1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 */ 30 31 /* 32 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 33 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 34 * Copyright 2022 Oxide Computer Company 35 */ 36 37 #include <sys/param.h> 38 #include <sys/types.h> 39 #include <sys/systm.h> 40 #include <sys/cred.h> 41 #include <sys/time.h> 42 #include <sys/vnode.h> 43 #include <sys/vfs.h> 44 #include <sys/vfs_opreg.h> 45 #include <sys/file.h> 46 #include <sys/filio.h> 47 #include <sys/uio.h> 48 #include <sys/buf.h> 49 #include <sys/mman.h> 50 #include <sys/pathname.h> 51 #include <sys/dirent.h> 52 #include <sys/debug.h> 53 #include <sys/vmsystm.h> 54 #include <sys/fcntl.h> 55 #include <sys/flock.h> 56 #include <sys/swap.h> 57 #include <sys/errno.h> 58 #include <sys/strsubr.h> 59 #include <sys/sysmacros.h> 60 #include <sys/kmem.h> 61 #include <sys/cmn_err.h> 62 #include <sys/pathconf.h> 63 #include <sys/utsname.h> 64 #include <sys/dnlc.h> 65 #include <sys/acl.h> 66 #include <sys/systeminfo.h> 67 #include <sys/atomic.h> 68 #include <sys/policy.h> 69 #include <sys/sdt.h> 70 #include <sys/zone.h> 71 72 #include <rpc/types.h> 73 #include <rpc/auth.h> 74 #include <rpc/clnt.h> 75 #include <rpc/rpc_rdma.h> 76 77 #include <nfs/nfs.h> 78 #include <nfs/nfs_clnt.h> 79 #include <nfs/rnode.h> 80 #include <nfs/nfs_acl.h> 81 #include <nfs/lm.h> 82 83 #include <vm/hat.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/pvn.h> 87 #include <vm/seg.h> 88 #include <vm/seg_map.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_vn.h> 91 92 #include <fs/fs_subr.h> 93 94 #include <sys/ddi.h> 95 96 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 97 cred_t *); 98 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 99 stable_how *); 100 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *); 101 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *); 102 static int nfs3_accessx(void *, int, cred_t *); 103 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 104 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 105 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl, 106 int, vnode_t **, cred_t *, int); 107 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *); 108 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 109 int, vnode_t **, cred_t *); 110 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 111 caller_context_t *); 112 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 113 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 114 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *); 115 static int nfs3_bio(struct buf *, stable_how *, cred_t *); 116 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 117 page_t *[], size_t, struct seg *, caddr_t, 118 enum seg_rw, cred_t *); 119 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 120 cred_t *); 121 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 122 int, cred_t *); 123 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 124 int, cred_t *); 125 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *); 126 static void nfs3_set_mod(vnode_t *); 127 static void nfs3_get_commit(vnode_t *); 128 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t); 129 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 130 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *); 131 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3, 132 cred_t *); 133 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3, 134 cred_t *); 135 static void nfs3_delmap_callback(struct as *, void *, uint_t); 136 137 /* 138 * Error flags used to pass information about certain special errors 139 * which need to be handled specially. 140 */ 141 #define NFS_EOF -98 142 #define NFS_VERF_MISMATCH -97 143 144 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 145 #define ALIGN64(x, ptr, sz) \ 146 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 147 if (x) { \ 148 x = sizeof (uint64_t) - (x); \ 149 sz -= (x); \ 150 ptr += (x); \ 151 } 152 153 /* 154 * These are the vnode ops routines which implement the vnode interface to 155 * the networked file system. These routines just take their parameters, 156 * make them look networkish by putting the right info into interface structs, 157 * and then calling the appropriate remote routine(s) to do the work. 158 * 159 * Note on directory name lookup cacheing: If we detect a stale fhandle, 160 * we purge the directory cache relative to that vnode. This way, the 161 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 162 * more details on rnode locking. 163 */ 164 165 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *); 166 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *, 167 caller_context_t *); 168 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *, 169 caller_context_t *); 170 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *, 171 caller_context_t *); 172 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 173 caller_context_t *); 174 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *, 175 caller_context_t *); 176 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *, 177 caller_context_t *); 178 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *); 179 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *, 180 caller_context_t *); 181 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *); 182 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *); 183 static int nfs3_lookup(vnode_t *, char *, vnode_t **, 184 struct pathname *, int, vnode_t *, cred_t *, 185 caller_context_t *, int *, pathname_t *); 186 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl, 187 int, vnode_t **, cred_t *, int, caller_context_t *, 188 vsecattr_t *); 189 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *, 190 int); 191 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *, 192 caller_context_t *, int); 193 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 194 caller_context_t *, int); 195 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 196 cred_t *, caller_context_t *, int, vsecattr_t *); 197 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 198 caller_context_t *, int); 199 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *, 200 cred_t *, caller_context_t *, int); 201 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *, 202 caller_context_t *, int); 203 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *); 204 static int nfs3_rwlock(vnode_t *, int, caller_context_t *); 205 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *); 206 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 207 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *, 208 page_t *[], size_t, struct seg *, caddr_t, 209 enum seg_rw, cred_t *, caller_context_t *); 210 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 211 caller_context_t *); 212 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 213 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 214 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 215 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 216 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 217 struct flk_callback *, cred_t *, caller_context_t *); 218 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t, 219 cred_t *, caller_context_t *); 220 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *); 221 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 222 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 223 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *, 224 caller_context_t *); 225 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 226 cred_t *, caller_context_t *); 227 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *, 228 caller_context_t *); 229 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 230 caller_context_t *); 231 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 232 caller_context_t *); 233 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 234 caller_context_t *); 235 236 struct vnodeops *nfs3_vnodeops; 237 238 const fs_operation_def_t nfs3_vnodeops_template[] = { 239 VOPNAME_OPEN, { .vop_open = nfs3_open }, 240 VOPNAME_CLOSE, { .vop_close = nfs3_close }, 241 VOPNAME_READ, { .vop_read = nfs3_read }, 242 VOPNAME_WRITE, { .vop_write = nfs3_write }, 243 VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl }, 244 VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr }, 245 VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr }, 246 VOPNAME_ACCESS, { .vop_access = nfs3_access }, 247 VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup }, 248 VOPNAME_CREATE, { .vop_create = nfs3_create }, 249 VOPNAME_REMOVE, { .vop_remove = nfs3_remove }, 250 VOPNAME_LINK, { .vop_link = nfs3_link }, 251 VOPNAME_RENAME, { .vop_rename = nfs3_rename }, 252 VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir }, 253 VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir }, 254 VOPNAME_READDIR, { .vop_readdir = nfs3_readdir }, 255 VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink }, 256 VOPNAME_READLINK, { .vop_readlink = nfs3_readlink }, 257 VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync }, 258 VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive }, 259 VOPNAME_FID, { .vop_fid = nfs3_fid }, 260 VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock }, 261 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock }, 262 VOPNAME_SEEK, { .vop_seek = nfs3_seek }, 263 VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock }, 264 VOPNAME_SPACE, { .vop_space = nfs3_space }, 265 VOPNAME_REALVP, { .vop_realvp = nfs3_realvp }, 266 VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage }, 267 VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage }, 268 VOPNAME_MAP, { .vop_map = nfs3_map }, 269 VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap }, 270 VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap }, 271 /* no separate nfs3_dump */ 272 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 273 VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf }, 274 VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio }, 275 VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose }, 276 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr }, 277 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr }, 278 VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock }, 279 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 280 NULL, NULL 281 }; 282 283 /* 284 * XXX: This is referenced in modstubs.S 285 */ 286 struct vnodeops * 287 nfs3_getvnodeops(void) 288 { 289 return (nfs3_vnodeops); 290 } 291 292 /* ARGSUSED */ 293 static int 294 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 295 { 296 int error; 297 struct vattr va; 298 rnode_t *rp; 299 vnode_t *vp; 300 301 vp = *vpp; 302 if (nfs_zone() != VTOMI(vp)->mi_zone) 303 return (EIO); 304 rp = VTOR(vp); 305 mutex_enter(&rp->r_statelock); 306 if (rp->r_cred == NULL) { 307 crhold(cr); 308 rp->r_cred = cr; 309 } 310 mutex_exit(&rp->r_statelock); 311 312 /* 313 * If there is no cached data or if close-to-open 314 * consistency checking is turned off, we can avoid 315 * the over the wire getattr. Otherwise, if the 316 * file system is mounted readonly, then just verify 317 * the caches are up to date using the normal mechanism. 318 * Else, if the file is not mmap'd, then just mark 319 * the attributes as timed out. They will be refreshed 320 * and the caches validated prior to being used. 321 * Else, the file system is mounted writeable so 322 * force an over the wire GETATTR in order to ensure 323 * that all cached data is valid. 324 */ 325 if (vp->v_count > 1 || 326 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 327 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 328 if (vn_is_readonly(vp)) 329 error = nfs3_validate_caches(vp, cr); 330 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 331 PURGE_ATTRCACHE(vp); 332 error = 0; 333 } else { 334 va.va_mask = AT_ALL; 335 error = nfs3_getattr_otw(vp, &va, cr); 336 } 337 } else 338 error = 0; 339 340 return (error); 341 } 342 343 /* ARGSUSED */ 344 static int 345 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 346 caller_context_t *ct) 347 { 348 rnode_t *rp; 349 int error; 350 struct vattr va; 351 352 /* 353 * zone_enter(2) prevents processes from changing zones with NFS files 354 * open; if we happen to get here from the wrong zone we can't do 355 * anything over the wire. 356 */ 357 if (VTOMI(vp)->mi_zone != nfs_zone()) { 358 /* 359 * We could attempt to clean up locks, except we're sure 360 * that the current process didn't acquire any locks on 361 * the file: any attempt to lock a file belong to another zone 362 * will fail, and one can't lock an NFS file and then change 363 * zones, as that fails too. 364 * 365 * Returning an error here is the sane thing to do. A 366 * subsequent call to VN_RELE() which translates to a 367 * nfs3_inactive() will clean up state: if the zone of the 368 * vnode's origin is still alive and kicking, an async worker 369 * thread will handle the request (from the correct zone), and 370 * everything (minus the commit and final nfs3_getattr_otw() 371 * call) should be OK. If the zone is going away 372 * nfs_async_inactive() will throw away cached pages inline. 373 */ 374 return (EIO); 375 } 376 377 /* 378 * If we are using local locking for this filesystem, then 379 * release all of the SYSV style record locks. Otherwise, 380 * we are doing network locking and we need to release all 381 * of the network locks. All of the locks held by this 382 * process on this file are released no matter what the 383 * incoming reference count is. 384 */ 385 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 386 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 387 cleanshares(vp, ttoproc(curthread)->p_pid); 388 } else 389 nfs_lockrelease(vp, flag, offset, cr); 390 391 if (count > 1) 392 return (0); 393 394 /* 395 * If the file has been `unlinked', then purge the 396 * DNLC so that this vnode will get reycled quicker 397 * and the .nfs* file on the server will get removed. 398 */ 399 rp = VTOR(vp); 400 if (rp->r_unldvp != NULL) 401 dnlc_purge_vp(vp); 402 403 /* 404 * If the file was open for write and there are pages, 405 * then if the file system was mounted using the "no-close- 406 * to-open" semantics, then start an asynchronous flush 407 * of the all of the pages in the file. 408 * else the file system was not mounted using the "no-close- 409 * to-open" semantics, then do a synchronous flush and 410 * commit of all of the dirty and uncommitted pages. 411 * 412 * The asynchronous flush of the pages in the "nocto" path 413 * mostly just associates a cred pointer with the rnode so 414 * writes which happen later will have a better chance of 415 * working. It also starts the data being written to the 416 * server, but without unnecessarily delaying the application. 417 */ 418 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 419 if (VTOMI(vp)->mi_flags & MI_NOCTO) { 420 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, 421 cr, ct); 422 if (error == EAGAIN) 423 error = 0; 424 } else 425 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 426 if (!error) { 427 mutex_enter(&rp->r_statelock); 428 error = rp->r_error; 429 rp->r_error = 0; 430 mutex_exit(&rp->r_statelock); 431 } 432 } else { 433 mutex_enter(&rp->r_statelock); 434 error = rp->r_error; 435 rp->r_error = 0; 436 mutex_exit(&rp->r_statelock); 437 } 438 439 /* 440 * If RWRITEATTR is set, then issue an over the wire GETATTR to 441 * refresh the attribute cache with a set of attributes which 442 * weren't returned from a WRITE. This will enable the close- 443 * to-open processing to work. 444 */ 445 if (rp->r_flags & RWRITEATTR) 446 (void) nfs3_getattr_otw(vp, &va, cr); 447 448 return (error); 449 } 450 451 /* ARGSUSED */ 452 static int 453 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr) 454 { 455 mntinfo_t *mi; 456 READ3args args; 457 READ3uiores res; 458 int tsize; 459 offset_t offset; 460 ssize_t count; 461 int error; 462 int douprintf; 463 failinfo_t fi; 464 char *sv_hostname; 465 466 mi = VTOMI(vp); 467 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 468 sv_hostname = VTOR(vp)->r_server->sv_hostname; 469 470 douprintf = 1; 471 args.file = *VTOFH3(vp); 472 fi.vp = vp; 473 fi.fhp = (caddr_t)&args.file; 474 fi.copyproc = nfs3copyfh; 475 fi.lookupproc = nfs3lookup; 476 fi.xattrdirproc = acl_getxattrdir3; 477 478 res.uiop = uiop; 479 480 res.wlist = NULL; 481 482 offset = uiop->uio_loffset; 483 count = uiop->uio_resid; 484 485 do { 486 if (mi->mi_io_kstats) { 487 mutex_enter(&mi->mi_lock); 488 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 489 mutex_exit(&mi->mi_lock); 490 } 491 492 do { 493 tsize = MIN(mi->mi_tsize, count); 494 args.offset = (offset3)offset; 495 args.count = (count3)tsize; 496 res.size = (uint_t)tsize; 497 args.res_uiop = uiop; 498 args.res_data_val_alt = NULL; 499 500 error = rfs3call(mi, NFSPROC3_READ, 501 xdr_READ3args, (caddr_t)&args, 502 xdr_READ3uiores, (caddr_t)&res, cr, 503 &douprintf, &res.status, 0, &fi); 504 } while (error == ENFS_TRYAGAIN); 505 506 if (mi->mi_io_kstats) { 507 mutex_enter(&mi->mi_lock); 508 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 509 mutex_exit(&mi->mi_lock); 510 } 511 512 if (error) 513 return (error); 514 515 error = geterrno3(res.status); 516 if (error) 517 return (error); 518 519 if (res.count != res.size) { 520 zcmn_err(getzoneid(), CE_WARN, 521 "nfs3_directio_read: server %s returned incorrect amount", 522 sv_hostname); 523 return (EIO); 524 } 525 count -= res.count; 526 offset += res.count; 527 if (mi->mi_io_kstats) { 528 mutex_enter(&mi->mi_lock); 529 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 530 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 531 mutex_exit(&mi->mi_lock); 532 } 533 lwp_stat_update(LWP_STAT_INBLK, 1); 534 } while (count && !res.eof); 535 536 return (0); 537 } 538 539 /* ARGSUSED */ 540 static int 541 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 542 caller_context_t *ct) 543 { 544 rnode_t *rp; 545 u_offset_t off; 546 offset_t diff; 547 int on; 548 size_t n; 549 caddr_t base; 550 uint_t flags; 551 int error = 0; 552 mntinfo_t *mi; 553 554 rp = VTOR(vp); 555 mi = VTOMI(vp); 556 557 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 558 559 if (nfs_zone() != mi->mi_zone) 560 return (EIO); 561 562 if (vp->v_type != VREG) 563 return (EISDIR); 564 565 if (uiop->uio_resid == 0) 566 return (0); 567 568 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 569 return (EINVAL); 570 571 /* 572 * Bypass VM if caching has been disabled (e.g., locking) or if 573 * using client-side direct I/O and the file is not mmap'd and 574 * there are no cached pages. 575 */ 576 if ((vp->v_flag & VNOCACHE) || 577 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 578 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 579 !vn_has_cached_data(vp))) { 580 return (nfs3_directio_read(vp, uiop, cr)); 581 } 582 583 do { 584 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 585 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 586 n = MIN(MAXBSIZE - on, uiop->uio_resid); 587 588 error = nfs3_validate_caches(vp, cr); 589 if (error) 590 break; 591 592 mutex_enter(&rp->r_statelock); 593 while (rp->r_flags & RINCACHEPURGE) { 594 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 595 mutex_exit(&rp->r_statelock); 596 return (EINTR); 597 } 598 } 599 diff = rp->r_size - uiop->uio_loffset; 600 mutex_exit(&rp->r_statelock); 601 if (diff <= 0) 602 break; 603 if (diff < n) 604 n = (size_t)diff; 605 606 if (vpm_enable) { 607 /* 608 * Copy data. 609 */ 610 error = vpm_data_copy(vp, off + on, n, uiop, 611 1, NULL, 0, S_READ); 612 } else { 613 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 614 S_READ); 615 616 error = uiomove(base + on, n, UIO_READ, uiop); 617 } 618 619 if (!error) { 620 /* 621 * If read a whole block or read to eof, 622 * won't need this buffer again soon. 623 */ 624 mutex_enter(&rp->r_statelock); 625 if (n + on == MAXBSIZE || 626 uiop->uio_loffset == rp->r_size) 627 flags = SM_DONTNEED; 628 else 629 flags = 0; 630 mutex_exit(&rp->r_statelock); 631 if (vpm_enable) { 632 error = vpm_sync_pages(vp, off, n, flags); 633 } else { 634 error = segmap_release(segkmap, base, flags); 635 } 636 } else { 637 if (vpm_enable) { 638 (void) vpm_sync_pages(vp, off, n, 0); 639 } else { 640 (void) segmap_release(segkmap, base, 0); 641 } 642 } 643 } while (!error && uiop->uio_resid > 0); 644 645 return (error); 646 } 647 648 /* ARGSUSED */ 649 static int 650 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 651 caller_context_t *ct) 652 { 653 rlim64_t limit = uiop->uio_llimit; 654 rnode_t *rp; 655 u_offset_t off; 656 caddr_t base; 657 uint_t flags; 658 int remainder; 659 size_t n; 660 int on; 661 int error; 662 int resid; 663 offset_t offset; 664 mntinfo_t *mi; 665 uint_t bsize; 666 667 rp = VTOR(vp); 668 669 if (vp->v_type != VREG) 670 return (EISDIR); 671 672 mi = VTOMI(vp); 673 if (nfs_zone() != mi->mi_zone) 674 return (EIO); 675 if (uiop->uio_resid == 0) 676 return (0); 677 678 if (ioflag & FAPPEND) { 679 struct vattr va; 680 681 /* 682 * Must serialize if appending. 683 */ 684 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 685 nfs_rw_exit(&rp->r_rwlock); 686 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 687 INTR(vp))) 688 return (EINTR); 689 } 690 691 va.va_mask = AT_SIZE; 692 error = nfs3getattr(vp, &va, cr); 693 if (error) 694 return (error); 695 uiop->uio_loffset = va.va_size; 696 } 697 698 offset = uiop->uio_loffset + uiop->uio_resid; 699 700 if (uiop->uio_loffset < 0 || offset < 0) 701 return (EINVAL); 702 703 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 704 limit = MAXOFFSET_T; 705 706 /* 707 * Check to make sure that the process will not exceed 708 * its limit on file size. It is okay to write up to 709 * the limit, but not beyond. Thus, the write which 710 * reaches the limit will be short and the next write 711 * will return an error. 712 */ 713 remainder = 0; 714 if (offset > limit) { 715 remainder = offset - limit; 716 uiop->uio_resid = limit - uiop->uio_loffset; 717 if (uiop->uio_resid <= 0) { 718 proc_t *p = ttoproc(curthread); 719 720 uiop->uio_resid += remainder; 721 mutex_enter(&p->p_lock); 722 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 723 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 724 mutex_exit(&p->p_lock); 725 return (EFBIG); 726 } 727 } 728 729 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 730 return (EINTR); 731 732 /* 733 * Bypass VM if caching has been disabled (e.g., locking) or if 734 * using client-side direct I/O and the file is not mmap'd and 735 * there are no cached pages. 736 */ 737 if ((vp->v_flag & VNOCACHE) || 738 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 739 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 740 !vn_has_cached_data(vp))) { 741 size_t bufsize; 742 int count; 743 u_offset_t org_offset; 744 stable_how stab_comm; 745 746 nfs3_fwrite: 747 if (rp->r_flags & RSTALE) { 748 resid = uiop->uio_resid; 749 offset = uiop->uio_loffset; 750 error = rp->r_error; 751 /* 752 * A close may have cleared r_error, if so, 753 * propagate ESTALE error return properly 754 */ 755 if (error == 0) 756 error = ESTALE; 757 goto bottom; 758 } 759 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 760 base = kmem_alloc(bufsize, KM_SLEEP); 761 do { 762 if (ioflag & FDSYNC) 763 stab_comm = DATA_SYNC; 764 else 765 stab_comm = FILE_SYNC; 766 resid = uiop->uio_resid; 767 offset = uiop->uio_loffset; 768 count = MIN(uiop->uio_resid, bufsize); 769 org_offset = uiop->uio_loffset; 770 error = uiomove(base, count, UIO_WRITE, uiop); 771 if (!error) { 772 error = nfs3write(vp, base, org_offset, 773 count, cr, &stab_comm); 774 } 775 } while (!error && uiop->uio_resid > 0); 776 kmem_free(base, bufsize); 777 goto bottom; 778 } 779 780 781 bsize = vp->v_vfsp->vfs_bsize; 782 783 do { 784 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 785 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 786 n = MIN(MAXBSIZE - on, uiop->uio_resid); 787 788 resid = uiop->uio_resid; 789 offset = uiop->uio_loffset; 790 791 if (rp->r_flags & RSTALE) { 792 error = rp->r_error; 793 /* 794 * A close may have cleared r_error, if so, 795 * propagate ESTALE error return properly 796 */ 797 if (error == 0) 798 error = ESTALE; 799 break; 800 } 801 802 /* 803 * Don't create dirty pages faster than they 804 * can be cleaned so that the system doesn't 805 * get imbalanced. If the async queue is 806 * maxed out, then wait for it to drain before 807 * creating more dirty pages. Also, wait for 808 * any threads doing pagewalks in the vop_getattr 809 * entry points so that they don't block for 810 * long periods. 811 */ 812 mutex_enter(&rp->r_statelock); 813 while ((mi->mi_max_threads != 0 && 814 rp->r_awcount > 2 * mi->mi_max_threads) || 815 rp->r_gcount > 0) { 816 if (INTR(vp)) { 817 klwp_t *lwp = ttolwp(curthread); 818 819 if (lwp != NULL) 820 lwp->lwp_nostop++; 821 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 822 mutex_exit(&rp->r_statelock); 823 if (lwp != NULL) 824 lwp->lwp_nostop--; 825 error = EINTR; 826 goto bottom; 827 } 828 if (lwp != NULL) 829 lwp->lwp_nostop--; 830 } else 831 cv_wait(&rp->r_cv, &rp->r_statelock); 832 } 833 mutex_exit(&rp->r_statelock); 834 835 /* 836 * Touch the page and fault it in if it is not in core 837 * before segmap_getmapflt or vpm_data_copy can lock it. 838 * This is to avoid the deadlock if the buffer is mapped 839 * to the same file through mmap which we want to write. 840 */ 841 uio_prefaultpages((long)n, uiop); 842 843 if (vpm_enable) { 844 /* 845 * It will use kpm mappings, so no need to 846 * pass an address. 847 */ 848 error = writerp(rp, NULL, n, uiop, 0); 849 } else { 850 if (segmap_kpm) { 851 int pon = uiop->uio_loffset & PAGEOFFSET; 852 size_t pn = MIN(PAGESIZE - pon, 853 uiop->uio_resid); 854 int pagecreate; 855 856 mutex_enter(&rp->r_statelock); 857 pagecreate = (pon == 0) && (pn == PAGESIZE || 858 uiop->uio_loffset + pn >= rp->r_size); 859 mutex_exit(&rp->r_statelock); 860 861 base = segmap_getmapflt(segkmap, vp, off + on, 862 pn, !pagecreate, S_WRITE); 863 864 error = writerp(rp, base + pon, n, uiop, 865 pagecreate); 866 867 } else { 868 base = segmap_getmapflt(segkmap, vp, off + on, 869 n, 0, S_READ); 870 error = writerp(rp, base + on, n, uiop, 0); 871 } 872 } 873 874 if (!error) { 875 if (mi->mi_flags & MI_NOAC) 876 flags = SM_WRITE; 877 else if ((uiop->uio_loffset % bsize) == 0 || 878 IS_SWAPVP(vp)) { 879 /* 880 * Have written a whole block. 881 * Start an asynchronous write 882 * and mark the buffer to 883 * indicate that it won't be 884 * needed again soon. 885 */ 886 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 887 } else 888 flags = 0; 889 if ((ioflag & (FSYNC|FDSYNC)) || 890 (rp->r_flags & ROUTOFSPACE)) { 891 flags &= ~SM_ASYNC; 892 flags |= SM_WRITE; 893 } 894 if (vpm_enable) { 895 error = vpm_sync_pages(vp, off, n, flags); 896 } else { 897 error = segmap_release(segkmap, base, flags); 898 } 899 } else { 900 if (vpm_enable) { 901 (void) vpm_sync_pages(vp, off, n, 0); 902 } else { 903 (void) segmap_release(segkmap, base, 0); 904 } 905 /* 906 * In the event that we got an access error while 907 * faulting in a page for a write-only file just 908 * force a write. 909 */ 910 if (error == EACCES) 911 goto nfs3_fwrite; 912 } 913 } while (!error && uiop->uio_resid > 0); 914 915 bottom: 916 if (error) { 917 uiop->uio_resid = resid + remainder; 918 uiop->uio_loffset = offset; 919 } else 920 uiop->uio_resid += remainder; 921 922 nfs_rw_exit(&rp->r_lkserlock); 923 924 return (error); 925 } 926 927 /* 928 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 929 */ 930 static int 931 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 932 int flags, cred_t *cr) 933 { 934 struct buf *bp; 935 int error; 936 page_t *savepp; 937 uchar_t fsdata; 938 stable_how stab_comm; 939 940 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 941 bp = pageio_setup(pp, len, vp, flags); 942 ASSERT(bp != NULL); 943 944 /* 945 * pageio_setup should have set b_addr to 0. This 946 * is correct since we want to do I/O on a page 947 * boundary. bp_mapin will use this addr to calculate 948 * an offset, and then set b_addr to the kernel virtual 949 * address it allocated for us. 950 */ 951 ASSERT(bp->b_un.b_addr == 0); 952 953 bp->b_edev = 0; 954 bp->b_dev = 0; 955 bp->b_lblkno = lbtodb(off); 956 bp->b_file = vp; 957 bp->b_offset = (offset_t)off; 958 bp_mapin(bp); 959 960 /* 961 * Calculate the desired level of stability to write data 962 * on the server and then mark all of the pages to reflect 963 * this. 964 */ 965 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 966 freemem > desfree) { 967 stab_comm = UNSTABLE; 968 fsdata = C_DELAYCOMMIT; 969 } else { 970 stab_comm = FILE_SYNC; 971 fsdata = C_NOCOMMIT; 972 } 973 974 savepp = pp; 975 do { 976 pp->p_fsdata = fsdata; 977 } while ((pp = pp->p_next) != savepp); 978 979 error = nfs3_bio(bp, &stab_comm, cr); 980 981 bp_mapout(bp); 982 pageio_done(bp); 983 984 /* 985 * If the server wrote pages in a more stable fashion than 986 * was requested, then clear all of the marks in the pages 987 * indicating that COMMIT operations were required. 988 */ 989 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) { 990 do { 991 pp->p_fsdata = C_NOCOMMIT; 992 } while ((pp = pp->p_next) != savepp); 993 } 994 995 return (error); 996 } 997 998 /* 999 * Write to file. Writes to remote server in largest size 1000 * chunks that the server can handle. Write is synchronous. 1001 */ 1002 static int 1003 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 1004 stable_how *stab_comm) 1005 { 1006 mntinfo_t *mi; 1007 WRITE3args args; 1008 WRITE3res res; 1009 int error; 1010 int tsize; 1011 rnode_t *rp; 1012 int douprintf; 1013 1014 rp = VTOR(vp); 1015 mi = VTOMI(vp); 1016 1017 ASSERT(nfs_zone() == mi->mi_zone); 1018 1019 args.file = *VTOFH3(vp); 1020 args.stable = *stab_comm; 1021 1022 *stab_comm = FILE_SYNC; 1023 1024 douprintf = 1; 1025 1026 do { 1027 if ((vp->v_flag & VNOCACHE) || 1028 (rp->r_flags & RDIRECTIO) || 1029 (mi->mi_flags & MI_DIRECTIO)) 1030 tsize = MIN(mi->mi_stsize, count); 1031 else 1032 tsize = MIN(mi->mi_curwrite, count); 1033 args.offset = (offset3)offset; 1034 args.count = (count3)tsize; 1035 args.data.data_len = (uint_t)tsize; 1036 args.data.data_val = base; 1037 1038 if (mi->mi_io_kstats) { 1039 mutex_enter(&mi->mi_lock); 1040 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1041 mutex_exit(&mi->mi_lock); 1042 } 1043 args.mblk = NULL; 1044 do { 1045 error = rfs3call(mi, NFSPROC3_WRITE, 1046 xdr_WRITE3args, (caddr_t)&args, 1047 xdr_WRITE3res, (caddr_t)&res, cr, 1048 &douprintf, &res.status, 0, NULL); 1049 } while (error == ENFS_TRYAGAIN); 1050 if (mi->mi_io_kstats) { 1051 mutex_enter(&mi->mi_lock); 1052 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1053 mutex_exit(&mi->mi_lock); 1054 } 1055 1056 if (error) 1057 return (error); 1058 error = geterrno3(res.status); 1059 if (!error) { 1060 if (res.resok.count > args.count) { 1061 zcmn_err(getzoneid(), CE_WARN, 1062 "nfs3write: server %s wrote %u, " 1063 "requested was %u", 1064 rp->r_server->sv_hostname, 1065 res.resok.count, args.count); 1066 return (EIO); 1067 } 1068 if (res.resok.committed == UNSTABLE) { 1069 *stab_comm = UNSTABLE; 1070 if (args.stable == DATA_SYNC || 1071 args.stable == FILE_SYNC) { 1072 zcmn_err(getzoneid(), CE_WARN, 1073 "nfs3write: server %s did not commit to stable storage", 1074 rp->r_server->sv_hostname); 1075 return (EIO); 1076 } 1077 } 1078 tsize = (int)res.resok.count; 1079 count -= tsize; 1080 base += tsize; 1081 offset += tsize; 1082 if (mi->mi_io_kstats) { 1083 mutex_enter(&mi->mi_lock); 1084 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 1085 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 1086 tsize; 1087 mutex_exit(&mi->mi_lock); 1088 } 1089 lwp_stat_update(LWP_STAT_OUBLK, 1); 1090 mutex_enter(&rp->r_statelock); 1091 if (rp->r_flags & RHAVEVERF) { 1092 if (rp->r_verf != res.resok.verf) { 1093 nfs3_set_mod(vp); 1094 rp->r_verf = res.resok.verf; 1095 /* 1096 * If the data was written UNSTABLE, 1097 * then might as well stop because 1098 * the whole block will have to get 1099 * rewritten anyway. 1100 */ 1101 if (*stab_comm == UNSTABLE) { 1102 mutex_exit(&rp->r_statelock); 1103 break; 1104 } 1105 } 1106 } else { 1107 rp->r_verf = res.resok.verf; 1108 rp->r_flags |= RHAVEVERF; 1109 } 1110 /* 1111 * Mark the attribute cache as timed out and 1112 * set RWRITEATTR to indicate that the file 1113 * was modified with a WRITE operation and 1114 * that the attributes can not be trusted. 1115 */ 1116 PURGE_ATTRCACHE_LOCKED(rp); 1117 rp->r_flags |= RWRITEATTR; 1118 mutex_exit(&rp->r_statelock); 1119 } 1120 } while (!error && count); 1121 1122 return (error); 1123 } 1124 1125 /* 1126 * Read from a file. Reads data in largest chunks our interface can handle. 1127 */ 1128 static int 1129 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, size_t *residp, 1130 cred_t *cr) 1131 { 1132 mntinfo_t *mi; 1133 READ3args args; 1134 READ3vres res; 1135 int tsize; 1136 int error; 1137 int douprintf; 1138 failinfo_t fi; 1139 rnode_t *rp; 1140 struct vattr va; 1141 hrtime_t t; 1142 1143 rp = VTOR(vp); 1144 mi = VTOMI(vp); 1145 ASSERT(nfs_zone() == mi->mi_zone); 1146 douprintf = 1; 1147 1148 args.file = *VTOFH3(vp); 1149 fi.vp = vp; 1150 fi.fhp = (caddr_t)&args.file; 1151 fi.copyproc = nfs3copyfh; 1152 fi.lookupproc = nfs3lookup; 1153 fi.xattrdirproc = acl_getxattrdir3; 1154 1155 res.pov.fres.vp = vp; 1156 res.pov.fres.vap = &va; 1157 1158 res.wlist = NULL; 1159 *residp = count; 1160 do { 1161 if (mi->mi_io_kstats) { 1162 mutex_enter(&mi->mi_lock); 1163 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1164 mutex_exit(&mi->mi_lock); 1165 } 1166 1167 do { 1168 if ((vp->v_flag & VNOCACHE) || 1169 (rp->r_flags & RDIRECTIO) || 1170 (mi->mi_flags & MI_DIRECTIO)) 1171 tsize = MIN(mi->mi_tsize, count); 1172 else 1173 tsize = MIN(mi->mi_curread, count); 1174 res.data.data_val = base; 1175 res.data.data_len = tsize; 1176 args.offset = (offset3)offset; 1177 args.count = (count3)tsize; 1178 args.res_uiop = NULL; 1179 args.res_data_val_alt = base; 1180 1181 t = gethrtime(); 1182 error = rfs3call(mi, NFSPROC3_READ, 1183 xdr_READ3args, (caddr_t)&args, 1184 xdr_READ3vres, (caddr_t)&res, cr, 1185 &douprintf, &res.status, 0, &fi); 1186 } while (error == ENFS_TRYAGAIN); 1187 1188 if (mi->mi_io_kstats) { 1189 mutex_enter(&mi->mi_lock); 1190 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1191 mutex_exit(&mi->mi_lock); 1192 } 1193 1194 if (error) 1195 return (error); 1196 1197 error = geterrno3(res.status); 1198 if (error) 1199 return (error); 1200 1201 if (res.count != res.data.data_len) { 1202 zcmn_err(getzoneid(), CE_WARN, 1203 "nfs3read: server %s returned incorrect amount", 1204 rp->r_server->sv_hostname); 1205 return (EIO); 1206 } 1207 1208 count -= res.count; 1209 *residp = count; 1210 base += res.count; 1211 offset += res.count; 1212 if (mi->mi_io_kstats) { 1213 mutex_enter(&mi->mi_lock); 1214 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1215 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 1216 mutex_exit(&mi->mi_lock); 1217 } 1218 lwp_stat_update(LWP_STAT_INBLK, 1); 1219 } while (count && !res.eof); 1220 1221 if (res.pov.attributes) { 1222 mutex_enter(&rp->r_statelock); 1223 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) { 1224 mutex_exit(&rp->r_statelock); 1225 PURGE_ATTRCACHE(vp); 1226 } else { 1227 if (rp->r_mtime <= t) 1228 nfs_attrcache_va(vp, &va); 1229 mutex_exit(&rp->r_statelock); 1230 } 1231 } 1232 1233 return (0); 1234 } 1235 1236 /* ARGSUSED */ 1237 static int 1238 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1239 caller_context_t *ct) 1240 { 1241 1242 if (nfs_zone() != VTOMI(vp)->mi_zone) 1243 return (EIO); 1244 switch (cmd) { 1245 case _FIODIRECTIO: 1246 return (nfs_directio(vp, (int)arg, cr)); 1247 default: 1248 return (ENOTTY); 1249 } 1250 } 1251 1252 /* ARGSUSED */ 1253 static int 1254 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1255 caller_context_t *ct) 1256 { 1257 int error; 1258 rnode_t *rp; 1259 1260 if (nfs_zone() != VTOMI(vp)->mi_zone) 1261 return (EIO); 1262 /* 1263 * If it has been specified that the return value will 1264 * just be used as a hint, and we are only being asked 1265 * for size, fsid or rdevid, then return the client's 1266 * notion of these values without checking to make sure 1267 * that the attribute cache is up to date. 1268 * The whole point is to avoid an over the wire GETATTR 1269 * call. 1270 */ 1271 rp = VTOR(vp); 1272 if (flags & ATTR_HINT) { 1273 if (vap->va_mask == 1274 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1275 mutex_enter(&rp->r_statelock); 1276 if (vap->va_mask | AT_SIZE) 1277 vap->va_size = rp->r_size; 1278 if (vap->va_mask | AT_FSID) 1279 vap->va_fsid = rp->r_attr.va_fsid; 1280 if (vap->va_mask | AT_RDEV) 1281 vap->va_rdev = rp->r_attr.va_rdev; 1282 mutex_exit(&rp->r_statelock); 1283 return (0); 1284 } 1285 } 1286 1287 /* 1288 * Only need to flush pages if asking for the mtime 1289 * and if there any dirty pages or any outstanding 1290 * asynchronous (write) requests for this file. 1291 */ 1292 if (vap->va_mask & AT_MTIME) { 1293 if (vn_has_cached_data(vp) && 1294 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1295 mutex_enter(&rp->r_statelock); 1296 rp->r_gcount++; 1297 mutex_exit(&rp->r_statelock); 1298 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1299 mutex_enter(&rp->r_statelock); 1300 if (error && (error == ENOSPC || error == EDQUOT)) { 1301 if (!rp->r_error) 1302 rp->r_error = error; 1303 } 1304 if (--rp->r_gcount == 0) 1305 cv_broadcast(&rp->r_cv); 1306 mutex_exit(&rp->r_statelock); 1307 } 1308 } 1309 1310 return (nfs3getattr(vp, vap, cr)); 1311 } 1312 1313 /*ARGSUSED4*/ 1314 static int 1315 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1316 caller_context_t *ct) 1317 { 1318 int error; 1319 struct vattr va; 1320 1321 if (vap->va_mask & AT_NOSET) 1322 return (EINVAL); 1323 if (nfs_zone() != VTOMI(vp)->mi_zone) 1324 return (EIO); 1325 1326 va.va_mask = AT_UID | AT_MODE; 1327 error = nfs3getattr(vp, &va, cr); 1328 if (error) 1329 return (error); 1330 1331 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx, 1332 vp); 1333 if (error) 1334 return (error); 1335 1336 error = nfs3setattr(vp, vap, flags, cr); 1337 1338 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) 1339 vnevent_truncate(vp, ct); 1340 1341 return (error); 1342 } 1343 1344 static int 1345 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1346 { 1347 int error; 1348 uint_t mask; 1349 SETATTR3args args; 1350 SETATTR3res res; 1351 int douprintf; 1352 rnode_t *rp; 1353 struct vattr va; 1354 mode_t omode; 1355 vsecattr_t *vsp; 1356 hrtime_t t; 1357 1358 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1359 mask = vap->va_mask; 1360 1361 rp = VTOR(vp); 1362 1363 /* 1364 * Only need to flush pages if there are any pages and 1365 * if the file is marked as dirty in some fashion. The 1366 * file must be flushed so that we can accurately 1367 * determine the size of the file and the cached data 1368 * after the SETATTR returns. A file is considered to 1369 * be dirty if it is either marked with RDIRTY, has 1370 * outstanding i/o's active, or is mmap'd. In this 1371 * last case, we can't tell whether there are dirty 1372 * pages, so we flush just to be sure. 1373 */ 1374 if (vn_has_cached_data(vp) && 1375 ((rp->r_flags & RDIRTY) || 1376 rp->r_count > 0 || 1377 rp->r_mapcnt > 0)) { 1378 ASSERT(vp->v_type != VCHR); 1379 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1380 if (error && (error == ENOSPC || error == EDQUOT)) { 1381 mutex_enter(&rp->r_statelock); 1382 if (!rp->r_error) 1383 rp->r_error = error; 1384 mutex_exit(&rp->r_statelock); 1385 } 1386 } 1387 1388 args.object = *RTOFH3(rp); 1389 /* 1390 * If the intent is for the server to set the times, 1391 * there is no point in have the mask indicating set mtime or 1392 * atime, because the vap values may be junk, and so result 1393 * in an overflow error. Remove these flags from the vap mask 1394 * before calling in this case, and restore them afterwards. 1395 */ 1396 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) { 1397 /* Use server times, so don't set the args time fields */ 1398 vap->va_mask &= ~(AT_ATIME | AT_MTIME); 1399 error = vattr_to_sattr3(vap, &args.new_attributes); 1400 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME)); 1401 if (mask & AT_ATIME) { 1402 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 1403 } 1404 if (mask & AT_MTIME) { 1405 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 1406 } 1407 } else { 1408 /* Either do not set times or use the client specified times */ 1409 error = vattr_to_sattr3(vap, &args.new_attributes); 1410 } 1411 1412 if (error) { 1413 /* req time field(s) overflow - return immediately */ 1414 return (error); 1415 } 1416 1417 va.va_mask = AT_MODE | AT_CTIME; 1418 error = nfs3getattr(vp, &va, cr); 1419 if (error) 1420 return (error); 1421 omode = va.va_mode; 1422 1423 tryagain: 1424 if (mask & AT_SIZE) { 1425 args.guard.check = TRUE; 1426 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec; 1427 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec; 1428 } else 1429 args.guard.check = FALSE; 1430 1431 douprintf = 1; 1432 1433 t = gethrtime(); 1434 1435 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 1436 xdr_SETATTR3args, (caddr_t)&args, 1437 xdr_SETATTR3res, (caddr_t)&res, cr, 1438 &douprintf, &res.status, 0, NULL); 1439 1440 /* 1441 * Purge the access cache and ACL cache if changing either the 1442 * owner of the file, the group owner, or the mode. These may 1443 * change the access permissions of the file, so purge old 1444 * information and start over again. 1445 */ 1446 if (mask & (AT_UID | AT_GID | AT_MODE)) { 1447 (void) nfs_access_purge_rp(rp); 1448 if (rp->r_secattr != NULL) { 1449 mutex_enter(&rp->r_statelock); 1450 vsp = rp->r_secattr; 1451 rp->r_secattr = NULL; 1452 mutex_exit(&rp->r_statelock); 1453 if (vsp != NULL) 1454 nfs_acl_free(vsp); 1455 } 1456 } 1457 1458 if (error) { 1459 PURGE_ATTRCACHE(vp); 1460 return (error); 1461 } 1462 1463 error = geterrno3(res.status); 1464 if (!error) { 1465 /* 1466 * If changing the size of the file, invalidate 1467 * any local cached data which is no longer part 1468 * of the file. We also possibly invalidate the 1469 * last page in the file. We could use 1470 * pvn_vpzero(), but this would mark the page as 1471 * modified and require it to be written back to 1472 * the server for no particularly good reason. 1473 * This way, if we access it, then we bring it 1474 * back in. A read should be cheaper than a 1475 * write. 1476 */ 1477 if (mask & AT_SIZE) { 1478 nfs_invalidate_pages(vp, 1479 (vap->va_size & PAGEMASK), cr); 1480 } 1481 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 1482 /* 1483 * Some servers will change the mode to clear the setuid 1484 * and setgid bits when changing the uid or gid. The 1485 * client needs to compensate appropriately. 1486 */ 1487 if (mask & (AT_UID | AT_GID)) { 1488 int terror; 1489 1490 va.va_mask = AT_MODE; 1491 terror = nfs3getattr(vp, &va, cr); 1492 if (!terror && 1493 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 1494 (!(mask & AT_MODE) && va.va_mode != omode))) { 1495 va.va_mask = AT_MODE; 1496 if (mask & AT_MODE) 1497 va.va_mode = vap->va_mode; 1498 else 1499 va.va_mode = omode; 1500 (void) nfs3setattr(vp, &va, 0, cr); 1501 } 1502 } 1503 } else { 1504 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 1505 /* 1506 * If we got back a "not synchronized" error, then 1507 * we need to retry with a new guard value. The 1508 * guard value used is the change time. If the 1509 * server returned post_op_attr, then we can just 1510 * retry because we have the latest attributes. 1511 * Otherwise, we issue a GETATTR to get the latest 1512 * attributes and then retry. If we couldn't get 1513 * the attributes this way either, then we give 1514 * up because we can't complete the operation as 1515 * required. 1516 */ 1517 if (res.status == NFS3ERR_NOT_SYNC) { 1518 va.va_mask = AT_CTIME; 1519 if (nfs3getattr(vp, &va, cr) == 0) 1520 goto tryagain; 1521 } 1522 PURGE_STALE_FH(error, vp, cr); 1523 } 1524 1525 return (error); 1526 } 1527 1528 static int 1529 nfs3_accessx(void *vp, int mode, cred_t *cr) 1530 { 1531 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1532 return (nfs3_access(vp, mode, 0, cr, NULL)); 1533 } 1534 1535 /* ARGSUSED */ 1536 static int 1537 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1538 { 1539 int error; 1540 ACCESS3args args; 1541 ACCESS3res res; 1542 int douprintf; 1543 uint32 acc; 1544 rnode_t *rp; 1545 cred_t *cred, *ncr, *ncrfree = NULL; 1546 failinfo_t fi; 1547 nfs_access_type_t cacc; 1548 hrtime_t t; 1549 1550 acc = 0; 1551 if (nfs_zone() != VTOMI(vp)->mi_zone) 1552 return (EIO); 1553 if (mode & VREAD) 1554 acc |= ACCESS3_READ; 1555 if (mode & VWRITE) { 1556 if (vn_is_readonly(vp) && !IS_DEVVP(vp)) 1557 return (EROFS); 1558 if (vp->v_type == VDIR) 1559 acc |= ACCESS3_DELETE; 1560 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND; 1561 } 1562 if (mode & VEXEC) { 1563 if (vp->v_type == VDIR) 1564 acc |= ACCESS3_LOOKUP; 1565 else 1566 acc |= ACCESS3_EXECUTE; 1567 } 1568 1569 rp = VTOR(vp); 1570 args.object = *VTOFH3(vp); 1571 if (vp->v_type == VDIR) { 1572 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY | 1573 ACCESS3_EXTEND | ACCESS3_LOOKUP; 1574 } else { 1575 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND | 1576 ACCESS3_EXECUTE; 1577 } 1578 fi.vp = vp; 1579 fi.fhp = (caddr_t)&args.object; 1580 fi.copyproc = nfs3copyfh; 1581 fi.lookupproc = nfs3lookup; 1582 fi.xattrdirproc = acl_getxattrdir3; 1583 1584 cred = cr; 1585 /* 1586 * ncr and ncrfree both initially 1587 * point to the memory area returned 1588 * by crnetadjust(); 1589 * ncrfree not NULL when exiting means 1590 * that we need to release it 1591 */ 1592 ncr = crnetadjust(cred); 1593 ncrfree = ncr; 1594 tryagain: 1595 if (rp->r_acache != NULL) { 1596 cacc = nfs_access_check(rp, acc, cred); 1597 if (cacc == NFS_ACCESS_ALLOWED) { 1598 if (ncrfree != NULL) 1599 crfree(ncrfree); 1600 return (0); 1601 } 1602 if (cacc == NFS_ACCESS_DENIED) { 1603 /* 1604 * If the cred can be adjusted, try again 1605 * with the new cred. 1606 */ 1607 if (ncr != NULL) { 1608 cred = ncr; 1609 ncr = NULL; 1610 goto tryagain; 1611 } 1612 if (ncrfree != NULL) 1613 crfree(ncrfree); 1614 return (EACCES); 1615 } 1616 } 1617 1618 douprintf = 1; 1619 1620 t = gethrtime(); 1621 1622 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS, 1623 xdr_ACCESS3args, (caddr_t)&args, 1624 xdr_ACCESS3res, (caddr_t)&res, cred, 1625 &douprintf, &res.status, 0, &fi); 1626 1627 if (error) { 1628 if (ncrfree != NULL) 1629 crfree(ncrfree); 1630 return (error); 1631 } 1632 1633 error = geterrno3(res.status); 1634 if (!error) { 1635 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 1636 nfs_access_cache(rp, args.access, res.resok.access, cred); 1637 /* 1638 * we just cached results with cred; if cred is the 1639 * adjusted credentials from crnetadjust, we do not want 1640 * to release them before exiting: hence setting ncrfree 1641 * to NULL 1642 */ 1643 if (cred != cr) 1644 ncrfree = NULL; 1645 if ((acc & res.resok.access) != acc) { 1646 /* 1647 * If the cred can be adjusted, try again 1648 * with the new cred. 1649 */ 1650 if (ncr != NULL) { 1651 cred = ncr; 1652 ncr = NULL; 1653 goto tryagain; 1654 } 1655 error = EACCES; 1656 } 1657 } else { 1658 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 1659 PURGE_STALE_FH(error, vp, cr); 1660 } 1661 1662 if (ncrfree != NULL) 1663 crfree(ncrfree); 1664 1665 return (error); 1666 } 1667 1668 static int nfs3_do_symlink_cache = 1; 1669 1670 /* ARGSUSED */ 1671 static int 1672 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1673 { 1674 int error; 1675 READLINK3args args; 1676 READLINK3res res; 1677 nfspath3 resdata_backup; 1678 rnode_t *rp; 1679 int douprintf; 1680 int len; 1681 failinfo_t fi; 1682 hrtime_t t; 1683 1684 /* 1685 * Can't readlink anything other than a symbolic link. 1686 */ 1687 if (vp->v_type != VLNK) 1688 return (EINVAL); 1689 if (nfs_zone() != VTOMI(vp)->mi_zone) 1690 return (EIO); 1691 1692 rp = VTOR(vp); 1693 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) { 1694 error = nfs3_validate_caches(vp, cr); 1695 if (error) 1696 return (error); 1697 mutex_enter(&rp->r_statelock); 1698 if (rp->r_symlink.contents != NULL) { 1699 error = uiomove(rp->r_symlink.contents, 1700 rp->r_symlink.len, UIO_READ, uiop); 1701 mutex_exit(&rp->r_statelock); 1702 return (error); 1703 } 1704 mutex_exit(&rp->r_statelock); 1705 } 1706 1707 args.symlink = *VTOFH3(vp); 1708 fi.vp = vp; 1709 fi.fhp = (caddr_t)&args.symlink; 1710 fi.copyproc = nfs3copyfh; 1711 fi.lookupproc = nfs3lookup; 1712 fi.xattrdirproc = acl_getxattrdir3; 1713 1714 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1715 1716 resdata_backup = res.resok.data; 1717 1718 douprintf = 1; 1719 1720 t = gethrtime(); 1721 1722 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK, 1723 xdr_READLINK3args, (caddr_t)&args, 1724 xdr_READLINK3res, (caddr_t)&res, cr, 1725 &douprintf, &res.status, 0, &fi); 1726 1727 if (res.resok.data == nfs3nametoolong) 1728 error = EINVAL; 1729 1730 if (error) { 1731 kmem_free(resdata_backup, MAXPATHLEN); 1732 return (error); 1733 } 1734 1735 error = geterrno3(res.status); 1736 if (!error) { 1737 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t, 1738 cr); 1739 len = strlen(res.resok.data); 1740 error = uiomove(res.resok.data, len, UIO_READ, uiop); 1741 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { 1742 mutex_enter(&rp->r_statelock); 1743 if (rp->r_symlink.contents == NULL) { 1744 rp->r_symlink.contents = res.resok.data; 1745 rp->r_symlink.len = len; 1746 rp->r_symlink.size = MAXPATHLEN; 1747 mutex_exit(&rp->r_statelock); 1748 } else { 1749 mutex_exit(&rp->r_statelock); 1750 1751 kmem_free((void *)res.resok.data, MAXPATHLEN); 1752 } 1753 } else { 1754 kmem_free((void *)res.resok.data, MAXPATHLEN); 1755 } 1756 } else { 1757 nfs3_cache_post_op_attr(vp, 1758 &res.resfail.symlink_attributes, t, cr); 1759 PURGE_STALE_FH(error, vp, cr); 1760 1761 kmem_free((void *)res.resok.data, MAXPATHLEN); 1762 1763 } 1764 1765 /* 1766 * The over the wire error for attempting to readlink something 1767 * other than a symbolic link is ENXIO. However, we need to 1768 * return EINVAL instead of ENXIO, so we map it here. 1769 */ 1770 return (error == ENXIO ? EINVAL : error); 1771 } 1772 1773 /* 1774 * Flush local dirty pages to stable storage on the server. 1775 * 1776 * If FNODSYNC is specified, then there is nothing to do because 1777 * metadata changes are not cached on the client before being 1778 * sent to the server. 1779 */ 1780 /* ARGSUSED */ 1781 static int 1782 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1783 { 1784 int error; 1785 1786 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1787 return (0); 1788 if (nfs_zone() != VTOMI(vp)->mi_zone) 1789 return (EIO); 1790 1791 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 1792 if (!error) 1793 error = VTOR(vp)->r_error; 1794 return (error); 1795 } 1796 1797 /* 1798 * Weirdness: if the file was removed or the target of a rename 1799 * operation while it was open, it got renamed instead. Here we 1800 * remove the renamed file. 1801 */ 1802 /* ARGSUSED */ 1803 static void 1804 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1805 { 1806 rnode_t *rp; 1807 1808 ASSERT(vp != DNLC_NO_VNODE); 1809 1810 /* 1811 * If this is coming from the wrong zone, we let someone in the right 1812 * zone take care of it asynchronously. We can get here due to 1813 * VN_RELE() being called from pageout() or fsflush(). This call may 1814 * potentially turn into an expensive no-op if, for instance, v_count 1815 * gets incremented in the meantime, but it's still correct. 1816 */ 1817 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1818 nfs_async_inactive(vp, cr, nfs3_inactive); 1819 return; 1820 } 1821 1822 rp = VTOR(vp); 1823 redo: 1824 if (rp->r_unldvp != NULL) { 1825 /* 1826 * Save the vnode pointer for the directory where the 1827 * unlinked-open file got renamed, then set it to NULL 1828 * to prevent another thread from getting here before 1829 * we're done with the remove. While we have the 1830 * statelock, make local copies of the pertinent rnode 1831 * fields. If we weren't to do this in an atomic way, the 1832 * the unl* fields could become inconsistent with respect 1833 * to each other due to a race condition between this 1834 * code and nfs_remove(). See bug report 1034328. 1835 */ 1836 mutex_enter(&rp->r_statelock); 1837 if (rp->r_unldvp != NULL) { 1838 vnode_t *unldvp; 1839 char *unlname; 1840 cred_t *unlcred; 1841 REMOVE3args args; 1842 REMOVE3res res; 1843 int douprintf; 1844 int error; 1845 hrtime_t t; 1846 1847 unldvp = rp->r_unldvp; 1848 rp->r_unldvp = NULL; 1849 unlname = rp->r_unlname; 1850 rp->r_unlname = NULL; 1851 unlcred = rp->r_unlcred; 1852 rp->r_unlcred = NULL; 1853 mutex_exit(&rp->r_statelock); 1854 1855 /* 1856 * If there are any dirty pages left, then flush 1857 * them. This is unfortunate because they just 1858 * may get thrown away during the remove operation, 1859 * but we have to do this for correctness. 1860 */ 1861 if (vn_has_cached_data(vp) && 1862 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1863 ASSERT(vp->v_type != VCHR); 1864 error = nfs3_putpage(vp, (offset_t)0, 0, 0, 1865 cr, ct); 1866 if (error) { 1867 mutex_enter(&rp->r_statelock); 1868 if (!rp->r_error) 1869 rp->r_error = error; 1870 mutex_exit(&rp->r_statelock); 1871 } 1872 } 1873 1874 /* 1875 * Do the remove operation on the renamed file 1876 */ 1877 setdiropargs3(&args.object, unlname, unldvp); 1878 1879 douprintf = 1; 1880 1881 t = gethrtime(); 1882 1883 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE, 1884 xdr_diropargs3, (caddr_t)&args, 1885 xdr_REMOVE3res, (caddr_t)&res, unlcred, 1886 &douprintf, &res.status, 0, NULL); 1887 1888 if (error) { 1889 PURGE_ATTRCACHE(unldvp); 1890 } else { 1891 error = geterrno3(res.status); 1892 if (!error) { 1893 nfs3_cache_wcc_data(unldvp, 1894 &res.resok.dir_wcc, t, cr); 1895 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1896 nfs_purge_rddir_cache(unldvp); 1897 } else { 1898 nfs3_cache_wcc_data(unldvp, 1899 &res.resfail.dir_wcc, t, cr); 1900 PURGE_STALE_FH(error, unldvp, cr); 1901 } 1902 } 1903 1904 /* 1905 * Release stuff held for the remove 1906 */ 1907 VN_RELE(unldvp); 1908 kmem_free(unlname, MAXNAMELEN); 1909 crfree(unlcred); 1910 goto redo; 1911 } 1912 mutex_exit(&rp->r_statelock); 1913 } 1914 1915 rp_addfree(rp, cr); 1916 } 1917 1918 /* 1919 * Remote file system operations having to do with directory manipulation. 1920 */ 1921 1922 /* ARGSUSED */ 1923 static int 1924 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1925 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1926 int *direntflags, pathname_t *realpnp) 1927 { 1928 int error; 1929 vnode_t *vp; 1930 vnode_t *avp = NULL; 1931 rnode_t *drp; 1932 1933 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1934 return (EPERM); 1935 1936 drp = VTOR(dvp); 1937 1938 /* 1939 * Are we looking up extended attributes? If so, "dvp" is 1940 * the file or directory for which we want attributes, and 1941 * we need a lookup of the hidden attribute directory 1942 * before we lookup the rest of the path. 1943 */ 1944 if (flags & LOOKUP_XATTR) { 1945 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1946 mntinfo_t *mi; 1947 1948 mi = VTOMI(dvp); 1949 if (!(mi->mi_flags & MI_EXTATTR)) 1950 return (EINVAL); 1951 1952 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1953 return (EINTR); 1954 1955 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1956 if (avp == NULL) 1957 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0); 1958 else 1959 error = 0; 1960 1961 nfs_rw_exit(&drp->r_rwlock); 1962 1963 if (error) { 1964 if (mi->mi_flags & MI_EXTATTR) 1965 return (error); 1966 return (EINVAL); 1967 } 1968 dvp = avp; 1969 drp = VTOR(dvp); 1970 } 1971 1972 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1973 error = EINTR; 1974 goto out; 1975 } 1976 1977 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1978 1979 nfs_rw_exit(&drp->r_rwlock); 1980 1981 /* 1982 * If vnode is a device, create special vnode. 1983 */ 1984 if (!error && IS_DEVVP(*vpp)) { 1985 vp = *vpp; 1986 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1987 VN_RELE(vp); 1988 } 1989 1990 out: 1991 if (avp != NULL) 1992 VN_RELE(avp); 1993 1994 return (error); 1995 } 1996 1997 static int nfs3_lookup_neg_cache = 1; 1998 1999 #ifdef DEBUG 2000 static int nfs3_lookup_dnlc_hits = 0; 2001 static int nfs3_lookup_dnlc_misses = 0; 2002 static int nfs3_lookup_dnlc_neg_hits = 0; 2003 static int nfs3_lookup_dnlc_disappears = 0; 2004 static int nfs3_lookup_dnlc_lookups = 0; 2005 #endif 2006 2007 /* ARGSUSED */ 2008 int 2009 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 2010 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 2011 { 2012 int error; 2013 rnode_t *drp; 2014 2015 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2016 /* 2017 * If lookup is for "", just return dvp. Don't need 2018 * to send it over the wire, look it up in the dnlc, 2019 * or perform any access checks. 2020 */ 2021 if (*nm == '\0') { 2022 VN_HOLD(dvp); 2023 *vpp = dvp; 2024 return (0); 2025 } 2026 2027 /* 2028 * Can't do lookups in non-directories. 2029 */ 2030 if (dvp->v_type != VDIR) 2031 return (ENOTDIR); 2032 2033 /* 2034 * If we're called with RFSCALL_SOFT, it's important that 2035 * the only rfscall is one we make directly; if we permit 2036 * an access call because we're looking up "." or validating 2037 * a dnlc hit, we'll deadlock because that rfscall will not 2038 * have the RFSCALL_SOFT set. 2039 */ 2040 if (rfscall_flags & RFSCALL_SOFT) 2041 goto callit; 2042 2043 /* 2044 * If lookup is for ".", just return dvp. Don't need 2045 * to send it over the wire or look it up in the dnlc, 2046 * just need to check access. 2047 */ 2048 if (strcmp(nm, ".") == 0) { 2049 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2050 if (error) 2051 return (error); 2052 VN_HOLD(dvp); 2053 *vpp = dvp; 2054 return (0); 2055 } 2056 2057 drp = VTOR(dvp); 2058 if (!(drp->r_flags & RLOOKUP)) { 2059 mutex_enter(&drp->r_statelock); 2060 drp->r_flags |= RLOOKUP; 2061 mutex_exit(&drp->r_statelock); 2062 } 2063 2064 /* 2065 * Lookup this name in the DNLC. If there was a valid entry, 2066 * then return the results of the lookup. 2067 */ 2068 error = nfs3lookup_dnlc(dvp, nm, vpp, cr); 2069 if (error || *vpp != NULL) 2070 return (error); 2071 2072 callit: 2073 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags); 2074 2075 return (error); 2076 } 2077 2078 static int 2079 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 2080 { 2081 int error; 2082 vnode_t *vp; 2083 2084 ASSERT(*nm != '\0'); 2085 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2086 /* 2087 * Lookup this name in the DNLC. If successful, then validate 2088 * the caches and then recheck the DNLC. The DNLC is rechecked 2089 * just in case this entry got invalidated during the call 2090 * to nfs3_validate_caches. 2091 * 2092 * An assumption is being made that it is safe to say that a 2093 * file exists which may not on the server. Any operations to 2094 * the server will fail with ESTALE. 2095 */ 2096 #ifdef DEBUG 2097 nfs3_lookup_dnlc_lookups++; 2098 #endif 2099 vp = dnlc_lookup(dvp, nm); 2100 if (vp != NULL) { 2101 VN_RELE(vp); 2102 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 2103 PURGE_ATTRCACHE(dvp); 2104 } 2105 error = nfs3_validate_caches(dvp, cr); 2106 if (error) 2107 return (error); 2108 vp = dnlc_lookup(dvp, nm); 2109 if (vp != NULL) { 2110 error = nfs3_access(dvp, VEXEC, 0, cr, NULL); 2111 if (error) { 2112 VN_RELE(vp); 2113 return (error); 2114 } 2115 if (vp == DNLC_NO_VNODE) { 2116 VN_RELE(vp); 2117 #ifdef DEBUG 2118 nfs3_lookup_dnlc_neg_hits++; 2119 #endif 2120 return (ENOENT); 2121 } 2122 *vpp = vp; 2123 #ifdef DEBUG 2124 nfs3_lookup_dnlc_hits++; 2125 #endif 2126 return (0); 2127 } 2128 #ifdef DEBUG 2129 nfs3_lookup_dnlc_disappears++; 2130 #endif 2131 } 2132 #ifdef DEBUG 2133 else 2134 nfs3_lookup_dnlc_misses++; 2135 #endif 2136 2137 *vpp = NULL; 2138 2139 return (0); 2140 } 2141 2142 static int 2143 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 2144 int rfscall_flags) 2145 { 2146 int error; 2147 LOOKUP3args args; 2148 LOOKUP3vres res; 2149 int douprintf; 2150 struct vattr vattr; 2151 struct vattr dvattr; 2152 vnode_t *vp; 2153 failinfo_t fi; 2154 hrtime_t t; 2155 2156 ASSERT(*nm != '\0'); 2157 ASSERT(dvp->v_type == VDIR); 2158 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2159 2160 setdiropargs3(&args.what, nm, dvp); 2161 2162 fi.vp = dvp; 2163 fi.fhp = (caddr_t)&args.what.dir; 2164 fi.copyproc = nfs3copyfh; 2165 fi.lookupproc = nfs3lookup; 2166 fi.xattrdirproc = acl_getxattrdir3; 2167 res.obj_attributes.fres.vp = dvp; 2168 res.obj_attributes.fres.vap = &vattr; 2169 res.dir_attributes.fres.vp = dvp; 2170 res.dir_attributes.fres.vap = &dvattr; 2171 2172 douprintf = 1; 2173 2174 t = gethrtime(); 2175 2176 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP, 2177 xdr_diropargs3, (caddr_t)&args, 2178 xdr_LOOKUP3vres, (caddr_t)&res, cr, 2179 &douprintf, &res.status, rfscall_flags, &fi); 2180 2181 if (error) 2182 return (error); 2183 2184 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr); 2185 2186 error = geterrno3(res.status); 2187 if (error) { 2188 PURGE_STALE_FH(error, dvp, cr); 2189 if (error == ENOENT && nfs3_lookup_neg_cache) 2190 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 2191 return (error); 2192 } 2193 2194 if (res.obj_attributes.attributes) { 2195 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap, 2196 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2197 } else { 2198 vp = makenfs3node_va(&res.object, NULL, 2199 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2200 if (vp->v_type == VNON) { 2201 vattr.va_mask = AT_TYPE; 2202 error = nfs3getattr(vp, &vattr, cr); 2203 if (error) { 2204 VN_RELE(vp); 2205 return (error); 2206 } 2207 vp->v_type = vattr.va_type; 2208 } 2209 } 2210 2211 if (!(rfscall_flags & RFSCALL_SOFT)) 2212 dnlc_update(dvp, nm, vp); 2213 2214 *vpp = vp; 2215 2216 return (error); 2217 } 2218 2219 #ifdef DEBUG 2220 static int nfs3_create_misses = 0; 2221 #endif 2222 2223 /* ARGSUSED */ 2224 static int 2225 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2226 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 2227 vsecattr_t *vsecp) 2228 { 2229 int error; 2230 vnode_t *vp; 2231 rnode_t *rp; 2232 struct vattr vattr; 2233 rnode_t *drp; 2234 vnode_t *tempvp; 2235 2236 drp = VTOR(dvp); 2237 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2238 return (EPERM); 2239 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2240 return (EINTR); 2241 2242 top: 2243 /* 2244 * We make a copy of the attributes because the caller does not 2245 * expect us to change what va points to. 2246 */ 2247 vattr = *va; 2248 2249 /* 2250 * If the pathname is "", just use dvp. Don't need 2251 * to send it over the wire, look it up in the dnlc, 2252 * or perform any access checks. 2253 */ 2254 if (*nm == '\0') { 2255 error = 0; 2256 VN_HOLD(dvp); 2257 vp = dvp; 2258 /* 2259 * If the pathname is ".", just use dvp. Don't need 2260 * to send it over the wire or look it up in the dnlc, 2261 * just need to check access. 2262 */ 2263 } else if (strcmp(nm, ".") == 0) { 2264 error = nfs3_access(dvp, VEXEC, 0, cr, ct); 2265 if (error) { 2266 nfs_rw_exit(&drp->r_rwlock); 2267 return (error); 2268 } 2269 VN_HOLD(dvp); 2270 vp = dvp; 2271 /* 2272 * We need to go over the wire, just to be sure whether the 2273 * file exists or not. Using the DNLC can be dangerous in 2274 * this case when making a decision regarding existence. 2275 */ 2276 } else { 2277 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0); 2278 } 2279 if (!error) { 2280 if (exclusive == EXCL) 2281 error = EEXIST; 2282 else if (vp->v_type == VDIR && (mode & VWRITE)) 2283 error = EISDIR; 2284 else { 2285 /* 2286 * If vnode is a device, create special vnode. 2287 */ 2288 if (IS_DEVVP(vp)) { 2289 tempvp = vp; 2290 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2291 VN_RELE(tempvp); 2292 } 2293 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2294 if ((vattr.va_mask & AT_SIZE) && 2295 vp->v_type == VREG) { 2296 rp = VTOR(vp); 2297 /* 2298 * Check here for large file handled 2299 * by LF-unaware process (as 2300 * ufs_create() does) 2301 */ 2302 if (!(lfaware & FOFFMAX)) { 2303 mutex_enter(&rp->r_statelock); 2304 if (rp->r_size > MAXOFF32_T) 2305 error = EOVERFLOW; 2306 mutex_exit(&rp->r_statelock); 2307 } 2308 if (!error) { 2309 vattr.va_mask = AT_SIZE; 2310 error = nfs3setattr(vp, 2311 &vattr, 0, cr); 2312 2313 /* 2314 * Existing file was truncated; 2315 * emit a create event. 2316 */ 2317 vnevent_create(vp, ct); 2318 } 2319 } 2320 } 2321 } 2322 nfs_rw_exit(&drp->r_rwlock); 2323 if (error) { 2324 VN_RELE(vp); 2325 } else { 2326 *vpp = vp; 2327 } 2328 2329 return (error); 2330 } 2331 2332 dnlc_remove(dvp, nm); 2333 2334 /* 2335 * Decide what the group-id of the created file should be. 2336 * Set it in attribute list as advisory... 2337 */ 2338 error = setdirgid(dvp, &vattr.va_gid, cr); 2339 if (error) { 2340 nfs_rw_exit(&drp->r_rwlock); 2341 return (error); 2342 } 2343 vattr.va_mask |= AT_GID; 2344 2345 ASSERT(vattr.va_mask & AT_TYPE); 2346 if (vattr.va_type == VREG) { 2347 ASSERT(vattr.va_mask & AT_MODE); 2348 if (MANDMODE(vattr.va_mode)) { 2349 nfs_rw_exit(&drp->r_rwlock); 2350 return (EACCES); 2351 } 2352 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr, 2353 lfaware); 2354 /* 2355 * If this is not an exclusive create, then the CREATE 2356 * request will be made with the GUARDED mode set. This 2357 * means that the server will return EEXIST if the file 2358 * exists. The file could exist because of a retransmitted 2359 * request. In this case, we recover by starting over and 2360 * checking to see whether the file exists. This second 2361 * time through it should and a CREATE request will not be 2362 * sent. 2363 * 2364 * This handles the problem of a dangling CREATE request 2365 * which contains attributes which indicate that the file 2366 * should be truncated. This retransmitted request could 2367 * possibly truncate valid data in the file if not caught 2368 * by the duplicate request mechanism on the server or if 2369 * not caught by other means. The scenario is: 2370 * 2371 * Client transmits CREATE request with size = 0 2372 * Client times out, retransmits request. 2373 * Response to the first request arrives from the server 2374 * and the client proceeds on. 2375 * Client writes data to the file. 2376 * The server now processes retransmitted CREATE request 2377 * and truncates file. 2378 * 2379 * The use of the GUARDED CREATE request prevents this from 2380 * happening because the retransmitted CREATE would fail 2381 * with EEXIST and would not truncate the file. 2382 */ 2383 if (error == EEXIST && exclusive == NONEXCL) { 2384 #ifdef DEBUG 2385 nfs3_create_misses++; 2386 #endif 2387 goto top; 2388 } 2389 nfs_rw_exit(&drp->r_rwlock); 2390 return (error); 2391 } 2392 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 2393 nfs_rw_exit(&drp->r_rwlock); 2394 return (error); 2395 } 2396 2397 /* ARGSUSED */ 2398 static int 2399 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2400 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2401 { 2402 int error; 2403 CREATE3args args; 2404 CREATE3res res; 2405 int douprintf; 2406 vnode_t *vp; 2407 struct vattr vattr; 2408 nfstime3 *verfp; 2409 rnode_t *rp; 2410 timestruc_t now; 2411 hrtime_t t; 2412 2413 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2414 setdiropargs3(&args.where, nm, dvp); 2415 if (exclusive == EXCL) { 2416 args.how.mode = EXCLUSIVE; 2417 /* 2418 * Construct the create verifier. This verifier needs 2419 * to be unique between different clients. It also needs 2420 * to vary for each exclusive create request generated 2421 * from the client to the server. 2422 * 2423 * The first attempt is made to use the hostid and a 2424 * unique number on the client. If the hostid has not 2425 * been set, the high resolution time that the exclusive 2426 * create request is being made is used. This will work 2427 * unless two different clients, both with the hostid 2428 * not set, attempt an exclusive create request on the 2429 * same file, at exactly the same clock time. The 2430 * chances of this happening seem small enough to be 2431 * reasonable. 2432 */ 2433 verfp = (nfstime3 *)&args.how.createhow3_u.verf; 2434 verfp->seconds = zone_get_hostid(NULL); 2435 if (verfp->seconds != 0) 2436 verfp->nseconds = newnum(); 2437 else { 2438 gethrestime(&now); 2439 verfp->seconds = now.tv_sec; 2440 verfp->nseconds = now.tv_nsec; 2441 } 2442 /* 2443 * Since the server will use this value for the mtime, 2444 * make sure that it can't overflow. Zero out the MSB. 2445 * The actual value does not matter here, only its uniqeness. 2446 */ 2447 verfp->seconds %= INT32_MAX; 2448 } else { 2449 /* 2450 * Issue the non-exclusive create in guarded mode. This 2451 * may result in some false EEXIST responses for 2452 * retransmitted requests, but these will be handled at 2453 * a higher level. By using GUARDED, duplicate requests 2454 * to do file truncation and possible access problems 2455 * can be avoided. 2456 */ 2457 args.how.mode = GUARDED; 2458 error = vattr_to_sattr3(va, 2459 &args.how.createhow3_u.obj_attributes); 2460 if (error) { 2461 /* req time field(s) overflow - return immediately */ 2462 return (error); 2463 } 2464 } 2465 2466 douprintf = 1; 2467 2468 t = gethrtime(); 2469 2470 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE, 2471 xdr_CREATE3args, (caddr_t)&args, 2472 xdr_CREATE3res, (caddr_t)&res, cr, 2473 &douprintf, &res.status, 0, NULL); 2474 2475 if (error) { 2476 PURGE_ATTRCACHE(dvp); 2477 return (error); 2478 } 2479 2480 error = geterrno3(res.status); 2481 if (!error) { 2482 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2483 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2484 nfs_purge_rddir_cache(dvp); 2485 2486 /* 2487 * On exclusive create the times need to be explicitly 2488 * set to clear any potential verifier that may be stored 2489 * in one of these fields (see comment below). This 2490 * is done here to cover the case where no post op attrs 2491 * were returned or a 'invalid' time was returned in 2492 * the attributes. 2493 */ 2494 if (exclusive == EXCL) 2495 va->va_mask |= (AT_MTIME | AT_ATIME); 2496 2497 if (!res.resok.obj.handle_follows) { 2498 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2499 if (error) 2500 return (error); 2501 } else { 2502 if (res.resok.obj_attributes.attributes) { 2503 vp = makenfs3node(&res.resok.obj.handle, 2504 &res.resok.obj_attributes.attr, 2505 dvp->v_vfsp, t, cr, NULL, NULL); 2506 } else { 2507 vp = makenfs3node(&res.resok.obj.handle, NULL, 2508 dvp->v_vfsp, t, cr, NULL, NULL); 2509 2510 /* 2511 * On an exclusive create, it is possible 2512 * that attributes were returned but those 2513 * postop attributes failed to decode 2514 * properly. If this is the case, 2515 * then most likely the atime or mtime 2516 * were invalid for our client; this 2517 * is caused by the server storing the 2518 * create verifier in one of the time 2519 * fields(most likely mtime). 2520 * So... we are going to setattr just the 2521 * atime/mtime to clear things up. 2522 */ 2523 if (exclusive == EXCL) { 2524 if (error = 2525 nfs3excl_create_settimes(vp, 2526 va, cr)) { 2527 /* 2528 * Setting the times failed. 2529 * Remove the file and return 2530 * the error. 2531 */ 2532 VN_RELE(vp); 2533 (void) nfs3_remove(dvp, 2534 nm, cr, NULL, 0); 2535 return (error); 2536 } 2537 } 2538 2539 /* 2540 * This handles the non-exclusive case 2541 * and the exclusive case where no post op 2542 * attrs were returned. 2543 */ 2544 if (vp->v_type == VNON) { 2545 vattr.va_mask = AT_TYPE; 2546 error = nfs3getattr(vp, &vattr, cr); 2547 if (error) { 2548 VN_RELE(vp); 2549 return (error); 2550 } 2551 vp->v_type = vattr.va_type; 2552 } 2553 } 2554 dnlc_update(dvp, nm, vp); 2555 } 2556 2557 rp = VTOR(vp); 2558 2559 /* 2560 * Check here for large file handled by 2561 * LF-unaware process (as ufs_create() does) 2562 */ 2563 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG && 2564 !(lfaware & FOFFMAX)) { 2565 mutex_enter(&rp->r_statelock); 2566 if (rp->r_size > MAXOFF32_T) { 2567 mutex_exit(&rp->r_statelock); 2568 VN_RELE(vp); 2569 return (EOVERFLOW); 2570 } 2571 mutex_exit(&rp->r_statelock); 2572 } 2573 2574 if (exclusive == EXCL && 2575 (va->va_mask & ~(AT_GID | AT_SIZE))) { 2576 /* 2577 * If doing an exclusive create, then generate 2578 * a SETATTR to set the initial attributes. 2579 * Try to set the mtime and the atime to the 2580 * server's current time. It is somewhat 2581 * expected that these fields will be used to 2582 * store the exclusive create cookie. If not, 2583 * server implementors will need to know that 2584 * a SETATTR will follow an exclusive create 2585 * and the cookie should be destroyed if 2586 * appropriate. This work may have been done 2587 * earlier in this function if post op attrs 2588 * were not available. 2589 * 2590 * The AT_GID and AT_SIZE bits are turned off 2591 * so that the SETATTR request will not attempt 2592 * to process these. The gid will be set 2593 * separately if appropriate. The size is turned 2594 * off because it is assumed that a new file will 2595 * be created empty and if the file wasn't empty, 2596 * then the exclusive create will have failed 2597 * because the file must have existed already. 2598 * Therefore, no truncate operation is needed. 2599 */ 2600 va->va_mask &= ~(AT_GID | AT_SIZE); 2601 error = nfs3setattr(vp, va, 0, cr); 2602 if (error) { 2603 /* 2604 * Couldn't correct the attributes of 2605 * the newly created file and the 2606 * attributes are wrong. Remove the 2607 * file and return an error to the 2608 * application. 2609 */ 2610 VN_RELE(vp); 2611 (void) nfs3_remove(dvp, nm, cr, NULL, 0); 2612 return (error); 2613 } 2614 } 2615 2616 if (va->va_gid != rp->r_attr.va_gid) { 2617 /* 2618 * If the gid on the file isn't right, then 2619 * generate a SETATTR to attempt to change 2620 * it. This may or may not work, depending 2621 * upon the server's semantics for allowing 2622 * file ownership changes. 2623 */ 2624 va->va_mask = AT_GID; 2625 (void) nfs3setattr(vp, va, 0, cr); 2626 } 2627 2628 /* 2629 * If vnode is a device create special vnode 2630 */ 2631 if (IS_DEVVP(vp)) { 2632 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2633 VN_RELE(vp); 2634 } else 2635 *vpp = vp; 2636 } else { 2637 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2638 PURGE_STALE_FH(error, dvp, cr); 2639 } 2640 2641 return (error); 2642 } 2643 2644 /* 2645 * Special setattr function to take care of rest of atime/mtime 2646 * after successful exclusive create. This function exists to avoid 2647 * handling attributes from the server; exclusive the atime/mtime fields 2648 * may be 'invalid' in client's view and therefore can not be trusted. 2649 */ 2650 static int 2651 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr) 2652 { 2653 int error; 2654 uint_t mask; 2655 SETATTR3args args; 2656 SETATTR3res res; 2657 int douprintf; 2658 rnode_t *rp; 2659 hrtime_t t; 2660 2661 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 2662 /* save the caller's mask so that it can be reset later */ 2663 mask = vap->va_mask; 2664 2665 rp = VTOR(vp); 2666 2667 args.object = *RTOFH3(rp); 2668 args.guard.check = FALSE; 2669 2670 /* Use the mask to initialize the arguments */ 2671 vap->va_mask = 0; 2672 error = vattr_to_sattr3(vap, &args.new_attributes); 2673 2674 /* We want to set just atime/mtime on this request */ 2675 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 2676 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 2677 2678 douprintf = 1; 2679 2680 t = gethrtime(); 2681 2682 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 2683 xdr_SETATTR3args, (caddr_t)&args, 2684 xdr_SETATTR3res, (caddr_t)&res, cr, 2685 &douprintf, &res.status, 0, NULL); 2686 2687 if (error) { 2688 vap->va_mask = mask; 2689 return (error); 2690 } 2691 2692 error = geterrno3(res.status); 2693 if (!error) { 2694 /* 2695 * It is important to pick up the attributes. 2696 * Since this is the exclusive create path, the 2697 * attributes on the initial create were ignored 2698 * and we need these to have the correct info. 2699 */ 2700 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 2701 /* 2702 * No need to do the atime/mtime work again so clear 2703 * the bits. 2704 */ 2705 mask &= ~(AT_ATIME | AT_MTIME); 2706 } else { 2707 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 2708 } 2709 2710 vap->va_mask = mask; 2711 2712 return (error); 2713 } 2714 2715 /* ARGSUSED */ 2716 static int 2717 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2718 int mode, vnode_t **vpp, cred_t *cr) 2719 { 2720 int error; 2721 MKNOD3args args; 2722 MKNOD3res res; 2723 int douprintf; 2724 vnode_t *vp; 2725 struct vattr vattr; 2726 hrtime_t t; 2727 2728 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2729 switch (va->va_type) { 2730 case VCHR: 2731 case VBLK: 2732 setdiropargs3(&args.where, nm, dvp); 2733 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK; 2734 error = vattr_to_sattr3(va, 2735 &args.what.mknoddata3_u.device.dev_attributes); 2736 if (error) { 2737 /* req time field(s) overflow - return immediately */ 2738 return (error); 2739 } 2740 args.what.mknoddata3_u.device.spec.specdata1 = 2741 getmajor(va->va_rdev); 2742 args.what.mknoddata3_u.device.spec.specdata2 = 2743 getminor(va->va_rdev); 2744 break; 2745 2746 case VFIFO: 2747 case VSOCK: 2748 setdiropargs3(&args.where, nm, dvp); 2749 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK; 2750 error = vattr_to_sattr3(va, 2751 &args.what.mknoddata3_u.pipe_attributes); 2752 if (error) { 2753 /* req time field(s) overflow - return immediately */ 2754 return (error); 2755 } 2756 break; 2757 2758 default: 2759 return (EINVAL); 2760 } 2761 2762 douprintf = 1; 2763 2764 t = gethrtime(); 2765 2766 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD, 2767 xdr_MKNOD3args, (caddr_t)&args, 2768 xdr_MKNOD3res, (caddr_t)&res, cr, 2769 &douprintf, &res.status, 0, NULL); 2770 2771 if (error) { 2772 PURGE_ATTRCACHE(dvp); 2773 return (error); 2774 } 2775 2776 error = geterrno3(res.status); 2777 if (!error) { 2778 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2779 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2780 nfs_purge_rddir_cache(dvp); 2781 2782 if (!res.resok.obj.handle_follows) { 2783 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2784 if (error) 2785 return (error); 2786 } else { 2787 if (res.resok.obj_attributes.attributes) { 2788 vp = makenfs3node(&res.resok.obj.handle, 2789 &res.resok.obj_attributes.attr, 2790 dvp->v_vfsp, t, cr, NULL, NULL); 2791 } else { 2792 vp = makenfs3node(&res.resok.obj.handle, NULL, 2793 dvp->v_vfsp, t, cr, NULL, NULL); 2794 if (vp->v_type == VNON) { 2795 vattr.va_mask = AT_TYPE; 2796 error = nfs3getattr(vp, &vattr, cr); 2797 if (error) { 2798 VN_RELE(vp); 2799 return (error); 2800 } 2801 vp->v_type = vattr.va_type; 2802 } 2803 2804 } 2805 dnlc_update(dvp, nm, vp); 2806 } 2807 2808 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 2809 va->va_mask = AT_GID; 2810 (void) nfs3setattr(vp, va, 0, cr); 2811 } 2812 2813 /* 2814 * If vnode is a device create special vnode 2815 */ 2816 if (IS_DEVVP(vp)) { 2817 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2818 VN_RELE(vp); 2819 } else 2820 *vpp = vp; 2821 } else { 2822 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2823 PURGE_STALE_FH(error, dvp, cr); 2824 } 2825 return (error); 2826 } 2827 2828 /* 2829 * Weirdness: if the vnode to be removed is open 2830 * we rename it instead of removing it and nfs_inactive 2831 * will remove the new name. 2832 */ 2833 /* ARGSUSED */ 2834 static int 2835 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2836 { 2837 int error; 2838 REMOVE3args args; 2839 REMOVE3res res; 2840 vnode_t *vp; 2841 char *tmpname; 2842 int douprintf; 2843 rnode_t *rp; 2844 rnode_t *drp; 2845 hrtime_t t; 2846 2847 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2848 return (EPERM); 2849 drp = VTOR(dvp); 2850 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2851 return (EINTR); 2852 2853 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2854 if (error) { 2855 nfs_rw_exit(&drp->r_rwlock); 2856 return (error); 2857 } 2858 2859 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2860 VN_RELE(vp); 2861 nfs_rw_exit(&drp->r_rwlock); 2862 return (EPERM); 2863 } 2864 2865 /* 2866 * First just remove the entry from the name cache, as it 2867 * is most likely the only entry for this vp. 2868 */ 2869 dnlc_remove(dvp, nm); 2870 2871 /* 2872 * If the file has a v_count > 1 then there may be more than one 2873 * entry in the name cache due multiple links or an open file, 2874 * but we don't have the real reference count so flush all 2875 * possible entries. 2876 */ 2877 if (vp->v_count > 1) 2878 dnlc_purge_vp(vp); 2879 2880 /* 2881 * Now we have the real reference count on the vnode 2882 */ 2883 rp = VTOR(vp); 2884 mutex_enter(&rp->r_statelock); 2885 if (vp->v_count > 1 && 2886 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2887 mutex_exit(&rp->r_statelock); 2888 tmpname = newname(); 2889 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct); 2890 if (error) 2891 kmem_free(tmpname, MAXNAMELEN); 2892 else { 2893 mutex_enter(&rp->r_statelock); 2894 if (rp->r_unldvp == NULL) { 2895 VN_HOLD(dvp); 2896 rp->r_unldvp = dvp; 2897 if (rp->r_unlcred != NULL) 2898 crfree(rp->r_unlcred); 2899 crhold(cr); 2900 rp->r_unlcred = cr; 2901 rp->r_unlname = tmpname; 2902 } else { 2903 kmem_free(rp->r_unlname, MAXNAMELEN); 2904 rp->r_unlname = tmpname; 2905 } 2906 mutex_exit(&rp->r_statelock); 2907 } 2908 } else { 2909 mutex_exit(&rp->r_statelock); 2910 /* 2911 * We need to flush any dirty pages which happen to 2912 * be hanging around before removing the file. This 2913 * shouldn't happen very often and mostly on file 2914 * systems mounted "nocto". 2915 */ 2916 if (vn_has_cached_data(vp) && 2917 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2918 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2919 if (error && (error == ENOSPC || error == EDQUOT)) { 2920 mutex_enter(&rp->r_statelock); 2921 if (!rp->r_error) 2922 rp->r_error = error; 2923 mutex_exit(&rp->r_statelock); 2924 } 2925 } 2926 2927 setdiropargs3(&args.object, nm, dvp); 2928 2929 douprintf = 1; 2930 2931 t = gethrtime(); 2932 2933 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE, 2934 xdr_diropargs3, (caddr_t)&args, 2935 xdr_REMOVE3res, (caddr_t)&res, cr, 2936 &douprintf, &res.status, 0, NULL); 2937 2938 /* 2939 * The xattr dir may be gone after last attr is removed, 2940 * so flush it from dnlc. 2941 */ 2942 if (dvp->v_flag & V_XATTRDIR) 2943 dnlc_purge_vp(dvp); 2944 2945 PURGE_ATTRCACHE(vp); 2946 2947 if (error) { 2948 PURGE_ATTRCACHE(dvp); 2949 } else { 2950 error = geterrno3(res.status); 2951 if (!error) { 2952 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, 2953 cr); 2954 if (HAVE_RDDIR_CACHE(drp)) 2955 nfs_purge_rddir_cache(dvp); 2956 } else { 2957 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, 2958 t, cr); 2959 PURGE_STALE_FH(error, dvp, cr); 2960 } 2961 } 2962 } 2963 2964 if (error == 0) { 2965 vnevent_remove(vp, dvp, nm, ct); 2966 } 2967 VN_RELE(vp); 2968 2969 nfs_rw_exit(&drp->r_rwlock); 2970 2971 return (error); 2972 } 2973 2974 /* ARGSUSED */ 2975 static int 2976 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2977 caller_context_t *ct, int flags) 2978 { 2979 int error; 2980 LINK3args args; 2981 LINK3res res; 2982 vnode_t *realvp; 2983 int douprintf; 2984 mntinfo_t *mi; 2985 rnode_t *tdrp; 2986 hrtime_t t; 2987 2988 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2989 return (EPERM); 2990 if (VOP_REALVP(svp, &realvp, ct) == 0) 2991 svp = realvp; 2992 2993 mi = VTOMI(svp); 2994 2995 if (!(mi->mi_flags & MI_LINK)) 2996 return (EOPNOTSUPP); 2997 2998 args.file = *VTOFH3(svp); 2999 setdiropargs3(&args.link, tnm, tdvp); 3000 3001 tdrp = VTOR(tdvp); 3002 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 3003 return (EINTR); 3004 3005 dnlc_remove(tdvp, tnm); 3006 3007 douprintf = 1; 3008 3009 t = gethrtime(); 3010 3011 error = rfs3call(mi, NFSPROC3_LINK, 3012 xdr_LINK3args, (caddr_t)&args, 3013 xdr_LINK3res, (caddr_t)&res, cr, 3014 &douprintf, &res.status, 0, NULL); 3015 3016 if (error) { 3017 PURGE_ATTRCACHE(tdvp); 3018 PURGE_ATTRCACHE(svp); 3019 nfs_rw_exit(&tdrp->r_rwlock); 3020 return (error); 3021 } 3022 3023 error = geterrno3(res.status); 3024 3025 if (!error) { 3026 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr); 3027 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr); 3028 if (HAVE_RDDIR_CACHE(tdrp)) 3029 nfs_purge_rddir_cache(tdvp); 3030 dnlc_update(tdvp, tnm, svp); 3031 } else { 3032 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t, 3033 cr); 3034 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr); 3035 if (error == EOPNOTSUPP) { 3036 mutex_enter(&mi->mi_lock); 3037 mi->mi_flags &= ~MI_LINK; 3038 mutex_exit(&mi->mi_lock); 3039 } 3040 } 3041 3042 nfs_rw_exit(&tdrp->r_rwlock); 3043 3044 if (!error) { 3045 /* 3046 * Notify the source file of this link operation. 3047 */ 3048 vnevent_link(svp, ct); 3049 } 3050 return (error); 3051 } 3052 3053 /* ARGSUSED */ 3054 static int 3055 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3056 caller_context_t *ct, int flags) 3057 { 3058 vnode_t *realvp; 3059 3060 if (nfs_zone() != VTOMI(odvp)->mi_zone) 3061 return (EPERM); 3062 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 3063 ndvp = realvp; 3064 3065 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct)); 3066 } 3067 3068 /* 3069 * nfs3rename does the real work of renaming in NFS Version 3. 3070 */ 3071 static int 3072 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 3073 caller_context_t *ct) 3074 { 3075 int error; 3076 RENAME3args args; 3077 RENAME3res res; 3078 int douprintf; 3079 vnode_t *nvp = NULL; 3080 vnode_t *ovp = NULL; 3081 char *tmpname; 3082 rnode_t *rp; 3083 rnode_t *odrp; 3084 rnode_t *ndrp; 3085 hrtime_t t; 3086 3087 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 3088 3089 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 3090 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 3091 return (EINVAL); 3092 3093 odrp = VTOR(odvp); 3094 ndrp = VTOR(ndvp); 3095 if ((intptr_t)odrp < (intptr_t)ndrp) { 3096 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 3097 return (EINTR); 3098 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 3099 nfs_rw_exit(&odrp->r_rwlock); 3100 return (EINTR); 3101 } 3102 } else { 3103 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 3104 return (EINTR); 3105 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 3106 nfs_rw_exit(&ndrp->r_rwlock); 3107 return (EINTR); 3108 } 3109 } 3110 3111 /* 3112 * Lookup the target file. If it exists, it needs to be 3113 * checked to see whether it is a mount point and whether 3114 * it is active (open). 3115 */ 3116 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 3117 if (!error) { 3118 /* 3119 * If this file has been mounted on, then just 3120 * return busy because renaming to it would remove 3121 * the mounted file system from the name space. 3122 */ 3123 if (vn_mountedvfs(nvp) != NULL) { 3124 VN_RELE(nvp); 3125 nfs_rw_exit(&odrp->r_rwlock); 3126 nfs_rw_exit(&ndrp->r_rwlock); 3127 return (EBUSY); 3128 } 3129 3130 /* 3131 * Purge the name cache of all references to this vnode 3132 * so that we can check the reference count to infer 3133 * whether it is active or not. 3134 */ 3135 /* 3136 * First just remove the entry from the name cache, as it 3137 * is most likely the only entry for this vp. 3138 */ 3139 dnlc_remove(ndvp, nnm); 3140 /* 3141 * If the file has a v_count > 1 then there may be more 3142 * than one entry in the name cache due multiple links 3143 * or an open file, but we don't have the real reference 3144 * count so flush all possible entries. 3145 */ 3146 if (nvp->v_count > 1) 3147 dnlc_purge_vp(nvp); 3148 3149 /* 3150 * If the vnode is active and is not a directory, 3151 * arrange to rename it to a 3152 * temporary file so that it will continue to be 3153 * accessible. This implements the "unlink-open-file" 3154 * semantics for the target of a rename operation. 3155 * Before doing this though, make sure that the 3156 * source and target files are not already the same. 3157 */ 3158 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 3159 /* 3160 * Lookup the source name. 3161 */ 3162 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, 3163 cr, 0); 3164 3165 /* 3166 * The source name *should* already exist. 3167 */ 3168 if (error) { 3169 VN_RELE(nvp); 3170 nfs_rw_exit(&odrp->r_rwlock); 3171 nfs_rw_exit(&ndrp->r_rwlock); 3172 return (error); 3173 } 3174 3175 /* 3176 * Compare the two vnodes. If they are the same, 3177 * just release all held vnodes and return success. 3178 */ 3179 if (ovp == nvp) { 3180 VN_RELE(ovp); 3181 VN_RELE(nvp); 3182 nfs_rw_exit(&odrp->r_rwlock); 3183 nfs_rw_exit(&ndrp->r_rwlock); 3184 return (0); 3185 } 3186 3187 /* 3188 * Can't mix and match directories and non- 3189 * directories in rename operations. We already 3190 * know that the target is not a directory. If 3191 * the source is a directory, return an error. 3192 */ 3193 if (ovp->v_type == VDIR) { 3194 VN_RELE(ovp); 3195 VN_RELE(nvp); 3196 nfs_rw_exit(&odrp->r_rwlock); 3197 nfs_rw_exit(&ndrp->r_rwlock); 3198 return (ENOTDIR); 3199 } 3200 3201 /* 3202 * The target file exists, is not the same as 3203 * the source file, and is active. Link it 3204 * to a temporary filename to avoid having 3205 * the server removing the file completely. 3206 */ 3207 tmpname = newname(); 3208 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0); 3209 if (error == EOPNOTSUPP) { 3210 error = nfs3_rename(ndvp, nnm, ndvp, tmpname, 3211 cr, NULL, 0); 3212 } 3213 if (error) { 3214 kmem_free(tmpname, MAXNAMELEN); 3215 VN_RELE(ovp); 3216 VN_RELE(nvp); 3217 nfs_rw_exit(&odrp->r_rwlock); 3218 nfs_rw_exit(&ndrp->r_rwlock); 3219 return (error); 3220 } 3221 rp = VTOR(nvp); 3222 mutex_enter(&rp->r_statelock); 3223 if (rp->r_unldvp == NULL) { 3224 VN_HOLD(ndvp); 3225 rp->r_unldvp = ndvp; 3226 if (rp->r_unlcred != NULL) 3227 crfree(rp->r_unlcred); 3228 crhold(cr); 3229 rp->r_unlcred = cr; 3230 rp->r_unlname = tmpname; 3231 } else { 3232 kmem_free(rp->r_unlname, MAXNAMELEN); 3233 rp->r_unlname = tmpname; 3234 } 3235 mutex_exit(&rp->r_statelock); 3236 } 3237 } 3238 3239 if (ovp == NULL) { 3240 /* 3241 * When renaming directories to be a subdirectory of a 3242 * different parent, the dnlc entry for ".." will no 3243 * longer be valid, so it must be removed. 3244 * 3245 * We do a lookup here to determine whether we are renaming 3246 * a directory and we need to check if we are renaming 3247 * an unlinked file. This might have already been done 3248 * in previous code, so we check ovp == NULL to avoid 3249 * doing it twice. 3250 */ 3251 3252 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 3253 /* 3254 * The source name *should* already exist. 3255 */ 3256 if (error) { 3257 nfs_rw_exit(&odrp->r_rwlock); 3258 nfs_rw_exit(&ndrp->r_rwlock); 3259 if (nvp) { 3260 VN_RELE(nvp); 3261 } 3262 return (error); 3263 } 3264 ASSERT(ovp != NULL); 3265 } 3266 3267 dnlc_remove(odvp, onm); 3268 dnlc_remove(ndvp, nnm); 3269 3270 setdiropargs3(&args.from, onm, odvp); 3271 setdiropargs3(&args.to, nnm, ndvp); 3272 3273 douprintf = 1; 3274 3275 t = gethrtime(); 3276 3277 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME, 3278 xdr_RENAME3args, (caddr_t)&args, 3279 xdr_RENAME3res, (caddr_t)&res, cr, 3280 &douprintf, &res.status, 0, NULL); 3281 3282 if (error) { 3283 PURGE_ATTRCACHE(odvp); 3284 PURGE_ATTRCACHE(ndvp); 3285 VN_RELE(ovp); 3286 nfs_rw_exit(&odrp->r_rwlock); 3287 nfs_rw_exit(&ndrp->r_rwlock); 3288 if (nvp) { 3289 VN_RELE(nvp); 3290 } 3291 return (error); 3292 } 3293 3294 error = geterrno3(res.status); 3295 3296 if (!error) { 3297 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr); 3298 if (HAVE_RDDIR_CACHE(odrp)) 3299 nfs_purge_rddir_cache(odvp); 3300 if (ndvp != odvp) { 3301 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr); 3302 if (HAVE_RDDIR_CACHE(ndrp)) 3303 nfs_purge_rddir_cache(ndvp); 3304 } 3305 /* 3306 * when renaming directories to be a subdirectory of a 3307 * different parent, the dnlc entry for ".." will no 3308 * longer be valid, so it must be removed 3309 */ 3310 rp = VTOR(ovp); 3311 if (ndvp != odvp) { 3312 if (ovp->v_type == VDIR) { 3313 dnlc_remove(ovp, ".."); 3314 if (HAVE_RDDIR_CACHE(rp)) 3315 nfs_purge_rddir_cache(ovp); 3316 } 3317 } 3318 3319 /* 3320 * If we are renaming the unlinked file, update the 3321 * r_unldvp and r_unlname as needed. 3322 */ 3323 mutex_enter(&rp->r_statelock); 3324 if (rp->r_unldvp != NULL) { 3325 if (strcmp(rp->r_unlname, onm) == 0) { 3326 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 3327 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 3328 3329 if (ndvp != rp->r_unldvp) { 3330 VN_RELE(rp->r_unldvp); 3331 rp->r_unldvp = ndvp; 3332 VN_HOLD(ndvp); 3333 } 3334 } 3335 } 3336 mutex_exit(&rp->r_statelock); 3337 } else { 3338 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr); 3339 if (ndvp != odvp) { 3340 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t, 3341 cr); 3342 } 3343 /* 3344 * System V defines rename to return EEXIST, not 3345 * ENOTEMPTY if the target directory is not empty. 3346 * Over the wire, the error is NFSERR_ENOTEMPTY 3347 * which geterrno maps to ENOTEMPTY. 3348 */ 3349 if (error == ENOTEMPTY) 3350 error = EEXIST; 3351 } 3352 3353 if (error == 0) { 3354 if (nvp) 3355 vnevent_rename_dest(nvp, ndvp, nnm, ct); 3356 3357 if (odvp != ndvp) 3358 vnevent_rename_dest_dir(ndvp, ct); 3359 ASSERT(ovp != NULL); 3360 vnevent_rename_src(ovp, odvp, onm, ct); 3361 } 3362 3363 if (nvp) { 3364 VN_RELE(nvp); 3365 } 3366 VN_RELE(ovp); 3367 3368 nfs_rw_exit(&odrp->r_rwlock); 3369 nfs_rw_exit(&ndrp->r_rwlock); 3370 3371 return (error); 3372 } 3373 3374 /* ARGSUSED */ 3375 static int 3376 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 3377 caller_context_t *ct, int flags, vsecattr_t *vsecp) 3378 { 3379 int error; 3380 MKDIR3args args; 3381 MKDIR3res res; 3382 int douprintf; 3383 struct vattr vattr; 3384 vnode_t *vp; 3385 rnode_t *drp; 3386 hrtime_t t; 3387 3388 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3389 return (EPERM); 3390 setdiropargs3(&args.where, nm, dvp); 3391 3392 /* 3393 * Decide what the group-id and set-gid bit of the created directory 3394 * should be. May have to do a setattr to get the gid right. 3395 */ 3396 error = setdirgid(dvp, &va->va_gid, cr); 3397 if (error) 3398 return (error); 3399 error = setdirmode(dvp, &va->va_mode, cr); 3400 if (error) 3401 return (error); 3402 va->va_mask |= AT_MODE|AT_GID; 3403 3404 error = vattr_to_sattr3(va, &args.attributes); 3405 if (error) { 3406 /* req time field(s) overflow - return immediately */ 3407 return (error); 3408 } 3409 3410 drp = VTOR(dvp); 3411 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3412 return (EINTR); 3413 3414 dnlc_remove(dvp, nm); 3415 3416 douprintf = 1; 3417 3418 t = gethrtime(); 3419 3420 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR, 3421 xdr_MKDIR3args, (caddr_t)&args, 3422 xdr_MKDIR3res, (caddr_t)&res, cr, 3423 &douprintf, &res.status, 0, NULL); 3424 3425 if (error) { 3426 PURGE_ATTRCACHE(dvp); 3427 nfs_rw_exit(&drp->r_rwlock); 3428 return (error); 3429 } 3430 3431 error = geterrno3(res.status); 3432 if (!error) { 3433 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3434 if (HAVE_RDDIR_CACHE(drp)) 3435 nfs_purge_rddir_cache(dvp); 3436 3437 if (!res.resok.obj.handle_follows) { 3438 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3439 if (error) { 3440 nfs_rw_exit(&drp->r_rwlock); 3441 return (error); 3442 } 3443 } else { 3444 if (res.resok.obj_attributes.attributes) { 3445 vp = makenfs3node(&res.resok.obj.handle, 3446 &res.resok.obj_attributes.attr, 3447 dvp->v_vfsp, t, cr, NULL, NULL); 3448 } else { 3449 vp = makenfs3node(&res.resok.obj.handle, NULL, 3450 dvp->v_vfsp, t, cr, NULL, NULL); 3451 if (vp->v_type == VNON) { 3452 vattr.va_mask = AT_TYPE; 3453 error = nfs3getattr(vp, &vattr, cr); 3454 if (error) { 3455 VN_RELE(vp); 3456 nfs_rw_exit(&drp->r_rwlock); 3457 return (error); 3458 } 3459 vp->v_type = vattr.va_type; 3460 } 3461 } 3462 dnlc_update(dvp, nm, vp); 3463 } 3464 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 3465 va->va_mask = AT_GID; 3466 (void) nfs3setattr(vp, va, 0, cr); 3467 } 3468 *vpp = vp; 3469 } else { 3470 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3471 PURGE_STALE_FH(error, dvp, cr); 3472 } 3473 3474 nfs_rw_exit(&drp->r_rwlock); 3475 3476 return (error); 3477 } 3478 3479 /* ARGSUSED */ 3480 static int 3481 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 3482 caller_context_t *ct, int flags) 3483 { 3484 int error; 3485 RMDIR3args args; 3486 RMDIR3res res; 3487 vnode_t *vp; 3488 int douprintf; 3489 rnode_t *drp; 3490 hrtime_t t; 3491 3492 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3493 return (EPERM); 3494 drp = VTOR(dvp); 3495 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3496 return (EINTR); 3497 3498 /* 3499 * Attempt to prevent a rmdir(".") from succeeding. 3500 */ 3501 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3502 if (error) { 3503 nfs_rw_exit(&drp->r_rwlock); 3504 return (error); 3505 } 3506 3507 if (vp == cdir) { 3508 VN_RELE(vp); 3509 nfs_rw_exit(&drp->r_rwlock); 3510 return (EINVAL); 3511 } 3512 3513 setdiropargs3(&args.object, nm, dvp); 3514 3515 /* 3516 * First just remove the entry from the name cache, as it 3517 * is most likely an entry for this vp. 3518 */ 3519 dnlc_remove(dvp, nm); 3520 3521 /* 3522 * If there vnode reference count is greater than one, then 3523 * there may be additional references in the DNLC which will 3524 * need to be purged. First, trying removing the entry for 3525 * the parent directory and see if that removes the additional 3526 * reference(s). If that doesn't do it, then use dnlc_purge_vp 3527 * to completely remove any references to the directory which 3528 * might still exist in the DNLC. 3529 */ 3530 if (vp->v_count > 1) { 3531 dnlc_remove(vp, ".."); 3532 if (vp->v_count > 1) 3533 dnlc_purge_vp(vp); 3534 } 3535 3536 douprintf = 1; 3537 3538 t = gethrtime(); 3539 3540 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR, 3541 xdr_diropargs3, (caddr_t)&args, 3542 xdr_RMDIR3res, (caddr_t)&res, cr, 3543 &douprintf, &res.status, 0, NULL); 3544 3545 PURGE_ATTRCACHE(vp); 3546 3547 if (error) { 3548 PURGE_ATTRCACHE(dvp); 3549 VN_RELE(vp); 3550 nfs_rw_exit(&drp->r_rwlock); 3551 return (error); 3552 } 3553 3554 error = geterrno3(res.status); 3555 if (!error) { 3556 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3557 if (HAVE_RDDIR_CACHE(drp)) 3558 nfs_purge_rddir_cache(dvp); 3559 if (HAVE_RDDIR_CACHE(VTOR(vp))) 3560 nfs_purge_rddir_cache(vp); 3561 } else { 3562 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3563 PURGE_STALE_FH(error, dvp, cr); 3564 /* 3565 * System V defines rmdir to return EEXIST, not 3566 * ENOTEMPTY if the directory is not empty. Over 3567 * the wire, the error is NFSERR_ENOTEMPTY which 3568 * geterrno maps to ENOTEMPTY. 3569 */ 3570 if (error == ENOTEMPTY) 3571 error = EEXIST; 3572 } 3573 3574 if (error == 0) { 3575 vnevent_rmdir(vp, dvp, nm, ct); 3576 } 3577 VN_RELE(vp); 3578 3579 nfs_rw_exit(&drp->r_rwlock); 3580 3581 return (error); 3582 } 3583 3584 /* ARGSUSED */ 3585 static int 3586 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 3587 caller_context_t *ct, int flags) 3588 { 3589 int error; 3590 SYMLINK3args args; 3591 SYMLINK3res res; 3592 int douprintf; 3593 mntinfo_t *mi; 3594 vnode_t *vp; 3595 rnode_t *rp; 3596 char *contents; 3597 rnode_t *drp; 3598 hrtime_t t; 3599 3600 mi = VTOMI(dvp); 3601 3602 if (nfs_zone() != mi->mi_zone) 3603 return (EPERM); 3604 if (!(mi->mi_flags & MI_SYMLINK)) 3605 return (EOPNOTSUPP); 3606 3607 setdiropargs3(&args.where, lnm, dvp); 3608 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes); 3609 if (error) { 3610 /* req time field(s) overflow - return immediately */ 3611 return (error); 3612 } 3613 args.symlink.symlink_data = tnm; 3614 3615 drp = VTOR(dvp); 3616 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3617 return (EINTR); 3618 3619 dnlc_remove(dvp, lnm); 3620 3621 douprintf = 1; 3622 3623 t = gethrtime(); 3624 3625 error = rfs3call(mi, NFSPROC3_SYMLINK, 3626 xdr_SYMLINK3args, (caddr_t)&args, 3627 xdr_SYMLINK3res, (caddr_t)&res, cr, 3628 &douprintf, &res.status, 0, NULL); 3629 3630 if (error) { 3631 PURGE_ATTRCACHE(dvp); 3632 nfs_rw_exit(&drp->r_rwlock); 3633 return (error); 3634 } 3635 3636 error = geterrno3(res.status); 3637 if (!error) { 3638 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3639 if (HAVE_RDDIR_CACHE(drp)) 3640 nfs_purge_rddir_cache(dvp); 3641 3642 if (res.resok.obj.handle_follows) { 3643 if (res.resok.obj_attributes.attributes) { 3644 vp = makenfs3node(&res.resok.obj.handle, 3645 &res.resok.obj_attributes.attr, 3646 dvp->v_vfsp, t, cr, NULL, NULL); 3647 } else { 3648 vp = makenfs3node(&res.resok.obj.handle, NULL, 3649 dvp->v_vfsp, t, cr, NULL, NULL); 3650 vp->v_type = VLNK; 3651 vp->v_rdev = 0; 3652 } 3653 dnlc_update(dvp, lnm, vp); 3654 rp = VTOR(vp); 3655 if (nfs3_do_symlink_cache && 3656 rp->r_symlink.contents == NULL) { 3657 3658 contents = kmem_alloc(MAXPATHLEN, 3659 KM_NOSLEEP); 3660 3661 if (contents != NULL) { 3662 mutex_enter(&rp->r_statelock); 3663 if (rp->r_symlink.contents == NULL) { 3664 rp->r_symlink.len = strlen(tnm); 3665 bcopy(tnm, contents, 3666 rp->r_symlink.len); 3667 rp->r_symlink.contents = 3668 contents; 3669 rp->r_symlink.size = MAXPATHLEN; 3670 mutex_exit(&rp->r_statelock); 3671 } else { 3672 mutex_exit(&rp->r_statelock); 3673 kmem_free((void *)contents, 3674 MAXPATHLEN); 3675 } 3676 } 3677 } 3678 VN_RELE(vp); 3679 } 3680 } else { 3681 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3682 PURGE_STALE_FH(error, dvp, cr); 3683 if (error == EOPNOTSUPP) { 3684 mutex_enter(&mi->mi_lock); 3685 mi->mi_flags &= ~MI_SYMLINK; 3686 mutex_exit(&mi->mi_lock); 3687 } 3688 } 3689 3690 nfs_rw_exit(&drp->r_rwlock); 3691 3692 return (error); 3693 } 3694 3695 #ifdef DEBUG 3696 static int nfs3_readdir_cache_hits = 0; 3697 static int nfs3_readdir_cache_shorts = 0; 3698 static int nfs3_readdir_cache_waits = 0; 3699 static int nfs3_readdir_cache_misses = 0; 3700 static int nfs3_readdir_readahead = 0; 3701 #endif 3702 3703 static int nfs3_shrinkreaddir = 0; 3704 3705 /* 3706 * Read directory entries. 3707 * There are some weird things to look out for here. The uio_loffset 3708 * field is either 0 or it is the offset returned from a previous 3709 * readdir. It is an opaque value used by the server to find the 3710 * correct directory block to read. The count field is the number 3711 * of blocks to read on the server. This is advisory only, the server 3712 * may return only one block's worth of entries. Entries may be compressed 3713 * on the server. 3714 */ 3715 /* ARGSUSED */ 3716 static int 3717 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 3718 caller_context_t *ct, int flags) 3719 { 3720 int error; 3721 size_t count; 3722 rnode_t *rp; 3723 rddir_cache *rdc; 3724 rddir_cache *nrdc; 3725 rddir_cache *rrdc; 3726 #ifdef DEBUG 3727 int missed; 3728 #endif 3729 int doreadahead; 3730 rddir_cache srdc; 3731 avl_index_t where; 3732 3733 if (nfs_zone() != VTOMI(vp)->mi_zone) 3734 return (EIO); 3735 rp = VTOR(vp); 3736 3737 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 3738 3739 /* 3740 * Make sure that the directory cache is valid. 3741 */ 3742 if (HAVE_RDDIR_CACHE(rp)) { 3743 if (nfs_disable_rddir_cache) { 3744 /* 3745 * Setting nfs_disable_rddir_cache in /etc/system 3746 * allows interoperability with servers that do not 3747 * properly update the attributes of directories. 3748 * Any cached information gets purged before an 3749 * access is made to it. 3750 */ 3751 nfs_purge_rddir_cache(vp); 3752 } else { 3753 error = nfs3_validate_caches(vp, cr); 3754 if (error) 3755 return (error); 3756 } 3757 } 3758 3759 /* 3760 * It is possible that some servers may not be able to correctly 3761 * handle a large READDIR or READDIRPLUS request due to bugs in 3762 * their implementation. In order to continue to interoperate 3763 * with them, this workaround is provided to limit the maximum 3764 * size of a READDIRPLUS request to 1024. In any case, the request 3765 * size is limited to MAXBSIZE. 3766 */ 3767 count = MIN(uiop->uio_iov->iov_len, 3768 nfs3_shrinkreaddir ? 1024 : MAXBSIZE); 3769 3770 nrdc = NULL; 3771 #ifdef DEBUG 3772 missed = 0; 3773 #endif 3774 top: 3775 /* 3776 * Short circuit last readdir which always returns 0 bytes. 3777 * This can be done after the directory has been read through 3778 * completely at least once. This will set r_direof which 3779 * can be used to find the value of the last cookie. 3780 */ 3781 mutex_enter(&rp->r_statelock); 3782 if (rp->r_direof != NULL && 3783 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) { 3784 mutex_exit(&rp->r_statelock); 3785 #ifdef DEBUG 3786 nfs3_readdir_cache_shorts++; 3787 #endif 3788 if (eofp) 3789 *eofp = 1; 3790 if (nrdc != NULL) 3791 rddir_cache_rele(nrdc); 3792 return (0); 3793 } 3794 /* 3795 * Look for a cache entry. Cache entries are identified 3796 * by the NFS cookie value and the byte count requested. 3797 */ 3798 srdc.nfs3_cookie = uiop->uio_loffset; 3799 srdc.buflen = count; 3800 rdc = avl_find(&rp->r_dir, &srdc, &where); 3801 if (rdc != NULL) { 3802 rddir_cache_hold(rdc); 3803 /* 3804 * If the cache entry is in the process of being 3805 * filled in, wait until this completes. The 3806 * RDDIRWAIT bit is set to indicate that someone 3807 * is waiting and then the thread currently 3808 * filling the entry is done, it should do a 3809 * cv_broadcast to wakeup all of the threads 3810 * waiting for it to finish. 3811 */ 3812 if (rdc->flags & RDDIR) { 3813 nfs_rw_exit(&rp->r_rwlock); 3814 rdc->flags |= RDDIRWAIT; 3815 #ifdef DEBUG 3816 nfs3_readdir_cache_waits++; 3817 #endif 3818 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3819 /* 3820 * We got interrupted, probably 3821 * the user typed ^C or an alarm 3822 * fired. We free the new entry 3823 * if we allocated one. 3824 */ 3825 mutex_exit(&rp->r_statelock); 3826 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3827 RW_READER, FALSE); 3828 rddir_cache_rele(rdc); 3829 if (nrdc != NULL) 3830 rddir_cache_rele(nrdc); 3831 return (EINTR); 3832 } 3833 mutex_exit(&rp->r_statelock); 3834 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3835 RW_READER, FALSE); 3836 rddir_cache_rele(rdc); 3837 goto top; 3838 } 3839 /* 3840 * Check to see if a readdir is required to 3841 * fill the entry. If so, mark this entry 3842 * as being filled, remove our reference, 3843 * and branch to the code to fill the entry. 3844 */ 3845 if (rdc->flags & RDDIRREQ) { 3846 rdc->flags &= ~RDDIRREQ; 3847 rdc->flags |= RDDIR; 3848 if (nrdc != NULL) 3849 rddir_cache_rele(nrdc); 3850 nrdc = rdc; 3851 mutex_exit(&rp->r_statelock); 3852 goto bottom; 3853 } 3854 #ifdef DEBUG 3855 if (!missed) 3856 nfs3_readdir_cache_hits++; 3857 #endif 3858 /* 3859 * If an error occurred while attempting 3860 * to fill the cache entry, just return it. 3861 */ 3862 if (rdc->error) { 3863 error = rdc->error; 3864 mutex_exit(&rp->r_statelock); 3865 rddir_cache_rele(rdc); 3866 if (nrdc != NULL) 3867 rddir_cache_rele(nrdc); 3868 return (error); 3869 } 3870 3871 /* 3872 * The cache entry is complete and good, 3873 * copyout the dirent structs to the calling 3874 * thread. 3875 */ 3876 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3877 3878 /* 3879 * If no error occurred during the copyout, 3880 * update the offset in the uio struct to 3881 * contain the value of the next cookie 3882 * and set the eof value appropriately. 3883 */ 3884 if (!error) { 3885 uiop->uio_loffset = rdc->nfs3_ncookie; 3886 if (eofp) 3887 *eofp = rdc->eof; 3888 } 3889 3890 /* 3891 * Decide whether to do readahead. 3892 * 3893 * Don't if have already read to the end of 3894 * directory. There is nothing more to read. 3895 * 3896 * Don't if the application is not doing 3897 * lookups in the directory. The readahead 3898 * is only effective if the application can 3899 * be doing work while an async thread is 3900 * handling the over the wire request. 3901 */ 3902 if (rdc->eof) { 3903 rp->r_direof = rdc; 3904 doreadahead = FALSE; 3905 } else if (!(rp->r_flags & RLOOKUP)) 3906 doreadahead = FALSE; 3907 else 3908 doreadahead = TRUE; 3909 3910 if (!doreadahead) { 3911 mutex_exit(&rp->r_statelock); 3912 rddir_cache_rele(rdc); 3913 if (nrdc != NULL) 3914 rddir_cache_rele(nrdc); 3915 return (error); 3916 } 3917 3918 /* 3919 * Check to see whether we found an entry 3920 * for the readahead. If so, we don't need 3921 * to do anything further, so free the new 3922 * entry if one was allocated. Otherwise, 3923 * allocate a new entry, add it to the cache, 3924 * and then initiate an asynchronous readdir 3925 * operation to fill it. 3926 */ 3927 srdc.nfs3_cookie = rdc->nfs3_ncookie; 3928 srdc.buflen = count; 3929 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3930 if (rrdc != NULL) { 3931 if (nrdc != NULL) 3932 rddir_cache_rele(nrdc); 3933 } else { 3934 if (nrdc != NULL) 3935 rrdc = nrdc; 3936 else { 3937 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3938 } 3939 if (rrdc != NULL) { 3940 rrdc->nfs3_cookie = rdc->nfs3_ncookie; 3941 rrdc->buflen = count; 3942 avl_insert(&rp->r_dir, rrdc, where); 3943 rddir_cache_hold(rrdc); 3944 mutex_exit(&rp->r_statelock); 3945 rddir_cache_rele(rdc); 3946 #ifdef DEBUG 3947 nfs3_readdir_readahead++; 3948 #endif 3949 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir); 3950 return (error); 3951 } 3952 } 3953 3954 mutex_exit(&rp->r_statelock); 3955 rddir_cache_rele(rdc); 3956 return (error); 3957 } 3958 3959 /* 3960 * Didn't find an entry in the cache. Construct a new empty 3961 * entry and link it into the cache. Other processes attempting 3962 * to access this entry will need to wait until it is filled in. 3963 * 3964 * Since kmem_alloc may block, another pass through the cache 3965 * will need to be taken to make sure that another process 3966 * hasn't already added an entry to the cache for this request. 3967 */ 3968 if (nrdc == NULL) { 3969 mutex_exit(&rp->r_statelock); 3970 nrdc = rddir_cache_alloc(KM_SLEEP); 3971 nrdc->nfs3_cookie = uiop->uio_loffset; 3972 nrdc->buflen = count; 3973 goto top; 3974 } 3975 3976 /* 3977 * Add this entry to the cache. 3978 */ 3979 avl_insert(&rp->r_dir, nrdc, where); 3980 rddir_cache_hold(nrdc); 3981 mutex_exit(&rp->r_statelock); 3982 3983 bottom: 3984 #ifdef DEBUG 3985 missed = 1; 3986 nfs3_readdir_cache_misses++; 3987 #endif 3988 /* 3989 * Do the readdir. This routine decides whether to use 3990 * READDIR or READDIRPLUS. 3991 */ 3992 error = do_nfs3readdir(vp, nrdc, cr); 3993 3994 /* 3995 * If this operation failed, just return the error which occurred. 3996 */ 3997 if (error != 0) 3998 return (error); 3999 4000 /* 4001 * Since the RPC operation will have taken sometime and blocked 4002 * this process, another pass through the cache will need to be 4003 * taken to find the correct cache entry. It is possible that 4004 * the correct cache entry will not be there (although one was 4005 * added) because the directory changed during the RPC operation 4006 * and the readdir cache was flushed. In this case, just start 4007 * over. It is hoped that this will not happen too often... :-) 4008 */ 4009 nrdc = NULL; 4010 goto top; 4011 /* NOTREACHED */ 4012 } 4013 4014 static int 4015 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4016 { 4017 int error; 4018 rnode_t *rp; 4019 mntinfo_t *mi; 4020 4021 rp = VTOR(vp); 4022 mi = VTOMI(vp); 4023 ASSERT(nfs_zone() == mi->mi_zone); 4024 /* 4025 * Issue the proper request. 4026 * 4027 * If the server does not support READDIRPLUS, then use READDIR. 4028 * 4029 * Otherwise -- 4030 * Issue a READDIRPLUS if reading to fill an empty cache or if 4031 * an application has performed a lookup in the directory which 4032 * required an over the wire lookup. The use of READDIRPLUS 4033 * will help to (re)populate the DNLC. 4034 */ 4035 if (!(mi->mi_flags & MI_READDIRONLY) && 4036 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) { 4037 if (rp->r_flags & RREADDIRPLUS) { 4038 mutex_enter(&rp->r_statelock); 4039 rp->r_flags &= ~RREADDIRPLUS; 4040 mutex_exit(&rp->r_statelock); 4041 } 4042 nfs3readdirplus(vp, rdc, cr); 4043 if (rdc->error == EOPNOTSUPP) 4044 nfs3readdir(vp, rdc, cr); 4045 } else 4046 nfs3readdir(vp, rdc, cr); 4047 4048 mutex_enter(&rp->r_statelock); 4049 rdc->flags &= ~RDDIR; 4050 if (rdc->flags & RDDIRWAIT) { 4051 rdc->flags &= ~RDDIRWAIT; 4052 cv_broadcast(&rdc->cv); 4053 } 4054 error = rdc->error; 4055 if (error) 4056 rdc->flags |= RDDIRREQ; 4057 mutex_exit(&rp->r_statelock); 4058 4059 rddir_cache_rele(rdc); 4060 4061 return (error); 4062 } 4063 4064 static void 4065 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4066 { 4067 int error; 4068 READDIR3args args; 4069 READDIR3vres res; 4070 vattr_t dva; 4071 rnode_t *rp; 4072 int douprintf; 4073 failinfo_t fi, *fip = NULL; 4074 mntinfo_t *mi; 4075 hrtime_t t; 4076 4077 rp = VTOR(vp); 4078 mi = VTOMI(vp); 4079 ASSERT(nfs_zone() == mi->mi_zone); 4080 4081 args.dir = *RTOFH3(rp); 4082 args.cookie = (cookie3)rdc->nfs3_cookie; 4083 args.cookieverf = rp->r_cookieverf; 4084 args.count = rdc->buflen; 4085 4086 /* 4087 * NFS client failover support 4088 * suppress failover unless we have a zero cookie 4089 */ 4090 if (args.cookie == (cookie3) 0) { 4091 fi.vp = vp; 4092 fi.fhp = (caddr_t)&args.dir; 4093 fi.copyproc = nfs3copyfh; 4094 fi.lookupproc = nfs3lookup; 4095 fi.xattrdirproc = acl_getxattrdir3; 4096 fip = &fi; 4097 } 4098 4099 #ifdef DEBUG 4100 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4101 #else 4102 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4103 #endif 4104 4105 res.entries = (dirent64_t *)rdc->entries; 4106 res.entries_size = rdc->buflen; 4107 res.dir_attributes.fres.vap = &dva; 4108 res.dir_attributes.fres.vp = vp; 4109 res.loff = rdc->nfs3_cookie; 4110 4111 douprintf = 1; 4112 4113 if (mi->mi_io_kstats) { 4114 mutex_enter(&mi->mi_lock); 4115 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4116 mutex_exit(&mi->mi_lock); 4117 } 4118 4119 t = gethrtime(); 4120 4121 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR, 4122 xdr_READDIR3args, (caddr_t)&args, 4123 xdr_READDIR3vres, (caddr_t)&res, cr, 4124 &douprintf, &res.status, 0, fip); 4125 4126 if (mi->mi_io_kstats) { 4127 mutex_enter(&mi->mi_lock); 4128 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4129 mutex_exit(&mi->mi_lock); 4130 } 4131 4132 if (error) 4133 goto err; 4134 4135 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr); 4136 4137 error = geterrno3(res.status); 4138 if (error) { 4139 PURGE_STALE_FH(error, vp, cr); 4140 goto err; 4141 } 4142 4143 if (mi->mi_io_kstats) { 4144 mutex_enter(&mi->mi_lock); 4145 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4146 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4147 mutex_exit(&mi->mi_lock); 4148 } 4149 4150 rdc->nfs3_ncookie = res.loff; 4151 rp->r_cookieverf = res.cookieverf; 4152 rdc->eof = res.eof ? 1 : 0; 4153 rdc->entlen = res.size; 4154 ASSERT(rdc->entlen <= rdc->buflen); 4155 rdc->error = 0; 4156 return; 4157 4158 err: 4159 kmem_free(rdc->entries, rdc->buflen); 4160 rdc->entries = NULL; 4161 rdc->error = error; 4162 } 4163 4164 /* 4165 * Read directory entries. 4166 * There are some weird things to look out for here. The uio_loffset 4167 * field is either 0 or it is the offset returned from a previous 4168 * readdir. It is an opaque value used by the server to find the 4169 * correct directory block to read. The count field is the number 4170 * of blocks to read on the server. This is advisory only, the server 4171 * may return only one block's worth of entries. Entries may be compressed 4172 * on the server. 4173 */ 4174 static void 4175 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 4176 { 4177 int error; 4178 READDIRPLUS3args args; 4179 READDIRPLUS3vres res; 4180 vattr_t dva; 4181 rnode_t *rp; 4182 mntinfo_t *mi; 4183 int douprintf; 4184 failinfo_t fi, *fip = NULL; 4185 4186 rp = VTOR(vp); 4187 mi = VTOMI(vp); 4188 ASSERT(nfs_zone() == mi->mi_zone); 4189 4190 args.dir = *RTOFH3(rp); 4191 args.cookie = (cookie3)rdc->nfs3_cookie; 4192 args.cookieverf = rp->r_cookieverf; 4193 args.dircount = rdc->buflen; 4194 args.maxcount = mi->mi_tsize; 4195 4196 /* 4197 * NFS client failover support 4198 * suppress failover unless we have a zero cookie 4199 */ 4200 if (args.cookie == (cookie3)0) { 4201 fi.vp = vp; 4202 fi.fhp = (caddr_t)&args.dir; 4203 fi.copyproc = nfs3copyfh; 4204 fi.lookupproc = nfs3lookup; 4205 fi.xattrdirproc = acl_getxattrdir3; 4206 fip = &fi; 4207 } 4208 4209 #ifdef DEBUG 4210 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4211 #else 4212 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4213 #endif 4214 4215 res.entries = (dirent64_t *)rdc->entries; 4216 res.entries_size = rdc->buflen; 4217 res.dir_attributes.fres.vap = &dva; 4218 res.dir_attributes.fres.vp = vp; 4219 res.loff = rdc->nfs3_cookie; 4220 res.credentials = cr; 4221 4222 douprintf = 1; 4223 4224 if (mi->mi_io_kstats) { 4225 mutex_enter(&mi->mi_lock); 4226 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4227 mutex_exit(&mi->mi_lock); 4228 } 4229 4230 res.time = gethrtime(); 4231 4232 error = rfs3call(mi, NFSPROC3_READDIRPLUS, 4233 xdr_READDIRPLUS3args, (caddr_t)&args, 4234 xdr_READDIRPLUS3vres, (caddr_t)&res, cr, 4235 &douprintf, &res.status, 0, fip); 4236 4237 if (mi->mi_io_kstats) { 4238 mutex_enter(&mi->mi_lock); 4239 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4240 mutex_exit(&mi->mi_lock); 4241 } 4242 4243 if (error) { 4244 goto err; 4245 } 4246 4247 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr); 4248 4249 error = geterrno3(res.status); 4250 if (error) { 4251 PURGE_STALE_FH(error, vp, cr); 4252 if (error == EOPNOTSUPP) { 4253 mutex_enter(&mi->mi_lock); 4254 mi->mi_flags |= MI_READDIRONLY; 4255 mutex_exit(&mi->mi_lock); 4256 } 4257 goto err; 4258 } 4259 4260 if (mi->mi_io_kstats) { 4261 mutex_enter(&mi->mi_lock); 4262 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4263 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4264 mutex_exit(&mi->mi_lock); 4265 } 4266 4267 rdc->nfs3_ncookie = res.loff; 4268 rp->r_cookieverf = res.cookieverf; 4269 rdc->eof = res.eof ? 1 : 0; 4270 rdc->entlen = res.size; 4271 ASSERT(rdc->entlen <= rdc->buflen); 4272 rdc->error = 0; 4273 4274 return; 4275 4276 err: 4277 kmem_free(rdc->entries, rdc->buflen); 4278 rdc->entries = NULL; 4279 rdc->error = error; 4280 } 4281 4282 #ifdef DEBUG 4283 static int nfs3_bio_do_stop = 0; 4284 #endif 4285 4286 static int 4287 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr) 4288 { 4289 rnode_t *rp = VTOR(bp->b_vp); 4290 int count; 4291 int error; 4292 cred_t *cred; 4293 offset_t offset; 4294 4295 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 4296 offset = ldbtob(bp->b_lblkno); 4297 4298 DTRACE_IO1(start, struct buf *, bp); 4299 4300 if (bp->b_flags & B_READ) { 4301 mutex_enter(&rp->r_statelock); 4302 if (rp->r_cred != NULL) { 4303 cred = rp->r_cred; 4304 crhold(cred); 4305 } else { 4306 rp->r_cred = cr; 4307 crhold(cr); 4308 cred = cr; 4309 crhold(cred); 4310 } 4311 mutex_exit(&rp->r_statelock); 4312 read_again: 4313 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr, 4314 offset, bp->b_bcount, &bp->b_resid, cred); 4315 crfree(cred); 4316 if (!error) { 4317 if (bp->b_resid) { 4318 /* 4319 * Didn't get it all because we hit EOF, 4320 * zero all the memory beyond the EOF. 4321 */ 4322 /* bzero(rdaddr + */ 4323 bzero(bp->b_un.b_addr + 4324 bp->b_bcount - bp->b_resid, bp->b_resid); 4325 } 4326 mutex_enter(&rp->r_statelock); 4327 if (bp->b_resid == bp->b_bcount && 4328 offset >= rp->r_size) { 4329 /* 4330 * We didn't read anything at all as we are 4331 * past EOF. Return an error indicator back 4332 * but don't destroy the pages (yet). 4333 */ 4334 error = NFS_EOF; 4335 } 4336 mutex_exit(&rp->r_statelock); 4337 } else if (error == EACCES) { 4338 mutex_enter(&rp->r_statelock); 4339 if (cred != cr) { 4340 if (rp->r_cred != NULL) 4341 crfree(rp->r_cred); 4342 rp->r_cred = cr; 4343 crhold(cr); 4344 cred = cr; 4345 crhold(cred); 4346 mutex_exit(&rp->r_statelock); 4347 goto read_again; 4348 } 4349 mutex_exit(&rp->r_statelock); 4350 } 4351 } else { 4352 if (!(rp->r_flags & RSTALE)) { 4353 mutex_enter(&rp->r_statelock); 4354 if (rp->r_cred != NULL) { 4355 cred = rp->r_cred; 4356 crhold(cred); 4357 } else { 4358 rp->r_cred = cr; 4359 crhold(cr); 4360 cred = cr; 4361 crhold(cred); 4362 } 4363 mutex_exit(&rp->r_statelock); 4364 write_again: 4365 mutex_enter(&rp->r_statelock); 4366 count = MIN(bp->b_bcount, rp->r_size - offset); 4367 mutex_exit(&rp->r_statelock); 4368 if (count < 0) 4369 cmn_err(CE_PANIC, "nfs3_bio: write count < 0"); 4370 #ifdef DEBUG 4371 if (count == 0) { 4372 zcmn_err(getzoneid(), CE_WARN, 4373 "nfs3_bio: zero length write at %lld", 4374 offset); 4375 nfs_printfhandle(&rp->r_fh); 4376 if (nfs3_bio_do_stop) 4377 debug_enter("nfs3_bio"); 4378 } 4379 #endif 4380 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset, 4381 count, cred, stab_comm); 4382 if (error == EACCES) { 4383 mutex_enter(&rp->r_statelock); 4384 if (cred != cr) { 4385 if (rp->r_cred != NULL) 4386 crfree(rp->r_cred); 4387 rp->r_cred = cr; 4388 crhold(cr); 4389 crfree(cred); 4390 cred = cr; 4391 crhold(cred); 4392 mutex_exit(&rp->r_statelock); 4393 goto write_again; 4394 } 4395 mutex_exit(&rp->r_statelock); 4396 } 4397 bp->b_error = error; 4398 if (error && error != EINTR) { 4399 /* 4400 * Don't print EDQUOT errors on the console. 4401 * Don't print asynchronous EACCES errors. 4402 * Don't print EFBIG errors. 4403 * Print all other write errors. 4404 */ 4405 if (error != EDQUOT && error != EFBIG && 4406 (error != EACCES || 4407 !(bp->b_flags & B_ASYNC))) 4408 nfs_write_error(bp->b_vp, error, cred); 4409 /* 4410 * Update r_error and r_flags as appropriate. 4411 * If the error was ESTALE, then mark the 4412 * rnode as not being writeable and save 4413 * the error status. Otherwise, save any 4414 * errors which occur from asynchronous 4415 * page invalidations. Any errors occurring 4416 * from other operations should be saved 4417 * by the caller. 4418 */ 4419 mutex_enter(&rp->r_statelock); 4420 if (error == ESTALE) { 4421 rp->r_flags |= RSTALE; 4422 if (!rp->r_error) 4423 rp->r_error = error; 4424 } else if (!rp->r_error && 4425 (bp->b_flags & 4426 (B_INVAL|B_FORCE|B_ASYNC)) == 4427 (B_INVAL|B_FORCE|B_ASYNC)) { 4428 rp->r_error = error; 4429 } 4430 mutex_exit(&rp->r_statelock); 4431 } 4432 crfree(cred); 4433 } else { 4434 error = rp->r_error; 4435 /* 4436 * A close may have cleared r_error, if so, 4437 * propagate ESTALE error return properly 4438 */ 4439 if (error == 0) 4440 error = ESTALE; 4441 } 4442 } 4443 4444 if (error != 0 && error != NFS_EOF) 4445 bp->b_flags |= B_ERROR; 4446 4447 DTRACE_IO1(done, struct buf *, bp); 4448 4449 return (error); 4450 } 4451 4452 /* ARGSUSED */ 4453 static int 4454 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4455 { 4456 rnode_t *rp; 4457 4458 if (nfs_zone() != VTOMI(vp)->mi_zone) 4459 return (EIO); 4460 rp = VTOR(vp); 4461 4462 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) { 4463 fidp->fid_len = rp->r_fh.fh_len; 4464 return (ENOSPC); 4465 } 4466 fidp->fid_len = rp->r_fh.fh_len; 4467 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len); 4468 return (0); 4469 } 4470 4471 /* ARGSUSED2 */ 4472 static int 4473 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4474 { 4475 rnode_t *rp = VTOR(vp); 4476 4477 if (!write_lock) { 4478 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4479 return (V_WRITELOCK_FALSE); 4480 } 4481 4482 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 4483 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4484 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 4485 return (V_WRITELOCK_FALSE); 4486 nfs_rw_exit(&rp->r_rwlock); 4487 } 4488 4489 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 4490 return (V_WRITELOCK_TRUE); 4491 } 4492 4493 /* ARGSUSED */ 4494 static void 4495 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4496 { 4497 rnode_t *rp = VTOR(vp); 4498 4499 nfs_rw_exit(&rp->r_rwlock); 4500 } 4501 4502 /* ARGSUSED */ 4503 static int 4504 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 4505 { 4506 4507 /* 4508 * Because we stuff the readdir cookie into the offset field 4509 * someone may attempt to do an lseek with the cookie which 4510 * we want to succeed. 4511 */ 4512 if (vp->v_type == VDIR) 4513 return (0); 4514 if (*noffp < 0) 4515 return (EINVAL); 4516 return (0); 4517 } 4518 4519 /* 4520 * number of nfs3_bsize blocks to read ahead. 4521 */ 4522 static int nfs3_nra = 4; 4523 4524 #ifdef DEBUG 4525 static int nfs3_lostpage = 0; /* number of times we lost original page */ 4526 #endif 4527 4528 /* 4529 * Return all the pages from [off..off+len) in file 4530 */ 4531 /* ARGSUSED */ 4532 static int 4533 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4534 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4535 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4536 { 4537 rnode_t *rp; 4538 int error; 4539 mntinfo_t *mi; 4540 4541 if (vp->v_flag & VNOMAP) 4542 return (ENOSYS); 4543 4544 if (nfs_zone() != VTOMI(vp)->mi_zone) 4545 return (EIO); 4546 if (protp != NULL) 4547 *protp = PROT_ALL; 4548 4549 /* 4550 * Now valididate that the caches are up to date. 4551 */ 4552 error = nfs3_validate_caches(vp, cr); 4553 if (error) 4554 return (error); 4555 4556 rp = VTOR(vp); 4557 mi = VTOMI(vp); 4558 retry: 4559 mutex_enter(&rp->r_statelock); 4560 4561 /* 4562 * Don't create dirty pages faster than they 4563 * can be cleaned so that the system doesn't 4564 * get imbalanced. If the async queue is 4565 * maxed out, then wait for it to drain before 4566 * creating more dirty pages. Also, wait for 4567 * any threads doing pagewalks in the vop_getattr 4568 * entry points so that they don't block for 4569 * long periods. 4570 */ 4571 if (rw == S_CREATE) { 4572 while ((mi->mi_max_threads != 0 && 4573 rp->r_awcount > 2 * mi->mi_max_threads) || 4574 rp->r_gcount > 0) 4575 cv_wait(&rp->r_cv, &rp->r_statelock); 4576 } 4577 4578 /* 4579 * If we are getting called as a side effect of an nfs_write() 4580 * operation the local file size might not be extended yet. 4581 * In this case we want to be able to return pages of zeroes. 4582 */ 4583 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 4584 mutex_exit(&rp->r_statelock); 4585 return (EFAULT); /* beyond EOF */ 4586 } 4587 4588 mutex_exit(&rp->r_statelock); 4589 4590 error = pvn_getpages(nfs3_getapage, vp, off, len, protp, 4591 pl, plsz, seg, addr, rw, cr); 4592 4593 switch (error) { 4594 case NFS_EOF: 4595 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 4596 goto retry; 4597 case ESTALE: 4598 PURGE_STALE_FH(error, vp, cr); 4599 } 4600 4601 return (error); 4602 } 4603 4604 /* 4605 * Called from pvn_getpages to get a particular page. 4606 */ 4607 /* ARGSUSED */ 4608 static int 4609 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 4610 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4611 enum seg_rw rw, cred_t *cr) 4612 { 4613 rnode_t *rp; 4614 uint_t bsize; 4615 struct buf *bp; 4616 page_t *pp; 4617 u_offset_t lbn; 4618 u_offset_t io_off; 4619 u_offset_t blkoff; 4620 u_offset_t rablkoff; 4621 size_t io_len; 4622 uint_t blksize; 4623 int error; 4624 int readahead; 4625 int readahead_issued = 0; 4626 int ra_window; /* readahead window */ 4627 page_t *pagefound; 4628 page_t *savepp; 4629 4630 if (nfs_zone() != VTOMI(vp)->mi_zone) 4631 return (EIO); 4632 rp = VTOR(vp); 4633 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4634 4635 reread: 4636 bp = NULL; 4637 pp = NULL; 4638 pagefound = NULL; 4639 4640 if (pl != NULL) 4641 pl[0] = NULL; 4642 4643 error = 0; 4644 lbn = off / bsize; 4645 blkoff = lbn * bsize; 4646 4647 /* 4648 * Queueing up the readahead before doing the synchronous read 4649 * results in a significant increase in read throughput because 4650 * of the increased parallelism between the async threads and 4651 * the process context. 4652 */ 4653 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 4654 rw != S_CREATE && 4655 !(vp->v_flag & VNOCACHE)) { 4656 mutex_enter(&rp->r_statelock); 4657 4658 /* 4659 * Calculate the number of readaheads to do. 4660 * a) No readaheads at offset = 0. 4661 * b) Do maximum(nfs3_nra) readaheads when the readahead 4662 * window is closed. 4663 * c) Do readaheads between 1 to (nfs3_nra - 1) depending 4664 * upon how far the readahead window is open or close. 4665 * d) No readaheads if rp->r_nextr is not within the scope 4666 * of the readahead window (random i/o). 4667 */ 4668 4669 if (off == 0) 4670 readahead = 0; 4671 else if (blkoff == rp->r_nextr) 4672 readahead = nfs3_nra; 4673 else if (rp->r_nextr > blkoff && 4674 ((ra_window = (rp->r_nextr - blkoff) / bsize) 4675 <= (nfs3_nra - 1))) 4676 readahead = nfs3_nra - ra_window; 4677 else 4678 readahead = 0; 4679 4680 rablkoff = rp->r_nextr; 4681 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 4682 mutex_exit(&rp->r_statelock); 4683 if (nfs_async_readahead(vp, rablkoff + bsize, 4684 addr + (rablkoff + bsize - off), seg, cr, 4685 nfs3_readahead) < 0) { 4686 mutex_enter(&rp->r_statelock); 4687 break; 4688 } 4689 readahead--; 4690 rablkoff += bsize; 4691 /* 4692 * Indicate that we did a readahead so 4693 * readahead offset is not updated 4694 * by the synchronous read below. 4695 */ 4696 readahead_issued = 1; 4697 mutex_enter(&rp->r_statelock); 4698 /* 4699 * set readahead offset to 4700 * offset of last async readahead 4701 * request. 4702 */ 4703 rp->r_nextr = rablkoff; 4704 } 4705 mutex_exit(&rp->r_statelock); 4706 } 4707 4708 again: 4709 if ((pagefound = page_exists(vp, off)) == NULL) { 4710 if (pl == NULL) { 4711 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 4712 nfs3_readahead); 4713 } else if (rw == S_CREATE) { 4714 /* 4715 * Block for this page is not allocated, or the offset 4716 * is beyond the current allocation size, or we're 4717 * allocating a swap slot and the page was not found, 4718 * so allocate it and return a zero page. 4719 */ 4720 if ((pp = page_create_va(vp, off, 4721 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 4722 cmn_err(CE_PANIC, "nfs3_getapage: page_create"); 4723 io_len = PAGESIZE; 4724 mutex_enter(&rp->r_statelock); 4725 rp->r_nextr = off + PAGESIZE; 4726 mutex_exit(&rp->r_statelock); 4727 } else { 4728 /* 4729 * Need to go to server to get a BLOCK, exception to 4730 * that being while reading at offset = 0 or doing 4731 * random i/o, in that case read only a PAGE. 4732 */ 4733 mutex_enter(&rp->r_statelock); 4734 if (blkoff < rp->r_size && 4735 blkoff + bsize >= rp->r_size) { 4736 /* 4737 * If only a block or less is left in 4738 * the file, read all that is remaining. 4739 */ 4740 if (rp->r_size <= off) { 4741 /* 4742 * Trying to access beyond EOF, 4743 * set up to get at least one page. 4744 */ 4745 blksize = off + PAGESIZE - blkoff; 4746 } else 4747 blksize = rp->r_size - blkoff; 4748 } else if ((off == 0) || 4749 (off != rp->r_nextr && !readahead_issued)) { 4750 blksize = PAGESIZE; 4751 blkoff = off; /* block = page here */ 4752 } else 4753 blksize = bsize; 4754 mutex_exit(&rp->r_statelock); 4755 4756 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4757 &io_len, blkoff, blksize, 0); 4758 4759 /* 4760 * Some other thread has entered the page, 4761 * so just use it. 4762 */ 4763 if (pp == NULL) 4764 goto again; 4765 4766 /* 4767 * Now round the request size up to page boundaries. 4768 * This ensures that the entire page will be 4769 * initialized to zeroes if EOF is encountered. 4770 */ 4771 io_len = ptob(btopr(io_len)); 4772 4773 bp = pageio_setup(pp, io_len, vp, B_READ); 4774 ASSERT(bp != NULL); 4775 4776 /* 4777 * pageio_setup should have set b_addr to 0. This 4778 * is correct since we want to do I/O on a page 4779 * boundary. bp_mapin will use this addr to calculate 4780 * an offset, and then set b_addr to the kernel virtual 4781 * address it allocated for us. 4782 */ 4783 ASSERT(bp->b_un.b_addr == 0); 4784 4785 bp->b_edev = 0; 4786 bp->b_dev = 0; 4787 bp->b_lblkno = lbtodb(io_off); 4788 bp->b_file = vp; 4789 bp->b_offset = (offset_t)off; 4790 bp_mapin(bp); 4791 4792 /* 4793 * If doing a write beyond what we believe is EOF, 4794 * don't bother trying to read the pages from the 4795 * server, we'll just zero the pages here. We 4796 * don't check that the rw flag is S_WRITE here 4797 * because some implementations may attempt a 4798 * read access to the buffer before copying data. 4799 */ 4800 mutex_enter(&rp->r_statelock); 4801 if (io_off >= rp->r_size && seg == segkmap) { 4802 mutex_exit(&rp->r_statelock); 4803 bzero(bp->b_un.b_addr, io_len); 4804 } else { 4805 mutex_exit(&rp->r_statelock); 4806 error = nfs3_bio(bp, NULL, cr); 4807 } 4808 4809 /* 4810 * Unmap the buffer before freeing it. 4811 */ 4812 bp_mapout(bp); 4813 pageio_done(bp); 4814 4815 savepp = pp; 4816 do { 4817 pp->p_fsdata = C_NOCOMMIT; 4818 } while ((pp = pp->p_next) != savepp); 4819 4820 if (error == NFS_EOF) { 4821 /* 4822 * If doing a write system call just return 4823 * zeroed pages, else user tried to get pages 4824 * beyond EOF, return error. We don't check 4825 * that the rw flag is S_WRITE here because 4826 * some implementations may attempt a read 4827 * access to the buffer before copying data. 4828 */ 4829 if (seg == segkmap) 4830 error = 0; 4831 else 4832 error = EFAULT; 4833 } 4834 4835 if (!readahead_issued && !error) { 4836 mutex_enter(&rp->r_statelock); 4837 rp->r_nextr = io_off + io_len; 4838 mutex_exit(&rp->r_statelock); 4839 } 4840 } 4841 } 4842 4843 out: 4844 if (pl == NULL) 4845 return (error); 4846 4847 if (error) { 4848 if (pp != NULL) 4849 pvn_read_done(pp, B_ERROR); 4850 return (error); 4851 } 4852 4853 if (pagefound) { 4854 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 4855 4856 /* 4857 * Page exists in the cache, acquire the appropriate lock. 4858 * If this fails, start all over again. 4859 */ 4860 if ((pp = page_lookup(vp, off, se)) == NULL) { 4861 #ifdef DEBUG 4862 nfs3_lostpage++; 4863 #endif 4864 goto reread; 4865 } 4866 pl[0] = pp; 4867 pl[1] = NULL; 4868 return (0); 4869 } 4870 4871 if (pp != NULL) 4872 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4873 4874 return (error); 4875 } 4876 4877 static void 4878 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 4879 cred_t *cr) 4880 { 4881 int error; 4882 page_t *pp; 4883 u_offset_t io_off; 4884 size_t io_len; 4885 struct buf *bp; 4886 uint_t bsize, blksize; 4887 rnode_t *rp = VTOR(vp); 4888 page_t *savepp; 4889 4890 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4891 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4892 4893 mutex_enter(&rp->r_statelock); 4894 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 4895 /* 4896 * If less than a block left in file read less 4897 * than a block. 4898 */ 4899 blksize = rp->r_size - blkoff; 4900 } else 4901 blksize = bsize; 4902 mutex_exit(&rp->r_statelock); 4903 4904 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 4905 &io_off, &io_len, blkoff, blksize, 1); 4906 /* 4907 * The isra flag passed to the kluster function is 1, we may have 4908 * gotten a return value of NULL for a variety of reasons (# of free 4909 * pages < minfree, someone entered the page on the vnode etc). In all 4910 * cases, we want to punt on the readahead. 4911 */ 4912 if (pp == NULL) 4913 return; 4914 4915 /* 4916 * Now round the request size up to page boundaries. 4917 * This ensures that the entire page will be 4918 * initialized to zeroes if EOF is encountered. 4919 */ 4920 io_len = ptob(btopr(io_len)); 4921 4922 bp = pageio_setup(pp, io_len, vp, B_READ); 4923 ASSERT(bp != NULL); 4924 4925 /* 4926 * pageio_setup should have set b_addr to 0. This is correct since 4927 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4928 * to calculate an offset, and then set b_addr to the kernel virtual 4929 * address it allocated for us. 4930 */ 4931 ASSERT(bp->b_un.b_addr == 0); 4932 4933 bp->b_edev = 0; 4934 bp->b_dev = 0; 4935 bp->b_lblkno = lbtodb(io_off); 4936 bp->b_file = vp; 4937 bp->b_offset = (offset_t)blkoff; 4938 bp_mapin(bp); 4939 4940 /* 4941 * If doing a write beyond what we believe is EOF, don't bother trying 4942 * to read the pages from the server, we'll just zero the pages here. 4943 * We don't check that the rw flag is S_WRITE here because some 4944 * implementations may attempt a read access to the buffer before 4945 * copying data. 4946 */ 4947 mutex_enter(&rp->r_statelock); 4948 if (io_off >= rp->r_size && seg == segkmap) { 4949 mutex_exit(&rp->r_statelock); 4950 bzero(bp->b_un.b_addr, io_len); 4951 error = 0; 4952 } else { 4953 mutex_exit(&rp->r_statelock); 4954 error = nfs3_bio(bp, NULL, cr); 4955 if (error == NFS_EOF) 4956 error = 0; 4957 } 4958 4959 /* 4960 * Unmap the buffer before freeing it. 4961 */ 4962 bp_mapout(bp); 4963 pageio_done(bp); 4964 4965 savepp = pp; 4966 do { 4967 pp->p_fsdata = C_NOCOMMIT; 4968 } while ((pp = pp->p_next) != savepp); 4969 4970 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4971 4972 /* 4973 * In case of error set readahead offset 4974 * to the lowest offset. 4975 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4976 */ 4977 if (error && rp->r_nextr > io_off) { 4978 mutex_enter(&rp->r_statelock); 4979 if (rp->r_nextr > io_off) 4980 rp->r_nextr = io_off; 4981 mutex_exit(&rp->r_statelock); 4982 } 4983 } 4984 4985 /* 4986 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4987 * If len == 0, do from off to EOF. 4988 * 4989 * The normal cases should be len == 0 && off == 0 (entire vp list), 4990 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4991 * (from pageout). 4992 */ 4993 /* ARGSUSED */ 4994 static int 4995 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4996 caller_context_t *ct) 4997 { 4998 int error; 4999 rnode_t *rp; 5000 5001 ASSERT(cr != NULL); 5002 5003 /* 5004 * XXX - Why should this check be made here? 5005 */ 5006 if (vp->v_flag & VNOMAP) 5007 return (ENOSYS); 5008 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 5009 return (0); 5010 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5011 return (EIO); 5012 5013 rp = VTOR(vp); 5014 mutex_enter(&rp->r_statelock); 5015 rp->r_count++; 5016 mutex_exit(&rp->r_statelock); 5017 error = nfs_putpages(vp, off, len, flags, cr); 5018 mutex_enter(&rp->r_statelock); 5019 rp->r_count--; 5020 cv_broadcast(&rp->r_cv); 5021 mutex_exit(&rp->r_statelock); 5022 5023 return (error); 5024 } 5025 5026 /* 5027 * Write out a single page, possibly klustering adjacent dirty pages. 5028 */ 5029 int 5030 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 5031 int flags, cred_t *cr) 5032 { 5033 u_offset_t io_off; 5034 u_offset_t lbn_off; 5035 u_offset_t lbn; 5036 size_t io_len; 5037 uint_t bsize; 5038 int error; 5039 rnode_t *rp; 5040 5041 ASSERT(!vn_is_readonly(vp)); 5042 ASSERT(pp != NULL); 5043 ASSERT(cr != NULL); 5044 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 5045 5046 rp = VTOR(vp); 5047 ASSERT(rp->r_count > 0); 5048 5049 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 5050 lbn = pp->p_offset / bsize; 5051 lbn_off = lbn * bsize; 5052 5053 /* 5054 * Find a kluster that fits in one block, or in 5055 * one page if pages are bigger than blocks. If 5056 * there is less file space allocated than a whole 5057 * page, we'll shorten the i/o request below. 5058 */ 5059 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 5060 roundup(bsize, PAGESIZE), flags); 5061 5062 /* 5063 * pvn_write_kluster shouldn't have returned a page with offset 5064 * behind the original page we were given. Verify that. 5065 */ 5066 ASSERT((pp->p_offset / bsize) >= lbn); 5067 5068 /* 5069 * Now pp will have the list of kept dirty pages marked for 5070 * write back. It will also handle invalidation and freeing 5071 * of pages that are not dirty. Check for page length rounding 5072 * problems. 5073 */ 5074 if (io_off + io_len > lbn_off + bsize) { 5075 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 5076 io_len = lbn_off + bsize - io_off; 5077 } 5078 /* 5079 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5080 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 5081 * When RMODINPROGRESS is set it indicates that a uiomove() is in 5082 * progress and the r_size has not been made consistent with the 5083 * new size of the file. When the uiomove() completes the r_size is 5084 * updated and the RMODINPROGRESS flag is cleared. 5085 * 5086 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 5087 * consistent value of r_size. Without this handshaking, it is 5088 * possible that nfs(3)_bio() picks up the old value of r_size 5089 * before the uiomove() in writerp() completes. This will result 5090 * in the write through nfs(3)_bio() being dropped. 5091 * 5092 * More precisely, there is a window between the time the uiomove() 5093 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 5094 * operation intervenes in this window, the page will be picked up, 5095 * because it is dirty (it will be unlocked, unless it was 5096 * pagecreate'd). When the page is picked up as dirty, the dirty 5097 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 5098 * checked. This will still be the old size. Therefore the page will 5099 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 5100 * the page will be found to be clean and the write will be dropped. 5101 */ 5102 if (rp->r_flags & RMODINPROGRESS) { 5103 mutex_enter(&rp->r_statelock); 5104 if ((rp->r_flags & RMODINPROGRESS) && 5105 rp->r_modaddr + MAXBSIZE > io_off && 5106 rp->r_modaddr < io_off + io_len) { 5107 page_t *plist; 5108 /* 5109 * A write is in progress for this region of the file. 5110 * If we did not detect RMODINPROGRESS here then this 5111 * path through nfs_putapage() would eventually go to 5112 * nfs(3)_bio() and may not write out all of the data 5113 * in the pages. We end up losing data. So we decide 5114 * to set the modified bit on each page in the page 5115 * list and mark the rnode with RDIRTY. This write 5116 * will be restarted at some later time. 5117 */ 5118 plist = pp; 5119 while (plist != NULL) { 5120 pp = plist; 5121 page_sub(&plist, pp); 5122 hat_setmod(pp); 5123 page_io_unlock(pp); 5124 page_unlock(pp); 5125 } 5126 rp->r_flags |= RDIRTY; 5127 mutex_exit(&rp->r_statelock); 5128 if (offp) 5129 *offp = io_off; 5130 if (lenp) 5131 *lenp = io_len; 5132 return (0); 5133 } 5134 mutex_exit(&rp->r_statelock); 5135 } 5136 5137 if (flags & B_ASYNC) { 5138 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 5139 nfs3_sync_putapage); 5140 } else 5141 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr); 5142 5143 if (offp) 5144 *offp = io_off; 5145 if (lenp) 5146 *lenp = io_len; 5147 return (error); 5148 } 5149 5150 static int 5151 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5152 int flags, cred_t *cr) 5153 { 5154 int error; 5155 rnode_t *rp; 5156 5157 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5158 5159 flags |= B_WRITE; 5160 5161 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5162 5163 rp = VTOR(vp); 5164 5165 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 5166 error == EACCES) && 5167 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 5168 if (!(rp->r_flags & ROUTOFSPACE)) { 5169 mutex_enter(&rp->r_statelock); 5170 rp->r_flags |= ROUTOFSPACE; 5171 mutex_exit(&rp->r_statelock); 5172 } 5173 flags |= B_ERROR; 5174 pvn_write_done(pp, flags); 5175 /* 5176 * If this was not an async thread, then try again to 5177 * write out the pages, but this time, also destroy 5178 * them whether or not the write is successful. This 5179 * will prevent memory from filling up with these 5180 * pages and destroying them is the only alternative 5181 * if they can't be written out. 5182 * 5183 * Don't do this if this is an async thread because 5184 * when the pages are unlocked in pvn_write_done, 5185 * some other thread could have come along, locked 5186 * them, and queued for an async thread. It would be 5187 * possible for all of the async threads to be tied 5188 * up waiting to lock the pages again and they would 5189 * all already be locked and waiting for an async 5190 * thread to handle them. Deadlock. 5191 */ 5192 if (!(flags & B_ASYNC)) { 5193 error = nfs3_putpage(vp, io_off, io_len, 5194 B_INVAL | B_FORCE, cr, NULL); 5195 } 5196 } else { 5197 if (error) 5198 flags |= B_ERROR; 5199 else if (rp->r_flags & ROUTOFSPACE) { 5200 mutex_enter(&rp->r_statelock); 5201 rp->r_flags &= ~ROUTOFSPACE; 5202 mutex_exit(&rp->r_statelock); 5203 } 5204 pvn_write_done(pp, flags); 5205 if (freemem < desfree) 5206 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr); 5207 } 5208 5209 return (error); 5210 } 5211 5212 /* ARGSUSED */ 5213 static int 5214 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5215 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5216 cred_t *cr, caller_context_t *ct) 5217 { 5218 struct segvn_crargs vn_a; 5219 int error; 5220 rnode_t *rp; 5221 struct vattr va; 5222 5223 if (nfs_zone() != VTOMI(vp)->mi_zone) 5224 return (EIO); 5225 5226 if (vp->v_flag & VNOMAP) 5227 return (ENOSYS); 5228 5229 if (off < 0 || off + len < 0) 5230 return (ENXIO); 5231 5232 if (vp->v_type != VREG) 5233 return (ENODEV); 5234 5235 /* 5236 * If there is cached data and if close-to-open consistency 5237 * checking is not turned off and if the file system is not 5238 * mounted readonly, then force an over the wire getattr. 5239 * Otherwise, just invoke nfs3getattr to get a copy of the 5240 * attributes. The attribute cache will be used unless it 5241 * is timed out and if it is, then an over the wire getattr 5242 * will be issued. 5243 */ 5244 va.va_mask = AT_ALL; 5245 if (vn_has_cached_data(vp) && 5246 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 5247 error = nfs3_getattr_otw(vp, &va, cr); 5248 else 5249 error = nfs3getattr(vp, &va, cr); 5250 if (error) 5251 return (error); 5252 5253 /* 5254 * Check to see if the vnode is currently marked as not cachable. 5255 * This means portions of the file are locked (through VOP_FRLOCK). 5256 * In this case the map request must be refused. We use 5257 * rp->r_lkserlock to avoid a race with concurrent lock requests. 5258 */ 5259 rp = VTOR(vp); 5260 5261 /* 5262 * Atomically increment r_inmap after acquiring r_rwlock. The 5263 * idea here is to acquire r_rwlock to block read/write and 5264 * not to protect r_inmap. r_inmap will inform nfs3_read/write() 5265 * that we are in nfs3_map(). Now, r_rwlock is acquired in order 5266 * and we can prevent the deadlock that would have occurred 5267 * when nfs3_addmap() would have acquired it out of order. 5268 * 5269 * Since we are not protecting r_inmap by any lock, we do not 5270 * hold any lock when we decrement it. We atomically decrement 5271 * r_inmap after we release r_lkserlock. 5272 */ 5273 5274 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 5275 return (EINTR); 5276 atomic_inc_uint(&rp->r_inmap); 5277 nfs_rw_exit(&rp->r_rwlock); 5278 5279 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 5280 atomic_dec_uint(&rp->r_inmap); 5281 return (EINTR); 5282 } 5283 5284 if (vp->v_flag & VNOCACHE) { 5285 error = EAGAIN; 5286 goto done; 5287 } 5288 5289 /* 5290 * Don't allow concurrent locks and mapping if mandatory locking is 5291 * enabled. 5292 */ 5293 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 5294 MANDLOCK(vp, va.va_mode)) { 5295 error = EAGAIN; 5296 goto done; 5297 } 5298 5299 as_rangelock(as); 5300 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5301 if (error != 0) { 5302 as_rangeunlock(as); 5303 goto done; 5304 } 5305 5306 vn_a.vp = vp; 5307 vn_a.offset = off; 5308 vn_a.type = (flags & MAP_TYPE); 5309 vn_a.prot = (uchar_t)prot; 5310 vn_a.maxprot = (uchar_t)maxprot; 5311 vn_a.flags = (flags & ~MAP_TYPE); 5312 vn_a.cred = cr; 5313 vn_a.amp = NULL; 5314 vn_a.szc = 0; 5315 vn_a.lgrp_mem_policy_flags = 0; 5316 5317 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5318 as_rangeunlock(as); 5319 5320 done: 5321 nfs_rw_exit(&rp->r_lkserlock); 5322 atomic_dec_uint(&rp->r_inmap); 5323 return (error); 5324 } 5325 5326 /* ARGSUSED */ 5327 static int 5328 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5329 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5330 cred_t *cr, caller_context_t *ct) 5331 { 5332 rnode_t *rp; 5333 5334 if (vp->v_flag & VNOMAP) 5335 return (ENOSYS); 5336 if (nfs_zone() != VTOMI(vp)->mi_zone) 5337 return (EIO); 5338 5339 rp = VTOR(vp); 5340 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 5341 5342 return (0); 5343 } 5344 5345 /* ARGSUSED */ 5346 static int 5347 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5348 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 5349 caller_context_t *ct) 5350 { 5351 netobj lm_fh3; 5352 int rc; 5353 u_offset_t start, end; 5354 rnode_t *rp; 5355 int error = 0, intr = INTR(vp); 5356 5357 if (nfs_zone() != VTOMI(vp)->mi_zone) 5358 return (EIO); 5359 5360 /* check for valid cmd parameter */ 5361 switch (cmd) { 5362 case F_FLOCK: 5363 case F_FLOCKW: 5364 case F_OFD_GETLK: 5365 case F_OFD_SETLK: 5366 case F_OFD_SETLKW: 5367 return (EOPNOTSUPP); 5368 case F_GETLK: 5369 case F_SETLK: 5370 case F_SETLKW: 5371 break; 5372 default: 5373 return (EINVAL); 5374 } 5375 5376 /* Verify l_type. */ 5377 switch (bfp->l_type) { 5378 case F_RDLCK: 5379 if (cmd != F_GETLK && !(flag & FREAD)) 5380 return (EBADF); 5381 break; 5382 case F_WRLCK: 5383 if (cmd != F_GETLK && !(flag & FWRITE)) 5384 return (EBADF); 5385 break; 5386 case F_UNLCK: 5387 intr = 0; 5388 break; 5389 5390 default: 5391 return (EINVAL); 5392 } 5393 5394 /* check the validity of the lock range */ 5395 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 5396 return (rc); 5397 if (rc = flk_check_lock_data(start, end, MAXEND)) 5398 return (rc); 5399 5400 /* 5401 * If the filesystem is mounted using local locking, pass the 5402 * request off to the local locking code. 5403 */ 5404 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 5405 if (cmd == F_SETLK || cmd == F_SETLKW) { 5406 /* 5407 * For complete safety, we should be holding 5408 * r_lkserlock. However, we can't call 5409 * lm_safelock and then fs_frlock while 5410 * holding r_lkserlock, so just invoke 5411 * lm_safelock and expect that this will 5412 * catch enough of the cases. 5413 */ 5414 if (!lm_safelock(vp, bfp, cr)) 5415 return (EAGAIN); 5416 } 5417 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 5418 } 5419 5420 rp = VTOR(vp); 5421 5422 /* 5423 * Check whether the given lock request can proceed, given the 5424 * current file mappings. 5425 */ 5426 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 5427 return (EINTR); 5428 if (cmd == F_SETLK || cmd == F_SETLKW) { 5429 if (!lm_safelock(vp, bfp, cr)) { 5430 rc = EAGAIN; 5431 goto done; 5432 } 5433 } 5434 5435 /* 5436 * Flush the cache after waiting for async I/O to finish. For new 5437 * locks, this is so that the process gets the latest bits from the 5438 * server. For unlocks, this is so that other clients see the 5439 * latest bits once the file has been unlocked. If currently dirty 5440 * pages can't be flushed, then don't allow a lock to be set. But 5441 * allow unlocks to succeed, to avoid having orphan locks on the 5442 * server. 5443 */ 5444 if (cmd != F_GETLK) { 5445 mutex_enter(&rp->r_statelock); 5446 while (rp->r_count > 0) { 5447 if (intr) { 5448 klwp_t *lwp = ttolwp(curthread); 5449 5450 if (lwp != NULL) 5451 lwp->lwp_nostop++; 5452 if (cv_wait_sig(&rp->r_cv, 5453 &rp->r_statelock) == 0) { 5454 if (lwp != NULL) 5455 lwp->lwp_nostop--; 5456 rc = EINTR; 5457 break; 5458 } 5459 if (lwp != NULL) 5460 lwp->lwp_nostop--; 5461 } else 5462 cv_wait(&rp->r_cv, &rp->r_statelock); 5463 } 5464 mutex_exit(&rp->r_statelock); 5465 if (rc != 0) 5466 goto done; 5467 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 5468 if (error) { 5469 if (error == ENOSPC || error == EDQUOT) { 5470 mutex_enter(&rp->r_statelock); 5471 if (!rp->r_error) 5472 rp->r_error = error; 5473 mutex_exit(&rp->r_statelock); 5474 } 5475 if (bfp->l_type != F_UNLCK) { 5476 rc = ENOLCK; 5477 goto done; 5478 } 5479 } 5480 } 5481 5482 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 5483 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 5484 5485 /* 5486 * Call the lock manager to do the real work of contacting 5487 * the server and obtaining the lock. 5488 */ 5489 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp); 5490 5491 if (rc == 0) 5492 nfs_lockcompletion(vp, cmd); 5493 5494 done: 5495 nfs_rw_exit(&rp->r_lkserlock); 5496 return (rc); 5497 } 5498 5499 /* 5500 * Free storage space associated with the specified vnode. The portion 5501 * to be freed is specified by bfp->l_start and bfp->l_len (already 5502 * normalized to a "whence" of 0). 5503 * 5504 * This is an experimental facility whose continued existence is not 5505 * guaranteed. Currently, we only support the special case 5506 * of l_len == 0, meaning free to end of file. 5507 */ 5508 /* ARGSUSED */ 5509 static int 5510 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5511 offset_t offset, cred_t *cr, caller_context_t *ct) 5512 { 5513 int error; 5514 5515 ASSERT(vp->v_type == VREG); 5516 if (cmd != F_FREESP) 5517 return (EINVAL); 5518 if (nfs_zone() != VTOMI(vp)->mi_zone) 5519 return (EIO); 5520 5521 error = convoff(vp, bfp, 0, offset); 5522 if (!error) { 5523 ASSERT(bfp->l_start >= 0); 5524 if (bfp->l_len == 0) { 5525 struct vattr va; 5526 5527 /* 5528 * ftruncate should not change the ctime and 5529 * mtime if we truncate the file to its 5530 * previous size. 5531 */ 5532 va.va_mask = AT_SIZE; 5533 error = nfs3getattr(vp, &va, cr); 5534 if (error || va.va_size == bfp->l_start) 5535 return (error); 5536 va.va_mask = AT_SIZE; 5537 va.va_size = bfp->l_start; 5538 error = nfs3setattr(vp, &va, 0, cr); 5539 5540 if (error == 0 && bfp->l_start == 0) 5541 vnevent_truncate(vp, ct); 5542 } else 5543 error = EINVAL; 5544 } 5545 5546 return (error); 5547 } 5548 5549 /* ARGSUSED */ 5550 static int 5551 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 5552 { 5553 5554 return (EINVAL); 5555 } 5556 5557 /* 5558 * Setup and add an address space callback to do the work of the delmap call. 5559 * The callback will (and must be) deleted in the actual callback function. 5560 * 5561 * This is done in order to take care of the problem that we have with holding 5562 * the address space's a_lock for a long period of time (e.g. if the NFS server 5563 * is down). Callbacks will be executed in the address space code while the 5564 * a_lock is not held. Holding the address space's a_lock causes things such 5565 * as ps and fork to hang because they are trying to acquire this lock as well. 5566 */ 5567 /* ARGSUSED */ 5568 static int 5569 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5570 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5571 cred_t *cr, caller_context_t *ct) 5572 { 5573 int caller_found; 5574 int error; 5575 rnode_t *rp; 5576 nfs_delmap_args_t *dmapp; 5577 nfs_delmapcall_t *delmap_call; 5578 5579 if (vp->v_flag & VNOMAP) 5580 return (ENOSYS); 5581 /* 5582 * A process may not change zones if it has NFS pages mmap'ed 5583 * in, so we can't legitimately get here from the wrong zone. 5584 */ 5585 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5586 5587 rp = VTOR(vp); 5588 5589 /* 5590 * The way that the address space of this process deletes its mapping 5591 * of this file is via the following call chains: 5592 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5593 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5594 * 5595 * With the use of address space callbacks we are allowed to drop the 5596 * address space lock, a_lock, while executing the NFS operations that 5597 * need to go over the wire. Returning EAGAIN to the caller of this 5598 * function is what drives the execution of the callback that we add 5599 * below. The callback will be executed by the address space code 5600 * after dropping the a_lock. When the callback is finished, since 5601 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 5602 * is called again on the same segment to finish the rest of the work 5603 * that needs to happen during unmapping. 5604 * 5605 * This action of calling back into the segment driver causes 5606 * nfs3_delmap() to get called again, but since the callback was 5607 * already executed at this point, it already did the work and there 5608 * is nothing left for us to do. 5609 * 5610 * To Summarize: 5611 * - The first time nfs3_delmap is called by the current thread is when 5612 * we add the caller associated with this delmap to the delmap caller 5613 * list, add the callback, and return EAGAIN. 5614 * - The second time in this call chain when nfs3_delmap is called we 5615 * will find this caller in the delmap caller list and realize there 5616 * is no more work to do thus removing this caller from the list and 5617 * returning the error that was set in the callback execution. 5618 */ 5619 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 5620 if (caller_found) { 5621 /* 5622 * 'error' is from the actual delmap operations. To avoid 5623 * hangs, we need to handle the return of EAGAIN differently 5624 * since this is what drives the callback execution. 5625 * In this case, we don't want to return EAGAIN and do the 5626 * callback execution because there are none to execute. 5627 */ 5628 if (error == EAGAIN) 5629 return (0); 5630 else 5631 return (error); 5632 } 5633 5634 /* current caller was not in the list */ 5635 delmap_call = nfs_init_delmapcall(); 5636 5637 mutex_enter(&rp->r_statelock); 5638 list_insert_tail(&rp->r_indelmap, delmap_call); 5639 mutex_exit(&rp->r_statelock); 5640 5641 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 5642 5643 dmapp->vp = vp; 5644 dmapp->off = off; 5645 dmapp->addr = addr; 5646 dmapp->len = len; 5647 dmapp->prot = prot; 5648 dmapp->maxprot = maxprot; 5649 dmapp->flags = flags; 5650 dmapp->cr = cr; 5651 dmapp->caller = delmap_call; 5652 5653 error = as_add_callback(as, nfs3_delmap_callback, dmapp, 5654 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 5655 5656 return (error ? error : EAGAIN); 5657 } 5658 5659 /* 5660 * Remove some pages from an mmap'd vnode. Just update the 5661 * count of pages. If doing close-to-open, then flush and 5662 * commit all of the pages associated with this file. 5663 * Otherwise, start an asynchronous page flush to write out 5664 * any dirty pages. This will also associate a credential 5665 * with the rnode which can be used to write the pages. 5666 */ 5667 /* ARGSUSED */ 5668 static void 5669 nfs3_delmap_callback(struct as *as, void *arg, uint_t event) 5670 { 5671 int error; 5672 rnode_t *rp; 5673 mntinfo_t *mi; 5674 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 5675 5676 rp = VTOR(dmapp->vp); 5677 mi = VTOMI(dmapp->vp); 5678 5679 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 5680 ASSERT(rp->r_mapcnt >= 0); 5681 5682 /* 5683 * Initiate a page flush and potential commit if there are 5684 * pages, the file system was not mounted readonly, the segment 5685 * was mapped shared, and the pages themselves were writeable. 5686 */ 5687 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 5688 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 5689 mutex_enter(&rp->r_statelock); 5690 rp->r_flags |= RDIRTY; 5691 mutex_exit(&rp->r_statelock); 5692 /* 5693 * If this is a cross-zone access a sync putpage won't work, so 5694 * the best we can do is try an async putpage. That seems 5695 * better than something more draconian such as discarding the 5696 * dirty pages. 5697 */ 5698 if ((mi->mi_flags & MI_NOCTO) || 5699 nfs_zone() != mi->mi_zone) 5700 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5701 B_ASYNC, dmapp->cr, NULL); 5702 else 5703 error = nfs3_putpage_commit(dmapp->vp, dmapp->off, 5704 dmapp->len, dmapp->cr); 5705 if (!error) { 5706 mutex_enter(&rp->r_statelock); 5707 error = rp->r_error; 5708 rp->r_error = 0; 5709 mutex_exit(&rp->r_statelock); 5710 } 5711 } else 5712 error = 0; 5713 5714 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 5715 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5716 B_INVAL, dmapp->cr, NULL); 5717 5718 dmapp->caller->error = error; 5719 (void) as_delete_callback(as, arg); 5720 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 5721 } 5722 5723 static int nfs3_pathconf_disable_cache = 0; 5724 5725 #ifdef DEBUG 5726 static int nfs3_pathconf_cache_hits = 0; 5727 static int nfs3_pathconf_cache_misses = 0; 5728 #endif 5729 5730 /* ARGSUSED */ 5731 static int 5732 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 5733 caller_context_t *ct) 5734 { 5735 int error; 5736 PATHCONF3args args; 5737 PATHCONF3res res; 5738 int douprintf; 5739 failinfo_t fi; 5740 rnode_t *rp; 5741 hrtime_t t; 5742 5743 if (nfs_zone() != VTOMI(vp)->mi_zone) 5744 return (EIO); 5745 /* 5746 * Large file spec - need to base answer on info stored 5747 * on original FSINFO response. 5748 */ 5749 if (cmd == _PC_FILESIZEBITS) { 5750 unsigned long long ll; 5751 long l = 1; 5752 5753 ll = VTOMI(vp)->mi_maxfilesize; 5754 5755 if (ll == 0) { 5756 *valp = 0; 5757 return (0); 5758 } 5759 5760 if (ll & 0xffffffff00000000) { 5761 l += 32; ll >>= 32; 5762 } 5763 if (ll & 0xffff0000) { 5764 l += 16; ll >>= 16; 5765 } 5766 if (ll & 0xff00) { 5767 l += 8; ll >>= 8; 5768 } 5769 if (ll & 0xf0) { 5770 l += 4; ll >>= 4; 5771 } 5772 if (ll & 0xc) { 5773 l += 2; ll >>= 2; 5774 } 5775 if (ll & 0x2) 5776 l += 2; 5777 else if (ll & 0x1) 5778 l += 1; 5779 *valp = l; 5780 return (0); 5781 } 5782 5783 if (cmd == _PC_ACL_ENABLED) { 5784 *valp = _ACL_ACLENT_ENABLED; 5785 return (0); 5786 } 5787 5788 if (cmd == _PC_XATTR_EXISTS) { 5789 error = 0; 5790 *valp = 0; 5791 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5792 vnode_t *avp; 5793 rnode_t *rp; 5794 int error = 0; 5795 mntinfo_t *mi = VTOMI(vp); 5796 5797 if (!(mi->mi_flags & MI_EXTATTR)) 5798 return (0); 5799 5800 rp = VTOR(vp); 5801 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 5802 INTR(vp))) 5803 return (EINTR); 5804 5805 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 5806 if (error || avp == NULL) 5807 error = acl_getxattrdir3(vp, &avp, 0, cr, 0); 5808 5809 nfs_rw_exit(&rp->r_rwlock); 5810 5811 if (error == 0 && avp != NULL) { 5812 error = do_xattr_exists_check(avp, valp, cr); 5813 VN_RELE(avp); 5814 } else if (error == ENOENT) { 5815 error = 0; 5816 *valp = 0; 5817 } 5818 } 5819 return (error); 5820 } 5821 5822 rp = VTOR(vp); 5823 if (rp->r_pathconf != NULL) { 5824 mutex_enter(&rp->r_statelock); 5825 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) { 5826 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf)); 5827 rp->r_pathconf = NULL; 5828 } 5829 if (rp->r_pathconf != NULL) { 5830 error = 0; 5831 switch (cmd) { 5832 case _PC_LINK_MAX: 5833 *valp = rp->r_pathconf->link_max; 5834 break; 5835 case _PC_NAME_MAX: 5836 *valp = rp->r_pathconf->name_max; 5837 break; 5838 case _PC_PATH_MAX: 5839 case _PC_SYMLINK_MAX: 5840 *valp = MAXPATHLEN; 5841 break; 5842 case _PC_CHOWN_RESTRICTED: 5843 *valp = rp->r_pathconf->chown_restricted; 5844 break; 5845 case _PC_NO_TRUNC: 5846 *valp = rp->r_pathconf->no_trunc; 5847 break; 5848 default: 5849 error = EINVAL; 5850 break; 5851 } 5852 mutex_exit(&rp->r_statelock); 5853 #ifdef DEBUG 5854 nfs3_pathconf_cache_hits++; 5855 #endif 5856 return (error); 5857 } 5858 mutex_exit(&rp->r_statelock); 5859 } 5860 #ifdef DEBUG 5861 nfs3_pathconf_cache_misses++; 5862 #endif 5863 5864 args.object = *VTOFH3(vp); 5865 fi.vp = vp; 5866 fi.fhp = (caddr_t)&args.object; 5867 fi.copyproc = nfs3copyfh; 5868 fi.lookupproc = nfs3lookup; 5869 fi.xattrdirproc = acl_getxattrdir3; 5870 5871 douprintf = 1; 5872 5873 t = gethrtime(); 5874 5875 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF, 5876 xdr_nfs_fh3, (caddr_t)&args, 5877 xdr_PATHCONF3res, (caddr_t)&res, cr, 5878 &douprintf, &res.status, 0, &fi); 5879 5880 if (error) 5881 return (error); 5882 5883 error = geterrno3(res.status); 5884 5885 if (!error) { 5886 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 5887 if (!nfs3_pathconf_disable_cache) { 5888 mutex_enter(&rp->r_statelock); 5889 if (rp->r_pathconf == NULL) { 5890 rp->r_pathconf = kmem_alloc( 5891 sizeof (*rp->r_pathconf), KM_NOSLEEP); 5892 if (rp->r_pathconf != NULL) 5893 *rp->r_pathconf = res.resok.info; 5894 } 5895 mutex_exit(&rp->r_statelock); 5896 } 5897 switch (cmd) { 5898 case _PC_LINK_MAX: 5899 *valp = res.resok.info.link_max; 5900 break; 5901 case _PC_NAME_MAX: 5902 *valp = res.resok.info.name_max; 5903 break; 5904 case _PC_PATH_MAX: 5905 case _PC_SYMLINK_MAX: 5906 *valp = MAXPATHLEN; 5907 break; 5908 case _PC_CHOWN_RESTRICTED: 5909 *valp = res.resok.info.chown_restricted; 5910 break; 5911 case _PC_NO_TRUNC: 5912 *valp = res.resok.info.no_trunc; 5913 break; 5914 default: 5915 return (EINVAL); 5916 } 5917 } else { 5918 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 5919 PURGE_STALE_FH(error, vp, cr); 5920 } 5921 5922 return (error); 5923 } 5924 5925 /* 5926 * Called by async thread to do synchronous pageio. Do the i/o, wait 5927 * for it to complete, and cleanup the page list when done. 5928 */ 5929 static int 5930 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5931 int flags, cred_t *cr) 5932 { 5933 int error; 5934 5935 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5936 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5937 if (flags & B_READ) 5938 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 5939 else 5940 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 5941 return (error); 5942 } 5943 5944 /* ARGSUSED */ 5945 static int 5946 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5947 int flags, cred_t *cr, caller_context_t *ct) 5948 { 5949 int error; 5950 rnode_t *rp; 5951 5952 if (pp == NULL) 5953 return (EINVAL); 5954 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5955 return (EIO); 5956 5957 rp = VTOR(vp); 5958 mutex_enter(&rp->r_statelock); 5959 rp->r_count++; 5960 mutex_exit(&rp->r_statelock); 5961 5962 if (flags & B_ASYNC) { 5963 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 5964 nfs3_sync_pageio); 5965 } else 5966 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5967 mutex_enter(&rp->r_statelock); 5968 rp->r_count--; 5969 cv_broadcast(&rp->r_cv); 5970 mutex_exit(&rp->r_statelock); 5971 return (error); 5972 } 5973 5974 /* ARGSUSED */ 5975 static void 5976 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 5977 caller_context_t *ct) 5978 { 5979 int error; 5980 rnode_t *rp; 5981 page_t *plist; 5982 page_t *pptr; 5983 offset3 offset; 5984 count3 len; 5985 k_sigset_t smask; 5986 5987 /* 5988 * We should get called with fl equal to either B_FREE or 5989 * B_INVAL. Any other value is illegal. 5990 * 5991 * The page that we are either supposed to free or destroy 5992 * should be exclusive locked and its io lock should not 5993 * be held. 5994 */ 5995 ASSERT(fl == B_FREE || fl == B_INVAL); 5996 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 5997 rp = VTOR(vp); 5998 5999 /* 6000 * If the page doesn't need to be committed or we shouldn't 6001 * even bother attempting to commit it, then just make sure 6002 * that the p_fsdata byte is clear and then either free or 6003 * destroy the page as appropriate. 6004 */ 6005 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) { 6006 pp->p_fsdata = C_NOCOMMIT; 6007 if (fl == B_FREE) 6008 page_free(pp, dn); 6009 else 6010 page_destroy(pp, dn); 6011 return; 6012 } 6013 6014 /* 6015 * If there is a page invalidation operation going on, then 6016 * if this is one of the pages being destroyed, then just 6017 * clear the p_fsdata byte and then either free or destroy 6018 * the page as appropriate. 6019 */ 6020 mutex_enter(&rp->r_statelock); 6021 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 6022 mutex_exit(&rp->r_statelock); 6023 pp->p_fsdata = C_NOCOMMIT; 6024 if (fl == B_FREE) 6025 page_free(pp, dn); 6026 else 6027 page_destroy(pp, dn); 6028 return; 6029 } 6030 6031 /* 6032 * If we are freeing this page and someone else is already 6033 * waiting to do a commit, then just unlock the page and 6034 * return. That other thread will take care of commiting 6035 * this page. The page can be freed sometime after the 6036 * commit has finished. Otherwise, if the page is marked 6037 * as delay commit, then we may be getting called from 6038 * pvn_write_done, one page at a time. This could result 6039 * in one commit per page, so we end up doing lots of small 6040 * commits instead of fewer larger commits. This is bad, 6041 * we want do as few commits as possible. 6042 */ 6043 if (fl == B_FREE) { 6044 if (rp->r_flags & RCOMMITWAIT) { 6045 page_unlock(pp); 6046 mutex_exit(&rp->r_statelock); 6047 return; 6048 } 6049 if (pp->p_fsdata == C_DELAYCOMMIT) { 6050 pp->p_fsdata = C_COMMIT; 6051 page_unlock(pp); 6052 mutex_exit(&rp->r_statelock); 6053 return; 6054 } 6055 } 6056 6057 /* 6058 * Check to see if there is a signal which would prevent an 6059 * attempt to commit the pages from being successful. If so, 6060 * then don't bother with all of the work to gather pages and 6061 * generate the unsuccessful RPC. Just return from here and 6062 * let the page be committed at some later time. 6063 */ 6064 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 6065 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 6066 sigunintr(&smask); 6067 page_unlock(pp); 6068 mutex_exit(&rp->r_statelock); 6069 return; 6070 } 6071 sigunintr(&smask); 6072 6073 /* 6074 * We are starting to need to commit pages, so let's try 6075 * to commit as many as possible at once to reduce the 6076 * overhead. 6077 * 6078 * Set the `commit inprogress' state bit. We must 6079 * first wait until any current one finishes. Then 6080 * we initialize the c_pages list with this page. 6081 */ 6082 while (rp->r_flags & RCOMMIT) { 6083 rp->r_flags |= RCOMMITWAIT; 6084 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6085 rp->r_flags &= ~RCOMMITWAIT; 6086 } 6087 rp->r_flags |= RCOMMIT; 6088 mutex_exit(&rp->r_statelock); 6089 ASSERT(rp->r_commit.c_pages == NULL); 6090 rp->r_commit.c_pages = pp; 6091 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6092 rp->r_commit.c_commlen = PAGESIZE; 6093 6094 /* 6095 * Gather together all other pages which can be committed. 6096 * They will all be chained off r_commit.c_pages. 6097 */ 6098 nfs3_get_commit(vp); 6099 6100 /* 6101 * Clear the `commit inprogress' status and disconnect 6102 * the list of pages to be committed from the rnode. 6103 * At this same time, we also save the starting offset 6104 * and length of data to be committed on the server. 6105 */ 6106 plist = rp->r_commit.c_pages; 6107 rp->r_commit.c_pages = NULL; 6108 offset = rp->r_commit.c_commbase; 6109 len = rp->r_commit.c_commlen; 6110 mutex_enter(&rp->r_statelock); 6111 rp->r_flags &= ~RCOMMIT; 6112 cv_broadcast(&rp->r_commit.c_cv); 6113 mutex_exit(&rp->r_statelock); 6114 6115 if (curproc == proc_pageout || curproc == proc_fsflush || 6116 nfs_zone() != VTOMI(vp)->mi_zone) { 6117 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit); 6118 return; 6119 } 6120 6121 /* 6122 * Actually generate the COMMIT3 over the wire operation. 6123 */ 6124 error = nfs3_commit(vp, offset, len, cr); 6125 6126 /* 6127 * If we got an error during the commit, just unlock all 6128 * of the pages. The pages will get retransmitted to the 6129 * server during a putpage operation. 6130 */ 6131 if (error) { 6132 while (plist != NULL) { 6133 pptr = plist; 6134 page_sub(&plist, pptr); 6135 page_unlock(pptr); 6136 } 6137 return; 6138 } 6139 6140 /* 6141 * We've tried as hard as we can to commit the data to stable 6142 * storage on the server. We release the rest of the pages 6143 * and clear the commit required state. They will be put 6144 * onto the tail of the cachelist if they are nolonger 6145 * mapped. 6146 */ 6147 while (plist != pp) { 6148 pptr = plist; 6149 page_sub(&plist, pptr); 6150 pptr->p_fsdata = C_NOCOMMIT; 6151 (void) page_release(pptr, 1); 6152 } 6153 6154 /* 6155 * It is possible that nfs3_commit didn't return error but 6156 * some other thread has modified the page we are going 6157 * to free/destroy. 6158 * In this case we need to rewrite the page. Do an explicit check 6159 * before attempting to free/destroy the page. If modified, needs to 6160 * be rewritten so unlock the page and return. 6161 */ 6162 if (hat_ismod(pp)) { 6163 pp->p_fsdata = C_NOCOMMIT; 6164 page_unlock(pp); 6165 return; 6166 } 6167 6168 /* 6169 * Now, as appropriate, either free or destroy the page 6170 * that we were called with. 6171 */ 6172 pp->p_fsdata = C_NOCOMMIT; 6173 if (fl == B_FREE) 6174 page_free(pp, dn); 6175 else 6176 page_destroy(pp, dn); 6177 } 6178 6179 static int 6180 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr) 6181 { 6182 int error; 6183 rnode_t *rp; 6184 COMMIT3args args; 6185 COMMIT3res res; 6186 int douprintf; 6187 cred_t *cred; 6188 6189 rp = VTOR(vp); 6190 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6191 6192 mutex_enter(&rp->r_statelock); 6193 if (rp->r_cred != NULL) { 6194 cred = rp->r_cred; 6195 crhold(cred); 6196 } else { 6197 rp->r_cred = cr; 6198 crhold(cr); 6199 cred = cr; 6200 crhold(cred); 6201 } 6202 mutex_exit(&rp->r_statelock); 6203 6204 args.file = *VTOFH3(vp); 6205 args.offset = offset; 6206 args.count = count; 6207 6208 doitagain: 6209 douprintf = 1; 6210 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT, 6211 xdr_COMMIT3args, (caddr_t)&args, 6212 xdr_COMMIT3res, (caddr_t)&res, cred, 6213 &douprintf, &res.status, 0, NULL); 6214 6215 crfree(cred); 6216 6217 if (error) 6218 return (error); 6219 6220 error = geterrno3(res.status); 6221 if (!error) { 6222 ASSERT(rp->r_flags & RHAVEVERF); 6223 mutex_enter(&rp->r_statelock); 6224 if (rp->r_verf == res.resok.verf) { 6225 mutex_exit(&rp->r_statelock); 6226 return (0); 6227 } 6228 nfs3_set_mod(vp); 6229 rp->r_verf = res.resok.verf; 6230 mutex_exit(&rp->r_statelock); 6231 error = NFS_VERF_MISMATCH; 6232 } else { 6233 if (error == EACCES) { 6234 mutex_enter(&rp->r_statelock); 6235 if (cred != cr) { 6236 if (rp->r_cred != NULL) 6237 crfree(rp->r_cred); 6238 rp->r_cred = cr; 6239 crhold(cr); 6240 cred = cr; 6241 crhold(cred); 6242 mutex_exit(&rp->r_statelock); 6243 goto doitagain; 6244 } 6245 mutex_exit(&rp->r_statelock); 6246 } 6247 /* 6248 * Can't do a PURGE_STALE_FH here because this 6249 * can cause a deadlock. nfs3_commit can 6250 * be called from nfs3_dispose which can be called 6251 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH 6252 * can call back to pvn_vplist_dirty. 6253 */ 6254 if (error == ESTALE) { 6255 mutex_enter(&rp->r_statelock); 6256 rp->r_flags |= RSTALE; 6257 if (!rp->r_error) 6258 rp->r_error = error; 6259 mutex_exit(&rp->r_statelock); 6260 PURGE_ATTRCACHE(vp); 6261 } else { 6262 mutex_enter(&rp->r_statelock); 6263 if (!rp->r_error) 6264 rp->r_error = error; 6265 mutex_exit(&rp->r_statelock); 6266 } 6267 } 6268 6269 return (error); 6270 } 6271 6272 static void 6273 nfs3_set_mod(vnode_t *vp) 6274 { 6275 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6276 6277 pvn_vplist_setdirty(vp, nfs_setmod_check); 6278 } 6279 6280 /* 6281 * This routine is used to gather together a page list of the pages 6282 * which are to be committed on the server. This routine must not 6283 * be called if the calling thread holds any locked pages. 6284 * 6285 * The calling thread must have set RCOMMIT. This bit is used to 6286 * serialize access to the commit structure in the rnode. As long 6287 * as the thread has set RCOMMIT, then it can manipulate the commit 6288 * structure without requiring any other locks. 6289 */ 6290 static void 6291 nfs3_get_commit(vnode_t *vp) 6292 { 6293 rnode_t *rp; 6294 page_t *pp; 6295 kmutex_t *vphm; 6296 6297 rp = VTOR(vp); 6298 6299 ASSERT(rp->r_flags & RCOMMIT); 6300 6301 vphm = page_vnode_mutex(vp); 6302 mutex_enter(vphm); 6303 6304 /* 6305 * If there are no pages associated with this vnode, then 6306 * just return. 6307 */ 6308 if ((pp = vp->v_pages) == NULL) { 6309 mutex_exit(vphm); 6310 return; 6311 } 6312 6313 /* 6314 * Step through all of the pages associated with this vnode 6315 * looking for pages which need to be committed. 6316 */ 6317 do { 6318 /* Skip marker pages. */ 6319 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 6320 continue; 6321 6322 /* 6323 * If this page does not need to be committed or is 6324 * modified, then just skip it. 6325 */ 6326 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 6327 continue; 6328 6329 /* 6330 * Attempt to lock the page. If we can't, then 6331 * someone else is messing with it and we will 6332 * just skip it. 6333 */ 6334 if (!page_trylock(pp, SE_EXCL)) 6335 continue; 6336 6337 /* 6338 * If this page does not need to be committed or is 6339 * modified, then just skip it. Recheck now that 6340 * the page is locked. 6341 */ 6342 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6343 page_unlock(pp); 6344 continue; 6345 } 6346 6347 if (PP_ISFREE(pp)) { 6348 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free", 6349 (void *)pp); 6350 } 6351 6352 /* 6353 * The page needs to be committed and we locked it. 6354 * Update the base and length parameters and add it 6355 * to r_pages. 6356 */ 6357 if (rp->r_commit.c_pages == NULL) { 6358 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6359 rp->r_commit.c_commlen = PAGESIZE; 6360 } else if (pp->p_offset < rp->r_commit.c_commbase) { 6361 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 6362 (offset3)pp->p_offset + rp->r_commit.c_commlen; 6363 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6364 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 6365 <= pp->p_offset) { 6366 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6367 rp->r_commit.c_commbase + PAGESIZE; 6368 } 6369 page_add(&rp->r_commit.c_pages, pp); 6370 } while ((pp = pp->p_vpnext) != vp->v_pages); 6371 6372 mutex_exit(vphm); 6373 } 6374 6375 /* 6376 * This routine is used to gather together a page list of the pages 6377 * which are to be committed on the server. This routine must not 6378 * be called if the calling thread holds any locked pages. 6379 * 6380 * The calling thread must have set RCOMMIT. This bit is used to 6381 * serialize access to the commit structure in the rnode. As long 6382 * as the thread has set RCOMMIT, then it can manipulate the commit 6383 * structure without requiring any other locks. 6384 */ 6385 static void 6386 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 6387 { 6388 6389 rnode_t *rp; 6390 page_t *pp; 6391 u_offset_t end; 6392 u_offset_t off; 6393 6394 ASSERT(len != 0); 6395 6396 rp = VTOR(vp); 6397 6398 ASSERT(rp->r_flags & RCOMMIT); 6399 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6400 6401 /* 6402 * If there are no pages associated with this vnode, then 6403 * just return. 6404 */ 6405 if ((pp = vp->v_pages) == NULL) 6406 return; 6407 6408 /* 6409 * Calculate the ending offset. 6410 */ 6411 end = soff + len; 6412 6413 for (off = soff; off < end; off += PAGESIZE) { 6414 /* 6415 * Lookup each page by vp, offset. 6416 */ 6417 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 6418 continue; 6419 6420 /* 6421 * If this page does not need to be committed or is 6422 * modified, then just skip it. 6423 */ 6424 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6425 page_unlock(pp); 6426 continue; 6427 } 6428 6429 ASSERT(PP_ISFREE(pp) == 0); 6430 6431 /* 6432 * The page needs to be committed and we locked it. 6433 * Update the base and length parameters and add it 6434 * to r_pages. 6435 */ 6436 if (rp->r_commit.c_pages == NULL) { 6437 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6438 rp->r_commit.c_commlen = PAGESIZE; 6439 } else { 6440 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6441 rp->r_commit.c_commbase + PAGESIZE; 6442 } 6443 page_add(&rp->r_commit.c_pages, pp); 6444 } 6445 } 6446 6447 static int 6448 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 6449 { 6450 int error; 6451 writeverf3 write_verf; 6452 rnode_t *rp = VTOR(vp); 6453 6454 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6455 /* 6456 * Flush the data portion of the file and then commit any 6457 * portions which need to be committed. This may need to 6458 * be done twice if the server has changed state since 6459 * data was last written. The data will need to be 6460 * rewritten to the server and then a new commit done. 6461 * 6462 * In fact, this may need to be done several times if the 6463 * server is having problems and crashing while we are 6464 * attempting to do this. 6465 */ 6466 6467 top: 6468 /* 6469 * Do a flush based on the poff and plen arguments. This 6470 * will asynchronously write out any modified pages in the 6471 * range specified by (poff, plen). This starts all of the 6472 * i/o operations which will be waited for in the next 6473 * call to nfs3_putpage 6474 */ 6475 6476 mutex_enter(&rp->r_statelock); 6477 write_verf = rp->r_verf; 6478 mutex_exit(&rp->r_statelock); 6479 6480 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 6481 if (error == EAGAIN) 6482 error = 0; 6483 6484 /* 6485 * Do a flush based on the poff and plen arguments. This 6486 * will synchronously write out any modified pages in the 6487 * range specified by (poff, plen) and wait until all of 6488 * the asynchronous i/o's in that range are done as well. 6489 */ 6490 if (!error) 6491 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL); 6492 6493 if (error) 6494 return (error); 6495 6496 mutex_enter(&rp->r_statelock); 6497 if (rp->r_verf != write_verf) { 6498 mutex_exit(&rp->r_statelock); 6499 goto top; 6500 } 6501 mutex_exit(&rp->r_statelock); 6502 6503 /* 6504 * Now commit any pages which might need to be committed. 6505 * If the error, NFS_VERF_MISMATCH, is returned, then 6506 * start over with the flush operation. 6507 */ 6508 6509 error = nfs3_commit_vp(vp, poff, plen, cr); 6510 6511 if (error == NFS_VERF_MISMATCH) 6512 goto top; 6513 6514 return (error); 6515 } 6516 6517 static int 6518 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr) 6519 { 6520 rnode_t *rp; 6521 page_t *plist; 6522 offset3 offset; 6523 count3 len; 6524 6525 6526 rp = VTOR(vp); 6527 6528 if (nfs_zone() != VTOMI(vp)->mi_zone) 6529 return (EIO); 6530 /* 6531 * Set the `commit inprogress' state bit. We must 6532 * first wait until any current one finishes. 6533 */ 6534 mutex_enter(&rp->r_statelock); 6535 while (rp->r_flags & RCOMMIT) { 6536 rp->r_flags |= RCOMMITWAIT; 6537 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6538 rp->r_flags &= ~RCOMMITWAIT; 6539 } 6540 rp->r_flags |= RCOMMIT; 6541 mutex_exit(&rp->r_statelock); 6542 6543 /* 6544 * Gather together all of the pages which need to be 6545 * committed. 6546 */ 6547 if (plen == 0) 6548 nfs3_get_commit(vp); 6549 else 6550 nfs3_get_commit_range(vp, poff, plen); 6551 6552 /* 6553 * Clear the `commit inprogress' bit and disconnect the 6554 * page list which was gathered together in nfs3_get_commit. 6555 */ 6556 plist = rp->r_commit.c_pages; 6557 rp->r_commit.c_pages = NULL; 6558 offset = rp->r_commit.c_commbase; 6559 len = rp->r_commit.c_commlen; 6560 mutex_enter(&rp->r_statelock); 6561 rp->r_flags &= ~RCOMMIT; 6562 cv_broadcast(&rp->r_commit.c_cv); 6563 mutex_exit(&rp->r_statelock); 6564 6565 /* 6566 * If any pages need to be committed, commit them and 6567 * then unlock them so that they can be freed some 6568 * time later. 6569 */ 6570 if (plist != NULL) { 6571 /* 6572 * No error occurred during the flush portion 6573 * of this operation, so now attempt to commit 6574 * the data to stable storage on the server. 6575 * 6576 * This will unlock all of the pages on the list. 6577 */ 6578 return (nfs3_sync_commit(vp, plist, offset, len, cr)); 6579 } 6580 return (0); 6581 } 6582 6583 static int 6584 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6585 cred_t *cr) 6586 { 6587 int error; 6588 page_t *pp; 6589 6590 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6591 error = nfs3_commit(vp, offset, count, cr); 6592 6593 /* 6594 * If we got an error, then just unlock all of the pages 6595 * on the list. 6596 */ 6597 if (error) { 6598 while (plist != NULL) { 6599 pp = plist; 6600 page_sub(&plist, pp); 6601 page_unlock(pp); 6602 } 6603 return (error); 6604 } 6605 /* 6606 * We've tried as hard as we can to commit the data to stable 6607 * storage on the server. We just unlock the pages and clear 6608 * the commit required state. They will get freed later. 6609 */ 6610 while (plist != NULL) { 6611 pp = plist; 6612 page_sub(&plist, pp); 6613 pp->p_fsdata = C_NOCOMMIT; 6614 page_unlock(pp); 6615 } 6616 6617 return (error); 6618 } 6619 6620 static void 6621 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6622 cred_t *cr) 6623 { 6624 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6625 (void) nfs3_sync_commit(vp, plist, offset, count, cr); 6626 } 6627 6628 /* ARGSUSED */ 6629 static int 6630 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6631 caller_context_t *ct) 6632 { 6633 int error; 6634 mntinfo_t *mi; 6635 6636 mi = VTOMI(vp); 6637 6638 if (nfs_zone() != mi->mi_zone) 6639 return (EIO); 6640 6641 if (mi->mi_flags & MI_ACL) { 6642 error = acl_setacl3(vp, vsecattr, flag, cr); 6643 if (mi->mi_flags & MI_ACL) 6644 return (error); 6645 } 6646 6647 return (ENOSYS); 6648 } 6649 6650 /* ARGSUSED */ 6651 static int 6652 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 6653 caller_context_t *ct) 6654 { 6655 int error; 6656 mntinfo_t *mi; 6657 6658 mi = VTOMI(vp); 6659 6660 if (nfs_zone() != mi->mi_zone) 6661 return (EIO); 6662 6663 if (mi->mi_flags & MI_ACL) { 6664 error = acl_getacl3(vp, vsecattr, flag, cr); 6665 if (mi->mi_flags & MI_ACL) 6666 return (error); 6667 } 6668 6669 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 6670 } 6671 6672 /* ARGSUSED */ 6673 static int 6674 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 6675 caller_context_t *ct) 6676 { 6677 int error; 6678 struct shrlock nshr; 6679 struct nfs_owner nfs_owner; 6680 netobj lm_fh3; 6681 6682 if (nfs_zone() != VTOMI(vp)->mi_zone) 6683 return (EIO); 6684 6685 /* 6686 * check for valid cmd parameter 6687 */ 6688 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 6689 return (EINVAL); 6690 6691 /* 6692 * Check access permissions 6693 */ 6694 if (cmd == F_SHARE && 6695 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 6696 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 6697 return (EBADF); 6698 6699 /* 6700 * If the filesystem is mounted using local locking, pass the 6701 * request off to the local share code. 6702 */ 6703 if (VTOMI(vp)->mi_flags & MI_LLOCK) 6704 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 6705 6706 switch (cmd) { 6707 case F_SHARE: 6708 case F_UNSHARE: 6709 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 6710 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 6711 6712 /* 6713 * If passed an owner that is too large to fit in an 6714 * nfs_owner it is likely a recursive call from the 6715 * lock manager client and pass it straight through. If 6716 * it is not a nfs_owner then simply return an error. 6717 */ 6718 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 6719 if (((struct nfs_owner *)shr->s_owner)->magic != 6720 NFS_OWNER_MAGIC) 6721 return (EINVAL); 6722 6723 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) { 6724 error = set_errno(error); 6725 } 6726 return (error); 6727 } 6728 /* 6729 * Remote share reservations owner is a combination of 6730 * a magic number, hostname, and the local owner 6731 */ 6732 bzero(&nfs_owner, sizeof (nfs_owner)); 6733 nfs_owner.magic = NFS_OWNER_MAGIC; 6734 (void) strncpy(nfs_owner.hname, uts_nodename(), 6735 sizeof (nfs_owner.hname)); 6736 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 6737 nshr.s_access = shr->s_access; 6738 nshr.s_deny = shr->s_deny; 6739 nshr.s_sysid = 0; 6740 nshr.s_pid = ttoproc(curthread)->p_pid; 6741 nshr.s_own_len = sizeof (nfs_owner); 6742 nshr.s_owner = (caddr_t)&nfs_owner; 6743 6744 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) { 6745 error = set_errno(error); 6746 } 6747 6748 break; 6749 6750 case F_HASREMOTELOCKS: 6751 /* 6752 * NFS client can't store remote locks itself 6753 */ 6754 shr->s_access = 0; 6755 error = 0; 6756 break; 6757 6758 default: 6759 error = EINVAL; 6760 break; 6761 } 6762 6763 return (error); 6764 } 6765