1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 #include <sys/systm.h> 27 #include <sys/kmem.h> 28 #include <sys/cmn_err.h> 29 #include <sys/atomic.h> 30 #include <sys/clconf.h> 31 #include <sys/cladm.h> 32 #include <sys/flock.h> 33 #include <nfs/export.h> 34 #include <nfs/nfs.h> 35 #include <nfs/nfs4.h> 36 #include <nfs/nfssys.h> 37 #include <nfs/lm.h> 38 #include <sys/pathname.h> 39 #include <sys/sdt.h> 40 #include <sys/nvpair.h> 41 42 extern u_longlong_t nfs4_srv_caller_id; 43 44 extern time_t rfs4_start_time; 45 extern uint_t nfs4_srv_vkey; 46 47 stateid4 special0 = { 48 0, 49 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } 50 }; 51 52 stateid4 special1 = { 53 0xffffffff, 54 { 55 (char)0xff, (char)0xff, (char)0xff, (char)0xff, 56 (char)0xff, (char)0xff, (char)0xff, (char)0xff, 57 (char)0xff, (char)0xff, (char)0xff, (char)0xff 58 } 59 }; 60 61 62 #define ISSPECIAL(id) (stateid4_cmp(id, &special0) || \ 63 stateid4_cmp(id, &special1)) 64 65 /* For embedding the cluster nodeid into our clientid */ 66 #define CLUSTER_NODEID_SHIFT 24 67 #define CLUSTER_MAX_NODEID 255 68 69 #ifdef DEBUG 70 int rfs4_debug; 71 #endif 72 73 static uint32_t rfs4_database_debug = 0x00; 74 75 static void rfs4_ss_clid_write(rfs4_client_t *cp, char *leaf); 76 static void rfs4_ss_clid_write_one(rfs4_client_t *cp, char *dir, char *leaf); 77 static void rfs4_dss_clear_oldstate(rfs4_servinst_t *sip); 78 static void rfs4_ss_chkclid_sip(rfs4_client_t *cp, rfs4_servinst_t *sip); 79 80 /* 81 * Couple of simple init/destroy functions for a general waiter 82 */ 83 void 84 rfs4_sw_init(rfs4_state_wait_t *swp) 85 { 86 mutex_init(swp->sw_cv_lock, NULL, MUTEX_DEFAULT, NULL); 87 cv_init(swp->sw_cv, NULL, CV_DEFAULT, NULL); 88 swp->sw_active = FALSE; 89 swp->sw_wait_count = 0; 90 } 91 92 void 93 rfs4_sw_destroy(rfs4_state_wait_t *swp) 94 { 95 mutex_destroy(swp->sw_cv_lock); 96 cv_destroy(swp->sw_cv); 97 } 98 99 void 100 rfs4_sw_enter(rfs4_state_wait_t *swp) 101 { 102 mutex_enter(swp->sw_cv_lock); 103 while (swp->sw_active) { 104 swp->sw_wait_count++; 105 cv_wait(swp->sw_cv, swp->sw_cv_lock); 106 swp->sw_wait_count--; 107 } 108 ASSERT(swp->sw_active == FALSE); 109 swp->sw_active = TRUE; 110 mutex_exit(swp->sw_cv_lock); 111 } 112 113 void 114 rfs4_sw_exit(rfs4_state_wait_t *swp) 115 { 116 mutex_enter(swp->sw_cv_lock); 117 ASSERT(swp->sw_active == TRUE); 118 swp->sw_active = FALSE; 119 if (swp->sw_wait_count != 0) 120 cv_broadcast(swp->sw_cv); 121 mutex_exit(swp->sw_cv_lock); 122 } 123 124 /* 125 * CPR callback id -- not related to v4 callbacks 126 */ 127 static callb_id_t cpr_id = 0; 128 129 static void 130 deep_lock_copy(LOCK4res *dres, LOCK4res *sres) 131 { 132 lock_owner4 *slo = &sres->LOCK4res_u.denied.owner; 133 lock_owner4 *dlo = &dres->LOCK4res_u.denied.owner; 134 135 if (sres->status == NFS4ERR_DENIED) { 136 dlo->owner_val = kmem_alloc(slo->owner_len, KM_SLEEP); 137 bcopy(slo->owner_val, dlo->owner_val, slo->owner_len); 138 } 139 } 140 141 static void 142 deep_lock_free(LOCK4res *res) 143 { 144 lock_owner4 *lo = &res->LOCK4res_u.denied.owner; 145 146 if (res->status == NFS4ERR_DENIED) 147 kmem_free(lo->owner_val, lo->owner_len); 148 } 149 150 static void 151 deep_open_copy(OPEN4res *dres, OPEN4res *sres) 152 { 153 nfsace4 *sacep, *dacep; 154 155 if (sres->status != NFS4_OK) { 156 return; 157 } 158 159 dres->attrset = sres->attrset; 160 161 switch (sres->delegation.delegation_type) { 162 case OPEN_DELEGATE_NONE: 163 return; 164 case OPEN_DELEGATE_READ: 165 sacep = &sres->delegation.open_delegation4_u.read.permissions; 166 dacep = &dres->delegation.open_delegation4_u.read.permissions; 167 break; 168 case OPEN_DELEGATE_WRITE: 169 sacep = &sres->delegation.open_delegation4_u.write.permissions; 170 dacep = &dres->delegation.open_delegation4_u.write.permissions; 171 break; 172 } 173 dacep->who.utf8string_val = 174 kmem_alloc(sacep->who.utf8string_len, KM_SLEEP); 175 bcopy(sacep->who.utf8string_val, dacep->who.utf8string_val, 176 sacep->who.utf8string_len); 177 } 178 179 static void 180 deep_open_free(OPEN4res *res) 181 { 182 nfsace4 *acep; 183 if (res->status != NFS4_OK) 184 return; 185 186 switch (res->delegation.delegation_type) { 187 case OPEN_DELEGATE_NONE: 188 return; 189 case OPEN_DELEGATE_READ: 190 acep = &res->delegation.open_delegation4_u.read.permissions; 191 break; 192 case OPEN_DELEGATE_WRITE: 193 acep = &res->delegation.open_delegation4_u.write.permissions; 194 break; 195 } 196 197 if (acep->who.utf8string_val) { 198 kmem_free(acep->who.utf8string_val, acep->who.utf8string_len); 199 acep->who.utf8string_val = NULL; 200 } 201 } 202 203 void 204 rfs4_free_reply(nfs_resop4 *rp) 205 { 206 switch (rp->resop) { 207 case OP_LOCK: 208 deep_lock_free(&rp->nfs_resop4_u.oplock); 209 break; 210 case OP_OPEN: 211 deep_open_free(&rp->nfs_resop4_u.opopen); 212 default: 213 break; 214 } 215 } 216 217 void 218 rfs4_copy_reply(nfs_resop4 *dst, nfs_resop4 *src) 219 { 220 *dst = *src; 221 222 /* Handle responses that need deep copy */ 223 switch (src->resop) { 224 case OP_LOCK: 225 deep_lock_copy(&dst->nfs_resop4_u.oplock, 226 &src->nfs_resop4_u.oplock); 227 break; 228 case OP_OPEN: 229 deep_open_copy(&dst->nfs_resop4_u.opopen, 230 &src->nfs_resop4_u.opopen); 231 break; 232 default: 233 break; 234 }; 235 } 236 237 /* 238 * This is the implementation of the underlying state engine. The 239 * public interface to this engine is described by 240 * nfs4_state.h. Callers to the engine should hold no state engine 241 * locks when they call in to it. If the protocol needs to lock data 242 * structures it should do so after acquiring all references to them 243 * first and then follow the following lock order: 244 * 245 * client > openowner > state > lo_state > lockowner > file. 246 * 247 * Internally we only allow a thread to hold one hash bucket lock at a 248 * time and the lock is higher in the lock order (must be acquired 249 * first) than the data structure that is on that hash list. 250 * 251 * If a new reference was acquired by the caller, that reference needs 252 * to be released after releasing all acquired locks with the 253 * corresponding rfs4_*_rele routine. 254 */ 255 256 /* 257 * This code is some what prototypical for now. Its purpose currently is to 258 * implement the interfaces sufficiently to finish the higher protocol 259 * elements. This will be replaced by a dynamically resizeable tables 260 * backed by kmem_cache allocator. However synchronization is handled 261 * correctly (I hope) and will not change by much. The mutexes for 262 * the hash buckets that can be used to create new instances of data 263 * structures might be good candidates to evolve into reader writer 264 * locks. If it has to do a creation, it would be holding the 265 * mutex across a kmem_alloc with KM_SLEEP specified. 266 */ 267 268 #ifdef DEBUG 269 #define TABSIZE 17 270 #else 271 #define TABSIZE 2047 272 #endif 273 274 #define ADDRHASH(key) ((unsigned long)(key) >> 3) 275 276 /* Used to serialize create/destroy of rfs4_server_state database */ 277 kmutex_t rfs4_state_lock; 278 static rfs4_database_t *rfs4_server_state = NULL; 279 280 /* Used to serialize lookups of clientids */ 281 static krwlock_t rfs4_findclient_lock; 282 283 /* 284 * For now this "table" is exposed so that the CPR callback 285 * function can tromp through it.. 286 */ 287 rfs4_table_t *rfs4_client_tab; 288 289 static rfs4_index_t *rfs4_clientid_idx; 290 static rfs4_index_t *rfs4_nfsclnt_idx; 291 static rfs4_table_t *rfs4_clntip_tab; 292 static rfs4_index_t *rfs4_clntip_idx; 293 static rfs4_table_t *rfs4_openowner_tab; 294 static rfs4_index_t *rfs4_openowner_idx; 295 static rfs4_table_t *rfs4_state_tab; 296 static rfs4_index_t *rfs4_state_idx; 297 static rfs4_index_t *rfs4_state_owner_file_idx; 298 static rfs4_index_t *rfs4_state_file_idx; 299 static rfs4_table_t *rfs4_lo_state_tab; 300 static rfs4_index_t *rfs4_lo_state_idx; 301 static rfs4_index_t *rfs4_lo_state_owner_idx; 302 static rfs4_table_t *rfs4_lockowner_tab; 303 static rfs4_index_t *rfs4_lockowner_idx; 304 static rfs4_index_t *rfs4_lockowner_pid_idx; 305 static rfs4_table_t *rfs4_file_tab; 306 static rfs4_index_t *rfs4_file_idx; 307 static rfs4_table_t *rfs4_deleg_state_tab; 308 static rfs4_index_t *rfs4_deleg_idx; 309 static rfs4_index_t *rfs4_deleg_state_idx; 310 311 #define MAXTABSZ 1024*1024 312 313 /* The values below are rfs4_lease_time units */ 314 315 #ifdef DEBUG 316 #define CLIENT_CACHE_TIME 1 317 #define OPENOWNER_CACHE_TIME 1 318 #define STATE_CACHE_TIME 1 319 #define LO_STATE_CACHE_TIME 1 320 #define LOCKOWNER_CACHE_TIME 1 321 #define FILE_CACHE_TIME 3 322 #define DELEG_STATE_CACHE_TIME 1 323 #else 324 #define CLIENT_CACHE_TIME 10 325 #define OPENOWNER_CACHE_TIME 5 326 #define STATE_CACHE_TIME 1 327 #define LO_STATE_CACHE_TIME 1 328 #define LOCKOWNER_CACHE_TIME 3 329 #define FILE_CACHE_TIME 40 330 #define DELEG_STATE_CACHE_TIME 1 331 #endif 332 333 334 static time_t rfs4_client_cache_time = 0; 335 static time_t rfs4_clntip_cache_time = 0; 336 static time_t rfs4_openowner_cache_time = 0; 337 static time_t rfs4_state_cache_time = 0; 338 static time_t rfs4_lo_state_cache_time = 0; 339 static time_t rfs4_lockowner_cache_time = 0; 340 static time_t rfs4_file_cache_time = 0; 341 static time_t rfs4_deleg_state_cache_time = 0; 342 343 static bool_t rfs4_client_create(rfs4_entry_t, void *); 344 static void rfs4_dss_remove_cpleaf(rfs4_client_t *); 345 static void rfs4_dss_remove_leaf(rfs4_servinst_t *, char *, char *); 346 static void rfs4_client_destroy(rfs4_entry_t); 347 static bool_t rfs4_client_expiry(rfs4_entry_t); 348 static uint32_t clientid_hash(void *); 349 static bool_t clientid_compare(rfs4_entry_t, void *); 350 static void *clientid_mkkey(rfs4_entry_t); 351 static uint32_t nfsclnt_hash(void *); 352 static bool_t nfsclnt_compare(rfs4_entry_t, void *); 353 static void *nfsclnt_mkkey(rfs4_entry_t); 354 static bool_t rfs4_clntip_expiry(rfs4_entry_t); 355 static void rfs4_clntip_destroy(rfs4_entry_t); 356 static bool_t rfs4_clntip_create(rfs4_entry_t, void *); 357 static uint32_t clntip_hash(void *); 358 static bool_t clntip_compare(rfs4_entry_t, void *); 359 static void *clntip_mkkey(rfs4_entry_t); 360 static bool_t rfs4_openowner_create(rfs4_entry_t, void *); 361 static void rfs4_openowner_destroy(rfs4_entry_t); 362 static bool_t rfs4_openowner_expiry(rfs4_entry_t); 363 static uint32_t openowner_hash(void *); 364 static bool_t openowner_compare(rfs4_entry_t, void *); 365 static void *openowner_mkkey(rfs4_entry_t); 366 static bool_t rfs4_state_create(rfs4_entry_t, void *); 367 static void rfs4_state_destroy(rfs4_entry_t); 368 static bool_t rfs4_state_expiry(rfs4_entry_t); 369 static uint32_t state_hash(void *); 370 static bool_t state_compare(rfs4_entry_t, void *); 371 static void *state_mkkey(rfs4_entry_t); 372 static uint32_t state_owner_file_hash(void *); 373 static bool_t state_owner_file_compare(rfs4_entry_t, void *); 374 static void *state_owner_file_mkkey(rfs4_entry_t); 375 static uint32_t state_file_hash(void *); 376 static bool_t state_file_compare(rfs4_entry_t, void *); 377 static void *state_file_mkkey(rfs4_entry_t); 378 static bool_t rfs4_lo_state_create(rfs4_entry_t, void *); 379 static void rfs4_lo_state_destroy(rfs4_entry_t); 380 static bool_t rfs4_lo_state_expiry(rfs4_entry_t); 381 static uint32_t lo_state_hash(void *); 382 static bool_t lo_state_compare(rfs4_entry_t, void *); 383 static void *lo_state_mkkey(rfs4_entry_t); 384 static uint32_t lo_state_lo_hash(void *); 385 static bool_t lo_state_lo_compare(rfs4_entry_t, void *); 386 static void *lo_state_lo_mkkey(rfs4_entry_t); 387 static bool_t rfs4_lockowner_create(rfs4_entry_t, void *); 388 static void rfs4_lockowner_destroy(rfs4_entry_t); 389 static bool_t rfs4_lockowner_expiry(rfs4_entry_t); 390 static uint32_t lockowner_hash(void *); 391 static bool_t lockowner_compare(rfs4_entry_t, void *); 392 static void *lockowner_mkkey(rfs4_entry_t); 393 static uint32_t pid_hash(void *); 394 static bool_t pid_compare(rfs4_entry_t, void *); 395 static void *pid_mkkey(rfs4_entry_t); 396 static bool_t rfs4_file_create(rfs4_entry_t, void *); 397 static void rfs4_file_destroy(rfs4_entry_t); 398 static uint32_t file_hash(void *); 399 static bool_t file_compare(rfs4_entry_t, void *); 400 static void *file_mkkey(rfs4_entry_t); 401 static bool_t rfs4_deleg_state_create(rfs4_entry_t, void *); 402 static void rfs4_deleg_state_destroy(rfs4_entry_t); 403 static bool_t rfs4_deleg_state_expiry(rfs4_entry_t); 404 static uint32_t deleg_hash(void *); 405 static bool_t deleg_compare(rfs4_entry_t, void *); 406 static void *deleg_mkkey(rfs4_entry_t); 407 static uint32_t deleg_state_hash(void *); 408 static bool_t deleg_state_compare(rfs4_entry_t, void *); 409 static void *deleg_state_mkkey(rfs4_entry_t); 410 411 static void rfs4_state_rele_nounlock(rfs4_state_t *); 412 413 static int rfs4_ss_enabled = 0; 414 415 extern void (*rfs4_client_clrst)(struct nfs4clrst_args *); 416 417 void 418 rfs4_ss_pnfree(rfs4_ss_pn_t *ss_pn) 419 { 420 kmem_free(ss_pn, sizeof (rfs4_ss_pn_t)); 421 } 422 423 static rfs4_ss_pn_t * 424 rfs4_ss_pnalloc(char *dir, char *leaf) 425 { 426 rfs4_ss_pn_t *ss_pn; 427 int dir_len, leaf_len; 428 429 /* 430 * validate we have a resonable path 431 * (account for the '/' and trailing null) 432 */ 433 if ((dir_len = strlen(dir)) > MAXPATHLEN || 434 (leaf_len = strlen(leaf)) > MAXNAMELEN || 435 (dir_len + leaf_len + 2) > MAXPATHLEN) { 436 return (NULL); 437 } 438 439 ss_pn = kmem_alloc(sizeof (rfs4_ss_pn_t), KM_SLEEP); 440 441 (void) snprintf(ss_pn->pn, MAXPATHLEN, "%s/%s", dir, leaf); 442 /* Handy pointer to just the leaf name */ 443 ss_pn->leaf = ss_pn->pn + dir_len + 1; 444 return (ss_pn); 445 } 446 447 448 /* 449 * Move the "leaf" filename from "sdir" directory 450 * to the "ddir" directory. Return the pathname of 451 * the destination unless the rename fails in which 452 * case we need to return the source pathname. 453 */ 454 static rfs4_ss_pn_t * 455 rfs4_ss_movestate(char *sdir, char *ddir, char *leaf) 456 { 457 rfs4_ss_pn_t *src, *dst; 458 459 if ((src = rfs4_ss_pnalloc(sdir, leaf)) == NULL) 460 return (NULL); 461 462 if ((dst = rfs4_ss_pnalloc(ddir, leaf)) == NULL) { 463 rfs4_ss_pnfree(src); 464 return (NULL); 465 } 466 467 /* 468 * If the rename fails we shall return the src 469 * pathname and free the dst. Otherwise we need 470 * to free the src and return the dst pathanme. 471 */ 472 if (vn_rename(src->pn, dst->pn, UIO_SYSSPACE)) { 473 rfs4_ss_pnfree(dst); 474 return (src); 475 } 476 rfs4_ss_pnfree(src); 477 return (dst); 478 } 479 480 481 static rfs4_oldstate_t * 482 rfs4_ss_getstate(vnode_t *dvp, rfs4_ss_pn_t *ss_pn) 483 { 484 struct uio uio; 485 struct iovec iov[3]; 486 487 rfs4_oldstate_t *cl_ss = NULL; 488 vnode_t *vp; 489 vattr_t va; 490 uint_t id_len; 491 int err, kill_file, file_vers; 492 493 if (ss_pn == NULL) 494 return (NULL); 495 496 /* 497 * open the state file. 498 */ 499 if (vn_open(ss_pn->pn, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0) != 0) { 500 return (NULL); 501 } 502 503 if (vp->v_type != VREG) { 504 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 505 VN_RELE(vp); 506 return (NULL); 507 } 508 509 err = VOP_ACCESS(vp, VREAD, 0, CRED(), NULL); 510 if (err) { 511 /* 512 * We don't have read access? better get the heck out. 513 */ 514 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 515 VN_RELE(vp); 516 return (NULL); 517 } 518 519 (void) VOP_RWLOCK(vp, V_WRITELOCK_FALSE, NULL); 520 /* 521 * get the file size to do some basic validation 522 */ 523 va.va_mask = AT_SIZE; 524 err = VOP_GETATTR(vp, &va, 0, CRED(), NULL); 525 526 kill_file = (va.va_size == 0 || va.va_size < 527 (NFS4_VERIFIER_SIZE + sizeof (uint_t)+1)); 528 529 if (err || kill_file) { 530 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 531 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 532 VN_RELE(vp); 533 if (kill_file) { 534 (void) VOP_REMOVE(dvp, ss_pn->leaf, CRED(), NULL, 0); 535 } 536 return (NULL); 537 } 538 539 cl_ss = kmem_alloc(sizeof (rfs4_oldstate_t), KM_SLEEP); 540 541 /* 542 * build iovecs to read in the file_version, verifier and id_len 543 */ 544 iov[0].iov_base = (caddr_t)&file_vers; 545 iov[0].iov_len = sizeof (int); 546 iov[1].iov_base = (caddr_t)&cl_ss->cl_id4.verifier; 547 iov[1].iov_len = NFS4_VERIFIER_SIZE; 548 iov[2].iov_base = (caddr_t)&id_len; 549 iov[2].iov_len = sizeof (uint_t); 550 551 uio.uio_iov = iov; 552 uio.uio_iovcnt = 3; 553 uio.uio_segflg = UIO_SYSSPACE; 554 uio.uio_loffset = 0; 555 uio.uio_resid = sizeof (int) + NFS4_VERIFIER_SIZE + sizeof (uint_t); 556 557 if (err = VOP_READ(vp, &uio, FREAD, CRED(), NULL)) { 558 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 559 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 560 VN_RELE(vp); 561 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 562 return (NULL); 563 } 564 565 /* 566 * if the file_version doesn't match or if the 567 * id_len is zero or the combination of the verifier, 568 * id_len and id_val is bigger than the file we have 569 * a problem. If so ditch the file. 570 */ 571 kill_file = (file_vers != NFS4_SS_VERSION || id_len == 0 || 572 (id_len + NFS4_VERIFIER_SIZE + sizeof (uint_t)) > va.va_size); 573 574 if (err || kill_file) { 575 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 576 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 577 VN_RELE(vp); 578 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 579 if (kill_file) { 580 (void) VOP_REMOVE(dvp, ss_pn->leaf, CRED(), NULL, 0); 581 } 582 return (NULL); 583 } 584 585 /* 586 * now get the client id value 587 */ 588 cl_ss->cl_id4.id_val = kmem_alloc(id_len, KM_SLEEP); 589 iov[0].iov_base = cl_ss->cl_id4.id_val; 590 iov[0].iov_len = id_len; 591 592 uio.uio_iov = iov; 593 uio.uio_iovcnt = 1; 594 uio.uio_segflg = UIO_SYSSPACE; 595 uio.uio_resid = cl_ss->cl_id4.id_len = id_len; 596 597 if (err = VOP_READ(vp, &uio, FREAD, CRED(), NULL)) { 598 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 599 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 600 VN_RELE(vp); 601 kmem_free(cl_ss->cl_id4.id_val, id_len); 602 kmem_free(cl_ss, sizeof (rfs4_oldstate_t)); 603 return (NULL); 604 } 605 606 VOP_RWUNLOCK(vp, V_WRITELOCK_FALSE, NULL); 607 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED(), NULL); 608 VN_RELE(vp); 609 return (cl_ss); 610 } 611 612 #ifdef nextdp 613 #undef nextdp 614 #endif 615 #define nextdp(dp) ((struct dirent64 *)((char *)(dp) + (dp)->d_reclen)) 616 617 /* 618 * Add entries from statedir to supplied oldstate list. 619 * Optionally, move all entries from statedir -> destdir. 620 */ 621 void 622 rfs4_ss_oldstate(rfs4_oldstate_t *oldstate, char *statedir, char *destdir) 623 { 624 rfs4_ss_pn_t *ss_pn; 625 rfs4_oldstate_t *cl_ss = NULL; 626 char *dirt = NULL; 627 int err, dir_eof = 0, size = 0; 628 vnode_t *dvp; 629 struct iovec iov; 630 struct uio uio; 631 struct dirent64 *dep; 632 offset_t dirchunk_offset = 0; 633 634 /* 635 * open the state directory 636 */ 637 if (vn_open(statedir, UIO_SYSSPACE, FREAD, 0, &dvp, 0, 0)) 638 return; 639 640 if (dvp->v_type != VDIR || VOP_ACCESS(dvp, VREAD, 0, CRED(), NULL)) 641 goto out; 642 643 dirt = kmem_alloc(RFS4_SS_DIRSIZE, KM_SLEEP); 644 645 /* 646 * Get and process the directory entries 647 */ 648 while (!dir_eof) { 649 (void) VOP_RWLOCK(dvp, V_WRITELOCK_FALSE, NULL); 650 iov.iov_base = dirt; 651 iov.iov_len = RFS4_SS_DIRSIZE; 652 uio.uio_iov = &iov; 653 uio.uio_iovcnt = 1; 654 uio.uio_segflg = UIO_SYSSPACE; 655 uio.uio_loffset = dirchunk_offset; 656 uio.uio_resid = RFS4_SS_DIRSIZE; 657 658 err = VOP_READDIR(dvp, &uio, CRED(), &dir_eof, NULL, 0); 659 VOP_RWUNLOCK(dvp, V_WRITELOCK_FALSE, NULL); 660 if (err) 661 goto out; 662 663 size = RFS4_SS_DIRSIZE - uio.uio_resid; 664 665 /* 666 * Process all the directory entries in this 667 * readdir chunk 668 */ 669 for (dep = (struct dirent64 *)dirt; size > 0; 670 dep = nextdp(dep)) { 671 672 size -= dep->d_reclen; 673 dirchunk_offset = dep->d_off; 674 675 /* 676 * Skip '.' and '..' 677 */ 678 if (NFS_IS_DOTNAME(dep->d_name)) 679 continue; 680 681 ss_pn = rfs4_ss_pnalloc(statedir, dep->d_name); 682 if (ss_pn == NULL) 683 continue; 684 685 if (cl_ss = rfs4_ss_getstate(dvp, ss_pn)) { 686 if (destdir != NULL) { 687 rfs4_ss_pnfree(ss_pn); 688 cl_ss->ss_pn = rfs4_ss_movestate( 689 statedir, destdir, dep->d_name); 690 } else { 691 cl_ss->ss_pn = ss_pn; 692 } 693 insque(cl_ss, oldstate); 694 } else { 695 rfs4_ss_pnfree(ss_pn); 696 } 697 } 698 } 699 700 out: 701 (void) VOP_CLOSE(dvp, FREAD, 1, (offset_t)0, CRED(), NULL); 702 VN_RELE(dvp); 703 if (dirt) 704 kmem_free((caddr_t)dirt, RFS4_SS_DIRSIZE); 705 } 706 707 static void 708 rfs4_ss_init(void) 709 { 710 int npaths = 1; 711 char *default_dss_path = NFS4_DSS_VAR_DIR; 712 713 /* read the default stable storage state */ 714 rfs4_dss_readstate(npaths, &default_dss_path); 715 716 rfs4_ss_enabled = 1; 717 } 718 719 static void 720 rfs4_ss_fini(void) 721 { 722 rfs4_servinst_t *sip; 723 724 mutex_enter(&rfs4_servinst_lock); 725 sip = rfs4_cur_servinst; 726 while (sip != NULL) { 727 rfs4_dss_clear_oldstate(sip); 728 sip = sip->next; 729 } 730 mutex_exit(&rfs4_servinst_lock); 731 } 732 733 /* 734 * Remove all oldstate files referenced by this servinst. 735 */ 736 static void 737 rfs4_dss_clear_oldstate(rfs4_servinst_t *sip) 738 { 739 rfs4_oldstate_t *os_head, *osp; 740 741 rw_enter(&sip->oldstate_lock, RW_WRITER); 742 os_head = sip->oldstate; 743 744 if (os_head == NULL) { 745 rw_exit(&sip->oldstate_lock); 746 return; 747 } 748 749 /* skip dummy entry */ 750 osp = os_head->next; 751 while (osp != os_head) { 752 char *leaf = osp->ss_pn->leaf; 753 rfs4_oldstate_t *os_next; 754 755 rfs4_dss_remove_leaf(sip, NFS4_DSS_OLDSTATE_LEAF, leaf); 756 757 if (osp->cl_id4.id_val) 758 kmem_free(osp->cl_id4.id_val, osp->cl_id4.id_len); 759 rfs4_ss_pnfree(osp->ss_pn); 760 761 os_next = osp->next; 762 remque(osp); 763 kmem_free(osp, sizeof (rfs4_oldstate_t)); 764 osp = os_next; 765 } 766 767 rw_exit(&sip->oldstate_lock); 768 } 769 770 /* 771 * Form the state and oldstate paths, and read in the stable storage files. 772 */ 773 void 774 rfs4_dss_readstate(int npaths, char **paths) 775 { 776 int i; 777 char *state, *oldstate; 778 779 state = kmem_alloc(MAXPATHLEN, KM_SLEEP); 780 oldstate = kmem_alloc(MAXPATHLEN, KM_SLEEP); 781 782 for (i = 0; i < npaths; i++) { 783 char *path = paths[i]; 784 785 (void) sprintf(state, "%s/%s", path, NFS4_DSS_STATE_LEAF); 786 (void) sprintf(oldstate, "%s/%s", path, NFS4_DSS_OLDSTATE_LEAF); 787 788 /* 789 * Populate the current server instance's oldstate list. 790 * 791 * 1. Read stable storage data from old state directory, 792 * leaving its contents alone. 793 * 794 * 2. Read stable storage data from state directory, 795 * and move the latter's contents to old state 796 * directory. 797 */ 798 rfs4_ss_oldstate(rfs4_cur_servinst->oldstate, oldstate, NULL); 799 rfs4_ss_oldstate(rfs4_cur_servinst->oldstate, state, oldstate); 800 } 801 802 kmem_free(state, MAXPATHLEN); 803 kmem_free(oldstate, MAXPATHLEN); 804 } 805 806 807 /* 808 * Check if we are still in grace and if the client can be 809 * granted permission to perform reclaims. 810 */ 811 void 812 rfs4_ss_chkclid(rfs4_client_t *cp) 813 { 814 rfs4_servinst_t *sip; 815 816 /* 817 * It should be sufficient to check the oldstate data for just 818 * this client's instance. However, since our per-instance 819 * client grouping is solely temporal, HA-NFSv4 RG failover 820 * might result in clients of the same RG being partitioned into 821 * separate instances. 822 * 823 * Until the client grouping is improved, we must check the 824 * oldstate data for all instances with an active grace period. 825 * 826 * This also serves as the mechanism to remove stale oldstate data. 827 * The first time we check an instance after its grace period has 828 * expired, the oldstate data should be cleared. 829 * 830 * Start at the current instance, and walk the list backwards 831 * to the first. 832 */ 833 mutex_enter(&rfs4_servinst_lock); 834 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 835 rfs4_ss_chkclid_sip(cp, sip); 836 837 /* if the above check found this client, we're done */ 838 if (cp->rc_can_reclaim) 839 break; 840 } 841 mutex_exit(&rfs4_servinst_lock); 842 } 843 844 static void 845 rfs4_ss_chkclid_sip(rfs4_client_t *cp, rfs4_servinst_t *sip) 846 { 847 rfs4_oldstate_t *osp, *os_head; 848 849 /* short circuit everything if this server instance has no oldstate */ 850 rw_enter(&sip->oldstate_lock, RW_READER); 851 os_head = sip->oldstate; 852 rw_exit(&sip->oldstate_lock); 853 if (os_head == NULL) 854 return; 855 856 /* 857 * If this server instance is no longer in a grace period then 858 * the client won't be able to reclaim. No further need for this 859 * instance's oldstate data, so it can be cleared. 860 */ 861 if (!rfs4_servinst_in_grace(sip)) 862 return; 863 864 /* this instance is still in grace; search for the clientid */ 865 866 rw_enter(&sip->oldstate_lock, RW_READER); 867 868 os_head = sip->oldstate; 869 /* skip dummy entry */ 870 osp = os_head->next; 871 while (osp != os_head) { 872 if (osp->cl_id4.id_len == cp->rc_nfs_client.id_len) { 873 if (bcmp(osp->cl_id4.id_val, cp->rc_nfs_client.id_val, 874 osp->cl_id4.id_len) == 0) { 875 cp->rc_can_reclaim = 1; 876 break; 877 } 878 } 879 osp = osp->next; 880 } 881 882 rw_exit(&sip->oldstate_lock); 883 } 884 885 /* 886 * Place client information into stable storage: 1/3. 887 * First, generate the leaf filename, from the client's IP address and 888 * the server-generated short-hand clientid. 889 */ 890 void 891 rfs4_ss_clid(rfs4_client_t *cp) 892 { 893 const char *kinet_ntop6(uchar_t *, char *, size_t); 894 char leaf[MAXNAMELEN], buf[INET6_ADDRSTRLEN]; 895 struct sockaddr *ca; 896 uchar_t *b; 897 898 if (rfs4_ss_enabled == 0) { 899 return; 900 } 901 902 buf[0] = 0; 903 904 ca = (struct sockaddr *)&cp->rc_addr; 905 906 /* 907 * Convert the caller's IP address to a dotted string 908 */ 909 if (ca->sa_family == AF_INET) { 910 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 911 (void) sprintf(buf, "%03d.%03d.%03d.%03d", b[0] & 0xFF, 912 b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 913 } else if (ca->sa_family == AF_INET6) { 914 struct sockaddr_in6 *sin6; 915 916 sin6 = (struct sockaddr_in6 *)ca; 917 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 918 buf, INET6_ADDRSTRLEN); 919 } 920 921 (void) snprintf(leaf, MAXNAMELEN, "%s-%llx", buf, 922 (longlong_t)cp->rc_clientid); 923 rfs4_ss_clid_write(cp, leaf); 924 } 925 926 /* 927 * Place client information into stable storage: 2/3. 928 * DSS: distributed stable storage: the file may need to be written to 929 * multiple directories. 930 */ 931 static void 932 rfs4_ss_clid_write(rfs4_client_t *cp, char *leaf) 933 { 934 rfs4_servinst_t *sip; 935 936 /* 937 * It should be sufficient to write the leaf file to (all) DSS paths 938 * associated with just this client's instance. However, since our 939 * per-instance client grouping is solely temporal, HA-NFSv4 RG 940 * failover might result in us losing DSS data. 941 * 942 * Until the client grouping is improved, we must write the DSS data 943 * to all instances' paths. Start at the current instance, and 944 * walk the list backwards to the first. 945 */ 946 mutex_enter(&rfs4_servinst_lock); 947 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 948 int i, npaths = sip->dss_npaths; 949 950 /* write the leaf file to all DSS paths */ 951 for (i = 0; i < npaths; i++) { 952 rfs4_dss_path_t *dss_path = sip->dss_paths[i]; 953 954 /* HA-NFSv4 path might have been failed-away from us */ 955 if (dss_path == NULL) 956 continue; 957 958 rfs4_ss_clid_write_one(cp, dss_path->path, leaf); 959 } 960 } 961 mutex_exit(&rfs4_servinst_lock); 962 } 963 964 /* 965 * Place client information into stable storage: 3/3. 966 * Write the stable storage data to the requested file. 967 */ 968 static void 969 rfs4_ss_clid_write_one(rfs4_client_t *cp, char *dss_path, char *leaf) 970 { 971 int ioflag; 972 int file_vers = NFS4_SS_VERSION; 973 size_t dirlen; 974 struct uio uio; 975 struct iovec iov[4]; 976 char *dir; 977 rfs4_ss_pn_t *ss_pn; 978 vnode_t *vp; 979 nfs_client_id4 *cl_id4 = &(cp->rc_nfs_client); 980 981 /* allow 2 extra bytes for '/' & NUL */ 982 dirlen = strlen(dss_path) + strlen(NFS4_DSS_STATE_LEAF) + 2; 983 dir = kmem_alloc(dirlen, KM_SLEEP); 984 (void) sprintf(dir, "%s/%s", dss_path, NFS4_DSS_STATE_LEAF); 985 986 ss_pn = rfs4_ss_pnalloc(dir, leaf); 987 /* rfs4_ss_pnalloc takes its own copy */ 988 kmem_free(dir, dirlen); 989 if (ss_pn == NULL) 990 return; 991 992 if (vn_open(ss_pn->pn, UIO_SYSSPACE, FCREAT|FWRITE, 0600, &vp, 993 CRCREAT, 0)) { 994 rfs4_ss_pnfree(ss_pn); 995 return; 996 } 997 998 /* 999 * We need to record leaf - i.e. the filename - so that we know 1000 * what to remove, in the future. However, the dir part of cp->ss_pn 1001 * should never be referenced directly, since it's potentially only 1002 * one of several paths with this leaf in it. 1003 */ 1004 if (cp->rc_ss_pn != NULL) { 1005 if (strcmp(cp->rc_ss_pn->leaf, leaf) == 0) { 1006 /* we've already recorded *this* leaf */ 1007 rfs4_ss_pnfree(ss_pn); 1008 } else { 1009 /* replace with this leaf */ 1010 rfs4_ss_pnfree(cp->rc_ss_pn); 1011 cp->rc_ss_pn = ss_pn; 1012 } 1013 } else { 1014 cp->rc_ss_pn = ss_pn; 1015 } 1016 1017 /* 1018 * Build a scatter list that points to the nfs_client_id4 1019 */ 1020 iov[0].iov_base = (caddr_t)&file_vers; 1021 iov[0].iov_len = sizeof (int); 1022 iov[1].iov_base = (caddr_t)&(cl_id4->verifier); 1023 iov[1].iov_len = NFS4_VERIFIER_SIZE; 1024 iov[2].iov_base = (caddr_t)&(cl_id4->id_len); 1025 iov[2].iov_len = sizeof (uint_t); 1026 iov[3].iov_base = (caddr_t)cl_id4->id_val; 1027 iov[3].iov_len = cl_id4->id_len; 1028 1029 uio.uio_iov = iov; 1030 uio.uio_iovcnt = 4; 1031 uio.uio_loffset = 0; 1032 uio.uio_segflg = UIO_SYSSPACE; 1033 uio.uio_llimit = (rlim64_t)MAXOFFSET_T; 1034 uio.uio_resid = cl_id4->id_len + sizeof (int) + 1035 NFS4_VERIFIER_SIZE + sizeof (uint_t); 1036 1037 ioflag = uio.uio_fmode = (FWRITE|FSYNC); 1038 uio.uio_extflg = UIO_COPY_DEFAULT; 1039 1040 (void) VOP_RWLOCK(vp, V_WRITELOCK_TRUE, NULL); 1041 /* write the full client id to the file. */ 1042 (void) VOP_WRITE(vp, &uio, ioflag, CRED(), NULL); 1043 VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL); 1044 1045 (void) VOP_CLOSE(vp, FWRITE, 1, (offset_t)0, CRED(), NULL); 1046 VN_RELE(vp); 1047 } 1048 1049 /* 1050 * DSS: distributed stable storage. 1051 * Unpack the list of paths passed by nfsd. 1052 * Use nvlist_alloc(9F) to manage the data. 1053 * The caller is responsible for allocating and freeing the buffer. 1054 */ 1055 int 1056 rfs4_dss_setpaths(char *buf, size_t buflen) 1057 { 1058 int error; 1059 1060 /* 1061 * If this is a "warm start", i.e. we previously had DSS paths, 1062 * preserve the old paths. 1063 */ 1064 if (rfs4_dss_paths != NULL) { 1065 /* 1066 * Before we lose the ptr, destroy the nvlist and pathnames 1067 * array from the warm start before this one. 1068 */ 1069 nvlist_free(rfs4_dss_oldpaths); 1070 rfs4_dss_oldpaths = rfs4_dss_paths; 1071 } 1072 1073 /* unpack the buffer into a searchable nvlist */ 1074 error = nvlist_unpack(buf, buflen, &rfs4_dss_paths, KM_SLEEP); 1075 if (error) 1076 return (error); 1077 1078 /* 1079 * Search the nvlist for the pathnames nvpair (which is the only nvpair 1080 * in the list, and record its location. 1081 */ 1082 error = nvlist_lookup_string_array(rfs4_dss_paths, NFS4_DSS_NVPAIR_NAME, 1083 &rfs4_dss_newpaths, &rfs4_dss_numnewpaths); 1084 return (error); 1085 } 1086 1087 /* 1088 * Ultimately the nfssys() call NFS4_CLR_STATE endsup here 1089 * to find and mark the client for forced expire. 1090 */ 1091 static void 1092 rfs4_client_scrub(rfs4_entry_t ent, void *arg) 1093 { 1094 rfs4_client_t *cp = (rfs4_client_t *)ent; 1095 struct nfs4clrst_args *clr = arg; 1096 struct sockaddr_in6 *ent_sin6; 1097 struct in6_addr clr_in6; 1098 struct sockaddr_in *ent_sin; 1099 struct in_addr clr_in; 1100 1101 if (clr->addr_type != cp->rc_addr.ss_family) { 1102 return; 1103 } 1104 1105 switch (clr->addr_type) { 1106 1107 case AF_INET6: 1108 /* copyin the address from user space */ 1109 if (copyin(clr->ap, &clr_in6, sizeof (clr_in6))) { 1110 break; 1111 } 1112 1113 ent_sin6 = (struct sockaddr_in6 *)&cp->rc_addr; 1114 1115 /* 1116 * now compare, and if equivalent mark entry 1117 * for forced expiration 1118 */ 1119 if (IN6_ARE_ADDR_EQUAL(&ent_sin6->sin6_addr, &clr_in6)) { 1120 cp->rc_forced_expire = 1; 1121 } 1122 break; 1123 1124 case AF_INET: 1125 /* copyin the address from user space */ 1126 if (copyin(clr->ap, &clr_in, sizeof (clr_in))) { 1127 break; 1128 } 1129 1130 ent_sin = (struct sockaddr_in *)&cp->rc_addr; 1131 1132 /* 1133 * now compare, and if equivalent mark entry 1134 * for forced expiration 1135 */ 1136 if (ent_sin->sin_addr.s_addr == clr_in.s_addr) { 1137 cp->rc_forced_expire = 1; 1138 } 1139 break; 1140 1141 default: 1142 /* force this assert to fail */ 1143 ASSERT(clr->addr_type != clr->addr_type); 1144 } 1145 } 1146 1147 /* 1148 * This is called from nfssys() in order to clear server state 1149 * for the specified client IP Address. 1150 */ 1151 void 1152 rfs4_clear_client_state(struct nfs4clrst_args *clr) 1153 { 1154 (void) rfs4_dbe_walk(rfs4_client_tab, rfs4_client_scrub, clr); 1155 } 1156 1157 /* 1158 * Used to initialize the NFSv4 server's state or database. All of 1159 * the tables are created and timers are set. Only called when NFSv4 1160 * service is provided. 1161 */ 1162 void 1163 rfs4_state_init() 1164 { 1165 int start_grace; 1166 extern boolean_t rfs4_cpr_callb(void *, int); 1167 char *dss_path = NFS4_DSS_VAR_DIR; 1168 time_t start_time; 1169 1170 mutex_enter(&rfs4_state_lock); 1171 1172 /* 1173 * If the server state database has already been initialized, 1174 * skip it 1175 */ 1176 if (rfs4_server_state != NULL) { 1177 mutex_exit(&rfs4_state_lock); 1178 return; 1179 } 1180 1181 rw_init(&rfs4_findclient_lock, NULL, RW_DEFAULT, NULL); 1182 1183 /* 1184 * Set the boot time. If the server 1185 * has been restarted quickly and has had the opportunity to 1186 * service clients, then the start_time needs to be bumped 1187 * regardless. A small window but it exists... 1188 */ 1189 start_time = gethrestime_sec(); 1190 if (rfs4_start_time < start_time) 1191 rfs4_start_time = start_time; 1192 else 1193 rfs4_start_time++; 1194 1195 /* DSS: distributed stable storage: initialise served paths list */ 1196 rfs4_dss_pathlist = NULL; 1197 1198 /* 1199 * Create the first server instance, or a new one if the server has 1200 * been restarted; see above comments on rfs4_start_time. Don't 1201 * start its grace period; that will be done later, to maximise the 1202 * clients' recovery window. 1203 */ 1204 start_grace = 0; 1205 rfs4_servinst_create(start_grace, 1, &dss_path); 1206 1207 /* reset the "first NFSv4 request" status */ 1208 rfs4_seen_first_compound = 0; 1209 1210 /* 1211 * Add a CPR callback so that we can update client 1212 * access times to extend the lease after a suspend 1213 * and resume (using the same class as rpcmod/connmgr) 1214 */ 1215 cpr_id = callb_add(rfs4_cpr_callb, 0, CB_CL_CPR_RPC, "rfs4"); 1216 1217 /* set the various cache timers for table creation */ 1218 if (rfs4_client_cache_time == 0) 1219 rfs4_client_cache_time = CLIENT_CACHE_TIME; 1220 if (rfs4_openowner_cache_time == 0) 1221 rfs4_openowner_cache_time = OPENOWNER_CACHE_TIME; 1222 if (rfs4_state_cache_time == 0) 1223 rfs4_state_cache_time = STATE_CACHE_TIME; 1224 if (rfs4_lo_state_cache_time == 0) 1225 rfs4_lo_state_cache_time = LO_STATE_CACHE_TIME; 1226 if (rfs4_lockowner_cache_time == 0) 1227 rfs4_lockowner_cache_time = LOCKOWNER_CACHE_TIME; 1228 if (rfs4_file_cache_time == 0) 1229 rfs4_file_cache_time = FILE_CACHE_TIME; 1230 if (rfs4_deleg_state_cache_time == 0) 1231 rfs4_deleg_state_cache_time = DELEG_STATE_CACHE_TIME; 1232 1233 /* Create the overall database to hold all server state */ 1234 rfs4_server_state = rfs4_database_create(rfs4_database_debug); 1235 1236 /* Now create the individual tables */ 1237 rfs4_client_cache_time *= rfs4_lease_time; 1238 rfs4_client_tab = rfs4_table_create(rfs4_server_state, 1239 "Client", 1240 rfs4_client_cache_time, 1241 2, 1242 rfs4_client_create, 1243 rfs4_client_destroy, 1244 rfs4_client_expiry, 1245 sizeof (rfs4_client_t), 1246 TABSIZE, 1247 MAXTABSZ/8, 100); 1248 rfs4_nfsclnt_idx = rfs4_index_create(rfs4_client_tab, 1249 "nfs_client_id4", nfsclnt_hash, 1250 nfsclnt_compare, nfsclnt_mkkey, 1251 TRUE); 1252 rfs4_clientid_idx = rfs4_index_create(rfs4_client_tab, 1253 "client_id", clientid_hash, 1254 clientid_compare, clientid_mkkey, 1255 FALSE); 1256 1257 rfs4_clntip_cache_time = 86400 * 365; /* about a year */ 1258 rfs4_clntip_tab = rfs4_table_create(rfs4_server_state, 1259 "ClntIP", 1260 rfs4_clntip_cache_time, 1261 1, 1262 rfs4_clntip_create, 1263 rfs4_clntip_destroy, 1264 rfs4_clntip_expiry, 1265 sizeof (rfs4_clntip_t), 1266 TABSIZE, 1267 MAXTABSZ, 100); 1268 rfs4_clntip_idx = rfs4_index_create(rfs4_clntip_tab, 1269 "client_ip", clntip_hash, 1270 clntip_compare, clntip_mkkey, 1271 TRUE); 1272 1273 rfs4_openowner_cache_time *= rfs4_lease_time; 1274 rfs4_openowner_tab = rfs4_table_create(rfs4_server_state, 1275 "OpenOwner", 1276 rfs4_openowner_cache_time, 1277 1, 1278 rfs4_openowner_create, 1279 rfs4_openowner_destroy, 1280 rfs4_openowner_expiry, 1281 sizeof (rfs4_openowner_t), 1282 TABSIZE, 1283 MAXTABSZ, 100); 1284 rfs4_openowner_idx = rfs4_index_create(rfs4_openowner_tab, 1285 "open_owner4", openowner_hash, 1286 openowner_compare, 1287 openowner_mkkey, TRUE); 1288 1289 rfs4_state_cache_time *= rfs4_lease_time; 1290 rfs4_state_tab = rfs4_table_create(rfs4_server_state, 1291 "OpenStateID", 1292 rfs4_state_cache_time, 1293 3, 1294 rfs4_state_create, 1295 rfs4_state_destroy, 1296 rfs4_state_expiry, 1297 sizeof (rfs4_state_t), 1298 TABSIZE, 1299 MAXTABSZ, 100); 1300 1301 rfs4_state_owner_file_idx = rfs4_index_create(rfs4_state_tab, 1302 "Openowner-File", 1303 state_owner_file_hash, 1304 state_owner_file_compare, 1305 state_owner_file_mkkey, TRUE); 1306 1307 rfs4_state_idx = rfs4_index_create(rfs4_state_tab, 1308 "State-id", state_hash, 1309 state_compare, state_mkkey, FALSE); 1310 1311 rfs4_state_file_idx = rfs4_index_create(rfs4_state_tab, 1312 "File", state_file_hash, 1313 state_file_compare, state_file_mkkey, 1314 FALSE); 1315 1316 rfs4_lo_state_cache_time *= rfs4_lease_time; 1317 rfs4_lo_state_tab = rfs4_table_create(rfs4_server_state, 1318 "LockStateID", 1319 rfs4_lo_state_cache_time, 1320 2, 1321 rfs4_lo_state_create, 1322 rfs4_lo_state_destroy, 1323 rfs4_lo_state_expiry, 1324 sizeof (rfs4_lo_state_t), 1325 TABSIZE, 1326 MAXTABSZ, 100); 1327 1328 rfs4_lo_state_owner_idx = rfs4_index_create(rfs4_lo_state_tab, 1329 "lockownerxstate", 1330 lo_state_lo_hash, 1331 lo_state_lo_compare, 1332 lo_state_lo_mkkey, TRUE); 1333 1334 rfs4_lo_state_idx = rfs4_index_create(rfs4_lo_state_tab, 1335 "State-id", 1336 lo_state_hash, lo_state_compare, 1337 lo_state_mkkey, FALSE); 1338 1339 rfs4_lockowner_cache_time *= rfs4_lease_time; 1340 1341 rfs4_lockowner_tab = rfs4_table_create(rfs4_server_state, 1342 "Lockowner", 1343 rfs4_lockowner_cache_time, 1344 2, 1345 rfs4_lockowner_create, 1346 rfs4_lockowner_destroy, 1347 rfs4_lockowner_expiry, 1348 sizeof (rfs4_lockowner_t), 1349 TABSIZE, 1350 MAXTABSZ, 100); 1351 1352 rfs4_lockowner_idx = rfs4_index_create(rfs4_lockowner_tab, 1353 "lock_owner4", lockowner_hash, 1354 lockowner_compare, 1355 lockowner_mkkey, TRUE); 1356 1357 rfs4_lockowner_pid_idx = rfs4_index_create(rfs4_lockowner_tab, 1358 "pid", pid_hash, 1359 pid_compare, pid_mkkey, 1360 FALSE); 1361 1362 rfs4_file_cache_time *= rfs4_lease_time; 1363 rfs4_file_tab = rfs4_table_create(rfs4_server_state, 1364 "File", 1365 rfs4_file_cache_time, 1366 1, 1367 rfs4_file_create, 1368 rfs4_file_destroy, 1369 NULL, 1370 sizeof (rfs4_file_t), 1371 TABSIZE, 1372 MAXTABSZ, -1); 1373 1374 rfs4_file_idx = rfs4_index_create(rfs4_file_tab, 1375 "Filehandle", file_hash, 1376 file_compare, file_mkkey, TRUE); 1377 1378 rfs4_deleg_state_cache_time *= rfs4_lease_time; 1379 rfs4_deleg_state_tab = rfs4_table_create(rfs4_server_state, 1380 "DelegStateID", 1381 rfs4_deleg_state_cache_time, 1382 2, 1383 rfs4_deleg_state_create, 1384 rfs4_deleg_state_destroy, 1385 rfs4_deleg_state_expiry, 1386 sizeof (rfs4_deleg_state_t), 1387 TABSIZE, 1388 MAXTABSZ, 100); 1389 rfs4_deleg_idx = rfs4_index_create(rfs4_deleg_state_tab, 1390 "DelegByFileClient", 1391 deleg_hash, 1392 deleg_compare, 1393 deleg_mkkey, TRUE); 1394 1395 rfs4_deleg_state_idx = rfs4_index_create(rfs4_deleg_state_tab, 1396 "DelegState", 1397 deleg_state_hash, 1398 deleg_state_compare, 1399 deleg_state_mkkey, FALSE); 1400 1401 /* 1402 * Init the stable storage. 1403 */ 1404 rfs4_ss_init(); 1405 1406 rfs4_client_clrst = rfs4_clear_client_state; 1407 1408 mutex_exit(&rfs4_state_lock); 1409 } 1410 1411 1412 /* 1413 * Used at server shutdown to cleanup all of the NFSv4 server's structures 1414 * and other state. 1415 */ 1416 void 1417 rfs4_state_fini() 1418 { 1419 rfs4_database_t *dbp; 1420 1421 mutex_enter(&rfs4_state_lock); 1422 1423 if (rfs4_server_state == NULL) { 1424 mutex_exit(&rfs4_state_lock); 1425 return; 1426 } 1427 1428 rfs4_client_clrst = NULL; 1429 1430 rfs4_set_deleg_policy(SRV_NEVER_DELEGATE); 1431 dbp = rfs4_server_state; 1432 rfs4_server_state = NULL; 1433 1434 /* 1435 * Cleanup the CPR callback. 1436 */ 1437 if (cpr_id) 1438 (void) callb_delete(cpr_id); 1439 1440 rw_destroy(&rfs4_findclient_lock); 1441 1442 /* First stop all of the reaper threads in the database */ 1443 rfs4_database_shutdown(dbp); 1444 /* clean up any dangling stable storage structures */ 1445 rfs4_ss_fini(); 1446 /* Now actually destroy/release the database and its tables */ 1447 rfs4_database_destroy(dbp); 1448 1449 /* Reset the cache timers for next time */ 1450 rfs4_client_cache_time = 0; 1451 rfs4_openowner_cache_time = 0; 1452 rfs4_state_cache_time = 0; 1453 rfs4_lo_state_cache_time = 0; 1454 rfs4_lockowner_cache_time = 0; 1455 rfs4_file_cache_time = 0; 1456 rfs4_deleg_state_cache_time = 0; 1457 1458 mutex_exit(&rfs4_state_lock); 1459 1460 /* destroy server instances and current instance ptr */ 1461 rfs4_servinst_destroy_all(); 1462 1463 /* reset the "first NFSv4 request" status */ 1464 rfs4_seen_first_compound = 0; 1465 1466 /* DSS: distributed stable storage */ 1467 nvlist_free(rfs4_dss_oldpaths); 1468 nvlist_free(rfs4_dss_paths); 1469 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 1470 } 1471 1472 typedef union { 1473 struct { 1474 uint32_t start_time; 1475 uint32_t c_id; 1476 } impl_id; 1477 clientid4 id4; 1478 } cid; 1479 1480 static int foreign_stateid(stateid_t *id); 1481 static int foreign_clientid(cid *cidp); 1482 static void embed_nodeid(cid *cidp); 1483 1484 typedef union { 1485 struct { 1486 uint32_t c_id; 1487 uint32_t gen_num; 1488 } cv_impl; 1489 verifier4 confirm_verf; 1490 } scid_confirm_verf; 1491 1492 static uint32_t 1493 clientid_hash(void *key) 1494 { 1495 cid *idp = key; 1496 1497 return (idp->impl_id.c_id); 1498 } 1499 1500 static bool_t 1501 clientid_compare(rfs4_entry_t entry, void *key) 1502 { 1503 rfs4_client_t *cp = (rfs4_client_t *)entry; 1504 clientid4 *idp = key; 1505 1506 return (*idp == cp->rc_clientid); 1507 } 1508 1509 static void * 1510 clientid_mkkey(rfs4_entry_t entry) 1511 { 1512 rfs4_client_t *cp = (rfs4_client_t *)entry; 1513 1514 return (&cp->rc_clientid); 1515 } 1516 1517 static uint32_t 1518 nfsclnt_hash(void *key) 1519 { 1520 nfs_client_id4 *client = key; 1521 int i; 1522 uint32_t hash = 0; 1523 1524 for (i = 0; i < client->id_len; i++) { 1525 hash <<= 1; 1526 hash += (uint_t)client->id_val[i]; 1527 } 1528 return (hash); 1529 } 1530 1531 1532 static bool_t 1533 nfsclnt_compare(rfs4_entry_t entry, void *key) 1534 { 1535 rfs4_client_t *cp = (rfs4_client_t *)entry; 1536 nfs_client_id4 *nfs_client = key; 1537 1538 if (cp->rc_nfs_client.id_len != nfs_client->id_len) 1539 return (FALSE); 1540 1541 return (bcmp(cp->rc_nfs_client.id_val, nfs_client->id_val, 1542 nfs_client->id_len) == 0); 1543 } 1544 1545 static void * 1546 nfsclnt_mkkey(rfs4_entry_t entry) 1547 { 1548 rfs4_client_t *cp = (rfs4_client_t *)entry; 1549 1550 return (&cp->rc_nfs_client); 1551 } 1552 1553 static bool_t 1554 rfs4_client_expiry(rfs4_entry_t u_entry) 1555 { 1556 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1557 bool_t cp_expired; 1558 1559 if (rfs4_dbe_is_invalid(cp->rc_dbe)) { 1560 cp->rc_ss_remove = 1; 1561 return (TRUE); 1562 } 1563 /* 1564 * If the sysadmin has used clear_locks for this 1565 * entry then forced_expire will be set and we 1566 * want this entry to be reaped. Or the entry 1567 * has exceeded its lease period. 1568 */ 1569 cp_expired = (cp->rc_forced_expire || 1570 (gethrestime_sec() - cp->rc_last_access 1571 > rfs4_lease_time)); 1572 1573 if (!cp->rc_ss_remove && cp_expired) 1574 cp->rc_ss_remove = 1; 1575 return (cp_expired); 1576 } 1577 1578 /* 1579 * Remove the leaf file from all distributed stable storage paths. 1580 */ 1581 static void 1582 rfs4_dss_remove_cpleaf(rfs4_client_t *cp) 1583 { 1584 rfs4_servinst_t *sip; 1585 char *leaf = cp->rc_ss_pn->leaf; 1586 1587 /* 1588 * since the state files are written to all DSS 1589 * paths we must remove this leaf file instance 1590 * from all server instances. 1591 */ 1592 1593 mutex_enter(&rfs4_servinst_lock); 1594 for (sip = rfs4_cur_servinst; sip != NULL; sip = sip->prev) { 1595 /* remove the leaf file associated with this server instance */ 1596 rfs4_dss_remove_leaf(sip, NFS4_DSS_STATE_LEAF, leaf); 1597 } 1598 mutex_exit(&rfs4_servinst_lock); 1599 } 1600 1601 static void 1602 rfs4_dss_remove_leaf(rfs4_servinst_t *sip, char *dir_leaf, char *leaf) 1603 { 1604 int i, npaths = sip->dss_npaths; 1605 1606 for (i = 0; i < npaths; i++) { 1607 rfs4_dss_path_t *dss_path = sip->dss_paths[i]; 1608 char *path, *dir; 1609 size_t pathlen; 1610 1611 /* the HA-NFSv4 path might have been failed-over away from us */ 1612 if (dss_path == NULL) 1613 continue; 1614 1615 dir = dss_path->path; 1616 1617 /* allow 3 extra bytes for two '/' & a NUL */ 1618 pathlen = strlen(dir) + strlen(dir_leaf) + strlen(leaf) + 3; 1619 path = kmem_alloc(pathlen, KM_SLEEP); 1620 (void) sprintf(path, "%s/%s/%s", dir, dir_leaf, leaf); 1621 1622 (void) vn_remove(path, UIO_SYSSPACE, RMFILE); 1623 1624 kmem_free(path, pathlen); 1625 } 1626 } 1627 1628 static void 1629 rfs4_client_destroy(rfs4_entry_t u_entry) 1630 { 1631 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1632 1633 mutex_destroy(cp->rc_cbinfo.cb_lock); 1634 cv_destroy(cp->rc_cbinfo.cb_cv); 1635 cv_destroy(cp->rc_cbinfo.cb_cv_nullcaller); 1636 list_destroy(&cp->rc_openownerlist); 1637 1638 /* free callback info */ 1639 rfs4_cbinfo_free(&cp->rc_cbinfo); 1640 1641 if (cp->rc_cp_confirmed) 1642 rfs4_client_rele(cp->rc_cp_confirmed); 1643 1644 if (cp->rc_ss_pn) { 1645 /* check if the stable storage files need to be removed */ 1646 if (cp->rc_ss_remove) 1647 rfs4_dss_remove_cpleaf(cp); 1648 rfs4_ss_pnfree(cp->rc_ss_pn); 1649 } 1650 1651 /* Free the client supplied client id */ 1652 kmem_free(cp->rc_nfs_client.id_val, cp->rc_nfs_client.id_len); 1653 1654 if (cp->rc_sysidt != LM_NOSYSID) 1655 lm_free_sysidt(cp->rc_sysidt); 1656 } 1657 1658 static bool_t 1659 rfs4_client_create(rfs4_entry_t u_entry, void *arg) 1660 { 1661 rfs4_client_t *cp = (rfs4_client_t *)u_entry; 1662 nfs_client_id4 *client = (nfs_client_id4 *)arg; 1663 struct sockaddr *ca; 1664 cid *cidp; 1665 scid_confirm_verf *scvp; 1666 1667 /* Get a clientid to give to the client */ 1668 cidp = (cid *)&cp->rc_clientid; 1669 cidp->impl_id.start_time = rfs4_start_time; 1670 cidp->impl_id.c_id = (uint32_t)rfs4_dbe_getid(cp->rc_dbe); 1671 1672 /* If we are booted as a cluster node, embed our nodeid */ 1673 if (cluster_bootflags & CLUSTER_BOOTED) 1674 embed_nodeid(cidp); 1675 1676 /* Allocate and copy client's client id value */ 1677 cp->rc_nfs_client.id_val = kmem_alloc(client->id_len, KM_SLEEP); 1678 cp->rc_nfs_client.id_len = client->id_len; 1679 bcopy(client->id_val, cp->rc_nfs_client.id_val, client->id_len); 1680 cp->rc_nfs_client.verifier = client->verifier; 1681 1682 /* Copy client's IP address */ 1683 ca = client->cl_addr; 1684 if (ca->sa_family == AF_INET) 1685 bcopy(ca, &cp->rc_addr, sizeof (struct sockaddr_in)); 1686 else if (ca->sa_family == AF_INET6) 1687 bcopy(ca, &cp->rc_addr, sizeof (struct sockaddr_in6)); 1688 cp->rc_nfs_client.cl_addr = (struct sockaddr *)&cp->rc_addr; 1689 1690 /* Init the value for the SETCLIENTID_CONFIRM verifier */ 1691 scvp = (scid_confirm_verf *)&cp->rc_confirm_verf; 1692 scvp->cv_impl.c_id = cidp->impl_id.c_id; 1693 scvp->cv_impl.gen_num = 0; 1694 1695 /* An F_UNLKSYS has been done for this client */ 1696 cp->rc_unlksys_completed = FALSE; 1697 1698 /* We need the client to ack us */ 1699 cp->rc_need_confirm = TRUE; 1700 cp->rc_cp_confirmed = NULL; 1701 1702 /* TRUE all the time until the callback path actually fails */ 1703 cp->rc_cbinfo.cb_notified_of_cb_path_down = TRUE; 1704 1705 /* Initialize the access time to now */ 1706 cp->rc_last_access = gethrestime_sec(); 1707 1708 cp->rc_cr_set = NULL; 1709 1710 cp->rc_sysidt = LM_NOSYSID; 1711 1712 list_create(&cp->rc_openownerlist, sizeof (rfs4_openowner_t), 1713 offsetof(rfs4_openowner_t, ro_node)); 1714 1715 /* set up the callback control structure */ 1716 cp->rc_cbinfo.cb_state = CB_UNINIT; 1717 mutex_init(cp->rc_cbinfo.cb_lock, NULL, MUTEX_DEFAULT, NULL); 1718 cv_init(cp->rc_cbinfo.cb_cv, NULL, CV_DEFAULT, NULL); 1719 cv_init(cp->rc_cbinfo.cb_cv_nullcaller, NULL, CV_DEFAULT, NULL); 1720 1721 /* 1722 * Associate the client_t with the current server instance. 1723 * The hold is solely to satisfy the calling requirement of 1724 * rfs4_servinst_assign(). In this case it's not strictly necessary. 1725 */ 1726 rfs4_dbe_hold(cp->rc_dbe); 1727 rfs4_servinst_assign(cp, rfs4_cur_servinst); 1728 rfs4_dbe_rele(cp->rc_dbe); 1729 1730 return (TRUE); 1731 } 1732 1733 /* 1734 * Caller wants to generate/update the setclientid_confirm verifier 1735 * associated with a client. This is done during the SETCLIENTID 1736 * processing. 1737 */ 1738 void 1739 rfs4_client_scv_next(rfs4_client_t *cp) 1740 { 1741 scid_confirm_verf *scvp; 1742 1743 /* Init the value for the SETCLIENTID_CONFIRM verifier */ 1744 scvp = (scid_confirm_verf *)&cp->rc_confirm_verf; 1745 scvp->cv_impl.gen_num++; 1746 } 1747 1748 void 1749 rfs4_client_rele(rfs4_client_t *cp) 1750 { 1751 rfs4_dbe_rele(cp->rc_dbe); 1752 } 1753 1754 rfs4_client_t * 1755 rfs4_findclient(nfs_client_id4 *client, bool_t *create, rfs4_client_t *oldcp) 1756 { 1757 rfs4_client_t *cp; 1758 1759 1760 if (oldcp) { 1761 rw_enter(&rfs4_findclient_lock, RW_WRITER); 1762 rfs4_dbe_hide(oldcp->rc_dbe); 1763 } else { 1764 rw_enter(&rfs4_findclient_lock, RW_READER); 1765 } 1766 1767 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_nfsclnt_idx, client, 1768 create, (void *)client, RFS4_DBS_VALID); 1769 1770 if (oldcp) 1771 rfs4_dbe_unhide(oldcp->rc_dbe); 1772 1773 rw_exit(&rfs4_findclient_lock); 1774 1775 return (cp); 1776 } 1777 1778 rfs4_client_t * 1779 rfs4_findclient_by_id(clientid4 clientid, bool_t find_unconfirmed) 1780 { 1781 rfs4_client_t *cp; 1782 bool_t create = FALSE; 1783 cid *cidp = (cid *)&clientid; 1784 1785 /* If we're a cluster and the nodeid isn't right, short-circuit */ 1786 if (cluster_bootflags & CLUSTER_BOOTED && foreign_clientid(cidp)) 1787 return (NULL); 1788 1789 rw_enter(&rfs4_findclient_lock, RW_READER); 1790 1791 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, &clientid, 1792 &create, NULL, RFS4_DBS_VALID); 1793 1794 rw_exit(&rfs4_findclient_lock); 1795 1796 if (cp && cp->rc_need_confirm && find_unconfirmed == FALSE) { 1797 rfs4_client_rele(cp); 1798 return (NULL); 1799 } else { 1800 return (cp); 1801 } 1802 } 1803 1804 static uint32_t 1805 clntip_hash(void *key) 1806 { 1807 struct sockaddr *addr = key; 1808 int i, len = 0; 1809 uint32_t hash = 0; 1810 char *ptr; 1811 1812 if (addr->sa_family == AF_INET) { 1813 struct sockaddr_in *a = (struct sockaddr_in *)addr; 1814 len = sizeof (struct in_addr); 1815 ptr = (char *)&a->sin_addr; 1816 } else if (addr->sa_family == AF_INET6) { 1817 struct sockaddr_in6 *a = (struct sockaddr_in6 *)addr; 1818 len = sizeof (struct in6_addr); 1819 ptr = (char *)&a->sin6_addr; 1820 } else 1821 return (0); 1822 1823 for (i = 0; i < len; i++) { 1824 hash <<= 1; 1825 hash += (uint_t)ptr[i]; 1826 } 1827 return (hash); 1828 } 1829 1830 static bool_t 1831 clntip_compare(rfs4_entry_t entry, void *key) 1832 { 1833 rfs4_clntip_t *cp = (rfs4_clntip_t *)entry; 1834 struct sockaddr *addr = key; 1835 int len = 0; 1836 char *p1, *p2; 1837 1838 if (addr->sa_family == AF_INET) { 1839 struct sockaddr_in *a1 = (struct sockaddr_in *)&cp->ri_addr; 1840 struct sockaddr_in *a2 = (struct sockaddr_in *)addr; 1841 len = sizeof (struct in_addr); 1842 p1 = (char *)&a1->sin_addr; 1843 p2 = (char *)&a2->sin_addr; 1844 } else if (addr->sa_family == AF_INET6) { 1845 struct sockaddr_in6 *a1 = (struct sockaddr_in6 *)&cp->ri_addr; 1846 struct sockaddr_in6 *a2 = (struct sockaddr_in6 *)addr; 1847 len = sizeof (struct in6_addr); 1848 p1 = (char *)&a1->sin6_addr; 1849 p2 = (char *)&a2->sin6_addr; 1850 } else 1851 return (0); 1852 1853 return (bcmp(p1, p2, len) == 0); 1854 } 1855 1856 static void * 1857 clntip_mkkey(rfs4_entry_t entry) 1858 { 1859 rfs4_clntip_t *cp = (rfs4_clntip_t *)entry; 1860 1861 return (&cp->ri_addr); 1862 } 1863 1864 static bool_t 1865 rfs4_clntip_expiry(rfs4_entry_t u_entry) 1866 { 1867 rfs4_clntip_t *cp = (rfs4_clntip_t *)u_entry; 1868 1869 if (rfs4_dbe_is_invalid(cp->ri_dbe)) 1870 return (TRUE); 1871 return (FALSE); 1872 } 1873 1874 /* ARGSUSED */ 1875 static void 1876 rfs4_clntip_destroy(rfs4_entry_t u_entry) 1877 { 1878 } 1879 1880 static bool_t 1881 rfs4_clntip_create(rfs4_entry_t u_entry, void *arg) 1882 { 1883 rfs4_clntip_t *cp = (rfs4_clntip_t *)u_entry; 1884 struct sockaddr *ca = (struct sockaddr *)arg; 1885 1886 /* Copy client's IP address */ 1887 if (ca->sa_family == AF_INET) 1888 bcopy(ca, &cp->ri_addr, sizeof (struct sockaddr_in)); 1889 else if (ca->sa_family == AF_INET6) 1890 bcopy(ca, &cp->ri_addr, sizeof (struct sockaddr_in6)); 1891 else 1892 return (FALSE); 1893 cp->ri_no_referrals = 1; 1894 1895 return (TRUE); 1896 } 1897 1898 rfs4_clntip_t * 1899 rfs4_find_clntip(struct sockaddr *addr, bool_t *create) 1900 { 1901 rfs4_clntip_t *cp; 1902 1903 rw_enter(&rfs4_findclient_lock, RW_READER); 1904 1905 cp = (rfs4_clntip_t *)rfs4_dbsearch(rfs4_clntip_idx, addr, 1906 create, addr, RFS4_DBS_VALID); 1907 1908 rw_exit(&rfs4_findclient_lock); 1909 1910 return (cp); 1911 } 1912 1913 void 1914 rfs4_invalidate_clntip(struct sockaddr *addr) 1915 { 1916 rfs4_clntip_t *cp; 1917 bool_t create = FALSE; 1918 1919 rw_enter(&rfs4_findclient_lock, RW_READER); 1920 1921 cp = (rfs4_clntip_t *)rfs4_dbsearch(rfs4_clntip_idx, addr, 1922 &create, NULL, RFS4_DBS_VALID); 1923 if (cp == NULL) { 1924 rw_exit(&rfs4_findclient_lock); 1925 return; 1926 } 1927 rfs4_dbe_invalidate(cp->ri_dbe); 1928 rfs4_dbe_rele(cp->ri_dbe); 1929 1930 rw_exit(&rfs4_findclient_lock); 1931 } 1932 1933 bool_t 1934 rfs4_lease_expired(rfs4_client_t *cp) 1935 { 1936 bool_t rc; 1937 1938 rfs4_dbe_lock(cp->rc_dbe); 1939 1940 /* 1941 * If the admin has executed clear_locks for this 1942 * client id, force expire will be set, so no need 1943 * to calculate anything because it's "outa here". 1944 */ 1945 if (cp->rc_forced_expire) { 1946 rc = TRUE; 1947 } else { 1948 rc = (gethrestime_sec() - cp->rc_last_access > rfs4_lease_time); 1949 } 1950 1951 /* 1952 * If the lease has expired we will also want 1953 * to remove any stable storage state data. So 1954 * mark the client id accordingly. 1955 */ 1956 if (!cp->rc_ss_remove) 1957 cp->rc_ss_remove = (rc == TRUE); 1958 1959 rfs4_dbe_unlock(cp->rc_dbe); 1960 1961 return (rc); 1962 } 1963 1964 void 1965 rfs4_update_lease(rfs4_client_t *cp) 1966 { 1967 rfs4_dbe_lock(cp->rc_dbe); 1968 if (!cp->rc_forced_expire) 1969 cp->rc_last_access = gethrestime_sec(); 1970 rfs4_dbe_unlock(cp->rc_dbe); 1971 } 1972 1973 1974 static bool_t 1975 EQOPENOWNER(open_owner4 *a, open_owner4 *b) 1976 { 1977 bool_t rc; 1978 1979 if (a->clientid != b->clientid) 1980 return (FALSE); 1981 1982 if (a->owner_len != b->owner_len) 1983 return (FALSE); 1984 1985 rc = (bcmp(a->owner_val, b->owner_val, a->owner_len) == 0); 1986 1987 return (rc); 1988 } 1989 1990 static uint_t 1991 openowner_hash(void *key) 1992 { 1993 int i; 1994 open_owner4 *openowner = key; 1995 uint_t hash = 0; 1996 1997 for (i = 0; i < openowner->owner_len; i++) { 1998 hash <<= 4; 1999 hash += (uint_t)openowner->owner_val[i]; 2000 } 2001 hash += (uint_t)openowner->clientid; 2002 hash |= (openowner->clientid >> 32); 2003 2004 return (hash); 2005 } 2006 2007 static bool_t 2008 openowner_compare(rfs4_entry_t u_entry, void *key) 2009 { 2010 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2011 open_owner4 *arg = key; 2012 2013 return (EQOPENOWNER(&oo->ro_owner, arg)); 2014 } 2015 2016 void * 2017 openowner_mkkey(rfs4_entry_t u_entry) 2018 { 2019 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2020 2021 return (&oo->ro_owner); 2022 } 2023 2024 /* ARGSUSED */ 2025 static bool_t 2026 rfs4_openowner_expiry(rfs4_entry_t u_entry) 2027 { 2028 /* openstateid held us and did all needed delay */ 2029 return (TRUE); 2030 } 2031 2032 static void 2033 rfs4_openowner_destroy(rfs4_entry_t u_entry) 2034 { 2035 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2036 2037 /* Remove open owner from client's lists of open owners */ 2038 rfs4_dbe_lock(oo->ro_client->rc_dbe); 2039 list_remove(&oo->ro_client->rc_openownerlist, oo); 2040 rfs4_dbe_unlock(oo->ro_client->rc_dbe); 2041 2042 /* One less reference to the client */ 2043 rfs4_client_rele(oo->ro_client); 2044 oo->ro_client = NULL; 2045 2046 /* Free the last reply for this lock owner */ 2047 rfs4_free_reply(&oo->ro_reply); 2048 2049 if (oo->ro_reply_fh.nfs_fh4_val) { 2050 kmem_free(oo->ro_reply_fh.nfs_fh4_val, 2051 oo->ro_reply_fh.nfs_fh4_len); 2052 oo->ro_reply_fh.nfs_fh4_val = NULL; 2053 oo->ro_reply_fh.nfs_fh4_len = 0; 2054 } 2055 2056 rfs4_sw_destroy(&oo->ro_sw); 2057 list_destroy(&oo->ro_statelist); 2058 2059 /* Free the lock owner id */ 2060 kmem_free(oo->ro_owner.owner_val, oo->ro_owner.owner_len); 2061 } 2062 2063 void 2064 rfs4_openowner_rele(rfs4_openowner_t *oo) 2065 { 2066 rfs4_dbe_rele(oo->ro_dbe); 2067 } 2068 2069 static bool_t 2070 rfs4_openowner_create(rfs4_entry_t u_entry, void *arg) 2071 { 2072 rfs4_openowner_t *oo = (rfs4_openowner_t *)u_entry; 2073 rfs4_openowner_t *argp = (rfs4_openowner_t *)arg; 2074 open_owner4 *openowner = &argp->ro_owner; 2075 seqid4 seqid = argp->ro_open_seqid; 2076 rfs4_client_t *cp; 2077 bool_t create = FALSE; 2078 2079 rw_enter(&rfs4_findclient_lock, RW_READER); 2080 2081 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, 2082 &openowner->clientid, 2083 &create, NULL, RFS4_DBS_VALID); 2084 2085 rw_exit(&rfs4_findclient_lock); 2086 2087 if (cp == NULL) 2088 return (FALSE); 2089 2090 oo->ro_reply_fh.nfs_fh4_len = 0; 2091 oo->ro_reply_fh.nfs_fh4_val = NULL; 2092 2093 oo->ro_owner.clientid = openowner->clientid; 2094 oo->ro_owner.owner_val = 2095 kmem_alloc(openowner->owner_len, KM_SLEEP); 2096 2097 bcopy(openowner->owner_val, 2098 oo->ro_owner.owner_val, openowner->owner_len); 2099 2100 oo->ro_owner.owner_len = openowner->owner_len; 2101 2102 oo->ro_need_confirm = TRUE; 2103 2104 rfs4_sw_init(&oo->ro_sw); 2105 2106 oo->ro_open_seqid = seqid; 2107 bzero(&oo->ro_reply, sizeof (nfs_resop4)); 2108 oo->ro_client = cp; 2109 oo->ro_cr_set = NULL; 2110 2111 list_create(&oo->ro_statelist, sizeof (rfs4_state_t), 2112 offsetof(rfs4_state_t, rs_node)); 2113 2114 /* Insert openowner into client's open owner list */ 2115 rfs4_dbe_lock(cp->rc_dbe); 2116 list_insert_tail(&cp->rc_openownerlist, oo); 2117 rfs4_dbe_unlock(cp->rc_dbe); 2118 2119 return (TRUE); 2120 } 2121 2122 rfs4_openowner_t * 2123 rfs4_findopenowner(open_owner4 *openowner, bool_t *create, seqid4 seqid) 2124 { 2125 rfs4_openowner_t *oo; 2126 rfs4_openowner_t arg; 2127 2128 arg.ro_owner = *openowner; 2129 arg.ro_open_seqid = seqid; 2130 oo = (rfs4_openowner_t *)rfs4_dbsearch(rfs4_openowner_idx, openowner, 2131 create, &arg, RFS4_DBS_VALID); 2132 2133 return (oo); 2134 } 2135 2136 void 2137 rfs4_update_open_sequence(rfs4_openowner_t *oo) 2138 { 2139 2140 rfs4_dbe_lock(oo->ro_dbe); 2141 2142 oo->ro_open_seqid++; 2143 2144 rfs4_dbe_unlock(oo->ro_dbe); 2145 } 2146 2147 void 2148 rfs4_update_open_resp(rfs4_openowner_t *oo, nfs_resop4 *resp, nfs_fh4 *fh) 2149 { 2150 2151 rfs4_dbe_lock(oo->ro_dbe); 2152 2153 rfs4_free_reply(&oo->ro_reply); 2154 2155 rfs4_copy_reply(&oo->ro_reply, resp); 2156 2157 /* Save the filehandle if provided and free if not used */ 2158 if (resp->nfs_resop4_u.opopen.status == NFS4_OK && 2159 fh && fh->nfs_fh4_len) { 2160 if (oo->ro_reply_fh.nfs_fh4_val == NULL) 2161 oo->ro_reply_fh.nfs_fh4_val = 2162 kmem_alloc(fh->nfs_fh4_len, KM_SLEEP); 2163 nfs_fh4_copy(fh, &oo->ro_reply_fh); 2164 } else { 2165 if (oo->ro_reply_fh.nfs_fh4_val) { 2166 kmem_free(oo->ro_reply_fh.nfs_fh4_val, 2167 oo->ro_reply_fh.nfs_fh4_len); 2168 oo->ro_reply_fh.nfs_fh4_val = NULL; 2169 oo->ro_reply_fh.nfs_fh4_len = 0; 2170 } 2171 } 2172 2173 rfs4_dbe_unlock(oo->ro_dbe); 2174 } 2175 2176 static bool_t 2177 lockowner_compare(rfs4_entry_t u_entry, void *key) 2178 { 2179 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2180 lock_owner4 *b = (lock_owner4 *)key; 2181 2182 if (lo->rl_owner.clientid != b->clientid) 2183 return (FALSE); 2184 2185 if (lo->rl_owner.owner_len != b->owner_len) 2186 return (FALSE); 2187 2188 return (bcmp(lo->rl_owner.owner_val, b->owner_val, 2189 lo->rl_owner.owner_len) == 0); 2190 } 2191 2192 void * 2193 lockowner_mkkey(rfs4_entry_t u_entry) 2194 { 2195 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2196 2197 return (&lo->rl_owner); 2198 } 2199 2200 static uint32_t 2201 lockowner_hash(void *key) 2202 { 2203 int i; 2204 lock_owner4 *lockowner = key; 2205 uint_t hash = 0; 2206 2207 for (i = 0; i < lockowner->owner_len; i++) { 2208 hash <<= 4; 2209 hash += (uint_t)lockowner->owner_val[i]; 2210 } 2211 hash += (uint_t)lockowner->clientid; 2212 hash |= (lockowner->clientid >> 32); 2213 2214 return (hash); 2215 } 2216 2217 static uint32_t 2218 pid_hash(void *key) 2219 { 2220 return ((uint32_t)(uintptr_t)key); 2221 } 2222 2223 static void * 2224 pid_mkkey(rfs4_entry_t u_entry) 2225 { 2226 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2227 2228 return ((void *)(uintptr_t)lo->rl_pid); 2229 } 2230 2231 static bool_t 2232 pid_compare(rfs4_entry_t u_entry, void *key) 2233 { 2234 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2235 2236 return (lo->rl_pid == (pid_t)(uintptr_t)key); 2237 } 2238 2239 static void 2240 rfs4_lockowner_destroy(rfs4_entry_t u_entry) 2241 { 2242 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2243 2244 /* Free the lock owner id */ 2245 kmem_free(lo->rl_owner.owner_val, lo->rl_owner.owner_len); 2246 rfs4_client_rele(lo->rl_client); 2247 } 2248 2249 void 2250 rfs4_lockowner_rele(rfs4_lockowner_t *lo) 2251 { 2252 rfs4_dbe_rele(lo->rl_dbe); 2253 } 2254 2255 /* ARGSUSED */ 2256 static bool_t 2257 rfs4_lockowner_expiry(rfs4_entry_t u_entry) 2258 { 2259 /* 2260 * Since expiry is called with no other references on 2261 * this struct, go ahead and have it removed. 2262 */ 2263 return (TRUE); 2264 } 2265 2266 static bool_t 2267 rfs4_lockowner_create(rfs4_entry_t u_entry, void *arg) 2268 { 2269 rfs4_lockowner_t *lo = (rfs4_lockowner_t *)u_entry; 2270 lock_owner4 *lockowner = (lock_owner4 *)arg; 2271 rfs4_client_t *cp; 2272 bool_t create = FALSE; 2273 2274 rw_enter(&rfs4_findclient_lock, RW_READER); 2275 2276 cp = (rfs4_client_t *)rfs4_dbsearch(rfs4_clientid_idx, 2277 &lockowner->clientid, 2278 &create, NULL, RFS4_DBS_VALID); 2279 2280 rw_exit(&rfs4_findclient_lock); 2281 2282 if (cp == NULL) 2283 return (FALSE); 2284 2285 /* Reference client */ 2286 lo->rl_client = cp; 2287 lo->rl_owner.clientid = lockowner->clientid; 2288 lo->rl_owner.owner_val = kmem_alloc(lockowner->owner_len, KM_SLEEP); 2289 bcopy(lockowner->owner_val, lo->rl_owner.owner_val, 2290 lockowner->owner_len); 2291 lo->rl_owner.owner_len = lockowner->owner_len; 2292 lo->rl_pid = rfs4_dbe_getid(lo->rl_dbe); 2293 2294 return (TRUE); 2295 } 2296 2297 rfs4_lockowner_t * 2298 rfs4_findlockowner(lock_owner4 *lockowner, bool_t *create) 2299 { 2300 rfs4_lockowner_t *lo; 2301 2302 lo = (rfs4_lockowner_t *)rfs4_dbsearch(rfs4_lockowner_idx, lockowner, 2303 create, lockowner, RFS4_DBS_VALID); 2304 2305 return (lo); 2306 } 2307 2308 rfs4_lockowner_t * 2309 rfs4_findlockowner_by_pid(pid_t pid) 2310 { 2311 rfs4_lockowner_t *lo; 2312 bool_t create = FALSE; 2313 2314 lo = (rfs4_lockowner_t *)rfs4_dbsearch(rfs4_lockowner_pid_idx, 2315 (void *)(uintptr_t)pid, &create, NULL, RFS4_DBS_VALID); 2316 2317 return (lo); 2318 } 2319 2320 2321 static uint32_t 2322 file_hash(void *key) 2323 { 2324 return (ADDRHASH(key)); 2325 } 2326 2327 static void * 2328 file_mkkey(rfs4_entry_t u_entry) 2329 { 2330 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2331 2332 return (fp->rf_vp); 2333 } 2334 2335 static bool_t 2336 file_compare(rfs4_entry_t u_entry, void *key) 2337 { 2338 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2339 2340 return (fp->rf_vp == (vnode_t *)key); 2341 } 2342 2343 static void 2344 rfs4_file_destroy(rfs4_entry_t u_entry) 2345 { 2346 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2347 2348 list_destroy(&fp->rf_delegstatelist); 2349 2350 if (fp->rf_filehandle.nfs_fh4_val) 2351 kmem_free(fp->rf_filehandle.nfs_fh4_val, 2352 fp->rf_filehandle.nfs_fh4_len); 2353 cv_destroy(fp->rf_dinfo.rd_recall_cv); 2354 if (fp->rf_vp) { 2355 vnode_t *vp = fp->rf_vp; 2356 2357 mutex_enter(&vp->v_vsd_lock); 2358 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 2359 mutex_exit(&vp->v_vsd_lock); 2360 VN_RELE(vp); 2361 fp->rf_vp = NULL; 2362 } 2363 rw_destroy(&fp->rf_file_rwlock); 2364 } 2365 2366 /* 2367 * Used to unlock the underlying dbe struct only 2368 */ 2369 void 2370 rfs4_file_rele(rfs4_file_t *fp) 2371 { 2372 rfs4_dbe_rele(fp->rf_dbe); 2373 } 2374 2375 typedef struct { 2376 vnode_t *vp; 2377 nfs_fh4 *fh; 2378 } rfs4_fcreate_arg; 2379 2380 static bool_t 2381 rfs4_file_create(rfs4_entry_t u_entry, void *arg) 2382 { 2383 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 2384 rfs4_fcreate_arg *ap = (rfs4_fcreate_arg *)arg; 2385 vnode_t *vp = ap->vp; 2386 nfs_fh4 *fh = ap->fh; 2387 2388 VN_HOLD(vp); 2389 2390 fp->rf_filehandle.nfs_fh4_len = 0; 2391 fp->rf_filehandle.nfs_fh4_val = NULL; 2392 ASSERT(fh && fh->nfs_fh4_len); 2393 if (fh && fh->nfs_fh4_len) { 2394 fp->rf_filehandle.nfs_fh4_val = 2395 kmem_alloc(fh->nfs_fh4_len, KM_SLEEP); 2396 nfs_fh4_copy(fh, &fp->rf_filehandle); 2397 } 2398 fp->rf_vp = vp; 2399 2400 list_create(&fp->rf_delegstatelist, sizeof (rfs4_deleg_state_t), 2401 offsetof(rfs4_deleg_state_t, rds_node)); 2402 2403 fp->rf_share_deny = fp->rf_share_access = fp->rf_access_read = 0; 2404 fp->rf_access_write = fp->rf_deny_read = fp->rf_deny_write = 0; 2405 2406 mutex_init(fp->rf_dinfo.rd_recall_lock, NULL, MUTEX_DEFAULT, NULL); 2407 cv_init(fp->rf_dinfo.rd_recall_cv, NULL, CV_DEFAULT, NULL); 2408 2409 fp->rf_dinfo.rd_dtype = OPEN_DELEGATE_NONE; 2410 2411 rw_init(&fp->rf_file_rwlock, NULL, RW_DEFAULT, NULL); 2412 2413 mutex_enter(&vp->v_vsd_lock); 2414 VERIFY(vsd_set(vp, nfs4_srv_vkey, (void *)fp) == 0); 2415 mutex_exit(&vp->v_vsd_lock); 2416 2417 return (TRUE); 2418 } 2419 2420 rfs4_file_t * 2421 rfs4_findfile(vnode_t *vp, nfs_fh4 *fh, bool_t *create) 2422 { 2423 rfs4_file_t *fp; 2424 rfs4_fcreate_arg arg; 2425 2426 arg.vp = vp; 2427 arg.fh = fh; 2428 2429 if (*create == TRUE) 2430 fp = (rfs4_file_t *)rfs4_dbsearch(rfs4_file_idx, vp, create, 2431 &arg, RFS4_DBS_VALID); 2432 else { 2433 mutex_enter(&vp->v_vsd_lock); 2434 fp = (rfs4_file_t *)vsd_get(vp, nfs4_srv_vkey); 2435 if (fp) { 2436 rfs4_dbe_lock(fp->rf_dbe); 2437 if (rfs4_dbe_is_invalid(fp->rf_dbe) || 2438 (rfs4_dbe_refcnt(fp->rf_dbe) == 0)) { 2439 rfs4_dbe_unlock(fp->rf_dbe); 2440 fp = NULL; 2441 } else { 2442 rfs4_dbe_hold(fp->rf_dbe); 2443 rfs4_dbe_unlock(fp->rf_dbe); 2444 } 2445 } 2446 mutex_exit(&vp->v_vsd_lock); 2447 } 2448 return (fp); 2449 } 2450 2451 /* 2452 * Find a file in the db and once it is located, take the rw lock. 2453 * Need to check the vnode pointer and if it does not exist (it was 2454 * removed between the db location and check) redo the find. This 2455 * assumes that a file struct that has a NULL vnode pointer is marked 2456 * at 'invalid' and will not be found in the db the second time 2457 * around. 2458 */ 2459 rfs4_file_t * 2460 rfs4_findfile_withlock(vnode_t *vp, nfs_fh4 *fh, bool_t *create) 2461 { 2462 rfs4_file_t *fp; 2463 rfs4_fcreate_arg arg; 2464 bool_t screate = *create; 2465 2466 if (screate == FALSE) { 2467 mutex_enter(&vp->v_vsd_lock); 2468 fp = (rfs4_file_t *)vsd_get(vp, nfs4_srv_vkey); 2469 if (fp) { 2470 rfs4_dbe_lock(fp->rf_dbe); 2471 if (rfs4_dbe_is_invalid(fp->rf_dbe) || 2472 (rfs4_dbe_refcnt(fp->rf_dbe) == 0)) { 2473 rfs4_dbe_unlock(fp->rf_dbe); 2474 mutex_exit(&vp->v_vsd_lock); 2475 fp = NULL; 2476 } else { 2477 rfs4_dbe_hold(fp->rf_dbe); 2478 rfs4_dbe_unlock(fp->rf_dbe); 2479 mutex_exit(&vp->v_vsd_lock); 2480 rw_enter(&fp->rf_file_rwlock, RW_WRITER); 2481 if (fp->rf_vp == NULL) { 2482 rw_exit(&fp->rf_file_rwlock); 2483 rfs4_file_rele(fp); 2484 fp = NULL; 2485 } 2486 } 2487 } else { 2488 mutex_exit(&vp->v_vsd_lock); 2489 } 2490 } else { 2491 retry: 2492 arg.vp = vp; 2493 arg.fh = fh; 2494 2495 fp = (rfs4_file_t *)rfs4_dbsearch(rfs4_file_idx, vp, create, 2496 &arg, RFS4_DBS_VALID); 2497 if (fp != NULL) { 2498 rw_enter(&fp->rf_file_rwlock, RW_WRITER); 2499 if (fp->rf_vp == NULL) { 2500 rw_exit(&fp->rf_file_rwlock); 2501 rfs4_file_rele(fp); 2502 *create = screate; 2503 goto retry; 2504 } 2505 } 2506 } 2507 2508 return (fp); 2509 } 2510 2511 static uint32_t 2512 lo_state_hash(void *key) 2513 { 2514 stateid_t *id = key; 2515 2516 return (id->bits.ident+id->bits.pid); 2517 } 2518 2519 static bool_t 2520 lo_state_compare(rfs4_entry_t u_entry, void *key) 2521 { 2522 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2523 stateid_t *id = key; 2524 bool_t rc; 2525 2526 rc = (lsp->rls_lockid.bits.boottime == id->bits.boottime && 2527 lsp->rls_lockid.bits.type == id->bits.type && 2528 lsp->rls_lockid.bits.ident == id->bits.ident && 2529 lsp->rls_lockid.bits.pid == id->bits.pid); 2530 2531 return (rc); 2532 } 2533 2534 static void * 2535 lo_state_mkkey(rfs4_entry_t u_entry) 2536 { 2537 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2538 2539 return (&lsp->rls_lockid); 2540 } 2541 2542 static bool_t 2543 rfs4_lo_state_expiry(rfs4_entry_t u_entry) 2544 { 2545 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2546 2547 if (rfs4_dbe_is_invalid(lsp->rls_dbe)) 2548 return (TRUE); 2549 if (lsp->rls_state->rs_closed) 2550 return (TRUE); 2551 return ((gethrestime_sec() - 2552 lsp->rls_state->rs_owner->ro_client->rc_last_access 2553 > rfs4_lease_time)); 2554 } 2555 2556 static void 2557 rfs4_lo_state_destroy(rfs4_entry_t u_entry) 2558 { 2559 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2560 2561 rfs4_dbe_lock(lsp->rls_state->rs_dbe); 2562 list_remove(&lsp->rls_state->rs_lostatelist, lsp); 2563 rfs4_dbe_unlock(lsp->rls_state->rs_dbe); 2564 2565 rfs4_sw_destroy(&lsp->rls_sw); 2566 2567 /* Make sure to release the file locks */ 2568 if (lsp->rls_locks_cleaned == FALSE) { 2569 lsp->rls_locks_cleaned = TRUE; 2570 if (lsp->rls_locker->rl_client->rc_sysidt != LM_NOSYSID) { 2571 /* Is the PxFS kernel module loaded? */ 2572 if (lm_remove_file_locks != NULL) { 2573 int new_sysid; 2574 2575 /* Encode the cluster nodeid in new sysid */ 2576 new_sysid = 2577 lsp->rls_locker->rl_client->rc_sysidt; 2578 lm_set_nlmid_flk(&new_sysid); 2579 2580 /* 2581 * This PxFS routine removes file locks for a 2582 * client over all nodes of a cluster. 2583 */ 2584 DTRACE_PROBE1(nfss_i_clust_rm_lck, 2585 int, new_sysid); 2586 (*lm_remove_file_locks)(new_sysid); 2587 } else { 2588 (void) cleanlocks( 2589 lsp->rls_state->rs_finfo->rf_vp, 2590 lsp->rls_locker->rl_pid, 2591 lsp->rls_locker->rl_client->rc_sysidt); 2592 } 2593 } 2594 } 2595 2596 /* Free the last reply for this state */ 2597 rfs4_free_reply(&lsp->rls_reply); 2598 2599 rfs4_lockowner_rele(lsp->rls_locker); 2600 lsp->rls_locker = NULL; 2601 2602 rfs4_state_rele_nounlock(lsp->rls_state); 2603 lsp->rls_state = NULL; 2604 } 2605 2606 static bool_t 2607 rfs4_lo_state_create(rfs4_entry_t u_entry, void *arg) 2608 { 2609 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2610 rfs4_lo_state_t *argp = (rfs4_lo_state_t *)arg; 2611 rfs4_lockowner_t *lo = argp->rls_locker; 2612 rfs4_state_t *sp = argp->rls_state; 2613 2614 lsp->rls_state = sp; 2615 2616 lsp->rls_lockid = sp->rs_stateid; 2617 lsp->rls_lockid.bits.type = LOCKID; 2618 lsp->rls_lockid.bits.chgseq = 0; 2619 lsp->rls_lockid.bits.pid = lo->rl_pid; 2620 2621 lsp->rls_locks_cleaned = FALSE; 2622 lsp->rls_lock_completed = FALSE; 2623 2624 rfs4_sw_init(&lsp->rls_sw); 2625 2626 /* Attached the supplied lock owner */ 2627 rfs4_dbe_hold(lo->rl_dbe); 2628 lsp->rls_locker = lo; 2629 2630 rfs4_dbe_lock(sp->rs_dbe); 2631 list_insert_tail(&sp->rs_lostatelist, lsp); 2632 rfs4_dbe_hold(sp->rs_dbe); 2633 rfs4_dbe_unlock(sp->rs_dbe); 2634 2635 return (TRUE); 2636 } 2637 2638 void 2639 rfs4_lo_state_rele(rfs4_lo_state_t *lsp, bool_t unlock_fp) 2640 { 2641 if (unlock_fp == TRUE) 2642 rw_exit(&lsp->rls_state->rs_finfo->rf_file_rwlock); 2643 rfs4_dbe_rele(lsp->rls_dbe); 2644 } 2645 2646 static rfs4_lo_state_t * 2647 rfs4_findlo_state(stateid_t *id, bool_t lock_fp) 2648 { 2649 rfs4_lo_state_t *lsp; 2650 bool_t create = FALSE; 2651 2652 lsp = (rfs4_lo_state_t *)rfs4_dbsearch(rfs4_lo_state_idx, id, 2653 &create, NULL, RFS4_DBS_VALID); 2654 if (lock_fp == TRUE && lsp != NULL) 2655 rw_enter(&lsp->rls_state->rs_finfo->rf_file_rwlock, RW_READER); 2656 2657 return (lsp); 2658 } 2659 2660 2661 static uint32_t 2662 lo_state_lo_hash(void *key) 2663 { 2664 rfs4_lo_state_t *lsp = key; 2665 2666 return (ADDRHASH(lsp->rls_locker) ^ ADDRHASH(lsp->rls_state)); 2667 } 2668 2669 static bool_t 2670 lo_state_lo_compare(rfs4_entry_t u_entry, void *key) 2671 { 2672 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 2673 rfs4_lo_state_t *keyp = key; 2674 2675 return (keyp->rls_locker == lsp->rls_locker && 2676 keyp->rls_state == lsp->rls_state); 2677 } 2678 2679 static void * 2680 lo_state_lo_mkkey(rfs4_entry_t u_entry) 2681 { 2682 return (u_entry); 2683 } 2684 2685 rfs4_lo_state_t * 2686 rfs4_findlo_state_by_owner(rfs4_lockowner_t *lo, rfs4_state_t *sp, 2687 bool_t *create) 2688 { 2689 rfs4_lo_state_t *lsp; 2690 rfs4_lo_state_t arg; 2691 2692 arg.rls_locker = lo; 2693 arg.rls_state = sp; 2694 2695 lsp = (rfs4_lo_state_t *)rfs4_dbsearch(rfs4_lo_state_owner_idx, &arg, 2696 create, &arg, RFS4_DBS_VALID); 2697 2698 return (lsp); 2699 } 2700 2701 static stateid_t 2702 get_stateid(id_t eid) 2703 { 2704 stateid_t id; 2705 2706 id.bits.boottime = rfs4_start_time; 2707 id.bits.ident = eid; 2708 id.bits.chgseq = 0; 2709 id.bits.type = 0; 2710 id.bits.pid = 0; 2711 2712 /* 2713 * If we are booted as a cluster node, embed our nodeid. 2714 * We've already done sanity checks in rfs4_client_create() so no 2715 * need to repeat them here. 2716 */ 2717 id.bits.clnodeid = (cluster_bootflags & CLUSTER_BOOTED) ? 2718 clconf_get_nodeid() : 0; 2719 2720 return (id); 2721 } 2722 2723 /* 2724 * For use only when booted as a cluster node. 2725 * Returns TRUE if the embedded nodeid indicates that this stateid was 2726 * generated on another node. 2727 */ 2728 static int 2729 foreign_stateid(stateid_t *id) 2730 { 2731 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2732 return (id->bits.clnodeid != (uint32_t)clconf_get_nodeid()); 2733 } 2734 2735 /* 2736 * For use only when booted as a cluster node. 2737 * Returns TRUE if the embedded nodeid indicates that this clientid was 2738 * generated on another node. 2739 */ 2740 static int 2741 foreign_clientid(cid *cidp) 2742 { 2743 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2744 return (cidp->impl_id.c_id >> CLUSTER_NODEID_SHIFT != 2745 (uint32_t)clconf_get_nodeid()); 2746 } 2747 2748 /* 2749 * For use only when booted as a cluster node. 2750 * Embed our cluster nodeid into the clientid. 2751 */ 2752 static void 2753 embed_nodeid(cid *cidp) 2754 { 2755 int clnodeid; 2756 /* 2757 * Currently, our state tables are small enough that their 2758 * ids will leave enough bits free for the nodeid. If the 2759 * tables become larger, we mustn't overwrite the id. 2760 * Equally, we only have room for so many bits of nodeid, so 2761 * must check that too. 2762 */ 2763 ASSERT(cluster_bootflags & CLUSTER_BOOTED); 2764 ASSERT(cidp->impl_id.c_id >> CLUSTER_NODEID_SHIFT == 0); 2765 clnodeid = clconf_get_nodeid(); 2766 ASSERT(clnodeid <= CLUSTER_MAX_NODEID); 2767 ASSERT(clnodeid != NODEID_UNKNOWN); 2768 cidp->impl_id.c_id |= (clnodeid << CLUSTER_NODEID_SHIFT); 2769 } 2770 2771 static uint32_t 2772 state_hash(void *key) 2773 { 2774 stateid_t *ip = (stateid_t *)key; 2775 2776 return (ip->bits.ident); 2777 } 2778 2779 static bool_t 2780 state_compare(rfs4_entry_t u_entry, void *key) 2781 { 2782 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2783 stateid_t *id = (stateid_t *)key; 2784 bool_t rc; 2785 2786 rc = (sp->rs_stateid.bits.boottime == id->bits.boottime && 2787 sp->rs_stateid.bits.ident == id->bits.ident); 2788 2789 return (rc); 2790 } 2791 2792 static void * 2793 state_mkkey(rfs4_entry_t u_entry) 2794 { 2795 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2796 2797 return (&sp->rs_stateid); 2798 } 2799 2800 static void 2801 rfs4_state_destroy(rfs4_entry_t u_entry) 2802 { 2803 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 2804 2805 /* remove from openowner list */ 2806 rfs4_dbe_lock(sp->rs_owner->ro_dbe); 2807 list_remove(&sp->rs_owner->ro_statelist, sp); 2808 rfs4_dbe_unlock(sp->rs_owner->ro_dbe); 2809 2810 list_destroy(&sp->rs_lostatelist); 2811 2812 /* release any share locks for this stateid if it's still open */ 2813 if (!sp->rs_closed) { 2814 rfs4_dbe_lock(sp->rs_dbe); 2815 (void) rfs4_unshare(sp); 2816 rfs4_dbe_unlock(sp->rs_dbe); 2817 } 2818 2819 /* Were done with the file */ 2820 rfs4_file_rele(sp->rs_finfo); 2821 sp->rs_finfo = NULL; 2822 2823 /* And now with the openowner */ 2824 rfs4_openowner_rele(sp->rs_owner); 2825 sp->rs_owner = NULL; 2826 } 2827 2828 static void 2829 rfs4_state_rele_nounlock(rfs4_state_t *sp) 2830 { 2831 rfs4_dbe_rele(sp->rs_dbe); 2832 } 2833 2834 void 2835 rfs4_state_rele(rfs4_state_t *sp) 2836 { 2837 rw_exit(&sp->rs_finfo->rf_file_rwlock); 2838 rfs4_dbe_rele(sp->rs_dbe); 2839 } 2840 2841 static uint32_t 2842 deleg_hash(void *key) 2843 { 2844 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)key; 2845 2846 return (ADDRHASH(dsp->rds_client) ^ ADDRHASH(dsp->rds_finfo)); 2847 } 2848 2849 static bool_t 2850 deleg_compare(rfs4_entry_t u_entry, void *key) 2851 { 2852 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2853 rfs4_deleg_state_t *kdsp = (rfs4_deleg_state_t *)key; 2854 2855 return (dsp->rds_client == kdsp->rds_client && 2856 dsp->rds_finfo == kdsp->rds_finfo); 2857 } 2858 2859 static void * 2860 deleg_mkkey(rfs4_entry_t u_entry) 2861 { 2862 return (u_entry); 2863 } 2864 2865 static uint32_t 2866 deleg_state_hash(void *key) 2867 { 2868 stateid_t *ip = (stateid_t *)key; 2869 2870 return (ip->bits.ident); 2871 } 2872 2873 static bool_t 2874 deleg_state_compare(rfs4_entry_t u_entry, void *key) 2875 { 2876 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2877 stateid_t *id = (stateid_t *)key; 2878 bool_t rc; 2879 2880 if (id->bits.type != DELEGID) 2881 return (FALSE); 2882 2883 rc = (dsp->rds_delegid.bits.boottime == id->bits.boottime && 2884 dsp->rds_delegid.bits.ident == id->bits.ident); 2885 2886 return (rc); 2887 } 2888 2889 static void * 2890 deleg_state_mkkey(rfs4_entry_t u_entry) 2891 { 2892 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2893 2894 return (&dsp->rds_delegid); 2895 } 2896 2897 static bool_t 2898 rfs4_deleg_state_expiry(rfs4_entry_t u_entry) 2899 { 2900 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2901 2902 if (rfs4_dbe_is_invalid(dsp->rds_dbe)) 2903 return (TRUE); 2904 2905 if (dsp->rds_dtype == OPEN_DELEGATE_NONE) 2906 return (TRUE); 2907 2908 if ((gethrestime_sec() - dsp->rds_client->rc_last_access 2909 > rfs4_lease_time)) { 2910 rfs4_dbe_invalidate(dsp->rds_dbe); 2911 return (TRUE); 2912 } 2913 2914 return (FALSE); 2915 } 2916 2917 static bool_t 2918 rfs4_deleg_state_create(rfs4_entry_t u_entry, void *argp) 2919 { 2920 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2921 rfs4_file_t *fp = ((rfs4_deleg_state_t *)argp)->rds_finfo; 2922 rfs4_client_t *cp = ((rfs4_deleg_state_t *)argp)->rds_client; 2923 2924 rfs4_dbe_hold(fp->rf_dbe); 2925 rfs4_dbe_hold(cp->rc_dbe); 2926 2927 dsp->rds_delegid = get_stateid(rfs4_dbe_getid(dsp->rds_dbe)); 2928 dsp->rds_delegid.bits.type = DELEGID; 2929 dsp->rds_finfo = fp; 2930 dsp->rds_client = cp; 2931 dsp->rds_dtype = OPEN_DELEGATE_NONE; 2932 2933 dsp->rds_time_granted = gethrestime_sec(); /* observability */ 2934 dsp->rds_time_revoked = 0; 2935 2936 list_link_init(&dsp->rds_node); 2937 2938 return (TRUE); 2939 } 2940 2941 static void 2942 rfs4_deleg_state_destroy(rfs4_entry_t u_entry) 2943 { 2944 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 2945 2946 /* return delegation if necessary */ 2947 rfs4_return_deleg(dsp, FALSE); 2948 2949 /* Were done with the file */ 2950 rfs4_file_rele(dsp->rds_finfo); 2951 dsp->rds_finfo = NULL; 2952 2953 /* And now with the openowner */ 2954 rfs4_client_rele(dsp->rds_client); 2955 dsp->rds_client = NULL; 2956 } 2957 2958 rfs4_deleg_state_t * 2959 rfs4_finddeleg(rfs4_state_t *sp, bool_t *create) 2960 { 2961 rfs4_deleg_state_t ds, *dsp; 2962 2963 ds.rds_client = sp->rs_owner->ro_client; 2964 ds.rds_finfo = sp->rs_finfo; 2965 2966 dsp = (rfs4_deleg_state_t *)rfs4_dbsearch(rfs4_deleg_idx, &ds, 2967 create, &ds, RFS4_DBS_VALID); 2968 2969 return (dsp); 2970 } 2971 2972 rfs4_deleg_state_t * 2973 rfs4_finddelegstate(stateid_t *id) 2974 { 2975 rfs4_deleg_state_t *dsp; 2976 bool_t create = FALSE; 2977 2978 dsp = (rfs4_deleg_state_t *)rfs4_dbsearch(rfs4_deleg_state_idx, id, 2979 &create, NULL, RFS4_DBS_VALID); 2980 2981 return (dsp); 2982 } 2983 2984 void 2985 rfs4_deleg_state_rele(rfs4_deleg_state_t *dsp) 2986 { 2987 rfs4_dbe_rele(dsp->rds_dbe); 2988 } 2989 2990 void 2991 rfs4_update_lock_sequence(rfs4_lo_state_t *lsp) 2992 { 2993 2994 rfs4_dbe_lock(lsp->rls_dbe); 2995 2996 /* 2997 * If we are skipping sequence id checking, this means that 2998 * this is the first lock request and therefore the sequence 2999 * id does not need to be updated. This only happens on the 3000 * first lock request for a lockowner 3001 */ 3002 if (!lsp->rls_skip_seqid_check) 3003 lsp->rls_seqid++; 3004 3005 rfs4_dbe_unlock(lsp->rls_dbe); 3006 } 3007 3008 void 3009 rfs4_update_lock_resp(rfs4_lo_state_t *lsp, nfs_resop4 *resp) 3010 { 3011 3012 rfs4_dbe_lock(lsp->rls_dbe); 3013 3014 rfs4_free_reply(&lsp->rls_reply); 3015 3016 rfs4_copy_reply(&lsp->rls_reply, resp); 3017 3018 rfs4_dbe_unlock(lsp->rls_dbe); 3019 } 3020 3021 void 3022 rfs4_free_opens(rfs4_openowner_t *oo, bool_t invalidate, 3023 bool_t close_of_client) 3024 { 3025 rfs4_state_t *sp; 3026 3027 rfs4_dbe_lock(oo->ro_dbe); 3028 3029 for (sp = list_head(&oo->ro_statelist); sp != NULL; 3030 sp = list_next(&oo->ro_statelist, sp)) { 3031 rfs4_state_close(sp, FALSE, close_of_client, CRED()); 3032 if (invalidate == TRUE) 3033 rfs4_dbe_invalidate(sp->rs_dbe); 3034 } 3035 3036 rfs4_dbe_invalidate(oo->ro_dbe); 3037 rfs4_dbe_unlock(oo->ro_dbe); 3038 } 3039 3040 static uint32_t 3041 state_owner_file_hash(void *key) 3042 { 3043 rfs4_state_t *sp = key; 3044 3045 return (ADDRHASH(sp->rs_owner) ^ ADDRHASH(sp->rs_finfo)); 3046 } 3047 3048 static bool_t 3049 state_owner_file_compare(rfs4_entry_t u_entry, void *key) 3050 { 3051 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3052 rfs4_state_t *arg = key; 3053 3054 if (sp->rs_closed == TRUE) 3055 return (FALSE); 3056 3057 return (arg->rs_owner == sp->rs_owner && arg->rs_finfo == sp->rs_finfo); 3058 } 3059 3060 static void * 3061 state_owner_file_mkkey(rfs4_entry_t u_entry) 3062 { 3063 return (u_entry); 3064 } 3065 3066 static uint32_t 3067 state_file_hash(void *key) 3068 { 3069 return (ADDRHASH(key)); 3070 } 3071 3072 static bool_t 3073 state_file_compare(rfs4_entry_t u_entry, void *key) 3074 { 3075 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3076 rfs4_file_t *fp = key; 3077 3078 if (sp->rs_closed == TRUE) 3079 return (FALSE); 3080 3081 return (fp == sp->rs_finfo); 3082 } 3083 3084 static void * 3085 state_file_mkkey(rfs4_entry_t u_entry) 3086 { 3087 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3088 3089 return (sp->rs_finfo); 3090 } 3091 3092 rfs4_state_t * 3093 rfs4_findstate_by_owner_file(rfs4_openowner_t *oo, rfs4_file_t *fp, 3094 bool_t *create) 3095 { 3096 rfs4_state_t *sp; 3097 rfs4_state_t key; 3098 3099 key.rs_owner = oo; 3100 key.rs_finfo = fp; 3101 3102 sp = (rfs4_state_t *)rfs4_dbsearch(rfs4_state_owner_file_idx, &key, 3103 create, &key, RFS4_DBS_VALID); 3104 3105 return (sp); 3106 } 3107 3108 /* This returns ANY state struct that refers to this file */ 3109 static rfs4_state_t * 3110 rfs4_findstate_by_file(rfs4_file_t *fp) 3111 { 3112 bool_t create = FALSE; 3113 3114 return ((rfs4_state_t *)rfs4_dbsearch(rfs4_state_file_idx, fp, 3115 &create, fp, RFS4_DBS_VALID)); 3116 } 3117 3118 static bool_t 3119 rfs4_state_expiry(rfs4_entry_t u_entry) 3120 { 3121 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3122 3123 if (rfs4_dbe_is_invalid(sp->rs_dbe)) 3124 return (TRUE); 3125 3126 if (sp->rs_closed == TRUE && 3127 ((gethrestime_sec() - rfs4_dbe_get_timerele(sp->rs_dbe)) 3128 > rfs4_lease_time)) 3129 return (TRUE); 3130 3131 return ((gethrestime_sec() - sp->rs_owner->ro_client->rc_last_access 3132 > rfs4_lease_time)); 3133 } 3134 3135 static bool_t 3136 rfs4_state_create(rfs4_entry_t u_entry, void *argp) 3137 { 3138 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3139 rfs4_file_t *fp = ((rfs4_state_t *)argp)->rs_finfo; 3140 rfs4_openowner_t *oo = ((rfs4_state_t *)argp)->rs_owner; 3141 3142 rfs4_dbe_hold(fp->rf_dbe); 3143 rfs4_dbe_hold(oo->ro_dbe); 3144 sp->rs_stateid = get_stateid(rfs4_dbe_getid(sp->rs_dbe)); 3145 sp->rs_stateid.bits.type = OPENID; 3146 sp->rs_owner = oo; 3147 sp->rs_finfo = fp; 3148 3149 list_create(&sp->rs_lostatelist, sizeof (rfs4_lo_state_t), 3150 offsetof(rfs4_lo_state_t, rls_node)); 3151 3152 /* Insert state on per open owner's list */ 3153 rfs4_dbe_lock(oo->ro_dbe); 3154 list_insert_tail(&oo->ro_statelist, sp); 3155 rfs4_dbe_unlock(oo->ro_dbe); 3156 3157 return (TRUE); 3158 } 3159 3160 static rfs4_state_t * 3161 rfs4_findstate(stateid_t *id, rfs4_dbsearch_type_t find_invalid, bool_t lock_fp) 3162 { 3163 rfs4_state_t *sp; 3164 bool_t create = FALSE; 3165 3166 sp = (rfs4_state_t *)rfs4_dbsearch(rfs4_state_idx, id, 3167 &create, NULL, find_invalid); 3168 if (lock_fp == TRUE && sp != NULL) 3169 rw_enter(&sp->rs_finfo->rf_file_rwlock, RW_READER); 3170 3171 return (sp); 3172 } 3173 3174 void 3175 rfs4_state_close(rfs4_state_t *sp, bool_t lock_held, bool_t close_of_client, 3176 cred_t *cr) 3177 { 3178 /* Remove the associated lo_state owners */ 3179 if (!lock_held) 3180 rfs4_dbe_lock(sp->rs_dbe); 3181 3182 /* 3183 * If refcnt == 0, the dbe is about to be destroyed. 3184 * lock state will be released by the reaper thread. 3185 */ 3186 3187 if (rfs4_dbe_refcnt(sp->rs_dbe) > 0) { 3188 if (sp->rs_closed == FALSE) { 3189 rfs4_release_share_lock_state(sp, cr, close_of_client); 3190 sp->rs_closed = TRUE; 3191 } 3192 } 3193 3194 if (!lock_held) 3195 rfs4_dbe_unlock(sp->rs_dbe); 3196 } 3197 3198 /* 3199 * Remove all state associated with the given client. 3200 */ 3201 void 3202 rfs4_client_state_remove(rfs4_client_t *cp) 3203 { 3204 rfs4_openowner_t *oo; 3205 3206 rfs4_dbe_lock(cp->rc_dbe); 3207 3208 for (oo = list_head(&cp->rc_openownerlist); oo != NULL; 3209 oo = list_next(&cp->rc_openownerlist, oo)) { 3210 rfs4_free_opens(oo, TRUE, TRUE); 3211 } 3212 3213 rfs4_dbe_unlock(cp->rc_dbe); 3214 } 3215 3216 void 3217 rfs4_client_close(rfs4_client_t *cp) 3218 { 3219 /* Mark client as going away. */ 3220 rfs4_dbe_lock(cp->rc_dbe); 3221 rfs4_dbe_invalidate(cp->rc_dbe); 3222 rfs4_dbe_unlock(cp->rc_dbe); 3223 3224 rfs4_client_state_remove(cp); 3225 3226 /* Release the client */ 3227 rfs4_client_rele(cp); 3228 } 3229 3230 nfsstat4 3231 rfs4_check_clientid(clientid4 *cp, int setclid_confirm) 3232 { 3233 cid *cidp = (cid *) cp; 3234 3235 /* 3236 * If we are booted as a cluster node, check the embedded nodeid. 3237 * If it indicates that this clientid was generated on another node, 3238 * inform the client accordingly. 3239 */ 3240 if (cluster_bootflags & CLUSTER_BOOTED && foreign_clientid(cidp)) 3241 return (NFS4ERR_STALE_CLIENTID); 3242 3243 /* 3244 * If the server start time matches the time provided 3245 * by the client (via the clientid) and this is NOT a 3246 * setclientid_confirm then return EXPIRED. 3247 */ 3248 if (!setclid_confirm && cidp->impl_id.start_time == rfs4_start_time) 3249 return (NFS4ERR_EXPIRED); 3250 3251 return (NFS4ERR_STALE_CLIENTID); 3252 } 3253 3254 /* 3255 * This is used when a stateid has not been found amongst the 3256 * current server's state. Check the stateid to see if it 3257 * was from this server instantiation or not. 3258 */ 3259 static nfsstat4 3260 what_stateid_error(stateid_t *id, stateid_type_t type) 3261 { 3262 /* If we are booted as a cluster node, was stateid locally generated? */ 3263 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3264 return (NFS4ERR_STALE_STATEID); 3265 3266 /* If types don't match then no use checking further */ 3267 if (type != id->bits.type) 3268 return (NFS4ERR_BAD_STATEID); 3269 3270 /* From a different server instantiation, return STALE */ 3271 if (id->bits.boottime != rfs4_start_time) 3272 return (NFS4ERR_STALE_STATEID); 3273 3274 /* 3275 * From this server but the state is most likely beyond lease 3276 * timeout: return NFS4ERR_EXPIRED. However, there is the 3277 * case of a delegation stateid. For delegations, there is a 3278 * case where the state can be removed without the client's 3279 * knowledge/consent: revocation. In the case of delegation 3280 * revocation, the delegation state will be removed and will 3281 * not be found. If the client does something like a 3282 * DELEGRETURN or even a READ/WRITE with a delegatoin stateid 3283 * that has been revoked, the server should return BAD_STATEID 3284 * instead of the more common EXPIRED error. 3285 */ 3286 if (id->bits.boottime == rfs4_start_time) { 3287 if (type == DELEGID) 3288 return (NFS4ERR_BAD_STATEID); 3289 else 3290 return (NFS4ERR_EXPIRED); 3291 } 3292 3293 return (NFS4ERR_BAD_STATEID); 3294 } 3295 3296 /* 3297 * Used later on to find the various state structs. When called from 3298 * rfs4_check_stateid()->rfs4_get_all_state(), no file struct lock is 3299 * taken (it is not needed) and helps on the read/write path with 3300 * respect to performance. 3301 */ 3302 static nfsstat4 3303 rfs4_get_state_lockit(stateid4 *stateid, rfs4_state_t **spp, 3304 rfs4_dbsearch_type_t find_invalid, bool_t lock_fp) 3305 { 3306 stateid_t *id = (stateid_t *)stateid; 3307 rfs4_state_t *sp; 3308 3309 *spp = NULL; 3310 3311 /* If we are booted as a cluster node, was stateid locally generated? */ 3312 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3313 return (NFS4ERR_STALE_STATEID); 3314 3315 sp = rfs4_findstate(id, find_invalid, lock_fp); 3316 if (sp == NULL) { 3317 return (what_stateid_error(id, OPENID)); 3318 } 3319 3320 if (rfs4_lease_expired(sp->rs_owner->ro_client)) { 3321 if (lock_fp == TRUE) 3322 rfs4_state_rele(sp); 3323 else 3324 rfs4_state_rele_nounlock(sp); 3325 return (NFS4ERR_EXPIRED); 3326 } 3327 3328 *spp = sp; 3329 3330 return (NFS4_OK); 3331 } 3332 3333 nfsstat4 3334 rfs4_get_state(stateid4 *stateid, rfs4_state_t **spp, 3335 rfs4_dbsearch_type_t find_invalid) 3336 { 3337 return (rfs4_get_state_lockit(stateid, spp, find_invalid, TRUE)); 3338 } 3339 3340 int 3341 rfs4_check_stateid_seqid(rfs4_state_t *sp, stateid4 *stateid) 3342 { 3343 stateid_t *id = (stateid_t *)stateid; 3344 3345 if (rfs4_lease_expired(sp->rs_owner->ro_client)) 3346 return (NFS4_CHECK_STATEID_EXPIRED); 3347 3348 /* Stateid is some time in the future - that's bad */ 3349 if (sp->rs_stateid.bits.chgseq < id->bits.chgseq) 3350 return (NFS4_CHECK_STATEID_BAD); 3351 3352 if (sp->rs_stateid.bits.chgseq == id->bits.chgseq + 1) 3353 return (NFS4_CHECK_STATEID_REPLAY); 3354 3355 /* Stateid is some time in the past - that's old */ 3356 if (sp->rs_stateid.bits.chgseq > id->bits.chgseq) 3357 return (NFS4_CHECK_STATEID_OLD); 3358 3359 /* Caller needs to know about confirmation before closure */ 3360 if (sp->rs_owner->ro_need_confirm) 3361 return (NFS4_CHECK_STATEID_UNCONFIRMED); 3362 3363 if (sp->rs_closed == TRUE) 3364 return (NFS4_CHECK_STATEID_CLOSED); 3365 3366 return (NFS4_CHECK_STATEID_OKAY); 3367 } 3368 3369 int 3370 rfs4_check_lo_stateid_seqid(rfs4_lo_state_t *lsp, stateid4 *stateid) 3371 { 3372 stateid_t *id = (stateid_t *)stateid; 3373 3374 if (rfs4_lease_expired(lsp->rls_state->rs_owner->ro_client)) 3375 return (NFS4_CHECK_STATEID_EXPIRED); 3376 3377 /* Stateid is some time in the future - that's bad */ 3378 if (lsp->rls_lockid.bits.chgseq < id->bits.chgseq) 3379 return (NFS4_CHECK_STATEID_BAD); 3380 3381 if (lsp->rls_lockid.bits.chgseq == id->bits.chgseq + 1) 3382 return (NFS4_CHECK_STATEID_REPLAY); 3383 3384 /* Stateid is some time in the past - that's old */ 3385 if (lsp->rls_lockid.bits.chgseq > id->bits.chgseq) 3386 return (NFS4_CHECK_STATEID_OLD); 3387 3388 if (lsp->rls_state->rs_closed == TRUE) 3389 return (NFS4_CHECK_STATEID_CLOSED); 3390 3391 return (NFS4_CHECK_STATEID_OKAY); 3392 } 3393 3394 nfsstat4 3395 rfs4_get_deleg_state(stateid4 *stateid, rfs4_deleg_state_t **dspp) 3396 { 3397 stateid_t *id = (stateid_t *)stateid; 3398 rfs4_deleg_state_t *dsp; 3399 3400 *dspp = NULL; 3401 3402 /* If we are booted as a cluster node, was stateid locally generated? */ 3403 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3404 return (NFS4ERR_STALE_STATEID); 3405 3406 dsp = rfs4_finddelegstate(id); 3407 if (dsp == NULL) { 3408 return (what_stateid_error(id, DELEGID)); 3409 } 3410 3411 if (rfs4_lease_expired(dsp->rds_client)) { 3412 rfs4_deleg_state_rele(dsp); 3413 return (NFS4ERR_EXPIRED); 3414 } 3415 3416 *dspp = dsp; 3417 3418 return (NFS4_OK); 3419 } 3420 3421 nfsstat4 3422 rfs4_get_lo_state(stateid4 *stateid, rfs4_lo_state_t **lspp, bool_t lock_fp) 3423 { 3424 stateid_t *id = (stateid_t *)stateid; 3425 rfs4_lo_state_t *lsp; 3426 3427 *lspp = NULL; 3428 3429 /* If we are booted as a cluster node, was stateid locally generated? */ 3430 if ((cluster_bootflags & CLUSTER_BOOTED) && foreign_stateid(id)) 3431 return (NFS4ERR_STALE_STATEID); 3432 3433 lsp = rfs4_findlo_state(id, lock_fp); 3434 if (lsp == NULL) { 3435 return (what_stateid_error(id, LOCKID)); 3436 } 3437 3438 if (rfs4_lease_expired(lsp->rls_state->rs_owner->ro_client)) { 3439 rfs4_lo_state_rele(lsp, lock_fp); 3440 return (NFS4ERR_EXPIRED); 3441 } 3442 3443 *lspp = lsp; 3444 3445 return (NFS4_OK); 3446 } 3447 3448 static nfsstat4 3449 rfs4_get_all_state(stateid4 *sid, rfs4_state_t **spp, 3450 rfs4_deleg_state_t **dspp, rfs4_lo_state_t **lspp) 3451 { 3452 rfs4_state_t *sp = NULL; 3453 rfs4_deleg_state_t *dsp = NULL; 3454 rfs4_lo_state_t *lsp = NULL; 3455 stateid_t *id; 3456 nfsstat4 status; 3457 3458 *spp = NULL; *dspp = NULL; *lspp = NULL; 3459 3460 id = (stateid_t *)sid; 3461 switch (id->bits.type) { 3462 case OPENID: 3463 status = rfs4_get_state_lockit(sid, &sp, FALSE, FALSE); 3464 break; 3465 case DELEGID: 3466 status = rfs4_get_deleg_state(sid, &dsp); 3467 break; 3468 case LOCKID: 3469 status = rfs4_get_lo_state(sid, &lsp, FALSE); 3470 if (status == NFS4_OK) { 3471 sp = lsp->rls_state; 3472 rfs4_dbe_hold(sp->rs_dbe); 3473 } 3474 break; 3475 default: 3476 status = NFS4ERR_BAD_STATEID; 3477 } 3478 3479 if (status == NFS4_OK) { 3480 *spp = sp; 3481 *dspp = dsp; 3482 *lspp = lsp; 3483 } 3484 3485 return (status); 3486 } 3487 3488 /* 3489 * Given the I/O mode (FREAD or FWRITE), this checks whether the 3490 * rfs4_state_t struct has access to do this operation and if so 3491 * return NFS4_OK; otherwise the proper NFSv4 error is returned. 3492 */ 3493 nfsstat4 3494 rfs4_state_has_access(rfs4_state_t *sp, int mode, vnode_t *vp) 3495 { 3496 nfsstat4 stat = NFS4_OK; 3497 rfs4_file_t *fp; 3498 bool_t create = FALSE; 3499 3500 rfs4_dbe_lock(sp->rs_dbe); 3501 if (mode == FWRITE) { 3502 if (!(sp->rs_share_access & OPEN4_SHARE_ACCESS_WRITE)) { 3503 stat = NFS4ERR_OPENMODE; 3504 } 3505 } else if (mode == FREAD) { 3506 if (!(sp->rs_share_access & OPEN4_SHARE_ACCESS_READ)) { 3507 /* 3508 * If we have OPENed the file with DENYing access 3509 * to both READ and WRITE then no one else could 3510 * have OPENed the file, hence no conflicting READ 3511 * deny. This check is merely an optimization. 3512 */ 3513 if (sp->rs_share_deny == OPEN4_SHARE_DENY_BOTH) 3514 goto out; 3515 3516 /* Check against file struct's DENY mode */ 3517 fp = rfs4_findfile(vp, NULL, &create); 3518 if (fp != NULL) { 3519 int deny_read = 0; 3520 rfs4_dbe_lock(fp->rf_dbe); 3521 /* 3522 * Check if any other open owner has the file 3523 * OPENed with deny READ. 3524 */ 3525 if (sp->rs_share_deny & OPEN4_SHARE_DENY_READ) 3526 deny_read = 1; 3527 ASSERT(fp->rf_deny_read >= deny_read); 3528 if (fp->rf_deny_read > deny_read) 3529 stat = NFS4ERR_OPENMODE; 3530 rfs4_dbe_unlock(fp->rf_dbe); 3531 rfs4_file_rele(fp); 3532 } 3533 } 3534 } else { 3535 /* Illegal I/O mode */ 3536 stat = NFS4ERR_INVAL; 3537 } 3538 out: 3539 rfs4_dbe_unlock(sp->rs_dbe); 3540 return (stat); 3541 } 3542 3543 /* 3544 * Given the I/O mode (FREAD or FWRITE), the vnode, the stateid and whether 3545 * the file is being truncated, return NFS4_OK if allowed or appropriate 3546 * V4 error if not. Note NFS4ERR_DELAY will be returned and a recall on 3547 * the associated file will be done if the I/O is not consistent with any 3548 * delegation in effect on the file. Should be holding VOP_RWLOCK, either 3549 * as reader or writer as appropriate. rfs4_op_open will acquire the 3550 * VOP_RWLOCK as writer when setting up delegation. If the stateid is bad 3551 * this routine will return NFS4ERR_BAD_STATEID. In addition, through the 3552 * deleg parameter, we will return whether a write delegation is held by 3553 * the client associated with this stateid. 3554 * If the server instance associated with the relevant client is in its 3555 * grace period, return NFS4ERR_GRACE. 3556 */ 3557 3558 nfsstat4 3559 rfs4_check_stateid(int mode, vnode_t *vp, 3560 stateid4 *stateid, bool_t trunc, bool_t *deleg, 3561 bool_t do_access, caller_context_t *ct) 3562 { 3563 rfs4_file_t *fp; 3564 bool_t create = FALSE; 3565 rfs4_state_t *sp; 3566 rfs4_deleg_state_t *dsp; 3567 rfs4_lo_state_t *lsp; 3568 stateid_t *id = (stateid_t *)stateid; 3569 nfsstat4 stat = NFS4_OK; 3570 3571 if (ct != NULL) { 3572 ct->cc_sysid = 0; 3573 ct->cc_pid = 0; 3574 ct->cc_caller_id = nfs4_srv_caller_id; 3575 ct->cc_flags = CC_DONTBLOCK; 3576 } 3577 3578 if (ISSPECIAL(stateid)) { 3579 fp = rfs4_findfile(vp, NULL, &create); 3580 if (fp == NULL) 3581 return (NFS4_OK); 3582 if (fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_NONE) { 3583 rfs4_file_rele(fp); 3584 return (NFS4_OK); 3585 } 3586 if (mode == FWRITE || 3587 fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_WRITE) { 3588 rfs4_recall_deleg(fp, trunc, NULL); 3589 rfs4_file_rele(fp); 3590 return (NFS4ERR_DELAY); 3591 } 3592 rfs4_file_rele(fp); 3593 return (NFS4_OK); 3594 } else { 3595 stat = rfs4_get_all_state(stateid, &sp, &dsp, &lsp); 3596 if (stat != NFS4_OK) 3597 return (stat); 3598 if (lsp != NULL) { 3599 /* Is associated server instance in its grace period? */ 3600 if (rfs4_clnt_in_grace(lsp->rls_locker->rl_client)) { 3601 rfs4_lo_state_rele(lsp, FALSE); 3602 if (sp != NULL) 3603 rfs4_state_rele_nounlock(sp); 3604 return (NFS4ERR_GRACE); 3605 } 3606 if (id->bits.type == LOCKID) { 3607 /* Seqid in the future? - that's bad */ 3608 if (lsp->rls_lockid.bits.chgseq < 3609 id->bits.chgseq) { 3610 rfs4_lo_state_rele(lsp, FALSE); 3611 if (sp != NULL) 3612 rfs4_state_rele_nounlock(sp); 3613 return (NFS4ERR_BAD_STATEID); 3614 } 3615 /* Seqid in the past? - that's old */ 3616 if (lsp->rls_lockid.bits.chgseq > 3617 id->bits.chgseq) { 3618 rfs4_lo_state_rele(lsp, FALSE); 3619 if (sp != NULL) 3620 rfs4_state_rele_nounlock(sp); 3621 return (NFS4ERR_OLD_STATEID); 3622 } 3623 /* Ensure specified filehandle matches */ 3624 if (lsp->rls_state->rs_finfo->rf_vp != vp) { 3625 rfs4_lo_state_rele(lsp, FALSE); 3626 if (sp != NULL) 3627 rfs4_state_rele_nounlock(sp); 3628 return (NFS4ERR_BAD_STATEID); 3629 } 3630 } 3631 if (ct != NULL) { 3632 ct->cc_sysid = 3633 lsp->rls_locker->rl_client->rc_sysidt; 3634 ct->cc_pid = lsp->rls_locker->rl_pid; 3635 } 3636 rfs4_lo_state_rele(lsp, FALSE); 3637 } 3638 3639 /* Stateid provided was an "open" stateid */ 3640 if (sp != NULL) { 3641 /* Is associated server instance in its grace period? */ 3642 if (rfs4_clnt_in_grace(sp->rs_owner->ro_client)) { 3643 rfs4_state_rele_nounlock(sp); 3644 return (NFS4ERR_GRACE); 3645 } 3646 if (id->bits.type == OPENID) { 3647 /* Seqid in the future? - that's bad */ 3648 if (sp->rs_stateid.bits.chgseq < 3649 id->bits.chgseq) { 3650 rfs4_state_rele_nounlock(sp); 3651 return (NFS4ERR_BAD_STATEID); 3652 } 3653 /* Seqid in the past - that's old */ 3654 if (sp->rs_stateid.bits.chgseq > 3655 id->bits.chgseq) { 3656 rfs4_state_rele_nounlock(sp); 3657 return (NFS4ERR_OLD_STATEID); 3658 } 3659 } 3660 /* Ensure specified filehandle matches */ 3661 if (sp->rs_finfo->rf_vp != vp) { 3662 rfs4_state_rele_nounlock(sp); 3663 return (NFS4ERR_BAD_STATEID); 3664 } 3665 3666 if (sp->rs_owner->ro_need_confirm) { 3667 rfs4_state_rele_nounlock(sp); 3668 return (NFS4ERR_BAD_STATEID); 3669 } 3670 3671 if (sp->rs_closed == TRUE) { 3672 rfs4_state_rele_nounlock(sp); 3673 return (NFS4ERR_OLD_STATEID); 3674 } 3675 3676 if (do_access) 3677 stat = rfs4_state_has_access(sp, mode, vp); 3678 else 3679 stat = NFS4_OK; 3680 3681 /* 3682 * Return whether this state has write 3683 * delegation if desired 3684 */ 3685 if (deleg && (sp->rs_finfo->rf_dinfo.rd_dtype == 3686 OPEN_DELEGATE_WRITE)) 3687 *deleg = TRUE; 3688 3689 /* 3690 * We got a valid stateid, so we update the 3691 * lease on the client. Ideally we would like 3692 * to do this after the calling op succeeds, 3693 * but for now this will be good 3694 * enough. Callers of this routine are 3695 * currently insulated from the state stuff. 3696 */ 3697 rfs4_update_lease(sp->rs_owner->ro_client); 3698 3699 /* 3700 * If a delegation is present on this file and 3701 * this is a WRITE, then update the lastwrite 3702 * time to indicate that activity is present. 3703 */ 3704 if (sp->rs_finfo->rf_dinfo.rd_dtype == 3705 OPEN_DELEGATE_WRITE && 3706 mode == FWRITE) { 3707 sp->rs_finfo->rf_dinfo.rd_time_lastwrite = 3708 gethrestime_sec(); 3709 } 3710 3711 rfs4_state_rele_nounlock(sp); 3712 3713 return (stat); 3714 } 3715 3716 if (dsp != NULL) { 3717 /* Is associated server instance in its grace period? */ 3718 if (rfs4_clnt_in_grace(dsp->rds_client)) { 3719 rfs4_deleg_state_rele(dsp); 3720 return (NFS4ERR_GRACE); 3721 } 3722 if (dsp->rds_delegid.bits.chgseq != id->bits.chgseq) { 3723 rfs4_deleg_state_rele(dsp); 3724 return (NFS4ERR_BAD_STATEID); 3725 } 3726 3727 /* Ensure specified filehandle matches */ 3728 if (dsp->rds_finfo->rf_vp != vp) { 3729 rfs4_deleg_state_rele(dsp); 3730 return (NFS4ERR_BAD_STATEID); 3731 } 3732 /* 3733 * Return whether this state has write 3734 * delegation if desired 3735 */ 3736 if (deleg && (dsp->rds_finfo->rf_dinfo.rd_dtype == 3737 OPEN_DELEGATE_WRITE)) 3738 *deleg = TRUE; 3739 3740 rfs4_update_lease(dsp->rds_client); 3741 3742 /* 3743 * If a delegation is present on this file and 3744 * this is a WRITE, then update the lastwrite 3745 * time to indicate that activity is present. 3746 */ 3747 if (dsp->rds_finfo->rf_dinfo.rd_dtype == 3748 OPEN_DELEGATE_WRITE && mode == FWRITE) { 3749 dsp->rds_finfo->rf_dinfo.rd_time_lastwrite = 3750 gethrestime_sec(); 3751 } 3752 3753 /* 3754 * XXX - what happens if this is a WRITE and the 3755 * delegation type of for READ. 3756 */ 3757 rfs4_deleg_state_rele(dsp); 3758 3759 return (stat); 3760 } 3761 /* 3762 * If we got this far, something bad happened 3763 */ 3764 return (NFS4ERR_BAD_STATEID); 3765 } 3766 } 3767 3768 3769 /* 3770 * This is a special function in that for the file struct provided the 3771 * server wants to remove/close all current state associated with the 3772 * file. The prime use of this would be with OP_REMOVE to force the 3773 * release of state and particularly of file locks. 3774 * 3775 * There is an assumption that there is no delegations outstanding on 3776 * this file at this point. The caller should have waited for those 3777 * to be returned or revoked. 3778 */ 3779 void 3780 rfs4_close_all_state(rfs4_file_t *fp) 3781 { 3782 rfs4_state_t *sp; 3783 3784 rfs4_dbe_lock(fp->rf_dbe); 3785 3786 #ifdef DEBUG 3787 /* only applies when server is handing out delegations */ 3788 if (rfs4_deleg_policy != SRV_NEVER_DELEGATE) 3789 ASSERT(fp->rf_dinfo.rd_hold_grant > 0); 3790 #endif 3791 3792 /* No delegations for this file */ 3793 ASSERT(list_is_empty(&fp->rf_delegstatelist)); 3794 3795 /* Make sure that it can not be found */ 3796 rfs4_dbe_invalidate(fp->rf_dbe); 3797 3798 if (fp->rf_vp == NULL) { 3799 rfs4_dbe_unlock(fp->rf_dbe); 3800 return; 3801 } 3802 rfs4_dbe_unlock(fp->rf_dbe); 3803 3804 /* 3805 * Hold as writer to prevent other server threads from 3806 * processing requests related to the file while all state is 3807 * being removed. 3808 */ 3809 rw_enter(&fp->rf_file_rwlock, RW_WRITER); 3810 3811 /* Remove ALL state from the file */ 3812 while (sp = rfs4_findstate_by_file(fp)) { 3813 rfs4_state_close(sp, FALSE, FALSE, CRED()); 3814 rfs4_state_rele_nounlock(sp); 3815 } 3816 3817 /* 3818 * This is only safe since there are no further references to 3819 * the file. 3820 */ 3821 rfs4_dbe_lock(fp->rf_dbe); 3822 if (fp->rf_vp) { 3823 vnode_t *vp = fp->rf_vp; 3824 3825 mutex_enter(&vp->v_vsd_lock); 3826 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 3827 mutex_exit(&vp->v_vsd_lock); 3828 VN_RELE(vp); 3829 fp->rf_vp = NULL; 3830 } 3831 rfs4_dbe_unlock(fp->rf_dbe); 3832 3833 /* Finally let other references to proceed */ 3834 rw_exit(&fp->rf_file_rwlock); 3835 } 3836 3837 /* 3838 * This function is used as a target for the rfs4_dbe_walk() call 3839 * below. The purpose of this function is to see if the 3840 * lockowner_state refers to a file that resides within the exportinfo 3841 * export. If so, then remove the lock_owner state (file locks and 3842 * share "locks") for this object since the intent is the server is 3843 * unexporting the specified directory. Be sure to invalidate the 3844 * object after the state has been released 3845 */ 3846 static void 3847 rfs4_lo_state_walk_callout(rfs4_entry_t u_entry, void *e) 3848 { 3849 rfs4_lo_state_t *lsp = (rfs4_lo_state_t *)u_entry; 3850 struct exportinfo *exi = (struct exportinfo *)e; 3851 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3852 fhandle_t *efhp; 3853 3854 efhp = (fhandle_t *)&exi->exi_fh; 3855 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3856 3857 FH_TO_FMT4(efhp, exi_fhp); 3858 3859 finfo_fhp = (nfs_fh4_fmt_t *)lsp->rls_state->rs_finfo-> 3860 rf_filehandle.nfs_fh4_val; 3861 3862 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3863 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3864 exi_fhp->fh4_xlen) == 0) { 3865 rfs4_state_close(lsp->rls_state, FALSE, FALSE, CRED()); 3866 rfs4_dbe_invalidate(lsp->rls_dbe); 3867 rfs4_dbe_invalidate(lsp->rls_state->rs_dbe); 3868 } 3869 } 3870 3871 /* 3872 * This function is used as a target for the rfs4_dbe_walk() call 3873 * below. The purpose of this function is to see if the state refers 3874 * to a file that resides within the exportinfo export. If so, then 3875 * remove the open state for this object since the intent is the 3876 * server is unexporting the specified directory. The main result for 3877 * this type of entry is to invalidate it such it will not be found in 3878 * the future. 3879 */ 3880 static void 3881 rfs4_state_walk_callout(rfs4_entry_t u_entry, void *e) 3882 { 3883 rfs4_state_t *sp = (rfs4_state_t *)u_entry; 3884 struct exportinfo *exi = (struct exportinfo *)e; 3885 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3886 fhandle_t *efhp; 3887 3888 efhp = (fhandle_t *)&exi->exi_fh; 3889 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3890 3891 FH_TO_FMT4(efhp, exi_fhp); 3892 3893 finfo_fhp = 3894 (nfs_fh4_fmt_t *)sp->rs_finfo->rf_filehandle.nfs_fh4_val; 3895 3896 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3897 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3898 exi_fhp->fh4_xlen) == 0) { 3899 rfs4_state_close(sp, TRUE, FALSE, CRED()); 3900 rfs4_dbe_invalidate(sp->rs_dbe); 3901 } 3902 } 3903 3904 /* 3905 * This function is used as a target for the rfs4_dbe_walk() call 3906 * below. The purpose of this function is to see if the state refers 3907 * to a file that resides within the exportinfo export. If so, then 3908 * remove the deleg state for this object since the intent is the 3909 * server is unexporting the specified directory. The main result for 3910 * this type of entry is to invalidate it such it will not be found in 3911 * the future. 3912 */ 3913 static void 3914 rfs4_deleg_state_walk_callout(rfs4_entry_t u_entry, void *e) 3915 { 3916 rfs4_deleg_state_t *dsp = (rfs4_deleg_state_t *)u_entry; 3917 struct exportinfo *exi = (struct exportinfo *)e; 3918 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3919 fhandle_t *efhp; 3920 3921 efhp = (fhandle_t *)&exi->exi_fh; 3922 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3923 3924 FH_TO_FMT4(efhp, exi_fhp); 3925 3926 finfo_fhp = 3927 (nfs_fh4_fmt_t *)dsp->rds_finfo->rf_filehandle.nfs_fh4_val; 3928 3929 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3930 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3931 exi_fhp->fh4_xlen) == 0) { 3932 rfs4_dbe_invalidate(dsp->rds_dbe); 3933 } 3934 } 3935 3936 /* 3937 * This function is used as a target for the rfs4_dbe_walk() call 3938 * below. The purpose of this function is to see if the state refers 3939 * to a file that resides within the exportinfo export. If so, then 3940 * release vnode hold for this object since the intent is the server 3941 * is unexporting the specified directory. Invalidation will prevent 3942 * this struct from being found in the future. 3943 */ 3944 static void 3945 rfs4_file_walk_callout(rfs4_entry_t u_entry, void *e) 3946 { 3947 rfs4_file_t *fp = (rfs4_file_t *)u_entry; 3948 struct exportinfo *exi = (struct exportinfo *)e; 3949 nfs_fh4_fmt_t fhfmt4, *exi_fhp, *finfo_fhp; 3950 fhandle_t *efhp; 3951 3952 efhp = (fhandle_t *)&exi->exi_fh; 3953 exi_fhp = (nfs_fh4_fmt_t *)&fhfmt4; 3954 3955 FH_TO_FMT4(efhp, exi_fhp); 3956 3957 finfo_fhp = (nfs_fh4_fmt_t *)fp->rf_filehandle.nfs_fh4_val; 3958 3959 if (EQFSID(&finfo_fhp->fh4_fsid, &exi_fhp->fh4_fsid) && 3960 bcmp(&finfo_fhp->fh4_xdata, &exi_fhp->fh4_xdata, 3961 exi_fhp->fh4_xlen) == 0) { 3962 if (fp->rf_vp) { 3963 vnode_t *vp = fp->rf_vp; 3964 3965 /* 3966 * don't leak monitors and remove the reference 3967 * put on the vnode when the delegation was granted. 3968 */ 3969 if (fp->rf_dinfo.rd_dtype == OPEN_DELEGATE_READ) { 3970 (void) fem_uninstall(vp, deleg_rdops, 3971 (void *)fp); 3972 vn_open_downgrade(vp, FREAD); 3973 } else if (fp->rf_dinfo.rd_dtype == 3974 OPEN_DELEGATE_WRITE) { 3975 (void) fem_uninstall(vp, deleg_wrops, 3976 (void *)fp); 3977 vn_open_downgrade(vp, FREAD|FWRITE); 3978 } 3979 mutex_enter(&vp->v_vsd_lock); 3980 (void) vsd_set(vp, nfs4_srv_vkey, NULL); 3981 mutex_exit(&vp->v_vsd_lock); 3982 VN_RELE(vp); 3983 fp->rf_vp = NULL; 3984 } 3985 rfs4_dbe_invalidate(fp->rf_dbe); 3986 } 3987 } 3988 3989 /* 3990 * Given a directory that is being unexported, cleanup/release all 3991 * state in the server that refers to objects residing underneath this 3992 * particular export. The ordering of the release is important. 3993 * Lock_owner, then state and then file. 3994 */ 3995 void 3996 rfs4_clean_state_exi(struct exportinfo *exi) 3997 { 3998 mutex_enter(&rfs4_state_lock); 3999 4000 if (rfs4_server_state == NULL) { 4001 mutex_exit(&rfs4_state_lock); 4002 return; 4003 } 4004 4005 rfs4_dbe_walk(rfs4_lo_state_tab, rfs4_lo_state_walk_callout, exi); 4006 rfs4_dbe_walk(rfs4_state_tab, rfs4_state_walk_callout, exi); 4007 rfs4_dbe_walk(rfs4_deleg_state_tab, rfs4_deleg_state_walk_callout, exi); 4008 rfs4_dbe_walk(rfs4_file_tab, rfs4_file_walk_callout, exi); 4009 4010 mutex_exit(&rfs4_state_lock); 4011 } 4012