xref: /illumos-gate/usr/src/uts/common/fs/nfs/nfs4_client.c (revision 4e93fb0f6383eaac21897dcdae56b87118131e4d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  *  	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
28  *	All Rights Reserved
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/systm.h>
36 #include <sys/thread.h>
37 #include <sys/t_lock.h>
38 #include <sys/time.h>
39 #include <sys/vnode.h>
40 #include <sys/vfs.h>
41 #include <sys/errno.h>
42 #include <sys/buf.h>
43 #include <sys/stat.h>
44 #include <sys/cred.h>
45 #include <sys/kmem.h>
46 #include <sys/debug.h>
47 #include <sys/dnlc.h>
48 #include <sys/vmsystm.h>
49 #include <sys/flock.h>
50 #include <sys/share.h>
51 #include <sys/cmn_err.h>
52 #include <sys/tiuser.h>
53 #include <sys/sysmacros.h>
54 #include <sys/callb.h>
55 #include <sys/acl.h>
56 #include <sys/kstat.h>
57 #include <sys/signal.h>
58 #include <sys/disp.h>
59 #include <sys/atomic.h>
60 #include <sys/list.h>
61 #include <sys/sdt.h>
62 
63 #include <rpc/types.h>
64 #include <rpc/xdr.h>
65 #include <rpc/auth.h>
66 #include <rpc/clnt.h>
67 
68 #include <nfs/nfs.h>
69 #include <nfs/nfs_clnt.h>
70 #include <nfs/nfs_acl.h>
71 
72 #include <nfs/nfs4.h>
73 #include <nfs/rnode4.h>
74 #include <nfs/nfs4_clnt.h>
75 
76 #include <vm/hat.h>
77 #include <vm/as.h>
78 #include <vm/page.h>
79 #include <vm/pvn.h>
80 #include <vm/seg.h>
81 #include <vm/seg_map.h>
82 #include <vm/seg_vn.h>
83 
84 #include <sys/ddi.h>
85 
86 /*
87  * Arguments to page-flush thread.
88  */
89 typedef struct {
90 	vnode_t *vp;
91 	cred_t *cr;
92 } pgflush_t;
93 
94 #ifdef DEBUG
95 int nfs4_client_lease_debug;
96 int nfs4_sharedfh_debug;
97 int nfs4_fname_debug;
98 
99 /* temporary: panic if v_type is inconsistent with r_attr va_type */
100 int nfs4_vtype_debug;
101 
102 uint_t nfs4_tsd_key;
103 #endif
104 
105 static time_t	nfs4_client_resumed = 0;
106 static	callb_id_t cid = 0;
107 
108 static int	nfs4renew(nfs4_server_t *);
109 static void	nfs4_attrcache_va(vnode_t *, nfs4_ga_res_t *, int);
110 static void	nfs4_pgflush_thread(pgflush_t *);
111 static void	flush_pages(vnode_t *, cred_t *);
112 
113 static boolean_t nfs4_client_cpr_callb(void *, int);
114 
115 struct mi4_globals {
116 	kmutex_t	mig_lock;  /* lock protecting mig_list */
117 	list_t		mig_list;  /* list of NFS v4 mounts in zone */
118 	boolean_t	mig_destructor_called;
119 };
120 
121 static zone_key_t mi4_list_key;
122 
123 /*
124  * Attributes caching:
125  *
126  * Attributes are cached in the rnode in struct vattr form.
127  * There is a time associated with the cached attributes (r_time_attr_inval)
128  * which tells whether the attributes are valid. The time is initialized
129  * to the difference between current time and the modify time of the vnode
130  * when new attributes are cached. This allows the attributes for
131  * files that have changed recently to be timed out sooner than for files
132  * that have not changed for a long time. There are minimum and maximum
133  * timeout values that can be set per mount point.
134  */
135 
136 /*
137  * If a cache purge is in progress, wait for it to finish.
138  *
139  * The current thread must not be in the middle of an
140  * nfs4_start_op/nfs4_end_op region.  Otherwise, there could be a deadlock
141  * between this thread, a recovery thread, and the page flush thread.
142  */
143 int
144 nfs4_waitfor_purge_complete(vnode_t *vp)
145 {
146 	rnode4_t *rp;
147 	k_sigset_t smask;
148 
149 	rp = VTOR4(vp);
150 	if ((rp->r_serial != NULL && rp->r_serial != curthread) ||
151 	    ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread)) {
152 		mutex_enter(&rp->r_statelock);
153 		sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
154 		while ((rp->r_serial != NULL && rp->r_serial != curthread) ||
155 		    ((rp->r_flags & R4PGFLUSH) &&
156 		    rp->r_pgflush != curthread)) {
157 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
158 				sigunintr(&smask);
159 				mutex_exit(&rp->r_statelock);
160 				return (EINTR);
161 			}
162 		}
163 		sigunintr(&smask);
164 		mutex_exit(&rp->r_statelock);
165 	}
166 	return (0);
167 }
168 
169 /*
170  * Validate caches by checking cached attributes. If they have timed out,
171  * then get new attributes from the server.  As a side effect, cache
172  * invalidation is done if the attributes have changed.
173  *
174  * If the attributes have not timed out and if there is a cache
175  * invalidation being done by some other thread, then wait until that
176  * thread has completed the cache invalidation.
177  */
178 int
179 nfs4_validate_caches(vnode_t *vp, cred_t *cr)
180 {
181 	int error;
182 	nfs4_ga_res_t gar;
183 
184 	if (ATTRCACHE4_VALID(vp)) {
185 		error = nfs4_waitfor_purge_complete(vp);
186 		if (error)
187 			return (error);
188 		return (0);
189 	}
190 
191 	gar.n4g_va.va_mask = AT_ALL;
192 	return (nfs4_getattr_otw(vp, &gar, cr, 0));
193 }
194 
195 /*
196  * Fill in attribute from the cache.
197  * If valid, then return 0 to indicate that no error occurred,
198  * otherwise return 1 to indicate that an error occurred.
199  */
200 static int
201 nfs4_getattr_cache(vnode_t *vp, struct vattr *vap)
202 {
203 	rnode4_t *rp;
204 
205 	rp = VTOR4(vp);
206 	mutex_enter(&rp->r_statelock);
207 	mutex_enter(&rp->r_statev4_lock);
208 	if (ATTRCACHE4_VALID(vp)) {
209 		mutex_exit(&rp->r_statev4_lock);
210 		/*
211 		 * Cached attributes are valid
212 		 */
213 		*vap = rp->r_attr;
214 		mutex_exit(&rp->r_statelock);
215 		return (0);
216 	}
217 	mutex_exit(&rp->r_statev4_lock);
218 	mutex_exit(&rp->r_statelock);
219 	return (1);
220 }
221 
222 
223 /*
224  * If returned error is ESTALE flush all caches.  The nfs4_purge_caches()
225  * call is synchronous because all the pages were invalidated by the
226  * nfs4_invalidate_pages() call.
227  */
228 void
229 nfs4_purge_stale_fh(int errno, vnode_t *vp, cred_t *cr)
230 {
231 	struct rnode4 *rp = VTOR4(vp);
232 
233 	/* Ensure that the ..._end_op() call has been done */
234 	ASSERT(tsd_get(nfs4_tsd_key) == NULL);
235 
236 	if (errno != ESTALE)
237 		return;
238 
239 	mutex_enter(&rp->r_statelock);
240 	rp->r_flags |= R4STALE;
241 	if (!rp->r_error)
242 		rp->r_error = errno;
243 	mutex_exit(&rp->r_statelock);
244 	if (nfs4_has_pages(vp))
245 		nfs4_invalidate_pages(vp, (u_offset_t)0, cr);
246 	nfs4_purge_caches(vp, NFS4_PURGE_DNLC, cr, FALSE);
247 }
248 
249 /*
250  * Purge all of the various NFS `data' caches.  If "asyncpg" is TRUE, the
251  * page purge is done asynchronously.
252  */
253 void
254 nfs4_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr, int asyncpg)
255 {
256 	rnode4_t *rp;
257 	char *contents;
258 	vnode_t *xattr;
259 	int size;
260 	int pgflush;			/* are we the page flush thread? */
261 
262 	/*
263 	 * Purge the DNLC for any entries which refer to this file.
264 	 */
265 	if (vp->v_count > 1 &&
266 	    (vp->v_type == VDIR || purge_dnlc == NFS4_PURGE_DNLC))
267 		dnlc_purge_vp(vp);
268 
269 	/*
270 	 * Clear any readdir state bits and purge the readlink response cache.
271 	 */
272 	rp = VTOR4(vp);
273 	mutex_enter(&rp->r_statelock);
274 	rp->r_flags &= ~R4LOOKUP;
275 	contents = rp->r_symlink.contents;
276 	size = rp->r_symlink.size;
277 	rp->r_symlink.contents = NULL;
278 
279 	xattr = rp->r_xattr_dir;
280 	rp->r_xattr_dir = NULL;
281 
282 	/*
283 	 * Purge pathconf cache too.
284 	 */
285 	rp->r_pathconf.pc4_xattr_valid = 0;
286 	rp->r_pathconf.pc4_cache_valid = 0;
287 
288 	pgflush = (curthread == rp->r_pgflush);
289 	mutex_exit(&rp->r_statelock);
290 
291 	if (contents != NULL) {
292 
293 		kmem_free((void *)contents, size);
294 	}
295 
296 	if (xattr != NULL)
297 		VN_RELE(xattr);
298 
299 	/*
300 	 * Flush the page cache.  If the current thread is the page flush
301 	 * thread, don't initiate a new page flush.  There's no need for
302 	 * it, and doing it correctly is hard.
303 	 */
304 	if (nfs4_has_pages(vp) && !pgflush) {
305 		if (!asyncpg) {
306 			(void) nfs4_waitfor_purge_complete(vp);
307 			flush_pages(vp, cr);
308 		} else {
309 			pgflush_t *args;
310 
311 			/*
312 			 * We don't hold r_statelock while creating the
313 			 * thread, in case the call blocks.  So we use a
314 			 * flag to indicate that a page flush thread is
315 			 * active.
316 			 */
317 			mutex_enter(&rp->r_statelock);
318 			if (rp->r_flags & R4PGFLUSH) {
319 				mutex_exit(&rp->r_statelock);
320 			} else {
321 				rp->r_flags |= R4PGFLUSH;
322 				mutex_exit(&rp->r_statelock);
323 
324 				args = kmem_alloc(sizeof (pgflush_t),
325 						KM_SLEEP);
326 				args->vp = vp;
327 				VN_HOLD(args->vp);
328 				args->cr = cr;
329 				crhold(args->cr);
330 				(void) zthread_create(NULL, 0,
331 						nfs4_pgflush_thread, args, 0,
332 						minclsyspri);
333 			}
334 		}
335 	}
336 
337 	/*
338 	 * Flush the readdir response cache.
339 	 */
340 	nfs4_purge_rddir_cache(vp);
341 }
342 
343 /*
344  * Invalidate all pages for the given file, after writing back the dirty
345  * ones.
346  */
347 
348 static void
349 flush_pages(vnode_t *vp, cred_t *cr)
350 {
351 	int error;
352 	rnode4_t *rp = VTOR4(vp);
353 
354 	error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr);
355 	if (error == ENOSPC || error == EDQUOT) {
356 		mutex_enter(&rp->r_statelock);
357 		if (!rp->r_error)
358 			rp->r_error = error;
359 		mutex_exit(&rp->r_statelock);
360 	}
361 }
362 
363 /*
364  * Page flush thread.
365  */
366 
367 static void
368 nfs4_pgflush_thread(pgflush_t *args)
369 {
370 	rnode4_t *rp = VTOR4(args->vp);
371 
372 	/* remember which thread we are, so we don't deadlock ourselves */
373 	mutex_enter(&rp->r_statelock);
374 	ASSERT(rp->r_pgflush == NULL);
375 	rp->r_pgflush = curthread;
376 	mutex_exit(&rp->r_statelock);
377 
378 	flush_pages(args->vp, args->cr);
379 
380 	mutex_enter(&rp->r_statelock);
381 	rp->r_pgflush = NULL;
382 	rp->r_flags &= ~R4PGFLUSH;
383 	cv_broadcast(&rp->r_cv);
384 	mutex_exit(&rp->r_statelock);
385 
386 	VN_RELE(args->vp);
387 	crfree(args->cr);
388 	kmem_free(args, sizeof (pgflush_t));
389 	zthread_exit();
390 }
391 
392 /*
393  * Purge the readdir cache of all entries which are not currently
394  * being filled.
395  */
396 void
397 nfs4_purge_rddir_cache(vnode_t *vp)
398 {
399 	rnode4_t *rp;
400 
401 	rp = VTOR4(vp);
402 
403 	mutex_enter(&rp->r_statelock);
404 	rp->r_direof = NULL;
405 	rp->r_flags &= ~R4LOOKUP;
406 	rp->r_flags |= R4READDIRWATTR;
407 	rddir4_cache_purge(rp);
408 	mutex_exit(&rp->r_statelock);
409 }
410 
411 /*
412  * Set attributes cache for given vnode using virtual attributes.  There is
413  * no cache validation, but if the attributes are deemed to be stale, they
414  * are ignored.  This corresponds to nfs3_attrcache().
415  *
416  * Set the timeout value on the attribute cache and fill it
417  * with the passed in attributes.
418  */
419 void
420 nfs4_attrcache_noinval(vnode_t *vp, nfs4_ga_res_t *garp, hrtime_t t)
421 {
422 	rnode4_t *rp = VTOR4(vp);
423 
424 	mutex_enter(&rp->r_statelock);
425 	if (rp->r_time_attr_saved <= t)
426 		nfs4_attrcache_va(vp, garp, FALSE);
427 	mutex_exit(&rp->r_statelock);
428 }
429 
430 /*
431  * Use the passed in virtual attributes to check to see whether the
432  * data and metadata caches are valid, cache the new attributes, and
433  * then do the cache invalidation if required.
434  *
435  * The cache validation and caching of the new attributes is done
436  * atomically via the use of the mutex, r_statelock.  If required,
437  * the cache invalidation is done atomically w.r.t. the cache
438  * validation and caching of the attributes via the pseudo lock,
439  * r_serial.
440  *
441  * This routine is used to do cache validation and attributes caching
442  * for operations with a single set of post operation attributes.
443  */
444 
445 void
446 nfs4_attr_cache(vnode_t *vp, nfs4_ga_res_t *garp,
447 		hrtime_t t, cred_t *cr, int async,
448 		change_info4 *cinfo)
449 {
450 	rnode4_t *rp;
451 	int mtime_changed;
452 	int ctime_changed;
453 	vsecattr_t *vsp;
454 	int was_serial, set_time_cache_inval, recov;
455 	vattr_t *vap = &garp->n4g_va;
456 	mntinfo4_t *mi = VTOMI4(vp);
457 
458 	ASSERT(mi->mi_vfsp->vfs_dev == garp->n4g_va.va_fsid);
459 
460 	/* Is curthread the recovery thread? */
461 	mutex_enter(&mi->mi_lock);
462 	recov = (VTOMI4(vp)->mi_recovthread == curthread);
463 	mutex_exit(&mi->mi_lock);
464 
465 	rp = VTOR4(vp);
466 	mutex_enter(&rp->r_statelock);
467 	was_serial = (rp->r_serial == curthread);
468 	if (rp->r_serial && !was_serial) {
469 		klwp_t *lwp = ttolwp(curthread);
470 
471 		/*
472 		 * If we're the recovery thread, then purge current attrs
473 		 * and bail out to avoid potential deadlock between another
474 		 * thread caching attrs (r_serial thread), recov thread,
475 		 * and an async writer thread.
476 		 */
477 		if (recov) {
478 			PURGE_ATTRCACHE4_LOCKED(rp);
479 			mutex_exit(&rp->r_statelock);
480 			return;
481 		}
482 
483 		if (lwp != NULL)
484 			lwp->lwp_nostop++;
485 		while (rp->r_serial != NULL) {
486 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
487 				mutex_exit(&rp->r_statelock);
488 				if (lwp != NULL)
489 					lwp->lwp_nostop--;
490 				return;
491 			}
492 		}
493 		if (lwp != NULL)
494 			lwp->lwp_nostop--;
495 	}
496 
497 	/*
498 	 * If there is a page flush thread, the current thread needs to
499 	 * bail out, to prevent a possible deadlock between the current
500 	 * thread (which might be in a start_op/end_op region), the
501 	 * recovery thread, and the page flush thread.  Expire the
502 	 * attribute cache, so that any attributes the current thread was
503 	 * going to set are not lost.
504 	 */
505 	if ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread) {
506 		PURGE_ATTRCACHE4_LOCKED(rp);
507 		mutex_exit(&rp->r_statelock);
508 		return;
509 	}
510 
511 	if (rp->r_time_attr_saved > t) {
512 		/*
513 		 * Attributes have been cached since these attributes were
514 		 * probably made. If there is an inconsistency in what is
515 		 * cached, mark them invalid. If not, don't act on them.
516 		 */
517 		if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
518 			PURGE_ATTRCACHE4_LOCKED(rp);
519 		mutex_exit(&rp->r_statelock);
520 		return;
521 	}
522 	set_time_cache_inval = 0;
523 	if (cinfo) {
524 		/*
525 		 * Only directory modifying callers pass non-NULL cinfo.
526 		 */
527 		ASSERT(vp->v_type == VDIR);
528 		/*
529 		 * If the cache timeout either doesn't exist or hasn't expired,
530 		 * and dir didn't changed on server before dirmod op
531 		 * and dir didn't change after dirmod op but before getattr
532 		 * then there's a chance that the client's cached data for
533 		 * this object is current (not stale).  No immediate cache
534 		 * flush is required.
535 		 *
536 		 */
537 		if ((! rp->r_time_cache_inval || t < rp->r_time_cache_inval) &&
538 		    cinfo->before == rp->r_change &&
539 		    (garp->n4g_change_valid &&
540 		    cinfo->after == garp->n4g_change)) {
541 
542 			/*
543 			 * If atomic isn't set, then the before/after info
544 			 * cannot be blindly trusted.  For this case, we tell
545 			 * nfs4_attrcache_va to cache the attrs but also
546 			 * establish an absolute maximum cache timeout.  When
547 			 * the timeout is reached, caches will be flushed.
548 			 */
549 			if (! cinfo->atomic)
550 				set_time_cache_inval = 1;
551 
552 			mtime_changed = 0;
553 			ctime_changed = 0;
554 		} else {
555 
556 			/*
557 			 * We're not sure exactly what changed, but we know
558 			 * what to do.  flush all caches for dir.  remove the
559 			 * attr timeout.
560 			 *
561 			 * a) timeout expired.  flush all caches.
562 			 * b) r_change != cinfo.before.  flush all caches.
563 			 * c) r_change == cinfo.before, but cinfo.after !=
564 			 *    post-op getattr(change).  flush all caches.
565 			 * d) post-op getattr(change) not provided by server.
566 			 *    flush all caches.
567 			 */
568 			mtime_changed = 1;
569 			ctime_changed = 1;
570 			rp->r_time_cache_inval = 0;
571 		}
572 	} else {
573 		if (!(rp->r_flags & R4WRITEMODIFIED)) {
574 			if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
575 				mtime_changed = 1;
576 			else
577 				mtime_changed = 0;
578 			if (rp->r_attr.va_ctime.tv_sec !=
579 			    vap->va_ctime.tv_sec ||
580 			    rp->r_attr.va_ctime.tv_nsec !=
581 			    vap->va_ctime.tv_nsec)
582 				ctime_changed = 1;
583 			else
584 				ctime_changed = 0;
585 		} else {
586 			mtime_changed = 0;
587 			ctime_changed = 0;
588 		}
589 	}
590 
591 	nfs4_attrcache_va(vp, garp, set_time_cache_inval);
592 
593 	if (!mtime_changed && !ctime_changed) {
594 		mutex_exit(&rp->r_statelock);
595 		return;
596 	}
597 
598 	rp->r_serial = curthread;
599 
600 	mutex_exit(&rp->r_statelock);
601 
602 	/*
603 	 * If we're the recov thread, then force async nfs4_purge_caches
604 	 * to avoid potential deadlock.
605 	 */
606 	if (mtime_changed)
607 		nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, recov ? 1 : async);
608 
609 	if (ctime_changed) {
610 		(void) nfs4_access_purge_rp(rp);
611 		if (rp->r_secattr != NULL) {
612 			mutex_enter(&rp->r_statelock);
613 			vsp = rp->r_secattr;
614 			rp->r_secattr = NULL;
615 			mutex_exit(&rp->r_statelock);
616 			if (vsp != NULL)
617 				nfs4_acl_free_cache(vsp);
618 		}
619 	}
620 
621 	if (!was_serial) {
622 		mutex_enter(&rp->r_statelock);
623 		rp->r_serial = NULL;
624 		cv_broadcast(&rp->r_cv);
625 		mutex_exit(&rp->r_statelock);
626 	}
627 }
628 
629 /*
630  * Set attributes cache for given vnode using virtual attributes.
631  *
632  * Set the timeout value on the attribute cache and fill it
633  * with the passed in attributes.
634  *
635  * The caller must be holding r_statelock.
636  */
637 static void
638 nfs4_attrcache_va(vnode_t *vp, nfs4_ga_res_t *garp, int set_cache_timeout)
639 {
640 	rnode4_t *rp;
641 	mntinfo4_t *mi;
642 	hrtime_t delta;
643 	hrtime_t now;
644 	vattr_t *vap = &garp->n4g_va;
645 
646 	rp = VTOR4(vp);
647 
648 	ASSERT(MUTEX_HELD(&rp->r_statelock));
649 	ASSERT(vap->va_mask == AT_ALL);
650 
651 	/* Switch to master before checking v_flag */
652 	if (IS_SHADOW(vp, rp))
653 		vp = RTOV4(rp);
654 
655 	now = gethrtime();
656 
657 	mi = VTOMI4(vp);
658 
659 	/*
660 	 * Only establish a new cache timeout (if requested).  Never
661 	 * extend a timeout.  Never clear a timeout.  Clearing a timeout
662 	 * is done by nfs4_update_dircaches (ancestor in our call chain)
663 	 */
664 	if (set_cache_timeout && ! rp->r_time_cache_inval)
665 		rp->r_time_cache_inval = now + mi->mi_acdirmax;
666 
667 	/*
668 	 * Delta is the number of nanoseconds that we will
669 	 * cache the attributes of the file.  It is based on
670 	 * the number of nanoseconds since the last time that
671 	 * we detected a change.  The assumption is that files
672 	 * that changed recently are likely to change again.
673 	 * There is a minimum and a maximum for regular files
674 	 * and for directories which is enforced though.
675 	 *
676 	 * Using the time since last change was detected
677 	 * eliminates direct comparison or calculation
678 	 * using mixed client and server times.  NFS does
679 	 * not make any assumptions regarding the client
680 	 * and server clocks being synchronized.
681 	 */
682 	if (vap->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
683 	    vap->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
684 	    vap->va_size != rp->r_attr.va_size) {
685 		rp->r_time_attr_saved = now;
686 	}
687 
688 	if ((mi->mi_flags & MI4_NOAC) || (vp->v_flag & VNOCACHE))
689 		delta = 0;
690 	else {
691 		delta = now - rp->r_time_attr_saved;
692 		if (vp->v_type == VDIR) {
693 			if (delta < mi->mi_acdirmin)
694 				delta = mi->mi_acdirmin;
695 			else if (delta > mi->mi_acdirmax)
696 				delta = mi->mi_acdirmax;
697 		} else {
698 			if (delta < mi->mi_acregmin)
699 				delta = mi->mi_acregmin;
700 			else if (delta > mi->mi_acregmax)
701 				delta = mi->mi_acregmax;
702 		}
703 	}
704 	rp->r_time_attr_inval = now + delta;
705 
706 	rp->r_attr = *vap;
707 	if (garp->n4g_change_valid)
708 		rp->r_change = garp->n4g_change;
709 
710 	/*
711 	 * The attributes that were returned may be valid and can
712 	 * be used, but they may not be allowed to be cached.
713 	 * Reset the timers to cause immediate invalidation and
714 	 * clear r_change so no VERIFY operations will suceed
715 	 */
716 	if (garp->n4g_attrwhy == NFS4_GETATTR_NOCACHE_OK) {
717 		rp->r_time_attr_inval = now;
718 		rp->r_time_attr_saved = now;
719 		rp->r_change = 0;
720 	}
721 
722 	/*
723 	 * If mounted_on_fileid returned AND the object is a stub,
724 	 * then set object's va_nodeid to the mounted over fid
725 	 * returned by server.
726 	 *
727 	 * If mounted_on_fileid not provided/supported, then
728 	 * just set it to 0 for now.  Eventually it would be
729 	 * better to set it to a hashed version of FH.  This
730 	 * would probably be good enough to provide a unique
731 	 * fid/d_ino within a dir.
732 	 *
733 	 * We don't need to carry mounted_on_fileid in the
734 	 * rnode as long as the client never requests fileid
735 	 * without also requesting mounted_on_fileid.  For
736 	 * now, it stays.
737 	 */
738 	if (garp->n4g_mon_fid_valid) {
739 		rp->r_mntd_fid = garp->n4g_mon_fid;
740 
741 		if (rp->r_flags & R4SRVSTUB)
742 			rp->r_attr.va_nodeid = rp->r_mntd_fid;
743 	}
744 
745 	/*
746 	 * Check to see if there are valid pathconf bits to
747 	 * cache in the rnode.
748 	 */
749 	if (garp->n4g_ext_res) {
750 		if (garp->n4g_ext_res->n4g_pc4.pc4_cache_valid) {
751 			rp->r_pathconf = garp->n4g_ext_res->n4g_pc4;
752 		} else {
753 			if (garp->n4g_ext_res->n4g_pc4.pc4_xattr_valid) {
754 				rp->r_pathconf.pc4_xattr_valid = TRUE;
755 				rp->r_pathconf.pc4_xattr_exists =
756 				    garp->n4g_ext_res->n4g_pc4.pc4_xattr_exists;
757 			}
758 		}
759 	}
760 	/*
761 	 * Update the size of the file if there is no cached data or if
762 	 * the cached data is clean and there is no data being written
763 	 * out.
764 	 */
765 	if (rp->r_size != vap->va_size &&
766 	    (!vn_has_cached_data(vp) ||
767 	    (!(rp->r_flags & R4DIRTY) && rp->r_count == 0))) {
768 		rp->r_size = vap->va_size;
769 	}
770 	nfs_setswaplike(vp, vap);
771 	rp->r_flags &= ~R4WRITEMODIFIED;
772 }
773 
774 /*
775  * Get attributes over-the-wire and update attributes cache
776  * if no error occurred in the over-the-wire operation.
777  * Return 0 if successful, otherwise error.
778  */
779 int
780 nfs4_getattr_otw(vnode_t *vp, nfs4_ga_res_t *garp, cred_t *cr, int get_acl)
781 {
782 	mntinfo4_t *mi = VTOMI4(vp);
783 	hrtime_t t;
784 	nfs4_recov_state_t recov_state;
785 	nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
786 
787 	recov_state.rs_flags = 0;
788 	recov_state.rs_num_retry_despite_err = 0;
789 
790 	/* Save the original mount point security flavor */
791 	(void) save_mnt_secinfo(mi->mi_curr_serv);
792 
793 recov_retry:
794 	if ((e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR,
795 						&recov_state, NULL))) {
796 		(void) check_mnt_secinfo(mi->mi_curr_serv, vp);
797 		return (e.error);
798 	}
799 
800 	t = gethrtime();
801 
802 	nfs4_getattr_otw_norecovery(vp, garp, &e, cr, get_acl);
803 
804 	if (nfs4_needs_recovery(&e, FALSE, vp->v_vfsp)) {
805 		if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
806 		    NULL, OP_GETATTR, NULL) == FALSE)  {
807 			nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR,
808 					&recov_state, 1);
809 			goto recov_retry;
810 		}
811 	}
812 
813 	nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 0);
814 
815 	if (!e.error) {
816 		if (e.stat == NFS4_OK) {
817 			nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
818 		} else {
819 			e.error = geterrno4(e.stat);
820 
821 			nfs4_purge_stale_fh(e.error, vp, cr);
822 		}
823 	}
824 
825 	/*
826 	 * If getattr a node that is a stub for a crossed
827 	 * mount point, keep the original secinfo flavor for
828 	 * the current file system, not the crossed one.
829 	 */
830 	(void) check_mnt_secinfo(mi->mi_curr_serv, vp);
831 
832 	return (e.error);
833 }
834 
835 /*
836  * Generate a compound to get attributes over-the-wire.
837  */
838 void
839 nfs4_getattr_otw_norecovery(vnode_t *vp, nfs4_ga_res_t *garp,
840 		nfs4_error_t *ep, cred_t *cr, int get_acl)
841 {
842 	COMPOUND4args_clnt args;
843 	COMPOUND4res_clnt res;
844 	int doqueue;
845 	rnode4_t *rp = VTOR4(vp);
846 	nfs_argop4 argop[2];
847 
848 	args.ctag = TAG_GETATTR;
849 
850 	args.array_len = 2;
851 	args.array = argop;
852 
853 	/* putfh */
854 	argop[0].argop = OP_CPUTFH;
855 	argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
856 
857 	/* getattr */
858 	/*
859 	 * Unlike nfs version 2 and 3, where getattr returns all the
860 	 * attributes, nfs version 4 returns only the ones explicitely
861 	 * asked for. This creates problems, as some system functions
862 	 * (e.g. cache check) require certain attributes and if the
863 	 * cached node lacks some attributes such as uid/gid, it can
864 	 * affect system utilities (e.g. "ls") that rely on the information
865 	 * to be there. This can lead to anything from system crashes to
866 	 * corrupted information processed by user apps.
867 	 * So to ensure that all bases are covered, request at least
868 	 * the AT_ALL attribute mask.
869 	 */
870 	argop[1].argop = OP_GETATTR;
871 	argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
872 	if (get_acl)
873 		argop[1].nfs_argop4_u.opgetattr.attr_request |= FATTR4_ACL_MASK;
874 	argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
875 
876 	doqueue = 1;
877 
878 	rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, ep);
879 
880 	if (ep->error)
881 		return;
882 
883 	if (res.status != NFS4_OK) {
884 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
885 		return;
886 	}
887 
888 	*garp = res.array[1].nfs_resop4_u.opgetattr.ga_res;
889 
890 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
891 }
892 
893 /*
894  * Return either cached or remote attributes. If get remote attr
895  * use them to check and invalidate caches, then cache the new attributes.
896  */
897 int
898 nfs4getattr(vnode_t *vp, vattr_t *vap, cred_t *cr)
899 {
900 	int error;
901 	rnode4_t *rp;
902 	nfs4_ga_res_t gar;
903 
904 	ASSERT(nfs4_consistent_type(vp));
905 
906 	/*
907 	 * If we've got cached attributes, we're done, otherwise go
908 	 * to the server to get attributes, which will update the cache
909 	 * in the process.
910 	 */
911 	rp = VTOR4(vp);
912 	mutex_enter(&rp->r_statelock);
913 	mutex_enter(&rp->r_statev4_lock);
914 	if (ATTRCACHE4_VALID(vp)) {
915 		mutex_exit(&rp->r_statev4_lock);
916 		/*
917 		 * Cached attributes are valid
918 		 * Return the client's view of file size
919 		 */
920 		*vap = rp->r_attr;
921 		vap->va_size = rp->r_size;
922 		mutex_exit(&rp->r_statelock);
923 
924 		ASSERT(nfs4_consistent_type(vp));
925 
926 		return (0);
927 	}
928 	mutex_exit(&rp->r_statev4_lock);
929 	mutex_exit(&rp->r_statelock);
930 
931 	error = nfs4_getattr_otw(vp, &gar, cr, 0);
932 	if (!error)
933 		*vap = gar.n4g_va;
934 
935 	/* Return the client's view of file size */
936 	mutex_enter(&rp->r_statelock);
937 	vap->va_size = rp->r_size;
938 	mutex_exit(&rp->r_statelock);
939 
940 	ASSERT(nfs4_consistent_type(vp));
941 
942 	return (error);
943 }
944 
945 int
946 nfs4_attr_otw(vnode_t *vp, nfs4_tag_type_t tag_type,
947 		nfs4_ga_res_t *garp, bitmap4 reqbitmap, cred_t *cr)
948 {
949 	COMPOUND4args_clnt args;
950 	COMPOUND4res_clnt res;
951 	int doqueue;
952 	nfs_argop4 argop[2];
953 	mntinfo4_t *mi = VTOMI4(vp);
954 	bool_t needrecov = FALSE;
955 	nfs4_recov_state_t recov_state;
956 	nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
957 	nfs4_ga_ext_res_t *gerp;
958 
959 	recov_state.rs_flags = 0;
960 	recov_state.rs_num_retry_despite_err = 0;
961 
962 recov_retry:
963 	args.ctag = tag_type;
964 
965 	args.array_len = 2;
966 	args.array = argop;
967 
968 	e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, &recov_state, NULL);
969 	if (e.error)
970 		return (e.error);
971 
972 	/* putfh */
973 	argop[0].argop = OP_CPUTFH;
974 	argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
975 
976 	/* getattr */
977 	argop[1].argop = OP_GETATTR;
978 	argop[1].nfs_argop4_u.opgetattr.attr_request = reqbitmap;
979 	argop[1].nfs_argop4_u.opgetattr.mi = mi;
980 
981 	doqueue = 1;
982 
983 	NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
984 	    "nfs4_attr_otw: %s call, rp %s", needrecov ? "recov" : "first",
985 	    rnode4info(VTOR4(vp))));
986 
987 	rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
988 
989 	needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
990 	if (!needrecov && e.error) {
991 		nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
992 			    needrecov);
993 		return (e.error);
994 	}
995 
996 	if (needrecov) {
997 		bool_t abort;
998 
999 		NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1000 		    "nfs4_attr_otw: initiating recovery\n"));
1001 
1002 		abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
1003 			    NULL, OP_GETATTR, NULL);
1004 		nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1005 				needrecov);
1006 		if (!e.error) {
1007 			(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1008 			e.error = geterrno4(res.status);
1009 		}
1010 		if (abort == FALSE)
1011 			goto recov_retry;
1012 		return (e.error);
1013 	}
1014 
1015 	if (res.status) {
1016 		e.error = geterrno4(res.status);
1017 	} else {
1018 		gerp = garp->n4g_ext_res;
1019 		bcopy(&res.array[1].nfs_resop4_u.opgetattr.ga_res,
1020 			garp, sizeof (nfs4_ga_res_t));
1021 		garp->n4g_ext_res = gerp;
1022 		if (garp->n4g_ext_res &&
1023 		    res.array[1].nfs_resop4_u.opgetattr.ga_res.n4g_ext_res)
1024 			bcopy(res.array[1].nfs_resop4_u.opgetattr.
1025 				ga_res.n4g_ext_res,
1026 				garp->n4g_ext_res, sizeof (nfs4_ga_ext_res_t));
1027 	}
1028 	(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1029 	nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1030 		    needrecov);
1031 	return (e.error);
1032 }
1033 
1034 /*
1035  * Asynchronous I/O parameters.  nfs_async_threads is the high-water mark
1036  * for the demand-based allocation of async threads per-mount.  The
1037  * nfs_async_timeout is the amount of time a thread will live after it
1038  * becomes idle, unless new I/O requests are received before the thread
1039  * dies.  See nfs4_async_putpage and nfs4_async_start.
1040  */
1041 
1042 static void	nfs4_async_start(struct vfs *);
1043 
1044 static void
1045 free_async_args4(struct nfs4_async_reqs *args)
1046 {
1047 	rnode4_t *rp;
1048 
1049 	if (args->a_io != NFS4_INACTIVE) {
1050 		rp = VTOR4(args->a_vp);
1051 		mutex_enter(&rp->r_statelock);
1052 		rp->r_count--;
1053 		if (args->a_io == NFS4_PUTAPAGE ||
1054 		    args->a_io == NFS4_PAGEIO)
1055 			rp->r_awcount--;
1056 		cv_broadcast(&rp->r_cv);
1057 		mutex_exit(&rp->r_statelock);
1058 		VN_RELE(args->a_vp);
1059 	}
1060 	crfree(args->a_cred);
1061 	kmem_free(args, sizeof (*args));
1062 }
1063 
1064 /*
1065  * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1066  * pageout(), running in the global zone, have legitimate reasons to do
1067  * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts.  We avoid the problem by
1068  * use of a a per-mount "asynchronous requests manager thread" which is
1069  * signaled by the various asynchronous work routines when there is
1070  * asynchronous work to be done.  It is responsible for creating new
1071  * worker threads if necessary, and notifying existing worker threads
1072  * that there is work to be done.
1073  *
1074  * In other words, it will "take the specifications from the customers and
1075  * give them to the engineers."
1076  *
1077  * Worker threads die off of their own accord if they are no longer
1078  * needed.
1079  *
1080  * This thread is killed when the zone is going away or the filesystem
1081  * is being unmounted.
1082  */
1083 void
1084 nfs4_async_manager(vfs_t *vfsp)
1085 {
1086 	callb_cpr_t cprinfo;
1087 	mntinfo4_t *mi;
1088 	uint_t max_threads;
1089 
1090 	mi = VFTOMI4(vfsp);
1091 
1092 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1093 		    "nfs4_async_manager");
1094 
1095 	mutex_enter(&mi->mi_async_lock);
1096 	/*
1097 	 * We want to stash the max number of threads that this mount was
1098 	 * allowed so we can use it later when the variable is set to zero as
1099 	 * part of the zone/mount going away.
1100 	 *
1101 	 * We want to be able to create at least one thread to handle
1102 	 * asyncrhonous inactive calls.
1103 	 */
1104 	max_threads = MAX(mi->mi_max_threads, 1);
1105 	mutex_enter(&mi->mi_lock);
1106 	/*
1107 	 * We don't want to wait for mi_max_threads to go to zero, since that
1108 	 * happens as part of a failed unmount, but this thread should only
1109 	 * exit when the mount is really going away.
1110 	 *
1111 	 * Once MI4_ASYNC_MGR_STOP is set, no more async operations will be
1112 	 * attempted: the various _async_*() functions know to do things
1113 	 * inline if mi_max_threads == 0.  Henceforth we just drain out the
1114 	 * outstanding requests.
1115 	 *
1116 	 * Note that we still create zthreads even if we notice the zone is
1117 	 * shutting down (MI4_ASYNC_MGR_STOP is set); this may cause the zone
1118 	 * shutdown sequence to take slightly longer in some cases, but
1119 	 * doesn't violate the protocol, as all threads will exit as soon as
1120 	 * they're done processing the remaining requests.
1121 	 */
1122 	while (!(mi->mi_flags & MI4_ASYNC_MGR_STOP) ||
1123 	    mi->mi_async_req_count > 0) {
1124 		mutex_exit(&mi->mi_lock);
1125 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1126 		cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1127 		CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1128 		while (mi->mi_async_req_count > 0) {
1129 			/*
1130 			 * Paranoia: If the mount started out having
1131 			 * (mi->mi_max_threads == 0), and the value was
1132 			 * later changed (via a debugger or somesuch),
1133 			 * we could be confused since we will think we
1134 			 * can't create any threads, and the calling
1135 			 * code (which looks at the current value of
1136 			 * mi->mi_max_threads, now non-zero) thinks we
1137 			 * can.
1138 			 *
1139 			 * So, because we're paranoid, we create threads
1140 			 * up to the maximum of the original and the
1141 			 * current value. This means that future
1142 			 * (debugger-induced) alterations of
1143 			 * mi->mi_max_threads are ignored for our
1144 			 * purposes, but who told them they could change
1145 			 * random values on a live kernel anyhow?
1146 			 */
1147 			if (mi->mi_threads <
1148 			    MAX(mi->mi_max_threads, max_threads)) {
1149 				mi->mi_threads++;
1150 				mutex_exit(&mi->mi_async_lock);
1151 				MI4_HOLD(mi);
1152 				VFS_HOLD(vfsp);	/* hold for new thread */
1153 				(void) zthread_create(NULL, 0, nfs4_async_start,
1154 				    vfsp, 0, minclsyspri);
1155 				mutex_enter(&mi->mi_async_lock);
1156 			}
1157 			cv_signal(&mi->mi_async_work_cv);
1158 			ASSERT(mi->mi_async_req_count != 0);
1159 			mi->mi_async_req_count--;
1160 		}
1161 		mutex_enter(&mi->mi_lock);
1162 	}
1163 	mutex_exit(&mi->mi_lock);
1164 
1165 	NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1166 	    "nfs4_async_manager exiting for vfs %p\n", (void *)mi->mi_vfsp));
1167 	/*
1168 	 * Let everyone know we're done.
1169 	 */
1170 	mi->mi_manager_thread = NULL;
1171 	/*
1172 	 * Wake up the inactive thread.
1173 	 */
1174 	cv_broadcast(&mi->mi_inact_req_cv);
1175 	/*
1176 	 * Wake up anyone sitting in nfs4_async_manager_stop()
1177 	 */
1178 	cv_broadcast(&mi->mi_async_cv);
1179 	/*
1180 	 * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1181 	 * since CALLB_CPR_EXIT is actually responsible for releasing
1182 	 * 'mi_async_lock'.
1183 	 */
1184 	CALLB_CPR_EXIT(&cprinfo);
1185 	VFS_RELE(vfsp);	/* release thread's hold */
1186 	MI4_RELE(mi);
1187 	zthread_exit();
1188 }
1189 
1190 /*
1191  * Signal (and wait for) the async manager thread to clean up and go away.
1192  */
1193 void
1194 nfs4_async_manager_stop(vfs_t *vfsp)
1195 {
1196 	mntinfo4_t *mi = VFTOMI4(vfsp);
1197 
1198 	mutex_enter(&mi->mi_async_lock);
1199 	mutex_enter(&mi->mi_lock);
1200 	mi->mi_flags |= MI4_ASYNC_MGR_STOP;
1201 	mutex_exit(&mi->mi_lock);
1202 	cv_broadcast(&mi->mi_async_reqs_cv);
1203 	/*
1204 	 * Wait for the async manager thread to die.
1205 	 */
1206 	while (mi->mi_manager_thread != NULL)
1207 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1208 	mutex_exit(&mi->mi_async_lock);
1209 }
1210 
1211 int
1212 nfs4_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1213 	struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
1214 	u_offset_t, caddr_t, struct seg *, cred_t *))
1215 {
1216 	rnode4_t *rp;
1217 	mntinfo4_t *mi;
1218 	struct nfs4_async_reqs *args;
1219 
1220 	rp = VTOR4(vp);
1221 	ASSERT(rp->r_freef == NULL);
1222 
1223 	mi = VTOMI4(vp);
1224 
1225 	/*
1226 	 * If addr falls in a different segment, don't bother doing readahead.
1227 	 */
1228 	if (addr >= seg->s_base + seg->s_size)
1229 		return (-1);
1230 
1231 	/*
1232 	 * If we can't allocate a request structure, punt on the readahead.
1233 	 */
1234 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1235 		return (-1);
1236 
1237 	/*
1238 	 * If a lock operation is pending, don't initiate any new
1239 	 * readaheads.  Otherwise, bump r_count to indicate the new
1240 	 * asynchronous I/O.
1241 	 */
1242 	if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1243 		kmem_free(args, sizeof (*args));
1244 		return (-1);
1245 	}
1246 	mutex_enter(&rp->r_statelock);
1247 	rp->r_count++;
1248 	mutex_exit(&rp->r_statelock);
1249 	nfs_rw_exit(&rp->r_lkserlock);
1250 
1251 	args->a_next = NULL;
1252 #ifdef DEBUG
1253 	args->a_queuer = curthread;
1254 #endif
1255 	VN_HOLD(vp);
1256 	args->a_vp = vp;
1257 	ASSERT(cr != NULL);
1258 	crhold(cr);
1259 	args->a_cred = cr;
1260 	args->a_io = NFS4_READ_AHEAD;
1261 	args->a_nfs4_readahead = readahead;
1262 	args->a_nfs4_blkoff = blkoff;
1263 	args->a_nfs4_seg = seg;
1264 	args->a_nfs4_addr = addr;
1265 
1266 	mutex_enter(&mi->mi_async_lock);
1267 
1268 	/*
1269 	 * If asyncio has been disabled, don't bother readahead.
1270 	 */
1271 	if (mi->mi_max_threads == 0) {
1272 		mutex_exit(&mi->mi_async_lock);
1273 		goto noasync;
1274 	}
1275 
1276 	/*
1277 	 * Link request structure into the async list and
1278 	 * wakeup async thread to do the i/o.
1279 	 */
1280 	if (mi->mi_async_reqs[NFS4_READ_AHEAD] == NULL) {
1281 		mi->mi_async_reqs[NFS4_READ_AHEAD] = args;
1282 		mi->mi_async_tail[NFS4_READ_AHEAD] = args;
1283 	} else {
1284 		mi->mi_async_tail[NFS4_READ_AHEAD]->a_next = args;
1285 		mi->mi_async_tail[NFS4_READ_AHEAD] = args;
1286 	}
1287 
1288 	if (mi->mi_io_kstats) {
1289 		mutex_enter(&mi->mi_lock);
1290 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1291 		mutex_exit(&mi->mi_lock);
1292 	}
1293 
1294 	mi->mi_async_req_count++;
1295 	ASSERT(mi->mi_async_req_count != 0);
1296 	cv_signal(&mi->mi_async_reqs_cv);
1297 	mutex_exit(&mi->mi_async_lock);
1298 	return (0);
1299 
1300 noasync:
1301 	mutex_enter(&rp->r_statelock);
1302 	rp->r_count--;
1303 	cv_broadcast(&rp->r_cv);
1304 	mutex_exit(&rp->r_statelock);
1305 	VN_RELE(vp);
1306 	crfree(cr);
1307 	kmem_free(args, sizeof (*args));
1308 	return (-1);
1309 }
1310 
1311 /*
1312  * The async queues for each mounted file system are arranged as a
1313  * set of queues, one for each async i/o type.  Requests are taken
1314  * from the queues in a round-robin fashion.  A number of consecutive
1315  * requests are taken from each queue before moving on to the next
1316  * queue.  This functionality may allow the NFS Version 2 server to do
1317  * write clustering, even if the client is mixing writes and reads
1318  * because it will take multiple write requests from the queue
1319  * before processing any of the other async i/o types.
1320  *
1321  * XXX The nfs4_async_start thread is unsafe in the light of the present
1322  * model defined by cpr to suspend the system. Specifically over the
1323  * wire calls are cpr-unsafe. The thread should be reevaluated in
1324  * case of future updates to the cpr model.
1325  */
1326 static void
1327 nfs4_async_start(struct vfs *vfsp)
1328 {
1329 	struct nfs4_async_reqs *args;
1330 	mntinfo4_t *mi = VFTOMI4(vfsp);
1331 	clock_t time_left = 1;
1332 	callb_cpr_t cprinfo;
1333 	int i;
1334 	extern int nfs_async_timeout;
1335 
1336 	/*
1337 	 * Dynamic initialization of nfs_async_timeout to allow nfs to be
1338 	 * built in an implementation independent manner.
1339 	 */
1340 	if (nfs_async_timeout == -1)
1341 		nfs_async_timeout = NFS_ASYNC_TIMEOUT;
1342 
1343 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
1344 
1345 	mutex_enter(&mi->mi_async_lock);
1346 	for (;;) {
1347 		/*
1348 		 * Find the next queue containing an entry.  We start
1349 		 * at the current queue pointer and then round robin
1350 		 * through all of them until we either find a non-empty
1351 		 * queue or have looked through all of them.
1352 		 */
1353 		for (i = 0; i < NFS4_ASYNC_TYPES; i++) {
1354 			args = *mi->mi_async_curr;
1355 			if (args != NULL)
1356 				break;
1357 			mi->mi_async_curr++;
1358 			if (mi->mi_async_curr ==
1359 			    &mi->mi_async_reqs[NFS4_ASYNC_TYPES])
1360 				mi->mi_async_curr = &mi->mi_async_reqs[0];
1361 		}
1362 		/*
1363 		 * If we didn't find a entry, then block until woken up
1364 		 * again and then look through the queues again.
1365 		 */
1366 		if (args == NULL) {
1367 			/*
1368 			 * Exiting is considered to be safe for CPR as well
1369 			 */
1370 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1371 
1372 			/*
1373 			 * Wakeup thread waiting to unmount the file
1374 			 * system only if all async threads are inactive.
1375 			 *
1376 			 * If we've timed-out and there's nothing to do,
1377 			 * then get rid of this thread.
1378 			 */
1379 			if (mi->mi_max_threads == 0 || time_left <= 0) {
1380 				if (--mi->mi_threads == 0)
1381 					cv_signal(&mi->mi_async_cv);
1382 				CALLB_CPR_EXIT(&cprinfo);
1383 				VFS_RELE(vfsp);	/* release thread's hold */
1384 				MI4_RELE(mi);
1385 				zthread_exit();
1386 				/* NOTREACHED */
1387 			}
1388 			time_left = cv_timedwait(&mi->mi_async_work_cv,
1389 			    &mi->mi_async_lock, nfs_async_timeout + lbolt);
1390 
1391 			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1392 
1393 			continue;
1394 		} else {
1395 			time_left = 1;
1396 		}
1397 
1398 		/*
1399 		 * Remove the request from the async queue and then
1400 		 * update the current async request queue pointer.  If
1401 		 * the current queue is empty or we have removed enough
1402 		 * consecutive entries from it, then reset the counter
1403 		 * for this queue and then move the current pointer to
1404 		 * the next queue.
1405 		 */
1406 		*mi->mi_async_curr = args->a_next;
1407 		if (*mi->mi_async_curr == NULL ||
1408 		    --mi->mi_async_clusters[args->a_io] == 0) {
1409 			mi->mi_async_clusters[args->a_io] =
1410 						mi->mi_async_init_clusters;
1411 			mi->mi_async_curr++;
1412 			if (mi->mi_async_curr ==
1413 			    &mi->mi_async_reqs[NFS4_ASYNC_TYPES])
1414 				mi->mi_async_curr = &mi->mi_async_reqs[0];
1415 		}
1416 
1417 		if (args->a_io != NFS4_INACTIVE && mi->mi_io_kstats) {
1418 			mutex_enter(&mi->mi_lock);
1419 			kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1420 			mutex_exit(&mi->mi_lock);
1421 		}
1422 
1423 		mutex_exit(&mi->mi_async_lock);
1424 
1425 		/*
1426 		 * Obtain arguments from the async request structure.
1427 		 */
1428 		if (args->a_io == NFS4_READ_AHEAD && mi->mi_max_threads > 0) {
1429 			(*args->a_nfs4_readahead)(args->a_vp,
1430 					args->a_nfs4_blkoff,
1431 					args->a_nfs4_addr, args->a_nfs4_seg,
1432 					args->a_cred);
1433 		} else if (args->a_io == NFS4_PUTAPAGE) {
1434 			(void) (*args->a_nfs4_putapage)(args->a_vp,
1435 					args->a_nfs4_pp, args->a_nfs4_off,
1436 					args->a_nfs4_len, args->a_nfs4_flags,
1437 					args->a_cred);
1438 		} else if (args->a_io == NFS4_PAGEIO) {
1439 			(void) (*args->a_nfs4_pageio)(args->a_vp,
1440 					args->a_nfs4_pp, args->a_nfs4_off,
1441 					args->a_nfs4_len, args->a_nfs4_flags,
1442 					args->a_cred);
1443 		} else if (args->a_io == NFS4_READDIR) {
1444 			(void) ((*args->a_nfs4_readdir)(args->a_vp,
1445 					args->a_nfs4_rdc, args->a_cred));
1446 		} else if (args->a_io == NFS4_COMMIT) {
1447 			(*args->a_nfs4_commit)(args->a_vp, args->a_nfs4_plist,
1448 					args->a_nfs4_offset, args->a_nfs4_count,
1449 					args->a_cred);
1450 		} else if (args->a_io == NFS4_INACTIVE) {
1451 			nfs4_inactive_otw(args->a_vp, args->a_cred);
1452 		}
1453 
1454 		/*
1455 		 * Now, release the vnode and free the credentials
1456 		 * structure.
1457 		 */
1458 		free_async_args4(args);
1459 		/*
1460 		 * Reacquire the mutex because it will be needed above.
1461 		 */
1462 		mutex_enter(&mi->mi_async_lock);
1463 	}
1464 }
1465 
1466 /*
1467  * nfs4_inactive_thread - look for vnodes that need over-the-wire calls as
1468  * part of VOP_INACTIVE.
1469  */
1470 
1471 void
1472 nfs4_inactive_thread(mntinfo4_t *mi)
1473 {
1474 	struct nfs4_async_reqs *args;
1475 	callb_cpr_t cprinfo;
1476 	vfs_t *vfsp = mi->mi_vfsp;
1477 
1478 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1479 		    "nfs4_inactive_thread");
1480 
1481 	for (;;) {
1482 		mutex_enter(&mi->mi_async_lock);
1483 		args = mi->mi_async_reqs[NFS4_INACTIVE];
1484 		if (args == NULL) {
1485 			mutex_enter(&mi->mi_lock);
1486 			/*
1487 			 * We don't want to exit until the async manager is done
1488 			 * with its work; hence the check for mi_manager_thread
1489 			 * being NULL.
1490 			 *
1491 			 * The async manager thread will cv_broadcast() on
1492 			 * mi_inact_req_cv when it's done, at which point we'll
1493 			 * wake up and exit.
1494 			 */
1495 			if (mi->mi_manager_thread == NULL)
1496 				goto die;
1497 			mi->mi_flags |= MI4_INACTIVE_IDLE;
1498 			mutex_exit(&mi->mi_lock);
1499 			cv_signal(&mi->mi_async_cv);
1500 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1501 			cv_wait(&mi->mi_inact_req_cv, &mi->mi_async_lock);
1502 			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1503 			mutex_exit(&mi->mi_async_lock);
1504 		} else {
1505 			mutex_enter(&mi->mi_lock);
1506 			mi->mi_flags &= ~MI4_INACTIVE_IDLE;
1507 			mutex_exit(&mi->mi_lock);
1508 			mi->mi_async_reqs[NFS4_INACTIVE] = args->a_next;
1509 			mutex_exit(&mi->mi_async_lock);
1510 			nfs4_inactive_otw(args->a_vp, args->a_cred);
1511 			crfree(args->a_cred);
1512 			kmem_free(args, sizeof (*args));
1513 		}
1514 	}
1515 die:
1516 	mutex_exit(&mi->mi_lock);
1517 	mi->mi_inactive_thread = NULL;
1518 	cv_signal(&mi->mi_async_cv);
1519 
1520 	/*
1521 	 * There is no explicit call to mutex_exit(&mi->mi_async_lock) since
1522 	 * CALLB_CPR_EXIT is actually responsible for releasing 'mi_async_lock'.
1523 	 */
1524 	CALLB_CPR_EXIT(&cprinfo);
1525 
1526 	NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1527 	    "nfs4_inactive_thread exiting for vfs %p\n", (void *)vfsp));
1528 
1529 	MI4_RELE(mi);
1530 	zthread_exit();
1531 	/* NOTREACHED */
1532 }
1533 
1534 /*
1535  * nfs_async_stop:
1536  * Wait for all outstanding putpage operations and the inactive thread to
1537  * complete; nfs4_async_stop_sig() without interruptibility.
1538  */
1539 void
1540 nfs4_async_stop(struct vfs *vfsp)
1541 {
1542 	mntinfo4_t *mi = VFTOMI4(vfsp);
1543 
1544 	/*
1545 	 * Wait for all outstanding async operations to complete and for
1546 	 * worker threads to exit.
1547 	 */
1548 	mutex_enter(&mi->mi_async_lock);
1549 	mi->mi_max_threads = 0;
1550 	cv_broadcast(&mi->mi_async_work_cv);
1551 	while (mi->mi_threads != 0)
1552 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1553 
1554 	/*
1555 	 * Wait for the inactive thread to finish doing what it's doing.  It
1556 	 * won't exit until the last reference to the vfs_t goes away.
1557 	 */
1558 	if (mi->mi_inactive_thread != NULL) {
1559 		mutex_enter(&mi->mi_lock);
1560 		while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
1561 		    (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
1562 			mutex_exit(&mi->mi_lock);
1563 			cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1564 			mutex_enter(&mi->mi_lock);
1565 		}
1566 		mutex_exit(&mi->mi_lock);
1567 	}
1568 	mutex_exit(&mi->mi_async_lock);
1569 }
1570 
1571 /*
1572  * nfs_async_stop_sig:
1573  * Wait for all outstanding putpage operations and the inactive thread to
1574  * complete. If a signal is delivered we will abort and return non-zero;
1575  * otherwise return 0. Since this routine is called from nfs4_unmount, we
1576  * need to make it interruptable.
1577  */
1578 int
1579 nfs4_async_stop_sig(struct vfs *vfsp)
1580 {
1581 	mntinfo4_t *mi = VFTOMI4(vfsp);
1582 	ushort_t omax;
1583 	bool_t intr = FALSE;
1584 
1585 	/*
1586 	 * Wait for all outstanding putpage operations to complete and for
1587 	 * worker threads to exit.
1588 	 */
1589 	mutex_enter(&mi->mi_async_lock);
1590 	omax = mi->mi_max_threads;
1591 	mi->mi_max_threads = 0;
1592 	cv_broadcast(&mi->mi_async_work_cv);
1593 	while (mi->mi_threads != 0) {
1594 		if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock)) {
1595 			intr = TRUE;
1596 			goto interrupted;
1597 		}
1598 	}
1599 
1600 	/*
1601 	 * Wait for the inactive thread to finish doing what it's doing.  It
1602 	 * won't exit until the a last reference to the vfs_t goes away.
1603 	 */
1604 	if (mi->mi_inactive_thread != NULL) {
1605 		mutex_enter(&mi->mi_lock);
1606 		while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
1607 		    (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
1608 			mutex_exit(&mi->mi_lock);
1609 			if (!cv_wait_sig(&mi->mi_async_cv,
1610 			    &mi->mi_async_lock)) {
1611 				intr = TRUE;
1612 				goto interrupted;
1613 			}
1614 			mutex_enter(&mi->mi_lock);
1615 		}
1616 		mutex_exit(&mi->mi_lock);
1617 	}
1618 interrupted:
1619 	if (intr)
1620 		mi->mi_max_threads = omax;
1621 	mutex_exit(&mi->mi_async_lock);
1622 
1623 	return (intr);
1624 }
1625 
1626 int
1627 nfs4_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1628 	int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1629 	u_offset_t, size_t, int, cred_t *))
1630 {
1631 	rnode4_t *rp;
1632 	mntinfo4_t *mi;
1633 	struct nfs4_async_reqs *args;
1634 
1635 	ASSERT(flags & B_ASYNC);
1636 	ASSERT(vp->v_vfsp != NULL);
1637 
1638 	rp = VTOR4(vp);
1639 	ASSERT(rp->r_count > 0);
1640 
1641 	mi = VTOMI4(vp);
1642 
1643 	/*
1644 	 * If we can't allocate a request structure, do the putpage
1645 	 * operation synchronously in this thread's context.
1646 	 */
1647 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1648 		goto noasync;
1649 
1650 	args->a_next = NULL;
1651 #ifdef DEBUG
1652 	args->a_queuer = curthread;
1653 #endif
1654 	VN_HOLD(vp);
1655 	args->a_vp = vp;
1656 	ASSERT(cr != NULL);
1657 	crhold(cr);
1658 	args->a_cred = cr;
1659 	args->a_io = NFS4_PUTAPAGE;
1660 	args->a_nfs4_putapage = putapage;
1661 	args->a_nfs4_pp = pp;
1662 	args->a_nfs4_off = off;
1663 	args->a_nfs4_len = (uint_t)len;
1664 	args->a_nfs4_flags = flags;
1665 
1666 	mutex_enter(&mi->mi_async_lock);
1667 
1668 	/*
1669 	 * If asyncio has been disabled, then make a synchronous request.
1670 	 * This check is done a second time in case async io was diabled
1671 	 * while this thread was blocked waiting for memory pressure to
1672 	 * reduce or for the queue to drain.
1673 	 */
1674 	if (mi->mi_max_threads == 0) {
1675 		mutex_exit(&mi->mi_async_lock);
1676 
1677 		VN_RELE(vp);
1678 		crfree(cr);
1679 		kmem_free(args, sizeof (*args));
1680 		goto noasync;
1681 	}
1682 
1683 	/*
1684 	 * Link request structure into the async list and
1685 	 * wakeup async thread to do the i/o.
1686 	 */
1687 	if (mi->mi_async_reqs[NFS4_PUTAPAGE] == NULL) {
1688 		mi->mi_async_reqs[NFS4_PUTAPAGE] = args;
1689 		mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1690 	} else {
1691 		mi->mi_async_tail[NFS4_PUTAPAGE]->a_next = args;
1692 		mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1693 	}
1694 
1695 	mutex_enter(&rp->r_statelock);
1696 	rp->r_count++;
1697 	rp->r_awcount++;
1698 	mutex_exit(&rp->r_statelock);
1699 
1700 	if (mi->mi_io_kstats) {
1701 		mutex_enter(&mi->mi_lock);
1702 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1703 		mutex_exit(&mi->mi_lock);
1704 	}
1705 
1706 	mi->mi_async_req_count++;
1707 	ASSERT(mi->mi_async_req_count != 0);
1708 	cv_signal(&mi->mi_async_reqs_cv);
1709 	mutex_exit(&mi->mi_async_lock);
1710 	return (0);
1711 
1712 noasync:
1713 
1714 	if (curproc == proc_pageout || curproc == proc_fsflush ||
1715 	    nfs_zone() == mi->mi_zone) {
1716 		/*
1717 		 * If we get here in the context of the pageout/fsflush,
1718 		 * or we have run out of memory or we're attempting to
1719 		 * unmount we refuse to do a sync write, because this may
1720 		 * hang pageout/fsflush and the machine. In this case,
1721 		 * we just re-mark the page as dirty and punt on the page.
1722 		 *
1723 		 * Make sure B_FORCE isn't set.  We can re-mark the
1724 		 * pages as dirty and unlock the pages in one swoop by
1725 		 * passing in B_ERROR to pvn_write_done().  However,
1726 		 * we should make sure B_FORCE isn't set - we don't
1727 		 * want the page tossed before it gets written out.
1728 		 */
1729 		if (flags & B_FORCE)
1730 			flags &= ~(B_INVAL | B_FORCE);
1731 		pvn_write_done(pp, flags | B_ERROR);
1732 		return (0);
1733 	}
1734 
1735 	/*
1736 	 * We'll get here only if (nfs_zone() != mi->mi_zone)
1737 	 * which means that this was a cross-zone sync putpage.
1738 	 *
1739 	 * We pass in B_ERROR to pvn_write_done() to re-mark the pages
1740 	 * as dirty and unlock them.
1741 	 *
1742 	 * We don't want to clear B_FORCE here as the caller presumably
1743 	 * knows what they're doing if they set it.
1744 	 */
1745 	pvn_write_done(pp, flags | B_ERROR);
1746 	return (EPERM);
1747 }
1748 
1749 int
1750 nfs4_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1751 	int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1752 	size_t, int, cred_t *))
1753 {
1754 	rnode4_t *rp;
1755 	mntinfo4_t *mi;
1756 	struct nfs4_async_reqs *args;
1757 
1758 	ASSERT(flags & B_ASYNC);
1759 	ASSERT(vp->v_vfsp != NULL);
1760 
1761 	rp = VTOR4(vp);
1762 	ASSERT(rp->r_count > 0);
1763 
1764 	mi = VTOMI4(vp);
1765 
1766 	/*
1767 	 * If we can't allocate a request structure, do the pageio
1768 	 * request synchronously in this thread's context.
1769 	 */
1770 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1771 		goto noasync;
1772 
1773 	args->a_next = NULL;
1774 #ifdef DEBUG
1775 	args->a_queuer = curthread;
1776 #endif
1777 	VN_HOLD(vp);
1778 	args->a_vp = vp;
1779 	ASSERT(cr != NULL);
1780 	crhold(cr);
1781 	args->a_cred = cr;
1782 	args->a_io = NFS4_PAGEIO;
1783 	args->a_nfs4_pageio = pageio;
1784 	args->a_nfs4_pp = pp;
1785 	args->a_nfs4_off = io_off;
1786 	args->a_nfs4_len = (uint_t)io_len;
1787 	args->a_nfs4_flags = flags;
1788 
1789 	mutex_enter(&mi->mi_async_lock);
1790 
1791 	/*
1792 	 * If asyncio has been disabled, then make a synchronous request.
1793 	 * This check is done a second time in case async io was diabled
1794 	 * while this thread was blocked waiting for memory pressure to
1795 	 * reduce or for the queue to drain.
1796 	 */
1797 	if (mi->mi_max_threads == 0) {
1798 		mutex_exit(&mi->mi_async_lock);
1799 
1800 		VN_RELE(vp);
1801 		crfree(cr);
1802 		kmem_free(args, sizeof (*args));
1803 		goto noasync;
1804 	}
1805 
1806 	/*
1807 	 * Link request structure into the async list and
1808 	 * wakeup async thread to do the i/o.
1809 	 */
1810 	if (mi->mi_async_reqs[NFS4_PAGEIO] == NULL) {
1811 		mi->mi_async_reqs[NFS4_PAGEIO] = args;
1812 		mi->mi_async_tail[NFS4_PAGEIO] = args;
1813 	} else {
1814 		mi->mi_async_tail[NFS4_PAGEIO]->a_next = args;
1815 		mi->mi_async_tail[NFS4_PAGEIO] = args;
1816 	}
1817 
1818 	mutex_enter(&rp->r_statelock);
1819 	rp->r_count++;
1820 	rp->r_awcount++;
1821 	mutex_exit(&rp->r_statelock);
1822 
1823 	if (mi->mi_io_kstats) {
1824 		mutex_enter(&mi->mi_lock);
1825 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1826 		mutex_exit(&mi->mi_lock);
1827 	}
1828 
1829 	mi->mi_async_req_count++;
1830 	ASSERT(mi->mi_async_req_count != 0);
1831 	cv_signal(&mi->mi_async_reqs_cv);
1832 	mutex_exit(&mi->mi_async_lock);
1833 	return (0);
1834 
1835 noasync:
1836 	/*
1837 	 * If we can't do it ASYNC, for reads we do nothing (but cleanup
1838 	 * the page list), for writes we do it synchronously, except for
1839 	 * proc_pageout/proc_fsflush as described below.
1840 	 */
1841 	if (flags & B_READ) {
1842 		pvn_read_done(pp, flags | B_ERROR);
1843 		return (0);
1844 	}
1845 
1846 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1847 		/*
1848 		 * If we get here in the context of the pageout/fsflush,
1849 		 * we refuse to do a sync write, because this may hang
1850 		 * pageout/fsflush (and the machine). In this case, we just
1851 		 * re-mark the page as dirty and punt on the page.
1852 		 *
1853 		 * Make sure B_FORCE isn't set.  We can re-mark the
1854 		 * pages as dirty and unlock the pages in one swoop by
1855 		 * passing in B_ERROR to pvn_write_done().  However,
1856 		 * we should make sure B_FORCE isn't set - we don't
1857 		 * want the page tossed before it gets written out.
1858 		 */
1859 		if (flags & B_FORCE)
1860 			flags &= ~(B_INVAL | B_FORCE);
1861 		pvn_write_done(pp, flags | B_ERROR);
1862 		return (0);
1863 	}
1864 
1865 	if (nfs_zone() != mi->mi_zone) {
1866 		/*
1867 		 * So this was a cross-zone sync pageio.  We pass in B_ERROR
1868 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1869 		 * them.
1870 		 *
1871 		 * We don't want to clear B_FORCE here as the caller presumably
1872 		 * knows what they're doing if they set it.
1873 		 */
1874 		pvn_write_done(pp, flags | B_ERROR);
1875 		return (EPERM);
1876 	}
1877 	return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1878 }
1879 
1880 void
1881 nfs4_async_readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr,
1882 	int (*readdir)(vnode_t *, rddir4_cache *, cred_t *))
1883 {
1884 	rnode4_t *rp;
1885 	mntinfo4_t *mi;
1886 	struct nfs4_async_reqs *args;
1887 
1888 	rp = VTOR4(vp);
1889 	ASSERT(rp->r_freef == NULL);
1890 
1891 	mi = VTOMI4(vp);
1892 
1893 	/*
1894 	 * If we can't allocate a request structure, skip the readdir.
1895 	 */
1896 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1897 		goto noasync;
1898 
1899 	args->a_next = NULL;
1900 #ifdef DEBUG
1901 	args->a_queuer = curthread;
1902 #endif
1903 	VN_HOLD(vp);
1904 	args->a_vp = vp;
1905 	ASSERT(cr != NULL);
1906 	crhold(cr);
1907 	args->a_cred = cr;
1908 	args->a_io = NFS4_READDIR;
1909 	args->a_nfs4_readdir = readdir;
1910 	args->a_nfs4_rdc = rdc;
1911 
1912 	mutex_enter(&mi->mi_async_lock);
1913 
1914 	/*
1915 	 * If asyncio has been disabled, then skip this request
1916 	 */
1917 	if (mi->mi_max_threads == 0) {
1918 		mutex_exit(&mi->mi_async_lock);
1919 
1920 		VN_RELE(vp);
1921 		crfree(cr);
1922 		kmem_free(args, sizeof (*args));
1923 		goto noasync;
1924 	}
1925 
1926 	/*
1927 	 * Link request structure into the async list and
1928 	 * wakeup async thread to do the i/o.
1929 	 */
1930 	if (mi->mi_async_reqs[NFS4_READDIR] == NULL) {
1931 		mi->mi_async_reqs[NFS4_READDIR] = args;
1932 		mi->mi_async_tail[NFS4_READDIR] = args;
1933 	} else {
1934 		mi->mi_async_tail[NFS4_READDIR]->a_next = args;
1935 		mi->mi_async_tail[NFS4_READDIR] = args;
1936 	}
1937 
1938 	mutex_enter(&rp->r_statelock);
1939 	rp->r_count++;
1940 	mutex_exit(&rp->r_statelock);
1941 
1942 	if (mi->mi_io_kstats) {
1943 		mutex_enter(&mi->mi_lock);
1944 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1945 		mutex_exit(&mi->mi_lock);
1946 	}
1947 
1948 	mi->mi_async_req_count++;
1949 	ASSERT(mi->mi_async_req_count != 0);
1950 	cv_signal(&mi->mi_async_reqs_cv);
1951 	mutex_exit(&mi->mi_async_lock);
1952 	return;
1953 
1954 noasync:
1955 	mutex_enter(&rp->r_statelock);
1956 	rdc->entries = NULL;
1957 	/*
1958 	 * Indicate that no one is trying to fill this entry and
1959 	 * it still needs to be filled.
1960 	 */
1961 	rdc->flags &= ~RDDIR;
1962 	rdc->flags |= RDDIRREQ;
1963 	rddir4_cache_rele(rp, rdc);
1964 	mutex_exit(&rp->r_statelock);
1965 }
1966 
1967 void
1968 nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
1969 	cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
1970 	cred_t *))
1971 {
1972 	rnode4_t *rp;
1973 	mntinfo4_t *mi;
1974 	struct nfs4_async_reqs *args;
1975 	page_t *pp;
1976 
1977 	rp = VTOR4(vp);
1978 	mi = VTOMI4(vp);
1979 
1980 	/*
1981 	 * If we can't allocate a request structure, do the commit
1982 	 * operation synchronously in this thread's context.
1983 	 */
1984 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1985 		goto noasync;
1986 
1987 	args->a_next = NULL;
1988 #ifdef DEBUG
1989 	args->a_queuer = curthread;
1990 #endif
1991 	VN_HOLD(vp);
1992 	args->a_vp = vp;
1993 	ASSERT(cr != NULL);
1994 	crhold(cr);
1995 	args->a_cred = cr;
1996 	args->a_io = NFS4_COMMIT;
1997 	args->a_nfs4_commit = commit;
1998 	args->a_nfs4_plist = plist;
1999 	args->a_nfs4_offset = offset;
2000 	args->a_nfs4_count = count;
2001 
2002 	mutex_enter(&mi->mi_async_lock);
2003 
2004 	/*
2005 	 * If asyncio has been disabled, then make a synchronous request.
2006 	 * This check is done a second time in case async io was diabled
2007 	 * while this thread was blocked waiting for memory pressure to
2008 	 * reduce or for the queue to drain.
2009 	 */
2010 	if (mi->mi_max_threads == 0) {
2011 		mutex_exit(&mi->mi_async_lock);
2012 
2013 		VN_RELE(vp);
2014 		crfree(cr);
2015 		kmem_free(args, sizeof (*args));
2016 		goto noasync;
2017 	}
2018 
2019 	/*
2020 	 * Link request structure into the async list and
2021 	 * wakeup async thread to do the i/o.
2022 	 */
2023 	if (mi->mi_async_reqs[NFS4_COMMIT] == NULL) {
2024 		mi->mi_async_reqs[NFS4_COMMIT] = args;
2025 		mi->mi_async_tail[NFS4_COMMIT] = args;
2026 	} else {
2027 		mi->mi_async_tail[NFS4_COMMIT]->a_next = args;
2028 		mi->mi_async_tail[NFS4_COMMIT] = args;
2029 	}
2030 
2031 	mutex_enter(&rp->r_statelock);
2032 	rp->r_count++;
2033 	mutex_exit(&rp->r_statelock);
2034 
2035 	if (mi->mi_io_kstats) {
2036 		mutex_enter(&mi->mi_lock);
2037 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
2038 		mutex_exit(&mi->mi_lock);
2039 	}
2040 
2041 	mi->mi_async_req_count++;
2042 	ASSERT(mi->mi_async_req_count != 0);
2043 	cv_signal(&mi->mi_async_reqs_cv);
2044 	mutex_exit(&mi->mi_async_lock);
2045 	return;
2046 
2047 noasync:
2048 	if (curproc == proc_pageout || curproc == proc_fsflush ||
2049 	    nfs_zone() != mi->mi_zone) {
2050 		while (plist != NULL) {
2051 			pp = plist;
2052 			page_sub(&plist, pp);
2053 			pp->p_fsdata = C_COMMIT;
2054 			page_unlock(pp);
2055 		}
2056 		return;
2057 	}
2058 	(*commit)(vp, plist, offset, count, cr);
2059 }
2060 
2061 /*
2062  * nfs4_async_inactive - hand off a VOP_INACTIVE call to a thread.  The
2063  * reference to the vnode is handed over to the thread; the caller should
2064  * no longer refer to the vnode.
2065  *
2066  * Unlike most of the async routines, this handoff is needed for
2067  * correctness reasons, not just performance.  So doing operations in the
2068  * context of the current thread is not an option.
2069  */
2070 void
2071 nfs4_async_inactive(vnode_t *vp, cred_t *cr)
2072 {
2073 	mntinfo4_t *mi;
2074 	struct nfs4_async_reqs *args;
2075 	boolean_t signal_inactive_thread = B_FALSE;
2076 
2077 	mi = VTOMI4(vp);
2078 
2079 	args = kmem_alloc(sizeof (*args), KM_SLEEP);
2080 	args->a_next = NULL;
2081 #ifdef DEBUG
2082 	args->a_queuer = curthread;
2083 #endif
2084 	args->a_vp = vp;
2085 	ASSERT(cr != NULL);
2086 	crhold(cr);
2087 	args->a_cred = cr;
2088 	args->a_io = NFS4_INACTIVE;
2089 
2090 	/*
2091 	 * Note that we don't check mi->mi_max_threads here, since we
2092 	 * *need* to get rid of this vnode regardless of whether someone
2093 	 * set nfs4_max_threads to zero in /etc/system.
2094 	 *
2095 	 * The manager thread knows about this and is willing to create
2096 	 * at least one thread to accomodate us.
2097 	 */
2098 	mutex_enter(&mi->mi_async_lock);
2099 	if (mi->mi_inactive_thread == NULL) {
2100 		rnode4_t *rp;
2101 		vnode_t *unldvp = NULL;
2102 		char *unlname;
2103 		cred_t *unlcred;
2104 
2105 		mutex_exit(&mi->mi_async_lock);
2106 		/*
2107 		 * We just need to free up the memory associated with the
2108 		 * vnode, which can be safely done from within the current
2109 		 * context.
2110 		 */
2111 		crfree(cr);	/* drop our reference */
2112 		kmem_free(args, sizeof (*args));
2113 		rp = VTOR4(vp);
2114 		mutex_enter(&rp->r_statelock);
2115 		if (rp->r_unldvp != NULL) {
2116 			unldvp = rp->r_unldvp;
2117 			rp->r_unldvp = NULL;
2118 			unlname = rp->r_unlname;
2119 			rp->r_unlname = NULL;
2120 			unlcred = rp->r_unlcred;
2121 			rp->r_unlcred = NULL;
2122 		}
2123 		mutex_exit(&rp->r_statelock);
2124 		/*
2125 		 * No need to explicitly throw away any cached pages.  The
2126 		 * eventual r4inactive() will attempt a synchronous
2127 		 * VOP_PUTPAGE() which will immediately fail since the request
2128 		 * is coming from the wrong zone, and then will proceed to call
2129 		 * nfs4_invalidate_pages() which will clean things up for us.
2130 		 *
2131 		 * Throw away the delegation here so rp4_addfree()'s attempt to
2132 		 * return any existing delegations becomes a no-op.
2133 		 */
2134 		if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
2135 			(void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
2136 				FALSE);
2137 			(void) nfs4delegreturn(rp, NFS4_DR_DISCARD);
2138 			nfs_rw_exit(&mi->mi_recovlock);
2139 		}
2140 		nfs4_clear_open_streams(rp);
2141 
2142 		rp4_addfree(rp, cr);
2143 		if (unldvp != NULL) {
2144 			kmem_free(unlname, MAXNAMELEN);
2145 			VN_RELE(unldvp);
2146 			crfree(unlcred);
2147 		}
2148 		return;
2149 	}
2150 
2151 	if (mi->mi_manager_thread == NULL) {
2152 		/*
2153 		 * We want to talk to the inactive thread.
2154 		 */
2155 		signal_inactive_thread = B_TRUE;
2156 	}
2157 
2158 	/*
2159 	 * Enqueue the vnode and wake up either the special thread (empty
2160 	 * list) or an async thread.
2161 	 */
2162 	if (mi->mi_async_reqs[NFS4_INACTIVE] == NULL) {
2163 		mi->mi_async_reqs[NFS4_INACTIVE] = args;
2164 		mi->mi_async_tail[NFS4_INACTIVE] = args;
2165 		signal_inactive_thread = B_TRUE;
2166 	} else {
2167 		mi->mi_async_tail[NFS4_INACTIVE]->a_next = args;
2168 		mi->mi_async_tail[NFS4_INACTIVE] = args;
2169 	}
2170 	if (signal_inactive_thread) {
2171 		cv_signal(&mi->mi_inact_req_cv);
2172 	} else  {
2173 		mi->mi_async_req_count++;
2174 		ASSERT(mi->mi_async_req_count != 0);
2175 		cv_signal(&mi->mi_async_reqs_cv);
2176 	}
2177 
2178 	mutex_exit(&mi->mi_async_lock);
2179 }
2180 
2181 int
2182 writerp4(rnode4_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2183 {
2184 	int pagecreate;
2185 	int n;
2186 	int saved_n;
2187 	caddr_t saved_base;
2188 	u_offset_t offset;
2189 	int error;
2190 	int sm_error;
2191 	vnode_t *vp = RTOV(rp);
2192 
2193 	ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2194 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2195 	if (!vpm_enable) {
2196 		ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2197 	}
2198 
2199 	/*
2200 	 * Move bytes in at most PAGESIZE chunks. We must avoid
2201 	 * spanning pages in uiomove() because page faults may cause
2202 	 * the cache to be invalidated out from under us. The r_size is not
2203 	 * updated until after the uiomove. If we push the last page of a
2204 	 * file before r_size is correct, we will lose the data written past
2205 	 * the current (and invalid) r_size.
2206 	 */
2207 	do {
2208 		offset = uio->uio_loffset;
2209 		pagecreate = 0;
2210 
2211 		/*
2212 		 * n is the number of bytes required to satisfy the request
2213 		 *   or the number of bytes to fill out the page.
2214 		 */
2215 		n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);
2216 
2217 		/*
2218 		 * Check to see if we can skip reading in the page
2219 		 * and just allocate the memory.  We can do this
2220 		 * if we are going to rewrite the entire mapping
2221 		 * or if we are going to write to or beyond the current
2222 		 * end of file from the beginning of the mapping.
2223 		 *
2224 		 * The read of r_size is now protected by r_statelock.
2225 		 */
2226 		mutex_enter(&rp->r_statelock);
2227 		/*
2228 		 * When pgcreated is nonzero the caller has already done
2229 		 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2230 		 * segkpm this means we already have at least one page
2231 		 * created and mapped at base.
2232 		 */
2233 		pagecreate = pgcreated ||
2234 			((offset & PAGEOFFSET) == 0 &&
2235 			(n == PAGESIZE || ((offset + n) >= rp->r_size)));
2236 
2237 		mutex_exit(&rp->r_statelock);
2238 
2239 		if (!vpm_enable && pagecreate) {
2240 			/*
2241 			 * The last argument tells segmap_pagecreate() to
2242 			 * always lock the page, as opposed to sometimes
2243 			 * returning with the page locked. This way we avoid a
2244 			 * fault on the ensuing uiomove(), but also
2245 			 * more importantly (to fix bug 1094402) we can
2246 			 * call segmap_fault() to unlock the page in all
2247 			 * cases. An alternative would be to modify
2248 			 * segmap_pagecreate() to tell us when it is
2249 			 * locking a page, but that's a fairly major
2250 			 * interface change.
2251 			 */
2252 			if (pgcreated == 0)
2253 				(void) segmap_pagecreate(segkmap, base,
2254 							(uint_t)n, 1);
2255 			saved_base = base;
2256 			saved_n = n;
2257 		}
2258 
2259 		/*
2260 		 * The number of bytes of data in the last page can not
2261 		 * be accurately be determined while page is being
2262 		 * uiomove'd to and the size of the file being updated.
2263 		 * Thus, inform threads which need to know accurately
2264 		 * how much data is in the last page of the file.  They
2265 		 * will not do the i/o immediately, but will arrange for
2266 		 * the i/o to happen later when this modify operation
2267 		 * will have finished.
2268 		 */
2269 		ASSERT(!(rp->r_flags & R4MODINPROGRESS));
2270 		mutex_enter(&rp->r_statelock);
2271 		rp->r_flags |= R4MODINPROGRESS;
2272 		rp->r_modaddr = (offset & MAXBMASK);
2273 		mutex_exit(&rp->r_statelock);
2274 
2275 		if (vpm_enable) {
2276 			/*
2277 			 * Copy data. If new pages are created, part of
2278 			 * the page that is not written will be initizliazed
2279 			 * with zeros.
2280 			 */
2281 			error = vpm_data_copy(vp, offset, n, uio,
2282 				!pagecreate, NULL, 0, S_WRITE);
2283 		} else {
2284 			error = uiomove(base, n, UIO_WRITE, uio);
2285 		}
2286 
2287 		/*
2288 		 * r_size is the maximum number of
2289 		 * bytes known to be in the file.
2290 		 * Make sure it is at least as high as the
2291 		 * first unwritten byte pointed to by uio_loffset.
2292 		 */
2293 		mutex_enter(&rp->r_statelock);
2294 		if (rp->r_size < uio->uio_loffset)
2295 			rp->r_size = uio->uio_loffset;
2296 		rp->r_flags &= ~R4MODINPROGRESS;
2297 		rp->r_flags |= R4DIRTY;
2298 		mutex_exit(&rp->r_statelock);
2299 
2300 		/* n = # of bytes written */
2301 		n = (int)(uio->uio_loffset - offset);
2302 
2303 		if (!vpm_enable) {
2304 			base += n;
2305 		}
2306 
2307 		tcount -= n;
2308 		/*
2309 		 * If we created pages w/o initializing them completely,
2310 		 * we need to zero the part that wasn't set up.
2311 		 * This happens on a most EOF write cases and if
2312 		 * we had some sort of error during the uiomove.
2313 		 */
2314 		if (!vpm_enable && pagecreate) {
2315 			if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2316 				(void) kzero(base, PAGESIZE - n);
2317 
2318 			if (pgcreated) {
2319 				/*
2320 				 * Caller is responsible for this page,
2321 				 * it was not created in this loop.
2322 				 */
2323 				pgcreated = 0;
2324 			} else {
2325 				/*
2326 				 * For bug 1094402: segmap_pagecreate locks
2327 				 * page. Unlock it. This also unlocks the
2328 				 * pages allocated by page_create_va() in
2329 				 * segmap_pagecreate().
2330 				 */
2331 				sm_error = segmap_fault(kas.a_hat, segkmap,
2332 					saved_base, saved_n,
2333 					F_SOFTUNLOCK, S_WRITE);
2334 				if (error == 0)
2335 					error = sm_error;
2336 			}
2337 		}
2338 	} while (tcount > 0 && error == 0);
2339 
2340 	return (error);
2341 }
2342 
2343 int
2344 nfs4_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2345 {
2346 	rnode4_t *rp;
2347 	page_t *pp;
2348 	u_offset_t eoff;
2349 	u_offset_t io_off;
2350 	size_t io_len;
2351 	int error;
2352 	int rdirty;
2353 	int err;
2354 
2355 	rp = VTOR4(vp);
2356 	ASSERT(rp->r_count > 0);
2357 
2358 	if (!nfs4_has_pages(vp))
2359 		return (0);
2360 
2361 	ASSERT(vp->v_type != VCHR);
2362 
2363 	/*
2364 	 * If R4OUTOFSPACE is set, then all writes turn into B_INVAL
2365 	 * writes.  B_FORCE is set to force the VM system to actually
2366 	 * invalidate the pages, even if the i/o failed.  The pages
2367 	 * need to get invalidated because they can't be written out
2368 	 * because there isn't any space left on either the server's
2369 	 * file system or in the user's disk quota.  The B_FREE bit
2370 	 * is cleared to avoid confusion as to whether this is a
2371 	 * request to place the page on the freelist or to destroy
2372 	 * it.
2373 	 */
2374 	if ((rp->r_flags & R4OUTOFSPACE) ||
2375 	    (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2376 		flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2377 
2378 	if (len == 0) {
2379 		/*
2380 		 * If doing a full file synchronous operation, then clear
2381 		 * the R4DIRTY bit.  If a page gets dirtied while the flush
2382 		 * is happening, then R4DIRTY will get set again.  The
2383 		 * R4DIRTY bit must get cleared before the flush so that
2384 		 * we don't lose this information.
2385 		 *
2386 		 * If there are no full file async write operations
2387 		 * pending and RDIRTY bit is set, clear it.
2388 		 */
2389 		if (off == (u_offset_t)0 &&
2390 		    !(flags & B_ASYNC) &&
2391 		    (rp->r_flags & R4DIRTY)) {
2392 			mutex_enter(&rp->r_statelock);
2393 			rdirty = (rp->r_flags & R4DIRTY);
2394 			rp->r_flags &= ~R4DIRTY;
2395 			mutex_exit(&rp->r_statelock);
2396 		} else if (flags & B_ASYNC && off == (u_offset_t)0) {
2397 			mutex_enter(&rp->r_statelock);
2398 			if (rp->r_flags & R4DIRTY && rp->r_awcount == 0) {
2399 				rdirty = (rp->r_flags & R4DIRTY);
2400 				rp->r_flags &= ~R4DIRTY;
2401 			}
2402 			mutex_exit(&rp->r_statelock);
2403 		} else
2404 			rdirty = 0;
2405 
2406 		/*
2407 		 * Search the entire vp list for pages >= off, and flush
2408 		 * the dirty pages.
2409 		 */
2410 		error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2411 					flags, cr);
2412 
2413 		/*
2414 		 * If an error occured and the file was marked as dirty
2415 		 * before and we aren't forcibly invalidating pages, then
2416 		 * reset the R4DIRTY flag.
2417 		 */
2418 		if (error && rdirty &&
2419 		    (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2420 			mutex_enter(&rp->r_statelock);
2421 			rp->r_flags |= R4DIRTY;
2422 			mutex_exit(&rp->r_statelock);
2423 		}
2424 	} else {
2425 		/*
2426 		 * Do a range from [off...off + len) looking for pages
2427 		 * to deal with.
2428 		 */
2429 		error = 0;
2430 		io_len = 0;
2431 		eoff = off + len;
2432 		mutex_enter(&rp->r_statelock);
2433 		for (io_off = off; io_off < eoff && io_off < rp->r_size;
2434 		    io_off += io_len) {
2435 			mutex_exit(&rp->r_statelock);
2436 			/*
2437 			 * If we are not invalidating, synchronously
2438 			 * freeing or writing pages use the routine
2439 			 * page_lookup_nowait() to prevent reclaiming
2440 			 * them from the free list.
2441 			 */
2442 			if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2443 				pp = page_lookup(vp, io_off,
2444 				    (flags & (B_INVAL | B_FREE)) ?
2445 				    SE_EXCL : SE_SHARED);
2446 			} else {
2447 				pp = page_lookup_nowait(vp, io_off,
2448 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2449 			}
2450 
2451 			if (pp == NULL || !pvn_getdirty(pp, flags))
2452 				io_len = PAGESIZE;
2453 			else {
2454 				err = (*rp->r_putapage)(vp, pp, &io_off,
2455 				    &io_len, flags, cr);
2456 				if (!error)
2457 					error = err;
2458 				/*
2459 				 * "io_off" and "io_len" are returned as
2460 				 * the range of pages we actually wrote.
2461 				 * This allows us to skip ahead more quickly
2462 				 * since several pages may've been dealt
2463 				 * with by this iteration of the loop.
2464 				 */
2465 			}
2466 			mutex_enter(&rp->r_statelock);
2467 		}
2468 		mutex_exit(&rp->r_statelock);
2469 	}
2470 
2471 	return (error);
2472 }
2473 
2474 void
2475 nfs4_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2476 {
2477 	rnode4_t *rp;
2478 
2479 	rp = VTOR4(vp);
2480 	if (IS_SHADOW(vp, rp))
2481 		vp = RTOV4(rp);
2482 	mutex_enter(&rp->r_statelock);
2483 	while (rp->r_flags & R4TRUNCATE)
2484 		cv_wait(&rp->r_cv, &rp->r_statelock);
2485 	rp->r_flags |= R4TRUNCATE;
2486 	if (off == (u_offset_t)0) {
2487 		rp->r_flags &= ~R4DIRTY;
2488 		if (!(rp->r_flags & R4STALE))
2489 			rp->r_error = 0;
2490 	}
2491 	rp->r_truncaddr = off;
2492 	mutex_exit(&rp->r_statelock);
2493 	(void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2494 		B_INVAL | B_TRUNC, cr);
2495 	mutex_enter(&rp->r_statelock);
2496 	rp->r_flags &= ~R4TRUNCATE;
2497 	cv_broadcast(&rp->r_cv);
2498 	mutex_exit(&rp->r_statelock);
2499 }
2500 
2501 static int
2502 nfs4_mnt_kstat_update(kstat_t *ksp, int rw)
2503 {
2504 	mntinfo4_t *mi;
2505 	struct mntinfo_kstat *mik;
2506 	vfs_t *vfsp;
2507 
2508 	/* this is a read-only kstat. Bail out on a write */
2509 	if (rw == KSTAT_WRITE)
2510 		return (EACCES);
2511 
2512 
2513 	/*
2514 	 * We don't want to wait here as kstat_chain_lock could be held by
2515 	 * dounmount(). dounmount() takes vfs_reflock before the chain lock
2516 	 * and thus could lead to a deadlock.
2517 	 */
2518 	vfsp = (struct vfs *)ksp->ks_private;
2519 
2520 	mi = VFTOMI4(vfsp);
2521 	mik = (struct mntinfo_kstat *)ksp->ks_data;
2522 
2523 	(void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
2524 
2525 	mik->mik_vers = (uint32_t)mi->mi_vers;
2526 	mik->mik_flags = mi->mi_flags;
2527 	/*
2528 	 * The sv_secdata holds the flavor the client specifies.
2529 	 * If the client uses default and a security negotiation
2530 	 * occurs, sv_currsec will point to the current flavor
2531 	 * selected from the server flavor list.
2532 	 * sv_currsec is NULL if no security negotiation takes place.
2533 	 */
2534 	mik->mik_secmod = mi->mi_curr_serv->sv_currsec ?
2535 			mi->mi_curr_serv->sv_currsec->secmod :
2536 			mi->mi_curr_serv->sv_secdata->secmod;
2537 	mik->mik_curread = (uint32_t)mi->mi_curread;
2538 	mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
2539 	mik->mik_retrans = mi->mi_retrans;
2540 	mik->mik_timeo = mi->mi_timeo;
2541 	mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
2542 	mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
2543 	mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
2544 	mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
2545 	mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
2546 	mik->mik_failover = (uint32_t)mi->mi_failover;
2547 	mik->mik_remap = (uint32_t)mi->mi_remap;
2548 
2549 	(void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
2550 
2551 	return (0);
2552 }
2553 
2554 void
2555 nfs4_mnt_kstat_init(struct vfs *vfsp)
2556 {
2557 	mntinfo4_t *mi = VFTOMI4(vfsp);
2558 
2559 	/*
2560 	 * PSARC 2001/697 Contract Private Interface
2561 	 * All nfs kstats are under SunMC contract
2562 	 * Please refer to the PSARC listed above and contact
2563 	 * SunMC before making any changes!
2564 	 *
2565 	 * Changes must be reviewed by Solaris File Sharing
2566 	 * Changes must be communicated to contract-2001-697@sun.com
2567 	 *
2568 	 */
2569 
2570 	mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
2571 	    NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
2572 	if (mi->mi_io_kstats) {
2573 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2574 			kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
2575 		mi->mi_io_kstats->ks_lock = &mi->mi_lock;
2576 		kstat_install(mi->mi_io_kstats);
2577 	}
2578 
2579 	if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
2580 	    getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
2581 	    sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
2582 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2583 			kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
2584 		mi->mi_ro_kstats->ks_update = nfs4_mnt_kstat_update;
2585 		mi->mi_ro_kstats->ks_private = (void *)vfsp;
2586 		kstat_install(mi->mi_ro_kstats);
2587 	}
2588 
2589 	nfs4_mnt_recov_kstat_init(vfsp);
2590 }
2591 
2592 void
2593 nfs4_write_error(vnode_t *vp, int error, cred_t *cr)
2594 {
2595 	mntinfo4_t *mi;
2596 
2597 	mi = VTOMI4(vp);
2598 	/*
2599 	 * In case of forced unmount, do not print any messages
2600 	 * since it can flood the console with error messages.
2601 	 */
2602 	if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)
2603 		return;
2604 
2605 	/*
2606 	 * If the mount point is dead, not recoverable, do not
2607 	 * print error messages that can flood the console.
2608 	 */
2609 	if (mi->mi_flags & MI4_RECOV_FAIL)
2610 		return;
2611 
2612 	/*
2613 	 * No use in flooding the console with ENOSPC
2614 	 * messages from the same file system.
2615 	 */
2616 	if ((error != ENOSPC && error != EDQUOT) ||
2617 	    lbolt - mi->mi_printftime > 0) {
2618 		zoneid_t zoneid = mi->mi_zone->zone_id;
2619 
2620 #ifdef DEBUG
2621 		nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2622 		    mi->mi_vers, VTOR4(vp)->r_server->sv_hostname, NULL);
2623 #else
2624 		nfs_perror(error, "NFS write error on host %s: %m.\n",
2625 		    VTOR4(vp)->r_server->sv_hostname, NULL);
2626 #endif
2627 		if (error == ENOSPC || error == EDQUOT) {
2628 			zcmn_err(zoneid, CE_CONT,
2629 			    "^File: userid=%d, groupid=%d\n",
2630 			    crgetuid(cr), crgetgid(cr));
2631 			if (crgetuid(curthread->t_cred) != crgetuid(cr) ||
2632 			    crgetgid(curthread->t_cred) != crgetgid(cr)) {
2633 				zcmn_err(zoneid, CE_CONT,
2634 				    "^User: userid=%d, groupid=%d\n",
2635 				    crgetuid(curthread->t_cred),
2636 				    crgetgid(curthread->t_cred));
2637 			}
2638 			mi->mi_printftime = lbolt +
2639 			    nfs_write_error_interval * hz;
2640 		}
2641 		sfh4_printfhandle(VTOR4(vp)->r_fh);
2642 #ifdef DEBUG
2643 		if (error == EACCES) {
2644 			zcmn_err(zoneid, CE_CONT,
2645 			    "nfs_bio: cred is%s kcred\n",
2646 			    cr == kcred ? "" : " not");
2647 		}
2648 #endif
2649 	}
2650 }
2651 
2652 /*
2653  * Return non-zero if the given file can be safely memory mapped.  Locks
2654  * are safe if whole-file (length and offset are both zero).
2655  */
2656 
2657 #define	SAFE_LOCK(flk)	((flk).l_start == 0 && (flk).l_len == 0)
2658 
2659 static int
2660 nfs4_safemap(const vnode_t *vp)
2661 {
2662 	locklist_t	*llp, *next_llp;
2663 	int		safe = 1;
2664 	rnode4_t	*rp = VTOR4(vp);
2665 
2666 	ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2667 
2668 	NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: "
2669 		"vp = %p", (void *)vp));
2670 
2671 	/*
2672 	 * Review all the locks for the vnode, both ones that have been
2673 	 * acquired and ones that are pending.  We assume that
2674 	 * flk_active_locks_for_vp() has merged any locks that can be
2675 	 * merged (so that if a process has the entire file locked, it is
2676 	 * represented as a single lock).
2677 	 *
2678 	 * Note that we can't bail out of the loop if we find a non-safe
2679 	 * lock, because we have to free all the elements in the llp list.
2680 	 * We might be able to speed up this code slightly by not looking
2681 	 * at each lock's l_start and l_len fields once we've found a
2682 	 * non-safe lock.
2683 	 */
2684 
2685 	llp = flk_active_locks_for_vp(vp);
2686 	while (llp) {
2687 		NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2688 		    "nfs4_safemap: active lock (%" PRId64 ", %" PRId64 ")",
2689 		    llp->ll_flock.l_start, llp->ll_flock.l_len));
2690 		if (!SAFE_LOCK(llp->ll_flock)) {
2691 			safe = 0;
2692 			NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2693 			    "nfs4_safemap: unsafe active lock (%" PRId64
2694 			    ", %" PRId64 ")", llp->ll_flock.l_start,
2695 			    llp->ll_flock.l_len));
2696 		}
2697 		next_llp = llp->ll_next;
2698 		VN_RELE(llp->ll_vp);
2699 		kmem_free(llp, sizeof (*llp));
2700 		llp = next_llp;
2701 	}
2702 
2703 	NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: %s",
2704 		safe ? "safe" : "unsafe"));
2705 	return (safe);
2706 }
2707 
2708 /*
2709  * Return whether there is a lost LOCK or LOCKU queued up for the given
2710  * file that would make an mmap request unsafe.  cf. nfs4_safemap().
2711  */
2712 
2713 bool_t
2714 nfs4_map_lost_lock_conflict(vnode_t *vp)
2715 {
2716 	bool_t conflict = FALSE;
2717 	nfs4_lost_rqst_t *lrp;
2718 	mntinfo4_t *mi = VTOMI4(vp);
2719 
2720 	mutex_enter(&mi->mi_lock);
2721 	for (lrp = list_head(&mi->mi_lost_state); lrp != NULL;
2722 	    lrp = list_next(&mi->mi_lost_state, lrp)) {
2723 		if (lrp->lr_op != OP_LOCK && lrp->lr_op != OP_LOCKU)
2724 			continue;
2725 		ASSERT(lrp->lr_vp != NULL);
2726 		if (!VOP_CMP(lrp->lr_vp, vp))
2727 			continue;	/* different file */
2728 		if (!SAFE_LOCK(*lrp->lr_flk)) {
2729 			conflict = TRUE;
2730 			break;
2731 		}
2732 	}
2733 
2734 	mutex_exit(&mi->mi_lock);
2735 	return (conflict);
2736 }
2737 
2738 /*
2739  * nfs_lockcompletion:
2740  *
2741  * If the vnode has a lock that makes it unsafe to cache the file, mark it
2742  * as non cachable (set VNOCACHE bit).
2743  */
2744 
2745 void
2746 nfs4_lockcompletion(vnode_t *vp, int cmd)
2747 {
2748 	rnode4_t *rp = VTOR4(vp);
2749 
2750 	ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2751 	ASSERT(!IS_SHADOW(vp, rp));
2752 
2753 	if (cmd == F_SETLK || cmd == F_SETLKW) {
2754 
2755 		if (!nfs4_safemap(vp)) {
2756 			mutex_enter(&vp->v_lock);
2757 			vp->v_flag |= VNOCACHE;
2758 			mutex_exit(&vp->v_lock);
2759 		} else {
2760 			mutex_enter(&vp->v_lock);
2761 			vp->v_flag &= ~VNOCACHE;
2762 			mutex_exit(&vp->v_lock);
2763 		}
2764 	}
2765 	/*
2766 	 * The cached attributes of the file are stale after acquiring
2767 	 * the lock on the file. They were updated when the file was
2768 	 * opened, but not updated when the lock was acquired. Therefore the
2769 	 * cached attributes are invalidated after the lock is obtained.
2770 	 */
2771 	PURGE_ATTRCACHE4(vp);
2772 }
2773 
2774 /* ARGSUSED */
2775 static void *
2776 nfs4_mi_init(zoneid_t zoneid)
2777 {
2778 	struct mi4_globals *mig;
2779 
2780 	mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2781 	mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2782 	list_create(&mig->mig_list, sizeof (mntinfo4_t),
2783 	    offsetof(mntinfo4_t, mi_zone_node));
2784 	mig->mig_destructor_called = B_FALSE;
2785 	return (mig);
2786 }
2787 
2788 /*
2789  * Callback routine to tell all NFSv4 mounts in the zone to start tearing down
2790  * state and killing off threads.
2791  */
2792 /* ARGSUSED */
2793 static void
2794 nfs4_mi_shutdown(zoneid_t zoneid, void *data)
2795 {
2796 	struct mi4_globals *mig = data;
2797 	mntinfo4_t *mi;
2798 	nfs4_server_t *np;
2799 
2800 	NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2801 	    "nfs4_mi_shutdown zone %d\n", zoneid));
2802 	ASSERT(mig != NULL);
2803 	for (;;) {
2804 		mutex_enter(&mig->mig_lock);
2805 		mi = list_head(&mig->mig_list);
2806 		if (mi == NULL) {
2807 			mutex_exit(&mig->mig_lock);
2808 			break;
2809 		}
2810 
2811 		NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2812 		    "nfs4_mi_shutdown stopping vfs %p\n", (void *)mi->mi_vfsp));
2813 		/*
2814 		 * purge the DNLC for this filesystem
2815 		 */
2816 		(void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2817 		/*
2818 		 * Tell existing async worker threads to exit.
2819 		 */
2820 		mutex_enter(&mi->mi_async_lock);
2821 		mi->mi_max_threads = 0;
2822 		cv_broadcast(&mi->mi_async_work_cv);
2823 		/*
2824 		 * Set the appropriate flags, signal and wait for both the
2825 		 * async manager and the inactive thread to exit when they're
2826 		 * done with their current work.
2827 		 */
2828 		mutex_enter(&mi->mi_lock);
2829 		mi->mi_flags |= (MI4_ASYNC_MGR_STOP|MI4_DEAD);
2830 		mutex_exit(&mi->mi_lock);
2831 		mutex_exit(&mi->mi_async_lock);
2832 		if (mi->mi_manager_thread) {
2833 			nfs4_async_manager_stop(mi->mi_vfsp);
2834 		}
2835 		if (mi->mi_inactive_thread) {
2836 			mutex_enter(&mi->mi_async_lock);
2837 			cv_signal(&mi->mi_inact_req_cv);
2838 			/*
2839 			 * Wait for the inactive thread to exit.
2840 			 */
2841 			while (mi->mi_inactive_thread != NULL) {
2842 				cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2843 			}
2844 			mutex_exit(&mi->mi_async_lock);
2845 		}
2846 		/*
2847 		 * Wait for the recovery thread to complete, that is, it will
2848 		 * signal when it is done using the "mi" structure and about
2849 		 * to exit
2850 		 */
2851 		mutex_enter(&mi->mi_lock);
2852 		while (mi->mi_in_recovery > 0)
2853 			cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock);
2854 		mutex_exit(&mi->mi_lock);
2855 		/*
2856 		 * We're done when every mi has been done or the list is empty.
2857 		 * This one is done, remove it from the list.
2858 		 */
2859 		list_remove(&mig->mig_list, mi);
2860 		mutex_exit(&mig->mig_lock);
2861 		zone_rele(mi->mi_zone);
2862 		/*
2863 		 * Release hold on vfs and mi done to prevent race with zone
2864 		 * shutdown. This releases the hold in nfs4_mi_zonelist_add.
2865 		 */
2866 		VFS_RELE(mi->mi_vfsp);
2867 		MI4_RELE(mi);
2868 	}
2869 	/*
2870 	 * Tell each renew thread in the zone to exit
2871 	 */
2872 	mutex_enter(&nfs4_server_lst_lock);
2873 	for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
2874 		mutex_enter(&np->s_lock);
2875 		if (np->zoneid == zoneid) {
2876 			/*
2877 			 * We add another hold onto the nfs4_server_t
2878 			 * because this will make sure tha the nfs4_server_t
2879 			 * stays around until nfs4_callback_fini_zone destroys
2880 			 * the zone. This way, the renew thread can
2881 			 * unconditionally release its holds on the
2882 			 * nfs4_server_t.
2883 			 */
2884 			np->s_refcnt++;
2885 			nfs4_mark_srv_dead(np);
2886 		}
2887 		mutex_exit(&np->s_lock);
2888 	}
2889 	mutex_exit(&nfs4_server_lst_lock);
2890 }
2891 
2892 static void
2893 nfs4_mi_free_globals(struct mi4_globals *mig)
2894 {
2895 	list_destroy(&mig->mig_list);	/* makes sure the list is empty */
2896 	mutex_destroy(&mig->mig_lock);
2897 	kmem_free(mig, sizeof (*mig));
2898 }
2899 
2900 /* ARGSUSED */
2901 static void
2902 nfs4_mi_destroy(zoneid_t zoneid, void *data)
2903 {
2904 	struct mi4_globals *mig = data;
2905 
2906 	NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2907 	    "nfs4_mi_destroy zone %d\n", zoneid));
2908 	ASSERT(mig != NULL);
2909 	mutex_enter(&mig->mig_lock);
2910 	if (list_head(&mig->mig_list) != NULL) {
2911 		/* Still waiting for VFS_FREEVFS() */
2912 		mig->mig_destructor_called = B_TRUE;
2913 		mutex_exit(&mig->mig_lock);
2914 		return;
2915 	}
2916 	nfs4_mi_free_globals(mig);
2917 }
2918 
2919 /*
2920  * Add an NFS mount to the per-zone list of NFS mounts.
2921  */
2922 void
2923 nfs4_mi_zonelist_add(mntinfo4_t *mi)
2924 {
2925 	struct mi4_globals *mig;
2926 
2927 	mig = zone_getspecific(mi4_list_key, mi->mi_zone);
2928 	mutex_enter(&mig->mig_lock);
2929 	list_insert_head(&mig->mig_list, mi);
2930 	/*
2931 	 * hold added to eliminate race with zone shutdown -this will be
2932 	 * released in mi_shutdown
2933 	 */
2934 	MI4_HOLD(mi);
2935 	VFS_HOLD(mi->mi_vfsp);
2936 	mutex_exit(&mig->mig_lock);
2937 }
2938 
2939 /*
2940  * Remove an NFS mount from the per-zone list of NFS mounts.
2941  */
2942 int
2943 nfs4_mi_zonelist_remove(mntinfo4_t *mi)
2944 {
2945 	struct mi4_globals *mig;
2946 	int ret = 0;
2947 
2948 	mig = zone_getspecific(mi4_list_key, mi->mi_zone);
2949 	mutex_enter(&mig->mig_lock);
2950 	mutex_enter(&mi->mi_lock);
2951 	/* if this mi is marked dead, then the zone already released it */
2952 	if (!(mi->mi_flags & MI4_DEAD)) {
2953 		list_remove(&mig->mig_list, mi);
2954 
2955 		/* release the holds put on in zonelist_add(). */
2956 		VFS_RELE(mi->mi_vfsp);
2957 		MI4_RELE(mi);
2958 		ret = 1;
2959 	}
2960 	mutex_exit(&mi->mi_lock);
2961 
2962 	/*
2963 	 * We can be called asynchronously by VFS_FREEVFS() after the zone
2964 	 * shutdown/destroy callbacks have executed; if so, clean up the zone's
2965 	 * mi globals.
2966 	 */
2967 	if (list_head(&mig->mig_list) == NULL &&
2968 	    mig->mig_destructor_called == B_TRUE) {
2969 		nfs4_mi_free_globals(mig);
2970 		return (ret);
2971 	}
2972 	mutex_exit(&mig->mig_lock);
2973 	return (ret);
2974 }
2975 
2976 void
2977 nfs_free_mi4(mntinfo4_t *mi)
2978 {
2979 	nfs4_open_owner_t	*foop;
2980 	nfs4_oo_hash_bucket_t   *bucketp;
2981 	nfs4_debug_msg_t	*msgp;
2982 	int i;
2983 	servinfo4_t 		*svp;
2984 
2985 	mutex_enter(&mi->mi_lock);
2986 	ASSERT(mi->mi_recovthread == NULL);
2987 	ASSERT(mi->mi_flags & MI4_ASYNC_MGR_STOP);
2988 	mutex_exit(&mi->mi_lock);
2989 	mutex_enter(&mi->mi_async_lock);
2990 	ASSERT(mi->mi_threads == 0);
2991 	ASSERT(mi->mi_manager_thread == NULL);
2992 	mutex_exit(&mi->mi_async_lock);
2993 	svp = mi->mi_servers;
2994 	sv4_free(svp);
2995 	if (mi->mi_io_kstats) {
2996 		kstat_delete(mi->mi_io_kstats);
2997 		mi->mi_io_kstats = NULL;
2998 	}
2999 	if (mi->mi_ro_kstats) {
3000 		kstat_delete(mi->mi_ro_kstats);
3001 		mi->mi_ro_kstats = NULL;
3002 	}
3003 	if (mi->mi_recov_ksp) {
3004 		kstat_delete(mi->mi_recov_ksp);
3005 		mi->mi_recov_ksp = NULL;
3006 	}
3007 	mutex_enter(&mi->mi_msg_list_lock);
3008 	while (msgp = list_head(&mi->mi_msg_list)) {
3009 		list_remove(&mi->mi_msg_list, msgp);
3010 		nfs4_free_msg(msgp);
3011 	}
3012 	mutex_exit(&mi->mi_msg_list_lock);
3013 	list_destroy(&mi->mi_msg_list);
3014 	if (mi->mi_rootfh != NULL)
3015 		sfh4_rele(&mi->mi_rootfh);
3016 	if (mi->mi_srvparentfh != NULL)
3017 		sfh4_rele(&mi->mi_srvparentfh);
3018 	mutex_destroy(&mi->mi_lock);
3019 	mutex_destroy(&mi->mi_async_lock);
3020 	mutex_destroy(&mi->mi_msg_list_lock);
3021 	nfs_rw_destroy(&mi->mi_recovlock);
3022 	nfs_rw_destroy(&mi->mi_rename_lock);
3023 	nfs_rw_destroy(&mi->mi_fh_lock);
3024 	cv_destroy(&mi->mi_failover_cv);
3025 	cv_destroy(&mi->mi_async_reqs_cv);
3026 	cv_destroy(&mi->mi_async_work_cv);
3027 	cv_destroy(&mi->mi_async_cv);
3028 	cv_destroy(&mi->mi_inact_req_cv);
3029 	/*
3030 	 * Destroy the oo hash lists and mutexes for the cred hash table.
3031 	 */
3032 	for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) {
3033 		bucketp = &(mi->mi_oo_list[i]);
3034 		/* Destroy any remaining open owners on the list */
3035 		foop = list_head(&bucketp->b_oo_hash_list);
3036 		while (foop != NULL) {
3037 			list_remove(&bucketp->b_oo_hash_list, foop);
3038 			nfs4_destroy_open_owner(foop);
3039 			foop = list_head(&bucketp->b_oo_hash_list);
3040 		}
3041 		list_destroy(&bucketp->b_oo_hash_list);
3042 		mutex_destroy(&bucketp->b_lock);
3043 	}
3044 	/*
3045 	 * Empty and destroy the freed open owner list.
3046 	 */
3047 	foop = list_head(&mi->mi_foo_list);
3048 	while (foop != NULL) {
3049 		list_remove(&mi->mi_foo_list, foop);
3050 		nfs4_destroy_open_owner(foop);
3051 		foop = list_head(&mi->mi_foo_list);
3052 	}
3053 	list_destroy(&mi->mi_foo_list);
3054 	list_destroy(&mi->mi_bseqid_list);
3055 	list_destroy(&mi->mi_lost_state);
3056 	avl_destroy(&mi->mi_filehandles);
3057 	fn_rele(&mi->mi_fname);
3058 	kmem_free(mi, sizeof (*mi));
3059 }
3060 void
3061 mi_hold(mntinfo4_t *mi)
3062 {
3063 	atomic_add_32(&mi->mi_count, 1);
3064 	ASSERT(mi->mi_count != 0);
3065 }
3066 
3067 void
3068 mi_rele(mntinfo4_t *mi)
3069 {
3070 	ASSERT(mi->mi_count != 0);
3071 	if (atomic_add_32_nv(&mi->mi_count, -1) == 0) {
3072 		nfs_free_mi4(mi);
3073 	}
3074 }
3075 
3076 vnode_t    nfs4_xattr_notsupp_vnode;
3077 
3078 void
3079 nfs4_clnt_init(void)
3080 {
3081 	nfs4_vnops_init();
3082 	(void) nfs4_rnode_init();
3083 	(void) nfs4_shadow_init();
3084 	(void) nfs4_acache_init();
3085 	(void) nfs4_subr_init();
3086 	nfs4_acl_init();
3087 	nfs_idmap_init();
3088 	nfs4_callback_init();
3089 	nfs4_secinfo_init();
3090 #ifdef	DEBUG
3091 	tsd_create(&nfs4_tsd_key, NULL);
3092 #endif
3093 
3094 	/*
3095 	 * Add a CPR callback so that we can update client
3096 	 * lease after a suspend and resume.
3097 	 */
3098 	cid = callb_add(nfs4_client_cpr_callb, 0, CB_CL_CPR_RPC, "nfs4");
3099 
3100 	zone_key_create(&mi4_list_key, nfs4_mi_init, nfs4_mi_shutdown,
3101 	    nfs4_mi_destroy);
3102 
3103 	/*
3104 	 * Initialise the reference count of the notsupp xattr cache vnode to 1
3105 	 * so that it never goes away (VOP_INACTIVE isn't called on it).
3106 	 */
3107 	nfs4_xattr_notsupp_vnode.v_count = 1;
3108 }
3109 
3110 void
3111 nfs4_clnt_fini(void)
3112 {
3113 	(void) zone_key_delete(mi4_list_key);
3114 	nfs4_vnops_fini();
3115 	(void) nfs4_rnode_fini();
3116 	(void) nfs4_shadow_fini();
3117 	(void) nfs4_acache_fini();
3118 	(void) nfs4_subr_fini();
3119 	nfs_idmap_fini();
3120 	nfs4_callback_fini();
3121 	nfs4_secinfo_fini();
3122 #ifdef	DEBUG
3123 	tsd_destroy(&nfs4_tsd_key);
3124 #endif
3125 	if (cid)
3126 		(void) callb_delete(cid);
3127 }
3128 
3129 /*ARGSUSED*/
3130 static boolean_t
3131 nfs4_client_cpr_callb(void *arg, int code)
3132 {
3133 	/*
3134 	 * We get called for Suspend and Resume events.
3135 	 * For the suspend case we simply don't care!
3136 	 */
3137 	if (code == CB_CODE_CPR_CHKPT) {
3138 		return (B_TRUE);
3139 	}
3140 
3141 	/*
3142 	 * When we get to here we are in the process of
3143 	 * resuming the system from a previous suspend.
3144 	 */
3145 	nfs4_client_resumed = gethrestime_sec();
3146 	return (B_TRUE);
3147 }
3148 
3149 void
3150 nfs4_renew_lease_thread(nfs4_server_t *sp)
3151 {
3152 	int	error = 0;
3153 	time_t	tmp_last_renewal_time, tmp_time, tmp_now_time, kip_secs;
3154 	clock_t	tick_delay = 0;
3155 	clock_t time_left = 0;
3156 	callb_cpr_t cpr_info;
3157 	kmutex_t cpr_lock;
3158 
3159 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3160 		"nfs4_renew_lease_thread: acting on sp 0x%p", (void*)sp));
3161 	mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
3162 	CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4Lease");
3163 
3164 	mutex_enter(&sp->s_lock);
3165 	/* sp->s_lease_time is set via a GETATTR */
3166 	sp->last_renewal_time = gethrestime_sec();
3167 	sp->lease_valid = NFS4_LEASE_UNINITIALIZED;
3168 	ASSERT(sp->s_refcnt >= 1);
3169 
3170 	for (;;) {
3171 		if (!sp->state_ref_count ||
3172 			sp->lease_valid != NFS4_LEASE_VALID) {
3173 
3174 			kip_secs = MAX((sp->s_lease_time >> 1) -
3175 				(3 * sp->propagation_delay.tv_sec), 1);
3176 
3177 			tick_delay = SEC_TO_TICK(kip_secs);
3178 
3179 			NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3180 				"nfs4_renew_lease_thread: no renew : thread "
3181 				"wait %ld secs", kip_secs));
3182 
3183 			NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3184 				"nfs4_renew_lease_thread: no renew : "
3185 				"state_ref_count %d, lease_valid %d",
3186 				sp->state_ref_count, sp->lease_valid));
3187 
3188 			mutex_enter(&cpr_lock);
3189 			CALLB_CPR_SAFE_BEGIN(&cpr_info);
3190 			mutex_exit(&cpr_lock);
3191 			time_left = cv_timedwait(&sp->cv_thread_exit,
3192 				&sp->s_lock, tick_delay + lbolt);
3193 			mutex_enter(&cpr_lock);
3194 			CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3195 			mutex_exit(&cpr_lock);
3196 
3197 			NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3198 				"nfs4_renew_lease_thread: no renew: "
3199 				"time left %ld", time_left));
3200 
3201 			if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3202 				goto die;
3203 			continue;
3204 		}
3205 
3206 		tmp_last_renewal_time = sp->last_renewal_time;
3207 
3208 		tmp_time = gethrestime_sec() - sp->last_renewal_time +
3209 			(3 * sp->propagation_delay.tv_sec);
3210 
3211 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3212 			"nfs4_renew_lease_thread: tmp_time %ld, "
3213 			"sp->last_renewal_time %ld", tmp_time,
3214 			sp->last_renewal_time));
3215 
3216 		kip_secs = MAX((sp->s_lease_time >> 1) - tmp_time, 1);
3217 
3218 		tick_delay = SEC_TO_TICK(kip_secs);
3219 
3220 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3221 			"nfs4_renew_lease_thread: valid lease: sleep for %ld "
3222 			"secs", kip_secs));
3223 
3224 		mutex_enter(&cpr_lock);
3225 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
3226 		mutex_exit(&cpr_lock);
3227 		time_left = cv_timedwait(&sp->cv_thread_exit, &sp->s_lock,
3228 			tick_delay + lbolt);
3229 		mutex_enter(&cpr_lock);
3230 		CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3231 		mutex_exit(&cpr_lock);
3232 
3233 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3234 			"nfs4_renew_lease_thread: valid lease: time left %ld :"
3235 			"sp last_renewal_time %ld, nfs4_client_resumed %ld, "
3236 			"tmp_last_renewal_time %ld", time_left,
3237 			sp->last_renewal_time, nfs4_client_resumed,
3238 			tmp_last_renewal_time));
3239 
3240 		if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3241 			goto die;
3242 
3243 		if (tmp_last_renewal_time == sp->last_renewal_time ||
3244 			(nfs4_client_resumed != 0 &&
3245 			nfs4_client_resumed > sp->last_renewal_time)) {
3246 			/*
3247 			 * Issue RENEW op since we haven't renewed the lease
3248 			 * since we slept.
3249 			 */
3250 			tmp_now_time = gethrestime_sec();
3251 			error = nfs4renew(sp);
3252 			/*
3253 			 * Need to re-acquire sp's lock, nfs4renew()
3254 			 * relinqueshes it.
3255 			 */
3256 			mutex_enter(&sp->s_lock);
3257 
3258 			/*
3259 			 * See if someone changed s_thread_exit while we gave
3260 			 * up s_lock.
3261 			 */
3262 			if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3263 				goto die;
3264 
3265 			if (!error) {
3266 				/*
3267 				 * check to see if we implicitly renewed while
3268 				 * we waited for a reply for our RENEW call.
3269 				 */
3270 				if (tmp_last_renewal_time ==
3271 					sp->last_renewal_time) {
3272 					/* no implicit renew came */
3273 					sp->last_renewal_time = tmp_now_time;
3274 				} else {
3275 					NFS4_DEBUG(nfs4_client_lease_debug,
3276 						(CE_NOTE, "renew_thread: did "
3277 						"implicit renewal before reply "
3278 						"from server for RENEW"));
3279 				}
3280 			} else {
3281 				/* figure out error */
3282 				NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3283 					"renew_thread: nfs4renew returned error"
3284 					" %d", error));
3285 			}
3286 
3287 		}
3288 	}
3289 
3290 die:
3291 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3292 		"nfs4_renew_lease_thread: thread exiting"));
3293 
3294 	while (sp->s_otw_call_count != 0) {
3295 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3296 			"nfs4_renew_lease_thread: waiting for outstanding "
3297 			"otw calls to finish for sp 0x%p, current "
3298 			"s_otw_call_count %d", (void *)sp,
3299 			sp->s_otw_call_count));
3300 		mutex_enter(&cpr_lock);
3301 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
3302 		mutex_exit(&cpr_lock);
3303 		cv_wait(&sp->s_cv_otw_count, &sp->s_lock);
3304 		mutex_enter(&cpr_lock);
3305 		CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3306 		mutex_exit(&cpr_lock);
3307 	}
3308 	mutex_exit(&sp->s_lock);
3309 
3310 	nfs4_server_rele(sp);		/* free the thread's reference */
3311 	nfs4_server_rele(sp);		/* free the list's reference */
3312 	sp = NULL;
3313 
3314 done:
3315 	mutex_enter(&cpr_lock);
3316 	CALLB_CPR_EXIT(&cpr_info);	/* drops cpr_lock */
3317 	mutex_destroy(&cpr_lock);
3318 
3319 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3320 		"nfs4_renew_lease_thread: renew thread exit officially"));
3321 
3322 	zthread_exit();
3323 	/* NOT REACHED */
3324 }
3325 
3326 /*
3327  * Send out a RENEW op to the server.
3328  * Assumes sp is locked down.
3329  */
3330 static int
3331 nfs4renew(nfs4_server_t *sp)
3332 {
3333 	COMPOUND4args_clnt args;
3334 	COMPOUND4res_clnt res;
3335 	nfs_argop4 argop[1];
3336 	int doqueue = 1;
3337 	int rpc_error;
3338 	cred_t *cr;
3339 	mntinfo4_t *mi;
3340 	timespec_t prop_time, after_time;
3341 	int needrecov = FALSE;
3342 	nfs4_recov_state_t recov_state;
3343 	nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3344 
3345 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4renew"));
3346 
3347 	recov_state.rs_flags = 0;
3348 	recov_state.rs_num_retry_despite_err = 0;
3349 
3350 recov_retry:
3351 	mi = sp->mntinfo4_list;
3352 	VFS_HOLD(mi->mi_vfsp);
3353 	mutex_exit(&sp->s_lock);
3354 	ASSERT(mi != NULL);
3355 
3356 	e.error = nfs4_start_op(mi, NULL, NULL, &recov_state);
3357 	if (e.error) {
3358 		VFS_RELE(mi->mi_vfsp);
3359 		return (e.error);
3360 	}
3361 
3362 	/* Check to see if we're dealing with a marked-dead sp */
3363 	mutex_enter(&sp->s_lock);
3364 	if (sp->s_thread_exit == NFS4_THREAD_EXIT) {
3365 		mutex_exit(&sp->s_lock);
3366 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3367 		VFS_RELE(mi->mi_vfsp);
3368 		return (0);
3369 	}
3370 
3371 	/* Make sure mi hasn't changed on us */
3372 	if (mi != sp->mntinfo4_list) {
3373 		/* Must drop sp's lock to avoid a recursive mutex enter */
3374 		mutex_exit(&sp->s_lock);
3375 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3376 		VFS_RELE(mi->mi_vfsp);
3377 		mutex_enter(&sp->s_lock);
3378 		goto recov_retry;
3379 	}
3380 	mutex_exit(&sp->s_lock);
3381 
3382 	args.ctag = TAG_RENEW;
3383 
3384 	args.array_len = 1;
3385 	args.array = argop;
3386 
3387 	argop[0].argop = OP_RENEW;
3388 
3389 	mutex_enter(&sp->s_lock);
3390 	argop[0].nfs_argop4_u.oprenew.clientid = sp->clientid;
3391 	cr = sp->s_cred;
3392 	crhold(cr);
3393 	mutex_exit(&sp->s_lock);
3394 
3395 	ASSERT(cr != NULL);
3396 
3397 	/* used to figure out RTT for sp */
3398 	gethrestime(&prop_time);
3399 
3400 	NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3401 	    "nfs4renew: %s call, sp 0x%p", needrecov ? "recov" : "first",
3402 	    (void*)sp));
3403 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "before: %ld s %ld ns ",
3404 		prop_time.tv_sec, prop_time.tv_nsec));
3405 
3406 	DTRACE_PROBE2(nfs4__renew__start, nfs4_server_t *, sp,
3407 			mntinfo4_t *, mi);
3408 
3409 	rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3410 	crfree(cr);
3411 
3412 	DTRACE_PROBE2(nfs4__renew__end, nfs4_server_t *, sp,
3413 			mntinfo4_t *, mi);
3414 
3415 	gethrestime(&after_time);
3416 
3417 	mutex_enter(&sp->s_lock);
3418 	sp->propagation_delay.tv_sec =
3419 		MAX(1, after_time.tv_sec - prop_time.tv_sec);
3420 	mutex_exit(&sp->s_lock);
3421 
3422 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "after : %ld s %ld ns ",
3423 		after_time.tv_sec, after_time.tv_nsec));
3424 
3425 	if (e.error == 0 && res.status == NFS4ERR_CB_PATH_DOWN) {
3426 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3427 		nfs4_delegreturn_all(sp);
3428 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3429 		VFS_RELE(mi->mi_vfsp);
3430 		/*
3431 		 * If the server returns CB_PATH_DOWN, it has renewed
3432 		 * the lease and informed us that the callback path is
3433 		 * down.  Since the lease is renewed, just return 0 and
3434 		 * let the renew thread proceed as normal.
3435 		 */
3436 		return (0);
3437 	}
3438 
3439 	needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3440 	if (!needrecov && e.error) {
3441 		nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3442 		VFS_RELE(mi->mi_vfsp);
3443 		return (e.error);
3444 	}
3445 
3446 	rpc_error = e.error;
3447 
3448 	if (needrecov) {
3449 		NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3450 		    "nfs4renew: initiating recovery\n"));
3451 
3452 		if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL,
3453 		    OP_RENEW, NULL) == FALSE) {
3454 			nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3455 			VFS_RELE(mi->mi_vfsp);
3456 			if (!e.error)
3457 				(void) xdr_free(xdr_COMPOUND4res_clnt,
3458 								(caddr_t)&res);
3459 			mutex_enter(&sp->s_lock);
3460 			goto recov_retry;
3461 		}
3462 		/* fall through for res.status case */
3463 	}
3464 
3465 	if (res.status) {
3466 		if (res.status == NFS4ERR_LEASE_MOVED) {
3467 			/*EMPTY*/
3468 			/*
3469 			 * XXX need to try every mntinfo4 in sp->mntinfo4_list
3470 			 * to renew the lease on that server
3471 			 */
3472 		}
3473 		e.error = geterrno4(res.status);
3474 	}
3475 
3476 	if (!rpc_error)
3477 		(void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3478 
3479 	nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3480 
3481 	VFS_RELE(mi->mi_vfsp);
3482 
3483 	return (e.error);
3484 }
3485 
3486 void
3487 nfs4_inc_state_ref_count(mntinfo4_t *mi)
3488 {
3489 	nfs4_server_t	*sp;
3490 
3491 	/* this locks down sp if it is found */
3492 	sp = find_nfs4_server(mi);
3493 
3494 	if (sp != NULL) {
3495 		nfs4_inc_state_ref_count_nolock(sp, mi);
3496 		mutex_exit(&sp->s_lock);
3497 		nfs4_server_rele(sp);
3498 	}
3499 }
3500 
3501 /*
3502  * Bump the number of OPEN files (ie: those with state) so we know if this
3503  * nfs4_server has any state to maintain a lease for or not.
3504  *
3505  * Also, marks the nfs4_server's lease valid if it hasn't been done so already.
3506  */
3507 void
3508 nfs4_inc_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3509 {
3510 	ASSERT(mutex_owned(&sp->s_lock));
3511 
3512 	sp->state_ref_count++;
3513 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3514 		"nfs4_inc_state_ref_count: state_ref_count now %d",
3515 		sp->state_ref_count));
3516 
3517 	if (sp->lease_valid == NFS4_LEASE_UNINITIALIZED)
3518 		sp->lease_valid = NFS4_LEASE_VALID;
3519 
3520 	/*
3521 	 * If this call caused the lease to be marked valid and/or
3522 	 * took the state_ref_count from 0 to 1, then start the time
3523 	 * on lease renewal.
3524 	 */
3525 	if (sp->lease_valid == NFS4_LEASE_VALID && sp->state_ref_count == 1)
3526 		sp->last_renewal_time = gethrestime_sec();
3527 
3528 	/* update the number of open files for mi */
3529 	mi->mi_open_files++;
3530 }
3531 
3532 void
3533 nfs4_dec_state_ref_count(mntinfo4_t *mi)
3534 {
3535 	nfs4_server_t	*sp;
3536 
3537 	/* this locks down sp if it is found */
3538 	sp = find_nfs4_server_all(mi, 1);
3539 
3540 	if (sp != NULL) {
3541 		nfs4_dec_state_ref_count_nolock(sp, mi);
3542 		mutex_exit(&sp->s_lock);
3543 		nfs4_server_rele(sp);
3544 	}
3545 }
3546 
3547 /*
3548  * Decrement the number of OPEN files (ie: those with state) so we know if
3549  * this nfs4_server has any state to maintain a lease for or not.
3550  */
3551 void
3552 nfs4_dec_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3553 {
3554 	ASSERT(mutex_owned(&sp->s_lock));
3555 	ASSERT(sp->state_ref_count != 0);
3556 	sp->state_ref_count--;
3557 
3558 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3559 		"nfs4_dec_state_ref_count: state ref count now %d",
3560 		sp->state_ref_count));
3561 
3562 	mi->mi_open_files--;
3563 	NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3564 		"nfs4_dec_state_ref_count: mi open files %d, v4 flags 0x%x",
3565 		mi->mi_open_files, mi->mi_flags));
3566 
3567 	/* We don't have to hold the mi_lock to test mi_flags */
3568 	if (mi->mi_open_files == 0 &&
3569 	    (mi->mi_flags & MI4_REMOVE_ON_LAST_CLOSE)) {
3570 		NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3571 			"nfs4_dec_state_ref_count: remove mntinfo4 %p since "
3572 			"we have closed the last open file", (void*)mi));
3573 		nfs4_remove_mi_from_server(mi, sp);
3574 	}
3575 }
3576 
3577 bool_t
3578 inlease(nfs4_server_t *sp)
3579 {
3580 	bool_t result;
3581 
3582 	ASSERT(mutex_owned(&sp->s_lock));
3583 
3584 	if (sp->lease_valid == NFS4_LEASE_VALID &&
3585 	    gethrestime_sec() < sp->last_renewal_time + sp->s_lease_time)
3586 		result = TRUE;
3587 	else
3588 		result = FALSE;
3589 
3590 	return (result);
3591 }
3592 
3593 
3594 /*
3595  * Return non-zero if the given nfs4_server_t is going through recovery.
3596  */
3597 
3598 int
3599 nfs4_server_in_recovery(nfs4_server_t *sp)
3600 {
3601 	return (nfs_rw_lock_held(&sp->s_recovlock, RW_WRITER));
3602 }
3603 
3604 /*
3605  * Compare two shared filehandle objects.  Returns -1, 0, or +1, if the
3606  * first is less than, equal to, or greater than the second.
3607  */
3608 
3609 int
3610 sfh4cmp(const void *p1, const void *p2)
3611 {
3612 	const nfs4_sharedfh_t *sfh1 = (const nfs4_sharedfh_t *)p1;
3613 	const nfs4_sharedfh_t *sfh2 = (const nfs4_sharedfh_t *)p2;
3614 
3615 	return (nfs4cmpfh(&sfh1->sfh_fh, &sfh2->sfh_fh));
3616 }
3617 
3618 /*
3619  * Create a table for shared filehandle objects.
3620  */
3621 
3622 void
3623 sfh4_createtab(avl_tree_t *tab)
3624 {
3625 	avl_create(tab, sfh4cmp, sizeof (nfs4_sharedfh_t),
3626 		offsetof(nfs4_sharedfh_t, sfh_tree));
3627 }
3628 
3629 /*
3630  * Return a shared filehandle object for the given filehandle.  The caller
3631  * is responsible for eventually calling sfh4_rele().
3632  */
3633 
3634 nfs4_sharedfh_t *
3635 sfh4_put(const nfs_fh4 *fh, mntinfo4_t *mi, nfs4_sharedfh_t *key)
3636 {
3637 	nfs4_sharedfh_t *sfh, *nsfh;
3638 	avl_index_t where;
3639 	nfs4_sharedfh_t skey;
3640 
3641 	if (!key) {
3642 		skey.sfh_fh = *fh;
3643 		key = &skey;
3644 	}
3645 
3646 	nsfh = kmem_alloc(sizeof (nfs4_sharedfh_t), KM_SLEEP);
3647 	nsfh->sfh_fh.nfs_fh4_len = fh->nfs_fh4_len;
3648 	/*
3649 	 * We allocate the largest possible filehandle size because it's
3650 	 * not that big, and it saves us from possibly having to resize the
3651 	 * buffer later.
3652 	 */
3653 	nsfh->sfh_fh.nfs_fh4_val = kmem_alloc(NFS4_FHSIZE, KM_SLEEP);
3654 	bcopy(fh->nfs_fh4_val, nsfh->sfh_fh.nfs_fh4_val, fh->nfs_fh4_len);
3655 	mutex_init(&nsfh->sfh_lock, NULL, MUTEX_DEFAULT, NULL);
3656 	nsfh->sfh_refcnt = 1;
3657 	nsfh->sfh_flags = SFH4_IN_TREE;
3658 	nsfh->sfh_mi = mi;
3659 	NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, "sfh4_get: new object (%p)",
3660 			(void *)nsfh));
3661 
3662 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3663 	sfh = avl_find(&mi->mi_filehandles, key, &where);
3664 	if (sfh != NULL) {
3665 		mutex_enter(&sfh->sfh_lock);
3666 		sfh->sfh_refcnt++;
3667 		mutex_exit(&sfh->sfh_lock);
3668 		nfs_rw_exit(&mi->mi_fh_lock);
3669 		/* free our speculative allocs */
3670 		kmem_free(nsfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3671 		kmem_free(nsfh, sizeof (nfs4_sharedfh_t));
3672 		return (sfh);
3673 	}
3674 
3675 	avl_insert(&mi->mi_filehandles, nsfh, where);
3676 	nfs_rw_exit(&mi->mi_fh_lock);
3677 
3678 	return (nsfh);
3679 }
3680 
3681 /*
3682  * Return a shared filehandle object for the given filehandle.  The caller
3683  * is responsible for eventually calling sfh4_rele().
3684  */
3685 
3686 nfs4_sharedfh_t *
3687 sfh4_get(const nfs_fh4 *fh, mntinfo4_t *mi)
3688 {
3689 	nfs4_sharedfh_t *sfh;
3690 	nfs4_sharedfh_t key;
3691 
3692 	ASSERT(fh->nfs_fh4_len <= NFS4_FHSIZE);
3693 
3694 #ifdef DEBUG
3695 	if (nfs4_sharedfh_debug) {
3696 		nfs4_fhandle_t fhandle;
3697 
3698 		fhandle.fh_len = fh->nfs_fh4_len;
3699 		bcopy(fh->nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len);
3700 		zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "sfh4_get:");
3701 		nfs4_printfhandle(&fhandle);
3702 	}
3703 #endif
3704 
3705 	/*
3706 	 * If there's already an object for the given filehandle, bump the
3707 	 * reference count and return it.  Otherwise, create a new object
3708 	 * and add it to the AVL tree.
3709 	 */
3710 
3711 	key.sfh_fh = *fh;
3712 
3713 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3714 	sfh = avl_find(&mi->mi_filehandles, &key, NULL);
3715 	if (sfh != NULL) {
3716 		mutex_enter(&sfh->sfh_lock);
3717 		sfh->sfh_refcnt++;
3718 		NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3719 			"sfh4_get: found existing %p, new refcnt=%d",
3720 			(void *)sfh, sfh->sfh_refcnt));
3721 		mutex_exit(&sfh->sfh_lock);
3722 		nfs_rw_exit(&mi->mi_fh_lock);
3723 		return (sfh);
3724 	}
3725 	nfs_rw_exit(&mi->mi_fh_lock);
3726 
3727 	return (sfh4_put(fh, mi, &key));
3728 }
3729 
3730 /*
3731  * Get a reference to the given shared filehandle object.
3732  */
3733 
3734 void
3735 sfh4_hold(nfs4_sharedfh_t *sfh)
3736 {
3737 	ASSERT(sfh->sfh_refcnt > 0);
3738 
3739 	mutex_enter(&sfh->sfh_lock);
3740 	sfh->sfh_refcnt++;
3741 	NFS4_DEBUG(nfs4_sharedfh_debug,
3742 		(CE_NOTE, "sfh4_hold %p, new refcnt=%d",
3743 		(void *)sfh, sfh->sfh_refcnt));
3744 	mutex_exit(&sfh->sfh_lock);
3745 }
3746 
3747 /*
3748  * Release a reference to the given shared filehandle object and null out
3749  * the given pointer.
3750  */
3751 
3752 void
3753 sfh4_rele(nfs4_sharedfh_t **sfhpp)
3754 {
3755 	mntinfo4_t *mi;
3756 	nfs4_sharedfh_t *sfh = *sfhpp;
3757 
3758 	ASSERT(sfh->sfh_refcnt > 0);
3759 
3760 	mutex_enter(&sfh->sfh_lock);
3761 	if (sfh->sfh_refcnt > 1) {
3762 		sfh->sfh_refcnt--;
3763 		NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3764 		    "sfh4_rele %p, new refcnt=%d",
3765 		    (void *)sfh, sfh->sfh_refcnt));
3766 		mutex_exit(&sfh->sfh_lock);
3767 		goto finish;
3768 	}
3769 	mutex_exit(&sfh->sfh_lock);
3770 
3771 	/*
3772 	 * Possibly the last reference, so get the lock for the table in
3773 	 * case it's time to remove the object from the table.
3774 	 */
3775 	mi = sfh->sfh_mi;
3776 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3777 	mutex_enter(&sfh->sfh_lock);
3778 	sfh->sfh_refcnt--;
3779 	if (sfh->sfh_refcnt > 0) {
3780 		NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3781 		    "sfh4_rele %p, new refcnt=%d",
3782 		    (void *)sfh, sfh->sfh_refcnt));
3783 		mutex_exit(&sfh->sfh_lock);
3784 		nfs_rw_exit(&mi->mi_fh_lock);
3785 		goto finish;
3786 	}
3787 
3788 	NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3789 		"sfh4_rele %p, last ref", (void *)sfh));
3790 	if (sfh->sfh_flags & SFH4_IN_TREE) {
3791 		avl_remove(&mi->mi_filehandles, sfh);
3792 		sfh->sfh_flags &= ~SFH4_IN_TREE;
3793 	}
3794 	mutex_exit(&sfh->sfh_lock);
3795 	nfs_rw_exit(&mi->mi_fh_lock);
3796 	mutex_destroy(&sfh->sfh_lock);
3797 	kmem_free(sfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3798 	kmem_free(sfh, sizeof (nfs4_sharedfh_t));
3799 
3800 finish:
3801 	*sfhpp = NULL;
3802 }
3803 
3804 /*
3805  * Update the filehandle for the given shared filehandle object.
3806  */
3807 
3808 int nfs4_warn_dupfh = 0;	/* if set, always warn about dup fhs below */
3809 
3810 void
3811 sfh4_update(nfs4_sharedfh_t *sfh, const nfs_fh4 *newfh)
3812 {
3813 	mntinfo4_t *mi = sfh->sfh_mi;
3814 	nfs4_sharedfh_t *dupsfh;
3815 	avl_index_t where;
3816 	nfs4_sharedfh_t key;
3817 
3818 #ifdef DEBUG
3819 	mutex_enter(&sfh->sfh_lock);
3820 	ASSERT(sfh->sfh_refcnt > 0);
3821 	mutex_exit(&sfh->sfh_lock);
3822 #endif
3823 	ASSERT(newfh->nfs_fh4_len <= NFS4_FHSIZE);
3824 
3825 	/*
3826 	 * The basic plan is to remove the shared filehandle object from
3827 	 * the table, update it to have the new filehandle, then reinsert
3828 	 * it.
3829 	 */
3830 
3831 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3832 	mutex_enter(&sfh->sfh_lock);
3833 	if (sfh->sfh_flags & SFH4_IN_TREE) {
3834 		avl_remove(&mi->mi_filehandles, sfh);
3835 		sfh->sfh_flags &= ~SFH4_IN_TREE;
3836 	}
3837 	mutex_exit(&sfh->sfh_lock);
3838 	sfh->sfh_fh.nfs_fh4_len = newfh->nfs_fh4_len;
3839 	bcopy(newfh->nfs_fh4_val, sfh->sfh_fh.nfs_fh4_val,
3840 	    sfh->sfh_fh.nfs_fh4_len);
3841 
3842 	/*
3843 	 * XXX If there is already a shared filehandle object with the new
3844 	 * filehandle, we're in trouble, because the rnode code assumes
3845 	 * that there is only one shared filehandle object for a given
3846 	 * filehandle.  So issue a warning (for read-write mounts only)
3847 	 * and don't try to re-insert the given object into the table.
3848 	 * Hopefully the given object will quickly go away and everyone
3849 	 * will use the new object.
3850 	 */
3851 	key.sfh_fh = *newfh;
3852 	dupsfh = avl_find(&mi->mi_filehandles, &key, &where);
3853 	if (dupsfh != NULL) {
3854 		if (!(mi->mi_vfsp->vfs_flag & VFS_RDONLY) || nfs4_warn_dupfh) {
3855 			zcmn_err(mi->mi_zone->zone_id, CE_WARN, "sfh4_update: "
3856 			    "duplicate filehandle detected");
3857 			sfh4_printfhandle(dupsfh);
3858 		}
3859 	} else {
3860 		avl_insert(&mi->mi_filehandles, sfh, where);
3861 		mutex_enter(&sfh->sfh_lock);
3862 		sfh->sfh_flags |= SFH4_IN_TREE;
3863 		mutex_exit(&sfh->sfh_lock);
3864 	}
3865 	nfs_rw_exit(&mi->mi_fh_lock);
3866 }
3867 
3868 /*
3869  * Copy out the current filehandle for the given shared filehandle object.
3870  */
3871 
3872 void
3873 sfh4_copyval(const nfs4_sharedfh_t *sfh, nfs4_fhandle_t *fhp)
3874 {
3875 	mntinfo4_t *mi = sfh->sfh_mi;
3876 
3877 	ASSERT(sfh->sfh_refcnt > 0);
3878 
3879 	(void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3880 	fhp->fh_len = sfh->sfh_fh.nfs_fh4_len;
3881 	ASSERT(fhp->fh_len <= NFS4_FHSIZE);
3882 	bcopy(sfh->sfh_fh.nfs_fh4_val, fhp->fh_buf, fhp->fh_len);
3883 	nfs_rw_exit(&mi->mi_fh_lock);
3884 }
3885 
3886 /*
3887  * Print out the filehandle for the given shared filehandle object.
3888  */
3889 
3890 void
3891 sfh4_printfhandle(const nfs4_sharedfh_t *sfh)
3892 {
3893 	nfs4_fhandle_t fhandle;
3894 
3895 	sfh4_copyval(sfh, &fhandle);
3896 	nfs4_printfhandle(&fhandle);
3897 }
3898 
3899 /*
3900  * Compare 2 fnames.  Returns -1 if the first is "less" than the second, 0
3901  * if they're the same, +1 if the first is "greater" than the second.  The
3902  * caller (or whoever's calling the AVL package) is responsible for
3903  * handling locking issues.
3904  */
3905 
3906 static int
3907 fncmp(const void *p1, const void *p2)
3908 {
3909 	const nfs4_fname_t *f1 = p1;
3910 	const nfs4_fname_t *f2 = p2;
3911 	int res;
3912 
3913 	res = strcmp(f1->fn_name, f2->fn_name);
3914 	/*
3915 	 * The AVL package wants +/-1, not arbitrary positive or negative
3916 	 * integers.
3917 	 */
3918 	if (res > 0)
3919 		res = 1;
3920 	else if (res < 0)
3921 		res = -1;
3922 	return (res);
3923 }
3924 
3925 /*
3926  * Get or create an fname with the given name, as a child of the given
3927  * fname.  The caller is responsible for eventually releasing the reference
3928  * (fn_rele()).  parent may be NULL.
3929  */
3930 
3931 nfs4_fname_t *
3932 fn_get(nfs4_fname_t *parent, char *name)
3933 {
3934 	nfs4_fname_t key;
3935 	nfs4_fname_t *fnp;
3936 	avl_index_t where;
3937 
3938 	key.fn_name = name;
3939 
3940 	/*
3941 	 * If there's already an fname registered with the given name, bump
3942 	 * its reference count and return it.  Otherwise, create a new one
3943 	 * and add it to the parent's AVL tree.
3944 	 */
3945 
3946 	if (parent != NULL) {
3947 		mutex_enter(&parent->fn_lock);
3948 		fnp = avl_find(&parent->fn_children, &key, &where);
3949 		if (fnp != NULL) {
3950 			fn_hold(fnp);
3951 			mutex_exit(&parent->fn_lock);
3952 			return (fnp);
3953 		}
3954 	}
3955 
3956 	fnp = kmem_alloc(sizeof (nfs4_fname_t), KM_SLEEP);
3957 	mutex_init(&fnp->fn_lock, NULL, MUTEX_DEFAULT, NULL);
3958 	fnp->fn_parent = parent;
3959 	if (parent != NULL)
3960 		fn_hold(parent);
3961 	fnp->fn_len = strlen(name);
3962 	ASSERT(fnp->fn_len < MAXNAMELEN);
3963 	fnp->fn_name = kmem_alloc(fnp->fn_len + 1, KM_SLEEP);
3964 	(void) strcpy(fnp->fn_name, name);
3965 	fnp->fn_refcnt = 1;
3966 	avl_create(&fnp->fn_children, fncmp, sizeof (nfs4_fname_t),
3967 	    offsetof(nfs4_fname_t, fn_tree));
3968 	NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
3969 		"fn_get %p:%s, a new nfs4_fname_t!",
3970 		(void *)fnp, fnp->fn_name));
3971 	if (parent != NULL) {
3972 		avl_insert(&parent->fn_children, fnp, where);
3973 		mutex_exit(&parent->fn_lock);
3974 	}
3975 
3976 	return (fnp);
3977 }
3978 
3979 void
3980 fn_hold(nfs4_fname_t *fnp)
3981 {
3982 	atomic_add_32(&fnp->fn_refcnt, 1);
3983 	NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
3984 		"fn_hold %p:%s, new refcnt=%d",
3985 		(void *)fnp, fnp->fn_name, fnp->fn_refcnt));
3986 }
3987 
3988 /*
3989  * Decrement the reference count of the given fname, and destroy it if its
3990  * reference count goes to zero.  Nulls out the given pointer.
3991  */
3992 
3993 void
3994 fn_rele(nfs4_fname_t **fnpp)
3995 {
3996 	nfs4_fname_t *parent;
3997 	uint32_t newref;
3998 	nfs4_fname_t *fnp;
3999 
4000 recur:
4001 	fnp = *fnpp;
4002 	*fnpp = NULL;
4003 
4004 	mutex_enter(&fnp->fn_lock);
4005 	parent = fnp->fn_parent;
4006 	if (parent != NULL)
4007 		mutex_enter(&parent->fn_lock);	/* prevent new references */
4008 	newref = atomic_add_32_nv(&fnp->fn_refcnt, -1);
4009 	if (newref > 0) {
4010 		NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4011 			"fn_rele %p:%s, new refcnt=%d",
4012 			(void *)fnp, fnp->fn_name, fnp->fn_refcnt));
4013 		if (parent != NULL)
4014 			mutex_exit(&parent->fn_lock);
4015 		mutex_exit(&fnp->fn_lock);
4016 		return;
4017 	}
4018 
4019 	NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4020 		"fn_rele %p:%s, last reference, deleting...",
4021 		(void *)fnp, fnp->fn_name));
4022 	if (parent != NULL) {
4023 		avl_remove(&parent->fn_children, fnp);
4024 		mutex_exit(&parent->fn_lock);
4025 	}
4026 	kmem_free(fnp->fn_name, fnp->fn_len + 1);
4027 	mutex_destroy(&fnp->fn_lock);
4028 	avl_destroy(&fnp->fn_children);
4029 	kmem_free(fnp, sizeof (nfs4_fname_t));
4030 	/*
4031 	 * Recursivly fn_rele the parent.
4032 	 * Use goto instead of a recursive call to avoid stack overflow.
4033 	 */
4034 	if (parent != NULL) {
4035 		fnpp = &parent;
4036 		goto recur;
4037 	}
4038 }
4039 
4040 /*
4041  * Returns the single component name of the given fname, in a MAXNAMELEN
4042  * string buffer, which the caller is responsible for freeing.  Note that
4043  * the name may become invalid as a result of fn_move().
4044  */
4045 
4046 char *
4047 fn_name(nfs4_fname_t *fnp)
4048 {
4049 	char *name;
4050 
4051 	ASSERT(fnp->fn_len < MAXNAMELEN);
4052 	name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
4053 	mutex_enter(&fnp->fn_lock);
4054 	(void) strcpy(name, fnp->fn_name);
4055 	mutex_exit(&fnp->fn_lock);
4056 
4057 	return (name);
4058 }
4059 
4060 
4061 /*
4062  * fn_path_realloc
4063  *
4064  * This function, used only by fn_path, constructs
4065  * a new string which looks like "prepend" + "/" + "current".
4066  * by allocating a new string and freeing the old one.
4067  */
4068 static void
4069 fn_path_realloc(char **curses, char *prepend)
4070 {
4071 	int len, curlen = 0;
4072 	char *news;
4073 
4074 	if (*curses == NULL) {
4075 		/*
4076 		 * Prime the pump, allocate just the
4077 		 * space for prepend and return that.
4078 		 */
4079 		len = strlen(prepend) + 1;
4080 		news = kmem_alloc(len, KM_SLEEP);
4081 		(void) strncpy(news, prepend, len);
4082 	} else {
4083 		/*
4084 		 * Allocate the space  for a new string
4085 		 * +1 +1 is for the "/" and the NULL
4086 		 * byte at the end of it all.
4087 		 */
4088 		curlen = strlen(*curses);
4089 		len = curlen + strlen(prepend) + 1 + 1;
4090 		news = kmem_alloc(len, KM_SLEEP);
4091 		(void) strncpy(news, prepend, len);
4092 		(void) strcat(news, "/");
4093 		(void) strcat(news, *curses);
4094 		kmem_free(*curses, curlen + 1);
4095 	}
4096 	*curses = news;
4097 }
4098 
4099 /*
4100  * Returns the path name (starting from the fs root) for the given fname.
4101  * The caller is responsible for freeing.  Note that the path may be or
4102  * become invalid as a result of fn_move().
4103  */
4104 
4105 char *
4106 fn_path(nfs4_fname_t *fnp)
4107 {
4108 	char *path;
4109 	nfs4_fname_t *nextfnp;
4110 
4111 	if (fnp == NULL)
4112 		return (NULL);
4113 
4114 	path = NULL;
4115 
4116 	/* walk up the tree constructing the pathname.  */
4117 
4118 	fn_hold(fnp);			/* adjust for later rele */
4119 	do {
4120 		mutex_enter(&fnp->fn_lock);
4121 		/*
4122 		 * Add fn_name in front of the current path
4123 		 */
4124 		fn_path_realloc(&path, fnp->fn_name);
4125 		nextfnp = fnp->fn_parent;
4126 		if (nextfnp != NULL)
4127 			fn_hold(nextfnp);
4128 		mutex_exit(&fnp->fn_lock);
4129 		fn_rele(&fnp);
4130 		fnp = nextfnp;
4131 	} while (fnp != NULL);
4132 
4133 	return (path);
4134 }
4135 
4136 /*
4137  * Return a reference to the parent of the given fname, which the caller is
4138  * responsible for eventually releasing.
4139  */
4140 
4141 nfs4_fname_t *
4142 fn_parent(nfs4_fname_t *fnp)
4143 {
4144 	nfs4_fname_t *parent;
4145 
4146 	mutex_enter(&fnp->fn_lock);
4147 	parent = fnp->fn_parent;
4148 	if (parent != NULL)
4149 		fn_hold(parent);
4150 	mutex_exit(&fnp->fn_lock);
4151 
4152 	return (parent);
4153 }
4154 
4155 /*
4156  * Update fnp so that its parent is newparent and its name is newname.
4157  */
4158 
4159 void
4160 fn_move(nfs4_fname_t *fnp, nfs4_fname_t *newparent, char *newname)
4161 {
4162 	nfs4_fname_t *parent, *tmpfnp;
4163 	ssize_t newlen;
4164 	nfs4_fname_t key;
4165 	avl_index_t where;
4166 
4167 	/*
4168 	 * This assert exists to catch the client trying to rename
4169 	 * a dir to be a child of itself.  This happened at a recent
4170 	 * bakeoff against a 3rd party (broken) server which allowed
4171 	 * the rename to succeed.  If it trips it means that:
4172 	 *	a) the code in nfs4rename that detects this case is broken
4173 	 *	b) the server is broken (since it allowed the bogus rename)
4174 	 *
4175 	 * For non-DEBUG kernels, prepare for a recursive mutex_enter
4176 	 * panic below from:  mutex_enter(&newparent->fn_lock);
4177 	 */
4178 	ASSERT(fnp != newparent);
4179 
4180 	/*
4181 	 * Remove fnp from its current parent, change its name, then add it
4182 	 * to newparent.
4183 	 */
4184 	mutex_enter(&fnp->fn_lock);
4185 	parent = fnp->fn_parent;
4186 	mutex_enter(&parent->fn_lock);
4187 	avl_remove(&parent->fn_children, fnp);
4188 	mutex_exit(&parent->fn_lock);
4189 	fn_rele(&fnp->fn_parent);
4190 
4191 	newlen = strlen(newname);
4192 	if (newlen != fnp->fn_len) {
4193 		ASSERT(newlen < MAXNAMELEN);
4194 		kmem_free(fnp->fn_name, fnp->fn_len + 1);
4195 		fnp->fn_name = kmem_alloc(newlen + 1, KM_SLEEP);
4196 		fnp->fn_len = newlen;
4197 	}
4198 	(void) strcpy(fnp->fn_name, newname);
4199 
4200 again:
4201 	mutex_enter(&newparent->fn_lock);
4202 	key.fn_name = fnp->fn_name;
4203 	tmpfnp = avl_find(&newparent->fn_children, &key, &where);
4204 	if (tmpfnp != NULL) {
4205 		/*
4206 		 * This could be due to a file that was unlinked while
4207 		 * open, or perhaps the rnode is in the free list.  Remove
4208 		 * it from newparent and let it go away on its own.  The
4209 		 * contorted code is to deal with lock order issues and
4210 		 * race conditions.
4211 		 */
4212 		fn_hold(tmpfnp);
4213 		mutex_exit(&newparent->fn_lock);
4214 		mutex_enter(&tmpfnp->fn_lock);
4215 		if (tmpfnp->fn_parent == newparent) {
4216 			mutex_enter(&newparent->fn_lock);
4217 			avl_remove(&newparent->fn_children, tmpfnp);
4218 			mutex_exit(&newparent->fn_lock);
4219 			fn_rele(&tmpfnp->fn_parent);
4220 		}
4221 		mutex_exit(&tmpfnp->fn_lock);
4222 		fn_rele(&tmpfnp);
4223 		goto again;
4224 	}
4225 	fnp->fn_parent = newparent;
4226 	fn_hold(newparent);
4227 	avl_insert(&newparent->fn_children, fnp, where);
4228 	mutex_exit(&newparent->fn_lock);
4229 	mutex_exit(&fnp->fn_lock);
4230 }
4231 
4232 #ifdef DEBUG
4233 /*
4234  * Return non-zero if the type information makes sense for the given vnode.
4235  * Otherwise panic.
4236  */
4237 int
4238 nfs4_consistent_type(vnode_t *vp)
4239 {
4240 	rnode4_t *rp = VTOR4(vp);
4241 
4242 	if (nfs4_vtype_debug && vp->v_type != VNON &&
4243 	    rp->r_attr.va_type != VNON && vp->v_type != rp->r_attr.va_type) {
4244 		cmn_err(CE_PANIC, "vnode %p type mismatch; v_type=%d, "
4245 			"rnode attr type=%d", (void *)vp, vp->v_type,
4246 			rp->r_attr.va_type);
4247 	}
4248 
4249 	return (1);
4250 }
4251 #endif /* DEBUG */
4252