR4(vp)))); 4558 4559 t = gethrtime(); 4560 4561 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4562 4563 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4564 if (needrecov) { 4565 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4566 "nfs4_readlink: initiating recovery\n")); 4567 4568 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4569 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) { 4570 if (!e.error) 4571 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4572 4573 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4574 needrecov); 4575 goto recov_retry; 4576 } 4577 } 4578 4579 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4580 4581 if (e.error) 4582 return (e.error); 4583 4584 /* 4585 * There is an path in the code below which calls 4586 * nfs4_purge_stale_fh(), which may generate otw calls through 4587 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4588 * here to avoid nfs4_start_op() deadlock. 4589 */ 4590 4591 if (res.status && (res.array_len < args.array_len)) { 4592 /* 4593 * either Putfh or Link failed 4594 */ 4595 e.error = geterrno4(res.status); 4596 nfs4_purge_stale_fh(e.error, vp, cr); 4597 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4598 return (e.error); 4599 } 4600 4601 resop = &res.array[1]; /* readlink res */ 4602 lr_res = &resop->nfs_resop4_u.opreadlink; 4603 4604 /* 4605 * treat symlink names as data 4606 */ 4607 linkdata = utf8_to_str((utf8string *)&lr_res->link, &len, NULL); 4608 if (linkdata != NULL) { 4609 int uio_len = len - 1; 4610 /* len includes null byte, which we won't uiomove */ 4611 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4612 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4613 mutex_enter(&rp->r_statelock); 4614 if (rp->r_symlink.contents == NULL) { 4615 rp->r_symlink.contents = linkdata; 4616 rp->r_symlink.len = uio_len; 4617 rp->r_symlink.size = len; 4618 mutex_exit(&rp->r_statelock); 4619 } else { 4620 mutex_exit(&rp->r_statelock); 4621 kmem_free(linkdata, len); 4622 } 4623 } else { 4624 kmem_free(linkdata, len); 4625 } 4626 } 4627 if (res.status == NFS4_OK) { 4628 resop++; /* getattr res */ 4629 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4630 } 4631 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4632 4633 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4634 4635 /* 4636 * The over the wire error for attempting to readlink something 4637 * other than a symbolic link is ENXIO. However, we need to 4638 * return EINVAL instead of ENXIO, so we map it here. 4639 */ 4640 return (e.error == ENXIO ? EINVAL : e.error); 4641 } 4642 4643 /* 4644 * Flush local dirty pages to stable storage on the server. 4645 * 4646 * If FNODSYNC is specified, then there is nothing to do because 4647 * metadata changes are not cached on the client before being 4648 * sent to the server. 4649 */ 4650 /* ARGSUSED */ 4651 static int 4652 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4653 { 4654 int error; 4655 4656 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4657 return (0); 4658 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4659 return (EIO); 4660 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4661 if (!error) 4662 error = VTOR4(vp)->r_error; 4663 return (error); 4664 } 4665 4666 /* 4667 * Weirdness: if the file was removed or the target of a rename 4668 * operation while it was open, it got renamed instead. Here we 4669 * remove the renamed file. 4670 */ 4671 /* ARGSUSED */ 4672 void 4673 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4674 { 4675 rnode4_t *rp; 4676 4677 ASSERT(vp != DNLC_NO_VNODE); 4678 4679 rp = VTOR4(vp); 4680 4681 if (IS_SHADOW(vp, rp)) { 4682 sv_inactive(vp); 4683 return; 4684 } 4685 4686 /* 4687 * If this is coming from the wrong zone, we let someone in the right 4688 * zone take care of it asynchronously. We can get here due to 4689 * VN_RELE() being called from pageout() or fsflush(). This call may 4690 * potentially turn into an expensive no-op if, for instance, v_count 4691 * gets incremented in the meantime, but it's still correct. 4692 */ 4693 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4694 nfs4_async_inactive(vp, cr); 4695 return; 4696 } 4697 4698 /* 4699 * Some of the cleanup steps might require over-the-wire 4700 * operations. Since VOP_INACTIVE can get called as a result of 4701 * other over-the-wire operations (e.g., an attribute cache update 4702 * can lead to a DNLC purge), doing those steps now would lead to a 4703 * nested call to the recovery framework, which can deadlock. So 4704 * do any over-the-wire cleanups asynchronously, in a separate 4705 * thread. 4706 */ 4707 4708 mutex_enter(&rp->r_os_lock); 4709 mutex_enter(&rp->r_statelock); 4710 mutex_enter(&rp->r_statev4_lock); 4711 4712 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4713 mutex_exit(&rp->r_statev4_lock); 4714 mutex_exit(&rp->r_statelock); 4715 mutex_exit(&rp->r_os_lock); 4716 nfs4_async_inactive(vp, cr); 4717 return; 4718 } 4719 4720 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4721 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4722 mutex_exit(&rp->r_statev4_lock); 4723 mutex_exit(&rp->r_statelock); 4724 mutex_exit(&rp->r_os_lock); 4725 nfs4_async_inactive(vp, cr); 4726 return; 4727 } 4728 4729 if (rp->r_unldvp != NULL) { 4730 mutex_exit(&rp->r_statev4_lock); 4731 mutex_exit(&rp->r_statelock); 4732 mutex_exit(&rp->r_os_lock); 4733 nfs4_async_inactive(vp, cr); 4734 return; 4735 } 4736 mutex_exit(&rp->r_statev4_lock); 4737 mutex_exit(&rp->r_statelock); 4738 mutex_exit(&rp->r_os_lock); 4739 4740 rp4_addfree(rp, cr); 4741 } 4742 4743 /* 4744 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4745 * various bits of state. The caller must not refer to vp after this call. 4746 */ 4747 4748 void 4749 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4750 { 4751 rnode4_t *rp = VTOR4(vp); 4752 nfs4_recov_state_t recov_state; 4753 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4754 vnode_t *unldvp; 4755 char *unlname; 4756 cred_t *unlcred; 4757 COMPOUND4args_clnt args; 4758 COMPOUND4res_clnt res, *resp; 4759 nfs_argop4 argop[2]; 4760 int doqueue; 4761 #ifdef DEBUG 4762 char *name; 4763 #endif 4764 4765 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4766 ASSERT(!IS_SHADOW(vp, rp)); 4767 4768 #ifdef DEBUG 4769 name = fn_name(VTOSV(vp)->sv_name); 4770 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4771 "release vnode %s", name)); 4772 kmem_free(name, MAXNAMELEN); 4773 #endif 4774 4775 if (vp->v_type == VREG) { 4776 bool_t recov_failed = FALSE; 4777 4778 e.error = nfs4close_all(vp, cr); 4779 if (e.error) { 4780 /* Check to see if recovery failed */ 4781 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4782 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4783 recov_failed = TRUE; 4784 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4785 if (!recov_failed) { 4786 mutex_enter(&rp->r_statelock); 4787 if (rp->r_flags & R4RECOVERR) 4788 recov_failed = TRUE; 4789 mutex_exit(&rp->r_statelock); 4790 } 4791 if (recov_failed) { 4792 NFS4_DEBUG(nfs4_client_recov_debug, 4793 (CE_NOTE, "nfs4_inactive_otw: " 4794 "close failed (recovery failure)")); 4795 } 4796 } 4797 } 4798 4799 redo: 4800 if (rp->r_unldvp == NULL) { 4801 rp4_addfree(rp, cr); 4802 return; 4803 } 4804 4805 /* 4806 * Save the vnode pointer for the directory where the 4807 * unlinked-open file got renamed, then set it to NULL 4808 * to prevent another thread from getting here before 4809 * we're done with the remove. While we have the 4810 * statelock, make local copies of the pertinent rnode 4811 * fields. If we weren't to do this in an atomic way, the 4812 * the unl* fields could become inconsistent with respect 4813 * to each other due to a race condition between this 4814 * code and nfs_remove(). See bug report 1034328. 4815 */ 4816 mutex_enter(&rp->r_statelock); 4817 if (rp->r_unldvp == NULL) { 4818 mutex_exit(&rp->r_statelock); 4819 rp4_addfree(rp, cr); 4820 return; 4821 } 4822 4823 unldvp = rp->r_unldvp; 4824 rp->r_unldvp = NULL; 4825 unlname = rp->r_unlname; 4826 rp->r_unlname = NULL; 4827 unlcred = rp->r_unlcred; 4828 rp->r_unlcred = NULL; 4829 mutex_exit(&rp->r_statelock); 4830 4831 /* 4832 * If there are any dirty pages left, then flush 4833 * them. This is unfortunate because they just 4834 * may get thrown away during the remove operation, 4835 * but we have to do this for correctness. 4836 */ 4837 if (nfs4_has_pages(vp) && 4838 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4839 ASSERT(vp->v_type != VCHR); 4840 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4841 if (e.error) { 4842 mutex_enter(&rp->r_statelock); 4843 if (!rp->r_error) 4844 rp->r_error = e.error; 4845 mutex_exit(&rp->r_statelock); 4846 } 4847 } 4848 4849 recov_state.rs_flags = 0; 4850 recov_state.rs_num_retry_despite_err = 0; 4851 recov_retry_remove: 4852 /* 4853 * Do the remove operation on the renamed file 4854 */ 4855 args.ctag = TAG_INACTIVE; 4856 4857 /* 4858 * Remove ops: putfh dir; remove 4859 */ 4860 args.array_len = 2; 4861 args.array = argop; 4862 4863 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4864 if (e.error) { 4865 kmem_free(unlname, MAXNAMELEN); 4866 crfree(unlcred); 4867 VN_RELE(unldvp); 4868 /* 4869 * Try again; this time around r_unldvp will be NULL, so we'll 4870 * just call rp4_addfree() and return. 4871 */ 4872 goto redo; 4873 } 4874 4875 /* putfh directory */ 4876 argop[0].argop = OP_CPUTFH; 4877 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4878 4879 /* remove */ 4880 argop[1].argop = OP_CREMOVE; 4881 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4882 4883 doqueue = 1; 4884 resp = &res; 4885 4886 #if 0 /* notyet */ 4887 /* 4888 * Can't do this yet. We may be being called from 4889 * dnlc_purge_XXX while that routine is holding a 4890 * mutex lock to the nc_rele list. The calls to 4891 * nfs3_cache_wcc_data may result in calls to 4892 * dnlc_purge_XXX. This will result in a deadlock. 4893 */ 4894 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4895 if (e.error) { 4896 PURGE_ATTRCACHE4(unldvp); 4897 resp = NULL; 4898 } else if (res.status) { 4899 e.error = geterrno4(res.status); 4900 PURGE_ATTRCACHE4(unldvp); 4901 /* 4902 * This code is inactive right now 4903 * but if made active there should 4904 * be a nfs4_end_op() call before 4905 * nfs4_purge_stale_fh to avoid start_op() 4906 * deadlock. See BugId: 4948726 4907 */ 4908 nfs4_purge_stale_fh(error, unldvp, cr); 4909 } else { 4910 nfs_resop4 *resop; 4911 REMOVE4res *rm_res; 4912 4913 resop = &res.array[1]; 4914 rm_res = &resop->nfs_resop4_u.opremove; 4915 /* 4916 * Update directory cache attribute, 4917 * readdir and dnlc caches. 4918 */ 4919 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4920 } 4921 #else 4922 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4923 4924 PURGE_ATTRCACHE4(unldvp); 4925 #endif 4926 4927 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4928 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4929 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 4930 if (!e.error) 4931 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4932 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4933 &recov_state, TRUE); 4934 goto recov_retry_remove; 4935 } 4936 } 4937 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4938 4939 /* 4940 * Release stuff held for the remove 4941 */ 4942 VN_RELE(unldvp); 4943 if (!e.error && resp) 4944 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4945 4946 kmem_free(unlname, MAXNAMELEN); 4947 crfree(unlcred); 4948 goto redo; 4949 } 4950 4951 /* 4952 * Remote file system operations having to do with directory manipulation. 4953 */ 4954 /* ARGSUSED3 */ 4955 int 4956 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4957 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4958 int *direntflags, pathname_t *realpnp) 4959 { 4960 int error; 4961 vnode_t *vp, *avp = NULL; 4962 rnode4_t *drp; 4963 4964 *vpp = NULL; 4965 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4966 return (EPERM); 4967 /* 4968 * if LOOKUP_XATTR, must replace dvp (object) with 4969 * object's attrdir before continuing with lookup 4970 */ 4971 if (flags & LOOKUP_XATTR) { 4972 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4973 if (error) 4974 return (error); 4975 4976 dvp = avp; 4977 4978 /* 4979 * If lookup is for "", just return dvp now. The attrdir 4980 * has already been activated (from nfs4lookup_xattr), and 4981 * the caller will RELE the original dvp -- not 4982 * the attrdir. So, set vpp and return. 4983 * Currently, when the LOOKUP_XATTR flag is 4984 * passed to VOP_LOOKUP, the name is always empty, and 4985 * shortcircuiting here avoids 3 unneeded lock/unlock 4986 * pairs. 4987 * 4988 * If a non-empty name was provided, then it is the 4989 * attribute name, and it will be looked up below. 4990 */ 4991 if (*nm == '\0') { 4992 *vpp = dvp; 4993 return (0); 4994 } 4995 4996 /* 4997 * The vfs layer never sends a name when asking for the 4998 * attrdir, so we should never get here (unless of course 4999 * name is passed at some time in future -- at which time 5000 * we'll blow up here). 5001 */ 5002 ASSERT(0); 5003 } 5004 5005 drp = VTOR4(dvp); 5006 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5007 return (EINTR); 5008 5009 error = nfs4lookup(dvp, nm, vpp, cr, 0); 5010 nfs_rw_exit(&drp->r_rwlock); 5011 5012 /* 5013 * If vnode is a device, create special vnode. 5014 */ 5015 if (!error && ISVDEV((*vpp)->v_type)) { 5016 vp = *vpp; 5017 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 5018 VN_RELE(vp); 5019 } 5020 5021 return (error); 5022 } 5023 5024 /* ARGSUSED */ 5025 static int 5026 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 5027 { 5028 int error; 5029 rnode4_t *drp; 5030 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 5031 mntinfo4_t *mi; 5032 5033 mi = VTOMI4(dvp); 5034 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 5035 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS)) 5036 return (EINVAL); 5037 5038 drp = VTOR4(dvp); 5039 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5040 return (EINTR); 5041 5042 mutex_enter(&drp->r_statelock); 5043 /* 5044 * If the server doesn't support xattrs just return EINVAL 5045 */ 5046 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 5047 mutex_exit(&drp->r_statelock); 5048 nfs_rw_exit(&drp->r_rwlock); 5049 return (EINVAL); 5050 } 5051 5052 /* 5053 * If there is a cached xattr directory entry, 5054 * use it as long as the attributes are valid. If the 5055 * attributes are not valid, take the simple approach and 5056 * free the cached value and re-fetch a new value. 5057 * 5058 * We don't negative entry cache for now, if we did we 5059 * would need to check if the file has changed on every 5060 * lookup. But xattrs don't exist very often and failing 5061 * an openattr is not much more expensive than and NVERIFY or GETATTR 5062 * so do an openattr over the wire for now. 5063 */ 5064 if (drp->r_xattr_dir != NULL) { 5065 if (ATTRCACHE4_VALID(dvp)) { 5066 VN_HOLD(drp->r_xattr_dir); 5067 *vpp = drp->r_xattr_dir; 5068 mutex_exit(&drp->r_statelock); 5069 nfs_rw_exit(&drp->r_rwlock); 5070 return (0); 5071 } 5072 VN_RELE(drp->r_xattr_dir); 5073 drp->r_xattr_dir = NULL; 5074 } 5075 mutex_exit(&drp->r_statelock); 5076 5077 error = nfs4openattr(dvp, vpp, cflag, cr); 5078 5079 nfs_rw_exit(&drp->r_rwlock); 5080 5081 return (error); 5082 } 5083 5084 static int 5085 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5086 { 5087 int error; 5088 rnode4_t *drp; 5089 5090 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5091 5092 /* 5093 * If lookup is for "", just return dvp. Don't need 5094 * to send it over the wire, look it up in the dnlc, 5095 * or perform any access checks. 5096 */ 5097 if (*nm == '\0') { 5098 VN_HOLD(dvp); 5099 *vpp = dvp; 5100 return (0); 5101 } 5102 5103 /* 5104 * Can't do lookups in non-directories. 5105 */ 5106 if (dvp->v_type != VDIR) 5107 return (ENOTDIR); 5108 5109 /* 5110 * If lookup is for ".", just return dvp. Don't need 5111 * to send it over the wire or look it up in the dnlc, 5112 * just need to check access. 5113 */ 5114 if (nm[0] == '.' && nm[1] == '\0') { 5115 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5116 if (error) 5117 return (error); 5118 VN_HOLD(dvp); 5119 *vpp = dvp; 5120 return (0); 5121 } 5122 5123 drp = VTOR4(dvp); 5124 if (!(drp->r_flags & R4LOOKUP)) { 5125 mutex_enter(&drp->r_statelock); 5126 drp->r_flags |= R4LOOKUP; 5127 mutex_exit(&drp->r_statelock); 5128 } 5129 5130 *vpp = NULL; 5131 /* 5132 * Lookup this name in the DNLC. If there is no entry 5133 * lookup over the wire. 5134 */ 5135 if (!skipdnlc) 5136 *vpp = dnlc_lookup(dvp, nm); 5137 if (*vpp == NULL) { 5138 /* 5139 * We need to go over the wire to lookup the name. 5140 */ 5141 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5142 } 5143 5144 /* 5145 * We hit on the dnlc 5146 */ 5147 if (*vpp != DNLC_NO_VNODE || 5148 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5149 /* 5150 * But our attrs may not be valid. 5151 */ 5152 if (ATTRCACHE4_VALID(dvp)) { 5153 error = nfs4_waitfor_purge_complete(dvp); 5154 if (error) { 5155 VN_RELE(*vpp); 5156 *vpp = NULL; 5157 return (error); 5158 } 5159 5160 /* 5161 * If after the purge completes, check to make sure 5162 * our attrs are still valid. 5163 */ 5164 if (ATTRCACHE4_VALID(dvp)) { 5165 /* 5166 * If we waited for a purge we may have 5167 * lost our vnode so look it up again. 5168 */ 5169 VN_RELE(*vpp); 5170 *vpp = dnlc_lookup(dvp, nm); 5171 if (*vpp == NULL) 5172 return (nfs4lookupnew_otw(dvp, 5173 nm, vpp, cr)); 5174 5175 /* 5176 * The access cache should almost always hit 5177 */ 5178 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5179 5180 if (error) { 5181 VN_RELE(*vpp); 5182 *vpp = NULL; 5183 return (error); 5184 } 5185 if (*vpp == DNLC_NO_VNODE) { 5186 VN_RELE(*vpp); 5187 *vpp = NULL; 5188 return (ENOENT); 5189 } 5190 return (0); 5191 } 5192 } 5193 } 5194 5195 ASSERT(*vpp != NULL); 5196 5197 /* 5198 * We may have gotten here we have one of the following cases: 5199 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5200 * need to validate them. 5201 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5202 * must validate. 5203 * 5204 * Go to the server and check if the directory has changed, if 5205 * it hasn't we are done and can use the dnlc entry. 5206 */ 5207 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5208 } 5209 5210 /* 5211 * Go to the server and check if the directory has changed, if 5212 * it hasn't we are done and can use the dnlc entry. If it 5213 * has changed we get a new copy of its attributes and check 5214 * the access for VEXEC, then relookup the filename and 5215 * get its filehandle and attributes. 5216 * 5217 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5218 * if the NVERIFY failed we must 5219 * purge the caches 5220 * cache new attributes (will set r_time_attr_inval) 5221 * cache new access 5222 * recheck VEXEC access 5223 * add name to dnlc, possibly negative 5224 * if LOOKUP succeeded 5225 * cache new attributes 5226 * else 5227 * set a new r_time_attr_inval for dvp 5228 * check to make sure we have access 5229 * 5230 * The vpp returned is the vnode passed in if the directory is valid, 5231 * a new vnode if successful lookup, or NULL on error. 5232 */ 5233 static int 5234 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5235 { 5236 COMPOUND4args_clnt args; 5237 COMPOUND4res_clnt res; 5238 fattr4 *ver_fattr; 5239 fattr4_change dchange; 5240 int32_t *ptr; 5241 int argoplist_size = 7 * sizeof (nfs_argop4); 5242 nfs_argop4 *argop; 5243 int doqueue; 5244 mntinfo4_t *mi; 5245 nfs4_recov_state_t recov_state; 5246 hrtime_t t; 5247 int isdotdot; 5248 vnode_t *nvp; 5249 nfs_fh4 *fhp; 5250 nfs4_sharedfh_t *sfhp; 5251 nfs4_access_type_t cacc; 5252 rnode4_t *nrp; 5253 rnode4_t *drp = VTOR4(dvp); 5254 nfs4_ga_res_t *garp = NULL; 5255 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5256 5257 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5258 ASSERT(nm != NULL); 5259 ASSERT(nm[0] != '\0'); 5260 ASSERT(dvp->v_type == VDIR); 5261 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5262 ASSERT(*vpp != NULL); 5263 5264 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5265 isdotdot = 1; 5266 args.ctag = TAG_LOOKUP_VPARENT; 5267 } else { 5268 /* 5269 * If dvp were a stub, it should have triggered and caused 5270 * a mount for us to get this far. 5271 */ 5272 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5273 5274 isdotdot = 0; 5275 args.ctag = TAG_LOOKUP_VALID; 5276 } 5277 5278 mi = VTOMI4(dvp); 5279 recov_state.rs_flags = 0; 5280 recov_state.rs_num_retry_despite_err = 0; 5281 5282 nvp = NULL; 5283 5284 /* Save the original mount point security information */ 5285 (void) save_mnt_secinfo(mi->mi_curr_serv); 5286 5287 recov_retry: 5288 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5289 &recov_state, NULL); 5290 if (e.error) { 5291 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5292 VN_RELE(*vpp); 5293 *vpp = NULL; 5294 return (e.error); 5295 } 5296 5297 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5298 5299 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5300 args.array_len = 7; 5301 args.array = argop; 5302 5303 /* 0. putfh file */ 5304 argop[0].argop = OP_CPUTFH; 5305 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5306 5307 /* 1. nverify the change info */ 5308 argop[1].argop = OP_NVERIFY; 5309 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5310 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5311 ver_fattr->attrlist4 = (char *)&dchange; 5312 ptr = (int32_t *)&dchange; 5313 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5314 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5315 5316 /* 2. getattr directory */ 5317 argop[2].argop = OP_GETATTR; 5318 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5319 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5320 5321 /* 3. access directory */ 5322 argop[3].argop = OP_ACCESS; 5323 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5324 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5325 5326 /* 4. lookup name */ 5327 if (isdotdot) { 5328 argop[4].argop = OP_LOOKUPP; 5329 } else { 5330 argop[4].argop = OP_CLOOKUP; 5331 argop[4].nfs_argop4_u.opclookup.cname = nm; 5332 } 5333 5334 /* 5. resulting file handle */ 5335 argop[5].argop = OP_GETFH; 5336 5337 /* 6. resulting file attributes */ 5338 argop[6].argop = OP_GETATTR; 5339 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5340 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5341 5342 doqueue = 1; 5343 t = gethrtime(); 5344 5345 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5346 5347 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5348 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5349 if (e.error != 0 && *vpp != NULL) 5350 VN_RELE(*vpp); 5351 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5352 &recov_state, FALSE); 5353 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5354 kmem_free(argop, argoplist_size); 5355 return (e.error); 5356 } 5357 5358 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5359 /* 5360 * For WRONGSEC of a non-dotdot case, send secinfo directly 5361 * from this thread, do not go thru the recovery thread since 5362 * we need the nm information. 5363 * 5364 * Not doing dotdot case because there is no specification 5365 * for (PUTFH, SECINFO "..") yet. 5366 */ 5367 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5368 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5369 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5370 &recov_state, FALSE); 5371 else 5372 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5373 &recov_state, TRUE); 5374 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5375 kmem_free(argop, argoplist_size); 5376 if (!e.error) 5377 goto recov_retry; 5378 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5379 VN_RELE(*vpp); 5380 *vpp = NULL; 5381 return (e.error); 5382 } 5383 5384 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5385 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5386 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5387 &recov_state, TRUE); 5388 5389 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5390 kmem_free(argop, argoplist_size); 5391 goto recov_retry; 5392 } 5393 } 5394 5395 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5396 5397 if (e.error || res.array_len == 0) { 5398 /* 5399 * If e.error isn't set, then reply has no ops (or we couldn't 5400 * be here). The only legal way to reply without an op array 5401 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5402 * be in the reply for all other status values. 5403 * 5404 * For valid replies without an ops array, return ENOTSUP 5405 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5406 * return EIO -- don't trust status. 5407 */ 5408 if (e.error == 0) 5409 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5410 ENOTSUP : EIO; 5411 VN_RELE(*vpp); 5412 *vpp = NULL; 5413 kmem_free(argop, argoplist_size); 5414 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5415 return (e.error); 5416 } 5417 5418 if (res.status != NFS4ERR_SAME) { 5419 e.error = geterrno4(res.status); 5420 5421 /* 5422 * The NVERIFY "failed" so the directory has changed 5423 * First make sure PUTFH succeeded and NVERIFY "failed" 5424 * cleanly. 5425 */ 5426 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5427 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5428 nfs4_purge_stale_fh(e.error, dvp, cr); 5429 VN_RELE(*vpp); 5430 *vpp = NULL; 5431 goto exit; 5432 } 5433 5434 /* 5435 * We know the NVERIFY "failed" so we must: 5436 * purge the caches (access and indirectly dnlc if needed) 5437 */ 5438 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5439 5440 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5441 nfs4_purge_stale_fh(e.error, dvp, cr); 5442 VN_RELE(*vpp); 5443 *vpp = NULL; 5444 goto exit; 5445 } 5446 5447 /* 5448 * Install new cached attributes for the directory 5449 */ 5450 nfs4_attr_cache(dvp, 5451 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5452 t, cr, FALSE, NULL); 5453 5454 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5455 nfs4_purge_stale_fh(e.error, dvp, cr); 5456 VN_RELE(*vpp); 5457 *vpp = NULL; 5458 e.error = geterrno4(res.status); 5459 goto exit; 5460 } 5461 5462 /* 5463 * Now we know the directory is valid, 5464 * cache new directory access 5465 */ 5466 nfs4_access_cache(drp, 5467 args.array[3].nfs_argop4_u.opaccess.access, 5468 res.array[3].nfs_resop4_u.opaccess.access, cr); 5469 5470 /* 5471 * recheck VEXEC access 5472 */ 5473 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5474 if (cacc != NFS4_ACCESS_ALLOWED) { 5475 /* 5476 * Directory permissions might have been revoked 5477 */ 5478 if (cacc == NFS4_ACCESS_DENIED) { 5479 e.error = EACCES; 5480 VN_RELE(*vpp); 5481 *vpp = NULL; 5482 goto exit; 5483 } 5484 5485 /* 5486 * Somehow we must not have asked for enough 5487 * so try a singleton ACCESS, should never happen. 5488 */ 5489 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5490 if (e.error) { 5491 VN_RELE(*vpp); 5492 *vpp = NULL; 5493 goto exit; 5494 } 5495 } 5496 5497 e.error = geterrno4(res.status); 5498 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5499 /* 5500 * The lookup failed, probably no entry 5501 */ 5502 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5503 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5504 } else { 5505 /* 5506 * Might be some other error, so remove 5507 * the dnlc entry to make sure we start all 5508 * over again, next time. 5509 */ 5510 dnlc_remove(dvp, nm); 5511 } 5512 VN_RELE(*vpp); 5513 *vpp = NULL; 5514 goto exit; 5515 } 5516 5517 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5518 /* 5519 * The file exists but we can't get its fh for 5520 * some unknown reason. Remove it from the dnlc 5521 * and error out to be safe. 5522 */ 5523 dnlc_remove(dvp, nm); 5524 VN_RELE(*vpp); 5525 *vpp = NULL; 5526 goto exit; 5527 } 5528 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5529 if (fhp->nfs_fh4_len == 0) { 5530 /* 5531 * The file exists but a bogus fh 5532 * some unknown reason. Remove it from the dnlc 5533 * and error out to be safe. 5534 */ 5535 e.error = ENOENT; 5536 dnlc_remove(dvp, nm); 5537 VN_RELE(*vpp); 5538 *vpp = NULL; 5539 goto exit; 5540 } 5541 sfhp = sfh4_get(fhp, mi); 5542 5543 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5544 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5545 5546 /* 5547 * Make the new rnode 5548 */ 5549 if (isdotdot) { 5550 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5551 if (e.error) { 5552 sfh4_rele(&sfhp); 5553 VN_RELE(*vpp); 5554 *vpp = NULL; 5555 goto exit; 5556 } 5557 /* 5558 * XXX if nfs4_make_dotdot uses an existing rnode 5559 * XXX it doesn't update the attributes. 5560 * XXX for now just save them again to save an OTW 5561 */ 5562 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5563 } else { 5564 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5565 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5566 /* 5567 * If v_type == VNON, then garp was NULL because 5568 * the last op in the compound failed and makenfs4node 5569 * could not find the vnode for sfhp. It created 5570 * a new vnode, so we have nothing to purge here. 5571 */ 5572 if (nvp->v_type == VNON) { 5573 vattr_t vattr; 5574 5575 vattr.va_mask = AT_TYPE; 5576 /* 5577 * N.B. We've already called nfs4_end_fop above. 5578 */ 5579 e.error = nfs4getattr(nvp, &vattr, cr); 5580 if (e.error) { 5581 sfh4_rele(&sfhp); 5582 VN_RELE(*vpp); 5583 *vpp = NULL; 5584 VN_RELE(nvp); 5585 goto exit; 5586 } 5587 nvp->v_type = vattr.va_type; 5588 } 5589 } 5590 sfh4_rele(&sfhp); 5591 5592 nrp = VTOR4(nvp); 5593 mutex_enter(&nrp->r_statev4_lock); 5594 if (!nrp->created_v4) { 5595 mutex_exit(&nrp->r_statev4_lock); 5596 dnlc_update(dvp, nm, nvp); 5597 } else 5598 mutex_exit(&nrp->r_statev4_lock); 5599 5600 VN_RELE(*vpp); 5601 *vpp = nvp; 5602 } else { 5603 hrtime_t now; 5604 hrtime_t delta = 0; 5605 5606 e.error = 0; 5607 5608 /* 5609 * Because the NVERIFY "succeeded" we know that the 5610 * directory attributes are still valid 5611 * so update r_time_attr_inval 5612 */ 5613 now = gethrtime(); 5614 mutex_enter(&drp->r_statelock); 5615 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5616 delta = now - drp->r_time_attr_saved; 5617 if (delta < mi->mi_acdirmin) 5618 delta = mi->mi_acdirmin; 5619 else if (delta > mi->mi_acdirmax) 5620 delta = mi->mi_acdirmax; 5621 } 5622 drp->r_time_attr_inval = now + delta; 5623 mutex_exit(&drp->r_statelock); 5624 dnlc_update(dvp, nm, *vpp); 5625 5626 /* 5627 * Even though we have a valid directory attr cache 5628 * and dnlc entry, we may not have access. 5629 * This should almost always hit the cache. 5630 */ 5631 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5632 if (e.error) { 5633 VN_RELE(*vpp); 5634 *vpp = NULL; 5635 } 5636 5637 if (*vpp == DNLC_NO_VNODE) { 5638 VN_RELE(*vpp); 5639 *vpp = NULL; 5640 e.error = ENOENT; 5641 } 5642 } 5643 5644 exit: 5645 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5646 kmem_free(argop, argoplist_size); 5647 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5648 return (e.error); 5649 } 5650 5651 /* 5652 * We need to go over the wire to lookup the name, but 5653 * while we are there verify the directory has not 5654 * changed but if it has, get new attributes and check access 5655 * 5656 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5657 * NVERIFY GETATTR ACCESS 5658 * 5659 * With the results: 5660 * if the NVERIFY failed we must purge the caches, add new attributes, 5661 * and cache new access. 5662 * set a new r_time_attr_inval 5663 * add name to dnlc, possibly negative 5664 * if LOOKUP succeeded 5665 * cache new attributes 5666 */ 5667 static int 5668 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5669 { 5670 COMPOUND4args_clnt args; 5671 COMPOUND4res_clnt res; 5672 fattr4 *ver_fattr; 5673 fattr4_change dchange; 5674 int32_t *ptr; 5675 nfs4_ga_res_t *garp = NULL; 5676 int argoplist_size = 9 * sizeof (nfs_argop4); 5677 nfs_argop4 *argop; 5678 int doqueue; 5679 mntinfo4_t *mi; 5680 nfs4_recov_state_t recov_state; 5681 hrtime_t t; 5682 int isdotdot; 5683 vnode_t *nvp; 5684 nfs_fh4 *fhp; 5685 nfs4_sharedfh_t *sfhp; 5686 nfs4_access_type_t cacc; 5687 rnode4_t *nrp; 5688 rnode4_t *drp = VTOR4(dvp); 5689 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5690 5691 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5692 ASSERT(nm != NULL); 5693 ASSERT(nm[0] != '\0'); 5694 ASSERT(dvp->v_type == VDIR); 5695 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5696 ASSERT(*vpp == NULL); 5697 5698 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5699 isdotdot = 1; 5700 args.ctag = TAG_LOOKUP_PARENT; 5701 } else { 5702 /* 5703 * If dvp were a stub, it should have triggered and caused 5704 * a mount for us to get this far. 5705 */ 5706 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5707 5708 isdotdot = 0; 5709 args.ctag = TAG_LOOKUP; 5710 } 5711 5712 mi = VTOMI4(dvp); 5713 recov_state.rs_flags = 0; 5714 recov_state.rs_num_retry_despite_err = 0; 5715 5716 nvp = NULL; 5717 5718 /* Save the original mount point security information */ 5719 (void) save_mnt_secinfo(mi->mi_curr_serv); 5720 5721 recov_retry: 5722 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5723 &recov_state, NULL); 5724 if (e.error) { 5725 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5726 return (e.error); 5727 } 5728 5729 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5730 5731 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5732 args.array_len = 9; 5733 args.array = argop; 5734 5735 /* 0. putfh file */ 5736 argop[0].argop = OP_CPUTFH; 5737 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5738 5739 /* 1. savefh for the nverify */ 5740 argop[1].argop = OP_SAVEFH; 5741 5742 /* 2. lookup name */ 5743 if (isdotdot) { 5744 argop[2].argop = OP_LOOKUPP; 5745 } else { 5746 argop[2].argop = OP_CLOOKUP; 5747 argop[2].nfs_argop4_u.opclookup.cname = nm; 5748 } 5749 5750 /* 3. resulting file handle */ 5751 argop[3].argop = OP_GETFH; 5752 5753 /* 4. resulting file attributes */ 5754 argop[4].argop = OP_GETATTR; 5755 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5756 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5757 5758 /* 5. restorefh back the directory for the nverify */ 5759 argop[5].argop = OP_RESTOREFH; 5760 5761 /* 6. nverify the change info */ 5762 argop[6].argop = OP_NVERIFY; 5763 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5764 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5765 ver_fattr->attrlist4 = (char *)&dchange; 5766 ptr = (int32_t *)&dchange; 5767 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5768 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5769 5770 /* 7. getattr directory */ 5771 argop[7].argop = OP_GETATTR; 5772 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5773 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5774 5775 /* 8. access directory */ 5776 argop[8].argop = OP_ACCESS; 5777 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5778 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5779 5780 doqueue = 1; 5781 t = gethrtime(); 5782 5783 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5784 5785 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5786 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5787 if (e.error != 0 && *vpp != NULL) 5788 VN_RELE(*vpp); 5789 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5790 &recov_state, FALSE); 5791 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5792 kmem_free(argop, argoplist_size); 5793 return (e.error); 5794 } 5795 5796 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5797 /* 5798 * For WRONGSEC of a non-dotdot case, send secinfo directly 5799 * from this thread, do not go thru the recovery thread since 5800 * we need the nm information. 5801 * 5802 * Not doing dotdot case because there is no specification 5803 * for (PUTFH, SECINFO "..") yet. 5804 */ 5805 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5806 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5807 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5808 &recov_state, FALSE); 5809 else 5810 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5811 &recov_state, TRUE); 5812 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5813 kmem_free(argop, argoplist_size); 5814 if (!e.error) 5815 goto recov_retry; 5816 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5817 return (e.error); 5818 } 5819 5820 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5821 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5822 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5823 &recov_state, TRUE); 5824 5825 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5826 kmem_free(argop, argoplist_size); 5827 goto recov_retry; 5828 } 5829 } 5830 5831 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5832 5833 if (e.error || res.array_len == 0) { 5834 /* 5835 * If e.error isn't set, then reply has no ops (or we couldn't 5836 * be here). The only legal way to reply without an op array 5837 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5838 * be in the reply for all other status values. 5839 * 5840 * For valid replies without an ops array, return ENOTSUP 5841 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5842 * return EIO -- don't trust status. 5843 */ 5844 if (e.error == 0) 5845 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5846 ENOTSUP : EIO; 5847 5848 kmem_free(argop, argoplist_size); 5849 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5850 return (e.error); 5851 } 5852 5853 e.error = geterrno4(res.status); 5854 5855 /* 5856 * The PUTFH and SAVEFH may have failed. 5857 */ 5858 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5859 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5860 nfs4_purge_stale_fh(e.error, dvp, cr); 5861 goto exit; 5862 } 5863 5864 /* 5865 * Check if the file exists, if it does delay entering 5866 * into the dnlc until after we update the directory 5867 * attributes so we don't cause it to get purged immediately. 5868 */ 5869 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5870 /* 5871 * The lookup failed, probably no entry 5872 */ 5873 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5874 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5875 goto exit; 5876 } 5877 5878 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5879 /* 5880 * The file exists but we can't get its fh for 5881 * some unknown reason. Error out to be safe. 5882 */ 5883 goto exit; 5884 } 5885 5886 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5887 if (fhp->nfs_fh4_len == 0) { 5888 /* 5889 * The file exists but a bogus fh 5890 * some unknown reason. Error out to be safe. 5891 */ 5892 e.error = EIO; 5893 goto exit; 5894 } 5895 sfhp = sfh4_get(fhp, mi); 5896 5897 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5898 sfh4_rele(&sfhp); 5899 goto exit; 5900 } 5901 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5902 5903 /* 5904 * The RESTOREFH may have failed 5905 */ 5906 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5907 sfh4_rele(&sfhp); 5908 e.error = EIO; 5909 goto exit; 5910 } 5911 5912 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5913 /* 5914 * First make sure the NVERIFY failed as we expected, 5915 * if it didn't then be conservative and error out 5916 * as we can't trust the directory. 5917 */ 5918 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5919 sfh4_rele(&sfhp); 5920 e.error = EIO; 5921 goto exit; 5922 } 5923 5924 /* 5925 * We know the NVERIFY "failed" so the directory has changed, 5926 * so we must: 5927 * purge the caches (access and indirectly dnlc if needed) 5928 */ 5929 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5930 5931 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5932 sfh4_rele(&sfhp); 5933 goto exit; 5934 } 5935 nfs4_attr_cache(dvp, 5936 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5937 t, cr, FALSE, NULL); 5938 5939 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5940 nfs4_purge_stale_fh(e.error, dvp, cr); 5941 sfh4_rele(&sfhp); 5942 e.error = geterrno4(res.status); 5943 goto exit; 5944 } 5945 5946 /* 5947 * Now we know the directory is valid, 5948 * cache new directory access 5949 */ 5950 nfs4_access_cache(drp, 5951 args.array[8].nfs_argop4_u.opaccess.access, 5952 res.array[8].nfs_resop4_u.opaccess.access, cr); 5953 5954 /* 5955 * recheck VEXEC access 5956 */ 5957 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5958 if (cacc != NFS4_ACCESS_ALLOWED) { 5959 /* 5960 * Directory permissions might have been revoked 5961 */ 5962 if (cacc == NFS4_ACCESS_DENIED) { 5963 sfh4_rele(&sfhp); 5964 e.error = EACCES; 5965 goto exit; 5966 } 5967 5968 /* 5969 * Somehow we must not have asked for enough 5970 * so try a singleton ACCESS should never happen 5971 */ 5972 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5973 if (e.error) { 5974 sfh4_rele(&sfhp); 5975 goto exit; 5976 } 5977 } 5978 5979 e.error = geterrno4(res.status); 5980 } else { 5981 hrtime_t now; 5982 hrtime_t delta = 0; 5983 5984 e.error = 0; 5985 5986 /* 5987 * Because the NVERIFY "succeeded" we know that the 5988 * directory attributes are still valid 5989 * so update r_time_attr_inval 5990 */ 5991 now = gethrtime(); 5992 mutex_enter(&drp->r_statelock); 5993 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5994 delta = now - drp->r_time_attr_saved; 5995 if (delta < mi->mi_acdirmin) 5996 delta = mi->mi_acdirmin; 5997 else if (delta > mi->mi_acdirmax) 5998 delta = mi->mi_acdirmax; 5999 } 6000 drp->r_time_attr_inval = now + delta; 6001 mutex_exit(&drp->r_statelock); 6002 6003 /* 6004 * Even though we have a valid directory attr cache, 6005 * we may not have access. 6006 * This should almost always hit the cache. 6007 */ 6008 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 6009 if (e.error) { 6010 sfh4_rele(&sfhp); 6011 goto exit; 6012 } 6013 } 6014 6015 /* 6016 * Now we have successfully completed the lookup, if the 6017 * directory has changed we now have the valid attributes. 6018 * We also know we have directory access. 6019 * Create the new rnode and insert it in the dnlc. 6020 */ 6021 if (isdotdot) { 6022 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 6023 if (e.error) { 6024 sfh4_rele(&sfhp); 6025 goto exit; 6026 } 6027 /* 6028 * XXX if nfs4_make_dotdot uses an existing rnode 6029 * XXX it doesn't update the attributes. 6030 * XXX for now just save them again to save an OTW 6031 */ 6032 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 6033 } else { 6034 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 6035 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 6036 } 6037 sfh4_rele(&sfhp); 6038 6039 nrp = VTOR4(nvp); 6040 mutex_enter(&nrp->r_statev4_lock); 6041 if (!nrp->created_v4) { 6042 mutex_exit(&nrp->r_statev4_lock); 6043 dnlc_update(dvp, nm, nvp); 6044 } else 6045 mutex_exit(&nrp->r_statev4_lock); 6046 6047 *vpp = nvp; 6048 6049 exit: 6050 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6051 kmem_free(argop, argoplist_size); 6052 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 6053 return (e.error); 6054 } 6055 6056 #ifdef DEBUG 6057 void 6058 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 6059 { 6060 uint_t i, len; 6061 zoneid_t zoneid = getzoneid(); 6062 char *s; 6063 6064 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 6065 for (i = 0; i < argcnt; i++) { 6066 nfs_argop4 *op = &argbase[i]; 6067 switch (op->argop) { 6068 case OP_CPUTFH: 6069 case OP_PUTFH: 6070 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 6071 break; 6072 case OP_PUTROOTFH: 6073 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 6074 break; 6075 case OP_CLOOKUP: 6076 s = op->nfs_argop4_u.opclookup.cname; 6077 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6078 break; 6079 case OP_LOOKUP: 6080 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 6081 &len, NULL); 6082 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6083 kmem_free(s, len); 6084 break; 6085 case OP_LOOKUPP: 6086 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6087 break; 6088 case OP_GETFH: 6089 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6090 break; 6091 case OP_GETATTR: 6092 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6093 break; 6094 case OP_OPENATTR: 6095 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6096 break; 6097 default: 6098 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6099 op->argop); 6100 break; 6101 } 6102 } 6103 } 6104 #endif 6105 6106 /* 6107 * nfs4lookup_setup - constructs a multi-lookup compound request. 6108 * 6109 * Given the path "nm1/nm2/.../nmn", the following compound requests 6110 * may be created: 6111 * 6112 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6113 * is faster, for now. 6114 * 6115 * l4_getattrs indicates the type of compound requested. 6116 * 6117 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6118 * 6119 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6120 * 6121 * total number of ops is n + 1. 6122 * 6123 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6124 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6125 * before the last component, and only get attributes 6126 * for the last component. Note that the second-to-last 6127 * pathname component is XATTR_RPATH, which does NOT go 6128 * over-the-wire as a lookup. 6129 * 6130 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6131 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6132 * 6133 * and total number of ops is n + 5. 6134 * 6135 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6136 * attribute directory: create lookups plus an OPENATTR 6137 * replacing the last lookup. Note that the last pathname 6138 * component is XATTR_RPATH, which does NOT go over-the-wire 6139 * as a lookup. 6140 * 6141 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6142 * Openattr; Getfh; Getattr } 6143 * 6144 * and total number of ops is n + 5. 6145 * 6146 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6147 * nodes too. 6148 * 6149 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6150 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6151 * 6152 * and total number of ops is 3*n + 1. 6153 * 6154 * All cases: returns the index in the arg array of the final LOOKUP op, or 6155 * -1 if no LOOKUPs were used. 6156 */ 6157 int 6158 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6159 { 6160 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6161 nfs_argop4 *argbase, *argop; 6162 int arglen, argcnt; 6163 int n = 1; /* number of components */ 6164 int nga = 1; /* number of Getattr's in request */ 6165 char c = '\0', *s, *p; 6166 int lookup_idx = -1; 6167 int argoplist_size; 6168 6169 /* set lookuparg response result to 0 */ 6170 lookupargp->resp->status = NFS4_OK; 6171 6172 /* skip leading "/" or "." e.g. ".//./" if there is */ 6173 for (; ; nm++) { 6174 if (*nm != '/' && *nm != '.') 6175 break; 6176 6177 /* ".." is counted as 1 component */ 6178 if (*nm == '.' && *(nm + 1) != '/') 6179 break; 6180 } 6181 6182 /* 6183 * Find n = number of components - nm must be null terminated 6184 * Skip "." components. 6185 */ 6186 if (*nm != '\0') 6187 for (n = 1, s = nm; *s != '\0'; s++) { 6188 if ((*s == '/') && (*(s + 1) != '/') && 6189 (*(s + 1) != '\0') && 6190 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6191 *(s + 2) == '\0'))) 6192 n++; 6193 } 6194 else 6195 n = 0; 6196 6197 /* 6198 * nga is number of components that need Getfh+Getattr 6199 */ 6200 switch (l4_getattrs) { 6201 case LKP4_NO_ATTRIBUTES: 6202 nga = 0; 6203 break; 6204 case LKP4_ALL_ATTRIBUTES: 6205 nga = n; 6206 /* 6207 * Always have at least 1 getfh, getattr pair 6208 */ 6209 if (nga == 0) 6210 nga++; 6211 break; 6212 case LKP4_LAST_ATTRDIR: 6213 case LKP4_LAST_NAMED_ATTR: 6214 nga = n+1; 6215 break; 6216 } 6217 6218 /* 6219 * If change to use the filehandle attr instead of getfh 6220 * the following line can be deleted. 6221 */ 6222 nga *= 2; 6223 6224 /* 6225 * calculate number of ops in request as 6226 * header + trailer + lookups + getattrs 6227 */ 6228 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6229 6230 argoplist_size = arglen * sizeof (nfs_argop4); 6231 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6232 lookupargp->argsp->array = argop; 6233 6234 argcnt = lookupargp->header_len; 6235 argop += argcnt; 6236 6237 /* 6238 * loop and create a lookup op and possibly getattr/getfh for 6239 * each component. Skip "." components. 6240 */ 6241 for (s = nm; *s != '\0'; s = p) { 6242 /* 6243 * Set up a pathname struct for each component if needed 6244 */ 6245 while (*s == '/') 6246 s++; 6247 if (*s == '\0') 6248 break; 6249 6250 for (p = s; (*p != '/') && (*p != '\0'); p++) 6251 ; 6252 c = *p; 6253 *p = '\0'; 6254 6255 if (s[0] == '.' && s[1] == '\0') { 6256 *p = c; 6257 continue; 6258 } 6259 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6260 strcmp(s, XATTR_RPATH) == 0) { 6261 /* getfh XXX may not be needed in future */ 6262 argop->argop = OP_GETFH; 6263 argop++; 6264 argcnt++; 6265 6266 /* getattr */ 6267 argop->argop = OP_GETATTR; 6268 argop->nfs_argop4_u.opgetattr.attr_request = 6269 lookupargp->ga_bits; 6270 argop->nfs_argop4_u.opgetattr.mi = 6271 lookupargp->mi; 6272 argop++; 6273 argcnt++; 6274 6275 /* openattr */ 6276 argop->argop = OP_OPENATTR; 6277 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6278 strcmp(s, XATTR_RPATH) == 0) { 6279 /* openattr */ 6280 argop->argop = OP_OPENATTR; 6281 argop++; 6282 argcnt++; 6283 6284 /* getfh XXX may not be needed in future */ 6285 argop->argop = OP_GETFH; 6286 argop++; 6287 argcnt++; 6288 6289 /* getattr */ 6290 argop->argop = OP_GETATTR; 6291 argop->nfs_argop4_u.opgetattr.attr_request = 6292 lookupargp->ga_bits; 6293 argop->nfs_argop4_u.opgetattr.mi = 6294 lookupargp->mi; 6295 argop++; 6296 argcnt++; 6297 *p = c; 6298 continue; 6299 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6300 /* lookupp */ 6301 argop->argop = OP_LOOKUPP; 6302 } else { 6303 /* lookup */ 6304 argop->argop = OP_LOOKUP; 6305 (void) str_to_utf8(s, 6306 &argop->nfs_argop4_u.oplookup.objname); 6307 } 6308 lookup_idx = argcnt; 6309 argop++; 6310 argcnt++; 6311 6312 *p = c; 6313 6314 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6315 /* getfh XXX may not be needed in future */ 6316 argop->argop = OP_GETFH; 6317 argop++; 6318 argcnt++; 6319 6320 /* getattr */ 6321 argop->argop = OP_GETATTR; 6322 argop->nfs_argop4_u.opgetattr.attr_request = 6323 lookupargp->ga_bits; 6324 argop->nfs_argop4_u.opgetattr.mi = 6325 lookupargp->mi; 6326 argop++; 6327 argcnt++; 6328 } 6329 } 6330 6331 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6332 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6333 if (needgetfh) { 6334 /* stick in a post-lookup getfh */ 6335 argop->argop = OP_GETFH; 6336 argcnt++; 6337 argop++; 6338 } 6339 /* post-lookup getattr */ 6340 argop->argop = OP_GETATTR; 6341 argop->nfs_argop4_u.opgetattr.attr_request = 6342 lookupargp->ga_bits; 6343 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6344 argcnt++; 6345 } 6346 argcnt += lookupargp->trailer_len; /* actual op count */ 6347 lookupargp->argsp->array_len = argcnt; 6348 lookupargp->arglen = arglen; 6349 6350 #ifdef DEBUG 6351 if (nfs4_client_lookup_debug) 6352 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6353 #endif 6354 6355 return (lookup_idx); 6356 } 6357 6358 static int 6359 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6360 { 6361 COMPOUND4args_clnt args; 6362 COMPOUND4res_clnt res; 6363 GETFH4res *gf_res = NULL; 6364 nfs_argop4 argop[4]; 6365 nfs_resop4 *resop = NULL; 6366 nfs4_sharedfh_t *sfhp; 6367 hrtime_t t; 6368 nfs4_error_t e; 6369 6370 rnode4_t *drp; 6371 int doqueue = 1; 6372 vnode_t *vp; 6373 int needrecov = 0; 6374 nfs4_recov_state_t recov_state; 6375 6376 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6377 6378 *avp = NULL; 6379 recov_state.rs_flags = 0; 6380 recov_state.rs_num_retry_despite_err = 0; 6381 6382 recov_retry: 6383 /* COMPOUND: putfh, openattr, getfh, getattr */ 6384 args.array_len = 4; 6385 args.array = argop; 6386 args.ctag = TAG_OPENATTR; 6387 6388 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6389 if (e.error) 6390 return (e.error); 6391 6392 drp = VTOR4(dvp); 6393 6394 /* putfh */ 6395 argop[0].argop = OP_CPUTFH; 6396 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6397 6398 /* openattr */ 6399 argop[1].argop = OP_OPENATTR; 6400 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6401 6402 /* getfh */ 6403 argop[2].argop = OP_GETFH; 6404 6405 /* getattr */ 6406 argop[3].argop = OP_GETATTR; 6407 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6408 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6409 6410 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6411 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6412 rnode4info(drp))); 6413 6414 t = gethrtime(); 6415 6416 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6417 6418 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6419 if (needrecov) { 6420 bool_t abort; 6421 6422 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6423 "nfs4openattr: initiating recovery\n")); 6424 6425 abort = nfs4_start_recovery(&e, 6426 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6427 OP_OPENATTR, NULL, NULL, NULL); 6428 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6429 if (!e.error) { 6430 e.error = geterrno4(res.status); 6431 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6432 } 6433 if (abort == FALSE) 6434 goto recov_retry; 6435 return (e.error); 6436 } 6437 6438 if (e.error) { 6439 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6440 return (e.error); 6441 } 6442 6443 if (res.status) { 6444 /* 6445 * If OTW errro is NOTSUPP, then it should be 6446 * translated to EINVAL. All Solaris file system 6447 * implementations return EINVAL to the syscall layer 6448 * when the attrdir cannot be created due to an 6449 * implementation restriction or noxattr mount option. 6450 */ 6451 if (res.status == NFS4ERR_NOTSUPP) { 6452 mutex_enter(&drp->r_statelock); 6453 if (drp->r_xattr_dir) 6454 VN_RELE(drp->r_xattr_dir); 6455 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6456 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6457 mutex_exit(&drp->r_statelock); 6458 6459 e.error = EINVAL; 6460 } else { 6461 e.error = geterrno4(res.status); 6462 } 6463 6464 if (e.error) { 6465 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6466 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6467 needrecov); 6468 return (e.error); 6469 } 6470 } 6471 6472 resop = &res.array[0]; /* putfh res */ 6473 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6474 6475 resop = &res.array[1]; /* openattr res */ 6476 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6477 6478 resop = &res.array[2]; /* getfh res */ 6479 gf_res = &resop->nfs_resop4_u.opgetfh; 6480 if (gf_res->object.nfs_fh4_len == 0) { 6481 *avp = NULL; 6482 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6483 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6484 return (ENOENT); 6485 } 6486 6487 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6488 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6489 dvp->v_vfsp, t, cr, dvp, 6490 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp)); 6491 sfh4_rele(&sfhp); 6492 6493 if (e.error) 6494 PURGE_ATTRCACHE4(vp); 6495 6496 mutex_enter(&vp->v_lock); 6497 vp->v_flag |= V_XATTRDIR; 6498 mutex_exit(&vp->v_lock); 6499 6500 *avp = vp; 6501 6502 mutex_enter(&drp->r_statelock); 6503 if (drp->r_xattr_dir) 6504 VN_RELE(drp->r_xattr_dir); 6505 VN_HOLD(vp); 6506 drp->r_xattr_dir = vp; 6507 6508 /* 6509 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6510 * NULL. xattrs could be created at any time, and we have no 6511 * way to update pc4_xattr_exists in the base object if/when 6512 * it happens. 6513 */ 6514 drp->r_pathconf.pc4_xattr_valid = 0; 6515 6516 mutex_exit(&drp->r_statelock); 6517 6518 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6519 6520 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6521 6522 return (0); 6523 } 6524 6525 /* ARGSUSED */ 6526 static int 6527 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6528 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6529 vsecattr_t *vsecp) 6530 { 6531 int error; 6532 vnode_t *vp = NULL; 6533 rnode4_t *rp; 6534 struct vattr vattr; 6535 rnode4_t *drp; 6536 vnode_t *tempvp; 6537 enum createmode4 createmode; 6538 bool_t must_trunc = FALSE; 6539 int truncating = 0; 6540 6541 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6542 return (EPERM); 6543 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6544 return (EINVAL); 6545 } 6546 6547 /* . and .. have special meaning in the protocol, reject them. */ 6548 6549 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6550 return (EISDIR); 6551 6552 drp = VTOR4(dvp); 6553 6554 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6555 return (EINTR); 6556 6557 top: 6558 /* 6559 * We make a copy of the attributes because the caller does not 6560 * expect us to change what va points to. 6561 */ 6562 vattr = *va; 6563 6564 /* 6565 * If the pathname is "", then dvp is the root vnode of 6566 * a remote file mounted over a local directory. 6567 * All that needs to be done is access 6568 * checking and truncation. Note that we avoid doing 6569 * open w/ create because the parent directory might 6570 * be in pseudo-fs and the open would fail. 6571 */ 6572 if (*nm == '\0') { 6573 error = 0; 6574 VN_HOLD(dvp); 6575 vp = dvp; 6576 must_trunc = TRUE; 6577 } else { 6578 /* 6579 * We need to go over the wire, just to be sure whether the 6580 * file exists or not. Using the DNLC can be dangerous in 6581 * this case when making a decision regarding existence. 6582 */ 6583 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6584 } 6585 6586 if (exclusive) 6587 createmode = EXCLUSIVE4; 6588 else 6589 createmode = GUARDED4; 6590 6591 /* 6592 * error would be set if the file does not exist on the 6593 * server, so lets go create it. 6594 */ 6595 if (error) { 6596 goto create_otw; 6597 } 6598 6599 /* 6600 * File does exist on the server 6601 */ 6602 if (exclusive == EXCL) 6603 error = EEXIST; 6604 else if (vp->v_type == VDIR && (mode & VWRITE)) 6605 error = EISDIR; 6606 else { 6607 /* 6608 * If vnode is a device, create special vnode. 6609 */ 6610 if (ISVDEV(vp->v_type)) { 6611 tempvp = vp; 6612 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6613 VN_RELE(tempvp); 6614 } 6615 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6616 if ((vattr.va_mask & AT_SIZE) && 6617 vp->v_type == VREG) { 6618 rp = VTOR4(vp); 6619 /* 6620 * Check here for large file handled 6621 * by LF-unaware process (as 6622 * ufs_create() does) 6623 */ 6624 if (!(flags & FOFFMAX)) { 6625 mutex_enter(&rp->r_statelock); 6626 if (rp->r_size > MAXOFF32_T) 6627 error = EOVERFLOW; 6628 mutex_exit(&rp->r_statelock); 6629 } 6630 6631 /* if error is set then we need to return */ 6632 if (error) { 6633 nfs_rw_exit(&drp->r_rwlock); 6634 VN_RELE(vp); 6635 return (error); 6636 } 6637 6638 if (must_trunc) { 6639 vattr.va_mask = AT_SIZE; 6640 error = nfs4setattr(vp, &vattr, 0, cr, 6641 NULL); 6642 } else { 6643 /* 6644 * we know we have a regular file that already 6645 * exists and we may end up truncating the file 6646 * as a result of the open_otw, so flush out 6647 * any dirty pages for this file first. 6648 */ 6649 if (nfs4_has_pages(vp) && 6650 ((rp->r_flags & R4DIRTY) || 6651 rp->r_count > 0 || 6652 rp->r_mapcnt > 0)) { 6653 error = nfs4_putpage(vp, 6654 (offset_t)0, 0, 0, cr, ct); 6655 if (error && (error == ENOSPC || 6656 error == EDQUOT)) { 6657 mutex_enter( 6658 &rp->r_statelock); 6659 if (!rp->r_error) 6660 rp->r_error = 6661 error; 6662 mutex_exit( 6663 &rp->r_statelock); 6664 } 6665 } 6666 vattr.va_mask = (AT_SIZE | 6667 AT_TYPE | AT_MODE); 6668 vattr.va_type = VREG; 6669 createmode = UNCHECKED4; 6670 truncating = 1; 6671 goto create_otw; 6672 } 6673 } 6674 } 6675 } 6676 nfs_rw_exit(&drp->r_rwlock); 6677 if (error) { 6678 VN_RELE(vp); 6679 } else { 6680 vnode_t *tvp; 6681 rnode4_t *trp; 6682 tvp = vp; 6683 if (vp->v_type == VREG) { 6684 trp = VTOR4(vp); 6685 if (IS_SHADOW(vp, trp)) 6686 tvp = RTOV4(trp); 6687 } 6688 6689 if (must_trunc) { 6690 /* 6691 * existing file got truncated, notify. 6692 */ 6693 vnevent_create(tvp, ct); 6694 } 6695 6696 *vpp = vp; 6697 } 6698 return (error); 6699 6700 create_otw: 6701 dnlc_remove(dvp, nm); 6702 6703 ASSERT(vattr.va_mask & AT_TYPE); 6704 6705 /* 6706 * If not a regular file let nfs4mknod() handle it. 6707 */ 6708 if (vattr.va_type != VREG) { 6709 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6710 nfs_rw_exit(&drp->r_rwlock); 6711 return (error); 6712 } 6713 6714 /* 6715 * It _is_ a regular file. 6716 */ 6717 ASSERT(vattr.va_mask & AT_MODE); 6718 if (MANDMODE(vattr.va_mode)) { 6719 nfs_rw_exit(&drp->r_rwlock); 6720 return (EACCES); 6721 } 6722 6723 /* 6724 * If this happens to be a mknod of a regular file, then flags will 6725 * have neither FREAD or FWRITE. However, we must set at least one 6726 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6727 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6728 * set (based on openmode specified by app). 6729 */ 6730 if ((flags & (FREAD|FWRITE)) == 0) 6731 flags |= (FREAD|FWRITE); 6732 6733 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6734 6735 if (vp != NULL) { 6736 /* if create was successful, throw away the file's pages */ 6737 if (!error && (vattr.va_mask & AT_SIZE)) 6738 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6739 cr); 6740 /* release the lookup hold */ 6741 VN_RELE(vp); 6742 vp = NULL; 6743 } 6744 6745 /* 6746 * validate that we opened a regular file. This handles a misbehaving 6747 * server that returns an incorrect FH. 6748 */ 6749 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6750 error = EISDIR; 6751 VN_RELE(*vpp); 6752 } 6753 6754 /* 6755 * If this is not an exclusive create, then the CREATE 6756 * request will be made with the GUARDED mode set. This 6757 * means that the server will return EEXIST if the file 6758 * exists. The file could exist because of a retransmitted 6759 * request. In this case, we recover by starting over and 6760 * checking to see whether the file exists. This second 6761 * time through it should and a CREATE request will not be 6762 * sent. 6763 * 6764 * This handles the problem of a dangling CREATE request 6765 * which contains attributes which indicate that the file 6766 * should be truncated. This retransmitted request could 6767 * possibly truncate valid data in the file if not caught 6768 * by the duplicate request mechanism on the server or if 6769 * not caught by other means. The scenario is: 6770 * 6771 * Client transmits CREATE request with size = 0 6772 * Client times out, retransmits request. 6773 * Response to the first request arrives from the server 6774 * and the client proceeds on. 6775 * Client writes data to the file. 6776 * The server now processes retransmitted CREATE request 6777 * and truncates file. 6778 * 6779 * The use of the GUARDED CREATE request prevents this from 6780 * happening because the retransmitted CREATE would fail 6781 * with EEXIST and would not truncate the file. 6782 */ 6783 if (error == EEXIST && exclusive == NONEXCL) { 6784 #ifdef DEBUG 6785 nfs4_create_misses++; 6786 #endif 6787 goto top; 6788 } 6789 nfs_rw_exit(&drp->r_rwlock); 6790 if (truncating && !error && *vpp) { 6791 vnode_t *tvp; 6792 rnode4_t *trp; 6793 /* 6794 * existing file got truncated, notify. 6795 */ 6796 tvp = *vpp; 6797 trp = VTOR4(tvp); 6798 if (IS_SHADOW(tvp, trp)) 6799 tvp = RTOV4(trp); 6800 vnevent_create(tvp, ct); 6801 } 6802 return (error); 6803 } 6804 6805 /* 6806 * Create compound (for mkdir, mknod, symlink): 6807 * { Putfh <dfh>; Create; Getfh; Getattr } 6808 * It's okay if setattr failed to set gid - this is not considered 6809 * an error, but purge attrs in that case. 6810 */ 6811 static int 6812 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6813 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6814 { 6815 int need_end_op = FALSE; 6816 COMPOUND4args_clnt args; 6817 COMPOUND4res_clnt res, *resp = NULL; 6818 nfs_argop4 *argop; 6819 nfs_resop4 *resop; 6820 int doqueue; 6821 mntinfo4_t *mi; 6822 rnode4_t *drp = VTOR4(dvp); 6823 change_info4 *cinfo; 6824 GETFH4res *gf_res; 6825 struct vattr vattr; 6826 vnode_t *vp; 6827 fattr4 *crattr; 6828 bool_t needrecov = FALSE; 6829 nfs4_recov_state_t recov_state; 6830 nfs4_sharedfh_t *sfhp = NULL; 6831 hrtime_t t; 6832 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6833 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6834 dirattr_info_t dinfo, *dinfop; 6835 servinfo4_t *svp; 6836 bitmap4 supp_attrs; 6837 6838 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6839 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6840 6841 mi = VTOMI4(dvp); 6842 6843 /* 6844 * Make sure we properly deal with setting the right gid 6845 * on a new directory to reflect the parent's setgid bit 6846 */ 6847 setgid_flag = 0; 6848 if (type == NF4DIR) { 6849 struct vattr dva; 6850 6851 va->va_mode &= ~VSGID; 6852 dva.va_mask = AT_MODE | AT_GID; 6853 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6854 6855 /* 6856 * If the parent's directory has the setgid bit set 6857 * _and_ the client was able to get a valid mapping 6858 * for the parent dir's owner_group, we want to 6859 * append NVERIFY(owner_group == dva.va_gid) and 6860 * SETTATTR to the CREATE compound. 6861 */ 6862 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6863 setgid_flag = 1; 6864 va->va_mode |= VSGID; 6865 if (dva.va_gid != GID_NOBODY) { 6866 va->va_mask |= AT_GID; 6867 va->va_gid = dva.va_gid; 6868 } 6869 } 6870 } 6871 } 6872 6873 /* 6874 * Create ops: 6875 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6876 * 5:restorefh(dir) 6:getattr(dir) 6877 * 6878 * if (setgid) 6879 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6880 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6881 * 8:nverify 9:setattr 6882 */ 6883 if (setgid_flag) { 6884 numops = 10; 6885 idx_create = 1; 6886 idx_fattr = 3; 6887 } else { 6888 numops = 7; 6889 idx_create = 2; 6890 idx_fattr = 4; 6891 } 6892 6893 ASSERT(nfs_zone() == mi->mi_zone); 6894 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6895 return (EINTR); 6896 } 6897 recov_state.rs_flags = 0; 6898 recov_state.rs_num_retry_despite_err = 0; 6899 6900 argoplist_size = numops * sizeof (nfs_argop4); 6901 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6902 6903 recov_retry: 6904 if (type == NF4LNK) 6905 args.ctag = TAG_SYMLINK; 6906 else if (type == NF4DIR) 6907 args.ctag = TAG_MKDIR; 6908 else 6909 args.ctag = TAG_MKNOD; 6910 6911 args.array_len = numops; 6912 args.array = argop; 6913 6914 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6915 nfs_rw_exit(&drp->r_rwlock); 6916 kmem_free(argop, argoplist_size); 6917 return (e.error); 6918 } 6919 need_end_op = TRUE; 6920 6921 6922 /* 0: putfh directory */ 6923 argop[0].argop = OP_CPUTFH; 6924 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6925 6926 /* 1/2: Create object */ 6927 argop[idx_create].argop = OP_CCREATE; 6928 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6929 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6930 if (type == NF4LNK) { 6931 /* 6932 * symlink, treat name as data 6933 */ 6934 ASSERT(data != NULL); 6935 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6936 (char *)data; 6937 } 6938 if (type == NF4BLK || type == NF4CHR) { 6939 ASSERT(data != NULL); 6940 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6941 *((specdata4 *)data); 6942 } 6943 6944 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6945 6946 svp = drp->r_server; 6947 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6948 supp_attrs = svp->sv_supp_attrs; 6949 nfs_rw_exit(&svp->sv_lock); 6950 6951 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6952 nfs_rw_exit(&drp->r_rwlock); 6953 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6954 e.error = EINVAL; 6955 kmem_free(argop, argoplist_size); 6956 return (e.error); 6957 } 6958 6959 /* 2/3: getfh fh of created object */ 6960 ASSERT(idx_create + 1 == idx_fattr - 1); 6961 argop[idx_create + 1].argop = OP_GETFH; 6962 6963 /* 3/4: getattr of new object */ 6964 argop[idx_fattr].argop = OP_GETATTR; 6965 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6966 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6967 6968 if (setgid_flag) { 6969 vattr_t _v; 6970 6971 argop[4].argop = OP_SAVEFH; 6972 6973 argop[5].argop = OP_CPUTFH; 6974 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6975 6976 argop[6].argop = OP_GETATTR; 6977 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6978 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6979 6980 argop[7].argop = OP_RESTOREFH; 6981 6982 /* 6983 * nverify 6984 * 6985 * XXX - Revisit the last argument to nfs4_end_op() 6986 * once 5020486 is fixed. 6987 */ 6988 _v.va_mask = AT_GID; 6989 _v.va_gid = va->va_gid; 6990 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6991 supp_attrs)) { 6992 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6993 nfs_rw_exit(&drp->r_rwlock); 6994 nfs4_fattr4_free(crattr); 6995 kmem_free(argop, argoplist_size); 6996 return (e.error); 6997 } 6998 6999 /* 7000 * setattr 7001 * 7002 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 7003 * so no need for stateid or flags. Also we specify NULL 7004 * rp since we're only interested in setting owner_group 7005 * attributes. 7006 */ 7007 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 7008 &e.error, 0); 7009 7010 if (e.error) { 7011 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 7012 nfs_rw_exit(&drp->r_rwlock); 7013 nfs4_fattr4_free(crattr); 7014 nfs4args_verify_free(&argop[8]); 7015 kmem_free(argop, argoplist_size); 7016 return (e.error); 7017 } 7018 } else { 7019 argop[1].argop = OP_SAVEFH; 7020 7021 argop[5].argop = OP_RESTOREFH; 7022 7023 argop[6].argop = OP_GETATTR; 7024 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7025 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7026 } 7027 7028 dnlc_remove(dvp, nm); 7029 7030 doqueue = 1; 7031 t = gethrtime(); 7032 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7033 7034 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7035 if (e.error) { 7036 PURGE_ATTRCACHE4(dvp); 7037 if (!needrecov) 7038 goto out; 7039 } 7040 7041 if (needrecov) { 7042 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 7043 OP_CREATE, NULL, NULL, NULL) == FALSE) { 7044 nfs4_end_op(mi, dvp, NULL, &recov_state, 7045 needrecov); 7046 need_end_op = FALSE; 7047 nfs4_fattr4_free(crattr); 7048 if (setgid_flag) { 7049 nfs4args_verify_free(&argop[8]); 7050 nfs4args_setattr_free(&argop[9]); 7051 } 7052 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7053 goto recov_retry; 7054 } 7055 } 7056 7057 resp = &res; 7058 7059 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 7060 7061 if (res.status == NFS4ERR_BADOWNER) 7062 nfs4_log_badowner(mi, OP_CREATE); 7063 7064 e.error = geterrno4(res.status); 7065 7066 /* 7067 * This check is left over from when create was implemented 7068 * using a setattr op (instead of createattrs). If the 7069 * putfh/create/getfh failed, the error was returned. If 7070 * setattr/getattr failed, we keep going. 7071 * 7072 * It might be better to get rid of the GETFH also, and just 7073 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 7074 * Then if any of the operations failed, we could return the 7075 * error now, and remove much of the error code below. 7076 */ 7077 if (res.array_len <= idx_fattr) { 7078 /* 7079 * Either Putfh, Create or Getfh failed. 7080 */ 7081 PURGE_ATTRCACHE4(dvp); 7082 /* 7083 * nfs4_purge_stale_fh() may generate otw calls through 7084 * nfs4_invalidate_pages. Hence the need to call 7085 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 7086 */ 7087 nfs4_end_op(mi, dvp, NULL, &recov_state, 7088 needrecov); 7089 need_end_op = FALSE; 7090 nfs4_purge_stale_fh(e.error, dvp, cr); 7091 goto out; 7092 } 7093 } 7094 7095 resop = &res.array[idx_create]; /* create res */ 7096 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7097 7098 resop = &res.array[idx_create + 1]; /* getfh res */ 7099 gf_res = &resop->nfs_resop4_u.opgetfh; 7100 7101 sfhp = sfh4_get(&gf_res->object, mi); 7102 if (e.error) { 7103 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7104 fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7105 if (vp->v_type == VNON) { 7106 vattr.va_mask = AT_TYPE; 7107 /* 7108 * Need to call nfs4_end_op before nfs4getattr to avoid 7109 * potential nfs4_start_op deadlock. See RFE 4777612. 7110 */ 7111 nfs4_end_op(mi, dvp, NULL, &recov_state, 7112 needrecov); 7113 need_end_op = FALSE; 7114 e.error = nfs4getattr(vp, &vattr, cr); 7115 if (e.error) { 7116 VN_RELE(vp); 7117 *vpp = NULL; 7118 goto out; 7119 } 7120 vp->v_type = vattr.va_type; 7121 } 7122 e.error = 0; 7123 } else { 7124 *vpp = vp = makenfs4node(sfhp, 7125 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7126 dvp->v_vfsp, t, cr, 7127 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7128 } 7129 7130 /* 7131 * If compound succeeded, then update dir attrs 7132 */ 7133 if (res.status == NFS4_OK) { 7134 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7135 dinfo.di_cred = cr; 7136 dinfo.di_time_call = t; 7137 dinfop = &dinfo; 7138 } else 7139 dinfop = NULL; 7140 7141 /* Update directory cache attribute, readdir and dnlc caches */ 7142 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7143 7144 out: 7145 if (sfhp != NULL) 7146 sfh4_rele(&sfhp); 7147 nfs_rw_exit(&drp->r_rwlock); 7148 nfs4_fattr4_free(crattr); 7149 if (setgid_flag) { 7150 nfs4args_verify_free(&argop[8]); 7151 nfs4args_setattr_free(&argop[9]); 7152 } 7153 if (resp) 7154 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7155 if (need_end_op) 7156 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7157 7158 kmem_free(argop, argoplist_size); 7159 return (e.error); 7160 } 7161 7162 /* ARGSUSED */ 7163 static int 7164 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7165 int mode, vnode_t **vpp, cred_t *cr) 7166 { 7167 int error; 7168 vnode_t *vp; 7169 nfs_ftype4 type; 7170 specdata4 spec, *specp = NULL; 7171 7172 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7173 7174 switch (va->va_type) { 7175 case VCHR: 7176 case VBLK: 7177 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7178 spec.specdata1 = getmajor(va->va_rdev); 7179 spec.specdata2 = getminor(va->va_rdev); 7180 specp = &spec; 7181 break; 7182 7183 case VFIFO: 7184 type = NF4FIFO; 7185 break; 7186 case VSOCK: 7187 type = NF4SOCK; 7188 break; 7189 7190 default: 7191 return (EINVAL); 7192 } 7193 7194 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7195 if (error) { 7196 return (error); 7197 } 7198 7199 /* 7200 * This might not be needed any more; special case to deal 7201 * with problematic v2/v3 servers. Since create was unable 7202 * to set group correctly, not sure what hope setattr has. 7203 */ 7204 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7205 va->va_mask = AT_GID; 7206 (void) nfs4setattr(vp, va, 0, cr, NULL); 7207 } 7208 7209 /* 7210 * If vnode is a device create special vnode 7211 */ 7212 if (ISVDEV(vp->v_type)) { 7213 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7214 VN_RELE(vp); 7215 } else { 7216 *vpp = vp; 7217 } 7218 return (error); 7219 } 7220 7221 /* 7222 * Remove requires that the current fh be the target directory. 7223 * After the operation, the current fh is unchanged. 7224 * The compound op structure is: 7225 * PUTFH(targetdir), REMOVE 7226 * 7227 * Weirdness: if the vnode to be removed is open 7228 * we rename it instead of removing it and nfs_inactive 7229 * will remove the new name. 7230 */ 7231 /* ARGSUSED */ 7232 static int 7233 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7234 { 7235 COMPOUND4args_clnt args; 7236 COMPOUND4res_clnt res, *resp = NULL; 7237 REMOVE4res *rm_res; 7238 nfs_argop4 argop[3]; 7239 nfs_resop4 *resop; 7240 vnode_t *vp; 7241 char *tmpname; 7242 int doqueue; 7243 mntinfo4_t *mi; 7244 rnode4_t *rp; 7245 rnode4_t *drp; 7246 int needrecov = 0; 7247 nfs4_recov_state_t recov_state; 7248 int isopen; 7249 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7250 dirattr_info_t dinfo; 7251 7252 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7253 return (EPERM); 7254 drp = VTOR4(dvp); 7255 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7256 return (EINTR); 7257 7258 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7259 if (e.error) { 7260 nfs_rw_exit(&drp->r_rwlock); 7261 return (e.error); 7262 } 7263 7264 if (vp->v_type == VDIR) { 7265 VN_RELE(vp); 7266 nfs_rw_exit(&drp->r_rwlock); 7267 return (EISDIR); 7268 } 7269 7270 /* 7271 * First just remove the entry from the name cache, as it 7272 * is most likely the only entry for this vp. 7273 */ 7274 dnlc_remove(dvp, nm); 7275 7276 rp = VTOR4(vp); 7277 7278 /* 7279 * For regular file types, check to see if the file is open by looking 7280 * at the open streams. 7281 * For all other types, check the reference count on the vnode. Since 7282 * they are not opened OTW they never have an open stream. 7283 * 7284 * If the file is open, rename it to .nfsXXXX. 7285 */ 7286 if (vp->v_type != VREG) { 7287 /* 7288 * If the file has a v_count > 1 then there may be more than one 7289 * entry in the name cache due multiple links or an open file, 7290 * but we don't have the real reference count so flush all 7291 * possible entries. 7292 */ 7293 if (vp->v_count > 1) 7294 dnlc_purge_vp(vp); 7295 7296 /* 7297 * Now we have the real reference count. 7298 */ 7299 isopen = vp->v_count > 1; 7300 } else { 7301 mutex_enter(&rp->r_os_lock); 7302 isopen = list_head(&rp->r_open_streams) != NULL; 7303 mutex_exit(&rp->r_os_lock); 7304 } 7305 7306 mutex_enter(&rp->r_statelock); 7307 if (isopen && 7308 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7309 mutex_exit(&rp->r_statelock); 7310 tmpname = newname(); 7311 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7312 if (e.error) 7313 kmem_free(tmpname, MAXNAMELEN); 7314 else { 7315 mutex_enter(&rp->r_statelock); 7316 if (rp->r_unldvp == NULL) { 7317 VN_HOLD(dvp); 7318 rp->r_unldvp = dvp; 7319 if (rp->r_unlcred != NULL) 7320 crfree(rp->r_unlcred); 7321 crhold(cr); 7322 rp->r_unlcred = cr; 7323 rp->r_unlname = tmpname; 7324 } else { 7325 kmem_free(rp->r_unlname, MAXNAMELEN); 7326 rp->r_unlname = tmpname; 7327 } 7328 mutex_exit(&rp->r_statelock); 7329 } 7330 VN_RELE(vp); 7331 nfs_rw_exit(&drp->r_rwlock); 7332 return (e.error); 7333 } 7334 /* 7335 * Actually remove the file/dir 7336 */ 7337 mutex_exit(&rp->r_statelock); 7338 7339 /* 7340 * We need to flush any dirty pages which happen to 7341 * be hanging around before removing the file. 7342 * This shouldn't happen very often since in NFSv4 7343 * we should be close to open consistent. 7344 */ 7345 if (nfs4_has_pages(vp) && 7346 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7347 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7348 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7349 mutex_enter(&rp->r_statelock); 7350 if (!rp->r_error) 7351 rp->r_error = e.error; 7352 mutex_exit(&rp->r_statelock); 7353 } 7354 } 7355 7356 mi = VTOMI4(dvp); 7357 7358 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7359 recov_state.rs_flags = 0; 7360 recov_state.rs_num_retry_despite_err = 0; 7361 7362 recov_retry: 7363 /* 7364 * Remove ops: putfh dir; remove 7365 */ 7366 args.ctag = TAG_REMOVE; 7367 args.array_len = 3; 7368 args.array = argop; 7369 7370 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7371 if (e.error) { 7372 nfs_rw_exit(&drp->r_rwlock); 7373 VN_RELE(vp); 7374 return (e.error); 7375 } 7376 7377 /* putfh directory */ 7378 argop[0].argop = OP_CPUTFH; 7379 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7380 7381 /* remove */ 7382 argop[1].argop = OP_CREMOVE; 7383 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7384 7385 /* getattr dir */ 7386 argop[2].argop = OP_GETATTR; 7387 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7388 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7389 7390 doqueue = 1; 7391 dinfo.di_time_call = gethrtime(); 7392 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7393 7394 PURGE_ATTRCACHE4(vp); 7395 7396 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7397 if (e.error) 7398 PURGE_ATTRCACHE4(dvp); 7399 7400 if (needrecov) { 7401 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7402 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 7403 if (!e.error) 7404 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7405 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7406 needrecov); 7407 goto recov_retry; 7408 } 7409 } 7410 7411 /* 7412 * Matching nfs4_end_op() for start_op() above. 7413 * There is a path in the code below which calls 7414 * nfs4_purge_stale_fh(), which may generate otw calls through 7415 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7416 * here to avoid nfs4_start_op() deadlock. 7417 */ 7418 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7419 7420 if (!e.error) { 7421 resp = &res; 7422 7423 if (res.status) { 7424 e.error = geterrno4(res.status); 7425 PURGE_ATTRCACHE4(dvp); 7426 nfs4_purge_stale_fh(e.error, dvp, cr); 7427 } else { 7428 resop = &res.array[1]; /* remove res */ 7429 rm_res = &resop->nfs_resop4_u.opremove; 7430 7431 dinfo.di_garp = 7432 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7433 dinfo.di_cred = cr; 7434 7435 /* Update directory attr, readdir and dnlc caches */ 7436 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7437 &dinfo); 7438 } 7439 } 7440 nfs_rw_exit(&drp->r_rwlock); 7441 if (resp) 7442 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7443 7444 if (e.error == 0) { 7445 vnode_t *tvp; 7446 rnode4_t *trp; 7447 trp = VTOR4(vp); 7448 tvp = vp; 7449 if (IS_SHADOW(vp, trp)) 7450 tvp = RTOV4(trp); 7451 vnevent_remove(tvp, dvp, nm, ct); 7452 } 7453 VN_RELE(vp); 7454 return (e.error); 7455 } 7456 7457 /* 7458 * Link requires that the current fh be the target directory and the 7459 * saved fh be the source fh. After the operation, the current fh is unchanged. 7460 * Thus the compound op structure is: 7461 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7462 * GETATTR(file) 7463 */ 7464 /* ARGSUSED */ 7465 static int 7466 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7467 caller_context_t *ct, int flags) 7468 { 7469 COMPOUND4args_clnt args; 7470 COMPOUND4res_clnt res, *resp = NULL; 7471 LINK4res *ln_res; 7472 int argoplist_size = 7 * sizeof (nfs_argop4); 7473 nfs_argop4 *argop; 7474 nfs_resop4 *resop; 7475 vnode_t *realvp, *nvp; 7476 int doqueue; 7477 mntinfo4_t *mi; 7478 rnode4_t *tdrp; 7479 bool_t needrecov = FALSE; 7480 nfs4_recov_state_t recov_state; 7481 hrtime_t t; 7482 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7483 dirattr_info_t dinfo; 7484 7485 ASSERT(*tnm != '\0'); 7486 ASSERT(tdvp->v_type == VDIR); 7487 ASSERT(nfs4_consistent_type(tdvp)); 7488 ASSERT(nfs4_consistent_type(svp)); 7489 7490 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7491 return (EPERM); 7492 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7493 svp = realvp; 7494 ASSERT(nfs4_consistent_type(svp)); 7495 } 7496 7497 tdrp = VTOR4(tdvp); 7498 mi = VTOMI4(svp); 7499 7500 if (!(mi->mi_flags & MI4_LINK)) { 7501 return (EOPNOTSUPP); 7502 } 7503 recov_state.rs_flags = 0; 7504 recov_state.rs_num_retry_despite_err = 0; 7505 7506 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7507 return (EINTR); 7508 7509 recov_retry: 7510 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7511 7512 args.ctag = TAG_LINK; 7513 7514 /* 7515 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7516 * restorefh; getattr(fl) 7517 */ 7518 args.array_len = 7; 7519 args.array = argop; 7520 7521 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7522 if (e.error) { 7523 kmem_free(argop, argoplist_size); 7524 nfs_rw_exit(&tdrp->r_rwlock); 7525 return (e.error); 7526 } 7527 7528 /* 0. putfh file */ 7529 argop[0].argop = OP_CPUTFH; 7530 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7531 7532 /* 1. save current fh to free up the space for the dir */ 7533 argop[1].argop = OP_SAVEFH; 7534 7535 /* 2. putfh targetdir */ 7536 argop[2].argop = OP_CPUTFH; 7537 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7538 7539 /* 3. link: current_fh is targetdir, saved_fh is source */ 7540 argop[3].argop = OP_CLINK; 7541 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7542 7543 /* 4. Get attributes of dir */ 7544 argop[4].argop = OP_GETATTR; 7545 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7546 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7547 7548 /* 5. If link was successful, restore current vp to file */ 7549 argop[5].argop = OP_RESTOREFH; 7550 7551 /* 6. Get attributes of linked object */ 7552 argop[6].argop = OP_GETATTR; 7553 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7554 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7555 7556 dnlc_remove(tdvp, tnm); 7557 7558 doqueue = 1; 7559 t = gethrtime(); 7560 7561 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7562 7563 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7564 if (e.error != 0 && !needrecov) { 7565 PURGE_ATTRCACHE4(tdvp); 7566 PURGE_ATTRCACHE4(svp); 7567 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7568 goto out; 7569 } 7570 7571 if (needrecov) { 7572 bool_t abort; 7573 7574 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7575 NULL, NULL, OP_LINK, NULL, NULL, NULL); 7576 if (abort == FALSE) { 7577 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7578 needrecov); 7579 kmem_free(argop, argoplist_size); 7580 if (!e.error) 7581 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7582 goto recov_retry; 7583 } else { 7584 if (e.error != 0) { 7585 PURGE_ATTRCACHE4(tdvp); 7586 PURGE_ATTRCACHE4(svp); 7587 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7588 &recov_state, needrecov); 7589 goto out; 7590 } 7591 /* fall through for res.status case */ 7592 } 7593 } 7594 7595 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7596 7597 resp = &res; 7598 if (res.status) { 7599 /* If link succeeded, then don't return error */ 7600 e.error = geterrno4(res.status); 7601 if (res.array_len <= 4) { 7602 /* 7603 * Either Putfh, Savefh, Putfh dir, or Link failed 7604 */ 7605 PURGE_ATTRCACHE4(svp); 7606 PURGE_ATTRCACHE4(tdvp); 7607 if (e.error == EOPNOTSUPP) { 7608 mutex_enter(&mi->mi_lock); 7609 mi->mi_flags &= ~MI4_LINK; 7610 mutex_exit(&mi->mi_lock); 7611 } 7612 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7613 /* XXX-LP */ 7614 if (e.error == EISDIR && crgetuid(cr) != 0) 7615 e.error = EPERM; 7616 goto out; 7617 } 7618 } 7619 7620 /* either no error or one of the postop getattr failed */ 7621 7622 /* 7623 * XXX - if LINK succeeded, but no attrs were returned for link 7624 * file, purge its cache. 7625 * 7626 * XXX Perform a simplified version of wcc checking. Instead of 7627 * have another getattr to get pre-op, just purge cache if 7628 * any of the ops prior to and including the getattr failed. 7629 * If the getattr succeeded then update the attrcache accordingly. 7630 */ 7631 7632 /* 7633 * update cache with link file postattrs. 7634 * Note: at this point resop points to link res. 7635 */ 7636 resop = &res.array[3]; /* link res */ 7637 ln_res = &resop->nfs_resop4_u.oplink; 7638 if (res.status == NFS4_OK) 7639 e.error = nfs4_update_attrcache(res.status, 7640 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7641 t, svp, cr); 7642 7643 /* 7644 * Call makenfs4node to create the new shadow vp for tnm. 7645 * We pass NULL attrs because we just cached attrs for 7646 * the src object. All we're trying to accomplish is to 7647 * to create the new shadow vnode. 7648 */ 7649 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7650 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh)); 7651 7652 /* Update target cache attribute, readdir and dnlc caches */ 7653 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7654 dinfo.di_time_call = t; 7655 dinfo.di_cred = cr; 7656 7657 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7658 ASSERT(nfs4_consistent_type(tdvp)); 7659 ASSERT(nfs4_consistent_type(svp)); 7660 ASSERT(nfs4_consistent_type(nvp)); 7661 VN_RELE(nvp); 7662 7663 if (!e.error) { 7664 vnode_t *tvp; 7665 rnode4_t *trp; 7666 /* 7667 * Notify the source file of this link operation. 7668 */ 7669 trp = VTOR4(svp); 7670 tvp = svp; 7671 if (IS_SHADOW(svp, trp)) 7672 tvp = RTOV4(trp); 7673 vnevent_link(tvp, ct); 7674 } 7675 out: 7676 kmem_free(argop, argoplist_size); 7677 if (resp) 7678 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7679 7680 nfs_rw_exit(&tdrp->r_rwlock); 7681 7682 return (e.error); 7683 } 7684 7685 /* ARGSUSED */ 7686 static int 7687 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7688 caller_context_t *ct, int flags) 7689 { 7690 vnode_t *realvp; 7691 7692 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7693 return (EPERM); 7694 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7695 ndvp = realvp; 7696 7697 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7698 } 7699 7700 /* 7701 * nfs4rename does the real work of renaming in NFS Version 4. 7702 * 7703 * A file handle is considered volatile for renaming purposes if either 7704 * of the volatile bits are turned on. However, the compound may differ 7705 * based on the likelihood of the filehandle to change during rename. 7706 */ 7707 static int 7708 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7709 caller_context_t *ct) 7710 { 7711 int error; 7712 mntinfo4_t *mi; 7713 vnode_t *nvp = NULL; 7714 vnode_t *ovp = NULL; 7715 char *tmpname = NULL; 7716 rnode4_t *rp; 7717 rnode4_t *odrp; 7718 rnode4_t *ndrp; 7719 int did_link = 0; 7720 int do_link = 1; 7721 nfsstat4 stat = NFS4_OK; 7722 7723 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7724 ASSERT(nfs4_consistent_type(odvp)); 7725 ASSERT(nfs4_consistent_type(ndvp)); 7726 7727 if (onm[0] == '.' && (onm[1] == '\0' || 7728 (onm[1] == '.' && onm[2] == '\0'))) 7729 return (EINVAL); 7730 7731 if (nnm[0] == '.' && (nnm[1] == '\0' || 7732 (nnm[1] == '.' && nnm[2] == '\0'))) 7733 return (EINVAL); 7734 7735 odrp = VTOR4(odvp); 7736 ndrp = VTOR4(ndvp); 7737 if ((intptr_t)odrp < (intptr_t)ndrp) { 7738 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7739 return (EINTR); 7740 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7741 nfs_rw_exit(&odrp->r_rwlock); 7742 return (EINTR); 7743 } 7744 } else { 7745 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7746 return (EINTR); 7747 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7748 nfs_rw_exit(&ndrp->r_rwlock); 7749 return (EINTR); 7750 } 7751 } 7752 7753 /* 7754 * Lookup the target file. If it exists, it needs to be 7755 * checked to see whether it is a mount point and whether 7756 * it is active (open). 7757 */ 7758 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7759 if (!error) { 7760 int isactive; 7761 7762 ASSERT(nfs4_consistent_type(nvp)); 7763 /* 7764 * If this file has been mounted on, then just 7765 * return busy because renaming to it would remove 7766 * the mounted file system from the name space. 7767 */ 7768 if (vn_ismntpt(nvp)) { 7769 VN_RELE(nvp); 7770 nfs_rw_exit(&odrp->r_rwlock); 7771 nfs_rw_exit(&ndrp->r_rwlock); 7772 return (EBUSY); 7773 } 7774 7775 /* 7776 * First just remove the entry from the name cache, as it 7777 * is most likely the only entry for this vp. 7778 */ 7779 dnlc_remove(ndvp, nnm); 7780 7781 rp = VTOR4(nvp); 7782 7783 if (nvp->v_type != VREG) { 7784 /* 7785 * Purge the name cache of all references to this vnode 7786 * so that we can check the reference count to infer 7787 * whether it is active or not. 7788 */ 7789 if (nvp->v_count > 1) 7790 dnlc_purge_vp(nvp); 7791 7792 isactive = nvp->v_count > 1; 7793 } else { 7794 mutex_enter(&rp->r_os_lock); 7795 isactive = list_head(&rp->r_open_streams) != NULL; 7796 mutex_exit(&rp->r_os_lock); 7797 } 7798 7799 /* 7800 * If the vnode is active and is not a directory, 7801 * arrange to rename it to a 7802 * temporary file so that it will continue to be 7803 * accessible. This implements the "unlink-open-file" 7804 * semantics for the target of a rename operation. 7805 * Before doing this though, make sure that the 7806 * source and target files are not already the same. 7807 */ 7808 if (isactive && nvp->v_type != VDIR) { 7809 /* 7810 * Lookup the source name. 7811 */ 7812 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7813 7814 /* 7815 * The source name *should* already exist. 7816 */ 7817 if (error) { 7818 VN_RELE(nvp); 7819 nfs_rw_exit(&odrp->r_rwlock); 7820 nfs_rw_exit(&ndrp->r_rwlock); 7821 return (error); 7822 } 7823 7824 ASSERT(nfs4_consistent_type(ovp)); 7825 7826 /* 7827 * Compare the two vnodes. If they are the same, 7828 * just release all held vnodes and return success. 7829 */ 7830 if (VN_CMP(ovp, nvp)) { 7831 VN_RELE(ovp); 7832 VN_RELE(nvp); 7833 nfs_rw_exit(&odrp->r_rwlock); 7834 nfs_rw_exit(&ndrp->r_rwlock); 7835 return (0); 7836 } 7837 7838 /* 7839 * Can't mix and match directories and non- 7840 * directories in rename operations. We already 7841 * know that the target is not a directory. If 7842 * the source is a directory, return an error. 7843 */ 7844 if (ovp->v_type == VDIR) { 7845 VN_RELE(ovp); 7846 VN_RELE(nvp); 7847 nfs_rw_exit(&odrp->r_rwlock); 7848 nfs_rw_exit(&ndrp->r_rwlock); 7849 return (ENOTDIR); 7850 } 7851 link_call: 7852 /* 7853 * The target file exists, is not the same as 7854 * the source file, and is active. We first 7855 * try to Link it to a temporary filename to 7856 * avoid having the server removing the file 7857 * completely (which could cause data loss to 7858 * the user's POV in the event the Rename fails 7859 * -- see bug 1165874). 7860 */ 7861 /* 7862 * The do_link and did_link booleans are 7863 * introduced in the event we get NFS4ERR_FILE_OPEN 7864 * returned for the Rename. Some servers can 7865 * not Rename over an Open file, so they return 7866 * this error. The client needs to Remove the 7867 * newly created Link and do two Renames, just 7868 * as if the server didn't support LINK. 7869 */ 7870 tmpname = newname(); 7871 error = 0; 7872 7873 if (do_link) { 7874 error = nfs4_link(ndvp, nvp, tmpname, cr, 7875 NULL, 0); 7876 } 7877 if (error == EOPNOTSUPP || !do_link) { 7878 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7879 cr, NULL, 0); 7880 did_link = 0; 7881 } else { 7882 did_link = 1; 7883 } 7884 if (error) { 7885 kmem_free(tmpname, MAXNAMELEN); 7886 VN_RELE(ovp); 7887 VN_RELE(nvp); 7888 nfs_rw_exit(&odrp->r_rwlock); 7889 nfs_rw_exit(&ndrp->r_rwlock); 7890 return (error); 7891 } 7892 7893 mutex_enter(&rp->r_statelock); 7894 if (rp->r_unldvp == NULL) { 7895 VN_HOLD(ndvp); 7896 rp->r_unldvp = ndvp; 7897 if (rp->r_unlcred != NULL) 7898 crfree(rp->r_unlcred); 7899 crhold(cr); 7900 rp->r_unlcred = cr; 7901 rp->r_unlname = tmpname; 7902 } else { 7903 if (rp->r_unlname) 7904 kmem_free(rp->r_unlname, MAXNAMELEN); 7905 rp->r_unlname = tmpname; 7906 } 7907 mutex_exit(&rp->r_statelock); 7908 } 7909 7910 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7911 7912 ASSERT(nfs4_consistent_type(nvp)); 7913 } 7914 7915 if (ovp == NULL) { 7916 /* 7917 * When renaming directories to be a subdirectory of a 7918 * different parent, the dnlc entry for ".." will no 7919 * longer be valid, so it must be removed. 7920 * 7921 * We do a lookup here to determine whether we are renaming 7922 * a directory and we need to check if we are renaming 7923 * an unlinked file. This might have already been done 7924 * in previous code, so we check ovp == NULL to avoid 7925 * doing it twice. 7926 */ 7927 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7928 /* 7929 * The source name *should* already exist. 7930 */ 7931 if (error) { 7932 nfs_rw_exit(&odrp->r_rwlock); 7933 nfs_rw_exit(&ndrp->r_rwlock); 7934 if (nvp) { 7935 VN_RELE(nvp); 7936 } 7937 return (error); 7938 } 7939 ASSERT(ovp != NULL); 7940 ASSERT(nfs4_consistent_type(ovp)); 7941 } 7942 7943 /* 7944 * Is the object being renamed a dir, and if so, is 7945 * it being renamed to a child of itself? The underlying 7946 * fs should ultimately return EINVAL for this case; 7947 * however, buggy beta non-Solaris NFSv4 servers at 7948 * interop testing events have allowed this behavior, 7949 * and it caused our client to panic due to a recursive 7950 * mutex_enter in fn_move. 7951 * 7952 * The tedious locking in fn_move could be changed to 7953 * deal with this case, and the client could avoid the 7954 * panic; however, the client would just confuse itself 7955 * later and misbehave. A better way to handle the broken 7956 * server is to detect this condition and return EINVAL 7957 * without ever sending the the bogus rename to the server. 7958 * We know the rename is invalid -- just fail it now. 7959 */ 7960 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7961 VN_RELE(ovp); 7962 nfs_rw_exit(&odrp->r_rwlock); 7963 nfs_rw_exit(&ndrp->r_rwlock); 7964 if (nvp) { 7965 VN_RELE(nvp); 7966 } 7967 return (EINVAL); 7968 } 7969 7970 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7971 7972 /* 7973 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7974 * possible for the filehandle to change due to the rename. 7975 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7976 * the fh will not change because of the rename, but we still need 7977 * to update its rnode entry with the new name for 7978 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7979 * has no effect on these for now, but for future improvements, 7980 * we might want to use it too to simplify handling of files 7981 * that are open with that flag on. (XXX) 7982 */ 7983 mi = VTOMI4(odvp); 7984 if (NFS4_VOLATILE_FH(mi)) 7985 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7986 &stat); 7987 else 7988 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7989 &stat); 7990 7991 ASSERT(nfs4_consistent_type(odvp)); 7992 ASSERT(nfs4_consistent_type(ndvp)); 7993 ASSERT(nfs4_consistent_type(ovp)); 7994 7995 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7996 do_link = 0; 7997 /* 7998 * Before the 'link_call' code, we did a nfs4_lookup 7999 * that puts a VN_HOLD on nvp. After the nfs4_link 8000 * call we call VN_RELE to match that hold. We need 8001 * to place an additional VN_HOLD here since we will 8002 * be hitting that VN_RELE again. 8003 */ 8004 VN_HOLD(nvp); 8005 8006 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 8007 8008 /* Undo the unlinked file naming stuff we just did */ 8009 mutex_enter(&rp->r_statelock); 8010 if (rp->r_unldvp) { 8011 VN_RELE(ndvp); 8012 rp->r_unldvp = NULL; 8013 if (rp->r_unlcred != NULL) 8014 crfree(rp->r_unlcred); 8015 rp->r_unlcred = NULL; 8016 /* rp->r_unlanme points to tmpname */ 8017 if (rp->r_unlname) 8018 kmem_free(rp->r_unlname, MAXNAMELEN); 8019 rp->r_unlname = NULL; 8020 } 8021 mutex_exit(&rp->r_statelock); 8022 8023 if (nvp) { 8024 VN_RELE(nvp); 8025 } 8026 goto link_call; 8027 } 8028 8029 if (error) { 8030 VN_RELE(ovp); 8031 nfs_rw_exit(&odrp->r_rwlock); 8032 nfs_rw_exit(&ndrp->r_rwlock); 8033 if (nvp) { 8034 VN_RELE(nvp); 8035 } 8036 return (error); 8037 } 8038 8039 /* 8040 * when renaming directories to be a subdirectory of a 8041 * different parent, the dnlc entry for ".." will no 8042 * longer be valid, so it must be removed 8043 */ 8044 rp = VTOR4(ovp); 8045 if (ndvp != odvp) { 8046 if (ovp->v_type == VDIR) { 8047 dnlc_remove(ovp, ".."); 8048 if (rp->r_dir != NULL) 8049 nfs4_purge_rddir_cache(ovp); 8050 } 8051 } 8052 8053 /* 8054 * If we are renaming the unlinked file, update the 8055 * r_unldvp and r_unlname as needed. 8056 */ 8057 mutex_enter(&rp->r_statelock); 8058 if (rp->r_unldvp != NULL) { 8059 if (strcmp(rp->r_unlname, onm) == 0) { 8060 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 8061 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 8062 if (ndvp != rp->r_unldvp) { 8063 VN_RELE(rp->r_unldvp); 8064 rp->r_unldvp = ndvp; 8065 VN_HOLD(ndvp); 8066 } 8067 } 8068 } 8069 mutex_exit(&rp->r_statelock); 8070 8071 /* 8072 * Notify the rename vnevents to source vnode, and to the target 8073 * vnode if it already existed. 8074 */ 8075 if (error == 0) { 8076 vnode_t *tvp; 8077 rnode4_t *trp; 8078 /* 8079 * Notify the vnode. Each links is represented by 8080 * a different vnode, in nfsv4. 8081 */ 8082 if (nvp) { 8083 trp = VTOR4(nvp); 8084 tvp = nvp; 8085 if (IS_SHADOW(nvp, trp)) 8086 tvp = RTOV4(trp); 8087 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8088 } 8089 8090 /* 8091 * if the source and destination directory are not the 8092 * same notify the destination directory. 8093 */ 8094 if (VTOR4(odvp) != VTOR4(ndvp)) { 8095 trp = VTOR4(ndvp); 8096 tvp = ndvp; 8097 if (IS_SHADOW(ndvp, trp)) 8098 tvp = RTOV4(trp); 8099 vnevent_rename_dest_dir(tvp, ct); 8100 } 8101 8102 trp = VTOR4(ovp); 8103 tvp = ovp; 8104 if (IS_SHADOW(ovp, trp)) 8105 tvp = RTOV4(trp); 8106 vnevent_rename_src(tvp, odvp, onm, ct); 8107 } 8108 8109 if (nvp) { 8110 VN_RELE(nvp); 8111 } 8112 VN_RELE(ovp); 8113 8114 nfs_rw_exit(&odrp->r_rwlock); 8115 nfs_rw_exit(&ndrp->r_rwlock); 8116 8117 return (error); 8118 } 8119 8120 /* 8121 * When the parent directory has changed, sv_dfh must be updated 8122 */ 8123 static void 8124 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp) 8125 { 8126 svnode_t *sv = VTOSV(vp); 8127 nfs4_sharedfh_t *old_dfh = sv->sv_dfh; 8128 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh; 8129 8130 sfh4_hold(new_dfh); 8131 sv->sv_dfh = new_dfh; 8132 sfh4_rele(&old_dfh); 8133 } 8134 8135 /* 8136 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8137 * when it is known that the filehandle is persistent through rename. 8138 * 8139 * Rename requires that the current fh be the target directory and the 8140 * saved fh be the source directory. After the operation, the current fh 8141 * is unchanged. 8142 * The compound op structure for persistent fh rename is: 8143 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8144 * Rather than bother with the directory postop args, we'll simply 8145 * update that a change occurred in the cache, so no post-op getattrs. 8146 */ 8147 static int 8148 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8149 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8150 { 8151 COMPOUND4args_clnt args; 8152 COMPOUND4res_clnt res, *resp = NULL; 8153 nfs_argop4 *argop; 8154 nfs_resop4 *resop; 8155 int doqueue, argoplist_size; 8156 mntinfo4_t *mi; 8157 rnode4_t *odrp = VTOR4(odvp); 8158 rnode4_t *ndrp = VTOR4(ndvp); 8159 RENAME4res *rn_res; 8160 bool_t needrecov; 8161 nfs4_recov_state_t recov_state; 8162 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8163 dirattr_info_t dinfo, *dinfop; 8164 8165 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8166 8167 recov_state.rs_flags = 0; 8168 recov_state.rs_num_retry_despite_err = 0; 8169 8170 /* 8171 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8172 * 8173 * If source/target are different dirs, then append putfh(src); getattr 8174 */ 8175 args.array_len = (odvp == ndvp) ? 5 : 7; 8176 argoplist_size = args.array_len * sizeof (nfs_argop4); 8177 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8178 8179 recov_retry: 8180 *statp = NFS4_OK; 8181 8182 /* No need to Lookup the file, persistent fh */ 8183 args.ctag = TAG_RENAME; 8184 8185 mi = VTOMI4(odvp); 8186 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8187 if (e.error) { 8188 kmem_free(argop, argoplist_size); 8189 return (e.error); 8190 } 8191 8192 /* 0: putfh source directory */ 8193 argop[0].argop = OP_CPUTFH; 8194 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8195 8196 /* 1: Save source fh to free up current for target */ 8197 argop[1].argop = OP_SAVEFH; 8198 8199 /* 2: putfh targetdir */ 8200 argop[2].argop = OP_CPUTFH; 8201 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8202 8203 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8204 argop[3].argop = OP_CRENAME; 8205 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8206 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8207 8208 /* 4: getattr (targetdir) */ 8209 argop[4].argop = OP_GETATTR; 8210 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8211 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8212 8213 if (ndvp != odvp) { 8214 8215 /* 5: putfh (sourcedir) */ 8216 argop[5].argop = OP_CPUTFH; 8217 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8218 8219 /* 6: getattr (sourcedir) */ 8220 argop[6].argop = OP_GETATTR; 8221 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8222 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8223 } 8224 8225 dnlc_remove(odvp, onm); 8226 dnlc_remove(ndvp, nnm); 8227 8228 doqueue = 1; 8229 dinfo.di_time_call = gethrtime(); 8230 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8231 8232 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8233 if (e.error) { 8234 PURGE_ATTRCACHE4(odvp); 8235 PURGE_ATTRCACHE4(ndvp); 8236 } else { 8237 *statp = res.status; 8238 } 8239 8240 if (needrecov) { 8241 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8242 OP_RENAME, NULL, NULL, NULL) == FALSE) { 8243 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8244 if (!e.error) 8245 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 8246 goto recov_retry; 8247 } 8248 } 8249 8250 if (!e.error) { 8251 resp = &res; 8252 /* 8253 * as long as OP_RENAME 8254 */ 8255 if (res.status != NFS4_OK && res.array_len <= 4) { 8256 e.error = geterrno4(res.status); 8257 PURGE_ATTRCACHE4(odvp); 8258 PURGE_ATTRCACHE4(ndvp); 8259 /* 8260 * System V defines rename to return EEXIST, not 8261 * ENOTEMPTY if the target directory is not empty. 8262 * Over the wire, the error is NFSERR_ENOTEMPTY 8263 * which geterrno4 maps to ENOTEMPTY. 8264 */ 8265 if (e.error == ENOTEMPTY) 8266 e.error = EEXIST; 8267 } else { 8268 8269 resop = &res.array[3]; /* rename res */ 8270 rn_res = &resop->nfs_resop4_u.oprename; 8271 8272 if (res.status == NFS4_OK) { 8273 /* 8274 * Update target attribute, readdir and dnlc 8275 * caches. 8276 */ 8277 dinfo.di_garp = 8278 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8279 dinfo.di_cred = cr; 8280 dinfop = &dinfo; 8281 } else 8282 dinfop = NULL; 8283 8284 nfs4_update_dircaches(&rn_res->target_cinfo, 8285 ndvp, NULL, NULL, dinfop); 8286 8287 /* 8288 * Update source attribute, readdir and dnlc caches 8289 * 8290 */ 8291 if (ndvp != odvp) { 8292 update_parentdir_sfh(renvp, ndvp); 8293 8294 if (dinfop) 8295 dinfo.di_garp = 8296 &(res.array[6].nfs_resop4_u. 8297 opgetattr.ga_res); 8298 8299 nfs4_update_dircaches(&rn_res->source_cinfo, 8300 odvp, NULL, NULL, dinfop); 8301 } 8302 8303 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8304 nnm); 8305 } 8306 } 8307 8308 if (resp) 8309 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8310 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8311 kmem_free(argop, argoplist_size); 8312 8313 return (e.error); 8314 } 8315 8316 /* 8317 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8318 * it is possible for the filehandle to change due to the rename. 8319 * 8320 * The compound req in this case includes a post-rename lookup and getattr 8321 * to ensure that we have the correct fh and attributes for the object. 8322 * 8323 * Rename requires that the current fh be the target directory and the 8324 * saved fh be the source directory. After the operation, the current fh 8325 * is unchanged. 8326 * 8327 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8328 * update the filehandle for the renamed object. We also get the old 8329 * filehandle for historical reasons; this should be taken out sometime. 8330 * This results in a rather cumbersome compound... 8331 * 8332 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8333 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8334 * 8335 */ 8336 static int 8337 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8338 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8339 { 8340 COMPOUND4args_clnt args; 8341 COMPOUND4res_clnt res, *resp = NULL; 8342 int argoplist_size; 8343 nfs_argop4 *argop; 8344 nfs_resop4 *resop; 8345 int doqueue; 8346 mntinfo4_t *mi; 8347 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8348 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8349 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8350 RENAME4res *rn_res; 8351 GETFH4res *ngf_res; 8352 bool_t needrecov; 8353 nfs4_recov_state_t recov_state; 8354 hrtime_t t; 8355 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8356 dirattr_info_t dinfo, *dinfop = &dinfo; 8357 8358 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8359 8360 recov_state.rs_flags = 0; 8361 recov_state.rs_num_retry_despite_err = 0; 8362 8363 recov_retry: 8364 *statp = NFS4_OK; 8365 8366 /* 8367 * There is a window between the RPC and updating the path and 8368 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8369 * code, so that it doesn't try to use the old path during that 8370 * window. 8371 */ 8372 mutex_enter(&orp->r_statelock); 8373 while (orp->r_flags & R4RECEXPFH) { 8374 klwp_t *lwp = ttolwp(curthread); 8375 8376 if (lwp != NULL) 8377 lwp->lwp_nostop++; 8378 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8379 mutex_exit(&orp->r_statelock); 8380 if (lwp != NULL) 8381 lwp->lwp_nostop--; 8382 return (EINTR); 8383 } 8384 if (lwp != NULL) 8385 lwp->lwp_nostop--; 8386 } 8387 orp->r_flags |= R4RECEXPFH; 8388 mutex_exit(&orp->r_statelock); 8389 8390 mi = VTOMI4(odvp); 8391 8392 args.ctag = TAG_RENAME_VFH; 8393 args.array_len = (odvp == ndvp) ? 10 : 12; 8394 argoplist_size = args.array_len * sizeof (nfs_argop4); 8395 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8396 8397 /* 8398 * Rename ops: 8399 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8400 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8401 * LOOKUP(trgt), GETFH(new), GETATTR, 8402 * 8403 * if (odvp != ndvp) 8404 * add putfh(sourcedir), getattr(sourcedir) } 8405 */ 8406 args.array = argop; 8407 8408 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8409 &recov_state, NULL); 8410 if (e.error) { 8411 kmem_free(argop, argoplist_size); 8412 mutex_enter(&orp->r_statelock); 8413 orp->r_flags &= ~R4RECEXPFH; 8414 cv_broadcast(&orp->r_cv); 8415 mutex_exit(&orp->r_statelock); 8416 return (e.error); 8417 } 8418 8419 /* 0: putfh source directory */ 8420 argop[0].argop = OP_CPUTFH; 8421 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8422 8423 /* 1: Save source fh to free up current for target */ 8424 argop[1].argop = OP_SAVEFH; 8425 8426 /* 2: Lookup pre-rename fh of renamed object */ 8427 argop[2].argop = OP_CLOOKUP; 8428 argop[2].nfs_argop4_u.opclookup.cname = onm; 8429 8430 /* 3: getfh fh of renamed object (before rename) */ 8431 argop[3].argop = OP_GETFH; 8432 8433 /* 4: putfh targetdir */ 8434 argop[4].argop = OP_CPUTFH; 8435 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8436 8437 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8438 argop[5].argop = OP_CRENAME; 8439 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8440 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8441 8442 /* 6: getattr of target dir (post op attrs) */ 8443 argop[6].argop = OP_GETATTR; 8444 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8445 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8446 8447 /* 7: Lookup post-rename fh of renamed object */ 8448 argop[7].argop = OP_CLOOKUP; 8449 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8450 8451 /* 8: getfh fh of renamed object (after rename) */ 8452 argop[8].argop = OP_GETFH; 8453 8454 /* 9: getattr of renamed object */ 8455 argop[9].argop = OP_GETATTR; 8456 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8457 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8458 8459 /* 8460 * If source/target dirs are different, then get new post-op 8461 * attrs for source dir also. 8462 */ 8463 if (ndvp != odvp) { 8464 /* 10: putfh (sourcedir) */ 8465 argop[10].argop = OP_CPUTFH; 8466 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8467 8468 /* 11: getattr (sourcedir) */ 8469 argop[11].argop = OP_GETATTR; 8470 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8471 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8472 } 8473 8474 dnlc_remove(odvp, onm); 8475 dnlc_remove(ndvp, nnm); 8476 8477 doqueue = 1; 8478 t = gethrtime(); 8479 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8480 8481 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8482 if (e.error) { 8483 PURGE_ATTRCACHE4(odvp); 8484 PURGE_ATTRCACHE4(ndvp); 8485 if (!needrecov) { 8486 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8487 &recov_state, needrecov); 8488 goto out; 8489 } 8490 } else { 8491 *statp = res.status; 8492 } 8493 8494 if (needrecov) { 8495 bool_t abort; 8496 8497 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8498 OP_RENAME, NULL, NULL, NULL); 8499 if (abort == FALSE) { 8500 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8501 &recov_state, needrecov); 8502 kmem_free(argop, argoplist_size); 8503 if (!e.error) 8504 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 8505 mutex_enter(&orp->r_statelock); 8506 orp->r_flags &= ~R4RECEXPFH; 8507 cv_broadcast(&orp->r_cv); 8508 mutex_exit(&orp->r_statelock); 8509 goto recov_retry; 8510 } else { 8511 if (e.error != 0) { 8512 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8513 &recov_state, needrecov); 8514 goto out; 8515 } 8516 /* fall through for res.status case */ 8517 } 8518 } 8519 8520 resp = &res; 8521 /* 8522 * If OP_RENAME (or any prev op) failed, then return an error. 8523 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8524 */ 8525 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8526 /* 8527 * Error in an op other than last Getattr 8528 */ 8529 e.error = geterrno4(res.status); 8530 PURGE_ATTRCACHE4(odvp); 8531 PURGE_ATTRCACHE4(ndvp); 8532 /* 8533 * System V defines rename to return EEXIST, not 8534 * ENOTEMPTY if the target directory is not empty. 8535 * Over the wire, the error is NFSERR_ENOTEMPTY 8536 * which geterrno4 maps to ENOTEMPTY. 8537 */ 8538 if (e.error == ENOTEMPTY) 8539 e.error = EEXIST; 8540 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8541 needrecov); 8542 goto out; 8543 } 8544 8545 /* rename results */ 8546 rn_res = &res.array[5].nfs_resop4_u.oprename; 8547 8548 if (res.status == NFS4_OK) { 8549 /* Update target attribute, readdir and dnlc caches */ 8550 dinfo.di_garp = 8551 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8552 dinfo.di_cred = cr; 8553 dinfo.di_time_call = t; 8554 } else 8555 dinfop = NULL; 8556 8557 /* Update source cache attribute, readdir and dnlc caches */ 8558 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8559 8560 /* Update source cache attribute, readdir and dnlc caches */ 8561 if (ndvp != odvp) { 8562 update_parentdir_sfh(ovp, ndvp); 8563 8564 /* 8565 * If dinfop is non-NULL, then compound succeded, so 8566 * set di_garp to attrs for source dir. dinfop is only 8567 * set to NULL when compound fails. 8568 */ 8569 if (dinfop) 8570 dinfo.di_garp = 8571 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8572 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8573 dinfop); 8574 } 8575 8576 /* 8577 * Update the rnode with the new component name and args, 8578 * and if the file handle changed, also update it with the new fh. 8579 * This is only necessary if the target object has an rnode 8580 * entry and there is no need to create one for it. 8581 */ 8582 resop = &res.array[8]; /* getfh new res */ 8583 ngf_res = &resop->nfs_resop4_u.opgetfh; 8584 8585 /* 8586 * Update the path and filehandle for the renamed object. 8587 */ 8588 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8589 8590 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8591 8592 if (res.status == NFS4_OK) { 8593 resop++; /* getattr res */ 8594 e.error = nfs4_update_attrcache(res.status, 8595 &resop->nfs_resop4_u.opgetattr.ga_res, 8596 t, ovp, cr); 8597 } 8598 8599 out: 8600 kmem_free(argop, argoplist_size); 8601 if (resp) 8602 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8603 mutex_enter(&orp->r_statelock); 8604 orp->r_flags &= ~R4RECEXPFH; 8605 cv_broadcast(&orp->r_cv); 8606 mutex_exit(&orp->r_statelock); 8607 8608 return (e.error); 8609 } 8610 8611 /* ARGSUSED */ 8612 static int 8613 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8614 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8615 { 8616 int error; 8617 vnode_t *vp; 8618 8619 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8620 return (EPERM); 8621 /* 8622 * As ".." has special meaning and rather than send a mkdir 8623 * over the wire to just let the server freak out, we just 8624 * short circuit it here and return EEXIST 8625 */ 8626 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8627 return (EEXIST); 8628 8629 /* 8630 * Decision to get the right gid and setgid bit of the 8631 * new directory is now made in call_nfs4_create_req. 8632 */ 8633 va->va_mask |= AT_MODE; 8634 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8635 if (error) 8636 return (error); 8637 8638 *vpp = vp; 8639 return (0); 8640 } 8641 8642 8643 /* 8644 * rmdir is using the same remove v4 op as does remove. 8645 * Remove requires that the current fh be the target directory. 8646 * After the operation, the current fh is unchanged. 8647 * The compound op structure is: 8648 * PUTFH(targetdir), REMOVE 8649 */ 8650 /*ARGSUSED4*/ 8651 static int 8652 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8653 caller_context_t *ct, int flags) 8654 { 8655 int need_end_op = FALSE; 8656 COMPOUND4args_clnt args; 8657 COMPOUND4res_clnt res, *resp = NULL; 8658 REMOVE4res *rm_res; 8659 nfs_argop4 argop[3]; 8660 nfs_resop4 *resop; 8661 vnode_t *vp; 8662 int doqueue; 8663 mntinfo4_t *mi; 8664 rnode4_t *drp; 8665 bool_t needrecov = FALSE; 8666 nfs4_recov_state_t recov_state; 8667 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8668 dirattr_info_t dinfo, *dinfop; 8669 8670 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8671 return (EPERM); 8672 /* 8673 * As ".." has special meaning and rather than send a rmdir 8674 * over the wire to just let the server freak out, we just 8675 * short circuit it here and return EEXIST 8676 */ 8677 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8678 return (EEXIST); 8679 8680 drp = VTOR4(dvp); 8681 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8682 return (EINTR); 8683 8684 /* 8685 * Attempt to prevent a rmdir(".") from succeeding. 8686 */ 8687 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8688 if (e.error) { 8689 nfs_rw_exit(&drp->r_rwlock); 8690 return (e.error); 8691 } 8692 if (vp == cdir) { 8693 VN_RELE(vp); 8694 nfs_rw_exit(&drp->r_rwlock); 8695 return (EINVAL); 8696 } 8697 8698 /* 8699 * Since nfsv4 remove op works on both files and directories, 8700 * check that the removed object is indeed a directory. 8701 */ 8702 if (vp->v_type != VDIR) { 8703 VN_RELE(vp); 8704 nfs_rw_exit(&drp->r_rwlock); 8705 return (ENOTDIR); 8706 } 8707 8708 /* 8709 * First just remove the entry from the name cache, as it 8710 * is most likely an entry for this vp. 8711 */ 8712 dnlc_remove(dvp, nm); 8713 8714 /* 8715 * If there vnode reference count is greater than one, then 8716 * there may be additional references in the DNLC which will 8717 * need to be purged. First, trying removing the entry for 8718 * the parent directory and see if that removes the additional 8719 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8720 * to completely remove any references to the directory which 8721 * might still exist in the DNLC. 8722 */ 8723 if (vp->v_count > 1) { 8724 dnlc_remove(vp, ".."); 8725 if (vp->v_count > 1) 8726 dnlc_purge_vp(vp); 8727 } 8728 8729 mi = VTOMI4(dvp); 8730 recov_state.rs_flags = 0; 8731 recov_state.rs_num_retry_despite_err = 0; 8732 8733 recov_retry: 8734 args.ctag = TAG_RMDIR; 8735 8736 /* 8737 * Rmdir ops: putfh dir; remove 8738 */ 8739 args.array_len = 3; 8740 args.array = argop; 8741 8742 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8743 if (e.error) { 8744 nfs_rw_exit(&drp->r_rwlock); 8745 return (e.error); 8746 } 8747 need_end_op = TRUE; 8748 8749 /* putfh directory */ 8750 argop[0].argop = OP_CPUTFH; 8751 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8752 8753 /* remove */ 8754 argop[1].argop = OP_CREMOVE; 8755 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8756 8757 /* getattr (postop attrs for dir that contained removed dir) */ 8758 argop[2].argop = OP_GETATTR; 8759 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8760 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8761 8762 dinfo.di_time_call = gethrtime(); 8763 doqueue = 1; 8764 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8765 8766 PURGE_ATTRCACHE4(vp); 8767 8768 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8769 if (e.error) { 8770 PURGE_ATTRCACHE4(dvp); 8771 } 8772 8773 if (needrecov) { 8774 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8775 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 8776 if (!e.error) 8777 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 8778 8779 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8780 needrecov); 8781 need_end_op = FALSE; 8782 goto recov_retry; 8783 } 8784 } 8785 8786 if (!e.error) { 8787 resp = &res; 8788 8789 /* 8790 * Only return error if first 2 ops (OP_REMOVE or earlier) 8791 * failed. 8792 */ 8793 if (res.status != NFS4_OK && res.array_len <= 2) { 8794 e.error = geterrno4(res.status); 8795 PURGE_ATTRCACHE4(dvp); 8796 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8797 &recov_state, needrecov); 8798 need_end_op = FALSE; 8799 nfs4_purge_stale_fh(e.error, dvp, cr); 8800 /* 8801 * System V defines rmdir to return EEXIST, not 8802 * ENOTEMPTY if the directory is not empty. Over 8803 * the wire, the error is NFSERR_ENOTEMPTY which 8804 * geterrno4 maps to ENOTEMPTY. 8805 */ 8806 if (e.error == ENOTEMPTY) 8807 e.error = EEXIST; 8808 } else { 8809 resop = &res.array[1]; /* remove res */ 8810 rm_res = &resop->nfs_resop4_u.opremove; 8811 8812 if (res.status == NFS4_OK) { 8813 resop = &res.array[2]; /* dir attrs */ 8814 dinfo.di_garp = 8815 &resop->nfs_resop4_u.opgetattr.ga_res; 8816 dinfo.di_cred = cr; 8817 dinfop = &dinfo; 8818 } else 8819 dinfop = NULL; 8820 8821 /* Update dir attribute, readdir and dnlc caches */ 8822 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8823 dinfop); 8824 8825 /* destroy rddir cache for dir that was removed */ 8826 if (VTOR4(vp)->r_dir != NULL) 8827 nfs4_purge_rddir_cache(vp); 8828 } 8829 } 8830 8831 if (need_end_op) 8832 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8833 8834 nfs_rw_exit(&drp->r_rwlock); 8835 8836 if (resp) 8837 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8838 8839 if (e.error == 0) { 8840 vnode_t *tvp; 8841 rnode4_t *trp; 8842 trp = VTOR4(vp); 8843 tvp = vp; 8844 if (IS_SHADOW(vp, trp)) 8845 tvp = RTOV4(trp); 8846 vnevent_rmdir(tvp, dvp, nm, ct); 8847 } 8848 8849 VN_RELE(vp); 8850 8851 return (e.error); 8852 } 8853 8854 /* ARGSUSED */ 8855 static int 8856 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8857 caller_context_t *ct, int flags) 8858 { 8859 int error; 8860 vnode_t *vp; 8861 rnode4_t *rp; 8862 char *contents; 8863 mntinfo4_t *mi = VTOMI4(dvp); 8864 8865 if (nfs_zone() != mi->mi_zone) 8866 return (EPERM); 8867 if (!(mi->mi_flags & MI4_SYMLINK)) 8868 return (EOPNOTSUPP); 8869 8870 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8871 if (error) 8872 return (error); 8873 8874 ASSERT(nfs4_consistent_type(vp)); 8875 rp = VTOR4(vp); 8876 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8877 8878 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8879 8880 if (contents != NULL) { 8881 mutex_enter(&rp->r_statelock); 8882 if (rp->r_symlink.contents == NULL) { 8883 rp->r_symlink.len = strlen(tnm); 8884 bcopy(tnm, contents, rp->r_symlink.len); 8885 rp->r_symlink.contents = contents; 8886 rp->r_symlink.size = MAXPATHLEN; 8887 mutex_exit(&rp->r_statelock); 8888 } else { 8889 mutex_exit(&rp->r_statelock); 8890 kmem_free((void *)contents, MAXPATHLEN); 8891 } 8892 } 8893 } 8894 VN_RELE(vp); 8895 8896 return (error); 8897 } 8898 8899 8900 /* 8901 * Read directory entries. 8902 * There are some weird things to look out for here. The uio_loffset 8903 * field is either 0 or it is the offset returned from a previous 8904 * readdir. It is an opaque value used by the server to find the 8905 * correct directory block to read. The count field is the number 8906 * of blocks to read on the server. This is advisory only, the server 8907 * may return only one block's worth of entries. Entries may be compressed 8908 * on the server. 8909 */ 8910 /* ARGSUSED */ 8911 static int 8912 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8913 caller_context_t *ct, int flags) 8914 { 8915 int error; 8916 uint_t count; 8917 rnode4_t *rp; 8918 rddir4_cache *rdc; 8919 rddir4_cache *rrdc; 8920 8921 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8922 return (EIO); 8923 rp = VTOR4(vp); 8924 8925 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8926 8927 /* 8928 * Make sure that the directory cache is valid. 8929 */ 8930 if (rp->r_dir != NULL) { 8931 if (nfs_disable_rddir_cache != 0) { 8932 /* 8933 * Setting nfs_disable_rddir_cache in /etc/system 8934 * allows interoperability with servers that do not 8935 * properly update the attributes of directories. 8936 * Any cached information gets purged before an 8937 * access is made to it. 8938 */ 8939 nfs4_purge_rddir_cache(vp); 8940 } 8941 8942 error = nfs4_validate_caches(vp, cr); 8943 if (error) 8944 return (error); 8945 } 8946 8947 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8948 8949 /* 8950 * Short circuit last readdir which always returns 0 bytes. 8951 * This can be done after the directory has been read through 8952 * completely at least once. This will set r_direof which 8953 * can be used to find the value of the last cookie. 8954 */ 8955 mutex_enter(&rp->r_statelock); 8956 if (rp->r_direof != NULL && 8957 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8958 mutex_exit(&rp->r_statelock); 8959 #ifdef DEBUG 8960 nfs4_readdir_cache_shorts++; 8961 #endif 8962 if (eofp) 8963 *eofp = 1; 8964 return (0); 8965 } 8966 8967 /* 8968 * Look for a cache entry. Cache entries are identified 8969 * by the NFS cookie value and the byte count requested. 8970 */ 8971 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8972 8973 /* 8974 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8975 */ 8976 if (rdc == NULL) { 8977 mutex_exit(&rp->r_statelock); 8978 return (EINTR); 8979 } 8980 8981 /* 8982 * Check to see if we need to fill this entry in. 8983 */ 8984 if (rdc->flags & RDDIRREQ) { 8985 rdc->flags &= ~RDDIRREQ; 8986 rdc->flags |= RDDIR; 8987 mutex_exit(&rp->r_statelock); 8988 8989 /* 8990 * Do the readdir. 8991 */ 8992 nfs4readdir(vp, rdc, cr); 8993 8994 /* 8995 * Reacquire the lock, so that we can continue 8996 */ 8997 mutex_enter(&rp->r_statelock); 8998 /* 8999 * The entry is now complete 9000 */ 9001 rdc->flags &= ~RDDIR; 9002 } 9003 9004 ASSERT(!(rdc->flags & RDDIR)); 9005 9006 /* 9007 * If an error occurred while attempting 9008 * to fill the cache entry, mark the entry invalid and 9009 * just return the error. 9010 */ 9011 if (rdc->error) { 9012 error = rdc->error; 9013 rdc->flags |= RDDIRREQ; 9014 rddir4_cache_rele(rp, rdc); 9015 mutex_exit(&rp->r_statelock); 9016 return (error); 9017 } 9018 9019 /* 9020 * The cache entry is complete and good, 9021 * copyout the dirent structs to the calling 9022 * thread. 9023 */ 9024 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 9025 9026 /* 9027 * If no error occurred during the copyout, 9028 * update the offset in the uio struct to 9029 * contain the value of the next NFS 4 cookie 9030 * and set the eof value appropriately. 9031 */ 9032 if (!error) { 9033 uiop->uio_loffset = rdc->nfs4_ncookie; 9034 if (eofp) 9035 *eofp = rdc->eof; 9036 } 9037 9038 /* 9039 * Decide whether to do readahead. Don't if we 9040 * have already read to the end of directory. 9041 */ 9042 if (rdc->eof) { 9043 /* 9044 * Make the entry the direof only if it is cached 9045 */ 9046 if (rdc->flags & RDDIRCACHED) 9047 rp->r_direof = rdc; 9048 rddir4_cache_rele(rp, rdc); 9049 mutex_exit(&rp->r_statelock); 9050 return (error); 9051 } 9052 9053 /* Determine if a readdir readahead should be done */ 9054 if (!(rp->r_flags & R4LOOKUP)) { 9055 rddir4_cache_rele(rp, rdc); 9056 mutex_exit(&rp->r_statelock); 9057 return (error); 9058 } 9059 9060 /* 9061 * Now look for a readahead entry. 9062 * 9063 * Check to see whether we found an entry for the readahead. 9064 * If so, we don't need to do anything further, so free the new 9065 * entry if one was allocated. Otherwise, allocate a new entry, add 9066 * it to the cache, and then initiate an asynchronous readdir 9067 * operation to fill it. 9068 */ 9069 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 9070 9071 /* 9072 * A readdir cache entry could not be obtained for the readahead. In 9073 * this case we skip the readahead and return. 9074 */ 9075 if (rrdc == NULL) { 9076 rddir4_cache_rele(rp, rdc); 9077 mutex_exit(&rp->r_statelock); 9078 return (error); 9079 } 9080 9081 /* 9082 * Check to see if we need to fill this entry in. 9083 */ 9084 if (rrdc->flags & RDDIRREQ) { 9085 rrdc->flags &= ~RDDIRREQ; 9086 rrdc->flags |= RDDIR; 9087 rddir4_cache_rele(rp, rdc); 9088 mutex_exit(&rp->r_statelock); 9089 #ifdef DEBUG 9090 nfs4_readdir_readahead++; 9091 #endif 9092 /* 9093 * Do the readdir. 9094 */ 9095 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 9096 return (error); 9097 } 9098 9099 rddir4_cache_rele(rp, rrdc); 9100 rddir4_cache_rele(rp, rdc); 9101 mutex_exit(&rp->r_statelock); 9102 return (error); 9103 } 9104 9105 static int 9106 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9107 { 9108 int error; 9109 rnode4_t *rp; 9110 9111 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9112 9113 rp = VTOR4(vp); 9114 9115 /* 9116 * Obtain the readdir results for the caller. 9117 */ 9118 nfs4readdir(vp, rdc, cr); 9119 9120 mutex_enter(&rp->r_statelock); 9121 /* 9122 * The entry is now complete 9123 */ 9124 rdc->flags &= ~RDDIR; 9125 9126 error = rdc->error; 9127 if (error) 9128 rdc->flags |= RDDIRREQ; 9129 rddir4_cache_rele(rp, rdc); 9130 mutex_exit(&rp->r_statelock); 9131 9132 return (error); 9133 } 9134 9135 /* 9136 * Read directory entries. 9137 * There are some weird things to look out for here. The uio_loffset 9138 * field is either 0 or it is the offset returned from a previous 9139 * readdir. It is an opaque value used by the server to find the 9140 * correct directory block to read. The count field is the number 9141 * of blocks to read on the server. This is advisory only, the server 9142 * may return only one block's worth of entries. Entries may be compressed 9143 * on the server. 9144 * 9145 * Generates the following compound request: 9146 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9147 * must include a Lookupp as well. In this case, send: 9148 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9149 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9150 * 9151 * Get complete attributes and filehandles for entries if this is the 9152 * first read of the directory. Otherwise, just get fileid's. 9153 */ 9154 static void 9155 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9156 { 9157 COMPOUND4args_clnt args; 9158 COMPOUND4res_clnt res; 9159 READDIR4args *rargs; 9160 READDIR4res_clnt *rd_res; 9161 bitmap4 rd_bitsval; 9162 nfs_argop4 argop[5]; 9163 nfs_resop4 *resop; 9164 rnode4_t *rp = VTOR4(vp); 9165 mntinfo4_t *mi = VTOMI4(vp); 9166 int doqueue; 9167 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9168 vnode_t *dvp; 9169 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9170 int num_ops, res_opcnt; 9171 bool_t needrecov = FALSE; 9172 nfs4_recov_state_t recov_state; 9173 hrtime_t t; 9174 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9175 9176 ASSERT(nfs_zone() == mi->mi_zone); 9177 ASSERT(rdc->flags & RDDIR); 9178 ASSERT(rdc->entries == NULL); 9179 9180 /* 9181 * If rp were a stub, it should have triggered and caused 9182 * a mount for us to get this far. 9183 */ 9184 ASSERT(!RP_ISSTUB(rp)); 9185 9186 num_ops = 2; 9187 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9188 /* 9189 * Since nfsv4 readdir may not return entries for "." and "..", 9190 * the client must recreate them: 9191 * To find the correct nodeid, do the following: 9192 * For current node, get nodeid from dnlc. 9193 * - if current node is rootvp, set pnodeid to nodeid. 9194 * - else if parent is in the dnlc, get its nodeid from there. 9195 * - else add LOOKUPP+GETATTR to compound. 9196 */ 9197 nodeid = rp->r_attr.va_nodeid; 9198 if (vp->v_flag & VROOT) { 9199 pnodeid = nodeid; /* root of mount point */ 9200 } else { 9201 dvp = dnlc_lookup(vp, ".."); 9202 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9203 /* parent in dnlc cache - no need for otw */ 9204 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9205 } else { 9206 /* 9207 * parent not in dnlc cache, 9208 * do lookupp to get its id 9209 */ 9210 num_ops = 5; 9211 pnodeid = 0; /* set later by getattr parent */ 9212 } 9213 if (dvp) 9214 VN_RELE(dvp); 9215 } 9216 } 9217 recov_state.rs_flags = 0; 9218 recov_state.rs_num_retry_despite_err = 0; 9219 9220 /* Save the original mount point security flavor */ 9221 (void) save_mnt_secinfo(mi->mi_curr_serv); 9222 9223 recov_retry: 9224 args.ctag = TAG_READDIR; 9225 9226 args.array = argop; 9227 args.array_len = num_ops; 9228 9229 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9230 &recov_state, NULL)) { 9231 /* 9232 * If readdir a node that is a stub for a crossed mount point, 9233 * keep the original secinfo flavor for the current file 9234 * system, not the crossed one. 9235 */ 9236 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9237 rdc->error = e.error; 9238 return; 9239 } 9240 9241 /* 9242 * Determine which attrs to request for dirents. This code 9243 * must be protected by nfs4_start/end_fop because of r_server 9244 * (which will change during failover recovery). 9245 * 9246 */ 9247 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9248 /* 9249 * Get all vattr attrs plus filehandle and rdattr_error 9250 */ 9251 rd_bitsval = NFS4_VATTR_MASK | 9252 FATTR4_RDATTR_ERROR_MASK | 9253 FATTR4_FILEHANDLE_MASK; 9254 9255 if (rp->r_flags & R4READDIRWATTR) { 9256 mutex_enter(&rp->r_statelock); 9257 rp->r_flags &= ~R4READDIRWATTR; 9258 mutex_exit(&rp->r_statelock); 9259 } 9260 } else { 9261 servinfo4_t *svp = rp->r_server; 9262 9263 /* 9264 * Already read directory. Use readdir with 9265 * no attrs (except for mounted_on_fileid) for updates. 9266 */ 9267 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9268 9269 /* 9270 * request mounted on fileid if supported, else request 9271 * fileid. maybe we should verify that fileid is supported 9272 * and request something else if not. 9273 */ 9274 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9275 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9276 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9277 nfs_rw_exit(&svp->sv_lock); 9278 } 9279 9280 /* putfh directory fh */ 9281 argop[0].argop = OP_CPUTFH; 9282 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9283 9284 argop[1].argop = OP_READDIR; 9285 rargs = &argop[1].nfs_argop4_u.opreaddir; 9286 /* 9287 * 1 and 2 are reserved for client "." and ".." entry offset. 9288 * cookie 0 should be used over-the-wire to start reading at 9289 * the beginning of the directory excluding "." and "..". 9290 */ 9291 if (rdc->nfs4_cookie == 0 || 9292 rdc->nfs4_cookie == 1 || 9293 rdc->nfs4_cookie == 2) { 9294 rargs->cookie = (nfs_cookie4)0; 9295 rargs->cookieverf = 0; 9296 } else { 9297 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9298 mutex_enter(&rp->r_statelock); 9299 rargs->cookieverf = rp->r_cookieverf4; 9300 mutex_exit(&rp->r_statelock); 9301 } 9302 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9303 rargs->maxcount = mi->mi_tsize; 9304 rargs->attr_request = rd_bitsval; 9305 rargs->rdc = rdc; 9306 rargs->dvp = vp; 9307 rargs->mi = mi; 9308 rargs->cr = cr; 9309 9310 9311 /* 9312 * If count < than the minimum required, we return no entries 9313 * and fail with EINVAL 9314 */ 9315 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9316 rdc->error = EINVAL; 9317 goto out; 9318 } 9319 9320 if (args.array_len == 5) { 9321 /* 9322 * Add lookupp and getattr for parent nodeid. 9323 */ 9324 argop[2].argop = OP_LOOKUPP; 9325 9326 argop[3].argop = OP_GETFH; 9327 9328 /* getattr parent */ 9329 argop[4].argop = OP_GETATTR; 9330 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9331 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9332 } 9333 9334 doqueue = 1; 9335 9336 if (mi->mi_io_kstats) { 9337 mutex_enter(&mi->mi_lock); 9338 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9339 mutex_exit(&mi->mi_lock); 9340 } 9341 9342 /* capture the time of this call */ 9343 rargs->t = t = gethrtime(); 9344 9345 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9346 9347 if (mi->mi_io_kstats) { 9348 mutex_enter(&mi->mi_lock); 9349 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9350 mutex_exit(&mi->mi_lock); 9351 } 9352 9353 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9354 9355 /* 9356 * If RPC error occurred and it isn't an error that 9357 * triggers recovery, then go ahead and fail now. 9358 */ 9359 if (e.error != 0 && !needrecov) { 9360 rdc->error = e.error; 9361 goto out; 9362 } 9363 9364 if (needrecov) { 9365 bool_t abort; 9366 9367 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9368 "nfs4readdir: initiating recovery.\n")); 9369 9370 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9371 NULL, OP_READDIR, NULL, NULL, NULL); 9372 if (abort == FALSE) { 9373 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9374 &recov_state, needrecov); 9375 if (!e.error) 9376 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9377 if (rdc->entries != NULL) { 9378 kmem_free(rdc->entries, rdc->entlen); 9379 rdc->entries = NULL; 9380 } 9381 goto recov_retry; 9382 } 9383 9384 if (e.error != 0) { 9385 rdc->error = e.error; 9386 goto out; 9387 } 9388 9389 /* fall through for res.status case */ 9390 } 9391 9392 res_opcnt = res.array_len; 9393 9394 /* 9395 * If compound failed first 2 ops (PUTFH+READDIR), then return 9396 * failure here. Subsequent ops are for filling out dot-dot 9397 * dirent, and if they fail, we still want to give the caller 9398 * the dirents returned by (the successful) READDIR op, so we need 9399 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9400 * 9401 * One example where PUTFH+READDIR ops would succeed but 9402 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9403 * but lacks x. In this case, a POSIX server's VOP_READDIR 9404 * would succeed; however, VOP_LOOKUP(..) would fail since no 9405 * x perm. We need to come up with a non-vendor-specific way 9406 * for a POSIX server to return d_ino from dotdot's dirent if 9407 * client only requests mounted_on_fileid, and just say the 9408 * LOOKUPP succeeded and fill out the GETATTR. However, if 9409 * client requested any mandatory attrs, server would be required 9410 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9411 * for dotdot. 9412 */ 9413 9414 if (res.status) { 9415 if (res_opcnt <= 2) { 9416 e.error = geterrno4(res.status); 9417 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9418 &recov_state, needrecov); 9419 nfs4_purge_stale_fh(e.error, vp, cr); 9420 rdc->error = e.error; 9421 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9422 if (rdc->entries != NULL) { 9423 kmem_free(rdc->entries, rdc->entlen); 9424 rdc->entries = NULL; 9425 } 9426 /* 9427 * If readdir a node that is a stub for a 9428 * crossed mount point, keep the original 9429 * secinfo flavor for the current file system, 9430 * not the crossed one. 9431 */ 9432 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9433 return; 9434 } 9435 } 9436 9437 resop = &res.array[1]; /* readdir res */ 9438 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9439 9440 mutex_enter(&rp->r_statelock); 9441 rp->r_cookieverf4 = rd_res->cookieverf; 9442 mutex_exit(&rp->r_statelock); 9443 9444 /* 9445 * For "." and ".." entries 9446 * e.g. 9447 * seek(cookie=0) -> "." entry with d_off = 1 9448 * seek(cookie=1) -> ".." entry with d_off = 2 9449 */ 9450 if (cookie == (nfs_cookie4) 0) { 9451 if (rd_res->dotp) 9452 rd_res->dotp->d_ino = nodeid; 9453 if (rd_res->dotdotp) 9454 rd_res->dotdotp->d_ino = pnodeid; 9455 } 9456 if (cookie == (nfs_cookie4) 1) { 9457 if (rd_res->dotdotp) 9458 rd_res->dotdotp->d_ino = pnodeid; 9459 } 9460 9461 9462 /* LOOKUPP+GETATTR attemped */ 9463 if (args.array_len == 5 && rd_res->dotdotp) { 9464 if (res.status == NFS4_OK && res_opcnt == 5) { 9465 nfs_fh4 *fhp; 9466 nfs4_sharedfh_t *sfhp; 9467 vnode_t *pvp; 9468 nfs4_ga_res_t *garp; 9469 9470 resop++; /* lookupp */ 9471 resop++; /* getfh */ 9472 fhp = &resop->nfs_resop4_u.opgetfh.object; 9473 9474 resop++; /* getattr of parent */ 9475 9476 /* 9477 * First, take care of finishing the 9478 * readdir results. 9479 */ 9480 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9481 /* 9482 * The d_ino of .. must be the inode number 9483 * of the mounted filesystem. 9484 */ 9485 if (garp->n4g_va.va_mask & AT_NODEID) 9486 rd_res->dotdotp->d_ino = 9487 garp->n4g_va.va_nodeid; 9488 9489 9490 /* 9491 * Next, create the ".." dnlc entry 9492 */ 9493 sfhp = sfh4_get(fhp, mi); 9494 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9495 dnlc_update(vp, "..", pvp); 9496 VN_RELE(pvp); 9497 } 9498 sfh4_rele(&sfhp); 9499 } 9500 } 9501 9502 if (mi->mi_io_kstats) { 9503 mutex_enter(&mi->mi_lock); 9504 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9505 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9506 mutex_exit(&mi->mi_lock); 9507 } 9508 9509 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9510 9511 out: 9512 /* 9513 * If readdir a node that is a stub for a crossed mount point, 9514 * keep the original secinfo flavor for the current file system, 9515 * not the crossed one. 9516 */ 9517 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9518 9519 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9520 } 9521 9522 9523 static int 9524 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9525 { 9526 rnode4_t *rp = VTOR4(bp->b_vp); 9527 int count; 9528 int error; 9529 cred_t *cred_otw = NULL; 9530 offset_t offset; 9531 nfs4_open_stream_t *osp = NULL; 9532 bool_t first_time = TRUE; /* first time getting otw cred */ 9533 bool_t last_time = FALSE; /* last time getting otw cred */ 9534 9535 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9536 9537 DTRACE_IO1(start, struct buf *, bp); 9538 offset = ldbtob(bp->b_lblkno); 9539 9540 if (bp->b_flags & B_READ) { 9541 read_again: 9542 /* 9543 * Releases the osp, if it is provided. 9544 * Puts a hold on the cred_otw and the new osp (if found). 9545 */ 9546 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9547 &first_time, &last_time); 9548 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9549 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9550 readahead, NULL); 9551 crfree(cred_otw); 9552 if (!error) { 9553 if (bp->b_resid) { 9554 /* 9555 * Didn't get it all because we hit EOF, 9556 * zero all the memory beyond the EOF. 9557 */ 9558 /* bzero(rdaddr + */ 9559 bzero(bp->b_un.b_addr + 9560 bp->b_bcount - bp->b_resid, bp->b_resid); 9561 } 9562 mutex_enter(&rp->r_statelock); 9563 if (bp->b_resid == bp->b_bcount && 9564 offset >= rp->r_size) { 9565 /* 9566 * We didn't read anything at all as we are 9567 * past EOF. Return an error indicator back 9568 * but don't destroy the pages (yet). 9569 */ 9570 error = NFS_EOF; 9571 } 9572 mutex_exit(&rp->r_statelock); 9573 } else if (error == EACCES && last_time == FALSE) { 9574 goto read_again; 9575 } 9576 } else { 9577 if (!(rp->r_flags & R4STALE)) { 9578 write_again: 9579 /* 9580 * Releases the osp, if it is provided. 9581 * Puts a hold on the cred_otw and the new 9582 * osp (if found). 9583 */ 9584 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9585 &first_time, &last_time); 9586 mutex_enter(&rp->r_statelock); 9587 count = MIN(bp->b_bcount, rp->r_size - offset); 9588 mutex_exit(&rp->r_statelock); 9589 if (count < 0) 9590 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9591 #ifdef DEBUG 9592 if (count == 0) { 9593 zoneid_t zoneid = getzoneid(); 9594 9595 zcmn_err(zoneid, CE_WARN, 9596 "nfs4_bio: zero length write at %lld", 9597 offset); 9598 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9599 "b_bcount=%ld, file size=%lld", 9600 rp->r_flags, (long)bp->b_bcount, 9601 rp->r_size); 9602 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9603 if (nfs4_bio_do_stop) 9604 debug_enter("nfs4_bio"); 9605 } 9606 #endif 9607 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9608 count, cred_otw, stab_comm); 9609 if (error == EACCES && last_time == FALSE) { 9610 crfree(cred_otw); 9611 goto write_again; 9612 } 9613 bp->b_error = error; 9614 if (error && error != EINTR && 9615 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9616 /* 9617 * Don't print EDQUOT errors on the console. 9618 * Don't print asynchronous EACCES errors. 9619 * Don't print EFBIG errors. 9620 * Print all other write errors. 9621 */ 9622 if (error != EDQUOT && error != EFBIG && 9623 (error != EACCES || 9624 !(bp->b_flags & B_ASYNC))) 9625 nfs4_write_error(bp->b_vp, 9626 error, cred_otw); 9627 /* 9628 * Update r_error and r_flags as appropriate. 9629 * If the error was ESTALE, then mark the 9630 * rnode as not being writeable and save 9631 * the error status. Otherwise, save any 9632 * errors which occur from asynchronous 9633 * page invalidations. Any errors occurring 9634 * from other operations should be saved 9635 * by the caller. 9636 */ 9637 mutex_enter(&rp->r_statelock); 9638 if (error == ESTALE) { 9639 rp->r_flags |= R4STALE; 9640 if (!rp->r_error) 9641 rp->r_error = error; 9642 } else if (!rp->r_error && 9643 (bp->b_flags & 9644 (B_INVAL|B_FORCE|B_ASYNC)) == 9645 (B_INVAL|B_FORCE|B_ASYNC)) { 9646 rp->r_error = error; 9647 } 9648 mutex_exit(&rp->r_statelock); 9649 } 9650 crfree(cred_otw); 9651 } else { 9652 error = rp->r_error; 9653 /* 9654 * A close may have cleared r_error, if so, 9655 * propagate ESTALE error return properly 9656 */ 9657 if (error == 0) 9658 error = ESTALE; 9659 } 9660 } 9661 9662 if (error != 0 && error != NFS_EOF) 9663 bp->b_flags |= B_ERROR; 9664 9665 if (osp) 9666 open_stream_rele(osp, rp); 9667 9668 DTRACE_IO1(done, struct buf *, bp); 9669 9670 return (error); 9671 } 9672 9673 /* ARGSUSED */ 9674 int 9675 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9676 { 9677 return (EREMOTE); 9678 } 9679 9680 /* ARGSUSED2 */ 9681 int 9682 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9683 { 9684 rnode4_t *rp = VTOR4(vp); 9685 9686 if (!write_lock) { 9687 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9688 return (V_WRITELOCK_FALSE); 9689 } 9690 9691 if ((rp->r_flags & R4DIRECTIO) || 9692 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9693 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9694 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9695 return (V_WRITELOCK_FALSE); 9696 nfs_rw_exit(&rp->r_rwlock); 9697 } 9698 9699 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9700 return (V_WRITELOCK_TRUE); 9701 } 9702 9703 /* ARGSUSED */ 9704 void 9705 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9706 { 9707 rnode4_t *rp = VTOR4(vp); 9708 9709 nfs_rw_exit(&rp->r_rwlock); 9710 } 9711 9712 /* ARGSUSED */ 9713 static int 9714 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9715 { 9716 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9717 return (EIO); 9718 9719 /* 9720 * Because we stuff the readdir cookie into the offset field 9721 * someone may attempt to do an lseek with the cookie which 9722 * we want to succeed. 9723 */ 9724 if (vp->v_type == VDIR) 9725 return (0); 9726 if (*noffp < 0) 9727 return (EINVAL); 9728 return (0); 9729 } 9730 9731 9732 /* 9733 * Return all the pages from [off..off+len) in file 9734 */ 9735 /* ARGSUSED */ 9736 static int 9737 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9738 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9739 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9740 { 9741 rnode4_t *rp; 9742 int error; 9743 mntinfo4_t *mi; 9744 9745 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9746 return (EIO); 9747 rp = VTOR4(vp); 9748 if (IS_SHADOW(vp, rp)) 9749 vp = RTOV4(rp); 9750 9751 if (vp->v_flag & VNOMAP) 9752 return (ENOSYS); 9753 9754 if (protp != NULL) 9755 *protp = PROT_ALL; 9756 9757 /* 9758 * Now validate that the caches are up to date. 9759 */ 9760 if (error = nfs4_validate_caches(vp, cr)) 9761 return (error); 9762 9763 mi = VTOMI4(vp); 9764 retry: 9765 mutex_enter(&rp->r_statelock); 9766 9767 /* 9768 * Don't create dirty pages faster than they 9769 * can be cleaned so that the system doesn't 9770 * get imbalanced. If the async queue is 9771 * maxed out, then wait for it to drain before 9772 * creating more dirty pages. Also, wait for 9773 * any threads doing pagewalks in the vop_getattr 9774 * entry points so that they don't block for 9775 * long periods. 9776 */ 9777 if (rw == S_CREATE) { 9778 while ((mi->mi_max_threads != 0 && 9779 rp->r_awcount > 2 * mi->mi_max_threads) || 9780 rp->r_gcount > 0) 9781 cv_wait(&rp->r_cv, &rp->r_statelock); 9782 } 9783 9784 /* 9785 * If we are getting called as a side effect of an nfs_write() 9786 * operation the local file size might not be extended yet. 9787 * In this case we want to be able to return pages of zeroes. 9788 */ 9789 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9790 NFS4_DEBUG(nfs4_pageio_debug, 9791 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9792 "len=%llu, size=%llu, attrsize =%llu", off, 9793 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9794 mutex_exit(&rp->r_statelock); 9795 return (EFAULT); /* beyond EOF */ 9796 } 9797 9798 mutex_exit(&rp->r_statelock); 9799 9800 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9801 pl, plsz, seg, addr, rw, cr); 9802 NFS4_DEBUG(nfs4_pageio_debug && error, 9803 (CE_NOTE, "getpages error %d; off=%lld, len=%lld", 9804 error, off, (u_longlong_t)len)); 9805 9806 switch (error) { 9807 case NFS_EOF: 9808 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9809 goto retry; 9810 case ESTALE: 9811 nfs4_purge_stale_fh(error, vp, cr); 9812 } 9813 9814 return (error); 9815 } 9816 9817 /* 9818 * Called from pvn_getpages to get a particular page. 9819 */ 9820 /* ARGSUSED */ 9821 static int 9822 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9823 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9824 enum seg_rw rw, cred_t *cr) 9825 { 9826 rnode4_t *rp; 9827 uint_t bsize; 9828 struct buf *bp; 9829 page_t *pp; 9830 u_offset_t lbn; 9831 u_offset_t io_off; 9832 u_offset_t blkoff; 9833 u_offset_t rablkoff; 9834 size_t io_len; 9835 uint_t blksize; 9836 int error; 9837 int readahead; 9838 int readahead_issued = 0; 9839 int ra_window; /* readahead window */ 9840 page_t *pagefound; 9841 page_t *savepp; 9842 9843 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9844 return (EIO); 9845 9846 rp = VTOR4(vp); 9847 ASSERT(!IS_SHADOW(vp, rp)); 9848 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9849 9850 reread: 9851 bp = NULL; 9852 pp = NULL; 9853 pagefound = NULL; 9854 9855 if (pl != NULL) 9856 pl[0] = NULL; 9857 9858 error = 0; 9859 lbn = off / bsize; 9860 blkoff = lbn * bsize; 9861 9862 /* 9863 * Queueing up the readahead before doing the synchronous read 9864 * results in a significant increase in read throughput because 9865 * of the increased parallelism between the async threads and 9866 * the process context. 9867 */ 9868 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9869 rw != S_CREATE && 9870 !(vp->v_flag & VNOCACHE)) { 9871 mutex_enter(&rp->r_statelock); 9872 9873 /* 9874 * Calculate the number of readaheads to do. 9875 * a) No readaheads at offset = 0. 9876 * b) Do maximum(nfs4_nra) readaheads when the readahead 9877 * window is closed. 9878 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9879 * upon how far the readahead window is open or close. 9880 * d) No readaheads if rp->r_nextr is not within the scope 9881 * of the readahead window (random i/o). 9882 */ 9883 9884 if (off == 0) 9885 readahead = 0; 9886 else if (blkoff == rp->r_nextr) 9887 readahead = nfs4_nra; 9888 else if (rp->r_nextr > blkoff && 9889 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9890 <= (nfs4_nra - 1))) 9891 readahead = nfs4_nra - ra_window; 9892 else 9893 readahead = 0; 9894 9895 rablkoff = rp->r_nextr; 9896 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9897 mutex_exit(&rp->r_statelock); 9898 if (nfs4_async_readahead(vp, rablkoff + bsize, 9899 addr + (rablkoff + bsize - off), 9900 seg, cr, nfs4_readahead) < 0) { 9901 mutex_enter(&rp->r_statelock); 9902 break; 9903 } 9904 readahead--; 9905 rablkoff += bsize; 9906 /* 9907 * Indicate that we did a readahead so 9908 * readahead offset is not updated 9909 * by the synchronous read below. 9910 */ 9911 readahead_issued = 1; 9912 mutex_enter(&rp->r_statelock); 9913 /* 9914 * set readahead offset to 9915 * offset of last async readahead 9916 * request. 9917 */ 9918 rp->r_nextr = rablkoff; 9919 } 9920 mutex_exit(&rp->r_statelock); 9921 } 9922 9923 again: 9924 if ((pagefound = page_exists(vp, off)) == NULL) { 9925 if (pl == NULL) { 9926 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9927 nfs4_readahead); 9928 } else if (rw == S_CREATE) { 9929 /* 9930 * Block for this page is not allocated, or the offset 9931 * is beyond the current allocation size, or we're 9932 * allocating a swap slot and the page was not found, 9933 * so allocate it and return a zero page. 9934 */ 9935 if ((pp = page_create_va(vp, off, 9936 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9937 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9938 io_len = PAGESIZE; 9939 mutex_enter(&rp->r_statelock); 9940 rp->r_nextr = off + PAGESIZE; 9941 mutex_exit(&rp->r_statelock); 9942 } else { 9943 /* 9944 * Need to go to server to get a block 9945 */ 9946 mutex_enter(&rp->r_statelock); 9947 if (blkoff < rp->r_size && 9948 blkoff + bsize > rp->r_size) { 9949 /* 9950 * If less than a block left in 9951 * file read less than a block. 9952 */ 9953 if (rp->r_size <= off) { 9954 /* 9955 * Trying to access beyond EOF, 9956 * set up to get at least one page. 9957 */ 9958 blksize = off + PAGESIZE - blkoff; 9959 } else 9960 blksize = rp->r_size - blkoff; 9961 } else if ((off == 0) || 9962 (off != rp->r_nextr && !readahead_issued)) { 9963 blksize = PAGESIZE; 9964 blkoff = off; /* block = page here */ 9965 } else 9966 blksize = bsize; 9967 mutex_exit(&rp->r_statelock); 9968 9969 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9970 &io_len, blkoff, blksize, 0); 9971 9972 /* 9973 * Some other thread has entered the page, 9974 * so just use it. 9975 */ 9976 if (pp == NULL) 9977 goto again; 9978 9979 /* 9980 * Now round the request size up to page boundaries. 9981 * This ensures that the entire page will be 9982 * initialized to zeroes if EOF is encountered. 9983 */ 9984 io_len = ptob(btopr(io_len)); 9985 9986 bp = pageio_setup(pp, io_len, vp, B_READ); 9987 ASSERT(bp != NULL); 9988 9989 /* 9990 * pageio_setup should have set b_addr to 0. This 9991 * is correct since we want to do I/O on a page 9992 * boundary. bp_mapin will use this addr to calculate 9993 * an offset, and then set b_addr to the kernel virtual 9994 * address it allocated for us. 9995 */ 9996 ASSERT(bp->b_un.b_addr == 0); 9997 9998 bp->b_edev = 0; 9999 bp->b_dev = 0; 10000 bp->b_lblkno = lbtodb(io_off); 10001 bp->b_file = vp; 10002 bp->b_offset = (offset_t)off; 10003 bp_mapin(bp); 10004 10005 /* 10006 * If doing a write beyond what we believe is EOF, 10007 * don't bother trying to read the pages from the 10008 * server, we'll just zero the pages here. We 10009 * don't check that the rw flag is S_WRITE here 10010 * because some implementations may attempt a 10011 * read access to the buffer before copying data. 10012 */ 10013 mutex_enter(&rp->r_statelock); 10014 if (io_off >= rp->r_size && seg == segkmap) { 10015 mutex_exit(&rp->r_statelock); 10016 bzero(bp->b_un.b_addr, io_len); 10017 } else { 10018 mutex_exit(&rp->r_statelock); 10019 error = nfs4_bio(bp, NULL, cr, FALSE); 10020 } 10021 10022 /* 10023 * Unmap the buffer before freeing it. 10024 */ 10025 bp_mapout(bp); 10026 pageio_done(bp); 10027 10028 savepp = pp; 10029 do { 10030 pp->p_fsdata = C_NOCOMMIT; 10031 } while ((pp = pp->p_next) != savepp); 10032 10033 if (error == NFS_EOF) { 10034 /* 10035 * If doing a write system call just return 10036 * zeroed pages, else user tried to get pages 10037 * beyond EOF, return error. We don't check 10038 * that the rw flag is S_WRITE here because 10039 * some implementations may attempt a read 10040 * access to the buffer before copying data. 10041 */ 10042 if (seg == segkmap) 10043 error = 0; 10044 else 10045 error = EFAULT; 10046 } 10047 10048 if (!readahead_issued && !error) { 10049 mutex_enter(&rp->r_statelock); 10050 rp->r_nextr = io_off + io_len; 10051 mutex_exit(&rp->r_statelock); 10052 } 10053 } 10054 } 10055 10056 out: 10057 if (pl == NULL) 10058 return (error); 10059 10060 if (error) { 10061 if (pp != NULL) 10062 pvn_read_done(pp, B_ERROR); 10063 return (error); 10064 } 10065 10066 if (pagefound) { 10067 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 10068 10069 /* 10070 * Page exists in the cache, acquire the appropriate lock. 10071 * If this fails, start all over again. 10072 */ 10073 if ((pp = page_lookup(vp, off, se)) == NULL) { 10074 #ifdef DEBUG 10075 nfs4_lostpage++; 10076 #endif 10077 goto reread; 10078 } 10079 pl[0] = pp; 10080 pl[1] = NULL; 10081 return (0); 10082 } 10083 10084 if (pp != NULL) 10085 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 10086 10087 return (error); 10088 } 10089 10090 static void 10091 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 10092 cred_t *cr) 10093 { 10094 int error; 10095 page_t *pp; 10096 u_offset_t io_off; 10097 size_t io_len; 10098 struct buf *bp; 10099 uint_t bsize, blksize; 10100 rnode4_t *rp = VTOR4(vp); 10101 page_t *savepp; 10102 10103 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10104 10105 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10106 10107 mutex_enter(&rp->r_statelock); 10108 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10109 /* 10110 * If less than a block left in file read less 10111 * than a block. 10112 */ 10113 blksize = rp->r_size - blkoff; 10114 } else 10115 blksize = bsize; 10116 mutex_exit(&rp->r_statelock); 10117 10118 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10119 &io_off, &io_len, blkoff, blksize, 1); 10120 /* 10121 * The isra flag passed to the kluster function is 1, we may have 10122 * gotten a return value of NULL for a variety of reasons (# of free 10123 * pages < minfree, someone entered the page on the vnode etc). In all 10124 * cases, we want to punt on the readahead. 10125 */ 10126 if (pp == NULL) 10127 return; 10128 10129 /* 10130 * Now round the request size up to page boundaries. 10131 * This ensures that the entire page will be 10132 * initialized to zeroes if EOF is encountered. 10133 */ 10134 io_len = ptob(btopr(io_len)); 10135 10136 bp = pageio_setup(pp, io_len, vp, B_READ); 10137 ASSERT(bp != NULL); 10138 10139 /* 10140 * pageio_setup should have set b_addr to 0. This is correct since 10141 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10142 * to calculate an offset, and then set b_addr to the kernel virtual 10143 * address it allocated for us. 10144 */ 10145 ASSERT(bp->b_un.b_addr == 0); 10146 10147 bp->b_edev = 0; 10148 bp->b_dev = 0; 10149 bp->b_lblkno = lbtodb(io_off); 10150 bp->b_file = vp; 10151 bp->b_offset = (offset_t)blkoff; 10152 bp_mapin(bp); 10153 10154 /* 10155 * If doing a write beyond what we believe is EOF, don't bother trying 10156 * to read the pages from the server, we'll just zero the pages here. 10157 * We don't check that the rw flag is S_WRITE here because some 10158 * implementations may attempt a read access to the buffer before 10159 * copying data. 10160 */ 10161 mutex_enter(&rp->r_statelock); 10162 if (io_off >= rp->r_size && seg == segkmap) { 10163 mutex_exit(&rp->r_statelock); 10164 bzero(bp->b_un.b_addr, io_len); 10165 error = 0; 10166 } else { 10167 mutex_exit(&rp->r_statelock); 10168 error = nfs4_bio(bp, NULL, cr, TRUE); 10169 if (error == NFS_EOF) 10170 error = 0; 10171 } 10172 10173 /* 10174 * Unmap the buffer before freeing it. 10175 */ 10176 bp_mapout(bp); 10177 pageio_done(bp); 10178 10179 savepp = pp; 10180 do { 10181 pp->p_fsdata = C_NOCOMMIT; 10182 } while ((pp = pp->p_next) != savepp); 10183 10184 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10185 10186 /* 10187 * In case of error set readahead offset 10188 * to the lowest offset. 10189 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10190 */ 10191 if (error && rp->r_nextr > io_off) { 10192 mutex_enter(&rp->r_statelock); 10193 if (rp->r_nextr > io_off) 10194 rp->r_nextr = io_off; 10195 mutex_exit(&rp->r_statelock); 10196 } 10197 } 10198 10199 /* 10200 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10201 * If len == 0, do from off to EOF. 10202 * 10203 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10204 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10205 * (from pageout). 10206 */ 10207 /* ARGSUSED */ 10208 static int 10209 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10210 caller_context_t *ct) 10211 { 10212 int error; 10213 rnode4_t *rp; 10214 10215 ASSERT(cr != NULL); 10216 10217 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10218 return (EIO); 10219 10220 rp = VTOR4(vp); 10221 if (IS_SHADOW(vp, rp)) 10222 vp = RTOV4(rp); 10223 10224 /* 10225 * XXX - Why should this check be made here? 10226 */ 10227 if (vp->v_flag & VNOMAP) 10228 return (ENOSYS); 10229 10230 if (len == 0 && !(flags & B_INVAL) && 10231 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10232 return (0); 10233 10234 mutex_enter(&rp->r_statelock); 10235 rp->r_count++; 10236 mutex_exit(&rp->r_statelock); 10237 error = nfs4_putpages(vp, off, len, flags, cr); 10238 mutex_enter(&rp->r_statelock); 10239 rp->r_count--; 10240 cv_broadcast(&rp->r_cv); 10241 mutex_exit(&rp->r_statelock); 10242 10243 return (error); 10244 } 10245 10246 /* 10247 * Write out a single page, possibly klustering adjacent dirty pages. 10248 */ 10249 int 10250 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10251 int flags, cred_t *cr) 10252 { 10253 u_offset_t io_off; 10254 u_offset_t lbn_off; 10255 u_offset_t lbn; 10256 size_t io_len; 10257 uint_t bsize; 10258 int error; 10259 rnode4_t *rp; 10260 10261 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10262 ASSERT(pp != NULL); 10263 ASSERT(cr != NULL); 10264 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10265 10266 rp = VTOR4(vp); 10267 ASSERT(rp->r_count > 0); 10268 ASSERT(!IS_SHADOW(vp, rp)); 10269 10270 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10271 lbn = pp->p_offset / bsize; 10272 lbn_off = lbn * bsize; 10273 10274 /* 10275 * Find a kluster that fits in one block, or in 10276 * one page if pages are bigger than blocks. If 10277 * there is less file space allocated than a whole 10278 * page, we'll shorten the i/o request below. 10279 */ 10280 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10281 roundup(bsize, PAGESIZE), flags); 10282 10283 /* 10284 * pvn_write_kluster shouldn't have returned a page with offset 10285 * behind the original page we were given. Verify that. 10286 */ 10287 ASSERT((pp->p_offset / bsize) >= lbn); 10288 10289 /* 10290 * Now pp will have the list of kept dirty pages marked for 10291 * write back. It will also handle invalidation and freeing 10292 * of pages that are not dirty. Check for page length rounding 10293 * problems. 10294 */ 10295 if (io_off + io_len > lbn_off + bsize) { 10296 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10297 io_len = lbn_off + bsize - io_off; 10298 } 10299 /* 10300 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10301 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10302 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10303 * progress and the r_size has not been made consistent with the 10304 * new size of the file. When the uiomove() completes the r_size is 10305 * updated and the R4MODINPROGRESS flag is cleared. 10306 * 10307 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10308 * consistent value of r_size. Without this handshaking, it is 10309 * possible that nfs4_bio() picks up the old value of r_size 10310 * before the uiomove() in writerp4() completes. This will result 10311 * in the write through nfs4_bio() being dropped. 10312 * 10313 * More precisely, there is a window between the time the uiomove() 10314 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10315 * operation intervenes in this window, the page will be picked up, 10316 * because it is dirty (it will be unlocked, unless it was 10317 * pagecreate'd). When the page is picked up as dirty, the dirty 10318 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10319 * checked. This will still be the old size. Therefore the page will 10320 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10321 * the page will be found to be clean and the write will be dropped. 10322 */ 10323 if (rp->r_flags & R4MODINPROGRESS) { 10324 mutex_enter(&rp->r_statelock); 10325 if ((rp->r_flags & R4MODINPROGRESS) && 10326 rp->r_modaddr + MAXBSIZE > io_off && 10327 rp->r_modaddr < io_off + io_len) { 10328 page_t *plist; 10329 /* 10330 * A write is in progress for this region of the file. 10331 * If we did not detect R4MODINPROGRESS here then this 10332 * path through nfs_putapage() would eventually go to 10333 * nfs4_bio() and may not write out all of the data 10334 * in the pages. We end up losing data. So we decide 10335 * to set the modified bit on each page in the page 10336 * list and mark the rnode with R4DIRTY. This write 10337 * will be restarted at some later time. 10338 */ 10339 plist = pp; 10340 while (plist != NULL) { 10341 pp = plist; 10342 page_sub(&plist, pp); 10343 hat_setmod(pp); 10344 page_io_unlock(pp); 10345 page_unlock(pp); 10346 } 10347 rp->r_flags |= R4DIRTY; 10348 mutex_exit(&rp->r_statelock); 10349 if (offp) 10350 *offp = io_off; 10351 if (lenp) 10352 *lenp = io_len; 10353 return (0); 10354 } 10355 mutex_exit(&rp->r_statelock); 10356 } 10357 10358 if (flags & B_ASYNC) { 10359 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10360 nfs4_sync_putapage); 10361 } else 10362 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10363 10364 if (offp) 10365 *offp = io_off; 10366 if (lenp) 10367 *lenp = io_len; 10368 return (error); 10369 } 10370 10371 static int 10372 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10373 int flags, cred_t *cr) 10374 { 10375 int error; 10376 rnode4_t *rp; 10377 10378 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10379 10380 flags |= B_WRITE; 10381 10382 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10383 10384 rp = VTOR4(vp); 10385 10386 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10387 error == EACCES) && 10388 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10389 if (!(rp->r_flags & R4OUTOFSPACE)) { 10390 mutex_enter(&rp->r_statelock); 10391 rp->r_flags |= R4OUTOFSPACE; 10392 mutex_exit(&rp->r_statelock); 10393 } 10394 flags |= B_ERROR; 10395 pvn_write_done(pp, flags); 10396 /* 10397 * If this was not an async thread, then try again to 10398 * write out the pages, but this time, also destroy 10399 * them whether or not the write is successful. This 10400 * will prevent memory from filling up with these 10401 * pages and destroying them is the only alternative 10402 * if they can't be written out. 10403 * 10404 * Don't do this if this is an async thread because 10405 * when the pages are unlocked in pvn_write_done, 10406 * some other thread could have come along, locked 10407 * them, and queued for an async thread. It would be 10408 * possible for all of the async threads to be tied 10409 * up waiting to lock the pages again and they would 10410 * all already be locked and waiting for an async 10411 * thread to handle them. Deadlock. 10412 */ 10413 if (!(flags & B_ASYNC)) { 10414 error = nfs4_putpage(vp, io_off, io_len, 10415 B_INVAL | B_FORCE, cr, NULL); 10416 } 10417 } else { 10418 if (error) 10419 flags |= B_ERROR; 10420 else if (rp->r_flags & R4OUTOFSPACE) { 10421 mutex_enter(&rp->r_statelock); 10422 rp->r_flags &= ~R4OUTOFSPACE; 10423 mutex_exit(&rp->r_statelock); 10424 } 10425 pvn_write_done(pp, flags); 10426 if (freemem < desfree) 10427 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10428 NFS4_WRITE_NOWAIT); 10429 } 10430 10431 return (error); 10432 } 10433 10434 #ifdef DEBUG 10435 int nfs4_force_open_before_mmap = 0; 10436 #endif 10437 10438 /* ARGSUSED */ 10439 static int 10440 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10441 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10442 caller_context_t *ct) 10443 { 10444 struct segvn_crargs vn_a; 10445 int error = 0; 10446 rnode4_t *rp = VTOR4(vp); 10447 mntinfo4_t *mi = VTOMI4(vp); 10448 10449 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10450 return (EIO); 10451 10452 if (vp->v_flag & VNOMAP) 10453 return (ENOSYS); 10454 10455 if (off < 0 || (off + len) < 0) 10456 return (ENXIO); 10457 10458 if (vp->v_type != VREG) 10459 return (ENODEV); 10460 10461 /* 10462 * If the file is delegated to the client don't do anything. 10463 * If the file is not delegated, then validate the data cache. 10464 */ 10465 mutex_enter(&rp->r_statev4_lock); 10466 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10467 mutex_exit(&rp->r_statev4_lock); 10468 error = nfs4_validate_caches(vp, cr); 10469 if (error) 10470 return (error); 10471 } else { 10472 mutex_exit(&rp->r_statev4_lock); 10473 } 10474 10475 /* 10476 * Check to see if the vnode is currently marked as not cachable. 10477 * This means portions of the file are locked (through VOP_FRLOCK). 10478 * In this case the map request must be refused. We use 10479 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10480 * 10481 * Atomically increment r_inmap after acquiring r_rwlock. The 10482 * idea here is to acquire r_rwlock to block read/write and 10483 * not to protect r_inmap. r_inmap will inform nfs4_read/write() 10484 * that we are in nfs4_map(). Now, r_rwlock is acquired in order 10485 * and we can prevent the deadlock that would have occurred 10486 * when nfs4_addmap() would have acquired it out of order. 10487 * 10488 * Since we are not protecting r_inmap by any lock, we do not 10489 * hold any lock when we decrement it. We atomically decrement 10490 * r_inmap after we release r_lkserlock. 10491 */ 10492 10493 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp))) 10494 return (EINTR); 10495 atomic_inc_uint(&rp->r_inmap); 10496 nfs_rw_exit(&rp->r_rwlock); 10497 10498 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) { 10499 atomic_dec_uint(&rp->r_inmap); 10500 return (EINTR); 10501 } 10502 10503 if (vp->v_flag & VNOCACHE) { 10504 error = EAGAIN; 10505 goto done; 10506 } 10507 10508 /* 10509 * Don't allow concurrent locks and mapping if mandatory locking is 10510 * enabled. 10511 */ 10512 if (flk_has_remote_locks(vp)) { 10513 struct vattr va; 10514 va.va_mask = AT_MODE; 10515 error = nfs4getattr(vp, &va, cr); 10516 if (error != 0) 10517 goto done; 10518 if (MANDLOCK(vp, va.va_mode)) { 10519 error = EAGAIN; 10520 goto done; 10521 } 10522 } 10523 10524 /* 10525 * It is possible that the rnode has a lost lock request that we 10526 * are still trying to recover, and that the request conflicts with 10527 * this map request. 10528 * 10529 * An alternative approach would be for nfs4_safemap() to consider 10530 * queued lock requests when deciding whether to set or clear 10531 * VNOCACHE. This would require the frlock code path to call 10532 * nfs4_safemap() after enqueing a lost request. 10533 */ 10534 if (nfs4_map_lost_lock_conflict(vp)) { 10535 error = EAGAIN; 10536 goto done; 10537 } 10538 10539 as_rangelock(as); 10540 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 10541 if (error != 0) { 10542 as_rangeunlock(as); 10543 goto done; 10544 } 10545 10546 if (vp->v_type == VREG) { 10547 /* 10548 * We need to retrieve the open stream 10549 */ 10550 nfs4_open_stream_t *osp = NULL; 10551 nfs4_open_owner_t *oop = NULL; 10552 10553 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10554 if (oop != NULL) { 10555 /* returns with 'os_sync_lock' held */ 10556 osp = find_open_stream(oop, rp); 10557 open_owner_rele(oop); 10558 } 10559 if (osp == NULL) { 10560 #ifdef DEBUG 10561 if (nfs4_force_open_before_mmap) { 10562 error = EIO; 10563 goto done; 10564 } 10565 #endif 10566 /* returns with 'os_sync_lock' held */ 10567 error = open_and_get_osp(vp, cr, &osp); 10568 if (osp == NULL) { 10569 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10570 "nfs4_map: we tried to OPEN the file " 10571 "but again no osp, so fail with EIO")); 10572 goto done; 10573 } 10574 } 10575 10576 if (osp->os_failed_reopen) { 10577 mutex_exit(&osp->os_sync_lock); 10578 open_stream_rele(osp, rp); 10579 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10580 "nfs4_map: os_failed_reopen set on " 10581 "osp %p, cr %p, rp %s", (void *)osp, 10582 (void *)cr, rnode4info(rp))); 10583 error = EIO; 10584 goto done; 10585 } 10586 mutex_exit(&osp->os_sync_lock); 10587 open_stream_rele(osp, rp); 10588 } 10589 10590 vn_a.vp = vp; 10591 vn_a.offset = off; 10592 vn_a.type = (flags & MAP_TYPE); 10593 vn_a.prot = (uchar_t)prot; 10594 vn_a.maxprot = (uchar_t)maxprot; 10595 vn_a.flags = (flags & ~MAP_TYPE); 10596 vn_a.cred = cr; 10597 vn_a.amp = NULL; 10598 vn_a.szc = 0; 10599 vn_a.lgrp_mem_policy_flags = 0; 10600 10601 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10602 as_rangeunlock(as); 10603 10604 done: 10605 nfs_rw_exit(&rp->r_lkserlock); 10606 atomic_dec_uint(&rp->r_inmap); 10607 return (error); 10608 } 10609 10610 /* 10611 * We're most likely dealing with a kernel module that likes to READ 10612 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10613 * officially OPEN the file to create the necessary client state 10614 * for bookkeeping of os_mmap_read/write counts. 10615 * 10616 * Since VOP_MAP only passes in a pointer to the vnode rather than 10617 * a double pointer, we can't handle the case where nfs4open_otw() 10618 * returns a different vnode than the one passed into VOP_MAP (since 10619 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10620 * we return NULL and let nfs4_map() fail. Note: the only case where 10621 * this should happen is if the file got removed and replaced with the 10622 * same name on the server (in addition to the fact that we're trying 10623 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10624 */ 10625 static int 10626 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10627 { 10628 rnode4_t *rp, *drp; 10629 vnode_t *dvp, *open_vp; 10630 char file_name[MAXNAMELEN]; 10631 int just_created; 10632 nfs4_open_stream_t *osp; 10633 nfs4_open_owner_t *oop; 10634 int error; 10635 10636 *ospp = NULL; 10637 open_vp = map_vp; 10638 10639 rp = VTOR4(open_vp); 10640 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10641 return (error); 10642 drp = VTOR4(dvp); 10643 10644 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10645 VN_RELE(dvp); 10646 return (EINTR); 10647 } 10648 10649 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10650 nfs_rw_exit(&drp->r_rwlock); 10651 VN_RELE(dvp); 10652 return (error); 10653 } 10654 10655 mutex_enter(&rp->r_statev4_lock); 10656 if (rp->created_v4) { 10657 rp->created_v4 = 0; 10658 mutex_exit(&rp->r_statev4_lock); 10659 10660 dnlc_update(dvp, file_name, open_vp); 10661 /* This is needed so we don't bump the open ref count */ 10662 just_created = 1; 10663 } else { 10664 mutex_exit(&rp->r_statev4_lock); 10665 just_created = 0; 10666 } 10667 10668 VN_HOLD(map_vp); 10669 10670 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10671 just_created); 10672 if (error) { 10673 nfs_rw_exit(&drp->r_rwlock); 10674 VN_RELE(dvp); 10675 VN_RELE(map_vp); 10676 return (error); 10677 } 10678 10679 nfs_rw_exit(&drp->r_rwlock); 10680 VN_RELE(dvp); 10681 10682 /* 10683 * If nfs4open_otw() returned a different vnode then "undo" 10684 * the open and return failure to the caller. 10685 */ 10686 if (!VN_CMP(open_vp, map_vp)) { 10687 nfs4_error_t e; 10688 10689 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10690 "open returned a different vnode")); 10691 /* 10692 * If there's an error, ignore it, 10693 * and let VOP_INACTIVE handle it. 10694 */ 10695 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10696 CLOSE_NORM, 0, 0, 0); 10697 VN_RELE(map_vp); 10698 return (EIO); 10699 } 10700 10701 VN_RELE(map_vp); 10702 10703 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10704 if (!oop) { 10705 nfs4_error_t e; 10706 10707 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10708 "no open owner")); 10709 /* 10710 * If there's an error, ignore it, 10711 * and let VOP_INACTIVE handle it. 10712 */ 10713 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10714 CLOSE_NORM, 0, 0, 0); 10715 return (EIO); 10716 } 10717 osp = find_open_stream(oop, rp); 10718 open_owner_rele(oop); 10719 *ospp = osp; 10720 return (0); 10721 } 10722 10723 /* 10724 * Please be aware that when this function is called, the address space write 10725 * a_lock is held. Do not put over the wire calls in this function. 10726 */ 10727 /* ARGSUSED */ 10728 static int 10729 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10730 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10731 caller_context_t *ct) 10732 { 10733 rnode4_t *rp; 10734 int error = 0; 10735 mntinfo4_t *mi; 10736 10737 mi = VTOMI4(vp); 10738 rp = VTOR4(vp); 10739 10740 if (nfs_zone() != mi->mi_zone) 10741 return (EIO); 10742 if (vp->v_flag & VNOMAP) 10743 return (ENOSYS); 10744 10745 /* 10746 * Don't need to update the open stream first, since this 10747 * mmap can't add any additional share access that isn't 10748 * already contained in the open stream (for the case where we 10749 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10750 * take into account os_mmap_read[write] counts). 10751 */ 10752 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10753 10754 if (vp->v_type == VREG) { 10755 /* 10756 * We need to retrieve the open stream and update the counts. 10757 * If there is no open stream here, something is wrong. 10758 */ 10759 nfs4_open_stream_t *osp = NULL; 10760 nfs4_open_owner_t *oop = NULL; 10761 10762 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10763 if (oop != NULL) { 10764 /* returns with 'os_sync_lock' held */ 10765 osp = find_open_stream(oop, rp); 10766 open_owner_rele(oop); 10767 } 10768 if (osp == NULL) { 10769 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10770 "nfs4_addmap: we should have an osp" 10771 "but we don't, so fail with EIO")); 10772 error = EIO; 10773 goto out; 10774 } 10775 10776 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10777 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10778 10779 /* 10780 * Update the map count in the open stream. 10781 * This is necessary in the case where we 10782 * open/mmap/close/, then the server reboots, and we 10783 * attempt to reopen. If the mmap doesn't add share 10784 * access then we send an invalid reopen with 10785 * access = NONE. 10786 * 10787 * We need to specifically check each PROT_* so a mmap 10788 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10789 * read and write access. A simple comparison of prot 10790 * to ~PROT_WRITE to determine read access is insufficient 10791 * since prot can be |= with PROT_USER, etc. 10792 */ 10793 10794 /* 10795 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10796 */ 10797 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10798 osp->os_mmap_write += btopr(len); 10799 if (maxprot & PROT_READ) 10800 osp->os_mmap_read += btopr(len); 10801 if (maxprot & PROT_EXEC) 10802 osp->os_mmap_read += btopr(len); 10803 /* 10804 * Ensure that os_mmap_read gets incremented, even if 10805 * maxprot were to look like PROT_NONE. 10806 */ 10807 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10808 !(maxprot & PROT_EXEC)) 10809 osp->os_mmap_read += btopr(len); 10810 osp->os_mapcnt += btopr(len); 10811 mutex_exit(&osp->os_sync_lock); 10812 open_stream_rele(osp, rp); 10813 } 10814 10815 out: 10816 /* 10817 * If we got an error, then undo our 10818 * incrementing of 'r_mapcnt'. 10819 */ 10820 10821 if (error) { 10822 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10823 ASSERT(rp->r_mapcnt >= 0); 10824 } 10825 return (error); 10826 } 10827 10828 /* ARGSUSED */ 10829 static int 10830 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10831 { 10832 10833 return (VTOR4(vp1) == VTOR4(vp2)); 10834 } 10835 10836 /* ARGSUSED */ 10837 static int 10838 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10839 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10840 caller_context_t *ct) 10841 { 10842 int rc; 10843 u_offset_t start, end; 10844 rnode4_t *rp; 10845 int error = 0, intr = INTR4(vp); 10846 nfs4_error_t e; 10847 10848 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10849 return (EIO); 10850 10851 /* check for valid cmd parameter */ 10852 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10853 return (EINVAL); 10854 10855 /* Verify l_type. */ 10856 switch (bfp->l_type) { 10857 case F_RDLCK: 10858 if (cmd != F_GETLK && !(flag & FREAD)) 10859 return (EBADF); 10860 break; 10861 case F_WRLCK: 10862 if (cmd != F_GETLK && !(flag & FWRITE)) 10863 return (EBADF); 10864 break; 10865 case F_UNLCK: 10866 intr = 0; 10867 break; 10868 10869 default: 10870 return (EINVAL); 10871 } 10872 10873 /* check the validity of the lock range */ 10874 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10875 return (rc); 10876 if (rc = flk_check_lock_data(start, end, MAXEND)) 10877 return (rc); 10878 10879 /* 10880 * If the filesystem is mounted using local locking, pass the 10881 * request off to the local locking code. 10882 */ 10883 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10884 if (cmd == F_SETLK || cmd == F_SETLKW) { 10885 /* 10886 * For complete safety, we should be holding 10887 * r_lkserlock. However, we can't call 10888 * nfs4_safelock and then fs_frlock while 10889 * holding r_lkserlock, so just invoke 10890 * nfs4_safelock and expect that this will 10891 * catch enough of the cases. 10892 */ 10893 if (!nfs4_safelock(vp, bfp, cr)) 10894 return (EAGAIN); 10895 } 10896 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10897 } 10898 10899 rp = VTOR4(vp); 10900 10901 /* 10902 * Check whether the given lock request can proceed, given the 10903 * current file mappings. 10904 */ 10905 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10906 return (EINTR); 10907 if (cmd == F_SETLK || cmd == F_SETLKW) { 10908 if (!nfs4_safelock(vp, bfp, cr)) { 10909 rc = EAGAIN; 10910 goto done; 10911 } 10912 } 10913 10914 /* 10915 * Flush the cache after waiting for async I/O to finish. For new 10916 * locks, this is so that the process gets the latest bits from the 10917 * server. For unlocks, this is so that other clients see the 10918 * latest bits once the file has been unlocked. If currently dirty 10919 * pages can't be flushed, then don't allow a lock to be set. But 10920 * allow unlocks to succeed, to avoid having orphan locks on the 10921 * server. 10922 */ 10923 if (cmd != F_GETLK) { 10924 mutex_enter(&rp->r_statelock); 10925 while (rp->r_count > 0) { 10926 if (intr) { 10927 klwp_t *lwp = ttolwp(curthread); 10928 10929 if (lwp != NULL) 10930 lwp->lwp_nostop++; 10931 if (cv_wait_sig(&rp->r_cv, 10932 &rp->r_statelock) == 0) { 10933 if (lwp != NULL) 10934 lwp->lwp_nostop--; 10935 rc = EINTR; 10936 break; 10937 } 10938 if (lwp != NULL) 10939 lwp->lwp_nostop--; 10940 } else { 10941 cv_wait(&rp->r_cv, &rp->r_statelock); 10942 } 10943 } 10944 mutex_exit(&rp->r_statelock); 10945 if (rc != 0) 10946 goto done; 10947 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10948 if (error) { 10949 if (error == ENOSPC || error == EDQUOT) { 10950 mutex_enter(&rp->r_statelock); 10951 if (!rp->r_error) 10952 rp->r_error = error; 10953 mutex_exit(&rp->r_statelock); 10954 } 10955 if (bfp->l_type != F_UNLCK) { 10956 rc = ENOLCK; 10957 goto done; 10958 } 10959 } 10960 } 10961 10962 /* 10963 * Call the lock manager to do the real work of contacting 10964 * the server and obtaining the lock. 10965 */ 10966 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10967 cr, &e, NULL, NULL); 10968 rc = e.error; 10969 10970 if (rc == 0) 10971 nfs4_lockcompletion(vp, cmd); 10972 10973 done: 10974 nfs_rw_exit(&rp->r_lkserlock); 10975 10976 return (rc); 10977 } 10978 10979 /* 10980 * Free storage space associated with the specified vnode. The portion 10981 * to be freed is specified by bfp->l_start and bfp->l_len (already 10982 * normalized to a "whence" of 0). 10983 * 10984 * This is an experimental facility whose continued existence is not 10985 * guaranteed. Currently, we only support the special case 10986 * of l_len == 0, meaning free to end of file. 10987 */ 10988 /* ARGSUSED */ 10989 static int 10990 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10991 offset_t offset, cred_t *cr, caller_context_t *ct) 10992 { 10993 int error; 10994 10995 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10996 return (EIO); 10997 ASSERT(vp->v_type == VREG); 10998 if (cmd != F_FREESP) 10999 return (EINVAL); 11000 11001 error = convoff(vp, bfp, 0, offset); 11002 if (!error) { 11003 ASSERT(bfp->l_start >= 0); 11004 if (bfp->l_len == 0) { 11005 struct vattr va; 11006 11007 va.va_mask = AT_SIZE; 11008 va.va_size = bfp->l_start; 11009 error = nfs4setattr(vp, &va, 0, cr, NULL); 11010 11011 if (error == 0 && bfp->l_start == 0) 11012 vnevent_truncate(vp, ct); 11013 } else 11014 error = EINVAL; 11015 } 11016 11017 return (error); 11018 } 11019 11020 /* ARGSUSED */ 11021 int 11022 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 11023 { 11024 rnode4_t *rp; 11025 rp = VTOR4(vp); 11026 11027 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 11028 vp = RTOV4(rp); 11029 } 11030 *vpp = vp; 11031 return (0); 11032 } 11033 11034 /* 11035 * Setup and add an address space callback to do the work of the delmap call. 11036 * The callback will (and must be) deleted in the actual callback function. 11037 * 11038 * This is done in order to take care of the problem that we have with holding 11039 * the address space's a_lock for a long period of time (e.g. if the NFS server 11040 * is down). Callbacks will be executed in the address space code while the 11041 * a_lock is not held. Holding the address space's a_lock causes things such 11042 * as ps and fork to hang because they are trying to acquire this lock as well. 11043 */ 11044 /* ARGSUSED */ 11045 static int 11046 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 11047 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 11048 caller_context_t *ct) 11049 { 11050 int caller_found; 11051 int error; 11052 rnode4_t *rp; 11053 nfs4_delmap_args_t *dmapp; 11054 nfs4_delmapcall_t *delmap_call; 11055 11056 if (vp->v_flag & VNOMAP) 11057 return (ENOSYS); 11058 11059 /* 11060 * A process may not change zones if it has NFS pages mmap'ed 11061 * in, so we can't legitimately get here from the wrong zone. 11062 */ 11063 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11064 11065 rp = VTOR4(vp); 11066 11067 /* 11068 * The way that the address space of this process deletes its mapping 11069 * of this file is via the following call chains: 11070 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11071 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11072 * 11073 * With the use of address space callbacks we are allowed to drop the 11074 * address space lock, a_lock, while executing the NFS operations that 11075 * need to go over the wire. Returning EAGAIN to the caller of this 11076 * function is what drives the execution of the callback that we add 11077 * below. The callback will be executed by the address space code 11078 * after dropping the a_lock. When the callback is finished, since 11079 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 11080 * is called again on the same segment to finish the rest of the work 11081 * that needs to happen during unmapping. 11082 * 11083 * This action of calling back into the segment driver causes 11084 * nfs4_delmap() to get called again, but since the callback was 11085 * already executed at this point, it already did the work and there 11086 * is nothing left for us to do. 11087 * 11088 * To Summarize: 11089 * - The first time nfs4_delmap is called by the current thread is when 11090 * we add the caller associated with this delmap to the delmap caller 11091 * list, add the callback, and return EAGAIN. 11092 * - The second time in this call chain when nfs4_delmap is called we 11093 * will find this caller in the delmap caller list and realize there 11094 * is no more work to do thus removing this caller from the list and 11095 * returning the error that was set in the callback execution. 11096 */ 11097 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 11098 if (caller_found) { 11099 /* 11100 * 'error' is from the actual delmap operations. To avoid 11101 * hangs, we need to handle the return of EAGAIN differently 11102 * since this is what drives the callback execution. 11103 * In this case, we don't want to return EAGAIN and do the 11104 * callback execution because there are none to execute. 11105 */ 11106 if (error == EAGAIN) 11107 return (0); 11108 else 11109 return (error); 11110 } 11111 11112 /* current caller was not in the list */ 11113 delmap_call = nfs4_init_delmapcall(); 11114 11115 mutex_enter(&rp->r_statelock); 11116 list_insert_tail(&rp->r_indelmap, delmap_call); 11117 mutex_exit(&rp->r_statelock); 11118 11119 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11120 11121 dmapp->vp = vp; 11122 dmapp->off = off; 11123 dmapp->addr = addr; 11124 dmapp->len = len; 11125 dmapp->prot = prot; 11126 dmapp->maxprot = maxprot; 11127 dmapp->flags = flags; 11128 dmapp->cr = cr; 11129 dmapp->caller = delmap_call; 11130 11131 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11132 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11133 11134 return (error ? error : EAGAIN); 11135 } 11136 11137 static nfs4_delmapcall_t * 11138 nfs4_init_delmapcall() 11139 { 11140 nfs4_delmapcall_t *delmap_call; 11141 11142 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11143 delmap_call->call_id = curthread; 11144 delmap_call->error = 0; 11145 11146 return (delmap_call); 11147 } 11148 11149 static void 11150 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11151 { 11152 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11153 } 11154 11155 /* 11156 * Searches for the current delmap caller (based on curthread) in the list of 11157 * callers. If it is found, we remove it and free the delmap caller. 11158 * Returns: 11159 * 0 if the caller wasn't found 11160 * 1 if the caller was found, removed and freed. *errp will be set 11161 * to what the result of the delmap was. 11162 */ 11163 static int 11164 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11165 { 11166 nfs4_delmapcall_t *delmap_call; 11167 11168 /* 11169 * If the list doesn't exist yet, we create it and return 11170 * that the caller wasn't found. No list = no callers. 11171 */ 11172 mutex_enter(&rp->r_statelock); 11173 if (!(rp->r_flags & R4DELMAPLIST)) { 11174 /* The list does not exist */ 11175 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11176 offsetof(nfs4_delmapcall_t, call_node)); 11177 rp->r_flags |= R4DELMAPLIST; 11178 mutex_exit(&rp->r_statelock); 11179 return (0); 11180 } else { 11181 /* The list exists so search it */ 11182 for (delmap_call = list_head(&rp->r_indelmap); 11183 delmap_call != NULL; 11184 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11185 if (delmap_call->call_id == curthread) { 11186 /* current caller is in the list */ 11187 *errp = delmap_call->error; 11188 list_remove(&rp->r_indelmap, delmap_call); 11189 mutex_exit(&rp->r_statelock); 11190 nfs4_free_delmapcall(delmap_call); 11191 return (1); 11192 } 11193 } 11194 } 11195 mutex_exit(&rp->r_statelock); 11196 return (0); 11197 } 11198 11199 /* 11200 * Remove some pages from an mmap'd vnode. Just update the 11201 * count of pages. If doing close-to-open, then flush and 11202 * commit all of the pages associated with this file. 11203 * Otherwise, start an asynchronous page flush to write out 11204 * any dirty pages. This will also associate a credential 11205 * with the rnode which can be used to write the pages. 11206 */ 11207 /* ARGSUSED */ 11208 static void 11209 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11210 { 11211 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11212 rnode4_t *rp; 11213 mntinfo4_t *mi; 11214 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11215 11216 rp = VTOR4(dmapp->vp); 11217 mi = VTOMI4(dmapp->vp); 11218 11219 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11220 ASSERT(rp->r_mapcnt >= 0); 11221 11222 /* 11223 * Initiate a page flush and potential commit if there are 11224 * pages, the file system was not mounted readonly, the segment 11225 * was mapped shared, and the pages themselves were writeable. 11226 */ 11227 if (nfs4_has_pages(dmapp->vp) && 11228 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11229 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11230 mutex_enter(&rp->r_statelock); 11231 rp->r_flags |= R4DIRTY; 11232 mutex_exit(&rp->r_statelock); 11233 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11234 dmapp->len, dmapp->cr); 11235 if (!e.error) { 11236 mutex_enter(&rp->r_statelock); 11237 e.error = rp->r_error; 11238 rp->r_error = 0; 11239 mutex_exit(&rp->r_statelock); 11240 } 11241 } else 11242 e.error = 0; 11243 11244 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11245 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11246 B_INVAL, dmapp->cr, NULL); 11247 11248 if (e.error) { 11249 e.stat = puterrno4(e.error); 11250 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11251 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11252 dmapp->caller->error = e.error; 11253 } 11254 11255 /* Check to see if we need to close the file */ 11256 11257 if (dmapp->vp->v_type == VREG) { 11258 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11259 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11260 11261 if (e.error != 0 || e.stat != NFS4_OK) { 11262 /* 11263 * Since it is possible that e.error == 0 and 11264 * e.stat != NFS4_OK (and vice versa), 11265 * we do the proper checking in order to get both 11266 * e.error and e.stat reporting the correct info. 11267 */ 11268 if (e.stat == NFS4_OK) 11269 e.stat = puterrno4(e.error); 11270 if (e.error == 0) 11271 e.error = geterrno4(e.stat); 11272 11273 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11274 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11275 dmapp->caller->error = e.error; 11276 } 11277 } 11278 11279 (void) as_delete_callback(as, arg); 11280 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11281 } 11282 11283 11284 static uint_t 11285 fattr4_maxfilesize_to_bits(uint64_t ll) 11286 { 11287 uint_t l = 1; 11288 11289 if (ll == 0) { 11290 return (0); 11291 } 11292 11293 if (ll & 0xffffffff00000000) { 11294 l += 32; ll >>= 32; 11295 } 11296 if (ll & 0xffff0000) { 11297 l += 16; ll >>= 16; 11298 } 11299 if (ll & 0xff00) { 11300 l += 8; ll >>= 8; 11301 } 11302 if (ll & 0xf0) { 11303 l += 4; ll >>= 4; 11304 } 11305 if (ll & 0xc) { 11306 l += 2; ll >>= 2; 11307 } 11308 if (ll & 0x2) { 11309 l += 1; 11310 } 11311 return (l); 11312 } 11313 11314 static int 11315 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr) 11316 { 11317 vnode_t *avp = NULL; 11318 int error; 11319 11320 if ((error = nfs4lookup_xattr(vp, "", &avp, 11321 LOOKUP_XATTR, cr)) == 0) 11322 error = do_xattr_exists_check(avp, valp, cr); 11323 if (avp) 11324 VN_RELE(avp); 11325 11326 return (error); 11327 } 11328 11329 /* ARGSUSED */ 11330 int 11331 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11332 caller_context_t *ct) 11333 { 11334 int error; 11335 hrtime_t t; 11336 rnode4_t *rp; 11337 nfs4_ga_res_t gar; 11338 nfs4_ga_ext_res_t ger; 11339 11340 gar.n4g_ext_res = &ger; 11341 11342 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11343 return (EIO); 11344 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11345 *valp = MAXPATHLEN; 11346 return (0); 11347 } 11348 if (cmd == _PC_ACL_ENABLED) { 11349 *valp = _ACL_ACE_ENABLED; 11350 return (0); 11351 } 11352 11353 rp = VTOR4(vp); 11354 if (cmd == _PC_XATTR_EXISTS) { 11355 /* 11356 * The existence of the xattr directory is not sufficient 11357 * for determining whether generic user attributes exists. 11358 * The attribute directory could only be a transient directory 11359 * used for Solaris sysattr support. Do a small readdir 11360 * to verify if the only entries are sysattrs or not. 11361 * 11362 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11363 * is NULL. Once the xadir vp exists, we can create xattrs, 11364 * and we don't have any way to update the "base" object's 11365 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11366 * could help out. 11367 */ 11368 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11369 rp->r_xattr_dir == NULL) { 11370 return (nfs4_have_xattrs(vp, valp, cr)); 11371 } 11372 } else { /* OLD CODE */ 11373 if (ATTRCACHE4_VALID(vp)) { 11374 mutex_enter(&rp->r_statelock); 11375 if (rp->r_pathconf.pc4_cache_valid) { 11376 error = 0; 11377 switch (cmd) { 11378 case _PC_FILESIZEBITS: 11379 *valp = 11380 rp->r_pathconf.pc4_filesizebits; 11381 break; 11382 case _PC_LINK_MAX: 11383 *valp = 11384 rp->r_pathconf.pc4_link_max; 11385 break; 11386 case _PC_NAME_MAX: 11387 *valp = 11388 rp->r_pathconf.pc4_name_max; 11389 break; 11390 case _PC_CHOWN_RESTRICTED: 11391 *valp = 11392 rp->r_pathconf.pc4_chown_restricted; 11393 break; 11394 case _PC_NO_TRUNC: 11395 *valp = 11396 rp->r_pathconf.pc4_no_trunc; 11397 break; 11398 default: 11399 error = EINVAL; 11400 break; 11401 } 11402 mutex_exit(&rp->r_statelock); 11403 #ifdef DEBUG 11404 nfs4_pathconf_cache_hits++; 11405 #endif 11406 return (error); 11407 } 11408 mutex_exit(&rp->r_statelock); 11409 } 11410 } 11411 #ifdef DEBUG 11412 nfs4_pathconf_cache_misses++; 11413 #endif 11414 11415 t = gethrtime(); 11416 11417 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11418 11419 if (error) { 11420 mutex_enter(&rp->r_statelock); 11421 rp->r_pathconf.pc4_cache_valid = FALSE; 11422 rp->r_pathconf.pc4_xattr_valid = FALSE; 11423 mutex_exit(&rp->r_statelock); 11424 return (error); 11425 } 11426 11427 /* interpret the max filesize */ 11428 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11429 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11430 11431 /* Store the attributes we just received */ 11432 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11433 11434 switch (cmd) { 11435 case _PC_FILESIZEBITS: 11436 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11437 break; 11438 case _PC_LINK_MAX: 11439 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11440 break; 11441 case _PC_NAME_MAX: 11442 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11443 break; 11444 case _PC_CHOWN_RESTRICTED: 11445 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11446 break; 11447 case _PC_NO_TRUNC: 11448 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11449 break; 11450 case _PC_XATTR_EXISTS: 11451 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) { 11452 if (error = nfs4_have_xattrs(vp, valp, cr)) 11453 return (error); 11454 } 11455 break; 11456 default: 11457 return (EINVAL); 11458 } 11459 11460 return (0); 11461 } 11462 11463 /* 11464 * Called by async thread to do synchronous pageio. Do the i/o, wait 11465 * for it to complete, and cleanup the page list when done. 11466 */ 11467 static int 11468 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11469 int flags, cred_t *cr) 11470 { 11471 int error; 11472 11473 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11474 11475 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11476 if (flags & B_READ) 11477 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11478 else 11479 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11480 return (error); 11481 } 11482 11483 /* ARGSUSED */ 11484 static int 11485 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11486 int flags, cred_t *cr, caller_context_t *ct) 11487 { 11488 int error; 11489 rnode4_t *rp; 11490 11491 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11492 return (EIO); 11493 11494 if (pp == NULL) 11495 return (EINVAL); 11496 11497 rp = VTOR4(vp); 11498 mutex_enter(&rp->r_statelock); 11499 rp->r_count++; 11500 mutex_exit(&rp->r_statelock); 11501 11502 if (flags & B_ASYNC) { 11503 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11504 nfs4_sync_pageio); 11505 } else 11506 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11507 mutex_enter(&rp->r_statelock); 11508 rp->r_count--; 11509 cv_broadcast(&rp->r_cv); 11510 mutex_exit(&rp->r_statelock); 11511 return (error); 11512 } 11513 11514 /* ARGSUSED */ 11515 static void 11516 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11517 caller_context_t *ct) 11518 { 11519 int error; 11520 rnode4_t *rp; 11521 page_t *plist; 11522 page_t *pptr; 11523 offset3 offset; 11524 count3 len; 11525 k_sigset_t smask; 11526 11527 /* 11528 * We should get called with fl equal to either B_FREE or 11529 * B_INVAL. Any other value is illegal. 11530 * 11531 * The page that we are either supposed to free or destroy 11532 * should be exclusive locked and its io lock should not 11533 * be held. 11534 */ 11535 ASSERT(fl == B_FREE || fl == B_INVAL); 11536 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11537 11538 rp = VTOR4(vp); 11539 11540 /* 11541 * If the page doesn't need to be committed or we shouldn't 11542 * even bother attempting to commit it, then just make sure 11543 * that the p_fsdata byte is clear and then either free or 11544 * destroy the page as appropriate. 11545 */ 11546 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11547 pp->p_fsdata = C_NOCOMMIT; 11548 if (fl == B_FREE) 11549 page_free(pp, dn); 11550 else 11551 page_destroy(pp, dn); 11552 return; 11553 } 11554 11555 /* 11556 * If there is a page invalidation operation going on, then 11557 * if this is one of the pages being destroyed, then just 11558 * clear the p_fsdata byte and then either free or destroy 11559 * the page as appropriate. 11560 */ 11561 mutex_enter(&rp->r_statelock); 11562 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11563 mutex_exit(&rp->r_statelock); 11564 pp->p_fsdata = C_NOCOMMIT; 11565 if (fl == B_FREE) 11566 page_free(pp, dn); 11567 else 11568 page_destroy(pp, dn); 11569 return; 11570 } 11571 11572 /* 11573 * If we are freeing this page and someone else is already 11574 * waiting to do a commit, then just unlock the page and 11575 * return. That other thread will take care of commiting 11576 * this page. The page can be freed sometime after the 11577 * commit has finished. Otherwise, if the page is marked 11578 * as delay commit, then we may be getting called from 11579 * pvn_write_done, one page at a time. This could result 11580 * in one commit per page, so we end up doing lots of small 11581 * commits instead of fewer larger commits. This is bad, 11582 * we want do as few commits as possible. 11583 */ 11584 if (fl == B_FREE) { 11585 if (rp->r_flags & R4COMMITWAIT) { 11586 page_unlock(pp); 11587 mutex_exit(&rp->r_statelock); 11588 return; 11589 } 11590 if (pp->p_fsdata == C_DELAYCOMMIT) { 11591 pp->p_fsdata = C_COMMIT; 11592 page_unlock(pp); 11593 mutex_exit(&rp->r_statelock); 11594 return; 11595 } 11596 } 11597 11598 /* 11599 * Check to see if there is a signal which would prevent an 11600 * attempt to commit the pages from being successful. If so, 11601 * then don't bother with all of the work to gather pages and 11602 * generate the unsuccessful RPC. Just return from here and 11603 * let the page be committed at some later time. 11604 */ 11605 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11606 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11607 sigunintr(&smask); 11608 page_unlock(pp); 11609 mutex_exit(&rp->r_statelock); 11610 return; 11611 } 11612 sigunintr(&smask); 11613 11614 /* 11615 * We are starting to need to commit pages, so let's try 11616 * to commit as many as possible at once to reduce the 11617 * overhead. 11618 * 11619 * Set the `commit inprogress' state bit. We must 11620 * first wait until any current one finishes. Then 11621 * we initialize the c_pages list with this page. 11622 */ 11623 while (rp->r_flags & R4COMMIT) { 11624 rp->r_flags |= R4COMMITWAIT; 11625 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11626 rp->r_flags &= ~R4COMMITWAIT; 11627 } 11628 rp->r_flags |= R4COMMIT; 11629 mutex_exit(&rp->r_statelock); 11630 ASSERT(rp->r_commit.c_pages == NULL); 11631 rp->r_commit.c_pages = pp; 11632 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11633 rp->r_commit.c_commlen = PAGESIZE; 11634 11635 /* 11636 * Gather together all other pages which can be committed. 11637 * They will all be chained off r_commit.c_pages. 11638 */ 11639 nfs4_get_commit(vp); 11640 11641 /* 11642 * Clear the `commit inprogress' status and disconnect 11643 * the list of pages to be committed from the rnode. 11644 * At this same time, we also save the starting offset 11645 * and length of data to be committed on the server. 11646 */ 11647 plist = rp->r_commit.c_pages; 11648 rp->r_commit.c_pages = NULL; 11649 offset = rp->r_commit.c_commbase; 11650 len = rp->r_commit.c_commlen; 11651 mutex_enter(&rp->r_statelock); 11652 rp->r_flags &= ~R4COMMIT; 11653 cv_broadcast(&rp->r_commit.c_cv); 11654 mutex_exit(&rp->r_statelock); 11655 11656 if (curproc == proc_pageout || curproc == proc_fsflush || 11657 nfs_zone() != VTOMI4(vp)->mi_zone) { 11658 nfs4_async_commit(vp, plist, offset, len, 11659 cr, do_nfs4_async_commit); 11660 return; 11661 } 11662 11663 /* 11664 * Actually generate the COMMIT op over the wire operation. 11665 */ 11666 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11667 11668 /* 11669 * If we got an error during the commit, just unlock all 11670 * of the pages. The pages will get retransmitted to the 11671 * server during a putpage operation. 11672 */ 11673 if (error) { 11674 while (plist != NULL) { 11675 pptr = plist; 11676 page_sub(&plist, pptr); 11677 page_unlock(pptr); 11678 } 11679 return; 11680 } 11681 11682 /* 11683 * We've tried as hard as we can to commit the data to stable 11684 * storage on the server. We just unlock the rest of the pages 11685 * and clear the commit required state. They will be put 11686 * onto the tail of the cachelist if they are nolonger 11687 * mapped. 11688 */ 11689 while (plist != pp) { 11690 pptr = plist; 11691 page_sub(&plist, pptr); 11692 pptr->p_fsdata = C_NOCOMMIT; 11693 page_unlock(pptr); 11694 } 11695 11696 /* 11697 * It is possible that nfs4_commit didn't return error but 11698 * some other thread has modified the page we are going 11699 * to free/destroy. 11700 * In this case we need to rewrite the page. Do an explicit check 11701 * before attempting to free/destroy the page. If modified, needs to 11702 * be rewritten so unlock the page and return. 11703 */ 11704 if (hat_ismod(pp)) { 11705 pp->p_fsdata = C_NOCOMMIT; 11706 page_unlock(pp); 11707 return; 11708 } 11709 11710 /* 11711 * Now, as appropriate, either free or destroy the page 11712 * that we were called with. 11713 */ 11714 pp->p_fsdata = C_NOCOMMIT; 11715 if (fl == B_FREE) 11716 page_free(pp, dn); 11717 else 11718 page_destroy(pp, dn); 11719 } 11720 11721 /* 11722 * Commit requires that the current fh be the file written to. 11723 * The compound op structure is: 11724 * PUTFH(file), COMMIT 11725 */ 11726 static int 11727 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11728 { 11729 COMPOUND4args_clnt args; 11730 COMPOUND4res_clnt res; 11731 COMMIT4res *cm_res; 11732 nfs_argop4 argop[2]; 11733 nfs_resop4 *resop; 11734 int doqueue; 11735 mntinfo4_t *mi; 11736 rnode4_t *rp; 11737 cred_t *cred_otw = NULL; 11738 bool_t needrecov = FALSE; 11739 nfs4_recov_state_t recov_state; 11740 nfs4_open_stream_t *osp = NULL; 11741 bool_t first_time = TRUE; /* first time getting OTW cred */ 11742 bool_t last_time = FALSE; /* last time getting OTW cred */ 11743 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11744 11745 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11746 11747 rp = VTOR4(vp); 11748 11749 mi = VTOMI4(vp); 11750 recov_state.rs_flags = 0; 11751 recov_state.rs_num_retry_despite_err = 0; 11752 get_commit_cred: 11753 /* 11754 * Releases the osp, if a valid open stream is provided. 11755 * Puts a hold on the cred_otw and the new osp (if found). 11756 */ 11757 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11758 &first_time, &last_time); 11759 args.ctag = TAG_COMMIT; 11760 recov_retry: 11761 /* 11762 * Commit ops: putfh file; commit 11763 */ 11764 args.array_len = 2; 11765 args.array = argop; 11766 11767 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11768 &recov_state, NULL); 11769 if (e.error) { 11770 crfree(cred_otw); 11771 if (osp != NULL) 11772 open_stream_rele(osp, rp); 11773 return (e.error); 11774 } 11775 11776 /* putfh directory */ 11777 argop[0].argop = OP_CPUTFH; 11778 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11779 11780 /* commit */ 11781 argop[1].argop = OP_COMMIT; 11782 argop[1].nfs_argop4_u.opcommit.offset = offset; 11783 argop[1].nfs_argop4_u.opcommit.count = count; 11784 11785 doqueue = 1; 11786 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11787 11788 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11789 if (!needrecov && e.error) { 11790 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11791 needrecov); 11792 crfree(cred_otw); 11793 if (e.error == EACCES && last_time == FALSE) 11794 goto get_commit_cred; 11795 if (osp != NULL) 11796 open_stream_rele(osp, rp); 11797 return (e.error); 11798 } 11799 11800 if (needrecov) { 11801 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11802 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) { 11803 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11804 &recov_state, needrecov); 11805 if (!e.error) 11806 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11807 goto recov_retry; 11808 } 11809 if (e.error) { 11810 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11811 &recov_state, needrecov); 11812 crfree(cred_otw); 11813 if (osp != NULL) 11814 open_stream_rele(osp, rp); 11815 return (e.error); 11816 } 11817 /* fall through for res.status case */ 11818 } 11819 11820 if (res.status) { 11821 e.error = geterrno4(res.status); 11822 if (e.error == EACCES && last_time == FALSE) { 11823 crfree(cred_otw); 11824 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11825 &recov_state, needrecov); 11826 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11827 goto get_commit_cred; 11828 } 11829 /* 11830 * Can't do a nfs4_purge_stale_fh here because this 11831 * can cause a deadlock. nfs4_commit can 11832 * be called from nfs4_dispose which can be called 11833 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11834 * can call back to pvn_vplist_dirty. 11835 */ 11836 if (e.error == ESTALE) { 11837 mutex_enter(&rp->r_statelock); 11838 rp->r_flags |= R4STALE; 11839 if (!rp->r_error) 11840 rp->r_error = e.error; 11841 mutex_exit(&rp->r_statelock); 11842 PURGE_ATTRCACHE4(vp); 11843 } else { 11844 mutex_enter(&rp->r_statelock); 11845 if (!rp->r_error) 11846 rp->r_error = e.error; 11847 mutex_exit(&rp->r_statelock); 11848 } 11849 } else { 11850 ASSERT(rp->r_flags & R4HAVEVERF); 11851 resop = &res.array[1]; /* commit res */ 11852 cm_res = &resop->nfs_resop4_u.opcommit; 11853 mutex_enter(&rp->r_statelock); 11854 if (cm_res->writeverf == rp->r_writeverf) { 11855 mutex_exit(&rp->r_statelock); 11856 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11857 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11858 &recov_state, needrecov); 11859 crfree(cred_otw); 11860 if (osp != NULL) 11861 open_stream_rele(osp, rp); 11862 return (0); 11863 } 11864 nfs4_set_mod(vp); 11865 rp->r_writeverf = cm_res->writeverf; 11866 mutex_exit(&rp->r_statelock); 11867 e.error = NFS_VERF_MISMATCH; 11868 } 11869 11870 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11871 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11872 crfree(cred_otw); 11873 if (osp != NULL) 11874 open_stream_rele(osp, rp); 11875 11876 return (e.error); 11877 } 11878 11879 static void 11880 nfs4_set_mod(vnode_t *vp) 11881 { 11882 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11883 11884 /* make sure we're looking at the master vnode, not a shadow */ 11885 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check); 11886 } 11887 11888 /* 11889 * This function is used to gather a page list of the pages which 11890 * can be committed on the server. 11891 * 11892 * The calling thread must have set R4COMMIT. This bit is used to 11893 * serialize access to the commit structure in the rnode. As long 11894 * as the thread has set R4COMMIT, then it can manipulate the commit 11895 * structure without requiring any other locks. 11896 * 11897 * When this function is called from nfs4_dispose() the page passed 11898 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11899 * will skip it. This is not a problem since we initially add the 11900 * page to the r_commit page list. 11901 * 11902 */ 11903 static void 11904 nfs4_get_commit(vnode_t *vp) 11905 { 11906 rnode4_t *rp; 11907 page_t *pp; 11908 kmutex_t *vphm; 11909 11910 rp = VTOR4(vp); 11911 11912 ASSERT(rp->r_flags & R4COMMIT); 11913 11914 /* make sure we're looking at the master vnode, not a shadow */ 11915 11916 if (IS_SHADOW(vp, rp)) 11917 vp = RTOV4(rp); 11918 11919 vphm = page_vnode_mutex(vp); 11920 mutex_enter(vphm); 11921 11922 /* 11923 * If there are no pages associated with this vnode, then 11924 * just return. 11925 */ 11926 if ((pp = vp->v_pages) == NULL) { 11927 mutex_exit(vphm); 11928 return; 11929 } 11930 11931 /* 11932 * Step through all of the pages associated with this vnode 11933 * looking for pages which need to be committed. 11934 */ 11935 do { 11936 /* Skip marker pages. */ 11937 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 11938 continue; 11939 11940 /* 11941 * First short-cut everything (without the page_lock) 11942 * and see if this page does not need to be committed 11943 * or is modified if so then we'll just skip it. 11944 */ 11945 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11946 continue; 11947 11948 /* 11949 * Attempt to lock the page. If we can't, then 11950 * someone else is messing with it or we have been 11951 * called from nfs4_dispose and this is the page that 11952 * nfs4_dispose was called with.. anyway just skip it. 11953 */ 11954 if (!page_trylock(pp, SE_EXCL)) 11955 continue; 11956 11957 /* 11958 * Lets check again now that we have the page lock. 11959 */ 11960 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11961 page_unlock(pp); 11962 continue; 11963 } 11964 11965 /* this had better not be a free page */ 11966 ASSERT(PP_ISFREE(pp) == 0); 11967 11968 /* 11969 * The page needs to be committed and we locked it. 11970 * Update the base and length parameters and add it 11971 * to r_pages. 11972 */ 11973 if (rp->r_commit.c_pages == NULL) { 11974 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11975 rp->r_commit.c_commlen = PAGESIZE; 11976 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11977 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11978 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11979 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11980 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11981 <= pp->p_offset) { 11982 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11983 rp->r_commit.c_commbase + PAGESIZE; 11984 } 11985 page_add(&rp->r_commit.c_pages, pp); 11986 } while ((pp = pp->p_vpnext) != vp->v_pages); 11987 11988 mutex_exit(vphm); 11989 } 11990 11991 /* 11992 * This routine is used to gather together a page list of the pages 11993 * which are to be committed on the server. This routine must not 11994 * be called if the calling thread holds any locked pages. 11995 * 11996 * The calling thread must have set R4COMMIT. This bit is used to 11997 * serialize access to the commit structure in the rnode. As long 11998 * as the thread has set R4COMMIT, then it can manipulate the commit 11999 * structure without requiring any other locks. 12000 */ 12001 static void 12002 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 12003 { 12004 12005 rnode4_t *rp; 12006 page_t *pp; 12007 u_offset_t end; 12008 u_offset_t off; 12009 ASSERT(len != 0); 12010 rp = VTOR4(vp); 12011 ASSERT(rp->r_flags & R4COMMIT); 12012 12013 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12014 12015 /* make sure we're looking at the master vnode, not a shadow */ 12016 12017 if (IS_SHADOW(vp, rp)) 12018 vp = RTOV4(rp); 12019 12020 /* 12021 * If there are no pages associated with this vnode, then 12022 * just return. 12023 */ 12024 if ((pp = vp->v_pages) == NULL) 12025 return; 12026 /* 12027 * Calculate the ending offset. 12028 */ 12029 end = soff + len; 12030 for (off = soff; off < end; off += PAGESIZE) { 12031 /* 12032 * Lookup each page by vp, offset. 12033 */ 12034 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 12035 continue; 12036 /* 12037 * If this page does not need to be committed or is 12038 * modified, then just skip it. 12039 */ 12040 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12041 page_unlock(pp); 12042 continue; 12043 } 12044 12045 ASSERT(PP_ISFREE(pp) == 0); 12046 /* 12047 * The page needs to be committed and we locked it. 12048 * Update the base and length parameters and add it 12049 * to r_pages. 12050 */ 12051 if (rp->r_commit.c_pages == NULL) { 12052 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12053 rp->r_commit.c_commlen = PAGESIZE; 12054 } else { 12055 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12056 rp->r_commit.c_commbase + PAGESIZE; 12057 } 12058 page_add(&rp->r_commit.c_pages, pp); 12059 } 12060 } 12061 12062 /* 12063 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 12064 * Flushes and commits data to the server. 12065 */ 12066 static int 12067 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 12068 { 12069 int error; 12070 verifier4 write_verf; 12071 rnode4_t *rp = VTOR4(vp); 12072 12073 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12074 12075 /* 12076 * Flush the data portion of the file and then commit any 12077 * portions which need to be committed. This may need to 12078 * be done twice if the server has changed state since 12079 * data was last written. The data will need to be 12080 * rewritten to the server and then a new commit done. 12081 * 12082 * In fact, this may need to be done several times if the 12083 * server is having problems and crashing while we are 12084 * attempting to do this. 12085 */ 12086 12087 top: 12088 /* 12089 * Do a flush based on the poff and plen arguments. This 12090 * will synchronously write out any modified pages in the 12091 * range specified by (poff, plen). This starts all of the 12092 * i/o operations which will be waited for in the next 12093 * call to nfs4_putpage 12094 */ 12095 12096 mutex_enter(&rp->r_statelock); 12097 write_verf = rp->r_writeverf; 12098 mutex_exit(&rp->r_statelock); 12099 12100 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 12101 if (error == EAGAIN) 12102 error = 0; 12103 12104 /* 12105 * Do a flush based on the poff and plen arguments. This 12106 * will synchronously write out any modified pages in the 12107 * range specified by (poff, plen) and wait until all of 12108 * the asynchronous i/o's in that range are done as well. 12109 */ 12110 if (!error) 12111 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12112 12113 if (error) 12114 return (error); 12115 12116 mutex_enter(&rp->r_statelock); 12117 if (rp->r_writeverf != write_verf) { 12118 mutex_exit(&rp->r_statelock); 12119 goto top; 12120 } 12121 mutex_exit(&rp->r_statelock); 12122 12123 /* 12124 * Now commit any pages which might need to be committed. 12125 * If the error, NFS_VERF_MISMATCH, is returned, then 12126 * start over with the flush operation. 12127 */ 12128 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12129 12130 if (error == NFS_VERF_MISMATCH) 12131 goto top; 12132 12133 return (error); 12134 } 12135 12136 /* 12137 * nfs4_commit_vp() will wait for other pending commits and 12138 * will either commit the whole file or a range, plen dictates 12139 * if we commit whole file. a value of zero indicates the whole 12140 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12141 */ 12142 static int 12143 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12144 cred_t *cr, int wait_on_writes) 12145 { 12146 rnode4_t *rp; 12147 page_t *plist; 12148 offset3 offset; 12149 count3 len; 12150 12151 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12152 12153 rp = VTOR4(vp); 12154 12155 /* 12156 * before we gather commitable pages make 12157 * sure there are no outstanding async writes 12158 */ 12159 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12160 mutex_enter(&rp->r_statelock); 12161 while (rp->r_count > 0) { 12162 cv_wait(&rp->r_cv, &rp->r_statelock); 12163 } 12164 mutex_exit(&rp->r_statelock); 12165 } 12166 12167 /* 12168 * Set the `commit inprogress' state bit. We must 12169 * first wait until any current one finishes. 12170 */ 12171 mutex_enter(&rp->r_statelock); 12172 while (rp->r_flags & R4COMMIT) { 12173 rp->r_flags |= R4COMMITWAIT; 12174 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12175 rp->r_flags &= ~R4COMMITWAIT; 12176 } 12177 rp->r_flags |= R4COMMIT; 12178 mutex_exit(&rp->r_statelock); 12179 12180 /* 12181 * Gather all of the pages which need to be 12182 * committed. 12183 */ 12184 if (plen == 0) 12185 nfs4_get_commit(vp); 12186 else 12187 nfs4_get_commit_range(vp, poff, plen); 12188 12189 /* 12190 * Clear the `commit inprogress' bit and disconnect the 12191 * page list which was gathered by nfs4_get_commit. 12192 */ 12193 plist = rp->r_commit.c_pages; 12194 rp->r_commit.c_pages = NULL; 12195 offset = rp->r_commit.c_commbase; 12196 len = rp->r_commit.c_commlen; 12197 mutex_enter(&rp->r_statelock); 12198 rp->r_flags &= ~R4COMMIT; 12199 cv_broadcast(&rp->r_commit.c_cv); 12200 mutex_exit(&rp->r_statelock); 12201 12202 /* 12203 * If any pages need to be committed, commit them and 12204 * then unlock them so that they can be freed some 12205 * time later. 12206 */ 12207 if (plist == NULL) 12208 return (0); 12209 12210 /* 12211 * No error occurred during the flush portion 12212 * of this operation, so now attempt to commit 12213 * the data to stable storage on the server. 12214 * 12215 * This will unlock all of the pages on the list. 12216 */ 12217 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12218 } 12219 12220 static int 12221 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12222 cred_t *cr) 12223 { 12224 int error; 12225 page_t *pp; 12226 12227 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12228 12229 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12230 12231 /* 12232 * If we got an error, then just unlock all of the pages 12233 * on the list. 12234 */ 12235 if (error) { 12236 while (plist != NULL) { 12237 pp = plist; 12238 page_sub(&plist, pp); 12239 page_unlock(pp); 12240 } 12241 return (error); 12242 } 12243 /* 12244 * We've tried as hard as we can to commit the data to stable 12245 * storage on the server. We just unlock the pages and clear 12246 * the commit required state. They will get freed later. 12247 */ 12248 while (plist != NULL) { 12249 pp = plist; 12250 page_sub(&plist, pp); 12251 pp->p_fsdata = C_NOCOMMIT; 12252 page_unlock(pp); 12253 } 12254 12255 return (error); 12256 } 12257 12258 static void 12259 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12260 cred_t *cr) 12261 { 12262 12263 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12264 } 12265 12266 /*ARGSUSED*/ 12267 static int 12268 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12269 caller_context_t *ct) 12270 { 12271 int error = 0; 12272 mntinfo4_t *mi; 12273 vattr_t va; 12274 vsecattr_t nfsace4_vsap; 12275 12276 mi = VTOMI4(vp); 12277 if (nfs_zone() != mi->mi_zone) 12278 return (EIO); 12279 if (mi->mi_flags & MI4_ACL) { 12280 /* if we have a delegation, return it */ 12281 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12282 (void) nfs4delegreturn(VTOR4(vp), 12283 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12284 12285 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12286 NFS4_ACL_SET); 12287 if (error) /* EINVAL */ 12288 return (error); 12289 12290 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12291 /* 12292 * These are aclent_t type entries. 12293 */ 12294 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12295 vp->v_type == VDIR, FALSE); 12296 if (error) 12297 return (error); 12298 } else { 12299 /* 12300 * These are ace_t type entries. 12301 */ 12302 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12303 FALSE); 12304 if (error) 12305 return (error); 12306 } 12307 bzero(&va, sizeof (va)); 12308 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12309 vs_ace4_destroy(&nfsace4_vsap); 12310 return (error); 12311 } 12312 return (ENOSYS); 12313 } 12314 12315 /* ARGSUSED */ 12316 int 12317 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12318 caller_context_t *ct) 12319 { 12320 int error; 12321 mntinfo4_t *mi; 12322 nfs4_ga_res_t gar; 12323 rnode4_t *rp = VTOR4(vp); 12324 12325 mi = VTOMI4(vp); 12326 if (nfs_zone() != mi->mi_zone) 12327 return (EIO); 12328 12329 bzero(&gar, sizeof (gar)); 12330 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12331 12332 /* 12333 * vsecattr->vsa_mask holds the original acl request mask. 12334 * This is needed when determining what to return. 12335 * (See: nfs4_create_getsecattr_return()) 12336 */ 12337 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12338 if (error) /* EINVAL */ 12339 return (error); 12340 12341 /* 12342 * If this is a referral stub, don't try to go OTW for an ACL 12343 */ 12344 if (RP_ISSTUB_REFERRAL(VTOR4(vp))) 12345 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 12346 12347 if (mi->mi_flags & MI4_ACL) { 12348 /* 12349 * Check if the data is cached and the cache is valid. If it 12350 * is we don't go over the wire. 12351 */ 12352 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12353 mutex_enter(&rp->r_statelock); 12354 if (rp->r_secattr != NULL) { 12355 error = nfs4_create_getsecattr_return( 12356 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12357 rp->r_attr.va_gid, 12358 vp->v_type == VDIR); 12359 if (!error) { /* error == 0 - Success! */ 12360 mutex_exit(&rp->r_statelock); 12361 return (error); 12362 } 12363 } 12364 mutex_exit(&rp->r_statelock); 12365 } 12366 12367 /* 12368 * The getattr otw call will always get both the acl, in 12369 * the form of a list of nfsace4's, and the number of acl 12370 * entries; independent of the value of gar.n4g_va.va_mask. 12371 */ 12372 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12373 if (error) { 12374 vs_ace4_destroy(&gar.n4g_vsa); 12375 if (error == ENOTSUP || error == EOPNOTSUPP) 12376 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12377 return (error); 12378 } 12379 12380 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12381 /* 12382 * No error was returned, but according to the response 12383 * bitmap, neither was an acl. 12384 */ 12385 vs_ace4_destroy(&gar.n4g_vsa); 12386 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12387 return (error); 12388 } 12389 12390 /* 12391 * Update the cache with the ACL. 12392 */ 12393 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12394 12395 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12396 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12397 vp->v_type == VDIR); 12398 vs_ace4_destroy(&gar.n4g_vsa); 12399 if ((error) && (vsecattr->vsa_mask & 12400 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12401 (error != EACCES)) { 12402 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12403 } 12404 return (error); 12405 } 12406 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12407 return (error); 12408 } 12409 12410 /* 12411 * The function returns: 12412 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12413 * - EINVAL if the passed in "acl_mask" is an invalid request. 12414 * 12415 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12416 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12417 * 12418 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12419 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12420 * - We have a count field set without the corresponding acl field set. (e.g. - 12421 * VSA_ACECNT is set, but VSA_ACE is not) 12422 */ 12423 static int 12424 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12425 { 12426 /* Shortcut the masks that are always valid. */ 12427 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12428 return (0); 12429 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12430 return (0); 12431 12432 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12433 /* 12434 * We can't have any VSA_ACL type stuff in the mask now. 12435 */ 12436 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12437 VSA_DFACLCNT)) 12438 return (EINVAL); 12439 12440 if (op == NFS4_ACL_SET) { 12441 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12442 return (EINVAL); 12443 } 12444 } 12445 12446 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12447 /* 12448 * We can't have any VSA_ACE type stuff in the mask now. 12449 */ 12450 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12451 return (EINVAL); 12452 12453 if (op == NFS4_ACL_SET) { 12454 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12455 return (EINVAL); 12456 12457 if ((acl_mask & VSA_DFACLCNT) && 12458 !(acl_mask & VSA_DFACL)) 12459 return (EINVAL); 12460 } 12461 } 12462 return (0); 12463 } 12464 12465 /* 12466 * The theory behind creating the correct getsecattr return is simply this: 12467 * "Don't return anything that the caller is not expecting to have to free." 12468 */ 12469 static int 12470 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12471 uid_t uid, gid_t gid, int isdir) 12472 { 12473 int error = 0; 12474 /* Save the mask since the translators modify it. */ 12475 uint_t orig_mask = vsap->vsa_mask; 12476 12477 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12478 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE); 12479 12480 if (error) 12481 return (error); 12482 12483 /* 12484 * If the caller only asked for the ace count (VSA_ACECNT) 12485 * don't give them the full acl (VSA_ACE), free it. 12486 */ 12487 if (!orig_mask & VSA_ACE) { 12488 if (vsap->vsa_aclentp != NULL) { 12489 kmem_free(vsap->vsa_aclentp, 12490 vsap->vsa_aclcnt * sizeof (ace_t)); 12491 vsap->vsa_aclentp = NULL; 12492 } 12493 } 12494 vsap->vsa_mask = orig_mask; 12495 12496 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12497 VSA_DFACLCNT)) { 12498 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12499 isdir, FALSE); 12500 12501 if (error) 12502 return (error); 12503 12504 /* 12505 * If the caller only asked for the acl count (VSA_ACLCNT) 12506 * and/or the default acl count (VSA_DFACLCNT) don't give them 12507 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12508 */ 12509 if (!orig_mask & VSA_ACL) { 12510 if (vsap->vsa_aclentp != NULL) { 12511 kmem_free(vsap->vsa_aclentp, 12512 vsap->vsa_aclcnt * sizeof (aclent_t)); 12513 vsap->vsa_aclentp = NULL; 12514 } 12515 } 12516 12517 if (!orig_mask & VSA_DFACL) { 12518 if (vsap->vsa_dfaclentp != NULL) { 12519 kmem_free(vsap->vsa_dfaclentp, 12520 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12521 vsap->vsa_dfaclentp = NULL; 12522 } 12523 } 12524 vsap->vsa_mask = orig_mask; 12525 } 12526 return (0); 12527 } 12528 12529 /* ARGSUSED */ 12530 int 12531 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12532 caller_context_t *ct) 12533 { 12534 int error; 12535 12536 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12537 return (EIO); 12538 /* 12539 * check for valid cmd parameter 12540 */ 12541 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12542 return (EINVAL); 12543 12544 /* 12545 * Check access permissions 12546 */ 12547 if ((cmd & F_SHARE) && 12548 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12549 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12550 return (EBADF); 12551 12552 /* 12553 * If the filesystem is mounted using local locking, pass the 12554 * request off to the local share code. 12555 */ 12556 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12557 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12558 12559 switch (cmd) { 12560 case F_SHARE: 12561 case F_UNSHARE: 12562 /* 12563 * This will be properly implemented later, 12564 * see RFE: 4823948 . 12565 */ 12566 error = EAGAIN; 12567 break; 12568 12569 case F_HASREMOTELOCKS: 12570 /* 12571 * NFS client can't store remote locks itself 12572 */ 12573 shr->s_access = 0; 12574 error = 0; 12575 break; 12576 12577 default: 12578 error = EINVAL; 12579 break; 12580 } 12581 12582 return (error); 12583 } 12584 12585 /* 12586 * Common code called by directory ops to update the attrcache 12587 */ 12588 static int 12589 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12590 hrtime_t t, vnode_t *vp, cred_t *cr) 12591 { 12592 int error = 0; 12593 12594 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12595 12596 if (status != NFS4_OK) { 12597 /* getattr not done or failed */ 12598 PURGE_ATTRCACHE4(vp); 12599 return (error); 12600 } 12601 12602 if (garp) { 12603 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12604 } else { 12605 PURGE_ATTRCACHE4(vp); 12606 } 12607 return (error); 12608 } 12609 12610 /* 12611 * Update directory caches for directory modification ops (link, rename, etc.) 12612 * When dinfo is NULL, manage dircaches in the old way. 12613 */ 12614 static void 12615 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12616 dirattr_info_t *dinfo) 12617 { 12618 rnode4_t *drp = VTOR4(dvp); 12619 12620 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12621 12622 /* Purge rddir cache for dir since it changed */ 12623 if (drp->r_dir != NULL) 12624 nfs4_purge_rddir_cache(dvp); 12625 12626 /* 12627 * If caller provided dinfo, then use it to manage dir caches. 12628 */ 12629 if (dinfo != NULL) { 12630 if (vp != NULL) { 12631 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12632 if (!VTOR4(vp)->created_v4) { 12633 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12634 dnlc_update(dvp, nm, vp); 12635 } else { 12636 /* 12637 * XXX don't update if the created_v4 flag is 12638 * set 12639 */ 12640 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12641 NFS4_DEBUG(nfs4_client_state_debug, 12642 (CE_NOTE, "nfs4_update_dircaches: " 12643 "don't update dnlc: created_v4 flag")); 12644 } 12645 } 12646 12647 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12648 dinfo->di_cred, FALSE, cinfo); 12649 12650 return; 12651 } 12652 12653 /* 12654 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12655 * Since caller modified dir but didn't receive post-dirmod-op dir 12656 * attrs, the dir's attrs must be purged. 12657 * 12658 * XXX this check and dnlc update/purge should really be atomic, 12659 * XXX but can't use rnode statelock because it'll deadlock in 12660 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12661 * XXX does occur. 12662 * 12663 * XXX We also may want to check that atomic is true in the 12664 * XXX change_info struct. If it is not, the change_info may 12665 * XXX reflect changes by more than one clients which means that 12666 * XXX our cache may not be valid. 12667 */ 12668 PURGE_ATTRCACHE4(dvp); 12669 if (drp->r_change == cinfo->before) { 12670 /* no changes took place in the directory prior to our link */ 12671 if (vp != NULL) { 12672 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12673 if (!VTOR4(vp)->created_v4) { 12674 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12675 dnlc_update(dvp, nm, vp); 12676 } else { 12677 /* 12678 * XXX dont' update if the created_v4 flag 12679 * is set 12680 */ 12681 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12682 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12683 "nfs4_update_dircaches: don't" 12684 " update dnlc: created_v4 flag")); 12685 } 12686 } 12687 } else { 12688 /* Another client modified directory - purge its dnlc cache */ 12689 dnlc_purge_vp(dvp); 12690 } 12691 } 12692 12693 /* 12694 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12695 * file. 12696 * 12697 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12698 * file (ie: client recovery) and otherwise set to FALSE. 12699 * 12700 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12701 * initiated) calling functions. 12702 * 12703 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12704 * of resending a 'lost' open request. 12705 * 12706 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12707 * server that hands out BAD_SEQID on open confirm. 12708 * 12709 * Errors are returned via the nfs4_error_t parameter. 12710 */ 12711 void 12712 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12713 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12714 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12715 { 12716 COMPOUND4args_clnt args; 12717 COMPOUND4res_clnt res; 12718 nfs_argop4 argop[2]; 12719 nfs_resop4 *resop; 12720 int doqueue = 1; 12721 mntinfo4_t *mi; 12722 OPEN_CONFIRM4args *open_confirm_args; 12723 int needrecov; 12724 12725 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12726 #if DEBUG 12727 mutex_enter(&oop->oo_lock); 12728 ASSERT(oop->oo_seqid_inuse); 12729 mutex_exit(&oop->oo_lock); 12730 #endif 12731 12732 recov_retry_confirm: 12733 nfs4_error_zinit(ep); 12734 *retry_open = FALSE; 12735 12736 if (resend) 12737 args.ctag = TAG_OPEN_CONFIRM_LOST; 12738 else 12739 args.ctag = TAG_OPEN_CONFIRM; 12740 12741 args.array_len = 2; 12742 args.array = argop; 12743 12744 /* putfh target fh */ 12745 argop[0].argop = OP_CPUTFH; 12746 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12747 12748 argop[1].argop = OP_OPEN_CONFIRM; 12749 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12750 12751 (*seqid) += 1; 12752 open_confirm_args->seqid = *seqid; 12753 open_confirm_args->open_stateid = *stateid; 12754 12755 mi = VTOMI4(vp); 12756 12757 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12758 12759 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12760 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12761 } 12762 12763 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12764 if (!needrecov && ep->error) 12765 return; 12766 12767 if (needrecov) { 12768 bool_t abort = FALSE; 12769 12770 if (reopening_file == FALSE) { 12771 nfs4_bseqid_entry_t *bsep = NULL; 12772 12773 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12774 bsep = nfs4_create_bseqid_entry(oop, NULL, 12775 vp, 0, args.ctag, 12776 open_confirm_args->seqid); 12777 12778 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 12779 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL); 12780 if (bsep) { 12781 kmem_free(bsep, sizeof (*bsep)); 12782 if (num_bseqid_retryp && 12783 --(*num_bseqid_retryp) == 0) 12784 abort = TRUE; 12785 } 12786 } 12787 if ((ep->error == ETIMEDOUT || 12788 res.status == NFS4ERR_RESOURCE) && 12789 abort == FALSE && resend == FALSE) { 12790 if (!ep->error) 12791 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12792 12793 delay(SEC_TO_TICK(confirm_retry_sec)); 12794 goto recov_retry_confirm; 12795 } 12796 /* State may have changed so retry the entire OPEN op */ 12797 if (abort == FALSE) 12798 *retry_open = TRUE; 12799 else 12800 *retry_open = FALSE; 12801 if (!ep->error) 12802 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12803 return; 12804 } 12805 12806 if (res.status) { 12807 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12808 return; 12809 } 12810 12811 resop = &res.array[1]; /* open confirm res */ 12812 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12813 stateid, sizeof (*stateid)); 12814 12815 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12816 } 12817 12818 /* 12819 * Return the credentials associated with a client state object. The 12820 * caller is responsible for freeing the credentials. 12821 */ 12822 12823 static cred_t * 12824 state_to_cred(nfs4_open_stream_t *osp) 12825 { 12826 cred_t *cr; 12827 12828 /* 12829 * It's ok to not lock the open stream and open owner to get 12830 * the oo_cred since this is only written once (upon creation) 12831 * and will not change. 12832 */ 12833 cr = osp->os_open_owner->oo_cred; 12834 crhold(cr); 12835 12836 return (cr); 12837 } 12838 12839 /* 12840 * nfs4_find_sysid 12841 * 12842 * Find the sysid for the knetconfig associated with the given mi. 12843 */ 12844 static struct lm_sysid * 12845 nfs4_find_sysid(mntinfo4_t *mi) 12846 { 12847 ASSERT(nfs_zone() == mi->mi_zone); 12848 12849 /* 12850 * Switch from RDMA knconf to original mount knconf 12851 */ 12852 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12853 mi->mi_curr_serv->sv_hostname, NULL)); 12854 } 12855 12856 #ifdef DEBUG 12857 /* 12858 * Return a string version of the call type for easy reading. 12859 */ 12860 static char * 12861 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12862 { 12863 switch (ctype) { 12864 case NFS4_LCK_CTYPE_NORM: 12865 return ("NORMAL"); 12866 case NFS4_LCK_CTYPE_RECLAIM: 12867 return ("RECLAIM"); 12868 case NFS4_LCK_CTYPE_RESEND: 12869 return ("RESEND"); 12870 case NFS4_LCK_CTYPE_REINSTATE: 12871 return ("REINSTATE"); 12872 default: 12873 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12874 "type %d", ctype); 12875 return (""); 12876 } 12877 } 12878 #endif 12879 12880 /* 12881 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12882 * Unlock requests don't have an over-the-wire locktype, so we just return 12883 * something non-threatening. 12884 */ 12885 12886 static nfs_lock_type4 12887 flk_to_locktype(int cmd, int l_type) 12888 { 12889 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12890 12891 switch (l_type) { 12892 case F_UNLCK: 12893 return (READ_LT); 12894 case F_RDLCK: 12895 if (cmd == F_SETLK) 12896 return (READ_LT); 12897 else 12898 return (READW_LT); 12899 case F_WRLCK: 12900 if (cmd == F_SETLK) 12901 return (WRITE_LT); 12902 else 12903 return (WRITEW_LT); 12904 } 12905 panic("flk_to_locktype"); 12906 /*NOTREACHED*/ 12907 } 12908 12909 /* 12910 * Do some preliminary checks for nfs4frlock. 12911 */ 12912 static int 12913 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12914 u_offset_t offset) 12915 { 12916 int error = 0; 12917 12918 /* 12919 * If we are setting a lock, check that the file is opened 12920 * with the correct mode. 12921 */ 12922 if (cmd == F_SETLK || cmd == F_SETLKW) { 12923 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12924 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12925 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12926 "nfs4frlock_validate_args: file was opened with " 12927 "incorrect mode")); 12928 return (EBADF); 12929 } 12930 } 12931 12932 /* Convert the offset. It may need to be restored before returning. */ 12933 if (error = convoff(vp, flk, 0, offset)) { 12934 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12935 "nfs4frlock_validate_args: convoff => error= %d\n", 12936 error)); 12937 return (error); 12938 } 12939 12940 return (error); 12941 } 12942 12943 /* 12944 * Set the flock64's lm_sysid for nfs4frlock. 12945 */ 12946 static int 12947 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12948 { 12949 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12950 12951 /* Find the lm_sysid */ 12952 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12953 12954 if (*lspp == NULL) { 12955 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12956 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12957 return (ENOLCK); 12958 } 12959 12960 flk->l_sysid = lm_sysidt(*lspp); 12961 12962 return (0); 12963 } 12964 12965 /* 12966 * Do the remaining preliminary setup for nfs4frlock. 12967 */ 12968 static void 12969 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12970 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12971 cred_t **cred_otw) 12972 { 12973 /* 12974 * set tick_delay to the base delay time. 12975 * (NFS4_BASE_WAIT_TIME is in secs) 12976 */ 12977 12978 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12979 12980 /* 12981 * If lock is relative to EOF, we need the newest length of the 12982 * file. Therefore invalidate the ATTR_CACHE. 12983 */ 12984 12985 *whencep = flk->l_whence; 12986 12987 if (*whencep == 2) /* SEEK_END */ 12988 PURGE_ATTRCACHE4(vp); 12989 12990 recov_statep->rs_flags = 0; 12991 recov_statep->rs_num_retry_despite_err = 0; 12992 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12993 } 12994 12995 /* 12996 * Initialize and allocate the data structures necessary for 12997 * the nfs4frlock call. 12998 * Allocates argsp's op array. 12999 */ 13000 static void 13001 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 13002 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 13003 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 13004 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 13005 { 13006 int argoplist_size; 13007 int num_ops = 2; 13008 13009 *retry = FALSE; 13010 *did_start_fop = FALSE; 13011 *skip_get_err = FALSE; 13012 lost_rqstp->lr_op = 0; 13013 argoplist_size = num_ops * sizeof (nfs_argop4); 13014 /* fill array with zero */ 13015 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 13016 13017 *argspp = argsp; 13018 *respp = NULL; 13019 13020 argsp->array_len = num_ops; 13021 argsp->array = *argopp; 13022 13023 /* initialize in case of error; will get real value down below */ 13024 argsp->ctag = TAG_NONE; 13025 13026 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 13027 *op_hintp = OH_LOCKU; 13028 else 13029 *op_hintp = OH_OTHER; 13030 } 13031 13032 /* 13033 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 13034 * the proper nfs4_server_t for this instance of nfs4frlock. 13035 * Returns 0 (success) or an errno value. 13036 */ 13037 static int 13038 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 13039 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 13040 bool_t *did_start_fop, bool_t *startrecovp) 13041 { 13042 int error = 0; 13043 rnode4_t *rp; 13044 13045 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13046 13047 if (ctype == NFS4_LCK_CTYPE_NORM) { 13048 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 13049 recov_statep, startrecovp); 13050 if (error) 13051 return (error); 13052 *did_start_fop = TRUE; 13053 } else { 13054 *did_start_fop = FALSE; 13055 *startrecovp = FALSE; 13056 } 13057 13058 if (!error) { 13059 rp = VTOR4(vp); 13060 13061 /* If the file failed recovery, just quit. */ 13062 mutex_enter(&rp->r_statelock); 13063 if (rp->r_flags & R4RECOVERR) { 13064 error = EIO; 13065 } 13066 mutex_exit(&rp->r_statelock); 13067 } 13068 13069 return (error); 13070 } 13071 13072 /* 13073 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 13074 * resend nfs4frlock call is initiated by the recovery framework. 13075 * Acquires the lop and oop seqid synchronization. 13076 */ 13077 static void 13078 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 13079 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 13080 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13081 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 13082 { 13083 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 13084 int error; 13085 13086 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 13087 (CE_NOTE, 13088 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 13089 ASSERT(resend_rqstp != NULL); 13090 ASSERT(resend_rqstp->lr_op == OP_LOCK || 13091 resend_rqstp->lr_op == OP_LOCKU); 13092 13093 *oopp = resend_rqstp->lr_oop; 13094 if (resend_rqstp->lr_oop) { 13095 open_owner_hold(resend_rqstp->lr_oop); 13096 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 13097 ASSERT(error == 0); /* recov thread always succeeds */ 13098 } 13099 13100 /* Must resend this lost lock/locku request. */ 13101 ASSERT(resend_rqstp->lr_lop != NULL); 13102 *lopp = resend_rqstp->lr_lop; 13103 lock_owner_hold(resend_rqstp->lr_lop); 13104 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13105 ASSERT(error == 0); /* recov thread always succeeds */ 13106 13107 *ospp = resend_rqstp->lr_osp; 13108 if (*ospp) 13109 open_stream_hold(resend_rqstp->lr_osp); 13110 13111 if (resend_rqstp->lr_op == OP_LOCK) { 13112 LOCK4args *lock_args; 13113 13114 argop->argop = OP_LOCK; 13115 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13116 lock_args->locktype = resend_rqstp->lr_locktype; 13117 lock_args->reclaim = 13118 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13119 lock_args->offset = resend_rqstp->lr_flk->l_start; 13120 lock_args->length = resend_rqstp->lr_flk->l_len; 13121 if (lock_args->length == 0) 13122 lock_args->length = ~lock_args->length; 13123 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13124 mi2clientid(mi), &lock_args->locker); 13125 13126 switch (resend_rqstp->lr_ctype) { 13127 case NFS4_LCK_CTYPE_RESEND: 13128 argsp->ctag = TAG_LOCK_RESEND; 13129 break; 13130 case NFS4_LCK_CTYPE_REINSTATE: 13131 argsp->ctag = TAG_LOCK_REINSTATE; 13132 break; 13133 case NFS4_LCK_CTYPE_RECLAIM: 13134 argsp->ctag = TAG_LOCK_RECLAIM; 13135 break; 13136 default: 13137 argsp->ctag = TAG_LOCK_UNKNOWN; 13138 break; 13139 } 13140 } else { 13141 LOCKU4args *locku_args; 13142 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13143 13144 argop->argop = OP_LOCKU; 13145 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13146 locku_args->locktype = READ_LT; 13147 locku_args->seqid = lop->lock_seqid + 1; 13148 mutex_enter(&lop->lo_lock); 13149 locku_args->lock_stateid = lop->lock_stateid; 13150 mutex_exit(&lop->lo_lock); 13151 locku_args->offset = resend_rqstp->lr_flk->l_start; 13152 locku_args->length = resend_rqstp->lr_flk->l_len; 13153 if (locku_args->length == 0) 13154 locku_args->length = ~locku_args->length; 13155 13156 switch (resend_rqstp->lr_ctype) { 13157 case NFS4_LCK_CTYPE_RESEND: 13158 argsp->ctag = TAG_LOCKU_RESEND; 13159 break; 13160 case NFS4_LCK_CTYPE_REINSTATE: 13161 argsp->ctag = TAG_LOCKU_REINSTATE; 13162 break; 13163 default: 13164 argsp->ctag = TAG_LOCK_UNKNOWN; 13165 break; 13166 } 13167 } 13168 } 13169 13170 /* 13171 * Setup the LOCKT4 arguments. 13172 */ 13173 static void 13174 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13175 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13176 rnode4_t *rp) 13177 { 13178 LOCKT4args *lockt_args; 13179 13180 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13181 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13182 argop->argop = OP_LOCKT; 13183 argsp->ctag = TAG_LOCKT; 13184 lockt_args = &argop->nfs_argop4_u.oplockt; 13185 13186 /* 13187 * The locktype will be READ_LT unless it's 13188 * a write lock. We do this because the Solaris 13189 * system call allows the combination of 13190 * F_UNLCK and F_GETLK* and so in that case the 13191 * unlock is mapped to a read. 13192 */ 13193 if (flk->l_type == F_WRLCK) 13194 lockt_args->locktype = WRITE_LT; 13195 else 13196 lockt_args->locktype = READ_LT; 13197 13198 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13199 /* set the lock owner4 args */ 13200 nfs4_setlockowner_args(&lockt_args->owner, rp, 13201 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13202 flk->l_pid); 13203 lockt_args->offset = flk->l_start; 13204 lockt_args->length = flk->l_len; 13205 if (flk->l_len == 0) 13206 lockt_args->length = ~lockt_args->length; 13207 13208 *lockt_argsp = lockt_args; 13209 } 13210 13211 /* 13212 * If the client is holding a delegation, and the open stream to be used 13213 * with this lock request is a delegation open stream, then re-open the stream. 13214 * Sets the nfs4_error_t to all zeros unless the open stream has already 13215 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13216 * means the caller should retry (like a recovery retry). 13217 */ 13218 static void 13219 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13220 { 13221 open_delegation_type4 dt; 13222 bool_t reopen_needed, force; 13223 nfs4_open_stream_t *osp; 13224 open_claim_type4 oclaim; 13225 rnode4_t *rp = VTOR4(vp); 13226 mntinfo4_t *mi = VTOMI4(vp); 13227 13228 ASSERT(nfs_zone() == mi->mi_zone); 13229 13230 nfs4_error_zinit(ep); 13231 13232 mutex_enter(&rp->r_statev4_lock); 13233 dt = rp->r_deleg_type; 13234 mutex_exit(&rp->r_statev4_lock); 13235 13236 if (dt != OPEN_DELEGATE_NONE) { 13237 nfs4_open_owner_t *oop; 13238 13239 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13240 if (!oop) { 13241 ep->stat = NFS4ERR_IO; 13242 return; 13243 } 13244 /* returns with 'os_sync_lock' held */ 13245 osp = find_open_stream(oop, rp); 13246 if (!osp) { 13247 open_owner_rele(oop); 13248 ep->stat = NFS4ERR_IO; 13249 return; 13250 } 13251 13252 if (osp->os_failed_reopen) { 13253 NFS4_DEBUG((nfs4_open_stream_debug || 13254 nfs4_client_lock_debug), (CE_NOTE, 13255 "nfs4frlock_check_deleg: os_failed_reopen set " 13256 "for osp %p, cr %p, rp %s", (void *)osp, 13257 (void *)cr, rnode4info(rp))); 13258 mutex_exit(&osp->os_sync_lock); 13259 open_stream_rele(osp, rp); 13260 open_owner_rele(oop); 13261 ep->stat = NFS4ERR_IO; 13262 return; 13263 } 13264 13265 /* 13266 * Determine whether a reopen is needed. If this 13267 * is a delegation open stream, then send the open 13268 * to the server to give visibility to the open owner. 13269 * Even if it isn't a delegation open stream, we need 13270 * to check if the previous open CLAIM_DELEGATE_CUR 13271 * was sufficient. 13272 */ 13273 13274 reopen_needed = osp->os_delegation || 13275 ((lt == F_RDLCK && 13276 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13277 (lt == F_WRLCK && 13278 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13279 13280 mutex_exit(&osp->os_sync_lock); 13281 open_owner_rele(oop); 13282 13283 if (reopen_needed) { 13284 /* 13285 * Always use CLAIM_PREVIOUS after server reboot. 13286 * The server will reject CLAIM_DELEGATE_CUR if 13287 * it is used during the grace period. 13288 */ 13289 mutex_enter(&mi->mi_lock); 13290 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13291 oclaim = CLAIM_PREVIOUS; 13292 force = TRUE; 13293 } else { 13294 oclaim = CLAIM_DELEGATE_CUR; 13295 force = FALSE; 13296 } 13297 mutex_exit(&mi->mi_lock); 13298 13299 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13300 if (ep->error == EAGAIN) { 13301 nfs4_error_zinit(ep); 13302 ep->stat = NFS4ERR_DELAY; 13303 } 13304 } 13305 open_stream_rele(osp, rp); 13306 osp = NULL; 13307 } 13308 } 13309 13310 /* 13311 * Setup the LOCKU4 arguments. 13312 * Returns errors via the nfs4_error_t. 13313 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13314 * over-the-wire. The caller must release the 13315 * reference on *lopp. 13316 * NFS4ERR_DELAY caller should retry (like recovery retry) 13317 * (other) unrecoverable error. 13318 */ 13319 static void 13320 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13321 LOCKU4args **locku_argsp, flock64_t *flk, 13322 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13323 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13324 bool_t *skip_get_err, bool_t *go_otwp) 13325 { 13326 nfs4_lock_owner_t *lop = NULL; 13327 LOCKU4args *locku_args; 13328 pid_t pid; 13329 bool_t is_spec = FALSE; 13330 rnode4_t *rp = VTOR4(vp); 13331 13332 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13333 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13334 13335 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13336 if (ep->error || ep->stat) 13337 return; 13338 13339 argop->argop = OP_LOCKU; 13340 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13341 argsp->ctag = TAG_LOCKU_REINSTATE; 13342 else 13343 argsp->ctag = TAG_LOCKU; 13344 locku_args = &argop->nfs_argop4_u.oplocku; 13345 *locku_argsp = locku_args; 13346 13347 /* locktype should be set to any legal value */ 13348 locku_args->locktype = READ_LT; 13349 13350 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13351 flk->l_pid; 13352 13353 /* 13354 * Get the lock owner stateid. If no lock owner 13355 * exists, return success. 13356 */ 13357 lop = find_lock_owner(rp, pid, LOWN_ANY); 13358 *lopp = lop; 13359 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13360 is_spec = TRUE; 13361 if (!lop || is_spec) { 13362 /* 13363 * No lock owner so no locks to unlock. 13364 * Return success. If there was a failed 13365 * reclaim earlier, the lock might still be 13366 * registered with the local locking code, 13367 * so notify it of the unlock. 13368 * 13369 * If the lockowner is using a special stateid, 13370 * then the original lock request (that created 13371 * this lockowner) was never successful, so we 13372 * have no lock to undo OTW. 13373 */ 13374 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13375 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13376 "(%ld) so return success", (long)pid)); 13377 13378 if (ctype == NFS4_LCK_CTYPE_NORM) 13379 flk->l_pid = curproc->p_pid; 13380 nfs4_register_lock_locally(vp, flk, flag, offset); 13381 /* 13382 * Release our hold and NULL out so final_cleanup 13383 * doesn't try to end a lock seqid sync we 13384 * never started. 13385 */ 13386 if (is_spec) { 13387 lock_owner_rele(lop); 13388 *lopp = NULL; 13389 } 13390 *skip_get_err = TRUE; 13391 *go_otwp = FALSE; 13392 return; 13393 } 13394 13395 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13396 if (ep->error == EAGAIN) { 13397 lock_owner_rele(lop); 13398 *lopp = NULL; 13399 return; 13400 } 13401 13402 mutex_enter(&lop->lo_lock); 13403 locku_args->lock_stateid = lop->lock_stateid; 13404 mutex_exit(&lop->lo_lock); 13405 locku_args->seqid = lop->lock_seqid + 1; 13406 13407 /* leave the ref count on lop, rele after RPC call */ 13408 13409 locku_args->offset = flk->l_start; 13410 locku_args->length = flk->l_len; 13411 if (flk->l_len == 0) 13412 locku_args->length = ~locku_args->length; 13413 13414 *go_otwp = TRUE; 13415 } 13416 13417 /* 13418 * Setup the LOCK4 arguments. 13419 * 13420 * Returns errors via the nfs4_error_t. 13421 * NFS4_OK no problems 13422 * NFS4ERR_DELAY caller should retry (like recovery retry) 13423 * (other) unrecoverable error 13424 */ 13425 static void 13426 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13427 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13428 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13429 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13430 { 13431 LOCK4args *lock_args; 13432 nfs4_open_owner_t *oop = NULL; 13433 nfs4_open_stream_t *osp = NULL; 13434 nfs4_lock_owner_t *lop = NULL; 13435 pid_t pid; 13436 rnode4_t *rp = VTOR4(vp); 13437 13438 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13439 13440 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13441 if (ep->error || ep->stat != NFS4_OK) 13442 return; 13443 13444 argop->argop = OP_LOCK; 13445 if (ctype == NFS4_LCK_CTYPE_NORM) 13446 argsp->ctag = TAG_LOCK; 13447 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13448 argsp->ctag = TAG_RELOCK; 13449 else 13450 argsp->ctag = TAG_LOCK_REINSTATE; 13451 lock_args = &argop->nfs_argop4_u.oplock; 13452 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13453 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13454 /* 13455 * Get the lock owner. If no lock owner exists, 13456 * create a 'temporary' one and grab the open seqid 13457 * synchronization (which puts a hold on the open 13458 * owner and open stream). 13459 * This also grabs the lock seqid synchronization. 13460 */ 13461 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13462 ep->stat = 13463 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13464 13465 if (ep->stat != NFS4_OK) 13466 goto out; 13467 13468 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13469 &lock_args->locker); 13470 13471 lock_args->offset = flk->l_start; 13472 lock_args->length = flk->l_len; 13473 if (flk->l_len == 0) 13474 lock_args->length = ~lock_args->length; 13475 *lock_argsp = lock_args; 13476 out: 13477 *oopp = oop; 13478 *ospp = osp; 13479 *lopp = lop; 13480 } 13481 13482 /* 13483 * After we get the reply from the server, record the proper information 13484 * for possible resend lock requests. 13485 */ 13486 static void 13487 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13488 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13489 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13490 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13491 { 13492 bool_t unlock = (flk->l_type == F_UNLCK); 13493 13494 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13495 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13496 ctype == NFS4_LCK_CTYPE_REINSTATE); 13497 13498 if (error != 0 && !unlock) { 13499 NFS4_DEBUG((nfs4_lost_rqst_debug || 13500 nfs4_client_lock_debug), (CE_NOTE, 13501 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13502 " for lop %p", (void *)lop)); 13503 ASSERT(lop != NULL); 13504 mutex_enter(&lop->lo_lock); 13505 lop->lo_pending_rqsts = 1; 13506 mutex_exit(&lop->lo_lock); 13507 } 13508 13509 lost_rqstp->lr_putfirst = FALSE; 13510 lost_rqstp->lr_op = 0; 13511 13512 /* 13513 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13514 * recovery purposes so that the lock request that was sent 13515 * can be saved and re-issued later. Ditto for EIO from a forced 13516 * unmount. This is done to have the client's local locking state 13517 * match the v4 server's state; that is, the request was 13518 * potentially received and accepted by the server but the client 13519 * thinks it was not. 13520 */ 13521 if (error == ETIMEDOUT || error == EINTR || 13522 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13523 NFS4_DEBUG((nfs4_lost_rqst_debug || 13524 nfs4_client_lock_debug), (CE_NOTE, 13525 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13526 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13527 (void *)lop, (void *)oop, (void *)osp)); 13528 if (unlock) 13529 lost_rqstp->lr_op = OP_LOCKU; 13530 else { 13531 lost_rqstp->lr_op = OP_LOCK; 13532 lost_rqstp->lr_locktype = locktype; 13533 } 13534 /* 13535 * Objects are held and rele'd via the recovery code. 13536 * See nfs4_save_lost_rqst. 13537 */ 13538 lost_rqstp->lr_vp = vp; 13539 lost_rqstp->lr_dvp = NULL; 13540 lost_rqstp->lr_oop = oop; 13541 lost_rqstp->lr_osp = osp; 13542 lost_rqstp->lr_lop = lop; 13543 lost_rqstp->lr_cr = cr; 13544 switch (ctype) { 13545 case NFS4_LCK_CTYPE_NORM: 13546 flk->l_pid = ttoproc(curthread)->p_pid; 13547 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13548 break; 13549 case NFS4_LCK_CTYPE_REINSTATE: 13550 lost_rqstp->lr_putfirst = TRUE; 13551 lost_rqstp->lr_ctype = ctype; 13552 break; 13553 default: 13554 break; 13555 } 13556 lost_rqstp->lr_flk = flk; 13557 } 13558 } 13559 13560 /* 13561 * Update lop's seqid. Also update the seqid stored in a resend request, 13562 * if any. (Some recovery errors increment the seqid, and we may have to 13563 * send the resend request again.) 13564 */ 13565 13566 static void 13567 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13568 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13569 { 13570 if (lock_args) { 13571 if (lock_args->locker.new_lock_owner == TRUE) 13572 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13573 else { 13574 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13575 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13576 } 13577 } else if (locku_args) { 13578 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13579 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13580 } 13581 } 13582 13583 /* 13584 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13585 * COMPOUND4 args/res for calls that need to retry. 13586 * Switches the *cred_otwp to base_cr. 13587 */ 13588 static void 13589 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13590 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13591 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13592 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13593 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13594 { 13595 nfs4_open_owner_t *oop = *oopp; 13596 nfs4_open_stream_t *osp = *ospp; 13597 nfs4_lock_owner_t *lop = *lopp; 13598 nfs_argop4 *argop = (*argspp)->array; 13599 13600 if (*did_start_fop) { 13601 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13602 needrecov); 13603 *did_start_fop = FALSE; 13604 } 13605 ASSERT((*argspp)->array_len == 2); 13606 if (argop[1].argop == OP_LOCK) 13607 nfs4args_lock_free(&argop[1]); 13608 else if (argop[1].argop == OP_LOCKT) 13609 nfs4args_lockt_free(&argop[1]); 13610 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13611 if (!error) 13612 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13613 *argspp = NULL; 13614 *respp = NULL; 13615 13616 if (lop) { 13617 nfs4_end_lock_seqid_sync(lop); 13618 lock_owner_rele(lop); 13619 *lopp = NULL; 13620 } 13621 13622 /* need to free up the reference on osp for lock args */ 13623 if (osp != NULL) { 13624 open_stream_rele(osp, VTOR4(vp)); 13625 *ospp = NULL; 13626 } 13627 13628 /* need to free up the reference on oop for lock args */ 13629 if (oop != NULL) { 13630 nfs4_end_open_seqid_sync(oop); 13631 open_owner_rele(oop); 13632 *oopp = NULL; 13633 } 13634 13635 crfree(*cred_otwp); 13636 *cred_otwp = base_cr; 13637 crhold(*cred_otwp); 13638 } 13639 13640 /* 13641 * Function to process the client's recovery for nfs4frlock. 13642 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13643 * 13644 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13645 * COMPOUND4 args/res for calls that need to retry. 13646 * 13647 * Note: the rp's r_lkserlock is *not* dropped during this path. 13648 */ 13649 static bool_t 13650 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13651 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13652 LOCK4args *lock_args, LOCKU4args *locku_args, 13653 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13654 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13655 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13656 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13657 { 13658 nfs4_open_owner_t *oop = *oopp; 13659 nfs4_open_stream_t *osp = *ospp; 13660 nfs4_lock_owner_t *lop = *lopp; 13661 13662 bool_t abort, retry; 13663 13664 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13665 ASSERT((*argspp) != NULL); 13666 ASSERT((*respp) != NULL); 13667 if (lock_args || locku_args) 13668 ASSERT(lop != NULL); 13669 13670 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13671 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13672 13673 retry = TRUE; 13674 abort = FALSE; 13675 if (needrecov) { 13676 nfs4_bseqid_entry_t *bsep = NULL; 13677 nfs_opnum4 op; 13678 13679 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13680 13681 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13682 seqid4 seqid; 13683 13684 if (lock_args) { 13685 if (lock_args->locker.new_lock_owner == TRUE) 13686 seqid = lock_args->locker.locker4_u. 13687 open_owner.open_seqid; 13688 else 13689 seqid = lock_args->locker.locker4_u. 13690 lock_owner.lock_seqid; 13691 } else if (locku_args) { 13692 seqid = locku_args->seqid; 13693 } else { 13694 seqid = 0; 13695 } 13696 13697 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13698 flk->l_pid, (*argspp)->ctag, seqid); 13699 } 13700 13701 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13702 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13703 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13704 NULL, op, bsep, NULL, NULL); 13705 13706 if (bsep) 13707 kmem_free(bsep, sizeof (*bsep)); 13708 } 13709 13710 /* 13711 * Return that we do not want to retry the request for 3 cases: 13712 * 1. If we received EINTR or are bailing out because of a forced 13713 * unmount, we came into this code path just for the sake of 13714 * initiating recovery, we now need to return the error. 13715 * 2. If we have aborted recovery. 13716 * 3. We received NFS4ERR_BAD_SEQID. 13717 */ 13718 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13719 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13720 retry = FALSE; 13721 13722 if (*did_start_fop == TRUE) { 13723 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13724 needrecov); 13725 *did_start_fop = FALSE; 13726 } 13727 13728 if (retry == TRUE) { 13729 nfs_argop4 *argop; 13730 13731 argop = (*argspp)->array; 13732 ASSERT((*argspp)->array_len == 2); 13733 13734 if (argop[1].argop == OP_LOCK) 13735 nfs4args_lock_free(&argop[1]); 13736 else if (argop[1].argop == OP_LOCKT) 13737 nfs4args_lockt_free(&argop[1]); 13738 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13739 if (!ep->error) 13740 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13741 *respp = NULL; 13742 *argspp = NULL; 13743 } 13744 13745 if (lop != NULL) { 13746 nfs4_end_lock_seqid_sync(lop); 13747 lock_owner_rele(lop); 13748 } 13749 13750 *lopp = NULL; 13751 13752 /* need to free up the reference on osp for lock args */ 13753 if (osp != NULL) { 13754 open_stream_rele(osp, rp); 13755 *ospp = NULL; 13756 } 13757 13758 /* need to free up the reference on oop for lock args */ 13759 if (oop != NULL) { 13760 nfs4_end_open_seqid_sync(oop); 13761 open_owner_rele(oop); 13762 *oopp = NULL; 13763 } 13764 13765 return (retry); 13766 } 13767 13768 /* 13769 * Handles the successful reply from the server for nfs4frlock. 13770 */ 13771 static void 13772 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13773 vnode_t *vp, int flag, u_offset_t offset, 13774 nfs4_lost_rqst_t *resend_rqstp) 13775 { 13776 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13777 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13778 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13779 if (ctype == NFS4_LCK_CTYPE_NORM) { 13780 flk->l_pid = ttoproc(curthread)->p_pid; 13781 /* 13782 * We do not register lost locks locally in 13783 * the 'resend' case since the user/application 13784 * doesn't think we have the lock. 13785 */ 13786 ASSERT(!resend_rqstp); 13787 nfs4_register_lock_locally(vp, flk, flag, offset); 13788 } 13789 } 13790 } 13791 13792 /* 13793 * Handle the DENIED reply from the server for nfs4frlock. 13794 * Returns TRUE if we should retry the request; FALSE otherwise. 13795 * 13796 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13797 * COMPOUND4 args/res for calls that need to retry. Can also 13798 * drop and regrab the r_lkserlock. 13799 */ 13800 static bool_t 13801 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13802 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13803 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13804 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13805 nfs4_recov_state_t *recov_statep, int needrecov, 13806 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13807 clock_t *tick_delayp, short *whencep, int *errorp, 13808 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13809 bool_t *skip_get_err) 13810 { 13811 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13812 13813 if (lock_args) { 13814 nfs4_open_owner_t *oop = *oopp; 13815 nfs4_open_stream_t *osp = *ospp; 13816 nfs4_lock_owner_t *lop = *lopp; 13817 int intr; 13818 13819 /* 13820 * Blocking lock needs to sleep and retry from the request. 13821 * 13822 * Do not block and wait for 'resend' or 'reinstate' 13823 * lock requests, just return the error. 13824 * 13825 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13826 */ 13827 if (cmd == F_SETLKW) { 13828 rnode4_t *rp = VTOR4(vp); 13829 nfs_argop4 *argop = (*argspp)->array; 13830 13831 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13832 13833 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13834 recov_statep, needrecov); 13835 *did_start_fop = FALSE; 13836 ASSERT((*argspp)->array_len == 2); 13837 if (argop[1].argop == OP_LOCK) 13838 nfs4args_lock_free(&argop[1]); 13839 else if (argop[1].argop == OP_LOCKT) 13840 nfs4args_lockt_free(&argop[1]); 13841 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13842 if (*respp) 13843 xdr_free(xdr_COMPOUND4res_clnt, 13844 (caddr_t)*respp); 13845 *argspp = NULL; 13846 *respp = NULL; 13847 nfs4_end_lock_seqid_sync(lop); 13848 lock_owner_rele(lop); 13849 *lopp = NULL; 13850 if (osp != NULL) { 13851 open_stream_rele(osp, rp); 13852 *ospp = NULL; 13853 } 13854 if (oop != NULL) { 13855 nfs4_end_open_seqid_sync(oop); 13856 open_owner_rele(oop); 13857 *oopp = NULL; 13858 } 13859 13860 nfs_rw_exit(&rp->r_lkserlock); 13861 13862 intr = nfs4_block_and_wait(tick_delayp, rp); 13863 13864 if (intr) { 13865 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13866 RW_WRITER, FALSE); 13867 *errorp = EINTR; 13868 return (FALSE); 13869 } 13870 13871 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13872 RW_WRITER, FALSE); 13873 13874 /* 13875 * Make sure we are still safe to lock with 13876 * regards to mmapping. 13877 */ 13878 if (!nfs4_safelock(vp, flk, cr)) { 13879 *errorp = EAGAIN; 13880 return (FALSE); 13881 } 13882 13883 return (TRUE); 13884 } 13885 if (ctype == NFS4_LCK_CTYPE_NORM) 13886 *errorp = EAGAIN; 13887 *skip_get_err = TRUE; 13888 flk->l_whence = 0; 13889 *whencep = 0; 13890 return (FALSE); 13891 } else if (lockt_args) { 13892 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13893 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13894 13895 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13896 flk, lockt_args); 13897 13898 /* according to NLM code */ 13899 *errorp = 0; 13900 *whencep = 0; 13901 *skip_get_err = TRUE; 13902 return (FALSE); 13903 } 13904 return (FALSE); 13905 } 13906 13907 /* 13908 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13909 */ 13910 static void 13911 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13912 { 13913 switch (resp->status) { 13914 case NFS4ERR_ACCESS: 13915 case NFS4ERR_ADMIN_REVOKED: 13916 case NFS4ERR_BADHANDLE: 13917 case NFS4ERR_BAD_RANGE: 13918 case NFS4ERR_BAD_SEQID: 13919 case NFS4ERR_BAD_STATEID: 13920 case NFS4ERR_BADXDR: 13921 case NFS4ERR_DEADLOCK: 13922 case NFS4ERR_DELAY: 13923 case NFS4ERR_EXPIRED: 13924 case NFS4ERR_FHEXPIRED: 13925 case NFS4ERR_GRACE: 13926 case NFS4ERR_INVAL: 13927 case NFS4ERR_ISDIR: 13928 case NFS4ERR_LEASE_MOVED: 13929 case NFS4ERR_LOCK_NOTSUPP: 13930 case NFS4ERR_LOCK_RANGE: 13931 case NFS4ERR_MOVED: 13932 case NFS4ERR_NOFILEHANDLE: 13933 case NFS4ERR_NO_GRACE: 13934 case NFS4ERR_OLD_STATEID: 13935 case NFS4ERR_OPENMODE: 13936 case NFS4ERR_RECLAIM_BAD: 13937 case NFS4ERR_RECLAIM_CONFLICT: 13938 case NFS4ERR_RESOURCE: 13939 case NFS4ERR_SERVERFAULT: 13940 case NFS4ERR_STALE: 13941 case NFS4ERR_STALE_CLIENTID: 13942 case NFS4ERR_STALE_STATEID: 13943 return; 13944 default: 13945 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13946 "nfs4frlock_results_default: got unrecognizable " 13947 "res.status %d", resp->status)); 13948 *errorp = NFS4ERR_INVAL; 13949 } 13950 } 13951 13952 /* 13953 * The lock request was successful, so update the client's state. 13954 */ 13955 static void 13956 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13957 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13958 vnode_t *vp, flock64_t *flk, cred_t *cr, 13959 nfs4_lost_rqst_t *resend_rqstp) 13960 { 13961 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13962 13963 if (lock_args) { 13964 LOCK4res *lock_res; 13965 13966 lock_res = &resop->nfs_resop4_u.oplock; 13967 /* update the stateid with server's response */ 13968 13969 if (lock_args->locker.new_lock_owner == TRUE) { 13970 mutex_enter(&lop->lo_lock); 13971 lop->lo_just_created = NFS4_PERM_CREATED; 13972 mutex_exit(&lop->lo_lock); 13973 } 13974 13975 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13976 13977 /* 13978 * If the lock was the result of a resending a lost 13979 * request, we've synched up the stateid and seqid 13980 * with the server, but now the server might be out of sync 13981 * with what the application thinks it has for locks. 13982 * Clean that up here. It's unclear whether we should do 13983 * this even if the filesystem has been forcibly unmounted. 13984 * For most servers, it's probably wasted effort, but 13985 * RFC 7530 lets servers require that unlocks exactly match 13986 * the locks that are held. 13987 */ 13988 if (resend_rqstp != NULL && 13989 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13990 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13991 } else { 13992 flk->l_whence = 0; 13993 } 13994 } else if (locku_args) { 13995 LOCKU4res *locku_res; 13996 13997 locku_res = &resop->nfs_resop4_u.oplocku; 13998 13999 /* Update the stateid with the server's response */ 14000 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 14001 } else if (lockt_args) { 14002 /* Switch the lock type to express success, see fcntl */ 14003 flk->l_type = F_UNLCK; 14004 flk->l_whence = 0; 14005 } 14006 } 14007 14008 /* 14009 * Do final cleanup before exiting nfs4frlock. 14010 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 14011 * COMPOUND4 args/res for calls that haven't already. 14012 */ 14013 static void 14014 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 14015 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 14016 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 14017 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 14018 short whence, u_offset_t offset, struct lm_sysid *ls, 14019 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 14020 bool_t did_start_fop, bool_t skip_get_err, 14021 cred_t *cred_otw, cred_t *cred) 14022 { 14023 mntinfo4_t *mi = VTOMI4(vp); 14024 rnode4_t *rp = VTOR4(vp); 14025 int error = *errorp; 14026 nfs_argop4 *argop; 14027 int do_flush_pages = 0; 14028 14029 ASSERT(nfs_zone() == mi->mi_zone); 14030 /* 14031 * The client recovery code wants the raw status information, 14032 * so don't map the NFS status code to an errno value for 14033 * non-normal call types. 14034 */ 14035 if (ctype == NFS4_LCK_CTYPE_NORM) { 14036 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 14037 *errorp = geterrno4(resp->status); 14038 if (did_start_fop == TRUE) 14039 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 14040 needrecov); 14041 14042 /* 14043 * We've established a new lock on the server, so invalidate 14044 * the pages associated with the vnode to get the most up to 14045 * date pages from the server after acquiring the lock. We 14046 * want to be sure that the read operation gets the newest data. 14047 * N.B. 14048 * We used to do this in nfs4frlock_results_ok but that doesn't 14049 * work since VOP_PUTPAGE can call nfs4_commit which calls 14050 * nfs4_start_fop. We flush the pages below after calling 14051 * nfs4_end_fop above 14052 * The flush of the page cache must be done after 14053 * nfs4_end_open_seqid_sync() to avoid a 4-way hang. 14054 */ 14055 if (!error && resp && resp->status == NFS4_OK) 14056 do_flush_pages = 1; 14057 } 14058 if (argsp) { 14059 ASSERT(argsp->array_len == 2); 14060 argop = argsp->array; 14061 if (argop[1].argop == OP_LOCK) 14062 nfs4args_lock_free(&argop[1]); 14063 else if (argop[1].argop == OP_LOCKT) 14064 nfs4args_lockt_free(&argop[1]); 14065 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14066 if (resp) 14067 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 14068 } 14069 14070 /* free the reference on the lock owner */ 14071 if (lop != NULL) { 14072 nfs4_end_lock_seqid_sync(lop); 14073 lock_owner_rele(lop); 14074 } 14075 14076 /* need to free up the reference on osp for lock args */ 14077 if (osp != NULL) 14078 open_stream_rele(osp, rp); 14079 14080 /* need to free up the reference on oop for lock args */ 14081 if (oop != NULL) { 14082 nfs4_end_open_seqid_sync(oop); 14083 open_owner_rele(oop); 14084 } 14085 14086 if (do_flush_pages) 14087 nfs4_flush_pages(vp, cred); 14088 14089 (void) convoff(vp, flk, whence, offset); 14090 14091 lm_rel_sysid(ls); 14092 14093 /* 14094 * Record debug information in the event we get EINVAL. 14095 */ 14096 mutex_enter(&mi->mi_lock); 14097 if (*errorp == EINVAL && (lock_args || locku_args) && 14098 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14099 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14100 zcmn_err(getzoneid(), CE_NOTE, 14101 "%s operation failed with " 14102 "EINVAL probably since the server, %s," 14103 " doesn't support POSIX style locking", 14104 lock_args ? "LOCK" : "LOCKU", 14105 mi->mi_curr_serv->sv_hostname); 14106 mi->mi_flags |= MI4_LOCK_DEBUG; 14107 } 14108 } 14109 mutex_exit(&mi->mi_lock); 14110 14111 if (cred_otw) 14112 crfree(cred_otw); 14113 } 14114 14115 /* 14116 * This calls the server and the local locking code. 14117 * 14118 * Client locks are registerred locally by oring the sysid with 14119 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14120 * We need to distinguish between the two to avoid collision in case one 14121 * machine is used as both client and server. 14122 * 14123 * Blocking lock requests will continually retry to acquire the lock 14124 * forever. 14125 * 14126 * The ctype is defined as follows: 14127 * NFS4_LCK_CTYPE_NORM: normal lock request. 14128 * 14129 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14130 * recovery, get the pid from flk instead of curproc, and don't reregister 14131 * the lock locally. 14132 * 14133 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14134 * that we will use the information passed in via resend_rqstp to setup the 14135 * lock/locku request. This resend is the exact same request as the 'lost 14136 * lock', and is initiated by the recovery framework. A successful resend 14137 * request can initiate one or more reinstate requests. 14138 * 14139 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14140 * does not trigger additional reinstate requests. This lock call type is 14141 * set for setting the v4 server's locking state back to match what the 14142 * client's local locking state is in the event of a received 'lost lock'. 14143 * 14144 * Errors are returned via the nfs4_error_t parameter. 14145 */ 14146 void 14147 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14148 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14149 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14150 { 14151 COMPOUND4args_clnt args, *argsp = NULL; 14152 COMPOUND4res_clnt res, *resp = NULL; 14153 nfs_argop4 *argop; 14154 nfs_resop4 *resop; 14155 rnode4_t *rp; 14156 int doqueue = 1; 14157 clock_t tick_delay; /* delay in clock ticks */ 14158 struct lm_sysid *ls; 14159 LOCK4args *lock_args = NULL; 14160 LOCKU4args *locku_args = NULL; 14161 LOCKT4args *lockt_args = NULL; 14162 nfs4_open_owner_t *oop = NULL; 14163 nfs4_open_stream_t *osp = NULL; 14164 nfs4_lock_owner_t *lop = NULL; 14165 bool_t needrecov = FALSE; 14166 nfs4_recov_state_t recov_state; 14167 short whence; 14168 nfs4_op_hint_t op_hint; 14169 nfs4_lost_rqst_t lost_rqst; 14170 bool_t retry = FALSE; 14171 bool_t did_start_fop = FALSE; 14172 bool_t skip_get_err = FALSE; 14173 cred_t *cred_otw = NULL; 14174 bool_t recovonly; /* just queue request */ 14175 int frc_no_reclaim = 0; 14176 #ifdef DEBUG 14177 char *name; 14178 #endif 14179 14180 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14181 14182 #ifdef DEBUG 14183 name = fn_name(VTOSV(vp)->sv_name); 14184 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14185 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14186 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14187 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14188 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14189 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14190 resend_rqstp ? "TRUE" : "FALSE")); 14191 kmem_free(name, MAXNAMELEN); 14192 #endif 14193 14194 nfs4_error_zinit(ep); 14195 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14196 if (ep->error) 14197 return; 14198 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14199 if (ep->error) 14200 return; 14201 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14202 vp, cr, &cred_otw); 14203 14204 recov_retry: 14205 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14206 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14207 rp = VTOR4(vp); 14208 14209 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14210 &did_start_fop, &recovonly); 14211 14212 if (ep->error) 14213 goto out; 14214 14215 if (recovonly) { 14216 /* 14217 * Leave the request for the recovery system to deal with. 14218 */ 14219 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14220 ASSERT(cmd != F_GETLK); 14221 ASSERT(flk->l_type == F_UNLCK); 14222 14223 nfs4_error_init(ep, EINTR); 14224 needrecov = TRUE; 14225 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14226 if (lop != NULL) { 14227 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14228 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14229 (void) nfs4_start_recovery(ep, 14230 VTOMI4(vp), vp, NULL, NULL, 14231 (lost_rqst.lr_op == OP_LOCK || 14232 lost_rqst.lr_op == OP_LOCKU) ? 14233 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL); 14234 lock_owner_rele(lop); 14235 lop = NULL; 14236 } 14237 flk->l_pid = curproc->p_pid; 14238 nfs4_register_lock_locally(vp, flk, flag, offset); 14239 goto out; 14240 } 14241 14242 /* putfh directory fh */ 14243 argop[0].argop = OP_CPUTFH; 14244 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14245 14246 /* 14247 * Set up the over-the-wire arguments and get references to the 14248 * open owner, etc. 14249 */ 14250 14251 if (ctype == NFS4_LCK_CTYPE_RESEND || 14252 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14253 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14254 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14255 } else { 14256 bool_t go_otw = TRUE; 14257 14258 ASSERT(resend_rqstp == NULL); 14259 14260 switch (cmd) { 14261 case F_GETLK: 14262 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14263 &lockt_args, argsp, flk, rp); 14264 break; 14265 case F_SETLKW: 14266 case F_SETLK: 14267 if (flk->l_type == F_UNLCK) 14268 nfs4frlock_setup_locku_args(ctype, 14269 &argop[1], &locku_args, flk, 14270 &lop, ep, argsp, 14271 vp, flag, offset, cr, 14272 &skip_get_err, &go_otw); 14273 else 14274 nfs4frlock_setup_lock_args(ctype, 14275 &lock_args, &oop, &osp, &lop, &argop[1], 14276 argsp, flk, cmd, vp, cr, ep); 14277 14278 if (ep->error) 14279 goto out; 14280 14281 switch (ep->stat) { 14282 case NFS4_OK: 14283 break; 14284 case NFS4ERR_DELAY: 14285 /* recov thread never gets this error */ 14286 ASSERT(resend_rqstp == NULL); 14287 ASSERT(did_start_fop); 14288 14289 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14290 &recov_state, TRUE); 14291 did_start_fop = FALSE; 14292 if (argop[1].argop == OP_LOCK) 14293 nfs4args_lock_free(&argop[1]); 14294 else if (argop[1].argop == OP_LOCKT) 14295 nfs4args_lockt_free(&argop[1]); 14296 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14297 argsp = NULL; 14298 goto recov_retry; 14299 default: 14300 ep->error = EIO; 14301 goto out; 14302 } 14303 break; 14304 default: 14305 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14306 "nfs4_frlock: invalid cmd %d", cmd)); 14307 ep->error = EINVAL; 14308 goto out; 14309 } 14310 14311 if (!go_otw) 14312 goto out; 14313 } 14314 14315 /* XXX should we use the local reclock as a cache ? */ 14316 /* 14317 * Unregister the lock with the local locking code before 14318 * contacting the server. This avoids a potential race where 14319 * another process gets notified that it has been granted a lock 14320 * before we can unregister ourselves locally. 14321 */ 14322 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14323 if (ctype == NFS4_LCK_CTYPE_NORM) 14324 flk->l_pid = ttoproc(curthread)->p_pid; 14325 nfs4_register_lock_locally(vp, flk, flag, offset); 14326 } 14327 14328 /* 14329 * Send the server the lock request. Continually loop with a delay 14330 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14331 */ 14332 resp = &res; 14333 14334 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14335 (CE_NOTE, 14336 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14337 rnode4info(rp))); 14338 14339 if (lock_args && frc_no_reclaim) { 14340 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14341 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14342 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14343 lock_args->reclaim = FALSE; 14344 if (did_reclaimp) 14345 *did_reclaimp = 0; 14346 } 14347 14348 /* 14349 * Do the OTW call. 14350 */ 14351 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14352 14353 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14354 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14355 14356 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14357 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14358 "nfs4frlock: needrecov %d", needrecov)); 14359 14360 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14361 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14362 args.ctag); 14363 14364 /* 14365 * Check if one of these mutually exclusive error cases has 14366 * happened: 14367 * need to swap credentials due to access error 14368 * recovery is needed 14369 * different error (only known case is missing Kerberos ticket) 14370 */ 14371 14372 if ((ep->error == EACCES || 14373 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14374 cred_otw != cr) { 14375 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14376 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14377 cr, &cred_otw); 14378 goto recov_retry; 14379 } 14380 14381 if (needrecov) { 14382 /* 14383 * LOCKT requests don't need to recover from lost 14384 * requests since they don't create/modify state. 14385 */ 14386 if ((ep->error == EINTR || 14387 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14388 lockt_args) 14389 goto out; 14390 /* 14391 * Do not attempt recovery for requests initiated by 14392 * the recovery framework. Let the framework redrive them. 14393 */ 14394 if (ctype != NFS4_LCK_CTYPE_NORM) 14395 goto out; 14396 else { 14397 ASSERT(resend_rqstp == NULL); 14398 } 14399 14400 nfs4frlock_save_lost_rqst(ctype, ep->error, 14401 flk_to_locktype(cmd, flk->l_type), 14402 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14403 14404 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14405 &resp, lock_args, locku_args, &oop, &osp, &lop, 14406 rp, vp, &recov_state, op_hint, &did_start_fop, 14407 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14408 14409 if (retry) { 14410 ASSERT(oop == NULL); 14411 ASSERT(osp == NULL); 14412 ASSERT(lop == NULL); 14413 goto recov_retry; 14414 } 14415 goto out; 14416 } 14417 14418 /* 14419 * Bail out if have reached this point with ep->error set. Can 14420 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14421 * This happens if Kerberos ticket has expired or has been 14422 * destroyed. 14423 */ 14424 if (ep->error != 0) 14425 goto out; 14426 14427 /* 14428 * Process the reply. 14429 */ 14430 switch (resp->status) { 14431 case NFS4_OK: 14432 resop = &resp->array[1]; 14433 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14434 resend_rqstp); 14435 /* 14436 * Have a successful lock operation, now update state. 14437 */ 14438 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14439 resop, lop, vp, flk, cr, resend_rqstp); 14440 break; 14441 14442 case NFS4ERR_DENIED: 14443 resop = &resp->array[1]; 14444 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14445 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14446 &recov_state, needrecov, &argsp, &resp, 14447 &tick_delay, &whence, &ep->error, resop, cr, 14448 &did_start_fop, &skip_get_err); 14449 14450 if (retry) { 14451 ASSERT(oop == NULL); 14452 ASSERT(osp == NULL); 14453 ASSERT(lop == NULL); 14454 goto recov_retry; 14455 } 14456 break; 14457 /* 14458 * If the server won't let us reclaim, fall-back to trying to lock 14459 * the file from scratch. Code elsewhere will check the changeinfo 14460 * to ensure the file hasn't been changed. 14461 */ 14462 case NFS4ERR_NO_GRACE: 14463 if (lock_args && lock_args->reclaim == TRUE) { 14464 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14465 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14466 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14467 frc_no_reclaim = 1; 14468 /* clean up before retrying */ 14469 needrecov = 0; 14470 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14471 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14472 &recov_state, op_hint, &did_start_fop, NULL, flk); 14473 goto recov_retry; 14474 } 14475 /* FALLTHROUGH */ 14476 14477 default: 14478 nfs4frlock_results_default(resp, &ep->error); 14479 break; 14480 } 14481 out: 14482 /* 14483 * Process and cleanup from error. Make interrupted unlock 14484 * requests look successful, since they will be handled by the 14485 * client recovery code. 14486 */ 14487 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14488 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14489 lock_args, locku_args, did_start_fop, 14490 skip_get_err, cred_otw, cr); 14491 14492 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14493 (cmd == F_SETLK || cmd == F_SETLKW)) 14494 ep->error = 0; 14495 } 14496 14497 /* 14498 * nfs4_safelock: 14499 * 14500 * Return non-zero if the given lock request can be handled without 14501 * violating the constraints on concurrent mapping and locking. 14502 */ 14503 14504 static int 14505 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14506 { 14507 rnode4_t *rp = VTOR4(vp); 14508 struct vattr va; 14509 int error; 14510 14511 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14512 ASSERT(rp->r_mapcnt >= 0); 14513 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14514 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14515 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14516 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14517 14518 if (rp->r_mapcnt == 0) 14519 return (1); /* always safe if not mapped */ 14520 14521 /* 14522 * If the file is already mapped and there are locks, then they 14523 * should be all safe locks. So adding or removing a lock is safe 14524 * as long as the new request is safe (i.e., whole-file, meaning 14525 * length and starting offset are both zero). 14526 */ 14527 14528 if (bfp->l_start != 0 || bfp->l_len != 0) { 14529 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14530 "cannot lock a memory mapped file unless locking the " 14531 "entire file: start %"PRIx64", len %"PRIx64, 14532 bfp->l_start, bfp->l_len)); 14533 return (0); 14534 } 14535 14536 /* mandatory locking and mapping don't mix */ 14537 va.va_mask = AT_MODE; 14538 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14539 if (error != 0) { 14540 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14541 "getattr error %d", error)); 14542 return (0); /* treat errors conservatively */ 14543 } 14544 if (MANDLOCK(vp, va.va_mode)) { 14545 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14546 "cannot mandatory lock and mmap a file")); 14547 return (0); 14548 } 14549 14550 return (1); 14551 } 14552 14553 14554 /* 14555 * Register the lock locally within Solaris. 14556 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14557 * recording locks locally. 14558 * 14559 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14560 * are registered locally. 14561 */ 14562 void 14563 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14564 u_offset_t offset) 14565 { 14566 int oldsysid; 14567 int error; 14568 #ifdef DEBUG 14569 char *name; 14570 #endif 14571 14572 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14573 14574 #ifdef DEBUG 14575 name = fn_name(VTOSV(vp)->sv_name); 14576 NFS4_DEBUG(nfs4_client_lock_debug, 14577 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14578 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14579 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14580 flk->l_sysid)); 14581 kmem_free(name, MAXNAMELEN); 14582 #endif 14583 14584 /* register the lock with local locking */ 14585 oldsysid = flk->l_sysid; 14586 flk->l_sysid |= LM_SYSID_CLIENT; 14587 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14588 #ifdef DEBUG 14589 if (error != 0) { 14590 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14591 "nfs4_register_lock_locally: could not register with" 14592 " local locking")); 14593 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14594 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14595 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14596 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14597 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14598 flk->l_type, flk->l_start, flk->l_len)); 14599 (void) reclock(vp, flk, 0, flag, offset, NULL); 14600 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14601 "blocked by pid %d sysid 0x%x type %d " 14602 "off 0x%" PRIx64 " len 0x%" PRIx64, 14603 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14604 flk->l_len)); 14605 } 14606 #endif 14607 flk->l_sysid = oldsysid; 14608 } 14609 14610 /* 14611 * nfs4_lockrelease: 14612 * 14613 * Release any locks on the given vnode that are held by the current 14614 * process. Also removes the lock owner (if one exists) from the rnode's 14615 * list. 14616 */ 14617 static int 14618 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14619 { 14620 flock64_t ld; 14621 int ret, error; 14622 rnode4_t *rp; 14623 nfs4_lock_owner_t *lop; 14624 nfs4_recov_state_t recov_state; 14625 mntinfo4_t *mi; 14626 bool_t possible_orphan = FALSE; 14627 bool_t recovonly; 14628 14629 ASSERT((uintptr_t)vp > KERNELBASE); 14630 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14631 14632 rp = VTOR4(vp); 14633 mi = VTOMI4(vp); 14634 14635 /* 14636 * If we have not locked anything then we can 14637 * just return since we have no work to do. 14638 */ 14639 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14640 return (0); 14641 } 14642 14643 /* 14644 * We need to comprehend that another thread may 14645 * kick off recovery and the lock_owner we have stashed 14646 * in lop might be invalid so we should NOT cache it 14647 * locally! 14648 */ 14649 recov_state.rs_flags = 0; 14650 recov_state.rs_num_retry_despite_err = 0; 14651 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14652 &recovonly); 14653 if (error) { 14654 mutex_enter(&rp->r_statelock); 14655 rp->r_flags |= R4LODANGLERS; 14656 mutex_exit(&rp->r_statelock); 14657 return (error); 14658 } 14659 14660 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14661 14662 /* 14663 * Check if the lock owner might have a lock (request was sent but 14664 * no response was received). Also check if there are any remote 14665 * locks on the file. (In theory we shouldn't have to make this 14666 * second check if there's no lock owner, but for now we'll be 14667 * conservative and do it anyway.) If either condition is true, 14668 * send an unlock for the entire file to the server. 14669 * 14670 * Note that no explicit synchronization is needed here. At worst, 14671 * flk_has_remote_locks() will return a false positive, in which case 14672 * the unlock call wastes time but doesn't harm correctness. 14673 */ 14674 14675 if (lop) { 14676 mutex_enter(&lop->lo_lock); 14677 possible_orphan = lop->lo_pending_rqsts; 14678 mutex_exit(&lop->lo_lock); 14679 lock_owner_rele(lop); 14680 } 14681 14682 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14683 14684 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14685 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14686 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14687 (void *)lop)); 14688 14689 if (possible_orphan || flk_has_remote_locks(vp)) { 14690 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14691 ld.l_whence = 0; /* unlock from start of file */ 14692 ld.l_start = 0; 14693 ld.l_len = 0; /* do entire file */ 14694 14695 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14696 cr, NULL); 14697 14698 if (ret != 0) { 14699 /* 14700 * If VOP_FRLOCK fails, make sure we unregister 14701 * local locks before we continue. 14702 */ 14703 ld.l_pid = ttoproc(curthread)->p_pid; 14704 nfs4_register_lock_locally(vp, &ld, flag, offset); 14705 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14706 "nfs4_lockrelease: lock release error on vp" 14707 " %p: error %d.\n", (void *)vp, ret)); 14708 } 14709 } 14710 14711 recov_state.rs_flags = 0; 14712 recov_state.rs_num_retry_despite_err = 0; 14713 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14714 &recovonly); 14715 if (error) { 14716 mutex_enter(&rp->r_statelock); 14717 rp->r_flags |= R4LODANGLERS; 14718 mutex_exit(&rp->r_statelock); 14719 return (error); 14720 } 14721 14722 /* 14723 * So, here we're going to need to retrieve the lock-owner 14724 * again (in case recovery has done a switch-a-roo) and 14725 * remove it because we can. 14726 */ 14727 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14728 14729 if (lop) { 14730 nfs4_rnode_remove_lock_owner(rp, lop); 14731 lock_owner_rele(lop); 14732 } 14733 14734 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14735 return (0); 14736 } 14737 14738 /* 14739 * Wait for 'tick_delay' clock ticks. 14740 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14741 * NOTE: lock_lease_time is in seconds. 14742 * 14743 * XXX For future improvements, should implement a waiting queue scheme. 14744 */ 14745 static int 14746 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14747 { 14748 long milliseconds_delay; 14749 time_t lock_lease_time; 14750 14751 /* wait tick_delay clock ticks or siginteruptus */ 14752 if (delay_sig(*tick_delay)) { 14753 return (EINTR); 14754 } 14755 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14756 "reissue the lock request: blocked for %ld clock ticks: %ld " 14757 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14758 14759 /* get the lease time */ 14760 lock_lease_time = r2lease_time(rp); 14761 14762 /* drv_hztousec converts ticks to microseconds */ 14763 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14764 if (milliseconds_delay < lock_lease_time * 1000) { 14765 *tick_delay = 2 * *tick_delay; 14766 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14767 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14768 } 14769 return (0); 14770 } 14771 14772 14773 void 14774 nfs4_vnops_init(void) 14775 { 14776 } 14777 14778 void 14779 nfs4_vnops_fini(void) 14780 { 14781 } 14782 14783 /* 14784 * Return a reference to the directory (parent) vnode for a given vnode, 14785 * using the saved pathname information and the directory file handle. The 14786 * caller is responsible for disposing of the reference. 14787 * Returns zero or an errno value. 14788 * 14789 * Caller should set need_start_op to FALSE if it is the recovery 14790 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14791 */ 14792 int 14793 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14794 { 14795 svnode_t *svnp; 14796 vnode_t *dvp = NULL; 14797 servinfo4_t *svp; 14798 nfs4_fname_t *mfname; 14799 int error; 14800 14801 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14802 14803 if (vp->v_flag & VROOT) { 14804 nfs4_sharedfh_t *sfh; 14805 nfs_fh4 fh; 14806 mntinfo4_t *mi; 14807 14808 ASSERT(vp->v_type == VREG); 14809 14810 mi = VTOMI4(vp); 14811 svp = mi->mi_curr_serv; 14812 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14813 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14814 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14815 sfh = sfh4_get(&fh, VTOMI4(vp)); 14816 nfs_rw_exit(&svp->sv_lock); 14817 mfname = mi->mi_fname; 14818 fn_hold(mfname); 14819 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14820 sfh4_rele(&sfh); 14821 14822 if (dvp->v_type == VNON) 14823 dvp->v_type = VDIR; 14824 *dvpp = dvp; 14825 return (0); 14826 } 14827 14828 svnp = VTOSV(vp); 14829 14830 if (svnp == NULL) { 14831 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14832 "shadow node is NULL")); 14833 return (EINVAL); 14834 } 14835 14836 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14837 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14838 "shadow node name or dfh val == NULL")); 14839 return (EINVAL); 14840 } 14841 14842 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14843 (int)need_start_op); 14844 if (error != 0) { 14845 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14846 "nfs4_make_dotdot returned %d", error)); 14847 return (error); 14848 } 14849 if (!dvp) { 14850 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14851 "nfs4_make_dotdot returned a NULL dvp")); 14852 return (EIO); 14853 } 14854 if (dvp->v_type == VNON) 14855 dvp->v_type = VDIR; 14856 ASSERT(dvp->v_type == VDIR); 14857 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14858 mutex_enter(&dvp->v_lock); 14859 dvp->v_flag |= V_XATTRDIR; 14860 mutex_exit(&dvp->v_lock); 14861 } 14862 *dvpp = dvp; 14863 return (0); 14864 } 14865 14866 /* 14867 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14868 * length that fnamep can accept, including the trailing null. 14869 * Returns 0 if okay, returns an errno value if there was a problem. 14870 */ 14871 14872 int 14873 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14874 { 14875 char *fn; 14876 int err = 0; 14877 servinfo4_t *svp; 14878 svnode_t *shvp; 14879 14880 /* 14881 * If the file being opened has VROOT set, then this is 14882 * a "file" mount. sv_name will not be interesting, so 14883 * go back to the servinfo4 to get the original mount 14884 * path and strip off all but the final edge. Otherwise 14885 * just return the name from the shadow vnode. 14886 */ 14887 14888 if (vp->v_flag & VROOT) { 14889 14890 svp = VTOMI4(vp)->mi_curr_serv; 14891 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14892 14893 fn = strrchr(svp->sv_path, '/'); 14894 if (fn == NULL) 14895 err = EINVAL; 14896 else 14897 fn++; 14898 } else { 14899 shvp = VTOSV(vp); 14900 fn = fn_name(shvp->sv_name); 14901 } 14902 14903 if (err == 0) 14904 if (strlen(fn) < maxlen) 14905 (void) strcpy(fnamep, fn); 14906 else 14907 err = ENAMETOOLONG; 14908 14909 if (vp->v_flag & VROOT) 14910 nfs_rw_exit(&svp->sv_lock); 14911 else 14912 kmem_free(fn, MAXNAMELEN); 14913 14914 return (err); 14915 } 14916 14917 /* 14918 * Bookkeeping for a close that doesn't need to go over the wire. 14919 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14920 * it is left at 1. 14921 */ 14922 void 14923 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14924 { 14925 rnode4_t *rp; 14926 mntinfo4_t *mi; 14927 14928 mi = VTOMI4(vp); 14929 rp = VTOR4(vp); 14930 14931 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14932 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14933 ASSERT(nfs_zone() == mi->mi_zone); 14934 ASSERT(mutex_owned(&osp->os_sync_lock)); 14935 ASSERT(*have_lockp); 14936 14937 if (!osp->os_valid || 14938 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14939 return; 14940 } 14941 14942 /* 14943 * This removes the reference obtained at OPEN; ie, 14944 * when the open stream structure was created. 14945 * 14946 * We don't have to worry about calling 'open_stream_rele' 14947 * since we our currently holding a reference to this 14948 * open stream which means the count can not go to 0 with 14949 * this decrement. 14950 */ 14951 ASSERT(osp->os_ref_count >= 2); 14952 osp->os_ref_count--; 14953 osp->os_valid = 0; 14954 mutex_exit(&osp->os_sync_lock); 14955 *have_lockp = 0; 14956 14957 nfs4_dec_state_ref_count(mi); 14958 } 14959 14960 /* 14961 * Close all remaining open streams on the rnode. These open streams 14962 * could be here because: 14963 * - The close attempted at either close or delmap failed 14964 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14965 * - Someone did mknod on a regular file but never opened it 14966 */ 14967 int 14968 nfs4close_all(vnode_t *vp, cred_t *cr) 14969 { 14970 nfs4_open_stream_t *osp; 14971 int error; 14972 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14973 rnode4_t *rp; 14974 14975 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14976 14977 error = 0; 14978 rp = VTOR4(vp); 14979 14980 /* 14981 * At this point, all we know is that the last time 14982 * someone called vn_rele, the count was 1. Since then, 14983 * the vnode could have been re-activated. We want to 14984 * loop through the open streams and close each one, but 14985 * we have to be careful since once we release the rnode 14986 * hash bucket lock, someone else is free to come in and 14987 * re-activate the rnode and add new open streams. The 14988 * strategy is take the rnode hash bucket lock, verify that 14989 * the count is still 1, grab the open stream off the 14990 * head of the list and mark it invalid, then release the 14991 * rnode hash bucket lock and proceed with that open stream. 14992 * This is ok because nfs4close_one() will acquire the proper 14993 * open/create to close/destroy synchronization for open 14994 * streams, and will ensure that if someone has reopened 14995 * the open stream after we've dropped the hash bucket lock 14996 * then we'll just simply return without destroying the 14997 * open stream. 14998 * Repeat until the list is empty. 14999 */ 15000 15001 for (;;) { 15002 15003 /* make sure vnode hasn't been reactivated */ 15004 rw_enter(&rp->r_hashq->r_lock, RW_READER); 15005 mutex_enter(&vp->v_lock); 15006 if (vp->v_count > 1) { 15007 mutex_exit(&vp->v_lock); 15008 rw_exit(&rp->r_hashq->r_lock); 15009 break; 15010 } 15011 /* 15012 * Grabbing r_os_lock before releasing v_lock prevents 15013 * a window where the rnode/open stream could get 15014 * reactivated (and os_force_close set to 0) before we 15015 * had a chance to set os_force_close to 1. 15016 */ 15017 mutex_enter(&rp->r_os_lock); 15018 mutex_exit(&vp->v_lock); 15019 15020 osp = list_head(&rp->r_open_streams); 15021 if (!osp) { 15022 /* nothing left to CLOSE OTW, so return */ 15023 mutex_exit(&rp->r_os_lock); 15024 rw_exit(&rp->r_hashq->r_lock); 15025 break; 15026 } 15027 15028 mutex_enter(&rp->r_statev4_lock); 15029 /* the file can't still be mem mapped */ 15030 ASSERT(rp->r_mapcnt == 0); 15031 if (rp->created_v4) 15032 rp->created_v4 = 0; 15033 mutex_exit(&rp->r_statev4_lock); 15034 15035 /* 15036 * Grab a ref on this open stream; nfs4close_one 15037 * will mark it as invalid 15038 */ 15039 mutex_enter(&osp->os_sync_lock); 15040 osp->os_ref_count++; 15041 osp->os_force_close = 1; 15042 mutex_exit(&osp->os_sync_lock); 15043 mutex_exit(&rp->r_os_lock); 15044 rw_exit(&rp->r_hashq->r_lock); 15045 15046 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 15047 15048 /* Update error if it isn't already non-zero */ 15049 if (error == 0) { 15050 if (e.error) 15051 error = e.error; 15052 else if (e.stat) 15053 error = geterrno4(e.stat); 15054 } 15055 15056 #ifdef DEBUG 15057 nfs4close_all_cnt++; 15058 #endif 15059 /* Release the ref on osp acquired above. */ 15060 open_stream_rele(osp, rp); 15061 15062 /* Proceed to the next open stream, if any */ 15063 } 15064 return (error); 15065 } 15066 15067 /* 15068 * nfs4close_one - close one open stream for a file if needed. 15069 * 15070 * "close_type" indicates which close path this is: 15071 * CLOSE_NORM: close initiated via VOP_CLOSE. 15072 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 15073 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 15074 * the close and release of client state for this open stream 15075 * (unless someone else has the open stream open). 15076 * CLOSE_RESEND: indicates the request is a replay of an earlier request 15077 * (e.g., due to abort because of a signal). 15078 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 15079 * 15080 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 15081 * recovery. Instead, the caller is expected to deal with retries. 15082 * 15083 * The caller can either pass in the osp ('provided_osp') or not. 15084 * 15085 * 'access_bits' represents the access we are closing/downgrading. 15086 * 15087 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 15088 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 15089 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15090 * 15091 * Errors are returned via the nfs4_error_t. 15092 */ 15093 void 15094 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15095 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15096 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15097 uint_t mmap_flags) 15098 { 15099 nfs4_open_owner_t *oop; 15100 nfs4_open_stream_t *osp = NULL; 15101 int retry = 0; 15102 int num_retries = NFS4_NUM_RECOV_RETRIES; 15103 rnode4_t *rp; 15104 mntinfo4_t *mi; 15105 nfs4_recov_state_t recov_state; 15106 cred_t *cred_otw = NULL; 15107 bool_t recovonly = FALSE; 15108 int isrecov; 15109 int force_close; 15110 int close_failed = 0; 15111 int did_dec_count = 0; 15112 int did_start_op = 0; 15113 int did_force_recovlock = 0; 15114 int did_start_seqid_sync = 0; 15115 int have_sync_lock = 0; 15116 15117 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15118 15119 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15120 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15121 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15122 len, maxprot, mmap_flags, access_bits)); 15123 15124 nfs4_error_zinit(ep); 15125 rp = VTOR4(vp); 15126 mi = VTOMI4(vp); 15127 isrecov = (close_type == CLOSE_RESEND || 15128 close_type == CLOSE_AFTER_RESEND); 15129 15130 /* 15131 * First get the open owner. 15132 */ 15133 if (!provided_osp) { 15134 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15135 } else { 15136 oop = provided_osp->os_open_owner; 15137 ASSERT(oop != NULL); 15138 open_owner_hold(oop); 15139 } 15140 15141 if (!oop) { 15142 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15143 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15144 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15145 (void *)provided_osp, close_type)); 15146 ep->error = EIO; 15147 goto out; 15148 } 15149 15150 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15151 recov_retry: 15152 osp = NULL; 15153 close_failed = 0; 15154 force_close = (close_type == CLOSE_FORCE); 15155 retry = 0; 15156 did_start_op = 0; 15157 did_force_recovlock = 0; 15158 did_start_seqid_sync = 0; 15159 have_sync_lock = 0; 15160 recovonly = FALSE; 15161 recov_state.rs_flags = 0; 15162 recov_state.rs_num_retry_despite_err = 0; 15163 15164 /* 15165 * Second synchronize with recovery. 15166 */ 15167 if (!isrecov) { 15168 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15169 &recov_state, &recovonly); 15170 if (!ep->error) { 15171 did_start_op = 1; 15172 } else { 15173 close_failed = 1; 15174 /* 15175 * If we couldn't get start_fop, but have to 15176 * cleanup state, then at least acquire the 15177 * mi_recovlock so we can synchronize with 15178 * recovery. 15179 */ 15180 if (close_type == CLOSE_FORCE) { 15181 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15182 RW_READER, FALSE); 15183 did_force_recovlock = 1; 15184 } else 15185 goto out; 15186 } 15187 } 15188 15189 /* 15190 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15191 * set 'recovonly' to TRUE since most likely this is due to 15192 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15193 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15194 * to retry, causing us to loop until recovery finishes. Plus we 15195 * don't need protection over the open seqid since we're not going 15196 * OTW, hence don't need to use the seqid. 15197 */ 15198 if (recovonly == FALSE) { 15199 /* need to grab the open owner sync before 'os_sync_lock' */ 15200 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15201 if (ep->error == EAGAIN) { 15202 ASSERT(!isrecov); 15203 if (did_start_op) 15204 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15205 &recov_state, TRUE); 15206 if (did_force_recovlock) 15207 nfs_rw_exit(&mi->mi_recovlock); 15208 goto recov_retry; 15209 } 15210 did_start_seqid_sync = 1; 15211 } 15212 15213 /* 15214 * Third get an open stream and acquire 'os_sync_lock' to 15215 * sychronize the opening/creating of an open stream with the 15216 * closing/destroying of an open stream. 15217 */ 15218 if (!provided_osp) { 15219 /* returns with 'os_sync_lock' held */ 15220 osp = find_open_stream(oop, rp); 15221 if (!osp) { 15222 ep->error = EIO; 15223 goto out; 15224 } 15225 } else { 15226 osp = provided_osp; 15227 open_stream_hold(osp); 15228 mutex_enter(&osp->os_sync_lock); 15229 } 15230 have_sync_lock = 1; 15231 15232 ASSERT(oop == osp->os_open_owner); 15233 15234 /* 15235 * Fourth, do any special pre-OTW CLOSE processing 15236 * based on the specific close type. 15237 */ 15238 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15239 !did_dec_count) { 15240 ASSERT(osp->os_open_ref_count > 0); 15241 osp->os_open_ref_count--; 15242 did_dec_count = 1; 15243 if (osp->os_open_ref_count == 0) 15244 osp->os_final_close = 1; 15245 } 15246 15247 if (close_type == CLOSE_FORCE) { 15248 /* see if somebody reopened the open stream. */ 15249 if (!osp->os_force_close) { 15250 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15251 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15252 "was reopened, vp %p", (void *)osp, (void *)vp)); 15253 ep->error = 0; 15254 ep->stat = NFS4_OK; 15255 goto out; 15256 } 15257 15258 if (!osp->os_final_close && !did_dec_count) { 15259 osp->os_open_ref_count--; 15260 did_dec_count = 1; 15261 } 15262 15263 /* 15264 * We can't depend on os_open_ref_count being 0 due to the 15265 * way executables are opened (VN_RELE to match a VOP_OPEN). 15266 */ 15267 #ifdef NOTYET 15268 ASSERT(osp->os_open_ref_count == 0); 15269 #endif 15270 if (osp->os_open_ref_count != 0) { 15271 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15272 "nfs4close_one: should panic here on an " 15273 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15274 "since this is probably the exec problem.")); 15275 15276 osp->os_open_ref_count = 0; 15277 } 15278 15279 /* 15280 * There is the possibility that nfs4close_one() 15281 * for close_type == CLOSE_DELMAP couldn't find the 15282 * open stream, thus couldn't decrement its os_mapcnt; 15283 * therefore we can't use this ASSERT yet. 15284 */ 15285 #ifdef NOTYET 15286 ASSERT(osp->os_mapcnt == 0); 15287 #endif 15288 osp->os_mapcnt = 0; 15289 } 15290 15291 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15292 ASSERT(osp->os_mapcnt >= btopr(len)); 15293 15294 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15295 osp->os_mmap_write -= btopr(len); 15296 if (maxprot & PROT_READ) 15297 osp->os_mmap_read -= btopr(len); 15298 if (maxprot & PROT_EXEC) 15299 osp->os_mmap_read -= btopr(len); 15300 /* mirror the PROT_NONE check in nfs4_addmap() */ 15301 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15302 !(maxprot & PROT_EXEC)) 15303 osp->os_mmap_read -= btopr(len); 15304 osp->os_mapcnt -= btopr(len); 15305 did_dec_count = 1; 15306 } 15307 15308 if (recovonly) { 15309 nfs4_lost_rqst_t lost_rqst; 15310 15311 /* request should not already be in recovery queue */ 15312 ASSERT(lrp == NULL); 15313 nfs4_error_init(ep, EINTR); 15314 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15315 osp, cred_otw, vp); 15316 mutex_exit(&osp->os_sync_lock); 15317 have_sync_lock = 0; 15318 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15319 lost_rqst.lr_op == OP_CLOSE ? 15320 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL); 15321 close_failed = 1; 15322 force_close = 0; 15323 goto close_cleanup; 15324 } 15325 15326 /* 15327 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15328 * we stopped operating on the open owner's <old oo_name, old seqid> 15329 * space, which means we stopped operating on the open stream 15330 * too. So don't go OTW (as the seqid is likely bad, and the 15331 * stateid could be stale, potentially triggering a false 15332 * setclientid), and just clean up the client's internal state. 15333 */ 15334 if (osp->os_orig_oo_name != oop->oo_name) { 15335 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15336 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15337 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15338 "oo_name %" PRIx64")", 15339 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15340 oop->oo_name)); 15341 close_failed = 1; 15342 } 15343 15344 /* If the file failed recovery, just quit. */ 15345 mutex_enter(&rp->r_statelock); 15346 if (rp->r_flags & R4RECOVERR) { 15347 close_failed = 1; 15348 } 15349 mutex_exit(&rp->r_statelock); 15350 15351 /* 15352 * If the force close path failed to obtain start_fop 15353 * then skip the OTW close and just remove the state. 15354 */ 15355 if (close_failed) 15356 goto close_cleanup; 15357 15358 /* 15359 * Fifth, check to see if there are still mapped pages or other 15360 * opens using this open stream. If there are then we can't 15361 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15362 */ 15363 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15364 nfs4_lost_rqst_t new_lost_rqst; 15365 bool_t needrecov = FALSE; 15366 cred_t *odg_cred_otw = NULL; 15367 seqid4 open_dg_seqid = 0; 15368 15369 if (osp->os_delegation) { 15370 /* 15371 * If this open stream was never OPENed OTW then we 15372 * surely can't DOWNGRADE it (especially since the 15373 * osp->open_stateid is really a delegation stateid 15374 * when os_delegation is 1). 15375 */ 15376 if (access_bits & FREAD) 15377 osp->os_share_acc_read--; 15378 if (access_bits & FWRITE) 15379 osp->os_share_acc_write--; 15380 osp->os_share_deny_none--; 15381 nfs4_error_zinit(ep); 15382 goto out; 15383 } 15384 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15385 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15386 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15387 if (needrecov && !isrecov) { 15388 bool_t abort; 15389 nfs4_bseqid_entry_t *bsep = NULL; 15390 15391 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15392 bsep = nfs4_create_bseqid_entry(oop, NULL, 15393 vp, 0, 15394 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15395 open_dg_seqid); 15396 15397 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15398 oop, osp, odg_cred_otw, vp, access_bits, 0); 15399 mutex_exit(&osp->os_sync_lock); 15400 have_sync_lock = 0; 15401 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15402 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15403 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15404 bsep, NULL, NULL); 15405 if (odg_cred_otw) 15406 crfree(odg_cred_otw); 15407 if (bsep) 15408 kmem_free(bsep, sizeof (*bsep)); 15409 15410 if (abort == TRUE) 15411 goto out; 15412 15413 if (did_start_seqid_sync) { 15414 nfs4_end_open_seqid_sync(oop); 15415 did_start_seqid_sync = 0; 15416 } 15417 open_stream_rele(osp, rp); 15418 15419 if (did_start_op) 15420 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15421 &recov_state, FALSE); 15422 if (did_force_recovlock) 15423 nfs_rw_exit(&mi->mi_recovlock); 15424 15425 goto recov_retry; 15426 } else { 15427 if (odg_cred_otw) 15428 crfree(odg_cred_otw); 15429 } 15430 goto out; 15431 } 15432 15433 /* 15434 * If this open stream was created as the results of an open 15435 * while holding a delegation, then just release it; no need 15436 * to do an OTW close. Otherwise do a "normal" OTW close. 15437 */ 15438 if (osp->os_delegation) { 15439 nfs4close_notw(vp, osp, &have_sync_lock); 15440 nfs4_error_zinit(ep); 15441 goto out; 15442 } 15443 15444 /* 15445 * If this stream is not valid, we're done. 15446 */ 15447 if (!osp->os_valid) { 15448 nfs4_error_zinit(ep); 15449 goto out; 15450 } 15451 15452 /* 15453 * Last open or mmap ref has vanished, need to do an OTW close. 15454 * First check to see if a close is still necessary. 15455 */ 15456 if (osp->os_failed_reopen) { 15457 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15458 "don't close OTW osp %p since reopen failed.", 15459 (void *)osp)); 15460 /* 15461 * Reopen of the open stream failed, hence the 15462 * stateid of the open stream is invalid/stale, and 15463 * sending this OTW would incorrectly cause another 15464 * round of recovery. In this case, we need to set 15465 * the 'os_valid' bit to 0 so another thread doesn't 15466 * come in and re-open this open stream before 15467 * this "closing" thread cleans up state (decrementing 15468 * the nfs4_server_t's state_ref_count and decrementing 15469 * the os_ref_count). 15470 */ 15471 osp->os_valid = 0; 15472 /* 15473 * This removes the reference obtained at OPEN; ie, 15474 * when the open stream structure was created. 15475 * 15476 * We don't have to worry about calling 'open_stream_rele' 15477 * since we our currently holding a reference to this 15478 * open stream which means the count can not go to 0 with 15479 * this decrement. 15480 */ 15481 ASSERT(osp->os_ref_count >= 2); 15482 osp->os_ref_count--; 15483 nfs4_error_zinit(ep); 15484 close_failed = 0; 15485 goto close_cleanup; 15486 } 15487 15488 ASSERT(osp->os_ref_count > 1); 15489 15490 /* 15491 * Sixth, try the CLOSE OTW. 15492 */ 15493 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15494 close_type, ep, &have_sync_lock); 15495 15496 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15497 /* 15498 * Let the recovery thread be responsible for 15499 * removing the state for CLOSE. 15500 */ 15501 close_failed = 1; 15502 force_close = 0; 15503 retry = 0; 15504 } 15505 15506 /* See if we need to retry with a different cred */ 15507 if ((ep->error == EACCES || 15508 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15509 cred_otw != cr) { 15510 crfree(cred_otw); 15511 cred_otw = cr; 15512 crhold(cred_otw); 15513 retry = 1; 15514 } 15515 15516 if (ep->error || ep->stat) 15517 close_failed = 1; 15518 15519 if (retry && !isrecov && num_retries-- > 0) { 15520 if (have_sync_lock) { 15521 mutex_exit(&osp->os_sync_lock); 15522 have_sync_lock = 0; 15523 } 15524 if (did_start_seqid_sync) { 15525 nfs4_end_open_seqid_sync(oop); 15526 did_start_seqid_sync = 0; 15527 } 15528 open_stream_rele(osp, rp); 15529 15530 if (did_start_op) 15531 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15532 &recov_state, FALSE); 15533 if (did_force_recovlock) 15534 nfs_rw_exit(&mi->mi_recovlock); 15535 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15536 "nfs4close_one: need to retry the close " 15537 "operation")); 15538 goto recov_retry; 15539 } 15540 close_cleanup: 15541 /* 15542 * Seventh and lastly, process our results. 15543 */ 15544 if (close_failed && force_close) { 15545 /* 15546 * It's ok to drop and regrab the 'os_sync_lock' since 15547 * nfs4close_notw() will recheck to make sure the 15548 * "close"/removal of state should happen. 15549 */ 15550 if (!have_sync_lock) { 15551 mutex_enter(&osp->os_sync_lock); 15552 have_sync_lock = 1; 15553 } 15554 /* 15555 * This is last call, remove the ref on the open 15556 * stream created by open and clean everything up. 15557 */ 15558 osp->os_pending_close = 0; 15559 nfs4close_notw(vp, osp, &have_sync_lock); 15560 nfs4_error_zinit(ep); 15561 } 15562 15563 if (!close_failed) { 15564 if (have_sync_lock) { 15565 osp->os_pending_close = 0; 15566 mutex_exit(&osp->os_sync_lock); 15567 have_sync_lock = 0; 15568 } else { 15569 mutex_enter(&osp->os_sync_lock); 15570 osp->os_pending_close = 0; 15571 mutex_exit(&osp->os_sync_lock); 15572 } 15573 if (did_start_op && recov_state.rs_sp != NULL) { 15574 mutex_enter(&recov_state.rs_sp->s_lock); 15575 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15576 mutex_exit(&recov_state.rs_sp->s_lock); 15577 } else { 15578 nfs4_dec_state_ref_count(mi); 15579 } 15580 nfs4_error_zinit(ep); 15581 } 15582 15583 out: 15584 if (have_sync_lock) 15585 mutex_exit(&osp->os_sync_lock); 15586 if (did_start_op) 15587 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15588 recovonly ? TRUE : FALSE); 15589 if (did_force_recovlock) 15590 nfs_rw_exit(&mi->mi_recovlock); 15591 if (cred_otw) 15592 crfree(cred_otw); 15593 if (osp) 15594 open_stream_rele(osp, rp); 15595 if (oop) { 15596 if (did_start_seqid_sync) 15597 nfs4_end_open_seqid_sync(oop); 15598 open_owner_rele(oop); 15599 } 15600 } 15601 15602 /* 15603 * Convert information returned by the server in the LOCK4denied 15604 * structure to the form required by fcntl. 15605 */ 15606 static void 15607 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15608 { 15609 nfs4_lo_name_t *lo; 15610 15611 #ifdef DEBUG 15612 if (denied_to_flk_debug) { 15613 lockt_denied_debug = lockt_denied; 15614 debug_enter("lockt_denied"); 15615 } 15616 #endif 15617 15618 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15619 flk->l_whence = 0; /* aka SEEK_SET */ 15620 flk->l_start = lockt_denied->offset; 15621 flk->l_len = lockt_denied->length; 15622 15623 /* 15624 * If the blocking clientid matches our client id, then we can 15625 * interpret the lockowner (since we built it). If not, then 15626 * fabricate a sysid and pid. Note that the l_sysid field 15627 * in *flk already has the local sysid. 15628 */ 15629 15630 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15631 15632 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15633 lo = (nfs4_lo_name_t *) 15634 lockt_denied->owner.owner_val; 15635 15636 flk->l_pid = lo->ln_pid; 15637 } else { 15638 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15639 "denied_to_flk: bad lock owner length\n")); 15640 15641 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15642 } 15643 } else { 15644 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15645 "denied_to_flk: foreign clientid\n")); 15646 15647 /* 15648 * Construct a new sysid which should be different from 15649 * sysids of other systems. 15650 */ 15651 15652 flk->l_sysid++; 15653 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15654 } 15655 } 15656 15657 static pid_t 15658 lo_to_pid(lock_owner4 *lop) 15659 { 15660 pid_t pid = 0; 15661 uchar_t *cp; 15662 int i; 15663 15664 cp = (uchar_t *)&lop->clientid; 15665 15666 for (i = 0; i < sizeof (lop->clientid); i++) 15667 pid += (pid_t)*cp++; 15668 15669 cp = (uchar_t *)lop->owner_val; 15670 15671 for (i = 0; i < lop->owner_len; i++) 15672 pid += (pid_t)*cp++; 15673 15674 return (pid); 15675 } 15676 15677 /* 15678 * Given a lock pointer, returns the length of that lock. 15679 * "end" is the last locked offset the "l_len" covers from 15680 * the start of the lock. 15681 */ 15682 static off64_t 15683 lock_to_end(flock64_t *lock) 15684 { 15685 off64_t lock_end; 15686 15687 if (lock->l_len == 0) 15688 lock_end = (off64_t)MAXEND; 15689 else 15690 lock_end = lock->l_start + lock->l_len - 1; 15691 15692 return (lock_end); 15693 } 15694 15695 /* 15696 * Given the end of a lock, it will return you the length "l_len" for that lock. 15697 */ 15698 static off64_t 15699 end_to_len(off64_t start, off64_t end) 15700 { 15701 off64_t lock_len; 15702 15703 ASSERT(end >= start); 15704 if (end == MAXEND) 15705 lock_len = 0; 15706 else 15707 lock_len = end - start + 1; 15708 15709 return (lock_len); 15710 } 15711 15712 /* 15713 * On given end for a lock it determines if it is the last locked offset 15714 * or not, if so keeps it as is, else adds one to return the length for 15715 * valid start. 15716 */ 15717 static off64_t 15718 start_check(off64_t x) 15719 { 15720 if (x == MAXEND) 15721 return (x); 15722 else 15723 return (x + 1); 15724 } 15725 15726 /* 15727 * See if these two locks overlap, and if so return 1; 15728 * otherwise, return 0. 15729 */ 15730 static int 15731 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15732 { 15733 off64_t llfp_end, curfp_end; 15734 15735 llfp_end = lock_to_end(llfp); 15736 curfp_end = lock_to_end(curfp); 15737 15738 if (((llfp_end >= curfp->l_start) && 15739 (llfp->l_start <= curfp->l_start)) || 15740 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15741 return (1); 15742 return (0); 15743 } 15744 15745 /* 15746 * Determine what the intersecting lock region is, and add that to the 15747 * 'nl_llpp' locklist in increasing order (by l_start). 15748 */ 15749 static void 15750 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15751 locklist_t **nl_llpp, vnode_t *vp) 15752 { 15753 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15754 off64_t lost_flp_end, local_flp_end, len, start; 15755 15756 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15757 15758 if (!locks_intersect(lost_flp, local_flp)) 15759 return; 15760 15761 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15762 "locks intersect")); 15763 15764 lost_flp_end = lock_to_end(lost_flp); 15765 local_flp_end = lock_to_end(local_flp); 15766 15767 /* Find the starting point of the intersecting region */ 15768 if (local_flp->l_start > lost_flp->l_start) 15769 start = local_flp->l_start; 15770 else 15771 start = lost_flp->l_start; 15772 15773 /* Find the lenght of the intersecting region */ 15774 if (lost_flp_end < local_flp_end) 15775 len = end_to_len(start, lost_flp_end); 15776 else 15777 len = end_to_len(start, local_flp_end); 15778 15779 /* 15780 * Prepare the flock structure for the intersection found and insert 15781 * it into the new list in increasing l_start order. This list contains 15782 * intersections of locks registered by the client with the local host 15783 * and the lost lock. 15784 * The lock type of this lock is the same as that of the local_flp. 15785 */ 15786 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15787 intersect_llp->ll_flock.l_start = start; 15788 intersect_llp->ll_flock.l_len = len; 15789 intersect_llp->ll_flock.l_type = local_flp->l_type; 15790 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15791 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15792 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15793 intersect_llp->ll_vp = vp; 15794 15795 tmp_fllp = *nl_llpp; 15796 cur_fllp = NULL; 15797 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15798 intersect_llp->ll_flock.l_start) { 15799 cur_fllp = tmp_fllp; 15800 tmp_fllp = tmp_fllp->ll_next; 15801 } 15802 if (cur_fllp == NULL) { 15803 /* first on the list */ 15804 intersect_llp->ll_next = *nl_llpp; 15805 *nl_llpp = intersect_llp; 15806 } else { 15807 intersect_llp->ll_next = cur_fllp->ll_next; 15808 cur_fllp->ll_next = intersect_llp; 15809 } 15810 15811 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15812 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15813 intersect_llp->ll_flock.l_start, 15814 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15815 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15816 } 15817 15818 /* 15819 * Our local locking current state is potentially different than 15820 * what the NFSv4 server thinks we have due to a lost lock that was 15821 * resent and then received. We need to reset our "NFSv4" locking 15822 * state to match the current local locking state for this pid since 15823 * that is what the user/application sees as what the world is. 15824 * 15825 * We cannot afford to drop the open/lock seqid sync since then we can 15826 * get confused about what the current local locking state "is" versus 15827 * "was". 15828 * 15829 * If we are unable to fix up the locks, we send SIGLOST to the affected 15830 * process. This is not done if the filesystem has been forcibly 15831 * unmounted, in case the process has already exited and a new process 15832 * exists with the same pid. 15833 */ 15834 static void 15835 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15836 nfs4_lock_owner_t *lop) 15837 { 15838 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15839 mntinfo4_t *mi = VTOMI4(vp); 15840 const int cmd = F_SETLK; 15841 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15842 flock64_t ul_fl; 15843 15844 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15845 "nfs4_reinstitute_local_lock_state")); 15846 15847 /* 15848 * Find active locks for this vp from the local locking code. 15849 * Scan through this list and find out the locks that intersect with 15850 * the lost lock. Once we find the lock that intersects, add the 15851 * intersection area as a new lock to a new list "ri_llp". The lock 15852 * type of the intersection region lock added to ri_llp is the same 15853 * as that found in the active lock list, "list". The intersecting 15854 * region locks are added to ri_llp in increasing l_start order. 15855 */ 15856 ASSERT(nfs_zone() == mi->mi_zone); 15857 15858 locks = flk_active_locks_for_vp(vp); 15859 ri_llp = NULL; 15860 15861 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15862 ASSERT(llp->ll_vp == vp); 15863 /* 15864 * Pick locks that belong to this pid/lockowner 15865 */ 15866 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15867 continue; 15868 15869 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15870 } 15871 15872 /* 15873 * Now we have the list of intersections with the lost lock. These are 15874 * the locks that were/are active before the server replied to the 15875 * last/lost lock. Issue these locks to the server here. Playing these 15876 * locks to the server will re-establish our current local locking state 15877 * with the v4 server. 15878 * If we get an error, send SIGLOST to the application for that lock. 15879 */ 15880 15881 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15882 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15883 "nfs4_reinstitute_local_lock_state: need to issue " 15884 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15885 llp->ll_flock.l_start, 15886 llp->ll_flock.l_start + llp->ll_flock.l_len, 15887 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15888 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15889 /* 15890 * No need to relock what we already have 15891 */ 15892 if (llp->ll_flock.l_type == lost_flp->l_type) 15893 continue; 15894 15895 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15896 } 15897 15898 /* 15899 * Now keeping the start of the lost lock as our reference parse the 15900 * newly created ri_llp locklist to find the ranges that we have locked 15901 * with the v4 server but not in the current local locking. We need 15902 * to unlock these ranges. 15903 * These ranges can also be reffered to as those ranges, where the lost 15904 * lock does not overlap with the locks in the ri_llp but are locked 15905 * since the server replied to the lost lock. 15906 */ 15907 cur_start = lost_flp->l_start; 15908 lost_flp_end = lock_to_end(lost_flp); 15909 15910 ul_fl.l_type = F_UNLCK; 15911 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15912 ul_fl.l_sysid = lost_flp->l_sysid; 15913 ul_fl.l_pid = lost_flp->l_pid; 15914 15915 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15916 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15917 15918 if (llp->ll_flock.l_start <= cur_start) { 15919 cur_start = start_check(llp_ll_flock_end); 15920 continue; 15921 } 15922 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15923 "nfs4_reinstitute_local_lock_state: " 15924 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15925 cur_start, llp->ll_flock.l_start)); 15926 15927 ul_fl.l_start = cur_start; 15928 ul_fl.l_len = end_to_len(cur_start, 15929 (llp->ll_flock.l_start - 1)); 15930 15931 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15932 cur_start = start_check(llp_ll_flock_end); 15933 } 15934 15935 /* 15936 * In the case where the lost lock ends after all intersecting locks, 15937 * unlock the last part of the lost lock range. 15938 */ 15939 if (cur_start != start_check(lost_flp_end)) { 15940 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15941 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15942 "lost lock region [%"PRIx64" - %"PRIx64"]", 15943 cur_start, lost_flp->l_start + lost_flp->l_len)); 15944 15945 ul_fl.l_start = cur_start; 15946 /* 15947 * Is it an to-EOF lock? if so unlock till the end 15948 */ 15949 if (lost_flp->l_len == 0) 15950 ul_fl.l_len = 0; 15951 else 15952 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15953 15954 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15955 } 15956 15957 if (locks != NULL) 15958 flk_free_locklist(locks); 15959 15960 /* Free up our newly created locklist */ 15961 for (llp = ri_llp; llp != NULL; ) { 15962 tmp_llp = llp->ll_next; 15963 kmem_free(llp, sizeof (locklist_t)); 15964 llp = tmp_llp; 15965 } 15966 15967 /* 15968 * Now return back to the original calling nfs4frlock() 15969 * and let us naturally drop our seqid syncs. 15970 */ 15971 } 15972 15973 /* 15974 * Create a lost state record for the given lock reinstantiation request 15975 * and push it onto the lost state queue. 15976 */ 15977 static void 15978 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15979 nfs4_lock_owner_t *lop) 15980 { 15981 nfs4_lost_rqst_t req; 15982 nfs_lock_type4 locktype; 15983 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15984 15985 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15986 15987 locktype = flk_to_locktype(cmd, flk->l_type); 15988 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15989 NULL, NULL, lop, flk, &req, cr, vp); 15990 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15991 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15992 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15993 NULL, NULL, NULL); 15994 } 15995