1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 29 * All rights reserved. 30 */ 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/param.h> 35 #include <sys/types.h> 36 #include <sys/systm.h> 37 #include <sys/cred.h> 38 #include <sys/time.h> 39 #include <sys/vnode.h> 40 #include <sys/vfs.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/atomic.h> 64 #include <sys/policy.h> 65 #include <sys/sdt.h> 66 67 #include <rpc/types.h> 68 #include <rpc/auth.h> 69 #include <rpc/clnt.h> 70 71 #include <nfs/nfs.h> 72 #include <nfs/nfs_clnt.h> 73 #include <nfs/rnode.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 77 #include <vm/hat.h> 78 #include <vm/as.h> 79 #include <vm/page.h> 80 #include <vm/pvn.h> 81 #include <vm/seg.h> 82 #include <vm/seg_map.h> 83 #include <vm/seg_kpm.h> 84 #include <vm/seg_vn.h> 85 86 #include <fs/fs_subr.h> 87 88 #include <sys/ddi.h> 89 90 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 91 cred_t *); 92 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 93 stable_how *); 94 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *); 95 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *); 96 static int nfs3_accessx(void *, int, cred_t *); 97 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 98 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 99 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl, 100 int, vnode_t **, cred_t *, int); 101 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *); 102 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 103 int, vnode_t **, cred_t *); 104 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 105 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 106 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *); 107 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *); 108 static int nfs3_bio(struct buf *, stable_how *, cred_t *); 109 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 110 page_t *[], size_t, struct seg *, caddr_t, 111 enum seg_rw, cred_t *); 112 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 113 cred_t *); 114 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 115 int, cred_t *); 116 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 117 int, cred_t *); 118 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *); 119 static void nfs3_set_mod(vnode_t *); 120 static void nfs3_get_commit(vnode_t *); 121 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t); 122 #if 0 /* unused */ 123 #ifdef DEBUG 124 static int nfs3_no_uncommitted_pages(vnode_t *); 125 #endif 126 #endif /* unused */ 127 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 128 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *); 129 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3, 130 cred_t *); 131 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3, 132 cred_t *); 133 static void nfs3_delmap_callback(struct as *, void *, uint_t); 134 135 /* 136 * Error flags used to pass information about certain special errors 137 * which need to be handled specially. 138 */ 139 #define NFS_EOF -98 140 #define NFS_VERF_MISMATCH -97 141 142 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 143 #define ALIGN64(x, ptr, sz) \ 144 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 145 if (x) { \ 146 x = sizeof (uint64_t) - (x); \ 147 sz -= (x); \ 148 ptr += (x); \ 149 } 150 151 /* 152 * These are the vnode ops routines which implement the vnode interface to 153 * the networked file system. These routines just take their parameters, 154 * make them look networkish by putting the right info into interface structs, 155 * and then calling the appropriate remote routine(s) to do the work. 156 * 157 * Note on directory name lookup cacheing: If we detect a stale fhandle, 158 * we purge the directory cache relative to that vnode. This way, the 159 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 160 * more details on rnode locking. 161 */ 162 163 static int nfs3_open(vnode_t **, int, cred_t *); 164 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *); 165 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *, 166 caller_context_t *); 167 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *, 168 caller_context_t *); 169 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *); 170 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *); 171 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *, 172 caller_context_t *); 173 static int nfs3_access(vnode_t *, int, int, cred_t *); 174 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *); 175 static int nfs3_fsync(vnode_t *, int, cred_t *); 176 static void nfs3_inactive(vnode_t *, cred_t *); 177 static int nfs3_lookup(vnode_t *, char *, vnode_t **, 178 struct pathname *, int, vnode_t *, cred_t *); 179 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl, 180 int, vnode_t **, cred_t *, int); 181 static int nfs3_remove(vnode_t *, char *, cred_t *); 182 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *); 183 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 184 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, 185 vnode_t **, cred_t *); 186 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *); 187 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *, 188 cred_t *); 189 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *); 190 static int nfs3_fid(vnode_t *, fid_t *); 191 static int nfs3_rwlock(vnode_t *, int, caller_context_t *); 192 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *); 193 static int nfs3_seek(vnode_t *, offset_t, offset_t *); 194 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *, 195 page_t *[], size_t, struct seg *, caddr_t, 196 enum seg_rw, cred_t *); 197 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *); 198 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, 199 size_t, uchar_t, uchar_t, uint_t, cred_t *); 200 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, 201 size_t, uchar_t, uchar_t, uint_t, cred_t *); 202 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 203 struct flk_callback *, cred_t *); 204 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t, 205 cred_t *, caller_context_t *); 206 static int nfs3_realvp(vnode_t *, vnode_t **); 207 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, 208 size_t, uint_t, uint_t, uint_t, cred_t *); 209 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *); 210 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 211 cred_t *); 212 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *); 213 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 214 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 215 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *); 216 217 struct vnodeops *nfs3_vnodeops; 218 219 const fs_operation_def_t nfs3_vnodeops_template[] = { 220 VOPNAME_OPEN, nfs3_open, 221 VOPNAME_CLOSE, nfs3_close, 222 VOPNAME_READ, nfs3_read, 223 VOPNAME_WRITE, nfs3_write, 224 VOPNAME_IOCTL, nfs3_ioctl, 225 VOPNAME_GETATTR, nfs3_getattr, 226 VOPNAME_SETATTR, nfs3_setattr, 227 VOPNAME_ACCESS, nfs3_access, 228 VOPNAME_LOOKUP, nfs3_lookup, 229 VOPNAME_CREATE, nfs3_create, 230 VOPNAME_REMOVE, nfs3_remove, 231 VOPNAME_LINK, nfs3_link, 232 VOPNAME_RENAME, nfs3_rename, 233 VOPNAME_MKDIR, nfs3_mkdir, 234 VOPNAME_RMDIR, nfs3_rmdir, 235 VOPNAME_READDIR, nfs3_readdir, 236 VOPNAME_SYMLINK, nfs3_symlink, 237 VOPNAME_READLINK, nfs3_readlink, 238 VOPNAME_FSYNC, nfs3_fsync, 239 VOPNAME_INACTIVE, (fs_generic_func_p) nfs3_inactive, 240 VOPNAME_FID, nfs3_fid, 241 VOPNAME_RWLOCK, nfs3_rwlock, 242 VOPNAME_RWUNLOCK, (fs_generic_func_p) nfs3_rwunlock, 243 VOPNAME_SEEK, nfs3_seek, 244 VOPNAME_FRLOCK, nfs3_frlock, 245 VOPNAME_SPACE, nfs3_space, 246 VOPNAME_REALVP, nfs3_realvp, 247 VOPNAME_GETPAGE, nfs3_getpage, 248 VOPNAME_PUTPAGE, nfs3_putpage, 249 VOPNAME_MAP, (fs_generic_func_p) nfs3_map, 250 VOPNAME_ADDMAP, (fs_generic_func_p) nfs3_addmap, 251 VOPNAME_DELMAP, nfs3_delmap, 252 VOPNAME_DUMP, nfs_dump, /* there is no separate nfs3_dump */ 253 VOPNAME_PATHCONF, nfs3_pathconf, 254 VOPNAME_PAGEIO, nfs3_pageio, 255 VOPNAME_DISPOSE, (fs_generic_func_p) nfs3_dispose, 256 VOPNAME_SETSECATTR, nfs3_setsecattr, 257 VOPNAME_GETSECATTR, nfs3_getsecattr, 258 VOPNAME_SHRLOCK, nfs3_shrlock, 259 NULL, NULL 260 }; 261 262 /* 263 * XXX: This is referenced in modstubs.s 264 */ 265 struct vnodeops * 266 nfs3_getvnodeops(void) 267 { 268 return (nfs3_vnodeops); 269 } 270 271 /* ARGSUSED */ 272 static int 273 nfs3_open(vnode_t **vpp, int flag, cred_t *cr) 274 { 275 int error; 276 struct vattr va; 277 rnode_t *rp; 278 vnode_t *vp; 279 280 vp = *vpp; 281 if (nfs_zone() != VTOMI(vp)->mi_zone) 282 return (EIO); 283 rp = VTOR(vp); 284 mutex_enter(&rp->r_statelock); 285 if (rp->r_cred == NULL) { 286 crhold(cr); 287 rp->r_cred = cr; 288 } 289 mutex_exit(&rp->r_statelock); 290 291 /* 292 * If there is no cached data or if close-to-open 293 * consistency checking is turned off, we can avoid 294 * the over the wire getattr. Otherwise, if the 295 * file system is mounted readonly, then just verify 296 * the caches are up to date using the normal mechanism. 297 * Else, if the file is not mmap'd, then just mark 298 * the attributes as timed out. They will be refreshed 299 * and the caches validated prior to being used. 300 * Else, the file system is mounted writeable so 301 * force an over the wire GETATTR in order to ensure 302 * that all cached data is valid. 303 */ 304 if (vp->v_count > 1 || 305 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 306 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 307 if (vn_is_readonly(vp)) 308 error = nfs3_validate_caches(vp, cr); 309 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 310 PURGE_ATTRCACHE(vp); 311 error = 0; 312 } else { 313 va.va_mask = AT_ALL; 314 error = nfs3_getattr_otw(vp, &va, cr); 315 } 316 } else 317 error = 0; 318 319 return (error); 320 } 321 322 static int 323 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 324 { 325 rnode_t *rp; 326 int error; 327 struct vattr va; 328 329 /* 330 * zone_enter(2) prevents processes from changing zones with NFS files 331 * open; if we happen to get here from the wrong zone we can't do 332 * anything over the wire. 333 */ 334 if (VTOMI(vp)->mi_zone != nfs_zone()) { 335 /* 336 * We could attempt to clean up locks, except we're sure 337 * that the current process didn't acquire any locks on 338 * the file: any attempt to lock a file belong to another zone 339 * will fail, and one can't lock an NFS file and then change 340 * zones, as that fails too. 341 * 342 * Returning an error here is the sane thing to do. A 343 * subsequent call to VN_RELE() which translates to a 344 * nfs3_inactive() will clean up state: if the zone of the 345 * vnode's origin is still alive and kicking, an async worker 346 * thread will handle the request (from the correct zone), and 347 * everything (minus the commit and final nfs3_getattr_otw() 348 * call) should be OK. If the zone is going away 349 * nfs_async_inactive() will throw away cached pages inline. 350 */ 351 return (EIO); 352 } 353 354 /* 355 * If we are using local locking for this filesystem, then 356 * release all of the SYSV style record locks. Otherwise, 357 * we are doing network locking and we need to release all 358 * of the network locks. All of the locks held by this 359 * process on this file are released no matter what the 360 * incoming reference count is. 361 */ 362 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 363 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 364 cleanshares(vp, ttoproc(curthread)->p_pid); 365 } else 366 nfs_lockrelease(vp, flag, offset, cr); 367 368 if (count > 1) 369 return (0); 370 371 /* 372 * If the file has been `unlinked', then purge the 373 * DNLC so that this vnode will get reycled quicker 374 * and the .nfs* file on the server will get removed. 375 */ 376 rp = VTOR(vp); 377 if (rp->r_unldvp != NULL) 378 dnlc_purge_vp(vp); 379 380 /* 381 * If the file was open for write and there are pages, 382 * then if the file system was mounted using the "no-close- 383 * to-open" semantics, then start an asynchronous flush 384 * of the all of the pages in the file. 385 * else the file system was not mounted using the "no-close- 386 * to-open" semantics, then do a synchronous flush and 387 * commit of all of the dirty and uncommitted pages. 388 * 389 * The asynchronous flush of the pages in the "nocto" path 390 * mostly just associates a cred pointer with the rnode so 391 * writes which happen later will have a better chance of 392 * working. It also starts the data being written to the 393 * server, but without unnecessarily delaying the application. 394 */ 395 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 396 if (VTOMI(vp)->mi_flags & MI_NOCTO) { 397 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC, cr); 398 if (error == EAGAIN) 399 error = 0; 400 } else 401 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 402 if (!error) { 403 mutex_enter(&rp->r_statelock); 404 error = rp->r_error; 405 rp->r_error = 0; 406 mutex_exit(&rp->r_statelock); 407 } 408 } else { 409 mutex_enter(&rp->r_statelock); 410 error = rp->r_error; 411 rp->r_error = 0; 412 mutex_exit(&rp->r_statelock); 413 } 414 415 /* 416 * If RWRITEATTR is set, then issue an over the wire GETATTR to 417 * refresh the attribute cache with a set of attributes which 418 * weren't returned from a WRITE. This will enable the close- 419 * to-open processing to work. 420 */ 421 if (rp->r_flags & RWRITEATTR) 422 (void) nfs3_getattr_otw(vp, &va, cr); 423 424 return (error); 425 } 426 427 /* ARGSUSED */ 428 static int 429 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr) 430 { 431 mntinfo_t *mi; 432 READ3args args; 433 READ3uiores res; 434 int tsize; 435 offset_t offset; 436 ssize_t count; 437 int error; 438 int douprintf; 439 failinfo_t fi; 440 char *sv_hostname; 441 442 mi = VTOMI(vp); 443 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 444 sv_hostname = VTOR(vp)->r_server->sv_hostname; 445 446 douprintf = 1; 447 args.file = *VTOFH3(vp); 448 fi.vp = vp; 449 fi.fhp = (caddr_t)&args.file; 450 fi.copyproc = nfs3copyfh; 451 fi.lookupproc = nfs3lookup; 452 fi.xattrdirproc = acl_getxattrdir3; 453 454 res.uiop = uiop; 455 456 offset = uiop->uio_loffset; 457 count = uiop->uio_resid; 458 459 do { 460 if (mi->mi_io_kstats) { 461 mutex_enter(&mi->mi_lock); 462 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 463 mutex_exit(&mi->mi_lock); 464 } 465 466 do { 467 tsize = MIN(mi->mi_tsize, count); 468 args.offset = (offset3)offset; 469 args.count = (count3)tsize; 470 res.size = (uint_t)tsize; 471 error = rfs3call(mi, NFSPROC3_READ, 472 xdr_READ3args, (caddr_t)&args, 473 xdr_READ3uiores, (caddr_t)&res, cr, 474 &douprintf, &res.status, 0, &fi); 475 } while (error == ENFS_TRYAGAIN); 476 477 if (mi->mi_io_kstats) { 478 mutex_enter(&mi->mi_lock); 479 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 480 mutex_exit(&mi->mi_lock); 481 } 482 483 if (error) 484 return (error); 485 486 error = geterrno3(res.status); 487 if (error) 488 return (error); 489 490 if (res.count != res.size) { 491 zcmn_err(getzoneid(), CE_WARN, 492 "nfs3_directio_read: server %s returned incorrect amount", 493 sv_hostname); 494 return (EIO); 495 } 496 count -= res.count; 497 offset += res.count; 498 if (mi->mi_io_kstats) { 499 mutex_enter(&mi->mi_lock); 500 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 501 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 502 mutex_exit(&mi->mi_lock); 503 } 504 lwp_stat_update(LWP_STAT_INBLK, 1); 505 } while (count && !res.eof); 506 507 return (0); 508 } 509 510 /* ARGSUSED */ 511 static int 512 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 513 caller_context_t *ct) 514 { 515 rnode_t *rp; 516 u_offset_t off; 517 offset_t diff; 518 int on; 519 size_t n; 520 caddr_t base; 521 uint_t flags; 522 int error = 0; 523 mntinfo_t *mi; 524 525 rp = VTOR(vp); 526 mi = VTOMI(vp); 527 528 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 529 530 if (nfs_zone() != mi->mi_zone) 531 return (EIO); 532 533 if (vp->v_type != VREG) 534 return (EISDIR); 535 536 if (uiop->uio_resid == 0) 537 return (0); 538 539 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 540 return (EINVAL); 541 542 /* 543 * Bypass VM if caching has been disabled (e.g., locking) or if 544 * using client-side direct I/O and the file is not mmap'd and 545 * there are no cached pages. 546 */ 547 if ((vp->v_flag & VNOCACHE) || 548 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 549 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 550 return (nfs3_directio_read(vp, uiop, cr)); 551 } 552 553 do { 554 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 555 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 556 n = MIN(MAXBSIZE - on, uiop->uio_resid); 557 558 error = nfs3_validate_caches(vp, cr); 559 if (error) 560 break; 561 562 mutex_enter(&rp->r_statelock); 563 diff = rp->r_size - uiop->uio_loffset; 564 mutex_exit(&rp->r_statelock); 565 if (diff <= 0) 566 break; 567 if (diff < n) 568 n = (size_t)diff; 569 570 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, S_READ); 571 572 error = uiomove(base + on, n, UIO_READ, uiop); 573 574 if (!error) { 575 /* 576 * If read a whole block or read to eof, 577 * won't need this buffer again soon. 578 */ 579 mutex_enter(&rp->r_statelock); 580 if (n + on == MAXBSIZE || 581 uiop->uio_loffset == rp->r_size) 582 flags = SM_DONTNEED; 583 else 584 flags = 0; 585 mutex_exit(&rp->r_statelock); 586 error = segmap_release(segkmap, base, flags); 587 } else 588 (void) segmap_release(segkmap, base, 0); 589 } while (!error && uiop->uio_resid > 0); 590 591 return (error); 592 } 593 594 /* ARGSUSED */ 595 static int 596 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 597 caller_context_t *ct) 598 { 599 rlim64_t limit = uiop->uio_llimit; 600 rnode_t *rp; 601 u_offset_t off; 602 caddr_t base; 603 uint_t flags; 604 int remainder; 605 size_t n; 606 int on; 607 int error; 608 int resid; 609 offset_t offset; 610 mntinfo_t *mi; 611 uint_t bsize; 612 613 rp = VTOR(vp); 614 615 if (vp->v_type != VREG) 616 return (EISDIR); 617 618 mi = VTOMI(vp); 619 if (nfs_zone() != mi->mi_zone) 620 return (EIO); 621 if (uiop->uio_resid == 0) 622 return (0); 623 624 if (ioflag & FAPPEND) { 625 struct vattr va; 626 627 /* 628 * Must serialize if appending. 629 */ 630 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 631 nfs_rw_exit(&rp->r_rwlock); 632 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 633 INTR(vp))) 634 return (EINTR); 635 } 636 637 va.va_mask = AT_SIZE; 638 error = nfs3getattr(vp, &va, cr); 639 if (error) 640 return (error); 641 uiop->uio_loffset = va.va_size; 642 } 643 644 offset = uiop->uio_loffset + uiop->uio_resid; 645 646 if (uiop->uio_loffset < 0 || offset < 0) 647 return (EINVAL); 648 649 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 650 limit = MAXOFFSET_T; 651 652 /* 653 * Check to make sure that the process will not exceed 654 * its limit on file size. It is okay to write up to 655 * the limit, but not beyond. Thus, the write which 656 * reaches the limit will be short and the next write 657 * will return an error. 658 */ 659 remainder = 0; 660 if (offset > limit) { 661 remainder = offset - limit; 662 uiop->uio_resid = limit - uiop->uio_loffset; 663 if (uiop->uio_resid <= 0) { 664 proc_t *p = ttoproc(curthread); 665 666 uiop->uio_resid += remainder; 667 mutex_enter(&p->p_lock); 668 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 669 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 670 mutex_exit(&p->p_lock); 671 return (EFBIG); 672 } 673 } 674 675 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 676 return (EINTR); 677 678 /* 679 * Bypass VM if caching has been disabled (e.g., locking) or if 680 * using client-side direct I/O and the file is not mmap'd and 681 * there are no cached pages. 682 */ 683 if ((vp->v_flag & VNOCACHE) || 684 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 685 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 686 size_t bufsize; 687 int count; 688 u_offset_t org_offset; 689 stable_how stab_comm; 690 691 nfs3_fwrite: 692 if (rp->r_flags & RSTALE) { 693 resid = uiop->uio_resid; 694 offset = uiop->uio_loffset; 695 error = rp->r_error; 696 goto bottom; 697 } 698 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 699 base = kmem_alloc(bufsize, KM_SLEEP); 700 do { 701 if (ioflag & FDSYNC) 702 stab_comm = DATA_SYNC; 703 else 704 stab_comm = FILE_SYNC; 705 resid = uiop->uio_resid; 706 offset = uiop->uio_loffset; 707 count = MIN(uiop->uio_resid, bufsize); 708 org_offset = uiop->uio_loffset; 709 error = uiomove(base, count, UIO_WRITE, uiop); 710 if (!error) { 711 error = nfs3write(vp, base, org_offset, 712 count, cr, &stab_comm); 713 } 714 } while (!error && uiop->uio_resid > 0); 715 kmem_free(base, bufsize); 716 goto bottom; 717 } 718 719 720 bsize = vp->v_vfsp->vfs_bsize; 721 722 do { 723 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 724 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 725 n = MIN(MAXBSIZE - on, uiop->uio_resid); 726 727 resid = uiop->uio_resid; 728 offset = uiop->uio_loffset; 729 730 if (rp->r_flags & RSTALE) { 731 error = rp->r_error; 732 break; 733 } 734 735 /* 736 * Don't create dirty pages faster than they 737 * can be cleaned so that the system doesn't 738 * get imbalanced. If the async queue is 739 * maxed out, then wait for it to drain before 740 * creating more dirty pages. Also, wait for 741 * any threads doing pagewalks in the vop_getattr 742 * entry points so that they don't block for 743 * long periods. 744 */ 745 mutex_enter(&rp->r_statelock); 746 while ((mi->mi_max_threads != 0 && 747 rp->r_awcount > 2 * mi->mi_max_threads) || 748 rp->r_gcount > 0) 749 cv_wait(&rp->r_cv, &rp->r_statelock); 750 mutex_exit(&rp->r_statelock); 751 752 if (segmap_kpm) { 753 int pon = uiop->uio_loffset & PAGEOFFSET; 754 size_t pn = MIN(PAGESIZE - pon, uiop->uio_resid); 755 int pagecreate; 756 757 mutex_enter(&rp->r_statelock); 758 pagecreate = (pon == 0) && (pn == PAGESIZE || 759 uiop->uio_loffset + pn >= rp->r_size); 760 mutex_exit(&rp->r_statelock); 761 762 base = segmap_getmapflt(segkmap, vp, off + on, 763 pn, !pagecreate, S_WRITE); 764 765 error = writerp(rp, base + pon, n, uiop, pagecreate); 766 767 } else { 768 base = segmap_getmapflt(segkmap, vp, off + on, 769 n, 0, S_READ); 770 error = writerp(rp, base + on, n, uiop, 0); 771 } 772 773 if (!error) { 774 if (mi->mi_flags & MI_NOAC) 775 flags = SM_WRITE; 776 else if ((uiop->uio_loffset % bsize) == 0 || 777 IS_SWAPVP(vp)) { 778 /* 779 * Have written a whole block. 780 * Start an asynchronous write 781 * and mark the buffer to 782 * indicate that it won't be 783 * needed again soon. 784 */ 785 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 786 } else 787 flags = 0; 788 if ((ioflag & (FSYNC|FDSYNC)) || 789 (rp->r_flags & ROUTOFSPACE)) { 790 flags &= ~SM_ASYNC; 791 flags |= SM_WRITE; 792 } 793 error = segmap_release(segkmap, base, flags); 794 } else { 795 (void) segmap_release(segkmap, base, 0); 796 /* 797 * In the event that we got an access error while 798 * faulting in a page for a write-only file just 799 * force a write. 800 */ 801 if (error == EACCES) 802 goto nfs3_fwrite; 803 } 804 } while (!error && uiop->uio_resid > 0); 805 806 bottom: 807 if (error) { 808 uiop->uio_resid = resid + remainder; 809 uiop->uio_loffset = offset; 810 } else 811 uiop->uio_resid += remainder; 812 813 nfs_rw_exit(&rp->r_lkserlock); 814 815 return (error); 816 } 817 818 /* 819 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 820 */ 821 static int 822 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 823 int flags, cred_t *cr) 824 { 825 struct buf *bp; 826 int error; 827 page_t *savepp; 828 uchar_t fsdata; 829 stable_how stab_comm; 830 831 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 832 bp = pageio_setup(pp, len, vp, flags); 833 ASSERT(bp != NULL); 834 835 /* 836 * pageio_setup should have set b_addr to 0. This 837 * is correct since we want to do I/O on a page 838 * boundary. bp_mapin will use this addr to calculate 839 * an offset, and then set b_addr to the kernel virtual 840 * address it allocated for us. 841 */ 842 ASSERT(bp->b_un.b_addr == 0); 843 844 bp->b_edev = 0; 845 bp->b_dev = 0; 846 bp->b_lblkno = lbtodb(off); 847 bp->b_file = vp; 848 bp->b_offset = (offset_t)off; 849 bp_mapin(bp); 850 851 /* 852 * Calculate the desired level of stability to write data 853 * on the server and then mark all of the pages to reflect 854 * this. 855 */ 856 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 857 freemem > desfree) { 858 stab_comm = UNSTABLE; 859 fsdata = C_DELAYCOMMIT; 860 } else { 861 stab_comm = FILE_SYNC; 862 fsdata = C_NOCOMMIT; 863 } 864 865 savepp = pp; 866 do { 867 pp->p_fsdata = fsdata; 868 } while ((pp = pp->p_next) != savepp); 869 870 error = nfs3_bio(bp, &stab_comm, cr); 871 872 bp_mapout(bp); 873 pageio_done(bp); 874 875 /* 876 * If the server wrote pages in a more stable fashion than 877 * was requested, then clear all of the marks in the pages 878 * indicating that COMMIT operations were required. 879 */ 880 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) { 881 do { 882 pp->p_fsdata = C_NOCOMMIT; 883 } while ((pp = pp->p_next) != savepp); 884 } 885 886 return (error); 887 } 888 889 /* 890 * Write to file. Writes to remote server in largest size 891 * chunks that the server can handle. Write is synchronous. 892 */ 893 static int 894 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 895 stable_how *stab_comm) 896 { 897 mntinfo_t *mi; 898 WRITE3args args; 899 WRITE3res res; 900 int error; 901 int tsize; 902 rnode_t *rp; 903 int douprintf; 904 905 rp = VTOR(vp); 906 mi = VTOMI(vp); 907 908 ASSERT(nfs_zone() == mi->mi_zone); 909 910 args.file = *VTOFH3(vp); 911 args.stable = *stab_comm; 912 913 *stab_comm = FILE_SYNC; 914 915 douprintf = 1; 916 917 do { 918 if ((vp->v_flag & VNOCACHE) || 919 (rp->r_flags & RDIRECTIO) || 920 (mi->mi_flags & MI_DIRECTIO)) 921 tsize = MIN(mi->mi_stsize, count); 922 else 923 tsize = MIN(mi->mi_curwrite, count); 924 args.offset = (offset3)offset; 925 args.count = (count3)tsize; 926 args.data.data_len = (uint_t)tsize; 927 args.data.data_val = base; 928 929 if (mi->mi_io_kstats) { 930 mutex_enter(&mi->mi_lock); 931 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 932 mutex_exit(&mi->mi_lock); 933 } 934 args.mblk = NULL; 935 do { 936 error = rfs3call(mi, NFSPROC3_WRITE, 937 xdr_WRITE3args, (caddr_t)&args, 938 xdr_WRITE3res, (caddr_t)&res, cr, 939 &douprintf, &res.status, 0, NULL); 940 } while (error == ENFS_TRYAGAIN); 941 if (mi->mi_io_kstats) { 942 mutex_enter(&mi->mi_lock); 943 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 944 mutex_exit(&mi->mi_lock); 945 } 946 947 if (error) 948 return (error); 949 error = geterrno3(res.status); 950 if (!error) { 951 if (res.resok.count > args.count) { 952 zcmn_err(getzoneid(), CE_WARN, 953 "nfs3write: server %s wrote %u, " 954 "requested was %u", 955 rp->r_server->sv_hostname, 956 res.resok.count, args.count); 957 return (EIO); 958 } 959 if (res.resok.committed == UNSTABLE) { 960 *stab_comm = UNSTABLE; 961 if (args.stable == DATA_SYNC || 962 args.stable == FILE_SYNC) { 963 zcmn_err(getzoneid(), CE_WARN, 964 "nfs3write: server %s did not commit to stable storage", 965 rp->r_server->sv_hostname); 966 return (EIO); 967 } 968 } 969 tsize = (int)res.resok.count; 970 count -= tsize; 971 base += tsize; 972 offset += tsize; 973 if (mi->mi_io_kstats) { 974 mutex_enter(&mi->mi_lock); 975 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 976 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 977 tsize; 978 mutex_exit(&mi->mi_lock); 979 } 980 lwp_stat_update(LWP_STAT_OUBLK, 1); 981 mutex_enter(&rp->r_statelock); 982 if (rp->r_flags & RHAVEVERF) { 983 if (rp->r_verf != res.resok.verf) { 984 nfs3_set_mod(vp); 985 rp->r_verf = res.resok.verf; 986 /* 987 * If the data was written UNSTABLE, 988 * then might as well stop because 989 * the whole block will have to get 990 * rewritten anyway. 991 */ 992 if (*stab_comm == UNSTABLE) { 993 mutex_exit(&rp->r_statelock); 994 break; 995 } 996 } 997 } else { 998 rp->r_verf = res.resok.verf; 999 rp->r_flags |= RHAVEVERF; 1000 } 1001 /* 1002 * Mark the attribute cache as timed out and 1003 * set RWRITEATTR to indicate that the file 1004 * was modified with a WRITE operation and 1005 * that the attributes can not be trusted. 1006 */ 1007 PURGE_ATTRCACHE_LOCKED(rp); 1008 rp->r_flags |= RWRITEATTR; 1009 mutex_exit(&rp->r_statelock); 1010 } 1011 } while (!error && count); 1012 1013 return (error); 1014 } 1015 1016 /* 1017 * Read from a file. Reads data in largest chunks our interface can handle. 1018 */ 1019 static int 1020 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, 1021 size_t *residp, cred_t *cr) 1022 { 1023 mntinfo_t *mi; 1024 READ3args args; 1025 READ3vres res; 1026 int tsize; 1027 int error; 1028 int douprintf; 1029 failinfo_t fi; 1030 rnode_t *rp; 1031 struct vattr va; 1032 hrtime_t t; 1033 1034 rp = VTOR(vp); 1035 mi = VTOMI(vp); 1036 ASSERT(nfs_zone() == mi->mi_zone); 1037 douprintf = 1; 1038 1039 args.file = *VTOFH3(vp); 1040 fi.vp = vp; 1041 fi.fhp = (caddr_t)&args.file; 1042 fi.copyproc = nfs3copyfh; 1043 fi.lookupproc = nfs3lookup; 1044 fi.xattrdirproc = acl_getxattrdir3; 1045 1046 res.pov.fres.vp = vp; 1047 res.pov.fres.vap = &va; 1048 1049 *residp = count; 1050 do { 1051 if (mi->mi_io_kstats) { 1052 mutex_enter(&mi->mi_lock); 1053 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 1054 mutex_exit(&mi->mi_lock); 1055 } 1056 1057 do { 1058 if ((vp->v_flag & VNOCACHE) || 1059 (rp->r_flags & RDIRECTIO) || 1060 (mi->mi_flags & MI_DIRECTIO)) 1061 tsize = MIN(mi->mi_tsize, count); 1062 else 1063 tsize = MIN(mi->mi_curread, count); 1064 res.data.data_val = base; 1065 res.data.data_len = tsize; 1066 args.offset = (offset3)offset; 1067 args.count = (count3)tsize; 1068 t = gethrtime(); 1069 error = rfs3call(mi, NFSPROC3_READ, 1070 xdr_READ3args, (caddr_t)&args, 1071 xdr_READ3vres, (caddr_t)&res, cr, 1072 &douprintf, &res.status, 0, &fi); 1073 } while (error == ENFS_TRYAGAIN); 1074 1075 if (mi->mi_io_kstats) { 1076 mutex_enter(&mi->mi_lock); 1077 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 1078 mutex_exit(&mi->mi_lock); 1079 } 1080 1081 if (error) 1082 return (error); 1083 1084 error = geterrno3(res.status); 1085 if (error) 1086 return (error); 1087 1088 if (res.count != res.data.data_len) { 1089 zcmn_err(getzoneid(), CE_WARN, 1090 "nfs3read: server %s returned incorrect amount", 1091 rp->r_server->sv_hostname); 1092 return (EIO); 1093 } 1094 1095 count -= res.count; 1096 *residp = count; 1097 base += res.count; 1098 offset += res.count; 1099 if (mi->mi_io_kstats) { 1100 mutex_enter(&mi->mi_lock); 1101 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1102 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count; 1103 mutex_exit(&mi->mi_lock); 1104 } 1105 lwp_stat_update(LWP_STAT_INBLK, 1); 1106 } while (count && !res.eof); 1107 1108 if (res.pov.attributes) { 1109 mutex_enter(&rp->r_statelock); 1110 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) { 1111 mutex_exit(&rp->r_statelock); 1112 PURGE_ATTRCACHE(vp); 1113 } else { 1114 if (rp->r_mtime <= t) 1115 nfs_attrcache_va(vp, &va); 1116 mutex_exit(&rp->r_statelock); 1117 } 1118 } 1119 1120 return (0); 1121 } 1122 1123 /* ARGSUSED */ 1124 static int 1125 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) 1126 { 1127 1128 if (nfs_zone() != VTOMI(vp)->mi_zone) 1129 return (EIO); 1130 switch (cmd) { 1131 case _FIODIRECTIO: 1132 return (nfs_directio(vp, (int)arg, cr)); 1133 default: 1134 return (ENOTTY); 1135 } 1136 } 1137 1138 static int 1139 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1140 { 1141 int error; 1142 rnode_t *rp; 1143 1144 if (nfs_zone() != VTOMI(vp)->mi_zone) 1145 return (EIO); 1146 /* 1147 * If it has been specified that the return value will 1148 * just be used as a hint, and we are only being asked 1149 * for size, fsid or rdevid, then return the client's 1150 * notion of these values without checking to make sure 1151 * that the attribute cache is up to date. 1152 * The whole point is to avoid an over the wire GETATTR 1153 * call. 1154 */ 1155 rp = VTOR(vp); 1156 if (flags & ATTR_HINT) { 1157 if (vap->va_mask == 1158 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1159 mutex_enter(&rp->r_statelock); 1160 if (vap->va_mask | AT_SIZE) 1161 vap->va_size = rp->r_size; 1162 if (vap->va_mask | AT_FSID) 1163 vap->va_fsid = rp->r_attr.va_fsid; 1164 if (vap->va_mask | AT_RDEV) 1165 vap->va_rdev = rp->r_attr.va_rdev; 1166 mutex_exit(&rp->r_statelock); 1167 return (0); 1168 } 1169 } 1170 1171 /* 1172 * Only need to flush pages if asking for the mtime 1173 * and if there any dirty pages or any outstanding 1174 * asynchronous (write) requests for this file. 1175 */ 1176 if (vap->va_mask & AT_MTIME) { 1177 if (vn_has_cached_data(vp) && 1178 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1179 mutex_enter(&rp->r_statelock); 1180 rp->r_gcount++; 1181 mutex_exit(&rp->r_statelock); 1182 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr); 1183 mutex_enter(&rp->r_statelock); 1184 if (error && (error == ENOSPC || error == EDQUOT)) { 1185 if (!rp->r_error) 1186 rp->r_error = error; 1187 } 1188 if (--rp->r_gcount == 0) 1189 cv_broadcast(&rp->r_cv); 1190 mutex_exit(&rp->r_statelock); 1191 } 1192 } 1193 1194 return (nfs3getattr(vp, vap, cr)); 1195 } 1196 1197 /*ARGSUSED4*/ 1198 static int 1199 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1200 caller_context_t *ct) 1201 { 1202 int error; 1203 struct vattr va; 1204 1205 if (vap->va_mask & AT_NOSET) 1206 return (EINVAL); 1207 if (nfs_zone() != VTOMI(vp)->mi_zone) 1208 return (EIO); 1209 1210 va.va_mask = AT_UID | AT_MODE; 1211 error = nfs3getattr(vp, &va, cr); 1212 if (error) 1213 return (error); 1214 1215 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx, 1216 vp); 1217 if (error) 1218 return (error); 1219 1220 return (nfs3setattr(vp, vap, flags, cr)); 1221 } 1222 1223 static int 1224 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1225 { 1226 int error; 1227 uint_t mask; 1228 SETATTR3args args; 1229 SETATTR3res res; 1230 int douprintf; 1231 rnode_t *rp; 1232 struct vattr va; 1233 mode_t omode; 1234 vsecattr_t *vsp; 1235 hrtime_t t; 1236 1237 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1238 mask = vap->va_mask; 1239 1240 rp = VTOR(vp); 1241 1242 /* 1243 * Only need to flush pages if there are any pages and 1244 * if the file is marked as dirty in some fashion. The 1245 * file must be flushed so that we can accurately 1246 * determine the size of the file and the cached data 1247 * after the SETATTR returns. A file is considered to 1248 * be dirty if it is either marked with RDIRTY, has 1249 * outstanding i/o's active, or is mmap'd. In this 1250 * last case, we can't tell whether there are dirty 1251 * pages, so we flush just to be sure. 1252 */ 1253 if (vn_has_cached_data(vp) && 1254 ((rp->r_flags & RDIRTY) || 1255 rp->r_count > 0 || 1256 rp->r_mapcnt > 0)) { 1257 ASSERT(vp->v_type != VCHR); 1258 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr); 1259 if (error && (error == ENOSPC || error == EDQUOT)) { 1260 mutex_enter(&rp->r_statelock); 1261 if (!rp->r_error) 1262 rp->r_error = error; 1263 mutex_exit(&rp->r_statelock); 1264 } 1265 } 1266 1267 args.object = *RTOFH3(rp); 1268 /* 1269 * If the intent is for the server to set the times, 1270 * there is no point in have the mask indicating set mtime or 1271 * atime, because the vap values may be junk, and so result 1272 * in an overflow error. Remove these flags from the vap mask 1273 * before calling in this case, and restore them afterwards. 1274 */ 1275 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) { 1276 /* Use server times, so don't set the args time fields */ 1277 vap->va_mask &= ~(AT_ATIME | AT_MTIME); 1278 error = vattr_to_sattr3(vap, &args.new_attributes); 1279 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME)); 1280 if (mask & AT_ATIME) { 1281 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 1282 } 1283 if (mask & AT_MTIME) { 1284 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 1285 } 1286 } else { 1287 /* Either do not set times or use the client specified times */ 1288 error = vattr_to_sattr3(vap, &args.new_attributes); 1289 } 1290 1291 if (error) { 1292 /* req time field(s) overflow - return immediately */ 1293 return (error); 1294 } 1295 1296 va.va_mask = AT_MODE | AT_CTIME; 1297 error = nfs3getattr(vp, &va, cr); 1298 if (error) 1299 return (error); 1300 omode = va.va_mode; 1301 1302 tryagain: 1303 if (mask & AT_SIZE) { 1304 args.guard.check = TRUE; 1305 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec; 1306 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec; 1307 } else 1308 args.guard.check = FALSE; 1309 1310 douprintf = 1; 1311 1312 t = gethrtime(); 1313 1314 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 1315 xdr_SETATTR3args, (caddr_t)&args, 1316 xdr_SETATTR3res, (caddr_t)&res, cr, 1317 &douprintf, &res.status, 0, NULL); 1318 1319 /* 1320 * Purge the access cache and ACL cache if changing either the 1321 * owner of the file, the group owner, or the mode. These may 1322 * change the access permissions of the file, so purge old 1323 * information and start over again. 1324 */ 1325 if (mask & (AT_UID | AT_GID | AT_MODE)) { 1326 (void) nfs_access_purge_rp(rp); 1327 if (rp->r_secattr != NULL) { 1328 mutex_enter(&rp->r_statelock); 1329 vsp = rp->r_secattr; 1330 rp->r_secattr = NULL; 1331 mutex_exit(&rp->r_statelock); 1332 if (vsp != NULL) 1333 nfs_acl_free(vsp); 1334 } 1335 } 1336 1337 if (error) { 1338 PURGE_ATTRCACHE(vp); 1339 return (error); 1340 } 1341 1342 error = geterrno3(res.status); 1343 if (!error) { 1344 /* 1345 * If changing the size of the file, invalidate 1346 * any local cached data which is no longer part 1347 * of the file. We also possibly invalidate the 1348 * last page in the file. We could use 1349 * pvn_vpzero(), but this would mark the page as 1350 * modified and require it to be written back to 1351 * the server for no particularly good reason. 1352 * This way, if we access it, then we bring it 1353 * back in. A read should be cheaper than a 1354 * write. 1355 */ 1356 if (mask & AT_SIZE) { 1357 nfs_invalidate_pages(vp, 1358 (vap->va_size & PAGEMASK), cr); 1359 } 1360 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 1361 /* 1362 * Some servers will change the mode to clear the setuid 1363 * and setgid bits when changing the uid or gid. The 1364 * client needs to compensate appropriately. 1365 */ 1366 if (mask & (AT_UID | AT_GID)) { 1367 int terror; 1368 1369 va.va_mask = AT_MODE; 1370 terror = nfs3getattr(vp, &va, cr); 1371 if (!terror && 1372 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 1373 (!(mask & AT_MODE) && va.va_mode != omode))) { 1374 va.va_mask = AT_MODE; 1375 if (mask & AT_MODE) 1376 va.va_mode = vap->va_mode; 1377 else 1378 va.va_mode = omode; 1379 (void) nfs3setattr(vp, &va, 0, cr); 1380 } 1381 } 1382 } else { 1383 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 1384 /* 1385 * If we got back a "not synchronized" error, then 1386 * we need to retry with a new guard value. The 1387 * guard value used is the change time. If the 1388 * server returned post_op_attr, then we can just 1389 * retry because we have the latest attributes. 1390 * Otherwise, we issue a GETATTR to get the latest 1391 * attributes and then retry. If we couldn't get 1392 * the attributes this way either, then we give 1393 * up because we can't complete the operation as 1394 * required. 1395 */ 1396 if (res.status == NFS3ERR_NOT_SYNC) { 1397 va.va_mask = AT_CTIME; 1398 if (nfs3getattr(vp, &va, cr) == 0) 1399 goto tryagain; 1400 } 1401 PURGE_STALE_FH(error, vp, cr); 1402 } 1403 1404 return (error); 1405 } 1406 1407 static int 1408 nfs3_accessx(void *vp, int mode, cred_t *cr) 1409 { 1410 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1411 return (nfs3_access(vp, mode, 0, cr)); 1412 } 1413 1414 /* ARGSUSED */ 1415 static int 1416 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr) 1417 { 1418 int error; 1419 ACCESS3args args; 1420 ACCESS3res res; 1421 int douprintf; 1422 uint32 acc; 1423 rnode_t *rp; 1424 cred_t *cred, *ncr, *ncrfree = NULL; 1425 failinfo_t fi; 1426 nfs_access_type_t cacc; 1427 hrtime_t t; 1428 1429 acc = 0; 1430 if (nfs_zone() != VTOMI(vp)->mi_zone) 1431 return (EIO); 1432 if (mode & VREAD) 1433 acc |= ACCESS3_READ; 1434 if (mode & VWRITE) { 1435 if (vn_is_readonly(vp) && !IS_DEVVP(vp)) 1436 return (EROFS); 1437 if (vp->v_type == VDIR) 1438 acc |= ACCESS3_DELETE; 1439 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND; 1440 } 1441 if (mode & VEXEC) { 1442 if (vp->v_type == VDIR) 1443 acc |= ACCESS3_LOOKUP; 1444 else 1445 acc |= ACCESS3_EXECUTE; 1446 } 1447 1448 rp = VTOR(vp); 1449 args.object = *VTOFH3(vp); 1450 if (vp->v_type == VDIR) { 1451 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY | 1452 ACCESS3_EXTEND | ACCESS3_LOOKUP; 1453 } else { 1454 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND | 1455 ACCESS3_EXECUTE; 1456 } 1457 fi.vp = vp; 1458 fi.fhp = (caddr_t)&args.object; 1459 fi.copyproc = nfs3copyfh; 1460 fi.lookupproc = nfs3lookup; 1461 fi.xattrdirproc = acl_getxattrdir3; 1462 1463 cred = cr; 1464 /* 1465 * ncr and ncrfree both initially 1466 * point to the memory area returned 1467 * by crnetadjust(); 1468 * ncrfree not NULL when exiting means 1469 * that we need to release it 1470 */ 1471 ncr = crnetadjust(cred); 1472 ncrfree = ncr; 1473 tryagain: 1474 if (rp->r_acache != NULL) { 1475 cacc = nfs_access_check(rp, acc, cred); 1476 if (cacc == NFS_ACCESS_ALLOWED) { 1477 if (ncrfree != NULL) 1478 crfree(ncrfree); 1479 return (0); 1480 } 1481 if (cacc == NFS_ACCESS_DENIED) { 1482 /* 1483 * If the cred can be adjusted, try again 1484 * with the new cred. 1485 */ 1486 if (ncr != NULL) { 1487 cred = ncr; 1488 ncr = NULL; 1489 goto tryagain; 1490 } 1491 if (ncrfree != NULL) 1492 crfree(ncrfree); 1493 return (EACCES); 1494 } 1495 } 1496 1497 douprintf = 1; 1498 1499 t = gethrtime(); 1500 1501 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS, 1502 xdr_ACCESS3args, (caddr_t)&args, 1503 xdr_ACCESS3res, (caddr_t)&res, cred, 1504 &douprintf, &res.status, 0, &fi); 1505 1506 if (error) { 1507 if (ncrfree != NULL) 1508 crfree(ncrfree); 1509 return (error); 1510 } 1511 1512 error = geterrno3(res.status); 1513 if (!error) { 1514 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 1515 nfs_access_cache(rp, args.access, res.resok.access, cred); 1516 /* 1517 * we just cached results with cred; if cred is the 1518 * adjusted credentials from crnetadjust, we do not want 1519 * to release them before exiting: hence setting ncrfree 1520 * to NULL 1521 */ 1522 if (cred != cr) 1523 ncrfree = NULL; 1524 if ((acc & res.resok.access) != acc) { 1525 /* 1526 * If the cred can be adjusted, try again 1527 * with the new cred. 1528 */ 1529 if (ncr != NULL) { 1530 cred = ncr; 1531 ncr = NULL; 1532 goto tryagain; 1533 } 1534 error = EACCES; 1535 } 1536 } else { 1537 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 1538 PURGE_STALE_FH(error, vp, cr); 1539 } 1540 1541 if (ncrfree != NULL) 1542 crfree(ncrfree); 1543 1544 return (error); 1545 } 1546 1547 static int nfs3_do_symlink_cache = 1; 1548 1549 static int 1550 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr) 1551 { 1552 int error; 1553 READLINK3args args; 1554 READLINK3res res; 1555 nfspath3 resdata_backup; 1556 rnode_t *rp; 1557 int douprintf; 1558 int len; 1559 failinfo_t fi; 1560 hrtime_t t; 1561 1562 /* 1563 * Can't readlink anything other than a symbolic link. 1564 */ 1565 if (vp->v_type != VLNK) 1566 return (EINVAL); 1567 if (nfs_zone() != VTOMI(vp)->mi_zone) 1568 return (EIO); 1569 1570 rp = VTOR(vp); 1571 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) { 1572 error = nfs3_validate_caches(vp, cr); 1573 if (error) 1574 return (error); 1575 mutex_enter(&rp->r_statelock); 1576 if (rp->r_symlink.contents != NULL) { 1577 error = uiomove(rp->r_symlink.contents, 1578 rp->r_symlink.len, UIO_READ, uiop); 1579 mutex_exit(&rp->r_statelock); 1580 return (error); 1581 } 1582 mutex_exit(&rp->r_statelock); 1583 } 1584 1585 args.symlink = *VTOFH3(vp); 1586 fi.vp = vp; 1587 fi.fhp = (caddr_t)&args.symlink; 1588 fi.copyproc = nfs3copyfh; 1589 fi.lookupproc = nfs3lookup; 1590 fi.xattrdirproc = acl_getxattrdir3; 1591 1592 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1593 1594 resdata_backup = res.resok.data; 1595 1596 douprintf = 1; 1597 1598 t = gethrtime(); 1599 1600 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK, 1601 xdr_nfs_fh3, (caddr_t)&args, 1602 xdr_READLINK3res, (caddr_t)&res, cr, 1603 &douprintf, &res.status, 0, &fi); 1604 1605 if (res.resok.data == nfs3nametoolong) 1606 error = EINVAL; 1607 1608 if (error) { 1609 kmem_free(resdata_backup, MAXPATHLEN); 1610 return (error); 1611 } 1612 1613 error = geterrno3(res.status); 1614 if (!error) { 1615 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t, 1616 cr); 1617 len = strlen(res.resok.data); 1618 error = uiomove(res.resok.data, len, UIO_READ, uiop); 1619 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) { 1620 mutex_enter(&rp->r_statelock); 1621 if (rp->r_symlink.contents == NULL) { 1622 rp->r_symlink.contents = res.resok.data; 1623 rp->r_symlink.len = len; 1624 rp->r_symlink.size = MAXPATHLEN; 1625 mutex_exit(&rp->r_statelock); 1626 } else { 1627 mutex_exit(&rp->r_statelock); 1628 1629 kmem_free((void *)res.resok.data, MAXPATHLEN); 1630 } 1631 } else { 1632 kmem_free((void *)res.resok.data, MAXPATHLEN); 1633 } 1634 } else { 1635 nfs3_cache_post_op_attr(vp, 1636 &res.resfail.symlink_attributes, t, cr); 1637 PURGE_STALE_FH(error, vp, cr); 1638 1639 kmem_free((void *)res.resok.data, MAXPATHLEN); 1640 1641 } 1642 1643 /* 1644 * The over the wire error for attempting to readlink something 1645 * other than a symbolic link is ENXIO. However, we need to 1646 * return EINVAL instead of ENXIO, so we map it here. 1647 */ 1648 return (error == ENXIO ? EINVAL : error); 1649 } 1650 1651 /* 1652 * Flush local dirty pages to stable storage on the server. 1653 * 1654 * If FNODSYNC is specified, then there is nothing to do because 1655 * metadata changes are not cached on the client before being 1656 * sent to the server. 1657 */ 1658 static int 1659 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1660 { 1661 int error; 1662 1663 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1664 return (0); 1665 if (nfs_zone() != VTOMI(vp)->mi_zone) 1666 return (EIO); 1667 1668 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr); 1669 if (!error) 1670 error = VTOR(vp)->r_error; 1671 return (error); 1672 } 1673 1674 /* 1675 * Weirdness: if the file was removed or the target of a rename 1676 * operation while it was open, it got renamed instead. Here we 1677 * remove the renamed file. 1678 */ 1679 static void 1680 nfs3_inactive(vnode_t *vp, cred_t *cr) 1681 { 1682 rnode_t *rp; 1683 1684 ASSERT(vp != DNLC_NO_VNODE); 1685 1686 /* 1687 * If this is coming from the wrong zone, we let someone in the right 1688 * zone take care of it asynchronously. We can get here due to 1689 * VN_RELE() being called from pageout() or fsflush(). This call may 1690 * potentially turn into an expensive no-op if, for instance, v_count 1691 * gets incremented in the meantime, but it's still correct. 1692 */ 1693 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1694 nfs_async_inactive(vp, cr, nfs3_inactive); 1695 return; 1696 } 1697 1698 rp = VTOR(vp); 1699 redo: 1700 if (rp->r_unldvp != NULL) { 1701 /* 1702 * Save the vnode pointer for the directory where the 1703 * unlinked-open file got renamed, then set it to NULL 1704 * to prevent another thread from getting here before 1705 * we're done with the remove. While we have the 1706 * statelock, make local copies of the pertinent rnode 1707 * fields. If we weren't to do this in an atomic way, the 1708 * the unl* fields could become inconsistent with respect 1709 * to each other due to a race condition between this 1710 * code and nfs_remove(). See bug report 1034328. 1711 */ 1712 mutex_enter(&rp->r_statelock); 1713 if (rp->r_unldvp != NULL) { 1714 vnode_t *unldvp; 1715 char *unlname; 1716 cred_t *unlcred; 1717 REMOVE3args args; 1718 REMOVE3res res; 1719 int douprintf; 1720 int error; 1721 hrtime_t t; 1722 1723 unldvp = rp->r_unldvp; 1724 rp->r_unldvp = NULL; 1725 unlname = rp->r_unlname; 1726 rp->r_unlname = NULL; 1727 unlcred = rp->r_unlcred; 1728 rp->r_unlcred = NULL; 1729 mutex_exit(&rp->r_statelock); 1730 1731 /* 1732 * If there are any dirty pages left, then flush 1733 * them. This is unfortunate because they just 1734 * may get thrown away during the remove operation, 1735 * but we have to do this for correctness. 1736 */ 1737 if (vn_has_cached_data(vp) && 1738 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1739 ASSERT(vp->v_type != VCHR); 1740 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr); 1741 if (error) { 1742 mutex_enter(&rp->r_statelock); 1743 if (!rp->r_error) 1744 rp->r_error = error; 1745 mutex_exit(&rp->r_statelock); 1746 } 1747 } 1748 1749 /* 1750 * Do the remove operation on the renamed file 1751 */ 1752 setdiropargs3(&args.object, unlname, unldvp); 1753 1754 douprintf = 1; 1755 1756 t = gethrtime(); 1757 1758 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE, 1759 xdr_diropargs3, (caddr_t)&args, 1760 xdr_REMOVE3res, (caddr_t)&res, unlcred, 1761 &douprintf, &res.status, 0, NULL); 1762 1763 if (error) { 1764 PURGE_ATTRCACHE(unldvp); 1765 } else { 1766 error = geterrno3(res.status); 1767 if (!error) { 1768 nfs3_cache_wcc_data(unldvp, 1769 &res.resok.dir_wcc, t, cr); 1770 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1771 nfs_purge_rddir_cache(unldvp); 1772 } else { 1773 nfs3_cache_wcc_data(unldvp, 1774 &res.resfail.dir_wcc, t, cr); 1775 PURGE_STALE_FH(error, unldvp, cr); 1776 } 1777 } 1778 1779 /* 1780 * Release stuff held for the remove 1781 */ 1782 VN_RELE(unldvp); 1783 kmem_free(unlname, MAXNAMELEN); 1784 crfree(unlcred); 1785 goto redo; 1786 } 1787 mutex_exit(&rp->r_statelock); 1788 } 1789 1790 rp_addfree(rp, cr); 1791 } 1792 1793 /* 1794 * Remote file system operations having to do with directory manipulation. 1795 */ 1796 1797 static int 1798 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1799 int flags, vnode_t *rdir, cred_t *cr) 1800 { 1801 int error; 1802 vnode_t *vp; 1803 vnode_t *avp = NULL; 1804 rnode_t *drp; 1805 1806 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1807 return (EPERM); 1808 1809 drp = VTOR(dvp); 1810 1811 /* 1812 * Are we looking up extended attributes? If so, "dvp" is 1813 * the file or directory for which we want attributes, and 1814 * we need a lookup of the hidden attribute directory 1815 * before we lookup the rest of the path. 1816 */ 1817 if (flags & LOOKUP_XATTR) { 1818 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1819 mntinfo_t *mi; 1820 1821 mi = VTOMI(dvp); 1822 if (!(mi->mi_flags & MI_EXTATTR)) 1823 return (EINVAL); 1824 1825 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1826 return (EINTR); 1827 1828 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1829 if (avp == NULL) 1830 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0); 1831 else 1832 error = 0; 1833 1834 nfs_rw_exit(&drp->r_rwlock); 1835 1836 if (error) { 1837 if (mi->mi_flags & MI_EXTATTR) 1838 return (error); 1839 return (EINVAL); 1840 } 1841 dvp = avp; 1842 drp = VTOR(dvp); 1843 } 1844 1845 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1846 error = EINTR; 1847 goto out; 1848 } 1849 1850 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1851 1852 nfs_rw_exit(&drp->r_rwlock); 1853 1854 /* 1855 * If vnode is a device, create special vnode. 1856 */ 1857 if (!error && IS_DEVVP(*vpp)) { 1858 vp = *vpp; 1859 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1860 VN_RELE(vp); 1861 } 1862 1863 out: 1864 if (avp != NULL) 1865 VN_RELE(avp); 1866 1867 return (error); 1868 } 1869 1870 static int nfs3_lookup_neg_cache = 1; 1871 1872 #ifdef DEBUG 1873 static int nfs3_lookup_dnlc_hits = 0; 1874 static int nfs3_lookup_dnlc_misses = 0; 1875 static int nfs3_lookup_dnlc_neg_hits = 0; 1876 static int nfs3_lookup_dnlc_disappears = 0; 1877 static int nfs3_lookup_dnlc_lookups = 0; 1878 #endif 1879 1880 /* ARGSUSED */ 1881 int 1882 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1883 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1884 { 1885 int error; 1886 rnode_t *drp; 1887 1888 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1889 /* 1890 * If lookup is for "", just return dvp. Don't need 1891 * to send it over the wire, look it up in the dnlc, 1892 * or perform any access checks. 1893 */ 1894 if (*nm == '\0') { 1895 VN_HOLD(dvp); 1896 *vpp = dvp; 1897 return (0); 1898 } 1899 1900 /* 1901 * Can't do lookups in non-directories. 1902 */ 1903 if (dvp->v_type != VDIR) 1904 return (ENOTDIR); 1905 1906 /* 1907 * If we're called with RFSCALL_SOFT, it's important that 1908 * the only rfscall is one we make directly; if we permit 1909 * an access call because we're looking up "." or validating 1910 * a dnlc hit, we'll deadlock because that rfscall will not 1911 * have the RFSCALL_SOFT set. 1912 */ 1913 if (rfscall_flags & RFSCALL_SOFT) 1914 goto callit; 1915 1916 /* 1917 * If lookup is for ".", just return dvp. Don't need 1918 * to send it over the wire or look it up in the dnlc, 1919 * just need to check access. 1920 */ 1921 if (strcmp(nm, ".") == 0) { 1922 error = nfs3_access(dvp, VEXEC, 0, cr); 1923 if (error) 1924 return (error); 1925 VN_HOLD(dvp); 1926 *vpp = dvp; 1927 return (0); 1928 } 1929 1930 drp = VTOR(dvp); 1931 if (!(drp->r_flags & RLOOKUP)) { 1932 mutex_enter(&drp->r_statelock); 1933 drp->r_flags |= RLOOKUP; 1934 mutex_exit(&drp->r_statelock); 1935 } 1936 1937 /* 1938 * Lookup this name in the DNLC. If there was a valid entry, 1939 * then return the results of the lookup. 1940 */ 1941 error = nfs3lookup_dnlc(dvp, nm, vpp, cr); 1942 if (error || *vpp != NULL) 1943 return (error); 1944 1945 callit: 1946 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1947 1948 return (error); 1949 } 1950 1951 static int 1952 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1953 { 1954 int error; 1955 vnode_t *vp; 1956 1957 ASSERT(*nm != '\0'); 1958 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1959 /* 1960 * Lookup this name in the DNLC. If successful, then validate 1961 * the caches and then recheck the DNLC. The DNLC is rechecked 1962 * just in case this entry got invalidated during the call 1963 * to nfs3_validate_caches. 1964 * 1965 * An assumption is being made that it is safe to say that a 1966 * file exists which may not on the server. Any operations to 1967 * the server will fail with ESTALE. 1968 */ 1969 #ifdef DEBUG 1970 nfs3_lookup_dnlc_lookups++; 1971 #endif 1972 vp = dnlc_lookup(dvp, nm); 1973 if (vp != NULL) { 1974 VN_RELE(vp); 1975 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1976 PURGE_ATTRCACHE(dvp); 1977 } 1978 error = nfs3_validate_caches(dvp, cr); 1979 if (error) 1980 return (error); 1981 vp = dnlc_lookup(dvp, nm); 1982 if (vp != NULL) { 1983 error = nfs3_access(dvp, VEXEC, 0, cr); 1984 if (error) { 1985 VN_RELE(vp); 1986 return (error); 1987 } 1988 if (vp == DNLC_NO_VNODE) { 1989 VN_RELE(vp); 1990 #ifdef DEBUG 1991 nfs3_lookup_dnlc_neg_hits++; 1992 #endif 1993 return (ENOENT); 1994 } 1995 *vpp = vp; 1996 #ifdef DEBUG 1997 nfs3_lookup_dnlc_hits++; 1998 #endif 1999 return (0); 2000 } 2001 #ifdef DEBUG 2002 nfs3_lookup_dnlc_disappears++; 2003 #endif 2004 } 2005 #ifdef DEBUG 2006 else 2007 nfs3_lookup_dnlc_misses++; 2008 #endif 2009 2010 *vpp = NULL; 2011 2012 return (0); 2013 } 2014 2015 static int 2016 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 2017 int rfscall_flags) 2018 { 2019 int error; 2020 LOOKUP3args args; 2021 LOOKUP3vres res; 2022 int douprintf; 2023 struct vattr vattr; 2024 struct vattr dvattr; 2025 vnode_t *vp; 2026 failinfo_t fi; 2027 hrtime_t t; 2028 2029 ASSERT(*nm != '\0'); 2030 ASSERT(dvp->v_type == VDIR); 2031 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2032 2033 setdiropargs3(&args.what, nm, dvp); 2034 2035 fi.vp = dvp; 2036 fi.fhp = (caddr_t)&args.what.dir; 2037 fi.copyproc = nfs3copyfh; 2038 fi.lookupproc = nfs3lookup; 2039 fi.xattrdirproc = acl_getxattrdir3; 2040 res.obj_attributes.fres.vp = dvp; 2041 res.obj_attributes.fres.vap = &vattr; 2042 res.dir_attributes.fres.vp = dvp; 2043 res.dir_attributes.fres.vap = &dvattr; 2044 2045 douprintf = 1; 2046 2047 t = gethrtime(); 2048 2049 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP, 2050 xdr_diropargs3, (caddr_t)&args, 2051 xdr_LOOKUP3vres, (caddr_t)&res, cr, 2052 &douprintf, &res.status, rfscall_flags, &fi); 2053 2054 if (error) 2055 return (error); 2056 2057 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr); 2058 2059 error = geterrno3(res.status); 2060 if (error) { 2061 PURGE_STALE_FH(error, dvp, cr); 2062 if (error == ENOENT && nfs3_lookup_neg_cache) 2063 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 2064 return (error); 2065 } 2066 2067 if (res.obj_attributes.attributes) { 2068 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap, 2069 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2070 } else { 2071 vp = makenfs3node_va(&res.object, NULL, 2072 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 2073 if (vp->v_type == VNON) { 2074 vattr.va_mask = AT_TYPE; 2075 error = nfs3getattr(vp, &vattr, cr); 2076 if (error) { 2077 VN_RELE(vp); 2078 return (error); 2079 } 2080 vp->v_type = vattr.va_type; 2081 } 2082 } 2083 2084 if (!(rfscall_flags & RFSCALL_SOFT)) 2085 dnlc_update(dvp, nm, vp); 2086 2087 *vpp = vp; 2088 2089 return (error); 2090 } 2091 2092 #ifdef DEBUG 2093 static int nfs3_create_misses = 0; 2094 #endif 2095 2096 /* ARGSUSED */ 2097 static int 2098 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2099 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2100 { 2101 int error; 2102 vnode_t *vp; 2103 rnode_t *rp; 2104 struct vattr vattr; 2105 rnode_t *drp; 2106 vnode_t *tempvp; 2107 2108 drp = VTOR(dvp); 2109 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2110 return (EPERM); 2111 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2112 return (EINTR); 2113 2114 top: 2115 /* 2116 * We make a copy of the attributes because the caller does not 2117 * expect us to change what va points to. 2118 */ 2119 vattr = *va; 2120 2121 /* 2122 * If the pathname is "", just use dvp. Don't need 2123 * to send it over the wire, look it up in the dnlc, 2124 * or perform any access checks. 2125 */ 2126 if (*nm == '\0') { 2127 error = 0; 2128 VN_HOLD(dvp); 2129 vp = dvp; 2130 /* 2131 * If the pathname is ".", just use dvp. Don't need 2132 * to send it over the wire or look it up in the dnlc, 2133 * just need to check access. 2134 */ 2135 } else if (strcmp(nm, ".") == 0) { 2136 error = nfs3_access(dvp, VEXEC, 0, cr); 2137 if (error) { 2138 nfs_rw_exit(&drp->r_rwlock); 2139 return (error); 2140 } 2141 VN_HOLD(dvp); 2142 vp = dvp; 2143 /* 2144 * We need to go over the wire, just to be sure whether the 2145 * file exists or not. Using the DNLC can be dangerous in 2146 * this case when making a decision regarding existence. 2147 */ 2148 } else { 2149 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0); 2150 } 2151 if (!error) { 2152 if (exclusive == EXCL) 2153 error = EEXIST; 2154 else if (vp->v_type == VDIR && (mode & VWRITE)) 2155 error = EISDIR; 2156 else { 2157 /* 2158 * If vnode is a device, create special vnode. 2159 */ 2160 if (IS_DEVVP(vp)) { 2161 tempvp = vp; 2162 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2163 VN_RELE(tempvp); 2164 } 2165 if (!(error = VOP_ACCESS(vp, mode, 0, cr))) { 2166 if ((vattr.va_mask & AT_SIZE) && 2167 vp->v_type == VREG) { 2168 rp = VTOR(vp); 2169 /* 2170 * Check here for large file handled 2171 * by LF-unaware process (as 2172 * ufs_create() does) 2173 */ 2174 if (!(lfaware & FOFFMAX)) { 2175 mutex_enter(&rp->r_statelock); 2176 if (rp->r_size > MAXOFF32_T) 2177 error = EOVERFLOW; 2178 mutex_exit(&rp->r_statelock); 2179 } 2180 if (!error) { 2181 vattr.va_mask = AT_SIZE; 2182 error = nfs3setattr(vp, 2183 &vattr, 0, cr); 2184 } 2185 } 2186 } 2187 } 2188 nfs_rw_exit(&drp->r_rwlock); 2189 if (error) { 2190 VN_RELE(vp); 2191 } else 2192 *vpp = vp; 2193 return (error); 2194 } 2195 2196 dnlc_remove(dvp, nm); 2197 2198 /* 2199 * Decide what the group-id of the created file should be. 2200 * Set it in attribute list as advisory... 2201 */ 2202 error = setdirgid(dvp, &vattr.va_gid, cr); 2203 if (error) { 2204 nfs_rw_exit(&drp->r_rwlock); 2205 return (error); 2206 } 2207 vattr.va_mask |= AT_GID; 2208 2209 ASSERT(vattr.va_mask & AT_TYPE); 2210 if (vattr.va_type == VREG) { 2211 ASSERT(vattr.va_mask & AT_MODE); 2212 if (MANDMODE(vattr.va_mode)) { 2213 nfs_rw_exit(&drp->r_rwlock); 2214 return (EACCES); 2215 } 2216 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr, 2217 lfaware); 2218 /* 2219 * If this is not an exclusive create, then the CREATE 2220 * request will be made with the GUARDED mode set. This 2221 * means that the server will return EEXIST if the file 2222 * exists. The file could exist because of a retransmitted 2223 * request. In this case, we recover by starting over and 2224 * checking to see whether the file exists. This second 2225 * time through it should and a CREATE request will not be 2226 * sent. 2227 * 2228 * This handles the problem of a dangling CREATE request 2229 * which contains attributes which indicate that the file 2230 * should be truncated. This retransmitted request could 2231 * possibly truncate valid data in the file if not caught 2232 * by the duplicate request mechanism on the server or if 2233 * not caught by other means. The scenario is: 2234 * 2235 * Client transmits CREATE request with size = 0 2236 * Client times out, retransmits request. 2237 * Response to the first request arrives from the server 2238 * and the client proceeds on. 2239 * Client writes data to the file. 2240 * The server now processes retransmitted CREATE request 2241 * and truncates file. 2242 * 2243 * The use of the GUARDED CREATE request prevents this from 2244 * happening because the retransmitted CREATE would fail 2245 * with EEXIST and would not truncate the file. 2246 */ 2247 if (error == EEXIST && exclusive == NONEXCL) { 2248 #ifdef DEBUG 2249 nfs3_create_misses++; 2250 #endif 2251 goto top; 2252 } 2253 nfs_rw_exit(&drp->r_rwlock); 2254 return (error); 2255 } 2256 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 2257 nfs_rw_exit(&drp->r_rwlock); 2258 return (error); 2259 } 2260 2261 /* ARGSUSED */ 2262 static int 2263 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2264 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 2265 { 2266 int error; 2267 CREATE3args args; 2268 CREATE3res res; 2269 int douprintf; 2270 vnode_t *vp; 2271 struct vattr vattr; 2272 nfstime3 *verfp; 2273 rnode_t *rp; 2274 timestruc_t now; 2275 hrtime_t t; 2276 2277 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2278 setdiropargs3(&args.where, nm, dvp); 2279 if (exclusive == EXCL) { 2280 args.how.mode = EXCLUSIVE; 2281 /* 2282 * Construct the create verifier. This verifier needs 2283 * to be unique between different clients. It also needs 2284 * to vary for each exclusive create request generated 2285 * from the client to the server. 2286 * 2287 * The first attempt is made to use the hostid and a 2288 * unique number on the client. If the hostid has not 2289 * been set, the high resolution time that the exclusive 2290 * create request is being made is used. This will work 2291 * unless two different clients, both with the hostid 2292 * not set, attempt an exclusive create request on the 2293 * same file, at exactly the same clock time. The 2294 * chances of this happening seem small enough to be 2295 * reasonable. 2296 */ 2297 verfp = (nfstime3 *)&args.how.createhow3_u.verf; 2298 verfp->seconds = nfs_atoi(hw_serial); 2299 if (verfp->seconds != 0) 2300 verfp->nseconds = newnum(); 2301 else { 2302 gethrestime(&now); 2303 verfp->seconds = now.tv_sec; 2304 verfp->nseconds = now.tv_nsec; 2305 } 2306 /* 2307 * Since the server will use this value for the mtime, 2308 * make sure that it can't overflow. Zero out the MSB. 2309 * The actual value does not matter here, only its uniqeness. 2310 */ 2311 verfp->seconds %= INT32_MAX; 2312 } else { 2313 /* 2314 * Issue the non-exclusive create in guarded mode. This 2315 * may result in some false EEXIST responses for 2316 * retransmitted requests, but these will be handled at 2317 * a higher level. By using GUARDED, duplicate requests 2318 * to do file truncation and possible access problems 2319 * can be avoided. 2320 */ 2321 args.how.mode = GUARDED; 2322 error = vattr_to_sattr3(va, 2323 &args.how.createhow3_u.obj_attributes); 2324 if (error) { 2325 /* req time field(s) overflow - return immediately */ 2326 return (error); 2327 } 2328 } 2329 2330 douprintf = 1; 2331 2332 t = gethrtime(); 2333 2334 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE, 2335 xdr_CREATE3args, (caddr_t)&args, 2336 xdr_CREATE3res, (caddr_t)&res, cr, 2337 &douprintf, &res.status, 0, NULL); 2338 2339 if (error) { 2340 PURGE_ATTRCACHE(dvp); 2341 return (error); 2342 } 2343 2344 error = geterrno3(res.status); 2345 if (!error) { 2346 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2347 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2348 nfs_purge_rddir_cache(dvp); 2349 2350 /* 2351 * On exclusive create the times need to be explicitly 2352 * set to clear any potential verifier that may be stored 2353 * in one of these fields (see comment below). This 2354 * is done here to cover the case where no post op attrs 2355 * were returned or a 'invalid' time was returned in 2356 * the attributes. 2357 */ 2358 if (exclusive == EXCL) 2359 va->va_mask |= (AT_MTIME | AT_ATIME); 2360 2361 if (!res.resok.obj.handle_follows) { 2362 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2363 if (error) 2364 return (error); 2365 } else { 2366 if (res.resok.obj_attributes.attributes) { 2367 vp = makenfs3node(&res.resok.obj.handle, 2368 &res.resok.obj_attributes.attr, 2369 dvp->v_vfsp, t, cr, NULL, NULL); 2370 } else { 2371 vp = makenfs3node(&res.resok.obj.handle, NULL, 2372 dvp->v_vfsp, t, cr, NULL, NULL); 2373 2374 /* 2375 * On an exclusive create, it is possible 2376 * that attributes were returned but those 2377 * postop attributes failed to decode 2378 * properly. If this is the case, 2379 * then most likely the atime or mtime 2380 * were invalid for our client; this 2381 * is caused by the server storing the 2382 * create verifier in one of the time 2383 * fields(most likely mtime). 2384 * So... we are going to setattr just the 2385 * atime/mtime to clear things up. 2386 */ 2387 if (exclusive == EXCL) { 2388 if (error = 2389 nfs3excl_create_settimes(vp, 2390 va, cr)) { 2391 /* 2392 * Setting the times failed. 2393 * Remove the file and return 2394 * the error. 2395 */ 2396 VN_RELE(vp); 2397 (void) nfs3_remove(dvp, 2398 nm, cr); 2399 return (error); 2400 } 2401 } 2402 2403 /* 2404 * This handles the non-exclusive case 2405 * and the exclusive case where no post op 2406 * attrs were returned. 2407 */ 2408 if (vp->v_type == VNON) { 2409 vattr.va_mask = AT_TYPE; 2410 error = nfs3getattr(vp, &vattr, cr); 2411 if (error) { 2412 VN_RELE(vp); 2413 return (error); 2414 } 2415 vp->v_type = vattr.va_type; 2416 } 2417 } 2418 dnlc_update(dvp, nm, vp); 2419 } 2420 2421 rp = VTOR(vp); 2422 2423 /* 2424 * Check here for large file handled by 2425 * LF-unaware process (as ufs_create() does) 2426 */ 2427 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG && 2428 !(lfaware & FOFFMAX)) { 2429 mutex_enter(&rp->r_statelock); 2430 if (rp->r_size > MAXOFF32_T) { 2431 mutex_exit(&rp->r_statelock); 2432 VN_RELE(vp); 2433 return (EOVERFLOW); 2434 } 2435 mutex_exit(&rp->r_statelock); 2436 } 2437 2438 if (exclusive == EXCL && 2439 (va->va_mask & ~(AT_GID | AT_SIZE))) { 2440 /* 2441 * If doing an exclusive create, then generate 2442 * a SETATTR to set the initial attributes. 2443 * Try to set the mtime and the atime to the 2444 * server's current time. It is somewhat 2445 * expected that these fields will be used to 2446 * store the exclusive create cookie. If not, 2447 * server implementors will need to know that 2448 * a SETATTR will follow an exclusive create 2449 * and the cookie should be destroyed if 2450 * appropriate. This work may have been done 2451 * earlier in this function if post op attrs 2452 * were not available. 2453 * 2454 * The AT_GID and AT_SIZE bits are turned off 2455 * so that the SETATTR request will not attempt 2456 * to process these. The gid will be set 2457 * separately if appropriate. The size is turned 2458 * off because it is assumed that a new file will 2459 * be created empty and if the file wasn't empty, 2460 * then the exclusive create will have failed 2461 * because the file must have existed already. 2462 * Therefore, no truncate operation is needed. 2463 */ 2464 va->va_mask &= ~(AT_GID | AT_SIZE); 2465 error = nfs3setattr(vp, va, 0, cr); 2466 if (error) { 2467 /* 2468 * Couldn't correct the attributes of 2469 * the newly created file and the 2470 * attributes are wrong. Remove the 2471 * file and return an error to the 2472 * application. 2473 */ 2474 VN_RELE(vp); 2475 (void) nfs3_remove(dvp, nm, cr); 2476 return (error); 2477 } 2478 } 2479 2480 if (va->va_gid != rp->r_attr.va_gid) { 2481 /* 2482 * If the gid on the file isn't right, then 2483 * generate a SETATTR to attempt to change 2484 * it. This may or may not work, depending 2485 * upon the server's semantics for allowing 2486 * file ownership changes. 2487 */ 2488 va->va_mask = AT_GID; 2489 (void) nfs3setattr(vp, va, 0, cr); 2490 } 2491 2492 /* 2493 * If vnode is a device create special vnode 2494 */ 2495 if (IS_DEVVP(vp)) { 2496 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2497 VN_RELE(vp); 2498 } else 2499 *vpp = vp; 2500 } else { 2501 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2502 PURGE_STALE_FH(error, dvp, cr); 2503 } 2504 2505 return (error); 2506 } 2507 2508 /* 2509 * Special setattr function to take care of rest of atime/mtime 2510 * after successful exclusive create. This function exists to avoid 2511 * handling attributes from the server; exclusive the atime/mtime fields 2512 * may be 'invalid' in client's view and therefore can not be trusted. 2513 */ 2514 static int 2515 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr) 2516 { 2517 int error; 2518 uint_t mask; 2519 SETATTR3args args; 2520 SETATTR3res res; 2521 int douprintf; 2522 rnode_t *rp; 2523 hrtime_t t; 2524 2525 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 2526 /* save the caller's mask so that it can be reset later */ 2527 mask = vap->va_mask; 2528 2529 rp = VTOR(vp); 2530 2531 args.object = *RTOFH3(rp); 2532 args.guard.check = FALSE; 2533 2534 /* Use the mask to initialize the arguments */ 2535 vap->va_mask = 0; 2536 error = vattr_to_sattr3(vap, &args.new_attributes); 2537 2538 /* We want to set just atime/mtime on this request */ 2539 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME; 2540 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME; 2541 2542 douprintf = 1; 2543 2544 t = gethrtime(); 2545 2546 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR, 2547 xdr_SETATTR3args, (caddr_t)&args, 2548 xdr_SETATTR3res, (caddr_t)&res, cr, 2549 &douprintf, &res.status, 0, NULL); 2550 2551 if (error) { 2552 vap->va_mask = mask; 2553 return (error); 2554 } 2555 2556 error = geterrno3(res.status); 2557 if (!error) { 2558 /* 2559 * It is important to pick up the attributes. 2560 * Since this is the exclusive create path, the 2561 * attributes on the initial create were ignored 2562 * and we need these to have the correct info. 2563 */ 2564 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr); 2565 /* 2566 * No need to do the atime/mtime work again so clear 2567 * the bits. 2568 */ 2569 mask &= ~(AT_ATIME | AT_MTIME); 2570 } else { 2571 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr); 2572 } 2573 2574 vap->va_mask = mask; 2575 2576 return (error); 2577 } 2578 2579 /* ARGSUSED */ 2580 static int 2581 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 2582 int mode, vnode_t **vpp, cred_t *cr) 2583 { 2584 int error; 2585 MKNOD3args args; 2586 MKNOD3res res; 2587 int douprintf; 2588 vnode_t *vp; 2589 struct vattr vattr; 2590 hrtime_t t; 2591 2592 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 2593 switch (va->va_type) { 2594 case VCHR: 2595 case VBLK: 2596 setdiropargs3(&args.where, nm, dvp); 2597 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK; 2598 error = vattr_to_sattr3(va, 2599 &args.what.mknoddata3_u.device.dev_attributes); 2600 if (error) { 2601 /* req time field(s) overflow - return immediately */ 2602 return (error); 2603 } 2604 args.what.mknoddata3_u.device.spec.specdata1 = 2605 getmajor(va->va_rdev); 2606 args.what.mknoddata3_u.device.spec.specdata2 = 2607 getminor(va->va_rdev); 2608 break; 2609 2610 case VFIFO: 2611 case VSOCK: 2612 setdiropargs3(&args.where, nm, dvp); 2613 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK; 2614 error = vattr_to_sattr3(va, 2615 &args.what.mknoddata3_u.pipe_attributes); 2616 if (error) { 2617 /* req time field(s) overflow - return immediately */ 2618 return (error); 2619 } 2620 break; 2621 2622 default: 2623 return (EINVAL); 2624 } 2625 2626 douprintf = 1; 2627 2628 t = gethrtime(); 2629 2630 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD, 2631 xdr_MKNOD3args, (caddr_t)&args, 2632 xdr_MKNOD3res, (caddr_t)&res, cr, 2633 &douprintf, &res.status, 0, NULL); 2634 2635 if (error) { 2636 PURGE_ATTRCACHE(dvp); 2637 return (error); 2638 } 2639 2640 error = geterrno3(res.status); 2641 if (!error) { 2642 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 2643 if (HAVE_RDDIR_CACHE(VTOR(dvp))) 2644 nfs_purge_rddir_cache(dvp); 2645 2646 if (!res.resok.obj.handle_follows) { 2647 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2648 if (error) 2649 return (error); 2650 } else { 2651 if (res.resok.obj_attributes.attributes) { 2652 vp = makenfs3node(&res.resok.obj.handle, 2653 &res.resok.obj_attributes.attr, 2654 dvp->v_vfsp, t, cr, NULL, NULL); 2655 } else { 2656 vp = makenfs3node(&res.resok.obj.handle, NULL, 2657 dvp->v_vfsp, t, cr, NULL, NULL); 2658 if (vp->v_type == VNON) { 2659 vattr.va_mask = AT_TYPE; 2660 error = nfs3getattr(vp, &vattr, cr); 2661 if (error) { 2662 VN_RELE(vp); 2663 return (error); 2664 } 2665 vp->v_type = vattr.va_type; 2666 } 2667 2668 } 2669 dnlc_update(dvp, nm, vp); 2670 } 2671 2672 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 2673 va->va_mask = AT_GID; 2674 (void) nfs3setattr(vp, va, 0, cr); 2675 } 2676 2677 /* 2678 * If vnode is a device create special vnode 2679 */ 2680 if (IS_DEVVP(vp)) { 2681 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2682 VN_RELE(vp); 2683 } else 2684 *vpp = vp; 2685 } else { 2686 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 2687 PURGE_STALE_FH(error, dvp, cr); 2688 } 2689 return (error); 2690 } 2691 2692 /* 2693 * Weirdness: if the vnode to be removed is open 2694 * we rename it instead of removing it and nfs_inactive 2695 * will remove the new name. 2696 */ 2697 static int 2698 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr) 2699 { 2700 int error; 2701 REMOVE3args args; 2702 REMOVE3res res; 2703 vnode_t *vp; 2704 char *tmpname; 2705 int douprintf; 2706 rnode_t *rp; 2707 rnode_t *drp; 2708 hrtime_t t; 2709 2710 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2711 return (EPERM); 2712 drp = VTOR(dvp); 2713 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2714 return (EINTR); 2715 2716 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2717 if (error) { 2718 nfs_rw_exit(&drp->r_rwlock); 2719 return (error); 2720 } 2721 2722 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2723 VN_RELE(vp); 2724 nfs_rw_exit(&drp->r_rwlock); 2725 return (EPERM); 2726 } 2727 2728 /* 2729 * First just remove the entry from the name cache, as it 2730 * is most likely the only entry for this vp. 2731 */ 2732 dnlc_remove(dvp, nm); 2733 2734 /* 2735 * If the file has a v_count > 1 then there may be more than one 2736 * entry in the name cache due multiple links or an open file, 2737 * but we don't have the real reference count so flush all 2738 * possible entries. 2739 */ 2740 if (vp->v_count > 1) 2741 dnlc_purge_vp(vp); 2742 2743 /* 2744 * Now we have the real reference count on the vnode 2745 */ 2746 rp = VTOR(vp); 2747 mutex_enter(&rp->r_statelock); 2748 if (vp->v_count > 1 && 2749 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2750 mutex_exit(&rp->r_statelock); 2751 tmpname = newname(); 2752 error = nfs3rename(dvp, nm, dvp, tmpname, cr); 2753 if (error) 2754 kmem_free(tmpname, MAXNAMELEN); 2755 else { 2756 mutex_enter(&rp->r_statelock); 2757 if (rp->r_unldvp == NULL) { 2758 VN_HOLD(dvp); 2759 rp->r_unldvp = dvp; 2760 if (rp->r_unlcred != NULL) 2761 crfree(rp->r_unlcred); 2762 crhold(cr); 2763 rp->r_unlcred = cr; 2764 rp->r_unlname = tmpname; 2765 } else { 2766 kmem_free(rp->r_unlname, MAXNAMELEN); 2767 rp->r_unlname = tmpname; 2768 } 2769 mutex_exit(&rp->r_statelock); 2770 } 2771 } else { 2772 mutex_exit(&rp->r_statelock); 2773 /* 2774 * We need to flush any dirty pages which happen to 2775 * be hanging around before removing the file. This 2776 * shouldn't happen very often and mostly on file 2777 * systems mounted "nocto". 2778 */ 2779 if (vn_has_cached_data(vp) && 2780 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2781 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr); 2782 if (error && (error == ENOSPC || error == EDQUOT)) { 2783 mutex_enter(&rp->r_statelock); 2784 if (!rp->r_error) 2785 rp->r_error = error; 2786 mutex_exit(&rp->r_statelock); 2787 } 2788 } 2789 2790 setdiropargs3(&args.object, nm, dvp); 2791 2792 douprintf = 1; 2793 2794 t = gethrtime(); 2795 2796 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE, 2797 xdr_diropargs3, (caddr_t)&args, 2798 xdr_REMOVE3res, (caddr_t)&res, cr, 2799 &douprintf, &res.status, 0, NULL); 2800 2801 /* 2802 * The xattr dir may be gone after last attr is removed, 2803 * so flush it from dnlc. 2804 */ 2805 if (dvp->v_flag & V_XATTRDIR) 2806 dnlc_purge_vp(dvp); 2807 2808 PURGE_ATTRCACHE(vp); 2809 2810 if (error) { 2811 PURGE_ATTRCACHE(dvp); 2812 } else { 2813 error = geterrno3(res.status); 2814 if (!error) { 2815 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, 2816 cr); 2817 if (HAVE_RDDIR_CACHE(drp)) 2818 nfs_purge_rddir_cache(dvp); 2819 } else { 2820 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, 2821 t, cr); 2822 PURGE_STALE_FH(error, dvp, cr); 2823 } 2824 } 2825 } 2826 2827 VN_RELE(vp); 2828 2829 nfs_rw_exit(&drp->r_rwlock); 2830 2831 return (error); 2832 } 2833 2834 static int 2835 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr) 2836 { 2837 int error; 2838 LINK3args args; 2839 LINK3res res; 2840 vnode_t *realvp; 2841 int douprintf; 2842 mntinfo_t *mi; 2843 rnode_t *tdrp; 2844 hrtime_t t; 2845 2846 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2847 return (EPERM); 2848 if (VOP_REALVP(svp, &realvp) == 0) 2849 svp = realvp; 2850 2851 mi = VTOMI(svp); 2852 2853 if (!(mi->mi_flags & MI_LINK)) 2854 return (EOPNOTSUPP); 2855 2856 args.file = *VTOFH3(svp); 2857 setdiropargs3(&args.link, tnm, tdvp); 2858 2859 tdrp = VTOR(tdvp); 2860 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2861 return (EINTR); 2862 2863 dnlc_remove(tdvp, tnm); 2864 2865 douprintf = 1; 2866 2867 t = gethrtime(); 2868 2869 error = rfs3call(mi, NFSPROC3_LINK, 2870 xdr_LINK3args, (caddr_t)&args, 2871 xdr_LINK3res, (caddr_t)&res, cr, 2872 &douprintf, &res.status, 0, NULL); 2873 2874 if (error) { 2875 PURGE_ATTRCACHE(tdvp); 2876 PURGE_ATTRCACHE(svp); 2877 nfs_rw_exit(&tdrp->r_rwlock); 2878 return (error); 2879 } 2880 2881 error = geterrno3(res.status); 2882 2883 if (!error) { 2884 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr); 2885 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr); 2886 if (HAVE_RDDIR_CACHE(tdrp)) 2887 nfs_purge_rddir_cache(tdvp); 2888 dnlc_update(tdvp, tnm, svp); 2889 } else { 2890 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t, 2891 cr); 2892 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr); 2893 if (error == EOPNOTSUPP) { 2894 mutex_enter(&mi->mi_lock); 2895 mi->mi_flags &= ~MI_LINK; 2896 mutex_exit(&mi->mi_lock); 2897 } 2898 } 2899 2900 nfs_rw_exit(&tdrp->r_rwlock); 2901 2902 return (error); 2903 } 2904 2905 static int 2906 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 2907 { 2908 vnode_t *realvp; 2909 2910 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2911 return (EPERM); 2912 if (VOP_REALVP(ndvp, &realvp) == 0) 2913 ndvp = realvp; 2914 2915 return (nfs3rename(odvp, onm, ndvp, nnm, cr)); 2916 } 2917 2918 /* 2919 * nfs3rename does the real work of renaming in NFS Version 3. 2920 */ 2921 static int 2922 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 2923 { 2924 int error; 2925 RENAME3args args; 2926 RENAME3res res; 2927 int douprintf; 2928 vnode_t *nvp; 2929 vnode_t *ovp = NULL; 2930 char *tmpname; 2931 rnode_t *rp; 2932 rnode_t *odrp; 2933 rnode_t *ndrp; 2934 hrtime_t t; 2935 2936 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2937 2938 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2939 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2940 return (EINVAL); 2941 2942 odrp = VTOR(odvp); 2943 ndrp = VTOR(ndvp); 2944 if ((intptr_t)odrp < (intptr_t)ndrp) { 2945 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2946 return (EINTR); 2947 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2948 nfs_rw_exit(&odrp->r_rwlock); 2949 return (EINTR); 2950 } 2951 } else { 2952 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2953 return (EINTR); 2954 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2955 nfs_rw_exit(&ndrp->r_rwlock); 2956 return (EINTR); 2957 } 2958 } 2959 2960 /* 2961 * Lookup the target file. If it exists, it needs to be 2962 * checked to see whether it is a mount point and whether 2963 * it is active (open). 2964 */ 2965 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2966 if (!error) { 2967 /* 2968 * If this file has been mounted on, then just 2969 * return busy because renaming to it would remove 2970 * the mounted file system from the name space. 2971 */ 2972 if (vn_mountedvfs(nvp) != NULL) { 2973 VN_RELE(nvp); 2974 nfs_rw_exit(&odrp->r_rwlock); 2975 nfs_rw_exit(&ndrp->r_rwlock); 2976 return (EBUSY); 2977 } 2978 2979 /* 2980 * Purge the name cache of all references to this vnode 2981 * so that we can check the reference count to infer 2982 * whether it is active or not. 2983 */ 2984 /* 2985 * First just remove the entry from the name cache, as it 2986 * is most likely the only entry for this vp. 2987 */ 2988 dnlc_remove(ndvp, nnm); 2989 /* 2990 * If the file has a v_count > 1 then there may be more 2991 * than one entry in the name cache due multiple links 2992 * or an open file, but we don't have the real reference 2993 * count so flush all possible entries. 2994 */ 2995 if (nvp->v_count > 1) 2996 dnlc_purge_vp(nvp); 2997 2998 /* 2999 * If the vnode is active and is not a directory, 3000 * arrange to rename it to a 3001 * temporary file so that it will continue to be 3002 * accessible. This implements the "unlink-open-file" 3003 * semantics for the target of a rename operation. 3004 * Before doing this though, make sure that the 3005 * source and target files are not already the same. 3006 */ 3007 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 3008 /* 3009 * Lookup the source name. 3010 */ 3011 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, 3012 cr, 0); 3013 3014 /* 3015 * The source name *should* already exist. 3016 */ 3017 if (error) { 3018 VN_RELE(nvp); 3019 nfs_rw_exit(&odrp->r_rwlock); 3020 nfs_rw_exit(&ndrp->r_rwlock); 3021 return (error); 3022 } 3023 3024 /* 3025 * Compare the two vnodes. If they are the same, 3026 * just release all held vnodes and return success. 3027 */ 3028 if (ovp == nvp) { 3029 VN_RELE(ovp); 3030 VN_RELE(nvp); 3031 nfs_rw_exit(&odrp->r_rwlock); 3032 nfs_rw_exit(&ndrp->r_rwlock); 3033 return (0); 3034 } 3035 3036 /* 3037 * Can't mix and match directories and non- 3038 * directories in rename operations. We already 3039 * know that the target is not a directory. If 3040 * the source is a directory, return an error. 3041 */ 3042 if (ovp->v_type == VDIR) { 3043 VN_RELE(ovp); 3044 VN_RELE(nvp); 3045 nfs_rw_exit(&odrp->r_rwlock); 3046 nfs_rw_exit(&ndrp->r_rwlock); 3047 return (ENOTDIR); 3048 } 3049 3050 /* 3051 * The target file exists, is not the same as 3052 * the source file, and is active. Link it 3053 * to a temporary filename to avoid having 3054 * the server removing the file completely. 3055 */ 3056 tmpname = newname(); 3057 error = nfs3_link(ndvp, nvp, tmpname, cr); 3058 if (error == EOPNOTSUPP) { 3059 error = nfs3_rename(ndvp, nnm, ndvp, tmpname, 3060 cr); 3061 } 3062 if (error) { 3063 kmem_free(tmpname, MAXNAMELEN); 3064 VN_RELE(ovp); 3065 VN_RELE(nvp); 3066 nfs_rw_exit(&odrp->r_rwlock); 3067 nfs_rw_exit(&ndrp->r_rwlock); 3068 return (error); 3069 } 3070 rp = VTOR(nvp); 3071 mutex_enter(&rp->r_statelock); 3072 if (rp->r_unldvp == NULL) { 3073 VN_HOLD(ndvp); 3074 rp->r_unldvp = ndvp; 3075 if (rp->r_unlcred != NULL) 3076 crfree(rp->r_unlcred); 3077 crhold(cr); 3078 rp->r_unlcred = cr; 3079 rp->r_unlname = tmpname; 3080 } else { 3081 kmem_free(rp->r_unlname, MAXNAMELEN); 3082 rp->r_unlname = tmpname; 3083 } 3084 mutex_exit(&rp->r_statelock); 3085 } 3086 3087 VN_RELE(nvp); 3088 } 3089 3090 if (ovp == NULL) { 3091 /* 3092 * When renaming directories to be a subdirectory of a 3093 * different parent, the dnlc entry for ".." will no 3094 * longer be valid, so it must be removed. 3095 * 3096 * We do a lookup here to determine whether we are renaming 3097 * a directory and we need to check if we are renaming 3098 * an unlinked file. This might have already been done 3099 * in previous code, so we check ovp == NULL to avoid 3100 * doing it twice. 3101 */ 3102 3103 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 3104 /* 3105 * The source name *should* already exist. 3106 */ 3107 if (error) { 3108 nfs_rw_exit(&odrp->r_rwlock); 3109 nfs_rw_exit(&ndrp->r_rwlock); 3110 return (error); 3111 } 3112 ASSERT(ovp != NULL); 3113 } 3114 3115 dnlc_remove(odvp, onm); 3116 dnlc_remove(ndvp, nnm); 3117 3118 setdiropargs3(&args.from, onm, odvp); 3119 setdiropargs3(&args.to, nnm, ndvp); 3120 3121 douprintf = 1; 3122 3123 t = gethrtime(); 3124 3125 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME, 3126 xdr_RENAME3args, (caddr_t)&args, 3127 xdr_RENAME3res, (caddr_t)&res, cr, 3128 &douprintf, &res.status, 0, NULL); 3129 3130 if (error) { 3131 PURGE_ATTRCACHE(odvp); 3132 PURGE_ATTRCACHE(ndvp); 3133 VN_RELE(ovp); 3134 nfs_rw_exit(&odrp->r_rwlock); 3135 nfs_rw_exit(&ndrp->r_rwlock); 3136 return (error); 3137 } 3138 3139 error = geterrno3(res.status); 3140 3141 if (!error) { 3142 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr); 3143 if (HAVE_RDDIR_CACHE(odrp)) 3144 nfs_purge_rddir_cache(odvp); 3145 if (ndvp != odvp) { 3146 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr); 3147 if (HAVE_RDDIR_CACHE(ndrp)) 3148 nfs_purge_rddir_cache(ndvp); 3149 } 3150 /* 3151 * when renaming directories to be a subdirectory of a 3152 * different parent, the dnlc entry for ".." will no 3153 * longer be valid, so it must be removed 3154 */ 3155 rp = VTOR(ovp); 3156 if (ndvp != odvp) { 3157 if (ovp->v_type == VDIR) { 3158 dnlc_remove(ovp, ".."); 3159 if (HAVE_RDDIR_CACHE(rp)) 3160 nfs_purge_rddir_cache(ovp); 3161 } 3162 } 3163 3164 /* 3165 * If we are renaming the unlinked file, update the 3166 * r_unldvp and r_unlname as needed. 3167 */ 3168 mutex_enter(&rp->r_statelock); 3169 if (rp->r_unldvp != NULL) { 3170 if (strcmp(rp->r_unlname, onm) == 0) { 3171 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 3172 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 3173 3174 if (ndvp != rp->r_unldvp) { 3175 VN_RELE(rp->r_unldvp); 3176 rp->r_unldvp = ndvp; 3177 VN_HOLD(ndvp); 3178 } 3179 } 3180 } 3181 mutex_exit(&rp->r_statelock); 3182 } else { 3183 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr); 3184 if (ndvp != odvp) { 3185 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t, 3186 cr); 3187 } 3188 /* 3189 * System V defines rename to return EEXIST, not 3190 * ENOTEMPTY if the target directory is not empty. 3191 * Over the wire, the error is NFSERR_ENOTEMPTY 3192 * which geterrno maps to ENOTEMPTY. 3193 */ 3194 if (error == ENOTEMPTY) 3195 error = EEXIST; 3196 } 3197 3198 VN_RELE(ovp); 3199 3200 nfs_rw_exit(&odrp->r_rwlock); 3201 nfs_rw_exit(&ndrp->r_rwlock); 3202 3203 return (error); 3204 } 3205 3206 static int 3207 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr) 3208 { 3209 int error; 3210 MKDIR3args args; 3211 MKDIR3res res; 3212 int douprintf; 3213 struct vattr vattr; 3214 vnode_t *vp; 3215 rnode_t *drp; 3216 hrtime_t t; 3217 3218 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3219 return (EPERM); 3220 setdiropargs3(&args.where, nm, dvp); 3221 3222 /* 3223 * Decide what the group-id and set-gid bit of the created directory 3224 * should be. May have to do a setattr to get the gid right. 3225 */ 3226 error = setdirgid(dvp, &va->va_gid, cr); 3227 if (error) 3228 return (error); 3229 error = setdirmode(dvp, &va->va_mode, cr); 3230 if (error) 3231 return (error); 3232 va->va_mask |= AT_MODE|AT_GID; 3233 3234 error = vattr_to_sattr3(va, &args.attributes); 3235 if (error) { 3236 /* req time field(s) overflow - return immediately */ 3237 return (error); 3238 } 3239 3240 drp = VTOR(dvp); 3241 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3242 return (EINTR); 3243 3244 dnlc_remove(dvp, nm); 3245 3246 douprintf = 1; 3247 3248 t = gethrtime(); 3249 3250 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR, 3251 xdr_MKDIR3args, (caddr_t)&args, 3252 xdr_MKDIR3res, (caddr_t)&res, cr, 3253 &douprintf, &res.status, 0, NULL); 3254 3255 if (error) { 3256 PURGE_ATTRCACHE(dvp); 3257 nfs_rw_exit(&drp->r_rwlock); 3258 return (error); 3259 } 3260 3261 error = geterrno3(res.status); 3262 if (!error) { 3263 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3264 if (HAVE_RDDIR_CACHE(drp)) 3265 nfs_purge_rddir_cache(dvp); 3266 3267 if (!res.resok.obj.handle_follows) { 3268 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3269 if (error) { 3270 nfs_rw_exit(&drp->r_rwlock); 3271 return (error); 3272 } 3273 } else { 3274 if (res.resok.obj_attributes.attributes) { 3275 vp = makenfs3node(&res.resok.obj.handle, 3276 &res.resok.obj_attributes.attr, 3277 dvp->v_vfsp, t, cr, NULL, NULL); 3278 } else { 3279 vp = makenfs3node(&res.resok.obj.handle, NULL, 3280 dvp->v_vfsp, t, cr, NULL, NULL); 3281 if (vp->v_type == VNON) { 3282 vattr.va_mask = AT_TYPE; 3283 error = nfs3getattr(vp, &vattr, cr); 3284 if (error) { 3285 VN_RELE(vp); 3286 nfs_rw_exit(&drp->r_rwlock); 3287 return (error); 3288 } 3289 vp->v_type = vattr.va_type; 3290 } 3291 } 3292 dnlc_update(dvp, nm, vp); 3293 } 3294 if (va->va_gid != VTOR(vp)->r_attr.va_gid) { 3295 va->va_mask = AT_GID; 3296 (void) nfs3setattr(vp, va, 0, cr); 3297 } 3298 *vpp = vp; 3299 } else { 3300 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3301 PURGE_STALE_FH(error, dvp, cr); 3302 } 3303 3304 nfs_rw_exit(&drp->r_rwlock); 3305 3306 return (error); 3307 } 3308 3309 static int 3310 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr) 3311 { 3312 int error; 3313 RMDIR3args args; 3314 RMDIR3res res; 3315 vnode_t *vp; 3316 int douprintf; 3317 rnode_t *drp; 3318 hrtime_t t; 3319 3320 if (nfs_zone() != VTOMI(dvp)->mi_zone) 3321 return (EPERM); 3322 drp = VTOR(dvp); 3323 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3324 return (EINTR); 3325 3326 /* 3327 * Attempt to prevent a rmdir(".") from succeeding. 3328 */ 3329 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 3330 if (error) { 3331 nfs_rw_exit(&drp->r_rwlock); 3332 return (error); 3333 } 3334 3335 if (vp == cdir) { 3336 VN_RELE(vp); 3337 nfs_rw_exit(&drp->r_rwlock); 3338 return (EINVAL); 3339 } 3340 3341 setdiropargs3(&args.object, nm, dvp); 3342 3343 /* 3344 * First just remove the entry from the name cache, as it 3345 * is most likely an entry for this vp. 3346 */ 3347 dnlc_remove(dvp, nm); 3348 3349 /* 3350 * If there vnode reference count is greater than one, then 3351 * there may be additional references in the DNLC which will 3352 * need to be purged. First, trying removing the entry for 3353 * the parent directory and see if that removes the additional 3354 * reference(s). If that doesn't do it, then use dnlc_purge_vp 3355 * to completely remove any references to the directory which 3356 * might still exist in the DNLC. 3357 */ 3358 if (vp->v_count > 1) { 3359 dnlc_remove(vp, ".."); 3360 if (vp->v_count > 1) 3361 dnlc_purge_vp(vp); 3362 } 3363 3364 douprintf = 1; 3365 3366 t = gethrtime(); 3367 3368 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR, 3369 xdr_diropargs3, (caddr_t)&args, 3370 xdr_RMDIR3res, (caddr_t)&res, cr, 3371 &douprintf, &res.status, 0, NULL); 3372 3373 PURGE_ATTRCACHE(vp); 3374 3375 if (error) { 3376 PURGE_ATTRCACHE(dvp); 3377 VN_RELE(vp); 3378 nfs_rw_exit(&drp->r_rwlock); 3379 return (error); 3380 } 3381 3382 error = geterrno3(res.status); 3383 if (!error) { 3384 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3385 if (HAVE_RDDIR_CACHE(drp)) 3386 nfs_purge_rddir_cache(dvp); 3387 if (HAVE_RDDIR_CACHE(VTOR(vp))) 3388 nfs_purge_rddir_cache(vp); 3389 } else { 3390 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3391 PURGE_STALE_FH(error, dvp, cr); 3392 /* 3393 * System V defines rmdir to return EEXIST, not 3394 * ENOTEMPTY if the directory is not empty. Over 3395 * the wire, the error is NFSERR_ENOTEMPTY which 3396 * geterrno maps to ENOTEMPTY. 3397 */ 3398 if (error == ENOTEMPTY) 3399 error = EEXIST; 3400 } 3401 3402 VN_RELE(vp); 3403 3404 nfs_rw_exit(&drp->r_rwlock); 3405 3406 return (error); 3407 } 3408 3409 static int 3410 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr) 3411 { 3412 int error; 3413 SYMLINK3args args; 3414 SYMLINK3res res; 3415 int douprintf; 3416 mntinfo_t *mi; 3417 vnode_t *vp; 3418 rnode_t *rp; 3419 char *contents; 3420 rnode_t *drp; 3421 hrtime_t t; 3422 3423 mi = VTOMI(dvp); 3424 3425 if (nfs_zone() != mi->mi_zone) 3426 return (EPERM); 3427 if (!(mi->mi_flags & MI_SYMLINK)) 3428 return (EOPNOTSUPP); 3429 3430 setdiropargs3(&args.where, lnm, dvp); 3431 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes); 3432 if (error) { 3433 /* req time field(s) overflow - return immediately */ 3434 return (error); 3435 } 3436 args.symlink.symlink_data = tnm; 3437 3438 drp = VTOR(dvp); 3439 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 3440 return (EINTR); 3441 3442 dnlc_remove(dvp, lnm); 3443 3444 douprintf = 1; 3445 3446 t = gethrtime(); 3447 3448 error = rfs3call(mi, NFSPROC3_SYMLINK, 3449 xdr_SYMLINK3args, (caddr_t)&args, 3450 xdr_SYMLINK3res, (caddr_t)&res, cr, 3451 &douprintf, &res.status, 0, NULL); 3452 3453 if (error) { 3454 PURGE_ATTRCACHE(dvp); 3455 nfs_rw_exit(&drp->r_rwlock); 3456 return (error); 3457 } 3458 3459 error = geterrno3(res.status); 3460 if (!error) { 3461 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr); 3462 if (HAVE_RDDIR_CACHE(drp)) 3463 nfs_purge_rddir_cache(dvp); 3464 3465 if (res.resok.obj.handle_follows) { 3466 if (res.resok.obj_attributes.attributes) { 3467 vp = makenfs3node(&res.resok.obj.handle, 3468 &res.resok.obj_attributes.attr, 3469 dvp->v_vfsp, t, cr, NULL, NULL); 3470 } else { 3471 vp = makenfs3node(&res.resok.obj.handle, NULL, 3472 dvp->v_vfsp, t, cr, NULL, NULL); 3473 vp->v_type = VLNK; 3474 vp->v_rdev = 0; 3475 } 3476 dnlc_update(dvp, lnm, vp); 3477 rp = VTOR(vp); 3478 if (nfs3_do_symlink_cache && 3479 rp->r_symlink.contents == NULL) { 3480 3481 contents = kmem_alloc(MAXPATHLEN, 3482 KM_NOSLEEP); 3483 3484 if (contents != NULL) { 3485 mutex_enter(&rp->r_statelock); 3486 if (rp->r_symlink.contents == NULL) { 3487 rp->r_symlink.len = strlen(tnm); 3488 bcopy(tnm, contents, 3489 rp->r_symlink.len); 3490 rp->r_symlink.contents = 3491 contents; 3492 rp->r_symlink.size = MAXPATHLEN; 3493 mutex_exit(&rp->r_statelock); 3494 } else { 3495 mutex_exit(&rp->r_statelock); 3496 kmem_free((void *)contents, 3497 MAXPATHLEN); 3498 } 3499 } 3500 } 3501 VN_RELE(vp); 3502 } 3503 } else { 3504 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr); 3505 PURGE_STALE_FH(error, dvp, cr); 3506 if (error == EOPNOTSUPP) { 3507 mutex_enter(&mi->mi_lock); 3508 mi->mi_flags &= ~MI_SYMLINK; 3509 mutex_exit(&mi->mi_lock); 3510 } 3511 } 3512 3513 nfs_rw_exit(&drp->r_rwlock); 3514 3515 return (error); 3516 } 3517 3518 #ifdef DEBUG 3519 static int nfs3_readdir_cache_hits = 0; 3520 static int nfs3_readdir_cache_shorts = 0; 3521 static int nfs3_readdir_cache_waits = 0; 3522 static int nfs3_readdir_cache_misses = 0; 3523 static int nfs3_readdir_readahead = 0; 3524 #endif 3525 3526 static int nfs3_shrinkreaddir = 0; 3527 3528 /* 3529 * Read directory entries. 3530 * There are some weird things to look out for here. The uio_loffset 3531 * field is either 0 or it is the offset returned from a previous 3532 * readdir. It is an opaque value used by the server to find the 3533 * correct directory block to read. The count field is the number 3534 * of blocks to read on the server. This is advisory only, the server 3535 * may return only one block's worth of entries. Entries may be compressed 3536 * on the server. 3537 */ 3538 static int 3539 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp) 3540 { 3541 int error; 3542 size_t count; 3543 rnode_t *rp; 3544 rddir_cache *rdc; 3545 rddir_cache *nrdc; 3546 rddir_cache *rrdc; 3547 #ifdef DEBUG 3548 int missed; 3549 #endif 3550 int doreadahead; 3551 rddir_cache srdc; 3552 avl_index_t where; 3553 3554 if (nfs_zone() != VTOMI(vp)->mi_zone) 3555 return (EIO); 3556 rp = VTOR(vp); 3557 3558 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 3559 3560 /* 3561 * Make sure that the directory cache is valid. 3562 */ 3563 if (HAVE_RDDIR_CACHE(rp)) { 3564 if (nfs_disable_rddir_cache) { 3565 /* 3566 * Setting nfs_disable_rddir_cache in /etc/system 3567 * allows interoperability with servers that do not 3568 * properly update the attributes of directories. 3569 * Any cached information gets purged before an 3570 * access is made to it. 3571 */ 3572 nfs_purge_rddir_cache(vp); 3573 } else { 3574 error = nfs3_validate_caches(vp, cr); 3575 if (error) 3576 return (error); 3577 } 3578 } 3579 3580 /* 3581 * It is possible that some servers may not be able to correctly 3582 * handle a large READDIR or READDIRPLUS request due to bugs in 3583 * their implementation. In order to continue to interoperate 3584 * with them, this workaround is provided to limit the maximum 3585 * size of a READDIRPLUS request to 1024. In any case, the request 3586 * size is limited to MAXBSIZE. 3587 */ 3588 count = MIN(uiop->uio_iov->iov_len, 3589 nfs3_shrinkreaddir ? 1024 : MAXBSIZE); 3590 3591 nrdc = NULL; 3592 #ifdef DEBUG 3593 missed = 0; 3594 #endif 3595 top: 3596 /* 3597 * Short circuit last readdir which always returns 0 bytes. 3598 * This can be done after the directory has been read through 3599 * completely at least once. This will set r_direof which 3600 * can be used to find the value of the last cookie. 3601 */ 3602 mutex_enter(&rp->r_statelock); 3603 if (rp->r_direof != NULL && 3604 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) { 3605 mutex_exit(&rp->r_statelock); 3606 #ifdef DEBUG 3607 nfs3_readdir_cache_shorts++; 3608 #endif 3609 if (eofp) 3610 *eofp = 1; 3611 if (nrdc != NULL) 3612 rddir_cache_rele(nrdc); 3613 return (0); 3614 } 3615 /* 3616 * Look for a cache entry. Cache entries are identified 3617 * by the NFS cookie value and the byte count requested. 3618 */ 3619 srdc.nfs3_cookie = uiop->uio_loffset; 3620 srdc.buflen = count; 3621 rdc = avl_find(&rp->r_dir, &srdc, &where); 3622 if (rdc != NULL) { 3623 rddir_cache_hold(rdc); 3624 /* 3625 * If the cache entry is in the process of being 3626 * filled in, wait until this completes. The 3627 * RDDIRWAIT bit is set to indicate that someone 3628 * is waiting and then the thread currently 3629 * filling the entry is done, it should do a 3630 * cv_broadcast to wakeup all of the threads 3631 * waiting for it to finish. 3632 */ 3633 if (rdc->flags & RDDIR) { 3634 nfs_rw_exit(&rp->r_rwlock); 3635 rdc->flags |= RDDIRWAIT; 3636 #ifdef DEBUG 3637 nfs3_readdir_cache_waits++; 3638 #endif 3639 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3640 /* 3641 * We got interrupted, probably 3642 * the user typed ^C or an alarm 3643 * fired. We free the new entry 3644 * if we allocated one. 3645 */ 3646 mutex_exit(&rp->r_statelock); 3647 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3648 RW_READER, FALSE); 3649 rddir_cache_rele(rdc); 3650 if (nrdc != NULL) 3651 rddir_cache_rele(nrdc); 3652 return (EINTR); 3653 } 3654 mutex_exit(&rp->r_statelock); 3655 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3656 RW_READER, FALSE); 3657 rddir_cache_rele(rdc); 3658 goto top; 3659 } 3660 /* 3661 * Check to see if a readdir is required to 3662 * fill the entry. If so, mark this entry 3663 * as being filled, remove our reference, 3664 * and branch to the code to fill the entry. 3665 */ 3666 if (rdc->flags & RDDIRREQ) { 3667 rdc->flags &= ~RDDIRREQ; 3668 rdc->flags |= RDDIR; 3669 if (nrdc != NULL) 3670 rddir_cache_rele(nrdc); 3671 nrdc = rdc; 3672 mutex_exit(&rp->r_statelock); 3673 goto bottom; 3674 } 3675 #ifdef DEBUG 3676 if (!missed) 3677 nfs3_readdir_cache_hits++; 3678 #endif 3679 /* 3680 * If an error occurred while attempting 3681 * to fill the cache entry, just return it. 3682 */ 3683 if (rdc->error) { 3684 error = rdc->error; 3685 mutex_exit(&rp->r_statelock); 3686 rddir_cache_rele(rdc); 3687 if (nrdc != NULL) 3688 rddir_cache_rele(nrdc); 3689 return (error); 3690 } 3691 3692 /* 3693 * The cache entry is complete and good, 3694 * copyout the dirent structs to the calling 3695 * thread. 3696 */ 3697 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3698 3699 /* 3700 * If no error occurred during the copyout, 3701 * update the offset in the uio struct to 3702 * contain the value of the next cookie 3703 * and set the eof value appropriately. 3704 */ 3705 if (!error) { 3706 uiop->uio_loffset = rdc->nfs3_ncookie; 3707 if (eofp) 3708 *eofp = rdc->eof; 3709 } 3710 3711 /* 3712 * Decide whether to do readahead. 3713 * 3714 * Don't if have already read to the end of 3715 * directory. There is nothing more to read. 3716 * 3717 * Don't if the application is not doing 3718 * lookups in the directory. The readahead 3719 * is only effective if the application can 3720 * be doing work while an async thread is 3721 * handling the over the wire request. 3722 */ 3723 if (rdc->eof) { 3724 rp->r_direof = rdc; 3725 doreadahead = FALSE; 3726 } else if (!(rp->r_flags & RLOOKUP)) 3727 doreadahead = FALSE; 3728 else 3729 doreadahead = TRUE; 3730 3731 if (!doreadahead) { 3732 mutex_exit(&rp->r_statelock); 3733 rddir_cache_rele(rdc); 3734 if (nrdc != NULL) 3735 rddir_cache_rele(nrdc); 3736 return (error); 3737 } 3738 3739 /* 3740 * Check to see whether we found an entry 3741 * for the readahead. If so, we don't need 3742 * to do anything further, so free the new 3743 * entry if one was allocated. Otherwise, 3744 * allocate a new entry, add it to the cache, 3745 * and then initiate an asynchronous readdir 3746 * operation to fill it. 3747 */ 3748 srdc.nfs3_cookie = rdc->nfs3_ncookie; 3749 srdc.buflen = count; 3750 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3751 if (rrdc != NULL) { 3752 if (nrdc != NULL) 3753 rddir_cache_rele(nrdc); 3754 } else { 3755 if (nrdc != NULL) 3756 rrdc = nrdc; 3757 else { 3758 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3759 } 3760 if (rrdc != NULL) { 3761 rrdc->nfs3_cookie = rdc->nfs3_ncookie; 3762 rrdc->buflen = count; 3763 avl_insert(&rp->r_dir, rrdc, where); 3764 rddir_cache_hold(rrdc); 3765 mutex_exit(&rp->r_statelock); 3766 rddir_cache_rele(rdc); 3767 #ifdef DEBUG 3768 nfs3_readdir_readahead++; 3769 #endif 3770 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir); 3771 return (error); 3772 } 3773 } 3774 3775 mutex_exit(&rp->r_statelock); 3776 rddir_cache_rele(rdc); 3777 return (error); 3778 } 3779 3780 /* 3781 * Didn't find an entry in the cache. Construct a new empty 3782 * entry and link it into the cache. Other processes attempting 3783 * to access this entry will need to wait until it is filled in. 3784 * 3785 * Since kmem_alloc may block, another pass through the cache 3786 * will need to be taken to make sure that another process 3787 * hasn't already added an entry to the cache for this request. 3788 */ 3789 if (nrdc == NULL) { 3790 mutex_exit(&rp->r_statelock); 3791 nrdc = rddir_cache_alloc(KM_SLEEP); 3792 nrdc->nfs3_cookie = uiop->uio_loffset; 3793 nrdc->buflen = count; 3794 goto top; 3795 } 3796 3797 /* 3798 * Add this entry to the cache. 3799 */ 3800 avl_insert(&rp->r_dir, nrdc, where); 3801 rddir_cache_hold(nrdc); 3802 mutex_exit(&rp->r_statelock); 3803 3804 bottom: 3805 #ifdef DEBUG 3806 missed = 1; 3807 nfs3_readdir_cache_misses++; 3808 #endif 3809 /* 3810 * Do the readdir. This routine decides whether to use 3811 * READDIR or READDIRPLUS. 3812 */ 3813 error = do_nfs3readdir(vp, nrdc, cr); 3814 3815 /* 3816 * If this operation failed, just return the error which occurred. 3817 */ 3818 if (error != 0) 3819 return (error); 3820 3821 /* 3822 * Since the RPC operation will have taken sometime and blocked 3823 * this process, another pass through the cache will need to be 3824 * taken to find the correct cache entry. It is possible that 3825 * the correct cache entry will not be there (although one was 3826 * added) because the directory changed during the RPC operation 3827 * and the readdir cache was flushed. In this case, just start 3828 * over. It is hoped that this will not happen too often... :-) 3829 */ 3830 nrdc = NULL; 3831 goto top; 3832 /* NOTREACHED */ 3833 } 3834 3835 static int 3836 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3837 { 3838 int error; 3839 rnode_t *rp; 3840 mntinfo_t *mi; 3841 3842 rp = VTOR(vp); 3843 mi = VTOMI(vp); 3844 ASSERT(nfs_zone() == mi->mi_zone); 3845 /* 3846 * Issue the proper request. 3847 * 3848 * If the server does not support READDIRPLUS, then use READDIR. 3849 * 3850 * Otherwise -- 3851 * Issue a READDIRPLUS if reading to fill an empty cache or if 3852 * an application has performed a lookup in the directory which 3853 * required an over the wire lookup. The use of READDIRPLUS 3854 * will help to (re)populate the DNLC. 3855 */ 3856 if (!(mi->mi_flags & MI_READDIRONLY) && 3857 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) { 3858 if (rp->r_flags & RREADDIRPLUS) { 3859 mutex_enter(&rp->r_statelock); 3860 rp->r_flags &= ~RREADDIRPLUS; 3861 mutex_exit(&rp->r_statelock); 3862 } 3863 nfs3readdirplus(vp, rdc, cr); 3864 if (rdc->error == EOPNOTSUPP) 3865 nfs3readdir(vp, rdc, cr); 3866 } else 3867 nfs3readdir(vp, rdc, cr); 3868 3869 mutex_enter(&rp->r_statelock); 3870 rdc->flags &= ~RDDIR; 3871 if (rdc->flags & RDDIRWAIT) { 3872 rdc->flags &= ~RDDIRWAIT; 3873 cv_broadcast(&rdc->cv); 3874 } 3875 error = rdc->error; 3876 if (error) 3877 rdc->flags |= RDDIRREQ; 3878 mutex_exit(&rp->r_statelock); 3879 3880 rddir_cache_rele(rdc); 3881 3882 return (error); 3883 } 3884 3885 static void 3886 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3887 { 3888 int error; 3889 READDIR3args args; 3890 READDIR3vres res; 3891 vattr_t dva; 3892 rnode_t *rp; 3893 int douprintf; 3894 failinfo_t fi, *fip = NULL; 3895 mntinfo_t *mi; 3896 hrtime_t t; 3897 3898 rp = VTOR(vp); 3899 mi = VTOMI(vp); 3900 ASSERT(nfs_zone() == mi->mi_zone); 3901 3902 args.dir = *RTOFH3(rp); 3903 args.cookie = (cookie3)rdc->nfs3_cookie; 3904 args.cookieverf = rp->r_cookieverf; 3905 args.count = rdc->buflen; 3906 3907 /* 3908 * NFS client failover support 3909 * suppress failover unless we have a zero cookie 3910 */ 3911 if (args.cookie == (cookie3) 0) { 3912 fi.vp = vp; 3913 fi.fhp = (caddr_t)&args.dir; 3914 fi.copyproc = nfs3copyfh; 3915 fi.lookupproc = nfs3lookup; 3916 fi.xattrdirproc = acl_getxattrdir3; 3917 fip = &fi; 3918 } 3919 3920 #ifdef DEBUG 3921 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 3922 #else 3923 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3924 #endif 3925 3926 res.entries = (dirent64_t *)rdc->entries; 3927 res.entries_size = rdc->buflen; 3928 res.dir_attributes.fres.vap = &dva; 3929 res.dir_attributes.fres.vp = vp; 3930 res.loff = rdc->nfs3_cookie; 3931 3932 douprintf = 1; 3933 3934 if (mi->mi_io_kstats) { 3935 mutex_enter(&mi->mi_lock); 3936 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3937 mutex_exit(&mi->mi_lock); 3938 } 3939 3940 t = gethrtime(); 3941 3942 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR, 3943 xdr_READDIR3args, (caddr_t)&args, 3944 xdr_READDIR3vres, (caddr_t)&res, cr, 3945 &douprintf, &res.status, 0, fip); 3946 3947 if (mi->mi_io_kstats) { 3948 mutex_enter(&mi->mi_lock); 3949 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3950 mutex_exit(&mi->mi_lock); 3951 } 3952 3953 if (error) 3954 goto err; 3955 3956 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr); 3957 3958 error = geterrno3(res.status); 3959 if (error) { 3960 PURGE_STALE_FH(error, vp, cr); 3961 goto err; 3962 } 3963 3964 if (mi->mi_io_kstats) { 3965 mutex_enter(&mi->mi_lock); 3966 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3967 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 3968 mutex_exit(&mi->mi_lock); 3969 } 3970 3971 rdc->nfs3_ncookie = res.loff; 3972 rp->r_cookieverf = res.cookieverf; 3973 rdc->eof = res.eof ? 1 : 0; 3974 rdc->entlen = res.size; 3975 ASSERT(rdc->entlen <= rdc->buflen); 3976 rdc->error = 0; 3977 return; 3978 3979 err: 3980 kmem_free(rdc->entries, rdc->buflen); 3981 rdc->entries = NULL; 3982 rdc->error = error; 3983 } 3984 3985 /* 3986 * Read directory entries. 3987 * There are some weird things to look out for here. The uio_loffset 3988 * field is either 0 or it is the offset returned from a previous 3989 * readdir. It is an opaque value used by the server to find the 3990 * correct directory block to read. The count field is the number 3991 * of blocks to read on the server. This is advisory only, the server 3992 * may return only one block's worth of entries. Entries may be compressed 3993 * on the server. 3994 */ 3995 static void 3996 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3997 { 3998 int error; 3999 READDIRPLUS3args args; 4000 READDIRPLUS3vres res; 4001 vattr_t dva; 4002 rnode_t *rp; 4003 mntinfo_t *mi; 4004 int douprintf; 4005 failinfo_t fi, *fip = NULL; 4006 4007 rp = VTOR(vp); 4008 mi = VTOMI(vp); 4009 ASSERT(nfs_zone() == mi->mi_zone); 4010 4011 args.dir = *RTOFH3(rp); 4012 args.cookie = (cookie3)rdc->nfs3_cookie; 4013 args.cookieverf = rp->r_cookieverf; 4014 args.dircount = rdc->buflen; 4015 args.maxcount = mi->mi_tsize; 4016 4017 /* 4018 * NFS client failover support 4019 * suppress failover unless we have a zero cookie 4020 */ 4021 if (args.cookie == (cookie3)0) { 4022 fi.vp = vp; 4023 fi.fhp = (caddr_t)&args.dir; 4024 fi.copyproc = nfs3copyfh; 4025 fi.lookupproc = nfs3lookup; 4026 fi.xattrdirproc = acl_getxattrdir3; 4027 fip = &fi; 4028 } 4029 4030 #ifdef DEBUG 4031 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP); 4032 #else 4033 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 4034 #endif 4035 4036 res.entries = (dirent64_t *)rdc->entries; 4037 res.entries_size = rdc->buflen; 4038 res.dir_attributes.fres.vap = &dva; 4039 res.dir_attributes.fres.vp = vp; 4040 res.loff = rdc->nfs3_cookie; 4041 res.credentials = cr; 4042 4043 douprintf = 1; 4044 4045 if (mi->mi_io_kstats) { 4046 mutex_enter(&mi->mi_lock); 4047 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 4048 mutex_exit(&mi->mi_lock); 4049 } 4050 4051 res.time = gethrtime(); 4052 4053 error = rfs3call(mi, NFSPROC3_READDIRPLUS, 4054 xdr_READDIRPLUS3args, (caddr_t)&args, 4055 xdr_READDIRPLUS3vres, (caddr_t)&res, cr, 4056 &douprintf, &res.status, 0, fip); 4057 4058 if (mi->mi_io_kstats) { 4059 mutex_enter(&mi->mi_lock); 4060 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 4061 mutex_exit(&mi->mi_lock); 4062 } 4063 4064 if (error) { 4065 goto err; 4066 } 4067 4068 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr); 4069 4070 error = geterrno3(res.status); 4071 if (error) { 4072 PURGE_STALE_FH(error, vp, cr); 4073 if (error == EOPNOTSUPP) { 4074 mutex_enter(&mi->mi_lock); 4075 mi->mi_flags |= MI_READDIRONLY; 4076 mutex_exit(&mi->mi_lock); 4077 } 4078 goto err; 4079 } 4080 4081 if (mi->mi_io_kstats) { 4082 mutex_enter(&mi->mi_lock); 4083 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 4084 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size; 4085 mutex_exit(&mi->mi_lock); 4086 } 4087 4088 rdc->nfs3_ncookie = res.loff; 4089 rp->r_cookieverf = res.cookieverf; 4090 rdc->eof = res.eof ? 1 : 0; 4091 rdc->entlen = res.size; 4092 ASSERT(rdc->entlen <= rdc->buflen); 4093 rdc->error = 0; 4094 4095 return; 4096 4097 err: 4098 kmem_free(rdc->entries, rdc->buflen); 4099 rdc->entries = NULL; 4100 rdc->error = error; 4101 } 4102 4103 #ifdef DEBUG 4104 static int nfs3_bio_do_stop = 0; 4105 #endif 4106 4107 static int 4108 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr) 4109 { 4110 rnode_t *rp = VTOR(bp->b_vp); 4111 int count; 4112 int error; 4113 cred_t *cred; 4114 offset_t offset; 4115 4116 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 4117 offset = ldbtob(bp->b_lblkno); 4118 4119 DTRACE_IO1(start, struct buf *, bp); 4120 4121 if (bp->b_flags & B_READ) { 4122 mutex_enter(&rp->r_statelock); 4123 if (rp->r_cred != NULL) { 4124 cred = rp->r_cred; 4125 crhold(cred); 4126 } else { 4127 rp->r_cred = cr; 4128 crhold(cr); 4129 cred = cr; 4130 crhold(cred); 4131 } 4132 mutex_exit(&rp->r_statelock); 4133 read_again: 4134 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr, 4135 offset, bp->b_bcount, &bp->b_resid, cred); 4136 crfree(cred); 4137 if (!error) { 4138 if (bp->b_resid) { 4139 /* 4140 * Didn't get it all because we hit EOF, 4141 * zero all the memory beyond the EOF. 4142 */ 4143 /* bzero(rdaddr + */ 4144 bzero(bp->b_un.b_addr + 4145 bp->b_bcount - bp->b_resid, bp->b_resid); 4146 } 4147 mutex_enter(&rp->r_statelock); 4148 if (bp->b_resid == bp->b_bcount && 4149 offset >= rp->r_size) { 4150 /* 4151 * We didn't read anything at all as we are 4152 * past EOF. Return an error indicator back 4153 * but don't destroy the pages (yet). 4154 */ 4155 error = NFS_EOF; 4156 } 4157 mutex_exit(&rp->r_statelock); 4158 } else if (error == EACCES) { 4159 mutex_enter(&rp->r_statelock); 4160 if (cred != cr) { 4161 if (rp->r_cred != NULL) 4162 crfree(rp->r_cred); 4163 rp->r_cred = cr; 4164 crhold(cr); 4165 cred = cr; 4166 crhold(cred); 4167 mutex_exit(&rp->r_statelock); 4168 goto read_again; 4169 } 4170 mutex_exit(&rp->r_statelock); 4171 } 4172 } else { 4173 if (!(rp->r_flags & RSTALE)) { 4174 mutex_enter(&rp->r_statelock); 4175 if (rp->r_cred != NULL) { 4176 cred = rp->r_cred; 4177 crhold(cred); 4178 } else { 4179 rp->r_cred = cr; 4180 crhold(cr); 4181 cred = cr; 4182 crhold(cred); 4183 } 4184 mutex_exit(&rp->r_statelock); 4185 write_again: 4186 mutex_enter(&rp->r_statelock); 4187 count = MIN(bp->b_bcount, rp->r_size - offset); 4188 mutex_exit(&rp->r_statelock); 4189 if (count < 0) 4190 cmn_err(CE_PANIC, "nfs3_bio: write count < 0"); 4191 #ifdef DEBUG 4192 if (count == 0) { 4193 zcmn_err(getzoneid(), CE_WARN, 4194 "nfs3_bio: zero length write at %lld", 4195 offset); 4196 nfs_printfhandle(&rp->r_fh); 4197 if (nfs3_bio_do_stop) 4198 debug_enter("nfs3_bio"); 4199 } 4200 #endif 4201 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset, 4202 count, cred, stab_comm); 4203 if (error == EACCES) { 4204 mutex_enter(&rp->r_statelock); 4205 if (cred != cr) { 4206 if (rp->r_cred != NULL) 4207 crfree(rp->r_cred); 4208 rp->r_cred = cr; 4209 crhold(cr); 4210 crfree(cred); 4211 cred = cr; 4212 crhold(cred); 4213 mutex_exit(&rp->r_statelock); 4214 goto write_again; 4215 } 4216 mutex_exit(&rp->r_statelock); 4217 } 4218 bp->b_error = error; 4219 if (error && error != EINTR) { 4220 /* 4221 * Don't print EDQUOT errors on the console. 4222 * Don't print asynchronous EACCES errors. 4223 * Don't print EFBIG errors. 4224 * Print all other write errors. 4225 */ 4226 if (error != EDQUOT && error != EFBIG && 4227 (error != EACCES || 4228 !(bp->b_flags & B_ASYNC))) 4229 nfs_write_error(bp->b_vp, error, cred); 4230 /* 4231 * Update r_error and r_flags as appropriate. 4232 * If the error was ESTALE, then mark the 4233 * rnode as not being writeable and save 4234 * the error status. Otherwise, save any 4235 * errors which occur from asynchronous 4236 * page invalidations. Any errors occurring 4237 * from other operations should be saved 4238 * by the caller. 4239 */ 4240 mutex_enter(&rp->r_statelock); 4241 if (error == ESTALE) { 4242 rp->r_flags |= RSTALE; 4243 if (!rp->r_error) 4244 rp->r_error = error; 4245 } else if (!rp->r_error && 4246 (bp->b_flags & 4247 (B_INVAL|B_FORCE|B_ASYNC)) == 4248 (B_INVAL|B_FORCE|B_ASYNC)) { 4249 rp->r_error = error; 4250 } 4251 mutex_exit(&rp->r_statelock); 4252 } 4253 crfree(cred); 4254 } else 4255 error = rp->r_error; 4256 } 4257 4258 if (error != 0 && error != NFS_EOF) 4259 bp->b_flags |= B_ERROR; 4260 4261 DTRACE_IO1(done, struct buf *, bp); 4262 4263 return (error); 4264 } 4265 4266 static int 4267 nfs3_fid(vnode_t *vp, fid_t *fidp) 4268 { 4269 rnode_t *rp; 4270 4271 if (nfs_zone() != VTOMI(vp)->mi_zone) 4272 return (EIO); 4273 rp = VTOR(vp); 4274 4275 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) { 4276 fidp->fid_len = rp->r_fh.fh_len; 4277 return (ENOSPC); 4278 } 4279 fidp->fid_len = rp->r_fh.fh_len; 4280 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len); 4281 return (0); 4282 } 4283 4284 /* ARGSUSED2 */ 4285 static int 4286 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4287 { 4288 rnode_t *rp = VTOR(vp); 4289 4290 if (!write_lock) { 4291 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4292 return (V_WRITELOCK_FALSE); 4293 } 4294 4295 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 4296 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 4297 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 4298 return (V_WRITELOCK_FALSE); 4299 nfs_rw_exit(&rp->r_rwlock); 4300 } 4301 4302 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 4303 return (V_WRITELOCK_TRUE); 4304 } 4305 4306 /* ARGSUSED */ 4307 static void 4308 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 4309 { 4310 rnode_t *rp = VTOR(vp); 4311 4312 nfs_rw_exit(&rp->r_rwlock); 4313 } 4314 4315 /* ARGSUSED */ 4316 static int 4317 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 4318 { 4319 4320 /* 4321 * Because we stuff the readdir cookie into the offset field 4322 * someone may attempt to do an lseek with the cookie which 4323 * we want to succeed. 4324 */ 4325 if (vp->v_type == VDIR) 4326 return (0); 4327 if (*noffp < 0) 4328 return (EINVAL); 4329 return (0); 4330 } 4331 4332 /* 4333 * number of nfs3_bsize blocks to read ahead. 4334 */ 4335 static int nfs3_nra = 4; 4336 4337 #ifdef DEBUG 4338 static int nfs3_lostpage = 0; /* number of times we lost original page */ 4339 #endif 4340 4341 /* 4342 * Return all the pages from [off..off+len) in file 4343 */ 4344 static int 4345 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4346 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4347 enum seg_rw rw, cred_t *cr) 4348 { 4349 rnode_t *rp; 4350 int error; 4351 mntinfo_t *mi; 4352 4353 if (vp->v_flag & VNOMAP) 4354 return (ENOSYS); 4355 4356 if (nfs_zone() != VTOMI(vp)->mi_zone) 4357 return (EIO); 4358 if (protp != NULL) 4359 *protp = PROT_ALL; 4360 4361 /* 4362 * Now valididate that the caches are up to date. 4363 */ 4364 error = nfs3_validate_caches(vp, cr); 4365 if (error) 4366 return (error); 4367 4368 rp = VTOR(vp); 4369 mi = VTOMI(vp); 4370 retry: 4371 mutex_enter(&rp->r_statelock); 4372 4373 /* 4374 * Don't create dirty pages faster than they 4375 * can be cleaned so that the system doesn't 4376 * get imbalanced. If the async queue is 4377 * maxed out, then wait for it to drain before 4378 * creating more dirty pages. Also, wait for 4379 * any threads doing pagewalks in the vop_getattr 4380 * entry points so that they don't block for 4381 * long periods. 4382 */ 4383 if (rw == S_CREATE) { 4384 while ((mi->mi_max_threads != 0 && 4385 rp->r_awcount > 2 * mi->mi_max_threads) || 4386 rp->r_gcount > 0) 4387 cv_wait(&rp->r_cv, &rp->r_statelock); 4388 } 4389 4390 /* 4391 * If we are getting called as a side effect of an nfs_write() 4392 * operation the local file size might not be extended yet. 4393 * In this case we want to be able to return pages of zeroes. 4394 */ 4395 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 4396 mutex_exit(&rp->r_statelock); 4397 return (EFAULT); /* beyond EOF */ 4398 } 4399 4400 mutex_exit(&rp->r_statelock); 4401 4402 if (len <= PAGESIZE) { 4403 error = nfs3_getapage(vp, off, len, protp, pl, plsz, 4404 seg, addr, rw, cr); 4405 } else { 4406 error = pvn_getpages(nfs3_getapage, vp, off, len, protp, 4407 pl, plsz, seg, addr, rw, cr); 4408 } 4409 4410 switch (error) { 4411 case NFS_EOF: 4412 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 4413 goto retry; 4414 case ESTALE: 4415 PURGE_STALE_FH(error, vp, cr); 4416 } 4417 4418 return (error); 4419 } 4420 4421 /* 4422 * Called from pvn_getpages or nfs3_getpage to get a particular page. 4423 */ 4424 /* ARGSUSED */ 4425 static int 4426 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 4427 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4428 enum seg_rw rw, cred_t *cr) 4429 { 4430 rnode_t *rp; 4431 uint_t bsize; 4432 struct buf *bp; 4433 page_t *pp; 4434 u_offset_t lbn; 4435 u_offset_t io_off; 4436 u_offset_t blkoff; 4437 u_offset_t rablkoff; 4438 size_t io_len; 4439 uint_t blksize; 4440 int error; 4441 int readahead; 4442 int readahead_issued = 0; 4443 int ra_window; /* readahead window */ 4444 page_t *pagefound; 4445 page_t *savepp; 4446 4447 if (nfs_zone() != VTOMI(vp)->mi_zone) 4448 return (EIO); 4449 rp = VTOR(vp); 4450 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4451 4452 reread: 4453 bp = NULL; 4454 pp = NULL; 4455 pagefound = NULL; 4456 4457 if (pl != NULL) 4458 pl[0] = NULL; 4459 4460 error = 0; 4461 lbn = off / bsize; 4462 blkoff = lbn * bsize; 4463 4464 /* 4465 * Queueing up the readahead before doing the synchronous read 4466 * results in a significant increase in read throughput because 4467 * of the increased parallelism between the async threads and 4468 * the process context. 4469 */ 4470 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 4471 rw != S_CREATE && 4472 !(vp->v_flag & VNOCACHE)) { 4473 mutex_enter(&rp->r_statelock); 4474 4475 /* 4476 * Calculate the number of readaheads to do. 4477 * a) No readaheads at offset = 0. 4478 * b) Do maximum(nfs3_nra) readaheads when the readahead 4479 * window is closed. 4480 * c) Do readaheads between 1 to (nfs3_nra - 1) depending 4481 * upon how far the readahead window is open or close. 4482 * d) No readaheads if rp->r_nextr is not within the scope 4483 * of the readahead window (random i/o). 4484 */ 4485 4486 if (off == 0) 4487 readahead = 0; 4488 else if (blkoff == rp->r_nextr) 4489 readahead = nfs3_nra; 4490 else if (rp->r_nextr > blkoff && 4491 ((ra_window = (rp->r_nextr - blkoff) / bsize) 4492 <= (nfs3_nra - 1))) 4493 readahead = nfs3_nra - ra_window; 4494 else 4495 readahead = 0; 4496 4497 rablkoff = rp->r_nextr; 4498 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 4499 mutex_exit(&rp->r_statelock); 4500 if (nfs_async_readahead(vp, rablkoff + bsize, 4501 addr + (rablkoff + bsize - off), seg, cr, 4502 nfs3_readahead) < 0) { 4503 mutex_enter(&rp->r_statelock); 4504 break; 4505 } 4506 readahead--; 4507 rablkoff += bsize; 4508 /* 4509 * Indicate that we did a readahead so 4510 * readahead offset is not updated 4511 * by the synchronous read below. 4512 */ 4513 readahead_issued = 1; 4514 mutex_enter(&rp->r_statelock); 4515 /* 4516 * set readahead offset to 4517 * offset of last async readahead 4518 * request. 4519 */ 4520 rp->r_nextr = rablkoff; 4521 } 4522 mutex_exit(&rp->r_statelock); 4523 } 4524 4525 again: 4526 if ((pagefound = page_exists(vp, off)) == NULL) { 4527 if (pl == NULL) { 4528 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 4529 nfs3_readahead); 4530 } else if (rw == S_CREATE) { 4531 /* 4532 * Block for this page is not allocated, or the offset 4533 * is beyond the current allocation size, or we're 4534 * allocating a swap slot and the page was not found, 4535 * so allocate it and return a zero page. 4536 */ 4537 if ((pp = page_create_va(vp, off, 4538 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 4539 cmn_err(CE_PANIC, "nfs3_getapage: page_create"); 4540 io_len = PAGESIZE; 4541 mutex_enter(&rp->r_statelock); 4542 rp->r_nextr = off + PAGESIZE; 4543 mutex_exit(&rp->r_statelock); 4544 } else { 4545 /* 4546 * Need to go to server to get a BLOCK, exception to 4547 * that being while reading at offset = 0 or doing 4548 * random i/o, in that case read only a PAGE. 4549 */ 4550 mutex_enter(&rp->r_statelock); 4551 if (blkoff < rp->r_size && 4552 blkoff + bsize >= rp->r_size) { 4553 /* 4554 * If only a block or less is left in 4555 * the file, read all that is remaining. 4556 */ 4557 if (rp->r_size <= off) { 4558 /* 4559 * Trying to access beyond EOF, 4560 * set up to get at least one page. 4561 */ 4562 blksize = off + PAGESIZE - blkoff; 4563 } else 4564 blksize = rp->r_size - blkoff; 4565 } else if ((off == 0) || 4566 (off != rp->r_nextr && !readahead_issued)) { 4567 blksize = PAGESIZE; 4568 blkoff = off; /* block = page here */ 4569 } else 4570 blksize = bsize; 4571 mutex_exit(&rp->r_statelock); 4572 4573 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4574 &io_len, blkoff, blksize, 0); 4575 4576 /* 4577 * Some other thread has entered the page, 4578 * so just use it. 4579 */ 4580 if (pp == NULL) 4581 goto again; 4582 4583 /* 4584 * Now round the request size up to page boundaries. 4585 * This ensures that the entire page will be 4586 * initialized to zeroes if EOF is encountered. 4587 */ 4588 io_len = ptob(btopr(io_len)); 4589 4590 bp = pageio_setup(pp, io_len, vp, B_READ); 4591 ASSERT(bp != NULL); 4592 4593 /* 4594 * pageio_setup should have set b_addr to 0. This 4595 * is correct since we want to do I/O on a page 4596 * boundary. bp_mapin will use this addr to calculate 4597 * an offset, and then set b_addr to the kernel virtual 4598 * address it allocated for us. 4599 */ 4600 ASSERT(bp->b_un.b_addr == 0); 4601 4602 bp->b_edev = 0; 4603 bp->b_dev = 0; 4604 bp->b_lblkno = lbtodb(io_off); 4605 bp->b_file = vp; 4606 bp->b_offset = (offset_t)off; 4607 bp_mapin(bp); 4608 4609 /* 4610 * If doing a write beyond what we believe is EOF, 4611 * don't bother trying to read the pages from the 4612 * server, we'll just zero the pages here. We 4613 * don't check that the rw flag is S_WRITE here 4614 * because some implementations may attempt a 4615 * read access to the buffer before copying data. 4616 */ 4617 mutex_enter(&rp->r_statelock); 4618 if (io_off >= rp->r_size && seg == segkmap) { 4619 mutex_exit(&rp->r_statelock); 4620 bzero(bp->b_un.b_addr, io_len); 4621 } else { 4622 mutex_exit(&rp->r_statelock); 4623 error = nfs3_bio(bp, NULL, cr); 4624 } 4625 4626 /* 4627 * Unmap the buffer before freeing it. 4628 */ 4629 bp_mapout(bp); 4630 pageio_done(bp); 4631 4632 savepp = pp; 4633 do { 4634 pp->p_fsdata = C_NOCOMMIT; 4635 } while ((pp = pp->p_next) != savepp); 4636 4637 if (error == NFS_EOF) { 4638 /* 4639 * If doing a write system call just return 4640 * zeroed pages, else user tried to get pages 4641 * beyond EOF, return error. We don't check 4642 * that the rw flag is S_WRITE here because 4643 * some implementations may attempt a read 4644 * access to the buffer before copying data. 4645 */ 4646 if (seg == segkmap) 4647 error = 0; 4648 else 4649 error = EFAULT; 4650 } 4651 4652 if (!readahead_issued && !error) { 4653 mutex_enter(&rp->r_statelock); 4654 rp->r_nextr = io_off + io_len; 4655 mutex_exit(&rp->r_statelock); 4656 } 4657 } 4658 } 4659 4660 out: 4661 if (pl == NULL) 4662 return (error); 4663 4664 if (error) { 4665 if (pp != NULL) 4666 pvn_read_done(pp, B_ERROR); 4667 return (error); 4668 } 4669 4670 if (pagefound) { 4671 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 4672 4673 /* 4674 * Page exists in the cache, acquire the appropriate lock. 4675 * If this fails, start all over again. 4676 */ 4677 if ((pp = page_lookup(vp, off, se)) == NULL) { 4678 #ifdef DEBUG 4679 nfs3_lostpage++; 4680 #endif 4681 goto reread; 4682 } 4683 pl[0] = pp; 4684 pl[1] = NULL; 4685 return (0); 4686 } 4687 4688 if (pp != NULL) 4689 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4690 4691 return (error); 4692 } 4693 4694 static void 4695 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 4696 cred_t *cr) 4697 { 4698 int error; 4699 page_t *pp; 4700 u_offset_t io_off; 4701 size_t io_len; 4702 struct buf *bp; 4703 uint_t bsize, blksize; 4704 rnode_t *rp = VTOR(vp); 4705 page_t *savepp; 4706 4707 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4708 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4709 4710 mutex_enter(&rp->r_statelock); 4711 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 4712 /* 4713 * If less than a block left in file read less 4714 * than a block. 4715 */ 4716 blksize = rp->r_size - blkoff; 4717 } else 4718 blksize = bsize; 4719 mutex_exit(&rp->r_statelock); 4720 4721 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 4722 &io_off, &io_len, blkoff, blksize, 1); 4723 /* 4724 * The isra flag passed to the kluster function is 1, we may have 4725 * gotten a return value of NULL for a variety of reasons (# of free 4726 * pages < minfree, someone entered the page on the vnode etc). In all 4727 * cases, we want to punt on the readahead. 4728 */ 4729 if (pp == NULL) 4730 return; 4731 4732 /* 4733 * Now round the request size up to page boundaries. 4734 * This ensures that the entire page will be 4735 * initialized to zeroes if EOF is encountered. 4736 */ 4737 io_len = ptob(btopr(io_len)); 4738 4739 bp = pageio_setup(pp, io_len, vp, B_READ); 4740 ASSERT(bp != NULL); 4741 4742 /* 4743 * pageio_setup should have set b_addr to 0. This is correct since 4744 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4745 * to calculate an offset, and then set b_addr to the kernel virtual 4746 * address it allocated for us. 4747 */ 4748 ASSERT(bp->b_un.b_addr == 0); 4749 4750 bp->b_edev = 0; 4751 bp->b_dev = 0; 4752 bp->b_lblkno = lbtodb(io_off); 4753 bp->b_file = vp; 4754 bp->b_offset = (offset_t)blkoff; 4755 bp_mapin(bp); 4756 4757 /* 4758 * If doing a write beyond what we believe is EOF, don't bother trying 4759 * to read the pages from the server, we'll just zero the pages here. 4760 * We don't check that the rw flag is S_WRITE here because some 4761 * implementations may attempt a read access to the buffer before 4762 * copying data. 4763 */ 4764 mutex_enter(&rp->r_statelock); 4765 if (io_off >= rp->r_size && seg == segkmap) { 4766 mutex_exit(&rp->r_statelock); 4767 bzero(bp->b_un.b_addr, io_len); 4768 error = 0; 4769 } else { 4770 mutex_exit(&rp->r_statelock); 4771 error = nfs3_bio(bp, NULL, cr); 4772 if (error == NFS_EOF) 4773 error = 0; 4774 } 4775 4776 /* 4777 * Unmap the buffer before freeing it. 4778 */ 4779 bp_mapout(bp); 4780 pageio_done(bp); 4781 4782 savepp = pp; 4783 do { 4784 pp->p_fsdata = C_NOCOMMIT; 4785 } while ((pp = pp->p_next) != savepp); 4786 4787 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4788 4789 /* 4790 * In case of error set readahead offset 4791 * to the lowest offset. 4792 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4793 */ 4794 if (error && rp->r_nextr > io_off) { 4795 mutex_enter(&rp->r_statelock); 4796 if (rp->r_nextr > io_off) 4797 rp->r_nextr = io_off; 4798 mutex_exit(&rp->r_statelock); 4799 } 4800 } 4801 4802 /* 4803 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4804 * If len == 0, do from off to EOF. 4805 * 4806 * The normal cases should be len == 0 && off == 0 (entire vp list), 4807 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4808 * (from pageout). 4809 */ 4810 static int 4811 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 4812 { 4813 int error; 4814 rnode_t *rp; 4815 4816 ASSERT(cr != NULL); 4817 4818 /* 4819 * XXX - Why should this check be made here? 4820 */ 4821 if (vp->v_flag & VNOMAP) 4822 return (ENOSYS); 4823 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4824 return (0); 4825 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4826 return (EIO); 4827 4828 rp = VTOR(vp); 4829 mutex_enter(&rp->r_statelock); 4830 rp->r_count++; 4831 mutex_exit(&rp->r_statelock); 4832 error = nfs_putpages(vp, off, len, flags, cr); 4833 mutex_enter(&rp->r_statelock); 4834 rp->r_count--; 4835 cv_broadcast(&rp->r_cv); 4836 mutex_exit(&rp->r_statelock); 4837 4838 return (error); 4839 } 4840 4841 /* 4842 * Write out a single page, possibly klustering adjacent dirty pages. 4843 */ 4844 int 4845 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4846 int flags, cred_t *cr) 4847 { 4848 u_offset_t io_off; 4849 u_offset_t lbn_off; 4850 u_offset_t lbn; 4851 size_t io_len; 4852 uint_t bsize; 4853 int error; 4854 rnode_t *rp; 4855 4856 ASSERT(!vn_is_readonly(vp)); 4857 ASSERT(pp != NULL); 4858 ASSERT(cr != NULL); 4859 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4860 4861 rp = VTOR(vp); 4862 ASSERT(rp->r_count > 0); 4863 4864 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4865 lbn = pp->p_offset / bsize; 4866 lbn_off = lbn * bsize; 4867 4868 /* 4869 * Find a kluster that fits in one block, or in 4870 * one page if pages are bigger than blocks. If 4871 * there is less file space allocated than a whole 4872 * page, we'll shorten the i/o request below. 4873 */ 4874 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 4875 roundup(bsize, PAGESIZE), flags); 4876 4877 /* 4878 * pvn_write_kluster shouldn't have returned a page with offset 4879 * behind the original page we were given. Verify that. 4880 */ 4881 ASSERT((pp->p_offset / bsize) >= lbn); 4882 4883 /* 4884 * Now pp will have the list of kept dirty pages marked for 4885 * write back. It will also handle invalidation and freeing 4886 * of pages that are not dirty. Check for page length rounding 4887 * problems. 4888 */ 4889 if (io_off + io_len > lbn_off + bsize) { 4890 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 4891 io_len = lbn_off + bsize - io_off; 4892 } 4893 /* 4894 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4895 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 4896 * When RMODINPROGRESS is set it indicates that a uiomove() is in 4897 * progress and the r_size has not been made consistent with the 4898 * new size of the file. When the uiomove() completes the r_size is 4899 * updated and the RMODINPROGRESS flag is cleared. 4900 * 4901 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4902 * consistent value of r_size. Without this handshaking, it is 4903 * possible that nfs(3)_bio() picks up the old value of r_size 4904 * before the uiomove() in writerp() completes. This will result 4905 * in the write through nfs(3)_bio() being dropped. 4906 * 4907 * More precisely, there is a window between the time the uiomove() 4908 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4909 * operation intervenes in this window, the page will be picked up, 4910 * because it is dirty (it will be unlocked, unless it was 4911 * pagecreate'd). When the page is picked up as dirty, the dirty 4912 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4913 * checked. This will still be the old size. Therefore the page will 4914 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4915 * the page will be found to be clean and the write will be dropped. 4916 */ 4917 if (rp->r_flags & RMODINPROGRESS) { 4918 mutex_enter(&rp->r_statelock); 4919 if ((rp->r_flags & RMODINPROGRESS) && 4920 rp->r_modaddr + MAXBSIZE > io_off && 4921 rp->r_modaddr < io_off + io_len) { 4922 page_t *plist; 4923 /* 4924 * A write is in progress for this region of the file. 4925 * If we did not detect RMODINPROGRESS here then this 4926 * path through nfs_putapage() would eventually go to 4927 * nfs(3)_bio() and may not write out all of the data 4928 * in the pages. We end up losing data. So we decide 4929 * to set the modified bit on each page in the page 4930 * list and mark the rnode with RDIRTY. This write 4931 * will be restarted at some later time. 4932 */ 4933 plist = pp; 4934 while (plist != NULL) { 4935 pp = plist; 4936 page_sub(&plist, pp); 4937 hat_setmod(pp); 4938 page_io_unlock(pp); 4939 page_unlock(pp); 4940 } 4941 rp->r_flags |= RDIRTY; 4942 mutex_exit(&rp->r_statelock); 4943 if (offp) 4944 *offp = io_off; 4945 if (lenp) 4946 *lenp = io_len; 4947 return (0); 4948 } 4949 mutex_exit(&rp->r_statelock); 4950 } 4951 4952 if (flags & B_ASYNC) { 4953 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4954 nfs3_sync_putapage); 4955 } else 4956 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4957 4958 if (offp) 4959 *offp = io_off; 4960 if (lenp) 4961 *lenp = io_len; 4962 return (error); 4963 } 4964 4965 static int 4966 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4967 int flags, cred_t *cr) 4968 { 4969 int error; 4970 rnode_t *rp; 4971 4972 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4973 4974 flags |= B_WRITE; 4975 4976 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4977 4978 rp = VTOR(vp); 4979 4980 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 4981 error == EACCES) && 4982 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 4983 if (!(rp->r_flags & ROUTOFSPACE)) { 4984 mutex_enter(&rp->r_statelock); 4985 rp->r_flags |= ROUTOFSPACE; 4986 mutex_exit(&rp->r_statelock); 4987 } 4988 flags |= B_ERROR; 4989 pvn_write_done(pp, flags); 4990 /* 4991 * If this was not an async thread, then try again to 4992 * write out the pages, but this time, also destroy 4993 * them whether or not the write is successful. This 4994 * will prevent memory from filling up with these 4995 * pages and destroying them is the only alternative 4996 * if they can't be written out. 4997 * 4998 * Don't do this if this is an async thread because 4999 * when the pages are unlocked in pvn_write_done, 5000 * some other thread could have come along, locked 5001 * them, and queued for an async thread. It would be 5002 * possible for all of the async threads to be tied 5003 * up waiting to lock the pages again and they would 5004 * all already be locked and waiting for an async 5005 * thread to handle them. Deadlock. 5006 */ 5007 if (!(flags & B_ASYNC)) { 5008 error = nfs3_putpage(vp, io_off, io_len, 5009 B_INVAL | B_FORCE, cr); 5010 } 5011 } else { 5012 if (error) 5013 flags |= B_ERROR; 5014 else if (rp->r_flags & ROUTOFSPACE) { 5015 mutex_enter(&rp->r_statelock); 5016 rp->r_flags &= ~ROUTOFSPACE; 5017 mutex_exit(&rp->r_statelock); 5018 } 5019 pvn_write_done(pp, flags); 5020 if (freemem < desfree) 5021 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr); 5022 } 5023 5024 return (error); 5025 } 5026 5027 static int 5028 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 5029 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 5030 { 5031 struct segvn_crargs vn_a; 5032 int error; 5033 rnode_t *rp; 5034 struct vattr va; 5035 5036 if (nfs_zone() != VTOMI(vp)->mi_zone) 5037 return (EIO); 5038 5039 if (vp->v_flag & VNOMAP) 5040 return (ENOSYS); 5041 5042 if (off < 0 || off + len < 0) 5043 return (ENXIO); 5044 5045 if (vp->v_type != VREG) 5046 return (ENODEV); 5047 5048 /* 5049 * If there is cached data and if close-to-open consistency 5050 * checking is not turned off and if the file system is not 5051 * mounted readonly, then force an over the wire getattr. 5052 * Otherwise, just invoke nfs3getattr to get a copy of the 5053 * attributes. The attribute cache will be used unless it 5054 * is timed out and if it is, then an over the wire getattr 5055 * will be issued. 5056 */ 5057 va.va_mask = AT_ALL; 5058 if (vn_has_cached_data(vp) && 5059 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 5060 error = nfs3_getattr_otw(vp, &va, cr); 5061 else 5062 error = nfs3getattr(vp, &va, cr); 5063 if (error) 5064 return (error); 5065 5066 /* 5067 * Check to see if the vnode is currently marked as not cachable. 5068 * This means portions of the file are locked (through VOP_FRLOCK). 5069 * In this case the map request must be refused. We use 5070 * rp->r_lkserlock to avoid a race with concurrent lock requests. 5071 */ 5072 rp = VTOR(vp); 5073 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 5074 return (EINTR); 5075 5076 if (vp->v_flag & VNOCACHE) { 5077 error = EAGAIN; 5078 goto done; 5079 } 5080 5081 /* 5082 * Don't allow concurrent locks and mapping if mandatory locking is 5083 * enabled. 5084 */ 5085 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 5086 MANDLOCK(vp, va.va_mode)) { 5087 error = EAGAIN; 5088 goto done; 5089 } 5090 5091 as_rangelock(as); 5092 if (!(flags & MAP_FIXED)) { 5093 map_addr(addrp, len, off, 1, flags); 5094 if (*addrp == NULL) { 5095 as_rangeunlock(as); 5096 error = ENOMEM; 5097 goto done; 5098 } 5099 } else { 5100 /* 5101 * User specified address - blow away any previous mappings 5102 */ 5103 (void) as_unmap(as, *addrp, len); 5104 } 5105 5106 vn_a.vp = vp; 5107 vn_a.offset = off; 5108 vn_a.type = (flags & MAP_TYPE); 5109 vn_a.prot = (uchar_t)prot; 5110 vn_a.maxprot = (uchar_t)maxprot; 5111 vn_a.flags = (flags & ~MAP_TYPE); 5112 vn_a.cred = cr; 5113 vn_a.amp = NULL; 5114 vn_a.szc = 0; 5115 vn_a.lgrp_mem_policy_flags = 0; 5116 5117 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5118 as_rangeunlock(as); 5119 5120 done: 5121 nfs_rw_exit(&rp->r_lkserlock); 5122 return (error); 5123 } 5124 5125 /* ARGSUSED */ 5126 static int 5127 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5128 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 5129 { 5130 rnode_t *rp; 5131 5132 if (vp->v_flag & VNOMAP) 5133 return (ENOSYS); 5134 if (nfs_zone() != VTOMI(vp)->mi_zone) 5135 return (EIO); 5136 5137 /* 5138 * Need to hold rwlock while incrementing the mapcnt so that 5139 * mmap'ing can be serialized with writes so that the caching 5140 * can be handled correctly. 5141 */ 5142 rp = VTOR(vp); 5143 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 5144 return (EINTR); 5145 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 5146 nfs_rw_exit(&rp->r_rwlock); 5147 5148 return (0); 5149 } 5150 5151 static int 5152 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5153 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr) 5154 { 5155 netobj lm_fh3; 5156 int rc; 5157 u_offset_t start, end; 5158 rnode_t *rp; 5159 int error = 0, intr = INTR(vp); 5160 5161 if (nfs_zone() != VTOMI(vp)->mi_zone) 5162 return (EIO); 5163 /* check for valid cmd parameter */ 5164 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 5165 return (EINVAL); 5166 5167 /* Verify l_type. */ 5168 switch (bfp->l_type) { 5169 case F_RDLCK: 5170 if (cmd != F_GETLK && !(flag & FREAD)) 5171 return (EBADF); 5172 break; 5173 case F_WRLCK: 5174 if (cmd != F_GETLK && !(flag & FWRITE)) 5175 return (EBADF); 5176 break; 5177 case F_UNLCK: 5178 intr = 0; 5179 break; 5180 5181 default: 5182 return (EINVAL); 5183 } 5184 5185 /* check the validity of the lock range */ 5186 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 5187 return (rc); 5188 if (rc = flk_check_lock_data(start, end, MAXEND)) 5189 return (rc); 5190 5191 /* 5192 * If the filesystem is mounted using local locking, pass the 5193 * request off to the local locking code. 5194 */ 5195 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 5196 if (cmd == F_SETLK || cmd == F_SETLKW) { 5197 /* 5198 * For complete safety, we should be holding 5199 * r_lkserlock. However, we can't call 5200 * lm_safelock and then fs_frlock while 5201 * holding r_lkserlock, so just invoke 5202 * lm_safelock and expect that this will 5203 * catch enough of the cases. 5204 */ 5205 if (!lm_safelock(vp, bfp, cr)) 5206 return (EAGAIN); 5207 } 5208 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 5209 } 5210 5211 rp = VTOR(vp); 5212 5213 /* 5214 * Check whether the given lock request can proceed, given the 5215 * current file mappings. 5216 */ 5217 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 5218 return (EINTR); 5219 if (cmd == F_SETLK || cmd == F_SETLKW) { 5220 if (!lm_safelock(vp, bfp, cr)) { 5221 rc = EAGAIN; 5222 goto done; 5223 } 5224 } 5225 5226 /* 5227 * Flush the cache after waiting for async I/O to finish. For new 5228 * locks, this is so that the process gets the latest bits from the 5229 * server. For unlocks, this is so that other clients see the 5230 * latest bits once the file has been unlocked. If currently dirty 5231 * pages can't be flushed, then don't allow a lock to be set. But 5232 * allow unlocks to succeed, to avoid having orphan locks on the 5233 * server. 5234 */ 5235 if (cmd != F_GETLK) { 5236 mutex_enter(&rp->r_statelock); 5237 while (rp->r_count > 0) { 5238 if (intr) { 5239 klwp_t *lwp = ttolwp(curthread); 5240 5241 if (lwp != NULL) 5242 lwp->lwp_nostop++; 5243 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) { 5244 if (lwp != NULL) 5245 lwp->lwp_nostop--; 5246 rc = EINTR; 5247 break; 5248 } 5249 if (lwp != NULL) 5250 lwp->lwp_nostop--; 5251 } else 5252 cv_wait(&rp->r_cv, &rp->r_statelock); 5253 } 5254 mutex_exit(&rp->r_statelock); 5255 if (rc != 0) 5256 goto done; 5257 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr); 5258 if (error) { 5259 if (error == ENOSPC || error == EDQUOT) { 5260 mutex_enter(&rp->r_statelock); 5261 if (!rp->r_error) 5262 rp->r_error = error; 5263 mutex_exit(&rp->r_statelock); 5264 } 5265 if (bfp->l_type != F_UNLCK) { 5266 rc = ENOLCK; 5267 goto done; 5268 } 5269 } 5270 } 5271 5272 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 5273 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 5274 5275 /* 5276 * Call the lock manager to do the real work of contacting 5277 * the server and obtaining the lock. 5278 */ 5279 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp); 5280 5281 if (rc == 0) 5282 nfs_lockcompletion(vp, cmd); 5283 5284 done: 5285 nfs_rw_exit(&rp->r_lkserlock); 5286 return (rc); 5287 } 5288 5289 /* 5290 * Free storage space associated with the specified vnode. The portion 5291 * to be freed is specified by bfp->l_start and bfp->l_len (already 5292 * normalized to a "whence" of 0). 5293 * 5294 * This is an experimental facility whose continued existence is not 5295 * guaranteed. Currently, we only support the special case 5296 * of l_len == 0, meaning free to end of file. 5297 */ 5298 /* ARGSUSED */ 5299 static int 5300 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 5301 offset_t offset, cred_t *cr, caller_context_t *ct) 5302 { 5303 int error; 5304 5305 ASSERT(vp->v_type == VREG); 5306 if (cmd != F_FREESP) 5307 return (EINVAL); 5308 if (nfs_zone() != VTOMI(vp)->mi_zone) 5309 return (EIO); 5310 5311 error = convoff(vp, bfp, 0, offset); 5312 if (!error) { 5313 ASSERT(bfp->l_start >= 0); 5314 if (bfp->l_len == 0) { 5315 struct vattr va; 5316 5317 /* 5318 * ftruncate should not change the ctime and 5319 * mtime if we truncate the file to its 5320 * previous size. 5321 */ 5322 va.va_mask = AT_SIZE; 5323 error = nfs3getattr(vp, &va, cr); 5324 if (error || va.va_size == bfp->l_start) 5325 return (error); 5326 va.va_mask = AT_SIZE; 5327 va.va_size = bfp->l_start; 5328 error = nfs3setattr(vp, &va, 0, cr); 5329 } else 5330 error = EINVAL; 5331 } 5332 5333 return (error); 5334 } 5335 5336 /* ARGSUSED */ 5337 static int 5338 nfs3_realvp(vnode_t *vp, vnode_t **vpp) 5339 { 5340 5341 return (EINVAL); 5342 } 5343 5344 /* 5345 * Setup and add an address space callback to do the work of the delmap call. 5346 * The callback will (and must be) deleted in the actual callback function. 5347 * 5348 * This is done in order to take care of the problem that we have with holding 5349 * the address space's a_lock for a long period of time (e.g. if the NFS server 5350 * is down). Callbacks will be executed in the address space code while the 5351 * a_lock is not held. Holding the address space's a_lock causes things such 5352 * as ps and fork to hang because they are trying to acquire this lock as well. 5353 */ 5354 /* ARGSUSED */ 5355 static int 5356 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 5357 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 5358 { 5359 int caller_found; 5360 int error; 5361 rnode_t *rp; 5362 nfs_delmap_args_t *dmapp; 5363 nfs_delmapcall_t *delmap_call; 5364 5365 if (vp->v_flag & VNOMAP) 5366 return (ENOSYS); 5367 /* 5368 * A process may not change zones if it has NFS pages mmap'ed 5369 * in, so we can't legitimately get here from the wrong zone. 5370 */ 5371 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5372 5373 rp = VTOR(vp); 5374 5375 /* 5376 * The way that the address space of this process deletes its mapping 5377 * of this file is via the following call chains: 5378 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5379 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap() 5380 * 5381 * With the use of address space callbacks we are allowed to drop the 5382 * address space lock, a_lock, while executing the NFS operations that 5383 * need to go over the wire. Returning EAGAIN to the caller of this 5384 * function is what drives the execution of the callback that we add 5385 * below. The callback will be executed by the address space code 5386 * after dropping the a_lock. When the callback is finished, since 5387 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 5388 * is called again on the same segment to finish the rest of the work 5389 * that needs to happen during unmapping. 5390 * 5391 * This action of calling back into the segment driver causes 5392 * nfs3_delmap() to get called again, but since the callback was 5393 * already executed at this point, it already did the work and there 5394 * is nothing left for us to do. 5395 * 5396 * To Summarize: 5397 * - The first time nfs3_delmap is called by the current thread is when 5398 * we add the caller associated with this delmap to the delmap caller 5399 * list, add the callback, and return EAGAIN. 5400 * - The second time in this call chain when nfs3_delmap is called we 5401 * will find this caller in the delmap caller list and realize there 5402 * is no more work to do thus removing this caller from the list and 5403 * returning the error that was set in the callback execution. 5404 */ 5405 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 5406 if (caller_found) { 5407 /* 5408 * 'error' is from the actual delmap operations. To avoid 5409 * hangs, we need to handle the return of EAGAIN differently 5410 * since this is what drives the callback execution. 5411 * In this case, we don't want to return EAGAIN and do the 5412 * callback execution because there are none to execute. 5413 */ 5414 if (error == EAGAIN) 5415 return (0); 5416 else 5417 return (error); 5418 } 5419 5420 /* current caller was not in the list */ 5421 delmap_call = nfs_init_delmapcall(); 5422 5423 mutex_enter(&rp->r_statelock); 5424 list_insert_tail(&rp->r_indelmap, delmap_call); 5425 mutex_exit(&rp->r_statelock); 5426 5427 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 5428 5429 dmapp->vp = vp; 5430 dmapp->off = off; 5431 dmapp->addr = addr; 5432 dmapp->len = len; 5433 dmapp->prot = prot; 5434 dmapp->maxprot = maxprot; 5435 dmapp->flags = flags; 5436 dmapp->cr = cr; 5437 dmapp->caller = delmap_call; 5438 5439 error = as_add_callback(as, nfs3_delmap_callback, dmapp, 5440 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 5441 5442 return (error ? error : EAGAIN); 5443 } 5444 5445 /* 5446 * Remove some pages from an mmap'd vnode. Just update the 5447 * count of pages. If doing close-to-open, then flush and 5448 * commit all of the pages associated with this file. 5449 * Otherwise, start an asynchronous page flush to write out 5450 * any dirty pages. This will also associate a credential 5451 * with the rnode which can be used to write the pages. 5452 */ 5453 /* ARGSUSED */ 5454 static void 5455 nfs3_delmap_callback(struct as *as, void *arg, uint_t event) 5456 { 5457 int error; 5458 rnode_t *rp; 5459 mntinfo_t *mi; 5460 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 5461 5462 rp = VTOR(dmapp->vp); 5463 mi = VTOMI(dmapp->vp); 5464 5465 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 5466 ASSERT(rp->r_mapcnt >= 0); 5467 5468 /* 5469 * Initiate a page flush and potential commit if there are 5470 * pages, the file system was not mounted readonly, the segment 5471 * was mapped shared, and the pages themselves were writeable. 5472 */ 5473 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 5474 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 5475 mutex_enter(&rp->r_statelock); 5476 rp->r_flags |= RDIRTY; 5477 mutex_exit(&rp->r_statelock); 5478 /* 5479 * If this is a cross-zone access a sync putpage won't work, so 5480 * the best we can do is try an async putpage. That seems 5481 * better than something more draconian such as discarding the 5482 * dirty pages. 5483 */ 5484 if ((mi->mi_flags & MI_NOCTO) || 5485 nfs_zone() != mi->mi_zone) 5486 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5487 B_ASYNC, dmapp->cr); 5488 else 5489 error = nfs3_putpage_commit(dmapp->vp, dmapp->off, 5490 dmapp->len, dmapp->cr); 5491 if (!error) { 5492 mutex_enter(&rp->r_statelock); 5493 error = rp->r_error; 5494 rp->r_error = 0; 5495 mutex_exit(&rp->r_statelock); 5496 } 5497 } else 5498 error = 0; 5499 5500 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 5501 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len, 5502 B_INVAL, dmapp->cr); 5503 5504 dmapp->caller->error = error; 5505 (void) as_delete_callback(as, arg); 5506 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 5507 } 5508 5509 static int nfs3_pathconf_disable_cache = 0; 5510 5511 #ifdef DEBUG 5512 static int nfs3_pathconf_cache_hits = 0; 5513 static int nfs3_pathconf_cache_misses = 0; 5514 #endif 5515 5516 static int 5517 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 5518 { 5519 int error; 5520 PATHCONF3args args; 5521 PATHCONF3res res; 5522 int douprintf; 5523 failinfo_t fi; 5524 rnode_t *rp; 5525 hrtime_t t; 5526 5527 if (nfs_zone() != VTOMI(vp)->mi_zone) 5528 return (EIO); 5529 /* 5530 * Large file spec - need to base answer on info stored 5531 * on original FSINFO response. 5532 */ 5533 if (cmd == _PC_FILESIZEBITS) { 5534 unsigned long long ll; 5535 long l = 1; 5536 5537 ll = VTOMI(vp)->mi_maxfilesize; 5538 5539 if (ll == 0) { 5540 *valp = 0; 5541 return (0); 5542 } 5543 5544 if (ll & 0xffffffff00000000) { 5545 l += 32; ll >>= 32; 5546 } 5547 if (ll & 0xffff0000) { 5548 l += 16; ll >>= 16; 5549 } 5550 if (ll & 0xff00) { 5551 l += 8; ll >>= 8; 5552 } 5553 if (ll & 0xf0) { 5554 l += 4; ll >>= 4; 5555 } 5556 if (ll & 0xc) { 5557 l += 2; ll >>= 2; 5558 } 5559 if (ll & 0x2) 5560 l += 2; 5561 else if (ll & 0x1) 5562 l += 1; 5563 *valp = l; 5564 return (0); 5565 } 5566 5567 if (cmd == _PC_ACL_ENABLED) { 5568 *valp = _ACL_ACLENT_ENABLED; 5569 return (0); 5570 } 5571 5572 if (cmd == _PC_XATTR_EXISTS) { 5573 error = 0; 5574 *valp = 0; 5575 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5576 vnode_t *avp; 5577 rnode_t *rp; 5578 int error = 0; 5579 mntinfo_t *mi = VTOMI(vp); 5580 5581 if (!(mi->mi_flags & MI_EXTATTR)) 5582 return (0); 5583 5584 rp = VTOR(vp); 5585 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 5586 INTR(vp))) 5587 return (EINTR); 5588 5589 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 5590 if (error || avp == NULL) 5591 error = acl_getxattrdir3(vp, &avp, 0, cr, 0); 5592 5593 nfs_rw_exit(&rp->r_rwlock); 5594 5595 if (error == 0 && avp != NULL) { 5596 VN_RELE(avp); 5597 *valp = 1; 5598 } else if (error == ENOENT) 5599 error = 0; 5600 } 5601 return (error); 5602 } 5603 5604 rp = VTOR(vp); 5605 if (rp->r_pathconf != NULL) { 5606 mutex_enter(&rp->r_statelock); 5607 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) { 5608 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf)); 5609 rp->r_pathconf = NULL; 5610 } 5611 if (rp->r_pathconf != NULL) { 5612 error = 0; 5613 switch (cmd) { 5614 case _PC_LINK_MAX: 5615 *valp = rp->r_pathconf->link_max; 5616 break; 5617 case _PC_NAME_MAX: 5618 *valp = rp->r_pathconf->name_max; 5619 break; 5620 case _PC_PATH_MAX: 5621 case _PC_SYMLINK_MAX: 5622 *valp = MAXPATHLEN; 5623 break; 5624 case _PC_CHOWN_RESTRICTED: 5625 *valp = rp->r_pathconf->chown_restricted; 5626 break; 5627 case _PC_NO_TRUNC: 5628 *valp = rp->r_pathconf->no_trunc; 5629 break; 5630 default: 5631 error = EINVAL; 5632 break; 5633 } 5634 mutex_exit(&rp->r_statelock); 5635 #ifdef DEBUG 5636 nfs3_pathconf_cache_hits++; 5637 #endif 5638 return (error); 5639 } 5640 mutex_exit(&rp->r_statelock); 5641 } 5642 #ifdef DEBUG 5643 nfs3_pathconf_cache_misses++; 5644 #endif 5645 5646 args.object = *VTOFH3(vp); 5647 fi.vp = vp; 5648 fi.fhp = (caddr_t)&args.object; 5649 fi.copyproc = nfs3copyfh; 5650 fi.lookupproc = nfs3lookup; 5651 fi.xattrdirproc = acl_getxattrdir3; 5652 5653 douprintf = 1; 5654 5655 t = gethrtime(); 5656 5657 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF, 5658 xdr_nfs_fh3, (caddr_t)&args, 5659 xdr_PATHCONF3res, (caddr_t)&res, cr, 5660 &douprintf, &res.status, 0, &fi); 5661 5662 if (error) 5663 return (error); 5664 5665 error = geterrno3(res.status); 5666 5667 if (!error) { 5668 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr); 5669 if (!nfs3_pathconf_disable_cache) { 5670 mutex_enter(&rp->r_statelock); 5671 if (rp->r_pathconf == NULL) { 5672 rp->r_pathconf = kmem_alloc( 5673 sizeof (*rp->r_pathconf), KM_NOSLEEP); 5674 if (rp->r_pathconf != NULL) 5675 *rp->r_pathconf = res.resok.info; 5676 } 5677 mutex_exit(&rp->r_statelock); 5678 } 5679 switch (cmd) { 5680 case _PC_LINK_MAX: 5681 *valp = res.resok.info.link_max; 5682 break; 5683 case _PC_NAME_MAX: 5684 *valp = res.resok.info.name_max; 5685 break; 5686 case _PC_PATH_MAX: 5687 case _PC_SYMLINK_MAX: 5688 *valp = MAXPATHLEN; 5689 break; 5690 case _PC_CHOWN_RESTRICTED: 5691 *valp = res.resok.info.chown_restricted; 5692 break; 5693 case _PC_NO_TRUNC: 5694 *valp = res.resok.info.no_trunc; 5695 break; 5696 default: 5697 return (EINVAL); 5698 } 5699 } else { 5700 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr); 5701 PURGE_STALE_FH(error, vp, cr); 5702 } 5703 5704 return (error); 5705 } 5706 5707 /* 5708 * Called by async thread to do synchronous pageio. Do the i/o, wait 5709 * for it to complete, and cleanup the page list when done. 5710 */ 5711 static int 5712 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5713 int flags, cred_t *cr) 5714 { 5715 int error; 5716 5717 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5718 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5719 if (flags & B_READ) 5720 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 5721 else 5722 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 5723 return (error); 5724 } 5725 5726 static int 5727 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5728 int flags, cred_t *cr) 5729 { 5730 int error; 5731 rnode_t *rp; 5732 5733 if (pp == NULL) 5734 return (EINVAL); 5735 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 5736 return (EIO); 5737 5738 rp = VTOR(vp); 5739 mutex_enter(&rp->r_statelock); 5740 rp->r_count++; 5741 mutex_exit(&rp->r_statelock); 5742 5743 if (flags & B_ASYNC) { 5744 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 5745 nfs3_sync_pageio); 5746 } else 5747 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 5748 mutex_enter(&rp->r_statelock); 5749 rp->r_count--; 5750 cv_broadcast(&rp->r_cv); 5751 mutex_exit(&rp->r_statelock); 5752 return (error); 5753 } 5754 5755 static void 5756 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr) 5757 { 5758 int error; 5759 rnode_t *rp; 5760 page_t *plist; 5761 page_t *pptr; 5762 offset3 offset; 5763 count3 len; 5764 k_sigset_t smask; 5765 5766 /* 5767 * We should get called with fl equal to either B_FREE or 5768 * B_INVAL. Any other value is illegal. 5769 * 5770 * The page that we are either supposed to free or destroy 5771 * should be exclusive locked and its io lock should not 5772 * be held. 5773 */ 5774 ASSERT(fl == B_FREE || fl == B_INVAL); 5775 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 5776 rp = VTOR(vp); 5777 5778 /* 5779 * If the page doesn't need to be committed or we shouldn't 5780 * even bother attempting to commit it, then just make sure 5781 * that the p_fsdata byte is clear and then either free or 5782 * destroy the page as appropriate. 5783 */ 5784 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) { 5785 pp->p_fsdata = C_NOCOMMIT; 5786 if (fl == B_FREE) 5787 page_free(pp, dn); 5788 else 5789 page_destroy(pp, dn); 5790 return; 5791 } 5792 5793 /* 5794 * If there is a page invalidation operation going on, then 5795 * if this is one of the pages being destroyed, then just 5796 * clear the p_fsdata byte and then either free or destroy 5797 * the page as appropriate. 5798 */ 5799 mutex_enter(&rp->r_statelock); 5800 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 5801 mutex_exit(&rp->r_statelock); 5802 pp->p_fsdata = C_NOCOMMIT; 5803 if (fl == B_FREE) 5804 page_free(pp, dn); 5805 else 5806 page_destroy(pp, dn); 5807 return; 5808 } 5809 5810 /* 5811 * If we are freeing this page and someone else is already 5812 * waiting to do a commit, then just unlock the page and 5813 * return. That other thread will take care of commiting 5814 * this page. The page can be freed sometime after the 5815 * commit has finished. Otherwise, if the page is marked 5816 * as delay commit, then we may be getting called from 5817 * pvn_write_done, one page at a time. This could result 5818 * in one commit per page, so we end up doing lots of small 5819 * commits instead of fewer larger commits. This is bad, 5820 * we want do as few commits as possible. 5821 */ 5822 if (fl == B_FREE) { 5823 if (rp->r_flags & RCOMMITWAIT) { 5824 page_unlock(pp); 5825 mutex_exit(&rp->r_statelock); 5826 return; 5827 } 5828 if (pp->p_fsdata == C_DELAYCOMMIT) { 5829 pp->p_fsdata = C_COMMIT; 5830 page_unlock(pp); 5831 mutex_exit(&rp->r_statelock); 5832 return; 5833 } 5834 } 5835 5836 /* 5837 * Check to see if there is a signal which would prevent an 5838 * attempt to commit the pages from being successful. If so, 5839 * then don't bother with all of the work to gather pages and 5840 * generate the unsuccessful RPC. Just return from here and 5841 * let the page be committed at some later time. 5842 */ 5843 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT); 5844 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 5845 sigunintr(&smask); 5846 page_unlock(pp); 5847 mutex_exit(&rp->r_statelock); 5848 return; 5849 } 5850 sigunintr(&smask); 5851 5852 /* 5853 * We are starting to need to commit pages, so let's try 5854 * to commit as many as possible at once to reduce the 5855 * overhead. 5856 * 5857 * Set the `commit inprogress' state bit. We must 5858 * first wait until any current one finishes. Then 5859 * we initialize the c_pages list with this page. 5860 */ 5861 while (rp->r_flags & RCOMMIT) { 5862 rp->r_flags |= RCOMMITWAIT; 5863 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 5864 rp->r_flags &= ~RCOMMITWAIT; 5865 } 5866 rp->r_flags |= RCOMMIT; 5867 mutex_exit(&rp->r_statelock); 5868 ASSERT(rp->r_commit.c_pages == NULL); 5869 rp->r_commit.c_pages = pp; 5870 rp->r_commit.c_commbase = (offset3)pp->p_offset; 5871 rp->r_commit.c_commlen = PAGESIZE; 5872 5873 /* 5874 * Gather together all other pages which can be committed. 5875 * They will all be chained off r_commit.c_pages. 5876 */ 5877 nfs3_get_commit(vp); 5878 5879 /* 5880 * Clear the `commit inprogress' status and disconnect 5881 * the list of pages to be committed from the rnode. 5882 * At this same time, we also save the starting offset 5883 * and length of data to be committed on the server. 5884 */ 5885 plist = rp->r_commit.c_pages; 5886 rp->r_commit.c_pages = NULL; 5887 offset = rp->r_commit.c_commbase; 5888 len = rp->r_commit.c_commlen; 5889 mutex_enter(&rp->r_statelock); 5890 rp->r_flags &= ~RCOMMIT; 5891 cv_broadcast(&rp->r_commit.c_cv); 5892 mutex_exit(&rp->r_statelock); 5893 5894 if (curproc == proc_pageout || curproc == proc_fsflush || 5895 nfs_zone() != VTOMI(vp)->mi_zone) { 5896 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit); 5897 return; 5898 } 5899 5900 /* 5901 * Actually generate the COMMIT3 over the wire operation. 5902 */ 5903 error = nfs3_commit(vp, offset, len, cr); 5904 5905 /* 5906 * If we got an error during the commit, just unlock all 5907 * of the pages. The pages will get retransmitted to the 5908 * server during a putpage operation. 5909 */ 5910 if (error) { 5911 while (plist != NULL) { 5912 pptr = plist; 5913 page_sub(&plist, pptr); 5914 page_unlock(pptr); 5915 } 5916 return; 5917 } 5918 5919 /* 5920 * We've tried as hard as we can to commit the data to stable 5921 * storage on the server. We release the rest of the pages 5922 * and clear the commit required state. They will be put 5923 * onto the tail of the cachelist if they are nolonger 5924 * mapped. 5925 */ 5926 while (plist != pp) { 5927 pptr = plist; 5928 page_sub(&plist, pptr); 5929 pptr->p_fsdata = C_NOCOMMIT; 5930 (void) page_release(pptr, 1); 5931 } 5932 5933 /* 5934 * It is possible that nfs3_commit didn't return error but 5935 * some other thread has modified the page we are going 5936 * to free/destroy. 5937 * In this case we need to rewrite the page. Do an explicit check 5938 * before attempting to free/destroy the page. If modified, needs to 5939 * be rewritten so unlock the page and return. 5940 */ 5941 if (hat_ismod(pp)) { 5942 pp->p_fsdata = C_NOCOMMIT; 5943 page_unlock(pp); 5944 return; 5945 } 5946 5947 /* 5948 * Now, as appropriate, either free or destroy the page 5949 * that we were called with. 5950 */ 5951 pp->p_fsdata = C_NOCOMMIT; 5952 if (fl == B_FREE) 5953 page_free(pp, dn); 5954 else 5955 page_destroy(pp, dn); 5956 } 5957 5958 static int 5959 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr) 5960 { 5961 int error; 5962 rnode_t *rp; 5963 COMMIT3args args; 5964 COMMIT3res res; 5965 int douprintf; 5966 cred_t *cred; 5967 5968 rp = VTOR(vp); 5969 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 5970 5971 mutex_enter(&rp->r_statelock); 5972 if (rp->r_cred != NULL) { 5973 cred = rp->r_cred; 5974 crhold(cred); 5975 } else { 5976 rp->r_cred = cr; 5977 crhold(cr); 5978 cred = cr; 5979 crhold(cred); 5980 } 5981 mutex_exit(&rp->r_statelock); 5982 5983 args.file = *VTOFH3(vp); 5984 args.offset = offset; 5985 args.count = count; 5986 5987 doitagain: 5988 douprintf = 1; 5989 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT, 5990 xdr_COMMIT3args, (caddr_t)&args, 5991 xdr_COMMIT3res, (caddr_t)&res, cred, 5992 &douprintf, &res.status, 0, NULL); 5993 5994 crfree(cred); 5995 5996 if (error) 5997 return (error); 5998 5999 error = geterrno3(res.status); 6000 if (!error) { 6001 ASSERT(rp->r_flags & RHAVEVERF); 6002 mutex_enter(&rp->r_statelock); 6003 if (rp->r_verf == res.resok.verf) { 6004 mutex_exit(&rp->r_statelock); 6005 return (0); 6006 } 6007 nfs3_set_mod(vp); 6008 rp->r_verf = res.resok.verf; 6009 mutex_exit(&rp->r_statelock); 6010 error = NFS_VERF_MISMATCH; 6011 } else { 6012 if (error == EACCES) { 6013 mutex_enter(&rp->r_statelock); 6014 if (cred != cr) { 6015 if (rp->r_cred != NULL) 6016 crfree(rp->r_cred); 6017 rp->r_cred = cr; 6018 crhold(cr); 6019 cred = cr; 6020 crhold(cred); 6021 mutex_exit(&rp->r_statelock); 6022 goto doitagain; 6023 } 6024 mutex_exit(&rp->r_statelock); 6025 } 6026 /* 6027 * Can't do a PURGE_STALE_FH here because this 6028 * can cause a deadlock. nfs3_commit can 6029 * be called from nfs3_dispose which can be called 6030 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH 6031 * can call back to pvn_vplist_dirty. 6032 */ 6033 if (error == ESTALE) { 6034 mutex_enter(&rp->r_statelock); 6035 rp->r_flags |= RSTALE; 6036 if (!rp->r_error) 6037 rp->r_error = error; 6038 mutex_exit(&rp->r_statelock); 6039 PURGE_ATTRCACHE(vp); 6040 } else { 6041 mutex_enter(&rp->r_statelock); 6042 if (!rp->r_error) 6043 rp->r_error = error; 6044 mutex_exit(&rp->r_statelock); 6045 } 6046 } 6047 6048 return (error); 6049 } 6050 6051 static void 6052 nfs3_set_mod(vnode_t *vp) 6053 { 6054 page_t *pp; 6055 kmutex_t *vphm; 6056 6057 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6058 vphm = page_vnode_mutex(vp); 6059 mutex_enter(vphm); 6060 if ((pp = vp->v_pages) != NULL) { 6061 do { 6062 if (pp->p_fsdata != C_NOCOMMIT) { 6063 hat_setmod(pp); 6064 pp->p_fsdata = C_NOCOMMIT; 6065 } 6066 } while ((pp = pp->p_vpnext) != vp->v_pages); 6067 } 6068 mutex_exit(vphm); 6069 } 6070 6071 6072 /* 6073 * This routine is used to gather together a page list of the pages 6074 * which are to be committed on the server. This routine must not 6075 * be called if the calling thread holds any locked pages. 6076 * 6077 * The calling thread must have set RCOMMIT. This bit is used to 6078 * serialize access to the commit structure in the rnode. As long 6079 * as the thread has set RCOMMIT, then it can manipulate the commit 6080 * structure without requiring any other locks. 6081 */ 6082 static void 6083 nfs3_get_commit(vnode_t *vp) 6084 { 6085 rnode_t *rp; 6086 page_t *pp; 6087 kmutex_t *vphm; 6088 6089 rp = VTOR(vp); 6090 6091 ASSERT(rp->r_flags & RCOMMIT); 6092 6093 vphm = page_vnode_mutex(vp); 6094 mutex_enter(vphm); 6095 6096 /* 6097 * If there are no pages associated with this vnode, then 6098 * just return. 6099 */ 6100 if ((pp = vp->v_pages) == NULL) { 6101 mutex_exit(vphm); 6102 return; 6103 } 6104 6105 /* 6106 * Step through all of the pages associated with this vnode 6107 * looking for pages which need to be committed. 6108 */ 6109 do { 6110 /* 6111 * If this page does not need to be committed or is 6112 * modified, then just skip it. 6113 */ 6114 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 6115 continue; 6116 6117 /* 6118 * Attempt to lock the page. If we can't, then 6119 * someone else is messing with it and we will 6120 * just skip it. 6121 */ 6122 if (!page_trylock(pp, SE_EXCL)) 6123 continue; 6124 6125 /* 6126 * If this page does not need to be committed or is 6127 * modified, then just skip it. Recheck now that 6128 * the page is locked. 6129 */ 6130 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6131 page_unlock(pp); 6132 continue; 6133 } 6134 6135 if (PP_ISFREE(pp)) { 6136 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free", 6137 (void *)pp); 6138 } 6139 6140 /* 6141 * The page needs to be committed and we locked it. 6142 * Update the base and length parameters and add it 6143 * to r_pages. 6144 */ 6145 if (rp->r_commit.c_pages == NULL) { 6146 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6147 rp->r_commit.c_commlen = PAGESIZE; 6148 } else if (pp->p_offset < rp->r_commit.c_commbase) { 6149 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 6150 (offset3)pp->p_offset + rp->r_commit.c_commlen; 6151 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6152 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 6153 <= pp->p_offset) { 6154 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6155 rp->r_commit.c_commbase + PAGESIZE; 6156 } 6157 page_add(&rp->r_commit.c_pages, pp); 6158 } while ((pp = pp->p_vpnext) != vp->v_pages); 6159 6160 mutex_exit(vphm); 6161 } 6162 6163 /* 6164 * This routine is used to gather together a page list of the pages 6165 * which are to be committed on the server. This routine must not 6166 * be called if the calling thread holds any locked pages. 6167 * 6168 * The calling thread must have set RCOMMIT. This bit is used to 6169 * serialize access to the commit structure in the rnode. As long 6170 * as the thread has set RCOMMIT, then it can manipulate the commit 6171 * structure without requiring any other locks. 6172 */ 6173 static void 6174 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 6175 { 6176 6177 rnode_t *rp; 6178 page_t *pp; 6179 u_offset_t end; 6180 u_offset_t off; 6181 6182 ASSERT(len != 0); 6183 6184 rp = VTOR(vp); 6185 6186 ASSERT(rp->r_flags & RCOMMIT); 6187 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6188 6189 /* 6190 * If there are no pages associated with this vnode, then 6191 * just return. 6192 */ 6193 if ((pp = vp->v_pages) == NULL) 6194 return; 6195 6196 /* 6197 * Calculate the ending offset. 6198 */ 6199 end = soff + len; 6200 6201 for (off = soff; off < end; off += PAGESIZE) { 6202 /* 6203 * Lookup each page by vp, offset. 6204 */ 6205 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 6206 continue; 6207 6208 /* 6209 * If this page does not need to be committed or is 6210 * modified, then just skip it. 6211 */ 6212 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 6213 page_unlock(pp); 6214 continue; 6215 } 6216 6217 ASSERT(PP_ISFREE(pp) == 0); 6218 6219 /* 6220 * The page needs to be committed and we locked it. 6221 * Update the base and length parameters and add it 6222 * to r_pages. 6223 */ 6224 if (rp->r_commit.c_pages == NULL) { 6225 rp->r_commit.c_commbase = (offset3)pp->p_offset; 6226 rp->r_commit.c_commlen = PAGESIZE; 6227 } else { 6228 rp->r_commit.c_commlen = (offset3)pp->p_offset - 6229 rp->r_commit.c_commbase + PAGESIZE; 6230 } 6231 page_add(&rp->r_commit.c_pages, pp); 6232 } 6233 } 6234 6235 #if 0 /* unused */ 6236 #ifdef DEBUG 6237 static int 6238 nfs3_no_uncommitted_pages(vnode_t *vp) 6239 { 6240 page_t *pp; 6241 kmutex_t *vphm; 6242 6243 vphm = page_vnode_mutex(vp); 6244 mutex_enter(vphm); 6245 if ((pp = vp->v_pages) != NULL) { 6246 do { 6247 if (pp->p_fsdata != C_NOCOMMIT) { 6248 mutex_exit(vphm); 6249 return (0); 6250 } 6251 } while ((pp = pp->p_vpnext) != vp->v_pages); 6252 } 6253 mutex_exit(vphm); 6254 6255 return (1); 6256 } 6257 #endif 6258 #endif 6259 6260 static int 6261 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 6262 { 6263 int error; 6264 writeverf3 write_verf; 6265 rnode_t *rp = VTOR(vp); 6266 6267 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6268 /* 6269 * Flush the data portion of the file and then commit any 6270 * portions which need to be committed. This may need to 6271 * be done twice if the server has changed state since 6272 * data was last written. The data will need to be 6273 * rewritten to the server and then a new commit done. 6274 * 6275 * In fact, this may need to be done several times if the 6276 * server is having problems and crashing while we are 6277 * attempting to do this. 6278 */ 6279 6280 top: 6281 /* 6282 * Do a flush based on the poff and plen arguments. This 6283 * will asynchronously write out any modified pages in the 6284 * range specified by (poff, plen). This starts all of the 6285 * i/o operations which will be waited for in the next 6286 * call to nfs3_putpage 6287 */ 6288 6289 mutex_enter(&rp->r_statelock); 6290 write_verf = rp->r_verf; 6291 mutex_exit(&rp->r_statelock); 6292 6293 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr); 6294 if (error == EAGAIN) 6295 error = 0; 6296 6297 /* 6298 * Do a flush based on the poff and plen arguments. This 6299 * will synchronously write out any modified pages in the 6300 * range specified by (poff, plen) and wait until all of 6301 * the asynchronous i/o's in that range are done as well. 6302 */ 6303 if (!error) 6304 error = nfs3_putpage(vp, poff, plen, 0, cr); 6305 6306 if (error) 6307 return (error); 6308 6309 mutex_enter(&rp->r_statelock); 6310 if (rp->r_verf != write_verf) { 6311 mutex_exit(&rp->r_statelock); 6312 goto top; 6313 } 6314 mutex_exit(&rp->r_statelock); 6315 6316 /* 6317 * Now commit any pages which might need to be committed. 6318 * If the error, NFS_VERF_MISMATCH, is returned, then 6319 * start over with the flush operation. 6320 */ 6321 6322 error = nfs3_commit_vp(vp, poff, plen, cr); 6323 6324 if (error == NFS_VERF_MISMATCH) 6325 goto top; 6326 6327 return (error); 6328 } 6329 6330 static int 6331 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr) 6332 { 6333 rnode_t *rp; 6334 page_t *plist; 6335 offset3 offset; 6336 count3 len; 6337 6338 6339 rp = VTOR(vp); 6340 6341 if (nfs_zone() != VTOMI(vp)->mi_zone) 6342 return (EIO); 6343 /* 6344 * Set the `commit inprogress' state bit. We must 6345 * first wait until any current one finishes. 6346 */ 6347 mutex_enter(&rp->r_statelock); 6348 while (rp->r_flags & RCOMMIT) { 6349 rp->r_flags |= RCOMMITWAIT; 6350 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 6351 rp->r_flags &= ~RCOMMITWAIT; 6352 } 6353 rp->r_flags |= RCOMMIT; 6354 mutex_exit(&rp->r_statelock); 6355 6356 /* 6357 * Gather together all of the pages which need to be 6358 * committed. 6359 */ 6360 if (plen == 0) 6361 nfs3_get_commit(vp); 6362 else 6363 nfs3_get_commit_range(vp, poff, plen); 6364 6365 /* 6366 * Clear the `commit inprogress' bit and disconnect the 6367 * page list which was gathered together in nfs3_get_commit. 6368 */ 6369 plist = rp->r_commit.c_pages; 6370 rp->r_commit.c_pages = NULL; 6371 offset = rp->r_commit.c_commbase; 6372 len = rp->r_commit.c_commlen; 6373 mutex_enter(&rp->r_statelock); 6374 rp->r_flags &= ~RCOMMIT; 6375 cv_broadcast(&rp->r_commit.c_cv); 6376 mutex_exit(&rp->r_statelock); 6377 6378 /* 6379 * If any pages need to be committed, commit them and 6380 * then unlock them so that they can be freed some 6381 * time later. 6382 */ 6383 if (plist != NULL) { 6384 /* 6385 * No error occurred during the flush portion 6386 * of this operation, so now attempt to commit 6387 * the data to stable storage on the server. 6388 * 6389 * This will unlock all of the pages on the list. 6390 */ 6391 return (nfs3_sync_commit(vp, plist, offset, len, cr)); 6392 } 6393 return (0); 6394 } 6395 6396 static int 6397 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6398 cred_t *cr) 6399 { 6400 int error; 6401 page_t *pp; 6402 6403 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6404 error = nfs3_commit(vp, offset, count, cr); 6405 6406 /* 6407 * If we got an error, then just unlock all of the pages 6408 * on the list. 6409 */ 6410 if (error) { 6411 while (plist != NULL) { 6412 pp = plist; 6413 page_sub(&plist, pp); 6414 page_unlock(pp); 6415 } 6416 return (error); 6417 } 6418 /* 6419 * We've tried as hard as we can to commit the data to stable 6420 * storage on the server. We just unlock the pages and clear 6421 * the commit required state. They will get freed later. 6422 */ 6423 while (plist != NULL) { 6424 pp = plist; 6425 page_sub(&plist, pp); 6426 pp->p_fsdata = C_NOCOMMIT; 6427 page_unlock(pp); 6428 } 6429 6430 return (error); 6431 } 6432 6433 static void 6434 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 6435 cred_t *cr) 6436 { 6437 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 6438 (void) nfs3_sync_commit(vp, plist, offset, count, cr); 6439 } 6440 6441 static int 6442 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 6443 { 6444 int error; 6445 mntinfo_t *mi; 6446 6447 mi = VTOMI(vp); 6448 6449 if (nfs_zone() != mi->mi_zone) 6450 return (EIO); 6451 6452 if (mi->mi_flags & MI_ACL) { 6453 error = acl_setacl3(vp, vsecattr, flag, cr); 6454 if (mi->mi_flags & MI_ACL) 6455 return (error); 6456 } 6457 6458 return (ENOSYS); 6459 } 6460 6461 static int 6462 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 6463 { 6464 int error; 6465 mntinfo_t *mi; 6466 6467 mi = VTOMI(vp); 6468 6469 if (nfs_zone() != mi->mi_zone) 6470 return (EIO); 6471 6472 if (mi->mi_flags & MI_ACL) { 6473 error = acl_getacl3(vp, vsecattr, flag, cr); 6474 if (mi->mi_flags & MI_ACL) 6475 return (error); 6476 } 6477 6478 return (fs_fab_acl(vp, vsecattr, flag, cr)); 6479 } 6480 6481 static int 6482 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr) 6483 { 6484 int error; 6485 struct shrlock nshr; 6486 struct nfs_owner nfs_owner; 6487 netobj lm_fh3; 6488 6489 if (nfs_zone() != VTOMI(vp)->mi_zone) 6490 return (EIO); 6491 6492 /* 6493 * check for valid cmd parameter 6494 */ 6495 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 6496 return (EINVAL); 6497 6498 /* 6499 * Check access permissions 6500 */ 6501 if (cmd == F_SHARE && 6502 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 6503 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 6504 return (EBADF); 6505 6506 /* 6507 * If the filesystem is mounted using local locking, pass the 6508 * request off to the local share code. 6509 */ 6510 if (VTOMI(vp)->mi_flags & MI_LLOCK) 6511 return (fs_shrlock(vp, cmd, shr, flag, cr)); 6512 6513 switch (cmd) { 6514 case F_SHARE: 6515 case F_UNSHARE: 6516 lm_fh3.n_len = VTOFH3(vp)->fh3_length; 6517 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data); 6518 6519 /* 6520 * If passed an owner that is too large to fit in an 6521 * nfs_owner it is likely a recursive call from the 6522 * lock manager client and pass it straight through. If 6523 * it is not a nfs_owner then simply return an error. 6524 */ 6525 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 6526 if (((struct nfs_owner *)shr->s_owner)->magic != 6527 NFS_OWNER_MAGIC) 6528 return (EINVAL); 6529 6530 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) { 6531 error = set_errno(error); 6532 } 6533 return (error); 6534 } 6535 /* 6536 * Remote share reservations owner is a combination of 6537 * a magic number, hostname, and the local owner 6538 */ 6539 bzero(&nfs_owner, sizeof (nfs_owner)); 6540 nfs_owner.magic = NFS_OWNER_MAGIC; 6541 (void) strncpy(nfs_owner.hname, uts_nodename(), 6542 sizeof (nfs_owner.hname)); 6543 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 6544 nshr.s_access = shr->s_access; 6545 nshr.s_deny = shr->s_deny; 6546 nshr.s_sysid = 0; 6547 nshr.s_pid = ttoproc(curthread)->p_pid; 6548 nshr.s_own_len = sizeof (nfs_owner); 6549 nshr.s_owner = (caddr_t)&nfs_owner; 6550 6551 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) { 6552 error = set_errno(error); 6553 } 6554 6555 break; 6556 6557 case F_HASREMOTELOCKS: 6558 /* 6559 * NFS client can't store remote locks itself 6560 */ 6561 shr->s_access = 0; 6562 error = 0; 6563 break; 6564 6565 default: 6566 error = EINVAL; 6567 break; 6568 } 6569 6570 return (error); 6571 } 6572