1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/systm.h> 35 #include <sys/cred.h> 36 #include <sys/proc.h> 37 #include <sys/user.h> 38 #include <sys/time.h> 39 #include <sys/buf.h> 40 #include <sys/vfs.h> 41 #include <sys/vnode.h> 42 #include <sys/socket.h> 43 #include <sys/uio.h> 44 #include <sys/tiuser.h> 45 #include <sys/swap.h> 46 #include <sys/errno.h> 47 #include <sys/debug.h> 48 #include <sys/kmem.h> 49 #include <sys/kstat.h> 50 #include <sys/cmn_err.h> 51 #include <sys/vtrace.h> 52 #include <sys/session.h> 53 #include <sys/dnlc.h> 54 #include <sys/bitmap.h> 55 #include <sys/acl.h> 56 #include <sys/ddi.h> 57 #include <sys/pathname.h> 58 #include <sys/flock.h> 59 #include <sys/dirent.h> 60 #include <sys/flock.h> 61 #include <sys/callb.h> 62 63 #include <rpc/types.h> 64 #include <rpc/xdr.h> 65 #include <rpc/auth.h> 66 #include <rpc/rpcsec_gss.h> 67 #include <rpc/clnt.h> 68 69 #include <nfs/nfs.h> 70 #include <nfs/nfs_clnt.h> 71 #include <nfs/nfs_acl.h> 72 73 #include <nfs/nfs4.h> 74 #include <nfs/rnode4.h> 75 #include <nfs/nfs4_clnt.h> 76 77 /* 78 * The hash queues for the access to active and cached rnodes 79 * are organized as doubly linked lists. A reader/writer lock 80 * for each hash bucket is used to control access and to synchronize 81 * lookups, additions, and deletions from the hash queue. 82 * 83 * The rnode freelist is organized as a doubly linked list with 84 * a head pointer. Additions and deletions are synchronized via 85 * a single mutex. 86 * 87 * In order to add an rnode to the free list, it must be hashed into 88 * a hash queue and the exclusive lock to the hash queue be held. 89 * If an rnode is not hashed into a hash queue, then it is destroyed 90 * because it represents no valuable information that can be reused 91 * about the file. The exclusive lock to the hash queue must be 92 * held in order to prevent a lookup in the hash queue from finding 93 * the rnode and using it and assuming that the rnode is not on the 94 * freelist. The lookup in the hash queue will have the hash queue 95 * locked, either exclusive or shared. 96 * 97 * The vnode reference count for each rnode is not allowed to drop 98 * below 1. This prevents external entities, such as the VM 99 * subsystem, from acquiring references to vnodes already on the 100 * freelist and then trying to place them back on the freelist 101 * when their reference is released. This means that the when an 102 * rnode is looked up in the hash queues, then either the rnode 103 * is removed from the freelist and that reference is transferred to 104 * the new reference or the vnode reference count must be incremented 105 * accordingly. The mutex for the freelist must be held in order to 106 * accurately test to see if the rnode is on the freelist or not. 107 * The hash queue lock might be held shared and it is possible that 108 * two different threads may race to remove the rnode from the 109 * freelist. This race can be resolved by holding the mutex for the 110 * freelist. Please note that the mutex for the freelist does not 111 * need to be held if the rnode is not on the freelist. It can not be 112 * placed on the freelist due to the requirement that the thread 113 * putting the rnode on the freelist must hold the exclusive lock 114 * to the hash queue and the thread doing the lookup in the hash 115 * queue is holding either a shared or exclusive lock to the hash 116 * queue. 117 * 118 * The lock ordering is: 119 * 120 * hash bucket lock -> vnode lock 121 * hash bucket lock -> freelist lock -> r_statelock 122 */ 123 r4hashq_t *rtable4; 124 125 static kmutex_t rp4freelist_lock; 126 static rnode4_t *rp4freelist = NULL; 127 static long rnode4_new = 0; 128 int rtable4size; 129 static int rtable4mask; 130 static struct kmem_cache *rnode4_cache; 131 static int rnode4_hashlen = 4; 132 133 static void r4inactive(rnode4_t *, cred_t *); 134 static vnode_t *make_rnode4(nfs4_sharedfh_t *, r4hashq_t *, struct vfs *, 135 struct vnodeops *, 136 int (*)(vnode_t *, page_t *, u_offset_t *, size_t *, int, 137 cred_t *), 138 int *, cred_t *); 139 static void rp4_rmfree(rnode4_t *); 140 int nfs4_free_data_reclaim(rnode4_t *); 141 static int nfs4_active_data_reclaim(rnode4_t *); 142 static int nfs4_free_reclaim(void); 143 static int nfs4_active_reclaim(void); 144 static int nfs4_rnode_reclaim(void); 145 static void nfs4_reclaim(void *); 146 static int isrootfh(nfs4_sharedfh_t *, rnode4_t *); 147 static void uninit_rnode4(rnode4_t *); 148 static void destroy_rnode4(rnode4_t *); 149 static void r4_stub_set(rnode4_t *, nfs4_stub_type_t); 150 151 #ifdef DEBUG 152 static int r4_check_for_dups = 0; /* Flag to enable dup rnode detection. */ 153 static int nfs4_rnode_debug = 0; 154 /* if nonzero, kmem_cache_free() rnodes rather than place on freelist */ 155 static int nfs4_rnode_nofreelist = 0; 156 /* give messages on colliding shared filehandles */ 157 static void r4_dup_check(rnode4_t *, vfs_t *); 158 #endif 159 160 /* 161 * If the vnode has pages, run the list and check for any that are 162 * still dangling. We call this routine before putting an rnode on 163 * the free list. 164 */ 165 static int 166 nfs4_dross_pages(vnode_t *vp) 167 { 168 page_t *pp; 169 kmutex_t *vphm; 170 171 vphm = page_vnode_mutex(vp); 172 mutex_enter(vphm); 173 if ((pp = vp->v_pages) != NULL) { 174 do { 175 if (pp->p_fsdata != C_NOCOMMIT) { 176 mutex_exit(vphm); 177 return (1); 178 } 179 } while ((pp = pp->p_vpnext) != vp->v_pages); 180 } 181 mutex_exit(vphm); 182 183 return (0); 184 } 185 186 /* 187 * Flush any pages left on this rnode. 188 */ 189 static void 190 r4flushpages(rnode4_t *rp, cred_t *cr) 191 { 192 vnode_t *vp; 193 int error; 194 195 /* 196 * Before freeing anything, wait until all asynchronous 197 * activity is done on this rnode. This will allow all 198 * asynchronous read ahead and write behind i/o's to 199 * finish. 200 */ 201 mutex_enter(&rp->r_statelock); 202 while (rp->r_count > 0) 203 cv_wait(&rp->r_cv, &rp->r_statelock); 204 mutex_exit(&rp->r_statelock); 205 206 /* 207 * Flush and invalidate all pages associated with the vnode. 208 */ 209 vp = RTOV4(rp); 210 if (nfs4_has_pages(vp)) { 211 ASSERT(vp->v_type != VCHR); 212 if ((rp->r_flags & R4DIRTY) && !rp->r_error) { 213 error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, 0, cr, NULL); 214 if (error && (error == ENOSPC || error == EDQUOT)) { 215 mutex_enter(&rp->r_statelock); 216 if (!rp->r_error) 217 rp->r_error = error; 218 mutex_exit(&rp->r_statelock); 219 } 220 } 221 nfs4_invalidate_pages(vp, (u_offset_t)0, cr); 222 } 223 } 224 225 /* 226 * Free the resources associated with an rnode. 227 */ 228 static void 229 r4inactive(rnode4_t *rp, cred_t *cr) 230 { 231 vnode_t *vp; 232 char *contents; 233 int size; 234 vsecattr_t *vsp; 235 vnode_t *xattr; 236 237 r4flushpages(rp, cr); 238 239 vp = RTOV4(rp); 240 241 /* 242 * Free any held caches which may be 243 * associated with this rnode. 244 */ 245 mutex_enter(&rp->r_statelock); 246 contents = rp->r_symlink.contents; 247 size = rp->r_symlink.size; 248 rp->r_symlink.contents = NULL; 249 vsp = rp->r_secattr; 250 rp->r_secattr = NULL; 251 xattr = rp->r_xattr_dir; 252 rp->r_xattr_dir = NULL; 253 mutex_exit(&rp->r_statelock); 254 255 /* 256 * Free the access cache entries. 257 */ 258 (void) nfs4_access_purge_rp(rp); 259 260 /* 261 * Free the readdir cache entries. 262 */ 263 nfs4_purge_rddir_cache(vp); 264 265 /* 266 * Free the symbolic link cache. 267 */ 268 if (contents != NULL) { 269 270 kmem_free((void *)contents, size); 271 } 272 273 /* 274 * Free any cached ACL. 275 */ 276 if (vsp != NULL) 277 nfs4_acl_free_cache(vsp); 278 279 /* 280 * Release the cached xattr_dir 281 */ 282 if (xattr != NULL) 283 VN_RELE(xattr); 284 } 285 286 /* 287 * We have seen a case that the fh passed in is for "." which 288 * should be a VROOT node, however, the fh is different from the 289 * root fh stored in the mntinfo4_t. The invalid fh might be 290 * from a misbehaved server and will panic the client system at 291 * a later time. To avoid the panic, we drop the bad fh, use 292 * the root fh from mntinfo4_t, and print an error message 293 * for attention. 294 */ 295 nfs4_sharedfh_t * 296 badrootfh_check(nfs4_sharedfh_t *fh, nfs4_fname_t *nm, mntinfo4_t *mi, 297 int *wasbad) 298 { 299 char *s; 300 301 *wasbad = 0; 302 s = fn_name(nm); 303 ASSERT(strcmp(s, "..") != 0); 304 305 if ((s[0] == '.' && s[1] == '\0') && fh && 306 !SFH4_SAME(mi->mi_rootfh, fh)) { 307 #ifdef DEBUG 308 nfs4_fhandle_t fhandle; 309 310 zcmn_err(mi->mi_zone->zone_id, CE_WARN, 311 "Server %s returns a different " 312 "root filehandle for the path %s:", 313 mi->mi_curr_serv->sv_hostname, 314 mi->mi_curr_serv->sv_path); 315 316 /* print the bad fh */ 317 fhandle.fh_len = fh->sfh_fh.nfs_fh4_len; 318 bcopy(fh->sfh_fh.nfs_fh4_val, fhandle.fh_buf, 319 fhandle.fh_len); 320 nfs4_printfhandle(&fhandle); 321 322 /* print mi_rootfh */ 323 fhandle.fh_len = mi->mi_rootfh->sfh_fh.nfs_fh4_len; 324 bcopy(mi->mi_rootfh->sfh_fh.nfs_fh4_val, fhandle.fh_buf, 325 fhandle.fh_len); 326 nfs4_printfhandle(&fhandle); 327 #endif 328 /* use mi_rootfh instead; fh will be rele by the caller */ 329 fh = mi->mi_rootfh; 330 *wasbad = 1; 331 } 332 333 kmem_free(s, MAXNAMELEN); 334 return (fh); 335 } 336 337 void 338 r4_do_attrcache(vnode_t *vp, nfs4_ga_res_t *garp, int newnode, 339 hrtime_t t, cred_t *cr, int index) 340 { 341 int is_stub; 342 vattr_t *attr; 343 /* 344 * Don't add to attrcache if time overflow, but 345 * no need to check because either attr is null or the time 346 * values in it were processed by nfs4_time_ntov(), which checks 347 * for time overflows. 348 */ 349 attr = garp ? &garp->n4g_va : NULL; 350 351 if (attr) { 352 if (!newnode) { 353 rw_exit(&rtable4[index].r_lock); 354 #ifdef DEBUG 355 if (vp->v_type != attr->va_type && 356 vp->v_type != VNON && attr->va_type != VNON) { 357 zcmn_err(VTOMI4(vp)->mi_zone->zone_id, CE_WARN, 358 "makenfs4node: type (%d) doesn't " 359 "match type of found node at %p (%d)", 360 attr->va_type, (void *)vp, vp->v_type); 361 } 362 #endif 363 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 364 } else { 365 rnode4_t *rp = VTOR4(vp); 366 367 vp->v_type = attr->va_type; 368 vp->v_rdev = attr->va_rdev; 369 370 /* 371 * Turn this object into a "stub" object if we 372 * crossed an underlying server fs boundary. 373 * To make this check, during mount we save the 374 * fsid of the server object being mounted. 375 * Here we compare this object's server fsid 376 * with the fsid we saved at mount. If they 377 * are different, we crossed server fs boundary. 378 * 379 * The stub type is set (or not) at rnode 380 * creation time and it never changes for life 381 * of the rnode. 382 * 383 * The stub type is also set during RO failover, 384 * nfs4_remap_file(). 385 * 386 * This stub will be for a mirror-mount. 387 * 388 * We don't bother with taking r_state_lock to 389 * set the stub type because this is a new rnode 390 * and we're holding the hash bucket r_lock RW_WRITER. 391 * No other thread could have obtained access 392 * to this rnode. 393 */ 394 is_stub = 0; 395 if (garp->n4g_fsid_valid) { 396 fattr4_fsid ga_fsid = garp->n4g_fsid; 397 servinfo4_t *svp = rp->r_server; 398 399 rp->r_srv_fsid = ga_fsid; 400 401 (void) nfs_rw_enter_sig(&svp->sv_lock, 402 RW_READER, 0); 403 if (!FATTR4_FSID_EQ(&ga_fsid, &svp->sv_fsid)) 404 is_stub = 1; 405 nfs_rw_exit(&svp->sv_lock); 406 } 407 408 if (is_stub) 409 r4_stub_mirrormount(rp); 410 else 411 r4_stub_none(rp); 412 413 /* Can not cache partial attr */ 414 if (attr->va_mask == AT_ALL) 415 nfs4_attrcache_noinval(vp, garp, t); 416 else 417 PURGE_ATTRCACHE4(vp); 418 419 rw_exit(&rtable4[index].r_lock); 420 } 421 } else { 422 if (newnode) { 423 PURGE_ATTRCACHE4(vp); 424 } 425 rw_exit(&rtable4[index].r_lock); 426 } 427 } 428 429 /* 430 * Find or create an rnode based primarily on filehandle. To be 431 * used when dvp (vnode for parent directory) is not available; 432 * otherwise, makenfs4node() should be used. 433 * 434 * The nfs4_fname_t argument *npp is consumed and nulled out. 435 */ 436 437 vnode_t * 438 makenfs4node_by_fh(nfs4_sharedfh_t *sfh, nfs4_sharedfh_t *psfh, 439 nfs4_fname_t **npp, nfs4_ga_res_t *garp, 440 mntinfo4_t *mi, cred_t *cr, hrtime_t t) 441 { 442 vfs_t *vfsp = mi->mi_vfsp; 443 int newnode = 0; 444 vnode_t *vp; 445 rnode4_t *rp; 446 svnode_t *svp; 447 nfs4_fname_t *name, *svpname; 448 int index; 449 450 ASSERT(npp && *npp); 451 name = *npp; 452 *npp = NULL; 453 454 index = rtable4hash(sfh); 455 rw_enter(&rtable4[index].r_lock, RW_READER); 456 457 vp = make_rnode4(sfh, &rtable4[index], vfsp, 458 nfs4_vnodeops, nfs4_putapage, &newnode, cr); 459 460 svp = VTOSV(vp); 461 rp = VTOR4(vp); 462 if (newnode) { 463 svp->sv_forw = svp->sv_back = svp; 464 svp->sv_name = name; 465 if (psfh != NULL) 466 sfh4_hold(psfh); 467 svp->sv_dfh = psfh; 468 } else if (vp->v_type == VDIR) { 469 /* 470 * It is possible that due to a server 471 * side rename fnames have changed. 472 * update the fname here. 473 */ 474 mutex_enter(&rp->r_svlock); 475 svpname = svp->sv_name; 476 if (svp->sv_name != name) { 477 svp->sv_name = name; 478 mutex_exit(&rp->r_svlock); 479 fn_rele(&svpname); 480 } else { 481 mutex_exit(&rp->r_svlock); 482 fn_rele(&name); 483 } 484 } else { 485 fn_rele(&name); 486 } 487 488 ASSERT(RW_LOCK_HELD(&rtable4[index].r_lock)); 489 r4_do_attrcache(vp, garp, newnode, t, cr, index); 490 ASSERT(rw_owner(&rtable4[index].r_lock) != curthread); 491 492 return (vp); 493 } 494 495 /* 496 * Find or create a vnode for the given filehandle, filesystem, parent, and 497 * name. The reference to nm is consumed, so the caller must first do an 498 * fn_hold() if it wants to continue using nm after this call. 499 */ 500 vnode_t * 501 makenfs4node(nfs4_sharedfh_t *fh, nfs4_ga_res_t *garp, struct vfs *vfsp, 502 hrtime_t t, cred_t *cr, vnode_t *dvp, nfs4_fname_t *nm) 503 { 504 vnode_t *vp; 505 int newnode; 506 int index; 507 mntinfo4_t *mi = VFTOMI4(vfsp); 508 int had_badfh = 0; 509 rnode4_t *rp; 510 511 ASSERT(dvp != NULL); 512 513 fh = badrootfh_check(fh, nm, mi, &had_badfh); 514 515 index = rtable4hash(fh); 516 rw_enter(&rtable4[index].r_lock, RW_READER); 517 518 /* 519 * Note: make_rnode4() may upgrade the hash bucket lock to exclusive. 520 */ 521 vp = make_rnode4(fh, &rtable4[index], vfsp, nfs4_vnodeops, 522 nfs4_putapage, &newnode, cr); 523 524 rp = VTOR4(vp); 525 sv_activate(&vp, dvp, &nm, newnode); 526 if (dvp->v_flag & V_XATTRDIR) { 527 mutex_enter(&rp->r_statelock); 528 rp->r_flags |= R4ISXATTR; 529 mutex_exit(&rp->r_statelock); 530 } 531 532 /* if getting a bad file handle, do not cache the attributes. */ 533 if (had_badfh) { 534 rw_exit(&rtable4[index].r_lock); 535 return (vp); 536 } 537 538 ASSERT(RW_LOCK_HELD(&rtable4[index].r_lock)); 539 r4_do_attrcache(vp, garp, newnode, t, cr, index); 540 ASSERT(rw_owner(&rtable4[index].r_lock) != curthread); 541 542 return (vp); 543 } 544 545 /* 546 * Hash on address of filehandle object. 547 * XXX totally untuned. 548 */ 549 550 int 551 rtable4hash(nfs4_sharedfh_t *fh) 552 { 553 return (((uintptr_t)fh / sizeof (*fh)) & rtable4mask); 554 } 555 556 /* 557 * Find or create the vnode for the given filehandle and filesystem. 558 * *newnode is set to zero if the vnode already existed; non-zero if it had 559 * to be created. 560 * 561 * Note: make_rnode4() may upgrade the hash bucket lock to exclusive. 562 */ 563 564 static vnode_t * 565 make_rnode4(nfs4_sharedfh_t *fh, r4hashq_t *rhtp, struct vfs *vfsp, 566 struct vnodeops *vops, 567 int (*putapage)(vnode_t *, page_t *, u_offset_t *, size_t *, int, cred_t *), 568 int *newnode, cred_t *cr) 569 { 570 rnode4_t *rp; 571 rnode4_t *trp; 572 vnode_t *vp; 573 mntinfo4_t *mi; 574 575 ASSERT(RW_READ_HELD(&rhtp->r_lock)); 576 577 mi = VFTOMI4(vfsp); 578 579 start: 580 if ((rp = r4find(rhtp, fh, vfsp)) != NULL) { 581 vp = RTOV4(rp); 582 *newnode = 0; 583 return (vp); 584 } 585 rw_exit(&rhtp->r_lock); 586 587 mutex_enter(&rp4freelist_lock); 588 589 if (rp4freelist != NULL && rnode4_new >= nrnode) { 590 rp = rp4freelist; 591 rp4_rmfree(rp); 592 mutex_exit(&rp4freelist_lock); 593 594 vp = RTOV4(rp); 595 596 if (rp->r_flags & R4HASHED) { 597 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 598 mutex_enter(&vp->v_lock); 599 if (vp->v_count > 1) { 600 vp->v_count--; 601 mutex_exit(&vp->v_lock); 602 rw_exit(&rp->r_hashq->r_lock); 603 rw_enter(&rhtp->r_lock, RW_READER); 604 goto start; 605 } 606 mutex_exit(&vp->v_lock); 607 rp4_rmhash_locked(rp); 608 rw_exit(&rp->r_hashq->r_lock); 609 } 610 611 r4inactive(rp, cr); 612 613 mutex_enter(&vp->v_lock); 614 if (vp->v_count > 1) { 615 vp->v_count--; 616 mutex_exit(&vp->v_lock); 617 rw_enter(&rhtp->r_lock, RW_READER); 618 goto start; 619 } 620 mutex_exit(&vp->v_lock); 621 vn_invalid(vp); 622 623 /* 624 * destroy old locks before bzero'ing and 625 * recreating the locks below. 626 */ 627 uninit_rnode4(rp); 628 629 /* 630 * Make sure that if rnode is recycled then 631 * VFS count is decremented properly before 632 * reuse. 633 */ 634 VFS_RELE(vp->v_vfsp); 635 vn_reinit(vp); 636 } else { 637 vnode_t *new_vp; 638 639 mutex_exit(&rp4freelist_lock); 640 641 rp = kmem_cache_alloc(rnode4_cache, KM_SLEEP); 642 new_vp = vn_alloc(KM_SLEEP); 643 644 atomic_add_long((ulong_t *)&rnode4_new, 1); 645 #ifdef DEBUG 646 clstat4_debug.nrnode.value.ui64++; 647 #endif 648 vp = new_vp; 649 } 650 651 bzero(rp, sizeof (*rp)); 652 rp->r_vnode = vp; 653 nfs_rw_init(&rp->r_rwlock, NULL, RW_DEFAULT, NULL); 654 nfs_rw_init(&rp->r_lkserlock, NULL, RW_DEFAULT, NULL); 655 mutex_init(&rp->r_svlock, NULL, MUTEX_DEFAULT, NULL); 656 mutex_init(&rp->r_statelock, NULL, MUTEX_DEFAULT, NULL); 657 mutex_init(&rp->r_statev4_lock, NULL, MUTEX_DEFAULT, NULL); 658 mutex_init(&rp->r_os_lock, NULL, MUTEX_DEFAULT, NULL); 659 rp->created_v4 = 0; 660 list_create(&rp->r_open_streams, sizeof (nfs4_open_stream_t), 661 offsetof(nfs4_open_stream_t, os_node)); 662 rp->r_lo_head.lo_prev_rnode = &rp->r_lo_head; 663 rp->r_lo_head.lo_next_rnode = &rp->r_lo_head; 664 cv_init(&rp->r_cv, NULL, CV_DEFAULT, NULL); 665 cv_init(&rp->r_commit.c_cv, NULL, CV_DEFAULT, NULL); 666 rp->r_flags = R4READDIRWATTR; 667 rp->r_fh = fh; 668 rp->r_hashq = rhtp; 669 sfh4_hold(rp->r_fh); 670 rp->r_server = mi->mi_curr_serv; 671 rp->r_deleg_type = OPEN_DELEGATE_NONE; 672 rp->r_deleg_needs_recovery = OPEN_DELEGATE_NONE; 673 nfs_rw_init(&rp->r_deleg_recall_lock, NULL, RW_DEFAULT, NULL); 674 675 rddir4_cache_create(rp); 676 rp->r_putapage = putapage; 677 vn_setops(vp, vops); 678 vp->v_data = (caddr_t)rp; 679 vp->v_vfsp = vfsp; 680 VFS_HOLD(vfsp); 681 vp->v_type = VNON; 682 if (isrootfh(fh, rp)) 683 vp->v_flag = VROOT; 684 vn_exists(vp); 685 686 /* 687 * There is a race condition if someone else 688 * alloc's the rnode while no locks are held, so we 689 * check again and recover if found. 690 */ 691 rw_enter(&rhtp->r_lock, RW_WRITER); 692 if ((trp = r4find(rhtp, fh, vfsp)) != NULL) { 693 vp = RTOV4(trp); 694 *newnode = 0; 695 rw_exit(&rhtp->r_lock); 696 rp4_addfree(rp, cr); 697 rw_enter(&rhtp->r_lock, RW_READER); 698 return (vp); 699 } 700 rp4_addhash(rp); 701 *newnode = 1; 702 return (vp); 703 } 704 705 static void 706 uninit_rnode4(rnode4_t *rp) 707 { 708 vnode_t *vp = RTOV4(rp); 709 710 ASSERT(rp != NULL); 711 ASSERT(vp != NULL); 712 ASSERT(vp->v_count == 1); 713 ASSERT(rp->r_count == 0); 714 ASSERT(rp->r_mapcnt == 0); 715 if (rp->r_flags & R4LODANGLERS) { 716 nfs4_flush_lock_owners(rp); 717 } 718 ASSERT(rp->r_lo_head.lo_next_rnode == &rp->r_lo_head); 719 ASSERT(rp->r_lo_head.lo_prev_rnode == &rp->r_lo_head); 720 ASSERT(!(rp->r_flags & R4HASHED)); 721 ASSERT(rp->r_freef == NULL && rp->r_freeb == NULL); 722 nfs4_clear_open_streams(rp); 723 list_destroy(&rp->r_open_streams); 724 725 /* 726 * Destroy the rddir cache first since we need to grab the r_statelock. 727 */ 728 mutex_enter(&rp->r_statelock); 729 rddir4_cache_destroy(rp); 730 mutex_exit(&rp->r_statelock); 731 sv_uninit(&rp->r_svnode); 732 sfh4_rele(&rp->r_fh); 733 nfs_rw_destroy(&rp->r_rwlock); 734 nfs_rw_destroy(&rp->r_lkserlock); 735 mutex_destroy(&rp->r_statelock); 736 mutex_destroy(&rp->r_statev4_lock); 737 mutex_destroy(&rp->r_os_lock); 738 cv_destroy(&rp->r_cv); 739 cv_destroy(&rp->r_commit.c_cv); 740 nfs_rw_destroy(&rp->r_deleg_recall_lock); 741 if (rp->r_flags & R4DELMAPLIST) 742 list_destroy(&rp->r_indelmap); 743 } 744 745 /* 746 * Put an rnode on the free list. 747 * 748 * Rnodes which were allocated above and beyond the normal limit 749 * are immediately freed. 750 */ 751 void 752 rp4_addfree(rnode4_t *rp, cred_t *cr) 753 { 754 vnode_t *vp; 755 vnode_t *xattr; 756 struct vfs *vfsp; 757 758 vp = RTOV4(rp); 759 ASSERT(vp->v_count >= 1); 760 ASSERT(rp->r_freef == NULL && rp->r_freeb == NULL); 761 762 /* 763 * If we have too many rnodes allocated and there are no 764 * references to this rnode, or if the rnode is no longer 765 * accessible by it does not reside in the hash queues, 766 * or if an i/o error occurred while writing to the file, 767 * then just free it instead of putting it on the rnode 768 * freelist. 769 */ 770 vfsp = vp->v_vfsp; 771 if (((rnode4_new > nrnode || !(rp->r_flags & R4HASHED) || 772 #ifdef DEBUG 773 (nfs4_rnode_nofreelist != 0) || 774 #endif 775 rp->r_error || (rp->r_flags & R4RECOVERR) || 776 (vfsp->vfs_flag & VFS_UNMOUNTED)) && rp->r_count == 0)) { 777 if (rp->r_flags & R4HASHED) { 778 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 779 mutex_enter(&vp->v_lock); 780 if (vp->v_count > 1) { 781 vp->v_count--; 782 mutex_exit(&vp->v_lock); 783 rw_exit(&rp->r_hashq->r_lock); 784 return; 785 } 786 mutex_exit(&vp->v_lock); 787 rp4_rmhash_locked(rp); 788 rw_exit(&rp->r_hashq->r_lock); 789 } 790 791 /* 792 * Make sure we don't have a delegation on this rnode 793 * before destroying it. 794 */ 795 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { 796 (void) nfs4delegreturn(rp, 797 NFS4_DR_FORCE|NFS4_DR_PUSH|NFS4_DR_REOPEN); 798 } 799 800 r4inactive(rp, cr); 801 802 /* 803 * Recheck the vnode reference count. We need to 804 * make sure that another reference has not been 805 * acquired while we were not holding v_lock. The 806 * rnode is not in the rnode hash queues; one 807 * way for a reference to have been acquired 808 * is for a VOP_PUTPAGE because the rnode was marked 809 * with R4DIRTY or for a modified page. This 810 * reference may have been acquired before our call 811 * to r4inactive. The i/o may have been completed, 812 * thus allowing r4inactive to complete, but the 813 * reference to the vnode may not have been released 814 * yet. In any case, the rnode can not be destroyed 815 * until the other references to this vnode have been 816 * released. The other references will take care of 817 * either destroying the rnode or placing it on the 818 * rnode freelist. If there are no other references, 819 * then the rnode may be safely destroyed. 820 */ 821 mutex_enter(&vp->v_lock); 822 if (vp->v_count > 1) { 823 vp->v_count--; 824 mutex_exit(&vp->v_lock); 825 return; 826 } 827 mutex_exit(&vp->v_lock); 828 829 destroy_rnode4(rp); 830 return; 831 } 832 833 /* 834 * Lock the hash queue and then recheck the reference count 835 * to ensure that no other threads have acquired a reference 836 * to indicate that the rnode should not be placed on the 837 * freelist. If another reference has been acquired, then 838 * just release this one and let the other thread complete 839 * the processing of adding this rnode to the freelist. 840 */ 841 again: 842 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 843 844 mutex_enter(&vp->v_lock); 845 if (vp->v_count > 1) { 846 vp->v_count--; 847 mutex_exit(&vp->v_lock); 848 rw_exit(&rp->r_hashq->r_lock); 849 return; 850 } 851 mutex_exit(&vp->v_lock); 852 853 /* 854 * Make sure we don't put an rnode with a delegation 855 * on the free list. 856 */ 857 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { 858 rw_exit(&rp->r_hashq->r_lock); 859 (void) nfs4delegreturn(rp, 860 NFS4_DR_FORCE|NFS4_DR_PUSH|NFS4_DR_REOPEN); 861 goto again; 862 } 863 864 /* 865 * Now that we have the hash queue lock, and we know there 866 * are not anymore references on the vnode, check to make 867 * sure there aren't any open streams still on the rnode. 868 * If so, drop the hash queue lock, remove the open streams, 869 * and recheck the v_count. 870 */ 871 mutex_enter(&rp->r_os_lock); 872 if (list_head(&rp->r_open_streams) != NULL) { 873 mutex_exit(&rp->r_os_lock); 874 rw_exit(&rp->r_hashq->r_lock); 875 if (nfs_zone() != VTOMI4(vp)->mi_zone) 876 nfs4_clear_open_streams(rp); 877 else 878 (void) nfs4close_all(vp, cr); 879 goto again; 880 } 881 mutex_exit(&rp->r_os_lock); 882 883 /* 884 * Before we put it on the freelist, make sure there are no pages. 885 * If there are, flush and commit of all of the dirty and 886 * uncommitted pages, assuming the file system isn't read only. 887 */ 888 if (!(vp->v_vfsp->vfs_flag & VFS_RDONLY) && nfs4_dross_pages(vp)) { 889 rw_exit(&rp->r_hashq->r_lock); 890 r4flushpages(rp, cr); 891 goto again; 892 } 893 894 /* 895 * Before we put it on the freelist, make sure there is no 896 * active xattr directory cached, the freelist will not 897 * have its entries r4inactive'd if there is still an active 898 * rnode, thus nothing in the freelist can hold another 899 * rnode active. 900 */ 901 xattr = rp->r_xattr_dir; 902 rp->r_xattr_dir = NULL; 903 904 /* 905 * If there is no cached data or metadata for this file, then 906 * put the rnode on the front of the freelist so that it will 907 * be reused before other rnodes which may have cached data or 908 * metadata associated with them. 909 */ 910 mutex_enter(&rp4freelist_lock); 911 if (rp4freelist == NULL) { 912 rp->r_freef = rp; 913 rp->r_freeb = rp; 914 rp4freelist = rp; 915 } else { 916 rp->r_freef = rp4freelist; 917 rp->r_freeb = rp4freelist->r_freeb; 918 rp4freelist->r_freeb->r_freef = rp; 919 rp4freelist->r_freeb = rp; 920 if (!nfs4_has_pages(vp) && rp->r_dir == NULL && 921 rp->r_symlink.contents == NULL && rp->r_secattr == NULL) 922 rp4freelist = rp; 923 } 924 mutex_exit(&rp4freelist_lock); 925 926 rw_exit(&rp->r_hashq->r_lock); 927 928 if (xattr) 929 VN_RELE(xattr); 930 } 931 932 /* 933 * Remove an rnode from the free list. 934 * 935 * The caller must be holding rp4freelist_lock and the rnode 936 * must be on the freelist. 937 */ 938 static void 939 rp4_rmfree(rnode4_t *rp) 940 { 941 942 ASSERT(MUTEX_HELD(&rp4freelist_lock)); 943 ASSERT(rp->r_freef != NULL && rp->r_freeb != NULL); 944 945 if (rp == rp4freelist) { 946 rp4freelist = rp->r_freef; 947 if (rp == rp4freelist) 948 rp4freelist = NULL; 949 } 950 rp->r_freeb->r_freef = rp->r_freef; 951 rp->r_freef->r_freeb = rp->r_freeb; 952 953 rp->r_freef = rp->r_freeb = NULL; 954 } 955 956 /* 957 * Put a rnode in the hash table. 958 * 959 * The caller must be holding the exclusive hash queue lock 960 */ 961 void 962 rp4_addhash(rnode4_t *rp) 963 { 964 ASSERT(RW_WRITE_HELD(&rp->r_hashq->r_lock)); 965 ASSERT(!(rp->r_flags & R4HASHED)); 966 967 #ifdef DEBUG 968 r4_dup_check(rp, RTOV4(rp)->v_vfsp); 969 #endif 970 971 rp->r_hashf = rp->r_hashq->r_hashf; 972 rp->r_hashq->r_hashf = rp; 973 rp->r_hashb = (rnode4_t *)rp->r_hashq; 974 rp->r_hashf->r_hashb = rp; 975 976 mutex_enter(&rp->r_statelock); 977 rp->r_flags |= R4HASHED; 978 mutex_exit(&rp->r_statelock); 979 } 980 981 /* 982 * Remove a rnode from the hash table. 983 * 984 * The caller must be holding the hash queue lock. 985 */ 986 void 987 rp4_rmhash_locked(rnode4_t *rp) 988 { 989 ASSERT(RW_WRITE_HELD(&rp->r_hashq->r_lock)); 990 ASSERT(rp->r_flags & R4HASHED); 991 992 rp->r_hashb->r_hashf = rp->r_hashf; 993 rp->r_hashf->r_hashb = rp->r_hashb; 994 995 mutex_enter(&rp->r_statelock); 996 rp->r_flags &= ~R4HASHED; 997 mutex_exit(&rp->r_statelock); 998 } 999 1000 /* 1001 * Remove a rnode from the hash table. 1002 * 1003 * The caller must not be holding the hash queue lock. 1004 */ 1005 void 1006 rp4_rmhash(rnode4_t *rp) 1007 { 1008 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 1009 rp4_rmhash_locked(rp); 1010 rw_exit(&rp->r_hashq->r_lock); 1011 } 1012 1013 /* 1014 * Lookup a rnode by fhandle. Ignores rnodes that had failed recovery. 1015 * Returns NULL if no match. If an rnode is returned, the reference count 1016 * on the master vnode is incremented. 1017 * 1018 * The caller must be holding the hash queue lock, either shared or exclusive. 1019 */ 1020 rnode4_t * 1021 r4find(r4hashq_t *rhtp, nfs4_sharedfh_t *fh, struct vfs *vfsp) 1022 { 1023 rnode4_t *rp; 1024 vnode_t *vp; 1025 1026 ASSERT(RW_LOCK_HELD(&rhtp->r_lock)); 1027 1028 for (rp = rhtp->r_hashf; rp != (rnode4_t *)rhtp; rp = rp->r_hashf) { 1029 vp = RTOV4(rp); 1030 if (vp->v_vfsp == vfsp && SFH4_SAME(rp->r_fh, fh)) { 1031 1032 mutex_enter(&rp->r_statelock); 1033 if (rp->r_flags & R4RECOVERR) { 1034 mutex_exit(&rp->r_statelock); 1035 continue; 1036 } 1037 mutex_exit(&rp->r_statelock); 1038 #ifdef DEBUG 1039 r4_dup_check(rp, vfsp); 1040 #endif 1041 if (rp->r_freef != NULL) { 1042 mutex_enter(&rp4freelist_lock); 1043 /* 1044 * If the rnode is on the freelist, 1045 * then remove it and use that reference 1046 * as the new reference. Otherwise, 1047 * need to increment the reference count. 1048 */ 1049 if (rp->r_freef != NULL) { 1050 rp4_rmfree(rp); 1051 mutex_exit(&rp4freelist_lock); 1052 } else { 1053 mutex_exit(&rp4freelist_lock); 1054 VN_HOLD(vp); 1055 } 1056 } else 1057 VN_HOLD(vp); 1058 1059 /* 1060 * if root vnode, set v_flag to indicate that 1061 */ 1062 if (isrootfh(fh, rp)) { 1063 if (!(vp->v_flag & VROOT)) { 1064 mutex_enter(&vp->v_lock); 1065 vp->v_flag |= VROOT; 1066 mutex_exit(&vp->v_lock); 1067 } 1068 } 1069 return (rp); 1070 } 1071 } 1072 return (NULL); 1073 } 1074 1075 /* 1076 * Lookup an rnode by fhandle. Just a wrapper for r4find() 1077 * that assumes the caller hasn't already got the lock 1078 * on the hash bucket. 1079 */ 1080 rnode4_t * 1081 r4find_unlocked(nfs4_sharedfh_t *fh, struct vfs *vfsp) 1082 { 1083 rnode4_t *rp; 1084 int index; 1085 1086 index = rtable4hash(fh); 1087 rw_enter(&rtable4[index].r_lock, RW_READER); 1088 rp = r4find(&rtable4[index], fh, vfsp); 1089 rw_exit(&rtable4[index].r_lock); 1090 1091 return (rp); 1092 } 1093 1094 /* 1095 * Return 1 if there is a active vnode belonging to this vfs in the 1096 * rtable4 cache. 1097 * 1098 * Several of these checks are done without holding the usual 1099 * locks. This is safe because destroy_rtable(), rp_addfree(), 1100 * etc. will redo the necessary checks before actually destroying 1101 * any rnodes. 1102 */ 1103 int 1104 check_rtable4(struct vfs *vfsp) 1105 { 1106 rnode4_t *rp; 1107 vnode_t *vp; 1108 char *busy = NULL; 1109 int index; 1110 1111 for (index = 0; index < rtable4size; index++) { 1112 rw_enter(&rtable4[index].r_lock, RW_READER); 1113 1114 for (rp = rtable4[index].r_hashf; 1115 rp != (rnode4_t *)(&rtable4[index]); 1116 rp = rp->r_hashf) { 1117 1118 vp = RTOV4(rp); 1119 if (vp->v_vfsp == vfsp) { 1120 if (rp->r_freef == NULL) { 1121 busy = "not on free list"; 1122 } else if (nfs4_has_pages(vp) && 1123 (rp->r_flags & R4DIRTY)) { 1124 busy = "dirty pages"; 1125 } else if (rp->r_count > 0) { 1126 busy = "r_count > 0"; 1127 } 1128 1129 if (busy != NULL) { 1130 #ifdef DEBUG 1131 char *path; 1132 1133 path = fn_path(rp->r_svnode.sv_name); 1134 NFS4_DEBUG(nfs4_rnode_debug, 1135 (CE_NOTE, "check_rtable4: " "%s %s", 1136 path, busy)); 1137 kmem_free(path, strlen(path)+1); 1138 #endif 1139 rw_exit(&rtable4[index].r_lock); 1140 return (1); 1141 } 1142 } 1143 } 1144 rw_exit(&rtable4[index].r_lock); 1145 } 1146 return (0); 1147 } 1148 1149 /* 1150 * Destroy inactive vnodes from the hash queues which 1151 * belong to this vfs. All of the vnodes should be inactive. 1152 * It is essential that we destroy all rnodes in case of 1153 * forced unmount as well as in normal unmount case. 1154 */ 1155 1156 void 1157 destroy_rtable4(struct vfs *vfsp, cred_t *cr) 1158 { 1159 int index; 1160 vnode_t *vp; 1161 rnode4_t *rp, *r_hashf, *rlist; 1162 1163 rlist = NULL; 1164 1165 for (index = 0; index < rtable4size; index++) { 1166 rw_enter(&rtable4[index].r_lock, RW_WRITER); 1167 for (rp = rtable4[index].r_hashf; 1168 rp != (rnode4_t *)(&rtable4[index]); 1169 rp = r_hashf) { 1170 /* save the hash pointer before destroying */ 1171 r_hashf = rp->r_hashf; 1172 1173 vp = RTOV4(rp); 1174 if (vp->v_vfsp == vfsp) { 1175 mutex_enter(&rp4freelist_lock); 1176 if (rp->r_freef != NULL) { 1177 rp4_rmfree(rp); 1178 mutex_exit(&rp4freelist_lock); 1179 rp4_rmhash_locked(rp); 1180 rp->r_hashf = rlist; 1181 rlist = rp; 1182 } else 1183 mutex_exit(&rp4freelist_lock); 1184 } 1185 } 1186 rw_exit(&rtable4[index].r_lock); 1187 } 1188 1189 for (rp = rlist; rp != NULL; rp = r_hashf) { 1190 r_hashf = rp->r_hashf; 1191 /* 1192 * This call to rp4_addfree will end up destroying the 1193 * rnode, but in a safe way with the appropriate set 1194 * of checks done. 1195 */ 1196 rp4_addfree(rp, cr); 1197 } 1198 } 1199 1200 /* 1201 * This routine destroys all the resources of an rnode 1202 * and finally the rnode itself. 1203 */ 1204 static void 1205 destroy_rnode4(rnode4_t *rp) 1206 { 1207 vnode_t *vp; 1208 vfs_t *vfsp; 1209 1210 ASSERT(rp->r_deleg_type == OPEN_DELEGATE_NONE); 1211 1212 vp = RTOV4(rp); 1213 vfsp = vp->v_vfsp; 1214 1215 uninit_rnode4(rp); 1216 atomic_add_long((ulong_t *)&rnode4_new, -1); 1217 #ifdef DEBUG 1218 clstat4_debug.nrnode.value.ui64--; 1219 #endif 1220 kmem_cache_free(rnode4_cache, rp); 1221 vn_invalid(vp); 1222 vn_free(vp); 1223 VFS_RELE(vfsp); 1224 } 1225 1226 /* 1227 * Invalidate the attributes on all rnodes forcing the next getattr 1228 * to go over the wire. Used to flush stale uid and gid mappings. 1229 * Maybe done on a per vfsp, or all rnodes (vfsp == NULL) 1230 */ 1231 void 1232 nfs4_rnode_invalidate(struct vfs *vfsp) 1233 { 1234 int index; 1235 rnode4_t *rp; 1236 vnode_t *vp; 1237 1238 /* 1239 * Walk the hash queues looking for rnodes. 1240 */ 1241 for (index = 0; index < rtable4size; index++) { 1242 rw_enter(&rtable4[index].r_lock, RW_READER); 1243 for (rp = rtable4[index].r_hashf; 1244 rp != (rnode4_t *)(&rtable4[index]); 1245 rp = rp->r_hashf) { 1246 vp = RTOV4(rp); 1247 if (vfsp != NULL && vp->v_vfsp != vfsp) 1248 continue; 1249 1250 if (!mutex_tryenter(&rp->r_statelock)) 1251 continue; 1252 1253 /* 1254 * Expire the attributes by resetting the change 1255 * and attr timeout. 1256 */ 1257 rp->r_change = 0; 1258 PURGE_ATTRCACHE4_LOCKED(rp); 1259 mutex_exit(&rp->r_statelock); 1260 } 1261 rw_exit(&rtable4[index].r_lock); 1262 } 1263 } 1264 1265 /* 1266 * Flush all vnodes in this (or every) vfs. 1267 * Used by nfs_sync and by nfs_unmount. 1268 */ 1269 void 1270 r4flush(struct vfs *vfsp, cred_t *cr) 1271 { 1272 int index; 1273 rnode4_t *rp; 1274 vnode_t *vp, **vplist; 1275 long num, cnt; 1276 1277 /* 1278 * Check to see whether there is anything to do. 1279 */ 1280 num = rnode4_new; 1281 if (num == 0) 1282 return; 1283 1284 /* 1285 * Allocate a slot for all currently active rnodes on the 1286 * supposition that they all may need flushing. 1287 */ 1288 vplist = kmem_alloc(num * sizeof (*vplist), KM_SLEEP); 1289 cnt = 0; 1290 1291 /* 1292 * Walk the hash queues looking for rnodes with page 1293 * lists associated with them. Make a list of these 1294 * files. 1295 */ 1296 for (index = 0; index < rtable4size; index++) { 1297 rw_enter(&rtable4[index].r_lock, RW_READER); 1298 for (rp = rtable4[index].r_hashf; 1299 rp != (rnode4_t *)(&rtable4[index]); 1300 rp = rp->r_hashf) { 1301 vp = RTOV4(rp); 1302 /* 1303 * Don't bother sync'ing a vp if it 1304 * is part of virtual swap device or 1305 * if VFS is read-only 1306 */ 1307 if (IS_SWAPVP(vp) || vn_is_readonly(vp)) 1308 continue; 1309 /* 1310 * If flushing all mounted file systems or 1311 * the vnode belongs to this vfs, has pages 1312 * and is marked as either dirty or mmap'd, 1313 * hold and add this vnode to the list of 1314 * vnodes to flush. 1315 */ 1316 if ((vfsp == NULL || vp->v_vfsp == vfsp) && 1317 nfs4_has_pages(vp) && 1318 ((rp->r_flags & R4DIRTY) || rp->r_mapcnt > 0)) { 1319 VN_HOLD(vp); 1320 vplist[cnt++] = vp; 1321 if (cnt == num) { 1322 rw_exit(&rtable4[index].r_lock); 1323 goto toomany; 1324 } 1325 } 1326 } 1327 rw_exit(&rtable4[index].r_lock); 1328 } 1329 toomany: 1330 1331 /* 1332 * Flush and release all of the files on the list. 1333 */ 1334 while (cnt-- > 0) { 1335 vp = vplist[cnt]; 1336 (void) VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_ASYNC, cr, NULL); 1337 VN_RELE(vp); 1338 } 1339 1340 /* 1341 * Free the space allocated to hold the list. 1342 */ 1343 kmem_free(vplist, num * sizeof (*vplist)); 1344 } 1345 1346 int 1347 nfs4_free_data_reclaim(rnode4_t *rp) 1348 { 1349 char *contents; 1350 vnode_t *xattr; 1351 int size; 1352 vsecattr_t *vsp; 1353 int freed; 1354 bool_t rdc = FALSE; 1355 1356 /* 1357 * Free any held caches which may 1358 * be associated with this rnode. 1359 */ 1360 mutex_enter(&rp->r_statelock); 1361 if (rp->r_dir != NULL) 1362 rdc = TRUE; 1363 contents = rp->r_symlink.contents; 1364 size = rp->r_symlink.size; 1365 rp->r_symlink.contents = NULL; 1366 vsp = rp->r_secattr; 1367 rp->r_secattr = NULL; 1368 xattr = rp->r_xattr_dir; 1369 rp->r_xattr_dir = NULL; 1370 mutex_exit(&rp->r_statelock); 1371 1372 /* 1373 * Free the access cache entries. 1374 */ 1375 freed = nfs4_access_purge_rp(rp); 1376 1377 if (rdc == FALSE && contents == NULL && vsp == NULL && xattr == NULL) 1378 return (freed); 1379 1380 /* 1381 * Free the readdir cache entries, incompletely if we can't block. 1382 */ 1383 nfs4_purge_rddir_cache(RTOV4(rp)); 1384 1385 /* 1386 * Free the symbolic link cache. 1387 */ 1388 if (contents != NULL) { 1389 1390 kmem_free((void *)contents, size); 1391 } 1392 1393 /* 1394 * Free any cached ACL. 1395 */ 1396 if (vsp != NULL) 1397 nfs4_acl_free_cache(vsp); 1398 1399 /* 1400 * Release the xattr directory vnode 1401 */ 1402 if (xattr != NULL) 1403 VN_RELE(xattr); 1404 1405 return (1); 1406 } 1407 1408 static int 1409 nfs4_active_data_reclaim(rnode4_t *rp) 1410 { 1411 char *contents; 1412 vnode_t *xattr; 1413 int size; 1414 vsecattr_t *vsp; 1415 int freed; 1416 bool_t rdc = FALSE; 1417 1418 /* 1419 * Free any held credentials and caches which 1420 * may be associated with this rnode. 1421 */ 1422 if (!mutex_tryenter(&rp->r_statelock)) 1423 return (0); 1424 contents = rp->r_symlink.contents; 1425 size = rp->r_symlink.size; 1426 rp->r_symlink.contents = NULL; 1427 vsp = rp->r_secattr; 1428 rp->r_secattr = NULL; 1429 if (rp->r_dir != NULL) 1430 rdc = TRUE; 1431 xattr = rp->r_xattr_dir; 1432 rp->r_xattr_dir = NULL; 1433 mutex_exit(&rp->r_statelock); 1434 1435 /* 1436 * Free the access cache entries. 1437 */ 1438 freed = nfs4_access_purge_rp(rp); 1439 1440 if (contents == NULL && vsp == NULL && rdc == FALSE && xattr == NULL) 1441 return (freed); 1442 1443 /* 1444 * Free the symbolic link cache. 1445 */ 1446 if (contents != NULL) { 1447 1448 kmem_free((void *)contents, size); 1449 } 1450 1451 /* 1452 * Free any cached ACL. 1453 */ 1454 if (vsp != NULL) 1455 nfs4_acl_free_cache(vsp); 1456 1457 nfs4_purge_rddir_cache(RTOV4(rp)); 1458 1459 /* 1460 * Release the xattr directory vnode 1461 */ 1462 if (xattr != NULL) 1463 VN_RELE(xattr); 1464 1465 return (1); 1466 } 1467 1468 static int 1469 nfs4_free_reclaim(void) 1470 { 1471 int freed; 1472 rnode4_t *rp; 1473 1474 #ifdef DEBUG 1475 clstat4_debug.f_reclaim.value.ui64++; 1476 #endif 1477 freed = 0; 1478 mutex_enter(&rp4freelist_lock); 1479 rp = rp4freelist; 1480 if (rp != NULL) { 1481 do { 1482 if (nfs4_free_data_reclaim(rp)) 1483 freed = 1; 1484 } while ((rp = rp->r_freef) != rp4freelist); 1485 } 1486 mutex_exit(&rp4freelist_lock); 1487 return (freed); 1488 } 1489 1490 static int 1491 nfs4_active_reclaim(void) 1492 { 1493 int freed; 1494 int index; 1495 rnode4_t *rp; 1496 1497 #ifdef DEBUG 1498 clstat4_debug.a_reclaim.value.ui64++; 1499 #endif 1500 freed = 0; 1501 for (index = 0; index < rtable4size; index++) { 1502 rw_enter(&rtable4[index].r_lock, RW_READER); 1503 for (rp = rtable4[index].r_hashf; 1504 rp != (rnode4_t *)(&rtable4[index]); 1505 rp = rp->r_hashf) { 1506 if (nfs4_active_data_reclaim(rp)) 1507 freed = 1; 1508 } 1509 rw_exit(&rtable4[index].r_lock); 1510 } 1511 return (freed); 1512 } 1513 1514 static int 1515 nfs4_rnode_reclaim(void) 1516 { 1517 int freed; 1518 rnode4_t *rp; 1519 vnode_t *vp; 1520 1521 #ifdef DEBUG 1522 clstat4_debug.r_reclaim.value.ui64++; 1523 #endif 1524 freed = 0; 1525 mutex_enter(&rp4freelist_lock); 1526 while ((rp = rp4freelist) != NULL) { 1527 rp4_rmfree(rp); 1528 mutex_exit(&rp4freelist_lock); 1529 if (rp->r_flags & R4HASHED) { 1530 vp = RTOV4(rp); 1531 rw_enter(&rp->r_hashq->r_lock, RW_WRITER); 1532 mutex_enter(&vp->v_lock); 1533 if (vp->v_count > 1) { 1534 vp->v_count--; 1535 mutex_exit(&vp->v_lock); 1536 rw_exit(&rp->r_hashq->r_lock); 1537 mutex_enter(&rp4freelist_lock); 1538 continue; 1539 } 1540 mutex_exit(&vp->v_lock); 1541 rp4_rmhash_locked(rp); 1542 rw_exit(&rp->r_hashq->r_lock); 1543 } 1544 /* 1545 * This call to rp_addfree will end up destroying the 1546 * rnode, but in a safe way with the appropriate set 1547 * of checks done. 1548 */ 1549 rp4_addfree(rp, CRED()); 1550 mutex_enter(&rp4freelist_lock); 1551 } 1552 mutex_exit(&rp4freelist_lock); 1553 return (freed); 1554 } 1555 1556 /*ARGSUSED*/ 1557 static void 1558 nfs4_reclaim(void *cdrarg) 1559 { 1560 #ifdef DEBUG 1561 clstat4_debug.reclaim.value.ui64++; 1562 #endif 1563 if (nfs4_free_reclaim()) 1564 return; 1565 1566 if (nfs4_active_reclaim()) 1567 return; 1568 1569 (void) nfs4_rnode_reclaim(); 1570 } 1571 1572 /* 1573 * Returns the clientid4 to use for the given mntinfo4. Note that the 1574 * clientid can change if the caller drops mi_recovlock. 1575 */ 1576 1577 clientid4 1578 mi2clientid(mntinfo4_t *mi) 1579 { 1580 nfs4_server_t *sp; 1581 clientid4 clientid = 0; 1582 1583 /* this locks down sp if it is found */ 1584 sp = find_nfs4_server(mi); 1585 if (sp != NULL) { 1586 clientid = sp->clientid; 1587 mutex_exit(&sp->s_lock); 1588 nfs4_server_rele(sp); 1589 } 1590 return (clientid); 1591 } 1592 1593 /* 1594 * Return the current lease time for the server associated with the given 1595 * file. Note that the lease time could change immediately after this 1596 * call. 1597 */ 1598 1599 time_t 1600 r2lease_time(rnode4_t *rp) 1601 { 1602 nfs4_server_t *sp; 1603 time_t lease_time; 1604 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 1605 1606 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0); 1607 1608 /* this locks down sp if it is found */ 1609 sp = find_nfs4_server(VTOMI4(RTOV4(rp))); 1610 1611 if (VTOMI4(RTOV4(rp))->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1612 if (sp != NULL) { 1613 mutex_exit(&sp->s_lock); 1614 nfs4_server_rele(sp); 1615 } 1616 nfs_rw_exit(&mi->mi_recovlock); 1617 return (1); /* 1 second */ 1618 } 1619 1620 ASSERT(sp != NULL); 1621 1622 lease_time = sp->s_lease_time; 1623 1624 mutex_exit(&sp->s_lock); 1625 nfs4_server_rele(sp); 1626 nfs_rw_exit(&mi->mi_recovlock); 1627 1628 return (lease_time); 1629 } 1630 1631 /* 1632 * Return a list with information about all the known open instances for 1633 * a filesystem. The caller must call r4releopenlist() when done with the 1634 * list. 1635 * 1636 * We are safe at looking at os_valid and os_pending_close across dropping 1637 * the 'os_sync_lock' to count up the number of open streams and then 1638 * allocate memory for the osp list due to: 1639 * -Looking at os_pending_close is safe since this routine is 1640 * only called via recovery, and os_pending_close can only be set via 1641 * a non-recovery operation (which are all blocked when recovery 1642 * is active). 1643 * 1644 * -Examining os_valid is safe since non-recovery operations, which 1645 * could potentially switch os_valid to 0, are blocked (via 1646 * nfs4_start_fop) and recovery is single-threaded per mntinfo4_t 1647 * (which means we are the only recovery thread potentially acting 1648 * on this open stream). 1649 */ 1650 1651 nfs4_opinst_t * 1652 r4mkopenlist(mntinfo4_t *mi) 1653 { 1654 nfs4_opinst_t *reopenlist, *rep; 1655 rnode4_t *rp; 1656 vnode_t *vp; 1657 vfs_t *vfsp = mi->mi_vfsp; 1658 int numosp; 1659 nfs4_open_stream_t *osp; 1660 int index; 1661 open_delegation_type4 dtype; 1662 int hold_vnode; 1663 1664 reopenlist = NULL; 1665 1666 for (index = 0; index < rtable4size; index++) { 1667 rw_enter(&rtable4[index].r_lock, RW_READER); 1668 for (rp = rtable4[index].r_hashf; 1669 rp != (rnode4_t *)(&rtable4[index]); 1670 rp = rp->r_hashf) { 1671 1672 vp = RTOV4(rp); 1673 if (vp->v_vfsp != vfsp) 1674 continue; 1675 hold_vnode = 0; 1676 1677 mutex_enter(&rp->r_os_lock); 1678 1679 /* Count the number of valid open_streams of the file */ 1680 numosp = 0; 1681 for (osp = list_head(&rp->r_open_streams); osp != NULL; 1682 osp = list_next(&rp->r_open_streams, osp)) { 1683 mutex_enter(&osp->os_sync_lock); 1684 if (osp->os_valid && !osp->os_pending_close) 1685 numosp++; 1686 mutex_exit(&osp->os_sync_lock); 1687 } 1688 1689 /* Fill in the valid open streams per vp */ 1690 if (numosp > 0) { 1691 int j; 1692 1693 hold_vnode = 1; 1694 1695 /* 1696 * Add a new open instance to the list 1697 */ 1698 rep = kmem_zalloc(sizeof (*reopenlist), 1699 KM_SLEEP); 1700 rep->re_next = reopenlist; 1701 reopenlist = rep; 1702 1703 rep->re_vp = vp; 1704 rep->re_osp = kmem_zalloc( 1705 numosp * sizeof (*(rep->re_osp)), 1706 KM_SLEEP); 1707 rep->re_numosp = numosp; 1708 1709 j = 0; 1710 for (osp = list_head(&rp->r_open_streams); 1711 osp != NULL; 1712 osp = list_next(&rp->r_open_streams, osp)) { 1713 1714 mutex_enter(&osp->os_sync_lock); 1715 if (osp->os_valid && 1716 !osp->os_pending_close) { 1717 osp->os_ref_count++; 1718 rep->re_osp[j] = osp; 1719 j++; 1720 } 1721 mutex_exit(&osp->os_sync_lock); 1722 } 1723 /* 1724 * Assuming valid osp(s) stays valid between 1725 * the time obtaining j and numosp. 1726 */ 1727 ASSERT(j == numosp); 1728 } 1729 1730 mutex_exit(&rp->r_os_lock); 1731 /* do this here to keep v_lock > r_os_lock */ 1732 if (hold_vnode) 1733 VN_HOLD(vp); 1734 mutex_enter(&rp->r_statev4_lock); 1735 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) { 1736 /* 1737 * If this rnode holds a delegation, 1738 * but if there are no valid open streams, 1739 * then just discard the delegation 1740 * without doing delegreturn. 1741 */ 1742 if (numosp > 0) 1743 rp->r_deleg_needs_recovery = 1744 rp->r_deleg_type; 1745 } 1746 /* Save the delegation type for use outside the lock */ 1747 dtype = rp->r_deleg_type; 1748 mutex_exit(&rp->r_statev4_lock); 1749 1750 /* 1751 * If we have a delegation then get rid of it. 1752 * We've set rp->r_deleg_needs_recovery so we have 1753 * enough information to recover. 1754 */ 1755 if (dtype != OPEN_DELEGATE_NONE) { 1756 (void) nfs4delegreturn(rp, NFS4_DR_DISCARD); 1757 } 1758 } 1759 rw_exit(&rtable4[index].r_lock); 1760 } 1761 return (reopenlist); 1762 } 1763 1764 /* 1765 * Release the list of open instance references. 1766 */ 1767 1768 void 1769 r4releopenlist(nfs4_opinst_t *reopenp) 1770 { 1771 nfs4_opinst_t *rep, *next; 1772 int i; 1773 1774 for (rep = reopenp; rep; rep = next) { 1775 next = rep->re_next; 1776 1777 for (i = 0; i < rep->re_numosp; i++) 1778 open_stream_rele(rep->re_osp[i], VTOR4(rep->re_vp)); 1779 1780 VN_RELE(rep->re_vp); 1781 kmem_free(rep->re_osp, 1782 rep->re_numosp * sizeof (*(rep->re_osp))); 1783 1784 kmem_free(rep, sizeof (*rep)); 1785 } 1786 } 1787 1788 int 1789 nfs4_rnode_init(void) 1790 { 1791 ulong_t nrnode4_max; 1792 int i; 1793 1794 /* 1795 * Compute the size of the rnode4 hash table 1796 */ 1797 if (nrnode <= 0) 1798 nrnode = ncsize; 1799 nrnode4_max = 1800 (ulong_t)((kmem_maxavail() >> 2) / sizeof (struct rnode4)); 1801 if (nrnode > nrnode4_max || (nrnode == 0 && ncsize == 0)) { 1802 zcmn_err(GLOBAL_ZONEID, CE_NOTE, 1803 "setting nrnode to max value of %ld", nrnode4_max); 1804 nrnode = nrnode4_max; 1805 } 1806 rtable4size = 1 << highbit(nrnode / rnode4_hashlen); 1807 rtable4mask = rtable4size - 1; 1808 1809 /* 1810 * Allocate and initialize the hash buckets 1811 */ 1812 rtable4 = kmem_alloc(rtable4size * sizeof (*rtable4), KM_SLEEP); 1813 for (i = 0; i < rtable4size; i++) { 1814 rtable4[i].r_hashf = (rnode4_t *)(&rtable4[i]); 1815 rtable4[i].r_hashb = (rnode4_t *)(&rtable4[i]); 1816 rw_init(&rtable4[i].r_lock, NULL, RW_DEFAULT, NULL); 1817 } 1818 1819 rnode4_cache = kmem_cache_create("rnode4_cache", sizeof (rnode4_t), 1820 0, NULL, NULL, nfs4_reclaim, NULL, NULL, 0); 1821 1822 return (0); 1823 } 1824 1825 int 1826 nfs4_rnode_fini(void) 1827 { 1828 int i; 1829 1830 /* 1831 * Deallocate the rnode hash queues 1832 */ 1833 kmem_cache_destroy(rnode4_cache); 1834 1835 for (i = 0; i < rtable4size; i++) 1836 rw_destroy(&rtable4[i].r_lock); 1837 1838 kmem_free(rtable4, rtable4size * sizeof (*rtable4)); 1839 1840 return (0); 1841 } 1842 1843 /* 1844 * Return non-zero if the given filehandle refers to the root filehandle 1845 * for the given rnode. 1846 */ 1847 1848 static int 1849 isrootfh(nfs4_sharedfh_t *fh, rnode4_t *rp) 1850 { 1851 int isroot; 1852 1853 isroot = 0; 1854 if (SFH4_SAME(VTOMI4(RTOV4(rp))->mi_rootfh, fh)) 1855 isroot = 1; 1856 1857 return (isroot); 1858 } 1859 1860 /* 1861 * The r4_stub_* routines assume that the rnode is newly activated, and 1862 * that the caller either holds the hash bucket r_lock for this rnode as 1863 * RW_WRITER, or holds r_statelock. 1864 */ 1865 static void 1866 r4_stub_set(rnode4_t *rp, nfs4_stub_type_t type) 1867 { 1868 vnode_t *vp = RTOV4(rp); 1869 krwlock_t *hash_lock = &rp->r_hashq->r_lock; 1870 1871 ASSERT(RW_WRITE_HELD(hash_lock) || MUTEX_HELD(&rp->r_statelock)); 1872 1873 rp->r_stub_type = type; 1874 1875 /* 1876 * Safely switch this vnode to the trigger vnodeops. 1877 * 1878 * Currently, we don't ever switch a trigger vnode back to using 1879 * "regular" v4 vnodeops. NFS4_STUB_NONE is only used to note that 1880 * a new v4 object is not a trigger, and it will already have the 1881 * correct v4 vnodeops by default. So, no "else" case required here. 1882 */ 1883 if (type != NFS4_STUB_NONE) 1884 vn_setops(vp, nfs4_trigger_vnodeops); 1885 } 1886 1887 void 1888 r4_stub_mirrormount(rnode4_t *rp) 1889 { 1890 r4_stub_set(rp, NFS4_STUB_MIRRORMOUNT); 1891 } 1892 1893 void 1894 r4_stub_none(rnode4_t *rp) 1895 { 1896 r4_stub_set(rp, NFS4_STUB_NONE); 1897 } 1898 1899 #ifdef DEBUG 1900 1901 /* 1902 * Look in the rnode table for other rnodes that have the same filehandle. 1903 * Assume the lock is held for the hash chain of checkrp 1904 */ 1905 1906 static void 1907 r4_dup_check(rnode4_t *checkrp, vfs_t *vfsp) 1908 { 1909 rnode4_t *rp; 1910 vnode_t *tvp; 1911 nfs4_fhandle_t fh, fh2; 1912 int index; 1913 1914 if (!r4_check_for_dups) 1915 return; 1916 1917 ASSERT(RW_LOCK_HELD(&checkrp->r_hashq->r_lock)); 1918 1919 sfh4_copyval(checkrp->r_fh, &fh); 1920 1921 for (index = 0; index < rtable4size; index++) { 1922 1923 if (&rtable4[index] != checkrp->r_hashq) 1924 rw_enter(&rtable4[index].r_lock, RW_READER); 1925 1926 for (rp = rtable4[index].r_hashf; 1927 rp != (rnode4_t *)(&rtable4[index]); 1928 rp = rp->r_hashf) { 1929 1930 if (rp == checkrp) 1931 continue; 1932 1933 tvp = RTOV4(rp); 1934 if (tvp->v_vfsp != vfsp) 1935 continue; 1936 1937 sfh4_copyval(rp->r_fh, &fh2); 1938 if (nfs4cmpfhandle(&fh, &fh2) == 0) { 1939 cmn_err(CE_PANIC, "rnodes with same fs, fh " 1940 "(%p, %p)", (void *)checkrp, (void *)rp); 1941 } 1942 } 1943 1944 if (&rtable4[index] != checkrp->r_hashq) 1945 rw_exit(&rtable4[index].r_lock); 1946 } 1947 } 1948 1949 #endif /* DEBUG */ 1950