1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016 STRATO AG. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 /* 31 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 32 * Use is subject to license terms. 33 */ 34 35 /* 36 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 37 * All Rights Reserved 38 */ 39 40 /* 41 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 42 * Copyright 2022 Oxide Computer Company 43 */ 44 45 #include <sys/param.h> 46 #include <sys/types.h> 47 #include <sys/systm.h> 48 #include <sys/cred.h> 49 #include <sys/time.h> 50 #include <sys/vnode.h> 51 #include <sys/vfs.h> 52 #include <sys/vfs_opreg.h> 53 #include <sys/file.h> 54 #include <sys/filio.h> 55 #include <sys/uio.h> 56 #include <sys/buf.h> 57 #include <sys/mman.h> 58 #include <sys/pathname.h> 59 #include <sys/dirent.h> 60 #include <sys/debug.h> 61 #include <sys/vmsystm.h> 62 #include <sys/fcntl.h> 63 #include <sys/flock.h> 64 #include <sys/swap.h> 65 #include <sys/errno.h> 66 #include <sys/strsubr.h> 67 #include <sys/sysmacros.h> 68 #include <sys/kmem.h> 69 #include <sys/cmn_err.h> 70 #include <sys/pathconf.h> 71 #include <sys/utsname.h> 72 #include <sys/dnlc.h> 73 #include <sys/acl.h> 74 #include <sys/systeminfo.h> 75 #include <sys/policy.h> 76 #include <sys/sdt.h> 77 #include <sys/list.h> 78 #include <sys/stat.h> 79 #include <sys/zone.h> 80 81 #include <rpc/types.h> 82 #include <rpc/auth.h> 83 #include <rpc/clnt.h> 84 85 #include <nfs/nfs.h> 86 #include <nfs/nfs_clnt.h> 87 #include <nfs/nfs_acl.h> 88 #include <nfs/lm.h> 89 #include <nfs/nfs4.h> 90 #include <nfs/nfs4_kprot.h> 91 #include <nfs/rnode4.h> 92 #include <nfs/nfs4_clnt.h> 93 94 #include <vm/hat.h> 95 #include <vm/as.h> 96 #include <vm/page.h> 97 #include <vm/pvn.h> 98 #include <vm/seg.h> 99 #include <vm/seg_map.h> 100 #include <vm/seg_kpm.h> 101 #include <vm/seg_vn.h> 102 103 #include <fs/fs_subr.h> 104 105 #include <sys/ddi.h> 106 #include <sys/int_fmtio.h> 107 #include <sys/fs/autofs.h> 108 109 typedef struct { 110 nfs4_ga_res_t *di_garp; 111 cred_t *di_cred; 112 hrtime_t di_time_call; 113 } dirattr_info_t; 114 115 typedef enum nfs4_acl_op { 116 NFS4_ACL_GET, 117 NFS4_ACL_SET 118 } nfs4_acl_op_t; 119 120 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *); 121 122 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 123 char *, dirattr_info_t *); 124 125 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 126 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 127 nfs4_error_t *, int *); 128 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 129 cred_t *); 130 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 131 stable_how4 *); 132 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 133 cred_t *, bool_t, struct uio *); 134 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 135 vsecattr_t *); 136 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 137 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 138 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 139 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 140 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 141 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 142 int, vnode_t **, cred_t *); 143 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 144 cred_t *, int, int, enum createmode4, int); 145 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 146 caller_context_t *); 147 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 148 vnode_t *, char *, cred_t *, nfsstat4 *); 149 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 150 vnode_t *, char *, cred_t *, nfsstat4 *); 151 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 152 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 153 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 154 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 155 page_t *[], size_t, struct seg *, caddr_t, 156 enum seg_rw, cred_t *); 157 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 158 cred_t *); 159 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 160 int, cred_t *); 161 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 162 int, cred_t *); 163 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 164 static void nfs4_set_mod(vnode_t *); 165 static void nfs4_get_commit(vnode_t *); 166 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 167 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 168 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 169 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 170 cred_t *); 171 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 172 cred_t *); 173 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 174 hrtime_t, vnode_t *, cred_t *); 175 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 176 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 177 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 178 u_offset_t); 179 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 180 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 181 static cred_t *state_to_cred(nfs4_open_stream_t *); 182 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 183 static pid_t lo_to_pid(lock_owner4 *); 184 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 185 cred_t *, nfs4_lock_owner_t *); 186 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 187 nfs4_lock_owner_t *); 188 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 189 static void nfs4_delmap_callback(struct as *, void *, uint_t); 190 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 191 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 192 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 193 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 194 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 195 uid_t, gid_t, int); 196 197 /* 198 * Routines that implement the setting of v4 args for the misc. ops 199 */ 200 static void nfs4args_lock_free(nfs_argop4 *); 201 static void nfs4args_lockt_free(nfs_argop4 *); 202 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 203 int, rnode4_t *, cred_t *, bitmap4, int *, 204 nfs4_stateid_types_t *); 205 static void nfs4args_setattr_free(nfs_argop4 *); 206 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 207 bitmap4); 208 static void nfs4args_verify_free(nfs_argop4 *); 209 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 210 WRITE4args **, nfs4_stateid_types_t *); 211 212 /* 213 * These are the vnode ops functions that implement the vnode interface to 214 * the networked file system. See more comments below at nfs4_vnodeops. 215 */ 216 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 217 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 218 caller_context_t *); 219 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 220 caller_context_t *); 221 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 222 caller_context_t *); 223 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 224 caller_context_t *); 225 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 226 caller_context_t *); 227 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 228 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 229 caller_context_t *); 230 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 231 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 232 int, vnode_t **, cred_t *, int, caller_context_t *, 233 vsecattr_t *); 234 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 235 int); 236 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 237 caller_context_t *, int); 238 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 239 caller_context_t *, int); 240 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 241 cred_t *, caller_context_t *, int, vsecattr_t *); 242 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 243 caller_context_t *, int); 244 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 245 cred_t *, caller_context_t *, int); 246 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 247 caller_context_t *, int); 248 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 249 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 250 page_t *[], size_t, struct seg *, caddr_t, 251 enum seg_rw, cred_t *, caller_context_t *); 252 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 253 caller_context_t *); 254 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 255 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 256 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 257 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 258 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 259 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 260 struct flk_callback *, cred_t *, caller_context_t *); 261 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 262 cred_t *, caller_context_t *); 263 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 264 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 265 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 266 cred_t *, caller_context_t *); 267 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 268 caller_context_t *); 269 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 270 caller_context_t *); 271 /* 272 * These vnode ops are required to be called from outside this source file, 273 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 274 * as static. 275 */ 276 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 277 caller_context_t *); 278 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 279 int nfs4_lookup(vnode_t *, char *, vnode_t **, 280 struct pathname *, int, vnode_t *, cred_t *, 281 caller_context_t *, int *, pathname_t *); 282 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 283 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 284 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 285 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 286 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 287 caller_context_t *); 288 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 289 caller_context_t *); 290 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 291 caller_context_t *); 292 293 /* 294 * Used for nfs4_commit_vp() to indicate if we should 295 * wait on pending writes. 296 */ 297 #define NFS4_WRITE_NOWAIT 0 298 #define NFS4_WRITE_WAIT 1 299 300 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 301 302 /* 303 * Error flags used to pass information about certain special errors 304 * which need to be handled specially. 305 */ 306 #define NFS_EOF -98 307 #define NFS_VERF_MISMATCH -97 308 309 /* 310 * Flags used to differentiate between which operation drove the 311 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 312 */ 313 #define NFS4_CLOSE_OP 0x1 314 #define NFS4_DELMAP_OP 0x2 315 #define NFS4_INACTIVE_OP 0x3 316 317 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 318 319 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 320 #define ALIGN64(x, ptr, sz) \ 321 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 322 if (x) { \ 323 x = sizeof (uint64_t) - (x); \ 324 sz -= (x); \ 325 ptr += (x); \ 326 } 327 328 #ifdef DEBUG 329 int nfs4_client_attr_debug = 0; 330 int nfs4_client_state_debug = 0; 331 int nfs4_client_shadow_debug = 0; 332 int nfs4_client_lock_debug = 0; 333 int nfs4_seqid_sync = 0; 334 int nfs4_client_map_debug = 0; 335 static int nfs4_pageio_debug = 0; 336 int nfs4_client_inactive_debug = 0; 337 int nfs4_client_recov_debug = 0; 338 int nfs4_client_failover_debug = 0; 339 int nfs4_client_call_debug = 0; 340 int nfs4_client_lookup_debug = 0; 341 int nfs4_client_zone_debug = 0; 342 int nfs4_lost_rqst_debug = 0; 343 int nfs4_rdattrerr_debug = 0; 344 int nfs4_open_stream_debug = 0; 345 346 int nfs4read_error_inject; 347 348 static int nfs4_create_misses = 0; 349 350 static int nfs4_readdir_cache_shorts = 0; 351 static int nfs4_readdir_readahead = 0; 352 353 static int nfs4_bio_do_stop = 0; 354 355 static int nfs4_lostpage = 0; /* number of times we lost original page */ 356 357 int nfs4_mmap_debug = 0; 358 359 static int nfs4_pathconf_cache_hits = 0; 360 static int nfs4_pathconf_cache_misses = 0; 361 362 int nfs4close_all_cnt; 363 int nfs4close_one_debug = 0; 364 int nfs4close_notw_debug = 0; 365 366 int denied_to_flk_debug = 0; 367 void *lockt_denied_debug; 368 369 #endif 370 371 /* 372 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 373 * or NFS4ERR_RESOURCE. 374 */ 375 static int confirm_retry_sec = 30; 376 377 static int nfs4_lookup_neg_cache = 1; 378 379 /* 380 * number of pages to read ahead 381 * optimized for 100 base-T. 382 */ 383 static int nfs4_nra = 4; 384 385 static int nfs4_do_symlink_cache = 1; 386 387 static int nfs4_pathconf_disable_cache = 0; 388 389 /* 390 * These are the vnode ops routines which implement the vnode interface to 391 * the networked file system. These routines just take their parameters, 392 * make them look networkish by putting the right info into interface structs, 393 * and then calling the appropriate remote routine(s) to do the work. 394 * 395 * Note on directory name lookup cacheing: If we detect a stale fhandle, 396 * we purge the directory cache relative to that vnode. This way, the 397 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 398 * more details on rnode locking. 399 */ 400 401 struct vnodeops *nfs4_vnodeops; 402 403 const fs_operation_def_t nfs4_vnodeops_template[] = { 404 VOPNAME_OPEN, { .vop_open = nfs4_open }, 405 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 406 VOPNAME_READ, { .vop_read = nfs4_read }, 407 VOPNAME_WRITE, { .vop_write = nfs4_write }, 408 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 409 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 410 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 411 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 412 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 413 VOPNAME_CREATE, { .vop_create = nfs4_create }, 414 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 415 VOPNAME_LINK, { .vop_link = nfs4_link }, 416 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 417 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 418 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 419 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 420 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 421 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 422 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 423 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 424 VOPNAME_FID, { .vop_fid = nfs4_fid }, 425 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 426 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 427 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 428 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 429 VOPNAME_SPACE, { .vop_space = nfs4_space }, 430 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 431 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 432 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 433 VOPNAME_MAP, { .vop_map = nfs4_map }, 434 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 435 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 436 /* no separate nfs4_dump */ 437 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 438 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 439 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 440 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 441 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 442 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 443 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 444 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 445 NULL, NULL 446 }; 447 448 /* 449 * The following are subroutines and definitions to set args or get res 450 * for the different nfsv4 ops 451 */ 452 453 void 454 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 455 { 456 int i; 457 458 for (i = 0; i < arglen; i++) { 459 if (argop[i].argop == OP_LOOKUP) { 460 kmem_free( 461 argop[i].nfs_argop4_u.oplookup. 462 objname.utf8string_val, 463 argop[i].nfs_argop4_u.oplookup. 464 objname.utf8string_len); 465 } 466 } 467 } 468 469 static void 470 nfs4args_lock_free(nfs_argop4 *argop) 471 { 472 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 473 474 if (locker->new_lock_owner == TRUE) { 475 open_to_lock_owner4 *open_owner; 476 477 open_owner = &locker->locker4_u.open_owner; 478 if (open_owner->lock_owner.owner_val != NULL) { 479 kmem_free(open_owner->lock_owner.owner_val, 480 open_owner->lock_owner.owner_len); 481 } 482 } 483 } 484 485 static void 486 nfs4args_lockt_free(nfs_argop4 *argop) 487 { 488 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 489 490 if (lowner->owner_val != NULL) { 491 kmem_free(lowner->owner_val, lowner->owner_len); 492 } 493 } 494 495 static void 496 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 497 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 498 nfs4_stateid_types_t *sid_types) 499 { 500 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 501 mntinfo4_t *mi; 502 503 argop->argop = OP_SETATTR; 504 /* 505 * The stateid is set to 0 if client is not modifying the size 506 * and otherwise to whatever nfs4_get_stateid() returns. 507 * 508 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 509 * state struct could be found for the process/file pair. We may 510 * want to change this in the future (by OPENing the file). See 511 * bug # 4474852. 512 */ 513 if (vap->va_mask & AT_SIZE) { 514 515 ASSERT(rp != NULL); 516 mi = VTOMI4(RTOV4(rp)); 517 518 argop->nfs_argop4_u.opsetattr.stateid = 519 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 520 OP_SETATTR, sid_types, FALSE); 521 } else { 522 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 523 sizeof (stateid4)); 524 } 525 526 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 527 if (*error) 528 bzero(attr, sizeof (*attr)); 529 } 530 531 static void 532 nfs4args_setattr_free(nfs_argop4 *argop) 533 { 534 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 535 } 536 537 static int 538 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 539 bitmap4 supp) 540 { 541 fattr4 *attr; 542 int error = 0; 543 544 argop->argop = op; 545 switch (op) { 546 case OP_VERIFY: 547 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 548 break; 549 case OP_NVERIFY: 550 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 551 break; 552 default: 553 return (EINVAL); 554 } 555 if (!error) 556 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 557 if (error) 558 bzero(attr, sizeof (*attr)); 559 return (error); 560 } 561 562 static void 563 nfs4args_verify_free(nfs_argop4 *argop) 564 { 565 switch (argop->argop) { 566 case OP_VERIFY: 567 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 568 break; 569 case OP_NVERIFY: 570 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 571 break; 572 default: 573 break; 574 } 575 } 576 577 static void 578 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 579 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 580 { 581 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 582 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 583 584 argop->argop = OP_WRITE; 585 wargs->stable = stable; 586 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 587 mi, OP_WRITE, sid_tp); 588 wargs->mblk = NULL; 589 *wargs_pp = wargs; 590 } 591 592 void 593 nfs4args_copen_free(OPEN4cargs *open_args) 594 { 595 if (open_args->owner.owner_val) { 596 kmem_free(open_args->owner.owner_val, 597 open_args->owner.owner_len); 598 } 599 if ((open_args->opentype == OPEN4_CREATE) && 600 (open_args->mode != EXCLUSIVE4)) { 601 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 602 } 603 } 604 605 /* 606 * XXX: This is referenced in modstubs.S 607 */ 608 struct vnodeops * 609 nfs4_getvnodeops(void) 610 { 611 return (nfs4_vnodeops); 612 } 613 614 /* 615 * The OPEN operation opens a regular file. 616 */ 617 /*ARGSUSED3*/ 618 static int 619 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 620 { 621 vnode_t *dvp = NULL; 622 rnode4_t *rp, *drp; 623 int error; 624 int just_been_created; 625 char fn[MAXNAMELEN]; 626 627 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 628 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 629 return (EIO); 630 rp = VTOR4(*vpp); 631 632 /* 633 * Check to see if opening something besides a regular file; 634 * if so skip the OTW call 635 */ 636 if ((*vpp)->v_type != VREG) { 637 error = nfs4_open_non_reg_file(vpp, flag, cr); 638 return (error); 639 } 640 641 /* 642 * XXX - would like a check right here to know if the file is 643 * executable or not, so as to skip OTW 644 */ 645 646 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 647 return (error); 648 649 drp = VTOR4(dvp); 650 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 651 return (EINTR); 652 653 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 654 nfs_rw_exit(&drp->r_rwlock); 655 return (error); 656 } 657 658 /* 659 * See if this file has just been CREATEd. 660 * If so, clear the flag and update the dnlc, which was previously 661 * skipped in nfs4_create. 662 * XXX need better serilization on this. 663 * XXX move this into the nf4open_otw call, after we have 664 * XXX acquired the open owner seqid sync. 665 */ 666 mutex_enter(&rp->r_statev4_lock); 667 if (rp->created_v4) { 668 rp->created_v4 = 0; 669 mutex_exit(&rp->r_statev4_lock); 670 671 dnlc_update(dvp, fn, *vpp); 672 /* This is needed so we don't bump the open ref count */ 673 just_been_created = 1; 674 } else { 675 mutex_exit(&rp->r_statev4_lock); 676 just_been_created = 0; 677 } 678 679 /* 680 * If caller specified O_TRUNC/FTRUNC, then be sure to set 681 * FWRITE (to drive successful setattr(size=0) after open) 682 */ 683 if (flag & FTRUNC) 684 flag |= FWRITE; 685 686 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 687 just_been_created); 688 689 if (!error && !((*vpp)->v_flag & VROOT)) 690 dnlc_update(dvp, fn, *vpp); 691 692 nfs_rw_exit(&drp->r_rwlock); 693 694 /* release the hold from vtodv */ 695 VN_RELE(dvp); 696 697 /* exchange the shadow for the master vnode, if needed */ 698 699 if (error == 0 && IS_SHADOW(*vpp, rp)) 700 sv_exchange(vpp); 701 702 return (error); 703 } 704 705 /* 706 * See if there's a "lost open" request to be saved and recovered. 707 */ 708 static void 709 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 710 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 711 vnode_t *dvp, OPEN4cargs *open_args) 712 { 713 vfs_t *vfsp; 714 char *srccfp; 715 716 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 717 718 if (error != ETIMEDOUT && error != EINTR && 719 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 720 lost_rqstp->lr_op = 0; 721 return; 722 } 723 724 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 725 "nfs4open_save_lost_rqst: error %d", error)); 726 727 lost_rqstp->lr_op = OP_OPEN; 728 729 /* 730 * The vp (if it is not NULL) and dvp are held and rele'd via 731 * the recovery code. See nfs4_save_lost_rqst. 732 */ 733 lost_rqstp->lr_vp = vp; 734 lost_rqstp->lr_dvp = dvp; 735 lost_rqstp->lr_oop = oop; 736 lost_rqstp->lr_osp = NULL; 737 lost_rqstp->lr_lop = NULL; 738 lost_rqstp->lr_cr = cr; 739 lost_rqstp->lr_flk = NULL; 740 lost_rqstp->lr_oacc = open_args->share_access; 741 lost_rqstp->lr_odeny = open_args->share_deny; 742 lost_rqstp->lr_oclaim = open_args->claim; 743 if (open_args->claim == CLAIM_DELEGATE_CUR) { 744 lost_rqstp->lr_ostateid = 745 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 746 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 747 } else { 748 srccfp = open_args->open_claim4_u.cfile; 749 } 750 lost_rqstp->lr_ofile.utf8string_len = 0; 751 lost_rqstp->lr_ofile.utf8string_val = NULL; 752 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 753 lost_rqstp->lr_putfirst = FALSE; 754 } 755 756 struct nfs4_excl_time { 757 uint32 seconds; 758 uint32 nseconds; 759 }; 760 761 /* 762 * The OPEN operation creates and/or opens a regular file 763 * 764 * ARGSUSED 765 */ 766 static int 767 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 768 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 769 enum createmode4 createmode, int file_just_been_created) 770 { 771 rnode4_t *rp; 772 rnode4_t *drp = VTOR4(dvp); 773 vnode_t *vp = NULL; 774 vnode_t *vpi = *vpp; 775 bool_t needrecov = FALSE; 776 777 int doqueue = 1; 778 779 COMPOUND4args_clnt args; 780 COMPOUND4res_clnt res; 781 nfs_argop4 *argop; 782 nfs_resop4 *resop; 783 int argoplist_size; 784 int idx_open, idx_fattr; 785 786 GETFH4res *gf_res = NULL; 787 OPEN4res *op_res = NULL; 788 nfs4_ga_res_t *garp; 789 fattr4 *attr = NULL; 790 struct nfs4_excl_time verf; 791 bool_t did_excl_setup = FALSE; 792 int created_osp; 793 794 OPEN4cargs *open_args; 795 nfs4_open_owner_t *oop = NULL; 796 nfs4_open_stream_t *osp = NULL; 797 seqid4 seqid = 0; 798 bool_t retry_open = FALSE; 799 nfs4_recov_state_t recov_state; 800 nfs4_lost_rqst_t lost_rqst; 801 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 802 hrtime_t t; 803 int acc = 0; 804 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 805 cred_t *ncr = NULL; 806 807 nfs4_sharedfh_t *otw_sfh; 808 nfs4_sharedfh_t *orig_sfh; 809 int fh_differs = 0; 810 int numops, setgid_flag; 811 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 812 813 /* 814 * Make sure we properly deal with setting the right gid on 815 * a newly created file to reflect the parent's setgid bit 816 */ 817 setgid_flag = 0; 818 if (create_flag && in_va) { 819 820 /* 821 * If there is grpid mount flag used or 822 * the parent's directory has the setgid bit set 823 * _and_ the client was able to get a valid mapping 824 * for the parent dir's owner_group, we want to 825 * append NVERIFY(owner_group == dva.va_gid) and 826 * SETATTR to the CREATE compound. 827 */ 828 mutex_enter(&drp->r_statelock); 829 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID || 830 drp->r_attr.va_mode & VSGID) && 831 drp->r_attr.va_gid != GID_NOBODY) { 832 in_va->va_mask |= AT_GID; 833 in_va->va_gid = drp->r_attr.va_gid; 834 setgid_flag = 1; 835 } 836 mutex_exit(&drp->r_statelock); 837 } 838 839 /* 840 * Normal/non-create compound: 841 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 842 * 843 * Open(create) compound no setgid: 844 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 845 * RESTOREFH + GETATTR 846 * 847 * Open(create) setgid: 848 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 849 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 850 * NVERIFY(grp) + SETATTR 851 */ 852 if (setgid_flag) { 853 numops = 10; 854 idx_open = 1; 855 idx_fattr = 3; 856 } else if (create_flag) { 857 numops = 7; 858 idx_open = 2; 859 idx_fattr = 4; 860 } else { 861 numops = 4; 862 idx_open = 1; 863 idx_fattr = 3; 864 } 865 866 args.array_len = numops; 867 argoplist_size = numops * sizeof (nfs_argop4); 868 argop = kmem_alloc(argoplist_size, KM_SLEEP); 869 870 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 871 "open %s open flag 0x%x cred %p", file_name, open_flag, 872 (void *)cr)); 873 874 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 875 if (create_flag) { 876 /* 877 * We are to create a file. Initialize the passed in vnode 878 * pointer. 879 */ 880 vpi = NULL; 881 } else { 882 /* 883 * Check to see if the client owns a read delegation and is 884 * trying to open for write. If so, then return the delegation 885 * to avoid the server doing a cb_recall and returning DELAY. 886 * NB - we don't use the statev4_lock here because we'd have 887 * to drop the lock anyway and the result would be stale. 888 */ 889 if ((open_flag & FWRITE) && 890 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 891 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 892 893 /* 894 * If the file has a delegation, then do an access check up 895 * front. This avoids having to an access check later after 896 * we've already done start_op, which could deadlock. 897 */ 898 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 899 if (open_flag & FREAD && 900 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 901 acc |= VREAD; 902 if (open_flag & FWRITE && 903 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 904 acc |= VWRITE; 905 } 906 } 907 908 drp = VTOR4(dvp); 909 910 recov_state.rs_flags = 0; 911 recov_state.rs_num_retry_despite_err = 0; 912 cred_otw = cr; 913 914 recov_retry: 915 fh_differs = 0; 916 nfs4_error_zinit(&e); 917 918 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 919 if (e.error) { 920 if (ncr != NULL) 921 crfree(ncr); 922 kmem_free(argop, argoplist_size); 923 return (e.error); 924 } 925 926 args.ctag = TAG_OPEN; 927 args.array_len = numops; 928 args.array = argop; 929 930 /* putfh directory fh */ 931 argop[0].argop = OP_CPUTFH; 932 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 933 934 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 935 argop[idx_open].argop = OP_COPEN; 936 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 937 open_args->claim = CLAIM_NULL; 938 939 /* name of file */ 940 open_args->open_claim4_u.cfile = file_name; 941 open_args->owner.owner_len = 0; 942 open_args->owner.owner_val = NULL; 943 944 if (create_flag) { 945 /* CREATE a file */ 946 open_args->opentype = OPEN4_CREATE; 947 open_args->mode = createmode; 948 if (createmode == EXCLUSIVE4) { 949 if (did_excl_setup == FALSE) { 950 verf.seconds = zone_get_hostid(NULL); 951 if (verf.seconds != 0) 952 verf.nseconds = newnum(); 953 else { 954 timestruc_t now; 955 956 gethrestime(&now); 957 verf.seconds = now.tv_sec; 958 verf.nseconds = now.tv_nsec; 959 } 960 /* 961 * Since the server will use this value for the 962 * mtime, make sure that it can't overflow. Zero 963 * out the MSB. The actual value does not matter 964 * here, only its uniqeness. 965 */ 966 verf.seconds &= INT32_MAX; 967 did_excl_setup = TRUE; 968 } 969 970 /* Now copy over verifier to OPEN4args. */ 971 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 972 } else { 973 int v_error; 974 bitmap4 supp_attrs; 975 servinfo4_t *svp; 976 977 attr = &open_args->createhow4_u.createattrs; 978 979 svp = drp->r_server; 980 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 981 supp_attrs = svp->sv_supp_attrs; 982 nfs_rw_exit(&svp->sv_lock); 983 984 /* GUARDED4 or UNCHECKED4 */ 985 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 986 supp_attrs); 987 if (v_error) { 988 bzero(attr, sizeof (*attr)); 989 nfs4args_copen_free(open_args); 990 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 991 &recov_state, FALSE); 992 if (ncr != NULL) 993 crfree(ncr); 994 kmem_free(argop, argoplist_size); 995 return (v_error); 996 } 997 } 998 } else { 999 /* NO CREATE */ 1000 open_args->opentype = OPEN4_NOCREATE; 1001 } 1002 1003 if (recov_state.rs_sp != NULL) { 1004 mutex_enter(&recov_state.rs_sp->s_lock); 1005 open_args->owner.clientid = recov_state.rs_sp->clientid; 1006 mutex_exit(&recov_state.rs_sp->s_lock); 1007 } else { 1008 /* XXX should we just fail here? */ 1009 open_args->owner.clientid = 0; 1010 } 1011 1012 /* 1013 * This increments oop's ref count or creates a temporary 'just_created' 1014 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 1015 * completes. 1016 */ 1017 mutex_enter(&VTOMI4(dvp)->mi_lock); 1018 1019 /* See if a permanent or just created open owner exists */ 1020 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1021 if (!oop) { 1022 /* 1023 * This open owner does not exist so create a temporary 1024 * just created one. 1025 */ 1026 oop = create_open_owner(cr, VTOMI4(dvp)); 1027 ASSERT(oop != NULL); 1028 } 1029 mutex_exit(&VTOMI4(dvp)->mi_lock); 1030 1031 /* this length never changes, do alloc before seqid sync */ 1032 open_args->owner.owner_len = sizeof (oop->oo_name); 1033 open_args->owner.owner_val = 1034 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1035 1036 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1037 if (e.error == EAGAIN) { 1038 open_owner_rele(oop); 1039 nfs4args_copen_free(open_args); 1040 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1041 if (ncr != NULL) { 1042 crfree(ncr); 1043 ncr = NULL; 1044 } 1045 goto recov_retry; 1046 } 1047 1048 /* Check to see if we need to do the OTW call */ 1049 if (!create_flag) { 1050 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1051 file_just_been_created, &e.error, acc, &recov_state)) { 1052 1053 /* 1054 * The OTW open is not necessary. Either 1055 * the open can succeed without it (eg. 1056 * delegation, error == 0) or the open 1057 * must fail due to an access failure 1058 * (error != 0). In either case, tidy 1059 * up and return. 1060 */ 1061 1062 nfs4_end_open_seqid_sync(oop); 1063 open_owner_rele(oop); 1064 nfs4args_copen_free(open_args); 1065 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1066 if (ncr != NULL) 1067 crfree(ncr); 1068 kmem_free(argop, argoplist_size); 1069 return (e.error); 1070 } 1071 } 1072 1073 bcopy(&oop->oo_name, open_args->owner.owner_val, 1074 open_args->owner.owner_len); 1075 1076 seqid = nfs4_get_open_seqid(oop) + 1; 1077 open_args->seqid = seqid; 1078 open_args->share_access = 0; 1079 if (open_flag & FREAD) 1080 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1081 if (open_flag & FWRITE) 1082 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1083 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1084 1085 1086 1087 /* 1088 * getfh w/sanity check for idx_open/idx_fattr 1089 */ 1090 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1091 argop[idx_open + 1].argop = OP_GETFH; 1092 1093 /* getattr */ 1094 argop[idx_fattr].argop = OP_GETATTR; 1095 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1096 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1097 1098 if (setgid_flag) { 1099 vattr_t _v; 1100 servinfo4_t *svp; 1101 bitmap4 supp_attrs; 1102 1103 svp = drp->r_server; 1104 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1105 supp_attrs = svp->sv_supp_attrs; 1106 nfs_rw_exit(&svp->sv_lock); 1107 1108 /* 1109 * For setgid case, we need to: 1110 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1111 */ 1112 argop[4].argop = OP_SAVEFH; 1113 1114 argop[5].argop = OP_CPUTFH; 1115 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1116 1117 argop[6].argop = OP_GETATTR; 1118 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1119 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1120 1121 argop[7].argop = OP_RESTOREFH; 1122 1123 /* 1124 * nverify 1125 */ 1126 _v.va_mask = AT_GID; 1127 _v.va_gid = in_va->va_gid; 1128 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1129 supp_attrs))) { 1130 1131 /* 1132 * setattr 1133 * 1134 * We _know_ we're not messing with AT_SIZE or 1135 * AT_XTIME, so no need for stateid or flags. 1136 * Also we specify NULL rp since we're only 1137 * interested in setting owner_group attributes. 1138 */ 1139 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1140 supp_attrs, &e.error, 0); 1141 if (e.error) 1142 nfs4args_verify_free(&argop[8]); 1143 } 1144 1145 if (e.error) { 1146 /* 1147 * XXX - Revisit the last argument to nfs4_end_op() 1148 * once 5020486 is fixed. 1149 */ 1150 nfs4_end_open_seqid_sync(oop); 1151 open_owner_rele(oop); 1152 nfs4args_copen_free(open_args); 1153 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1154 if (ncr != NULL) 1155 crfree(ncr); 1156 kmem_free(argop, argoplist_size); 1157 return (e.error); 1158 } 1159 } else if (create_flag) { 1160 argop[1].argop = OP_SAVEFH; 1161 1162 argop[5].argop = OP_RESTOREFH; 1163 1164 argop[6].argop = OP_GETATTR; 1165 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1166 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1167 } 1168 1169 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1170 "nfs4open_otw: %s call, nm %s, rp %s", 1171 needrecov ? "recov" : "first", file_name, 1172 rnode4info(VTOR4(dvp)))); 1173 1174 t = gethrtime(); 1175 1176 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1177 1178 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1179 nfs4_set_open_seqid(seqid, oop, args.ctag); 1180 1181 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1182 1183 if (e.error || needrecov) { 1184 bool_t abort = FALSE; 1185 1186 if (needrecov) { 1187 nfs4_bseqid_entry_t *bsep = NULL; 1188 1189 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1190 cred_otw, vpi, dvp, open_args); 1191 1192 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1193 bsep = nfs4_create_bseqid_entry(oop, NULL, 1194 vpi, 0, args.ctag, open_args->seqid); 1195 num_bseqid_retry--; 1196 } 1197 1198 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1199 NULL, lost_rqst.lr_op == OP_OPEN ? 1200 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL); 1201 1202 if (bsep) 1203 kmem_free(bsep, sizeof (*bsep)); 1204 /* give up if we keep getting BAD_SEQID */ 1205 if (num_bseqid_retry == 0) 1206 abort = TRUE; 1207 if (abort == TRUE && e.error == 0) 1208 e.error = geterrno4(res.status); 1209 } 1210 nfs4_end_open_seqid_sync(oop); 1211 open_owner_rele(oop); 1212 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1213 nfs4args_copen_free(open_args); 1214 if (setgid_flag) { 1215 nfs4args_verify_free(&argop[8]); 1216 nfs4args_setattr_free(&argop[9]); 1217 } 1218 if (!e.error) 1219 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1220 if (ncr != NULL) { 1221 crfree(ncr); 1222 ncr = NULL; 1223 } 1224 if (!needrecov || abort == TRUE || e.error == EINTR || 1225 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1226 kmem_free(argop, argoplist_size); 1227 return (e.error); 1228 } 1229 goto recov_retry; 1230 } 1231 1232 /* 1233 * Will check and update lease after checking the rflag for 1234 * OPEN_CONFIRM in the successful OPEN call. 1235 */ 1236 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1237 1238 /* 1239 * XXX what if we're crossing mount points from server1:/drp 1240 * to server2:/drp/rp. 1241 */ 1242 1243 /* Signal our end of use of the open seqid */ 1244 nfs4_end_open_seqid_sync(oop); 1245 1246 /* 1247 * This will destroy the open owner if it was just created, 1248 * and no one else has put a reference on it. 1249 */ 1250 open_owner_rele(oop); 1251 if (create_flag && (createmode != EXCLUSIVE4) && 1252 res.status == NFS4ERR_BADOWNER) 1253 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1254 1255 e.error = geterrno4(res.status); 1256 nfs4args_copen_free(open_args); 1257 if (setgid_flag) { 1258 nfs4args_verify_free(&argop[8]); 1259 nfs4args_setattr_free(&argop[9]); 1260 } 1261 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1262 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1263 /* 1264 * If the reply is NFS4ERR_ACCESS, it may be because 1265 * we are root (no root net access). If the real uid 1266 * is not root, then retry with the real uid instead. 1267 */ 1268 if (ncr != NULL) { 1269 crfree(ncr); 1270 ncr = NULL; 1271 } 1272 if (res.status == NFS4ERR_ACCESS && 1273 (ncr = crnetadjust(cred_otw)) != NULL) { 1274 cred_otw = ncr; 1275 goto recov_retry; 1276 } 1277 kmem_free(argop, argoplist_size); 1278 return (e.error); 1279 } 1280 1281 resop = &res.array[idx_open]; /* open res */ 1282 op_res = &resop->nfs_resop4_u.opopen; 1283 1284 #ifdef DEBUG 1285 /* 1286 * verify attrset bitmap 1287 */ 1288 if (create_flag && 1289 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1290 /* make sure attrset returned is what we asked for */ 1291 /* XXX Ignore this 'error' for now */ 1292 if (attr->attrmask != op_res->attrset) 1293 /* EMPTY */; 1294 } 1295 #endif 1296 1297 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1298 mutex_enter(&VTOMI4(dvp)->mi_lock); 1299 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1300 mutex_exit(&VTOMI4(dvp)->mi_lock); 1301 } 1302 1303 resop = &res.array[idx_open + 1]; /* getfh res */ 1304 gf_res = &resop->nfs_resop4_u.opgetfh; 1305 1306 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1307 1308 /* 1309 * The open stateid has been updated on the server but not 1310 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1311 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1312 * WRITE call. That, however, will use the old stateid, so go ahead 1313 * and upate the open stateid now, before any call to makenfs4node. 1314 */ 1315 if (vpi) { 1316 nfs4_open_stream_t *tmp_osp; 1317 rnode4_t *tmp_rp = VTOR4(vpi); 1318 1319 tmp_osp = find_open_stream(oop, tmp_rp); 1320 if (tmp_osp) { 1321 tmp_osp->open_stateid = op_res->stateid; 1322 mutex_exit(&tmp_osp->os_sync_lock); 1323 open_stream_rele(tmp_osp, tmp_rp); 1324 } 1325 1326 /* 1327 * We must determine if the file handle given by the otw open 1328 * is the same as the file handle which was passed in with 1329 * *vpp. This case can be reached if the file we are trying 1330 * to open has been removed and another file has been created 1331 * having the same file name. The passed in vnode is released 1332 * later. 1333 */ 1334 orig_sfh = VTOR4(vpi)->r_fh; 1335 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1336 } 1337 1338 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1339 1340 if (create_flag || fh_differs) { 1341 int rnode_err = 0; 1342 1343 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1344 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh)); 1345 1346 if (e.error) 1347 PURGE_ATTRCACHE4(vp); 1348 /* 1349 * For the newly created vp case, make sure the rnode 1350 * isn't bad before using it. 1351 */ 1352 mutex_enter(&(VTOR4(vp))->r_statelock); 1353 if (VTOR4(vp)->r_flags & R4RECOVERR) 1354 rnode_err = EIO; 1355 mutex_exit(&(VTOR4(vp))->r_statelock); 1356 1357 if (rnode_err) { 1358 nfs4_end_open_seqid_sync(oop); 1359 nfs4args_copen_free(open_args); 1360 if (setgid_flag) { 1361 nfs4args_verify_free(&argop[8]); 1362 nfs4args_setattr_free(&argop[9]); 1363 } 1364 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1365 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1366 needrecov); 1367 open_owner_rele(oop); 1368 VN_RELE(vp); 1369 if (ncr != NULL) 1370 crfree(ncr); 1371 sfh4_rele(&otw_sfh); 1372 kmem_free(argop, argoplist_size); 1373 return (EIO); 1374 } 1375 } else { 1376 vp = vpi; 1377 } 1378 sfh4_rele(&otw_sfh); 1379 1380 /* 1381 * It seems odd to get a full set of attrs and then not update 1382 * the object's attrcache in the non-create case. Create case uses 1383 * the attrs since makenfs4node checks to see if the attrs need to 1384 * be updated (and then updates them). The non-create case should 1385 * update attrs also. 1386 */ 1387 if (! create_flag && ! fh_differs && !e.error) { 1388 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1389 } 1390 1391 nfs4_error_zinit(&e); 1392 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1393 /* This does not do recovery for vp explicitly. */ 1394 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1395 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1396 1397 if (e.error || e.stat) { 1398 nfs4_end_open_seqid_sync(oop); 1399 nfs4args_copen_free(open_args); 1400 if (setgid_flag) { 1401 nfs4args_verify_free(&argop[8]); 1402 nfs4args_setattr_free(&argop[9]); 1403 } 1404 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1405 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1406 needrecov); 1407 open_owner_rele(oop); 1408 if (create_flag || fh_differs) { 1409 /* rele the makenfs4node */ 1410 VN_RELE(vp); 1411 } 1412 if (ncr != NULL) { 1413 crfree(ncr); 1414 ncr = NULL; 1415 } 1416 if (retry_open == TRUE) { 1417 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1418 "nfs4open_otw: retry the open since OPEN " 1419 "CONFIRM failed with error %d stat %d", 1420 e.error, e.stat)); 1421 if (create_flag && createmode == GUARDED4) { 1422 NFS4_DEBUG(nfs4_client_recov_debug, 1423 (CE_NOTE, "nfs4open_otw: switch " 1424 "createmode from GUARDED4 to " 1425 "UNCHECKED4")); 1426 createmode = UNCHECKED4; 1427 } 1428 goto recov_retry; 1429 } 1430 if (!e.error) { 1431 if (create_flag && (createmode != EXCLUSIVE4) && 1432 e.stat == NFS4ERR_BADOWNER) 1433 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1434 1435 e.error = geterrno4(e.stat); 1436 } 1437 kmem_free(argop, argoplist_size); 1438 return (e.error); 1439 } 1440 } 1441 1442 rp = VTOR4(vp); 1443 1444 mutex_enter(&rp->r_statev4_lock); 1445 if (create_flag) 1446 rp->created_v4 = 1; 1447 mutex_exit(&rp->r_statev4_lock); 1448 1449 mutex_enter(&oop->oo_lock); 1450 /* Doesn't matter if 'oo_just_created' already was set as this */ 1451 oop->oo_just_created = NFS4_PERM_CREATED; 1452 if (oop->oo_cred_otw) 1453 crfree(oop->oo_cred_otw); 1454 oop->oo_cred_otw = cred_otw; 1455 crhold(oop->oo_cred_otw); 1456 mutex_exit(&oop->oo_lock); 1457 1458 /* returns with 'os_sync_lock' held */ 1459 osp = find_or_create_open_stream(oop, rp, &created_osp); 1460 if (!osp) { 1461 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1462 "nfs4open_otw: failed to create an open stream")); 1463 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1464 "signal our end of use of the open seqid")); 1465 1466 nfs4_end_open_seqid_sync(oop); 1467 open_owner_rele(oop); 1468 nfs4args_copen_free(open_args); 1469 if (setgid_flag) { 1470 nfs4args_verify_free(&argop[8]); 1471 nfs4args_setattr_free(&argop[9]); 1472 } 1473 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1474 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1475 if (create_flag || fh_differs) 1476 VN_RELE(vp); 1477 if (ncr != NULL) 1478 crfree(ncr); 1479 1480 kmem_free(argop, argoplist_size); 1481 return (EINVAL); 1482 1483 } 1484 1485 osp->open_stateid = op_res->stateid; 1486 1487 if (open_flag & FREAD) 1488 osp->os_share_acc_read++; 1489 if (open_flag & FWRITE) 1490 osp->os_share_acc_write++; 1491 osp->os_share_deny_none++; 1492 1493 /* 1494 * Need to reset this bitfield for the possible case where we were 1495 * going to OTW CLOSE the file, got a non-recoverable error, and before 1496 * we could retry the CLOSE, OPENed the file again. 1497 */ 1498 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1499 osp->os_final_close = 0; 1500 osp->os_force_close = 0; 1501 #ifdef DEBUG 1502 if (osp->os_failed_reopen) 1503 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1504 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1505 (void *)osp, (void *)cr, rnode4info(rp))); 1506 #endif 1507 osp->os_failed_reopen = 0; 1508 1509 mutex_exit(&osp->os_sync_lock); 1510 1511 nfs4_end_open_seqid_sync(oop); 1512 1513 if (created_osp && recov_state.rs_sp != NULL) { 1514 mutex_enter(&recov_state.rs_sp->s_lock); 1515 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1516 mutex_exit(&recov_state.rs_sp->s_lock); 1517 } 1518 1519 /* get rid of our reference to find oop */ 1520 open_owner_rele(oop); 1521 1522 open_stream_rele(osp, rp); 1523 1524 /* accept delegation, if any */ 1525 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1526 1527 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1528 1529 if (createmode == EXCLUSIVE4 && 1530 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1531 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1532 " EXCLUSIVE4: sending a SETATTR")); 1533 /* 1534 * If doing an exclusive create, then generate 1535 * a SETATTR to set the initial attributes. 1536 * Try to set the mtime and the atime to the 1537 * server's current time. It is somewhat 1538 * expected that these fields will be used to 1539 * store the exclusive create cookie. If not, 1540 * server implementors will need to know that 1541 * a SETATTR will follow an exclusive create 1542 * and the cookie should be destroyed if 1543 * appropriate. 1544 * 1545 * The AT_GID and AT_SIZE bits are turned off 1546 * so that the SETATTR request will not attempt 1547 * to process these. The gid will be set 1548 * separately if appropriate. The size is turned 1549 * off because it is assumed that a new file will 1550 * be created empty and if the file wasn't empty, 1551 * then the exclusive create will have failed 1552 * because the file must have existed already. 1553 * Therefore, no truncate operation is needed. 1554 */ 1555 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1556 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1557 1558 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1559 if (e.error) { 1560 nfs4_error_t err; 1561 1562 /* 1563 * Couldn't correct the attributes of 1564 * the newly created file and the 1565 * attributes are wrong. Remove the 1566 * file and return an error to the 1567 * application. 1568 */ 1569 /* XXX will this take care of client state ? */ 1570 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1571 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1572 " remove file", e.error)); 1573 1574 /* 1575 * The file is currently open so try to close it first. 1576 * 1577 * If we do not close the file explicitly here then the 1578 * VN_RELE() would do an (implicit and asynchronous) 1579 * close for us. But such async close could race with 1580 * the nfs4_remove() below. If the async close is 1581 * slower than nfs4_remove() then nfs4_remove() 1582 * wouldn't remove the file but rename it to .nfsXXXX 1583 * instead. 1584 */ 1585 nfs4close_one(vp, NULL, cr, open_flag, NULL, &err, 1586 CLOSE_NORM, 0, 0, 0); 1587 VN_RELE(vp); 1588 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1589 1590 /* 1591 * Since we've reled the vnode and removed 1592 * the file we now need to return the error. 1593 * At this point we don't want to update the 1594 * dircaches, call nfs4_waitfor_purge_complete 1595 * or set vpp to vp so we need to skip these 1596 * as well. 1597 */ 1598 goto skip_update_dircaches; 1599 } 1600 } 1601 1602 /* 1603 * If we created or found the correct vnode, due to create_flag or 1604 * fh_differs being set, then update directory cache attribute, readdir 1605 * and dnlc caches. 1606 */ 1607 if (create_flag || fh_differs) { 1608 dirattr_info_t dinfo, *dinfop; 1609 1610 /* 1611 * Make sure getattr succeeded before using results. 1612 * note: op 7 is getattr(dir) for both flavors of 1613 * open(create). 1614 */ 1615 if (create_flag && res.status == NFS4_OK) { 1616 dinfo.di_time_call = t; 1617 dinfo.di_cred = cr; 1618 dinfo.di_garp = 1619 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1620 dinfop = &dinfo; 1621 } else { 1622 dinfop = NULL; 1623 } 1624 1625 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1626 dinfop); 1627 } 1628 1629 /* 1630 * If the page cache for this file was flushed from actions 1631 * above, it was done asynchronously and if that is true, 1632 * there is a need to wait here for it to complete. This must 1633 * be done outside of start_fop/end_fop. 1634 */ 1635 (void) nfs4_waitfor_purge_complete(vp); 1636 1637 /* 1638 * It is implicit that we are in the open case (create_flag == 0) since 1639 * fh_differs can only be set to a non-zero value in the open case. 1640 */ 1641 if (fh_differs != 0 && vpi != NULL) 1642 VN_RELE(vpi); 1643 1644 /* 1645 * Be sure to set *vpp to the correct value before returning. 1646 */ 1647 *vpp = vp; 1648 1649 skip_update_dircaches: 1650 1651 nfs4args_copen_free(open_args); 1652 if (setgid_flag) { 1653 nfs4args_verify_free(&argop[8]); 1654 nfs4args_setattr_free(&argop[9]); 1655 } 1656 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1657 1658 if (ncr) 1659 crfree(ncr); 1660 kmem_free(argop, argoplist_size); 1661 return (e.error); 1662 } 1663 1664 /* 1665 * Reopen an open instance. cf. nfs4open_otw(). 1666 * 1667 * Errors are returned by the nfs4_error_t parameter. 1668 * - ep->error contains an errno value or zero. 1669 * - if it is zero, ep->stat is set to an NFS status code, if any. 1670 * If the file could not be reopened, but the caller should continue, the 1671 * file is marked dead and no error values are returned. If the caller 1672 * should stop recovering open files and start over, either the ep->error 1673 * value or ep->stat will indicate an error (either something that requires 1674 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1675 * filehandles) may be handled silently by this routine. 1676 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1677 * will be started, so the caller should not do it. 1678 * 1679 * Gotos: 1680 * - kill_file : reopen failed in such a fashion to constitute marking the 1681 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1682 * is for cases where recovery is not possible. 1683 * - failed_reopen : same as above, except that the file has already been 1684 * marked dead, so no need to do it again. 1685 * - bailout : reopen failed but we are able to recover and retry the reopen - 1686 * either within this function immediately or via the calling function. 1687 */ 1688 1689 void 1690 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1691 open_claim_type4 claim, bool_t frc_use_claim_previous, 1692 bool_t is_recov) 1693 { 1694 COMPOUND4args_clnt args; 1695 COMPOUND4res_clnt res; 1696 nfs_argop4 argop[4]; 1697 nfs_resop4 *resop; 1698 OPEN4res *op_res = NULL; 1699 OPEN4cargs *open_args; 1700 GETFH4res *gf_res; 1701 rnode4_t *rp = VTOR4(vp); 1702 int doqueue = 1; 1703 cred_t *cr = NULL, *cred_otw = NULL; 1704 nfs4_open_owner_t *oop = NULL; 1705 seqid4 seqid; 1706 nfs4_ga_res_t *garp; 1707 char fn[MAXNAMELEN]; 1708 nfs4_recov_state_t recov = {NULL, 0}; 1709 nfs4_lost_rqst_t lost_rqst; 1710 mntinfo4_t *mi = VTOMI4(vp); 1711 bool_t abort; 1712 char *failed_msg = ""; 1713 int fh_different; 1714 hrtime_t t; 1715 nfs4_bseqid_entry_t *bsep = NULL; 1716 1717 ASSERT(nfs4_consistent_type(vp)); 1718 ASSERT(nfs_zone() == mi->mi_zone); 1719 1720 nfs4_error_zinit(ep); 1721 1722 /* this is the cred used to find the open owner */ 1723 cr = state_to_cred(osp); 1724 if (cr == NULL) { 1725 failed_msg = "Couldn't reopen: no cred"; 1726 goto kill_file; 1727 } 1728 /* use this cred for OTW operations */ 1729 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1730 1731 top: 1732 nfs4_error_zinit(ep); 1733 1734 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1735 /* File system has been unmounted, quit */ 1736 ep->error = EIO; 1737 failed_msg = "Couldn't reopen: file system has been unmounted"; 1738 goto kill_file; 1739 } 1740 1741 oop = osp->os_open_owner; 1742 1743 ASSERT(oop != NULL); 1744 if (oop == NULL) { /* be defensive in non-DEBUG */ 1745 failed_msg = "can't reopen: no open owner"; 1746 goto kill_file; 1747 } 1748 open_owner_hold(oop); 1749 1750 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1751 if (ep->error) { 1752 open_owner_rele(oop); 1753 oop = NULL; 1754 goto bailout; 1755 } 1756 1757 /* 1758 * If the rnode has a delegation and the delegation has been 1759 * recovered and the server didn't request a recall and the caller 1760 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1761 * recovery) and the rnode hasn't been marked dead, then install 1762 * the delegation stateid in the open stream. Otherwise, proceed 1763 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1764 */ 1765 mutex_enter(&rp->r_statev4_lock); 1766 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1767 !rp->r_deleg_return_pending && 1768 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1769 !rp->r_deleg_needs_recall && 1770 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1771 !(rp->r_flags & R4RECOVERR)) { 1772 mutex_enter(&osp->os_sync_lock); 1773 osp->os_delegation = 1; 1774 osp->open_stateid = rp->r_deleg_stateid; 1775 mutex_exit(&osp->os_sync_lock); 1776 mutex_exit(&rp->r_statev4_lock); 1777 goto bailout; 1778 } 1779 mutex_exit(&rp->r_statev4_lock); 1780 1781 /* 1782 * If the file failed recovery, just quit. This failure need not 1783 * affect other reopens, so don't return an error. 1784 */ 1785 mutex_enter(&rp->r_statelock); 1786 if (rp->r_flags & R4RECOVERR) { 1787 mutex_exit(&rp->r_statelock); 1788 ep->error = 0; 1789 goto failed_reopen; 1790 } 1791 mutex_exit(&rp->r_statelock); 1792 1793 /* 1794 * argop is empty here 1795 * 1796 * PUTFH, OPEN, GETATTR 1797 */ 1798 args.ctag = TAG_REOPEN; 1799 args.array_len = 4; 1800 args.array = argop; 1801 1802 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1803 "nfs4_reopen: file is type %d, id %s", 1804 vp->v_type, rnode4info(VTOR4(vp)))); 1805 1806 argop[0].argop = OP_CPUTFH; 1807 1808 if (claim != CLAIM_PREVIOUS) { 1809 /* 1810 * if this is a file mount then 1811 * use the mntinfo parentfh 1812 */ 1813 argop[0].nfs_argop4_u.opcputfh.sfh = 1814 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1815 VTOSV(vp)->sv_dfh; 1816 } else { 1817 /* putfh fh to reopen */ 1818 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1819 } 1820 1821 argop[1].argop = OP_COPEN; 1822 open_args = &argop[1].nfs_argop4_u.opcopen; 1823 open_args->claim = claim; 1824 1825 if (claim == CLAIM_NULL) { 1826 1827 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1828 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1829 "failed for vp 0x%p for CLAIM_NULL with %m", 1830 (void *)vp); 1831 failed_msg = "Couldn't reopen: vtoname failed for " 1832 "CLAIM_NULL"; 1833 /* nothing allocated yet */ 1834 goto kill_file; 1835 } 1836 1837 open_args->open_claim4_u.cfile = fn; 1838 } else if (claim == CLAIM_PREVIOUS) { 1839 1840 /* 1841 * We have two cases to deal with here: 1842 * 1) We're being called to reopen files in order to satisfy 1843 * a lock operation request which requires us to explicitly 1844 * reopen files which were opened under a delegation. If 1845 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1846 * that case, frc_use_claim_previous is TRUE and we must 1847 * use the rnode's current delegation type (r_deleg_type). 1848 * 2) We're reopening files during some form of recovery. 1849 * In this case, frc_use_claim_previous is FALSE and we 1850 * use the delegation type appropriate for recovery 1851 * (r_deleg_needs_recovery). 1852 */ 1853 mutex_enter(&rp->r_statev4_lock); 1854 open_args->open_claim4_u.delegate_type = 1855 frc_use_claim_previous ? 1856 rp->r_deleg_type : 1857 rp->r_deleg_needs_recovery; 1858 mutex_exit(&rp->r_statev4_lock); 1859 1860 } else if (claim == CLAIM_DELEGATE_CUR) { 1861 1862 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1863 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1864 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1865 "with %m", (void *)vp); 1866 failed_msg = "Couldn't reopen: vtoname failed for " 1867 "CLAIM_DELEGATE_CUR"; 1868 /* nothing allocated yet */ 1869 goto kill_file; 1870 } 1871 1872 mutex_enter(&rp->r_statev4_lock); 1873 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1874 rp->r_deleg_stateid; 1875 mutex_exit(&rp->r_statev4_lock); 1876 1877 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1878 } 1879 open_args->opentype = OPEN4_NOCREATE; 1880 open_args->owner.clientid = mi2clientid(mi); 1881 open_args->owner.owner_len = sizeof (oop->oo_name); 1882 open_args->owner.owner_val = 1883 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1884 bcopy(&oop->oo_name, open_args->owner.owner_val, 1885 open_args->owner.owner_len); 1886 open_args->share_access = 0; 1887 open_args->share_deny = 0; 1888 1889 mutex_enter(&osp->os_sync_lock); 1890 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1891 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1892 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1893 (void *)osp, (void *)rp, osp->os_share_acc_read, 1894 osp->os_share_acc_write, osp->os_open_ref_count, 1895 osp->os_mmap_read, osp->os_mmap_write, claim)); 1896 1897 if (osp->os_share_acc_read || osp->os_mmap_read) 1898 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1899 if (osp->os_share_acc_write || osp->os_mmap_write) 1900 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1901 if (osp->os_share_deny_read) 1902 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1903 if (osp->os_share_deny_write) 1904 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1905 mutex_exit(&osp->os_sync_lock); 1906 1907 seqid = nfs4_get_open_seqid(oop) + 1; 1908 open_args->seqid = seqid; 1909 1910 /* Construct the getfh part of the compound */ 1911 argop[2].argop = OP_GETFH; 1912 1913 /* Construct the getattr part of the compound */ 1914 argop[3].argop = OP_GETATTR; 1915 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1916 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1917 1918 t = gethrtime(); 1919 1920 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1921 1922 if (ep->error) { 1923 if (!is_recov && !frc_use_claim_previous && 1924 (ep->error == EINTR || ep->error == ETIMEDOUT || 1925 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1926 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1927 cred_otw, vp, NULL, open_args); 1928 abort = nfs4_start_recovery(ep, 1929 VTOMI4(vp), vp, NULL, NULL, 1930 lost_rqst.lr_op == OP_OPEN ? 1931 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL); 1932 nfs4args_copen_free(open_args); 1933 goto bailout; 1934 } 1935 1936 nfs4args_copen_free(open_args); 1937 1938 if (ep->error == EACCES && cred_otw != cr) { 1939 crfree(cred_otw); 1940 cred_otw = cr; 1941 crhold(cred_otw); 1942 nfs4_end_open_seqid_sync(oop); 1943 open_owner_rele(oop); 1944 oop = NULL; 1945 goto top; 1946 } 1947 if (ep->error == ETIMEDOUT) 1948 goto bailout; 1949 failed_msg = "Couldn't reopen: rpc error"; 1950 goto kill_file; 1951 } 1952 1953 if (nfs4_need_to_bump_seqid(&res)) 1954 nfs4_set_open_seqid(seqid, oop, args.ctag); 1955 1956 switch (res.status) { 1957 case NFS4_OK: 1958 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1959 mutex_enter(&rp->r_statelock); 1960 rp->r_delay_interval = 0; 1961 mutex_exit(&rp->r_statelock); 1962 } 1963 break; 1964 case NFS4ERR_BAD_SEQID: 1965 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1966 args.ctag, open_args->seqid); 1967 1968 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1969 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1970 NULL, OP_OPEN, bsep, NULL, NULL); 1971 1972 nfs4args_copen_free(open_args); 1973 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1974 nfs4_end_open_seqid_sync(oop); 1975 open_owner_rele(oop); 1976 oop = NULL; 1977 kmem_free(bsep, sizeof (*bsep)); 1978 1979 goto kill_file; 1980 case NFS4ERR_NO_GRACE: 1981 nfs4args_copen_free(open_args); 1982 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1983 nfs4_end_open_seqid_sync(oop); 1984 open_owner_rele(oop); 1985 oop = NULL; 1986 if (claim == CLAIM_PREVIOUS) { 1987 /* 1988 * Retry as a plain open. We don't need to worry about 1989 * checking the changeinfo: it is acceptable for a 1990 * client to re-open a file and continue processing 1991 * (in the absence of locks). 1992 */ 1993 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1994 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1995 "will retry as CLAIM_NULL")); 1996 claim = CLAIM_NULL; 1997 nfs4_mi_kstat_inc_no_grace(mi); 1998 goto top; 1999 } 2000 failed_msg = 2001 "Couldn't reopen: tried reclaim outside grace period. "; 2002 goto kill_file; 2003 case NFS4ERR_GRACE: 2004 nfs4_set_grace_wait(mi); 2005 nfs4args_copen_free(open_args); 2006 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2007 nfs4_end_open_seqid_sync(oop); 2008 open_owner_rele(oop); 2009 oop = NULL; 2010 ep->error = nfs4_wait_for_grace(mi, &recov); 2011 if (ep->error != 0) 2012 goto bailout; 2013 goto top; 2014 case NFS4ERR_DELAY: 2015 nfs4_set_delay_wait(vp); 2016 nfs4args_copen_free(open_args); 2017 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2018 nfs4_end_open_seqid_sync(oop); 2019 open_owner_rele(oop); 2020 oop = NULL; 2021 ep->error = nfs4_wait_for_delay(vp, &recov); 2022 nfs4_mi_kstat_inc_delay(mi); 2023 if (ep->error != 0) 2024 goto bailout; 2025 goto top; 2026 case NFS4ERR_FHEXPIRED: 2027 /* recover filehandle and retry */ 2028 abort = nfs4_start_recovery(ep, 2029 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL); 2030 nfs4args_copen_free(open_args); 2031 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2032 nfs4_end_open_seqid_sync(oop); 2033 open_owner_rele(oop); 2034 oop = NULL; 2035 if (abort == FALSE) 2036 goto top; 2037 failed_msg = "Couldn't reopen: recovery aborted"; 2038 goto kill_file; 2039 case NFS4ERR_RESOURCE: 2040 case NFS4ERR_STALE_CLIENTID: 2041 case NFS4ERR_WRONGSEC: 2042 case NFS4ERR_EXPIRED: 2043 /* 2044 * Do not mark the file dead and let the calling 2045 * function initiate recovery. 2046 */ 2047 nfs4args_copen_free(open_args); 2048 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2049 nfs4_end_open_seqid_sync(oop); 2050 open_owner_rele(oop); 2051 oop = NULL; 2052 goto bailout; 2053 case NFS4ERR_ACCESS: 2054 if (cred_otw != cr) { 2055 crfree(cred_otw); 2056 cred_otw = cr; 2057 crhold(cred_otw); 2058 nfs4args_copen_free(open_args); 2059 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2060 nfs4_end_open_seqid_sync(oop); 2061 open_owner_rele(oop); 2062 oop = NULL; 2063 goto top; 2064 } 2065 /* fall through */ 2066 default: 2067 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2068 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2069 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2070 rnode4info(VTOR4(vp)))); 2071 failed_msg = "Couldn't reopen: NFSv4 error"; 2072 nfs4args_copen_free(open_args); 2073 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2074 goto kill_file; 2075 } 2076 2077 resop = &res.array[1]; /* open res */ 2078 op_res = &resop->nfs_resop4_u.opopen; 2079 2080 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2081 2082 /* 2083 * Check if the path we reopened really is the same 2084 * file. We could end up in a situation where the file 2085 * was removed and a new file created with the same name. 2086 */ 2087 resop = &res.array[2]; 2088 gf_res = &resop->nfs_resop4_u.opgetfh; 2089 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2090 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2091 if (fh_different) { 2092 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2093 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2094 /* Oops, we don't have the same file */ 2095 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2096 failed_msg = "Couldn't reopen: Persistent " 2097 "file handle changed"; 2098 else 2099 failed_msg = "Couldn't reopen: Volatile " 2100 "(no expire on open) file handle changed"; 2101 2102 nfs4args_copen_free(open_args); 2103 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2104 nfs_rw_exit(&mi->mi_fh_lock); 2105 goto kill_file; 2106 2107 } else { 2108 /* 2109 * We have volatile file handles that don't compare. 2110 * If the fids are the same then we assume that the 2111 * file handle expired but the rnode still refers to 2112 * the same file object. 2113 * 2114 * First check that we have fids or not. 2115 * If we don't we have a dumb server so we will 2116 * just assume every thing is ok for now. 2117 */ 2118 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2119 rp->r_attr.va_mask & AT_NODEID && 2120 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2121 /* 2122 * We have fids, but they don't 2123 * compare. So kill the file. 2124 */ 2125 failed_msg = 2126 "Couldn't reopen: file handle changed" 2127 " due to mismatched fids"; 2128 nfs4args_copen_free(open_args); 2129 xdr_free(xdr_COMPOUND4res_clnt, 2130 (caddr_t)&res); 2131 nfs_rw_exit(&mi->mi_fh_lock); 2132 goto kill_file; 2133 } else { 2134 /* 2135 * We have volatile file handles that refers 2136 * to the same file (at least they have the 2137 * same fid) or we don't have fids so we 2138 * can't tell. :(. We'll be a kind and accepting 2139 * client so we'll update the rnode's file 2140 * handle with the otw handle. 2141 * 2142 * We need to drop mi->mi_fh_lock since 2143 * sh4_update acquires it. Since there is 2144 * only one recovery thread there is no 2145 * race. 2146 */ 2147 nfs_rw_exit(&mi->mi_fh_lock); 2148 sfh4_update(rp->r_fh, &gf_res->object); 2149 } 2150 } 2151 } else { 2152 nfs_rw_exit(&mi->mi_fh_lock); 2153 } 2154 2155 ASSERT(nfs4_consistent_type(vp)); 2156 2157 /* 2158 * If the server wanted an OPEN_CONFIRM but that fails, just start 2159 * over. Presumably if there is a persistent error it will show up 2160 * when we resend the OPEN. 2161 */ 2162 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2163 bool_t retry_open = FALSE; 2164 2165 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2166 cred_otw, is_recov, &retry_open, 2167 oop, FALSE, ep, NULL); 2168 if (ep->error || ep->stat) { 2169 nfs4args_copen_free(open_args); 2170 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2171 nfs4_end_open_seqid_sync(oop); 2172 open_owner_rele(oop); 2173 oop = NULL; 2174 goto top; 2175 } 2176 } 2177 2178 mutex_enter(&osp->os_sync_lock); 2179 osp->open_stateid = op_res->stateid; 2180 osp->os_delegation = 0; 2181 /* 2182 * Need to reset this bitfield for the possible case where we were 2183 * going to OTW CLOSE the file, got a non-recoverable error, and before 2184 * we could retry the CLOSE, OPENed the file again. 2185 */ 2186 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2187 osp->os_final_close = 0; 2188 osp->os_force_close = 0; 2189 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2190 osp->os_dc_openacc = open_args->share_access; 2191 mutex_exit(&osp->os_sync_lock); 2192 2193 nfs4_end_open_seqid_sync(oop); 2194 2195 /* accept delegation, if any */ 2196 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2197 2198 nfs4args_copen_free(open_args); 2199 2200 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2201 2202 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2203 2204 ASSERT(nfs4_consistent_type(vp)); 2205 2206 open_owner_rele(oop); 2207 crfree(cr); 2208 crfree(cred_otw); 2209 return; 2210 2211 kill_file: 2212 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2213 failed_reopen: 2214 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2215 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2216 (void *)osp, (void *)cr, rnode4info(rp))); 2217 mutex_enter(&osp->os_sync_lock); 2218 osp->os_failed_reopen = 1; 2219 mutex_exit(&osp->os_sync_lock); 2220 bailout: 2221 if (oop != NULL) { 2222 nfs4_end_open_seqid_sync(oop); 2223 open_owner_rele(oop); 2224 } 2225 if (cr != NULL) 2226 crfree(cr); 2227 if (cred_otw != NULL) 2228 crfree(cred_otw); 2229 } 2230 2231 /* for . and .. OPENs */ 2232 /* ARGSUSED */ 2233 static int 2234 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2235 { 2236 rnode4_t *rp; 2237 nfs4_ga_res_t gar; 2238 2239 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2240 2241 /* 2242 * If close-to-open consistency checking is turned off or 2243 * if there is no cached data, we can avoid 2244 * the over the wire getattr. Otherwise, force a 2245 * call to the server to get fresh attributes and to 2246 * check caches. This is required for close-to-open 2247 * consistency. 2248 */ 2249 rp = VTOR4(*vpp); 2250 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2251 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2252 return (0); 2253 2254 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2255 } 2256 2257 /* 2258 * CLOSE a file 2259 */ 2260 /* ARGSUSED */ 2261 static int 2262 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2263 caller_context_t *ct) 2264 { 2265 rnode4_t *rp; 2266 int error = 0; 2267 int r_error = 0; 2268 int n4error = 0; 2269 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2270 2271 /* 2272 * Remove client state for this (lockowner, file) pair. 2273 * Issue otw v4 call to have the server do the same. 2274 */ 2275 2276 rp = VTOR4(vp); 2277 2278 /* 2279 * zone_enter(2) prevents processes from changing zones with NFS files 2280 * open; if we happen to get here from the wrong zone we can't do 2281 * anything over the wire. 2282 */ 2283 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2284 /* 2285 * We could attempt to clean up locks, except we're sure 2286 * that the current process didn't acquire any locks on 2287 * the file: any attempt to lock a file belong to another zone 2288 * will fail, and one can't lock an NFS file and then change 2289 * zones, as that fails too. 2290 * 2291 * Returning an error here is the sane thing to do. A 2292 * subsequent call to VN_RELE() which translates to a 2293 * nfs4_inactive() will clean up state: if the zone of the 2294 * vnode's origin is still alive and kicking, the inactive 2295 * thread will handle the request (from the correct zone), and 2296 * everything (minus the OTW close call) should be OK. If the 2297 * zone is going away nfs4_async_inactive() will throw away 2298 * delegations, open streams and cached pages inline. 2299 */ 2300 return (EIO); 2301 } 2302 2303 /* 2304 * If we are using local locking for this filesystem, then 2305 * release all of the SYSV style record locks. Otherwise, 2306 * we are doing network locking and we need to release all 2307 * of the network locks. All of the locks held by this 2308 * process on this file are released no matter what the 2309 * incoming reference count is. 2310 */ 2311 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2312 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2313 cleanshares(vp, ttoproc(curthread)->p_pid); 2314 } else 2315 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2316 2317 if (e.error) { 2318 struct lm_sysid *lmsid; 2319 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2320 if (lmsid == NULL) { 2321 DTRACE_PROBE2(unknown__sysid, int, e.error, 2322 vnode_t *, vp); 2323 } else { 2324 cleanlocks(vp, ttoproc(curthread)->p_pid, 2325 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2326 2327 lm_rel_sysid(lmsid); 2328 } 2329 return (e.error); 2330 } 2331 2332 if (count > 1) 2333 return (0); 2334 2335 /* 2336 * If the file has been `unlinked', then purge the 2337 * DNLC so that this vnode will get reycled quicker 2338 * and the .nfs* file on the server will get removed. 2339 */ 2340 if (rp->r_unldvp != NULL) 2341 dnlc_purge_vp(vp); 2342 2343 /* 2344 * If the file was open for write and there are pages, 2345 * do a synchronous flush and commit of all of the 2346 * dirty and uncommitted pages. 2347 */ 2348 ASSERT(!e.error); 2349 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2350 error = nfs4_putpage_commit(vp, 0, 0, cr); 2351 2352 mutex_enter(&rp->r_statelock); 2353 r_error = rp->r_error; 2354 rp->r_error = 0; 2355 mutex_exit(&rp->r_statelock); 2356 2357 /* 2358 * If this file type is one for which no explicit 'open' was 2359 * done, then bail now (ie. no need for protocol 'close'). If 2360 * there was an error w/the vm subsystem, return _that_ error, 2361 * otherwise, return any errors that may've been reported via 2362 * the rnode. 2363 */ 2364 if (vp->v_type != VREG) 2365 return (error ? error : r_error); 2366 2367 /* 2368 * The sync putpage commit may have failed above, but since 2369 * we're working w/a regular file, we need to do the protocol 2370 * 'close' (nfs4close_one will figure out if an otw close is 2371 * needed or not). Report any errors _after_ doing the protocol 2372 * 'close'. 2373 */ 2374 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2375 n4error = e.error ? e.error : geterrno4(e.stat); 2376 2377 /* 2378 * Error reporting prio (Hi -> Lo) 2379 * 2380 * i) nfs4_putpage_commit (error) 2381 * ii) rnode's (r_error) 2382 * iii) nfs4close_one (n4error) 2383 */ 2384 return (error ? error : (r_error ? r_error : n4error)); 2385 } 2386 2387 /* 2388 * Initialize *lost_rqstp. 2389 */ 2390 2391 static void 2392 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2393 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2394 vnode_t *vp) 2395 { 2396 if (error != ETIMEDOUT && error != EINTR && 2397 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2398 lost_rqstp->lr_op = 0; 2399 return; 2400 } 2401 2402 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2403 "nfs4close_save_lost_rqst: error %d", error)); 2404 2405 lost_rqstp->lr_op = OP_CLOSE; 2406 /* 2407 * The vp is held and rele'd via the recovery code. 2408 * See nfs4_save_lost_rqst. 2409 */ 2410 lost_rqstp->lr_vp = vp; 2411 lost_rqstp->lr_dvp = NULL; 2412 lost_rqstp->lr_oop = oop; 2413 lost_rqstp->lr_osp = osp; 2414 ASSERT(osp != NULL); 2415 ASSERT(mutex_owned(&osp->os_sync_lock)); 2416 osp->os_pending_close = 1; 2417 lost_rqstp->lr_lop = NULL; 2418 lost_rqstp->lr_cr = cr; 2419 lost_rqstp->lr_flk = NULL; 2420 lost_rqstp->lr_putfirst = FALSE; 2421 } 2422 2423 /* 2424 * Assumes you already have the open seqid sync grabbed as well as the 2425 * 'os_sync_lock'. Note: this will release the open seqid sync and 2426 * 'os_sync_lock' if client recovery starts. Calling functions have to 2427 * be prepared to handle this. 2428 * 2429 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2430 * was needed and was started, and that the calling function should retry 2431 * this function; otherwise it is returned as 0. 2432 * 2433 * Errors are returned via the nfs4_error_t parameter. 2434 */ 2435 static void 2436 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2437 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2438 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2439 { 2440 COMPOUND4args_clnt args; 2441 COMPOUND4res_clnt res; 2442 CLOSE4args *close_args; 2443 nfs_resop4 *resop; 2444 nfs_argop4 argop[3]; 2445 int doqueue = 1; 2446 mntinfo4_t *mi; 2447 seqid4 seqid; 2448 vnode_t *vp; 2449 bool_t needrecov = FALSE; 2450 nfs4_lost_rqst_t lost_rqst; 2451 hrtime_t t; 2452 2453 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2454 2455 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2456 2457 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2458 2459 /* Only set this to 1 if recovery is started */ 2460 *recov = 0; 2461 2462 /* do the OTW call to close the file */ 2463 2464 if (close_type == CLOSE_RESEND) 2465 args.ctag = TAG_CLOSE_LOST; 2466 else if (close_type == CLOSE_AFTER_RESEND) 2467 args.ctag = TAG_CLOSE_UNDO; 2468 else 2469 args.ctag = TAG_CLOSE; 2470 2471 args.array_len = 3; 2472 args.array = argop; 2473 2474 vp = RTOV4(rp); 2475 2476 mi = VTOMI4(vp); 2477 2478 /* putfh target fh */ 2479 argop[0].argop = OP_CPUTFH; 2480 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2481 2482 argop[1].argop = OP_GETATTR; 2483 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2484 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2485 2486 argop[2].argop = OP_CLOSE; 2487 close_args = &argop[2].nfs_argop4_u.opclose; 2488 2489 seqid = nfs4_get_open_seqid(oop) + 1; 2490 2491 close_args->seqid = seqid; 2492 close_args->open_stateid = osp->open_stateid; 2493 2494 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2495 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2496 rnode4info(rp))); 2497 2498 t = gethrtime(); 2499 2500 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2501 2502 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2503 nfs4_set_open_seqid(seqid, oop, args.ctag); 2504 } 2505 2506 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2507 if (ep->error && !needrecov) { 2508 /* 2509 * if there was an error and no recovery is to be done 2510 * then then set up the file to flush its cache if 2511 * needed for the next caller. 2512 */ 2513 mutex_enter(&rp->r_statelock); 2514 PURGE_ATTRCACHE4_LOCKED(rp); 2515 rp->r_flags &= ~R4WRITEMODIFIED; 2516 mutex_exit(&rp->r_statelock); 2517 return; 2518 } 2519 2520 if (needrecov) { 2521 bool_t abort; 2522 nfs4_bseqid_entry_t *bsep = NULL; 2523 2524 if (close_type != CLOSE_RESEND) 2525 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2526 osp, cred_otw, vp); 2527 2528 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2529 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2530 0, args.ctag, close_args->seqid); 2531 2532 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2533 "nfs4close_otw: initiating recovery. error %d " 2534 "res.status %d", ep->error, res.status)); 2535 2536 /* 2537 * Drop the 'os_sync_lock' here so we don't hit 2538 * a potential recursive mutex_enter via an 2539 * 'open_stream_hold()'. 2540 */ 2541 mutex_exit(&osp->os_sync_lock); 2542 *have_sync_lockp = 0; 2543 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2544 (close_type != CLOSE_RESEND && 2545 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2546 OP_CLOSE, bsep, NULL, NULL); 2547 2548 /* drop open seq sync, and let the calling function regrab it */ 2549 nfs4_end_open_seqid_sync(oop); 2550 *did_start_seqid_syncp = 0; 2551 2552 if (bsep) 2553 kmem_free(bsep, sizeof (*bsep)); 2554 /* 2555 * For signals, the caller wants to quit, so don't say to 2556 * retry. For forced unmount, if it's a user thread, it 2557 * wants to quit. If it's a recovery thread, the retry 2558 * will happen higher-up on the call stack. Either way, 2559 * don't say to retry. 2560 */ 2561 if (abort == FALSE && ep->error != EINTR && 2562 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2563 close_type != CLOSE_RESEND && 2564 close_type != CLOSE_AFTER_RESEND) 2565 *recov = 1; 2566 else 2567 *recov = 0; 2568 2569 if (!ep->error) 2570 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2571 return; 2572 } 2573 2574 if (res.status) { 2575 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2576 return; 2577 } 2578 2579 mutex_enter(&rp->r_statev4_lock); 2580 rp->created_v4 = 0; 2581 mutex_exit(&rp->r_statev4_lock); 2582 2583 resop = &res.array[2]; 2584 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2585 osp->os_valid = 0; 2586 2587 /* 2588 * This removes the reference obtained at OPEN; ie, when the 2589 * open stream structure was created. 2590 * 2591 * We don't have to worry about calling 'open_stream_rele' 2592 * since we our currently holding a reference to the open 2593 * stream which means the count cannot go to 0 with this 2594 * decrement. 2595 */ 2596 ASSERT(osp->os_ref_count >= 2); 2597 osp->os_ref_count--; 2598 2599 if (ep->error == 0) { 2600 mutex_exit(&osp->os_sync_lock); 2601 *have_sync_lockp = 0; 2602 2603 nfs4_attr_cache(vp, 2604 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2605 t, cred_otw, TRUE, NULL); 2606 } 2607 2608 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2609 " returning %d", ep->error)); 2610 2611 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2612 } 2613 2614 /* ARGSUSED */ 2615 static int 2616 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2617 caller_context_t *ct) 2618 { 2619 rnode4_t *rp; 2620 u_offset_t off; 2621 offset_t diff; 2622 uint_t on; 2623 uint_t n; 2624 caddr_t base; 2625 uint_t flags; 2626 int error; 2627 mntinfo4_t *mi; 2628 2629 rp = VTOR4(vp); 2630 2631 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2632 2633 if (IS_SHADOW(vp, rp)) 2634 vp = RTOV4(rp); 2635 2636 if (vp->v_type != VREG) 2637 return (EISDIR); 2638 2639 mi = VTOMI4(vp); 2640 2641 if (nfs_zone() != mi->mi_zone) 2642 return (EIO); 2643 2644 if (uiop->uio_resid == 0) 2645 return (0); 2646 2647 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2648 return (EINVAL); 2649 2650 mutex_enter(&rp->r_statelock); 2651 if (rp->r_flags & R4RECOVERRP) 2652 error = (rp->r_error ? rp->r_error : EIO); 2653 else 2654 error = 0; 2655 mutex_exit(&rp->r_statelock); 2656 if (error) 2657 return (error); 2658 2659 /* 2660 * Bypass VM if caching has been disabled (e.g., locking) or if 2661 * using client-side direct I/O and the file is not mmap'd and 2662 * there are no cached pages. 2663 */ 2664 if ((vp->v_flag & VNOCACHE) || 2665 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2666 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2667 size_t resid = 0; 2668 2669 return (nfs4read(vp, NULL, uiop->uio_loffset, 2670 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2671 } 2672 2673 error = 0; 2674 2675 do { 2676 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2677 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2678 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2679 2680 if (error = nfs4_validate_caches(vp, cr)) 2681 break; 2682 2683 mutex_enter(&rp->r_statelock); 2684 while (rp->r_flags & R4INCACHEPURGE) { 2685 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2686 mutex_exit(&rp->r_statelock); 2687 return (EINTR); 2688 } 2689 } 2690 diff = rp->r_size - uiop->uio_loffset; 2691 mutex_exit(&rp->r_statelock); 2692 if (diff <= 0) 2693 break; 2694 if (diff < n) 2695 n = (uint_t)diff; 2696 2697 if (vpm_enable) { 2698 /* 2699 * Copy data. 2700 */ 2701 error = vpm_data_copy(vp, off + on, n, uiop, 2702 1, NULL, 0, S_READ); 2703 } else { 2704 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2705 S_READ); 2706 2707 error = uiomove(base + on, n, UIO_READ, uiop); 2708 } 2709 2710 if (!error) { 2711 /* 2712 * If read a whole block or read to eof, 2713 * won't need this buffer again soon. 2714 */ 2715 mutex_enter(&rp->r_statelock); 2716 if (n + on == MAXBSIZE || 2717 uiop->uio_loffset == rp->r_size) 2718 flags = SM_DONTNEED; 2719 else 2720 flags = 0; 2721 mutex_exit(&rp->r_statelock); 2722 if (vpm_enable) { 2723 error = vpm_sync_pages(vp, off, n, flags); 2724 } else { 2725 error = segmap_release(segkmap, base, flags); 2726 } 2727 } else { 2728 if (vpm_enable) { 2729 (void) vpm_sync_pages(vp, off, n, 0); 2730 } else { 2731 (void) segmap_release(segkmap, base, 0); 2732 } 2733 } 2734 } while (!error && uiop->uio_resid > 0); 2735 2736 return (error); 2737 } 2738 2739 /* ARGSUSED */ 2740 static int 2741 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2742 caller_context_t *ct) 2743 { 2744 rlim64_t limit = uiop->uio_llimit; 2745 rnode4_t *rp; 2746 u_offset_t off; 2747 caddr_t base; 2748 uint_t flags; 2749 int remainder; 2750 size_t n; 2751 int on; 2752 int error; 2753 int resid; 2754 u_offset_t offset; 2755 mntinfo4_t *mi; 2756 uint_t bsize; 2757 2758 rp = VTOR4(vp); 2759 2760 if (IS_SHADOW(vp, rp)) 2761 vp = RTOV4(rp); 2762 2763 if (vp->v_type != VREG) 2764 return (EISDIR); 2765 2766 mi = VTOMI4(vp); 2767 2768 if (nfs_zone() != mi->mi_zone) 2769 return (EIO); 2770 2771 if (uiop->uio_resid == 0) 2772 return (0); 2773 2774 mutex_enter(&rp->r_statelock); 2775 if (rp->r_flags & R4RECOVERRP) 2776 error = (rp->r_error ? rp->r_error : EIO); 2777 else 2778 error = 0; 2779 mutex_exit(&rp->r_statelock); 2780 if (error) 2781 return (error); 2782 2783 if (ioflag & FAPPEND) { 2784 struct vattr va; 2785 2786 /* 2787 * Must serialize if appending. 2788 */ 2789 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2790 nfs_rw_exit(&rp->r_rwlock); 2791 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2792 INTR4(vp))) 2793 return (EINTR); 2794 } 2795 2796 va.va_mask = AT_SIZE; 2797 error = nfs4getattr(vp, &va, cr); 2798 if (error) 2799 return (error); 2800 uiop->uio_loffset = va.va_size; 2801 } 2802 2803 offset = uiop->uio_loffset + uiop->uio_resid; 2804 2805 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2806 return (EINVAL); 2807 2808 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2809 limit = MAXOFFSET_T; 2810 2811 /* 2812 * Check to make sure that the process will not exceed 2813 * its limit on file size. It is okay to write up to 2814 * the limit, but not beyond. Thus, the write which 2815 * reaches the limit will be short and the next write 2816 * will return an error. 2817 */ 2818 remainder = 0; 2819 if (offset > uiop->uio_llimit) { 2820 remainder = offset - uiop->uio_llimit; 2821 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2822 if (uiop->uio_resid <= 0) { 2823 proc_t *p = ttoproc(curthread); 2824 2825 uiop->uio_resid += remainder; 2826 mutex_enter(&p->p_lock); 2827 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2828 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2829 mutex_exit(&p->p_lock); 2830 return (EFBIG); 2831 } 2832 } 2833 2834 /* update the change attribute, if we have a write delegation */ 2835 2836 mutex_enter(&rp->r_statev4_lock); 2837 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2838 rp->r_deleg_change++; 2839 2840 mutex_exit(&rp->r_statev4_lock); 2841 2842 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2843 return (EINTR); 2844 2845 /* 2846 * Bypass VM if caching has been disabled (e.g., locking) or if 2847 * using client-side direct I/O and the file is not mmap'd and 2848 * there are no cached pages. 2849 */ 2850 if ((vp->v_flag & VNOCACHE) || 2851 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2852 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2853 size_t bufsize; 2854 int count; 2855 u_offset_t org_offset; 2856 stable_how4 stab_comm; 2857 nfs4_fwrite: 2858 if (rp->r_flags & R4STALE) { 2859 resid = uiop->uio_resid; 2860 offset = uiop->uio_loffset; 2861 error = rp->r_error; 2862 /* 2863 * A close may have cleared r_error, if so, 2864 * propagate ESTALE error return properly 2865 */ 2866 if (error == 0) 2867 error = ESTALE; 2868 goto bottom; 2869 } 2870 2871 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2872 base = kmem_alloc(bufsize, KM_SLEEP); 2873 do { 2874 if (ioflag & FDSYNC) 2875 stab_comm = DATA_SYNC4; 2876 else 2877 stab_comm = FILE_SYNC4; 2878 resid = uiop->uio_resid; 2879 offset = uiop->uio_loffset; 2880 count = MIN(uiop->uio_resid, bufsize); 2881 org_offset = uiop->uio_loffset; 2882 error = uiomove(base, count, UIO_WRITE, uiop); 2883 if (!error) { 2884 error = nfs4write(vp, base, org_offset, 2885 count, cr, &stab_comm); 2886 if (!error) { 2887 mutex_enter(&rp->r_statelock); 2888 if (rp->r_size < uiop->uio_loffset) 2889 rp->r_size = uiop->uio_loffset; 2890 mutex_exit(&rp->r_statelock); 2891 } 2892 } 2893 } while (!error && uiop->uio_resid > 0); 2894 kmem_free(base, bufsize); 2895 goto bottom; 2896 } 2897 2898 bsize = vp->v_vfsp->vfs_bsize; 2899 2900 do { 2901 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2902 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2903 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2904 2905 resid = uiop->uio_resid; 2906 offset = uiop->uio_loffset; 2907 2908 if (rp->r_flags & R4STALE) { 2909 error = rp->r_error; 2910 /* 2911 * A close may have cleared r_error, if so, 2912 * propagate ESTALE error return properly 2913 */ 2914 if (error == 0) 2915 error = ESTALE; 2916 break; 2917 } 2918 2919 /* 2920 * Don't create dirty pages faster than they 2921 * can be cleaned so that the system doesn't 2922 * get imbalanced. If the async queue is 2923 * maxed out, then wait for it to drain before 2924 * creating more dirty pages. Also, wait for 2925 * any threads doing pagewalks in the vop_getattr 2926 * entry points so that they don't block for 2927 * long periods. 2928 */ 2929 mutex_enter(&rp->r_statelock); 2930 while ((mi->mi_max_threads != 0 && 2931 rp->r_awcount > 2 * mi->mi_max_threads) || 2932 rp->r_gcount > 0) { 2933 if (INTR4(vp)) { 2934 klwp_t *lwp = ttolwp(curthread); 2935 2936 if (lwp != NULL) 2937 lwp->lwp_nostop++; 2938 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2939 mutex_exit(&rp->r_statelock); 2940 if (lwp != NULL) 2941 lwp->lwp_nostop--; 2942 error = EINTR; 2943 goto bottom; 2944 } 2945 if (lwp != NULL) 2946 lwp->lwp_nostop--; 2947 } else 2948 cv_wait(&rp->r_cv, &rp->r_statelock); 2949 } 2950 mutex_exit(&rp->r_statelock); 2951 2952 /* 2953 * Touch the page and fault it in if it is not in core 2954 * before segmap_getmapflt or vpm_data_copy can lock it. 2955 * This is to avoid the deadlock if the buffer is mapped 2956 * to the same file through mmap which we want to write. 2957 */ 2958 uio_prefaultpages((long)n, uiop); 2959 2960 if (vpm_enable) { 2961 /* 2962 * It will use kpm mappings, so no need to 2963 * pass an address. 2964 */ 2965 error = writerp4(rp, NULL, n, uiop, 0); 2966 } else { 2967 if (segmap_kpm) { 2968 int pon = uiop->uio_loffset & PAGEOFFSET; 2969 size_t pn = MIN(PAGESIZE - pon, 2970 uiop->uio_resid); 2971 int pagecreate; 2972 2973 mutex_enter(&rp->r_statelock); 2974 pagecreate = (pon == 0) && (pn == PAGESIZE || 2975 uiop->uio_loffset + pn >= rp->r_size); 2976 mutex_exit(&rp->r_statelock); 2977 2978 base = segmap_getmapflt(segkmap, vp, off + on, 2979 pn, !pagecreate, S_WRITE); 2980 2981 error = writerp4(rp, base + pon, n, uiop, 2982 pagecreate); 2983 2984 } else { 2985 base = segmap_getmapflt(segkmap, vp, off + on, 2986 n, 0, S_READ); 2987 error = writerp4(rp, base + on, n, uiop, 0); 2988 } 2989 } 2990 2991 if (!error) { 2992 if (mi->mi_flags & MI4_NOAC) 2993 flags = SM_WRITE; 2994 else if ((uiop->uio_loffset % bsize) == 0 || 2995 IS_SWAPVP(vp)) { 2996 /* 2997 * Have written a whole block. 2998 * Start an asynchronous write 2999 * and mark the buffer to 3000 * indicate that it won't be 3001 * needed again soon. 3002 */ 3003 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 3004 } else 3005 flags = 0; 3006 if ((ioflag & (FSYNC|FDSYNC)) || 3007 (rp->r_flags & R4OUTOFSPACE)) { 3008 flags &= ~SM_ASYNC; 3009 flags |= SM_WRITE; 3010 } 3011 if (vpm_enable) { 3012 error = vpm_sync_pages(vp, off, n, flags); 3013 } else { 3014 error = segmap_release(segkmap, base, flags); 3015 } 3016 } else { 3017 if (vpm_enable) { 3018 (void) vpm_sync_pages(vp, off, n, 0); 3019 } else { 3020 (void) segmap_release(segkmap, base, 0); 3021 } 3022 /* 3023 * In the event that we got an access error while 3024 * faulting in a page for a write-only file just 3025 * force a write. 3026 */ 3027 if (error == EACCES) 3028 goto nfs4_fwrite; 3029 } 3030 } while (!error && uiop->uio_resid > 0); 3031 3032 bottom: 3033 if (error) { 3034 uiop->uio_resid = resid + remainder; 3035 uiop->uio_loffset = offset; 3036 } else { 3037 uiop->uio_resid += remainder; 3038 3039 mutex_enter(&rp->r_statev4_lock); 3040 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 3041 gethrestime(&rp->r_attr.va_mtime); 3042 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3043 } 3044 mutex_exit(&rp->r_statev4_lock); 3045 } 3046 3047 nfs_rw_exit(&rp->r_lkserlock); 3048 3049 return (error); 3050 } 3051 3052 /* 3053 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 3054 */ 3055 static int 3056 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 3057 int flags, cred_t *cr) 3058 { 3059 struct buf *bp; 3060 int error; 3061 page_t *savepp; 3062 uchar_t fsdata; 3063 stable_how4 stab_comm; 3064 3065 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3066 bp = pageio_setup(pp, len, vp, flags); 3067 ASSERT(bp != NULL); 3068 3069 /* 3070 * pageio_setup should have set b_addr to 0. This 3071 * is correct since we want to do I/O on a page 3072 * boundary. bp_mapin will use this addr to calculate 3073 * an offset, and then set b_addr to the kernel virtual 3074 * address it allocated for us. 3075 */ 3076 ASSERT(bp->b_un.b_addr == 0); 3077 3078 bp->b_edev = 0; 3079 bp->b_dev = 0; 3080 bp->b_lblkno = lbtodb(off); 3081 bp->b_file = vp; 3082 bp->b_offset = (offset_t)off; 3083 bp_mapin(bp); 3084 3085 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3086 freemem > desfree) 3087 stab_comm = UNSTABLE4; 3088 else 3089 stab_comm = FILE_SYNC4; 3090 3091 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3092 3093 bp_mapout(bp); 3094 pageio_done(bp); 3095 3096 if (stab_comm == UNSTABLE4) 3097 fsdata = C_DELAYCOMMIT; 3098 else 3099 fsdata = C_NOCOMMIT; 3100 3101 savepp = pp; 3102 do { 3103 pp->p_fsdata = fsdata; 3104 } while ((pp = pp->p_next) != savepp); 3105 3106 return (error); 3107 } 3108 3109 /* 3110 */ 3111 static int 3112 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3113 { 3114 nfs4_open_owner_t *oop; 3115 nfs4_open_stream_t *osp; 3116 rnode4_t *rp = VTOR4(vp); 3117 mntinfo4_t *mi = VTOMI4(vp); 3118 int reopen_needed; 3119 3120 ASSERT(nfs_zone() == mi->mi_zone); 3121 3122 3123 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3124 if (!oop) 3125 return (EIO); 3126 3127 /* returns with 'os_sync_lock' held */ 3128 osp = find_open_stream(oop, rp); 3129 if (!osp) { 3130 open_owner_rele(oop); 3131 return (EIO); 3132 } 3133 3134 if (osp->os_failed_reopen) { 3135 mutex_exit(&osp->os_sync_lock); 3136 open_stream_rele(osp, rp); 3137 open_owner_rele(oop); 3138 return (EIO); 3139 } 3140 3141 /* 3142 * Determine whether a reopen is needed. If this 3143 * is a delegation open stream, then the os_delegation bit 3144 * should be set. 3145 */ 3146 3147 reopen_needed = osp->os_delegation; 3148 3149 mutex_exit(&osp->os_sync_lock); 3150 open_owner_rele(oop); 3151 3152 if (reopen_needed) { 3153 nfs4_error_zinit(ep); 3154 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3155 mutex_enter(&osp->os_sync_lock); 3156 if (ep->error || ep->stat || osp->os_failed_reopen) { 3157 mutex_exit(&osp->os_sync_lock); 3158 open_stream_rele(osp, rp); 3159 return (EIO); 3160 } 3161 mutex_exit(&osp->os_sync_lock); 3162 } 3163 open_stream_rele(osp, rp); 3164 3165 return (0); 3166 } 3167 3168 /* 3169 * Write to file. Writes to remote server in largest size 3170 * chunks that the server can handle. Write is synchronous. 3171 */ 3172 static int 3173 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3174 stable_how4 *stab_comm) 3175 { 3176 mntinfo4_t *mi; 3177 COMPOUND4args_clnt args; 3178 COMPOUND4res_clnt res; 3179 WRITE4args *wargs; 3180 WRITE4res *wres; 3181 nfs_argop4 argop[2]; 3182 nfs_resop4 *resop; 3183 int tsize; 3184 stable_how4 stable; 3185 rnode4_t *rp; 3186 int doqueue = 1; 3187 bool_t needrecov; 3188 nfs4_recov_state_t recov_state; 3189 nfs4_stateid_types_t sid_types; 3190 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3191 int recov; 3192 3193 rp = VTOR4(vp); 3194 mi = VTOMI4(vp); 3195 3196 ASSERT(nfs_zone() == mi->mi_zone); 3197 3198 stable = *stab_comm; 3199 *stab_comm = FILE_SYNC4; 3200 3201 needrecov = FALSE; 3202 recov_state.rs_flags = 0; 3203 recov_state.rs_num_retry_despite_err = 0; 3204 nfs4_init_stateid_types(&sid_types); 3205 3206 /* Is curthread the recovery thread? */ 3207 mutex_enter(&mi->mi_lock); 3208 recov = (mi->mi_recovthread == curthread); 3209 mutex_exit(&mi->mi_lock); 3210 3211 recov_retry: 3212 args.ctag = TAG_WRITE; 3213 args.array_len = 2; 3214 args.array = argop; 3215 3216 if (!recov) { 3217 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3218 &recov_state, NULL); 3219 if (e.error) 3220 return (e.error); 3221 } 3222 3223 /* 0. putfh target fh */ 3224 argop[0].argop = OP_CPUTFH; 3225 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3226 3227 /* 1. write */ 3228 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3229 3230 do { 3231 3232 wargs->offset = (offset4)offset; 3233 wargs->data_val = base; 3234 3235 if (mi->mi_io_kstats) { 3236 mutex_enter(&mi->mi_lock); 3237 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3238 mutex_exit(&mi->mi_lock); 3239 } 3240 3241 if ((vp->v_flag & VNOCACHE) || 3242 (rp->r_flags & R4DIRECTIO) || 3243 (mi->mi_flags & MI4_DIRECTIO)) 3244 tsize = MIN(mi->mi_stsize, count); 3245 else 3246 tsize = MIN(mi->mi_curwrite, count); 3247 wargs->data_len = (uint_t)tsize; 3248 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3249 3250 if (mi->mi_io_kstats) { 3251 mutex_enter(&mi->mi_lock); 3252 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3253 mutex_exit(&mi->mi_lock); 3254 } 3255 3256 if (!recov) { 3257 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3258 if (e.error && !needrecov) { 3259 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3260 &recov_state, needrecov); 3261 return (e.error); 3262 } 3263 } else { 3264 if (e.error) 3265 return (e.error); 3266 } 3267 3268 /* 3269 * Do handling of OLD_STATEID outside 3270 * of the normal recovery framework. 3271 * 3272 * If write receives a BAD stateid error while using a 3273 * delegation stateid, retry using the open stateid (if it 3274 * exists). If it doesn't have an open stateid, reopen the 3275 * file first, then retry. 3276 */ 3277 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3278 sid_types.cur_sid_type != SPEC_SID) { 3279 nfs4_save_stateid(&wargs->stateid, &sid_types); 3280 if (!recov) 3281 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3282 &recov_state, needrecov); 3283 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3284 goto recov_retry; 3285 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3286 sid_types.cur_sid_type == DEL_SID) { 3287 nfs4_save_stateid(&wargs->stateid, &sid_types); 3288 mutex_enter(&rp->r_statev4_lock); 3289 rp->r_deleg_return_pending = TRUE; 3290 mutex_exit(&rp->r_statev4_lock); 3291 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3292 if (!recov) 3293 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3294 &recov_state, needrecov); 3295 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3296 return (EIO); 3297 } 3298 if (!recov) 3299 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3300 &recov_state, needrecov); 3301 /* hold needed for nfs4delegreturn_thread */ 3302 VN_HOLD(vp); 3303 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3304 NFS4_DR_DISCARD), FALSE); 3305 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3306 goto recov_retry; 3307 } 3308 3309 if (needrecov) { 3310 bool_t abort; 3311 3312 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3313 "nfs4write: client got error %d, res.status %d" 3314 ", so start recovery", e.error, res.status)); 3315 3316 abort = nfs4_start_recovery(&e, 3317 VTOMI4(vp), vp, NULL, &wargs->stateid, 3318 NULL, OP_WRITE, NULL, NULL, NULL); 3319 if (!e.error) { 3320 e.error = geterrno4(res.status); 3321 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3322 } 3323 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3324 &recov_state, needrecov); 3325 if (abort == FALSE) 3326 goto recov_retry; 3327 return (e.error); 3328 } 3329 3330 if (res.status) { 3331 e.error = geterrno4(res.status); 3332 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3333 if (!recov) 3334 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3335 &recov_state, needrecov); 3336 return (e.error); 3337 } 3338 3339 resop = &res.array[1]; /* write res */ 3340 wres = &resop->nfs_resop4_u.opwrite; 3341 3342 if ((int)wres->count > tsize) { 3343 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3344 3345 zcmn_err(getzoneid(), CE_WARN, 3346 "nfs4write: server wrote %u, requested was %u", 3347 (int)wres->count, tsize); 3348 if (!recov) 3349 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3350 &recov_state, needrecov); 3351 return (EIO); 3352 } 3353 if (wres->committed == UNSTABLE4) { 3354 *stab_comm = UNSTABLE4; 3355 if (wargs->stable == DATA_SYNC4 || 3356 wargs->stable == FILE_SYNC4) { 3357 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3358 zcmn_err(getzoneid(), CE_WARN, 3359 "nfs4write: server %s did not commit " 3360 "to stable storage", 3361 rp->r_server->sv_hostname); 3362 if (!recov) 3363 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3364 OH_WRITE, &recov_state, needrecov); 3365 return (EIO); 3366 } 3367 } 3368 3369 tsize = (int)wres->count; 3370 count -= tsize; 3371 base += tsize; 3372 offset += tsize; 3373 if (mi->mi_io_kstats) { 3374 mutex_enter(&mi->mi_lock); 3375 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3376 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3377 tsize; 3378 mutex_exit(&mi->mi_lock); 3379 } 3380 lwp_stat_update(LWP_STAT_OUBLK, 1); 3381 mutex_enter(&rp->r_statelock); 3382 if (rp->r_flags & R4HAVEVERF) { 3383 if (rp->r_writeverf != wres->writeverf) { 3384 nfs4_set_mod(vp); 3385 rp->r_writeverf = wres->writeverf; 3386 } 3387 } else { 3388 rp->r_writeverf = wres->writeverf; 3389 rp->r_flags |= R4HAVEVERF; 3390 } 3391 PURGE_ATTRCACHE4_LOCKED(rp); 3392 rp->r_flags |= R4WRITEMODIFIED; 3393 gethrestime(&rp->r_attr.va_mtime); 3394 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3395 mutex_exit(&rp->r_statelock); 3396 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3397 } while (count); 3398 3399 if (!recov) 3400 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3401 needrecov); 3402 3403 return (e.error); 3404 } 3405 3406 /* 3407 * Read from a file. Reads data in largest chunks our interface can handle. 3408 */ 3409 static int 3410 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3411 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3412 { 3413 mntinfo4_t *mi; 3414 COMPOUND4args_clnt args; 3415 COMPOUND4res_clnt res; 3416 READ4args *rargs; 3417 nfs_argop4 argop[2]; 3418 int tsize; 3419 int doqueue; 3420 rnode4_t *rp; 3421 int data_len; 3422 bool_t is_eof; 3423 bool_t needrecov = FALSE; 3424 nfs4_recov_state_t recov_state; 3425 nfs4_stateid_types_t sid_types; 3426 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3427 3428 rp = VTOR4(vp); 3429 mi = VTOMI4(vp); 3430 doqueue = 1; 3431 3432 ASSERT(nfs_zone() == mi->mi_zone); 3433 3434 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3435 3436 args.array_len = 2; 3437 args.array = argop; 3438 3439 nfs4_init_stateid_types(&sid_types); 3440 3441 recov_state.rs_flags = 0; 3442 recov_state.rs_num_retry_despite_err = 0; 3443 3444 recov_retry: 3445 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3446 &recov_state, NULL); 3447 if (e.error) 3448 return (e.error); 3449 3450 /* putfh target fh */ 3451 argop[0].argop = OP_CPUTFH; 3452 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3453 3454 /* read */ 3455 argop[1].argop = OP_READ; 3456 rargs = &argop[1].nfs_argop4_u.opread; 3457 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3458 OP_READ, &sid_types, async); 3459 3460 do { 3461 if (mi->mi_io_kstats) { 3462 mutex_enter(&mi->mi_lock); 3463 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3464 mutex_exit(&mi->mi_lock); 3465 } 3466 3467 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3468 "nfs4read: %s call, rp %s", 3469 needrecov ? "recov" : "first", 3470 rnode4info(rp))); 3471 3472 if ((vp->v_flag & VNOCACHE) || 3473 (rp->r_flags & R4DIRECTIO) || 3474 (mi->mi_flags & MI4_DIRECTIO)) 3475 tsize = MIN(mi->mi_tsize, count); 3476 else 3477 tsize = MIN(mi->mi_curread, count); 3478 3479 rargs->offset = (offset4)offset; 3480 rargs->count = (count4)tsize; 3481 rargs->res_data_val_alt = NULL; 3482 rargs->res_mblk = NULL; 3483 rargs->res_uiop = NULL; 3484 rargs->res_maxsize = 0; 3485 rargs->wlist = NULL; 3486 3487 if (uiop) 3488 rargs->res_uiop = uiop; 3489 else 3490 rargs->res_data_val_alt = base; 3491 rargs->res_maxsize = tsize; 3492 3493 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3494 #ifdef DEBUG 3495 if (nfs4read_error_inject) { 3496 res.status = nfs4read_error_inject; 3497 nfs4read_error_inject = 0; 3498 } 3499 #endif 3500 3501 if (mi->mi_io_kstats) { 3502 mutex_enter(&mi->mi_lock); 3503 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3504 mutex_exit(&mi->mi_lock); 3505 } 3506 3507 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3508 if (e.error != 0 && !needrecov) { 3509 nfs4_end_fop(mi, vp, NULL, OH_READ, 3510 &recov_state, needrecov); 3511 return (e.error); 3512 } 3513 3514 /* 3515 * Do proper retry for OLD and BAD stateid errors outside 3516 * of the normal recovery framework. There are two differences 3517 * between async and sync reads. The first is that we allow 3518 * retry on BAD_STATEID for async reads, but not sync reads. 3519 * The second is that we mark the file dead for a failed 3520 * attempt with a special stateid for sync reads, but just 3521 * return EIO for async reads. 3522 * 3523 * If a sync read receives a BAD stateid error while using a 3524 * delegation stateid, retry using the open stateid (if it 3525 * exists). If it doesn't have an open stateid, reopen the 3526 * file first, then retry. 3527 */ 3528 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3529 res.status == NFS4ERR_BAD_STATEID) && async) { 3530 nfs4_end_fop(mi, vp, NULL, OH_READ, 3531 &recov_state, needrecov); 3532 if (sid_types.cur_sid_type == SPEC_SID) { 3533 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3534 return (EIO); 3535 } 3536 nfs4_save_stateid(&rargs->stateid, &sid_types); 3537 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3538 goto recov_retry; 3539 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3540 !async && sid_types.cur_sid_type != SPEC_SID) { 3541 nfs4_save_stateid(&rargs->stateid, &sid_types); 3542 nfs4_end_fop(mi, vp, NULL, OH_READ, 3543 &recov_state, needrecov); 3544 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3545 goto recov_retry; 3546 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3547 sid_types.cur_sid_type == DEL_SID) { 3548 nfs4_save_stateid(&rargs->stateid, &sid_types); 3549 mutex_enter(&rp->r_statev4_lock); 3550 rp->r_deleg_return_pending = TRUE; 3551 mutex_exit(&rp->r_statev4_lock); 3552 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3553 nfs4_end_fop(mi, vp, NULL, OH_READ, 3554 &recov_state, needrecov); 3555 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3556 return (EIO); 3557 } 3558 nfs4_end_fop(mi, vp, NULL, OH_READ, 3559 &recov_state, needrecov); 3560 /* hold needed for nfs4delegreturn_thread */ 3561 VN_HOLD(vp); 3562 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3563 NFS4_DR_DISCARD), FALSE); 3564 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3565 goto recov_retry; 3566 } 3567 if (needrecov) { 3568 bool_t abort; 3569 3570 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3571 "nfs4read: initiating recovery\n")); 3572 abort = nfs4_start_recovery(&e, 3573 mi, vp, NULL, &rargs->stateid, 3574 NULL, OP_READ, NULL, NULL, NULL); 3575 nfs4_end_fop(mi, vp, NULL, OH_READ, 3576 &recov_state, needrecov); 3577 /* 3578 * Do not retry if we got OLD_STATEID using a special 3579 * stateid. This avoids looping with a broken server. 3580 */ 3581 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3582 sid_types.cur_sid_type == SPEC_SID) 3583 abort = TRUE; 3584 3585 if (abort == FALSE) { 3586 /* 3587 * Need to retry all possible stateids in 3588 * case the recovery error wasn't stateid 3589 * related or the stateids have become 3590 * stale (server reboot). 3591 */ 3592 nfs4_init_stateid_types(&sid_types); 3593 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3594 goto recov_retry; 3595 } 3596 3597 if (!e.error) { 3598 e.error = geterrno4(res.status); 3599 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3600 } 3601 return (e.error); 3602 } 3603 3604 if (res.status) { 3605 e.error = geterrno4(res.status); 3606 nfs4_end_fop(mi, vp, NULL, OH_READ, 3607 &recov_state, needrecov); 3608 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3609 return (e.error); 3610 } 3611 3612 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3613 count -= data_len; 3614 if (base) 3615 base += data_len; 3616 offset += data_len; 3617 if (mi->mi_io_kstats) { 3618 mutex_enter(&mi->mi_lock); 3619 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3620 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3621 mutex_exit(&mi->mi_lock); 3622 } 3623 lwp_stat_update(LWP_STAT_INBLK, 1); 3624 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3625 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3626 3627 } while (count && !is_eof); 3628 3629 *residp = count; 3630 3631 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3632 3633 return (e.error); 3634 } 3635 3636 /* ARGSUSED */ 3637 static int 3638 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3639 caller_context_t *ct) 3640 { 3641 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3642 return (EIO); 3643 switch (cmd) { 3644 case _FIODIRECTIO: 3645 return (nfs4_directio(vp, (int)arg, cr)); 3646 default: 3647 return (ENOTTY); 3648 } 3649 } 3650 3651 /* ARGSUSED */ 3652 int 3653 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3654 caller_context_t *ct) 3655 { 3656 int error; 3657 rnode4_t *rp = VTOR4(vp); 3658 3659 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3660 return (EIO); 3661 /* 3662 * If it has been specified that the return value will 3663 * just be used as a hint, and we are only being asked 3664 * for size, fsid or rdevid, then return the client's 3665 * notion of these values without checking to make sure 3666 * that the attribute cache is up to date. 3667 * The whole point is to avoid an over the wire GETATTR 3668 * call. 3669 */ 3670 if (flags & ATTR_HINT) { 3671 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) { 3672 mutex_enter(&rp->r_statelock); 3673 if (vap->va_mask & AT_SIZE) 3674 vap->va_size = rp->r_size; 3675 if (vap->va_mask & AT_FSID) 3676 vap->va_fsid = rp->r_attr.va_fsid; 3677 if (vap->va_mask & AT_RDEV) 3678 vap->va_rdev = rp->r_attr.va_rdev; 3679 mutex_exit(&rp->r_statelock); 3680 return (0); 3681 } 3682 } 3683 3684 /* 3685 * Only need to flush pages if asking for the mtime 3686 * and if there any dirty pages or any outstanding 3687 * asynchronous (write) requests for this file. 3688 */ 3689 if (vap->va_mask & AT_MTIME) { 3690 rp = VTOR4(vp); 3691 if (nfs4_has_pages(vp)) { 3692 mutex_enter(&rp->r_statev4_lock); 3693 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3694 mutex_exit(&rp->r_statev4_lock); 3695 if (rp->r_flags & R4DIRTY || 3696 rp->r_awcount > 0) { 3697 mutex_enter(&rp->r_statelock); 3698 rp->r_gcount++; 3699 mutex_exit(&rp->r_statelock); 3700 error = 3701 nfs4_putpage(vp, (u_offset_t)0, 3702 0, 0, cr, NULL); 3703 mutex_enter(&rp->r_statelock); 3704 if (error && (error == ENOSPC || 3705 error == EDQUOT)) { 3706 if (!rp->r_error) 3707 rp->r_error = error; 3708 } 3709 if (--rp->r_gcount == 0) 3710 cv_broadcast(&rp->r_cv); 3711 mutex_exit(&rp->r_statelock); 3712 } 3713 } else { 3714 mutex_exit(&rp->r_statev4_lock); 3715 } 3716 } 3717 } 3718 return (nfs4getattr(vp, vap, cr)); 3719 } 3720 3721 int 3722 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3723 { 3724 /* 3725 * If these are the only two bits cleared 3726 * on the server then return 0 (OK) else 3727 * return 1 (BAD). 3728 */ 3729 on_client &= ~(S_ISUID|S_ISGID); 3730 if (on_client == from_server) 3731 return (0); 3732 else 3733 return (1); 3734 } 3735 3736 /*ARGSUSED4*/ 3737 static int 3738 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3739 caller_context_t *ct) 3740 { 3741 int error; 3742 3743 if (vap->va_mask & AT_NOSET) 3744 return (EINVAL); 3745 3746 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3747 return (EIO); 3748 3749 /* 3750 * Don't call secpolicy_vnode_setattr, the client cannot 3751 * use its cached attributes to make security decisions 3752 * as the server may be faking mode bits or mapping uid/gid. 3753 * Always just let the server to the checking. 3754 * If we provide the ability to remove basic priviledges 3755 * to setattr (e.g. basic without chmod) then we will 3756 * need to add a check here before calling the server. 3757 */ 3758 error = nfs4setattr(vp, vap, flags, cr, NULL); 3759 3760 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) 3761 vnevent_truncate(vp, ct); 3762 3763 return (error); 3764 } 3765 3766 /* 3767 * To replace the "guarded" version 3 setattr, we use two types of compound 3768 * setattr requests: 3769 * 1. The "normal" setattr, used when the size of the file isn't being 3770 * changed - { Putfh <fh>; Setattr; Getattr }/ 3771 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3772 * with only ctime as the argument. If the server ctime differs from 3773 * what is cached on the client, the verify will fail, but we would 3774 * already have the ctime from the preceding getattr, so just set it 3775 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3776 * Setattr; Getattr }. 3777 * 3778 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3779 * this setattr and NULL if they are not. 3780 */ 3781 static int 3782 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3783 vsecattr_t *vsap) 3784 { 3785 COMPOUND4args_clnt args; 3786 COMPOUND4res_clnt res, *resp = NULL; 3787 nfs4_ga_res_t *garp = NULL; 3788 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3789 nfs_argop4 argop[5]; 3790 int verify_argop = -1; 3791 int setattr_argop = 1; 3792 nfs_resop4 *resop; 3793 vattr_t va; 3794 rnode4_t *rp; 3795 int doqueue = 1; 3796 uint_t mask = vap->va_mask; 3797 mode_t omode; 3798 vsecattr_t *vsp; 3799 timestruc_t ctime; 3800 bool_t needrecov = FALSE; 3801 nfs4_recov_state_t recov_state; 3802 nfs4_stateid_types_t sid_types; 3803 stateid4 stateid; 3804 hrtime_t t; 3805 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3806 servinfo4_t *svp; 3807 bitmap4 supp_attrs; 3808 3809 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3810 rp = VTOR4(vp); 3811 nfs4_init_stateid_types(&sid_types); 3812 3813 /* 3814 * Only need to flush pages if there are any pages and 3815 * if the file is marked as dirty in some fashion. The 3816 * file must be flushed so that we can accurately 3817 * determine the size of the file and the cached data 3818 * after the SETATTR returns. A file is considered to 3819 * be dirty if it is either marked with R4DIRTY, has 3820 * outstanding i/o's active, or is mmap'd. In this 3821 * last case, we can't tell whether there are dirty 3822 * pages, so we flush just to be sure. 3823 */ 3824 if (nfs4_has_pages(vp) && 3825 ((rp->r_flags & R4DIRTY) || 3826 rp->r_count > 0 || 3827 rp->r_mapcnt > 0)) { 3828 ASSERT(vp->v_type != VCHR); 3829 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3830 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3831 mutex_enter(&rp->r_statelock); 3832 if (!rp->r_error) 3833 rp->r_error = e.error; 3834 mutex_exit(&rp->r_statelock); 3835 } 3836 } 3837 3838 if (mask & AT_SIZE) { 3839 /* 3840 * Verification setattr compound for non-deleg AT_SIZE: 3841 * { Putfh; Getattr; Verify; Setattr; Getattr } 3842 * Set ctime local here (outside the do_again label) 3843 * so that subsequent retries (after failed VERIFY) 3844 * will use ctime from GETATTR results (from failed 3845 * verify compound) as VERIFY arg. 3846 * If file has delegation, then VERIFY(time_metadata) 3847 * is of little added value, so don't bother. 3848 */ 3849 mutex_enter(&rp->r_statev4_lock); 3850 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3851 rp->r_deleg_return_pending) { 3852 numops = 5; 3853 ctime = rp->r_attr.va_ctime; 3854 } 3855 mutex_exit(&rp->r_statev4_lock); 3856 } 3857 3858 recov_state.rs_flags = 0; 3859 recov_state.rs_num_retry_despite_err = 0; 3860 3861 args.ctag = TAG_SETATTR; 3862 do_again: 3863 recov_retry: 3864 setattr_argop = numops - 2; 3865 3866 args.array = argop; 3867 args.array_len = numops; 3868 3869 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3870 if (e.error) 3871 return (e.error); 3872 3873 3874 /* putfh target fh */ 3875 argop[0].argop = OP_CPUTFH; 3876 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3877 3878 if (numops == 5) { 3879 /* 3880 * We only care about the ctime, but need to get mtime 3881 * and size for proper cache update. 3882 */ 3883 /* getattr */ 3884 argop[1].argop = OP_GETATTR; 3885 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3886 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3887 3888 /* verify - set later in loop */ 3889 verify_argop = 2; 3890 } 3891 3892 /* setattr */ 3893 svp = rp->r_server; 3894 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3895 supp_attrs = svp->sv_supp_attrs; 3896 nfs_rw_exit(&svp->sv_lock); 3897 3898 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3899 supp_attrs, &e.error, &sid_types); 3900 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3901 if (e.error) { 3902 /* req time field(s) overflow - return immediately */ 3903 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3904 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3905 opsetattr.obj_attributes); 3906 return (e.error); 3907 } 3908 omode = rp->r_attr.va_mode; 3909 3910 /* getattr */ 3911 argop[numops-1].argop = OP_GETATTR; 3912 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3913 /* 3914 * If we are setting the ACL (indicated only by vsap != NULL), request 3915 * the ACL in this getattr. The ACL returned from this getattr will be 3916 * used in updating the ACL cache. 3917 */ 3918 if (vsap != NULL) 3919 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3920 FATTR4_ACL_MASK; 3921 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3922 3923 /* 3924 * setattr iterates if the object size is set and the cached ctime 3925 * does not match the file ctime. In that case, verify the ctime first. 3926 */ 3927 3928 do { 3929 if (verify_argop != -1) { 3930 /* 3931 * Verify that the ctime match before doing setattr. 3932 */ 3933 va.va_mask = AT_CTIME; 3934 va.va_ctime = ctime; 3935 svp = rp->r_server; 3936 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3937 supp_attrs = svp->sv_supp_attrs; 3938 nfs_rw_exit(&svp->sv_lock); 3939 e.error = nfs4args_verify(&argop[verify_argop], &va, 3940 OP_VERIFY, supp_attrs); 3941 if (e.error) { 3942 /* req time field(s) overflow - return */ 3943 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3944 needrecov); 3945 break; 3946 } 3947 } 3948 3949 doqueue = 1; 3950 3951 t = gethrtime(); 3952 3953 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3954 3955 /* 3956 * Purge the access cache and ACL cache if changing either the 3957 * owner of the file, the group owner, or the mode. These may 3958 * change the access permissions of the file, so purge old 3959 * information and start over again. 3960 */ 3961 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3962 (void) nfs4_access_purge_rp(rp); 3963 if (rp->r_secattr != NULL) { 3964 mutex_enter(&rp->r_statelock); 3965 vsp = rp->r_secattr; 3966 rp->r_secattr = NULL; 3967 mutex_exit(&rp->r_statelock); 3968 if (vsp != NULL) 3969 nfs4_acl_free_cache(vsp); 3970 } 3971 } 3972 3973 /* 3974 * If res.array_len == numops, then everything succeeded, 3975 * except for possibly the final getattr. If only the 3976 * last getattr failed, give up, and don't try recovery. 3977 */ 3978 if (res.array_len == numops) { 3979 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3980 needrecov); 3981 if (! e.error) 3982 resp = &res; 3983 break; 3984 } 3985 3986 /* 3987 * if either rpc call failed or completely succeeded - done 3988 */ 3989 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3990 if (e.error) { 3991 PURGE_ATTRCACHE4(vp); 3992 if (!needrecov) { 3993 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3994 needrecov); 3995 break; 3996 } 3997 } 3998 3999 /* 4000 * Do proper retry for OLD_STATEID outside of the normal 4001 * recovery framework. 4002 */ 4003 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4004 sid_types.cur_sid_type != SPEC_SID && 4005 sid_types.cur_sid_type != NO_SID) { 4006 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4007 needrecov); 4008 nfs4_save_stateid(&stateid, &sid_types); 4009 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4010 opsetattr.obj_attributes); 4011 if (verify_argop != -1) { 4012 nfs4args_verify_free(&argop[verify_argop]); 4013 verify_argop = -1; 4014 } 4015 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4016 goto recov_retry; 4017 } 4018 4019 if (needrecov) { 4020 bool_t abort; 4021 4022 abort = nfs4_start_recovery(&e, 4023 VTOMI4(vp), vp, NULL, NULL, NULL, 4024 OP_SETATTR, NULL, NULL, NULL); 4025 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4026 needrecov); 4027 /* 4028 * Do not retry if we failed with OLD_STATEID using 4029 * a special stateid. This is done to avoid looping 4030 * with a broken server. 4031 */ 4032 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4033 (sid_types.cur_sid_type == SPEC_SID || 4034 sid_types.cur_sid_type == NO_SID)) 4035 abort = TRUE; 4036 if (!e.error) { 4037 if (res.status == NFS4ERR_BADOWNER) 4038 nfs4_log_badowner(VTOMI4(vp), 4039 OP_SETATTR); 4040 4041 e.error = geterrno4(res.status); 4042 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4043 } 4044 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4045 opsetattr.obj_attributes); 4046 if (verify_argop != -1) { 4047 nfs4args_verify_free(&argop[verify_argop]); 4048 verify_argop = -1; 4049 } 4050 if (abort == FALSE) { 4051 /* 4052 * Need to retry all possible stateids in 4053 * case the recovery error wasn't stateid 4054 * related or the stateids have become 4055 * stale (server reboot). 4056 */ 4057 nfs4_init_stateid_types(&sid_types); 4058 goto recov_retry; 4059 } 4060 return (e.error); 4061 } 4062 4063 /* 4064 * Need to call nfs4_end_op before nfs4getattr to 4065 * avoid potential nfs4_start_op deadlock. See RFE 4066 * 4777612. Calls to nfs4_invalidate_pages() and 4067 * nfs4_purge_stale_fh() might also generate over the 4068 * wire calls which my cause nfs4_start_op() deadlock. 4069 */ 4070 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4071 4072 /* 4073 * Check to update lease. 4074 */ 4075 resp = &res; 4076 if (res.status == NFS4_OK) { 4077 break; 4078 } 4079 4080 /* 4081 * Check if verify failed to see if try again 4082 */ 4083 if ((verify_argop == -1) || (res.array_len != 3)) { 4084 /* 4085 * can't continue... 4086 */ 4087 if (res.status == NFS4ERR_BADOWNER) 4088 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4089 4090 e.error = geterrno4(res.status); 4091 } else { 4092 /* 4093 * When the verify request fails, the client ctime is 4094 * not in sync with the server. This is the same as 4095 * the version 3 "not synchronized" error, and we 4096 * handle it in a similar manner (XXX do we need to???). 4097 * Use the ctime returned in the first getattr for 4098 * the input to the next verify. 4099 * If we couldn't get the attributes, then we give up 4100 * because we can't complete the operation as required. 4101 */ 4102 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4103 } 4104 if (e.error) { 4105 PURGE_ATTRCACHE4(vp); 4106 nfs4_purge_stale_fh(e.error, vp, cr); 4107 } else { 4108 /* 4109 * retry with a new verify value 4110 */ 4111 ctime = garp->n4g_va.va_ctime; 4112 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4113 resp = NULL; 4114 } 4115 if (!e.error) { 4116 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4117 opsetattr.obj_attributes); 4118 if (verify_argop != -1) { 4119 nfs4args_verify_free(&argop[verify_argop]); 4120 verify_argop = -1; 4121 } 4122 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4123 goto do_again; 4124 } 4125 } while (!e.error); 4126 4127 if (e.error) { 4128 /* 4129 * If we are here, rfs4call has an irrecoverable error - return 4130 */ 4131 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4132 opsetattr.obj_attributes); 4133 if (verify_argop != -1) { 4134 nfs4args_verify_free(&argop[verify_argop]); 4135 verify_argop = -1; 4136 } 4137 if (resp) 4138 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4139 return (e.error); 4140 } 4141 4142 4143 4144 /* 4145 * If changing the size of the file, invalidate 4146 * any local cached data which is no longer part 4147 * of the file. We also possibly invalidate the 4148 * last page in the file. We could use 4149 * pvn_vpzero(), but this would mark the page as 4150 * modified and require it to be written back to 4151 * the server for no particularly good reason. 4152 * This way, if we access it, then we bring it 4153 * back in. A read should be cheaper than a 4154 * write. 4155 */ 4156 if (mask & AT_SIZE) { 4157 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4158 } 4159 4160 /* either no error or one of the postop getattr failed */ 4161 4162 /* 4163 * XXX Perform a simplified version of wcc checking. Instead of 4164 * have another getattr to get pre-op, just purge cache if 4165 * any of the ops prior to and including the getattr failed. 4166 * If the getattr succeeded then update the attrcache accordingly. 4167 */ 4168 4169 garp = NULL; 4170 if (res.status == NFS4_OK) { 4171 /* 4172 * Last getattr 4173 */ 4174 resop = &res.array[numops - 1]; 4175 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4176 } 4177 /* 4178 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4179 * rather than filling it. See the function itself for details. 4180 */ 4181 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4182 if (garp != NULL) { 4183 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4184 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4185 vs_ace4_destroy(&garp->n4g_vsa); 4186 } else { 4187 if (vsap != NULL) { 4188 /* 4189 * The ACL was supposed to be set and to be 4190 * returned in the last getattr of this 4191 * compound, but for some reason the getattr 4192 * result doesn't contain the ACL. In this 4193 * case, purge the ACL cache. 4194 */ 4195 if (rp->r_secattr != NULL) { 4196 mutex_enter(&rp->r_statelock); 4197 vsp = rp->r_secattr; 4198 rp->r_secattr = NULL; 4199 mutex_exit(&rp->r_statelock); 4200 if (vsp != NULL) 4201 nfs4_acl_free_cache(vsp); 4202 } 4203 } 4204 } 4205 } 4206 4207 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4208 /* 4209 * Set the size, rather than relying on getting it updated 4210 * via a GETATTR. With delegations the client tries to 4211 * suppress GETATTR calls. 4212 */ 4213 mutex_enter(&rp->r_statelock); 4214 rp->r_size = vap->va_size; 4215 mutex_exit(&rp->r_statelock); 4216 } 4217 4218 /* 4219 * Can free up request args and res 4220 */ 4221 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4222 opsetattr.obj_attributes); 4223 if (verify_argop != -1) { 4224 nfs4args_verify_free(&argop[verify_argop]); 4225 verify_argop = -1; 4226 } 4227 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4228 4229 /* 4230 * Some servers will change the mode to clear the setuid 4231 * and setgid bits when changing the uid or gid. The 4232 * client needs to compensate appropriately. 4233 */ 4234 if (mask & (AT_UID | AT_GID)) { 4235 int terror, do_setattr; 4236 4237 do_setattr = 0; 4238 va.va_mask = AT_MODE; 4239 terror = nfs4getattr(vp, &va, cr); 4240 if (!terror && 4241 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4242 (!(mask & AT_MODE) && va.va_mode != omode))) { 4243 va.va_mask = AT_MODE; 4244 if (mask & AT_MODE) { 4245 /* 4246 * We asked the mode to be changed and what 4247 * we just got from the server in getattr is 4248 * not what we wanted it to be, so set it now. 4249 */ 4250 va.va_mode = vap->va_mode; 4251 do_setattr = 1; 4252 } else { 4253 /* 4254 * We did not ask the mode to be changed, 4255 * Check to see that the server just cleared 4256 * I_SUID and I_GUID from it. If not then 4257 * set mode to omode with UID/GID cleared. 4258 */ 4259 if (nfs4_compare_modes(va.va_mode, omode)) { 4260 omode &= ~(S_ISUID|S_ISGID); 4261 va.va_mode = omode; 4262 do_setattr = 1; 4263 } 4264 } 4265 4266 if (do_setattr) 4267 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4268 } 4269 } 4270 4271 return (e.error); 4272 } 4273 4274 /* ARGSUSED */ 4275 static int 4276 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4277 { 4278 COMPOUND4args_clnt args; 4279 COMPOUND4res_clnt res; 4280 int doqueue; 4281 uint32_t acc, resacc, argacc; 4282 rnode4_t *rp; 4283 cred_t *cred, *ncr, *ncrfree = NULL; 4284 nfs4_access_type_t cacc; 4285 int num_ops; 4286 nfs_argop4 argop[3]; 4287 nfs_resop4 *resop; 4288 bool_t needrecov = FALSE, do_getattr; 4289 nfs4_recov_state_t recov_state; 4290 int rpc_error; 4291 hrtime_t t; 4292 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4293 mntinfo4_t *mi = VTOMI4(vp); 4294 4295 if (nfs_zone() != mi->mi_zone) 4296 return (EIO); 4297 4298 acc = 0; 4299 if (mode & VREAD) 4300 acc |= ACCESS4_READ; 4301 if (mode & VWRITE) { 4302 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4303 return (EROFS); 4304 if (vp->v_type == VDIR) 4305 acc |= ACCESS4_DELETE; 4306 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4307 } 4308 if (mode & VEXEC) { 4309 if (vp->v_type == VDIR) 4310 acc |= ACCESS4_LOOKUP; 4311 else 4312 acc |= ACCESS4_EXECUTE; 4313 } 4314 4315 if (VTOR4(vp)->r_acache != NULL) { 4316 e.error = nfs4_validate_caches(vp, cr); 4317 if (e.error) 4318 return (e.error); 4319 } 4320 4321 rp = VTOR4(vp); 4322 if (vp->v_type == VDIR) 4323 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4324 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4325 else 4326 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4327 ACCESS4_EXECUTE; 4328 recov_state.rs_flags = 0; 4329 recov_state.rs_num_retry_despite_err = 0; 4330 4331 cred = cr; 4332 /* 4333 * ncr and ncrfree both initially 4334 * point to the memory area returned 4335 * by crnetadjust(); 4336 * ncrfree not NULL when exiting means 4337 * that we need to release it 4338 */ 4339 ncr = crnetadjust(cred); 4340 ncrfree = ncr; 4341 4342 tryagain: 4343 cacc = nfs4_access_check(rp, acc, cred); 4344 if (cacc == NFS4_ACCESS_ALLOWED) { 4345 if (ncrfree != NULL) 4346 crfree(ncrfree); 4347 return (0); 4348 } 4349 if (cacc == NFS4_ACCESS_DENIED) { 4350 /* 4351 * If the cred can be adjusted, try again 4352 * with the new cred. 4353 */ 4354 if (ncr != NULL) { 4355 cred = ncr; 4356 ncr = NULL; 4357 goto tryagain; 4358 } 4359 if (ncrfree != NULL) 4360 crfree(ncrfree); 4361 return (EACCES); 4362 } 4363 4364 recov_retry: 4365 /* 4366 * Don't take with r_statev4_lock here. r_deleg_type could 4367 * change as soon as lock is released. Since it is an int, 4368 * there is no atomicity issue. 4369 */ 4370 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4371 num_ops = do_getattr ? 3 : 2; 4372 4373 args.ctag = TAG_ACCESS; 4374 4375 args.array_len = num_ops; 4376 args.array = argop; 4377 4378 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4379 &recov_state, NULL)) { 4380 if (ncrfree != NULL) 4381 crfree(ncrfree); 4382 return (e.error); 4383 } 4384 4385 /* putfh target fh */ 4386 argop[0].argop = OP_CPUTFH; 4387 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4388 4389 /* access */ 4390 argop[1].argop = OP_ACCESS; 4391 argop[1].nfs_argop4_u.opaccess.access = argacc; 4392 4393 /* getattr */ 4394 if (do_getattr) { 4395 argop[2].argop = OP_GETATTR; 4396 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4397 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4398 } 4399 4400 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4401 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4402 rnode4info(VTOR4(vp)))); 4403 4404 doqueue = 1; 4405 t = gethrtime(); 4406 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4407 rpc_error = e.error; 4408 4409 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4410 if (needrecov) { 4411 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4412 "nfs4_access: initiating recovery\n")); 4413 4414 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4415 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) { 4416 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4417 &recov_state, needrecov); 4418 if (!e.error) 4419 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4420 goto recov_retry; 4421 } 4422 } 4423 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4424 4425 if (e.error) 4426 goto out; 4427 4428 if (res.status) { 4429 e.error = geterrno4(res.status); 4430 /* 4431 * This might generate over the wire calls throught 4432 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4433 * here to avoid a deadlock. 4434 */ 4435 nfs4_purge_stale_fh(e.error, vp, cr); 4436 goto out; 4437 } 4438 resop = &res.array[1]; /* access res */ 4439 4440 resacc = resop->nfs_resop4_u.opaccess.access; 4441 4442 if (do_getattr) { 4443 resop++; /* getattr res */ 4444 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4445 t, cr, FALSE, NULL); 4446 } 4447 4448 if (!e.error) { 4449 nfs4_access_cache(rp, argacc, resacc, cred); 4450 /* 4451 * we just cached results with cred; if cred is the 4452 * adjusted credentials from crnetadjust, we do not want 4453 * to release them before exiting: hence setting ncrfree 4454 * to NULL 4455 */ 4456 if (cred != cr) 4457 ncrfree = NULL; 4458 /* XXX check the supported bits too? */ 4459 if ((acc & resacc) != acc) { 4460 /* 4461 * The following code implements the semantic 4462 * that a setuid root program has *at least* the 4463 * permissions of the user that is running the 4464 * program. See rfs3call() for more portions 4465 * of the implementation of this functionality. 4466 */ 4467 /* XXX-LP */ 4468 if (ncr != NULL) { 4469 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4470 cred = ncr; 4471 ncr = NULL; 4472 goto tryagain; 4473 } 4474 e.error = EACCES; 4475 } 4476 } 4477 4478 out: 4479 if (!rpc_error) 4480 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4481 4482 if (ncrfree != NULL) 4483 crfree(ncrfree); 4484 4485 return (e.error); 4486 } 4487 4488 /* ARGSUSED */ 4489 static int 4490 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4491 { 4492 COMPOUND4args_clnt args; 4493 COMPOUND4res_clnt res; 4494 int doqueue; 4495 rnode4_t *rp; 4496 nfs_argop4 argop[3]; 4497 nfs_resop4 *resop; 4498 READLINK4res *lr_res; 4499 nfs4_ga_res_t *garp; 4500 uint_t len; 4501 char *linkdata; 4502 bool_t needrecov = FALSE; 4503 nfs4_recov_state_t recov_state; 4504 hrtime_t t; 4505 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4506 4507 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4508 return (EIO); 4509 /* 4510 * Can't readlink anything other than a symbolic link. 4511 */ 4512 if (vp->v_type != VLNK) 4513 return (EINVAL); 4514 4515 rp = VTOR4(vp); 4516 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4517 e.error = nfs4_validate_caches(vp, cr); 4518 if (e.error) 4519 return (e.error); 4520 mutex_enter(&rp->r_statelock); 4521 if (rp->r_symlink.contents != NULL) { 4522 e.error = uiomove(rp->r_symlink.contents, 4523 rp->r_symlink.len, UIO_READ, uiop); 4524 mutex_exit(&rp->r_statelock); 4525 return (e.error); 4526 } 4527 mutex_exit(&rp->r_statelock); 4528 } 4529 recov_state.rs_flags = 0; 4530 recov_state.rs_num_retry_despite_err = 0; 4531 4532 recov_retry: 4533 args.array_len = 3; 4534 args.array = argop; 4535 args.ctag = TAG_READLINK; 4536 4537 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4538 if (e.error) { 4539 return (e.error); 4540 } 4541 4542 /* 0. putfh symlink fh */ 4543 argop[0].argop = OP_CPUTFH; 4544 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4545 4546 /* 1. readlink */ 4547 argop[1].argop = OP_READLINK; 4548 4549 /* 2. getattr */ 4550 argop[2].argop = OP_GETATTR; 4551 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4552 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4553 4554 doqueue = 1; 4555 4556 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4557 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4558 rnode4info(VTOR4(vp)))); 4559 4560 t = gethrtime(); 4561 4562 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4563 4564 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4565 if (needrecov) { 4566 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4567 "nfs4_readlink: initiating recovery\n")); 4568 4569 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4570 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) { 4571 if (!e.error) 4572 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4573 4574 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4575 needrecov); 4576 goto recov_retry; 4577 } 4578 } 4579 4580 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4581 4582 if (e.error) 4583 return (e.error); 4584 4585 /* 4586 * There is an path in the code below which calls 4587 * nfs4_purge_stale_fh(), which may generate otw calls through 4588 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4589 * here to avoid nfs4_start_op() deadlock. 4590 */ 4591 4592 if (res.status && (res.array_len < args.array_len)) { 4593 /* 4594 * either Putfh or Link failed 4595 */ 4596 e.error = geterrno4(res.status); 4597 nfs4_purge_stale_fh(e.error, vp, cr); 4598 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4599 return (e.error); 4600 } 4601 4602 resop = &res.array[1]; /* readlink res */ 4603 lr_res = &resop->nfs_resop4_u.opreadlink; 4604 4605 /* 4606 * treat symlink names as data 4607 */ 4608 linkdata = utf8_to_str((utf8string *)&lr_res->link, &len, NULL); 4609 if (linkdata != NULL) { 4610 int uio_len = len - 1; 4611 /* len includes null byte, which we won't uiomove */ 4612 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4613 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4614 mutex_enter(&rp->r_statelock); 4615 if (rp->r_symlink.contents == NULL) { 4616 rp->r_symlink.contents = linkdata; 4617 rp->r_symlink.len = uio_len; 4618 rp->r_symlink.size = len; 4619 mutex_exit(&rp->r_statelock); 4620 } else { 4621 mutex_exit(&rp->r_statelock); 4622 kmem_free(linkdata, len); 4623 } 4624 } else { 4625 kmem_free(linkdata, len); 4626 } 4627 } 4628 if (res.status == NFS4_OK) { 4629 resop++; /* getattr res */ 4630 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4631 } 4632 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4633 4634 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4635 4636 /* 4637 * The over the wire error for attempting to readlink something 4638 * other than a symbolic link is ENXIO. However, we need to 4639 * return EINVAL instead of ENXIO, so we map it here. 4640 */ 4641 return (e.error == ENXIO ? EINVAL : e.error); 4642 } 4643 4644 /* 4645 * Flush local dirty pages to stable storage on the server. 4646 * 4647 * If FNODSYNC is specified, then there is nothing to do because 4648 * metadata changes are not cached on the client before being 4649 * sent to the server. 4650 */ 4651 /* ARGSUSED */ 4652 static int 4653 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4654 { 4655 int error; 4656 4657 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4658 return (0); 4659 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4660 return (EIO); 4661 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4662 if (!error) 4663 error = VTOR4(vp)->r_error; 4664 return (error); 4665 } 4666 4667 /* 4668 * Weirdness: if the file was removed or the target of a rename 4669 * operation while it was open, it got renamed instead. Here we 4670 * remove the renamed file. 4671 */ 4672 /* ARGSUSED */ 4673 void 4674 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4675 { 4676 rnode4_t *rp; 4677 4678 ASSERT(vp != DNLC_NO_VNODE); 4679 4680 rp = VTOR4(vp); 4681 4682 if (IS_SHADOW(vp, rp)) { 4683 sv_inactive(vp); 4684 return; 4685 } 4686 4687 /* 4688 * If this is coming from the wrong zone, we let someone in the right 4689 * zone take care of it asynchronously. We can get here due to 4690 * VN_RELE() being called from pageout() or fsflush(). This call may 4691 * potentially turn into an expensive no-op if, for instance, v_count 4692 * gets incremented in the meantime, but it's still correct. 4693 */ 4694 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4695 nfs4_async_inactive(vp, cr); 4696 return; 4697 } 4698 4699 /* 4700 * Some of the cleanup steps might require over-the-wire 4701 * operations. Since VOP_INACTIVE can get called as a result of 4702 * other over-the-wire operations (e.g., an attribute cache update 4703 * can lead to a DNLC purge), doing those steps now would lead to a 4704 * nested call to the recovery framework, which can deadlock. So 4705 * do any over-the-wire cleanups asynchronously, in a separate 4706 * thread. 4707 */ 4708 4709 mutex_enter(&rp->r_os_lock); 4710 mutex_enter(&rp->r_statelock); 4711 mutex_enter(&rp->r_statev4_lock); 4712 4713 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4714 mutex_exit(&rp->r_statev4_lock); 4715 mutex_exit(&rp->r_statelock); 4716 mutex_exit(&rp->r_os_lock); 4717 nfs4_async_inactive(vp, cr); 4718 return; 4719 } 4720 4721 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4722 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4723 mutex_exit(&rp->r_statev4_lock); 4724 mutex_exit(&rp->r_statelock); 4725 mutex_exit(&rp->r_os_lock); 4726 nfs4_async_inactive(vp, cr); 4727 return; 4728 } 4729 4730 if (rp->r_unldvp != NULL) { 4731 mutex_exit(&rp->r_statev4_lock); 4732 mutex_exit(&rp->r_statelock); 4733 mutex_exit(&rp->r_os_lock); 4734 nfs4_async_inactive(vp, cr); 4735 return; 4736 } 4737 mutex_exit(&rp->r_statev4_lock); 4738 mutex_exit(&rp->r_statelock); 4739 mutex_exit(&rp->r_os_lock); 4740 4741 rp4_addfree(rp, cr); 4742 } 4743 4744 /* 4745 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4746 * various bits of state. The caller must not refer to vp after this call. 4747 */ 4748 4749 void 4750 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4751 { 4752 rnode4_t *rp = VTOR4(vp); 4753 nfs4_recov_state_t recov_state; 4754 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4755 vnode_t *unldvp; 4756 char *unlname; 4757 cred_t *unlcred; 4758 COMPOUND4args_clnt args; 4759 COMPOUND4res_clnt res, *resp; 4760 nfs_argop4 argop[2]; 4761 int doqueue; 4762 #ifdef DEBUG 4763 char *name; 4764 #endif 4765 4766 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4767 ASSERT(!IS_SHADOW(vp, rp)); 4768 4769 #ifdef DEBUG 4770 name = fn_name(VTOSV(vp)->sv_name); 4771 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4772 "release vnode %s", name)); 4773 kmem_free(name, MAXNAMELEN); 4774 #endif 4775 4776 if (vp->v_type == VREG) { 4777 bool_t recov_failed = FALSE; 4778 4779 e.error = nfs4close_all(vp, cr); 4780 if (e.error) { 4781 /* Check to see if recovery failed */ 4782 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4783 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4784 recov_failed = TRUE; 4785 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4786 if (!recov_failed) { 4787 mutex_enter(&rp->r_statelock); 4788 if (rp->r_flags & R4RECOVERR) 4789 recov_failed = TRUE; 4790 mutex_exit(&rp->r_statelock); 4791 } 4792 if (recov_failed) { 4793 NFS4_DEBUG(nfs4_client_recov_debug, 4794 (CE_NOTE, "nfs4_inactive_otw: " 4795 "close failed (recovery failure)")); 4796 } 4797 } 4798 } 4799 4800 redo: 4801 if (rp->r_unldvp == NULL) { 4802 rp4_addfree(rp, cr); 4803 return; 4804 } 4805 4806 /* 4807 * Save the vnode pointer for the directory where the 4808 * unlinked-open file got renamed, then set it to NULL 4809 * to prevent another thread from getting here before 4810 * we're done with the remove. While we have the 4811 * statelock, make local copies of the pertinent rnode 4812 * fields. If we weren't to do this in an atomic way, the 4813 * the unl* fields could become inconsistent with respect 4814 * to each other due to a race condition between this 4815 * code and nfs_remove(). See bug report 1034328. 4816 */ 4817 mutex_enter(&rp->r_statelock); 4818 if (rp->r_unldvp == NULL) { 4819 mutex_exit(&rp->r_statelock); 4820 rp4_addfree(rp, cr); 4821 return; 4822 } 4823 4824 unldvp = rp->r_unldvp; 4825 rp->r_unldvp = NULL; 4826 unlname = rp->r_unlname; 4827 rp->r_unlname = NULL; 4828 unlcred = rp->r_unlcred; 4829 rp->r_unlcred = NULL; 4830 mutex_exit(&rp->r_statelock); 4831 4832 /* 4833 * If there are any dirty pages left, then flush 4834 * them. This is unfortunate because they just 4835 * may get thrown away during the remove operation, 4836 * but we have to do this for correctness. 4837 */ 4838 if (nfs4_has_pages(vp) && 4839 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4840 ASSERT(vp->v_type != VCHR); 4841 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4842 if (e.error) { 4843 mutex_enter(&rp->r_statelock); 4844 if (!rp->r_error) 4845 rp->r_error = e.error; 4846 mutex_exit(&rp->r_statelock); 4847 } 4848 } 4849 4850 recov_state.rs_flags = 0; 4851 recov_state.rs_num_retry_despite_err = 0; 4852 recov_retry_remove: 4853 /* 4854 * Do the remove operation on the renamed file 4855 */ 4856 args.ctag = TAG_INACTIVE; 4857 4858 /* 4859 * Remove ops: putfh dir; remove 4860 */ 4861 args.array_len = 2; 4862 args.array = argop; 4863 4864 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4865 if (e.error) { 4866 kmem_free(unlname, MAXNAMELEN); 4867 crfree(unlcred); 4868 VN_RELE(unldvp); 4869 /* 4870 * Try again; this time around r_unldvp will be NULL, so we'll 4871 * just call rp4_addfree() and return. 4872 */ 4873 goto redo; 4874 } 4875 4876 /* putfh directory */ 4877 argop[0].argop = OP_CPUTFH; 4878 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4879 4880 /* remove */ 4881 argop[1].argop = OP_CREMOVE; 4882 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4883 4884 doqueue = 1; 4885 resp = &res; 4886 4887 #if 0 /* notyet */ 4888 /* 4889 * Can't do this yet. We may be being called from 4890 * dnlc_purge_XXX while that routine is holding a 4891 * mutex lock to the nc_rele list. The calls to 4892 * nfs3_cache_wcc_data may result in calls to 4893 * dnlc_purge_XXX. This will result in a deadlock. 4894 */ 4895 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4896 if (e.error) { 4897 PURGE_ATTRCACHE4(unldvp); 4898 resp = NULL; 4899 } else if (res.status) { 4900 e.error = geterrno4(res.status); 4901 PURGE_ATTRCACHE4(unldvp); 4902 /* 4903 * This code is inactive right now 4904 * but if made active there should 4905 * be a nfs4_end_op() call before 4906 * nfs4_purge_stale_fh to avoid start_op() 4907 * deadlock. See BugId: 4948726 4908 */ 4909 nfs4_purge_stale_fh(error, unldvp, cr); 4910 } else { 4911 nfs_resop4 *resop; 4912 REMOVE4res *rm_res; 4913 4914 resop = &res.array[1]; 4915 rm_res = &resop->nfs_resop4_u.opremove; 4916 /* 4917 * Update directory cache attribute, 4918 * readdir and dnlc caches. 4919 */ 4920 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4921 } 4922 #else 4923 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4924 4925 PURGE_ATTRCACHE4(unldvp); 4926 #endif 4927 4928 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4929 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4930 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 4931 if (!e.error) 4932 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4933 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4934 &recov_state, TRUE); 4935 goto recov_retry_remove; 4936 } 4937 } 4938 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4939 4940 /* 4941 * Release stuff held for the remove 4942 */ 4943 VN_RELE(unldvp); 4944 if (!e.error && resp) 4945 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4946 4947 kmem_free(unlname, MAXNAMELEN); 4948 crfree(unlcred); 4949 goto redo; 4950 } 4951 4952 /* 4953 * Remote file system operations having to do with directory manipulation. 4954 */ 4955 /* ARGSUSED3 */ 4956 int 4957 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4958 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4959 int *direntflags, pathname_t *realpnp) 4960 { 4961 int error; 4962 vnode_t *vp, *avp = NULL; 4963 rnode4_t *drp; 4964 4965 *vpp = NULL; 4966 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4967 return (EPERM); 4968 /* 4969 * if LOOKUP_XATTR, must replace dvp (object) with 4970 * object's attrdir before continuing with lookup 4971 */ 4972 if (flags & LOOKUP_XATTR) { 4973 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4974 if (error) 4975 return (error); 4976 4977 dvp = avp; 4978 4979 /* 4980 * If lookup is for "", just return dvp now. The attrdir 4981 * has already been activated (from nfs4lookup_xattr), and 4982 * the caller will RELE the original dvp -- not 4983 * the attrdir. So, set vpp and return. 4984 * Currently, when the LOOKUP_XATTR flag is 4985 * passed to VOP_LOOKUP, the name is always empty, and 4986 * shortcircuiting here avoids 3 unneeded lock/unlock 4987 * pairs. 4988 * 4989 * If a non-empty name was provided, then it is the 4990 * attribute name, and it will be looked up below. 4991 */ 4992 if (*nm == '\0') { 4993 *vpp = dvp; 4994 return (0); 4995 } 4996 4997 /* 4998 * The vfs layer never sends a name when asking for the 4999 * attrdir, so we should never get here (unless of course 5000 * name is passed at some time in future -- at which time 5001 * we'll blow up here). 5002 */ 5003 ASSERT(0); 5004 } 5005 5006 drp = VTOR4(dvp); 5007 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5008 return (EINTR); 5009 5010 error = nfs4lookup(dvp, nm, vpp, cr, 0); 5011 nfs_rw_exit(&drp->r_rwlock); 5012 5013 /* 5014 * If vnode is a device, create special vnode. 5015 */ 5016 if (!error && ISVDEV((*vpp)->v_type)) { 5017 vp = *vpp; 5018 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 5019 VN_RELE(vp); 5020 } 5021 5022 return (error); 5023 } 5024 5025 /* ARGSUSED */ 5026 static int 5027 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 5028 { 5029 int error; 5030 rnode4_t *drp; 5031 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 5032 mntinfo4_t *mi; 5033 5034 mi = VTOMI4(dvp); 5035 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 5036 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS)) 5037 return (EINVAL); 5038 5039 drp = VTOR4(dvp); 5040 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5041 return (EINTR); 5042 5043 mutex_enter(&drp->r_statelock); 5044 /* 5045 * If the server doesn't support xattrs just return EINVAL 5046 */ 5047 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 5048 mutex_exit(&drp->r_statelock); 5049 nfs_rw_exit(&drp->r_rwlock); 5050 return (EINVAL); 5051 } 5052 5053 /* 5054 * If there is a cached xattr directory entry, 5055 * use it as long as the attributes are valid. If the 5056 * attributes are not valid, take the simple approach and 5057 * free the cached value and re-fetch a new value. 5058 * 5059 * We don't negative entry cache for now, if we did we 5060 * would need to check if the file has changed on every 5061 * lookup. But xattrs don't exist very often and failing 5062 * an openattr is not much more expensive than and NVERIFY or GETATTR 5063 * so do an openattr over the wire for now. 5064 */ 5065 if (drp->r_xattr_dir != NULL) { 5066 if (ATTRCACHE4_VALID(dvp)) { 5067 VN_HOLD(drp->r_xattr_dir); 5068 *vpp = drp->r_xattr_dir; 5069 mutex_exit(&drp->r_statelock); 5070 nfs_rw_exit(&drp->r_rwlock); 5071 return (0); 5072 } 5073 VN_RELE(drp->r_xattr_dir); 5074 drp->r_xattr_dir = NULL; 5075 } 5076 mutex_exit(&drp->r_statelock); 5077 5078 error = nfs4openattr(dvp, vpp, cflag, cr); 5079 5080 nfs_rw_exit(&drp->r_rwlock); 5081 5082 return (error); 5083 } 5084 5085 static int 5086 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5087 { 5088 int error; 5089 rnode4_t *drp; 5090 5091 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5092 5093 /* 5094 * If lookup is for "", just return dvp. Don't need 5095 * to send it over the wire, look it up in the dnlc, 5096 * or perform any access checks. 5097 */ 5098 if (*nm == '\0') { 5099 VN_HOLD(dvp); 5100 *vpp = dvp; 5101 return (0); 5102 } 5103 5104 /* 5105 * Can't do lookups in non-directories. 5106 */ 5107 if (dvp->v_type != VDIR) 5108 return (ENOTDIR); 5109 5110 /* 5111 * If lookup is for ".", just return dvp. Don't need 5112 * to send it over the wire or look it up in the dnlc, 5113 * just need to check access. 5114 */ 5115 if (nm[0] == '.' && nm[1] == '\0') { 5116 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5117 if (error) 5118 return (error); 5119 VN_HOLD(dvp); 5120 *vpp = dvp; 5121 return (0); 5122 } 5123 5124 drp = VTOR4(dvp); 5125 if (!(drp->r_flags & R4LOOKUP)) { 5126 mutex_enter(&drp->r_statelock); 5127 drp->r_flags |= R4LOOKUP; 5128 mutex_exit(&drp->r_statelock); 5129 } 5130 5131 *vpp = NULL; 5132 /* 5133 * Lookup this name in the DNLC. If there is no entry 5134 * lookup over the wire. 5135 */ 5136 if (!skipdnlc) 5137 *vpp = dnlc_lookup(dvp, nm); 5138 if (*vpp == NULL) { 5139 /* 5140 * We need to go over the wire to lookup the name. 5141 */ 5142 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5143 } 5144 5145 /* 5146 * We hit on the dnlc 5147 */ 5148 if (*vpp != DNLC_NO_VNODE || 5149 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5150 /* 5151 * But our attrs may not be valid. 5152 */ 5153 if (ATTRCACHE4_VALID(dvp)) { 5154 error = nfs4_waitfor_purge_complete(dvp); 5155 if (error) { 5156 VN_RELE(*vpp); 5157 *vpp = NULL; 5158 return (error); 5159 } 5160 5161 /* 5162 * If after the purge completes, check to make sure 5163 * our attrs are still valid. 5164 */ 5165 if (ATTRCACHE4_VALID(dvp)) { 5166 /* 5167 * If we waited for a purge we may have 5168 * lost our vnode so look it up again. 5169 */ 5170 VN_RELE(*vpp); 5171 *vpp = dnlc_lookup(dvp, nm); 5172 if (*vpp == NULL) 5173 return (nfs4lookupnew_otw(dvp, 5174 nm, vpp, cr)); 5175 5176 /* 5177 * The access cache should almost always hit 5178 */ 5179 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5180 5181 if (error) { 5182 VN_RELE(*vpp); 5183 *vpp = NULL; 5184 return (error); 5185 } 5186 if (*vpp == DNLC_NO_VNODE) { 5187 VN_RELE(*vpp); 5188 *vpp = NULL; 5189 return (ENOENT); 5190 } 5191 return (0); 5192 } 5193 } 5194 } 5195 5196 ASSERT(*vpp != NULL); 5197 5198 /* 5199 * We may have gotten here we have one of the following cases: 5200 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5201 * need to validate them. 5202 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5203 * must validate. 5204 * 5205 * Go to the server and check if the directory has changed, if 5206 * it hasn't we are done and can use the dnlc entry. 5207 */ 5208 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5209 } 5210 5211 /* 5212 * Go to the server and check if the directory has changed, if 5213 * it hasn't we are done and can use the dnlc entry. If it 5214 * has changed we get a new copy of its attributes and check 5215 * the access for VEXEC, then relookup the filename and 5216 * get its filehandle and attributes. 5217 * 5218 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5219 * if the NVERIFY failed we must 5220 * purge the caches 5221 * cache new attributes (will set r_time_attr_inval) 5222 * cache new access 5223 * recheck VEXEC access 5224 * add name to dnlc, possibly negative 5225 * if LOOKUP succeeded 5226 * cache new attributes 5227 * else 5228 * set a new r_time_attr_inval for dvp 5229 * check to make sure we have access 5230 * 5231 * The vpp returned is the vnode passed in if the directory is valid, 5232 * a new vnode if successful lookup, or NULL on error. 5233 */ 5234 static int 5235 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5236 { 5237 COMPOUND4args_clnt args; 5238 COMPOUND4res_clnt res; 5239 fattr4 *ver_fattr; 5240 fattr4_change dchange; 5241 int32_t *ptr; 5242 int argoplist_size = 7 * sizeof (nfs_argop4); 5243 nfs_argop4 *argop; 5244 int doqueue; 5245 mntinfo4_t *mi; 5246 nfs4_recov_state_t recov_state; 5247 hrtime_t t; 5248 int isdotdot; 5249 vnode_t *nvp; 5250 nfs_fh4 *fhp; 5251 nfs4_sharedfh_t *sfhp; 5252 nfs4_access_type_t cacc; 5253 rnode4_t *nrp; 5254 rnode4_t *drp = VTOR4(dvp); 5255 nfs4_ga_res_t *garp = NULL; 5256 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5257 5258 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5259 ASSERT(nm != NULL); 5260 ASSERT(nm[0] != '\0'); 5261 ASSERT(dvp->v_type == VDIR); 5262 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5263 ASSERT(*vpp != NULL); 5264 5265 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5266 isdotdot = 1; 5267 args.ctag = TAG_LOOKUP_VPARENT; 5268 } else { 5269 /* 5270 * If dvp were a stub, it should have triggered and caused 5271 * a mount for us to get this far. 5272 */ 5273 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5274 5275 isdotdot = 0; 5276 args.ctag = TAG_LOOKUP_VALID; 5277 } 5278 5279 mi = VTOMI4(dvp); 5280 recov_state.rs_flags = 0; 5281 recov_state.rs_num_retry_despite_err = 0; 5282 5283 nvp = NULL; 5284 5285 /* Save the original mount point security information */ 5286 (void) save_mnt_secinfo(mi->mi_curr_serv); 5287 5288 recov_retry: 5289 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5290 &recov_state, NULL); 5291 if (e.error) { 5292 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5293 VN_RELE(*vpp); 5294 *vpp = NULL; 5295 return (e.error); 5296 } 5297 5298 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5299 5300 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5301 args.array_len = 7; 5302 args.array = argop; 5303 5304 /* 0. putfh file */ 5305 argop[0].argop = OP_CPUTFH; 5306 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5307 5308 /* 1. nverify the change info */ 5309 argop[1].argop = OP_NVERIFY; 5310 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5311 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5312 ver_fattr->attrlist4 = (char *)&dchange; 5313 ptr = (int32_t *)&dchange; 5314 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5315 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5316 5317 /* 2. getattr directory */ 5318 argop[2].argop = OP_GETATTR; 5319 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5320 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5321 5322 /* 3. access directory */ 5323 argop[3].argop = OP_ACCESS; 5324 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5325 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5326 5327 /* 4. lookup name */ 5328 if (isdotdot) { 5329 argop[4].argop = OP_LOOKUPP; 5330 } else { 5331 argop[4].argop = OP_CLOOKUP; 5332 argop[4].nfs_argop4_u.opclookup.cname = nm; 5333 } 5334 5335 /* 5. resulting file handle */ 5336 argop[5].argop = OP_GETFH; 5337 5338 /* 6. resulting file attributes */ 5339 argop[6].argop = OP_GETATTR; 5340 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5341 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5342 5343 doqueue = 1; 5344 t = gethrtime(); 5345 5346 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5347 5348 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5349 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5350 if (e.error != 0 && *vpp != NULL) 5351 VN_RELE(*vpp); 5352 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5353 &recov_state, FALSE); 5354 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5355 kmem_free(argop, argoplist_size); 5356 return (e.error); 5357 } 5358 5359 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5360 /* 5361 * For WRONGSEC of a non-dotdot case, send secinfo directly 5362 * from this thread, do not go thru the recovery thread since 5363 * we need the nm information. 5364 * 5365 * Not doing dotdot case because there is no specification 5366 * for (PUTFH, SECINFO "..") yet. 5367 */ 5368 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5369 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5370 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5371 &recov_state, FALSE); 5372 else 5373 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5374 &recov_state, TRUE); 5375 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5376 kmem_free(argop, argoplist_size); 5377 if (!e.error) 5378 goto recov_retry; 5379 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5380 VN_RELE(*vpp); 5381 *vpp = NULL; 5382 return (e.error); 5383 } 5384 5385 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5386 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5387 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5388 &recov_state, TRUE); 5389 5390 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5391 kmem_free(argop, argoplist_size); 5392 goto recov_retry; 5393 } 5394 } 5395 5396 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5397 5398 if (e.error || res.array_len == 0) { 5399 /* 5400 * If e.error isn't set, then reply has no ops (or we couldn't 5401 * be here). The only legal way to reply without an op array 5402 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5403 * be in the reply for all other status values. 5404 * 5405 * For valid replies without an ops array, return ENOTSUP 5406 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5407 * return EIO -- don't trust status. 5408 */ 5409 if (e.error == 0) 5410 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5411 ENOTSUP : EIO; 5412 VN_RELE(*vpp); 5413 *vpp = NULL; 5414 kmem_free(argop, argoplist_size); 5415 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5416 return (e.error); 5417 } 5418 5419 if (res.status != NFS4ERR_SAME) { 5420 e.error = geterrno4(res.status); 5421 5422 /* 5423 * The NVERIFY "failed" so the directory has changed 5424 * First make sure PUTFH succeeded and NVERIFY "failed" 5425 * cleanly. 5426 */ 5427 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5428 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5429 nfs4_purge_stale_fh(e.error, dvp, cr); 5430 VN_RELE(*vpp); 5431 *vpp = NULL; 5432 goto exit; 5433 } 5434 5435 /* 5436 * We know the NVERIFY "failed" so we must: 5437 * purge the caches (access and indirectly dnlc if needed) 5438 */ 5439 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5440 5441 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5442 nfs4_purge_stale_fh(e.error, dvp, cr); 5443 VN_RELE(*vpp); 5444 *vpp = NULL; 5445 goto exit; 5446 } 5447 5448 /* 5449 * Install new cached attributes for the directory 5450 */ 5451 nfs4_attr_cache(dvp, 5452 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5453 t, cr, FALSE, NULL); 5454 5455 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5456 nfs4_purge_stale_fh(e.error, dvp, cr); 5457 VN_RELE(*vpp); 5458 *vpp = NULL; 5459 e.error = geterrno4(res.status); 5460 goto exit; 5461 } 5462 5463 /* 5464 * Now we know the directory is valid, 5465 * cache new directory access 5466 */ 5467 nfs4_access_cache(drp, 5468 args.array[3].nfs_argop4_u.opaccess.access, 5469 res.array[3].nfs_resop4_u.opaccess.access, cr); 5470 5471 /* 5472 * recheck VEXEC access 5473 */ 5474 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5475 if (cacc != NFS4_ACCESS_ALLOWED) { 5476 /* 5477 * Directory permissions might have been revoked 5478 */ 5479 if (cacc == NFS4_ACCESS_DENIED) { 5480 e.error = EACCES; 5481 VN_RELE(*vpp); 5482 *vpp = NULL; 5483 goto exit; 5484 } 5485 5486 /* 5487 * Somehow we must not have asked for enough 5488 * so try a singleton ACCESS, should never happen. 5489 */ 5490 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5491 if (e.error) { 5492 VN_RELE(*vpp); 5493 *vpp = NULL; 5494 goto exit; 5495 } 5496 } 5497 5498 e.error = geterrno4(res.status); 5499 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5500 /* 5501 * The lookup failed, probably no entry 5502 */ 5503 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5504 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5505 } else { 5506 /* 5507 * Might be some other error, so remove 5508 * the dnlc entry to make sure we start all 5509 * over again, next time. 5510 */ 5511 dnlc_remove(dvp, nm); 5512 } 5513 VN_RELE(*vpp); 5514 *vpp = NULL; 5515 goto exit; 5516 } 5517 5518 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5519 /* 5520 * The file exists but we can't get its fh for 5521 * some unknown reason. Remove it from the dnlc 5522 * and error out to be safe. 5523 */ 5524 dnlc_remove(dvp, nm); 5525 VN_RELE(*vpp); 5526 *vpp = NULL; 5527 goto exit; 5528 } 5529 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5530 if (fhp->nfs_fh4_len == 0) { 5531 /* 5532 * The file exists but a bogus fh 5533 * some unknown reason. Remove it from the dnlc 5534 * and error out to be safe. 5535 */ 5536 e.error = ENOENT; 5537 dnlc_remove(dvp, nm); 5538 VN_RELE(*vpp); 5539 *vpp = NULL; 5540 goto exit; 5541 } 5542 sfhp = sfh4_get(fhp, mi); 5543 5544 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5545 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5546 5547 /* 5548 * Make the new rnode 5549 */ 5550 if (isdotdot) { 5551 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5552 if (e.error) { 5553 sfh4_rele(&sfhp); 5554 VN_RELE(*vpp); 5555 *vpp = NULL; 5556 goto exit; 5557 } 5558 /* 5559 * XXX if nfs4_make_dotdot uses an existing rnode 5560 * XXX it doesn't update the attributes. 5561 * XXX for now just save them again to save an OTW 5562 */ 5563 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5564 } else { 5565 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5566 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5567 /* 5568 * If v_type == VNON, then garp was NULL because 5569 * the last op in the compound failed and makenfs4node 5570 * could not find the vnode for sfhp. It created 5571 * a new vnode, so we have nothing to purge here. 5572 */ 5573 if (nvp->v_type == VNON) { 5574 vattr_t vattr; 5575 5576 vattr.va_mask = AT_TYPE; 5577 /* 5578 * N.B. We've already called nfs4_end_fop above. 5579 */ 5580 e.error = nfs4getattr(nvp, &vattr, cr); 5581 if (e.error) { 5582 sfh4_rele(&sfhp); 5583 VN_RELE(*vpp); 5584 *vpp = NULL; 5585 VN_RELE(nvp); 5586 goto exit; 5587 } 5588 nvp->v_type = vattr.va_type; 5589 } 5590 } 5591 sfh4_rele(&sfhp); 5592 5593 nrp = VTOR4(nvp); 5594 mutex_enter(&nrp->r_statev4_lock); 5595 if (!nrp->created_v4) { 5596 mutex_exit(&nrp->r_statev4_lock); 5597 dnlc_update(dvp, nm, nvp); 5598 } else 5599 mutex_exit(&nrp->r_statev4_lock); 5600 5601 VN_RELE(*vpp); 5602 *vpp = nvp; 5603 } else { 5604 hrtime_t now; 5605 hrtime_t delta = 0; 5606 5607 e.error = 0; 5608 5609 /* 5610 * Because the NVERIFY "succeeded" we know that the 5611 * directory attributes are still valid 5612 * so update r_time_attr_inval 5613 */ 5614 now = gethrtime(); 5615 mutex_enter(&drp->r_statelock); 5616 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5617 delta = now - drp->r_time_attr_saved; 5618 if (delta < mi->mi_acdirmin) 5619 delta = mi->mi_acdirmin; 5620 else if (delta > mi->mi_acdirmax) 5621 delta = mi->mi_acdirmax; 5622 } 5623 drp->r_time_attr_inval = now + delta; 5624 mutex_exit(&drp->r_statelock); 5625 dnlc_update(dvp, nm, *vpp); 5626 5627 /* 5628 * Even though we have a valid directory attr cache 5629 * and dnlc entry, we may not have access. 5630 * This should almost always hit the cache. 5631 */ 5632 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5633 if (e.error) { 5634 VN_RELE(*vpp); 5635 *vpp = NULL; 5636 } 5637 5638 if (*vpp == DNLC_NO_VNODE) { 5639 VN_RELE(*vpp); 5640 *vpp = NULL; 5641 e.error = ENOENT; 5642 } 5643 } 5644 5645 exit: 5646 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5647 kmem_free(argop, argoplist_size); 5648 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5649 return (e.error); 5650 } 5651 5652 /* 5653 * We need to go over the wire to lookup the name, but 5654 * while we are there verify the directory has not 5655 * changed but if it has, get new attributes and check access 5656 * 5657 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5658 * NVERIFY GETATTR ACCESS 5659 * 5660 * With the results: 5661 * if the NVERIFY failed we must purge the caches, add new attributes, 5662 * and cache new access. 5663 * set a new r_time_attr_inval 5664 * add name to dnlc, possibly negative 5665 * if LOOKUP succeeded 5666 * cache new attributes 5667 */ 5668 static int 5669 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5670 { 5671 COMPOUND4args_clnt args; 5672 COMPOUND4res_clnt res; 5673 fattr4 *ver_fattr; 5674 fattr4_change dchange; 5675 int32_t *ptr; 5676 nfs4_ga_res_t *garp = NULL; 5677 int argoplist_size = 9 * sizeof (nfs_argop4); 5678 nfs_argop4 *argop; 5679 int doqueue; 5680 mntinfo4_t *mi; 5681 nfs4_recov_state_t recov_state; 5682 hrtime_t t; 5683 int isdotdot; 5684 vnode_t *nvp; 5685 nfs_fh4 *fhp; 5686 nfs4_sharedfh_t *sfhp; 5687 nfs4_access_type_t cacc; 5688 rnode4_t *nrp; 5689 rnode4_t *drp = VTOR4(dvp); 5690 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5691 5692 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5693 ASSERT(nm != NULL); 5694 ASSERT(nm[0] != '\0'); 5695 ASSERT(dvp->v_type == VDIR); 5696 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5697 ASSERT(*vpp == NULL); 5698 5699 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5700 isdotdot = 1; 5701 args.ctag = TAG_LOOKUP_PARENT; 5702 } else { 5703 /* 5704 * If dvp were a stub, it should have triggered and caused 5705 * a mount for us to get this far. 5706 */ 5707 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5708 5709 isdotdot = 0; 5710 args.ctag = TAG_LOOKUP; 5711 } 5712 5713 mi = VTOMI4(dvp); 5714 recov_state.rs_flags = 0; 5715 recov_state.rs_num_retry_despite_err = 0; 5716 5717 nvp = NULL; 5718 5719 /* Save the original mount point security information */ 5720 (void) save_mnt_secinfo(mi->mi_curr_serv); 5721 5722 recov_retry: 5723 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5724 &recov_state, NULL); 5725 if (e.error) { 5726 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5727 return (e.error); 5728 } 5729 5730 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5731 5732 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5733 args.array_len = 9; 5734 args.array = argop; 5735 5736 /* 0. putfh file */ 5737 argop[0].argop = OP_CPUTFH; 5738 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5739 5740 /* 1. savefh for the nverify */ 5741 argop[1].argop = OP_SAVEFH; 5742 5743 /* 2. lookup name */ 5744 if (isdotdot) { 5745 argop[2].argop = OP_LOOKUPP; 5746 } else { 5747 argop[2].argop = OP_CLOOKUP; 5748 argop[2].nfs_argop4_u.opclookup.cname = nm; 5749 } 5750 5751 /* 3. resulting file handle */ 5752 argop[3].argop = OP_GETFH; 5753 5754 /* 4. resulting file attributes */ 5755 argop[4].argop = OP_GETATTR; 5756 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5757 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5758 5759 /* 5. restorefh back the directory for the nverify */ 5760 argop[5].argop = OP_RESTOREFH; 5761 5762 /* 6. nverify the change info */ 5763 argop[6].argop = OP_NVERIFY; 5764 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5765 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5766 ver_fattr->attrlist4 = (char *)&dchange; 5767 ptr = (int32_t *)&dchange; 5768 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5769 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5770 5771 /* 7. getattr directory */ 5772 argop[7].argop = OP_GETATTR; 5773 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5774 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5775 5776 /* 8. access directory */ 5777 argop[8].argop = OP_ACCESS; 5778 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5779 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5780 5781 doqueue = 1; 5782 t = gethrtime(); 5783 5784 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5785 5786 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5787 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5788 if (e.error != 0 && *vpp != NULL) 5789 VN_RELE(*vpp); 5790 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5791 &recov_state, FALSE); 5792 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5793 kmem_free(argop, argoplist_size); 5794 return (e.error); 5795 } 5796 5797 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5798 /* 5799 * For WRONGSEC of a non-dotdot case, send secinfo directly 5800 * from this thread, do not go thru the recovery thread since 5801 * we need the nm information. 5802 * 5803 * Not doing dotdot case because there is no specification 5804 * for (PUTFH, SECINFO "..") yet. 5805 */ 5806 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5807 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5808 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5809 &recov_state, FALSE); 5810 else 5811 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5812 &recov_state, TRUE); 5813 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5814 kmem_free(argop, argoplist_size); 5815 if (!e.error) 5816 goto recov_retry; 5817 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5818 return (e.error); 5819 } 5820 5821 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5822 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5823 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5824 &recov_state, TRUE); 5825 5826 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5827 kmem_free(argop, argoplist_size); 5828 goto recov_retry; 5829 } 5830 } 5831 5832 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5833 5834 if (e.error || res.array_len == 0) { 5835 /* 5836 * If e.error isn't set, then reply has no ops (or we couldn't 5837 * be here). The only legal way to reply without an op array 5838 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5839 * be in the reply for all other status values. 5840 * 5841 * For valid replies without an ops array, return ENOTSUP 5842 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5843 * return EIO -- don't trust status. 5844 */ 5845 if (e.error == 0) 5846 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5847 ENOTSUP : EIO; 5848 5849 kmem_free(argop, argoplist_size); 5850 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5851 return (e.error); 5852 } 5853 5854 e.error = geterrno4(res.status); 5855 5856 /* 5857 * The PUTFH and SAVEFH may have failed. 5858 */ 5859 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5860 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5861 nfs4_purge_stale_fh(e.error, dvp, cr); 5862 goto exit; 5863 } 5864 5865 /* 5866 * Check if the file exists, if it does delay entering 5867 * into the dnlc until after we update the directory 5868 * attributes so we don't cause it to get purged immediately. 5869 */ 5870 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5871 /* 5872 * The lookup failed, probably no entry 5873 */ 5874 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5875 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5876 goto exit; 5877 } 5878 5879 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5880 /* 5881 * The file exists but we can't get its fh for 5882 * some unknown reason. Error out to be safe. 5883 */ 5884 goto exit; 5885 } 5886 5887 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5888 if (fhp->nfs_fh4_len == 0) { 5889 /* 5890 * The file exists but a bogus fh 5891 * some unknown reason. Error out to be safe. 5892 */ 5893 e.error = EIO; 5894 goto exit; 5895 } 5896 sfhp = sfh4_get(fhp, mi); 5897 5898 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5899 sfh4_rele(&sfhp); 5900 goto exit; 5901 } 5902 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5903 5904 /* 5905 * The RESTOREFH may have failed 5906 */ 5907 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5908 sfh4_rele(&sfhp); 5909 e.error = EIO; 5910 goto exit; 5911 } 5912 5913 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5914 /* 5915 * First make sure the NVERIFY failed as we expected, 5916 * if it didn't then be conservative and error out 5917 * as we can't trust the directory. 5918 */ 5919 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5920 sfh4_rele(&sfhp); 5921 e.error = EIO; 5922 goto exit; 5923 } 5924 5925 /* 5926 * We know the NVERIFY "failed" so the directory has changed, 5927 * so we must: 5928 * purge the caches (access and indirectly dnlc if needed) 5929 */ 5930 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5931 5932 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5933 sfh4_rele(&sfhp); 5934 goto exit; 5935 } 5936 nfs4_attr_cache(dvp, 5937 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5938 t, cr, FALSE, NULL); 5939 5940 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5941 nfs4_purge_stale_fh(e.error, dvp, cr); 5942 sfh4_rele(&sfhp); 5943 e.error = geterrno4(res.status); 5944 goto exit; 5945 } 5946 5947 /* 5948 * Now we know the directory is valid, 5949 * cache new directory access 5950 */ 5951 nfs4_access_cache(drp, 5952 args.array[8].nfs_argop4_u.opaccess.access, 5953 res.array[8].nfs_resop4_u.opaccess.access, cr); 5954 5955 /* 5956 * recheck VEXEC access 5957 */ 5958 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5959 if (cacc != NFS4_ACCESS_ALLOWED) { 5960 /* 5961 * Directory permissions might have been revoked 5962 */ 5963 if (cacc == NFS4_ACCESS_DENIED) { 5964 sfh4_rele(&sfhp); 5965 e.error = EACCES; 5966 goto exit; 5967 } 5968 5969 /* 5970 * Somehow we must not have asked for enough 5971 * so try a singleton ACCESS should never happen 5972 */ 5973 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5974 if (e.error) { 5975 sfh4_rele(&sfhp); 5976 goto exit; 5977 } 5978 } 5979 5980 e.error = geterrno4(res.status); 5981 } else { 5982 hrtime_t now; 5983 hrtime_t delta = 0; 5984 5985 e.error = 0; 5986 5987 /* 5988 * Because the NVERIFY "succeeded" we know that the 5989 * directory attributes are still valid 5990 * so update r_time_attr_inval 5991 */ 5992 now = gethrtime(); 5993 mutex_enter(&drp->r_statelock); 5994 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5995 delta = now - drp->r_time_attr_saved; 5996 if (delta < mi->mi_acdirmin) 5997 delta = mi->mi_acdirmin; 5998 else if (delta > mi->mi_acdirmax) 5999 delta = mi->mi_acdirmax; 6000 } 6001 drp->r_time_attr_inval = now + delta; 6002 mutex_exit(&drp->r_statelock); 6003 6004 /* 6005 * Even though we have a valid directory attr cache, 6006 * we may not have access. 6007 * This should almost always hit the cache. 6008 */ 6009 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 6010 if (e.error) { 6011 sfh4_rele(&sfhp); 6012 goto exit; 6013 } 6014 } 6015 6016 /* 6017 * Now we have successfully completed the lookup, if the 6018 * directory has changed we now have the valid attributes. 6019 * We also know we have directory access. 6020 * Create the new rnode and insert it in the dnlc. 6021 */ 6022 if (isdotdot) { 6023 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 6024 if (e.error) { 6025 sfh4_rele(&sfhp); 6026 goto exit; 6027 } 6028 /* 6029 * XXX if nfs4_make_dotdot uses an existing rnode 6030 * XXX it doesn't update the attributes. 6031 * XXX for now just save them again to save an OTW 6032 */ 6033 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 6034 } else { 6035 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 6036 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 6037 } 6038 sfh4_rele(&sfhp); 6039 6040 nrp = VTOR4(nvp); 6041 mutex_enter(&nrp->r_statev4_lock); 6042 if (!nrp->created_v4) { 6043 mutex_exit(&nrp->r_statev4_lock); 6044 dnlc_update(dvp, nm, nvp); 6045 } else 6046 mutex_exit(&nrp->r_statev4_lock); 6047 6048 *vpp = nvp; 6049 6050 exit: 6051 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6052 kmem_free(argop, argoplist_size); 6053 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 6054 return (e.error); 6055 } 6056 6057 #ifdef DEBUG 6058 void 6059 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 6060 { 6061 uint_t i, len; 6062 zoneid_t zoneid = getzoneid(); 6063 char *s; 6064 6065 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 6066 for (i = 0; i < argcnt; i++) { 6067 nfs_argop4 *op = &argbase[i]; 6068 switch (op->argop) { 6069 case OP_CPUTFH: 6070 case OP_PUTFH: 6071 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 6072 break; 6073 case OP_PUTROOTFH: 6074 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 6075 break; 6076 case OP_CLOOKUP: 6077 s = op->nfs_argop4_u.opclookup.cname; 6078 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6079 break; 6080 case OP_LOOKUP: 6081 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 6082 &len, NULL); 6083 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6084 kmem_free(s, len); 6085 break; 6086 case OP_LOOKUPP: 6087 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6088 break; 6089 case OP_GETFH: 6090 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6091 break; 6092 case OP_GETATTR: 6093 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6094 break; 6095 case OP_OPENATTR: 6096 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6097 break; 6098 default: 6099 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6100 op->argop); 6101 break; 6102 } 6103 } 6104 } 6105 #endif 6106 6107 /* 6108 * nfs4lookup_setup - constructs a multi-lookup compound request. 6109 * 6110 * Given the path "nm1/nm2/.../nmn", the following compound requests 6111 * may be created: 6112 * 6113 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6114 * is faster, for now. 6115 * 6116 * l4_getattrs indicates the type of compound requested. 6117 * 6118 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6119 * 6120 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6121 * 6122 * total number of ops is n + 1. 6123 * 6124 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6125 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6126 * before the last component, and only get attributes 6127 * for the last component. Note that the second-to-last 6128 * pathname component is XATTR_RPATH, which does NOT go 6129 * over-the-wire as a lookup. 6130 * 6131 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6132 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6133 * 6134 * and total number of ops is n + 5. 6135 * 6136 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6137 * attribute directory: create lookups plus an OPENATTR 6138 * replacing the last lookup. Note that the last pathname 6139 * component is XATTR_RPATH, which does NOT go over-the-wire 6140 * as a lookup. 6141 * 6142 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6143 * Openattr; Getfh; Getattr } 6144 * 6145 * and total number of ops is n + 5. 6146 * 6147 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6148 * nodes too. 6149 * 6150 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6151 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6152 * 6153 * and total number of ops is 3*n + 1. 6154 * 6155 * All cases: returns the index in the arg array of the final LOOKUP op, or 6156 * -1 if no LOOKUPs were used. 6157 */ 6158 int 6159 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6160 { 6161 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6162 nfs_argop4 *argbase, *argop; 6163 int arglen, argcnt; 6164 int n = 1; /* number of components */ 6165 int nga = 1; /* number of Getattr's in request */ 6166 char c = '\0', *s, *p; 6167 int lookup_idx = -1; 6168 int argoplist_size; 6169 6170 /* set lookuparg response result to 0 */ 6171 lookupargp->resp->status = NFS4_OK; 6172 6173 /* skip leading "/" or "." e.g. ".//./" if there is */ 6174 for (; ; nm++) { 6175 if (*nm != '/' && *nm != '.') 6176 break; 6177 6178 /* ".." is counted as 1 component */ 6179 if (*nm == '.' && *(nm + 1) != '/') 6180 break; 6181 } 6182 6183 /* 6184 * Find n = number of components - nm must be null terminated 6185 * Skip "." components. 6186 */ 6187 if (*nm != '\0') 6188 for (n = 1, s = nm; *s != '\0'; s++) { 6189 if ((*s == '/') && (*(s + 1) != '/') && 6190 (*(s + 1) != '\0') && 6191 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6192 *(s + 2) == '\0'))) 6193 n++; 6194 } 6195 else 6196 n = 0; 6197 6198 /* 6199 * nga is number of components that need Getfh+Getattr 6200 */ 6201 switch (l4_getattrs) { 6202 case LKP4_NO_ATTRIBUTES: 6203 nga = 0; 6204 break; 6205 case LKP4_ALL_ATTRIBUTES: 6206 nga = n; 6207 /* 6208 * Always have at least 1 getfh, getattr pair 6209 */ 6210 if (nga == 0) 6211 nga++; 6212 break; 6213 case LKP4_LAST_ATTRDIR: 6214 case LKP4_LAST_NAMED_ATTR: 6215 nga = n+1; 6216 break; 6217 } 6218 6219 /* 6220 * If change to use the filehandle attr instead of getfh 6221 * the following line can be deleted. 6222 */ 6223 nga *= 2; 6224 6225 /* 6226 * calculate number of ops in request as 6227 * header + trailer + lookups + getattrs 6228 */ 6229 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6230 6231 argoplist_size = arglen * sizeof (nfs_argop4); 6232 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6233 lookupargp->argsp->array = argop; 6234 6235 argcnt = lookupargp->header_len; 6236 argop += argcnt; 6237 6238 /* 6239 * loop and create a lookup op and possibly getattr/getfh for 6240 * each component. Skip "." components. 6241 */ 6242 for (s = nm; *s != '\0'; s = p) { 6243 /* 6244 * Set up a pathname struct for each component if needed 6245 */ 6246 while (*s == '/') 6247 s++; 6248 if (*s == '\0') 6249 break; 6250 6251 for (p = s; (*p != '/') && (*p != '\0'); p++) 6252 ; 6253 c = *p; 6254 *p = '\0'; 6255 6256 if (s[0] == '.' && s[1] == '\0') { 6257 *p = c; 6258 continue; 6259 } 6260 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6261 strcmp(s, XATTR_RPATH) == 0) { 6262 /* getfh XXX may not be needed in future */ 6263 argop->argop = OP_GETFH; 6264 argop++; 6265 argcnt++; 6266 6267 /* getattr */ 6268 argop->argop = OP_GETATTR; 6269 argop->nfs_argop4_u.opgetattr.attr_request = 6270 lookupargp->ga_bits; 6271 argop->nfs_argop4_u.opgetattr.mi = 6272 lookupargp->mi; 6273 argop++; 6274 argcnt++; 6275 6276 /* openattr */ 6277 argop->argop = OP_OPENATTR; 6278 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6279 strcmp(s, XATTR_RPATH) == 0) { 6280 /* openattr */ 6281 argop->argop = OP_OPENATTR; 6282 argop++; 6283 argcnt++; 6284 6285 /* getfh XXX may not be needed in future */ 6286 argop->argop = OP_GETFH; 6287 argop++; 6288 argcnt++; 6289 6290 /* getattr */ 6291 argop->argop = OP_GETATTR; 6292 argop->nfs_argop4_u.opgetattr.attr_request = 6293 lookupargp->ga_bits; 6294 argop->nfs_argop4_u.opgetattr.mi = 6295 lookupargp->mi; 6296 argop++; 6297 argcnt++; 6298 *p = c; 6299 continue; 6300 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6301 /* lookupp */ 6302 argop->argop = OP_LOOKUPP; 6303 } else { 6304 /* lookup */ 6305 argop->argop = OP_LOOKUP; 6306 (void) str_to_utf8(s, 6307 &argop->nfs_argop4_u.oplookup.objname); 6308 } 6309 lookup_idx = argcnt; 6310 argop++; 6311 argcnt++; 6312 6313 *p = c; 6314 6315 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6316 /* getfh XXX may not be needed in future */ 6317 argop->argop = OP_GETFH; 6318 argop++; 6319 argcnt++; 6320 6321 /* getattr */ 6322 argop->argop = OP_GETATTR; 6323 argop->nfs_argop4_u.opgetattr.attr_request = 6324 lookupargp->ga_bits; 6325 argop->nfs_argop4_u.opgetattr.mi = 6326 lookupargp->mi; 6327 argop++; 6328 argcnt++; 6329 } 6330 } 6331 6332 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6333 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6334 if (needgetfh) { 6335 /* stick in a post-lookup getfh */ 6336 argop->argop = OP_GETFH; 6337 argcnt++; 6338 argop++; 6339 } 6340 /* post-lookup getattr */ 6341 argop->argop = OP_GETATTR; 6342 argop->nfs_argop4_u.opgetattr.attr_request = 6343 lookupargp->ga_bits; 6344 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6345 argcnt++; 6346 } 6347 argcnt += lookupargp->trailer_len; /* actual op count */ 6348 lookupargp->argsp->array_len = argcnt; 6349 lookupargp->arglen = arglen; 6350 6351 #ifdef DEBUG 6352 if (nfs4_client_lookup_debug) 6353 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6354 #endif 6355 6356 return (lookup_idx); 6357 } 6358 6359 static int 6360 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6361 { 6362 COMPOUND4args_clnt args; 6363 COMPOUND4res_clnt res; 6364 GETFH4res *gf_res = NULL; 6365 nfs_argop4 argop[4]; 6366 nfs_resop4 *resop = NULL; 6367 nfs4_sharedfh_t *sfhp; 6368 hrtime_t t; 6369 nfs4_error_t e; 6370 6371 rnode4_t *drp; 6372 int doqueue = 1; 6373 vnode_t *vp; 6374 int needrecov = 0; 6375 nfs4_recov_state_t recov_state; 6376 6377 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6378 6379 *avp = NULL; 6380 recov_state.rs_flags = 0; 6381 recov_state.rs_num_retry_despite_err = 0; 6382 6383 recov_retry: 6384 /* COMPOUND: putfh, openattr, getfh, getattr */ 6385 args.array_len = 4; 6386 args.array = argop; 6387 args.ctag = TAG_OPENATTR; 6388 6389 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6390 if (e.error) 6391 return (e.error); 6392 6393 drp = VTOR4(dvp); 6394 6395 /* putfh */ 6396 argop[0].argop = OP_CPUTFH; 6397 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6398 6399 /* openattr */ 6400 argop[1].argop = OP_OPENATTR; 6401 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6402 6403 /* getfh */ 6404 argop[2].argop = OP_GETFH; 6405 6406 /* getattr */ 6407 argop[3].argop = OP_GETATTR; 6408 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6409 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6410 6411 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6412 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6413 rnode4info(drp))); 6414 6415 t = gethrtime(); 6416 6417 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6418 6419 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6420 if (needrecov) { 6421 bool_t abort; 6422 6423 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6424 "nfs4openattr: initiating recovery\n")); 6425 6426 abort = nfs4_start_recovery(&e, 6427 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6428 OP_OPENATTR, NULL, NULL, NULL); 6429 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6430 if (!e.error) { 6431 e.error = geterrno4(res.status); 6432 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6433 } 6434 if (abort == FALSE) 6435 goto recov_retry; 6436 return (e.error); 6437 } 6438 6439 if (e.error) { 6440 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6441 return (e.error); 6442 } 6443 6444 if (res.status) { 6445 /* 6446 * If OTW errro is NOTSUPP, then it should be 6447 * translated to EINVAL. All Solaris file system 6448 * implementations return EINVAL to the syscall layer 6449 * when the attrdir cannot be created due to an 6450 * implementation restriction or noxattr mount option. 6451 */ 6452 if (res.status == NFS4ERR_NOTSUPP) { 6453 mutex_enter(&drp->r_statelock); 6454 if (drp->r_xattr_dir) 6455 VN_RELE(drp->r_xattr_dir); 6456 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6457 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6458 mutex_exit(&drp->r_statelock); 6459 6460 e.error = EINVAL; 6461 } else { 6462 e.error = geterrno4(res.status); 6463 } 6464 6465 if (e.error) { 6466 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6467 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6468 needrecov); 6469 return (e.error); 6470 } 6471 } 6472 6473 resop = &res.array[0]; /* putfh res */ 6474 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6475 6476 resop = &res.array[1]; /* openattr res */ 6477 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6478 6479 resop = &res.array[2]; /* getfh res */ 6480 gf_res = &resop->nfs_resop4_u.opgetfh; 6481 if (gf_res->object.nfs_fh4_len == 0) { 6482 *avp = NULL; 6483 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6484 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6485 return (ENOENT); 6486 } 6487 6488 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6489 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6490 dvp->v_vfsp, t, cr, dvp, 6491 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp)); 6492 sfh4_rele(&sfhp); 6493 6494 if (e.error) 6495 PURGE_ATTRCACHE4(vp); 6496 6497 mutex_enter(&vp->v_lock); 6498 vp->v_flag |= V_XATTRDIR; 6499 mutex_exit(&vp->v_lock); 6500 6501 *avp = vp; 6502 6503 mutex_enter(&drp->r_statelock); 6504 if (drp->r_xattr_dir) 6505 VN_RELE(drp->r_xattr_dir); 6506 VN_HOLD(vp); 6507 drp->r_xattr_dir = vp; 6508 6509 /* 6510 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6511 * NULL. xattrs could be created at any time, and we have no 6512 * way to update pc4_xattr_exists in the base object if/when 6513 * it happens. 6514 */ 6515 drp->r_pathconf.pc4_xattr_valid = 0; 6516 6517 mutex_exit(&drp->r_statelock); 6518 6519 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6520 6521 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6522 6523 return (0); 6524 } 6525 6526 /* ARGSUSED */ 6527 static int 6528 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6529 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6530 vsecattr_t *vsecp) 6531 { 6532 int error; 6533 vnode_t *vp = NULL; 6534 rnode4_t *rp; 6535 struct vattr vattr; 6536 rnode4_t *drp; 6537 vnode_t *tempvp; 6538 enum createmode4 createmode; 6539 bool_t must_trunc = FALSE; 6540 int truncating = 0; 6541 6542 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6543 return (EPERM); 6544 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6545 return (EINVAL); 6546 } 6547 6548 /* . and .. have special meaning in the protocol, reject them. */ 6549 6550 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6551 return (EISDIR); 6552 6553 drp = VTOR4(dvp); 6554 6555 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6556 return (EINTR); 6557 6558 top: 6559 /* 6560 * We make a copy of the attributes because the caller does not 6561 * expect us to change what va points to. 6562 */ 6563 vattr = *va; 6564 6565 /* 6566 * If the pathname is "", then dvp is the root vnode of 6567 * a remote file mounted over a local directory. 6568 * All that needs to be done is access 6569 * checking and truncation. Note that we avoid doing 6570 * open w/ create because the parent directory might 6571 * be in pseudo-fs and the open would fail. 6572 */ 6573 if (*nm == '\0') { 6574 error = 0; 6575 VN_HOLD(dvp); 6576 vp = dvp; 6577 must_trunc = TRUE; 6578 } else { 6579 /* 6580 * We need to go over the wire, just to be sure whether the 6581 * file exists or not. Using the DNLC can be dangerous in 6582 * this case when making a decision regarding existence. 6583 */ 6584 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6585 } 6586 6587 if (exclusive) 6588 createmode = EXCLUSIVE4; 6589 else 6590 createmode = GUARDED4; 6591 6592 /* 6593 * error would be set if the file does not exist on the 6594 * server, so lets go create it. 6595 */ 6596 if (error) { 6597 goto create_otw; 6598 } 6599 6600 /* 6601 * File does exist on the server 6602 */ 6603 if (exclusive == EXCL) 6604 error = EEXIST; 6605 else if (vp->v_type == VDIR && (mode & VWRITE)) 6606 error = EISDIR; 6607 else { 6608 /* 6609 * If vnode is a device, create special vnode. 6610 */ 6611 if (ISVDEV(vp->v_type)) { 6612 tempvp = vp; 6613 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6614 VN_RELE(tempvp); 6615 } 6616 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6617 if ((vattr.va_mask & AT_SIZE) && 6618 vp->v_type == VREG) { 6619 rp = VTOR4(vp); 6620 /* 6621 * Check here for large file handled 6622 * by LF-unaware process (as 6623 * ufs_create() does) 6624 */ 6625 if (!(flags & FOFFMAX)) { 6626 mutex_enter(&rp->r_statelock); 6627 if (rp->r_size > MAXOFF32_T) 6628 error = EOVERFLOW; 6629 mutex_exit(&rp->r_statelock); 6630 } 6631 6632 /* if error is set then we need to return */ 6633 if (error) { 6634 nfs_rw_exit(&drp->r_rwlock); 6635 VN_RELE(vp); 6636 return (error); 6637 } 6638 6639 if (must_trunc) { 6640 vattr.va_mask = AT_SIZE; 6641 error = nfs4setattr(vp, &vattr, 0, cr, 6642 NULL); 6643 } else { 6644 /* 6645 * we know we have a regular file that already 6646 * exists and we may end up truncating the file 6647 * as a result of the open_otw, so flush out 6648 * any dirty pages for this file first. 6649 */ 6650 if (nfs4_has_pages(vp) && 6651 ((rp->r_flags & R4DIRTY) || 6652 rp->r_count > 0 || 6653 rp->r_mapcnt > 0)) { 6654 error = nfs4_putpage(vp, 6655 (offset_t)0, 0, 0, cr, ct); 6656 if (error && (error == ENOSPC || 6657 error == EDQUOT)) { 6658 mutex_enter( 6659 &rp->r_statelock); 6660 if (!rp->r_error) 6661 rp->r_error = 6662 error; 6663 mutex_exit( 6664 &rp->r_statelock); 6665 } 6666 } 6667 vattr.va_mask = (AT_SIZE | 6668 AT_TYPE | AT_MODE); 6669 vattr.va_type = VREG; 6670 createmode = UNCHECKED4; 6671 truncating = 1; 6672 goto create_otw; 6673 } 6674 } 6675 } 6676 } 6677 nfs_rw_exit(&drp->r_rwlock); 6678 if (error) { 6679 VN_RELE(vp); 6680 } else { 6681 vnode_t *tvp; 6682 rnode4_t *trp; 6683 tvp = vp; 6684 if (vp->v_type == VREG) { 6685 trp = VTOR4(vp); 6686 if (IS_SHADOW(vp, trp)) 6687 tvp = RTOV4(trp); 6688 } 6689 6690 if (must_trunc) { 6691 /* 6692 * existing file got truncated, notify. 6693 */ 6694 vnevent_create(tvp, ct); 6695 } 6696 6697 *vpp = vp; 6698 } 6699 return (error); 6700 6701 create_otw: 6702 dnlc_remove(dvp, nm); 6703 6704 ASSERT(vattr.va_mask & AT_TYPE); 6705 6706 /* 6707 * If not a regular file let nfs4mknod() handle it. 6708 */ 6709 if (vattr.va_type != VREG) { 6710 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6711 nfs_rw_exit(&drp->r_rwlock); 6712 return (error); 6713 } 6714 6715 /* 6716 * It _is_ a regular file. 6717 */ 6718 ASSERT(vattr.va_mask & AT_MODE); 6719 if (MANDMODE(vattr.va_mode)) { 6720 nfs_rw_exit(&drp->r_rwlock); 6721 return (EACCES); 6722 } 6723 6724 /* 6725 * If this happens to be a mknod of a regular file, then flags will 6726 * have neither FREAD or FWRITE. However, we must set at least one 6727 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6728 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6729 * set (based on openmode specified by app). 6730 */ 6731 if ((flags & (FREAD|FWRITE)) == 0) 6732 flags |= (FREAD|FWRITE); 6733 6734 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6735 6736 if (vp != NULL) { 6737 /* if create was successful, throw away the file's pages */ 6738 if (!error && (vattr.va_mask & AT_SIZE)) 6739 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6740 cr); 6741 /* release the lookup hold */ 6742 VN_RELE(vp); 6743 vp = NULL; 6744 } 6745 6746 /* 6747 * validate that we opened a regular file. This handles a misbehaving 6748 * server that returns an incorrect FH. 6749 */ 6750 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6751 error = EISDIR; 6752 VN_RELE(*vpp); 6753 } 6754 6755 /* 6756 * If this is not an exclusive create, then the CREATE 6757 * request will be made with the GUARDED mode set. This 6758 * means that the server will return EEXIST if the file 6759 * exists. The file could exist because of a retransmitted 6760 * request. In this case, we recover by starting over and 6761 * checking to see whether the file exists. This second 6762 * time through it should and a CREATE request will not be 6763 * sent. 6764 * 6765 * This handles the problem of a dangling CREATE request 6766 * which contains attributes which indicate that the file 6767 * should be truncated. This retransmitted request could 6768 * possibly truncate valid data in the file if not caught 6769 * by the duplicate request mechanism on the server or if 6770 * not caught by other means. The scenario is: 6771 * 6772 * Client transmits CREATE request with size = 0 6773 * Client times out, retransmits request. 6774 * Response to the first request arrives from the server 6775 * and the client proceeds on. 6776 * Client writes data to the file. 6777 * The server now processes retransmitted CREATE request 6778 * and truncates file. 6779 * 6780 * The use of the GUARDED CREATE request prevents this from 6781 * happening because the retransmitted CREATE would fail 6782 * with EEXIST and would not truncate the file. 6783 */ 6784 if (error == EEXIST && exclusive == NONEXCL) { 6785 #ifdef DEBUG 6786 nfs4_create_misses++; 6787 #endif 6788 goto top; 6789 } 6790 nfs_rw_exit(&drp->r_rwlock); 6791 if (truncating && !error && *vpp) { 6792 vnode_t *tvp; 6793 rnode4_t *trp; 6794 /* 6795 * existing file got truncated, notify. 6796 */ 6797 tvp = *vpp; 6798 trp = VTOR4(tvp); 6799 if (IS_SHADOW(tvp, trp)) 6800 tvp = RTOV4(trp); 6801 vnevent_create(tvp, ct); 6802 } 6803 return (error); 6804 } 6805 6806 /* 6807 * Create compound (for mkdir, mknod, symlink): 6808 * { Putfh <dfh>; Create; Getfh; Getattr } 6809 * It's okay if setattr failed to set gid - this is not considered 6810 * an error, but purge attrs in that case. 6811 */ 6812 static int 6813 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6814 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6815 { 6816 int need_end_op = FALSE; 6817 COMPOUND4args_clnt args; 6818 COMPOUND4res_clnt res, *resp = NULL; 6819 nfs_argop4 *argop; 6820 nfs_resop4 *resop; 6821 int doqueue; 6822 mntinfo4_t *mi; 6823 rnode4_t *drp = VTOR4(dvp); 6824 change_info4 *cinfo; 6825 GETFH4res *gf_res; 6826 struct vattr vattr; 6827 vnode_t *vp; 6828 fattr4 *crattr; 6829 bool_t needrecov = FALSE; 6830 nfs4_recov_state_t recov_state; 6831 nfs4_sharedfh_t *sfhp = NULL; 6832 hrtime_t t; 6833 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6834 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6835 dirattr_info_t dinfo, *dinfop; 6836 servinfo4_t *svp; 6837 bitmap4 supp_attrs; 6838 6839 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6840 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6841 6842 mi = VTOMI4(dvp); 6843 6844 /* 6845 * Make sure we properly deal with setting the right gid 6846 * on a new directory to reflect the parent's setgid bit 6847 */ 6848 setgid_flag = 0; 6849 if (type == NF4DIR) { 6850 struct vattr dva; 6851 6852 va->va_mode &= ~VSGID; 6853 dva.va_mask = AT_MODE | AT_GID; 6854 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6855 6856 /* 6857 * If the parent's directory has the setgid bit set 6858 * _and_ the client was able to get a valid mapping 6859 * for the parent dir's owner_group, we want to 6860 * append NVERIFY(owner_group == dva.va_gid) and 6861 * SETTATTR to the CREATE compound. 6862 */ 6863 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6864 setgid_flag = 1; 6865 va->va_mode |= VSGID; 6866 if (dva.va_gid != GID_NOBODY) { 6867 va->va_mask |= AT_GID; 6868 va->va_gid = dva.va_gid; 6869 } 6870 } 6871 } 6872 } 6873 6874 /* 6875 * Create ops: 6876 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6877 * 5:restorefh(dir) 6:getattr(dir) 6878 * 6879 * if (setgid) 6880 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6881 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6882 * 8:nverify 9:setattr 6883 */ 6884 if (setgid_flag) { 6885 numops = 10; 6886 idx_create = 1; 6887 idx_fattr = 3; 6888 } else { 6889 numops = 7; 6890 idx_create = 2; 6891 idx_fattr = 4; 6892 } 6893 6894 ASSERT(nfs_zone() == mi->mi_zone); 6895 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6896 return (EINTR); 6897 } 6898 recov_state.rs_flags = 0; 6899 recov_state.rs_num_retry_despite_err = 0; 6900 6901 argoplist_size = numops * sizeof (nfs_argop4); 6902 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6903 6904 recov_retry: 6905 if (type == NF4LNK) 6906 args.ctag = TAG_SYMLINK; 6907 else if (type == NF4DIR) 6908 args.ctag = TAG_MKDIR; 6909 else 6910 args.ctag = TAG_MKNOD; 6911 6912 args.array_len = numops; 6913 args.array = argop; 6914 6915 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6916 nfs_rw_exit(&drp->r_rwlock); 6917 kmem_free(argop, argoplist_size); 6918 return (e.error); 6919 } 6920 need_end_op = TRUE; 6921 6922 6923 /* 0: putfh directory */ 6924 argop[0].argop = OP_CPUTFH; 6925 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6926 6927 /* 1/2: Create object */ 6928 argop[idx_create].argop = OP_CCREATE; 6929 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6930 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6931 if (type == NF4LNK) { 6932 /* 6933 * symlink, treat name as data 6934 */ 6935 ASSERT(data != NULL); 6936 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6937 (char *)data; 6938 } 6939 if (type == NF4BLK || type == NF4CHR) { 6940 ASSERT(data != NULL); 6941 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6942 *((specdata4 *)data); 6943 } 6944 6945 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6946 6947 svp = drp->r_server; 6948 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6949 supp_attrs = svp->sv_supp_attrs; 6950 nfs_rw_exit(&svp->sv_lock); 6951 6952 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6953 nfs_rw_exit(&drp->r_rwlock); 6954 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6955 e.error = EINVAL; 6956 kmem_free(argop, argoplist_size); 6957 return (e.error); 6958 } 6959 6960 /* 2/3: getfh fh of created object */ 6961 ASSERT(idx_create + 1 == idx_fattr - 1); 6962 argop[idx_create + 1].argop = OP_GETFH; 6963 6964 /* 3/4: getattr of new object */ 6965 argop[idx_fattr].argop = OP_GETATTR; 6966 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6967 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6968 6969 if (setgid_flag) { 6970 vattr_t _v; 6971 6972 argop[4].argop = OP_SAVEFH; 6973 6974 argop[5].argop = OP_CPUTFH; 6975 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6976 6977 argop[6].argop = OP_GETATTR; 6978 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6979 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6980 6981 argop[7].argop = OP_RESTOREFH; 6982 6983 /* 6984 * nverify 6985 * 6986 * XXX - Revisit the last argument to nfs4_end_op() 6987 * once 5020486 is fixed. 6988 */ 6989 _v.va_mask = AT_GID; 6990 _v.va_gid = va->va_gid; 6991 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6992 supp_attrs)) { 6993 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6994 nfs_rw_exit(&drp->r_rwlock); 6995 nfs4_fattr4_free(crattr); 6996 kmem_free(argop, argoplist_size); 6997 return (e.error); 6998 } 6999 7000 /* 7001 * setattr 7002 * 7003 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 7004 * so no need for stateid or flags. Also we specify NULL 7005 * rp since we're only interested in setting owner_group 7006 * attributes. 7007 */ 7008 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 7009 &e.error, 0); 7010 7011 if (e.error) { 7012 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 7013 nfs_rw_exit(&drp->r_rwlock); 7014 nfs4_fattr4_free(crattr); 7015 nfs4args_verify_free(&argop[8]); 7016 kmem_free(argop, argoplist_size); 7017 return (e.error); 7018 } 7019 } else { 7020 argop[1].argop = OP_SAVEFH; 7021 7022 argop[5].argop = OP_RESTOREFH; 7023 7024 argop[6].argop = OP_GETATTR; 7025 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7026 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7027 } 7028 7029 dnlc_remove(dvp, nm); 7030 7031 doqueue = 1; 7032 t = gethrtime(); 7033 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7034 7035 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7036 if (e.error) { 7037 PURGE_ATTRCACHE4(dvp); 7038 if (!needrecov) 7039 goto out; 7040 } 7041 7042 if (needrecov) { 7043 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 7044 OP_CREATE, NULL, NULL, NULL) == FALSE) { 7045 nfs4_end_op(mi, dvp, NULL, &recov_state, 7046 needrecov); 7047 need_end_op = FALSE; 7048 nfs4_fattr4_free(crattr); 7049 if (setgid_flag) { 7050 nfs4args_verify_free(&argop[8]); 7051 nfs4args_setattr_free(&argop[9]); 7052 } 7053 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7054 goto recov_retry; 7055 } 7056 } 7057 7058 resp = &res; 7059 7060 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 7061 7062 if (res.status == NFS4ERR_BADOWNER) 7063 nfs4_log_badowner(mi, OP_CREATE); 7064 7065 e.error = geterrno4(res.status); 7066 7067 /* 7068 * This check is left over from when create was implemented 7069 * using a setattr op (instead of createattrs). If the 7070 * putfh/create/getfh failed, the error was returned. If 7071 * setattr/getattr failed, we keep going. 7072 * 7073 * It might be better to get rid of the GETFH also, and just 7074 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 7075 * Then if any of the operations failed, we could return the 7076 * error now, and remove much of the error code below. 7077 */ 7078 if (res.array_len <= idx_fattr) { 7079 /* 7080 * Either Putfh, Create or Getfh failed. 7081 */ 7082 PURGE_ATTRCACHE4(dvp); 7083 /* 7084 * nfs4_purge_stale_fh() may generate otw calls through 7085 * nfs4_invalidate_pages. Hence the need to call 7086 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 7087 */ 7088 nfs4_end_op(mi, dvp, NULL, &recov_state, 7089 needrecov); 7090 need_end_op = FALSE; 7091 nfs4_purge_stale_fh(e.error, dvp, cr); 7092 goto out; 7093 } 7094 } 7095 7096 resop = &res.array[idx_create]; /* create res */ 7097 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7098 7099 resop = &res.array[idx_create + 1]; /* getfh res */ 7100 gf_res = &resop->nfs_resop4_u.opgetfh; 7101 7102 sfhp = sfh4_get(&gf_res->object, mi); 7103 if (e.error) { 7104 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7105 fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7106 if (vp->v_type == VNON) { 7107 vattr.va_mask = AT_TYPE; 7108 /* 7109 * Need to call nfs4_end_op before nfs4getattr to avoid 7110 * potential nfs4_start_op deadlock. See RFE 4777612. 7111 */ 7112 nfs4_end_op(mi, dvp, NULL, &recov_state, 7113 needrecov); 7114 need_end_op = FALSE; 7115 e.error = nfs4getattr(vp, &vattr, cr); 7116 if (e.error) { 7117 VN_RELE(vp); 7118 *vpp = NULL; 7119 goto out; 7120 } 7121 vp->v_type = vattr.va_type; 7122 } 7123 e.error = 0; 7124 } else { 7125 *vpp = vp = makenfs4node(sfhp, 7126 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7127 dvp->v_vfsp, t, cr, 7128 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7129 } 7130 7131 /* 7132 * If compound succeeded, then update dir attrs 7133 */ 7134 if (res.status == NFS4_OK) { 7135 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7136 dinfo.di_cred = cr; 7137 dinfo.di_time_call = t; 7138 dinfop = &dinfo; 7139 } else 7140 dinfop = NULL; 7141 7142 /* Update directory cache attribute, readdir and dnlc caches */ 7143 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7144 7145 out: 7146 if (sfhp != NULL) 7147 sfh4_rele(&sfhp); 7148 nfs_rw_exit(&drp->r_rwlock); 7149 nfs4_fattr4_free(crattr); 7150 if (setgid_flag) { 7151 nfs4args_verify_free(&argop[8]); 7152 nfs4args_setattr_free(&argop[9]); 7153 } 7154 if (resp) 7155 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7156 if (need_end_op) 7157 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7158 7159 kmem_free(argop, argoplist_size); 7160 return (e.error); 7161 } 7162 7163 /* ARGSUSED */ 7164 static int 7165 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7166 int mode, vnode_t **vpp, cred_t *cr) 7167 { 7168 int error; 7169 vnode_t *vp; 7170 nfs_ftype4 type; 7171 specdata4 spec, *specp = NULL; 7172 7173 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7174 7175 switch (va->va_type) { 7176 case VCHR: 7177 case VBLK: 7178 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7179 spec.specdata1 = getmajor(va->va_rdev); 7180 spec.specdata2 = getminor(va->va_rdev); 7181 specp = &spec; 7182 break; 7183 7184 case VFIFO: 7185 type = NF4FIFO; 7186 break; 7187 case VSOCK: 7188 type = NF4SOCK; 7189 break; 7190 7191 default: 7192 return (EINVAL); 7193 } 7194 7195 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7196 if (error) { 7197 return (error); 7198 } 7199 7200 /* 7201 * This might not be needed any more; special case to deal 7202 * with problematic v2/v3 servers. Since create was unable 7203 * to set group correctly, not sure what hope setattr has. 7204 */ 7205 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7206 va->va_mask = AT_GID; 7207 (void) nfs4setattr(vp, va, 0, cr, NULL); 7208 } 7209 7210 /* 7211 * If vnode is a device create special vnode 7212 */ 7213 if (ISVDEV(vp->v_type)) { 7214 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7215 VN_RELE(vp); 7216 } else { 7217 *vpp = vp; 7218 } 7219 return (error); 7220 } 7221 7222 /* 7223 * Remove requires that the current fh be the target directory. 7224 * After the operation, the current fh is unchanged. 7225 * The compound op structure is: 7226 * PUTFH(targetdir), REMOVE 7227 * 7228 * Weirdness: if the vnode to be removed is open 7229 * we rename it instead of removing it and nfs_inactive 7230 * will remove the new name. 7231 */ 7232 /* ARGSUSED */ 7233 static int 7234 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7235 { 7236 COMPOUND4args_clnt args; 7237 COMPOUND4res_clnt res, *resp = NULL; 7238 REMOVE4res *rm_res; 7239 nfs_argop4 argop[3]; 7240 nfs_resop4 *resop; 7241 vnode_t *vp; 7242 char *tmpname; 7243 int doqueue; 7244 mntinfo4_t *mi; 7245 rnode4_t *rp; 7246 rnode4_t *drp; 7247 int needrecov = 0; 7248 nfs4_recov_state_t recov_state; 7249 int isopen; 7250 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7251 dirattr_info_t dinfo; 7252 7253 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7254 return (EPERM); 7255 drp = VTOR4(dvp); 7256 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7257 return (EINTR); 7258 7259 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7260 if (e.error) { 7261 nfs_rw_exit(&drp->r_rwlock); 7262 return (e.error); 7263 } 7264 7265 if (vp->v_type == VDIR) { 7266 VN_RELE(vp); 7267 nfs_rw_exit(&drp->r_rwlock); 7268 return (EISDIR); 7269 } 7270 7271 /* 7272 * First just remove the entry from the name cache, as it 7273 * is most likely the only entry for this vp. 7274 */ 7275 dnlc_remove(dvp, nm); 7276 7277 rp = VTOR4(vp); 7278 7279 /* 7280 * For regular file types, check to see if the file is open by looking 7281 * at the open streams. 7282 * For all other types, check the reference count on the vnode. Since 7283 * they are not opened OTW they never have an open stream. 7284 * 7285 * If the file is open, rename it to .nfsXXXX. 7286 */ 7287 if (vp->v_type != VREG) { 7288 /* 7289 * If the file has a v_count > 1 then there may be more than one 7290 * entry in the name cache due multiple links or an open file, 7291 * but we don't have the real reference count so flush all 7292 * possible entries. 7293 */ 7294 if (vp->v_count > 1) 7295 dnlc_purge_vp(vp); 7296 7297 /* 7298 * Now we have the real reference count. 7299 */ 7300 isopen = vp->v_count > 1; 7301 } else { 7302 mutex_enter(&rp->r_os_lock); 7303 isopen = list_head(&rp->r_open_streams) != NULL; 7304 mutex_exit(&rp->r_os_lock); 7305 } 7306 7307 mutex_enter(&rp->r_statelock); 7308 if (isopen && 7309 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7310 mutex_exit(&rp->r_statelock); 7311 tmpname = newname(); 7312 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7313 if (e.error) 7314 kmem_free(tmpname, MAXNAMELEN); 7315 else { 7316 mutex_enter(&rp->r_statelock); 7317 if (rp->r_unldvp == NULL) { 7318 VN_HOLD(dvp); 7319 rp->r_unldvp = dvp; 7320 if (rp->r_unlcred != NULL) 7321 crfree(rp->r_unlcred); 7322 crhold(cr); 7323 rp->r_unlcred = cr; 7324 rp->r_unlname = tmpname; 7325 } else { 7326 kmem_free(rp->r_unlname, MAXNAMELEN); 7327 rp->r_unlname = tmpname; 7328 } 7329 mutex_exit(&rp->r_statelock); 7330 } 7331 VN_RELE(vp); 7332 nfs_rw_exit(&drp->r_rwlock); 7333 return (e.error); 7334 } 7335 /* 7336 * Actually remove the file/dir 7337 */ 7338 mutex_exit(&rp->r_statelock); 7339 7340 /* 7341 * We need to flush any dirty pages which happen to 7342 * be hanging around before removing the file. 7343 * This shouldn't happen very often since in NFSv4 7344 * we should be close to open consistent. 7345 */ 7346 if (nfs4_has_pages(vp) && 7347 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7348 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7349 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7350 mutex_enter(&rp->r_statelock); 7351 if (!rp->r_error) 7352 rp->r_error = e.error; 7353 mutex_exit(&rp->r_statelock); 7354 } 7355 } 7356 7357 mi = VTOMI4(dvp); 7358 7359 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7360 recov_state.rs_flags = 0; 7361 recov_state.rs_num_retry_despite_err = 0; 7362 7363 recov_retry: 7364 /* 7365 * Remove ops: putfh dir; remove 7366 */ 7367 args.ctag = TAG_REMOVE; 7368 args.array_len = 3; 7369 args.array = argop; 7370 7371 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7372 if (e.error) { 7373 nfs_rw_exit(&drp->r_rwlock); 7374 VN_RELE(vp); 7375 return (e.error); 7376 } 7377 7378 /* putfh directory */ 7379 argop[0].argop = OP_CPUTFH; 7380 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7381 7382 /* remove */ 7383 argop[1].argop = OP_CREMOVE; 7384 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7385 7386 /* getattr dir */ 7387 argop[2].argop = OP_GETATTR; 7388 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7389 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7390 7391 doqueue = 1; 7392 dinfo.di_time_call = gethrtime(); 7393 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7394 7395 PURGE_ATTRCACHE4(vp); 7396 7397 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7398 if (e.error) 7399 PURGE_ATTRCACHE4(dvp); 7400 7401 if (needrecov) { 7402 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7403 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 7404 if (!e.error) 7405 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7406 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7407 needrecov); 7408 goto recov_retry; 7409 } 7410 } 7411 7412 /* 7413 * Matching nfs4_end_op() for start_op() above. 7414 * There is a path in the code below which calls 7415 * nfs4_purge_stale_fh(), which may generate otw calls through 7416 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7417 * here to avoid nfs4_start_op() deadlock. 7418 */ 7419 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7420 7421 if (!e.error) { 7422 resp = &res; 7423 7424 if (res.status) { 7425 e.error = geterrno4(res.status); 7426 PURGE_ATTRCACHE4(dvp); 7427 nfs4_purge_stale_fh(e.error, dvp, cr); 7428 } else { 7429 resop = &res.array[1]; /* remove res */ 7430 rm_res = &resop->nfs_resop4_u.opremove; 7431 7432 dinfo.di_garp = 7433 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7434 dinfo.di_cred = cr; 7435 7436 /* Update directory attr, readdir and dnlc caches */ 7437 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7438 &dinfo); 7439 } 7440 } 7441 nfs_rw_exit(&drp->r_rwlock); 7442 if (resp) 7443 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7444 7445 if (e.error == 0) { 7446 vnode_t *tvp; 7447 rnode4_t *trp; 7448 trp = VTOR4(vp); 7449 tvp = vp; 7450 if (IS_SHADOW(vp, trp)) 7451 tvp = RTOV4(trp); 7452 vnevent_remove(tvp, dvp, nm, ct); 7453 } 7454 VN_RELE(vp); 7455 return (e.error); 7456 } 7457 7458 /* 7459 * Link requires that the current fh be the target directory and the 7460 * saved fh be the source fh. After the operation, the current fh is unchanged. 7461 * Thus the compound op structure is: 7462 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7463 * GETATTR(file) 7464 */ 7465 /* ARGSUSED */ 7466 static int 7467 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7468 caller_context_t *ct, int flags) 7469 { 7470 COMPOUND4args_clnt args; 7471 COMPOUND4res_clnt res, *resp = NULL; 7472 LINK4res *ln_res; 7473 int argoplist_size = 7 * sizeof (nfs_argop4); 7474 nfs_argop4 *argop; 7475 nfs_resop4 *resop; 7476 vnode_t *realvp, *nvp; 7477 int doqueue; 7478 mntinfo4_t *mi; 7479 rnode4_t *tdrp; 7480 bool_t needrecov = FALSE; 7481 nfs4_recov_state_t recov_state; 7482 hrtime_t t; 7483 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7484 dirattr_info_t dinfo; 7485 7486 ASSERT(*tnm != '\0'); 7487 ASSERT(tdvp->v_type == VDIR); 7488 ASSERT(nfs4_consistent_type(tdvp)); 7489 ASSERT(nfs4_consistent_type(svp)); 7490 7491 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7492 return (EPERM); 7493 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7494 svp = realvp; 7495 ASSERT(nfs4_consistent_type(svp)); 7496 } 7497 7498 tdrp = VTOR4(tdvp); 7499 mi = VTOMI4(svp); 7500 7501 if (!(mi->mi_flags & MI4_LINK)) { 7502 return (EOPNOTSUPP); 7503 } 7504 recov_state.rs_flags = 0; 7505 recov_state.rs_num_retry_despite_err = 0; 7506 7507 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7508 return (EINTR); 7509 7510 recov_retry: 7511 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7512 7513 args.ctag = TAG_LINK; 7514 7515 /* 7516 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7517 * restorefh; getattr(fl) 7518 */ 7519 args.array_len = 7; 7520 args.array = argop; 7521 7522 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7523 if (e.error) { 7524 kmem_free(argop, argoplist_size); 7525 nfs_rw_exit(&tdrp->r_rwlock); 7526 return (e.error); 7527 } 7528 7529 /* 0. putfh file */ 7530 argop[0].argop = OP_CPUTFH; 7531 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7532 7533 /* 1. save current fh to free up the space for the dir */ 7534 argop[1].argop = OP_SAVEFH; 7535 7536 /* 2. putfh targetdir */ 7537 argop[2].argop = OP_CPUTFH; 7538 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7539 7540 /* 3. link: current_fh is targetdir, saved_fh is source */ 7541 argop[3].argop = OP_CLINK; 7542 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7543 7544 /* 4. Get attributes of dir */ 7545 argop[4].argop = OP_GETATTR; 7546 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7547 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7548 7549 /* 5. If link was successful, restore current vp to file */ 7550 argop[5].argop = OP_RESTOREFH; 7551 7552 /* 6. Get attributes of linked object */ 7553 argop[6].argop = OP_GETATTR; 7554 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7555 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7556 7557 dnlc_remove(tdvp, tnm); 7558 7559 doqueue = 1; 7560 t = gethrtime(); 7561 7562 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7563 7564 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7565 if (e.error != 0 && !needrecov) { 7566 PURGE_ATTRCACHE4(tdvp); 7567 PURGE_ATTRCACHE4(svp); 7568 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7569 goto out; 7570 } 7571 7572 if (needrecov) { 7573 bool_t abort; 7574 7575 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7576 NULL, NULL, OP_LINK, NULL, NULL, NULL); 7577 if (abort == FALSE) { 7578 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7579 needrecov); 7580 kmem_free(argop, argoplist_size); 7581 if (!e.error) 7582 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7583 goto recov_retry; 7584 } else { 7585 if (e.error != 0) { 7586 PURGE_ATTRCACHE4(tdvp); 7587 PURGE_ATTRCACHE4(svp); 7588 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7589 &recov_state, needrecov); 7590 goto out; 7591 } 7592 /* fall through for res.status case */ 7593 } 7594 } 7595 7596 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7597 7598 resp = &res; 7599 if (res.status) { 7600 /* If link succeeded, then don't return error */ 7601 e.error = geterrno4(res.status); 7602 if (res.array_len <= 4) { 7603 /* 7604 * Either Putfh, Savefh, Putfh dir, or Link failed 7605 */ 7606 PURGE_ATTRCACHE4(svp); 7607 PURGE_ATTRCACHE4(tdvp); 7608 if (e.error == EOPNOTSUPP) { 7609 mutex_enter(&mi->mi_lock); 7610 mi->mi_flags &= ~MI4_LINK; 7611 mutex_exit(&mi->mi_lock); 7612 } 7613 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7614 /* XXX-LP */ 7615 if (e.error == EISDIR && crgetuid(cr) != 0) 7616 e.error = EPERM; 7617 goto out; 7618 } 7619 } 7620 7621 /* either no error or one of the postop getattr failed */ 7622 7623 /* 7624 * XXX - if LINK succeeded, but no attrs were returned for link 7625 * file, purge its cache. 7626 * 7627 * XXX Perform a simplified version of wcc checking. Instead of 7628 * have another getattr to get pre-op, just purge cache if 7629 * any of the ops prior to and including the getattr failed. 7630 * If the getattr succeeded then update the attrcache accordingly. 7631 */ 7632 7633 /* 7634 * update cache with link file postattrs. 7635 * Note: at this point resop points to link res. 7636 */ 7637 resop = &res.array[3]; /* link res */ 7638 ln_res = &resop->nfs_resop4_u.oplink; 7639 if (res.status == NFS4_OK) 7640 e.error = nfs4_update_attrcache(res.status, 7641 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7642 t, svp, cr); 7643 7644 /* 7645 * Call makenfs4node to create the new shadow vp for tnm. 7646 * We pass NULL attrs because we just cached attrs for 7647 * the src object. All we're trying to accomplish is to 7648 * to create the new shadow vnode. 7649 */ 7650 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7651 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh)); 7652 7653 /* Update target cache attribute, readdir and dnlc caches */ 7654 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7655 dinfo.di_time_call = t; 7656 dinfo.di_cred = cr; 7657 7658 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7659 ASSERT(nfs4_consistent_type(tdvp)); 7660 ASSERT(nfs4_consistent_type(svp)); 7661 ASSERT(nfs4_consistent_type(nvp)); 7662 VN_RELE(nvp); 7663 7664 if (!e.error) { 7665 vnode_t *tvp; 7666 rnode4_t *trp; 7667 /* 7668 * Notify the source file of this link operation. 7669 */ 7670 trp = VTOR4(svp); 7671 tvp = svp; 7672 if (IS_SHADOW(svp, trp)) 7673 tvp = RTOV4(trp); 7674 vnevent_link(tvp, ct); 7675 } 7676 out: 7677 kmem_free(argop, argoplist_size); 7678 if (resp) 7679 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7680 7681 nfs_rw_exit(&tdrp->r_rwlock); 7682 7683 return (e.error); 7684 } 7685 7686 /* ARGSUSED */ 7687 static int 7688 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7689 caller_context_t *ct, int flags) 7690 { 7691 vnode_t *realvp; 7692 7693 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7694 return (EPERM); 7695 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7696 ndvp = realvp; 7697 7698 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7699 } 7700 7701 /* 7702 * nfs4rename does the real work of renaming in NFS Version 4. 7703 * 7704 * A file handle is considered volatile for renaming purposes if either 7705 * of the volatile bits are turned on. However, the compound may differ 7706 * based on the likelihood of the filehandle to change during rename. 7707 */ 7708 static int 7709 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7710 caller_context_t *ct) 7711 { 7712 int error; 7713 mntinfo4_t *mi; 7714 vnode_t *nvp = NULL; 7715 vnode_t *ovp = NULL; 7716 char *tmpname = NULL; 7717 rnode4_t *rp; 7718 rnode4_t *odrp; 7719 rnode4_t *ndrp; 7720 int did_link = 0; 7721 int do_link = 1; 7722 nfsstat4 stat = NFS4_OK; 7723 7724 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7725 ASSERT(nfs4_consistent_type(odvp)); 7726 ASSERT(nfs4_consistent_type(ndvp)); 7727 7728 if (onm[0] == '.' && (onm[1] == '\0' || 7729 (onm[1] == '.' && onm[2] == '\0'))) 7730 return (EINVAL); 7731 7732 if (nnm[0] == '.' && (nnm[1] == '\0' || 7733 (nnm[1] == '.' && nnm[2] == '\0'))) 7734 return (EINVAL); 7735 7736 odrp = VTOR4(odvp); 7737 ndrp = VTOR4(ndvp); 7738 if ((intptr_t)odrp < (intptr_t)ndrp) { 7739 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7740 return (EINTR); 7741 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7742 nfs_rw_exit(&odrp->r_rwlock); 7743 return (EINTR); 7744 } 7745 } else { 7746 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7747 return (EINTR); 7748 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7749 nfs_rw_exit(&ndrp->r_rwlock); 7750 return (EINTR); 7751 } 7752 } 7753 7754 /* 7755 * Lookup the target file. If it exists, it needs to be 7756 * checked to see whether it is a mount point and whether 7757 * it is active (open). 7758 */ 7759 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7760 if (!error) { 7761 int isactive; 7762 7763 ASSERT(nfs4_consistent_type(nvp)); 7764 /* 7765 * If this file has been mounted on, then just 7766 * return busy because renaming to it would remove 7767 * the mounted file system from the name space. 7768 */ 7769 if (vn_ismntpt(nvp)) { 7770 VN_RELE(nvp); 7771 nfs_rw_exit(&odrp->r_rwlock); 7772 nfs_rw_exit(&ndrp->r_rwlock); 7773 return (EBUSY); 7774 } 7775 7776 /* 7777 * First just remove the entry from the name cache, as it 7778 * is most likely the only entry for this vp. 7779 */ 7780 dnlc_remove(ndvp, nnm); 7781 7782 rp = VTOR4(nvp); 7783 7784 if (nvp->v_type != VREG) { 7785 /* 7786 * Purge the name cache of all references to this vnode 7787 * so that we can check the reference count to infer 7788 * whether it is active or not. 7789 */ 7790 if (nvp->v_count > 1) 7791 dnlc_purge_vp(nvp); 7792 7793 isactive = nvp->v_count > 1; 7794 } else { 7795 mutex_enter(&rp->r_os_lock); 7796 isactive = list_head(&rp->r_open_streams) != NULL; 7797 mutex_exit(&rp->r_os_lock); 7798 } 7799 7800 /* 7801 * If the vnode is active and is not a directory, 7802 * arrange to rename it to a 7803 * temporary file so that it will continue to be 7804 * accessible. This implements the "unlink-open-file" 7805 * semantics for the target of a rename operation. 7806 * Before doing this though, make sure that the 7807 * source and target files are not already the same. 7808 */ 7809 if (isactive && nvp->v_type != VDIR) { 7810 /* 7811 * Lookup the source name. 7812 */ 7813 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7814 7815 /* 7816 * The source name *should* already exist. 7817 */ 7818 if (error) { 7819 VN_RELE(nvp); 7820 nfs_rw_exit(&odrp->r_rwlock); 7821 nfs_rw_exit(&ndrp->r_rwlock); 7822 return (error); 7823 } 7824 7825 ASSERT(nfs4_consistent_type(ovp)); 7826 7827 /* 7828 * Compare the two vnodes. If they are the same, 7829 * just release all held vnodes and return success. 7830 */ 7831 if (VN_CMP(ovp, nvp)) { 7832 VN_RELE(ovp); 7833 VN_RELE(nvp); 7834 nfs_rw_exit(&odrp->r_rwlock); 7835 nfs_rw_exit(&ndrp->r_rwlock); 7836 return (0); 7837 } 7838 7839 /* 7840 * Can't mix and match directories and non- 7841 * directories in rename operations. We already 7842 * know that the target is not a directory. If 7843 * the source is a directory, return an error. 7844 */ 7845 if (ovp->v_type == VDIR) { 7846 VN_RELE(ovp); 7847 VN_RELE(nvp); 7848 nfs_rw_exit(&odrp->r_rwlock); 7849 nfs_rw_exit(&ndrp->r_rwlock); 7850 return (ENOTDIR); 7851 } 7852 link_call: 7853 /* 7854 * The target file exists, is not the same as 7855 * the source file, and is active. We first 7856 * try to Link it to a temporary filename to 7857 * avoid having the server removing the file 7858 * completely (which could cause data loss to 7859 * the user's POV in the event the Rename fails 7860 * -- see bug 1165874). 7861 */ 7862 /* 7863 * The do_link and did_link booleans are 7864 * introduced in the event we get NFS4ERR_FILE_OPEN 7865 * returned for the Rename. Some servers can 7866 * not Rename over an Open file, so they return 7867 * this error. The client needs to Remove the 7868 * newly created Link and do two Renames, just 7869 * as if the server didn't support LINK. 7870 */ 7871 tmpname = newname(); 7872 error = 0; 7873 7874 if (do_link) { 7875 error = nfs4_link(ndvp, nvp, tmpname, cr, 7876 NULL, 0); 7877 } 7878 if (error == EOPNOTSUPP || !do_link) { 7879 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7880 cr, NULL, 0); 7881 did_link = 0; 7882 } else { 7883 did_link = 1; 7884 } 7885 if (error) { 7886 kmem_free(tmpname, MAXNAMELEN); 7887 VN_RELE(ovp); 7888 VN_RELE(nvp); 7889 nfs_rw_exit(&odrp->r_rwlock); 7890 nfs_rw_exit(&ndrp->r_rwlock); 7891 return (error); 7892 } 7893 7894 mutex_enter(&rp->r_statelock); 7895 if (rp->r_unldvp == NULL) { 7896 VN_HOLD(ndvp); 7897 rp->r_unldvp = ndvp; 7898 if (rp->r_unlcred != NULL) 7899 crfree(rp->r_unlcred); 7900 crhold(cr); 7901 rp->r_unlcred = cr; 7902 rp->r_unlname = tmpname; 7903 } else { 7904 if (rp->r_unlname) 7905 kmem_free(rp->r_unlname, MAXNAMELEN); 7906 rp->r_unlname = tmpname; 7907 } 7908 mutex_exit(&rp->r_statelock); 7909 } 7910 7911 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7912 7913 ASSERT(nfs4_consistent_type(nvp)); 7914 } 7915 7916 if (ovp == NULL) { 7917 /* 7918 * When renaming directories to be a subdirectory of a 7919 * different parent, the dnlc entry for ".." will no 7920 * longer be valid, so it must be removed. 7921 * 7922 * We do a lookup here to determine whether we are renaming 7923 * a directory and we need to check if we are renaming 7924 * an unlinked file. This might have already been done 7925 * in previous code, so we check ovp == NULL to avoid 7926 * doing it twice. 7927 */ 7928 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7929 /* 7930 * The source name *should* already exist. 7931 */ 7932 if (error) { 7933 nfs_rw_exit(&odrp->r_rwlock); 7934 nfs_rw_exit(&ndrp->r_rwlock); 7935 if (nvp) { 7936 VN_RELE(nvp); 7937 } 7938 return (error); 7939 } 7940 ASSERT(ovp != NULL); 7941 ASSERT(nfs4_consistent_type(ovp)); 7942 } 7943 7944 /* 7945 * Is the object being renamed a dir, and if so, is 7946 * it being renamed to a child of itself? The underlying 7947 * fs should ultimately return EINVAL for this case; 7948 * however, buggy beta non-Solaris NFSv4 servers at 7949 * interop testing events have allowed this behavior, 7950 * and it caused our client to panic due to a recursive 7951 * mutex_enter in fn_move. 7952 * 7953 * The tedious locking in fn_move could be changed to 7954 * deal with this case, and the client could avoid the 7955 * panic; however, the client would just confuse itself 7956 * later and misbehave. A better way to handle the broken 7957 * server is to detect this condition and return EINVAL 7958 * without ever sending the the bogus rename to the server. 7959 * We know the rename is invalid -- just fail it now. 7960 */ 7961 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7962 VN_RELE(ovp); 7963 nfs_rw_exit(&odrp->r_rwlock); 7964 nfs_rw_exit(&ndrp->r_rwlock); 7965 if (nvp) { 7966 VN_RELE(nvp); 7967 } 7968 return (EINVAL); 7969 } 7970 7971 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7972 7973 /* 7974 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7975 * possible for the filehandle to change due to the rename. 7976 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7977 * the fh will not change because of the rename, but we still need 7978 * to update its rnode entry with the new name for 7979 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7980 * has no effect on these for now, but for future improvements, 7981 * we might want to use it too to simplify handling of files 7982 * that are open with that flag on. (XXX) 7983 */ 7984 mi = VTOMI4(odvp); 7985 if (NFS4_VOLATILE_FH(mi)) 7986 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7987 &stat); 7988 else 7989 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7990 &stat); 7991 7992 ASSERT(nfs4_consistent_type(odvp)); 7993 ASSERT(nfs4_consistent_type(ndvp)); 7994 ASSERT(nfs4_consistent_type(ovp)); 7995 7996 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7997 do_link = 0; 7998 /* 7999 * Before the 'link_call' code, we did a nfs4_lookup 8000 * that puts a VN_HOLD on nvp. After the nfs4_link 8001 * call we call VN_RELE to match that hold. We need 8002 * to place an additional VN_HOLD here since we will 8003 * be hitting that VN_RELE again. 8004 */ 8005 VN_HOLD(nvp); 8006 8007 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 8008 8009 /* Undo the unlinked file naming stuff we just did */ 8010 mutex_enter(&rp->r_statelock); 8011 if (rp->r_unldvp) { 8012 VN_RELE(ndvp); 8013 rp->r_unldvp = NULL; 8014 if (rp->r_unlcred != NULL) 8015 crfree(rp->r_unlcred); 8016 rp->r_unlcred = NULL; 8017 /* rp->r_unlanme points to tmpname */ 8018 if (rp->r_unlname) 8019 kmem_free(rp->r_unlname, MAXNAMELEN); 8020 rp->r_unlname = NULL; 8021 } 8022 mutex_exit(&rp->r_statelock); 8023 8024 if (nvp) { 8025 VN_RELE(nvp); 8026 } 8027 goto link_call; 8028 } 8029 8030 if (error) { 8031 VN_RELE(ovp); 8032 nfs_rw_exit(&odrp->r_rwlock); 8033 nfs_rw_exit(&ndrp->r_rwlock); 8034 if (nvp) { 8035 VN_RELE(nvp); 8036 } 8037 return (error); 8038 } 8039 8040 /* 8041 * when renaming directories to be a subdirectory of a 8042 * different parent, the dnlc entry for ".." will no 8043 * longer be valid, so it must be removed 8044 */ 8045 rp = VTOR4(ovp); 8046 if (ndvp != odvp) { 8047 if (ovp->v_type == VDIR) { 8048 dnlc_remove(ovp, ".."); 8049 if (rp->r_dir != NULL) 8050 nfs4_purge_rddir_cache(ovp); 8051 } 8052 } 8053 8054 /* 8055 * If we are renaming the unlinked file, update the 8056 * r_unldvp and r_unlname as needed. 8057 */ 8058 mutex_enter(&rp->r_statelock); 8059 if (rp->r_unldvp != NULL) { 8060 if (strcmp(rp->r_unlname, onm) == 0) { 8061 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 8062 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 8063 if (ndvp != rp->r_unldvp) { 8064 VN_RELE(rp->r_unldvp); 8065 rp->r_unldvp = ndvp; 8066 VN_HOLD(ndvp); 8067 } 8068 } 8069 } 8070 mutex_exit(&rp->r_statelock); 8071 8072 /* 8073 * Notify the rename vnevents to source vnode, and to the target 8074 * vnode if it already existed. 8075 */ 8076 if (error == 0) { 8077 vnode_t *tvp; 8078 rnode4_t *trp; 8079 /* 8080 * Notify the vnode. Each links is represented by 8081 * a different vnode, in nfsv4. 8082 */ 8083 if (nvp) { 8084 trp = VTOR4(nvp); 8085 tvp = nvp; 8086 if (IS_SHADOW(nvp, trp)) 8087 tvp = RTOV4(trp); 8088 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8089 } 8090 8091 /* 8092 * if the source and destination directory are not the 8093 * same notify the destination directory. 8094 */ 8095 if (VTOR4(odvp) != VTOR4(ndvp)) { 8096 trp = VTOR4(ndvp); 8097 tvp = ndvp; 8098 if (IS_SHADOW(ndvp, trp)) 8099 tvp = RTOV4(trp); 8100 vnevent_rename_dest_dir(tvp, ct); 8101 } 8102 8103 trp = VTOR4(ovp); 8104 tvp = ovp; 8105 if (IS_SHADOW(ovp, trp)) 8106 tvp = RTOV4(trp); 8107 vnevent_rename_src(tvp, odvp, onm, ct); 8108 } 8109 8110 if (nvp) { 8111 VN_RELE(nvp); 8112 } 8113 VN_RELE(ovp); 8114 8115 nfs_rw_exit(&odrp->r_rwlock); 8116 nfs_rw_exit(&ndrp->r_rwlock); 8117 8118 return (error); 8119 } 8120 8121 /* 8122 * When the parent directory has changed, sv_dfh must be updated 8123 */ 8124 static void 8125 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp) 8126 { 8127 svnode_t *sv = VTOSV(vp); 8128 nfs4_sharedfh_t *old_dfh = sv->sv_dfh; 8129 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh; 8130 8131 sfh4_hold(new_dfh); 8132 sv->sv_dfh = new_dfh; 8133 sfh4_rele(&old_dfh); 8134 } 8135 8136 /* 8137 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8138 * when it is known that the filehandle is persistent through rename. 8139 * 8140 * Rename requires that the current fh be the target directory and the 8141 * saved fh be the source directory. After the operation, the current fh 8142 * is unchanged. 8143 * The compound op structure for persistent fh rename is: 8144 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8145 * Rather than bother with the directory postop args, we'll simply 8146 * update that a change occurred in the cache, so no post-op getattrs. 8147 */ 8148 static int 8149 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8150 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8151 { 8152 COMPOUND4args_clnt args; 8153 COMPOUND4res_clnt res, *resp = NULL; 8154 nfs_argop4 *argop; 8155 nfs_resop4 *resop; 8156 int doqueue, argoplist_size; 8157 mntinfo4_t *mi; 8158 rnode4_t *odrp = VTOR4(odvp); 8159 rnode4_t *ndrp = VTOR4(ndvp); 8160 RENAME4res *rn_res; 8161 bool_t needrecov; 8162 nfs4_recov_state_t recov_state; 8163 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8164 dirattr_info_t dinfo, *dinfop; 8165 8166 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8167 8168 recov_state.rs_flags = 0; 8169 recov_state.rs_num_retry_despite_err = 0; 8170 8171 /* 8172 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8173 * 8174 * If source/target are different dirs, then append putfh(src); getattr 8175 */ 8176 args.array_len = (odvp == ndvp) ? 5 : 7; 8177 argoplist_size = args.array_len * sizeof (nfs_argop4); 8178 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8179 8180 recov_retry: 8181 *statp = NFS4_OK; 8182 8183 /* No need to Lookup the file, persistent fh */ 8184 args.ctag = TAG_RENAME; 8185 8186 mi = VTOMI4(odvp); 8187 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8188 if (e.error) { 8189 kmem_free(argop, argoplist_size); 8190 return (e.error); 8191 } 8192 8193 /* 0: putfh source directory */ 8194 argop[0].argop = OP_CPUTFH; 8195 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8196 8197 /* 1: Save source fh to free up current for target */ 8198 argop[1].argop = OP_SAVEFH; 8199 8200 /* 2: putfh targetdir */ 8201 argop[2].argop = OP_CPUTFH; 8202 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8203 8204 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8205 argop[3].argop = OP_CRENAME; 8206 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8207 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8208 8209 /* 4: getattr (targetdir) */ 8210 argop[4].argop = OP_GETATTR; 8211 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8212 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8213 8214 if (ndvp != odvp) { 8215 8216 /* 5: putfh (sourcedir) */ 8217 argop[5].argop = OP_CPUTFH; 8218 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8219 8220 /* 6: getattr (sourcedir) */ 8221 argop[6].argop = OP_GETATTR; 8222 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8223 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8224 } 8225 8226 dnlc_remove(odvp, onm); 8227 dnlc_remove(ndvp, nnm); 8228 8229 doqueue = 1; 8230 dinfo.di_time_call = gethrtime(); 8231 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8232 8233 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8234 if (e.error) { 8235 PURGE_ATTRCACHE4(odvp); 8236 PURGE_ATTRCACHE4(ndvp); 8237 } else { 8238 *statp = res.status; 8239 } 8240 8241 if (needrecov) { 8242 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8243 OP_RENAME, NULL, NULL, NULL) == FALSE) { 8244 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8245 if (!e.error) 8246 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 8247 goto recov_retry; 8248 } 8249 } 8250 8251 if (!e.error) { 8252 resp = &res; 8253 /* 8254 * as long as OP_RENAME 8255 */ 8256 if (res.status != NFS4_OK && res.array_len <= 4) { 8257 e.error = geterrno4(res.status); 8258 PURGE_ATTRCACHE4(odvp); 8259 PURGE_ATTRCACHE4(ndvp); 8260 /* 8261 * System V defines rename to return EEXIST, not 8262 * ENOTEMPTY if the target directory is not empty. 8263 * Over the wire, the error is NFSERR_ENOTEMPTY 8264 * which geterrno4 maps to ENOTEMPTY. 8265 */ 8266 if (e.error == ENOTEMPTY) 8267 e.error = EEXIST; 8268 } else { 8269 8270 resop = &res.array[3]; /* rename res */ 8271 rn_res = &resop->nfs_resop4_u.oprename; 8272 8273 if (res.status == NFS4_OK) { 8274 /* 8275 * Update target attribute, readdir and dnlc 8276 * caches. 8277 */ 8278 dinfo.di_garp = 8279 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8280 dinfo.di_cred = cr; 8281 dinfop = &dinfo; 8282 } else 8283 dinfop = NULL; 8284 8285 nfs4_update_dircaches(&rn_res->target_cinfo, 8286 ndvp, NULL, NULL, dinfop); 8287 8288 /* 8289 * Update source attribute, readdir and dnlc caches 8290 * 8291 */ 8292 if (ndvp != odvp) { 8293 update_parentdir_sfh(renvp, ndvp); 8294 8295 if (dinfop) 8296 dinfo.di_garp = 8297 &(res.array[6].nfs_resop4_u. 8298 opgetattr.ga_res); 8299 8300 nfs4_update_dircaches(&rn_res->source_cinfo, 8301 odvp, NULL, NULL, dinfop); 8302 } 8303 8304 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8305 nnm); 8306 } 8307 } 8308 8309 if (resp) 8310 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8311 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8312 kmem_free(argop, argoplist_size); 8313 8314 return (e.error); 8315 } 8316 8317 /* 8318 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8319 * it is possible for the filehandle to change due to the rename. 8320 * 8321 * The compound req in this case includes a post-rename lookup and getattr 8322 * to ensure that we have the correct fh and attributes for the object. 8323 * 8324 * Rename requires that the current fh be the target directory and the 8325 * saved fh be the source directory. After the operation, the current fh 8326 * is unchanged. 8327 * 8328 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8329 * update the filehandle for the renamed object. We also get the old 8330 * filehandle for historical reasons; this should be taken out sometime. 8331 * This results in a rather cumbersome compound... 8332 * 8333 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8334 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8335 * 8336 */ 8337 static int 8338 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8339 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8340 { 8341 COMPOUND4args_clnt args; 8342 COMPOUND4res_clnt res, *resp = NULL; 8343 int argoplist_size; 8344 nfs_argop4 *argop; 8345 nfs_resop4 *resop; 8346 int doqueue; 8347 mntinfo4_t *mi; 8348 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8349 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8350 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8351 RENAME4res *rn_res; 8352 GETFH4res *ngf_res; 8353 bool_t needrecov; 8354 nfs4_recov_state_t recov_state; 8355 hrtime_t t; 8356 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8357 dirattr_info_t dinfo, *dinfop = &dinfo; 8358 8359 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8360 8361 recov_state.rs_flags = 0; 8362 recov_state.rs_num_retry_despite_err = 0; 8363 8364 recov_retry: 8365 *statp = NFS4_OK; 8366 8367 /* 8368 * There is a window between the RPC and updating the path and 8369 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8370 * code, so that it doesn't try to use the old path during that 8371 * window. 8372 */ 8373 mutex_enter(&orp->r_statelock); 8374 while (orp->r_flags & R4RECEXPFH) { 8375 klwp_t *lwp = ttolwp(curthread); 8376 8377 if (lwp != NULL) 8378 lwp->lwp_nostop++; 8379 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8380 mutex_exit(&orp->r_statelock); 8381 if (lwp != NULL) 8382 lwp->lwp_nostop--; 8383 return (EINTR); 8384 } 8385 if (lwp != NULL) 8386 lwp->lwp_nostop--; 8387 } 8388 orp->r_flags |= R4RECEXPFH; 8389 mutex_exit(&orp->r_statelock); 8390 8391 mi = VTOMI4(odvp); 8392 8393 args.ctag = TAG_RENAME_VFH; 8394 args.array_len = (odvp == ndvp) ? 10 : 12; 8395 argoplist_size = args.array_len * sizeof (nfs_argop4); 8396 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8397 8398 /* 8399 * Rename ops: 8400 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8401 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8402 * LOOKUP(trgt), GETFH(new), GETATTR, 8403 * 8404 * if (odvp != ndvp) 8405 * add putfh(sourcedir), getattr(sourcedir) } 8406 */ 8407 args.array = argop; 8408 8409 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8410 &recov_state, NULL); 8411 if (e.error) { 8412 kmem_free(argop, argoplist_size); 8413 mutex_enter(&orp->r_statelock); 8414 orp->r_flags &= ~R4RECEXPFH; 8415 cv_broadcast(&orp->r_cv); 8416 mutex_exit(&orp->r_statelock); 8417 return (e.error); 8418 } 8419 8420 /* 0: putfh source directory */ 8421 argop[0].argop = OP_CPUTFH; 8422 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8423 8424 /* 1: Save source fh to free up current for target */ 8425 argop[1].argop = OP_SAVEFH; 8426 8427 /* 2: Lookup pre-rename fh of renamed object */ 8428 argop[2].argop = OP_CLOOKUP; 8429 argop[2].nfs_argop4_u.opclookup.cname = onm; 8430 8431 /* 3: getfh fh of renamed object (before rename) */ 8432 argop[3].argop = OP_GETFH; 8433 8434 /* 4: putfh targetdir */ 8435 argop[4].argop = OP_CPUTFH; 8436 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8437 8438 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8439 argop[5].argop = OP_CRENAME; 8440 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8441 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8442 8443 /* 6: getattr of target dir (post op attrs) */ 8444 argop[6].argop = OP_GETATTR; 8445 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8446 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8447 8448 /* 7: Lookup post-rename fh of renamed object */ 8449 argop[7].argop = OP_CLOOKUP; 8450 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8451 8452 /* 8: getfh fh of renamed object (after rename) */ 8453 argop[8].argop = OP_GETFH; 8454 8455 /* 9: getattr of renamed object */ 8456 argop[9].argop = OP_GETATTR; 8457 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8458 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8459 8460 /* 8461 * If source/target dirs are different, then get new post-op 8462 * attrs for source dir also. 8463 */ 8464 if (ndvp != odvp) { 8465 /* 10: putfh (sourcedir) */ 8466 argop[10].argop = OP_CPUTFH; 8467 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8468 8469 /* 11: getattr (sourcedir) */ 8470 argop[11].argop = OP_GETATTR; 8471 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8472 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8473 } 8474 8475 dnlc_remove(odvp, onm); 8476 dnlc_remove(ndvp, nnm); 8477 8478 doqueue = 1; 8479 t = gethrtime(); 8480 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8481 8482 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8483 if (e.error) { 8484 PURGE_ATTRCACHE4(odvp); 8485 PURGE_ATTRCACHE4(ndvp); 8486 if (!needrecov) { 8487 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8488 &recov_state, needrecov); 8489 goto out; 8490 } 8491 } else { 8492 *statp = res.status; 8493 } 8494 8495 if (needrecov) { 8496 bool_t abort; 8497 8498 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8499 OP_RENAME, NULL, NULL, NULL); 8500 if (abort == FALSE) { 8501 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8502 &recov_state, needrecov); 8503 kmem_free(argop, argoplist_size); 8504 if (!e.error) 8505 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 8506 mutex_enter(&orp->r_statelock); 8507 orp->r_flags &= ~R4RECEXPFH; 8508 cv_broadcast(&orp->r_cv); 8509 mutex_exit(&orp->r_statelock); 8510 goto recov_retry; 8511 } else { 8512 if (e.error != 0) { 8513 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8514 &recov_state, needrecov); 8515 goto out; 8516 } 8517 /* fall through for res.status case */ 8518 } 8519 } 8520 8521 resp = &res; 8522 /* 8523 * If OP_RENAME (or any prev op) failed, then return an error. 8524 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8525 */ 8526 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8527 /* 8528 * Error in an op other than last Getattr 8529 */ 8530 e.error = geterrno4(res.status); 8531 PURGE_ATTRCACHE4(odvp); 8532 PURGE_ATTRCACHE4(ndvp); 8533 /* 8534 * System V defines rename to return EEXIST, not 8535 * ENOTEMPTY if the target directory is not empty. 8536 * Over the wire, the error is NFSERR_ENOTEMPTY 8537 * which geterrno4 maps to ENOTEMPTY. 8538 */ 8539 if (e.error == ENOTEMPTY) 8540 e.error = EEXIST; 8541 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8542 needrecov); 8543 goto out; 8544 } 8545 8546 /* rename results */ 8547 rn_res = &res.array[5].nfs_resop4_u.oprename; 8548 8549 if (res.status == NFS4_OK) { 8550 /* Update target attribute, readdir and dnlc caches */ 8551 dinfo.di_garp = 8552 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8553 dinfo.di_cred = cr; 8554 dinfo.di_time_call = t; 8555 } else 8556 dinfop = NULL; 8557 8558 /* Update source cache attribute, readdir and dnlc caches */ 8559 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8560 8561 /* Update source cache attribute, readdir and dnlc caches */ 8562 if (ndvp != odvp) { 8563 update_parentdir_sfh(ovp, ndvp); 8564 8565 /* 8566 * If dinfop is non-NULL, then compound succeded, so 8567 * set di_garp to attrs for source dir. dinfop is only 8568 * set to NULL when compound fails. 8569 */ 8570 if (dinfop) 8571 dinfo.di_garp = 8572 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8573 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8574 dinfop); 8575 } 8576 8577 /* 8578 * Update the rnode with the new component name and args, 8579 * and if the file handle changed, also update it with the new fh. 8580 * This is only necessary if the target object has an rnode 8581 * entry and there is no need to create one for it. 8582 */ 8583 resop = &res.array[8]; /* getfh new res */ 8584 ngf_res = &resop->nfs_resop4_u.opgetfh; 8585 8586 /* 8587 * Update the path and filehandle for the renamed object. 8588 */ 8589 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8590 8591 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8592 8593 if (res.status == NFS4_OK) { 8594 resop++; /* getattr res */ 8595 e.error = nfs4_update_attrcache(res.status, 8596 &resop->nfs_resop4_u.opgetattr.ga_res, 8597 t, ovp, cr); 8598 } 8599 8600 out: 8601 kmem_free(argop, argoplist_size); 8602 if (resp) 8603 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8604 mutex_enter(&orp->r_statelock); 8605 orp->r_flags &= ~R4RECEXPFH; 8606 cv_broadcast(&orp->r_cv); 8607 mutex_exit(&orp->r_statelock); 8608 8609 return (e.error); 8610 } 8611 8612 /* ARGSUSED */ 8613 static int 8614 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8615 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8616 { 8617 int error; 8618 vnode_t *vp; 8619 8620 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8621 return (EPERM); 8622 /* 8623 * As ".." has special meaning and rather than send a mkdir 8624 * over the wire to just let the server freak out, we just 8625 * short circuit it here and return EEXIST 8626 */ 8627 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8628 return (EEXIST); 8629 8630 /* 8631 * Decision to get the right gid and setgid bit of the 8632 * new directory is now made in call_nfs4_create_req. 8633 */ 8634 va->va_mask |= AT_MODE; 8635 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8636 if (error) 8637 return (error); 8638 8639 *vpp = vp; 8640 return (0); 8641 } 8642 8643 8644 /* 8645 * rmdir is using the same remove v4 op as does remove. 8646 * Remove requires that the current fh be the target directory. 8647 * After the operation, the current fh is unchanged. 8648 * The compound op structure is: 8649 * PUTFH(targetdir), REMOVE 8650 */ 8651 /*ARGSUSED4*/ 8652 static int 8653 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8654 caller_context_t *ct, int flags) 8655 { 8656 int need_end_op = FALSE; 8657 COMPOUND4args_clnt args; 8658 COMPOUND4res_clnt res, *resp = NULL; 8659 REMOVE4res *rm_res; 8660 nfs_argop4 argop[3]; 8661 nfs_resop4 *resop; 8662 vnode_t *vp; 8663 int doqueue; 8664 mntinfo4_t *mi; 8665 rnode4_t *drp; 8666 bool_t needrecov = FALSE; 8667 nfs4_recov_state_t recov_state; 8668 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8669 dirattr_info_t dinfo, *dinfop; 8670 8671 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8672 return (EPERM); 8673 /* 8674 * As ".." has special meaning and rather than send a rmdir 8675 * over the wire to just let the server freak out, we just 8676 * short circuit it here and return EEXIST 8677 */ 8678 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8679 return (EEXIST); 8680 8681 drp = VTOR4(dvp); 8682 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8683 return (EINTR); 8684 8685 /* 8686 * Attempt to prevent a rmdir(".") from succeeding. 8687 */ 8688 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8689 if (e.error) { 8690 nfs_rw_exit(&drp->r_rwlock); 8691 return (e.error); 8692 } 8693 if (vp == cdir) { 8694 VN_RELE(vp); 8695 nfs_rw_exit(&drp->r_rwlock); 8696 return (EINVAL); 8697 } 8698 8699 /* 8700 * Since nfsv4 remove op works on both files and directories, 8701 * check that the removed object is indeed a directory. 8702 */ 8703 if (vp->v_type != VDIR) { 8704 VN_RELE(vp); 8705 nfs_rw_exit(&drp->r_rwlock); 8706 return (ENOTDIR); 8707 } 8708 8709 /* 8710 * First just remove the entry from the name cache, as it 8711 * is most likely an entry for this vp. 8712 */ 8713 dnlc_remove(dvp, nm); 8714 8715 /* 8716 * If there vnode reference count is greater than one, then 8717 * there may be additional references in the DNLC which will 8718 * need to be purged. First, trying removing the entry for 8719 * the parent directory and see if that removes the additional 8720 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8721 * to completely remove any references to the directory which 8722 * might still exist in the DNLC. 8723 */ 8724 if (vp->v_count > 1) { 8725 dnlc_remove(vp, ".."); 8726 if (vp->v_count > 1) 8727 dnlc_purge_vp(vp); 8728 } 8729 8730 mi = VTOMI4(dvp); 8731 recov_state.rs_flags = 0; 8732 recov_state.rs_num_retry_despite_err = 0; 8733 8734 recov_retry: 8735 args.ctag = TAG_RMDIR; 8736 8737 /* 8738 * Rmdir ops: putfh dir; remove 8739 */ 8740 args.array_len = 3; 8741 args.array = argop; 8742 8743 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8744 if (e.error) { 8745 nfs_rw_exit(&drp->r_rwlock); 8746 return (e.error); 8747 } 8748 need_end_op = TRUE; 8749 8750 /* putfh directory */ 8751 argop[0].argop = OP_CPUTFH; 8752 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8753 8754 /* remove */ 8755 argop[1].argop = OP_CREMOVE; 8756 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8757 8758 /* getattr (postop attrs for dir that contained removed dir) */ 8759 argop[2].argop = OP_GETATTR; 8760 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8761 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8762 8763 dinfo.di_time_call = gethrtime(); 8764 doqueue = 1; 8765 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8766 8767 PURGE_ATTRCACHE4(vp); 8768 8769 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8770 if (e.error) { 8771 PURGE_ATTRCACHE4(dvp); 8772 } 8773 8774 if (needrecov) { 8775 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8776 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 8777 if (!e.error) 8778 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 8779 8780 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8781 needrecov); 8782 need_end_op = FALSE; 8783 goto recov_retry; 8784 } 8785 } 8786 8787 if (!e.error) { 8788 resp = &res; 8789 8790 /* 8791 * Only return error if first 2 ops (OP_REMOVE or earlier) 8792 * failed. 8793 */ 8794 if (res.status != NFS4_OK && res.array_len <= 2) { 8795 e.error = geterrno4(res.status); 8796 PURGE_ATTRCACHE4(dvp); 8797 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8798 &recov_state, needrecov); 8799 need_end_op = FALSE; 8800 nfs4_purge_stale_fh(e.error, dvp, cr); 8801 /* 8802 * System V defines rmdir to return EEXIST, not 8803 * ENOTEMPTY if the directory is not empty. Over 8804 * the wire, the error is NFSERR_ENOTEMPTY which 8805 * geterrno4 maps to ENOTEMPTY. 8806 */ 8807 if (e.error == ENOTEMPTY) 8808 e.error = EEXIST; 8809 } else { 8810 resop = &res.array[1]; /* remove res */ 8811 rm_res = &resop->nfs_resop4_u.opremove; 8812 8813 if (res.status == NFS4_OK) { 8814 resop = &res.array[2]; /* dir attrs */ 8815 dinfo.di_garp = 8816 &resop->nfs_resop4_u.opgetattr.ga_res; 8817 dinfo.di_cred = cr; 8818 dinfop = &dinfo; 8819 } else 8820 dinfop = NULL; 8821 8822 /* Update dir attribute, readdir and dnlc caches */ 8823 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8824 dinfop); 8825 8826 /* destroy rddir cache for dir that was removed */ 8827 if (VTOR4(vp)->r_dir != NULL) 8828 nfs4_purge_rddir_cache(vp); 8829 } 8830 } 8831 8832 if (need_end_op) 8833 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8834 8835 nfs_rw_exit(&drp->r_rwlock); 8836 8837 if (resp) 8838 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8839 8840 if (e.error == 0) { 8841 vnode_t *tvp; 8842 rnode4_t *trp; 8843 trp = VTOR4(vp); 8844 tvp = vp; 8845 if (IS_SHADOW(vp, trp)) 8846 tvp = RTOV4(trp); 8847 vnevent_rmdir(tvp, dvp, nm, ct); 8848 } 8849 8850 VN_RELE(vp); 8851 8852 return (e.error); 8853 } 8854 8855 /* ARGSUSED */ 8856 static int 8857 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8858 caller_context_t *ct, int flags) 8859 { 8860 int error; 8861 vnode_t *vp; 8862 rnode4_t *rp; 8863 char *contents; 8864 mntinfo4_t *mi = VTOMI4(dvp); 8865 8866 if (nfs_zone() != mi->mi_zone) 8867 return (EPERM); 8868 if (!(mi->mi_flags & MI4_SYMLINK)) 8869 return (EOPNOTSUPP); 8870 8871 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8872 if (error) 8873 return (error); 8874 8875 ASSERT(nfs4_consistent_type(vp)); 8876 rp = VTOR4(vp); 8877 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8878 8879 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8880 8881 if (contents != NULL) { 8882 mutex_enter(&rp->r_statelock); 8883 if (rp->r_symlink.contents == NULL) { 8884 rp->r_symlink.len = strlen(tnm); 8885 bcopy(tnm, contents, rp->r_symlink.len); 8886 rp->r_symlink.contents = contents; 8887 rp->r_symlink.size = MAXPATHLEN; 8888 mutex_exit(&rp->r_statelock); 8889 } else { 8890 mutex_exit(&rp->r_statelock); 8891 kmem_free((void *)contents, MAXPATHLEN); 8892 } 8893 } 8894 } 8895 VN_RELE(vp); 8896 8897 return (error); 8898 } 8899 8900 8901 /* 8902 * Read directory entries. 8903 * There are some weird things to look out for here. The uio_loffset 8904 * field is either 0 or it is the offset returned from a previous 8905 * readdir. It is an opaque value used by the server to find the 8906 * correct directory block to read. The count field is the number 8907 * of blocks to read on the server. This is advisory only, the server 8908 * may return only one block's worth of entries. Entries may be compressed 8909 * on the server. 8910 */ 8911 /* ARGSUSED */ 8912 static int 8913 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8914 caller_context_t *ct, int flags) 8915 { 8916 int error; 8917 uint_t count; 8918 rnode4_t *rp; 8919 rddir4_cache *rdc; 8920 rddir4_cache *rrdc; 8921 8922 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8923 return (EIO); 8924 rp = VTOR4(vp); 8925 8926 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8927 8928 /* 8929 * Make sure that the directory cache is valid. 8930 */ 8931 if (rp->r_dir != NULL) { 8932 if (nfs_disable_rddir_cache != 0) { 8933 /* 8934 * Setting nfs_disable_rddir_cache in /etc/system 8935 * allows interoperability with servers that do not 8936 * properly update the attributes of directories. 8937 * Any cached information gets purged before an 8938 * access is made to it. 8939 */ 8940 nfs4_purge_rddir_cache(vp); 8941 } 8942 8943 error = nfs4_validate_caches(vp, cr); 8944 if (error) 8945 return (error); 8946 } 8947 8948 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8949 8950 /* 8951 * Short circuit last readdir which always returns 0 bytes. 8952 * This can be done after the directory has been read through 8953 * completely at least once. This will set r_direof which 8954 * can be used to find the value of the last cookie. 8955 */ 8956 mutex_enter(&rp->r_statelock); 8957 if (rp->r_direof != NULL && 8958 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8959 mutex_exit(&rp->r_statelock); 8960 #ifdef DEBUG 8961 nfs4_readdir_cache_shorts++; 8962 #endif 8963 if (eofp) 8964 *eofp = 1; 8965 return (0); 8966 } 8967 8968 /* 8969 * Look for a cache entry. Cache entries are identified 8970 * by the NFS cookie value and the byte count requested. 8971 */ 8972 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8973 8974 /* 8975 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8976 */ 8977 if (rdc == NULL) { 8978 mutex_exit(&rp->r_statelock); 8979 return (EINTR); 8980 } 8981 8982 /* 8983 * Check to see if we need to fill this entry in. 8984 */ 8985 if (rdc->flags & RDDIRREQ) { 8986 rdc->flags &= ~RDDIRREQ; 8987 rdc->flags |= RDDIR; 8988 mutex_exit(&rp->r_statelock); 8989 8990 /* 8991 * Do the readdir. 8992 */ 8993 nfs4readdir(vp, rdc, cr); 8994 8995 /* 8996 * Reacquire the lock, so that we can continue 8997 */ 8998 mutex_enter(&rp->r_statelock); 8999 /* 9000 * The entry is now complete 9001 */ 9002 rdc->flags &= ~RDDIR; 9003 } 9004 9005 ASSERT(!(rdc->flags & RDDIR)); 9006 9007 /* 9008 * If an error occurred while attempting 9009 * to fill the cache entry, mark the entry invalid and 9010 * just return the error. 9011 */ 9012 if (rdc->error) { 9013 error = rdc->error; 9014 rdc->flags |= RDDIRREQ; 9015 rddir4_cache_rele(rp, rdc); 9016 mutex_exit(&rp->r_statelock); 9017 return (error); 9018 } 9019 9020 /* 9021 * The cache entry is complete and good, 9022 * copyout the dirent structs to the calling 9023 * thread. 9024 */ 9025 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 9026 9027 /* 9028 * If no error occurred during the copyout, 9029 * update the offset in the uio struct to 9030 * contain the value of the next NFS 4 cookie 9031 * and set the eof value appropriately. 9032 */ 9033 if (!error) { 9034 uiop->uio_loffset = rdc->nfs4_ncookie; 9035 if (eofp) 9036 *eofp = rdc->eof; 9037 } 9038 9039 /* 9040 * Decide whether to do readahead. Don't if we 9041 * have already read to the end of directory. 9042 */ 9043 if (rdc->eof) { 9044 /* 9045 * Make the entry the direof only if it is cached 9046 */ 9047 if (rdc->flags & RDDIRCACHED) 9048 rp->r_direof = rdc; 9049 rddir4_cache_rele(rp, rdc); 9050 mutex_exit(&rp->r_statelock); 9051 return (error); 9052 } 9053 9054 /* Determine if a readdir readahead should be done */ 9055 if (!(rp->r_flags & R4LOOKUP)) { 9056 rddir4_cache_rele(rp, rdc); 9057 mutex_exit(&rp->r_statelock); 9058 return (error); 9059 } 9060 9061 /* 9062 * Now look for a readahead entry. 9063 * 9064 * Check to see whether we found an entry for the readahead. 9065 * If so, we don't need to do anything further, so free the new 9066 * entry if one was allocated. Otherwise, allocate a new entry, add 9067 * it to the cache, and then initiate an asynchronous readdir 9068 * operation to fill it. 9069 */ 9070 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 9071 9072 /* 9073 * A readdir cache entry could not be obtained for the readahead. In 9074 * this case we skip the readahead and return. 9075 */ 9076 if (rrdc == NULL) { 9077 rddir4_cache_rele(rp, rdc); 9078 mutex_exit(&rp->r_statelock); 9079 return (error); 9080 } 9081 9082 /* 9083 * Check to see if we need to fill this entry in. 9084 */ 9085 if (rrdc->flags & RDDIRREQ) { 9086 rrdc->flags &= ~RDDIRREQ; 9087 rrdc->flags |= RDDIR; 9088 rddir4_cache_rele(rp, rdc); 9089 mutex_exit(&rp->r_statelock); 9090 #ifdef DEBUG 9091 nfs4_readdir_readahead++; 9092 #endif 9093 /* 9094 * Do the readdir. 9095 */ 9096 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 9097 return (error); 9098 } 9099 9100 rddir4_cache_rele(rp, rrdc); 9101 rddir4_cache_rele(rp, rdc); 9102 mutex_exit(&rp->r_statelock); 9103 return (error); 9104 } 9105 9106 static int 9107 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9108 { 9109 int error; 9110 rnode4_t *rp; 9111 9112 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9113 9114 rp = VTOR4(vp); 9115 9116 /* 9117 * Obtain the readdir results for the caller. 9118 */ 9119 nfs4readdir(vp, rdc, cr); 9120 9121 mutex_enter(&rp->r_statelock); 9122 /* 9123 * The entry is now complete 9124 */ 9125 rdc->flags &= ~RDDIR; 9126 9127 error = rdc->error; 9128 if (error) 9129 rdc->flags |= RDDIRREQ; 9130 rddir4_cache_rele(rp, rdc); 9131 mutex_exit(&rp->r_statelock); 9132 9133 return (error); 9134 } 9135 9136 /* 9137 * Read directory entries. 9138 * There are some weird things to look out for here. The uio_loffset 9139 * field is either 0 or it is the offset returned from a previous 9140 * readdir. It is an opaque value used by the server to find the 9141 * correct directory block to read. The count field is the number 9142 * of blocks to read on the server. This is advisory only, the server 9143 * may return only one block's worth of entries. Entries may be compressed 9144 * on the server. 9145 * 9146 * Generates the following compound request: 9147 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9148 * must include a Lookupp as well. In this case, send: 9149 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9150 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9151 * 9152 * Get complete attributes and filehandles for entries if this is the 9153 * first read of the directory. Otherwise, just get fileid's. 9154 */ 9155 static void 9156 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9157 { 9158 COMPOUND4args_clnt args; 9159 COMPOUND4res_clnt res; 9160 READDIR4args *rargs; 9161 READDIR4res_clnt *rd_res; 9162 bitmap4 rd_bitsval; 9163 nfs_argop4 argop[5]; 9164 nfs_resop4 *resop; 9165 rnode4_t *rp = VTOR4(vp); 9166 mntinfo4_t *mi = VTOMI4(vp); 9167 int doqueue; 9168 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9169 vnode_t *dvp; 9170 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9171 int num_ops, res_opcnt; 9172 bool_t needrecov = FALSE; 9173 nfs4_recov_state_t recov_state; 9174 hrtime_t t; 9175 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9176 9177 ASSERT(nfs_zone() == mi->mi_zone); 9178 ASSERT(rdc->flags & RDDIR); 9179 ASSERT(rdc->entries == NULL); 9180 9181 /* 9182 * If rp were a stub, it should have triggered and caused 9183 * a mount for us to get this far. 9184 */ 9185 ASSERT(!RP_ISSTUB(rp)); 9186 9187 num_ops = 2; 9188 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9189 /* 9190 * Since nfsv4 readdir may not return entries for "." and "..", 9191 * the client must recreate them: 9192 * To find the correct nodeid, do the following: 9193 * For current node, get nodeid from dnlc. 9194 * - if current node is rootvp, set pnodeid to nodeid. 9195 * - else if parent is in the dnlc, get its nodeid from there. 9196 * - else add LOOKUPP+GETATTR to compound. 9197 */ 9198 nodeid = rp->r_attr.va_nodeid; 9199 if (vp->v_flag & VROOT) { 9200 pnodeid = nodeid; /* root of mount point */ 9201 } else { 9202 dvp = dnlc_lookup(vp, ".."); 9203 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9204 /* parent in dnlc cache - no need for otw */ 9205 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9206 } else { 9207 /* 9208 * parent not in dnlc cache, 9209 * do lookupp to get its id 9210 */ 9211 num_ops = 5; 9212 pnodeid = 0; /* set later by getattr parent */ 9213 } 9214 if (dvp) 9215 VN_RELE(dvp); 9216 } 9217 } 9218 recov_state.rs_flags = 0; 9219 recov_state.rs_num_retry_despite_err = 0; 9220 9221 /* Save the original mount point security flavor */ 9222 (void) save_mnt_secinfo(mi->mi_curr_serv); 9223 9224 recov_retry: 9225 args.ctag = TAG_READDIR; 9226 9227 args.array = argop; 9228 args.array_len = num_ops; 9229 9230 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9231 &recov_state, NULL)) { 9232 /* 9233 * If readdir a node that is a stub for a crossed mount point, 9234 * keep the original secinfo flavor for the current file 9235 * system, not the crossed one. 9236 */ 9237 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9238 rdc->error = e.error; 9239 return; 9240 } 9241 9242 /* 9243 * Determine which attrs to request for dirents. This code 9244 * must be protected by nfs4_start/end_fop because of r_server 9245 * (which will change during failover recovery). 9246 * 9247 */ 9248 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9249 /* 9250 * Get all vattr attrs plus filehandle and rdattr_error 9251 */ 9252 rd_bitsval = NFS4_VATTR_MASK | 9253 FATTR4_RDATTR_ERROR_MASK | 9254 FATTR4_FILEHANDLE_MASK; 9255 9256 if (rp->r_flags & R4READDIRWATTR) { 9257 mutex_enter(&rp->r_statelock); 9258 rp->r_flags &= ~R4READDIRWATTR; 9259 mutex_exit(&rp->r_statelock); 9260 } 9261 } else { 9262 servinfo4_t *svp = rp->r_server; 9263 9264 /* 9265 * Already read directory. Use readdir with 9266 * no attrs (except for mounted_on_fileid) for updates. 9267 */ 9268 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9269 9270 /* 9271 * request mounted on fileid if supported, else request 9272 * fileid. maybe we should verify that fileid is supported 9273 * and request something else if not. 9274 */ 9275 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9276 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9277 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9278 nfs_rw_exit(&svp->sv_lock); 9279 } 9280 9281 /* putfh directory fh */ 9282 argop[0].argop = OP_CPUTFH; 9283 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9284 9285 argop[1].argop = OP_READDIR; 9286 rargs = &argop[1].nfs_argop4_u.opreaddir; 9287 /* 9288 * 1 and 2 are reserved for client "." and ".." entry offset. 9289 * cookie 0 should be used over-the-wire to start reading at 9290 * the beginning of the directory excluding "." and "..". 9291 */ 9292 if (rdc->nfs4_cookie == 0 || 9293 rdc->nfs4_cookie == 1 || 9294 rdc->nfs4_cookie == 2) { 9295 rargs->cookie = (nfs_cookie4)0; 9296 rargs->cookieverf = 0; 9297 } else { 9298 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9299 mutex_enter(&rp->r_statelock); 9300 rargs->cookieverf = rp->r_cookieverf4; 9301 mutex_exit(&rp->r_statelock); 9302 } 9303 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9304 rargs->maxcount = mi->mi_tsize; 9305 rargs->attr_request = rd_bitsval; 9306 rargs->rdc = rdc; 9307 rargs->dvp = vp; 9308 rargs->mi = mi; 9309 rargs->cr = cr; 9310 9311 9312 /* 9313 * If count < than the minimum required, we return no entries 9314 * and fail with EINVAL 9315 */ 9316 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9317 rdc->error = EINVAL; 9318 goto out; 9319 } 9320 9321 if (args.array_len == 5) { 9322 /* 9323 * Add lookupp and getattr for parent nodeid. 9324 */ 9325 argop[2].argop = OP_LOOKUPP; 9326 9327 argop[3].argop = OP_GETFH; 9328 9329 /* getattr parent */ 9330 argop[4].argop = OP_GETATTR; 9331 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9332 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9333 } 9334 9335 doqueue = 1; 9336 9337 if (mi->mi_io_kstats) { 9338 mutex_enter(&mi->mi_lock); 9339 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9340 mutex_exit(&mi->mi_lock); 9341 } 9342 9343 /* capture the time of this call */ 9344 rargs->t = t = gethrtime(); 9345 9346 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9347 9348 if (mi->mi_io_kstats) { 9349 mutex_enter(&mi->mi_lock); 9350 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9351 mutex_exit(&mi->mi_lock); 9352 } 9353 9354 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9355 9356 /* 9357 * If RPC error occurred and it isn't an error that 9358 * triggers recovery, then go ahead and fail now. 9359 */ 9360 if (e.error != 0 && !needrecov) { 9361 rdc->error = e.error; 9362 goto out; 9363 } 9364 9365 if (needrecov) { 9366 bool_t abort; 9367 9368 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9369 "nfs4readdir: initiating recovery.\n")); 9370 9371 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9372 NULL, OP_READDIR, NULL, NULL, NULL); 9373 if (abort == FALSE) { 9374 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9375 &recov_state, needrecov); 9376 if (!e.error) 9377 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9378 if (rdc->entries != NULL) { 9379 kmem_free(rdc->entries, rdc->entlen); 9380 rdc->entries = NULL; 9381 } 9382 goto recov_retry; 9383 } 9384 9385 if (e.error != 0) { 9386 rdc->error = e.error; 9387 goto out; 9388 } 9389 9390 /* fall through for res.status case */ 9391 } 9392 9393 res_opcnt = res.array_len; 9394 9395 /* 9396 * If compound failed first 2 ops (PUTFH+READDIR), then return 9397 * failure here. Subsequent ops are for filling out dot-dot 9398 * dirent, and if they fail, we still want to give the caller 9399 * the dirents returned by (the successful) READDIR op, so we need 9400 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9401 * 9402 * One example where PUTFH+READDIR ops would succeed but 9403 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9404 * but lacks x. In this case, a POSIX server's VOP_READDIR 9405 * would succeed; however, VOP_LOOKUP(..) would fail since no 9406 * x perm. We need to come up with a non-vendor-specific way 9407 * for a POSIX server to return d_ino from dotdot's dirent if 9408 * client only requests mounted_on_fileid, and just say the 9409 * LOOKUPP succeeded and fill out the GETATTR. However, if 9410 * client requested any mandatory attrs, server would be required 9411 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9412 * for dotdot. 9413 */ 9414 9415 if (res.status) { 9416 if (res_opcnt <= 2) { 9417 e.error = geterrno4(res.status); 9418 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9419 &recov_state, needrecov); 9420 nfs4_purge_stale_fh(e.error, vp, cr); 9421 rdc->error = e.error; 9422 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9423 if (rdc->entries != NULL) { 9424 kmem_free(rdc->entries, rdc->entlen); 9425 rdc->entries = NULL; 9426 } 9427 /* 9428 * If readdir a node that is a stub for a 9429 * crossed mount point, keep the original 9430 * secinfo flavor for the current file system, 9431 * not the crossed one. 9432 */ 9433 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9434 return; 9435 } 9436 } 9437 9438 resop = &res.array[1]; /* readdir res */ 9439 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9440 9441 mutex_enter(&rp->r_statelock); 9442 rp->r_cookieverf4 = rd_res->cookieverf; 9443 mutex_exit(&rp->r_statelock); 9444 9445 /* 9446 * For "." and ".." entries 9447 * e.g. 9448 * seek(cookie=0) -> "." entry with d_off = 1 9449 * seek(cookie=1) -> ".." entry with d_off = 2 9450 */ 9451 if (cookie == (nfs_cookie4) 0) { 9452 if (rd_res->dotp) 9453 rd_res->dotp->d_ino = nodeid; 9454 if (rd_res->dotdotp) 9455 rd_res->dotdotp->d_ino = pnodeid; 9456 } 9457 if (cookie == (nfs_cookie4) 1) { 9458 if (rd_res->dotdotp) 9459 rd_res->dotdotp->d_ino = pnodeid; 9460 } 9461 9462 9463 /* LOOKUPP+GETATTR attemped */ 9464 if (args.array_len == 5 && rd_res->dotdotp) { 9465 if (res.status == NFS4_OK && res_opcnt == 5) { 9466 nfs_fh4 *fhp; 9467 nfs4_sharedfh_t *sfhp; 9468 vnode_t *pvp; 9469 nfs4_ga_res_t *garp; 9470 9471 resop++; /* lookupp */ 9472 resop++; /* getfh */ 9473 fhp = &resop->nfs_resop4_u.opgetfh.object; 9474 9475 resop++; /* getattr of parent */ 9476 9477 /* 9478 * First, take care of finishing the 9479 * readdir results. 9480 */ 9481 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9482 /* 9483 * The d_ino of .. must be the inode number 9484 * of the mounted filesystem. 9485 */ 9486 if (garp->n4g_va.va_mask & AT_NODEID) 9487 rd_res->dotdotp->d_ino = 9488 garp->n4g_va.va_nodeid; 9489 9490 9491 /* 9492 * Next, create the ".." dnlc entry 9493 */ 9494 sfhp = sfh4_get(fhp, mi); 9495 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9496 dnlc_update(vp, "..", pvp); 9497 VN_RELE(pvp); 9498 } 9499 sfh4_rele(&sfhp); 9500 } 9501 } 9502 9503 if (mi->mi_io_kstats) { 9504 mutex_enter(&mi->mi_lock); 9505 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9506 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9507 mutex_exit(&mi->mi_lock); 9508 } 9509 9510 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9511 9512 out: 9513 /* 9514 * If readdir a node that is a stub for a crossed mount point, 9515 * keep the original secinfo flavor for the current file system, 9516 * not the crossed one. 9517 */ 9518 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9519 9520 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9521 } 9522 9523 9524 static int 9525 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9526 { 9527 rnode4_t *rp = VTOR4(bp->b_vp); 9528 int count; 9529 int error; 9530 cred_t *cred_otw = NULL; 9531 offset_t offset; 9532 nfs4_open_stream_t *osp = NULL; 9533 bool_t first_time = TRUE; /* first time getting otw cred */ 9534 bool_t last_time = FALSE; /* last time getting otw cred */ 9535 9536 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9537 9538 DTRACE_IO1(start, struct buf *, bp); 9539 offset = ldbtob(bp->b_lblkno); 9540 9541 if (bp->b_flags & B_READ) { 9542 read_again: 9543 /* 9544 * Releases the osp, if it is provided. 9545 * Puts a hold on the cred_otw and the new osp (if found). 9546 */ 9547 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9548 &first_time, &last_time); 9549 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9550 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9551 readahead, NULL); 9552 crfree(cred_otw); 9553 if (!error) { 9554 if (bp->b_resid) { 9555 /* 9556 * Didn't get it all because we hit EOF, 9557 * zero all the memory beyond the EOF. 9558 */ 9559 /* bzero(rdaddr + */ 9560 bzero(bp->b_un.b_addr + 9561 bp->b_bcount - bp->b_resid, bp->b_resid); 9562 } 9563 mutex_enter(&rp->r_statelock); 9564 if (bp->b_resid == bp->b_bcount && 9565 offset >= rp->r_size) { 9566 /* 9567 * We didn't read anything at all as we are 9568 * past EOF. Return an error indicator back 9569 * but don't destroy the pages (yet). 9570 */ 9571 error = NFS_EOF; 9572 } 9573 mutex_exit(&rp->r_statelock); 9574 } else if (error == EACCES && last_time == FALSE) { 9575 goto read_again; 9576 } 9577 } else { 9578 if (!(rp->r_flags & R4STALE)) { 9579 write_again: 9580 /* 9581 * Releases the osp, if it is provided. 9582 * Puts a hold on the cred_otw and the new 9583 * osp (if found). 9584 */ 9585 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9586 &first_time, &last_time); 9587 mutex_enter(&rp->r_statelock); 9588 count = MIN(bp->b_bcount, rp->r_size - offset); 9589 mutex_exit(&rp->r_statelock); 9590 if (count < 0) 9591 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9592 #ifdef DEBUG 9593 if (count == 0) { 9594 zoneid_t zoneid = getzoneid(); 9595 9596 zcmn_err(zoneid, CE_WARN, 9597 "nfs4_bio: zero length write at %lld", 9598 offset); 9599 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9600 "b_bcount=%ld, file size=%lld", 9601 rp->r_flags, (long)bp->b_bcount, 9602 rp->r_size); 9603 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9604 if (nfs4_bio_do_stop) 9605 debug_enter("nfs4_bio"); 9606 } 9607 #endif 9608 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9609 count, cred_otw, stab_comm); 9610 if (error == EACCES && last_time == FALSE) { 9611 crfree(cred_otw); 9612 goto write_again; 9613 } 9614 bp->b_error = error; 9615 if (error && error != EINTR && 9616 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9617 /* 9618 * Don't print EDQUOT errors on the console. 9619 * Don't print asynchronous EACCES errors. 9620 * Don't print EFBIG errors. 9621 * Print all other write errors. 9622 */ 9623 if (error != EDQUOT && error != EFBIG && 9624 (error != EACCES || 9625 !(bp->b_flags & B_ASYNC))) 9626 nfs4_write_error(bp->b_vp, 9627 error, cred_otw); 9628 /* 9629 * Update r_error and r_flags as appropriate. 9630 * If the error was ESTALE, then mark the 9631 * rnode as not being writeable and save 9632 * the error status. Otherwise, save any 9633 * errors which occur from asynchronous 9634 * page invalidations. Any errors occurring 9635 * from other operations should be saved 9636 * by the caller. 9637 */ 9638 mutex_enter(&rp->r_statelock); 9639 if (error == ESTALE) { 9640 rp->r_flags |= R4STALE; 9641 if (!rp->r_error) 9642 rp->r_error = error; 9643 } else if (!rp->r_error && 9644 (bp->b_flags & 9645 (B_INVAL|B_FORCE|B_ASYNC)) == 9646 (B_INVAL|B_FORCE|B_ASYNC)) { 9647 rp->r_error = error; 9648 } 9649 mutex_exit(&rp->r_statelock); 9650 } 9651 crfree(cred_otw); 9652 } else { 9653 error = rp->r_error; 9654 /* 9655 * A close may have cleared r_error, if so, 9656 * propagate ESTALE error return properly 9657 */ 9658 if (error == 0) 9659 error = ESTALE; 9660 } 9661 } 9662 9663 if (error != 0 && error != NFS_EOF) 9664 bp->b_flags |= B_ERROR; 9665 9666 if (osp) 9667 open_stream_rele(osp, rp); 9668 9669 DTRACE_IO1(done, struct buf *, bp); 9670 9671 return (error); 9672 } 9673 9674 /* ARGSUSED */ 9675 int 9676 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9677 { 9678 return (EREMOTE); 9679 } 9680 9681 /* ARGSUSED2 */ 9682 int 9683 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9684 { 9685 rnode4_t *rp = VTOR4(vp); 9686 9687 if (!write_lock) { 9688 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9689 return (V_WRITELOCK_FALSE); 9690 } 9691 9692 if ((rp->r_flags & R4DIRECTIO) || 9693 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9694 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9695 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9696 return (V_WRITELOCK_FALSE); 9697 nfs_rw_exit(&rp->r_rwlock); 9698 } 9699 9700 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9701 return (V_WRITELOCK_TRUE); 9702 } 9703 9704 /* ARGSUSED */ 9705 void 9706 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9707 { 9708 rnode4_t *rp = VTOR4(vp); 9709 9710 nfs_rw_exit(&rp->r_rwlock); 9711 } 9712 9713 /* ARGSUSED */ 9714 static int 9715 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9716 { 9717 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9718 return (EIO); 9719 9720 /* 9721 * Because we stuff the readdir cookie into the offset field 9722 * someone may attempt to do an lseek with the cookie which 9723 * we want to succeed. 9724 */ 9725 if (vp->v_type == VDIR) 9726 return (0); 9727 if (*noffp < 0) 9728 return (EINVAL); 9729 return (0); 9730 } 9731 9732 9733 /* 9734 * Return all the pages from [off..off+len) in file 9735 */ 9736 /* ARGSUSED */ 9737 static int 9738 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9739 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9740 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9741 { 9742 rnode4_t *rp; 9743 int error; 9744 mntinfo4_t *mi; 9745 9746 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9747 return (EIO); 9748 rp = VTOR4(vp); 9749 if (IS_SHADOW(vp, rp)) 9750 vp = RTOV4(rp); 9751 9752 if (vp->v_flag & VNOMAP) 9753 return (ENOSYS); 9754 9755 if (protp != NULL) 9756 *protp = PROT_ALL; 9757 9758 /* 9759 * Now validate that the caches are up to date. 9760 */ 9761 if (error = nfs4_validate_caches(vp, cr)) 9762 return (error); 9763 9764 mi = VTOMI4(vp); 9765 retry: 9766 mutex_enter(&rp->r_statelock); 9767 9768 /* 9769 * Don't create dirty pages faster than they 9770 * can be cleaned so that the system doesn't 9771 * get imbalanced. If the async queue is 9772 * maxed out, then wait for it to drain before 9773 * creating more dirty pages. Also, wait for 9774 * any threads doing pagewalks in the vop_getattr 9775 * entry points so that they don't block for 9776 * long periods. 9777 */ 9778 if (rw == S_CREATE) { 9779 while ((mi->mi_max_threads != 0 && 9780 rp->r_awcount > 2 * mi->mi_max_threads) || 9781 rp->r_gcount > 0) 9782 cv_wait(&rp->r_cv, &rp->r_statelock); 9783 } 9784 9785 /* 9786 * If we are getting called as a side effect of an nfs_write() 9787 * operation the local file size might not be extended yet. 9788 * In this case we want to be able to return pages of zeroes. 9789 */ 9790 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9791 NFS4_DEBUG(nfs4_pageio_debug, 9792 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9793 "len=%llu, size=%llu, attrsize =%llu", off, 9794 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9795 mutex_exit(&rp->r_statelock); 9796 return (EFAULT); /* beyond EOF */ 9797 } 9798 9799 mutex_exit(&rp->r_statelock); 9800 9801 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9802 pl, plsz, seg, addr, rw, cr); 9803 NFS4_DEBUG(nfs4_pageio_debug && error, 9804 (CE_NOTE, "getpages error %d; off=%lld, len=%lld", 9805 error, off, (u_longlong_t)len)); 9806 9807 switch (error) { 9808 case NFS_EOF: 9809 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9810 goto retry; 9811 case ESTALE: 9812 nfs4_purge_stale_fh(error, vp, cr); 9813 } 9814 9815 return (error); 9816 } 9817 9818 /* 9819 * Called from pvn_getpages to get a particular page. 9820 */ 9821 /* ARGSUSED */ 9822 static int 9823 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9824 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9825 enum seg_rw rw, cred_t *cr) 9826 { 9827 rnode4_t *rp; 9828 uint_t bsize; 9829 struct buf *bp; 9830 page_t *pp; 9831 u_offset_t lbn; 9832 u_offset_t io_off; 9833 u_offset_t blkoff; 9834 u_offset_t rablkoff; 9835 size_t io_len; 9836 uint_t blksize; 9837 int error; 9838 int readahead; 9839 int readahead_issued = 0; 9840 int ra_window; /* readahead window */ 9841 page_t *pagefound; 9842 page_t *savepp; 9843 9844 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9845 return (EIO); 9846 9847 rp = VTOR4(vp); 9848 ASSERT(!IS_SHADOW(vp, rp)); 9849 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9850 9851 reread: 9852 bp = NULL; 9853 pp = NULL; 9854 pagefound = NULL; 9855 9856 if (pl != NULL) 9857 pl[0] = NULL; 9858 9859 error = 0; 9860 lbn = off / bsize; 9861 blkoff = lbn * bsize; 9862 9863 /* 9864 * Queueing up the readahead before doing the synchronous read 9865 * results in a significant increase in read throughput because 9866 * of the increased parallelism between the async threads and 9867 * the process context. 9868 */ 9869 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9870 rw != S_CREATE && 9871 !(vp->v_flag & VNOCACHE)) { 9872 mutex_enter(&rp->r_statelock); 9873 9874 /* 9875 * Calculate the number of readaheads to do. 9876 * a) No readaheads at offset = 0. 9877 * b) Do maximum(nfs4_nra) readaheads when the readahead 9878 * window is closed. 9879 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9880 * upon how far the readahead window is open or close. 9881 * d) No readaheads if rp->r_nextr is not within the scope 9882 * of the readahead window (random i/o). 9883 */ 9884 9885 if (off == 0) 9886 readahead = 0; 9887 else if (blkoff == rp->r_nextr) 9888 readahead = nfs4_nra; 9889 else if (rp->r_nextr > blkoff && 9890 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9891 <= (nfs4_nra - 1))) 9892 readahead = nfs4_nra - ra_window; 9893 else 9894 readahead = 0; 9895 9896 rablkoff = rp->r_nextr; 9897 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9898 mutex_exit(&rp->r_statelock); 9899 if (nfs4_async_readahead(vp, rablkoff + bsize, 9900 addr + (rablkoff + bsize - off), 9901 seg, cr, nfs4_readahead) < 0) { 9902 mutex_enter(&rp->r_statelock); 9903 break; 9904 } 9905 readahead--; 9906 rablkoff += bsize; 9907 /* 9908 * Indicate that we did a readahead so 9909 * readahead offset is not updated 9910 * by the synchronous read below. 9911 */ 9912 readahead_issued = 1; 9913 mutex_enter(&rp->r_statelock); 9914 /* 9915 * set readahead offset to 9916 * offset of last async readahead 9917 * request. 9918 */ 9919 rp->r_nextr = rablkoff; 9920 } 9921 mutex_exit(&rp->r_statelock); 9922 } 9923 9924 again: 9925 if ((pagefound = page_exists(vp, off)) == NULL) { 9926 if (pl == NULL) { 9927 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9928 nfs4_readahead); 9929 } else if (rw == S_CREATE) { 9930 /* 9931 * Block for this page is not allocated, or the offset 9932 * is beyond the current allocation size, or we're 9933 * allocating a swap slot and the page was not found, 9934 * so allocate it and return a zero page. 9935 */ 9936 if ((pp = page_create_va(vp, off, 9937 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9938 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9939 io_len = PAGESIZE; 9940 mutex_enter(&rp->r_statelock); 9941 rp->r_nextr = off + PAGESIZE; 9942 mutex_exit(&rp->r_statelock); 9943 } else { 9944 /* 9945 * Need to go to server to get a block 9946 */ 9947 mutex_enter(&rp->r_statelock); 9948 if (blkoff < rp->r_size && 9949 blkoff + bsize > rp->r_size) { 9950 /* 9951 * If less than a block left in 9952 * file read less than a block. 9953 */ 9954 if (rp->r_size <= off) { 9955 /* 9956 * Trying to access beyond EOF, 9957 * set up to get at least one page. 9958 */ 9959 blksize = off + PAGESIZE - blkoff; 9960 } else 9961 blksize = rp->r_size - blkoff; 9962 } else if ((off == 0) || 9963 (off != rp->r_nextr && !readahead_issued)) { 9964 blksize = PAGESIZE; 9965 blkoff = off; /* block = page here */ 9966 } else 9967 blksize = bsize; 9968 mutex_exit(&rp->r_statelock); 9969 9970 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9971 &io_len, blkoff, blksize, 0); 9972 9973 /* 9974 * Some other thread has entered the page, 9975 * so just use it. 9976 */ 9977 if (pp == NULL) 9978 goto again; 9979 9980 /* 9981 * Now round the request size up to page boundaries. 9982 * This ensures that the entire page will be 9983 * initialized to zeroes if EOF is encountered. 9984 */ 9985 io_len = ptob(btopr(io_len)); 9986 9987 bp = pageio_setup(pp, io_len, vp, B_READ); 9988 ASSERT(bp != NULL); 9989 9990 /* 9991 * pageio_setup should have set b_addr to 0. This 9992 * is correct since we want to do I/O on a page 9993 * boundary. bp_mapin will use this addr to calculate 9994 * an offset, and then set b_addr to the kernel virtual 9995 * address it allocated for us. 9996 */ 9997 ASSERT(bp->b_un.b_addr == 0); 9998 9999 bp->b_edev = 0; 10000 bp->b_dev = 0; 10001 bp->b_lblkno = lbtodb(io_off); 10002 bp->b_file = vp; 10003 bp->b_offset = (offset_t)off; 10004 bp_mapin(bp); 10005 10006 /* 10007 * If doing a write beyond what we believe is EOF, 10008 * don't bother trying to read the pages from the 10009 * server, we'll just zero the pages here. We 10010 * don't check that the rw flag is S_WRITE here 10011 * because some implementations may attempt a 10012 * read access to the buffer before copying data. 10013 */ 10014 mutex_enter(&rp->r_statelock); 10015 if (io_off >= rp->r_size && seg == segkmap) { 10016 mutex_exit(&rp->r_statelock); 10017 bzero(bp->b_un.b_addr, io_len); 10018 } else { 10019 mutex_exit(&rp->r_statelock); 10020 error = nfs4_bio(bp, NULL, cr, FALSE); 10021 } 10022 10023 /* 10024 * Unmap the buffer before freeing it. 10025 */ 10026 bp_mapout(bp); 10027 pageio_done(bp); 10028 10029 savepp = pp; 10030 do { 10031 pp->p_fsdata = C_NOCOMMIT; 10032 } while ((pp = pp->p_next) != savepp); 10033 10034 if (error == NFS_EOF) { 10035 /* 10036 * If doing a write system call just return 10037 * zeroed pages, else user tried to get pages 10038 * beyond EOF, return error. We don't check 10039 * that the rw flag is S_WRITE here because 10040 * some implementations may attempt a read 10041 * access to the buffer before copying data. 10042 */ 10043 if (seg == segkmap) 10044 error = 0; 10045 else 10046 error = EFAULT; 10047 } 10048 10049 if (!readahead_issued && !error) { 10050 mutex_enter(&rp->r_statelock); 10051 rp->r_nextr = io_off + io_len; 10052 mutex_exit(&rp->r_statelock); 10053 } 10054 } 10055 } 10056 10057 out: 10058 if (pl == NULL) 10059 return (error); 10060 10061 if (error) { 10062 if (pp != NULL) 10063 pvn_read_done(pp, B_ERROR); 10064 return (error); 10065 } 10066 10067 if (pagefound) { 10068 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 10069 10070 /* 10071 * Page exists in the cache, acquire the appropriate lock. 10072 * If this fails, start all over again. 10073 */ 10074 if ((pp = page_lookup(vp, off, se)) == NULL) { 10075 #ifdef DEBUG 10076 nfs4_lostpage++; 10077 #endif 10078 goto reread; 10079 } 10080 pl[0] = pp; 10081 pl[1] = NULL; 10082 return (0); 10083 } 10084 10085 if (pp != NULL) 10086 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 10087 10088 return (error); 10089 } 10090 10091 static void 10092 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 10093 cred_t *cr) 10094 { 10095 int error; 10096 page_t *pp; 10097 u_offset_t io_off; 10098 size_t io_len; 10099 struct buf *bp; 10100 uint_t bsize, blksize; 10101 rnode4_t *rp = VTOR4(vp); 10102 page_t *savepp; 10103 10104 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10105 10106 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10107 10108 mutex_enter(&rp->r_statelock); 10109 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10110 /* 10111 * If less than a block left in file read less 10112 * than a block. 10113 */ 10114 blksize = rp->r_size - blkoff; 10115 } else 10116 blksize = bsize; 10117 mutex_exit(&rp->r_statelock); 10118 10119 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10120 &io_off, &io_len, blkoff, blksize, 1); 10121 /* 10122 * The isra flag passed to the kluster function is 1, we may have 10123 * gotten a return value of NULL for a variety of reasons (# of free 10124 * pages < minfree, someone entered the page on the vnode etc). In all 10125 * cases, we want to punt on the readahead. 10126 */ 10127 if (pp == NULL) 10128 return; 10129 10130 /* 10131 * Now round the request size up to page boundaries. 10132 * This ensures that the entire page will be 10133 * initialized to zeroes if EOF is encountered. 10134 */ 10135 io_len = ptob(btopr(io_len)); 10136 10137 bp = pageio_setup(pp, io_len, vp, B_READ); 10138 ASSERT(bp != NULL); 10139 10140 /* 10141 * pageio_setup should have set b_addr to 0. This is correct since 10142 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10143 * to calculate an offset, and then set b_addr to the kernel virtual 10144 * address it allocated for us. 10145 */ 10146 ASSERT(bp->b_un.b_addr == 0); 10147 10148 bp->b_edev = 0; 10149 bp->b_dev = 0; 10150 bp->b_lblkno = lbtodb(io_off); 10151 bp->b_file = vp; 10152 bp->b_offset = (offset_t)blkoff; 10153 bp_mapin(bp); 10154 10155 /* 10156 * If doing a write beyond what we believe is EOF, don't bother trying 10157 * to read the pages from the server, we'll just zero the pages here. 10158 * We don't check that the rw flag is S_WRITE here because some 10159 * implementations may attempt a read access to the buffer before 10160 * copying data. 10161 */ 10162 mutex_enter(&rp->r_statelock); 10163 if (io_off >= rp->r_size && seg == segkmap) { 10164 mutex_exit(&rp->r_statelock); 10165 bzero(bp->b_un.b_addr, io_len); 10166 error = 0; 10167 } else { 10168 mutex_exit(&rp->r_statelock); 10169 error = nfs4_bio(bp, NULL, cr, TRUE); 10170 if (error == NFS_EOF) 10171 error = 0; 10172 } 10173 10174 /* 10175 * Unmap the buffer before freeing it. 10176 */ 10177 bp_mapout(bp); 10178 pageio_done(bp); 10179 10180 savepp = pp; 10181 do { 10182 pp->p_fsdata = C_NOCOMMIT; 10183 } while ((pp = pp->p_next) != savepp); 10184 10185 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10186 10187 /* 10188 * In case of error set readahead offset 10189 * to the lowest offset. 10190 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10191 */ 10192 if (error && rp->r_nextr > io_off) { 10193 mutex_enter(&rp->r_statelock); 10194 if (rp->r_nextr > io_off) 10195 rp->r_nextr = io_off; 10196 mutex_exit(&rp->r_statelock); 10197 } 10198 } 10199 10200 /* 10201 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10202 * If len == 0, do from off to EOF. 10203 * 10204 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10205 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10206 * (from pageout). 10207 */ 10208 /* ARGSUSED */ 10209 static int 10210 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10211 caller_context_t *ct) 10212 { 10213 int error; 10214 rnode4_t *rp; 10215 10216 ASSERT(cr != NULL); 10217 10218 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10219 return (EIO); 10220 10221 rp = VTOR4(vp); 10222 if (IS_SHADOW(vp, rp)) 10223 vp = RTOV4(rp); 10224 10225 /* 10226 * XXX - Why should this check be made here? 10227 */ 10228 if (vp->v_flag & VNOMAP) 10229 return (ENOSYS); 10230 10231 if (len == 0 && !(flags & B_INVAL) && 10232 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10233 return (0); 10234 10235 mutex_enter(&rp->r_statelock); 10236 rp->r_count++; 10237 mutex_exit(&rp->r_statelock); 10238 error = nfs4_putpages(vp, off, len, flags, cr); 10239 mutex_enter(&rp->r_statelock); 10240 rp->r_count--; 10241 cv_broadcast(&rp->r_cv); 10242 mutex_exit(&rp->r_statelock); 10243 10244 return (error); 10245 } 10246 10247 /* 10248 * Write out a single page, possibly klustering adjacent dirty pages. 10249 */ 10250 int 10251 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10252 int flags, cred_t *cr) 10253 { 10254 u_offset_t io_off; 10255 u_offset_t lbn_off; 10256 u_offset_t lbn; 10257 size_t io_len; 10258 uint_t bsize; 10259 int error; 10260 rnode4_t *rp; 10261 10262 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10263 ASSERT(pp != NULL); 10264 ASSERT(cr != NULL); 10265 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10266 10267 rp = VTOR4(vp); 10268 ASSERT(rp->r_count > 0); 10269 ASSERT(!IS_SHADOW(vp, rp)); 10270 10271 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10272 lbn = pp->p_offset / bsize; 10273 lbn_off = lbn * bsize; 10274 10275 /* 10276 * Find a kluster that fits in one block, or in 10277 * one page if pages are bigger than blocks. If 10278 * there is less file space allocated than a whole 10279 * page, we'll shorten the i/o request below. 10280 */ 10281 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10282 roundup(bsize, PAGESIZE), flags); 10283 10284 /* 10285 * pvn_write_kluster shouldn't have returned a page with offset 10286 * behind the original page we were given. Verify that. 10287 */ 10288 ASSERT((pp->p_offset / bsize) >= lbn); 10289 10290 /* 10291 * Now pp will have the list of kept dirty pages marked for 10292 * write back. It will also handle invalidation and freeing 10293 * of pages that are not dirty. Check for page length rounding 10294 * problems. 10295 */ 10296 if (io_off + io_len > lbn_off + bsize) { 10297 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10298 io_len = lbn_off + bsize - io_off; 10299 } 10300 /* 10301 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10302 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10303 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10304 * progress and the r_size has not been made consistent with the 10305 * new size of the file. When the uiomove() completes the r_size is 10306 * updated and the R4MODINPROGRESS flag is cleared. 10307 * 10308 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10309 * consistent value of r_size. Without this handshaking, it is 10310 * possible that nfs4_bio() picks up the old value of r_size 10311 * before the uiomove() in writerp4() completes. This will result 10312 * in the write through nfs4_bio() being dropped. 10313 * 10314 * More precisely, there is a window between the time the uiomove() 10315 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10316 * operation intervenes in this window, the page will be picked up, 10317 * because it is dirty (it will be unlocked, unless it was 10318 * pagecreate'd). When the page is picked up as dirty, the dirty 10319 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10320 * checked. This will still be the old size. Therefore the page will 10321 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10322 * the page will be found to be clean and the write will be dropped. 10323 */ 10324 if (rp->r_flags & R4MODINPROGRESS) { 10325 mutex_enter(&rp->r_statelock); 10326 if ((rp->r_flags & R4MODINPROGRESS) && 10327 rp->r_modaddr + MAXBSIZE > io_off && 10328 rp->r_modaddr < io_off + io_len) { 10329 page_t *plist; 10330 /* 10331 * A write is in progress for this region of the file. 10332 * If we did not detect R4MODINPROGRESS here then this 10333 * path through nfs_putapage() would eventually go to 10334 * nfs4_bio() and may not write out all of the data 10335 * in the pages. We end up losing data. So we decide 10336 * to set the modified bit on each page in the page 10337 * list and mark the rnode with R4DIRTY. This write 10338 * will be restarted at some later time. 10339 */ 10340 plist = pp; 10341 while (plist != NULL) { 10342 pp = plist; 10343 page_sub(&plist, pp); 10344 hat_setmod(pp); 10345 page_io_unlock(pp); 10346 page_unlock(pp); 10347 } 10348 rp->r_flags |= R4DIRTY; 10349 mutex_exit(&rp->r_statelock); 10350 if (offp) 10351 *offp = io_off; 10352 if (lenp) 10353 *lenp = io_len; 10354 return (0); 10355 } 10356 mutex_exit(&rp->r_statelock); 10357 } 10358 10359 if (flags & B_ASYNC) { 10360 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10361 nfs4_sync_putapage); 10362 } else 10363 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10364 10365 if (offp) 10366 *offp = io_off; 10367 if (lenp) 10368 *lenp = io_len; 10369 return (error); 10370 } 10371 10372 static int 10373 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10374 int flags, cred_t *cr) 10375 { 10376 int error; 10377 rnode4_t *rp; 10378 10379 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10380 10381 flags |= B_WRITE; 10382 10383 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10384 10385 rp = VTOR4(vp); 10386 10387 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10388 error == EACCES) && 10389 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10390 if (!(rp->r_flags & R4OUTOFSPACE)) { 10391 mutex_enter(&rp->r_statelock); 10392 rp->r_flags |= R4OUTOFSPACE; 10393 mutex_exit(&rp->r_statelock); 10394 } 10395 flags |= B_ERROR; 10396 pvn_write_done(pp, flags); 10397 /* 10398 * If this was not an async thread, then try again to 10399 * write out the pages, but this time, also destroy 10400 * them whether or not the write is successful. This 10401 * will prevent memory from filling up with these 10402 * pages and destroying them is the only alternative 10403 * if they can't be written out. 10404 * 10405 * Don't do this if this is an async thread because 10406 * when the pages are unlocked in pvn_write_done, 10407 * some other thread could have come along, locked 10408 * them, and queued for an async thread. It would be 10409 * possible for all of the async threads to be tied 10410 * up waiting to lock the pages again and they would 10411 * all already be locked and waiting for an async 10412 * thread to handle them. Deadlock. 10413 */ 10414 if (!(flags & B_ASYNC)) { 10415 error = nfs4_putpage(vp, io_off, io_len, 10416 B_INVAL | B_FORCE, cr, NULL); 10417 } 10418 } else { 10419 if (error) 10420 flags |= B_ERROR; 10421 else if (rp->r_flags & R4OUTOFSPACE) { 10422 mutex_enter(&rp->r_statelock); 10423 rp->r_flags &= ~R4OUTOFSPACE; 10424 mutex_exit(&rp->r_statelock); 10425 } 10426 pvn_write_done(pp, flags); 10427 if (freemem < desfree) 10428 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10429 NFS4_WRITE_NOWAIT); 10430 } 10431 10432 return (error); 10433 } 10434 10435 #ifdef DEBUG 10436 int nfs4_force_open_before_mmap = 0; 10437 #endif 10438 10439 /* ARGSUSED */ 10440 static int 10441 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10442 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10443 caller_context_t *ct) 10444 { 10445 struct segvn_crargs vn_a; 10446 int error = 0; 10447 rnode4_t *rp = VTOR4(vp); 10448 mntinfo4_t *mi = VTOMI4(vp); 10449 10450 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10451 return (EIO); 10452 10453 if (vp->v_flag & VNOMAP) 10454 return (ENOSYS); 10455 10456 if (off < 0 || (off + len) < 0) 10457 return (ENXIO); 10458 10459 if (vp->v_type != VREG) 10460 return (ENODEV); 10461 10462 /* 10463 * If the file is delegated to the client don't do anything. 10464 * If the file is not delegated, then validate the data cache. 10465 */ 10466 mutex_enter(&rp->r_statev4_lock); 10467 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10468 mutex_exit(&rp->r_statev4_lock); 10469 error = nfs4_validate_caches(vp, cr); 10470 if (error) 10471 return (error); 10472 } else { 10473 mutex_exit(&rp->r_statev4_lock); 10474 } 10475 10476 /* 10477 * Check to see if the vnode is currently marked as not cachable. 10478 * This means portions of the file are locked (through VOP_FRLOCK). 10479 * In this case the map request must be refused. We use 10480 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10481 * 10482 * Atomically increment r_inmap after acquiring r_rwlock. The 10483 * idea here is to acquire r_rwlock to block read/write and 10484 * not to protect r_inmap. r_inmap will inform nfs4_read/write() 10485 * that we are in nfs4_map(). Now, r_rwlock is acquired in order 10486 * and we can prevent the deadlock that would have occurred 10487 * when nfs4_addmap() would have acquired it out of order. 10488 * 10489 * Since we are not protecting r_inmap by any lock, we do not 10490 * hold any lock when we decrement it. We atomically decrement 10491 * r_inmap after we release r_lkserlock. 10492 */ 10493 10494 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp))) 10495 return (EINTR); 10496 atomic_inc_uint(&rp->r_inmap); 10497 nfs_rw_exit(&rp->r_rwlock); 10498 10499 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) { 10500 atomic_dec_uint(&rp->r_inmap); 10501 return (EINTR); 10502 } 10503 10504 if (vp->v_flag & VNOCACHE) { 10505 error = EAGAIN; 10506 goto done; 10507 } 10508 10509 /* 10510 * Don't allow concurrent locks and mapping if mandatory locking is 10511 * enabled. 10512 */ 10513 if (flk_has_remote_locks(vp)) { 10514 struct vattr va; 10515 va.va_mask = AT_MODE; 10516 error = nfs4getattr(vp, &va, cr); 10517 if (error != 0) 10518 goto done; 10519 if (MANDLOCK(vp, va.va_mode)) { 10520 error = EAGAIN; 10521 goto done; 10522 } 10523 } 10524 10525 /* 10526 * It is possible that the rnode has a lost lock request that we 10527 * are still trying to recover, and that the request conflicts with 10528 * this map request. 10529 * 10530 * An alternative approach would be for nfs4_safemap() to consider 10531 * queued lock requests when deciding whether to set or clear 10532 * VNOCACHE. This would require the frlock code path to call 10533 * nfs4_safemap() after enqueing a lost request. 10534 */ 10535 if (nfs4_map_lost_lock_conflict(vp)) { 10536 error = EAGAIN; 10537 goto done; 10538 } 10539 10540 as_rangelock(as); 10541 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 10542 if (error != 0) { 10543 as_rangeunlock(as); 10544 goto done; 10545 } 10546 10547 if (vp->v_type == VREG) { 10548 /* 10549 * We need to retrieve the open stream 10550 */ 10551 nfs4_open_stream_t *osp = NULL; 10552 nfs4_open_owner_t *oop = NULL; 10553 10554 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10555 if (oop != NULL) { 10556 /* returns with 'os_sync_lock' held */ 10557 osp = find_open_stream(oop, rp); 10558 open_owner_rele(oop); 10559 } 10560 if (osp == NULL) { 10561 #ifdef DEBUG 10562 if (nfs4_force_open_before_mmap) { 10563 error = EIO; 10564 goto done; 10565 } 10566 #endif 10567 /* returns with 'os_sync_lock' held */ 10568 error = open_and_get_osp(vp, cr, &osp); 10569 if (osp == NULL) { 10570 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10571 "nfs4_map: we tried to OPEN the file " 10572 "but again no osp, so fail with EIO")); 10573 goto done; 10574 } 10575 } 10576 10577 if (osp->os_failed_reopen) { 10578 mutex_exit(&osp->os_sync_lock); 10579 open_stream_rele(osp, rp); 10580 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10581 "nfs4_map: os_failed_reopen set on " 10582 "osp %p, cr %p, rp %s", (void *)osp, 10583 (void *)cr, rnode4info(rp))); 10584 error = EIO; 10585 goto done; 10586 } 10587 mutex_exit(&osp->os_sync_lock); 10588 open_stream_rele(osp, rp); 10589 } 10590 10591 vn_a.vp = vp; 10592 vn_a.offset = off; 10593 vn_a.type = (flags & MAP_TYPE); 10594 vn_a.prot = (uchar_t)prot; 10595 vn_a.maxprot = (uchar_t)maxprot; 10596 vn_a.flags = (flags & ~MAP_TYPE); 10597 vn_a.cred = cr; 10598 vn_a.amp = NULL; 10599 vn_a.szc = 0; 10600 vn_a.lgrp_mem_policy_flags = 0; 10601 10602 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10603 as_rangeunlock(as); 10604 10605 done: 10606 nfs_rw_exit(&rp->r_lkserlock); 10607 atomic_dec_uint(&rp->r_inmap); 10608 return (error); 10609 } 10610 10611 /* 10612 * We're most likely dealing with a kernel module that likes to READ 10613 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10614 * officially OPEN the file to create the necessary client state 10615 * for bookkeeping of os_mmap_read/write counts. 10616 * 10617 * Since VOP_MAP only passes in a pointer to the vnode rather than 10618 * a double pointer, we can't handle the case where nfs4open_otw() 10619 * returns a different vnode than the one passed into VOP_MAP (since 10620 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10621 * we return NULL and let nfs4_map() fail. Note: the only case where 10622 * this should happen is if the file got removed and replaced with the 10623 * same name on the server (in addition to the fact that we're trying 10624 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10625 */ 10626 static int 10627 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10628 { 10629 rnode4_t *rp, *drp; 10630 vnode_t *dvp, *open_vp; 10631 char file_name[MAXNAMELEN]; 10632 int just_created; 10633 nfs4_open_stream_t *osp; 10634 nfs4_open_owner_t *oop; 10635 int error; 10636 10637 *ospp = NULL; 10638 open_vp = map_vp; 10639 10640 rp = VTOR4(open_vp); 10641 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10642 return (error); 10643 drp = VTOR4(dvp); 10644 10645 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10646 VN_RELE(dvp); 10647 return (EINTR); 10648 } 10649 10650 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10651 nfs_rw_exit(&drp->r_rwlock); 10652 VN_RELE(dvp); 10653 return (error); 10654 } 10655 10656 mutex_enter(&rp->r_statev4_lock); 10657 if (rp->created_v4) { 10658 rp->created_v4 = 0; 10659 mutex_exit(&rp->r_statev4_lock); 10660 10661 dnlc_update(dvp, file_name, open_vp); 10662 /* This is needed so we don't bump the open ref count */ 10663 just_created = 1; 10664 } else { 10665 mutex_exit(&rp->r_statev4_lock); 10666 just_created = 0; 10667 } 10668 10669 VN_HOLD(map_vp); 10670 10671 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10672 just_created); 10673 if (error) { 10674 nfs_rw_exit(&drp->r_rwlock); 10675 VN_RELE(dvp); 10676 VN_RELE(map_vp); 10677 return (error); 10678 } 10679 10680 nfs_rw_exit(&drp->r_rwlock); 10681 VN_RELE(dvp); 10682 10683 /* 10684 * If nfs4open_otw() returned a different vnode then "undo" 10685 * the open and return failure to the caller. 10686 */ 10687 if (!VN_CMP(open_vp, map_vp)) { 10688 nfs4_error_t e; 10689 10690 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10691 "open returned a different vnode")); 10692 /* 10693 * If there's an error, ignore it, 10694 * and let VOP_INACTIVE handle it. 10695 */ 10696 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10697 CLOSE_NORM, 0, 0, 0); 10698 VN_RELE(map_vp); 10699 return (EIO); 10700 } 10701 10702 VN_RELE(map_vp); 10703 10704 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10705 if (!oop) { 10706 nfs4_error_t e; 10707 10708 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10709 "no open owner")); 10710 /* 10711 * If there's an error, ignore it, 10712 * and let VOP_INACTIVE handle it. 10713 */ 10714 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10715 CLOSE_NORM, 0, 0, 0); 10716 return (EIO); 10717 } 10718 osp = find_open_stream(oop, rp); 10719 open_owner_rele(oop); 10720 *ospp = osp; 10721 return (0); 10722 } 10723 10724 /* 10725 * Please be aware that when this function is called, the address space write 10726 * a_lock is held. Do not put over the wire calls in this function. 10727 */ 10728 /* ARGSUSED */ 10729 static int 10730 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10731 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10732 caller_context_t *ct) 10733 { 10734 rnode4_t *rp; 10735 int error = 0; 10736 mntinfo4_t *mi; 10737 10738 mi = VTOMI4(vp); 10739 rp = VTOR4(vp); 10740 10741 if (nfs_zone() != mi->mi_zone) 10742 return (EIO); 10743 if (vp->v_flag & VNOMAP) 10744 return (ENOSYS); 10745 10746 /* 10747 * Don't need to update the open stream first, since this 10748 * mmap can't add any additional share access that isn't 10749 * already contained in the open stream (for the case where we 10750 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10751 * take into account os_mmap_read[write] counts). 10752 */ 10753 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10754 10755 if (vp->v_type == VREG) { 10756 /* 10757 * We need to retrieve the open stream and update the counts. 10758 * If there is no open stream here, something is wrong. 10759 */ 10760 nfs4_open_stream_t *osp = NULL; 10761 nfs4_open_owner_t *oop = NULL; 10762 10763 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10764 if (oop != NULL) { 10765 /* returns with 'os_sync_lock' held */ 10766 osp = find_open_stream(oop, rp); 10767 open_owner_rele(oop); 10768 } 10769 if (osp == NULL) { 10770 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10771 "nfs4_addmap: we should have an osp" 10772 "but we don't, so fail with EIO")); 10773 error = EIO; 10774 goto out; 10775 } 10776 10777 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10778 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10779 10780 /* 10781 * Update the map count in the open stream. 10782 * This is necessary in the case where we 10783 * open/mmap/close/, then the server reboots, and we 10784 * attempt to reopen. If the mmap doesn't add share 10785 * access then we send an invalid reopen with 10786 * access = NONE. 10787 * 10788 * We need to specifically check each PROT_* so a mmap 10789 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10790 * read and write access. A simple comparison of prot 10791 * to ~PROT_WRITE to determine read access is insufficient 10792 * since prot can be |= with PROT_USER, etc. 10793 */ 10794 10795 /* 10796 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10797 */ 10798 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10799 osp->os_mmap_write += btopr(len); 10800 if (maxprot & PROT_READ) 10801 osp->os_mmap_read += btopr(len); 10802 if (maxprot & PROT_EXEC) 10803 osp->os_mmap_read += btopr(len); 10804 /* 10805 * Ensure that os_mmap_read gets incremented, even if 10806 * maxprot were to look like PROT_NONE. 10807 */ 10808 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10809 !(maxprot & PROT_EXEC)) 10810 osp->os_mmap_read += btopr(len); 10811 osp->os_mapcnt += btopr(len); 10812 mutex_exit(&osp->os_sync_lock); 10813 open_stream_rele(osp, rp); 10814 } 10815 10816 out: 10817 /* 10818 * If we got an error, then undo our 10819 * incrementing of 'r_mapcnt'. 10820 */ 10821 10822 if (error) { 10823 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10824 ASSERT(rp->r_mapcnt >= 0); 10825 } 10826 return (error); 10827 } 10828 10829 /* ARGSUSED */ 10830 static int 10831 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10832 { 10833 10834 return (VTOR4(vp1) == VTOR4(vp2)); 10835 } 10836 10837 /* ARGSUSED */ 10838 static int 10839 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10840 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10841 caller_context_t *ct) 10842 { 10843 int rc; 10844 u_offset_t start, end; 10845 rnode4_t *rp; 10846 int error = 0, intr = INTR4(vp); 10847 nfs4_error_t e; 10848 10849 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10850 return (EIO); 10851 10852 /* check for valid cmd parameter */ 10853 switch (cmd) { 10854 case F_FLOCK: 10855 case F_FLOCKW: 10856 case F_OFD_GETLK: 10857 case F_OFD_SETLK: 10858 case F_OFD_SETLKW: 10859 return (EOPNOTSUPP); 10860 case F_GETLK: 10861 case F_SETLK: 10862 case F_SETLKW: 10863 break; 10864 default: 10865 return (EINVAL); 10866 } 10867 10868 /* Verify l_type. */ 10869 switch (bfp->l_type) { 10870 case F_RDLCK: 10871 if (cmd != F_GETLK && !(flag & FREAD)) 10872 return (EBADF); 10873 break; 10874 case F_WRLCK: 10875 if (cmd != F_GETLK && !(flag & FWRITE)) 10876 return (EBADF); 10877 break; 10878 case F_UNLCK: 10879 intr = 0; 10880 break; 10881 10882 default: 10883 return (EINVAL); 10884 } 10885 10886 /* check the validity of the lock range */ 10887 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10888 return (rc); 10889 if (rc = flk_check_lock_data(start, end, MAXEND)) 10890 return (rc); 10891 10892 /* 10893 * If the filesystem is mounted using local locking, pass the 10894 * request off to the local locking code. 10895 */ 10896 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10897 if (cmd == F_SETLK || cmd == F_SETLKW) { 10898 /* 10899 * For complete safety, we should be holding 10900 * r_lkserlock. However, we can't call 10901 * nfs4_safelock and then fs_frlock while 10902 * holding r_lkserlock, so just invoke 10903 * nfs4_safelock and expect that this will 10904 * catch enough of the cases. 10905 */ 10906 if (!nfs4_safelock(vp, bfp, cr)) 10907 return (EAGAIN); 10908 } 10909 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10910 } 10911 10912 rp = VTOR4(vp); 10913 10914 /* 10915 * Check whether the given lock request can proceed, given the 10916 * current file mappings. 10917 */ 10918 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10919 return (EINTR); 10920 if (cmd == F_SETLK || cmd == F_SETLKW) { 10921 if (!nfs4_safelock(vp, bfp, cr)) { 10922 rc = EAGAIN; 10923 goto done; 10924 } 10925 } 10926 10927 /* 10928 * Flush the cache after waiting for async I/O to finish. For new 10929 * locks, this is so that the process gets the latest bits from the 10930 * server. For unlocks, this is so that other clients see the 10931 * latest bits once the file has been unlocked. If currently dirty 10932 * pages can't be flushed, then don't allow a lock to be set. But 10933 * allow unlocks to succeed, to avoid having orphan locks on the 10934 * server. 10935 */ 10936 if (cmd != F_GETLK) { 10937 mutex_enter(&rp->r_statelock); 10938 while (rp->r_count > 0) { 10939 if (intr) { 10940 klwp_t *lwp = ttolwp(curthread); 10941 10942 if (lwp != NULL) 10943 lwp->lwp_nostop++; 10944 if (cv_wait_sig(&rp->r_cv, 10945 &rp->r_statelock) == 0) { 10946 if (lwp != NULL) 10947 lwp->lwp_nostop--; 10948 rc = EINTR; 10949 break; 10950 } 10951 if (lwp != NULL) 10952 lwp->lwp_nostop--; 10953 } else { 10954 cv_wait(&rp->r_cv, &rp->r_statelock); 10955 } 10956 } 10957 mutex_exit(&rp->r_statelock); 10958 if (rc != 0) 10959 goto done; 10960 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10961 if (error) { 10962 if (error == ENOSPC || error == EDQUOT) { 10963 mutex_enter(&rp->r_statelock); 10964 if (!rp->r_error) 10965 rp->r_error = error; 10966 mutex_exit(&rp->r_statelock); 10967 } 10968 if (bfp->l_type != F_UNLCK) { 10969 rc = ENOLCK; 10970 goto done; 10971 } 10972 } 10973 } 10974 10975 /* 10976 * Call the lock manager to do the real work of contacting 10977 * the server and obtaining the lock. 10978 */ 10979 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10980 cr, &e, NULL, NULL); 10981 rc = e.error; 10982 10983 if (rc == 0) 10984 nfs4_lockcompletion(vp, cmd); 10985 10986 done: 10987 nfs_rw_exit(&rp->r_lkserlock); 10988 10989 return (rc); 10990 } 10991 10992 /* 10993 * Free storage space associated with the specified vnode. The portion 10994 * to be freed is specified by bfp->l_start and bfp->l_len (already 10995 * normalized to a "whence" of 0). 10996 * 10997 * This is an experimental facility whose continued existence is not 10998 * guaranteed. Currently, we only support the special case 10999 * of l_len == 0, meaning free to end of file. 11000 */ 11001 /* ARGSUSED */ 11002 static int 11003 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 11004 offset_t offset, cred_t *cr, caller_context_t *ct) 11005 { 11006 int error; 11007 11008 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11009 return (EIO); 11010 ASSERT(vp->v_type == VREG); 11011 if (cmd != F_FREESP) 11012 return (EINVAL); 11013 11014 error = convoff(vp, bfp, 0, offset); 11015 if (!error) { 11016 ASSERT(bfp->l_start >= 0); 11017 if (bfp->l_len == 0) { 11018 struct vattr va; 11019 11020 va.va_mask = AT_SIZE; 11021 va.va_size = bfp->l_start; 11022 error = nfs4setattr(vp, &va, 0, cr, NULL); 11023 11024 if (error == 0 && bfp->l_start == 0) 11025 vnevent_truncate(vp, ct); 11026 } else 11027 error = EINVAL; 11028 } 11029 11030 return (error); 11031 } 11032 11033 /* ARGSUSED */ 11034 int 11035 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 11036 { 11037 rnode4_t *rp; 11038 rp = VTOR4(vp); 11039 11040 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 11041 vp = RTOV4(rp); 11042 } 11043 *vpp = vp; 11044 return (0); 11045 } 11046 11047 /* 11048 * Setup and add an address space callback to do the work of the delmap call. 11049 * The callback will (and must be) deleted in the actual callback function. 11050 * 11051 * This is done in order to take care of the problem that we have with holding 11052 * the address space's a_lock for a long period of time (e.g. if the NFS server 11053 * is down). Callbacks will be executed in the address space code while the 11054 * a_lock is not held. Holding the address space's a_lock causes things such 11055 * as ps and fork to hang because they are trying to acquire this lock as well. 11056 */ 11057 /* ARGSUSED */ 11058 static int 11059 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 11060 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 11061 caller_context_t *ct) 11062 { 11063 int caller_found; 11064 int error; 11065 rnode4_t *rp; 11066 nfs4_delmap_args_t *dmapp; 11067 nfs4_delmapcall_t *delmap_call; 11068 11069 if (vp->v_flag & VNOMAP) 11070 return (ENOSYS); 11071 11072 /* 11073 * A process may not change zones if it has NFS pages mmap'ed 11074 * in, so we can't legitimately get here from the wrong zone. 11075 */ 11076 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11077 11078 rp = VTOR4(vp); 11079 11080 /* 11081 * The way that the address space of this process deletes its mapping 11082 * of this file is via the following call chains: 11083 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11084 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11085 * 11086 * With the use of address space callbacks we are allowed to drop the 11087 * address space lock, a_lock, while executing the NFS operations that 11088 * need to go over the wire. Returning EAGAIN to the caller of this 11089 * function is what drives the execution of the callback that we add 11090 * below. The callback will be executed by the address space code 11091 * after dropping the a_lock. When the callback is finished, since 11092 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 11093 * is called again on the same segment to finish the rest of the work 11094 * that needs to happen during unmapping. 11095 * 11096 * This action of calling back into the segment driver causes 11097 * nfs4_delmap() to get called again, but since the callback was 11098 * already executed at this point, it already did the work and there 11099 * is nothing left for us to do. 11100 * 11101 * To Summarize: 11102 * - The first time nfs4_delmap is called by the current thread is when 11103 * we add the caller associated with this delmap to the delmap caller 11104 * list, add the callback, and return EAGAIN. 11105 * - The second time in this call chain when nfs4_delmap is called we 11106 * will find this caller in the delmap caller list and realize there 11107 * is no more work to do thus removing this caller from the list and 11108 * returning the error that was set in the callback execution. 11109 */ 11110 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 11111 if (caller_found) { 11112 /* 11113 * 'error' is from the actual delmap operations. To avoid 11114 * hangs, we need to handle the return of EAGAIN differently 11115 * since this is what drives the callback execution. 11116 * In this case, we don't want to return EAGAIN and do the 11117 * callback execution because there are none to execute. 11118 */ 11119 if (error == EAGAIN) 11120 return (0); 11121 else 11122 return (error); 11123 } 11124 11125 /* current caller was not in the list */ 11126 delmap_call = nfs4_init_delmapcall(); 11127 11128 mutex_enter(&rp->r_statelock); 11129 list_insert_tail(&rp->r_indelmap, delmap_call); 11130 mutex_exit(&rp->r_statelock); 11131 11132 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11133 11134 dmapp->vp = vp; 11135 dmapp->off = off; 11136 dmapp->addr = addr; 11137 dmapp->len = len; 11138 dmapp->prot = prot; 11139 dmapp->maxprot = maxprot; 11140 dmapp->flags = flags; 11141 dmapp->cr = cr; 11142 dmapp->caller = delmap_call; 11143 11144 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11145 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11146 11147 return (error ? error : EAGAIN); 11148 } 11149 11150 static nfs4_delmapcall_t * 11151 nfs4_init_delmapcall() 11152 { 11153 nfs4_delmapcall_t *delmap_call; 11154 11155 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11156 delmap_call->call_id = curthread; 11157 delmap_call->error = 0; 11158 11159 return (delmap_call); 11160 } 11161 11162 static void 11163 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11164 { 11165 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11166 } 11167 11168 /* 11169 * Searches for the current delmap caller (based on curthread) in the list of 11170 * callers. If it is found, we remove it and free the delmap caller. 11171 * Returns: 11172 * 0 if the caller wasn't found 11173 * 1 if the caller was found, removed and freed. *errp will be set 11174 * to what the result of the delmap was. 11175 */ 11176 static int 11177 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11178 { 11179 nfs4_delmapcall_t *delmap_call; 11180 11181 /* 11182 * If the list doesn't exist yet, we create it and return 11183 * that the caller wasn't found. No list = no callers. 11184 */ 11185 mutex_enter(&rp->r_statelock); 11186 if (!(rp->r_flags & R4DELMAPLIST)) { 11187 /* The list does not exist */ 11188 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11189 offsetof(nfs4_delmapcall_t, call_node)); 11190 rp->r_flags |= R4DELMAPLIST; 11191 mutex_exit(&rp->r_statelock); 11192 return (0); 11193 } else { 11194 /* The list exists so search it */ 11195 for (delmap_call = list_head(&rp->r_indelmap); 11196 delmap_call != NULL; 11197 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11198 if (delmap_call->call_id == curthread) { 11199 /* current caller is in the list */ 11200 *errp = delmap_call->error; 11201 list_remove(&rp->r_indelmap, delmap_call); 11202 mutex_exit(&rp->r_statelock); 11203 nfs4_free_delmapcall(delmap_call); 11204 return (1); 11205 } 11206 } 11207 } 11208 mutex_exit(&rp->r_statelock); 11209 return (0); 11210 } 11211 11212 /* 11213 * Remove some pages from an mmap'd vnode. Just update the 11214 * count of pages. If doing close-to-open, then flush and 11215 * commit all of the pages associated with this file. 11216 * Otherwise, start an asynchronous page flush to write out 11217 * any dirty pages. This will also associate a credential 11218 * with the rnode which can be used to write the pages. 11219 */ 11220 /* ARGSUSED */ 11221 static void 11222 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11223 { 11224 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11225 rnode4_t *rp; 11226 mntinfo4_t *mi; 11227 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11228 11229 rp = VTOR4(dmapp->vp); 11230 mi = VTOMI4(dmapp->vp); 11231 11232 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11233 ASSERT(rp->r_mapcnt >= 0); 11234 11235 /* 11236 * Initiate a page flush and potential commit if there are 11237 * pages, the file system was not mounted readonly, the segment 11238 * was mapped shared, and the pages themselves were writeable. 11239 */ 11240 if (nfs4_has_pages(dmapp->vp) && 11241 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11242 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11243 mutex_enter(&rp->r_statelock); 11244 rp->r_flags |= R4DIRTY; 11245 mutex_exit(&rp->r_statelock); 11246 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11247 dmapp->len, dmapp->cr); 11248 if (!e.error) { 11249 mutex_enter(&rp->r_statelock); 11250 e.error = rp->r_error; 11251 rp->r_error = 0; 11252 mutex_exit(&rp->r_statelock); 11253 } 11254 } else 11255 e.error = 0; 11256 11257 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11258 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11259 B_INVAL, dmapp->cr, NULL); 11260 11261 if (e.error) { 11262 e.stat = puterrno4(e.error); 11263 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11264 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11265 dmapp->caller->error = e.error; 11266 } 11267 11268 /* Check to see if we need to close the file */ 11269 11270 if (dmapp->vp->v_type == VREG) { 11271 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11272 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11273 11274 if (e.error != 0 || e.stat != NFS4_OK) { 11275 /* 11276 * Since it is possible that e.error == 0 and 11277 * e.stat != NFS4_OK (and vice versa), 11278 * we do the proper checking in order to get both 11279 * e.error and e.stat reporting the correct info. 11280 */ 11281 if (e.stat == NFS4_OK) 11282 e.stat = puterrno4(e.error); 11283 if (e.error == 0) 11284 e.error = geterrno4(e.stat); 11285 11286 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11287 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11288 dmapp->caller->error = e.error; 11289 } 11290 } 11291 11292 (void) as_delete_callback(as, arg); 11293 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11294 } 11295 11296 11297 static uint_t 11298 fattr4_maxfilesize_to_bits(uint64_t ll) 11299 { 11300 uint_t l = 1; 11301 11302 if (ll == 0) { 11303 return (0); 11304 } 11305 11306 if (ll & 0xffffffff00000000) { 11307 l += 32; ll >>= 32; 11308 } 11309 if (ll & 0xffff0000) { 11310 l += 16; ll >>= 16; 11311 } 11312 if (ll & 0xff00) { 11313 l += 8; ll >>= 8; 11314 } 11315 if (ll & 0xf0) { 11316 l += 4; ll >>= 4; 11317 } 11318 if (ll & 0xc) { 11319 l += 2; ll >>= 2; 11320 } 11321 if (ll & 0x2) { 11322 l += 1; 11323 } 11324 return (l); 11325 } 11326 11327 static int 11328 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr) 11329 { 11330 vnode_t *avp = NULL; 11331 int error; 11332 11333 if ((error = nfs4lookup_xattr(vp, "", &avp, 11334 LOOKUP_XATTR, cr)) == 0) 11335 error = do_xattr_exists_check(avp, valp, cr); 11336 if (avp) 11337 VN_RELE(avp); 11338 11339 return (error); 11340 } 11341 11342 /* ARGSUSED */ 11343 int 11344 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11345 caller_context_t *ct) 11346 { 11347 int error; 11348 hrtime_t t; 11349 rnode4_t *rp; 11350 nfs4_ga_res_t gar; 11351 nfs4_ga_ext_res_t ger; 11352 11353 gar.n4g_ext_res = &ger; 11354 11355 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11356 return (EIO); 11357 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11358 *valp = MAXPATHLEN; 11359 return (0); 11360 } 11361 if (cmd == _PC_ACL_ENABLED) { 11362 *valp = _ACL_ACE_ENABLED; 11363 return (0); 11364 } 11365 11366 rp = VTOR4(vp); 11367 if (cmd == _PC_XATTR_EXISTS) { 11368 /* 11369 * The existence of the xattr directory is not sufficient 11370 * for determining whether generic user attributes exists. 11371 * The attribute directory could only be a transient directory 11372 * used for Solaris sysattr support. Do a small readdir 11373 * to verify if the only entries are sysattrs or not. 11374 * 11375 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11376 * is NULL. Once the xadir vp exists, we can create xattrs, 11377 * and we don't have any way to update the "base" object's 11378 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11379 * could help out. 11380 */ 11381 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11382 rp->r_xattr_dir == NULL) { 11383 return (nfs4_have_xattrs(vp, valp, cr)); 11384 } 11385 } else { /* OLD CODE */ 11386 if (ATTRCACHE4_VALID(vp)) { 11387 mutex_enter(&rp->r_statelock); 11388 if (rp->r_pathconf.pc4_cache_valid) { 11389 error = 0; 11390 switch (cmd) { 11391 case _PC_FILESIZEBITS: 11392 *valp = 11393 rp->r_pathconf.pc4_filesizebits; 11394 break; 11395 case _PC_LINK_MAX: 11396 *valp = 11397 rp->r_pathconf.pc4_link_max; 11398 break; 11399 case _PC_NAME_MAX: 11400 *valp = 11401 rp->r_pathconf.pc4_name_max; 11402 break; 11403 case _PC_CHOWN_RESTRICTED: 11404 *valp = 11405 rp->r_pathconf.pc4_chown_restricted; 11406 break; 11407 case _PC_NO_TRUNC: 11408 *valp = 11409 rp->r_pathconf.pc4_no_trunc; 11410 break; 11411 default: 11412 error = EINVAL; 11413 break; 11414 } 11415 mutex_exit(&rp->r_statelock); 11416 #ifdef DEBUG 11417 nfs4_pathconf_cache_hits++; 11418 #endif 11419 return (error); 11420 } 11421 mutex_exit(&rp->r_statelock); 11422 } 11423 } 11424 #ifdef DEBUG 11425 nfs4_pathconf_cache_misses++; 11426 #endif 11427 11428 t = gethrtime(); 11429 11430 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11431 11432 if (error) { 11433 mutex_enter(&rp->r_statelock); 11434 rp->r_pathconf.pc4_cache_valid = FALSE; 11435 rp->r_pathconf.pc4_xattr_valid = FALSE; 11436 mutex_exit(&rp->r_statelock); 11437 return (error); 11438 } 11439 11440 /* interpret the max filesize */ 11441 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11442 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11443 11444 /* Store the attributes we just received */ 11445 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11446 11447 switch (cmd) { 11448 case _PC_FILESIZEBITS: 11449 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11450 break; 11451 case _PC_LINK_MAX: 11452 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11453 break; 11454 case _PC_NAME_MAX: 11455 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11456 break; 11457 case _PC_CHOWN_RESTRICTED: 11458 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11459 break; 11460 case _PC_NO_TRUNC: 11461 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11462 break; 11463 case _PC_XATTR_EXISTS: 11464 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) { 11465 if (error = nfs4_have_xattrs(vp, valp, cr)) 11466 return (error); 11467 } 11468 break; 11469 default: 11470 return (EINVAL); 11471 } 11472 11473 return (0); 11474 } 11475 11476 /* 11477 * Called by async thread to do synchronous pageio. Do the i/o, wait 11478 * for it to complete, and cleanup the page list when done. 11479 */ 11480 static int 11481 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11482 int flags, cred_t *cr) 11483 { 11484 int error; 11485 11486 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11487 11488 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11489 if (flags & B_READ) 11490 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11491 else 11492 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11493 return (error); 11494 } 11495 11496 /* ARGSUSED */ 11497 static int 11498 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11499 int flags, cred_t *cr, caller_context_t *ct) 11500 { 11501 int error; 11502 rnode4_t *rp; 11503 11504 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11505 return (EIO); 11506 11507 if (pp == NULL) 11508 return (EINVAL); 11509 11510 rp = VTOR4(vp); 11511 mutex_enter(&rp->r_statelock); 11512 rp->r_count++; 11513 mutex_exit(&rp->r_statelock); 11514 11515 if (flags & B_ASYNC) { 11516 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11517 nfs4_sync_pageio); 11518 } else 11519 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11520 mutex_enter(&rp->r_statelock); 11521 rp->r_count--; 11522 cv_broadcast(&rp->r_cv); 11523 mutex_exit(&rp->r_statelock); 11524 return (error); 11525 } 11526 11527 /* ARGSUSED */ 11528 static void 11529 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11530 caller_context_t *ct) 11531 { 11532 int error; 11533 rnode4_t *rp; 11534 page_t *plist; 11535 page_t *pptr; 11536 offset3 offset; 11537 count3 len; 11538 k_sigset_t smask; 11539 11540 /* 11541 * We should get called with fl equal to either B_FREE or 11542 * B_INVAL. Any other value is illegal. 11543 * 11544 * The page that we are either supposed to free or destroy 11545 * should be exclusive locked and its io lock should not 11546 * be held. 11547 */ 11548 ASSERT(fl == B_FREE || fl == B_INVAL); 11549 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11550 11551 rp = VTOR4(vp); 11552 11553 /* 11554 * If the page doesn't need to be committed or we shouldn't 11555 * even bother attempting to commit it, then just make sure 11556 * that the p_fsdata byte is clear and then either free or 11557 * destroy the page as appropriate. 11558 */ 11559 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11560 pp->p_fsdata = C_NOCOMMIT; 11561 if (fl == B_FREE) 11562 page_free(pp, dn); 11563 else 11564 page_destroy(pp, dn); 11565 return; 11566 } 11567 11568 /* 11569 * If there is a page invalidation operation going on, then 11570 * if this is one of the pages being destroyed, then just 11571 * clear the p_fsdata byte and then either free or destroy 11572 * the page as appropriate. 11573 */ 11574 mutex_enter(&rp->r_statelock); 11575 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11576 mutex_exit(&rp->r_statelock); 11577 pp->p_fsdata = C_NOCOMMIT; 11578 if (fl == B_FREE) 11579 page_free(pp, dn); 11580 else 11581 page_destroy(pp, dn); 11582 return; 11583 } 11584 11585 /* 11586 * If we are freeing this page and someone else is already 11587 * waiting to do a commit, then just unlock the page and 11588 * return. That other thread will take care of commiting 11589 * this page. The page can be freed sometime after the 11590 * commit has finished. Otherwise, if the page is marked 11591 * as delay commit, then we may be getting called from 11592 * pvn_write_done, one page at a time. This could result 11593 * in one commit per page, so we end up doing lots of small 11594 * commits instead of fewer larger commits. This is bad, 11595 * we want do as few commits as possible. 11596 */ 11597 if (fl == B_FREE) { 11598 if (rp->r_flags & R4COMMITWAIT) { 11599 page_unlock(pp); 11600 mutex_exit(&rp->r_statelock); 11601 return; 11602 } 11603 if (pp->p_fsdata == C_DELAYCOMMIT) { 11604 pp->p_fsdata = C_COMMIT; 11605 page_unlock(pp); 11606 mutex_exit(&rp->r_statelock); 11607 return; 11608 } 11609 } 11610 11611 /* 11612 * Check to see if there is a signal which would prevent an 11613 * attempt to commit the pages from being successful. If so, 11614 * then don't bother with all of the work to gather pages and 11615 * generate the unsuccessful RPC. Just return from here and 11616 * let the page be committed at some later time. 11617 */ 11618 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11619 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11620 sigunintr(&smask); 11621 page_unlock(pp); 11622 mutex_exit(&rp->r_statelock); 11623 return; 11624 } 11625 sigunintr(&smask); 11626 11627 /* 11628 * We are starting to need to commit pages, so let's try 11629 * to commit as many as possible at once to reduce the 11630 * overhead. 11631 * 11632 * Set the `commit inprogress' state bit. We must 11633 * first wait until any current one finishes. Then 11634 * we initialize the c_pages list with this page. 11635 */ 11636 while (rp->r_flags & R4COMMIT) { 11637 rp->r_flags |= R4COMMITWAIT; 11638 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11639 rp->r_flags &= ~R4COMMITWAIT; 11640 } 11641 rp->r_flags |= R4COMMIT; 11642 mutex_exit(&rp->r_statelock); 11643 ASSERT(rp->r_commit.c_pages == NULL); 11644 rp->r_commit.c_pages = pp; 11645 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11646 rp->r_commit.c_commlen = PAGESIZE; 11647 11648 /* 11649 * Gather together all other pages which can be committed. 11650 * They will all be chained off r_commit.c_pages. 11651 */ 11652 nfs4_get_commit(vp); 11653 11654 /* 11655 * Clear the `commit inprogress' status and disconnect 11656 * the list of pages to be committed from the rnode. 11657 * At this same time, we also save the starting offset 11658 * and length of data to be committed on the server. 11659 */ 11660 plist = rp->r_commit.c_pages; 11661 rp->r_commit.c_pages = NULL; 11662 offset = rp->r_commit.c_commbase; 11663 len = rp->r_commit.c_commlen; 11664 mutex_enter(&rp->r_statelock); 11665 rp->r_flags &= ~R4COMMIT; 11666 cv_broadcast(&rp->r_commit.c_cv); 11667 mutex_exit(&rp->r_statelock); 11668 11669 if (curproc == proc_pageout || curproc == proc_fsflush || 11670 nfs_zone() != VTOMI4(vp)->mi_zone) { 11671 nfs4_async_commit(vp, plist, offset, len, 11672 cr, do_nfs4_async_commit); 11673 return; 11674 } 11675 11676 /* 11677 * Actually generate the COMMIT op over the wire operation. 11678 */ 11679 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11680 11681 /* 11682 * If we got an error during the commit, just unlock all 11683 * of the pages. The pages will get retransmitted to the 11684 * server during a putpage operation. 11685 */ 11686 if (error) { 11687 while (plist != NULL) { 11688 pptr = plist; 11689 page_sub(&plist, pptr); 11690 page_unlock(pptr); 11691 } 11692 return; 11693 } 11694 11695 /* 11696 * We've tried as hard as we can to commit the data to stable 11697 * storage on the server. We just unlock the rest of the pages 11698 * and clear the commit required state. They will be put 11699 * onto the tail of the cachelist if they are nolonger 11700 * mapped. 11701 */ 11702 while (plist != pp) { 11703 pptr = plist; 11704 page_sub(&plist, pptr); 11705 pptr->p_fsdata = C_NOCOMMIT; 11706 page_unlock(pptr); 11707 } 11708 11709 /* 11710 * It is possible that nfs4_commit didn't return error but 11711 * some other thread has modified the page we are going 11712 * to free/destroy. 11713 * In this case we need to rewrite the page. Do an explicit check 11714 * before attempting to free/destroy the page. If modified, needs to 11715 * be rewritten so unlock the page and return. 11716 */ 11717 if (hat_ismod(pp)) { 11718 pp->p_fsdata = C_NOCOMMIT; 11719 page_unlock(pp); 11720 return; 11721 } 11722 11723 /* 11724 * Now, as appropriate, either free or destroy the page 11725 * that we were called with. 11726 */ 11727 pp->p_fsdata = C_NOCOMMIT; 11728 if (fl == B_FREE) 11729 page_free(pp, dn); 11730 else 11731 page_destroy(pp, dn); 11732 } 11733 11734 /* 11735 * Commit requires that the current fh be the file written to. 11736 * The compound op structure is: 11737 * PUTFH(file), COMMIT 11738 */ 11739 static int 11740 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11741 { 11742 COMPOUND4args_clnt args; 11743 COMPOUND4res_clnt res; 11744 COMMIT4res *cm_res; 11745 nfs_argop4 argop[2]; 11746 nfs_resop4 *resop; 11747 int doqueue; 11748 mntinfo4_t *mi; 11749 rnode4_t *rp; 11750 cred_t *cred_otw = NULL; 11751 bool_t needrecov = FALSE; 11752 nfs4_recov_state_t recov_state; 11753 nfs4_open_stream_t *osp = NULL; 11754 bool_t first_time = TRUE; /* first time getting OTW cred */ 11755 bool_t last_time = FALSE; /* last time getting OTW cred */ 11756 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11757 11758 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11759 11760 rp = VTOR4(vp); 11761 11762 mi = VTOMI4(vp); 11763 recov_state.rs_flags = 0; 11764 recov_state.rs_num_retry_despite_err = 0; 11765 get_commit_cred: 11766 /* 11767 * Releases the osp, if a valid open stream is provided. 11768 * Puts a hold on the cred_otw and the new osp (if found). 11769 */ 11770 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11771 &first_time, &last_time); 11772 args.ctag = TAG_COMMIT; 11773 recov_retry: 11774 /* 11775 * Commit ops: putfh file; commit 11776 */ 11777 args.array_len = 2; 11778 args.array = argop; 11779 11780 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11781 &recov_state, NULL); 11782 if (e.error) { 11783 crfree(cred_otw); 11784 if (osp != NULL) 11785 open_stream_rele(osp, rp); 11786 return (e.error); 11787 } 11788 11789 /* putfh directory */ 11790 argop[0].argop = OP_CPUTFH; 11791 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11792 11793 /* commit */ 11794 argop[1].argop = OP_COMMIT; 11795 argop[1].nfs_argop4_u.opcommit.offset = offset; 11796 argop[1].nfs_argop4_u.opcommit.count = count; 11797 11798 doqueue = 1; 11799 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11800 11801 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11802 if (!needrecov && e.error) { 11803 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11804 needrecov); 11805 crfree(cred_otw); 11806 if (e.error == EACCES && last_time == FALSE) 11807 goto get_commit_cred; 11808 if (osp != NULL) 11809 open_stream_rele(osp, rp); 11810 return (e.error); 11811 } 11812 11813 if (needrecov) { 11814 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11815 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) { 11816 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11817 &recov_state, needrecov); 11818 if (!e.error) 11819 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11820 goto recov_retry; 11821 } 11822 if (e.error) { 11823 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11824 &recov_state, needrecov); 11825 crfree(cred_otw); 11826 if (osp != NULL) 11827 open_stream_rele(osp, rp); 11828 return (e.error); 11829 } 11830 /* fall through for res.status case */ 11831 } 11832 11833 if (res.status) { 11834 e.error = geterrno4(res.status); 11835 if (e.error == EACCES && last_time == FALSE) { 11836 crfree(cred_otw); 11837 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11838 &recov_state, needrecov); 11839 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11840 goto get_commit_cred; 11841 } 11842 /* 11843 * Can't do a nfs4_purge_stale_fh here because this 11844 * can cause a deadlock. nfs4_commit can 11845 * be called from nfs4_dispose which can be called 11846 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11847 * can call back to pvn_vplist_dirty. 11848 */ 11849 if (e.error == ESTALE) { 11850 mutex_enter(&rp->r_statelock); 11851 rp->r_flags |= R4STALE; 11852 if (!rp->r_error) 11853 rp->r_error = e.error; 11854 mutex_exit(&rp->r_statelock); 11855 PURGE_ATTRCACHE4(vp); 11856 } else { 11857 mutex_enter(&rp->r_statelock); 11858 if (!rp->r_error) 11859 rp->r_error = e.error; 11860 mutex_exit(&rp->r_statelock); 11861 } 11862 } else { 11863 ASSERT(rp->r_flags & R4HAVEVERF); 11864 resop = &res.array[1]; /* commit res */ 11865 cm_res = &resop->nfs_resop4_u.opcommit; 11866 mutex_enter(&rp->r_statelock); 11867 if (cm_res->writeverf == rp->r_writeverf) { 11868 mutex_exit(&rp->r_statelock); 11869 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11870 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11871 &recov_state, needrecov); 11872 crfree(cred_otw); 11873 if (osp != NULL) 11874 open_stream_rele(osp, rp); 11875 return (0); 11876 } 11877 nfs4_set_mod(vp); 11878 rp->r_writeverf = cm_res->writeverf; 11879 mutex_exit(&rp->r_statelock); 11880 e.error = NFS_VERF_MISMATCH; 11881 } 11882 11883 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11884 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11885 crfree(cred_otw); 11886 if (osp != NULL) 11887 open_stream_rele(osp, rp); 11888 11889 return (e.error); 11890 } 11891 11892 static void 11893 nfs4_set_mod(vnode_t *vp) 11894 { 11895 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11896 11897 /* make sure we're looking at the master vnode, not a shadow */ 11898 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check); 11899 } 11900 11901 /* 11902 * This function is used to gather a page list of the pages which 11903 * can be committed on the server. 11904 * 11905 * The calling thread must have set R4COMMIT. This bit is used to 11906 * serialize access to the commit structure in the rnode. As long 11907 * as the thread has set R4COMMIT, then it can manipulate the commit 11908 * structure without requiring any other locks. 11909 * 11910 * When this function is called from nfs4_dispose() the page passed 11911 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11912 * will skip it. This is not a problem since we initially add the 11913 * page to the r_commit page list. 11914 * 11915 */ 11916 static void 11917 nfs4_get_commit(vnode_t *vp) 11918 { 11919 rnode4_t *rp; 11920 page_t *pp; 11921 kmutex_t *vphm; 11922 11923 rp = VTOR4(vp); 11924 11925 ASSERT(rp->r_flags & R4COMMIT); 11926 11927 /* make sure we're looking at the master vnode, not a shadow */ 11928 11929 if (IS_SHADOW(vp, rp)) 11930 vp = RTOV4(rp); 11931 11932 vphm = page_vnode_mutex(vp); 11933 mutex_enter(vphm); 11934 11935 /* 11936 * If there are no pages associated with this vnode, then 11937 * just return. 11938 */ 11939 if ((pp = vp->v_pages) == NULL) { 11940 mutex_exit(vphm); 11941 return; 11942 } 11943 11944 /* 11945 * Step through all of the pages associated with this vnode 11946 * looking for pages which need to be committed. 11947 */ 11948 do { 11949 /* Skip marker pages. */ 11950 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 11951 continue; 11952 11953 /* 11954 * First short-cut everything (without the page_lock) 11955 * and see if this page does not need to be committed 11956 * or is modified if so then we'll just skip it. 11957 */ 11958 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11959 continue; 11960 11961 /* 11962 * Attempt to lock the page. If we can't, then 11963 * someone else is messing with it or we have been 11964 * called from nfs4_dispose and this is the page that 11965 * nfs4_dispose was called with.. anyway just skip it. 11966 */ 11967 if (!page_trylock(pp, SE_EXCL)) 11968 continue; 11969 11970 /* 11971 * Lets check again now that we have the page lock. 11972 */ 11973 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11974 page_unlock(pp); 11975 continue; 11976 } 11977 11978 /* this had better not be a free page */ 11979 ASSERT(PP_ISFREE(pp) == 0); 11980 11981 /* 11982 * The page needs to be committed and we locked it. 11983 * Update the base and length parameters and add it 11984 * to r_pages. 11985 */ 11986 if (rp->r_commit.c_pages == NULL) { 11987 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11988 rp->r_commit.c_commlen = PAGESIZE; 11989 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11990 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11991 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11992 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11993 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11994 <= pp->p_offset) { 11995 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11996 rp->r_commit.c_commbase + PAGESIZE; 11997 } 11998 page_add(&rp->r_commit.c_pages, pp); 11999 } while ((pp = pp->p_vpnext) != vp->v_pages); 12000 12001 mutex_exit(vphm); 12002 } 12003 12004 /* 12005 * This routine is used to gather together a page list of the pages 12006 * which are to be committed on the server. This routine must not 12007 * be called if the calling thread holds any locked pages. 12008 * 12009 * The calling thread must have set R4COMMIT. This bit is used to 12010 * serialize access to the commit structure in the rnode. As long 12011 * as the thread has set R4COMMIT, then it can manipulate the commit 12012 * structure without requiring any other locks. 12013 */ 12014 static void 12015 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 12016 { 12017 12018 rnode4_t *rp; 12019 page_t *pp; 12020 u_offset_t end; 12021 u_offset_t off; 12022 ASSERT(len != 0); 12023 rp = VTOR4(vp); 12024 ASSERT(rp->r_flags & R4COMMIT); 12025 12026 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12027 12028 /* make sure we're looking at the master vnode, not a shadow */ 12029 12030 if (IS_SHADOW(vp, rp)) 12031 vp = RTOV4(rp); 12032 12033 /* 12034 * If there are no pages associated with this vnode, then 12035 * just return. 12036 */ 12037 if ((pp = vp->v_pages) == NULL) 12038 return; 12039 /* 12040 * Calculate the ending offset. 12041 */ 12042 end = soff + len; 12043 for (off = soff; off < end; off += PAGESIZE) { 12044 /* 12045 * Lookup each page by vp, offset. 12046 */ 12047 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 12048 continue; 12049 /* 12050 * If this page does not need to be committed or is 12051 * modified, then just skip it. 12052 */ 12053 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12054 page_unlock(pp); 12055 continue; 12056 } 12057 12058 ASSERT(PP_ISFREE(pp) == 0); 12059 /* 12060 * The page needs to be committed and we locked it. 12061 * Update the base and length parameters and add it 12062 * to r_pages. 12063 */ 12064 if (rp->r_commit.c_pages == NULL) { 12065 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12066 rp->r_commit.c_commlen = PAGESIZE; 12067 } else { 12068 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12069 rp->r_commit.c_commbase + PAGESIZE; 12070 } 12071 page_add(&rp->r_commit.c_pages, pp); 12072 } 12073 } 12074 12075 /* 12076 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 12077 * Flushes and commits data to the server. 12078 */ 12079 static int 12080 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 12081 { 12082 int error; 12083 verifier4 write_verf; 12084 rnode4_t *rp = VTOR4(vp); 12085 12086 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12087 12088 /* 12089 * Flush the data portion of the file and then commit any 12090 * portions which need to be committed. This may need to 12091 * be done twice if the server has changed state since 12092 * data was last written. The data will need to be 12093 * rewritten to the server and then a new commit done. 12094 * 12095 * In fact, this may need to be done several times if the 12096 * server is having problems and crashing while we are 12097 * attempting to do this. 12098 */ 12099 12100 top: 12101 /* 12102 * Do a flush based on the poff and plen arguments. This 12103 * will synchronously write out any modified pages in the 12104 * range specified by (poff, plen). This starts all of the 12105 * i/o operations which will be waited for in the next 12106 * call to nfs4_putpage 12107 */ 12108 12109 mutex_enter(&rp->r_statelock); 12110 write_verf = rp->r_writeverf; 12111 mutex_exit(&rp->r_statelock); 12112 12113 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 12114 if (error == EAGAIN) 12115 error = 0; 12116 12117 /* 12118 * Do a flush based on the poff and plen arguments. This 12119 * will synchronously write out any modified pages in the 12120 * range specified by (poff, plen) and wait until all of 12121 * the asynchronous i/o's in that range are done as well. 12122 */ 12123 if (!error) 12124 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12125 12126 if (error) 12127 return (error); 12128 12129 mutex_enter(&rp->r_statelock); 12130 if (rp->r_writeverf != write_verf) { 12131 mutex_exit(&rp->r_statelock); 12132 goto top; 12133 } 12134 mutex_exit(&rp->r_statelock); 12135 12136 /* 12137 * Now commit any pages which might need to be committed. 12138 * If the error, NFS_VERF_MISMATCH, is returned, then 12139 * start over with the flush operation. 12140 */ 12141 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12142 12143 if (error == NFS_VERF_MISMATCH) 12144 goto top; 12145 12146 return (error); 12147 } 12148 12149 /* 12150 * nfs4_commit_vp() will wait for other pending commits and 12151 * will either commit the whole file or a range, plen dictates 12152 * if we commit whole file. a value of zero indicates the whole 12153 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12154 */ 12155 static int 12156 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12157 cred_t *cr, int wait_on_writes) 12158 { 12159 rnode4_t *rp; 12160 page_t *plist; 12161 offset3 offset; 12162 count3 len; 12163 12164 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12165 12166 rp = VTOR4(vp); 12167 12168 /* 12169 * before we gather commitable pages make 12170 * sure there are no outstanding async writes 12171 */ 12172 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12173 mutex_enter(&rp->r_statelock); 12174 while (rp->r_count > 0) { 12175 cv_wait(&rp->r_cv, &rp->r_statelock); 12176 } 12177 mutex_exit(&rp->r_statelock); 12178 } 12179 12180 /* 12181 * Set the `commit inprogress' state bit. We must 12182 * first wait until any current one finishes. 12183 */ 12184 mutex_enter(&rp->r_statelock); 12185 while (rp->r_flags & R4COMMIT) { 12186 rp->r_flags |= R4COMMITWAIT; 12187 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12188 rp->r_flags &= ~R4COMMITWAIT; 12189 } 12190 rp->r_flags |= R4COMMIT; 12191 mutex_exit(&rp->r_statelock); 12192 12193 /* 12194 * Gather all of the pages which need to be 12195 * committed. 12196 */ 12197 if (plen == 0) 12198 nfs4_get_commit(vp); 12199 else 12200 nfs4_get_commit_range(vp, poff, plen); 12201 12202 /* 12203 * Clear the `commit inprogress' bit and disconnect the 12204 * page list which was gathered by nfs4_get_commit. 12205 */ 12206 plist = rp->r_commit.c_pages; 12207 rp->r_commit.c_pages = NULL; 12208 offset = rp->r_commit.c_commbase; 12209 len = rp->r_commit.c_commlen; 12210 mutex_enter(&rp->r_statelock); 12211 rp->r_flags &= ~R4COMMIT; 12212 cv_broadcast(&rp->r_commit.c_cv); 12213 mutex_exit(&rp->r_statelock); 12214 12215 /* 12216 * If any pages need to be committed, commit them and 12217 * then unlock them so that they can be freed some 12218 * time later. 12219 */ 12220 if (plist == NULL) 12221 return (0); 12222 12223 /* 12224 * No error occurred during the flush portion 12225 * of this operation, so now attempt to commit 12226 * the data to stable storage on the server. 12227 * 12228 * This will unlock all of the pages on the list. 12229 */ 12230 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12231 } 12232 12233 static int 12234 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12235 cred_t *cr) 12236 { 12237 int error; 12238 page_t *pp; 12239 12240 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12241 12242 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12243 12244 /* 12245 * If we got an error, then just unlock all of the pages 12246 * on the list. 12247 */ 12248 if (error) { 12249 while (plist != NULL) { 12250 pp = plist; 12251 page_sub(&plist, pp); 12252 page_unlock(pp); 12253 } 12254 return (error); 12255 } 12256 /* 12257 * We've tried as hard as we can to commit the data to stable 12258 * storage on the server. We just unlock the pages and clear 12259 * the commit required state. They will get freed later. 12260 */ 12261 while (plist != NULL) { 12262 pp = plist; 12263 page_sub(&plist, pp); 12264 pp->p_fsdata = C_NOCOMMIT; 12265 page_unlock(pp); 12266 } 12267 12268 return (error); 12269 } 12270 12271 static void 12272 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12273 cred_t *cr) 12274 { 12275 12276 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12277 } 12278 12279 /*ARGSUSED*/ 12280 static int 12281 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12282 caller_context_t *ct) 12283 { 12284 int error = 0; 12285 mntinfo4_t *mi; 12286 vattr_t va; 12287 vsecattr_t nfsace4_vsap; 12288 12289 mi = VTOMI4(vp); 12290 if (nfs_zone() != mi->mi_zone) 12291 return (EIO); 12292 if (mi->mi_flags & MI4_ACL) { 12293 /* if we have a delegation, return it */ 12294 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12295 (void) nfs4delegreturn(VTOR4(vp), 12296 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12297 12298 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12299 NFS4_ACL_SET); 12300 if (error) /* EINVAL */ 12301 return (error); 12302 12303 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12304 /* 12305 * These are aclent_t type entries. 12306 */ 12307 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12308 vp->v_type == VDIR, FALSE); 12309 if (error) 12310 return (error); 12311 } else { 12312 /* 12313 * These are ace_t type entries. 12314 */ 12315 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12316 FALSE); 12317 if (error) 12318 return (error); 12319 } 12320 bzero(&va, sizeof (va)); 12321 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12322 vs_ace4_destroy(&nfsace4_vsap); 12323 return (error); 12324 } 12325 return (ENOSYS); 12326 } 12327 12328 /* ARGSUSED */ 12329 int 12330 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12331 caller_context_t *ct) 12332 { 12333 int error; 12334 mntinfo4_t *mi; 12335 nfs4_ga_res_t gar; 12336 rnode4_t *rp = VTOR4(vp); 12337 12338 mi = VTOMI4(vp); 12339 if (nfs_zone() != mi->mi_zone) 12340 return (EIO); 12341 12342 bzero(&gar, sizeof (gar)); 12343 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12344 12345 /* 12346 * vsecattr->vsa_mask holds the original acl request mask. 12347 * This is needed when determining what to return. 12348 * (See: nfs4_create_getsecattr_return()) 12349 */ 12350 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12351 if (error) /* EINVAL */ 12352 return (error); 12353 12354 /* 12355 * If this is a referral stub, don't try to go OTW for an ACL 12356 */ 12357 if (RP_ISSTUB_REFERRAL(VTOR4(vp))) 12358 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 12359 12360 if (mi->mi_flags & MI4_ACL) { 12361 /* 12362 * Check if the data is cached and the cache is valid. If it 12363 * is we don't go over the wire. 12364 */ 12365 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12366 mutex_enter(&rp->r_statelock); 12367 if (rp->r_secattr != NULL) { 12368 error = nfs4_create_getsecattr_return( 12369 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12370 rp->r_attr.va_gid, 12371 vp->v_type == VDIR); 12372 if (!error) { /* error == 0 - Success! */ 12373 mutex_exit(&rp->r_statelock); 12374 return (error); 12375 } 12376 } 12377 mutex_exit(&rp->r_statelock); 12378 } 12379 12380 /* 12381 * The getattr otw call will always get both the acl, in 12382 * the form of a list of nfsace4's, and the number of acl 12383 * entries; independent of the value of gar.n4g_va.va_mask. 12384 */ 12385 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12386 if (error) { 12387 vs_ace4_destroy(&gar.n4g_vsa); 12388 if (error == ENOTSUP || error == EOPNOTSUPP) 12389 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12390 return (error); 12391 } 12392 12393 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12394 /* 12395 * No error was returned, but according to the response 12396 * bitmap, neither was an acl. 12397 */ 12398 vs_ace4_destroy(&gar.n4g_vsa); 12399 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12400 return (error); 12401 } 12402 12403 /* 12404 * Update the cache with the ACL. 12405 */ 12406 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12407 12408 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12409 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12410 vp->v_type == VDIR); 12411 vs_ace4_destroy(&gar.n4g_vsa); 12412 if ((error) && (vsecattr->vsa_mask & 12413 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12414 (error != EACCES)) { 12415 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12416 } 12417 return (error); 12418 } 12419 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12420 return (error); 12421 } 12422 12423 /* 12424 * The function returns: 12425 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12426 * - EINVAL if the passed in "acl_mask" is an invalid request. 12427 * 12428 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12429 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12430 * 12431 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12432 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12433 * - We have a count field set without the corresponding acl field set. (e.g. - 12434 * VSA_ACECNT is set, but VSA_ACE is not) 12435 */ 12436 static int 12437 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12438 { 12439 /* Shortcut the masks that are always valid. */ 12440 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12441 return (0); 12442 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12443 return (0); 12444 12445 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12446 /* 12447 * We can't have any VSA_ACL type stuff in the mask now. 12448 */ 12449 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12450 VSA_DFACLCNT)) 12451 return (EINVAL); 12452 12453 if (op == NFS4_ACL_SET) { 12454 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12455 return (EINVAL); 12456 } 12457 } 12458 12459 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12460 /* 12461 * We can't have any VSA_ACE type stuff in the mask now. 12462 */ 12463 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12464 return (EINVAL); 12465 12466 if (op == NFS4_ACL_SET) { 12467 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12468 return (EINVAL); 12469 12470 if ((acl_mask & VSA_DFACLCNT) && 12471 !(acl_mask & VSA_DFACL)) 12472 return (EINVAL); 12473 } 12474 } 12475 return (0); 12476 } 12477 12478 /* 12479 * The theory behind creating the correct getsecattr return is simply this: 12480 * "Don't return anything that the caller is not expecting to have to free." 12481 */ 12482 static int 12483 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12484 uid_t uid, gid_t gid, int isdir) 12485 { 12486 int error = 0; 12487 /* Save the mask since the translators modify it. */ 12488 uint_t orig_mask = vsap->vsa_mask; 12489 12490 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12491 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE); 12492 12493 if (error) 12494 return (error); 12495 12496 /* 12497 * If the caller only asked for the ace count (VSA_ACECNT) 12498 * don't give them the full acl (VSA_ACE), free it. 12499 */ 12500 if (!orig_mask & VSA_ACE) { 12501 if (vsap->vsa_aclentp != NULL) { 12502 kmem_free(vsap->vsa_aclentp, 12503 vsap->vsa_aclcnt * sizeof (ace_t)); 12504 vsap->vsa_aclentp = NULL; 12505 } 12506 } 12507 vsap->vsa_mask = orig_mask; 12508 12509 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12510 VSA_DFACLCNT)) { 12511 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12512 isdir, FALSE); 12513 12514 if (error) 12515 return (error); 12516 12517 /* 12518 * If the caller only asked for the acl count (VSA_ACLCNT) 12519 * and/or the default acl count (VSA_DFACLCNT) don't give them 12520 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12521 */ 12522 if (!orig_mask & VSA_ACL) { 12523 if (vsap->vsa_aclentp != NULL) { 12524 kmem_free(vsap->vsa_aclentp, 12525 vsap->vsa_aclcnt * sizeof (aclent_t)); 12526 vsap->vsa_aclentp = NULL; 12527 } 12528 } 12529 12530 if (!orig_mask & VSA_DFACL) { 12531 if (vsap->vsa_dfaclentp != NULL) { 12532 kmem_free(vsap->vsa_dfaclentp, 12533 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12534 vsap->vsa_dfaclentp = NULL; 12535 } 12536 } 12537 vsap->vsa_mask = orig_mask; 12538 } 12539 return (0); 12540 } 12541 12542 /* ARGSUSED */ 12543 int 12544 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12545 caller_context_t *ct) 12546 { 12547 int error; 12548 12549 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12550 return (EIO); 12551 /* 12552 * check for valid cmd parameter 12553 */ 12554 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12555 return (EINVAL); 12556 12557 /* 12558 * Check access permissions 12559 */ 12560 if ((cmd & F_SHARE) && 12561 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12562 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12563 return (EBADF); 12564 12565 /* 12566 * If the filesystem is mounted using local locking, pass the 12567 * request off to the local share code. 12568 */ 12569 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12570 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12571 12572 switch (cmd) { 12573 case F_SHARE: 12574 case F_UNSHARE: 12575 /* 12576 * This will be properly implemented later, 12577 * see RFE: 4823948 . 12578 */ 12579 error = EAGAIN; 12580 break; 12581 12582 case F_HASREMOTELOCKS: 12583 /* 12584 * NFS client can't store remote locks itself 12585 */ 12586 shr->s_access = 0; 12587 error = 0; 12588 break; 12589 12590 default: 12591 error = EINVAL; 12592 break; 12593 } 12594 12595 return (error); 12596 } 12597 12598 /* 12599 * Common code called by directory ops to update the attrcache 12600 */ 12601 static int 12602 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12603 hrtime_t t, vnode_t *vp, cred_t *cr) 12604 { 12605 int error = 0; 12606 12607 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12608 12609 if (status != NFS4_OK) { 12610 /* getattr not done or failed */ 12611 PURGE_ATTRCACHE4(vp); 12612 return (error); 12613 } 12614 12615 if (garp) { 12616 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12617 } else { 12618 PURGE_ATTRCACHE4(vp); 12619 } 12620 return (error); 12621 } 12622 12623 /* 12624 * Update directory caches for directory modification ops (link, rename, etc.) 12625 * When dinfo is NULL, manage dircaches in the old way. 12626 */ 12627 static void 12628 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12629 dirattr_info_t *dinfo) 12630 { 12631 rnode4_t *drp = VTOR4(dvp); 12632 12633 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12634 12635 /* Purge rddir cache for dir since it changed */ 12636 if (drp->r_dir != NULL) 12637 nfs4_purge_rddir_cache(dvp); 12638 12639 /* 12640 * If caller provided dinfo, then use it to manage dir caches. 12641 */ 12642 if (dinfo != NULL) { 12643 if (vp != NULL) { 12644 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12645 if (!VTOR4(vp)->created_v4) { 12646 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12647 dnlc_update(dvp, nm, vp); 12648 } else { 12649 /* 12650 * XXX don't update if the created_v4 flag is 12651 * set 12652 */ 12653 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12654 NFS4_DEBUG(nfs4_client_state_debug, 12655 (CE_NOTE, "nfs4_update_dircaches: " 12656 "don't update dnlc: created_v4 flag")); 12657 } 12658 } 12659 12660 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12661 dinfo->di_cred, FALSE, cinfo); 12662 12663 return; 12664 } 12665 12666 /* 12667 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12668 * Since caller modified dir but didn't receive post-dirmod-op dir 12669 * attrs, the dir's attrs must be purged. 12670 * 12671 * XXX this check and dnlc update/purge should really be atomic, 12672 * XXX but can't use rnode statelock because it'll deadlock in 12673 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12674 * XXX does occur. 12675 * 12676 * XXX We also may want to check that atomic is true in the 12677 * XXX change_info struct. If it is not, the change_info may 12678 * XXX reflect changes by more than one clients which means that 12679 * XXX our cache may not be valid. 12680 */ 12681 PURGE_ATTRCACHE4(dvp); 12682 if (drp->r_change == cinfo->before) { 12683 /* no changes took place in the directory prior to our link */ 12684 if (vp != NULL) { 12685 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12686 if (!VTOR4(vp)->created_v4) { 12687 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12688 dnlc_update(dvp, nm, vp); 12689 } else { 12690 /* 12691 * XXX dont' update if the created_v4 flag 12692 * is set 12693 */ 12694 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12695 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12696 "nfs4_update_dircaches: don't" 12697 " update dnlc: created_v4 flag")); 12698 } 12699 } 12700 } else { 12701 /* Another client modified directory - purge its dnlc cache */ 12702 dnlc_purge_vp(dvp); 12703 } 12704 } 12705 12706 /* 12707 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12708 * file. 12709 * 12710 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12711 * file (ie: client recovery) and otherwise set to FALSE. 12712 * 12713 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12714 * initiated) calling functions. 12715 * 12716 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12717 * of resending a 'lost' open request. 12718 * 12719 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12720 * server that hands out BAD_SEQID on open confirm. 12721 * 12722 * Errors are returned via the nfs4_error_t parameter. 12723 */ 12724 void 12725 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12726 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12727 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12728 { 12729 COMPOUND4args_clnt args; 12730 COMPOUND4res_clnt res; 12731 nfs_argop4 argop[2]; 12732 nfs_resop4 *resop; 12733 int doqueue = 1; 12734 mntinfo4_t *mi; 12735 OPEN_CONFIRM4args *open_confirm_args; 12736 int needrecov; 12737 12738 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12739 #if DEBUG 12740 mutex_enter(&oop->oo_lock); 12741 ASSERT(oop->oo_seqid_inuse); 12742 mutex_exit(&oop->oo_lock); 12743 #endif 12744 12745 recov_retry_confirm: 12746 nfs4_error_zinit(ep); 12747 *retry_open = FALSE; 12748 12749 if (resend) 12750 args.ctag = TAG_OPEN_CONFIRM_LOST; 12751 else 12752 args.ctag = TAG_OPEN_CONFIRM; 12753 12754 args.array_len = 2; 12755 args.array = argop; 12756 12757 /* putfh target fh */ 12758 argop[0].argop = OP_CPUTFH; 12759 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12760 12761 argop[1].argop = OP_OPEN_CONFIRM; 12762 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12763 12764 (*seqid) += 1; 12765 open_confirm_args->seqid = *seqid; 12766 open_confirm_args->open_stateid = *stateid; 12767 12768 mi = VTOMI4(vp); 12769 12770 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12771 12772 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12773 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12774 } 12775 12776 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12777 if (!needrecov && ep->error) 12778 return; 12779 12780 if (needrecov) { 12781 bool_t abort = FALSE; 12782 12783 if (reopening_file == FALSE) { 12784 nfs4_bseqid_entry_t *bsep = NULL; 12785 12786 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12787 bsep = nfs4_create_bseqid_entry(oop, NULL, 12788 vp, 0, args.ctag, 12789 open_confirm_args->seqid); 12790 12791 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 12792 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL); 12793 if (bsep) { 12794 kmem_free(bsep, sizeof (*bsep)); 12795 if (num_bseqid_retryp && 12796 --(*num_bseqid_retryp) == 0) 12797 abort = TRUE; 12798 } 12799 } 12800 if ((ep->error == ETIMEDOUT || 12801 res.status == NFS4ERR_RESOURCE) && 12802 abort == FALSE && resend == FALSE) { 12803 if (!ep->error) 12804 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12805 12806 delay(SEC_TO_TICK(confirm_retry_sec)); 12807 goto recov_retry_confirm; 12808 } 12809 /* State may have changed so retry the entire OPEN op */ 12810 if (abort == FALSE) 12811 *retry_open = TRUE; 12812 else 12813 *retry_open = FALSE; 12814 if (!ep->error) 12815 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12816 return; 12817 } 12818 12819 if (res.status) { 12820 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12821 return; 12822 } 12823 12824 resop = &res.array[1]; /* open confirm res */ 12825 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12826 stateid, sizeof (*stateid)); 12827 12828 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12829 } 12830 12831 /* 12832 * Return the credentials associated with a client state object. The 12833 * caller is responsible for freeing the credentials. 12834 */ 12835 12836 static cred_t * 12837 state_to_cred(nfs4_open_stream_t *osp) 12838 { 12839 cred_t *cr; 12840 12841 /* 12842 * It's ok to not lock the open stream and open owner to get 12843 * the oo_cred since this is only written once (upon creation) 12844 * and will not change. 12845 */ 12846 cr = osp->os_open_owner->oo_cred; 12847 crhold(cr); 12848 12849 return (cr); 12850 } 12851 12852 /* 12853 * nfs4_find_sysid 12854 * 12855 * Find the sysid for the knetconfig associated with the given mi. 12856 */ 12857 static struct lm_sysid * 12858 nfs4_find_sysid(mntinfo4_t *mi) 12859 { 12860 ASSERT(nfs_zone() == mi->mi_zone); 12861 12862 /* 12863 * Switch from RDMA knconf to original mount knconf 12864 */ 12865 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12866 mi->mi_curr_serv->sv_hostname, NULL)); 12867 } 12868 12869 #ifdef DEBUG 12870 /* 12871 * Return a string version of the call type for easy reading. 12872 */ 12873 static char * 12874 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12875 { 12876 switch (ctype) { 12877 case NFS4_LCK_CTYPE_NORM: 12878 return ("NORMAL"); 12879 case NFS4_LCK_CTYPE_RECLAIM: 12880 return ("RECLAIM"); 12881 case NFS4_LCK_CTYPE_RESEND: 12882 return ("RESEND"); 12883 case NFS4_LCK_CTYPE_REINSTATE: 12884 return ("REINSTATE"); 12885 default: 12886 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12887 "type %d", ctype); 12888 return (""); 12889 } 12890 } 12891 #endif 12892 12893 /* 12894 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12895 * Unlock requests don't have an over-the-wire locktype, so we just return 12896 * something non-threatening. 12897 */ 12898 12899 static nfs_lock_type4 12900 flk_to_locktype(int cmd, int l_type) 12901 { 12902 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12903 12904 switch (l_type) { 12905 case F_UNLCK: 12906 return (READ_LT); 12907 case F_RDLCK: 12908 if (cmd == F_SETLK) 12909 return (READ_LT); 12910 else 12911 return (READW_LT); 12912 case F_WRLCK: 12913 if (cmd == F_SETLK) 12914 return (WRITE_LT); 12915 else 12916 return (WRITEW_LT); 12917 } 12918 panic("flk_to_locktype"); 12919 /*NOTREACHED*/ 12920 } 12921 12922 /* 12923 * Do some preliminary checks for nfs4frlock. 12924 */ 12925 static int 12926 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12927 u_offset_t offset) 12928 { 12929 int error = 0; 12930 12931 /* 12932 * If we are setting a lock, check that the file is opened 12933 * with the correct mode. 12934 */ 12935 if (cmd == F_SETLK || cmd == F_SETLKW) { 12936 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12937 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12938 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12939 "nfs4frlock_validate_args: file was opened with " 12940 "incorrect mode")); 12941 return (EBADF); 12942 } 12943 } 12944 12945 /* Convert the offset. It may need to be restored before returning. */ 12946 if (error = convoff(vp, flk, 0, offset)) { 12947 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12948 "nfs4frlock_validate_args: convoff => error= %d\n", 12949 error)); 12950 return (error); 12951 } 12952 12953 return (error); 12954 } 12955 12956 /* 12957 * Set the flock64's lm_sysid for nfs4frlock. 12958 */ 12959 static int 12960 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12961 { 12962 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12963 12964 /* Find the lm_sysid */ 12965 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12966 12967 if (*lspp == NULL) { 12968 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12969 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12970 return (ENOLCK); 12971 } 12972 12973 flk->l_sysid = lm_sysidt(*lspp); 12974 12975 return (0); 12976 } 12977 12978 /* 12979 * Do the remaining preliminary setup for nfs4frlock. 12980 */ 12981 static void 12982 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12983 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12984 cred_t **cred_otw) 12985 { 12986 /* 12987 * set tick_delay to the base delay time. 12988 * (NFS4_BASE_WAIT_TIME is in secs) 12989 */ 12990 12991 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12992 12993 /* 12994 * If lock is relative to EOF, we need the newest length of the 12995 * file. Therefore invalidate the ATTR_CACHE. 12996 */ 12997 12998 *whencep = flk->l_whence; 12999 13000 if (*whencep == 2) /* SEEK_END */ 13001 PURGE_ATTRCACHE4(vp); 13002 13003 recov_statep->rs_flags = 0; 13004 recov_statep->rs_num_retry_despite_err = 0; 13005 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 13006 } 13007 13008 /* 13009 * Initialize and allocate the data structures necessary for 13010 * the nfs4frlock call. 13011 * Allocates argsp's op array. 13012 */ 13013 static void 13014 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 13015 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 13016 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 13017 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 13018 { 13019 int argoplist_size; 13020 int num_ops = 2; 13021 13022 *retry = FALSE; 13023 *did_start_fop = FALSE; 13024 *skip_get_err = FALSE; 13025 lost_rqstp->lr_op = 0; 13026 argoplist_size = num_ops * sizeof (nfs_argop4); 13027 /* fill array with zero */ 13028 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 13029 13030 *argspp = argsp; 13031 *respp = NULL; 13032 13033 argsp->array_len = num_ops; 13034 argsp->array = *argopp; 13035 13036 /* initialize in case of error; will get real value down below */ 13037 argsp->ctag = TAG_NONE; 13038 13039 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 13040 *op_hintp = OH_LOCKU; 13041 else 13042 *op_hintp = OH_OTHER; 13043 } 13044 13045 /* 13046 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 13047 * the proper nfs4_server_t for this instance of nfs4frlock. 13048 * Returns 0 (success) or an errno value. 13049 */ 13050 static int 13051 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 13052 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 13053 bool_t *did_start_fop, bool_t *startrecovp) 13054 { 13055 int error = 0; 13056 rnode4_t *rp; 13057 13058 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13059 13060 if (ctype == NFS4_LCK_CTYPE_NORM) { 13061 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 13062 recov_statep, startrecovp); 13063 if (error) 13064 return (error); 13065 *did_start_fop = TRUE; 13066 } else { 13067 *did_start_fop = FALSE; 13068 *startrecovp = FALSE; 13069 } 13070 13071 if (!error) { 13072 rp = VTOR4(vp); 13073 13074 /* If the file failed recovery, just quit. */ 13075 mutex_enter(&rp->r_statelock); 13076 if (rp->r_flags & R4RECOVERR) { 13077 error = EIO; 13078 } 13079 mutex_exit(&rp->r_statelock); 13080 } 13081 13082 return (error); 13083 } 13084 13085 /* 13086 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 13087 * resend nfs4frlock call is initiated by the recovery framework. 13088 * Acquires the lop and oop seqid synchronization. 13089 */ 13090 static void 13091 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 13092 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 13093 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13094 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 13095 { 13096 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 13097 int error; 13098 13099 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 13100 (CE_NOTE, 13101 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 13102 ASSERT(resend_rqstp != NULL); 13103 ASSERT(resend_rqstp->lr_op == OP_LOCK || 13104 resend_rqstp->lr_op == OP_LOCKU); 13105 13106 *oopp = resend_rqstp->lr_oop; 13107 if (resend_rqstp->lr_oop) { 13108 open_owner_hold(resend_rqstp->lr_oop); 13109 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 13110 ASSERT(error == 0); /* recov thread always succeeds */ 13111 } 13112 13113 /* Must resend this lost lock/locku request. */ 13114 ASSERT(resend_rqstp->lr_lop != NULL); 13115 *lopp = resend_rqstp->lr_lop; 13116 lock_owner_hold(resend_rqstp->lr_lop); 13117 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13118 ASSERT(error == 0); /* recov thread always succeeds */ 13119 13120 *ospp = resend_rqstp->lr_osp; 13121 if (*ospp) 13122 open_stream_hold(resend_rqstp->lr_osp); 13123 13124 if (resend_rqstp->lr_op == OP_LOCK) { 13125 LOCK4args *lock_args; 13126 13127 argop->argop = OP_LOCK; 13128 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13129 lock_args->locktype = resend_rqstp->lr_locktype; 13130 lock_args->reclaim = 13131 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13132 lock_args->offset = resend_rqstp->lr_flk->l_start; 13133 lock_args->length = resend_rqstp->lr_flk->l_len; 13134 if (lock_args->length == 0) 13135 lock_args->length = ~lock_args->length; 13136 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13137 mi2clientid(mi), &lock_args->locker); 13138 13139 switch (resend_rqstp->lr_ctype) { 13140 case NFS4_LCK_CTYPE_RESEND: 13141 argsp->ctag = TAG_LOCK_RESEND; 13142 break; 13143 case NFS4_LCK_CTYPE_REINSTATE: 13144 argsp->ctag = TAG_LOCK_REINSTATE; 13145 break; 13146 case NFS4_LCK_CTYPE_RECLAIM: 13147 argsp->ctag = TAG_LOCK_RECLAIM; 13148 break; 13149 default: 13150 argsp->ctag = TAG_LOCK_UNKNOWN; 13151 break; 13152 } 13153 } else { 13154 LOCKU4args *locku_args; 13155 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13156 13157 argop->argop = OP_LOCKU; 13158 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13159 locku_args->locktype = READ_LT; 13160 locku_args->seqid = lop->lock_seqid + 1; 13161 mutex_enter(&lop->lo_lock); 13162 locku_args->lock_stateid = lop->lock_stateid; 13163 mutex_exit(&lop->lo_lock); 13164 locku_args->offset = resend_rqstp->lr_flk->l_start; 13165 locku_args->length = resend_rqstp->lr_flk->l_len; 13166 if (locku_args->length == 0) 13167 locku_args->length = ~locku_args->length; 13168 13169 switch (resend_rqstp->lr_ctype) { 13170 case NFS4_LCK_CTYPE_RESEND: 13171 argsp->ctag = TAG_LOCKU_RESEND; 13172 break; 13173 case NFS4_LCK_CTYPE_REINSTATE: 13174 argsp->ctag = TAG_LOCKU_REINSTATE; 13175 break; 13176 default: 13177 argsp->ctag = TAG_LOCK_UNKNOWN; 13178 break; 13179 } 13180 } 13181 } 13182 13183 /* 13184 * Setup the LOCKT4 arguments. 13185 */ 13186 static void 13187 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13188 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13189 rnode4_t *rp) 13190 { 13191 LOCKT4args *lockt_args; 13192 13193 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13194 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13195 argop->argop = OP_LOCKT; 13196 argsp->ctag = TAG_LOCKT; 13197 lockt_args = &argop->nfs_argop4_u.oplockt; 13198 13199 /* 13200 * The locktype will be READ_LT unless it's 13201 * a write lock. We do this because the Solaris 13202 * system call allows the combination of 13203 * F_UNLCK and F_GETLK* and so in that case the 13204 * unlock is mapped to a read. 13205 */ 13206 if (flk->l_type == F_WRLCK) 13207 lockt_args->locktype = WRITE_LT; 13208 else 13209 lockt_args->locktype = READ_LT; 13210 13211 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13212 /* set the lock owner4 args */ 13213 nfs4_setlockowner_args(&lockt_args->owner, rp, 13214 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13215 flk->l_pid); 13216 lockt_args->offset = flk->l_start; 13217 lockt_args->length = flk->l_len; 13218 if (flk->l_len == 0) 13219 lockt_args->length = ~lockt_args->length; 13220 13221 *lockt_argsp = lockt_args; 13222 } 13223 13224 /* 13225 * If the client is holding a delegation, and the open stream to be used 13226 * with this lock request is a delegation open stream, then re-open the stream. 13227 * Sets the nfs4_error_t to all zeros unless the open stream has already 13228 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13229 * means the caller should retry (like a recovery retry). 13230 */ 13231 static void 13232 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13233 { 13234 open_delegation_type4 dt; 13235 bool_t reopen_needed, force; 13236 nfs4_open_stream_t *osp; 13237 open_claim_type4 oclaim; 13238 rnode4_t *rp = VTOR4(vp); 13239 mntinfo4_t *mi = VTOMI4(vp); 13240 13241 ASSERT(nfs_zone() == mi->mi_zone); 13242 13243 nfs4_error_zinit(ep); 13244 13245 mutex_enter(&rp->r_statev4_lock); 13246 dt = rp->r_deleg_type; 13247 mutex_exit(&rp->r_statev4_lock); 13248 13249 if (dt != OPEN_DELEGATE_NONE) { 13250 nfs4_open_owner_t *oop; 13251 13252 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13253 if (!oop) { 13254 ep->stat = NFS4ERR_IO; 13255 return; 13256 } 13257 /* returns with 'os_sync_lock' held */ 13258 osp = find_open_stream(oop, rp); 13259 if (!osp) { 13260 open_owner_rele(oop); 13261 ep->stat = NFS4ERR_IO; 13262 return; 13263 } 13264 13265 if (osp->os_failed_reopen) { 13266 NFS4_DEBUG((nfs4_open_stream_debug || 13267 nfs4_client_lock_debug), (CE_NOTE, 13268 "nfs4frlock_check_deleg: os_failed_reopen set " 13269 "for osp %p, cr %p, rp %s", (void *)osp, 13270 (void *)cr, rnode4info(rp))); 13271 mutex_exit(&osp->os_sync_lock); 13272 open_stream_rele(osp, rp); 13273 open_owner_rele(oop); 13274 ep->stat = NFS4ERR_IO; 13275 return; 13276 } 13277 13278 /* 13279 * Determine whether a reopen is needed. If this 13280 * is a delegation open stream, then send the open 13281 * to the server to give visibility to the open owner. 13282 * Even if it isn't a delegation open stream, we need 13283 * to check if the previous open CLAIM_DELEGATE_CUR 13284 * was sufficient. 13285 */ 13286 13287 reopen_needed = osp->os_delegation || 13288 ((lt == F_RDLCK && 13289 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13290 (lt == F_WRLCK && 13291 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13292 13293 mutex_exit(&osp->os_sync_lock); 13294 open_owner_rele(oop); 13295 13296 if (reopen_needed) { 13297 /* 13298 * Always use CLAIM_PREVIOUS after server reboot. 13299 * The server will reject CLAIM_DELEGATE_CUR if 13300 * it is used during the grace period. 13301 */ 13302 mutex_enter(&mi->mi_lock); 13303 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13304 oclaim = CLAIM_PREVIOUS; 13305 force = TRUE; 13306 } else { 13307 oclaim = CLAIM_DELEGATE_CUR; 13308 force = FALSE; 13309 } 13310 mutex_exit(&mi->mi_lock); 13311 13312 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13313 if (ep->error == EAGAIN) { 13314 nfs4_error_zinit(ep); 13315 ep->stat = NFS4ERR_DELAY; 13316 } 13317 } 13318 open_stream_rele(osp, rp); 13319 osp = NULL; 13320 } 13321 } 13322 13323 /* 13324 * Setup the LOCKU4 arguments. 13325 * Returns errors via the nfs4_error_t. 13326 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13327 * over-the-wire. The caller must release the 13328 * reference on *lopp. 13329 * NFS4ERR_DELAY caller should retry (like recovery retry) 13330 * (other) unrecoverable error. 13331 */ 13332 static void 13333 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13334 LOCKU4args **locku_argsp, flock64_t *flk, 13335 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13336 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13337 bool_t *skip_get_err, bool_t *go_otwp) 13338 { 13339 nfs4_lock_owner_t *lop = NULL; 13340 LOCKU4args *locku_args; 13341 pid_t pid; 13342 bool_t is_spec = FALSE; 13343 rnode4_t *rp = VTOR4(vp); 13344 13345 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13346 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13347 13348 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13349 if (ep->error || ep->stat) 13350 return; 13351 13352 argop->argop = OP_LOCKU; 13353 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13354 argsp->ctag = TAG_LOCKU_REINSTATE; 13355 else 13356 argsp->ctag = TAG_LOCKU; 13357 locku_args = &argop->nfs_argop4_u.oplocku; 13358 *locku_argsp = locku_args; 13359 13360 /* locktype should be set to any legal value */ 13361 locku_args->locktype = READ_LT; 13362 13363 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13364 flk->l_pid; 13365 13366 /* 13367 * Get the lock owner stateid. If no lock owner 13368 * exists, return success. 13369 */ 13370 lop = find_lock_owner(rp, pid, LOWN_ANY); 13371 *lopp = lop; 13372 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13373 is_spec = TRUE; 13374 if (!lop || is_spec) { 13375 /* 13376 * No lock owner so no locks to unlock. 13377 * Return success. If there was a failed 13378 * reclaim earlier, the lock might still be 13379 * registered with the local locking code, 13380 * so notify it of the unlock. 13381 * 13382 * If the lockowner is using a special stateid, 13383 * then the original lock request (that created 13384 * this lockowner) was never successful, so we 13385 * have no lock to undo OTW. 13386 */ 13387 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13388 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13389 "(%ld) so return success", (long)pid)); 13390 13391 if (ctype == NFS4_LCK_CTYPE_NORM) 13392 flk->l_pid = curproc->p_pid; 13393 nfs4_register_lock_locally(vp, flk, flag, offset); 13394 /* 13395 * Release our hold and NULL out so final_cleanup 13396 * doesn't try to end a lock seqid sync we 13397 * never started. 13398 */ 13399 if (is_spec) { 13400 lock_owner_rele(lop); 13401 *lopp = NULL; 13402 } 13403 *skip_get_err = TRUE; 13404 *go_otwp = FALSE; 13405 return; 13406 } 13407 13408 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13409 if (ep->error == EAGAIN) { 13410 lock_owner_rele(lop); 13411 *lopp = NULL; 13412 return; 13413 } 13414 13415 mutex_enter(&lop->lo_lock); 13416 locku_args->lock_stateid = lop->lock_stateid; 13417 mutex_exit(&lop->lo_lock); 13418 locku_args->seqid = lop->lock_seqid + 1; 13419 13420 /* leave the ref count on lop, rele after RPC call */ 13421 13422 locku_args->offset = flk->l_start; 13423 locku_args->length = flk->l_len; 13424 if (flk->l_len == 0) 13425 locku_args->length = ~locku_args->length; 13426 13427 *go_otwp = TRUE; 13428 } 13429 13430 /* 13431 * Setup the LOCK4 arguments. 13432 * 13433 * Returns errors via the nfs4_error_t. 13434 * NFS4_OK no problems 13435 * NFS4ERR_DELAY caller should retry (like recovery retry) 13436 * (other) unrecoverable error 13437 */ 13438 static void 13439 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13440 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13441 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13442 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13443 { 13444 LOCK4args *lock_args; 13445 nfs4_open_owner_t *oop = NULL; 13446 nfs4_open_stream_t *osp = NULL; 13447 nfs4_lock_owner_t *lop = NULL; 13448 pid_t pid; 13449 rnode4_t *rp = VTOR4(vp); 13450 13451 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13452 13453 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13454 if (ep->error || ep->stat != NFS4_OK) 13455 return; 13456 13457 argop->argop = OP_LOCK; 13458 if (ctype == NFS4_LCK_CTYPE_NORM) 13459 argsp->ctag = TAG_LOCK; 13460 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13461 argsp->ctag = TAG_RELOCK; 13462 else 13463 argsp->ctag = TAG_LOCK_REINSTATE; 13464 lock_args = &argop->nfs_argop4_u.oplock; 13465 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13466 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13467 /* 13468 * Get the lock owner. If no lock owner exists, 13469 * create a 'temporary' one and grab the open seqid 13470 * synchronization (which puts a hold on the open 13471 * owner and open stream). 13472 * This also grabs the lock seqid synchronization. 13473 */ 13474 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13475 ep->stat = 13476 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13477 13478 if (ep->stat != NFS4_OK) 13479 goto out; 13480 13481 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13482 &lock_args->locker); 13483 13484 lock_args->offset = flk->l_start; 13485 lock_args->length = flk->l_len; 13486 if (flk->l_len == 0) 13487 lock_args->length = ~lock_args->length; 13488 *lock_argsp = lock_args; 13489 out: 13490 *oopp = oop; 13491 *ospp = osp; 13492 *lopp = lop; 13493 } 13494 13495 /* 13496 * After we get the reply from the server, record the proper information 13497 * for possible resend lock requests. 13498 */ 13499 static void 13500 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13501 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13502 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13503 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13504 { 13505 bool_t unlock = (flk->l_type == F_UNLCK); 13506 13507 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13508 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13509 ctype == NFS4_LCK_CTYPE_REINSTATE); 13510 13511 if (error != 0 && !unlock) { 13512 NFS4_DEBUG((nfs4_lost_rqst_debug || 13513 nfs4_client_lock_debug), (CE_NOTE, 13514 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13515 " for lop %p", (void *)lop)); 13516 ASSERT(lop != NULL); 13517 mutex_enter(&lop->lo_lock); 13518 lop->lo_pending_rqsts = 1; 13519 mutex_exit(&lop->lo_lock); 13520 } 13521 13522 lost_rqstp->lr_putfirst = FALSE; 13523 lost_rqstp->lr_op = 0; 13524 13525 /* 13526 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13527 * recovery purposes so that the lock request that was sent 13528 * can be saved and re-issued later. Ditto for EIO from a forced 13529 * unmount. This is done to have the client's local locking state 13530 * match the v4 server's state; that is, the request was 13531 * potentially received and accepted by the server but the client 13532 * thinks it was not. 13533 */ 13534 if (error == ETIMEDOUT || error == EINTR || 13535 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13536 NFS4_DEBUG((nfs4_lost_rqst_debug || 13537 nfs4_client_lock_debug), (CE_NOTE, 13538 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13539 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13540 (void *)lop, (void *)oop, (void *)osp)); 13541 if (unlock) 13542 lost_rqstp->lr_op = OP_LOCKU; 13543 else { 13544 lost_rqstp->lr_op = OP_LOCK; 13545 lost_rqstp->lr_locktype = locktype; 13546 } 13547 /* 13548 * Objects are held and rele'd via the recovery code. 13549 * See nfs4_save_lost_rqst. 13550 */ 13551 lost_rqstp->lr_vp = vp; 13552 lost_rqstp->lr_dvp = NULL; 13553 lost_rqstp->lr_oop = oop; 13554 lost_rqstp->lr_osp = osp; 13555 lost_rqstp->lr_lop = lop; 13556 lost_rqstp->lr_cr = cr; 13557 switch (ctype) { 13558 case NFS4_LCK_CTYPE_NORM: 13559 flk->l_pid = ttoproc(curthread)->p_pid; 13560 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13561 break; 13562 case NFS4_LCK_CTYPE_REINSTATE: 13563 lost_rqstp->lr_putfirst = TRUE; 13564 lost_rqstp->lr_ctype = ctype; 13565 break; 13566 default: 13567 break; 13568 } 13569 lost_rqstp->lr_flk = flk; 13570 } 13571 } 13572 13573 /* 13574 * Update lop's seqid. Also update the seqid stored in a resend request, 13575 * if any. (Some recovery errors increment the seqid, and we may have to 13576 * send the resend request again.) 13577 */ 13578 13579 static void 13580 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13581 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13582 { 13583 if (lock_args) { 13584 if (lock_args->locker.new_lock_owner == TRUE) 13585 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13586 else { 13587 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13588 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13589 } 13590 } else if (locku_args) { 13591 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13592 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13593 } 13594 } 13595 13596 /* 13597 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13598 * COMPOUND4 args/res for calls that need to retry. 13599 * Switches the *cred_otwp to base_cr. 13600 */ 13601 static void 13602 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13603 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13604 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13605 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13606 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13607 { 13608 nfs4_open_owner_t *oop = *oopp; 13609 nfs4_open_stream_t *osp = *ospp; 13610 nfs4_lock_owner_t *lop = *lopp; 13611 nfs_argop4 *argop = (*argspp)->array; 13612 13613 if (*did_start_fop) { 13614 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13615 needrecov); 13616 *did_start_fop = FALSE; 13617 } 13618 ASSERT((*argspp)->array_len == 2); 13619 if (argop[1].argop == OP_LOCK) 13620 nfs4args_lock_free(&argop[1]); 13621 else if (argop[1].argop == OP_LOCKT) 13622 nfs4args_lockt_free(&argop[1]); 13623 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13624 if (!error) 13625 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13626 *argspp = NULL; 13627 *respp = NULL; 13628 13629 if (lop) { 13630 nfs4_end_lock_seqid_sync(lop); 13631 lock_owner_rele(lop); 13632 *lopp = NULL; 13633 } 13634 13635 /* need to free up the reference on osp for lock args */ 13636 if (osp != NULL) { 13637 open_stream_rele(osp, VTOR4(vp)); 13638 *ospp = NULL; 13639 } 13640 13641 /* need to free up the reference on oop for lock args */ 13642 if (oop != NULL) { 13643 nfs4_end_open_seqid_sync(oop); 13644 open_owner_rele(oop); 13645 *oopp = NULL; 13646 } 13647 13648 crfree(*cred_otwp); 13649 *cred_otwp = base_cr; 13650 crhold(*cred_otwp); 13651 } 13652 13653 /* 13654 * Function to process the client's recovery for nfs4frlock. 13655 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13656 * 13657 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13658 * COMPOUND4 args/res for calls that need to retry. 13659 * 13660 * Note: the rp's r_lkserlock is *not* dropped during this path. 13661 */ 13662 static bool_t 13663 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13664 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13665 LOCK4args *lock_args, LOCKU4args *locku_args, 13666 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13667 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13668 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13669 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13670 { 13671 nfs4_open_owner_t *oop = *oopp; 13672 nfs4_open_stream_t *osp = *ospp; 13673 nfs4_lock_owner_t *lop = *lopp; 13674 13675 bool_t abort, retry; 13676 13677 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13678 ASSERT((*argspp) != NULL); 13679 ASSERT((*respp) != NULL); 13680 if (lock_args || locku_args) 13681 ASSERT(lop != NULL); 13682 13683 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13684 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13685 13686 retry = TRUE; 13687 abort = FALSE; 13688 if (needrecov) { 13689 nfs4_bseqid_entry_t *bsep = NULL; 13690 nfs_opnum4 op; 13691 13692 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13693 13694 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13695 seqid4 seqid; 13696 13697 if (lock_args) { 13698 if (lock_args->locker.new_lock_owner == TRUE) 13699 seqid = lock_args->locker.locker4_u. 13700 open_owner.open_seqid; 13701 else 13702 seqid = lock_args->locker.locker4_u. 13703 lock_owner.lock_seqid; 13704 } else if (locku_args) { 13705 seqid = locku_args->seqid; 13706 } else { 13707 seqid = 0; 13708 } 13709 13710 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13711 flk->l_pid, (*argspp)->ctag, seqid); 13712 } 13713 13714 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13715 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13716 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13717 NULL, op, bsep, NULL, NULL); 13718 13719 if (bsep) 13720 kmem_free(bsep, sizeof (*bsep)); 13721 } 13722 13723 /* 13724 * Return that we do not want to retry the request for 3 cases: 13725 * 1. If we received EINTR or are bailing out because of a forced 13726 * unmount, we came into this code path just for the sake of 13727 * initiating recovery, we now need to return the error. 13728 * 2. If we have aborted recovery. 13729 * 3. We received NFS4ERR_BAD_SEQID. 13730 */ 13731 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13732 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13733 retry = FALSE; 13734 13735 if (*did_start_fop == TRUE) { 13736 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13737 needrecov); 13738 *did_start_fop = FALSE; 13739 } 13740 13741 if (retry == TRUE) { 13742 nfs_argop4 *argop; 13743 13744 argop = (*argspp)->array; 13745 ASSERT((*argspp)->array_len == 2); 13746 13747 if (argop[1].argop == OP_LOCK) 13748 nfs4args_lock_free(&argop[1]); 13749 else if (argop[1].argop == OP_LOCKT) 13750 nfs4args_lockt_free(&argop[1]); 13751 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13752 if (!ep->error) 13753 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13754 *respp = NULL; 13755 *argspp = NULL; 13756 } 13757 13758 if (lop != NULL) { 13759 nfs4_end_lock_seqid_sync(lop); 13760 lock_owner_rele(lop); 13761 } 13762 13763 *lopp = NULL; 13764 13765 /* need to free up the reference on osp for lock args */ 13766 if (osp != NULL) { 13767 open_stream_rele(osp, rp); 13768 *ospp = NULL; 13769 } 13770 13771 /* need to free up the reference on oop for lock args */ 13772 if (oop != NULL) { 13773 nfs4_end_open_seqid_sync(oop); 13774 open_owner_rele(oop); 13775 *oopp = NULL; 13776 } 13777 13778 return (retry); 13779 } 13780 13781 /* 13782 * Handles the successful reply from the server for nfs4frlock. 13783 */ 13784 static void 13785 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13786 vnode_t *vp, int flag, u_offset_t offset, 13787 nfs4_lost_rqst_t *resend_rqstp) 13788 { 13789 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13790 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13791 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13792 if (ctype == NFS4_LCK_CTYPE_NORM) { 13793 flk->l_pid = ttoproc(curthread)->p_pid; 13794 /* 13795 * We do not register lost locks locally in 13796 * the 'resend' case since the user/application 13797 * doesn't think we have the lock. 13798 */ 13799 ASSERT(!resend_rqstp); 13800 nfs4_register_lock_locally(vp, flk, flag, offset); 13801 } 13802 } 13803 } 13804 13805 /* 13806 * Handle the DENIED reply from the server for nfs4frlock. 13807 * Returns TRUE if we should retry the request; FALSE otherwise. 13808 * 13809 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13810 * COMPOUND4 args/res for calls that need to retry. Can also 13811 * drop and regrab the r_lkserlock. 13812 */ 13813 static bool_t 13814 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13815 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13816 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13817 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13818 nfs4_recov_state_t *recov_statep, int needrecov, 13819 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13820 clock_t *tick_delayp, short *whencep, int *errorp, 13821 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13822 bool_t *skip_get_err) 13823 { 13824 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13825 13826 if (lock_args) { 13827 nfs4_open_owner_t *oop = *oopp; 13828 nfs4_open_stream_t *osp = *ospp; 13829 nfs4_lock_owner_t *lop = *lopp; 13830 int intr; 13831 13832 /* 13833 * Blocking lock needs to sleep and retry from the request. 13834 * 13835 * Do not block and wait for 'resend' or 'reinstate' 13836 * lock requests, just return the error. 13837 * 13838 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13839 */ 13840 if (cmd == F_SETLKW) { 13841 rnode4_t *rp = VTOR4(vp); 13842 nfs_argop4 *argop = (*argspp)->array; 13843 13844 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13845 13846 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13847 recov_statep, needrecov); 13848 *did_start_fop = FALSE; 13849 ASSERT((*argspp)->array_len == 2); 13850 if (argop[1].argop == OP_LOCK) 13851 nfs4args_lock_free(&argop[1]); 13852 else if (argop[1].argop == OP_LOCKT) 13853 nfs4args_lockt_free(&argop[1]); 13854 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13855 if (*respp) 13856 xdr_free(xdr_COMPOUND4res_clnt, 13857 (caddr_t)*respp); 13858 *argspp = NULL; 13859 *respp = NULL; 13860 nfs4_end_lock_seqid_sync(lop); 13861 lock_owner_rele(lop); 13862 *lopp = NULL; 13863 if (osp != NULL) { 13864 open_stream_rele(osp, rp); 13865 *ospp = NULL; 13866 } 13867 if (oop != NULL) { 13868 nfs4_end_open_seqid_sync(oop); 13869 open_owner_rele(oop); 13870 *oopp = NULL; 13871 } 13872 13873 nfs_rw_exit(&rp->r_lkserlock); 13874 13875 intr = nfs4_block_and_wait(tick_delayp, rp); 13876 13877 if (intr) { 13878 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13879 RW_WRITER, FALSE); 13880 *errorp = EINTR; 13881 return (FALSE); 13882 } 13883 13884 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13885 RW_WRITER, FALSE); 13886 13887 /* 13888 * Make sure we are still safe to lock with 13889 * regards to mmapping. 13890 */ 13891 if (!nfs4_safelock(vp, flk, cr)) { 13892 *errorp = EAGAIN; 13893 return (FALSE); 13894 } 13895 13896 return (TRUE); 13897 } 13898 if (ctype == NFS4_LCK_CTYPE_NORM) 13899 *errorp = EAGAIN; 13900 *skip_get_err = TRUE; 13901 flk->l_whence = 0; 13902 *whencep = 0; 13903 return (FALSE); 13904 } else if (lockt_args) { 13905 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13906 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13907 13908 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13909 flk, lockt_args); 13910 13911 /* according to NLM code */ 13912 *errorp = 0; 13913 *whencep = 0; 13914 *skip_get_err = TRUE; 13915 return (FALSE); 13916 } 13917 return (FALSE); 13918 } 13919 13920 /* 13921 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13922 */ 13923 static void 13924 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13925 { 13926 switch (resp->status) { 13927 case NFS4ERR_ACCESS: 13928 case NFS4ERR_ADMIN_REVOKED: 13929 case NFS4ERR_BADHANDLE: 13930 case NFS4ERR_BAD_RANGE: 13931 case NFS4ERR_BAD_SEQID: 13932 case NFS4ERR_BAD_STATEID: 13933 case NFS4ERR_BADXDR: 13934 case NFS4ERR_DEADLOCK: 13935 case NFS4ERR_DELAY: 13936 case NFS4ERR_EXPIRED: 13937 case NFS4ERR_FHEXPIRED: 13938 case NFS4ERR_GRACE: 13939 case NFS4ERR_INVAL: 13940 case NFS4ERR_ISDIR: 13941 case NFS4ERR_LEASE_MOVED: 13942 case NFS4ERR_LOCK_NOTSUPP: 13943 case NFS4ERR_LOCK_RANGE: 13944 case NFS4ERR_MOVED: 13945 case NFS4ERR_NOFILEHANDLE: 13946 case NFS4ERR_NO_GRACE: 13947 case NFS4ERR_OLD_STATEID: 13948 case NFS4ERR_OPENMODE: 13949 case NFS4ERR_RECLAIM_BAD: 13950 case NFS4ERR_RECLAIM_CONFLICT: 13951 case NFS4ERR_RESOURCE: 13952 case NFS4ERR_SERVERFAULT: 13953 case NFS4ERR_STALE: 13954 case NFS4ERR_STALE_CLIENTID: 13955 case NFS4ERR_STALE_STATEID: 13956 return; 13957 default: 13958 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13959 "nfs4frlock_results_default: got unrecognizable " 13960 "res.status %d", resp->status)); 13961 *errorp = NFS4ERR_INVAL; 13962 } 13963 } 13964 13965 /* 13966 * The lock request was successful, so update the client's state. 13967 */ 13968 static void 13969 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13970 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13971 vnode_t *vp, flock64_t *flk, cred_t *cr, 13972 nfs4_lost_rqst_t *resend_rqstp) 13973 { 13974 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13975 13976 if (lock_args) { 13977 LOCK4res *lock_res; 13978 13979 lock_res = &resop->nfs_resop4_u.oplock; 13980 /* update the stateid with server's response */ 13981 13982 if (lock_args->locker.new_lock_owner == TRUE) { 13983 mutex_enter(&lop->lo_lock); 13984 lop->lo_just_created = NFS4_PERM_CREATED; 13985 mutex_exit(&lop->lo_lock); 13986 } 13987 13988 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13989 13990 /* 13991 * If the lock was the result of a resending a lost 13992 * request, we've synched up the stateid and seqid 13993 * with the server, but now the server might be out of sync 13994 * with what the application thinks it has for locks. 13995 * Clean that up here. It's unclear whether we should do 13996 * this even if the filesystem has been forcibly unmounted. 13997 * For most servers, it's probably wasted effort, but 13998 * RFC 7530 lets servers require that unlocks exactly match 13999 * the locks that are held. 14000 */ 14001 if (resend_rqstp != NULL && 14002 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 14003 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 14004 } else { 14005 flk->l_whence = 0; 14006 } 14007 } else if (locku_args) { 14008 LOCKU4res *locku_res; 14009 14010 locku_res = &resop->nfs_resop4_u.oplocku; 14011 14012 /* Update the stateid with the server's response */ 14013 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 14014 } else if (lockt_args) { 14015 /* Switch the lock type to express success, see fcntl */ 14016 flk->l_type = F_UNLCK; 14017 flk->l_whence = 0; 14018 } 14019 } 14020 14021 /* 14022 * Do final cleanup before exiting nfs4frlock. 14023 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 14024 * COMPOUND4 args/res for calls that haven't already. 14025 */ 14026 static void 14027 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 14028 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 14029 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 14030 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 14031 short whence, u_offset_t offset, struct lm_sysid *ls, 14032 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 14033 bool_t did_start_fop, bool_t skip_get_err, 14034 cred_t *cred_otw, cred_t *cred) 14035 { 14036 mntinfo4_t *mi = VTOMI4(vp); 14037 rnode4_t *rp = VTOR4(vp); 14038 int error = *errorp; 14039 nfs_argop4 *argop; 14040 int do_flush_pages = 0; 14041 14042 ASSERT(nfs_zone() == mi->mi_zone); 14043 /* 14044 * The client recovery code wants the raw status information, 14045 * so don't map the NFS status code to an errno value for 14046 * non-normal call types. 14047 */ 14048 if (ctype == NFS4_LCK_CTYPE_NORM) { 14049 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 14050 *errorp = geterrno4(resp->status); 14051 if (did_start_fop == TRUE) 14052 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 14053 needrecov); 14054 14055 /* 14056 * We've established a new lock on the server, so invalidate 14057 * the pages associated with the vnode to get the most up to 14058 * date pages from the server after acquiring the lock. We 14059 * want to be sure that the read operation gets the newest data. 14060 * N.B. 14061 * We used to do this in nfs4frlock_results_ok but that doesn't 14062 * work since VOP_PUTPAGE can call nfs4_commit which calls 14063 * nfs4_start_fop. We flush the pages below after calling 14064 * nfs4_end_fop above 14065 * The flush of the page cache must be done after 14066 * nfs4_end_open_seqid_sync() to avoid a 4-way hang. 14067 */ 14068 if (!error && resp && resp->status == NFS4_OK) 14069 do_flush_pages = 1; 14070 } 14071 if (argsp) { 14072 ASSERT(argsp->array_len == 2); 14073 argop = argsp->array; 14074 if (argop[1].argop == OP_LOCK) 14075 nfs4args_lock_free(&argop[1]); 14076 else if (argop[1].argop == OP_LOCKT) 14077 nfs4args_lockt_free(&argop[1]); 14078 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14079 if (resp) 14080 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 14081 } 14082 14083 /* free the reference on the lock owner */ 14084 if (lop != NULL) { 14085 nfs4_end_lock_seqid_sync(lop); 14086 lock_owner_rele(lop); 14087 } 14088 14089 /* need to free up the reference on osp for lock args */ 14090 if (osp != NULL) 14091 open_stream_rele(osp, rp); 14092 14093 /* need to free up the reference on oop for lock args */ 14094 if (oop != NULL) { 14095 nfs4_end_open_seqid_sync(oop); 14096 open_owner_rele(oop); 14097 } 14098 14099 if (do_flush_pages) 14100 nfs4_flush_pages(vp, cred); 14101 14102 (void) convoff(vp, flk, whence, offset); 14103 14104 lm_rel_sysid(ls); 14105 14106 /* 14107 * Record debug information in the event we get EINVAL. 14108 */ 14109 mutex_enter(&mi->mi_lock); 14110 if (*errorp == EINVAL && (lock_args || locku_args) && 14111 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14112 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14113 zcmn_err(getzoneid(), CE_NOTE, 14114 "%s operation failed with " 14115 "EINVAL probably since the server, %s," 14116 " doesn't support POSIX style locking", 14117 lock_args ? "LOCK" : "LOCKU", 14118 mi->mi_curr_serv->sv_hostname); 14119 mi->mi_flags |= MI4_LOCK_DEBUG; 14120 } 14121 } 14122 mutex_exit(&mi->mi_lock); 14123 14124 if (cred_otw) 14125 crfree(cred_otw); 14126 } 14127 14128 /* 14129 * This calls the server and the local locking code. 14130 * 14131 * Client locks are registerred locally by oring the sysid with 14132 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14133 * We need to distinguish between the two to avoid collision in case one 14134 * machine is used as both client and server. 14135 * 14136 * Blocking lock requests will continually retry to acquire the lock 14137 * forever. 14138 * 14139 * The ctype is defined as follows: 14140 * NFS4_LCK_CTYPE_NORM: normal lock request. 14141 * 14142 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14143 * recovery, get the pid from flk instead of curproc, and don't reregister 14144 * the lock locally. 14145 * 14146 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14147 * that we will use the information passed in via resend_rqstp to setup the 14148 * lock/locku request. This resend is the exact same request as the 'lost 14149 * lock', and is initiated by the recovery framework. A successful resend 14150 * request can initiate one or more reinstate requests. 14151 * 14152 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14153 * does not trigger additional reinstate requests. This lock call type is 14154 * set for setting the v4 server's locking state back to match what the 14155 * client's local locking state is in the event of a received 'lost lock'. 14156 * 14157 * Errors are returned via the nfs4_error_t parameter. 14158 */ 14159 void 14160 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14161 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14162 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14163 { 14164 COMPOUND4args_clnt args, *argsp = NULL; 14165 COMPOUND4res_clnt res, *resp = NULL; 14166 nfs_argop4 *argop; 14167 nfs_resop4 *resop; 14168 rnode4_t *rp; 14169 int doqueue = 1; 14170 clock_t tick_delay; /* delay in clock ticks */ 14171 struct lm_sysid *ls; 14172 LOCK4args *lock_args = NULL; 14173 LOCKU4args *locku_args = NULL; 14174 LOCKT4args *lockt_args = NULL; 14175 nfs4_open_owner_t *oop = NULL; 14176 nfs4_open_stream_t *osp = NULL; 14177 nfs4_lock_owner_t *lop = NULL; 14178 bool_t needrecov = FALSE; 14179 nfs4_recov_state_t recov_state; 14180 short whence; 14181 nfs4_op_hint_t op_hint; 14182 nfs4_lost_rqst_t lost_rqst; 14183 bool_t retry = FALSE; 14184 bool_t did_start_fop = FALSE; 14185 bool_t skip_get_err = FALSE; 14186 cred_t *cred_otw = NULL; 14187 bool_t recovonly; /* just queue request */ 14188 int frc_no_reclaim = 0; 14189 #ifdef DEBUG 14190 char *name; 14191 #endif 14192 14193 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14194 14195 #ifdef DEBUG 14196 name = fn_name(VTOSV(vp)->sv_name); 14197 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14198 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14199 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14200 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14201 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14202 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14203 resend_rqstp ? "TRUE" : "FALSE")); 14204 kmem_free(name, MAXNAMELEN); 14205 #endif 14206 14207 nfs4_error_zinit(ep); 14208 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14209 if (ep->error) 14210 return; 14211 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14212 if (ep->error) 14213 return; 14214 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14215 vp, cr, &cred_otw); 14216 14217 recov_retry: 14218 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14219 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14220 rp = VTOR4(vp); 14221 14222 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14223 &did_start_fop, &recovonly); 14224 14225 if (ep->error) 14226 goto out; 14227 14228 if (recovonly) { 14229 /* 14230 * Leave the request for the recovery system to deal with. 14231 */ 14232 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14233 ASSERT(cmd != F_GETLK); 14234 ASSERT(flk->l_type == F_UNLCK); 14235 14236 nfs4_error_init(ep, EINTR); 14237 needrecov = TRUE; 14238 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14239 if (lop != NULL) { 14240 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14241 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14242 (void) nfs4_start_recovery(ep, 14243 VTOMI4(vp), vp, NULL, NULL, 14244 (lost_rqst.lr_op == OP_LOCK || 14245 lost_rqst.lr_op == OP_LOCKU) ? 14246 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL); 14247 lock_owner_rele(lop); 14248 lop = NULL; 14249 } 14250 flk->l_pid = curproc->p_pid; 14251 nfs4_register_lock_locally(vp, flk, flag, offset); 14252 goto out; 14253 } 14254 14255 /* putfh directory fh */ 14256 argop[0].argop = OP_CPUTFH; 14257 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14258 14259 /* 14260 * Set up the over-the-wire arguments and get references to the 14261 * open owner, etc. 14262 */ 14263 14264 if (ctype == NFS4_LCK_CTYPE_RESEND || 14265 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14266 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14267 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14268 } else { 14269 bool_t go_otw = TRUE; 14270 14271 ASSERT(resend_rqstp == NULL); 14272 14273 switch (cmd) { 14274 case F_GETLK: 14275 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14276 &lockt_args, argsp, flk, rp); 14277 break; 14278 case F_SETLKW: 14279 case F_SETLK: 14280 if (flk->l_type == F_UNLCK) 14281 nfs4frlock_setup_locku_args(ctype, 14282 &argop[1], &locku_args, flk, 14283 &lop, ep, argsp, 14284 vp, flag, offset, cr, 14285 &skip_get_err, &go_otw); 14286 else 14287 nfs4frlock_setup_lock_args(ctype, 14288 &lock_args, &oop, &osp, &lop, &argop[1], 14289 argsp, flk, cmd, vp, cr, ep); 14290 14291 if (ep->error) 14292 goto out; 14293 14294 switch (ep->stat) { 14295 case NFS4_OK: 14296 break; 14297 case NFS4ERR_DELAY: 14298 /* recov thread never gets this error */ 14299 ASSERT(resend_rqstp == NULL); 14300 ASSERT(did_start_fop); 14301 14302 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14303 &recov_state, TRUE); 14304 did_start_fop = FALSE; 14305 if (argop[1].argop == OP_LOCK) 14306 nfs4args_lock_free(&argop[1]); 14307 else if (argop[1].argop == OP_LOCKT) 14308 nfs4args_lockt_free(&argop[1]); 14309 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14310 argsp = NULL; 14311 goto recov_retry; 14312 default: 14313 ep->error = EIO; 14314 goto out; 14315 } 14316 break; 14317 default: 14318 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14319 "nfs4_frlock: invalid cmd %d", cmd)); 14320 ep->error = EINVAL; 14321 goto out; 14322 } 14323 14324 if (!go_otw) 14325 goto out; 14326 } 14327 14328 /* XXX should we use the local reclock as a cache ? */ 14329 /* 14330 * Unregister the lock with the local locking code before 14331 * contacting the server. This avoids a potential race where 14332 * another process gets notified that it has been granted a lock 14333 * before we can unregister ourselves locally. 14334 */ 14335 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14336 if (ctype == NFS4_LCK_CTYPE_NORM) 14337 flk->l_pid = ttoproc(curthread)->p_pid; 14338 nfs4_register_lock_locally(vp, flk, flag, offset); 14339 } 14340 14341 /* 14342 * Send the server the lock request. Continually loop with a delay 14343 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14344 */ 14345 resp = &res; 14346 14347 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14348 (CE_NOTE, 14349 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14350 rnode4info(rp))); 14351 14352 if (lock_args && frc_no_reclaim) { 14353 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14354 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14355 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14356 lock_args->reclaim = FALSE; 14357 if (did_reclaimp) 14358 *did_reclaimp = 0; 14359 } 14360 14361 /* 14362 * Do the OTW call. 14363 */ 14364 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14365 14366 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14367 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14368 14369 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14370 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14371 "nfs4frlock: needrecov %d", needrecov)); 14372 14373 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14374 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14375 args.ctag); 14376 14377 /* 14378 * Check if one of these mutually exclusive error cases has 14379 * happened: 14380 * need to swap credentials due to access error 14381 * recovery is needed 14382 * different error (only known case is missing Kerberos ticket) 14383 */ 14384 14385 if ((ep->error == EACCES || 14386 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14387 cred_otw != cr) { 14388 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14389 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14390 cr, &cred_otw); 14391 goto recov_retry; 14392 } 14393 14394 if (needrecov) { 14395 /* 14396 * LOCKT requests don't need to recover from lost 14397 * requests since they don't create/modify state. 14398 */ 14399 if ((ep->error == EINTR || 14400 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14401 lockt_args) 14402 goto out; 14403 /* 14404 * Do not attempt recovery for requests initiated by 14405 * the recovery framework. Let the framework redrive them. 14406 */ 14407 if (ctype != NFS4_LCK_CTYPE_NORM) 14408 goto out; 14409 else { 14410 ASSERT(resend_rqstp == NULL); 14411 } 14412 14413 nfs4frlock_save_lost_rqst(ctype, ep->error, 14414 flk_to_locktype(cmd, flk->l_type), 14415 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14416 14417 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14418 &resp, lock_args, locku_args, &oop, &osp, &lop, 14419 rp, vp, &recov_state, op_hint, &did_start_fop, 14420 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14421 14422 if (retry) { 14423 ASSERT(oop == NULL); 14424 ASSERT(osp == NULL); 14425 ASSERT(lop == NULL); 14426 goto recov_retry; 14427 } 14428 goto out; 14429 } 14430 14431 /* 14432 * Bail out if have reached this point with ep->error set. Can 14433 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14434 * This happens if Kerberos ticket has expired or has been 14435 * destroyed. 14436 */ 14437 if (ep->error != 0) 14438 goto out; 14439 14440 /* 14441 * Process the reply. 14442 */ 14443 switch (resp->status) { 14444 case NFS4_OK: 14445 resop = &resp->array[1]; 14446 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14447 resend_rqstp); 14448 /* 14449 * Have a successful lock operation, now update state. 14450 */ 14451 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14452 resop, lop, vp, flk, cr, resend_rqstp); 14453 break; 14454 14455 case NFS4ERR_DENIED: 14456 resop = &resp->array[1]; 14457 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14458 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14459 &recov_state, needrecov, &argsp, &resp, 14460 &tick_delay, &whence, &ep->error, resop, cr, 14461 &did_start_fop, &skip_get_err); 14462 14463 if (retry) { 14464 ASSERT(oop == NULL); 14465 ASSERT(osp == NULL); 14466 ASSERT(lop == NULL); 14467 goto recov_retry; 14468 } 14469 break; 14470 /* 14471 * If the server won't let us reclaim, fall-back to trying to lock 14472 * the file from scratch. Code elsewhere will check the changeinfo 14473 * to ensure the file hasn't been changed. 14474 */ 14475 case NFS4ERR_NO_GRACE: 14476 if (lock_args && lock_args->reclaim == TRUE) { 14477 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14478 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14479 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14480 frc_no_reclaim = 1; 14481 /* clean up before retrying */ 14482 needrecov = 0; 14483 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14484 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14485 &recov_state, op_hint, &did_start_fop, NULL, flk); 14486 goto recov_retry; 14487 } 14488 /* FALLTHROUGH */ 14489 14490 default: 14491 nfs4frlock_results_default(resp, &ep->error); 14492 break; 14493 } 14494 out: 14495 /* 14496 * Process and cleanup from error. Make interrupted unlock 14497 * requests look successful, since they will be handled by the 14498 * client recovery code. 14499 */ 14500 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14501 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14502 lock_args, locku_args, did_start_fop, 14503 skip_get_err, cred_otw, cr); 14504 14505 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14506 (cmd == F_SETLK || cmd == F_SETLKW)) 14507 ep->error = 0; 14508 } 14509 14510 /* 14511 * nfs4_safelock: 14512 * 14513 * Return non-zero if the given lock request can be handled without 14514 * violating the constraints on concurrent mapping and locking. 14515 */ 14516 14517 static int 14518 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14519 { 14520 rnode4_t *rp = VTOR4(vp); 14521 struct vattr va; 14522 int error; 14523 14524 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14525 ASSERT(rp->r_mapcnt >= 0); 14526 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14527 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14528 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14529 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14530 14531 if (rp->r_mapcnt == 0) 14532 return (1); /* always safe if not mapped */ 14533 14534 /* 14535 * If the file is already mapped and there are locks, then they 14536 * should be all safe locks. So adding or removing a lock is safe 14537 * as long as the new request is safe (i.e., whole-file, meaning 14538 * length and starting offset are both zero). 14539 */ 14540 14541 if (bfp->l_start != 0 || bfp->l_len != 0) { 14542 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14543 "cannot lock a memory mapped file unless locking the " 14544 "entire file: start %"PRIx64", len %"PRIx64, 14545 bfp->l_start, bfp->l_len)); 14546 return (0); 14547 } 14548 14549 /* mandatory locking and mapping don't mix */ 14550 va.va_mask = AT_MODE; 14551 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14552 if (error != 0) { 14553 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14554 "getattr error %d", error)); 14555 return (0); /* treat errors conservatively */ 14556 } 14557 if (MANDLOCK(vp, va.va_mode)) { 14558 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14559 "cannot mandatory lock and mmap a file")); 14560 return (0); 14561 } 14562 14563 return (1); 14564 } 14565 14566 14567 /* 14568 * Register the lock locally within Solaris. 14569 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14570 * recording locks locally. 14571 * 14572 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14573 * are registered locally. 14574 */ 14575 void 14576 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14577 u_offset_t offset) 14578 { 14579 int oldsysid; 14580 int error; 14581 #ifdef DEBUG 14582 char *name; 14583 #endif 14584 14585 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14586 14587 #ifdef DEBUG 14588 name = fn_name(VTOSV(vp)->sv_name); 14589 NFS4_DEBUG(nfs4_client_lock_debug, 14590 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14591 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14592 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14593 flk->l_sysid)); 14594 kmem_free(name, MAXNAMELEN); 14595 #endif 14596 14597 /* register the lock with local locking */ 14598 oldsysid = flk->l_sysid; 14599 flk->l_sysid |= LM_SYSID_CLIENT; 14600 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14601 #ifdef DEBUG 14602 if (error != 0) { 14603 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14604 "nfs4_register_lock_locally: could not register with" 14605 " local locking")); 14606 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14607 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14608 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14609 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14610 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14611 flk->l_type, flk->l_start, flk->l_len)); 14612 (void) reclock(vp, flk, 0, flag, offset, NULL); 14613 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14614 "blocked by pid %d sysid 0x%x type %d " 14615 "off 0x%" PRIx64 " len 0x%" PRIx64, 14616 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14617 flk->l_len)); 14618 } 14619 #endif 14620 flk->l_sysid = oldsysid; 14621 } 14622 14623 /* 14624 * nfs4_lockrelease: 14625 * 14626 * Release any locks on the given vnode that are held by the current 14627 * process. Also removes the lock owner (if one exists) from the rnode's 14628 * list. 14629 */ 14630 static int 14631 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14632 { 14633 flock64_t ld; 14634 int ret, error; 14635 rnode4_t *rp; 14636 nfs4_lock_owner_t *lop; 14637 nfs4_recov_state_t recov_state; 14638 mntinfo4_t *mi; 14639 bool_t possible_orphan = FALSE; 14640 bool_t recovonly; 14641 14642 ASSERT((uintptr_t)vp > KERNELBASE); 14643 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14644 14645 rp = VTOR4(vp); 14646 mi = VTOMI4(vp); 14647 14648 /* 14649 * If we have not locked anything then we can 14650 * just return since we have no work to do. 14651 */ 14652 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14653 return (0); 14654 } 14655 14656 /* 14657 * We need to comprehend that another thread may 14658 * kick off recovery and the lock_owner we have stashed 14659 * in lop might be invalid so we should NOT cache it 14660 * locally! 14661 */ 14662 recov_state.rs_flags = 0; 14663 recov_state.rs_num_retry_despite_err = 0; 14664 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14665 &recovonly); 14666 if (error) { 14667 mutex_enter(&rp->r_statelock); 14668 rp->r_flags |= R4LODANGLERS; 14669 mutex_exit(&rp->r_statelock); 14670 return (error); 14671 } 14672 14673 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14674 14675 /* 14676 * Check if the lock owner might have a lock (request was sent but 14677 * no response was received). Also check if there are any remote 14678 * locks on the file. (In theory we shouldn't have to make this 14679 * second check if there's no lock owner, but for now we'll be 14680 * conservative and do it anyway.) If either condition is true, 14681 * send an unlock for the entire file to the server. 14682 * 14683 * Note that no explicit synchronization is needed here. At worst, 14684 * flk_has_remote_locks() will return a false positive, in which case 14685 * the unlock call wastes time but doesn't harm correctness. 14686 */ 14687 14688 if (lop) { 14689 mutex_enter(&lop->lo_lock); 14690 possible_orphan = lop->lo_pending_rqsts; 14691 mutex_exit(&lop->lo_lock); 14692 lock_owner_rele(lop); 14693 } 14694 14695 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14696 14697 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14698 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14699 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14700 (void *)lop)); 14701 14702 if (possible_orphan || flk_has_remote_locks(vp)) { 14703 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14704 ld.l_whence = 0; /* unlock from start of file */ 14705 ld.l_start = 0; 14706 ld.l_len = 0; /* do entire file */ 14707 14708 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14709 cr, NULL); 14710 14711 if (ret != 0) { 14712 /* 14713 * If VOP_FRLOCK fails, make sure we unregister 14714 * local locks before we continue. 14715 */ 14716 ld.l_pid = ttoproc(curthread)->p_pid; 14717 nfs4_register_lock_locally(vp, &ld, flag, offset); 14718 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14719 "nfs4_lockrelease: lock release error on vp" 14720 " %p: error %d.\n", (void *)vp, ret)); 14721 } 14722 } 14723 14724 recov_state.rs_flags = 0; 14725 recov_state.rs_num_retry_despite_err = 0; 14726 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14727 &recovonly); 14728 if (error) { 14729 mutex_enter(&rp->r_statelock); 14730 rp->r_flags |= R4LODANGLERS; 14731 mutex_exit(&rp->r_statelock); 14732 return (error); 14733 } 14734 14735 /* 14736 * So, here we're going to need to retrieve the lock-owner 14737 * again (in case recovery has done a switch-a-roo) and 14738 * remove it because we can. 14739 */ 14740 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14741 14742 if (lop) { 14743 nfs4_rnode_remove_lock_owner(rp, lop); 14744 lock_owner_rele(lop); 14745 } 14746 14747 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14748 return (0); 14749 } 14750 14751 /* 14752 * Wait for 'tick_delay' clock ticks. 14753 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14754 * NOTE: lock_lease_time is in seconds. 14755 * 14756 * XXX For future improvements, should implement a waiting queue scheme. 14757 */ 14758 static int 14759 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14760 { 14761 long milliseconds_delay; 14762 time_t lock_lease_time; 14763 14764 /* wait tick_delay clock ticks or siginteruptus */ 14765 if (delay_sig(*tick_delay)) { 14766 return (EINTR); 14767 } 14768 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14769 "reissue the lock request: blocked for %ld clock ticks: %ld " 14770 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14771 14772 /* get the lease time */ 14773 lock_lease_time = r2lease_time(rp); 14774 14775 /* drv_hztousec converts ticks to microseconds */ 14776 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14777 if (milliseconds_delay < lock_lease_time * 1000) { 14778 *tick_delay = 2 * *tick_delay; 14779 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14780 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14781 } 14782 return (0); 14783 } 14784 14785 14786 void 14787 nfs4_vnops_init(void) 14788 { 14789 } 14790 14791 void 14792 nfs4_vnops_fini(void) 14793 { 14794 } 14795 14796 /* 14797 * Return a reference to the directory (parent) vnode for a given vnode, 14798 * using the saved pathname information and the directory file handle. The 14799 * caller is responsible for disposing of the reference. 14800 * Returns zero or an errno value. 14801 * 14802 * Caller should set need_start_op to FALSE if it is the recovery 14803 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14804 */ 14805 int 14806 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14807 { 14808 svnode_t *svnp; 14809 vnode_t *dvp = NULL; 14810 servinfo4_t *svp; 14811 nfs4_fname_t *mfname; 14812 int error; 14813 14814 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14815 14816 if (vp->v_flag & VROOT) { 14817 nfs4_sharedfh_t *sfh; 14818 nfs_fh4 fh; 14819 mntinfo4_t *mi; 14820 14821 ASSERT(vp->v_type == VREG); 14822 14823 mi = VTOMI4(vp); 14824 svp = mi->mi_curr_serv; 14825 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14826 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14827 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14828 sfh = sfh4_get(&fh, VTOMI4(vp)); 14829 nfs_rw_exit(&svp->sv_lock); 14830 mfname = mi->mi_fname; 14831 fn_hold(mfname); 14832 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14833 sfh4_rele(&sfh); 14834 14835 if (dvp->v_type == VNON) 14836 dvp->v_type = VDIR; 14837 *dvpp = dvp; 14838 return (0); 14839 } 14840 14841 svnp = VTOSV(vp); 14842 14843 if (svnp == NULL) { 14844 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14845 "shadow node is NULL")); 14846 return (EINVAL); 14847 } 14848 14849 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14850 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14851 "shadow node name or dfh val == NULL")); 14852 return (EINVAL); 14853 } 14854 14855 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14856 (int)need_start_op); 14857 if (error != 0) { 14858 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14859 "nfs4_make_dotdot returned %d", error)); 14860 return (error); 14861 } 14862 if (!dvp) { 14863 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14864 "nfs4_make_dotdot returned a NULL dvp")); 14865 return (EIO); 14866 } 14867 if (dvp->v_type == VNON) 14868 dvp->v_type = VDIR; 14869 ASSERT(dvp->v_type == VDIR); 14870 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14871 mutex_enter(&dvp->v_lock); 14872 dvp->v_flag |= V_XATTRDIR; 14873 mutex_exit(&dvp->v_lock); 14874 } 14875 *dvpp = dvp; 14876 return (0); 14877 } 14878 14879 /* 14880 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14881 * length that fnamep can accept, including the trailing null. 14882 * Returns 0 if okay, returns an errno value if there was a problem. 14883 */ 14884 14885 int 14886 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14887 { 14888 char *fn; 14889 int err = 0; 14890 servinfo4_t *svp; 14891 svnode_t *shvp; 14892 14893 /* 14894 * If the file being opened has VROOT set, then this is 14895 * a "file" mount. sv_name will not be interesting, so 14896 * go back to the servinfo4 to get the original mount 14897 * path and strip off all but the final edge. Otherwise 14898 * just return the name from the shadow vnode. 14899 */ 14900 14901 if (vp->v_flag & VROOT) { 14902 14903 svp = VTOMI4(vp)->mi_curr_serv; 14904 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14905 14906 fn = strrchr(svp->sv_path, '/'); 14907 if (fn == NULL) 14908 err = EINVAL; 14909 else 14910 fn++; 14911 } else { 14912 shvp = VTOSV(vp); 14913 fn = fn_name(shvp->sv_name); 14914 } 14915 14916 if (err == 0) 14917 if (strlen(fn) < maxlen) 14918 (void) strcpy(fnamep, fn); 14919 else 14920 err = ENAMETOOLONG; 14921 14922 if (vp->v_flag & VROOT) 14923 nfs_rw_exit(&svp->sv_lock); 14924 else 14925 kmem_free(fn, MAXNAMELEN); 14926 14927 return (err); 14928 } 14929 14930 /* 14931 * Bookkeeping for a close that doesn't need to go over the wire. 14932 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14933 * it is left at 1. 14934 */ 14935 void 14936 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14937 { 14938 rnode4_t *rp; 14939 mntinfo4_t *mi; 14940 14941 mi = VTOMI4(vp); 14942 rp = VTOR4(vp); 14943 14944 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14945 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14946 ASSERT(nfs_zone() == mi->mi_zone); 14947 ASSERT(mutex_owned(&osp->os_sync_lock)); 14948 ASSERT(*have_lockp); 14949 14950 if (!osp->os_valid || 14951 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14952 return; 14953 } 14954 14955 /* 14956 * This removes the reference obtained at OPEN; ie, 14957 * when the open stream structure was created. 14958 * 14959 * We don't have to worry about calling 'open_stream_rele' 14960 * since we our currently holding a reference to this 14961 * open stream which means the count can not go to 0 with 14962 * this decrement. 14963 */ 14964 ASSERT(osp->os_ref_count >= 2); 14965 osp->os_ref_count--; 14966 osp->os_valid = 0; 14967 mutex_exit(&osp->os_sync_lock); 14968 *have_lockp = 0; 14969 14970 nfs4_dec_state_ref_count(mi); 14971 } 14972 14973 /* 14974 * Close all remaining open streams on the rnode. These open streams 14975 * could be here because: 14976 * - The close attempted at either close or delmap failed 14977 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14978 * - Someone did mknod on a regular file but never opened it 14979 */ 14980 int 14981 nfs4close_all(vnode_t *vp, cred_t *cr) 14982 { 14983 nfs4_open_stream_t *osp; 14984 int error; 14985 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14986 rnode4_t *rp; 14987 14988 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14989 14990 error = 0; 14991 rp = VTOR4(vp); 14992 14993 /* 14994 * At this point, all we know is that the last time 14995 * someone called vn_rele, the count was 1. Since then, 14996 * the vnode could have been re-activated. We want to 14997 * loop through the open streams and close each one, but 14998 * we have to be careful since once we release the rnode 14999 * hash bucket lock, someone else is free to come in and 15000 * re-activate the rnode and add new open streams. The 15001 * strategy is take the rnode hash bucket lock, verify that 15002 * the count is still 1, grab the open stream off the 15003 * head of the list and mark it invalid, then release the 15004 * rnode hash bucket lock and proceed with that open stream. 15005 * This is ok because nfs4close_one() will acquire the proper 15006 * open/create to close/destroy synchronization for open 15007 * streams, and will ensure that if someone has reopened 15008 * the open stream after we've dropped the hash bucket lock 15009 * then we'll just simply return without destroying the 15010 * open stream. 15011 * Repeat until the list is empty. 15012 */ 15013 15014 for (;;) { 15015 15016 /* make sure vnode hasn't been reactivated */ 15017 rw_enter(&rp->r_hashq->r_lock, RW_READER); 15018 mutex_enter(&vp->v_lock); 15019 if (vp->v_count > 1) { 15020 mutex_exit(&vp->v_lock); 15021 rw_exit(&rp->r_hashq->r_lock); 15022 break; 15023 } 15024 /* 15025 * Grabbing r_os_lock before releasing v_lock prevents 15026 * a window where the rnode/open stream could get 15027 * reactivated (and os_force_close set to 0) before we 15028 * had a chance to set os_force_close to 1. 15029 */ 15030 mutex_enter(&rp->r_os_lock); 15031 mutex_exit(&vp->v_lock); 15032 15033 osp = list_head(&rp->r_open_streams); 15034 if (!osp) { 15035 /* nothing left to CLOSE OTW, so return */ 15036 mutex_exit(&rp->r_os_lock); 15037 rw_exit(&rp->r_hashq->r_lock); 15038 break; 15039 } 15040 15041 mutex_enter(&rp->r_statev4_lock); 15042 /* the file can't still be mem mapped */ 15043 ASSERT(rp->r_mapcnt == 0); 15044 if (rp->created_v4) 15045 rp->created_v4 = 0; 15046 mutex_exit(&rp->r_statev4_lock); 15047 15048 /* 15049 * Grab a ref on this open stream; nfs4close_one 15050 * will mark it as invalid 15051 */ 15052 mutex_enter(&osp->os_sync_lock); 15053 osp->os_ref_count++; 15054 osp->os_force_close = 1; 15055 mutex_exit(&osp->os_sync_lock); 15056 mutex_exit(&rp->r_os_lock); 15057 rw_exit(&rp->r_hashq->r_lock); 15058 15059 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 15060 15061 /* Update error if it isn't already non-zero */ 15062 if (error == 0) { 15063 if (e.error) 15064 error = e.error; 15065 else if (e.stat) 15066 error = geterrno4(e.stat); 15067 } 15068 15069 #ifdef DEBUG 15070 nfs4close_all_cnt++; 15071 #endif 15072 /* Release the ref on osp acquired above. */ 15073 open_stream_rele(osp, rp); 15074 15075 /* Proceed to the next open stream, if any */ 15076 } 15077 return (error); 15078 } 15079 15080 /* 15081 * nfs4close_one - close one open stream for a file if needed. 15082 * 15083 * "close_type" indicates which close path this is: 15084 * CLOSE_NORM: close initiated via VOP_CLOSE. 15085 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 15086 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 15087 * the close and release of client state for this open stream 15088 * (unless someone else has the open stream open). 15089 * CLOSE_RESEND: indicates the request is a replay of an earlier request 15090 * (e.g., due to abort because of a signal). 15091 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 15092 * 15093 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 15094 * recovery. Instead, the caller is expected to deal with retries. 15095 * 15096 * The caller can either pass in the osp ('provided_osp') or not. 15097 * 15098 * 'access_bits' represents the access we are closing/downgrading. 15099 * 15100 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 15101 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 15102 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15103 * 15104 * Errors are returned via the nfs4_error_t. 15105 */ 15106 void 15107 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15108 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15109 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15110 uint_t mmap_flags) 15111 { 15112 nfs4_open_owner_t *oop; 15113 nfs4_open_stream_t *osp = NULL; 15114 int retry = 0; 15115 int num_retries = NFS4_NUM_RECOV_RETRIES; 15116 rnode4_t *rp; 15117 mntinfo4_t *mi; 15118 nfs4_recov_state_t recov_state; 15119 cred_t *cred_otw = NULL; 15120 bool_t recovonly = FALSE; 15121 int isrecov; 15122 int force_close; 15123 int close_failed = 0; 15124 int did_dec_count = 0; 15125 int did_start_op = 0; 15126 int did_force_recovlock = 0; 15127 int did_start_seqid_sync = 0; 15128 int have_sync_lock = 0; 15129 15130 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15131 15132 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15133 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15134 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15135 len, maxprot, mmap_flags, access_bits)); 15136 15137 nfs4_error_zinit(ep); 15138 rp = VTOR4(vp); 15139 mi = VTOMI4(vp); 15140 isrecov = (close_type == CLOSE_RESEND || 15141 close_type == CLOSE_AFTER_RESEND); 15142 15143 /* 15144 * First get the open owner. 15145 */ 15146 if (!provided_osp) { 15147 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15148 } else { 15149 oop = provided_osp->os_open_owner; 15150 ASSERT(oop != NULL); 15151 open_owner_hold(oop); 15152 } 15153 15154 if (!oop) { 15155 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15156 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15157 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15158 (void *)provided_osp, close_type)); 15159 ep->error = EIO; 15160 goto out; 15161 } 15162 15163 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15164 recov_retry: 15165 osp = NULL; 15166 close_failed = 0; 15167 force_close = (close_type == CLOSE_FORCE); 15168 retry = 0; 15169 did_start_op = 0; 15170 did_force_recovlock = 0; 15171 did_start_seqid_sync = 0; 15172 have_sync_lock = 0; 15173 recovonly = FALSE; 15174 recov_state.rs_flags = 0; 15175 recov_state.rs_num_retry_despite_err = 0; 15176 15177 /* 15178 * Second synchronize with recovery. 15179 */ 15180 if (!isrecov) { 15181 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15182 &recov_state, &recovonly); 15183 if (!ep->error) { 15184 did_start_op = 1; 15185 } else { 15186 close_failed = 1; 15187 /* 15188 * If we couldn't get start_fop, but have to 15189 * cleanup state, then at least acquire the 15190 * mi_recovlock so we can synchronize with 15191 * recovery. 15192 */ 15193 if (close_type == CLOSE_FORCE) { 15194 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15195 RW_READER, FALSE); 15196 did_force_recovlock = 1; 15197 } else 15198 goto out; 15199 } 15200 } 15201 15202 /* 15203 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15204 * set 'recovonly' to TRUE since most likely this is due to 15205 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15206 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15207 * to retry, causing us to loop until recovery finishes. Plus we 15208 * don't need protection over the open seqid since we're not going 15209 * OTW, hence don't need to use the seqid. 15210 */ 15211 if (recovonly == FALSE) { 15212 /* need to grab the open owner sync before 'os_sync_lock' */ 15213 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15214 if (ep->error == EAGAIN) { 15215 ASSERT(!isrecov); 15216 if (did_start_op) 15217 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15218 &recov_state, TRUE); 15219 if (did_force_recovlock) 15220 nfs_rw_exit(&mi->mi_recovlock); 15221 goto recov_retry; 15222 } 15223 did_start_seqid_sync = 1; 15224 } 15225 15226 /* 15227 * Third get an open stream and acquire 'os_sync_lock' to 15228 * sychronize the opening/creating of an open stream with the 15229 * closing/destroying of an open stream. 15230 */ 15231 if (!provided_osp) { 15232 /* returns with 'os_sync_lock' held */ 15233 osp = find_open_stream(oop, rp); 15234 if (!osp) { 15235 ep->error = EIO; 15236 goto out; 15237 } 15238 } else { 15239 osp = provided_osp; 15240 open_stream_hold(osp); 15241 mutex_enter(&osp->os_sync_lock); 15242 } 15243 have_sync_lock = 1; 15244 15245 ASSERT(oop == osp->os_open_owner); 15246 15247 /* 15248 * Fourth, do any special pre-OTW CLOSE processing 15249 * based on the specific close type. 15250 */ 15251 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15252 !did_dec_count) { 15253 ASSERT(osp->os_open_ref_count > 0); 15254 osp->os_open_ref_count--; 15255 did_dec_count = 1; 15256 if (osp->os_open_ref_count == 0) 15257 osp->os_final_close = 1; 15258 } 15259 15260 if (close_type == CLOSE_FORCE) { 15261 /* see if somebody reopened the open stream. */ 15262 if (!osp->os_force_close) { 15263 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15264 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15265 "was reopened, vp %p", (void *)osp, (void *)vp)); 15266 ep->error = 0; 15267 ep->stat = NFS4_OK; 15268 goto out; 15269 } 15270 15271 if (!osp->os_final_close && !did_dec_count) { 15272 osp->os_open_ref_count--; 15273 did_dec_count = 1; 15274 } 15275 15276 /* 15277 * We can't depend on os_open_ref_count being 0 due to the 15278 * way executables are opened (VN_RELE to match a VOP_OPEN). 15279 */ 15280 #ifdef NOTYET 15281 ASSERT(osp->os_open_ref_count == 0); 15282 #endif 15283 if (osp->os_open_ref_count != 0) { 15284 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15285 "nfs4close_one: should panic here on an " 15286 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15287 "since this is probably the exec problem.")); 15288 15289 osp->os_open_ref_count = 0; 15290 } 15291 15292 /* 15293 * There is the possibility that nfs4close_one() 15294 * for close_type == CLOSE_DELMAP couldn't find the 15295 * open stream, thus couldn't decrement its os_mapcnt; 15296 * therefore we can't use this ASSERT yet. 15297 */ 15298 #ifdef NOTYET 15299 ASSERT(osp->os_mapcnt == 0); 15300 #endif 15301 osp->os_mapcnt = 0; 15302 } 15303 15304 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15305 ASSERT(osp->os_mapcnt >= btopr(len)); 15306 15307 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15308 osp->os_mmap_write -= btopr(len); 15309 if (maxprot & PROT_READ) 15310 osp->os_mmap_read -= btopr(len); 15311 if (maxprot & PROT_EXEC) 15312 osp->os_mmap_read -= btopr(len); 15313 /* mirror the PROT_NONE check in nfs4_addmap() */ 15314 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15315 !(maxprot & PROT_EXEC)) 15316 osp->os_mmap_read -= btopr(len); 15317 osp->os_mapcnt -= btopr(len); 15318 did_dec_count = 1; 15319 } 15320 15321 if (recovonly) { 15322 nfs4_lost_rqst_t lost_rqst; 15323 15324 /* request should not already be in recovery queue */ 15325 ASSERT(lrp == NULL); 15326 nfs4_error_init(ep, EINTR); 15327 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15328 osp, cred_otw, vp); 15329 mutex_exit(&osp->os_sync_lock); 15330 have_sync_lock = 0; 15331 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15332 lost_rqst.lr_op == OP_CLOSE ? 15333 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL); 15334 close_failed = 1; 15335 force_close = 0; 15336 goto close_cleanup; 15337 } 15338 15339 /* 15340 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15341 * we stopped operating on the open owner's <old oo_name, old seqid> 15342 * space, which means we stopped operating on the open stream 15343 * too. So don't go OTW (as the seqid is likely bad, and the 15344 * stateid could be stale, potentially triggering a false 15345 * setclientid), and just clean up the client's internal state. 15346 */ 15347 if (osp->os_orig_oo_name != oop->oo_name) { 15348 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15349 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15350 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15351 "oo_name %" PRIx64")", 15352 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15353 oop->oo_name)); 15354 close_failed = 1; 15355 } 15356 15357 /* If the file failed recovery, just quit. */ 15358 mutex_enter(&rp->r_statelock); 15359 if (rp->r_flags & R4RECOVERR) { 15360 close_failed = 1; 15361 } 15362 mutex_exit(&rp->r_statelock); 15363 15364 /* 15365 * If the force close path failed to obtain start_fop 15366 * then skip the OTW close and just remove the state. 15367 */ 15368 if (close_failed) 15369 goto close_cleanup; 15370 15371 /* 15372 * Fifth, check to see if there are still mapped pages or other 15373 * opens using this open stream. If there are then we can't 15374 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15375 */ 15376 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15377 nfs4_lost_rqst_t new_lost_rqst; 15378 bool_t needrecov = FALSE; 15379 cred_t *odg_cred_otw = NULL; 15380 seqid4 open_dg_seqid = 0; 15381 15382 if (osp->os_delegation) { 15383 /* 15384 * If this open stream was never OPENed OTW then we 15385 * surely can't DOWNGRADE it (especially since the 15386 * osp->open_stateid is really a delegation stateid 15387 * when os_delegation is 1). 15388 */ 15389 if (access_bits & FREAD) 15390 osp->os_share_acc_read--; 15391 if (access_bits & FWRITE) 15392 osp->os_share_acc_write--; 15393 osp->os_share_deny_none--; 15394 nfs4_error_zinit(ep); 15395 goto out; 15396 } 15397 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15398 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15399 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15400 if (needrecov && !isrecov) { 15401 bool_t abort; 15402 nfs4_bseqid_entry_t *bsep = NULL; 15403 15404 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15405 bsep = nfs4_create_bseqid_entry(oop, NULL, 15406 vp, 0, 15407 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15408 open_dg_seqid); 15409 15410 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15411 oop, osp, odg_cred_otw, vp, access_bits, 0); 15412 mutex_exit(&osp->os_sync_lock); 15413 have_sync_lock = 0; 15414 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15415 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15416 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15417 bsep, NULL, NULL); 15418 if (odg_cred_otw) 15419 crfree(odg_cred_otw); 15420 if (bsep) 15421 kmem_free(bsep, sizeof (*bsep)); 15422 15423 if (abort == TRUE) 15424 goto out; 15425 15426 if (did_start_seqid_sync) { 15427 nfs4_end_open_seqid_sync(oop); 15428 did_start_seqid_sync = 0; 15429 } 15430 open_stream_rele(osp, rp); 15431 15432 if (did_start_op) 15433 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15434 &recov_state, FALSE); 15435 if (did_force_recovlock) 15436 nfs_rw_exit(&mi->mi_recovlock); 15437 15438 goto recov_retry; 15439 } else { 15440 if (odg_cred_otw) 15441 crfree(odg_cred_otw); 15442 } 15443 goto out; 15444 } 15445 15446 /* 15447 * If this open stream was created as the results of an open 15448 * while holding a delegation, then just release it; no need 15449 * to do an OTW close. Otherwise do a "normal" OTW close. 15450 */ 15451 if (osp->os_delegation) { 15452 nfs4close_notw(vp, osp, &have_sync_lock); 15453 nfs4_error_zinit(ep); 15454 goto out; 15455 } 15456 15457 /* 15458 * If this stream is not valid, we're done. 15459 */ 15460 if (!osp->os_valid) { 15461 nfs4_error_zinit(ep); 15462 goto out; 15463 } 15464 15465 /* 15466 * Last open or mmap ref has vanished, need to do an OTW close. 15467 * First check to see if a close is still necessary. 15468 */ 15469 if (osp->os_failed_reopen) { 15470 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15471 "don't close OTW osp %p since reopen failed.", 15472 (void *)osp)); 15473 /* 15474 * Reopen of the open stream failed, hence the 15475 * stateid of the open stream is invalid/stale, and 15476 * sending this OTW would incorrectly cause another 15477 * round of recovery. In this case, we need to set 15478 * the 'os_valid' bit to 0 so another thread doesn't 15479 * come in and re-open this open stream before 15480 * this "closing" thread cleans up state (decrementing 15481 * the nfs4_server_t's state_ref_count and decrementing 15482 * the os_ref_count). 15483 */ 15484 osp->os_valid = 0; 15485 /* 15486 * This removes the reference obtained at OPEN; ie, 15487 * when the open stream structure was created. 15488 * 15489 * We don't have to worry about calling 'open_stream_rele' 15490 * since we our currently holding a reference to this 15491 * open stream which means the count can not go to 0 with 15492 * this decrement. 15493 */ 15494 ASSERT(osp->os_ref_count >= 2); 15495 osp->os_ref_count--; 15496 nfs4_error_zinit(ep); 15497 close_failed = 0; 15498 goto close_cleanup; 15499 } 15500 15501 ASSERT(osp->os_ref_count > 1); 15502 15503 /* 15504 * Sixth, try the CLOSE OTW. 15505 */ 15506 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15507 close_type, ep, &have_sync_lock); 15508 15509 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15510 /* 15511 * Let the recovery thread be responsible for 15512 * removing the state for CLOSE. 15513 */ 15514 close_failed = 1; 15515 force_close = 0; 15516 retry = 0; 15517 } 15518 15519 /* See if we need to retry with a different cred */ 15520 if ((ep->error == EACCES || 15521 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15522 cred_otw != cr) { 15523 crfree(cred_otw); 15524 cred_otw = cr; 15525 crhold(cred_otw); 15526 retry = 1; 15527 } 15528 15529 if (ep->error || ep->stat) 15530 close_failed = 1; 15531 15532 if (retry && !isrecov && num_retries-- > 0) { 15533 if (have_sync_lock) { 15534 mutex_exit(&osp->os_sync_lock); 15535 have_sync_lock = 0; 15536 } 15537 if (did_start_seqid_sync) { 15538 nfs4_end_open_seqid_sync(oop); 15539 did_start_seqid_sync = 0; 15540 } 15541 open_stream_rele(osp, rp); 15542 15543 if (did_start_op) 15544 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15545 &recov_state, FALSE); 15546 if (did_force_recovlock) 15547 nfs_rw_exit(&mi->mi_recovlock); 15548 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15549 "nfs4close_one: need to retry the close " 15550 "operation")); 15551 goto recov_retry; 15552 } 15553 close_cleanup: 15554 /* 15555 * Seventh and lastly, process our results. 15556 */ 15557 if (close_failed && force_close) { 15558 /* 15559 * It's ok to drop and regrab the 'os_sync_lock' since 15560 * nfs4close_notw() will recheck to make sure the 15561 * "close"/removal of state should happen. 15562 */ 15563 if (!have_sync_lock) { 15564 mutex_enter(&osp->os_sync_lock); 15565 have_sync_lock = 1; 15566 } 15567 /* 15568 * This is last call, remove the ref on the open 15569 * stream created by open and clean everything up. 15570 */ 15571 osp->os_pending_close = 0; 15572 nfs4close_notw(vp, osp, &have_sync_lock); 15573 nfs4_error_zinit(ep); 15574 } 15575 15576 if (!close_failed) { 15577 if (have_sync_lock) { 15578 osp->os_pending_close = 0; 15579 mutex_exit(&osp->os_sync_lock); 15580 have_sync_lock = 0; 15581 } else { 15582 mutex_enter(&osp->os_sync_lock); 15583 osp->os_pending_close = 0; 15584 mutex_exit(&osp->os_sync_lock); 15585 } 15586 if (did_start_op && recov_state.rs_sp != NULL) { 15587 mutex_enter(&recov_state.rs_sp->s_lock); 15588 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15589 mutex_exit(&recov_state.rs_sp->s_lock); 15590 } else { 15591 nfs4_dec_state_ref_count(mi); 15592 } 15593 nfs4_error_zinit(ep); 15594 } 15595 15596 out: 15597 if (have_sync_lock) 15598 mutex_exit(&osp->os_sync_lock); 15599 if (did_start_op) 15600 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15601 recovonly ? TRUE : FALSE); 15602 if (did_force_recovlock) 15603 nfs_rw_exit(&mi->mi_recovlock); 15604 if (cred_otw) 15605 crfree(cred_otw); 15606 if (osp) 15607 open_stream_rele(osp, rp); 15608 if (oop) { 15609 if (did_start_seqid_sync) 15610 nfs4_end_open_seqid_sync(oop); 15611 open_owner_rele(oop); 15612 } 15613 } 15614 15615 /* 15616 * Convert information returned by the server in the LOCK4denied 15617 * structure to the form required by fcntl. 15618 */ 15619 static void 15620 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15621 { 15622 nfs4_lo_name_t *lo; 15623 15624 #ifdef DEBUG 15625 if (denied_to_flk_debug) { 15626 lockt_denied_debug = lockt_denied; 15627 debug_enter("lockt_denied"); 15628 } 15629 #endif 15630 15631 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15632 flk->l_whence = 0; /* aka SEEK_SET */ 15633 flk->l_start = lockt_denied->offset; 15634 flk->l_len = lockt_denied->length; 15635 15636 /* 15637 * If the blocking clientid matches our client id, then we can 15638 * interpret the lockowner (since we built it). If not, then 15639 * fabricate a sysid and pid. Note that the l_sysid field 15640 * in *flk already has the local sysid. 15641 */ 15642 15643 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15644 15645 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15646 lo = (nfs4_lo_name_t *) 15647 lockt_denied->owner.owner_val; 15648 15649 flk->l_pid = lo->ln_pid; 15650 } else { 15651 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15652 "denied_to_flk: bad lock owner length\n")); 15653 15654 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15655 } 15656 } else { 15657 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15658 "denied_to_flk: foreign clientid\n")); 15659 15660 /* 15661 * Construct a new sysid which should be different from 15662 * sysids of other systems. 15663 */ 15664 15665 flk->l_sysid++; 15666 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15667 } 15668 } 15669 15670 static pid_t 15671 lo_to_pid(lock_owner4 *lop) 15672 { 15673 pid_t pid = 0; 15674 uchar_t *cp; 15675 int i; 15676 15677 cp = (uchar_t *)&lop->clientid; 15678 15679 for (i = 0; i < sizeof (lop->clientid); i++) 15680 pid += (pid_t)*cp++; 15681 15682 cp = (uchar_t *)lop->owner_val; 15683 15684 for (i = 0; i < lop->owner_len; i++) 15685 pid += (pid_t)*cp++; 15686 15687 return (pid); 15688 } 15689 15690 /* 15691 * Given a lock pointer, returns the length of that lock. 15692 * "end" is the last locked offset the "l_len" covers from 15693 * the start of the lock. 15694 */ 15695 static off64_t 15696 lock_to_end(flock64_t *lock) 15697 { 15698 off64_t lock_end; 15699 15700 if (lock->l_len == 0) 15701 lock_end = (off64_t)MAXEND; 15702 else 15703 lock_end = lock->l_start + lock->l_len - 1; 15704 15705 return (lock_end); 15706 } 15707 15708 /* 15709 * Given the end of a lock, it will return you the length "l_len" for that lock. 15710 */ 15711 static off64_t 15712 end_to_len(off64_t start, off64_t end) 15713 { 15714 off64_t lock_len; 15715 15716 ASSERT(end >= start); 15717 if (end == MAXEND) 15718 lock_len = 0; 15719 else 15720 lock_len = end - start + 1; 15721 15722 return (lock_len); 15723 } 15724 15725 /* 15726 * On given end for a lock it determines if it is the last locked offset 15727 * or not, if so keeps it as is, else adds one to return the length for 15728 * valid start. 15729 */ 15730 static off64_t 15731 start_check(off64_t x) 15732 { 15733 if (x == MAXEND) 15734 return (x); 15735 else 15736 return (x + 1); 15737 } 15738 15739 /* 15740 * See if these two locks overlap, and if so return 1; 15741 * otherwise, return 0. 15742 */ 15743 static int 15744 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15745 { 15746 off64_t llfp_end, curfp_end; 15747 15748 llfp_end = lock_to_end(llfp); 15749 curfp_end = lock_to_end(curfp); 15750 15751 if (((llfp_end >= curfp->l_start) && 15752 (llfp->l_start <= curfp->l_start)) || 15753 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15754 return (1); 15755 return (0); 15756 } 15757 15758 /* 15759 * Determine what the intersecting lock region is, and add that to the 15760 * 'nl_llpp' locklist in increasing order (by l_start). 15761 */ 15762 static void 15763 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15764 locklist_t **nl_llpp, vnode_t *vp) 15765 { 15766 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15767 off64_t lost_flp_end, local_flp_end, len, start; 15768 15769 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15770 15771 if (!locks_intersect(lost_flp, local_flp)) 15772 return; 15773 15774 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15775 "locks intersect")); 15776 15777 lost_flp_end = lock_to_end(lost_flp); 15778 local_flp_end = lock_to_end(local_flp); 15779 15780 /* Find the starting point of the intersecting region */ 15781 if (local_flp->l_start > lost_flp->l_start) 15782 start = local_flp->l_start; 15783 else 15784 start = lost_flp->l_start; 15785 15786 /* Find the lenght of the intersecting region */ 15787 if (lost_flp_end < local_flp_end) 15788 len = end_to_len(start, lost_flp_end); 15789 else 15790 len = end_to_len(start, local_flp_end); 15791 15792 /* 15793 * Prepare the flock structure for the intersection found and insert 15794 * it into the new list in increasing l_start order. This list contains 15795 * intersections of locks registered by the client with the local host 15796 * and the lost lock. 15797 * The lock type of this lock is the same as that of the local_flp. 15798 */ 15799 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15800 intersect_llp->ll_flock.l_start = start; 15801 intersect_llp->ll_flock.l_len = len; 15802 intersect_llp->ll_flock.l_type = local_flp->l_type; 15803 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15804 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15805 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15806 intersect_llp->ll_vp = vp; 15807 15808 tmp_fllp = *nl_llpp; 15809 cur_fllp = NULL; 15810 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15811 intersect_llp->ll_flock.l_start) { 15812 cur_fllp = tmp_fllp; 15813 tmp_fllp = tmp_fllp->ll_next; 15814 } 15815 if (cur_fllp == NULL) { 15816 /* first on the list */ 15817 intersect_llp->ll_next = *nl_llpp; 15818 *nl_llpp = intersect_llp; 15819 } else { 15820 intersect_llp->ll_next = cur_fllp->ll_next; 15821 cur_fllp->ll_next = intersect_llp; 15822 } 15823 15824 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15825 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15826 intersect_llp->ll_flock.l_start, 15827 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15828 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15829 } 15830 15831 /* 15832 * Our local locking current state is potentially different than 15833 * what the NFSv4 server thinks we have due to a lost lock that was 15834 * resent and then received. We need to reset our "NFSv4" locking 15835 * state to match the current local locking state for this pid since 15836 * that is what the user/application sees as what the world is. 15837 * 15838 * We cannot afford to drop the open/lock seqid sync since then we can 15839 * get confused about what the current local locking state "is" versus 15840 * "was". 15841 * 15842 * If we are unable to fix up the locks, we send SIGLOST to the affected 15843 * process. This is not done if the filesystem has been forcibly 15844 * unmounted, in case the process has already exited and a new process 15845 * exists with the same pid. 15846 */ 15847 static void 15848 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15849 nfs4_lock_owner_t *lop) 15850 { 15851 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15852 mntinfo4_t *mi = VTOMI4(vp); 15853 const int cmd = F_SETLK; 15854 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15855 flock64_t ul_fl; 15856 15857 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15858 "nfs4_reinstitute_local_lock_state")); 15859 15860 /* 15861 * Find active locks for this vp from the local locking code. 15862 * Scan through this list and find out the locks that intersect with 15863 * the lost lock. Once we find the lock that intersects, add the 15864 * intersection area as a new lock to a new list "ri_llp". The lock 15865 * type of the intersection region lock added to ri_llp is the same 15866 * as that found in the active lock list, "list". The intersecting 15867 * region locks are added to ri_llp in increasing l_start order. 15868 */ 15869 ASSERT(nfs_zone() == mi->mi_zone); 15870 15871 locks = flk_active_locks_for_vp(vp); 15872 ri_llp = NULL; 15873 15874 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15875 ASSERT(llp->ll_vp == vp); 15876 /* 15877 * Pick locks that belong to this pid/lockowner 15878 */ 15879 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15880 continue; 15881 15882 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15883 } 15884 15885 /* 15886 * Now we have the list of intersections with the lost lock. These are 15887 * the locks that were/are active before the server replied to the 15888 * last/lost lock. Issue these locks to the server here. Playing these 15889 * locks to the server will re-establish our current local locking state 15890 * with the v4 server. 15891 * If we get an error, send SIGLOST to the application for that lock. 15892 */ 15893 15894 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15895 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15896 "nfs4_reinstitute_local_lock_state: need to issue " 15897 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15898 llp->ll_flock.l_start, 15899 llp->ll_flock.l_start + llp->ll_flock.l_len, 15900 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15901 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15902 /* 15903 * No need to relock what we already have 15904 */ 15905 if (llp->ll_flock.l_type == lost_flp->l_type) 15906 continue; 15907 15908 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15909 } 15910 15911 /* 15912 * Now keeping the start of the lost lock as our reference parse the 15913 * newly created ri_llp locklist to find the ranges that we have locked 15914 * with the v4 server but not in the current local locking. We need 15915 * to unlock these ranges. 15916 * These ranges can also be reffered to as those ranges, where the lost 15917 * lock does not overlap with the locks in the ri_llp but are locked 15918 * since the server replied to the lost lock. 15919 */ 15920 cur_start = lost_flp->l_start; 15921 lost_flp_end = lock_to_end(lost_flp); 15922 15923 ul_fl.l_type = F_UNLCK; 15924 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15925 ul_fl.l_sysid = lost_flp->l_sysid; 15926 ul_fl.l_pid = lost_flp->l_pid; 15927 15928 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15929 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15930 15931 if (llp->ll_flock.l_start <= cur_start) { 15932 cur_start = start_check(llp_ll_flock_end); 15933 continue; 15934 } 15935 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15936 "nfs4_reinstitute_local_lock_state: " 15937 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15938 cur_start, llp->ll_flock.l_start)); 15939 15940 ul_fl.l_start = cur_start; 15941 ul_fl.l_len = end_to_len(cur_start, 15942 (llp->ll_flock.l_start - 1)); 15943 15944 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15945 cur_start = start_check(llp_ll_flock_end); 15946 } 15947 15948 /* 15949 * In the case where the lost lock ends after all intersecting locks, 15950 * unlock the last part of the lost lock range. 15951 */ 15952 if (cur_start != start_check(lost_flp_end)) { 15953 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15954 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15955 "lost lock region [%"PRIx64" - %"PRIx64"]", 15956 cur_start, lost_flp->l_start + lost_flp->l_len)); 15957 15958 ul_fl.l_start = cur_start; 15959 /* 15960 * Is it an to-EOF lock? if so unlock till the end 15961 */ 15962 if (lost_flp->l_len == 0) 15963 ul_fl.l_len = 0; 15964 else 15965 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15966 15967 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15968 } 15969 15970 if (locks != NULL) 15971 flk_free_locklist(locks); 15972 15973 /* Free up our newly created locklist */ 15974 for (llp = ri_llp; llp != NULL; ) { 15975 tmp_llp = llp->ll_next; 15976 kmem_free(llp, sizeof (locklist_t)); 15977 llp = tmp_llp; 15978 } 15979 15980 /* 15981 * Now return back to the original calling nfs4frlock() 15982 * and let us naturally drop our seqid syncs. 15983 */ 15984 } 15985 15986 /* 15987 * Create a lost state record for the given lock reinstantiation request 15988 * and push it onto the lost state queue. 15989 */ 15990 static void 15991 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15992 nfs4_lock_owner_t *lop) 15993 { 15994 nfs4_lost_rqst_t req; 15995 nfs_lock_type4 locktype; 15996 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15997 15998 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15999 16000 locktype = flk_to_locktype(cmd, flk->l_type); 16001 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 16002 NULL, NULL, lop, flk, &req, cr, vp); 16003 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 16004 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 16005 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 16006 NULL, NULL, NULL); 16007 } 16008