1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 /* 32 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 33 * Copyright (c) 2017 by Delphix. All rights reserved. 34 */ 35 36 #include <sys/param.h> 37 #include <sys/types.h> 38 #include <sys/systm.h> 39 #include <sys/cred.h> 40 #include <sys/proc.h> 41 #include <sys/user.h> 42 #include <sys/time.h> 43 #include <sys/buf.h> 44 #include <sys/vfs.h> 45 #include <sys/vnode.h> 46 #include <sys/socket.h> 47 #include <sys/uio.h> 48 #include <sys/tiuser.h> 49 #include <sys/swap.h> 50 #include <sys/errno.h> 51 #include <sys/debug.h> 52 #include <sys/kmem.h> 53 #include <sys/kstat.h> 54 #include <sys/cmn_err.h> 55 #include <sys/vtrace.h> 56 #include <sys/session.h> 57 #include <sys/dnlc.h> 58 #include <sys/bitmap.h> 59 #include <sys/acl.h> 60 #include <sys/ddi.h> 61 #include <sys/pathname.h> 62 #include <sys/flock.h> 63 #include <sys/dirent.h> 64 #include <sys/flock.h> 65 #include <sys/callb.h> 66 #include <sys/sdt.h> 67 68 #include <vm/pvn.h> 69 70 #include <rpc/types.h> 71 #include <rpc/xdr.h> 72 #include <rpc/auth.h> 73 #include <rpc/rpcsec_gss.h> 74 #include <rpc/clnt.h> 75 76 #include <nfs/nfs.h> 77 #include <nfs/nfs_clnt.h> 78 #include <nfs/nfs_acl.h> 79 80 #include <nfs/nfs4.h> 81 #include <nfs/rnode4.h> 82 #include <nfs/nfs4_clnt.h> 83 84 /* 85 * The hash queues for the access to active and cached rnodes 86 * are organized as doubly linked lists. A reader/writer lock 87 * for each hash bucket is used to control access and to synchronize 88 * lookups, additions, and deletions from the hash queue. 89 * 90 * The rnode freelist is organized as a doubly linked list with 91 * a head pointer. Additions and deletions are synchronized via 92 * a single mutex. 93 * 94 * In order to add an rnode to the free list, it must be hashed into 95 * a hash queue and the exclusive lock to the hash queue be held. 96 * If an rnode is not hashed into a hash queue, then it is destroyed 97 * because it represents no valuable information that can be reused 98 * about the file. The exclusive lock to the hash queue must be 99 * held in order to prevent a lookup in the hash queue from finding 100 * the rnode and using it and assuming that the rnode is not on the 101 * freelist. The lookup in the hash queue will have the hash queue 102 * locked, either exclusive or shared. 103 * 104 * The vnode reference count for each rnode is not allowed to drop 105 * below 1. This prevents external entities, such as the VM 106 * subsystem, from acquiring references to vnodes already on the 107 * freelist and then trying to place them back on the freelist 108 * when their reference is released. This means that the when an 109 * rnode is looked up in the hash queues, then either the rnode 110 * is removed from the freelist and that reference is transferred to 111 * the new reference or the vnode reference count must be incremented 112 * accordingly. The mutex for the freelist must be held in order to 113 * accurately test to see if the rnode is on the freelist or not. 114 * The hash queue lock might be held shared and it is possible that 115 * two different threads may race to remove the rnode from the 116 * freelist. This race can be resolved by holding the mutex for the 117 * freelist. Please note that the mutex for the freelist does not 118 * need to be held if the rnode is not on the freelist. It can not be 119 * placed on the freelist due to the requirement that the thread 120 * putting the rnode on the freelist must hold the exclusive lock 121 * to the hash queue and the thread doing the lookup in the hash 122 * queue is holding either a shared or exclusive lock to the hash 123 * queue. 124 * 125 * The lock ordering is: 126 * 127 * hash bucket lock -> vnode lock 128 * hash bucket lock -> freelist lock -> r_statelock 129 */ 130 r4hashq_t *rtable4; 131 132 static kmutex_t rp4freelist_lock; 133 static rnode4_t *rp4freelist = NULL; 134 static long rnode4_new = 0; 135 int rtable4size; 136 static int rtable4mask; 137 static struct kmem_cache *rnode4_cache; 138 static int rnode4_hashlen = 4; 139 140 static void r4inactive(rnode4_t *, cred_t *); 141 static vnode_t *make_rnode4(nfs4_sharedfh_t *, r4hashq_t *, struct vfs *, 142 struct vnodeops *, 143 int (*)(vnode_t *, page_t *, u_offset_t *, size_t *, int, 144 cred_t *), 145 int *, cred_t *); 146 static void rp4_rmfree(rnode4_t *); 147 int nfs4_free_data_reclaim(rnode4_t *); 148 static int nfs4_active_data_reclaim(rnode4_t *); 149 static int nfs4_free_reclaim(void); 150 static int nfs4_active_reclaim(void); 151 static int nfs4_rnode_reclaim(void); 152 static void nfs4_reclaim(void *); 153 static int isrootfh(nfs4_sharedfh_t *, rnode4_t *); 154 static void uninit_rnode4(rnode4_t *); 155 static void destroy_rnode4(rnode4_t *); 156 static void r4_stub_set(rnode4_t *, nfs4_stub_type_t); 157 158 #ifdef DEBUG 159 static int r4_check_for_dups = 0; /* Flag to enable dup rnode detection. */ 160 static int nfs4_rnode_debug = 0; 161 /* if nonzero, kmem_cache_free() rnodes rather than place on freelist */ 162 static int nfs4_rnode_nofreelist = 0; 163 /* give messages on colliding shared filehandles */ 164 static void r4_dup_check(rnode4_t *, vfs_t *); 165 #endif 166 167 /* 168 * If the vnode has pages, run the list and check for any that are 169 * still dangling. We call this routine before putting an rnode on 170 * the free list. 171 */ 172 static int 173 nfs4_dross_pages(vnode_t *vp) 174 { 175 page_t *pp; 176 kmutex_t *vphm; 177 178 vphm = page_vnode_mutex(vp); 179 mutex_enter(vphm); 180 if ((pp = vp->v_pages) != NULL) { 181 do { 182 if (pp->p_hash != PVN_VPLIST_HASH_TAG && 183 pp->p_fsdata != C_NOCOMMIT) { 184 mutex_exit(vphm); 185 return (1); 186 } 187 } while ((pp = pp->p_vpnext) != vp->v_pages); 188 } 189 mutex_exit(vphm); 190 191 return (0); 192 } 193 194 /* 195 * Flush any pages left on this rnode. 196 */ 197 static void 198 r4flushpages(rnode4_t *rp, cred_t *cr) 199 { 200 vnode_t *vp; 201 int error; 202 203 /* 204 * Before freeing anything, wait until all asynchronous 205 * activity is done on this rnode. This will allow all 206 * asynchronous read ahead and write behind i/o's to 207 * finish. 208 */ 209 mutex_enter(&rp->r_statelock); 210 while (rp->r_count > 0) 211 cv_wait(&rp->r_cv, &rp->r_statelock); 212 mutex_exit(&rp->r_statelock); 213 214 /* 215 * Flush and invalidate all pages associated with the vnode. 216 */ 217 vp = RTOV4(rp); 218 if (nfs4_has_pages(vp)) { 219 ASSERT(vp->v_type != VCHR); 220 if ((rp->r_flags & R4DIRTY) && !rp->r_error) { 221 error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, 0, cr, NULL); 222 if (error && (error == ENOSPC || error == EDQUOT)) { 223 mutex_enter(&rp->r_statelock); 224 if (!rp->r_error) 225 rp->r_error = error; 226 mutex_exit(&rp->r_statelock); 227 } 228 } 229 nfs4_invalidate_pages(vp, (u_offset_t)0, cr); 230 } 231 } 232 233 /* 234 * Free the resources associated with an rnode. 235 */ 236 static void 237 r4inactive(rnode4_t *rp, cred_t *cr) 238 { 239 vnode_t *vp; 240 char *contents; 241 int size; 242 vsecattr_t *vsp; 243 vnode_t *xattr; 244 245 r4flushpages(rp, cr); 246 247 vp = RTOV4(rp); 248 249 /* 250 * Free any held caches which may be 251 * associated with this rnode. 252 */ 253 mutex_enter(&rp->r_statelock); 254 contents = rp->r_symlink.contents; 255 size = rp->r_symlink.size; 256 rp->r_symlink.contents = NULL; 257 vsp = rp->r_secattr; 258 rp->r_secattr = NULL; 259 xattr = rp->r_xattr_dir; 260 rp->r_xattr_dir = NULL; 261 mutex_exit(&rp->r_statelock); 262 263 /* 264 * Free the access cache entries. 265 */ 266 (void) nfs4_access_purge_rp(rp); 267 268 /* 269 * Free the readdir cache entries. 270 */ 271 nfs4_purge_rddir_cache(vp); 272 273 /* 274 * Free the symbolic link cache. 275 */ 276 if (contents != NULL) { 277 278 kmem_free((void *)contents, size); 279 } 280 281 /* 282 * Free any cached ACL. 283 */ 284 if (vsp != NULL) 285 nfs4_acl_free_cache(vsp); 286 287 /* 288 * Release the cached xattr_dir 289 */ 290 if (xattr != NULL) 291 VN_RELE(xattr); 292 } 293 294 /* 295 * We have seen a case that the fh passed in is for "." which 296 * should be a VROOT node, however, the fh is different from the 297 * root fh stored in the mntinfo4_t. The invalid fh might be 298 * from a misbehaved server and will panic the client system at 299 * a later time. To avoid the panic, we drop the bad fh, use 300 * the root fh from mntinfo4_t, and print an error message 301 * for attention. 302 */ 303 nfs4_sharedfh_t * 304 badrootfh_check(nfs4_sharedfh_t *fh, nfs4_fname_t *nm, mntinfo4_t *mi, 305 int *wasbad) 306 { 307 char *s; 308 309 *wasbad = 0; 310 s = fn_name(nm); 311 ASSERT(strcmp(s, "..") != 0); 312 313 if ((s[0] == '.' && s[1] == '\0') && fh && 314 !SFH4_SAME(mi->mi_rootfh, fh)) { 315 #ifdef DEBUG 316 nfs4_fhandle_t fhandle; 317 318 zcmn_err(mi->mi_zone->zone_id, CE_WARN, 319 "Server %s returns a different " 320 "root filehandle for the path %s:", 321 mi->mi_curr_serv->sv_hostname, 322 mi->mi_curr_serv->sv_path); 323 324 /* print the bad fh */ 325 fhandle.fh_len = fh->sfh_fh.nfs_fh4_len; 326 bcopy(fh->sfh_fh.nfs_fh4_val, fhandle.fh_buf, 327 fhandle.fh_len); 328 nfs4_printfhandle(&fhandle); 329 330 /* print mi_rootfh */ 331 fhandle.fh_len = mi->mi_rootfh->sfh_fh.nfs_fh4_len; 332 bcopy(mi->mi_rootfh->sfh_fh.nfs_fh4_val, fhandle.fh_buf, 333 fhandle.fh_len); 334 nfs4_printfhandle(&fhandle); 335 #endif 336 /* use mi_rootfh instead; fh will be rele by the caller */ 337 fh = mi->mi_rootfh; 338 *wasbad = 1; 339 } 340 341 kmem_free(s, MAXNAMELEN); 342 return (fh); 343 } 344 345 void 346 r4_do_attrcache(vnode_t *vp, nfs4_ga_res_t *garp, int newnode, 347 hrtime_t t, cred_t *cr, int index) 348 { 349 int is_stub; 350 vattr_t *attr; 351 /* 352 * Don't add to attrcache if time overflow, but 353 * no need to check because either attr is null or the time 354 * values in it were processed by nfs4_time_ntov(), which checks 355 * for time overflows. 356 */ 357 attr = garp ? &garp->n4g_va : NULL; 358 359 if (attr) { 360 if (!newnode) { 361 rw_exit(&rtable4[index].r_lock); 362 #ifdef DEBUG 363 if (vp->v_type != attr->va_type && 364 vp->v_type != VNON && attr->va_type != VNON) { 365 zcmn_err(VTOMI4(vp)->mi_zone->zone_id, CE_WARN, 366 "makenfs4node: type (%d) doesn't " 367 "match type of found node at %p (%d)", 368 attr->va_type, (void *)vp, vp->v_type); 369 } 370 #endif 371 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 372 } else { 373 rnode4_t *rp = VTOR4(vp); 374 375 vp->v_type = attr->va_type; 376 vp->v_rdev = attr->va_rdev; 377 378 /* 379 * Turn this object into a "stub" object if we 380 * crossed an underlying server fs boundary. 381 * To make this check, during mount we save the 382 * fsid of the server object being mounted. 383 * Here we compare this object's server fsid 384 * with the fsid we saved at mount. If they 385 * are different, we crossed server fs boundary. 386 * 387 * The stub type is set (or not) at rnode 388 * creation time and it never changes for life 389 * of the rnode. 390 * 391 * This stub will be for a mirror-mount, rather than 392 * a referral (the latter also sets R4SRVSTUB). 393 * 394 * The stub type is also set during RO failover, 395 * nfs4_remap_file(). 396 * 397 * We don't bother with taking r_state_lock to 398 * set the stub type because this is a new rnode 399 * and we're holding the hash bucket r_lock RW_WRITER. 400 * No other thread could have obtained access 401 * to this rnode. 402 */ 403 is_stub = 0; 404 if (garp->n4g_fsid_valid) { 405 fattr4_fsid ga_fsid = garp->n4g_fsid; 406 servinfo4_t *svp = rp->r_server; 407 408 rp->r_srv_fsid = ga_fsid; 409 410 (void) nfs_rw_enter_sig(&svp->sv_lock, 411 RW_READER, 0); 412 if (!FATTR4_FSID_EQ(&ga_fsid, &svp->sv_fsid)) 413 is_stub = 1; 414 nfs_rw_exit(&svp->sv_lock); 415 } 416 417 if (is_stub) 418 r4_stub_mirrormount(rp); 419 else 420 r4_stub_none(rp); 421 422 /* Can not cache partial attr */ 423 if (attr->va_mask == AT_ALL) 424 nfs4_attrcache_noinval(vp, garp, t); 425 else 426 PURGE_ATTRCACHE4(vp); 427 428 rw_exit(&rtable4[index].r_lock); 429 } 430 } else { 431 if (newnode) { 432 PURGE_ATTRCACHE4(vp); 433 } 434 rw_exit(&rtable4[index].r_lock); 435 } 436 } 437 438 /* 439 * Find or create an rnode based primarily on filehandle. To be 440 * used when dvp (vnode for parent directory) is not available; 441 * otherwise, makenfs4node() should be used. 442 * 443 * The nfs4_fname_t argument *npp is consumed and nulled out. 444 */ 445 446 vnode_t * 447 makenfs4node_by_fh(nfs4_sharedfh_t *sfh, nfs4_sharedfh_t *psfh, 448 nfs4_fname_t **npp, nfs4_ga_res_t *garp, 449 mntinfo4_t *mi, cred_t *cr, hrtime_t t) 450 { 451 vfs_t *vfsp = mi->mi_vfsp; 452 int newnode = 0; 453 vnode_t *vp; 454 rnode4_t *rp; 455 svnode_t *svp; 456 nfs4_fname_t *name, *svpname; 457 int index; 458 459 ASSERT(npp && *npp); 460 name = *npp; 461 *npp = NULL; 462 463 index = rtable4hash(sfh); 464 rw_enter(&rtable4[index].r_lock, RW_READER); 465 466 vp = make_rnode4(sfh, &rtable4[index], vfsp, 467 nfs4_vnodeops, nfs4_putapage, &newnode, cr); 468 469 svp = VTOSV(vp); 470 rp = VTOR4(vp); 471 if (newnode) { 472 svp->sv_forw = svp->sv_back = svp; 473 svp->sv_name = name; 474 if (psfh != NULL) 475 sfh4_hold(psfh); 476 svp->sv_dfh = psfh; 477 } else { 478 /* 479 * It is possible that due to a server 480 * side rename fnames have changed. 481 * update the fname here. 482 */ 483 mutex_enter(&rp->r_svlock); 484 svpname = svp->sv_name; 485 if (svp->sv_name != name) { 486 svp->sv_name = name; 487 mutex_exit(&rp->r_svlock); 488 fn_rele(&svpname); 489 } else { 490 mutex_exit(&rp->r_svlock); 491 fn_rele(&name); 492 } 493 } 494 495 ASSERT(RW_LOCK_HELD(&rtable4[index].r_lock)); 496 r4_do_attrcache(vp, garp, newnode, t, cr, index); 497 ASSERT(rw_owner(&rtable4[index].r_lock) != curthread); 498 499 return (vp); 500 } 501 502 /* 503 * Find or create a vnode for the given filehandle, filesystem, parent, and 504 * name. The reference to nm is consumed, so the caller must first do an 505 * fn_hold() if it wants to continue using nm after this call. 506 */ 507 vnode_t * 508 makenfs4node(nfs4_sharedfh_t *fh, nfs4_ga_res_t *garp, struct vfs *vfsp, 509 hrtime_t t, cred_t *cr, vnode_t *dvp, nfs4_fname_t *nm) 510 { 511 vnode_t *vp; 512 int newnode; 513 int index; 514 mntinfo4_t *mi = VFTOMI4(vfsp); 515 int had_badfh = 0; 516 rnode4_t *rp; 517 518 ASSERT(dvp != NULL); 519 520 fh = badrootfh_check(fh, nm, mi, &had_badfh); 521 522 index = rtable4hash(fh); 523 rw_enter(&rtable4[index].r_lock, RW_READER); 524 525 /* 526 * Note: make_rnode4() may upgrade the hash bucket lock to exclusive. 527 */ 528 vp = make_rnode4(fh, &rtable4[index], vfsp, nfs4_vnodeops, 529 nfs4_putapage, &newnode, cr); 530 531 rp = VTOR4(vp); 532 sv_activate(&vp, dvp, &nm, newnode); 533 if (dvp->v_flag & V_XATTRDIR) { 534 mutex_enter(&rp->r_statelock); 535 rp->r_flags |= R4ISXATTR; 536 mutex_exit(&rp->r_statelock); 537 } 538 539 /* if getting a bad file handle, do not cache the attributes. */ 540 if (had_badfh) { 541 rw_exit(&rtable4[index].r_lock); 542 return (vp); 543 } 544 545 ASSERT(RW_LOCK_HELD(&rtable4[index].r_lock)); 546 r4_do_attrcache(vp, garp, newnode, t, cr, index); 547 ASSERT(rw_owner(&rtable4[index].r_lock) != curthread); 548 549 return (vp); 550 } 551 552 /* 553 * Hash on address of filehandle object. 554 * XXX totally untuned. 555 */ 556 557 int 558 rtable4hash(nfs4_sharedfh_t *fh) 559 { 560 return (((uintptr_t)fh / sizeof (*fh)) & rtable4mask); 561 } 562 563 /* 564 * Find or create the vnode for the given filehandle and filesystem. 565 * *newnode is set to zero if the vnode already existed; non-zero if it had 566 * to be created. 567 * 568 * Note: make_rnode4() may upgrade the hash bucket lock to exclusive. 569 */ 570 571 static vnode_t * 572 make_rnode4(nfs4_sharedfh_t *fh, r4hashq_t *rhtp, struct vfs *vfsp, 573 struct vnodeops *vops, 574 int (*putapage)(vnode_t *, page_t *, u_offset_t *, size_t *, int, cred_t *), 575 int *newnode, cred_t *cr) 576 { 577 rnode4_t *rp; 578 rnode4_t *trp; 579 vnode_t *vp; 580 mntinfo4_t *mi; 581 582 ASSERT(RW_READ_HELD(&rhtp->r_lock)); 583 584 mi = VFTOMI4(vfsp); 585 586 start: 587 if ((rp = r4find(rhtp, fh, vfsp)) != NULL) { 588 vp = RTOV4(rp); 589 *newnode = 0; 590 return (vp); 591 } 592 rw_exit(&rhtp->r_lock); 593 594 mutex_enter(&rp4freelist_lock); 595 596 if (rp4freelist != NULL && rnode4_new >= nrnode) { 597 rp = rp4freelist; 598 rp4_rmfree(rp); 599 mutex_exit(&rp4freelist_lock); 600 601 vp = RTOV4(rp); 602 603 if (rp->r_flags & R4HASHED) { 604 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 605 mutex_enter(&vp->v_lock); 606 if (vp->v_count > 1) { 607 VN_RELE_LOCKED(vp); 608 mutex_exit(&vp->v_lock); 609 rw_exit(&rp->r_hashq->r_lock); 610 rw_enter(&rhtp->r_lock, RW_READER); 611 goto start; 612 } 613 mutex_exit(&vp->v_lock); 614 rp4_rmhash_locked(rp); 615 rw_exit(&rp->r_hashq->r_lock); 616 } 617 618 r4inactive(rp, cr); 619 620 mutex_enter(&vp->v_lock); 621 if (vp->v_count > 1) { 622 VN_RELE_LOCKED(vp); 623 mutex_exit(&vp->v_lock); 624 rw_enter(&rhtp->r_lock, RW_READER); 625 goto start; 626 } 627 mutex_exit(&vp->v_lock); 628 vn_invalid(vp); 629 630 /* 631 * destroy old locks before bzero'ing and 632 * recreating the locks below. 633 */ 634 uninit_rnode4(rp); 635 636 /* 637 * Make sure that if rnode is recycled then 638 * VFS count is decremented properly before 639 * reuse. 640 */ 641 VFS_RELE(vp->v_vfsp); 642 vn_reinit(vp); 643 } else { 644 vnode_t *new_vp; 645 646 mutex_exit(&rp4freelist_lock); 647 648 rp = kmem_cache_alloc(rnode4_cache, KM_SLEEP); 649 new_vp = vn_alloc(KM_SLEEP); 650 651 atomic_inc_ulong((ulong_t *)&rnode4_new); 652 #ifdef DEBUG 653 clstat4_debug.nrnode.value.ui64++; 654 #endif 655 vp = new_vp; 656 } 657 658 bzero(rp, sizeof (*rp)); 659 rp->r_vnode = vp; 660 nfs_rw_init(&rp->r_rwlock, NULL, RW_DEFAULT, NULL); 661 nfs_rw_init(&rp->r_lkserlock, NULL, RW_DEFAULT, NULL); 662 mutex_init(&rp->r_svlock, NULL, MUTEX_DEFAULT, NULL); 663 mutex_init(&rp->r_statelock, NULL, MUTEX_DEFAULT, NULL); 664 mutex_init(&rp->r_statev4_lock, NULL, MUTEX_DEFAULT, NULL); 665 mutex_init(&rp->r_os_lock, NULL, MUTEX_DEFAULT, NULL); 666 rp->created_v4 = 0; 667 list_create(&rp->r_open_streams, sizeof (nfs4_open_stream_t), 668 offsetof(nfs4_open_stream_t, os_node)); 669 rp->r_lo_head.lo_prev_rnode = &rp->r_lo_head; 670 rp->r_lo_head.lo_next_rnode = &rp->r_lo_head; 671 cv_init(&rp->r_cv, NULL, CV_DEFAULT, NULL); 672 cv_init(&rp->r_commit.c_cv, NULL, CV_DEFAULT, NULL); 673 rp->r_flags = R4READDIRWATTR; 674 rp->r_fh = fh; 675 rp->r_hashq = rhtp; 676 sfh4_hold(rp->r_fh); 677 rp->r_server = mi->mi_curr_serv; 678 rp->r_deleg_type = OPEN_DELEGATE_NONE; 679 rp->r_deleg_needs_recovery = OPEN_DELEGATE_NONE; 680 nfs_rw_init(&rp->r_deleg_recall_lock, NULL, RW_DEFAULT, NULL); 681 682 rddir4_cache_create(rp); 683 rp->r_putapage = putapage; 684 vn_setops(vp, vops); 685 vp->v_data = (caddr_t)rp; 686 vp->v_vfsp = vfsp; 687 VFS_HOLD(vfsp); 688 vp->v_type = VNON; 689 vp->v_flag |= VMODSORT; 690 if (isrootfh(fh, rp)) 691 vp->v_flag = VROOT; 692 vn_exists(vp); 693 694 /* 695 * There is a race condition if someone else 696 * alloc's the rnode while no locks are held, so we 697 * check again and recover if found. 698 */ 699 rw_enter(&rhtp->r_lock, RW_WRITER); 700 if ((trp = r4find(rhtp, fh, vfsp)) != NULL) { 701 vp = RTOV4(trp); 702 *newnode = 0; 703 rw_exit(&rhtp->r_lock); 704 rp4_addfree(rp, cr); 705 rw_enter(&rhtp->r_lock, RW_READER); 706 return (vp); 707 } 708 rp4_addhash(rp); 709 *newnode = 1; 710 return (vp); 711 } 712 713 static void 714 uninit_rnode4(rnode4_t *rp) 715 { 716 vnode_t *vp = RTOV4(rp); 717 718 ASSERT(rp != NULL); 719 ASSERT(vp != NULL); 720 ASSERT(vp->v_count == 1); 721 ASSERT(rp->r_count == 0); 722 ASSERT(rp->r_mapcnt == 0); 723 if (rp->r_flags & R4LODANGLERS) { 724 nfs4_flush_lock_owners(rp); 725 } 726 ASSERT(rp->r_lo_head.lo_next_rnode == &rp->r_lo_head); 727 ASSERT(rp->r_lo_head.lo_prev_rnode == &rp->r_lo_head); 728 ASSERT(!(rp->r_flags & R4HASHED)); 729 ASSERT(rp->r_freef == NULL && rp->r_freeb == NULL); 730 nfs4_clear_open_streams(rp); 731 list_destroy(&rp->r_open_streams); 732 733 /* 734 * Destroy the rddir cache first since we need to grab the r_statelock. 735 */ 736 mutex_enter(&rp->r_statelock); 737 rddir4_cache_destroy(rp); 738 mutex_exit(&rp->r_statelock); 739 sv_uninit(&rp->r_svnode); 740 sfh4_rele(&rp->r_fh); 741 nfs_rw_destroy(&rp->r_rwlock); 742 nfs_rw_destroy(&rp->r_lkserlock); 743 mutex_destroy(&rp->r_statelock); 744 mutex_destroy(&rp->r_statev4_lock); 745 mutex_destroy(&rp->r_os_lock); 746 cv_destroy(&rp->r_cv); 747 cv_destroy(&rp->r_commit.c_cv); 748 nfs_rw_destroy(&rp->r_deleg_recall_lock); 749 if (rp->r_flags & R4DELMAPLIST) 750 list_destroy(&rp->r_indelmap); 751 } 752 753 /* 754 * Put an rnode on the free list. 755 * 756 * Rnodes which were allocated above and beyond the normal limit 757 * are immediately freed. 758 */ 759 void 760 rp4_addfree(rnode4_t *rp, cred_t *cr) 761 { 762 vnode_t *vp; 763 vnode_t *xattr; 764 struct vfs *vfsp; 765 766 vp = RTOV4(rp); 767 ASSERT(vp->v_count >= 1); 768 ASSERT(rp->r_freef == NULL && rp->r_freeb == NULL); 769 770 /* 771 * If we have too many rnodes allocated and there are no 772 * references to this rnode, or if the rnode is no longer 773 * accessible by it does not reside in the hash queues, 774 * or if an i/o error occurred while writing to the file, 775 * then just free it instead of putting it on the rnode 776 * freelist. 777 */ 778 vfsp = vp->v_vfsp; 779 if (((rnode4_new > nrnode || !(rp->r_flags & R4HASHED) || 780 #ifdef DEBUG 781 (nfs4_rnode_nofreelist != 0) || 782 #endif 783 rp->r_error || (rp->r_flags & R4RECOVERR) || 784 (vfsp->vfs_flag & VFS_UNMOUNTED)) && rp->r_count == 0)) { 785 if (rp->r_flags & R4HASHED) { 786 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 787 mutex_enter(&vp->v_lock); 788 if (vp->v_count > 1) { 789 VN_RELE_LOCKED(vp); 790 mutex_exit(&vp->v_lock); 791 rw_exit(&rp->r_hashq->r_lock); 792 return; 793 } 794 mutex_exit(&vp->v_lock); 795 rp4_rmhash_locked(rp); 796 rw_exit(&rp->r_hashq->r_lock); 797 } 798 799 /* 800 * Make sure we don't have a delegation on this rnode 801 * before destroying it. 802 */ 803 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { 804 (void) nfs4delegreturn(rp, 805 NFS4_DR_FORCE|NFS4_DR_PUSH|NFS4_DR_REOPEN); 806 } 807 808 r4inactive(rp, cr); 809 810 /* 811 * Recheck the vnode reference count. We need to 812 * make sure that another reference has not been 813 * acquired while we were not holding v_lock. The 814 * rnode is not in the rnode hash queues; one 815 * way for a reference to have been acquired 816 * is for a VOP_PUTPAGE because the rnode was marked 817 * with R4DIRTY or for a modified page. This 818 * reference may have been acquired before our call 819 * to r4inactive. The i/o may have been completed, 820 * thus allowing r4inactive to complete, but the 821 * reference to the vnode may not have been released 822 * yet. In any case, the rnode can not be destroyed 823 * until the other references to this vnode have been 824 * released. The other references will take care of 825 * either destroying the rnode or placing it on the 826 * rnode freelist. If there are no other references, 827 * then the rnode may be safely destroyed. 828 */ 829 mutex_enter(&vp->v_lock); 830 if (vp->v_count > 1) { 831 VN_RELE_LOCKED(vp); 832 mutex_exit(&vp->v_lock); 833 return; 834 } 835 mutex_exit(&vp->v_lock); 836 837 destroy_rnode4(rp); 838 return; 839 } 840 841 /* 842 * Lock the hash queue and then recheck the reference count 843 * to ensure that no other threads have acquired a reference 844 * to indicate that the rnode should not be placed on the 845 * freelist. If another reference has been acquired, then 846 * just release this one and let the other thread complete 847 * the processing of adding this rnode to the freelist. 848 */ 849 again: 850 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 851 852 mutex_enter(&vp->v_lock); 853 if (vp->v_count > 1) { 854 VN_RELE_LOCKED(vp); 855 mutex_exit(&vp->v_lock); 856 rw_exit(&rp->r_hashq->r_lock); 857 return; 858 } 859 mutex_exit(&vp->v_lock); 860 861 /* 862 * Make sure we don't put an rnode with a delegation 863 * on the free list. 864 */ 865 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { 866 rw_exit(&rp->r_hashq->r_lock); 867 (void) nfs4delegreturn(rp, 868 NFS4_DR_FORCE|NFS4_DR_PUSH|NFS4_DR_REOPEN); 869 goto again; 870 } 871 872 /* 873 * Now that we have the hash queue lock, and we know there 874 * are not anymore references on the vnode, check to make 875 * sure there aren't any open streams still on the rnode. 876 * If so, drop the hash queue lock, remove the open streams, 877 * and recheck the v_count. 878 */ 879 mutex_enter(&rp->r_os_lock); 880 if (list_head(&rp->r_open_streams) != NULL) { 881 mutex_exit(&rp->r_os_lock); 882 rw_exit(&rp->r_hashq->r_lock); 883 if (nfs_zone() != VTOMI4(vp)->mi_zone) 884 nfs4_clear_open_streams(rp); 885 else 886 (void) nfs4close_all(vp, cr); 887 goto again; 888 } 889 mutex_exit(&rp->r_os_lock); 890 891 /* 892 * Before we put it on the freelist, make sure there are no pages. 893 * If there are, flush and commit of all of the dirty and 894 * uncommitted pages, assuming the file system isn't read only. 895 */ 896 if (!(vp->v_vfsp->vfs_flag & VFS_RDONLY) && nfs4_dross_pages(vp)) { 897 rw_exit(&rp->r_hashq->r_lock); 898 r4flushpages(rp, cr); 899 goto again; 900 } 901 902 /* 903 * Before we put it on the freelist, make sure there is no 904 * active xattr directory cached, the freelist will not 905 * have its entries r4inactive'd if there is still an active 906 * rnode, thus nothing in the freelist can hold another 907 * rnode active. 908 */ 909 xattr = rp->r_xattr_dir; 910 rp->r_xattr_dir = NULL; 911 912 /* 913 * If there is no cached data or metadata for this file, then 914 * put the rnode on the front of the freelist so that it will 915 * be reused before other rnodes which may have cached data or 916 * metadata associated with them. 917 */ 918 mutex_enter(&rp4freelist_lock); 919 if (rp4freelist == NULL) { 920 rp->r_freef = rp; 921 rp->r_freeb = rp; 922 rp4freelist = rp; 923 } else { 924 rp->r_freef = rp4freelist; 925 rp->r_freeb = rp4freelist->r_freeb; 926 rp4freelist->r_freeb->r_freef = rp; 927 rp4freelist->r_freeb = rp; 928 if (!nfs4_has_pages(vp) && rp->r_dir == NULL && 929 rp->r_symlink.contents == NULL && rp->r_secattr == NULL) 930 rp4freelist = rp; 931 } 932 mutex_exit(&rp4freelist_lock); 933 934 rw_exit(&rp->r_hashq->r_lock); 935 936 if (xattr) 937 VN_RELE(xattr); 938 } 939 940 /* 941 * Remove an rnode from the free list. 942 * 943 * The caller must be holding rp4freelist_lock and the rnode 944 * must be on the freelist. 945 */ 946 static void 947 rp4_rmfree(rnode4_t *rp) 948 { 949 950 ASSERT(MUTEX_HELD(&rp4freelist_lock)); 951 ASSERT(rp->r_freef != NULL && rp->r_freeb != NULL); 952 953 if (rp == rp4freelist) { 954 rp4freelist = rp->r_freef; 955 if (rp == rp4freelist) 956 rp4freelist = NULL; 957 } 958 rp->r_freeb->r_freef = rp->r_freef; 959 rp->r_freef->r_freeb = rp->r_freeb; 960 961 rp->r_freef = rp->r_freeb = NULL; 962 } 963 964 /* 965 * Put a rnode in the hash table. 966 * 967 * The caller must be holding the exclusive hash queue lock 968 */ 969 void 970 rp4_addhash(rnode4_t *rp) 971 { 972 ASSERT(RW_WRITE_HELD(&rp->r_hashq->r_lock)); 973 ASSERT(!(rp->r_flags & R4HASHED)); 974 975 #ifdef DEBUG 976 r4_dup_check(rp, RTOV4(rp)->v_vfsp); 977 #endif 978 979 rp->r_hashf = rp->r_hashq->r_hashf; 980 rp->r_hashq->r_hashf = rp; 981 rp->r_hashb = (rnode4_t *)rp->r_hashq; 982 rp->r_hashf->r_hashb = rp; 983 984 mutex_enter(&rp->r_statelock); 985 rp->r_flags |= R4HASHED; 986 mutex_exit(&rp->r_statelock); 987 } 988 989 /* 990 * Remove a rnode from the hash table. 991 * 992 * The caller must be holding the hash queue lock. 993 */ 994 void 995 rp4_rmhash_locked(rnode4_t *rp) 996 { 997 ASSERT(RW_WRITE_HELD(&rp->r_hashq->r_lock)); 998 ASSERT(rp->r_flags & R4HASHED); 999 1000 rp->r_hashb->r_hashf = rp->r_hashf; 1001 rp->r_hashf->r_hashb = rp->r_hashb; 1002 1003 mutex_enter(&rp->r_statelock); 1004 rp->r_flags &= ~R4HASHED; 1005 mutex_exit(&rp->r_statelock); 1006 } 1007 1008 /* 1009 * Remove a rnode from the hash table. 1010 * 1011 * The caller must not be holding the hash queue lock. 1012 */ 1013 void 1014 rp4_rmhash(rnode4_t *rp) 1015 { 1016 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 1017 rp4_rmhash_locked(rp); 1018 rw_exit(&rp->r_hashq->r_lock); 1019 } 1020 1021 /* 1022 * Lookup a rnode by fhandle. Ignores rnodes that had failed recovery. 1023 * Returns NULL if no match. If an rnode is returned, the reference count 1024 * on the master vnode is incremented. 1025 * 1026 * The caller must be holding the hash queue lock, either shared or exclusive. 1027 */ 1028 rnode4_t * 1029 r4find(r4hashq_t *rhtp, nfs4_sharedfh_t *fh, struct vfs *vfsp) 1030 { 1031 rnode4_t *rp; 1032 vnode_t *vp; 1033 1034 ASSERT(RW_LOCK_HELD(&rhtp->r_lock)); 1035 1036 for (rp = rhtp->r_hashf; rp != (rnode4_t *)rhtp; rp = rp->r_hashf) { 1037 vp = RTOV4(rp); 1038 if (vp->v_vfsp == vfsp && SFH4_SAME(rp->r_fh, fh)) { 1039 1040 mutex_enter(&rp->r_statelock); 1041 if (rp->r_flags & R4RECOVERR) { 1042 mutex_exit(&rp->r_statelock); 1043 continue; 1044 } 1045 mutex_exit(&rp->r_statelock); 1046 #ifdef DEBUG 1047 r4_dup_check(rp, vfsp); 1048 #endif 1049 if (rp->r_freef != NULL) { 1050 mutex_enter(&rp4freelist_lock); 1051 /* 1052 * If the rnode is on the freelist, 1053 * then remove it and use that reference 1054 * as the new reference. Otherwise, 1055 * need to increment the reference count. 1056 */ 1057 if (rp->r_freef != NULL) { 1058 rp4_rmfree(rp); 1059 mutex_exit(&rp4freelist_lock); 1060 } else { 1061 mutex_exit(&rp4freelist_lock); 1062 VN_HOLD(vp); 1063 } 1064 } else 1065 VN_HOLD(vp); 1066 1067 /* 1068 * if root vnode, set v_flag to indicate that 1069 */ 1070 if (isrootfh(fh, rp)) { 1071 if (!(vp->v_flag & VROOT)) { 1072 mutex_enter(&vp->v_lock); 1073 vp->v_flag |= VROOT; 1074 mutex_exit(&vp->v_lock); 1075 } 1076 } 1077 return (rp); 1078 } 1079 } 1080 return (NULL); 1081 } 1082 1083 /* 1084 * Lookup an rnode by fhandle. Just a wrapper for r4find() 1085 * that assumes the caller hasn't already got the lock 1086 * on the hash bucket. 1087 */ 1088 rnode4_t * 1089 r4find_unlocked(nfs4_sharedfh_t *fh, struct vfs *vfsp) 1090 { 1091 rnode4_t *rp; 1092 int index; 1093 1094 index = rtable4hash(fh); 1095 rw_enter(&rtable4[index].r_lock, RW_READER); 1096 rp = r4find(&rtable4[index], fh, vfsp); 1097 rw_exit(&rtable4[index].r_lock); 1098 1099 return (rp); 1100 } 1101 1102 /* 1103 * Return >0 if there is a active vnode belonging to this vfs in the 1104 * rtable4 cache. 1105 * 1106 * Several of these checks are done without holding the usual 1107 * locks. This is safe because destroy_rtable(), rp_addfree(), 1108 * etc. will redo the necessary checks before actually destroying 1109 * any rnodes. 1110 */ 1111 int 1112 check_rtable4(struct vfs *vfsp) 1113 { 1114 rnode4_t *rp; 1115 vnode_t *vp; 1116 int busy = NFSV4_RTABLE4_OK; 1117 int index; 1118 1119 for (index = 0; index < rtable4size; index++) { 1120 rw_enter(&rtable4[index].r_lock, RW_READER); 1121 1122 for (rp = rtable4[index].r_hashf; 1123 rp != (rnode4_t *)(&rtable4[index]); 1124 rp = rp->r_hashf) { 1125 1126 vp = RTOV4(rp); 1127 if (vp->v_vfsp == vfsp) { 1128 if (rp->r_freef == NULL) { 1129 busy = NFSV4_RTABLE4_NOT_FREE_LIST; 1130 } else if (nfs4_has_pages(vp) && 1131 (rp->r_flags & R4DIRTY)) { 1132 busy = NFSV4_RTABLE4_DIRTY_PAGES; 1133 } else if (rp->r_count > 0) { 1134 busy = NFSV4_RTABLE4_POS_R_COUNT; 1135 } 1136 1137 if (busy != NFSV4_RTABLE4_OK) { 1138 #ifdef DEBUG 1139 char *path; 1140 1141 path = fn_path(rp->r_svnode.sv_name); 1142 DTRACE_NFSV4_3(rnode__e__debug, 1143 int, busy, char *, path, 1144 rnode4_t *, rp); 1145 kmem_free(path, strlen(path)+1); 1146 #endif 1147 rw_exit(&rtable4[index].r_lock); 1148 return (busy); 1149 } 1150 } 1151 } 1152 rw_exit(&rtable4[index].r_lock); 1153 } 1154 return (busy); 1155 } 1156 1157 /* 1158 * Destroy inactive vnodes from the hash queues which 1159 * belong to this vfs. All of the vnodes should be inactive. 1160 * It is essential that we destroy all rnodes in case of 1161 * forced unmount as well as in normal unmount case. 1162 */ 1163 1164 void 1165 destroy_rtable4(struct vfs *vfsp, cred_t *cr) 1166 { 1167 int index; 1168 vnode_t *vp; 1169 rnode4_t *rp, *r_hashf, *rlist; 1170 1171 rlist = NULL; 1172 1173 for (index = 0; index < rtable4size; index++) { 1174 rw_enter(&rtable4[index].r_lock, RW_WRITER); 1175 for (rp = rtable4[index].r_hashf; 1176 rp != (rnode4_t *)(&rtable4[index]); 1177 rp = r_hashf) { 1178 /* save the hash pointer before destroying */ 1179 r_hashf = rp->r_hashf; 1180 1181 vp = RTOV4(rp); 1182 if (vp->v_vfsp == vfsp) { 1183 mutex_enter(&rp4freelist_lock); 1184 if (rp->r_freef != NULL) { 1185 rp4_rmfree(rp); 1186 mutex_exit(&rp4freelist_lock); 1187 rp4_rmhash_locked(rp); 1188 rp->r_hashf = rlist; 1189 rlist = rp; 1190 } else 1191 mutex_exit(&rp4freelist_lock); 1192 } 1193 } 1194 rw_exit(&rtable4[index].r_lock); 1195 } 1196 1197 for (rp = rlist; rp != NULL; rp = r_hashf) { 1198 r_hashf = rp->r_hashf; 1199 /* 1200 * This call to rp4_addfree will end up destroying the 1201 * rnode, but in a safe way with the appropriate set 1202 * of checks done. 1203 */ 1204 rp4_addfree(rp, cr); 1205 } 1206 } 1207 1208 /* 1209 * This routine destroys all the resources of an rnode 1210 * and finally the rnode itself. 1211 */ 1212 static void 1213 destroy_rnode4(rnode4_t *rp) 1214 { 1215 vnode_t *vp; 1216 vfs_t *vfsp; 1217 1218 ASSERT(rp->r_deleg_type == OPEN_DELEGATE_NONE); 1219 1220 vp = RTOV4(rp); 1221 vfsp = vp->v_vfsp; 1222 1223 uninit_rnode4(rp); 1224 atomic_dec_ulong((ulong_t *)&rnode4_new); 1225 #ifdef DEBUG 1226 clstat4_debug.nrnode.value.ui64--; 1227 #endif 1228 kmem_cache_free(rnode4_cache, rp); 1229 vn_invalid(vp); 1230 vn_free(vp); 1231 VFS_RELE(vfsp); 1232 } 1233 1234 /* 1235 * Invalidate the attributes on all rnodes forcing the next getattr 1236 * to go over the wire. Used to flush stale uid and gid mappings. 1237 * Maybe done on a per vfsp, or all rnodes (vfsp == NULL) 1238 */ 1239 void 1240 nfs4_rnode_invalidate(struct vfs *vfsp) 1241 { 1242 int index; 1243 rnode4_t *rp; 1244 vnode_t *vp; 1245 1246 /* 1247 * Walk the hash queues looking for rnodes. 1248 */ 1249 for (index = 0; index < rtable4size; index++) { 1250 rw_enter(&rtable4[index].r_lock, RW_READER); 1251 for (rp = rtable4[index].r_hashf; 1252 rp != (rnode4_t *)(&rtable4[index]); 1253 rp = rp->r_hashf) { 1254 vp = RTOV4(rp); 1255 if (vfsp != NULL && vp->v_vfsp != vfsp) 1256 continue; 1257 1258 if (!mutex_tryenter(&rp->r_statelock)) 1259 continue; 1260 1261 /* 1262 * Expire the attributes by resetting the change 1263 * and attr timeout. 1264 */ 1265 rp->r_change = 0; 1266 PURGE_ATTRCACHE4_LOCKED(rp); 1267 mutex_exit(&rp->r_statelock); 1268 } 1269 rw_exit(&rtable4[index].r_lock); 1270 } 1271 } 1272 1273 /* 1274 * Flush all vnodes in this (or every) vfs. 1275 * Used by nfs_sync and by nfs_unmount. 1276 */ 1277 void 1278 r4flush(struct vfs *vfsp, cred_t *cr) 1279 { 1280 int index; 1281 rnode4_t *rp; 1282 vnode_t *vp, **vplist; 1283 long num, cnt; 1284 1285 /* 1286 * Check to see whether there is anything to do. 1287 */ 1288 num = rnode4_new; 1289 if (num == 0) 1290 return; 1291 1292 /* 1293 * Allocate a slot for all currently active rnodes on the 1294 * supposition that they all may need flushing. 1295 */ 1296 vplist = kmem_alloc(num * sizeof (*vplist), KM_SLEEP); 1297 cnt = 0; 1298 1299 /* 1300 * Walk the hash queues looking for rnodes with page 1301 * lists associated with them. Make a list of these 1302 * files. 1303 */ 1304 for (index = 0; index < rtable4size; index++) { 1305 rw_enter(&rtable4[index].r_lock, RW_READER); 1306 for (rp = rtable4[index].r_hashf; 1307 rp != (rnode4_t *)(&rtable4[index]); 1308 rp = rp->r_hashf) { 1309 vp = RTOV4(rp); 1310 /* 1311 * Don't bother sync'ing a vp if it 1312 * is part of virtual swap device or 1313 * if VFS is read-only 1314 */ 1315 if (IS_SWAPVP(vp) || vn_is_readonly(vp)) 1316 continue; 1317 /* 1318 * If flushing all mounted file systems or 1319 * the vnode belongs to this vfs, has pages 1320 * and is marked as either dirty or mmap'd, 1321 * hold and add this vnode to the list of 1322 * vnodes to flush. 1323 */ 1324 if ((vfsp == NULL || vp->v_vfsp == vfsp) && 1325 nfs4_has_pages(vp) && 1326 ((rp->r_flags & R4DIRTY) || rp->r_mapcnt > 0)) { 1327 VN_HOLD(vp); 1328 vplist[cnt++] = vp; 1329 if (cnt == num) { 1330 rw_exit(&rtable4[index].r_lock); 1331 goto toomany; 1332 } 1333 } 1334 } 1335 rw_exit(&rtable4[index].r_lock); 1336 } 1337 toomany: 1338 1339 /* 1340 * Flush and release all of the files on the list. 1341 */ 1342 while (cnt-- > 0) { 1343 vp = vplist[cnt]; 1344 (void) VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_ASYNC, cr, NULL); 1345 VN_RELE(vp); 1346 } 1347 1348 /* 1349 * Free the space allocated to hold the list. 1350 */ 1351 kmem_free(vplist, num * sizeof (*vplist)); 1352 } 1353 1354 int 1355 nfs4_free_data_reclaim(rnode4_t *rp) 1356 { 1357 char *contents; 1358 vnode_t *xattr; 1359 int size; 1360 vsecattr_t *vsp; 1361 int freed; 1362 bool_t rdc = FALSE; 1363 1364 /* 1365 * Free any held caches which may 1366 * be associated with this rnode. 1367 */ 1368 mutex_enter(&rp->r_statelock); 1369 if (rp->r_dir != NULL) 1370 rdc = TRUE; 1371 contents = rp->r_symlink.contents; 1372 size = rp->r_symlink.size; 1373 rp->r_symlink.contents = NULL; 1374 vsp = rp->r_secattr; 1375 rp->r_secattr = NULL; 1376 xattr = rp->r_xattr_dir; 1377 rp->r_xattr_dir = NULL; 1378 mutex_exit(&rp->r_statelock); 1379 1380 /* 1381 * Free the access cache entries. 1382 */ 1383 freed = nfs4_access_purge_rp(rp); 1384 1385 if (rdc == FALSE && contents == NULL && vsp == NULL && xattr == NULL) 1386 return (freed); 1387 1388 /* 1389 * Free the readdir cache entries, incompletely if we can't block. 1390 */ 1391 nfs4_purge_rddir_cache(RTOV4(rp)); 1392 1393 /* 1394 * Free the symbolic link cache. 1395 */ 1396 if (contents != NULL) { 1397 1398 kmem_free((void *)contents, size); 1399 } 1400 1401 /* 1402 * Free any cached ACL. 1403 */ 1404 if (vsp != NULL) 1405 nfs4_acl_free_cache(vsp); 1406 1407 /* 1408 * Release the xattr directory vnode 1409 */ 1410 if (xattr != NULL) 1411 VN_RELE(xattr); 1412 1413 return (1); 1414 } 1415 1416 static int 1417 nfs4_active_data_reclaim(rnode4_t *rp) 1418 { 1419 char *contents; 1420 vnode_t *xattr = NULL; 1421 int size; 1422 vsecattr_t *vsp; 1423 int freed; 1424 bool_t rdc = FALSE; 1425 1426 /* 1427 * Free any held credentials and caches which 1428 * may be associated with this rnode. 1429 */ 1430 if (!mutex_tryenter(&rp->r_statelock)) 1431 return (0); 1432 contents = rp->r_symlink.contents; 1433 size = rp->r_symlink.size; 1434 rp->r_symlink.contents = NULL; 1435 vsp = rp->r_secattr; 1436 rp->r_secattr = NULL; 1437 if (rp->r_dir != NULL) 1438 rdc = TRUE; 1439 /* 1440 * To avoid a deadlock, do not free r_xattr_dir cache if it is hashed 1441 * on the same r_hashq queue. We are not mandated to free all caches. 1442 * VN_RELE(rp->r_xattr_dir) will be done sometime later - e.g. when the 1443 * rnode 'rp' is freed or put on the free list. 1444 * 1445 * We will retain NFS4_XATTR_DIR_NOTSUPP because: 1446 * - it has no associated rnode4_t (its v_data is NULL), 1447 * - it is preallocated statically and will never go away, 1448 * so we cannot save anything by releasing it. 1449 */ 1450 if (rp->r_xattr_dir && rp->r_xattr_dir != NFS4_XATTR_DIR_NOTSUPP && 1451 VTOR4(rp->r_xattr_dir)->r_hashq != rp->r_hashq) { 1452 xattr = rp->r_xattr_dir; 1453 rp->r_xattr_dir = NULL; 1454 } 1455 mutex_exit(&rp->r_statelock); 1456 1457 /* 1458 * Free the access cache entries. 1459 */ 1460 freed = nfs4_access_purge_rp(rp); 1461 1462 if (contents == NULL && vsp == NULL && rdc == FALSE && xattr == NULL) 1463 return (freed); 1464 1465 /* 1466 * Free the symbolic link cache. 1467 */ 1468 if (contents != NULL) { 1469 1470 kmem_free((void *)contents, size); 1471 } 1472 1473 /* 1474 * Free any cached ACL. 1475 */ 1476 if (vsp != NULL) 1477 nfs4_acl_free_cache(vsp); 1478 1479 nfs4_purge_rddir_cache(RTOV4(rp)); 1480 1481 /* 1482 * Release the xattr directory vnode 1483 */ 1484 if (xattr != NULL) 1485 VN_RELE(xattr); 1486 1487 return (1); 1488 } 1489 1490 static int 1491 nfs4_free_reclaim(void) 1492 { 1493 int freed; 1494 rnode4_t *rp; 1495 1496 #ifdef DEBUG 1497 clstat4_debug.f_reclaim.value.ui64++; 1498 #endif 1499 freed = 0; 1500 mutex_enter(&rp4freelist_lock); 1501 rp = rp4freelist; 1502 if (rp != NULL) { 1503 do { 1504 if (nfs4_free_data_reclaim(rp)) 1505 freed = 1; 1506 } while ((rp = rp->r_freef) != rp4freelist); 1507 } 1508 mutex_exit(&rp4freelist_lock); 1509 return (freed); 1510 } 1511 1512 static int 1513 nfs4_active_reclaim(void) 1514 { 1515 int freed; 1516 int index; 1517 rnode4_t *rp; 1518 1519 #ifdef DEBUG 1520 clstat4_debug.a_reclaim.value.ui64++; 1521 #endif 1522 freed = 0; 1523 for (index = 0; index < rtable4size; index++) { 1524 rw_enter(&rtable4[index].r_lock, RW_READER); 1525 for (rp = rtable4[index].r_hashf; 1526 rp != (rnode4_t *)(&rtable4[index]); 1527 rp = rp->r_hashf) { 1528 if (nfs4_active_data_reclaim(rp)) 1529 freed = 1; 1530 } 1531 rw_exit(&rtable4[index].r_lock); 1532 } 1533 return (freed); 1534 } 1535 1536 static int 1537 nfs4_rnode_reclaim(void) 1538 { 1539 int freed; 1540 rnode4_t *rp; 1541 vnode_t *vp; 1542 1543 #ifdef DEBUG 1544 clstat4_debug.r_reclaim.value.ui64++; 1545 #endif 1546 freed = 0; 1547 mutex_enter(&rp4freelist_lock); 1548 while ((rp = rp4freelist) != NULL) { 1549 rp4_rmfree(rp); 1550 mutex_exit(&rp4freelist_lock); 1551 if (rp->r_flags & R4HASHED) { 1552 vp = RTOV4(rp); 1553 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 1554 mutex_enter(&vp->v_lock); 1555 if (vp->v_count > 1) { 1556 VN_RELE_LOCKED(vp); 1557 mutex_exit(&vp->v_lock); 1558 rw_exit(&rp->r_hashq->r_lock); 1559 mutex_enter(&rp4freelist_lock); 1560 continue; 1561 } 1562 mutex_exit(&vp->v_lock); 1563 rp4_rmhash_locked(rp); 1564 rw_exit(&rp->r_hashq->r_lock); 1565 } 1566 /* 1567 * This call to rp_addfree will end up destroying the 1568 * rnode, but in a safe way with the appropriate set 1569 * of checks done. 1570 */ 1571 rp4_addfree(rp, CRED()); 1572 mutex_enter(&rp4freelist_lock); 1573 } 1574 mutex_exit(&rp4freelist_lock); 1575 return (freed); 1576 } 1577 1578 /*ARGSUSED*/ 1579 static void 1580 nfs4_reclaim(void *cdrarg) 1581 { 1582 #ifdef DEBUG 1583 clstat4_debug.reclaim.value.ui64++; 1584 #endif 1585 if (nfs4_free_reclaim()) 1586 return; 1587 1588 if (nfs4_active_reclaim()) 1589 return; 1590 1591 (void) nfs4_rnode_reclaim(); 1592 } 1593 1594 /* 1595 * Returns the clientid4 to use for the given mntinfo4. Note that the 1596 * clientid can change if the caller drops mi_recovlock. 1597 */ 1598 1599 clientid4 1600 mi2clientid(mntinfo4_t *mi) 1601 { 1602 nfs4_server_t *sp; 1603 clientid4 clientid = 0; 1604 1605 /* this locks down sp if it is found */ 1606 sp = find_nfs4_server(mi); 1607 if (sp != NULL) { 1608 clientid = sp->clientid; 1609 mutex_exit(&sp->s_lock); 1610 nfs4_server_rele(sp); 1611 } 1612 return (clientid); 1613 } 1614 1615 /* 1616 * Return the current lease time for the server associated with the given 1617 * file. Note that the lease time could change immediately after this 1618 * call. 1619 */ 1620 1621 time_t 1622 r2lease_time(rnode4_t *rp) 1623 { 1624 nfs4_server_t *sp; 1625 time_t lease_time; 1626 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 1627 1628 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0); 1629 1630 /* this locks down sp if it is found */ 1631 sp = find_nfs4_server(VTOMI4(RTOV4(rp))); 1632 1633 if (VTOMI4(RTOV4(rp))->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1634 if (sp != NULL) { 1635 mutex_exit(&sp->s_lock); 1636 nfs4_server_rele(sp); 1637 } 1638 nfs_rw_exit(&mi->mi_recovlock); 1639 return (1); /* 1 second */ 1640 } 1641 1642 ASSERT(sp != NULL); 1643 1644 lease_time = sp->s_lease_time; 1645 1646 mutex_exit(&sp->s_lock); 1647 nfs4_server_rele(sp); 1648 nfs_rw_exit(&mi->mi_recovlock); 1649 1650 return (lease_time); 1651 } 1652 1653 /* 1654 * Return a list with information about all the known open instances for 1655 * a filesystem. The caller must call r4releopenlist() when done with the 1656 * list. 1657 * 1658 * We are safe at looking at os_valid and os_pending_close across dropping 1659 * the 'os_sync_lock' to count up the number of open streams and then 1660 * allocate memory for the osp list due to: 1661 * -Looking at os_pending_close is safe since this routine is 1662 * only called via recovery, and os_pending_close can only be set via 1663 * a non-recovery operation (which are all blocked when recovery 1664 * is active). 1665 * 1666 * -Examining os_valid is safe since non-recovery operations, which 1667 * could potentially switch os_valid to 0, are blocked (via 1668 * nfs4_start_fop) and recovery is single-threaded per mntinfo4_t 1669 * (which means we are the only recovery thread potentially acting 1670 * on this open stream). 1671 */ 1672 1673 nfs4_opinst_t * 1674 r4mkopenlist(mntinfo4_t *mi) 1675 { 1676 nfs4_opinst_t *reopenlist, *rep; 1677 rnode4_t *rp; 1678 vnode_t *vp; 1679 vfs_t *vfsp = mi->mi_vfsp; 1680 int numosp; 1681 nfs4_open_stream_t *osp; 1682 int index; 1683 open_delegation_type4 dtype; 1684 int hold_vnode; 1685 1686 reopenlist = NULL; 1687 1688 for (index = 0; index < rtable4size; index++) { 1689 rw_enter(&rtable4[index].r_lock, RW_READER); 1690 for (rp = rtable4[index].r_hashf; 1691 rp != (rnode4_t *)(&rtable4[index]); 1692 rp = rp->r_hashf) { 1693 1694 vp = RTOV4(rp); 1695 if (vp->v_vfsp != vfsp) 1696 continue; 1697 hold_vnode = 0; 1698 1699 mutex_enter(&rp->r_os_lock); 1700 1701 /* Count the number of valid open_streams of the file */ 1702 numosp = 0; 1703 for (osp = list_head(&rp->r_open_streams); osp != NULL; 1704 osp = list_next(&rp->r_open_streams, osp)) { 1705 mutex_enter(&osp->os_sync_lock); 1706 if (osp->os_valid && !osp->os_pending_close) 1707 numosp++; 1708 mutex_exit(&osp->os_sync_lock); 1709 } 1710 1711 /* Fill in the valid open streams per vp */ 1712 if (numosp > 0) { 1713 int j; 1714 1715 hold_vnode = 1; 1716 1717 /* 1718 * Add a new open instance to the list 1719 */ 1720 rep = kmem_zalloc(sizeof (*reopenlist), 1721 KM_SLEEP); 1722 rep->re_next = reopenlist; 1723 reopenlist = rep; 1724 1725 rep->re_vp = vp; 1726 rep->re_osp = kmem_zalloc( 1727 numosp * sizeof (*(rep->re_osp)), 1728 KM_SLEEP); 1729 rep->re_numosp = numosp; 1730 1731 j = 0; 1732 for (osp = list_head(&rp->r_open_streams); 1733 osp != NULL; 1734 osp = list_next(&rp->r_open_streams, osp)) { 1735 1736 mutex_enter(&osp->os_sync_lock); 1737 if (osp->os_valid && 1738 !osp->os_pending_close) { 1739 osp->os_ref_count++; 1740 rep->re_osp[j] = osp; 1741 j++; 1742 } 1743 mutex_exit(&osp->os_sync_lock); 1744 } 1745 /* 1746 * Assuming valid osp(s) stays valid between 1747 * the time obtaining j and numosp. 1748 */ 1749 ASSERT(j == numosp); 1750 } 1751 1752 mutex_exit(&rp->r_os_lock); 1753 /* do this here to keep v_lock > r_os_lock */ 1754 if (hold_vnode) 1755 VN_HOLD(vp); 1756 mutex_enter(&rp->r_statev4_lock); 1757 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { 1758 /* 1759 * If this rnode holds a delegation, 1760 * but if there are no valid open streams, 1761 * then just discard the delegation 1762 * without doing delegreturn. 1763 */ 1764 if (numosp > 0) 1765 rp->r_deleg_needs_recovery = 1766 rp->r_deleg_type; 1767 } 1768 /* Save the delegation type for use outside the lock */ 1769 dtype = rp->r_deleg_type; 1770 mutex_exit(&rp->r_statev4_lock); 1771 1772 /* 1773 * If we have a delegation then get rid of it. 1774 * We've set rp->r_deleg_needs_recovery so we have 1775 * enough information to recover. 1776 */ 1777 if (dtype != OPEN_DELEGATE_NONE) { 1778 (void) nfs4delegreturn(rp, NFS4_DR_DISCARD); 1779 } 1780 } 1781 rw_exit(&rtable4[index].r_lock); 1782 } 1783 return (reopenlist); 1784 } 1785 1786 /* 1787 * Given a filesystem id, check to see if any rnodes 1788 * within this fsid reside in the rnode cache, other 1789 * than one we know about. 1790 * 1791 * Return 1 if an rnode is found, 0 otherwise 1792 */ 1793 int 1794 r4find_by_fsid(mntinfo4_t *mi, fattr4_fsid *moved_fsid) 1795 { 1796 rnode4_t *rp; 1797 vnode_t *vp; 1798 vfs_t *vfsp = mi->mi_vfsp; 1799 fattr4_fsid *fsid; 1800 int index, found = 0; 1801 1802 for (index = 0; index < rtable4size; index++) { 1803 rw_enter(&rtable4[index].r_lock, RW_READER); 1804 for (rp = rtable4[index].r_hashf; 1805 rp != (rnode4_t *)(&rtable4[index]); 1806 rp = rp->r_hashf) { 1807 1808 vp = RTOV4(rp); 1809 if (vp->v_vfsp != vfsp) 1810 continue; 1811 1812 /* 1813 * XXX there might be a case where a 1814 * replicated fs may have the same fsid 1815 * across two different servers. This 1816 * check isn't good enough in that case 1817 */ 1818 fsid = &rp->r_srv_fsid; 1819 if (FATTR4_FSID_EQ(moved_fsid, fsid)) { 1820 found = 1; 1821 break; 1822 } 1823 } 1824 rw_exit(&rtable4[index].r_lock); 1825 1826 if (found) 1827 break; 1828 } 1829 return (found); 1830 } 1831 1832 /* 1833 * Release the list of open instance references. 1834 */ 1835 1836 void 1837 r4releopenlist(nfs4_opinst_t *reopenp) 1838 { 1839 nfs4_opinst_t *rep, *next; 1840 int i; 1841 1842 for (rep = reopenp; rep; rep = next) { 1843 next = rep->re_next; 1844 1845 for (i = 0; i < rep->re_numosp; i++) 1846 open_stream_rele(rep->re_osp[i], VTOR4(rep->re_vp)); 1847 1848 VN_RELE(rep->re_vp); 1849 kmem_free(rep->re_osp, 1850 rep->re_numosp * sizeof (*(rep->re_osp))); 1851 1852 kmem_free(rep, sizeof (*rep)); 1853 } 1854 } 1855 1856 int 1857 nfs4_rnode_init(void) 1858 { 1859 ulong_t nrnode4_max; 1860 int i; 1861 1862 /* 1863 * Compute the size of the rnode4 hash table 1864 */ 1865 if (nrnode <= 0) 1866 nrnode = ncsize; 1867 nrnode4_max = 1868 (ulong_t)((kmem_maxavail() >> 2) / sizeof (struct rnode4)); 1869 if (nrnode > nrnode4_max || (nrnode == 0 && ncsize == 0)) { 1870 zcmn_err(GLOBAL_ZONEID, CE_NOTE, 1871 "!setting nrnode to max value of %ld", nrnode4_max); 1872 nrnode = nrnode4_max; 1873 } 1874 rtable4size = 1 << highbit(nrnode / rnode4_hashlen); 1875 rtable4mask = rtable4size - 1; 1876 1877 /* 1878 * Allocate and initialize the hash buckets 1879 */ 1880 rtable4 = kmem_alloc(rtable4size * sizeof (*rtable4), KM_SLEEP); 1881 for (i = 0; i < rtable4size; i++) { 1882 rtable4[i].r_hashf = (rnode4_t *)(&rtable4[i]); 1883 rtable4[i].r_hashb = (rnode4_t *)(&rtable4[i]); 1884 rw_init(&rtable4[i].r_lock, NULL, RW_DEFAULT, NULL); 1885 } 1886 1887 rnode4_cache = kmem_cache_create("rnode4_cache", sizeof (rnode4_t), 1888 0, NULL, NULL, nfs4_reclaim, NULL, NULL, 0); 1889 1890 return (0); 1891 } 1892 1893 int 1894 nfs4_rnode_fini(void) 1895 { 1896 int i; 1897 1898 /* 1899 * Deallocate the rnode hash queues 1900 */ 1901 kmem_cache_destroy(rnode4_cache); 1902 1903 for (i = 0; i < rtable4size; i++) 1904 rw_destroy(&rtable4[i].r_lock); 1905 1906 kmem_free(rtable4, rtable4size * sizeof (*rtable4)); 1907 1908 return (0); 1909 } 1910 1911 /* 1912 * Return non-zero if the given filehandle refers to the root filehandle 1913 * for the given rnode. 1914 */ 1915 1916 static int 1917 isrootfh(nfs4_sharedfh_t *fh, rnode4_t *rp) 1918 { 1919 int isroot; 1920 1921 isroot = 0; 1922 if (SFH4_SAME(VTOMI4(RTOV4(rp))->mi_rootfh, fh)) 1923 isroot = 1; 1924 1925 return (isroot); 1926 } 1927 1928 /* 1929 * The r4_stub_* routines assume that the rnode is newly activated, and 1930 * that the caller either holds the hash bucket r_lock for this rnode as 1931 * RW_WRITER, or holds r_statelock. 1932 */ 1933 static void 1934 r4_stub_set(rnode4_t *rp, nfs4_stub_type_t type) 1935 { 1936 vnode_t *vp = RTOV4(rp); 1937 krwlock_t *hash_lock = &rp->r_hashq->r_lock; 1938 1939 ASSERT(RW_WRITE_HELD(hash_lock) || MUTEX_HELD(&rp->r_statelock)); 1940 1941 rp->r_stub_type = type; 1942 1943 /* 1944 * Safely switch this vnode to the trigger vnodeops. 1945 * 1946 * Currently, we don't ever switch a trigger vnode back to using 1947 * "regular" v4 vnodeops. NFS4_STUB_NONE is only used to note that 1948 * a new v4 object is not a trigger, and it will already have the 1949 * correct v4 vnodeops by default. So, no "else" case required here. 1950 */ 1951 if (type != NFS4_STUB_NONE) 1952 vn_setops(vp, nfs4_trigger_vnodeops); 1953 } 1954 1955 void 1956 r4_stub_mirrormount(rnode4_t *rp) 1957 { 1958 r4_stub_set(rp, NFS4_STUB_MIRRORMOUNT); 1959 } 1960 1961 void 1962 r4_stub_referral(rnode4_t *rp) 1963 { 1964 DTRACE_PROBE1(nfs4clnt__func__referral__moved, 1965 vnode_t *, RTOV4(rp)); 1966 r4_stub_set(rp, NFS4_STUB_REFERRAL); 1967 } 1968 1969 void 1970 r4_stub_none(rnode4_t *rp) 1971 { 1972 r4_stub_set(rp, NFS4_STUB_NONE); 1973 } 1974 1975 #ifdef DEBUG 1976 1977 /* 1978 * Look in the rnode table for other rnodes that have the same filehandle. 1979 * Assume the lock is held for the hash chain of checkrp 1980 */ 1981 1982 static void 1983 r4_dup_check(rnode4_t *checkrp, vfs_t *vfsp) 1984 { 1985 rnode4_t *rp; 1986 vnode_t *tvp; 1987 nfs4_fhandle_t fh, fh2; 1988 int index; 1989 1990 if (!r4_check_for_dups) 1991 return; 1992 1993 ASSERT(RW_LOCK_HELD(&checkrp->r_hashq->r_lock)); 1994 1995 sfh4_copyval(checkrp->r_fh, &fh); 1996 1997 for (index = 0; index < rtable4size; index++) { 1998 1999 if (&rtable4[index] != checkrp->r_hashq) 2000 rw_enter(&rtable4[index].r_lock, RW_READER); 2001 2002 for (rp = rtable4[index].r_hashf; 2003 rp != (rnode4_t *)(&rtable4[index]); 2004 rp = rp->r_hashf) { 2005 2006 if (rp == checkrp) 2007 continue; 2008 2009 tvp = RTOV4(rp); 2010 if (tvp->v_vfsp != vfsp) 2011 continue; 2012 2013 sfh4_copyval(rp->r_fh, &fh2); 2014 if (nfs4cmpfhandle(&fh, &fh2) == 0) { 2015 cmn_err(CE_PANIC, "rnodes with same fs, fh " 2016 "(%p, %p)", (void *)checkrp, (void *)rp); 2017 } 2018 } 2019 2020 if (&rtable4[index] != checkrp->r_hashq) 2021 rw_exit(&rtable4[index].r_lock); 2022 } 2023 } 2024 2025 #endif /* DEBUG */ 2026