1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 25 */ 26 27 /* 28 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 29 * All Rights Reserved 30 */ 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/systm.h> 35 #include <sys/cred.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/pathname.h> 40 #include <sys/sysmacros.h> 41 #include <sys/kmem.h> 42 #include <sys/mkdev.h> 43 #include <sys/mount.h> 44 #include <sys/statvfs.h> 45 #include <sys/errno.h> 46 #include <sys/debug.h> 47 #include <sys/cmn_err.h> 48 #include <sys/utsname.h> 49 #include <sys/bootconf.h> 50 #include <sys/modctl.h> 51 #include <sys/acl.h> 52 #include <sys/flock.h> 53 #include <sys/time.h> 54 #include <sys/disp.h> 55 #include <sys/policy.h> 56 #include <sys/socket.h> 57 #include <sys/netconfig.h> 58 #include <sys/dnlc.h> 59 #include <sys/list.h> 60 #include <sys/mntent.h> 61 #include <sys/tsol/label.h> 62 63 #include <rpc/types.h> 64 #include <rpc/auth.h> 65 #include <rpc/rpcsec_gss.h> 66 #include <rpc/clnt.h> 67 68 #include <nfs/nfs.h> 69 #include <nfs/nfs_clnt.h> 70 #include <nfs/mount.h> 71 #include <nfs/nfs_acl.h> 72 73 #include <fs/fs_subr.h> 74 75 #include <nfs/nfs4.h> 76 #include <nfs/rnode4.h> 77 #include <nfs/nfs4_clnt.h> 78 #include <sys/fs/autofs.h> 79 80 #include <sys/sdt.h> 81 82 83 /* 84 * Arguments passed to thread to free data structures from forced unmount. 85 */ 86 87 typedef struct { 88 vfs_t *fm_vfsp; 89 int fm_flag; 90 cred_t *fm_cr; 91 } freemountargs_t; 92 93 static void async_free_mount(vfs_t *, int, cred_t *); 94 static void nfs4_free_mount(vfs_t *, int, cred_t *); 95 static void nfs4_free_mount_thread(freemountargs_t *); 96 static int nfs4_chkdup_servinfo4(servinfo4_t *, servinfo4_t *); 97 98 /* 99 * From rpcsec module (common/rpcsec). 100 */ 101 extern int sec_clnt_loadinfo(struct sec_data *, struct sec_data **, model_t); 102 extern void sec_clnt_freeinfo(struct sec_data *); 103 104 /* 105 * The order and contents of this structure must be kept in sync with that of 106 * rfsreqcnt_v4_tmpl in nfs_stats.c 107 */ 108 static char *rfsnames_v4[] = { 109 "null", "compound", "reserved", "access", "close", "commit", "create", 110 "delegpurge", "delegreturn", "getattr", "getfh", "link", "lock", 111 "lockt", "locku", "lookup", "lookupp", "nverify", "open", "openattr", 112 "open_confirm", "open_downgrade", "putfh", "putpubfh", "putrootfh", 113 "read", "readdir", "readlink", "remove", "rename", "renew", 114 "restorefh", "savefh", "secinfo", "setattr", "setclientid", 115 "setclientid_confirm", "verify", "write" 116 }; 117 118 /* 119 * nfs4_max_mount_retry is the number of times the client will redrive 120 * a mount compound before giving up and returning failure. The intent 121 * is to redrive mount compounds which fail NFS4ERR_STALE so that 122 * if a component of the server path being mounted goes stale, it can 123 * "recover" by redriving the mount compund (LOOKUP ops). This recovery 124 * code is needed outside of the recovery framework because mount is a 125 * special case. The client doesn't create vnodes/rnodes for components 126 * of the server path being mounted. The recovery code recovers real 127 * client objects, not STALE FHs which map to components of the server 128 * path being mounted. 129 * 130 * We could just fail the mount on the first time, but that would 131 * instantly trigger failover (from nfs4_mount), and the client should 132 * try to re-lookup the STALE FH before doing failover. The easiest 133 * way to "re-lookup" is to simply redrive the mount compound. 134 */ 135 static int nfs4_max_mount_retry = 2; 136 137 /* 138 * nfs4 vfs operations. 139 */ 140 int nfs4_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *); 141 static int nfs4_unmount(vfs_t *, int, cred_t *); 142 static int nfs4_root(vfs_t *, vnode_t **); 143 static int nfs4_statvfs(vfs_t *, struct statvfs64 *); 144 static int nfs4_sync(vfs_t *, short, cred_t *); 145 static int nfs4_vget(vfs_t *, vnode_t **, fid_t *); 146 static int nfs4_mountroot(vfs_t *, whymountroot_t); 147 static void nfs4_freevfs(vfs_t *); 148 149 static int nfs4rootvp(vnode_t **, vfs_t *, struct servinfo4 *, 150 int, cred_t *, zone_t *); 151 152 vfsops_t *nfs4_vfsops; 153 154 int nfs4_vfsinit(void); 155 void nfs4_vfsfini(void); 156 static void nfs4setclientid_init(void); 157 static void nfs4setclientid_fini(void); 158 static void nfs4setclientid_otw(mntinfo4_t *, servinfo4_t *, cred_t *, 159 struct nfs4_server *, nfs4_error_t *, int *); 160 static void destroy_nfs4_server(nfs4_server_t *); 161 static void remove_mi(nfs4_server_t *, mntinfo4_t *); 162 163 extern void nfs4_ephemeral_init(void); 164 extern void nfs4_ephemeral_fini(void); 165 166 /* referral related routines */ 167 static servinfo4_t *copy_svp(servinfo4_t *); 168 static void free_knconf_contents(struct knetconfig *k); 169 static char *extract_referral_point(const char *, int); 170 static void setup_newsvpath(servinfo4_t *, int); 171 static void update_servinfo4(servinfo4_t *, fs_location4 *, 172 struct nfs_fsl_info *, char *, int); 173 174 /* 175 * Initialize the vfs structure 176 */ 177 178 static int nfs4fstyp; 179 180 181 /* 182 * Debug variable to check for rdma based 183 * transport startup and cleanup. Controlled 184 * through /etc/system. Off by default. 185 */ 186 extern int rdma_debug; 187 188 int 189 nfs4init(int fstyp, char *name) 190 { 191 static const fs_operation_def_t nfs4_vfsops_template[] = { 192 VFSNAME_MOUNT, { .vfs_mount = nfs4_mount }, 193 VFSNAME_UNMOUNT, { .vfs_unmount = nfs4_unmount }, 194 VFSNAME_ROOT, { .vfs_root = nfs4_root }, 195 VFSNAME_STATVFS, { .vfs_statvfs = nfs4_statvfs }, 196 VFSNAME_SYNC, { .vfs_sync = nfs4_sync }, 197 VFSNAME_VGET, { .vfs_vget = nfs4_vget }, 198 VFSNAME_MOUNTROOT, { .vfs_mountroot = nfs4_mountroot }, 199 VFSNAME_FREEVFS, { .vfs_freevfs = nfs4_freevfs }, 200 NULL, NULL 201 }; 202 int error; 203 204 nfs4_vfsops = NULL; 205 nfs4_vnodeops = NULL; 206 nfs4_trigger_vnodeops = NULL; 207 208 error = vfs_setfsops(fstyp, nfs4_vfsops_template, &nfs4_vfsops); 209 if (error != 0) { 210 zcmn_err(GLOBAL_ZONEID, CE_WARN, 211 "nfs4init: bad vfs ops template"); 212 goto out; 213 } 214 215 error = vn_make_ops(name, nfs4_vnodeops_template, &nfs4_vnodeops); 216 if (error != 0) { 217 zcmn_err(GLOBAL_ZONEID, CE_WARN, 218 "nfs4init: bad vnode ops template"); 219 goto out; 220 } 221 222 error = vn_make_ops("nfs4_trigger", nfs4_trigger_vnodeops_template, 223 &nfs4_trigger_vnodeops); 224 if (error != 0) { 225 zcmn_err(GLOBAL_ZONEID, CE_WARN, 226 "nfs4init: bad trigger vnode ops template"); 227 goto out; 228 } 229 230 nfs4fstyp = fstyp; 231 (void) nfs4_vfsinit(); 232 (void) nfs4_init_dot_entries(); 233 234 out: 235 if (error) { 236 if (nfs4_trigger_vnodeops != NULL) 237 vn_freevnodeops(nfs4_trigger_vnodeops); 238 239 if (nfs4_vnodeops != NULL) 240 vn_freevnodeops(nfs4_vnodeops); 241 242 (void) vfs_freevfsops_by_type(fstyp); 243 } 244 245 return (error); 246 } 247 248 void 249 nfs4fini(void) 250 { 251 (void) nfs4_destroy_dot_entries(); 252 nfs4_vfsfini(); 253 } 254 255 /* 256 * Create a new sec_data structure to store AUTH_DH related data: 257 * netname, syncaddr, knetconfig. There is no AUTH_F_RPCTIMESYNC 258 * flag set for NFS V4 since we are avoiding to contact the rpcbind 259 * daemon and is using the IP time service (IPPORT_TIMESERVER). 260 * 261 * sec_data can be freed by sec_clnt_freeinfo(). 262 */ 263 static struct sec_data * 264 create_authdh_data(char *netname, int nlen, struct netbuf *syncaddr, 265 struct knetconfig *knconf) 266 { 267 struct sec_data *secdata; 268 dh_k4_clntdata_t *data; 269 char *pf, *p; 270 271 if (syncaddr == NULL || syncaddr->buf == NULL || nlen == 0) 272 return (NULL); 273 274 secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); 275 secdata->flags = 0; 276 277 data = kmem_alloc(sizeof (*data), KM_SLEEP); 278 279 data->syncaddr.maxlen = syncaddr->maxlen; 280 data->syncaddr.len = syncaddr->len; 281 data->syncaddr.buf = (char *)kmem_alloc(syncaddr->len, KM_SLEEP); 282 bcopy(syncaddr->buf, data->syncaddr.buf, syncaddr->len); 283 284 /* 285 * duplicate the knconf information for the 286 * new opaque data. 287 */ 288 data->knconf = kmem_alloc(sizeof (*knconf), KM_SLEEP); 289 *data->knconf = *knconf; 290 pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 291 p = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 292 bcopy(knconf->knc_protofmly, pf, KNC_STRSIZE); 293 bcopy(knconf->knc_proto, p, KNC_STRSIZE); 294 data->knconf->knc_protofmly = pf; 295 data->knconf->knc_proto = p; 296 297 /* move server netname to the sec_data structure */ 298 data->netname = kmem_alloc(nlen, KM_SLEEP); 299 bcopy(netname, data->netname, nlen); 300 data->netnamelen = (int)nlen; 301 302 secdata->secmod = AUTH_DH; 303 secdata->rpcflavor = AUTH_DH; 304 secdata->data = (caddr_t)data; 305 306 return (secdata); 307 } 308 309 /* 310 * Returns (deep) copy of sec_data_t. Allocates all memory required; caller 311 * is responsible for freeing. 312 */ 313 sec_data_t * 314 copy_sec_data(sec_data_t *fsecdata) 315 { 316 sec_data_t *tsecdata; 317 318 if (fsecdata == NULL) 319 return (NULL); 320 321 if (fsecdata->rpcflavor == AUTH_DH) { 322 dh_k4_clntdata_t *fdata = (dh_k4_clntdata_t *)fsecdata->data; 323 324 if (fdata == NULL) 325 return (NULL); 326 327 tsecdata = (sec_data_t *)create_authdh_data(fdata->netname, 328 fdata->netnamelen, &fdata->syncaddr, fdata->knconf); 329 330 return (tsecdata); 331 } 332 333 tsecdata = kmem_zalloc(sizeof (sec_data_t), KM_SLEEP); 334 335 tsecdata->secmod = fsecdata->secmod; 336 tsecdata->rpcflavor = fsecdata->rpcflavor; 337 tsecdata->flags = fsecdata->flags; 338 tsecdata->uid = fsecdata->uid; 339 340 if (fsecdata->rpcflavor == RPCSEC_GSS) { 341 gss_clntdata_t *gcd = (gss_clntdata_t *)fsecdata->data; 342 343 tsecdata->data = (caddr_t)copy_sec_data_gss(gcd); 344 } else { 345 tsecdata->data = NULL; 346 } 347 348 return (tsecdata); 349 } 350 351 gss_clntdata_t * 352 copy_sec_data_gss(gss_clntdata_t *fdata) 353 { 354 gss_clntdata_t *tdata; 355 356 if (fdata == NULL) 357 return (NULL); 358 359 tdata = kmem_zalloc(sizeof (gss_clntdata_t), KM_SLEEP); 360 361 tdata->mechanism.length = fdata->mechanism.length; 362 tdata->mechanism.elements = kmem_zalloc(fdata->mechanism.length, 363 KM_SLEEP); 364 bcopy(fdata->mechanism.elements, tdata->mechanism.elements, 365 fdata->mechanism.length); 366 367 tdata->service = fdata->service; 368 369 (void) strcpy(tdata->uname, fdata->uname); 370 (void) strcpy(tdata->inst, fdata->inst); 371 (void) strcpy(tdata->realm, fdata->realm); 372 373 tdata->qop = fdata->qop; 374 375 return (tdata); 376 } 377 378 static int 379 nfs4_chkdup_servinfo4(servinfo4_t *svp_head, servinfo4_t *svp) 380 { 381 servinfo4_t *si; 382 383 /* 384 * Iterate over the servinfo4 list to make sure 385 * we do not have a duplicate. Skip any servinfo4 386 * that has been marked "NOT IN USE" 387 */ 388 for (si = svp_head; si; si = si->sv_next) { 389 (void) nfs_rw_enter_sig(&si->sv_lock, RW_READER, 0); 390 if (si->sv_flags & SV4_NOTINUSE) { 391 nfs_rw_exit(&si->sv_lock); 392 continue; 393 } 394 nfs_rw_exit(&si->sv_lock); 395 if (si == svp) 396 continue; 397 if (si->sv_addr.len == svp->sv_addr.len && 398 strcmp(si->sv_knconf->knc_protofmly, 399 svp->sv_knconf->knc_protofmly) == 0 && 400 bcmp(si->sv_addr.buf, svp->sv_addr.buf, 401 si->sv_addr.len) == 0) { 402 /* it's a duplicate */ 403 return (1); 404 } 405 } 406 /* it's not a duplicate */ 407 return (0); 408 } 409 410 void 411 nfs4_free_args(struct nfs_args *nargs) 412 { 413 if (nargs->knconf) { 414 if (nargs->knconf->knc_protofmly) 415 kmem_free(nargs->knconf->knc_protofmly, 416 KNC_STRSIZE); 417 if (nargs->knconf->knc_proto) 418 kmem_free(nargs->knconf->knc_proto, KNC_STRSIZE); 419 kmem_free(nargs->knconf, sizeof (*nargs->knconf)); 420 nargs->knconf = NULL; 421 } 422 423 if (nargs->fh) { 424 kmem_free(nargs->fh, strlen(nargs->fh) + 1); 425 nargs->fh = NULL; 426 } 427 428 if (nargs->hostname) { 429 kmem_free(nargs->hostname, strlen(nargs->hostname) + 1); 430 nargs->hostname = NULL; 431 } 432 433 if (nargs->addr) { 434 if (nargs->addr->buf) { 435 ASSERT(nargs->addr->len); 436 kmem_free(nargs->addr->buf, nargs->addr->len); 437 } 438 kmem_free(nargs->addr, sizeof (struct netbuf)); 439 nargs->addr = NULL; 440 } 441 442 if (nargs->syncaddr) { 443 ASSERT(nargs->syncaddr->len); 444 if (nargs->syncaddr->buf) { 445 ASSERT(nargs->syncaddr->len); 446 kmem_free(nargs->syncaddr->buf, nargs->syncaddr->len); 447 } 448 kmem_free(nargs->syncaddr, sizeof (struct netbuf)); 449 nargs->syncaddr = NULL; 450 } 451 452 if (nargs->netname) { 453 kmem_free(nargs->netname, strlen(nargs->netname) + 1); 454 nargs->netname = NULL; 455 } 456 457 if (nargs->nfs_ext_u.nfs_extA.secdata) { 458 sec_clnt_freeinfo( 459 nargs->nfs_ext_u.nfs_extA.secdata); 460 nargs->nfs_ext_u.nfs_extA.secdata = NULL; 461 } 462 } 463 464 465 int 466 nfs4_copyin(char *data, int datalen, struct nfs_args *nargs) 467 { 468 469 int error; 470 size_t hlen; /* length of hostname */ 471 size_t nlen; /* length of netname */ 472 char netname[MAXNETNAMELEN+1]; /* server's netname */ 473 struct netbuf addr; /* server's address */ 474 struct netbuf syncaddr; /* AUTH_DES time sync addr */ 475 struct knetconfig *knconf; /* transport structure */ 476 struct sec_data *secdata = NULL; /* security data */ 477 STRUCT_DECL(nfs_args, args); /* nfs mount arguments */ 478 STRUCT_DECL(knetconfig, knconf_tmp); 479 STRUCT_DECL(netbuf, addr_tmp); 480 int flags; 481 char *p, *pf; 482 struct pathname pn; 483 char *userbufptr; 484 485 486 bzero(nargs, sizeof (*nargs)); 487 488 STRUCT_INIT(args, get_udatamodel()); 489 bzero(STRUCT_BUF(args), SIZEOF_STRUCT(nfs_args, DATAMODEL_NATIVE)); 490 if (copyin(data, STRUCT_BUF(args), MIN(datalen, 491 STRUCT_SIZE(args)))) 492 return (EFAULT); 493 494 nargs->wsize = STRUCT_FGET(args, wsize); 495 nargs->rsize = STRUCT_FGET(args, rsize); 496 nargs->timeo = STRUCT_FGET(args, timeo); 497 nargs->retrans = STRUCT_FGET(args, retrans); 498 nargs->acregmin = STRUCT_FGET(args, acregmin); 499 nargs->acregmax = STRUCT_FGET(args, acregmax); 500 nargs->acdirmin = STRUCT_FGET(args, acdirmin); 501 nargs->acdirmax = STRUCT_FGET(args, acdirmax); 502 503 flags = STRUCT_FGET(args, flags); 504 nargs->flags = flags; 505 506 addr.buf = NULL; 507 syncaddr.buf = NULL; 508 509 510 /* 511 * Allocate space for a knetconfig structure and 512 * its strings and copy in from user-land. 513 */ 514 knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP); 515 STRUCT_INIT(knconf_tmp, get_udatamodel()); 516 if (copyin(STRUCT_FGETP(args, knconf), STRUCT_BUF(knconf_tmp), 517 STRUCT_SIZE(knconf_tmp))) { 518 kmem_free(knconf, sizeof (*knconf)); 519 return (EFAULT); 520 } 521 522 knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics); 523 knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly); 524 knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto); 525 if (get_udatamodel() != DATAMODEL_LP64) { 526 knconf->knc_rdev = expldev(STRUCT_FGET(knconf_tmp, knc_rdev)); 527 } else { 528 knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev); 529 } 530 531 pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 532 p = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 533 error = copyinstr(knconf->knc_protofmly, pf, KNC_STRSIZE, NULL); 534 if (error) { 535 kmem_free(pf, KNC_STRSIZE); 536 kmem_free(p, KNC_STRSIZE); 537 kmem_free(knconf, sizeof (*knconf)); 538 return (error); 539 } 540 541 error = copyinstr(knconf->knc_proto, p, KNC_STRSIZE, NULL); 542 if (error) { 543 kmem_free(pf, KNC_STRSIZE); 544 kmem_free(p, KNC_STRSIZE); 545 kmem_free(knconf, sizeof (*knconf)); 546 return (error); 547 } 548 549 550 knconf->knc_protofmly = pf; 551 knconf->knc_proto = p; 552 553 nargs->knconf = knconf; 554 555 /* 556 * Get server address 557 */ 558 STRUCT_INIT(addr_tmp, get_udatamodel()); 559 if (copyin(STRUCT_FGETP(args, addr), STRUCT_BUF(addr_tmp), 560 STRUCT_SIZE(addr_tmp))) { 561 error = EFAULT; 562 goto errout; 563 } 564 565 nargs->addr = kmem_zalloc(sizeof (struct netbuf), KM_SLEEP); 566 userbufptr = STRUCT_FGETP(addr_tmp, buf); 567 addr.len = STRUCT_FGET(addr_tmp, len); 568 addr.buf = kmem_alloc(addr.len, KM_SLEEP); 569 addr.maxlen = addr.len; 570 if (copyin(userbufptr, addr.buf, addr.len)) { 571 kmem_free(addr.buf, addr.len); 572 error = EFAULT; 573 goto errout; 574 } 575 bcopy(&addr, nargs->addr, sizeof (struct netbuf)); 576 577 /* 578 * Get the root fhandle 579 */ 580 error = pn_get(STRUCT_FGETP(args, fh), UIO_USERSPACE, &pn); 581 if (error) 582 goto errout; 583 584 /* Volatile fh: keep server paths, so use actual-size strings */ 585 nargs->fh = kmem_alloc(pn.pn_pathlen + 1, KM_SLEEP); 586 bcopy(pn.pn_path, nargs->fh, pn.pn_pathlen); 587 nargs->fh[pn.pn_pathlen] = '\0'; 588 pn_free(&pn); 589 590 591 /* 592 * Get server's hostname 593 */ 594 if (flags & NFSMNT_HOSTNAME) { 595 error = copyinstr(STRUCT_FGETP(args, hostname), 596 netname, sizeof (netname), &hlen); 597 if (error) 598 goto errout; 599 nargs->hostname = kmem_zalloc(hlen, KM_SLEEP); 600 (void) strcpy(nargs->hostname, netname); 601 602 } else { 603 nargs->hostname = NULL; 604 } 605 606 607 /* 608 * If there are syncaddr and netname data, load them in. This is 609 * to support data needed for NFSV4 when AUTH_DH is the negotiated 610 * flavor via SECINFO. (instead of using MOUNT protocol in V3). 611 */ 612 netname[0] = '\0'; 613 if (flags & NFSMNT_SECURE) { 614 615 /* get syncaddr */ 616 STRUCT_INIT(addr_tmp, get_udatamodel()); 617 if (copyin(STRUCT_FGETP(args, syncaddr), STRUCT_BUF(addr_tmp), 618 STRUCT_SIZE(addr_tmp))) { 619 error = EINVAL; 620 goto errout; 621 } 622 userbufptr = STRUCT_FGETP(addr_tmp, buf); 623 syncaddr.len = STRUCT_FGET(addr_tmp, len); 624 syncaddr.buf = kmem_alloc(syncaddr.len, KM_SLEEP); 625 syncaddr.maxlen = syncaddr.len; 626 if (copyin(userbufptr, syncaddr.buf, syncaddr.len)) { 627 kmem_free(syncaddr.buf, syncaddr.len); 628 error = EFAULT; 629 goto errout; 630 } 631 632 nargs->syncaddr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP); 633 bcopy(&syncaddr, nargs->syncaddr, sizeof (struct netbuf)); 634 635 /* get server's netname */ 636 if (copyinstr(STRUCT_FGETP(args, netname), netname, 637 sizeof (netname), &nlen)) { 638 error = EFAULT; 639 goto errout; 640 } 641 642 netname[nlen] = '\0'; 643 nargs->netname = kmem_zalloc(nlen, KM_SLEEP); 644 (void) strcpy(nargs->netname, netname); 645 } 646 647 /* 648 * Get the extention data which has the security data structure. 649 * This includes data for AUTH_SYS as well. 650 */ 651 if (flags & NFSMNT_NEWARGS) { 652 nargs->nfs_args_ext = STRUCT_FGET(args, nfs_args_ext); 653 if (nargs->nfs_args_ext == NFS_ARGS_EXTA || 654 nargs->nfs_args_ext == NFS_ARGS_EXTB) { 655 /* 656 * Indicating the application is using the new 657 * sec_data structure to pass in the security 658 * data. 659 */ 660 if (STRUCT_FGETP(args, 661 nfs_ext_u.nfs_extA.secdata) != NULL) { 662 error = sec_clnt_loadinfo( 663 (struct sec_data *)STRUCT_FGETP(args, 664 nfs_ext_u.nfs_extA.secdata), 665 &secdata, get_udatamodel()); 666 } 667 nargs->nfs_ext_u.nfs_extA.secdata = secdata; 668 } 669 } 670 671 if (error) 672 goto errout; 673 674 /* 675 * Failover support: 676 * 677 * We may have a linked list of nfs_args structures, 678 * which means the user is looking for failover. If 679 * the mount is either not "read-only" or "soft", 680 * we want to bail out with EINVAL. 681 */ 682 if (nargs->nfs_args_ext == NFS_ARGS_EXTB) 683 nargs->nfs_ext_u.nfs_extB.next = 684 STRUCT_FGETP(args, nfs_ext_u.nfs_extB.next); 685 686 errout: 687 if (error) 688 nfs4_free_args(nargs); 689 690 return (error); 691 } 692 693 694 /* 695 * nfs mount vfsop 696 * Set up mount info record and attach it to vfs struct. 697 */ 698 int 699 nfs4_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 700 { 701 char *data = uap->dataptr; 702 int error; 703 vnode_t *rtvp; /* the server's root */ 704 mntinfo4_t *mi; /* mount info, pointed at by vfs */ 705 struct knetconfig *rdma_knconf; /* rdma transport structure */ 706 rnode4_t *rp; 707 struct servinfo4 *svp; /* nfs server info */ 708 struct servinfo4 *svp_tail = NULL; /* previous nfs server info */ 709 struct servinfo4 *svp_head; /* first nfs server info */ 710 struct servinfo4 *svp_2ndlast; /* 2nd last in server info list */ 711 struct sec_data *secdata; /* security data */ 712 struct nfs_args *args = NULL; 713 int flags, addr_type, removed; 714 zone_t *zone = nfs_zone(); 715 nfs4_error_t n4e; 716 zone_t *mntzone = NULL; 717 718 if (secpolicy_fs_mount(cr, mvp, vfsp) != 0) 719 return (EPERM); 720 if (mvp->v_type != VDIR) 721 return (ENOTDIR); 722 723 /* 724 * get arguments 725 * 726 * nfs_args is now versioned and is extensible, so 727 * uap->datalen might be different from sizeof (args) 728 * in a compatible situation. 729 */ 730 more: 731 if (!(uap->flags & MS_SYSSPACE)) { 732 if (args == NULL) 733 args = kmem_zalloc(sizeof (struct nfs_args), KM_SLEEP); 734 else 735 nfs4_free_args(args); 736 error = nfs4_copyin(data, uap->datalen, args); 737 if (error) { 738 if (args) { 739 kmem_free(args, sizeof (*args)); 740 } 741 return (error); 742 } 743 } else { 744 args = (struct nfs_args *)data; 745 } 746 747 flags = args->flags; 748 749 /* 750 * If the request changes the locking type, disallow the remount, 751 * because it's questionable whether we can transfer the 752 * locking state correctly. 753 */ 754 if (uap->flags & MS_REMOUNT) { 755 if (!(uap->flags & MS_SYSSPACE)) { 756 nfs4_free_args(args); 757 kmem_free(args, sizeof (*args)); 758 } 759 if ((mi = VFTOMI4(vfsp)) != NULL) { 760 uint_t new_mi_llock; 761 uint_t old_mi_llock; 762 new_mi_llock = (flags & NFSMNT_LLOCK) ? 1 : 0; 763 old_mi_llock = (mi->mi_flags & MI4_LLOCK) ? 1 : 0; 764 if (old_mi_llock != new_mi_llock) 765 return (EBUSY); 766 } 767 return (0); 768 } 769 770 /* 771 * For ephemeral mount trigger stub vnodes, we have two problems 772 * to solve: racing threads will likely fail the v_count check, and 773 * we want only one to proceed with the mount. 774 * 775 * For stubs, if the mount has already occurred (via a racing thread), 776 * just return success. If not, skip the v_count check and proceed. 777 * Note that we are already serialised at this point. 778 */ 779 mutex_enter(&mvp->v_lock); 780 if (vn_matchops(mvp, nfs4_trigger_vnodeops)) { 781 /* mntpt is a v4 stub vnode */ 782 ASSERT(RP_ISSTUB(VTOR4(mvp))); 783 ASSERT(!(uap->flags & MS_OVERLAY)); 784 ASSERT(!(mvp->v_flag & VROOT)); 785 if (vn_mountedvfs(mvp) != NULL) { 786 /* ephemeral mount has already occurred */ 787 ASSERT(uap->flags & MS_SYSSPACE); 788 mutex_exit(&mvp->v_lock); 789 return (0); 790 } 791 } else { 792 /* mntpt is a non-v4 or v4 non-stub vnode */ 793 if (!(uap->flags & MS_OVERLAY) && 794 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 795 mutex_exit(&mvp->v_lock); 796 if (!(uap->flags & MS_SYSSPACE)) { 797 nfs4_free_args(args); 798 kmem_free(args, sizeof (*args)); 799 } 800 return (EBUSY); 801 } 802 } 803 mutex_exit(&mvp->v_lock); 804 805 /* make sure things are zeroed for errout: */ 806 rtvp = NULL; 807 mi = NULL; 808 secdata = NULL; 809 810 /* 811 * A valid knetconfig structure is required. 812 */ 813 if (!(flags & NFSMNT_KNCONF) || 814 args->knconf == NULL || args->knconf->knc_protofmly == NULL || 815 args->knconf->knc_proto == NULL || 816 (strcmp(args->knconf->knc_proto, NC_UDP) == 0)) { 817 if (!(uap->flags & MS_SYSSPACE)) { 818 nfs4_free_args(args); 819 kmem_free(args, sizeof (*args)); 820 } 821 return (EINVAL); 822 } 823 824 if ((strlen(args->knconf->knc_protofmly) >= KNC_STRSIZE) || 825 (strlen(args->knconf->knc_proto) >= KNC_STRSIZE)) { 826 if (!(uap->flags & MS_SYSSPACE)) { 827 nfs4_free_args(args); 828 kmem_free(args, sizeof (*args)); 829 } 830 return (EINVAL); 831 } 832 833 /* 834 * Allocate a servinfo4 struct. 835 */ 836 svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); 837 nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL); 838 if (svp_tail) { 839 svp_2ndlast = svp_tail; 840 svp_tail->sv_next = svp; 841 } else { 842 svp_head = svp; 843 svp_2ndlast = svp; 844 } 845 846 svp_tail = svp; 847 svp->sv_knconf = args->knconf; 848 args->knconf = NULL; 849 850 /* 851 * Get server address 852 */ 853 if (args->addr == NULL || args->addr->buf == NULL) { 854 error = EINVAL; 855 goto errout; 856 } 857 858 svp->sv_addr.maxlen = args->addr->maxlen; 859 svp->sv_addr.len = args->addr->len; 860 svp->sv_addr.buf = args->addr->buf; 861 args->addr->buf = NULL; 862 863 /* 864 * Get the root fhandle 865 */ 866 if (args->fh == NULL || (strlen(args->fh) >= MAXPATHLEN)) { 867 error = EINVAL; 868 goto errout; 869 } 870 871 svp->sv_path = args->fh; 872 svp->sv_pathlen = strlen(args->fh) + 1; 873 args->fh = NULL; 874 875 /* 876 * Get server's hostname 877 */ 878 if (flags & NFSMNT_HOSTNAME) { 879 if (args->hostname == NULL || (strlen(args->hostname) > 880 MAXNETNAMELEN)) { 881 error = EINVAL; 882 goto errout; 883 } 884 svp->sv_hostnamelen = strlen(args->hostname) + 1; 885 svp->sv_hostname = args->hostname; 886 args->hostname = NULL; 887 } else { 888 char *p = "unknown-host"; 889 svp->sv_hostnamelen = strlen(p) + 1; 890 svp->sv_hostname = kmem_zalloc(svp->sv_hostnamelen, KM_SLEEP); 891 (void) strcpy(svp->sv_hostname, p); 892 } 893 894 /* 895 * RDMA MOUNT SUPPORT FOR NFS v4. 896 * Establish, is it possible to use RDMA, if so overload the 897 * knconf with rdma specific knconf and free the orignal knconf. 898 */ 899 if ((flags & NFSMNT_TRYRDMA) || (flags & NFSMNT_DORDMA)) { 900 /* 901 * Determine the addr type for RDMA, IPv4 or v6. 902 */ 903 if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET) == 0) 904 addr_type = AF_INET; 905 else if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET6) == 0) 906 addr_type = AF_INET6; 907 908 if (rdma_reachable(addr_type, &svp->sv_addr, 909 &rdma_knconf) == 0) { 910 /* 911 * If successful, hijack the orignal knconf and 912 * replace with the new one, depending on the flags. 913 */ 914 svp->sv_origknconf = svp->sv_knconf; 915 svp->sv_knconf = rdma_knconf; 916 } else { 917 if (flags & NFSMNT_TRYRDMA) { 918 #ifdef DEBUG 919 if (rdma_debug) 920 zcmn_err(getzoneid(), CE_WARN, 921 "no RDMA onboard, revert\n"); 922 #endif 923 } 924 925 if (flags & NFSMNT_DORDMA) { 926 /* 927 * If proto=rdma is specified and no RDMA 928 * path to this server is avialable then 929 * ditch this server. 930 * This is not included in the mountable 931 * server list or the replica list. 932 * Check if more servers are specified; 933 * Failover case, otherwise bail out of mount. 934 */ 935 if (args->nfs_args_ext == NFS_ARGS_EXTB && 936 args->nfs_ext_u.nfs_extB.next != NULL) { 937 data = (char *) 938 args->nfs_ext_u.nfs_extB.next; 939 if (uap->flags & MS_RDONLY && 940 !(flags & NFSMNT_SOFT)) { 941 if (svp_head->sv_next == NULL) { 942 svp_tail = NULL; 943 svp_2ndlast = NULL; 944 sv4_free(svp_head); 945 goto more; 946 } else { 947 svp_tail = svp_2ndlast; 948 svp_2ndlast->sv_next = 949 NULL; 950 sv4_free(svp); 951 goto more; 952 } 953 } 954 } else { 955 /* 956 * This is the last server specified 957 * in the nfs_args list passed down 958 * and its not rdma capable. 959 */ 960 if (svp_head->sv_next == NULL) { 961 /* 962 * Is this the only one 963 */ 964 error = EINVAL; 965 #ifdef DEBUG 966 if (rdma_debug) 967 zcmn_err(getzoneid(), 968 CE_WARN, 969 "No RDMA srv"); 970 #endif 971 goto errout; 972 } else { 973 /* 974 * There is list, since some 975 * servers specified before 976 * this passed all requirements 977 */ 978 svp_tail = svp_2ndlast; 979 svp_2ndlast->sv_next = NULL; 980 sv4_free(svp); 981 goto proceed; 982 } 983 } 984 } 985 } 986 } 987 988 /* 989 * If there are syncaddr and netname data, load them in. This is 990 * to support data needed for NFSV4 when AUTH_DH is the negotiated 991 * flavor via SECINFO. (instead of using MOUNT protocol in V3). 992 */ 993 if (args->flags & NFSMNT_SECURE) { 994 svp->sv_dhsec = create_authdh_data(args->netname, 995 strlen(args->netname), 996 args->syncaddr, svp->sv_knconf); 997 } 998 999 /* 1000 * Get the extention data which has the security data structure. 1001 * This includes data for AUTH_SYS as well. 1002 */ 1003 if (flags & NFSMNT_NEWARGS) { 1004 switch (args->nfs_args_ext) { 1005 case NFS_ARGS_EXTA: 1006 case NFS_ARGS_EXTB: 1007 /* 1008 * Indicating the application is using the new 1009 * sec_data structure to pass in the security 1010 * data. 1011 */ 1012 secdata = args->nfs_ext_u.nfs_extA.secdata; 1013 if (secdata == NULL) { 1014 error = EINVAL; 1015 } else if (uap->flags & MS_SYSSPACE) { 1016 /* 1017 * Need to validate the flavor here if 1018 * sysspace, userspace was already 1019 * validate from the nfs_copyin function. 1020 */ 1021 switch (secdata->rpcflavor) { 1022 case AUTH_NONE: 1023 case AUTH_UNIX: 1024 case AUTH_LOOPBACK: 1025 case AUTH_DES: 1026 case RPCSEC_GSS: 1027 break; 1028 default: 1029 error = EINVAL; 1030 goto errout; 1031 } 1032 } 1033 args->nfs_ext_u.nfs_extA.secdata = NULL; 1034 break; 1035 1036 default: 1037 error = EINVAL; 1038 break; 1039 } 1040 1041 } else if (flags & NFSMNT_SECURE) { 1042 /* 1043 * NFSMNT_SECURE is deprecated but we keep it 1044 * to support the rogue user-generated application 1045 * that may use this undocumented interface to do 1046 * AUTH_DH security, e.g. our own rexd. 1047 * 1048 * Also note that NFSMNT_SECURE is used for passing 1049 * AUTH_DH info to be used in negotiation. 1050 */ 1051 secdata = create_authdh_data(args->netname, 1052 strlen(args->netname), args->syncaddr, svp->sv_knconf); 1053 1054 } else { 1055 secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); 1056 secdata->secmod = secdata->rpcflavor = AUTH_SYS; 1057 secdata->data = NULL; 1058 } 1059 1060 svp->sv_secdata = secdata; 1061 1062 /* 1063 * User does not explictly specify a flavor, and a user 1064 * defined default flavor is passed down. 1065 */ 1066 if (flags & NFSMNT_SECDEFAULT) { 1067 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 1068 svp->sv_flags |= SV4_TRYSECDEFAULT; 1069 nfs_rw_exit(&svp->sv_lock); 1070 } 1071 1072 /* 1073 * Failover support: 1074 * 1075 * We may have a linked list of nfs_args structures, 1076 * which means the user is looking for failover. If 1077 * the mount is either not "read-only" or "soft", 1078 * we want to bail out with EINVAL. 1079 */ 1080 if (args->nfs_args_ext == NFS_ARGS_EXTB && 1081 args->nfs_ext_u.nfs_extB.next != NULL) { 1082 if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) { 1083 data = (char *)args->nfs_ext_u.nfs_extB.next; 1084 goto more; 1085 } 1086 error = EINVAL; 1087 goto errout; 1088 } 1089 1090 /* 1091 * Determine the zone we're being mounted into. 1092 */ 1093 zone_hold(mntzone = zone); /* start with this assumption */ 1094 if (getzoneid() == GLOBAL_ZONEID) { 1095 zone_rele(mntzone); 1096 mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 1097 ASSERT(mntzone != NULL); 1098 if (mntzone != zone) { 1099 error = EBUSY; 1100 goto errout; 1101 } 1102 } 1103 1104 if (is_system_labeled()) { 1105 error = nfs_mount_label_policy(vfsp, &svp->sv_addr, 1106 svp->sv_knconf, cr); 1107 1108 if (error > 0) 1109 goto errout; 1110 1111 if (error == -1) { 1112 /* change mount to read-only to prevent write-down */ 1113 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1114 } 1115 } 1116 1117 /* 1118 * Stop the mount from going any further if the zone is going away. 1119 */ 1120 if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) { 1121 error = EBUSY; 1122 goto errout; 1123 } 1124 1125 /* 1126 * Get root vnode. 1127 */ 1128 proceed: 1129 error = nfs4rootvp(&rtvp, vfsp, svp_head, flags, cr, mntzone); 1130 if (error) { 1131 /* if nfs4rootvp failed, it will free svp_head */ 1132 svp_head = NULL; 1133 goto errout; 1134 } 1135 1136 mi = VTOMI4(rtvp); 1137 1138 /* 1139 * Send client id to the server, if necessary 1140 */ 1141 nfs4_error_zinit(&n4e); 1142 nfs4setclientid(mi, cr, FALSE, &n4e); 1143 1144 error = n4e.error; 1145 1146 if (error) 1147 goto errout; 1148 1149 /* 1150 * Set option fields in the mount info record 1151 */ 1152 1153 if (svp_head->sv_next) { 1154 mutex_enter(&mi->mi_lock); 1155 mi->mi_flags |= MI4_LLOCK; 1156 mutex_exit(&mi->mi_lock); 1157 } 1158 error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, args); 1159 if (error) 1160 goto errout; 1161 1162 /* 1163 * Time to tie in the mirror mount info at last! 1164 */ 1165 if (flags & NFSMNT_EPHEMERAL) 1166 error = nfs4_record_ephemeral_mount(mi, mvp); 1167 1168 errout: 1169 if (error) { 1170 if (rtvp != NULL) { 1171 rp = VTOR4(rtvp); 1172 if (rp->r_flags & R4HASHED) 1173 rp4_rmhash(rp); 1174 } 1175 if (mi != NULL) { 1176 nfs4_async_stop(vfsp); 1177 nfs4_async_manager_stop(vfsp); 1178 nfs4_remove_mi_from_server(mi, NULL); 1179 if (rtvp != NULL) 1180 VN_RELE(rtvp); 1181 if (mntzone != NULL) 1182 zone_rele(mntzone); 1183 /* need to remove it from the zone */ 1184 removed = nfs4_mi_zonelist_remove(mi); 1185 if (removed) 1186 zone_rele_ref(&mi->mi_zone_ref, 1187 ZONE_REF_NFSV4); 1188 MI4_RELE(mi); 1189 if (!(uap->flags & MS_SYSSPACE) && args) { 1190 nfs4_free_args(args); 1191 kmem_free(args, sizeof (*args)); 1192 } 1193 return (error); 1194 } 1195 if (svp_head) 1196 sv4_free(svp_head); 1197 } 1198 1199 if (!(uap->flags & MS_SYSSPACE) && args) { 1200 nfs4_free_args(args); 1201 kmem_free(args, sizeof (*args)); 1202 } 1203 if (rtvp != NULL) 1204 VN_RELE(rtvp); 1205 1206 if (mntzone != NULL) 1207 zone_rele(mntzone); 1208 1209 return (error); 1210 } 1211 1212 #ifdef DEBUG 1213 #define VERS_MSG "NFS4 server " 1214 #else 1215 #define VERS_MSG "NFS server " 1216 #endif 1217 1218 #define READ_MSG \ 1219 VERS_MSG "%s returned 0 for read transfer size" 1220 #define WRITE_MSG \ 1221 VERS_MSG "%s returned 0 for write transfer size" 1222 #define SIZE_MSG \ 1223 VERS_MSG "%s returned 0 for maximum file size" 1224 1225 /* 1226 * Get the symbolic link text from the server for a given filehandle 1227 * of that symlink. 1228 * 1229 * (get symlink text) PUTFH READLINK 1230 */ 1231 static int 1232 getlinktext_otw(mntinfo4_t *mi, nfs_fh4 *fh, char **linktextp, cred_t *cr, 1233 int flags) 1234 { 1235 COMPOUND4args_clnt args; 1236 COMPOUND4res_clnt res; 1237 int doqueue; 1238 nfs_argop4 argop[2]; 1239 nfs_resop4 *resop; 1240 READLINK4res *lr_res; 1241 uint_t len; 1242 bool_t needrecov = FALSE; 1243 nfs4_recov_state_t recov_state; 1244 nfs4_sharedfh_t *sfh; 1245 nfs4_error_t e; 1246 int num_retry = nfs4_max_mount_retry; 1247 int recovery = !(flags & NFS4_GETFH_NEEDSOP); 1248 1249 sfh = sfh4_get(fh, mi); 1250 recov_state.rs_flags = 0; 1251 recov_state.rs_num_retry_despite_err = 0; 1252 1253 recov_retry: 1254 nfs4_error_zinit(&e); 1255 1256 args.array_len = 2; 1257 args.array = argop; 1258 args.ctag = TAG_GET_SYMLINK; 1259 1260 if (! recovery) { 1261 e.error = nfs4_start_op(mi, NULL, NULL, &recov_state); 1262 if (e.error) { 1263 sfh4_rele(&sfh); 1264 return (e.error); 1265 } 1266 } 1267 1268 /* 0. putfh symlink fh */ 1269 argop[0].argop = OP_CPUTFH; 1270 argop[0].nfs_argop4_u.opcputfh.sfh = sfh; 1271 1272 /* 1. readlink */ 1273 argop[1].argop = OP_READLINK; 1274 1275 doqueue = 1; 1276 1277 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 1278 1279 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 1280 1281 if (needrecov && !recovery && num_retry-- > 0) { 1282 1283 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1284 "getlinktext_otw: initiating recovery\n")); 1285 1286 if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL, 1287 OP_READLINK, NULL, NULL, NULL) == FALSE) { 1288 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 1289 if (!e.error) 1290 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1291 goto recov_retry; 1292 } 1293 } 1294 1295 /* 1296 * If non-NFS4 pcol error and/or we weren't able to recover. 1297 */ 1298 if (e.error != 0) { 1299 if (! recovery) 1300 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 1301 sfh4_rele(&sfh); 1302 return (e.error); 1303 } 1304 1305 if (res.status) { 1306 e.error = geterrno4(res.status); 1307 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1308 if (! recovery) 1309 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 1310 sfh4_rele(&sfh); 1311 return (e.error); 1312 } 1313 1314 /* res.status == NFS4_OK */ 1315 ASSERT(res.status == NFS4_OK); 1316 1317 resop = &res.array[1]; /* readlink res */ 1318 lr_res = &resop->nfs_resop4_u.opreadlink; 1319 1320 /* treat symlink name as data */ 1321 *linktextp = utf8_to_str((utf8string *)&lr_res->link, &len, NULL); 1322 1323 if (! recovery) 1324 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 1325 sfh4_rele(&sfh); 1326 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1327 return (0); 1328 } 1329 1330 /* 1331 * Skip over consecutive slashes and "/./" in a pathname. 1332 */ 1333 void 1334 pathname_skipslashdot(struct pathname *pnp) 1335 { 1336 char *c1, *c2; 1337 1338 while (pnp->pn_pathlen > 0 && *pnp->pn_path == '/') { 1339 1340 c1 = pnp->pn_path + 1; 1341 c2 = pnp->pn_path + 2; 1342 1343 if (*c1 == '.' && (*c2 == '/' || *c2 == '\0')) { 1344 pnp->pn_path = pnp->pn_path + 2; /* skip "/." */ 1345 pnp->pn_pathlen = pnp->pn_pathlen - 2; 1346 } else { 1347 pnp->pn_path++; 1348 pnp->pn_pathlen--; 1349 } 1350 } 1351 } 1352 1353 /* 1354 * Resolve a symbolic link path. The symlink is in the nth component of 1355 * svp->sv_path and has an nfs4 file handle "fh". 1356 * Upon return, the sv_path will point to the new path that has the nth 1357 * component resolved to its symlink text. 1358 */ 1359 int 1360 resolve_sympath(mntinfo4_t *mi, servinfo4_t *svp, int nth, nfs_fh4 *fh, 1361 cred_t *cr, int flags) 1362 { 1363 char *oldpath; 1364 char *symlink, *newpath; 1365 struct pathname oldpn, newpn; 1366 char component[MAXNAMELEN]; 1367 int i, addlen, error = 0; 1368 int oldpathlen; 1369 1370 /* Get the symbolic link text over the wire. */ 1371 error = getlinktext_otw(mi, fh, &symlink, cr, flags); 1372 1373 if (error || symlink == NULL || strlen(symlink) == 0) 1374 return (error); 1375 1376 /* 1377 * Compose the new pathname. 1378 * Note: 1379 * - only the nth component is resolved for the pathname. 1380 * - pathname.pn_pathlen does not count the ending null byte. 1381 */ 1382 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1383 oldpath = svp->sv_path; 1384 oldpathlen = svp->sv_pathlen; 1385 if (error = pn_get(oldpath, UIO_SYSSPACE, &oldpn)) { 1386 nfs_rw_exit(&svp->sv_lock); 1387 kmem_free(symlink, strlen(symlink) + 1); 1388 return (error); 1389 } 1390 nfs_rw_exit(&svp->sv_lock); 1391 pn_alloc(&newpn); 1392 1393 /* 1394 * Skip over previous components from the oldpath so that the 1395 * oldpn.pn_path will point to the symlink component. Skip 1396 * leading slashes and "/./" (no OP_LOOKUP on ".") so that 1397 * pn_getcompnent can get the component. 1398 */ 1399 for (i = 1; i < nth; i++) { 1400 pathname_skipslashdot(&oldpn); 1401 error = pn_getcomponent(&oldpn, component); 1402 if (error) 1403 goto out; 1404 } 1405 1406 /* 1407 * Copy the old path upto the component right before the symlink 1408 * if the symlink is not an absolute path. 1409 */ 1410 if (symlink[0] != '/') { 1411 addlen = oldpn.pn_path - oldpn.pn_buf; 1412 bcopy(oldpn.pn_buf, newpn.pn_path, addlen); 1413 newpn.pn_pathlen += addlen; 1414 newpn.pn_path += addlen; 1415 newpn.pn_buf[newpn.pn_pathlen] = '/'; 1416 newpn.pn_pathlen++; 1417 newpn.pn_path++; 1418 } 1419 1420 /* copy the resolved symbolic link text */ 1421 addlen = strlen(symlink); 1422 if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) { 1423 error = ENAMETOOLONG; 1424 goto out; 1425 } 1426 bcopy(symlink, newpn.pn_path, addlen); 1427 newpn.pn_pathlen += addlen; 1428 newpn.pn_path += addlen; 1429 1430 /* 1431 * Check if there is any remaining path after the symlink component. 1432 * First, skip the symlink component. 1433 */ 1434 pathname_skipslashdot(&oldpn); 1435 if (error = pn_getcomponent(&oldpn, component)) 1436 goto out; 1437 1438 addlen = pn_pathleft(&oldpn); /* includes counting the slash */ 1439 1440 /* 1441 * Copy the remaining path to the new pathname if there is any. 1442 */ 1443 if (addlen > 0) { 1444 if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) { 1445 error = ENAMETOOLONG; 1446 goto out; 1447 } 1448 bcopy(oldpn.pn_path, newpn.pn_path, addlen); 1449 newpn.pn_pathlen += addlen; 1450 } 1451 newpn.pn_buf[newpn.pn_pathlen] = '\0'; 1452 1453 /* get the newpath and store it in the servinfo4_t */ 1454 newpath = kmem_alloc(newpn.pn_pathlen + 1, KM_SLEEP); 1455 bcopy(newpn.pn_buf, newpath, newpn.pn_pathlen); 1456 newpath[newpn.pn_pathlen] = '\0'; 1457 1458 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 1459 svp->sv_path = newpath; 1460 svp->sv_pathlen = strlen(newpath) + 1; 1461 nfs_rw_exit(&svp->sv_lock); 1462 1463 kmem_free(oldpath, oldpathlen); 1464 out: 1465 kmem_free(symlink, strlen(symlink) + 1); 1466 pn_free(&newpn); 1467 pn_free(&oldpn); 1468 1469 return (error); 1470 } 1471 1472 /* 1473 * This routine updates servinfo4 structure with the new referred server 1474 * info. 1475 * nfsfsloc has the location related information 1476 * fsp has the hostname and pathname info. 1477 * new path = pathname from referral + part of orig pathname(based on nth). 1478 */ 1479 static void 1480 update_servinfo4(servinfo4_t *svp, fs_location4 *fsp, 1481 struct nfs_fsl_info *nfsfsloc, char *orig_path, int nth) 1482 { 1483 struct knetconfig *knconf, *svknconf; 1484 struct netbuf *saddr; 1485 sec_data_t *secdata; 1486 utf8string *host; 1487 int i = 0, num_slashes = 0; 1488 char *p, *spath, *op, *new_path; 1489 1490 /* Update knconf */ 1491 knconf = svp->sv_knconf; 1492 free_knconf_contents(knconf); 1493 bzero(knconf, sizeof (struct knetconfig)); 1494 svknconf = nfsfsloc->knconf; 1495 knconf->knc_semantics = svknconf->knc_semantics; 1496 knconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); 1497 knconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); 1498 knconf->knc_rdev = svknconf->knc_rdev; 1499 bcopy(svknconf->knc_protofmly, knconf->knc_protofmly, KNC_STRSIZE); 1500 bcopy(svknconf->knc_proto, knconf->knc_proto, KNC_STRSIZE); 1501 1502 /* Update server address */ 1503 saddr = &svp->sv_addr; 1504 if (saddr->buf != NULL) 1505 kmem_free(saddr->buf, saddr->maxlen); 1506 saddr->buf = kmem_alloc(nfsfsloc->addr->maxlen, KM_SLEEP); 1507 saddr->len = nfsfsloc->addr->len; 1508 saddr->maxlen = nfsfsloc->addr->maxlen; 1509 bcopy(nfsfsloc->addr->buf, saddr->buf, nfsfsloc->addr->len); 1510 1511 /* Update server name */ 1512 host = fsp->server_val; 1513 kmem_free(svp->sv_hostname, svp->sv_hostnamelen); 1514 svp->sv_hostname = kmem_zalloc(host->utf8string_len + 1, KM_SLEEP); 1515 bcopy(host->utf8string_val, svp->sv_hostname, host->utf8string_len); 1516 svp->sv_hostname[host->utf8string_len] = '\0'; 1517 svp->sv_hostnamelen = host->utf8string_len + 1; 1518 1519 /* 1520 * Update server path. 1521 * We need to setup proper path here. 1522 * For ex., If we got a path name serv1:/rp/aaa/bbb 1523 * where aaa is a referral and points to serv2:/rpool/aa 1524 * we need to set the path to serv2:/rpool/aa/bbb 1525 * The first part of this below code generates /rpool/aa 1526 * and the second part appends /bbb to the server path. 1527 */ 1528 spath = p = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1529 *p++ = '/'; 1530 for (i = 0; i < fsp->rootpath.pathname4_len; i++) { 1531 component4 *comp; 1532 1533 comp = &fsp->rootpath.pathname4_val[i]; 1534 /* If no space, null the string and bail */ 1535 if ((p - spath) + comp->utf8string_len + 1 > MAXPATHLEN) { 1536 p = spath + MAXPATHLEN - 1; 1537 spath[0] = '\0'; 1538 break; 1539 } 1540 bcopy(comp->utf8string_val, p, comp->utf8string_len); 1541 p += comp->utf8string_len; 1542 *p++ = '/'; 1543 } 1544 if (fsp->rootpath.pathname4_len != 0) 1545 *(p - 1) = '\0'; 1546 else 1547 *p = '\0'; 1548 p = spath; 1549 1550 new_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1551 (void) strlcpy(new_path, p, MAXPATHLEN); 1552 kmem_free(p, MAXPATHLEN); 1553 i = strlen(new_path); 1554 1555 for (op = orig_path; *op; op++) { 1556 if (*op == '/') 1557 num_slashes++; 1558 if (num_slashes == nth + 2) { 1559 while (*op != '\0') { 1560 new_path[i] = *op; 1561 i++; 1562 op++; 1563 } 1564 break; 1565 } 1566 } 1567 new_path[i] = '\0'; 1568 1569 kmem_free(svp->sv_path, svp->sv_pathlen); 1570 svp->sv_pathlen = strlen(new_path) + 1; 1571 svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP); 1572 bcopy(new_path, svp->sv_path, svp->sv_pathlen); 1573 kmem_free(new_path, MAXPATHLEN); 1574 1575 /* 1576 * All the security data is specific to old server. 1577 * Clean it up except secdata which deals with mount options. 1578 * We need to inherit that data. Copy secdata into our new servinfo4. 1579 */ 1580 if (svp->sv_dhsec) { 1581 sec_clnt_freeinfo(svp->sv_dhsec); 1582 svp->sv_dhsec = NULL; 1583 } 1584 if (svp->sv_save_secinfo && 1585 svp->sv_save_secinfo != svp->sv_secinfo) { 1586 secinfo_free(svp->sv_save_secinfo); 1587 svp->sv_save_secinfo = NULL; 1588 } 1589 if (svp->sv_secinfo) { 1590 secinfo_free(svp->sv_secinfo); 1591 svp->sv_secinfo = NULL; 1592 } 1593 svp->sv_currsec = NULL; 1594 1595 secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); 1596 *secdata = *svp->sv_secdata; 1597 secdata->data = NULL; 1598 if (svp->sv_secdata) { 1599 sec_clnt_freeinfo(svp->sv_secdata); 1600 svp->sv_secdata = NULL; 1601 } 1602 svp->sv_secdata = secdata; 1603 } 1604 1605 /* 1606 * Resolve a referral. The referral is in the n+1th component of 1607 * svp->sv_path and has a parent nfs4 file handle "fh". 1608 * Upon return, the sv_path will point to the new path that has referral 1609 * component resolved to its referred path and part of original path. 1610 * Hostname and other address information is also updated. 1611 */ 1612 int 1613 resolve_referral(mntinfo4_t *mi, servinfo4_t *svp, cred_t *cr, int nth, 1614 nfs_fh4 *fh) 1615 { 1616 nfs4_sharedfh_t *sfh; 1617 struct nfs_fsl_info nfsfsloc; 1618 nfs4_ga_res_t garp; 1619 COMPOUND4res_clnt callres; 1620 fs_location4 *fsp; 1621 char *nm, *orig_path; 1622 int orig_pathlen = 0, ret = -1, index; 1623 1624 if (svp->sv_pathlen <= 0) 1625 return (ret); 1626 1627 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 1628 orig_pathlen = svp->sv_pathlen; 1629 orig_path = kmem_alloc(orig_pathlen, KM_SLEEP); 1630 bcopy(svp->sv_path, orig_path, orig_pathlen); 1631 nm = extract_referral_point(svp->sv_path, nth); 1632 setup_newsvpath(svp, nth); 1633 nfs_rw_exit(&svp->sv_lock); 1634 1635 sfh = sfh4_get(fh, mi); 1636 index = nfs4_process_referral(mi, sfh, nm, cr, 1637 &garp, &callres, &nfsfsloc); 1638 sfh4_rele(&sfh); 1639 kmem_free(nm, MAXPATHLEN); 1640 if (index < 0) { 1641 kmem_free(orig_path, orig_pathlen); 1642 return (index); 1643 } 1644 1645 fsp = &garp.n4g_ext_res->n4g_fslocations.locations_val[index]; 1646 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 1647 update_servinfo4(svp, fsp, &nfsfsloc, orig_path, nth); 1648 nfs_rw_exit(&svp->sv_lock); 1649 1650 mutex_enter(&mi->mi_lock); 1651 mi->mi_vfs_referral_loop_cnt++; 1652 mutex_exit(&mi->mi_lock); 1653 1654 ret = 0; 1655 /* Free up XDR memory allocated in nfs4_process_referral() */ 1656 xdr_free(xdr_nfs_fsl_info, (char *)&nfsfsloc); 1657 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&callres); 1658 kmem_free(orig_path, orig_pathlen); 1659 1660 return (ret); 1661 } 1662 1663 /* 1664 * Get the root filehandle for the given filesystem and server, and update 1665 * svp. 1666 * 1667 * If NFS4_GETFH_NEEDSOP is set, then use nfs4_start_fop and nfs4_end_fop 1668 * to coordinate with recovery. Otherwise, the caller is assumed to be 1669 * the recovery thread or have already done a start_fop. 1670 * 1671 * Errors are returned by the nfs4_error_t parameter. 1672 */ 1673 static void 1674 nfs4getfh_otw(struct mntinfo4 *mi, servinfo4_t *svp, vtype_t *vtp, 1675 int flags, cred_t *cr, nfs4_error_t *ep) 1676 { 1677 COMPOUND4args_clnt args; 1678 COMPOUND4res_clnt res; 1679 int doqueue = 1; 1680 nfs_argop4 *argop; 1681 nfs_resop4 *resop; 1682 nfs4_ga_res_t *garp; 1683 int num_argops; 1684 lookup4_param_t lookuparg; 1685 nfs_fh4 *tmpfhp; 1686 nfs_fh4 *resfhp; 1687 bool_t needrecov = FALSE; 1688 nfs4_recov_state_t recov_state; 1689 int llndx; 1690 int nthcomp; 1691 int recovery = !(flags & NFS4_GETFH_NEEDSOP); 1692 1693 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1694 ASSERT(svp->sv_path != NULL); 1695 if (svp->sv_path[0] == '\0') { 1696 nfs_rw_exit(&svp->sv_lock); 1697 nfs4_error_init(ep, EINVAL); 1698 return; 1699 } 1700 nfs_rw_exit(&svp->sv_lock); 1701 1702 recov_state.rs_flags = 0; 1703 recov_state.rs_num_retry_despite_err = 0; 1704 1705 recov_retry: 1706 if (mi->mi_vfs_referral_loop_cnt >= NFS4_REFERRAL_LOOP_MAX) { 1707 DTRACE_PROBE3(nfs4clnt__debug__referral__loop, mntinfo4 *, 1708 mi, servinfo4_t *, svp, char *, "nfs4getfh_otw"); 1709 nfs4_error_init(ep, EINVAL); 1710 return; 1711 } 1712 nfs4_error_zinit(ep); 1713 1714 if (!recovery) { 1715 ep->error = nfs4_start_fop(mi, NULL, NULL, OH_MOUNT, 1716 &recov_state, NULL); 1717 1718 /* 1719 * If recovery has been started and this request as 1720 * initiated by a mount, then we must wait for recovery 1721 * to finish before proceeding, otherwise, the error 1722 * cleanup would remove data structures needed by the 1723 * recovery thread. 1724 */ 1725 if (ep->error) { 1726 mutex_enter(&mi->mi_lock); 1727 if (mi->mi_flags & MI4_MOUNTING) { 1728 mi->mi_flags |= MI4_RECOV_FAIL; 1729 mi->mi_error = EIO; 1730 1731 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1732 "nfs4getfh_otw: waiting 4 recovery\n")); 1733 1734 while (mi->mi_flags & MI4_RECOV_ACTIV) 1735 cv_wait(&mi->mi_failover_cv, 1736 &mi->mi_lock); 1737 } 1738 mutex_exit(&mi->mi_lock); 1739 return; 1740 } 1741 1742 /* 1743 * If the client does not specify a specific flavor to use 1744 * and has not gotten a secinfo list from the server yet, 1745 * retrieve the secinfo list from the server and use a 1746 * flavor from the list to mount. 1747 * 1748 * If fail to get the secinfo list from the server, then 1749 * try the default flavor. 1750 */ 1751 if ((svp->sv_flags & SV4_TRYSECDEFAULT) && 1752 svp->sv_secinfo == NULL) { 1753 (void) nfs4_secinfo_path(mi, cr, FALSE); 1754 } 1755 } 1756 1757 if (recovery) 1758 args.ctag = TAG_REMAP_MOUNT; 1759 else 1760 args.ctag = TAG_MOUNT; 1761 1762 lookuparg.l4_getattrs = LKP4_ALL_ATTRIBUTES; 1763 lookuparg.argsp = &args; 1764 lookuparg.resp = &res; 1765 lookuparg.header_len = 2; /* Putrootfh, getfh */ 1766 lookuparg.trailer_len = 0; 1767 lookuparg.ga_bits = FATTR4_FSINFO_MASK; 1768 lookuparg.mi = mi; 1769 1770 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1771 ASSERT(svp->sv_path != NULL); 1772 llndx = nfs4lookup_setup(svp->sv_path, &lookuparg, 0); 1773 nfs_rw_exit(&svp->sv_lock); 1774 1775 argop = args.array; 1776 num_argops = args.array_len; 1777 1778 /* choose public or root filehandle */ 1779 if (flags & NFS4_GETFH_PUBLIC) 1780 argop[0].argop = OP_PUTPUBFH; 1781 else 1782 argop[0].argop = OP_PUTROOTFH; 1783 1784 /* get fh */ 1785 argop[1].argop = OP_GETFH; 1786 1787 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1788 "nfs4getfh_otw: %s call, mi 0x%p", 1789 needrecov ? "recov" : "first", (void *)mi)); 1790 1791 rfs4call(mi, &args, &res, cr, &doqueue, RFSCALL_SOFT, ep); 1792 1793 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 1794 1795 if (needrecov) { 1796 bool_t abort; 1797 1798 if (recovery) { 1799 nfs4args_lookup_free(argop, num_argops); 1800 kmem_free(argop, 1801 lookuparg.arglen * sizeof (nfs_argop4)); 1802 if (!ep->error) 1803 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1804 return; 1805 } 1806 1807 NFS4_DEBUG(nfs4_client_recov_debug, 1808 (CE_NOTE, "nfs4getfh_otw: initiating recovery\n")); 1809 1810 abort = nfs4_start_recovery(ep, mi, NULL, 1811 NULL, NULL, NULL, OP_GETFH, NULL, NULL, NULL); 1812 if (!ep->error) { 1813 ep->error = geterrno4(res.status); 1814 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1815 } 1816 nfs4args_lookup_free(argop, num_argops); 1817 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); 1818 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov); 1819 /* have another go? */ 1820 if (abort == FALSE) 1821 goto recov_retry; 1822 return; 1823 } 1824 1825 /* 1826 * No recovery, but check if error is set. 1827 */ 1828 if (ep->error) { 1829 nfs4args_lookup_free(argop, num_argops); 1830 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); 1831 if (!recovery) 1832 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, 1833 needrecov); 1834 return; 1835 } 1836 1837 /* for non-recovery errors */ 1838 if (res.status && res.status != NFS4ERR_SYMLINK && 1839 res.status != NFS4ERR_MOVED) { 1840 if (!recovery) { 1841 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, 1842 needrecov); 1843 } 1844 nfs4args_lookup_free(argop, num_argops); 1845 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); 1846 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1847 return; 1848 } 1849 1850 /* 1851 * If any intermediate component in the path is a symbolic link, 1852 * resolve the symlink, then try mount again using the new path. 1853 */ 1854 if (res.status == NFS4ERR_SYMLINK || res.status == NFS4ERR_MOVED) { 1855 int where; 1856 1857 /* 1858 * Need to call nfs4_end_op before resolve_sympath to avoid 1859 * potential nfs4_start_op deadlock. 1860 */ 1861 if (!recovery) 1862 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, 1863 needrecov); 1864 1865 /* 1866 * This must be from OP_LOOKUP failure. The (cfh) for this 1867 * OP_LOOKUP is a symlink node. Found out where the 1868 * OP_GETFH is for the (cfh) that is a symlink node. 1869 * 1870 * Example: 1871 * (mount) PUTROOTFH, GETFH, LOOKUP comp1, GETFH, GETATTR, 1872 * LOOKUP comp2, GETFH, GETATTR, LOOKUP comp3, GETFH, GETATTR 1873 * 1874 * LOOKUP comp3 fails with SYMLINK because comp2 is a symlink. 1875 * In this case, where = 7, nthcomp = 2. 1876 */ 1877 where = res.array_len - 2; 1878 ASSERT(where > 0); 1879 1880 if (res.status == NFS4ERR_SYMLINK) { 1881 1882 resop = &res.array[where - 1]; 1883 ASSERT(resop->resop == OP_GETFH); 1884 tmpfhp = &resop->nfs_resop4_u.opgetfh.object; 1885 nthcomp = res.array_len/3 - 1; 1886 ep->error = resolve_sympath(mi, svp, nthcomp, 1887 tmpfhp, cr, flags); 1888 1889 } else if (res.status == NFS4ERR_MOVED) { 1890 1891 resop = &res.array[where - 2]; 1892 ASSERT(resop->resop == OP_GETFH); 1893 tmpfhp = &resop->nfs_resop4_u.opgetfh.object; 1894 nthcomp = res.array_len/3 - 1; 1895 ep->error = resolve_referral(mi, svp, cr, nthcomp, 1896 tmpfhp); 1897 } 1898 1899 nfs4args_lookup_free(argop, num_argops); 1900 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); 1901 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1902 1903 if (ep->error) 1904 return; 1905 1906 goto recov_retry; 1907 } 1908 1909 /* getfh */ 1910 resop = &res.array[res.array_len - 2]; 1911 ASSERT(resop->resop == OP_GETFH); 1912 resfhp = &resop->nfs_resop4_u.opgetfh.object; 1913 1914 /* getattr fsinfo res */ 1915 resop++; 1916 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 1917 1918 *vtp = garp->n4g_va.va_type; 1919 1920 mi->mi_fh_expire_type = garp->n4g_ext_res->n4g_fet; 1921 1922 mutex_enter(&mi->mi_lock); 1923 if (garp->n4g_ext_res->n4g_pc4.pc4_link_support) 1924 mi->mi_flags |= MI4_LINK; 1925 if (garp->n4g_ext_res->n4g_pc4.pc4_symlink_support) 1926 mi->mi_flags |= MI4_SYMLINK; 1927 if (garp->n4g_ext_res->n4g_suppattrs & FATTR4_ACL_MASK) 1928 mi->mi_flags |= MI4_ACL; 1929 mutex_exit(&mi->mi_lock); 1930 1931 if (garp->n4g_ext_res->n4g_maxread == 0) 1932 mi->mi_tsize = 1933 MIN(MAXBSIZE, mi->mi_tsize); 1934 else 1935 mi->mi_tsize = 1936 MIN(garp->n4g_ext_res->n4g_maxread, 1937 mi->mi_tsize); 1938 1939 if (garp->n4g_ext_res->n4g_maxwrite == 0) 1940 mi->mi_stsize = 1941 MIN(MAXBSIZE, mi->mi_stsize); 1942 else 1943 mi->mi_stsize = 1944 MIN(garp->n4g_ext_res->n4g_maxwrite, 1945 mi->mi_stsize); 1946 1947 if (garp->n4g_ext_res->n4g_maxfilesize != 0) 1948 mi->mi_maxfilesize = 1949 MIN(garp->n4g_ext_res->n4g_maxfilesize, 1950 mi->mi_maxfilesize); 1951 1952 /* 1953 * If the final component is a a symbolic link, resolve the symlink, 1954 * then try mount again using the new path. 1955 * 1956 * Assume no symbolic link for root filesysm "/". 1957 */ 1958 if (*vtp == VLNK) { 1959 /* 1960 * nthcomp is the total result length minus 1961 * the 1st 2 OPs (PUTROOTFH, GETFH), 1962 * then divided by 3 (LOOKUP,GETFH,GETATTR) 1963 * 1964 * e.g. PUTROOTFH GETFH LOOKUP 1st-comp GETFH GETATTR 1965 * LOOKUP 2nd-comp GETFH GETATTR 1966 * 1967 * (8 - 2)/3 = 2 1968 */ 1969 nthcomp = (res.array_len - 2)/3; 1970 1971 /* 1972 * Need to call nfs4_end_op before resolve_sympath to avoid 1973 * potential nfs4_start_op deadlock. See RFE 4777612. 1974 */ 1975 if (!recovery) 1976 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, 1977 needrecov); 1978 1979 ep->error = resolve_sympath(mi, svp, nthcomp, resfhp, cr, 1980 flags); 1981 1982 nfs4args_lookup_free(argop, num_argops); 1983 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); 1984 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1985 1986 if (ep->error) 1987 return; 1988 1989 goto recov_retry; 1990 } 1991 1992 /* 1993 * We need to figure out where in the compound the getfh 1994 * for the parent directory is. If the object to be mounted is 1995 * the root, then there is no lookup at all: 1996 * PUTROOTFH, GETFH. 1997 * If the object to be mounted is in the root, then the compound is: 1998 * PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR. 1999 * In either of these cases, the index of the GETFH is 1. 2000 * If it is not at the root, then it's something like: 2001 * PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR, 2002 * LOOKUP, GETFH, GETATTR 2003 * In this case, the index is llndx (last lookup index) - 2. 2004 */ 2005 if (llndx == -1 || llndx == 2) 2006 resop = &res.array[1]; 2007 else { 2008 ASSERT(llndx > 2); 2009 resop = &res.array[llndx-2]; 2010 } 2011 2012 ASSERT(resop->resop == OP_GETFH); 2013 tmpfhp = &resop->nfs_resop4_u.opgetfh.object; 2014 2015 /* save the filehandles for the replica */ 2016 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2017 ASSERT(tmpfhp->nfs_fh4_len <= NFS4_FHSIZE); 2018 svp->sv_pfhandle.fh_len = tmpfhp->nfs_fh4_len; 2019 bcopy(tmpfhp->nfs_fh4_val, svp->sv_pfhandle.fh_buf, 2020 tmpfhp->nfs_fh4_len); 2021 ASSERT(resfhp->nfs_fh4_len <= NFS4_FHSIZE); 2022 svp->sv_fhandle.fh_len = resfhp->nfs_fh4_len; 2023 bcopy(resfhp->nfs_fh4_val, svp->sv_fhandle.fh_buf, resfhp->nfs_fh4_len); 2024 2025 /* initialize fsid and supp_attrs for server fs */ 2026 svp->sv_fsid = garp->n4g_fsid; 2027 svp->sv_supp_attrs = 2028 garp->n4g_ext_res->n4g_suppattrs | FATTR4_MANDATTR_MASK; 2029 2030 nfs_rw_exit(&svp->sv_lock); 2031 nfs4args_lookup_free(argop, num_argops); 2032 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); 2033 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2034 if (!recovery) 2035 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov); 2036 } 2037 2038 /* 2039 * Save a copy of Servinfo4_t structure. 2040 * We might need when there is a failure in getting file handle 2041 * in case of a referral to replace servinfo4 struct and try again. 2042 */ 2043 static struct servinfo4 * 2044 copy_svp(servinfo4_t *nsvp) 2045 { 2046 servinfo4_t *svp = NULL; 2047 struct knetconfig *sknconf, *tknconf; 2048 struct netbuf *saddr, *taddr; 2049 2050 svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); 2051 nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL); 2052 svp->sv_flags = nsvp->sv_flags; 2053 svp->sv_fsid = nsvp->sv_fsid; 2054 svp->sv_hostnamelen = nsvp->sv_hostnamelen; 2055 svp->sv_pathlen = nsvp->sv_pathlen; 2056 svp->sv_supp_attrs = nsvp->sv_supp_attrs; 2057 2058 svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP); 2059 svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP); 2060 bcopy(nsvp->sv_hostname, svp->sv_hostname, svp->sv_hostnamelen); 2061 bcopy(nsvp->sv_path, svp->sv_path, svp->sv_pathlen); 2062 2063 saddr = &nsvp->sv_addr; 2064 taddr = &svp->sv_addr; 2065 taddr->maxlen = saddr->maxlen; 2066 taddr->len = saddr->len; 2067 if (saddr->len > 0) { 2068 taddr->buf = kmem_zalloc(saddr->maxlen, KM_SLEEP); 2069 bcopy(saddr->buf, taddr->buf, saddr->len); 2070 } 2071 2072 svp->sv_knconf = kmem_zalloc(sizeof (struct knetconfig), KM_SLEEP); 2073 sknconf = nsvp->sv_knconf; 2074 tknconf = svp->sv_knconf; 2075 tknconf->knc_semantics = sknconf->knc_semantics; 2076 tknconf->knc_rdev = sknconf->knc_rdev; 2077 if (sknconf->knc_proto != NULL) { 2078 tknconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); 2079 bcopy(sknconf->knc_proto, (char *)tknconf->knc_proto, 2080 KNC_STRSIZE); 2081 } 2082 if (sknconf->knc_protofmly != NULL) { 2083 tknconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); 2084 bcopy(sknconf->knc_protofmly, (char *)tknconf->knc_protofmly, 2085 KNC_STRSIZE); 2086 } 2087 2088 if (nsvp->sv_origknconf != NULL) { 2089 svp->sv_origknconf = kmem_zalloc(sizeof (struct knetconfig), 2090 KM_SLEEP); 2091 sknconf = nsvp->sv_origknconf; 2092 tknconf = svp->sv_origknconf; 2093 tknconf->knc_semantics = sknconf->knc_semantics; 2094 tknconf->knc_rdev = sknconf->knc_rdev; 2095 if (sknconf->knc_proto != NULL) { 2096 tknconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); 2097 bcopy(sknconf->knc_proto, (char *)tknconf->knc_proto, 2098 KNC_STRSIZE); 2099 } 2100 if (sknconf->knc_protofmly != NULL) { 2101 tknconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, 2102 KM_SLEEP); 2103 bcopy(sknconf->knc_protofmly, 2104 (char *)tknconf->knc_protofmly, KNC_STRSIZE); 2105 } 2106 } 2107 2108 svp->sv_secdata = copy_sec_data(nsvp->sv_secdata); 2109 svp->sv_dhsec = copy_sec_data(svp->sv_dhsec); 2110 /* 2111 * Rest of the security information is not copied as they are built 2112 * with the information available from secdata and dhsec. 2113 */ 2114 svp->sv_next = NULL; 2115 2116 return (svp); 2117 } 2118 2119 servinfo4_t * 2120 restore_svp(mntinfo4_t *mi, servinfo4_t *svp, servinfo4_t *origsvp) 2121 { 2122 servinfo4_t *srvnext, *tmpsrv; 2123 2124 if (strcmp(svp->sv_hostname, origsvp->sv_hostname) != 0) { 2125 /* 2126 * Since the hostname changed, we must be dealing 2127 * with a referral, and the lookup failed. We will 2128 * restore the whole servinfo4_t to what it was before. 2129 */ 2130 srvnext = svp->sv_next; 2131 svp->sv_next = NULL; 2132 tmpsrv = copy_svp(origsvp); 2133 sv4_free(svp); 2134 svp = tmpsrv; 2135 svp->sv_next = srvnext; 2136 mutex_enter(&mi->mi_lock); 2137 mi->mi_servers = svp; 2138 mi->mi_curr_serv = svp; 2139 mutex_exit(&mi->mi_lock); 2140 2141 } else if (origsvp->sv_pathlen != svp->sv_pathlen) { 2142 2143 /* 2144 * For symlink case: restore original path because 2145 * it might have contained symlinks that were 2146 * expanded by nfsgetfh_otw before the failure occurred. 2147 */ 2148 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 2149 kmem_free(svp->sv_path, svp->sv_pathlen); 2150 svp->sv_path = 2151 kmem_alloc(origsvp->sv_pathlen, KM_SLEEP); 2152 svp->sv_pathlen = origsvp->sv_pathlen; 2153 bcopy(origsvp->sv_path, svp->sv_path, 2154 origsvp->sv_pathlen); 2155 nfs_rw_exit(&svp->sv_lock); 2156 } 2157 return (svp); 2158 } 2159 2160 static ushort_t nfs4_max_threads = 8; /* max number of active async threads */ 2161 uint_t nfs4_bsize = 32 * 1024; /* client `block' size */ 2162 static uint_t nfs4_async_clusters = 1; /* # of reqs from each async queue */ 2163 static uint_t nfs4_cots_timeo = NFS_COTS_TIMEO; 2164 2165 /* 2166 * Remap the root filehandle for the given filesystem. 2167 * 2168 * results returned via the nfs4_error_t parameter. 2169 */ 2170 void 2171 nfs4_remap_root(mntinfo4_t *mi, nfs4_error_t *ep, int flags) 2172 { 2173 struct servinfo4 *svp, *origsvp; 2174 vtype_t vtype; 2175 nfs_fh4 rootfh; 2176 int getfh_flags; 2177 int num_retry; 2178 2179 mutex_enter(&mi->mi_lock); 2180 2181 remap_retry: 2182 svp = mi->mi_curr_serv; 2183 getfh_flags = 2184 (flags & NFS4_REMAP_NEEDSOP) ? NFS4_GETFH_NEEDSOP : 0; 2185 getfh_flags |= 2186 (mi->mi_flags & MI4_PUBLIC) ? NFS4_GETFH_PUBLIC : 0; 2187 mutex_exit(&mi->mi_lock); 2188 2189 /* 2190 * Just in case server path being mounted contains 2191 * symlinks and fails w/STALE, save the initial sv_path 2192 * so we can redrive the initial mount compound with the 2193 * initial sv_path -- not a symlink-expanded version. 2194 * 2195 * This could only happen if a symlink was expanded 2196 * and the expanded mount compound failed stale. Because 2197 * it could be the case that the symlink was removed at 2198 * the server (and replaced with another symlink/dir, 2199 * we need to use the initial sv_path when attempting 2200 * to re-lookup everything and recover. 2201 */ 2202 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 2203 origsvp = copy_svp(svp); 2204 nfs_rw_exit(&svp->sv_lock); 2205 2206 num_retry = nfs4_max_mount_retry; 2207 2208 do { 2209 /* 2210 * Get the root fh from the server. Retry nfs4_max_mount_retry 2211 * (2) times if it fails with STALE since the recovery 2212 * infrastructure doesn't do STALE recovery for components 2213 * of the server path to the object being mounted. 2214 */ 2215 nfs4getfh_otw(mi, svp, &vtype, getfh_flags, CRED(), ep); 2216 2217 if (ep->error == 0 && ep->stat == NFS4_OK) 2218 break; 2219 2220 /* 2221 * For some reason, the mount compound failed. Before 2222 * retrying, we need to restore original conditions. 2223 */ 2224 svp = restore_svp(mi, svp, origsvp); 2225 2226 } while (num_retry-- > 0); 2227 2228 sv4_free(origsvp); 2229 2230 if (ep->error != 0 || ep->stat != 0) { 2231 return; 2232 } 2233 2234 if (vtype != VNON && vtype != mi->mi_type) { 2235 /* shouldn't happen */ 2236 zcmn_err(mi->mi_zone->zone_id, CE_WARN, 2237 "nfs4_remap_root: server root vnode type (%d) doesn't " 2238 "match mount info (%d)", vtype, mi->mi_type); 2239 } 2240 2241 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 2242 rootfh.nfs_fh4_val = svp->sv_fhandle.fh_buf; 2243 rootfh.nfs_fh4_len = svp->sv_fhandle.fh_len; 2244 nfs_rw_exit(&svp->sv_lock); 2245 sfh4_update(mi->mi_rootfh, &rootfh); 2246 2247 /* 2248 * It's possible that recovery took place on the filesystem 2249 * and the server has been updated between the time we did 2250 * the nfs4getfh_otw and now. Re-drive the otw operation 2251 * to make sure we have a good fh. 2252 */ 2253 mutex_enter(&mi->mi_lock); 2254 if (mi->mi_curr_serv != svp) 2255 goto remap_retry; 2256 2257 mutex_exit(&mi->mi_lock); 2258 } 2259 2260 static int 2261 nfs4rootvp(vnode_t **rtvpp, vfs_t *vfsp, struct servinfo4 *svp_head, 2262 int flags, cred_t *cr, zone_t *zone) 2263 { 2264 vnode_t *rtvp = NULL; 2265 mntinfo4_t *mi; 2266 dev_t nfs_dev; 2267 int error = 0; 2268 rnode4_t *rp; 2269 int i, len; 2270 struct vattr va; 2271 vtype_t vtype = VNON; 2272 vtype_t tmp_vtype = VNON; 2273 struct servinfo4 *firstsvp = NULL, *svp = svp_head; 2274 nfs4_oo_hash_bucket_t *bucketp; 2275 nfs_fh4 fh; 2276 char *droptext = ""; 2277 struct nfs_stats *nfsstatsp; 2278 nfs4_fname_t *mfname; 2279 nfs4_error_t e; 2280 int num_retry, removed; 2281 cred_t *lcr = NULL, *tcr = cr; 2282 struct servinfo4 *origsvp; 2283 char *resource; 2284 2285 nfsstatsp = zone_getspecific(nfsstat_zone_key, nfs_zone()); 2286 ASSERT(nfsstatsp != NULL); 2287 2288 ASSERT(nfs_zone() == zone); 2289 ASSERT(crgetref(cr)); 2290 2291 /* 2292 * Create a mount record and link it to the vfs struct. 2293 */ 2294 mi = kmem_zalloc(sizeof (*mi), KM_SLEEP); 2295 mutex_init(&mi->mi_lock, NULL, MUTEX_DEFAULT, NULL); 2296 nfs_rw_init(&mi->mi_recovlock, NULL, RW_DEFAULT, NULL); 2297 nfs_rw_init(&mi->mi_rename_lock, NULL, RW_DEFAULT, NULL); 2298 nfs_rw_init(&mi->mi_fh_lock, NULL, RW_DEFAULT, NULL); 2299 2300 if (!(flags & NFSMNT_SOFT)) 2301 mi->mi_flags |= MI4_HARD; 2302 if ((flags & NFSMNT_NOPRINT)) 2303 mi->mi_flags |= MI4_NOPRINT; 2304 if (flags & NFSMNT_INT) 2305 mi->mi_flags |= MI4_INT; 2306 if (flags & NFSMNT_PUBLIC) 2307 mi->mi_flags |= MI4_PUBLIC; 2308 if (flags & NFSMNT_MIRRORMOUNT) 2309 mi->mi_flags |= MI4_MIRRORMOUNT; 2310 if (flags & NFSMNT_REFERRAL) 2311 mi->mi_flags |= MI4_REFERRAL; 2312 mi->mi_retrans = NFS_RETRIES; 2313 if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD || 2314 svp->sv_knconf->knc_semantics == NC_TPI_COTS) 2315 mi->mi_timeo = nfs4_cots_timeo; 2316 else 2317 mi->mi_timeo = NFS_TIMEO; 2318 mi->mi_prog = NFS_PROGRAM; 2319 mi->mi_vers = NFS_V4; 2320 mi->mi_rfsnames = rfsnames_v4; 2321 mi->mi_reqs = nfsstatsp->nfs_stats_v4.rfsreqcnt_ptr; 2322 cv_init(&mi->mi_failover_cv, NULL, CV_DEFAULT, NULL); 2323 mi->mi_servers = svp; 2324 mi->mi_curr_serv = svp; 2325 mi->mi_acregmin = SEC2HR(ACREGMIN); 2326 mi->mi_acregmax = SEC2HR(ACREGMAX); 2327 mi->mi_acdirmin = SEC2HR(ACDIRMIN); 2328 mi->mi_acdirmax = SEC2HR(ACDIRMAX); 2329 mi->mi_fh_expire_type = FH4_PERSISTENT; 2330 mi->mi_clientid_next = NULL; 2331 mi->mi_clientid_prev = NULL; 2332 mi->mi_srv = NULL; 2333 mi->mi_grace_wait = 0; 2334 mi->mi_error = 0; 2335 mi->mi_srvsettime = 0; 2336 mi->mi_srvset_cnt = 0; 2337 2338 mi->mi_count = 1; 2339 2340 mi->mi_tsize = nfs4_tsize(svp->sv_knconf); 2341 mi->mi_stsize = mi->mi_tsize; 2342 2343 if (flags & NFSMNT_DIRECTIO) 2344 mi->mi_flags |= MI4_DIRECTIO; 2345 2346 mi->mi_flags |= MI4_MOUNTING; 2347 2348 mutex_init(&mi->mi_rnodes_lock, NULL, MUTEX_DEFAULT, NULL); 2349 list_create(&mi->mi_rnodes, sizeof (rnode4_t), 2350 offsetof(rnode4_t, r_mi_link)); 2351 2352 /* 2353 * Make a vfs struct for nfs. We do this here instead of below 2354 * because rtvp needs a vfs before we can do a getattr on it. 2355 * 2356 * Assign a unique device id to the mount 2357 */ 2358 mutex_enter(&nfs_minor_lock); 2359 do { 2360 nfs_minor = (nfs_minor + 1) & MAXMIN32; 2361 nfs_dev = makedevice(nfs_major, nfs_minor); 2362 } while (vfs_devismounted(nfs_dev)); 2363 mutex_exit(&nfs_minor_lock); 2364 2365 vfsp->vfs_dev = nfs_dev; 2366 vfs_make_fsid(&vfsp->vfs_fsid, nfs_dev, nfs4fstyp); 2367 vfsp->vfs_data = (caddr_t)mi; 2368 vfsp->vfs_fstype = nfsfstyp; 2369 vfsp->vfs_bsize = nfs4_bsize; 2370 2371 /* 2372 * Initialize fields used to support async putpage operations. 2373 */ 2374 for (i = 0; i < NFS4_ASYNC_TYPES; i++) 2375 mi->mi_async_clusters[i] = nfs4_async_clusters; 2376 mi->mi_async_init_clusters = nfs4_async_clusters; 2377 mi->mi_async_curr[NFS4_ASYNC_QUEUE] = 2378 mi->mi_async_curr[NFS4_ASYNC_PGOPS_QUEUE] = &mi->mi_async_reqs[0]; 2379 mi->mi_max_threads = nfs4_max_threads; 2380 mutex_init(&mi->mi_async_lock, NULL, MUTEX_DEFAULT, NULL); 2381 cv_init(&mi->mi_async_reqs_cv, NULL, CV_DEFAULT, NULL); 2382 cv_init(&mi->mi_async_work_cv[NFS4_ASYNC_QUEUE], NULL, CV_DEFAULT, 2383 NULL); 2384 cv_init(&mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE], NULL, 2385 CV_DEFAULT, NULL); 2386 cv_init(&mi->mi_async_cv, NULL, CV_DEFAULT, NULL); 2387 cv_init(&mi->mi_inact_req_cv, NULL, CV_DEFAULT, NULL); 2388 2389 mi->mi_vfsp = vfsp; 2390 mi->mi_zone = zone; 2391 zone_init_ref(&mi->mi_zone_ref); 2392 zone_hold_ref(zone, &mi->mi_zone_ref, ZONE_REF_NFSV4); 2393 nfs4_mi_zonelist_add(mi); 2394 2395 /* 2396 * Initialize the <open owner/cred> hash table. 2397 */ 2398 for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) { 2399 bucketp = &(mi->mi_oo_list[i]); 2400 mutex_init(&bucketp->b_lock, NULL, MUTEX_DEFAULT, NULL); 2401 list_create(&bucketp->b_oo_hash_list, 2402 sizeof (nfs4_open_owner_t), 2403 offsetof(nfs4_open_owner_t, oo_hash_node)); 2404 } 2405 2406 /* 2407 * Initialize the freed open owner list. 2408 */ 2409 mi->mi_foo_num = 0; 2410 mi->mi_foo_max = NFS4_NUM_FREED_OPEN_OWNERS; 2411 list_create(&mi->mi_foo_list, sizeof (nfs4_open_owner_t), 2412 offsetof(nfs4_open_owner_t, oo_foo_node)); 2413 2414 list_create(&mi->mi_lost_state, sizeof (nfs4_lost_rqst_t), 2415 offsetof(nfs4_lost_rqst_t, lr_node)); 2416 2417 list_create(&mi->mi_bseqid_list, sizeof (nfs4_bseqid_entry_t), 2418 offsetof(nfs4_bseqid_entry_t, bs_node)); 2419 2420 /* 2421 * Initialize the msg buffer. 2422 */ 2423 list_create(&mi->mi_msg_list, sizeof (nfs4_debug_msg_t), 2424 offsetof(nfs4_debug_msg_t, msg_node)); 2425 mi->mi_msg_count = 0; 2426 mutex_init(&mi->mi_msg_list_lock, NULL, MUTEX_DEFAULT, NULL); 2427 2428 /* 2429 * Initialize kstats 2430 */ 2431 nfs4_mnt_kstat_init(vfsp); 2432 2433 /* 2434 * Initialize the shared filehandle pool. 2435 */ 2436 sfh4_createtab(&mi->mi_filehandles); 2437 2438 /* 2439 * Save server path we're attempting to mount. 2440 */ 2441 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2442 origsvp = copy_svp(svp); 2443 nfs_rw_exit(&svp->sv_lock); 2444 2445 /* 2446 * Make the GETFH call to get root fh for each replica. 2447 */ 2448 if (svp_head->sv_next) 2449 droptext = ", dropping replica"; 2450 2451 /* 2452 * If the uid is set then set the creds for secure mounts 2453 * by proxy processes such as automountd. 2454 */ 2455 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 2456 if (svp->sv_secdata->uid != 0 && 2457 svp->sv_secdata->rpcflavor == RPCSEC_GSS) { 2458 lcr = crdup(cr); 2459 (void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr)); 2460 tcr = lcr; 2461 } 2462 nfs_rw_exit(&svp->sv_lock); 2463 for (svp = svp_head; svp; svp = svp->sv_next) { 2464 if (nfs4_chkdup_servinfo4(svp_head, svp)) { 2465 nfs_cmn_err(error, CE_WARN, 2466 VERS_MSG "Host %s is a duplicate%s", 2467 svp->sv_hostname, droptext); 2468 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2469 svp->sv_flags |= SV4_NOTINUSE; 2470 nfs_rw_exit(&svp->sv_lock); 2471 continue; 2472 } 2473 mi->mi_curr_serv = svp; 2474 2475 /* 2476 * Just in case server path being mounted contains 2477 * symlinks and fails w/STALE, save the initial sv_path 2478 * so we can redrive the initial mount compound with the 2479 * initial sv_path -- not a symlink-expanded version. 2480 * 2481 * This could only happen if a symlink was expanded 2482 * and the expanded mount compound failed stale. Because 2483 * it could be the case that the symlink was removed at 2484 * the server (and replaced with another symlink/dir, 2485 * we need to use the initial sv_path when attempting 2486 * to re-lookup everything and recover. 2487 * 2488 * Other mount errors should evenutally be handled here also 2489 * (NFS4ERR_DELAY, NFS4ERR_RESOURCE). For now, all mount 2490 * failures will result in mount being redriven a few times. 2491 */ 2492 num_retry = nfs4_max_mount_retry; 2493 do { 2494 nfs4getfh_otw(mi, svp, &tmp_vtype, 2495 ((flags & NFSMNT_PUBLIC) ? NFS4_GETFH_PUBLIC : 0) | 2496 NFS4_GETFH_NEEDSOP, tcr, &e); 2497 2498 if (e.error == 0 && e.stat == NFS4_OK) 2499 break; 2500 2501 /* 2502 * For some reason, the mount compound failed. Before 2503 * retrying, we need to restore original conditions. 2504 */ 2505 svp = restore_svp(mi, svp, origsvp); 2506 svp_head = svp; 2507 2508 } while (num_retry-- > 0); 2509 error = e.error ? e.error : geterrno4(e.stat); 2510 if (error) { 2511 nfs_cmn_err(error, CE_WARN, 2512 VERS_MSG "initial call to %s failed%s: %m", 2513 svp->sv_hostname, droptext); 2514 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2515 svp->sv_flags |= SV4_NOTINUSE; 2516 nfs_rw_exit(&svp->sv_lock); 2517 mi->mi_flags &= ~MI4_RECOV_FAIL; 2518 mi->mi_error = 0; 2519 continue; 2520 } 2521 2522 if (tmp_vtype == VBAD) { 2523 zcmn_err(mi->mi_zone->zone_id, CE_WARN, 2524 VERS_MSG "%s returned a bad file type for " 2525 "root%s", svp->sv_hostname, droptext); 2526 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2527 svp->sv_flags |= SV4_NOTINUSE; 2528 nfs_rw_exit(&svp->sv_lock); 2529 continue; 2530 } 2531 2532 if (vtype == VNON) { 2533 vtype = tmp_vtype; 2534 } else if (vtype != tmp_vtype) { 2535 zcmn_err(mi->mi_zone->zone_id, CE_WARN, 2536 VERS_MSG "%s returned a different file type " 2537 "for root%s", svp->sv_hostname, droptext); 2538 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2539 svp->sv_flags |= SV4_NOTINUSE; 2540 nfs_rw_exit(&svp->sv_lock); 2541 continue; 2542 } 2543 if (firstsvp == NULL) 2544 firstsvp = svp; 2545 } 2546 2547 if (firstsvp == NULL) { 2548 if (error == 0) 2549 error = ENOENT; 2550 goto bad; 2551 } 2552 2553 mi->mi_curr_serv = svp = firstsvp; 2554 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 2555 ASSERT((mi->mi_curr_serv->sv_flags & SV4_NOTINUSE) == 0); 2556 fh.nfs_fh4_len = svp->sv_fhandle.fh_len; 2557 fh.nfs_fh4_val = svp->sv_fhandle.fh_buf; 2558 mi->mi_rootfh = sfh4_get(&fh, mi); 2559 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 2560 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 2561 mi->mi_srvparentfh = sfh4_get(&fh, mi); 2562 nfs_rw_exit(&svp->sv_lock); 2563 2564 /* 2565 * Get the fname for filesystem root. 2566 */ 2567 mi->mi_fname = fn_get(NULL, ".", mi->mi_rootfh); 2568 mfname = mi->mi_fname; 2569 fn_hold(mfname); 2570 2571 /* 2572 * Make the root vnode without attributes. 2573 */ 2574 rtvp = makenfs4node_by_fh(mi->mi_rootfh, NULL, 2575 &mfname, NULL, mi, cr, gethrtime()); 2576 rtvp->v_type = vtype; 2577 2578 mi->mi_curread = mi->mi_tsize; 2579 mi->mi_curwrite = mi->mi_stsize; 2580 2581 /* 2582 * Start the manager thread responsible for handling async worker 2583 * threads. 2584 */ 2585 MI4_HOLD(mi); 2586 VFS_HOLD(vfsp); /* add reference for thread */ 2587 mi->mi_manager_thread = zthread_create(NULL, 0, nfs4_async_manager, 2588 vfsp, 0, minclsyspri); 2589 ASSERT(mi->mi_manager_thread != NULL); 2590 2591 /* 2592 * Create the thread that handles over-the-wire calls for 2593 * VOP_INACTIVE. 2594 * This needs to happen after the manager thread is created. 2595 */ 2596 MI4_HOLD(mi); 2597 mi->mi_inactive_thread = zthread_create(NULL, 0, nfs4_inactive_thread, 2598 mi, 0, minclsyspri); 2599 ASSERT(mi->mi_inactive_thread != NULL); 2600 2601 /* If we didn't get a type, get one now */ 2602 if (rtvp->v_type == VNON) { 2603 va.va_mask = AT_TYPE; 2604 error = nfs4getattr(rtvp, &va, tcr); 2605 if (error) 2606 goto bad; 2607 rtvp->v_type = va.va_type; 2608 } 2609 2610 mi->mi_type = rtvp->v_type; 2611 2612 mutex_enter(&mi->mi_lock); 2613 mi->mi_flags &= ~MI4_MOUNTING; 2614 mutex_exit(&mi->mi_lock); 2615 2616 /* Update VFS with new server and path info */ 2617 if ((strcmp(svp->sv_hostname, origsvp->sv_hostname) != 0) || 2618 (strcmp(svp->sv_path, origsvp->sv_path) != 0)) { 2619 len = svp->sv_hostnamelen + svp->sv_pathlen; 2620 resource = kmem_zalloc(len, KM_SLEEP); 2621 (void) strcat(resource, svp->sv_hostname); 2622 (void) strcat(resource, ":"); 2623 (void) strcat(resource, svp->sv_path); 2624 vfs_setresource(vfsp, resource, 0); 2625 kmem_free(resource, len); 2626 } 2627 2628 sv4_free(origsvp); 2629 *rtvpp = rtvp; 2630 if (lcr != NULL) 2631 crfree(lcr); 2632 2633 return (0); 2634 bad: 2635 /* 2636 * An error occurred somewhere, need to clean up... 2637 */ 2638 if (lcr != NULL) 2639 crfree(lcr); 2640 2641 if (rtvp != NULL) { 2642 /* 2643 * We need to release our reference to the root vnode and 2644 * destroy the mntinfo4 struct that we just created. 2645 */ 2646 rp = VTOR4(rtvp); 2647 if (rp->r_flags & R4HASHED) 2648 rp4_rmhash(rp); 2649 VN_RELE(rtvp); 2650 } 2651 nfs4_async_stop(vfsp); 2652 nfs4_async_manager_stop(vfsp); 2653 removed = nfs4_mi_zonelist_remove(mi); 2654 if (removed) 2655 zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4); 2656 2657 /* 2658 * This releases the initial "hold" of the mi since it will never 2659 * be referenced by the vfsp. Also, when mount returns to vfs.c 2660 * with an error, the vfsp will be destroyed, not rele'd. 2661 */ 2662 MI4_RELE(mi); 2663 2664 if (origsvp != NULL) 2665 sv4_free(origsvp); 2666 2667 *rtvpp = NULL; 2668 return (error); 2669 } 2670 2671 /* 2672 * vfs operations 2673 */ 2674 static int 2675 nfs4_unmount(vfs_t *vfsp, int flag, cred_t *cr) 2676 { 2677 mntinfo4_t *mi; 2678 ushort_t omax; 2679 int removed; 2680 2681 bool_t must_unlock; 2682 2683 nfs4_ephemeral_tree_t *eph_tree; 2684 2685 if (secpolicy_fs_unmount(cr, vfsp) != 0) 2686 return (EPERM); 2687 2688 mi = VFTOMI4(vfsp); 2689 2690 if (flag & MS_FORCE) { 2691 vfsp->vfs_flag |= VFS_UNMOUNTED; 2692 if (nfs_zone() != mi->mi_zone) { 2693 /* 2694 * If the request is coming from the wrong zone, 2695 * we don't want to create any new threads, and 2696 * performance is not a concern. Do everything 2697 * inline. 2698 */ 2699 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 2700 "nfs4_unmount x-zone forced unmount of vfs %p\n", 2701 (void *)vfsp)); 2702 nfs4_free_mount(vfsp, flag, cr); 2703 } else { 2704 /* 2705 * Free data structures asynchronously, to avoid 2706 * blocking the current thread (for performance 2707 * reasons only). 2708 */ 2709 async_free_mount(vfsp, flag, cr); 2710 } 2711 2712 return (0); 2713 } 2714 2715 /* 2716 * Wait until all asynchronous putpage operations on 2717 * this file system are complete before flushing rnodes 2718 * from the cache. 2719 */ 2720 omax = mi->mi_max_threads; 2721 if (nfs4_async_stop_sig(vfsp)) 2722 return (EINTR); 2723 2724 r4flush(vfsp, cr); 2725 2726 /* 2727 * About the only reason that this would fail would be 2728 * that the harvester is already busy tearing down this 2729 * node. So we fail back to the caller and let them try 2730 * again when needed. 2731 */ 2732 if (nfs4_ephemeral_umount(mi, flag, cr, 2733 &must_unlock, &eph_tree)) { 2734 ASSERT(must_unlock == FALSE); 2735 mutex_enter(&mi->mi_async_lock); 2736 mi->mi_max_threads = omax; 2737 mutex_exit(&mi->mi_async_lock); 2738 2739 return (EBUSY); 2740 } 2741 2742 /* 2743 * If there are any active vnodes on this file system, 2744 * then the file system is busy and can't be unmounted. 2745 */ 2746 if (check_rtable4(vfsp)) { 2747 nfs4_ephemeral_umount_unlock(&must_unlock, &eph_tree); 2748 2749 mutex_enter(&mi->mi_async_lock); 2750 mi->mi_max_threads = omax; 2751 mutex_exit(&mi->mi_async_lock); 2752 2753 return (EBUSY); 2754 } 2755 2756 /* 2757 * The unmount can't fail from now on, so record any 2758 * ephemeral changes. 2759 */ 2760 nfs4_ephemeral_umount_activate(mi, &must_unlock, &eph_tree); 2761 2762 /* 2763 * There are no active files that could require over-the-wire 2764 * calls to the server, so stop the async manager and the 2765 * inactive thread. 2766 */ 2767 nfs4_async_manager_stop(vfsp); 2768 2769 /* 2770 * Destroy all rnodes belonging to this file system from the 2771 * rnode hash queues and purge any resources allocated to 2772 * them. 2773 */ 2774 destroy_rtable4(vfsp, cr); 2775 vfsp->vfs_flag |= VFS_UNMOUNTED; 2776 2777 nfs4_remove_mi_from_server(mi, NULL); 2778 removed = nfs4_mi_zonelist_remove(mi); 2779 if (removed) 2780 zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4); 2781 2782 return (0); 2783 } 2784 2785 /* 2786 * find root of nfs 2787 */ 2788 static int 2789 nfs4_root(vfs_t *vfsp, vnode_t **vpp) 2790 { 2791 mntinfo4_t *mi; 2792 vnode_t *vp; 2793 nfs4_fname_t *mfname; 2794 servinfo4_t *svp; 2795 2796 mi = VFTOMI4(vfsp); 2797 2798 if (nfs_zone() != mi->mi_zone) 2799 return (EPERM); 2800 2801 svp = mi->mi_curr_serv; 2802 if (svp) { 2803 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 2804 if (svp->sv_flags & SV4_ROOT_STALE) { 2805 nfs_rw_exit(&svp->sv_lock); 2806 2807 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2808 if (svp->sv_flags & SV4_ROOT_STALE) { 2809 svp->sv_flags &= ~SV4_ROOT_STALE; 2810 nfs_rw_exit(&svp->sv_lock); 2811 return (ENOENT); 2812 } 2813 nfs_rw_exit(&svp->sv_lock); 2814 } else 2815 nfs_rw_exit(&svp->sv_lock); 2816 } 2817 2818 mfname = mi->mi_fname; 2819 fn_hold(mfname); 2820 vp = makenfs4node_by_fh(mi->mi_rootfh, NULL, &mfname, NULL, 2821 VFTOMI4(vfsp), CRED(), gethrtime()); 2822 2823 if (VTOR4(vp)->r_flags & R4STALE) { 2824 VN_RELE(vp); 2825 return (ENOENT); 2826 } 2827 2828 ASSERT(vp->v_type == VNON || vp->v_type == mi->mi_type); 2829 2830 vp->v_type = mi->mi_type; 2831 2832 *vpp = vp; 2833 2834 return (0); 2835 } 2836 2837 static int 2838 nfs4_statfs_otw(vnode_t *vp, struct statvfs64 *sbp, cred_t *cr) 2839 { 2840 int error; 2841 nfs4_ga_res_t gar; 2842 nfs4_ga_ext_res_t ger; 2843 2844 gar.n4g_ext_res = &ger; 2845 2846 if (error = nfs4_attr_otw(vp, TAG_FSINFO, &gar, 2847 NFS4_STATFS_ATTR_MASK, cr)) 2848 return (error); 2849 2850 *sbp = gar.n4g_ext_res->n4g_sb; 2851 2852 return (0); 2853 } 2854 2855 /* 2856 * Get file system statistics. 2857 */ 2858 static int 2859 nfs4_statvfs(vfs_t *vfsp, struct statvfs64 *sbp) 2860 { 2861 int error; 2862 vnode_t *vp; 2863 cred_t *cr; 2864 2865 error = nfs4_root(vfsp, &vp); 2866 if (error) 2867 return (error); 2868 2869 cr = CRED(); 2870 2871 error = nfs4_statfs_otw(vp, sbp, cr); 2872 if (!error) { 2873 (void) strncpy(sbp->f_basetype, 2874 vfssw[vfsp->vfs_fstype].vsw_name, FSTYPSZ); 2875 sbp->f_flag = vf_to_stf(vfsp->vfs_flag); 2876 } else { 2877 nfs4_purge_stale_fh(error, vp, cr); 2878 } 2879 2880 VN_RELE(vp); 2881 2882 return (error); 2883 } 2884 2885 static kmutex_t nfs4_syncbusy; 2886 2887 /* 2888 * Flush dirty nfs files for file system vfsp. 2889 * If vfsp == NULL, all nfs files are flushed. 2890 * 2891 * SYNC_CLOSE in flag is passed to us to 2892 * indicate that we are shutting down and or 2893 * rebooting. 2894 */ 2895 static int 2896 nfs4_sync(vfs_t *vfsp, short flag, cred_t *cr) 2897 { 2898 /* 2899 * Cross-zone calls are OK here, since this translates to a 2900 * VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone. 2901 */ 2902 if (!(flag & SYNC_ATTR) && mutex_tryenter(&nfs4_syncbusy) != 0) { 2903 r4flush(vfsp, cr); 2904 mutex_exit(&nfs4_syncbusy); 2905 } 2906 2907 /* 2908 * if SYNC_CLOSE is set then we know that 2909 * the system is rebooting, mark the mntinfo 2910 * for later examination. 2911 */ 2912 if (vfsp && (flag & SYNC_CLOSE)) { 2913 mntinfo4_t *mi; 2914 2915 mi = VFTOMI4(vfsp); 2916 if (!(mi->mi_flags & MI4_SHUTDOWN)) { 2917 mutex_enter(&mi->mi_lock); 2918 mi->mi_flags |= MI4_SHUTDOWN; 2919 mutex_exit(&mi->mi_lock); 2920 } 2921 } 2922 return (0); 2923 } 2924 2925 /* 2926 * vget is difficult, if not impossible, to support in v4 because we don't 2927 * know the parent directory or name, which makes it impossible to create a 2928 * useful shadow vnode. And we need the shadow vnode for things like 2929 * OPEN. 2930 */ 2931 2932 /* ARGSUSED */ 2933 /* 2934 * XXX Check nfs4_vget_pseudo() for dependency. 2935 */ 2936 static int 2937 nfs4_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 2938 { 2939 return (EREMOTE); 2940 } 2941 2942 /* 2943 * nfs4_mountroot get called in the case where we are diskless booting. All 2944 * we need from here is the ability to get the server info and from there we 2945 * can simply call nfs4_rootvp. 2946 */ 2947 /* ARGSUSED */ 2948 static int 2949 nfs4_mountroot(vfs_t *vfsp, whymountroot_t why) 2950 { 2951 vnode_t *rtvp; 2952 char root_hostname[SYS_NMLN+1]; 2953 struct servinfo4 *svp; 2954 int error; 2955 int vfsflags; 2956 size_t size; 2957 char *root_path; 2958 struct pathname pn; 2959 char *name; 2960 cred_t *cr; 2961 mntinfo4_t *mi; 2962 struct nfs_args args; /* nfs mount arguments */ 2963 static char token[10]; 2964 nfs4_error_t n4e; 2965 2966 bzero(&args, sizeof (args)); 2967 2968 /* do this BEFORE getfile which causes xid stamps to be initialized */ 2969 clkset(-1L); /* hack for now - until we get time svc? */ 2970 2971 if (why == ROOT_REMOUNT) { 2972 /* 2973 * Shouldn't happen. 2974 */ 2975 panic("nfs4_mountroot: why == ROOT_REMOUNT"); 2976 } 2977 2978 if (why == ROOT_UNMOUNT) { 2979 /* 2980 * Nothing to do for NFS. 2981 */ 2982 return (0); 2983 } 2984 2985 /* 2986 * why == ROOT_INIT 2987 */ 2988 2989 name = token; 2990 *name = 0; 2991 (void) getfsname("root", name, sizeof (token)); 2992 2993 pn_alloc(&pn); 2994 root_path = pn.pn_path; 2995 2996 svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); 2997 nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL); 2998 svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP); 2999 svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 3000 svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 3001 3002 /* 3003 * Get server address 3004 * Get the root path 3005 * Get server's transport 3006 * Get server's hostname 3007 * Get options 3008 */ 3009 args.addr = &svp->sv_addr; 3010 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3011 args.fh = (char *)&svp->sv_fhandle; 3012 args.knconf = svp->sv_knconf; 3013 args.hostname = root_hostname; 3014 vfsflags = 0; 3015 if (error = mount_root(*name ? name : "root", root_path, NFS_V4, 3016 &args, &vfsflags)) { 3017 if (error == EPROTONOSUPPORT) 3018 nfs_cmn_err(error, CE_WARN, "nfs4_mountroot: " 3019 "mount_root failed: server doesn't support NFS V4"); 3020 else 3021 nfs_cmn_err(error, CE_WARN, 3022 "nfs4_mountroot: mount_root failed: %m"); 3023 nfs_rw_exit(&svp->sv_lock); 3024 sv4_free(svp); 3025 pn_free(&pn); 3026 return (error); 3027 } 3028 nfs_rw_exit(&svp->sv_lock); 3029 svp->sv_hostnamelen = (int)(strlen(root_hostname) + 1); 3030 svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP); 3031 (void) strcpy(svp->sv_hostname, root_hostname); 3032 3033 svp->sv_pathlen = (int)(strlen(root_path) + 1); 3034 svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP); 3035 (void) strcpy(svp->sv_path, root_path); 3036 3037 /* 3038 * Force root partition to always be mounted with AUTH_UNIX for now 3039 */ 3040 svp->sv_secdata = kmem_alloc(sizeof (*svp->sv_secdata), KM_SLEEP); 3041 svp->sv_secdata->secmod = AUTH_UNIX; 3042 svp->sv_secdata->rpcflavor = AUTH_UNIX; 3043 svp->sv_secdata->data = NULL; 3044 3045 cr = crgetcred(); 3046 rtvp = NULL; 3047 3048 error = nfs4rootvp(&rtvp, vfsp, svp, args.flags, cr, global_zone); 3049 3050 if (error) { 3051 crfree(cr); 3052 pn_free(&pn); 3053 sv4_free(svp); 3054 return (error); 3055 } 3056 3057 mi = VTOMI4(rtvp); 3058 3059 /* 3060 * Send client id to the server, if necessary 3061 */ 3062 nfs4_error_zinit(&n4e); 3063 nfs4setclientid(mi, cr, FALSE, &n4e); 3064 error = n4e.error; 3065 3066 crfree(cr); 3067 3068 if (error) { 3069 pn_free(&pn); 3070 goto errout; 3071 } 3072 3073 error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, &args); 3074 if (error) { 3075 nfs_cmn_err(error, CE_WARN, 3076 "nfs4_mountroot: invalid root mount options"); 3077 pn_free(&pn); 3078 goto errout; 3079 } 3080 3081 (void) vfs_lock_wait(vfsp); 3082 vfs_add(NULL, vfsp, vfsflags); 3083 vfs_unlock(vfsp); 3084 3085 size = strlen(svp->sv_hostname); 3086 (void) strcpy(rootfs.bo_name, svp->sv_hostname); 3087 rootfs.bo_name[size] = ':'; 3088 (void) strcpy(&rootfs.bo_name[size + 1], root_path); 3089 3090 pn_free(&pn); 3091 3092 errout: 3093 if (error) { 3094 sv4_free(svp); 3095 nfs4_async_stop(vfsp); 3096 nfs4_async_manager_stop(vfsp); 3097 } 3098 3099 if (rtvp != NULL) 3100 VN_RELE(rtvp); 3101 3102 return (error); 3103 } 3104 3105 /* 3106 * Initialization routine for VFS routines. Should only be called once 3107 */ 3108 int 3109 nfs4_vfsinit(void) 3110 { 3111 mutex_init(&nfs4_syncbusy, NULL, MUTEX_DEFAULT, NULL); 3112 nfs4setclientid_init(); 3113 nfs4_ephemeral_init(); 3114 return (0); 3115 } 3116 3117 void 3118 nfs4_vfsfini(void) 3119 { 3120 nfs4_ephemeral_fini(); 3121 nfs4setclientid_fini(); 3122 mutex_destroy(&nfs4_syncbusy); 3123 } 3124 3125 void 3126 nfs4_freevfs(vfs_t *vfsp) 3127 { 3128 mntinfo4_t *mi; 3129 3130 /* need to release the initial hold */ 3131 mi = VFTOMI4(vfsp); 3132 3133 /* 3134 * At this point, we can no longer reference the vfs 3135 * and need to inform other holders of the reference 3136 * to the mntinfo4_t. 3137 */ 3138 mi->mi_vfsp = NULL; 3139 3140 MI4_RELE(mi); 3141 } 3142 3143 /* 3144 * Client side SETCLIENTID and SETCLIENTID_CONFIRM 3145 */ 3146 struct nfs4_server nfs4_server_lst = 3147 { &nfs4_server_lst, &nfs4_server_lst }; 3148 3149 kmutex_t nfs4_server_lst_lock; 3150 3151 static void 3152 nfs4setclientid_init(void) 3153 { 3154 mutex_init(&nfs4_server_lst_lock, NULL, MUTEX_DEFAULT, NULL); 3155 } 3156 3157 static void 3158 nfs4setclientid_fini(void) 3159 { 3160 mutex_destroy(&nfs4_server_lst_lock); 3161 } 3162 3163 int nfs4_retry_sclid_delay = NFS4_RETRY_SCLID_DELAY; 3164 int nfs4_num_sclid_retries = NFS4_NUM_SCLID_RETRIES; 3165 3166 /* 3167 * Set the clientid for the server for "mi". No-op if the clientid is 3168 * already set. 3169 * 3170 * The recovery boolean should be set to TRUE if this function was called 3171 * by the recovery code, and FALSE otherwise. This is used to determine 3172 * if we need to call nfs4_start/end_op as well as grab the mi_recovlock 3173 * for adding a mntinfo4_t to a nfs4_server_t. 3174 * 3175 * Error is returned via 'n4ep'. If there was a 'n4ep->stat' error, then 3176 * 'n4ep->error' is set to geterrno4(n4ep->stat). 3177 */ 3178 void 3179 nfs4setclientid(mntinfo4_t *mi, cred_t *cr, bool_t recovery, nfs4_error_t *n4ep) 3180 { 3181 struct nfs4_server *np; 3182 struct servinfo4 *svp = mi->mi_curr_serv; 3183 nfs4_recov_state_t recov_state; 3184 int num_retries = 0; 3185 bool_t retry; 3186 cred_t *lcr = NULL; 3187 int retry_inuse = 1; /* only retry once on NFS4ERR_CLID_INUSE */ 3188 time_t lease_time = 0; 3189 3190 recov_state.rs_flags = 0; 3191 recov_state.rs_num_retry_despite_err = 0; 3192 ASSERT(n4ep != NULL); 3193 3194 recov_retry: 3195 retry = FALSE; 3196 nfs4_error_zinit(n4ep); 3197 if (!recovery) 3198 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0); 3199 3200 mutex_enter(&nfs4_server_lst_lock); 3201 np = servinfo4_to_nfs4_server(svp); /* This locks np if it is found */ 3202 mutex_exit(&nfs4_server_lst_lock); 3203 if (!np) { 3204 struct nfs4_server *tnp; 3205 np = new_nfs4_server(svp, cr); 3206 mutex_enter(&np->s_lock); 3207 3208 mutex_enter(&nfs4_server_lst_lock); 3209 tnp = servinfo4_to_nfs4_server(svp); 3210 if (tnp) { 3211 /* 3212 * another thread snuck in and put server on list. 3213 * since we aren't adding it to the nfs4_server_list 3214 * we need to set the ref count to 0 and destroy it. 3215 */ 3216 np->s_refcnt = 0; 3217 destroy_nfs4_server(np); 3218 np = tnp; 3219 } else { 3220 /* 3221 * do not give list a reference until everything 3222 * succeeds 3223 */ 3224 insque(np, &nfs4_server_lst); 3225 } 3226 mutex_exit(&nfs4_server_lst_lock); 3227 } 3228 ASSERT(MUTEX_HELD(&np->s_lock)); 3229 /* 3230 * If we find the server already has N4S_CLIENTID_SET, then 3231 * just return, we've already done SETCLIENTID to that server 3232 */ 3233 if (np->s_flags & N4S_CLIENTID_SET) { 3234 /* add mi to np's mntinfo4_list */ 3235 nfs4_add_mi_to_server(np, mi); 3236 if (!recovery) 3237 nfs_rw_exit(&mi->mi_recovlock); 3238 mutex_exit(&np->s_lock); 3239 nfs4_server_rele(np); 3240 return; 3241 } 3242 mutex_exit(&np->s_lock); 3243 3244 3245 /* 3246 * Drop the mi_recovlock since nfs4_start_op will 3247 * acquire it again for us. 3248 */ 3249 if (!recovery) { 3250 nfs_rw_exit(&mi->mi_recovlock); 3251 3252 n4ep->error = nfs4_start_op(mi, NULL, NULL, &recov_state); 3253 if (n4ep->error) { 3254 nfs4_server_rele(np); 3255 return; 3256 } 3257 } 3258 3259 mutex_enter(&np->s_lock); 3260 while (np->s_flags & N4S_CLIENTID_PEND) { 3261 if (!cv_wait_sig(&np->s_clientid_pend, &np->s_lock)) { 3262 mutex_exit(&np->s_lock); 3263 nfs4_server_rele(np); 3264 if (!recovery) 3265 nfs4_end_op(mi, NULL, NULL, &recov_state, 3266 recovery); 3267 n4ep->error = EINTR; 3268 return; 3269 } 3270 } 3271 3272 if (np->s_flags & N4S_CLIENTID_SET) { 3273 /* XXX copied/pasted from above */ 3274 /* add mi to np's mntinfo4_list */ 3275 nfs4_add_mi_to_server(np, mi); 3276 mutex_exit(&np->s_lock); 3277 nfs4_server_rele(np); 3278 if (!recovery) 3279 nfs4_end_op(mi, NULL, NULL, &recov_state, recovery); 3280 return; 3281 } 3282 3283 /* 3284 * Reset the N4S_CB_PINGED flag. This is used to 3285 * indicate if we have received a CB_NULL from the 3286 * server. Also we reset the waiter flag. 3287 */ 3288 np->s_flags &= ~(N4S_CB_PINGED | N4S_CB_WAITER); 3289 /* any failure must now clear this flag */ 3290 np->s_flags |= N4S_CLIENTID_PEND; 3291 mutex_exit(&np->s_lock); 3292 nfs4setclientid_otw(mi, svp, cr, np, n4ep, &retry_inuse); 3293 3294 if (n4ep->error == EACCES) { 3295 /* 3296 * If the uid is set then set the creds for secure mounts 3297 * by proxy processes such as automountd. 3298 */ 3299 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3300 if (svp->sv_secdata->uid != 0) { 3301 lcr = crdup(cr); 3302 (void) crsetugid(lcr, svp->sv_secdata->uid, 3303 crgetgid(cr)); 3304 } 3305 nfs_rw_exit(&svp->sv_lock); 3306 3307 if (lcr != NULL) { 3308 mutex_enter(&np->s_lock); 3309 crfree(np->s_cred); 3310 np->s_cred = lcr; 3311 mutex_exit(&np->s_lock); 3312 nfs4setclientid_otw(mi, svp, lcr, np, n4ep, 3313 &retry_inuse); 3314 } 3315 } 3316 mutex_enter(&np->s_lock); 3317 lease_time = np->s_lease_time; 3318 np->s_flags &= ~N4S_CLIENTID_PEND; 3319 mutex_exit(&np->s_lock); 3320 3321 if (n4ep->error != 0 || n4ep->stat != NFS4_OK) { 3322 /* 3323 * Start recovery if failover is a possibility. If 3324 * invoked by the recovery thread itself, then just 3325 * return and let it handle the failover first. NB: 3326 * recovery is not allowed if the mount is in progress 3327 * since the infrastructure is not sufficiently setup 3328 * to allow it. Just return the error (after suitable 3329 * retries). 3330 */ 3331 if (FAILOVER_MOUNT4(mi) && nfs4_try_failover(n4ep)) { 3332 (void) nfs4_start_recovery(n4ep, mi, NULL, 3333 NULL, NULL, NULL, OP_SETCLIENTID, NULL, NULL, NULL); 3334 /* 3335 * Don't retry here, just return and let 3336 * recovery take over. 3337 */ 3338 if (recovery) 3339 retry = FALSE; 3340 } else if (nfs4_rpc_retry_error(n4ep->error) || 3341 n4ep->stat == NFS4ERR_RESOURCE || 3342 n4ep->stat == NFS4ERR_STALE_CLIENTID) { 3343 3344 retry = TRUE; 3345 /* 3346 * Always retry if in recovery or once had 3347 * contact with the server (but now it's 3348 * overloaded). 3349 */ 3350 if (recovery == TRUE || 3351 n4ep->error == ETIMEDOUT || 3352 n4ep->error == ECONNRESET) 3353 num_retries = 0; 3354 } else if (retry_inuse && n4ep->error == 0 && 3355 n4ep->stat == NFS4ERR_CLID_INUSE) { 3356 retry = TRUE; 3357 num_retries = 0; 3358 } 3359 } else { 3360 /* 3361 * Since everything succeeded give the list a reference count if 3362 * it hasn't been given one by add_new_nfs4_server() or if this 3363 * is not a recovery situation in which case it is already on 3364 * the list. 3365 */ 3366 mutex_enter(&np->s_lock); 3367 if ((np->s_flags & N4S_INSERTED) == 0) { 3368 np->s_refcnt++; 3369 np->s_flags |= N4S_INSERTED; 3370 } 3371 mutex_exit(&np->s_lock); 3372 } 3373 3374 if (!recovery) 3375 nfs4_end_op(mi, NULL, NULL, &recov_state, recovery); 3376 3377 3378 if (retry && num_retries++ < nfs4_num_sclid_retries) { 3379 if (retry_inuse) { 3380 delay(SEC_TO_TICK(lease_time + nfs4_retry_sclid_delay)); 3381 retry_inuse = 0; 3382 } else 3383 delay(SEC_TO_TICK(nfs4_retry_sclid_delay)); 3384 3385 nfs4_server_rele(np); 3386 goto recov_retry; 3387 } 3388 3389 3390 if (n4ep->error == 0) 3391 n4ep->error = geterrno4(n4ep->stat); 3392 3393 /* broadcast before release in case no other threads are waiting */ 3394 cv_broadcast(&np->s_clientid_pend); 3395 nfs4_server_rele(np); 3396 } 3397 3398 int nfs4setclientid_otw_debug = 0; 3399 3400 /* 3401 * This function handles the recovery of STALE_CLIENTID for SETCLIENTID_CONFRIM, 3402 * but nothing else; the calling function must be designed to handle those 3403 * other errors. 3404 */ 3405 static void 3406 nfs4setclientid_otw(mntinfo4_t *mi, struct servinfo4 *svp, cred_t *cr, 3407 struct nfs4_server *np, nfs4_error_t *ep, int *retry_inusep) 3408 { 3409 COMPOUND4args_clnt args; 3410 COMPOUND4res_clnt res; 3411 nfs_argop4 argop[3]; 3412 SETCLIENTID4args *s_args; 3413 SETCLIENTID4resok *s_resok; 3414 int doqueue = 1; 3415 nfs4_ga_res_t *garp = NULL; 3416 timespec_t prop_time, after_time; 3417 verifier4 verf; 3418 clientid4 tmp_clientid; 3419 3420 ASSERT(!MUTEX_HELD(&np->s_lock)); 3421 3422 args.ctag = TAG_SETCLIENTID; 3423 3424 args.array = argop; 3425 args.array_len = 3; 3426 3427 /* PUTROOTFH */ 3428 argop[0].argop = OP_PUTROOTFH; 3429 3430 /* GETATTR */ 3431 argop[1].argop = OP_GETATTR; 3432 argop[1].nfs_argop4_u.opgetattr.attr_request = FATTR4_LEASE_TIME_MASK; 3433 argop[1].nfs_argop4_u.opgetattr.mi = mi; 3434 3435 /* SETCLIENTID */ 3436 argop[2].argop = OP_SETCLIENTID; 3437 3438 s_args = &argop[2].nfs_argop4_u.opsetclientid; 3439 3440 mutex_enter(&np->s_lock); 3441 3442 s_args->client.verifier = np->clidtosend.verifier; 3443 s_args->client.id_len = np->clidtosend.id_len; 3444 ASSERT(s_args->client.id_len <= NFS4_OPAQUE_LIMIT); 3445 s_args->client.id_val = np->clidtosend.id_val; 3446 3447 /* 3448 * Callback needs to happen on non-RDMA transport 3449 * Check if we have saved the original knetconfig 3450 * if so, use that instead. 3451 */ 3452 if (svp->sv_origknconf != NULL) 3453 nfs4_cb_args(np, svp->sv_origknconf, s_args); 3454 else 3455 nfs4_cb_args(np, svp->sv_knconf, s_args); 3456 3457 mutex_exit(&np->s_lock); 3458 3459 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 3460 3461 if (ep->error) 3462 return; 3463 3464 /* getattr lease_time res */ 3465 if ((res.array_len >= 2) && 3466 (res.array[1].nfs_resop4_u.opgetattr.status == NFS4_OK)) { 3467 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 3468 3469 #ifndef _LP64 3470 /* 3471 * The 32 bit client cannot handle a lease time greater than 3472 * (INT32_MAX/1000000). This is due to the use of the 3473 * lease_time in calls to drv_usectohz() in 3474 * nfs4_renew_lease_thread(). The problem is that 3475 * drv_usectohz() takes a time_t (which is just a long = 4 3476 * bytes) as its parameter. The lease_time is multiplied by 3477 * 1000000 to convert seconds to usecs for the parameter. If 3478 * a number bigger than (INT32_MAX/1000000) is used then we 3479 * overflow on the 32bit client. 3480 */ 3481 if (garp->n4g_ext_res->n4g_leasetime > (INT32_MAX/1000000)) { 3482 garp->n4g_ext_res->n4g_leasetime = INT32_MAX/1000000; 3483 } 3484 #endif 3485 3486 mutex_enter(&np->s_lock); 3487 np->s_lease_time = garp->n4g_ext_res->n4g_leasetime; 3488 3489 /* 3490 * Keep track of the lease period for the mi's 3491 * mi_msg_list. We need an appropiate time 3492 * bound to associate past facts with a current 3493 * event. The lease period is perfect for this. 3494 */ 3495 mutex_enter(&mi->mi_msg_list_lock); 3496 mi->mi_lease_period = np->s_lease_time; 3497 mutex_exit(&mi->mi_msg_list_lock); 3498 mutex_exit(&np->s_lock); 3499 } 3500 3501 3502 if (res.status == NFS4ERR_CLID_INUSE) { 3503 clientaddr4 *clid_inuse; 3504 3505 if (!(*retry_inusep)) { 3506 clid_inuse = &res.array->nfs_resop4_u. 3507 opsetclientid.SETCLIENTID4res_u.client_using; 3508 3509 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, 3510 "NFS4 mount (SETCLIENTID failed)." 3511 " nfs4_client_id.id is in" 3512 "use already by: r_netid<%s> r_addr<%s>", 3513 clid_inuse->r_netid, clid_inuse->r_addr); 3514 } 3515 3516 /* 3517 * XXX - The client should be more robust in its 3518 * handling of clientid in use errors (regen another 3519 * clientid and try again?) 3520 */ 3521 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3522 return; 3523 } 3524 3525 if (res.status) { 3526 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3527 return; 3528 } 3529 3530 s_resok = &res.array[2].nfs_resop4_u. 3531 opsetclientid.SETCLIENTID4res_u.resok4; 3532 3533 tmp_clientid = s_resok->clientid; 3534 3535 verf = s_resok->setclientid_confirm; 3536 3537 #ifdef DEBUG 3538 if (nfs4setclientid_otw_debug) { 3539 union { 3540 clientid4 clientid; 3541 int foo[2]; 3542 } cid; 3543 3544 cid.clientid = s_resok->clientid; 3545 3546 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, 3547 "nfs4setclientid_otw: OK, clientid = %x,%x, " 3548 "verifier = %" PRIx64 "\n", cid.foo[0], cid.foo[1], verf); 3549 } 3550 #endif 3551 3552 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3553 3554 /* Confirm the client id and get the lease_time attribute */ 3555 3556 args.ctag = TAG_SETCLIENTID_CF; 3557 3558 args.array = argop; 3559 args.array_len = 1; 3560 3561 argop[0].argop = OP_SETCLIENTID_CONFIRM; 3562 3563 argop[0].nfs_argop4_u.opsetclientid_confirm.clientid = tmp_clientid; 3564 argop[0].nfs_argop4_u.opsetclientid_confirm.setclientid_confirm = verf; 3565 3566 /* used to figure out RTT for np */ 3567 gethrestime(&prop_time); 3568 3569 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlientid_otw: " 3570 "start time: %ld sec %ld nsec", prop_time.tv_sec, 3571 prop_time.tv_nsec)); 3572 3573 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 3574 3575 gethrestime(&after_time); 3576 mutex_enter(&np->s_lock); 3577 np->propagation_delay.tv_sec = 3578 MAX(1, after_time.tv_sec - prop_time.tv_sec); 3579 mutex_exit(&np->s_lock); 3580 3581 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlcientid_otw: " 3582 "finish time: %ld sec ", after_time.tv_sec)); 3583 3584 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setclientid_otw: " 3585 "propagation delay set to %ld sec", 3586 np->propagation_delay.tv_sec)); 3587 3588 if (ep->error) 3589 return; 3590 3591 if (res.status == NFS4ERR_CLID_INUSE) { 3592 clientaddr4 *clid_inuse; 3593 3594 if (!(*retry_inusep)) { 3595 clid_inuse = &res.array->nfs_resop4_u. 3596 opsetclientid.SETCLIENTID4res_u.client_using; 3597 3598 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, 3599 "SETCLIENTID_CONFIRM failed. " 3600 "nfs4_client_id.id is in use already by: " 3601 "r_netid<%s> r_addr<%s>", 3602 clid_inuse->r_netid, clid_inuse->r_addr); 3603 } 3604 3605 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3606 return; 3607 } 3608 3609 if (res.status) { 3610 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3611 return; 3612 } 3613 3614 mutex_enter(&np->s_lock); 3615 np->clientid = tmp_clientid; 3616 np->s_flags |= N4S_CLIENTID_SET; 3617 3618 /* Add mi to np's mntinfo4 list */ 3619 nfs4_add_mi_to_server(np, mi); 3620 3621 if (np->lease_valid == NFS4_LEASE_NOT_STARTED) { 3622 /* 3623 * Start lease management thread. 3624 * Keep trying until we succeed. 3625 */ 3626 3627 np->s_refcnt++; /* pass reference to thread */ 3628 (void) zthread_create(NULL, 0, nfs4_renew_lease_thread, np, 0, 3629 minclsyspri); 3630 } 3631 mutex_exit(&np->s_lock); 3632 3633 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3634 } 3635 3636 /* 3637 * Add mi to sp's mntinfo4_list if it isn't already in the list. Makes 3638 * mi's clientid the same as sp's. 3639 * Assumes sp is locked down. 3640 */ 3641 void 3642 nfs4_add_mi_to_server(nfs4_server_t *sp, mntinfo4_t *mi) 3643 { 3644 mntinfo4_t *tmi; 3645 int in_list = 0; 3646 3647 ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) || 3648 nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER)); 3649 ASSERT(sp != &nfs4_server_lst); 3650 ASSERT(MUTEX_HELD(&sp->s_lock)); 3651 3652 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3653 "nfs4_add_mi_to_server: add mi %p to sp %p", 3654 (void*)mi, (void*)sp)); 3655 3656 for (tmi = sp->mntinfo4_list; 3657 tmi != NULL; 3658 tmi = tmi->mi_clientid_next) { 3659 if (tmi == mi) { 3660 NFS4_DEBUG(nfs4_client_lease_debug, 3661 (CE_NOTE, 3662 "nfs4_add_mi_to_server: mi in list")); 3663 in_list = 1; 3664 } 3665 } 3666 3667 /* 3668 * First put a hold on the mntinfo4's vfsp so that references via 3669 * mntinfo4_list will be valid. 3670 */ 3671 if (!in_list) 3672 VFS_HOLD(mi->mi_vfsp); 3673 3674 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4_add_mi_to_server: " 3675 "hold vfs %p for mi: %p", (void*)mi->mi_vfsp, (void*)mi)); 3676 3677 if (!in_list) { 3678 if (sp->mntinfo4_list) 3679 sp->mntinfo4_list->mi_clientid_prev = mi; 3680 mi->mi_clientid_next = sp->mntinfo4_list; 3681 mi->mi_srv = sp; 3682 sp->mntinfo4_list = mi; 3683 mi->mi_srvsettime = gethrestime_sec(); 3684 mi->mi_srvset_cnt++; 3685 } 3686 3687 /* set mi's clientid to that of sp's for later matching */ 3688 mi->mi_clientid = sp->clientid; 3689 3690 /* 3691 * Update the clientid for any other mi's belonging to sp. This 3692 * must be done here while we hold sp->s_lock, so that 3693 * find_nfs4_server() continues to work. 3694 */ 3695 3696 for (tmi = sp->mntinfo4_list; 3697 tmi != NULL; 3698 tmi = tmi->mi_clientid_next) { 3699 if (tmi != mi) { 3700 tmi->mi_clientid = sp->clientid; 3701 } 3702 } 3703 } 3704 3705 /* 3706 * Remove the mi from sp's mntinfo4_list and release its reference. 3707 * Exception: if mi still has open files, flag it for later removal (when 3708 * all the files are closed). 3709 * 3710 * If this is the last mntinfo4 in sp's list then tell the lease renewal 3711 * thread to exit. 3712 */ 3713 static void 3714 nfs4_remove_mi_from_server_nolock(mntinfo4_t *mi, nfs4_server_t *sp) 3715 { 3716 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3717 "nfs4_remove_mi_from_server_nolock: remove mi %p from sp %p", 3718 (void*)mi, (void*)sp)); 3719 3720 ASSERT(sp != NULL); 3721 ASSERT(MUTEX_HELD(&sp->s_lock)); 3722 ASSERT(mi->mi_open_files >= 0); 3723 3724 /* 3725 * First make sure this mntinfo4 can be taken off of the list, 3726 * ie: it doesn't have any open files remaining. 3727 */ 3728 if (mi->mi_open_files > 0) { 3729 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3730 "nfs4_remove_mi_from_server_nolock: don't " 3731 "remove mi since it still has files open")); 3732 3733 mutex_enter(&mi->mi_lock); 3734 mi->mi_flags |= MI4_REMOVE_ON_LAST_CLOSE; 3735 mutex_exit(&mi->mi_lock); 3736 return; 3737 } 3738 3739 VFS_HOLD(mi->mi_vfsp); 3740 remove_mi(sp, mi); 3741 VFS_RELE(mi->mi_vfsp); 3742 3743 if (sp->mntinfo4_list == NULL) { 3744 /* last fs unmounted, kill the thread */ 3745 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3746 "remove_mi_from_nfs4_server_nolock: kill the thread")); 3747 nfs4_mark_srv_dead(sp); 3748 } 3749 } 3750 3751 /* 3752 * Remove mi from sp's mntinfo4_list and release the vfs reference. 3753 */ 3754 static void 3755 remove_mi(nfs4_server_t *sp, mntinfo4_t *mi) 3756 { 3757 ASSERT(MUTEX_HELD(&sp->s_lock)); 3758 3759 /* 3760 * We release a reference, and the caller must still have a 3761 * reference. 3762 */ 3763 ASSERT(mi->mi_vfsp->vfs_count >= 2); 3764 3765 if (mi->mi_clientid_prev) { 3766 mi->mi_clientid_prev->mi_clientid_next = mi->mi_clientid_next; 3767 } else { 3768 /* This is the first mi in sp's mntinfo4_list */ 3769 /* 3770 * Make sure the first mntinfo4 in the list is the actual 3771 * mntinfo4 passed in. 3772 */ 3773 ASSERT(sp->mntinfo4_list == mi); 3774 3775 sp->mntinfo4_list = mi->mi_clientid_next; 3776 } 3777 if (mi->mi_clientid_next) 3778 mi->mi_clientid_next->mi_clientid_prev = mi->mi_clientid_prev; 3779 3780 /* Now mark the mntinfo4's links as being removed */ 3781 mi->mi_clientid_prev = mi->mi_clientid_next = NULL; 3782 mi->mi_srv = NULL; 3783 mi->mi_srvset_cnt++; 3784 3785 VFS_RELE(mi->mi_vfsp); 3786 } 3787 3788 /* 3789 * Free all the entries in sp's mntinfo4_list. 3790 */ 3791 static void 3792 remove_all_mi(nfs4_server_t *sp) 3793 { 3794 mntinfo4_t *mi; 3795 3796 ASSERT(MUTEX_HELD(&sp->s_lock)); 3797 3798 while (sp->mntinfo4_list != NULL) { 3799 mi = sp->mntinfo4_list; 3800 /* 3801 * Grab a reference in case there is only one left (which 3802 * remove_mi() frees). 3803 */ 3804 VFS_HOLD(mi->mi_vfsp); 3805 remove_mi(sp, mi); 3806 VFS_RELE(mi->mi_vfsp); 3807 } 3808 } 3809 3810 /* 3811 * Remove the mi from sp's mntinfo4_list as above, and rele the vfs. 3812 * 3813 * This version can be called with a null nfs4_server_t arg, 3814 * and will either find the right one and handle locking, or 3815 * do nothing because the mi wasn't added to an sp's mntinfo4_list. 3816 */ 3817 void 3818 nfs4_remove_mi_from_server(mntinfo4_t *mi, nfs4_server_t *esp) 3819 { 3820 nfs4_server_t *sp; 3821 3822 if (esp) { 3823 nfs4_remove_mi_from_server_nolock(mi, esp); 3824 return; 3825 } 3826 3827 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0); 3828 if (sp = find_nfs4_server_all(mi, 1)) { 3829 nfs4_remove_mi_from_server_nolock(mi, sp); 3830 mutex_exit(&sp->s_lock); 3831 nfs4_server_rele(sp); 3832 } 3833 nfs_rw_exit(&mi->mi_recovlock); 3834 } 3835 3836 /* 3837 * Return TRUE if the given server has any non-unmounted filesystems. 3838 */ 3839 3840 bool_t 3841 nfs4_fs_active(nfs4_server_t *sp) 3842 { 3843 mntinfo4_t *mi; 3844 3845 ASSERT(MUTEX_HELD(&sp->s_lock)); 3846 3847 for (mi = sp->mntinfo4_list; mi != NULL; mi = mi->mi_clientid_next) { 3848 if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)) 3849 return (TRUE); 3850 } 3851 3852 return (FALSE); 3853 } 3854 3855 /* 3856 * Mark sp as finished and notify any waiters. 3857 */ 3858 3859 void 3860 nfs4_mark_srv_dead(nfs4_server_t *sp) 3861 { 3862 ASSERT(MUTEX_HELD(&sp->s_lock)); 3863 3864 sp->s_thread_exit = NFS4_THREAD_EXIT; 3865 cv_broadcast(&sp->cv_thread_exit); 3866 } 3867 3868 /* 3869 * Create a new nfs4_server_t structure. 3870 * Returns new node unlocked and not in list, but with a reference count of 3871 * 1. 3872 */ 3873 struct nfs4_server * 3874 new_nfs4_server(struct servinfo4 *svp, cred_t *cr) 3875 { 3876 struct nfs4_server *np; 3877 timespec_t tt; 3878 union { 3879 struct { 3880 uint32_t sec; 3881 uint32_t subsec; 3882 } un_curtime; 3883 verifier4 un_verifier; 3884 } nfs4clientid_verifier; 3885 /* 3886 * We change this ID string carefully and with the Solaris 3887 * NFS server behaviour in mind. "+referrals" indicates 3888 * a client that can handle an NFSv4 referral. 3889 */ 3890 char id_val[] = "Solaris: %s, NFSv4 kernel client +referrals"; 3891 int len; 3892 3893 np = kmem_zalloc(sizeof (struct nfs4_server), KM_SLEEP); 3894 np->saddr.len = svp->sv_addr.len; 3895 np->saddr.maxlen = svp->sv_addr.maxlen; 3896 np->saddr.buf = kmem_alloc(svp->sv_addr.maxlen, KM_SLEEP); 3897 bcopy(svp->sv_addr.buf, np->saddr.buf, svp->sv_addr.len); 3898 np->s_refcnt = 1; 3899 3900 /* 3901 * Build the nfs_client_id4 for this server mount. Ensure 3902 * the verifier is useful and that the identification is 3903 * somehow based on the server's address for the case of 3904 * multi-homed servers. 3905 */ 3906 nfs4clientid_verifier.un_verifier = 0; 3907 gethrestime(&tt); 3908 nfs4clientid_verifier.un_curtime.sec = (uint32_t)tt.tv_sec; 3909 nfs4clientid_verifier.un_curtime.subsec = (uint32_t)tt.tv_nsec; 3910 np->clidtosend.verifier = nfs4clientid_verifier.un_verifier; 3911 3912 /* 3913 * calculate the length of the opaque identifier. Subtract 2 3914 * for the "%s" and add the traditional +1 for null 3915 * termination. 3916 */ 3917 len = strlen(id_val) - 2 + strlen(uts_nodename()) + 1; 3918 np->clidtosend.id_len = len + np->saddr.maxlen; 3919 3920 np->clidtosend.id_val = kmem_alloc(np->clidtosend.id_len, KM_SLEEP); 3921 (void) sprintf(np->clidtosend.id_val, id_val, uts_nodename()); 3922 bcopy(np->saddr.buf, &np->clidtosend.id_val[len], np->saddr.len); 3923 3924 np->s_flags = 0; 3925 np->mntinfo4_list = NULL; 3926 /* save cred for issuing rfs4calls inside the renew thread */ 3927 crhold(cr); 3928 np->s_cred = cr; 3929 cv_init(&np->cv_thread_exit, NULL, CV_DEFAULT, NULL); 3930 mutex_init(&np->s_lock, NULL, MUTEX_DEFAULT, NULL); 3931 nfs_rw_init(&np->s_recovlock, NULL, RW_DEFAULT, NULL); 3932 list_create(&np->s_deleg_list, sizeof (rnode4_t), 3933 offsetof(rnode4_t, r_deleg_link)); 3934 np->s_thread_exit = 0; 3935 np->state_ref_count = 0; 3936 np->lease_valid = NFS4_LEASE_NOT_STARTED; 3937 cv_init(&np->s_cv_otw_count, NULL, CV_DEFAULT, NULL); 3938 cv_init(&np->s_clientid_pend, NULL, CV_DEFAULT, NULL); 3939 np->s_otw_call_count = 0; 3940 cv_init(&np->wait_cb_null, NULL, CV_DEFAULT, NULL); 3941 np->zoneid = getzoneid(); 3942 np->zone_globals = nfs4_get_callback_globals(); 3943 ASSERT(np->zone_globals != NULL); 3944 return (np); 3945 } 3946 3947 /* 3948 * Create a new nfs4_server_t structure and add it to the list. 3949 * Returns new node locked; reference must eventually be freed. 3950 */ 3951 static struct nfs4_server * 3952 add_new_nfs4_server(struct servinfo4 *svp, cred_t *cr) 3953 { 3954 nfs4_server_t *sp; 3955 3956 ASSERT(MUTEX_HELD(&nfs4_server_lst_lock)); 3957 sp = new_nfs4_server(svp, cr); 3958 mutex_enter(&sp->s_lock); 3959 insque(sp, &nfs4_server_lst); 3960 sp->s_refcnt++; /* list gets a reference */ 3961 sp->s_flags |= N4S_INSERTED; 3962 sp->clientid = 0; 3963 return (sp); 3964 } 3965 3966 int nfs4_server_t_debug = 0; 3967 3968 #ifdef lint 3969 extern void 3970 dumpnfs4slist(char *, mntinfo4_t *, clientid4, servinfo4_t *); 3971 #endif 3972 3973 #ifndef lint 3974 #ifdef DEBUG 3975 void 3976 dumpnfs4slist(char *txt, mntinfo4_t *mi, clientid4 clientid, servinfo4_t *srv_p) 3977 { 3978 int hash16(void *p, int len); 3979 nfs4_server_t *np; 3980 3981 NFS4_DEBUG(nfs4_server_t_debug, (CE_NOTE, 3982 "dumping nfs4_server_t list in %s", txt)); 3983 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, 3984 "mi 0x%p, want clientid %llx, addr %d/%04X", 3985 mi, (longlong_t)clientid, srv_p->sv_addr.len, 3986 hash16((void *)srv_p->sv_addr.buf, srv_p->sv_addr.len))); 3987 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; 3988 np = np->forw) { 3989 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, 3990 "node 0x%p, clientid %llx, addr %d/%04X, cnt %d", 3991 np, (longlong_t)np->clientid, np->saddr.len, 3992 hash16((void *)np->saddr.buf, np->saddr.len), 3993 np->state_ref_count)); 3994 if (np->saddr.len == srv_p->sv_addr.len && 3995 bcmp(np->saddr.buf, srv_p->sv_addr.buf, 3996 np->saddr.len) == 0) 3997 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, 3998 " - address matches")); 3999 if (np->clientid == clientid || np->clientid == 0) 4000 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, 4001 " - clientid matches")); 4002 if (np->s_thread_exit != NFS4_THREAD_EXIT) 4003 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, 4004 " - thread not exiting")); 4005 } 4006 delay(hz); 4007 } 4008 #endif 4009 #endif 4010 4011 4012 /* 4013 * Move a mntinfo4_t from one server list to another. 4014 * Locking of the two nfs4_server_t nodes will be done in list order. 4015 * 4016 * Returns NULL if the current nfs4_server_t for the filesystem could not 4017 * be found (e.g., due to forced unmount). Otherwise returns a reference 4018 * to the new nfs4_server_t, which must eventually be freed. 4019 */ 4020 nfs4_server_t * 4021 nfs4_move_mi(mntinfo4_t *mi, servinfo4_t *old, servinfo4_t *new) 4022 { 4023 nfs4_server_t *p, *op = NULL, *np = NULL; 4024 int num_open; 4025 zoneid_t zoneid = nfs_zoneid(); 4026 4027 ASSERT(nfs_zone() == mi->mi_zone); 4028 4029 mutex_enter(&nfs4_server_lst_lock); 4030 #ifdef DEBUG 4031 if (nfs4_server_t_debug) 4032 dumpnfs4slist("nfs4_move_mi", mi, (clientid4)0, new); 4033 #endif 4034 for (p = nfs4_server_lst.forw; p != &nfs4_server_lst; p = p->forw) { 4035 if (p->zoneid != zoneid) 4036 continue; 4037 if (p->saddr.len == old->sv_addr.len && 4038 bcmp(p->saddr.buf, old->sv_addr.buf, p->saddr.len) == 0 && 4039 p->s_thread_exit != NFS4_THREAD_EXIT) { 4040 op = p; 4041 mutex_enter(&op->s_lock); 4042 op->s_refcnt++; 4043 } 4044 if (p->saddr.len == new->sv_addr.len && 4045 bcmp(p->saddr.buf, new->sv_addr.buf, p->saddr.len) == 0 && 4046 p->s_thread_exit != NFS4_THREAD_EXIT) { 4047 np = p; 4048 mutex_enter(&np->s_lock); 4049 } 4050 if (op != NULL && np != NULL) 4051 break; 4052 } 4053 if (op == NULL) { 4054 /* 4055 * Filesystem has been forcibly unmounted. Bail out. 4056 */ 4057 if (np != NULL) 4058 mutex_exit(&np->s_lock); 4059 mutex_exit(&nfs4_server_lst_lock); 4060 return (NULL); 4061 } 4062 if (np != NULL) { 4063 np->s_refcnt++; 4064 } else { 4065 #ifdef DEBUG 4066 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 4067 "nfs4_move_mi: no target nfs4_server, will create.")); 4068 #endif 4069 np = add_new_nfs4_server(new, kcred); 4070 } 4071 mutex_exit(&nfs4_server_lst_lock); 4072 4073 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 4074 "nfs4_move_mi: for mi 0x%p, " 4075 "old servinfo4 0x%p, new servinfo4 0x%p, " 4076 "old nfs4_server 0x%p, new nfs4_server 0x%p, ", 4077 (void*)mi, (void*)old, (void*)new, 4078 (void*)op, (void*)np)); 4079 ASSERT(op != NULL && np != NULL); 4080 4081 /* discard any delegations */ 4082 nfs4_deleg_discard(mi, op); 4083 4084 num_open = mi->mi_open_files; 4085 mi->mi_open_files = 0; 4086 op->state_ref_count -= num_open; 4087 ASSERT(op->state_ref_count >= 0); 4088 np->state_ref_count += num_open; 4089 nfs4_remove_mi_from_server_nolock(mi, op); 4090 mi->mi_open_files = num_open; 4091 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 4092 "nfs4_move_mi: mi_open_files %d, op->cnt %d, np->cnt %d", 4093 mi->mi_open_files, op->state_ref_count, np->state_ref_count)); 4094 4095 nfs4_add_mi_to_server(np, mi); 4096 4097 mutex_exit(&op->s_lock); 4098 mutex_exit(&np->s_lock); 4099 nfs4_server_rele(op); 4100 4101 return (np); 4102 } 4103 4104 /* 4105 * Need to have the nfs4_server_lst_lock. 4106 * Search the nfs4_server list to find a match on this servinfo4 4107 * based on its address. 4108 * 4109 * Returns NULL if no match is found. Otherwise returns a reference (which 4110 * must eventually be freed) to a locked nfs4_server. 4111 */ 4112 nfs4_server_t * 4113 servinfo4_to_nfs4_server(servinfo4_t *srv_p) 4114 { 4115 nfs4_server_t *np; 4116 zoneid_t zoneid = nfs_zoneid(); 4117 4118 ASSERT(MUTEX_HELD(&nfs4_server_lst_lock)); 4119 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) { 4120 if (np->zoneid == zoneid && 4121 np->saddr.len == srv_p->sv_addr.len && 4122 bcmp(np->saddr.buf, srv_p->sv_addr.buf, 4123 np->saddr.len) == 0 && 4124 np->s_thread_exit != NFS4_THREAD_EXIT) { 4125 mutex_enter(&np->s_lock); 4126 np->s_refcnt++; 4127 return (np); 4128 } 4129 } 4130 return (NULL); 4131 } 4132 4133 /* 4134 * Locks the nfs4_server down if it is found and returns a reference that 4135 * must eventually be freed. 4136 */ 4137 static nfs4_server_t * 4138 lookup_nfs4_server(nfs4_server_t *sp, int any_state) 4139 { 4140 nfs4_server_t *np; 4141 4142 mutex_enter(&nfs4_server_lst_lock); 4143 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) { 4144 mutex_enter(&np->s_lock); 4145 if (np == sp && np->s_refcnt > 0 && 4146 (np->s_thread_exit != NFS4_THREAD_EXIT || any_state)) { 4147 mutex_exit(&nfs4_server_lst_lock); 4148 np->s_refcnt++; 4149 return (np); 4150 } 4151 mutex_exit(&np->s_lock); 4152 } 4153 mutex_exit(&nfs4_server_lst_lock); 4154 4155 return (NULL); 4156 } 4157 4158 /* 4159 * The caller should be holding mi->mi_recovlock, and it should continue to 4160 * hold the lock until done with the returned nfs4_server_t. Once 4161 * mi->mi_recovlock is released, there is no guarantee that the returned 4162 * mi->nfs4_server_t will continue to correspond to mi. 4163 */ 4164 nfs4_server_t * 4165 find_nfs4_server(mntinfo4_t *mi) 4166 { 4167 ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) || 4168 nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER)); 4169 4170 return (lookup_nfs4_server(mi->mi_srv, 0)); 4171 } 4172 4173 /* 4174 * Same as above, but takes an "any_state" parameter which can be 4175 * set to 1 if the caller wishes to find nfs4_server_t's which 4176 * have been marked for termination by the exit of the renew 4177 * thread. This should only be used by operations which are 4178 * cleaning up and will not cause an OTW op. 4179 */ 4180 nfs4_server_t * 4181 find_nfs4_server_all(mntinfo4_t *mi, int any_state) 4182 { 4183 ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) || 4184 nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER)); 4185 4186 return (lookup_nfs4_server(mi->mi_srv, any_state)); 4187 } 4188 4189 /* 4190 * Lock sp, but only if it's still active (in the list and hasn't been 4191 * flagged as exiting) or 'any_state' is non-zero. 4192 * Returns TRUE if sp got locked and adds a reference to sp. 4193 */ 4194 bool_t 4195 nfs4_server_vlock(nfs4_server_t *sp, int any_state) 4196 { 4197 return (lookup_nfs4_server(sp, any_state) != NULL); 4198 } 4199 4200 /* 4201 * Release the reference to sp and destroy it if that's the last one. 4202 */ 4203 4204 void 4205 nfs4_server_rele(nfs4_server_t *sp) 4206 { 4207 mutex_enter(&sp->s_lock); 4208 ASSERT(sp->s_refcnt > 0); 4209 sp->s_refcnt--; 4210 if (sp->s_refcnt > 0) { 4211 mutex_exit(&sp->s_lock); 4212 return; 4213 } 4214 mutex_exit(&sp->s_lock); 4215 4216 mutex_enter(&nfs4_server_lst_lock); 4217 mutex_enter(&sp->s_lock); 4218 if (sp->s_refcnt > 0) { 4219 mutex_exit(&sp->s_lock); 4220 mutex_exit(&nfs4_server_lst_lock); 4221 return; 4222 } 4223 remque(sp); 4224 sp->forw = sp->back = NULL; 4225 mutex_exit(&nfs4_server_lst_lock); 4226 destroy_nfs4_server(sp); 4227 } 4228 4229 static void 4230 destroy_nfs4_server(nfs4_server_t *sp) 4231 { 4232 ASSERT(MUTEX_HELD(&sp->s_lock)); 4233 ASSERT(sp->s_refcnt == 0); 4234 ASSERT(sp->s_otw_call_count == 0); 4235 4236 remove_all_mi(sp); 4237 4238 crfree(sp->s_cred); 4239 kmem_free(sp->saddr.buf, sp->saddr.maxlen); 4240 kmem_free(sp->clidtosend.id_val, sp->clidtosend.id_len); 4241 mutex_exit(&sp->s_lock); 4242 4243 /* destroy the nfs4_server */ 4244 nfs4callback_destroy(sp); 4245 list_destroy(&sp->s_deleg_list); 4246 mutex_destroy(&sp->s_lock); 4247 cv_destroy(&sp->cv_thread_exit); 4248 cv_destroy(&sp->s_cv_otw_count); 4249 cv_destroy(&sp->s_clientid_pend); 4250 cv_destroy(&sp->wait_cb_null); 4251 nfs_rw_destroy(&sp->s_recovlock); 4252 kmem_free(sp, sizeof (*sp)); 4253 } 4254 4255 /* 4256 * Fork off a thread to free the data structures for a mount. 4257 */ 4258 4259 static void 4260 async_free_mount(vfs_t *vfsp, int flag, cred_t *cr) 4261 { 4262 freemountargs_t *args; 4263 args = kmem_alloc(sizeof (freemountargs_t), KM_SLEEP); 4264 args->fm_vfsp = vfsp; 4265 VFS_HOLD(vfsp); 4266 MI4_HOLD(VFTOMI4(vfsp)); 4267 args->fm_flag = flag; 4268 args->fm_cr = cr; 4269 crhold(cr); 4270 (void) zthread_create(NULL, 0, nfs4_free_mount_thread, args, 0, 4271 minclsyspri); 4272 } 4273 4274 static void 4275 nfs4_free_mount_thread(freemountargs_t *args) 4276 { 4277 mntinfo4_t *mi; 4278 nfs4_free_mount(args->fm_vfsp, args->fm_flag, args->fm_cr); 4279 mi = VFTOMI4(args->fm_vfsp); 4280 crfree(args->fm_cr); 4281 VFS_RELE(args->fm_vfsp); 4282 MI4_RELE(mi); 4283 kmem_free(args, sizeof (freemountargs_t)); 4284 zthread_exit(); 4285 /* NOTREACHED */ 4286 } 4287 4288 /* 4289 * Thread to free the data structures for a given filesystem. 4290 */ 4291 static void 4292 nfs4_free_mount(vfs_t *vfsp, int flag, cred_t *cr) 4293 { 4294 mntinfo4_t *mi = VFTOMI4(vfsp); 4295 nfs4_server_t *sp; 4296 callb_cpr_t cpr_info; 4297 kmutex_t cpr_lock; 4298 boolean_t async_thread; 4299 int removed; 4300 4301 bool_t must_unlock; 4302 nfs4_ephemeral_tree_t *eph_tree; 4303 4304 /* 4305 * We need to participate in the CPR framework if this is a kernel 4306 * thread. 4307 */ 4308 async_thread = (curproc == nfs_zone()->zone_zsched); 4309 if (async_thread) { 4310 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL); 4311 CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, 4312 "nfsv4AsyncUnmount"); 4313 } 4314 4315 /* 4316 * We need to wait for all outstanding OTW calls 4317 * and recovery to finish before we remove the mi 4318 * from the nfs4_server_t, as current pending 4319 * calls might still need this linkage (in order 4320 * to find a nfs4_server_t from a mntinfo4_t). 4321 */ 4322 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, FALSE); 4323 sp = find_nfs4_server(mi); 4324 nfs_rw_exit(&mi->mi_recovlock); 4325 4326 if (sp) { 4327 while (sp->s_otw_call_count != 0) { 4328 if (async_thread) { 4329 mutex_enter(&cpr_lock); 4330 CALLB_CPR_SAFE_BEGIN(&cpr_info); 4331 mutex_exit(&cpr_lock); 4332 } 4333 cv_wait(&sp->s_cv_otw_count, &sp->s_lock); 4334 if (async_thread) { 4335 mutex_enter(&cpr_lock); 4336 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 4337 mutex_exit(&cpr_lock); 4338 } 4339 } 4340 mutex_exit(&sp->s_lock); 4341 nfs4_server_rele(sp); 4342 sp = NULL; 4343 } 4344 4345 mutex_enter(&mi->mi_lock); 4346 while (mi->mi_in_recovery != 0) { 4347 if (async_thread) { 4348 mutex_enter(&cpr_lock); 4349 CALLB_CPR_SAFE_BEGIN(&cpr_info); 4350 mutex_exit(&cpr_lock); 4351 } 4352 cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock); 4353 if (async_thread) { 4354 mutex_enter(&cpr_lock); 4355 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 4356 mutex_exit(&cpr_lock); 4357 } 4358 } 4359 mutex_exit(&mi->mi_lock); 4360 4361 /* 4362 * If we got an error, then do not nuke the 4363 * tree. Either the harvester is busy reclaiming 4364 * this node or we ran into some busy condition. 4365 * 4366 * The harvester will eventually come along and cleanup. 4367 * The only problem would be the root mount point. 4368 * 4369 * Since the busy node can occur for a variety 4370 * of reasons and can result in an entry staying 4371 * in df output but no longer accessible from the 4372 * directory tree, we are okay. 4373 */ 4374 if (!nfs4_ephemeral_umount(mi, flag, cr, 4375 &must_unlock, &eph_tree)) 4376 nfs4_ephemeral_umount_activate(mi, &must_unlock, 4377 &eph_tree); 4378 4379 /* 4380 * The original purge of the dnlc via 'dounmount' 4381 * doesn't guarantee that another dnlc entry was not 4382 * added while we waitied for all outstanding OTW 4383 * and recovery calls to finish. So re-purge the 4384 * dnlc now. 4385 */ 4386 (void) dnlc_purge_vfsp(vfsp, 0); 4387 4388 /* 4389 * We need to explicitly stop the manager thread; the asyc worker 4390 * threads can timeout and exit on their own. 4391 */ 4392 mutex_enter(&mi->mi_async_lock); 4393 mi->mi_max_threads = 0; 4394 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv); 4395 mutex_exit(&mi->mi_async_lock); 4396 if (mi->mi_manager_thread) 4397 nfs4_async_manager_stop(vfsp); 4398 4399 destroy_rtable4(vfsp, cr); 4400 4401 nfs4_remove_mi_from_server(mi, NULL); 4402 4403 if (async_thread) { 4404 mutex_enter(&cpr_lock); 4405 CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */ 4406 mutex_destroy(&cpr_lock); 4407 } 4408 4409 removed = nfs4_mi_zonelist_remove(mi); 4410 if (removed) 4411 zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4); 4412 } 4413 4414 /* Referral related sub-routines */ 4415 4416 /* Freeup knetconfig */ 4417 static void 4418 free_knconf_contents(struct knetconfig *k) 4419 { 4420 if (k == NULL) 4421 return; 4422 if (k->knc_protofmly) 4423 kmem_free(k->knc_protofmly, KNC_STRSIZE); 4424 if (k->knc_proto) 4425 kmem_free(k->knc_proto, KNC_STRSIZE); 4426 } 4427 4428 /* 4429 * This updates newpath variable with exact name component from the 4430 * path which gave us a NFS4ERR_MOVED error. 4431 * If the path is /rp/aaa/bbb and nth value is 1, aaa is returned. 4432 */ 4433 static char * 4434 extract_referral_point(const char *svp, int nth) 4435 { 4436 int num_slashes = 0; 4437 const char *p; 4438 char *newpath = NULL; 4439 int i = 0; 4440 4441 newpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4442 for (p = svp; *p; p++) { 4443 if (*p == '/') 4444 num_slashes++; 4445 if (num_slashes == nth + 1) { 4446 p++; 4447 while (*p != '/') { 4448 if (*p == '\0') 4449 break; 4450 newpath[i] = *p; 4451 i++; 4452 p++; 4453 } 4454 newpath[i++] = '\0'; 4455 break; 4456 } 4457 } 4458 return (newpath); 4459 } 4460 4461 /* 4462 * This sets up a new path in sv_path to do a lookup of the referral point. 4463 * If the path is /rp/aaa/bbb and the referral point is aaa, 4464 * this updates /rp/aaa. This path will be used to get referral 4465 * location. 4466 */ 4467 static void 4468 setup_newsvpath(servinfo4_t *svp, int nth) 4469 { 4470 int num_slashes = 0, pathlen, i = 0; 4471 char *newpath, *p; 4472 4473 newpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4474 for (p = svp->sv_path; *p; p++) { 4475 newpath[i] = *p; 4476 if (*p == '/') 4477 num_slashes++; 4478 if (num_slashes == nth + 1) { 4479 newpath[i] = '\0'; 4480 pathlen = strlen(newpath) + 1; 4481 kmem_free(svp->sv_path, svp->sv_pathlen); 4482 svp->sv_path = kmem_alloc(pathlen, KM_SLEEP); 4483 svp->sv_pathlen = pathlen; 4484 bcopy(newpath, svp->sv_path, pathlen); 4485 break; 4486 } 4487 i++; 4488 } 4489 kmem_free(newpath, MAXPATHLEN); 4490 } 4491