1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
28 * All rights reserved.
29 */
30
31 /*
32 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
33 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
34 * Copyright 2022 Oxide Computer Company
35 * Copyright 2024 RackTop Systems, Inc.
36 */
37
38 #include <sys/param.h>
39 #include <sys/types.h>
40 #include <sys/systm.h>
41 #include <sys/cred.h>
42 #include <sys/time.h>
43 #include <sys/vnode.h>
44 #include <sys/vfs.h>
45 #include <sys/vfs_opreg.h>
46 #include <sys/file.h>
47 #include <sys/filio.h>
48 #include <sys/uio.h>
49 #include <sys/buf.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/dirent.h>
53 #include <sys/debug.h>
54 #include <sys/vmsystm.h>
55 #include <sys/fcntl.h>
56 #include <sys/flock.h>
57 #include <sys/swap.h>
58 #include <sys/errno.h>
59 #include <sys/strsubr.h>
60 #include <sys/sysmacros.h>
61 #include <sys/kmem.h>
62 #include <sys/cmn_err.h>
63 #include <sys/pathconf.h>
64 #include <sys/utsname.h>
65 #include <sys/dnlc.h>
66 #include <sys/acl.h>
67 #include <sys/systeminfo.h>
68 #include <sys/atomic.h>
69 #include <sys/policy.h>
70 #include <sys/sdt.h>
71 #include <sys/zone.h>
72
73 #include <rpc/types.h>
74 #include <rpc/auth.h>
75 #include <rpc/clnt.h>
76 #include <rpc/rpc_rdma.h>
77
78 #include <nfs/nfs.h>
79 #include <nfs/nfs_clnt.h>
80 #include <nfs/rnode.h>
81 #include <nfs/nfs_acl.h>
82 #include <nfs/lm.h>
83
84 #include <vm/hat.h>
85 #include <vm/as.h>
86 #include <vm/page.h>
87 #include <vm/pvn.h>
88 #include <vm/seg.h>
89 #include <vm/seg_map.h>
90 #include <vm/seg_kpm.h>
91 #include <vm/seg_vn.h>
92
93 #include <fs/fs_subr.h>
94
95 #include <sys/ddi.h>
96
97 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
98 cred_t *);
99 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
100 stable_how *);
101 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *);
102 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *);
103 static int nfs3_accessx(void *, int, cred_t *);
104 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *);
105 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int);
106 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl,
107 int, vnode_t **, cred_t *, int);
108 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *);
109 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
110 int, vnode_t **, cred_t *);
111 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
112 caller_context_t *);
113 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
114 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
115 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *);
116 static int nfs3_bio(struct buf *, stable_how *, cred_t *);
117 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
118 page_t *[], size_t, struct seg *, caddr_t,
119 enum seg_rw, cred_t *);
120 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
121 cred_t *);
122 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
123 int, cred_t *);
124 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
125 int, cred_t *);
126 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *);
127 static void nfs3_set_mod(vnode_t *);
128 static void nfs3_get_commit(vnode_t *);
129 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t);
130 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
131 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *);
132 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3,
133 cred_t *);
134 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3,
135 cred_t *);
136 static void nfs3_delmap_callback(struct as *, void *, uint_t);
137
138 /*
139 * Error flags used to pass information about certain special errors
140 * which need to be handled specially.
141 */
142 #define NFS_EOF -98
143 #define NFS_VERF_MISMATCH -97
144
145 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
146 #define ALIGN64(x, ptr, sz) \
147 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
148 if (x) { \
149 x = sizeof (uint64_t) - (x); \
150 sz -= (x); \
151 ptr += (x); \
152 }
153
154 /*
155 * These are the vnode ops routines which implement the vnode interface to
156 * the networked file system. These routines just take their parameters,
157 * make them look networkish by putting the right info into interface structs,
158 * and then calling the appropriate remote routine(s) to do the work.
159 *
160 * Note on directory name lookup cacheing: If we detect a stale fhandle,
161 * we purge the directory cache relative to that vnode. This way, the
162 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for
163 * more details on rnode locking.
164 */
165
166 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *);
167 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *,
168 caller_context_t *);
169 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *,
170 caller_context_t *);
171 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *,
172 caller_context_t *);
173 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
174 caller_context_t *);
175 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *,
176 caller_context_t *);
177 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *,
178 caller_context_t *);
179 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *);
180 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *,
181 caller_context_t *);
182 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *);
183 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *);
184 static int nfs3_lookup(vnode_t *, char *, vnode_t **,
185 struct pathname *, int, vnode_t *, cred_t *,
186 caller_context_t *, int *, pathname_t *);
187 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl,
188 int, vnode_t **, cred_t *, int, caller_context_t *,
189 vsecattr_t *);
190 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *,
191 int);
192 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *,
193 caller_context_t *, int);
194 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
195 caller_context_t *, int);
196 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
197 cred_t *, caller_context_t *, int, vsecattr_t *);
198 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
199 caller_context_t *, int);
200 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *,
201 cred_t *, caller_context_t *, int);
202 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *,
203 caller_context_t *, int);
204 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *);
205 static int nfs3_rwlock(vnode_t *, int, caller_context_t *);
206 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *);
207 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
208 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *,
209 page_t *[], size_t, struct seg *, caddr_t,
210 enum seg_rw, cred_t *, caller_context_t *);
211 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
212 caller_context_t *);
213 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
214 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
215 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
216 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
217 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
218 struct flk_callback *, cred_t *, caller_context_t *);
219 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t,
220 cred_t *, caller_context_t *);
221 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *);
222 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
223 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
224 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *,
225 caller_context_t *);
226 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
227 cred_t *, caller_context_t *);
228 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *,
229 caller_context_t *);
230 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
231 caller_context_t *);
232 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
233 caller_context_t *);
234 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
235 caller_context_t *);
236
237 struct vnodeops *nfs3_vnodeops;
238
239 const fs_operation_def_t nfs3_vnodeops_template[] = {
240 VOPNAME_OPEN, { .vop_open = nfs3_open },
241 VOPNAME_CLOSE, { .vop_close = nfs3_close },
242 VOPNAME_READ, { .vop_read = nfs3_read },
243 VOPNAME_WRITE, { .vop_write = nfs3_write },
244 VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl },
245 VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr },
246 VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr },
247 VOPNAME_ACCESS, { .vop_access = nfs3_access },
248 VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup },
249 VOPNAME_CREATE, { .vop_create = nfs3_create },
250 VOPNAME_REMOVE, { .vop_remove = nfs3_remove },
251 VOPNAME_LINK, { .vop_link = nfs3_link },
252 VOPNAME_RENAME, { .vop_rename = nfs3_rename },
253 VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir },
254 VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir },
255 VOPNAME_READDIR, { .vop_readdir = nfs3_readdir },
256 VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink },
257 VOPNAME_READLINK, { .vop_readlink = nfs3_readlink },
258 VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync },
259 VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive },
260 VOPNAME_FID, { .vop_fid = nfs3_fid },
261 VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock },
262 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock },
263 VOPNAME_SEEK, { .vop_seek = nfs3_seek },
264 VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock },
265 VOPNAME_SPACE, { .vop_space = nfs3_space },
266 VOPNAME_REALVP, { .vop_realvp = nfs3_realvp },
267 VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage },
268 VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage },
269 VOPNAME_MAP, { .vop_map = nfs3_map },
270 VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap },
271 VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap },
272 /* no separate nfs3_dump */
273 VOPNAME_DUMP, { .vop_dump = nfs_dump },
274 VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf },
275 VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio },
276 VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose },
277 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr },
278 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr },
279 VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock },
280 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
281 NULL, NULL
282 };
283
284 /*
285 * XXX: This is referenced in modstubs.S
286 */
287 struct vnodeops *
nfs3_getvnodeops(void)288 nfs3_getvnodeops(void)
289 {
290 return (nfs3_vnodeops);
291 }
292
293 /* ARGSUSED */
294 static int
nfs3_open(vnode_t ** vpp,int flag,cred_t * cr,caller_context_t * ct)295 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
296 {
297 int error;
298 struct vattr va;
299 rnode_t *rp;
300 vnode_t *vp;
301
302 vp = *vpp;
303 if (nfs_zone() != VTOMI(vp)->mi_zone)
304 return (EIO);
305 rp = VTOR(vp);
306 mutex_enter(&rp->r_statelock);
307 if (rp->r_cred == NULL) {
308 crhold(cr);
309 rp->r_cred = cr;
310 }
311 mutex_exit(&rp->r_statelock);
312
313 /*
314 * If there is no cached data or if close-to-open
315 * consistency checking is turned off, we can avoid
316 * the over the wire getattr. Otherwise, if the
317 * file system is mounted readonly, then just verify
318 * the caches are up to date using the normal mechanism.
319 * Else, if the file is not mmap'd, then just mark
320 * the attributes as timed out. They will be refreshed
321 * and the caches validated prior to being used.
322 * Else, the file system is mounted writeable so
323 * force an over the wire GETATTR in order to ensure
324 * that all cached data is valid.
325 */
326 if (vp->v_count > 1 ||
327 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) &&
328 !(VTOMI(vp)->mi_flags & MI_NOCTO))) {
329 if (vn_is_readonly(vp))
330 error = nfs3_validate_caches(vp, cr);
331 else if (rp->r_mapcnt == 0 && vp->v_count == 1) {
332 PURGE_ATTRCACHE(vp);
333 error = 0;
334 } else {
335 va.va_mask = AT_ALL;
336 error = nfs3_getattr_otw(vp, &va, cr);
337 }
338 } else
339 error = 0;
340
341 return (error);
342 }
343
344 /* ARGSUSED */
345 static int
nfs3_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)346 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
347 caller_context_t *ct)
348 {
349 rnode_t *rp;
350 int error;
351 struct vattr va;
352
353 /*
354 * zone_enter(2) prevents processes from changing zones with NFS files
355 * open; if we happen to get here from the wrong zone we can't do
356 * anything over the wire.
357 */
358 if (VTOMI(vp)->mi_zone != nfs_zone()) {
359 /*
360 * We could attempt to clean up locks, except we're sure
361 * that the current process didn't acquire any locks on
362 * the file: any attempt to lock a file belong to another zone
363 * will fail, and one can't lock an NFS file and then change
364 * zones, as that fails too.
365 *
366 * Returning an error here is the sane thing to do. A
367 * subsequent call to VN_RELE() which translates to a
368 * nfs3_inactive() will clean up state: if the zone of the
369 * vnode's origin is still alive and kicking, an async worker
370 * thread will handle the request (from the correct zone), and
371 * everything (minus the commit and final nfs3_getattr_otw()
372 * call) should be OK. If the zone is going away
373 * nfs_async_inactive() will throw away cached pages inline.
374 */
375 return (EIO);
376 }
377
378 /*
379 * If we are using local locking for this filesystem, then
380 * release all of the SYSV style record locks. Otherwise,
381 * we are doing network locking and we need to release all
382 * of the network locks. All of the locks held by this
383 * process on this file are released no matter what the
384 * incoming reference count is.
385 */
386 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
387 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
388 cleanshares(vp, ttoproc(curthread)->p_pid);
389 } else
390 nfs_lockrelease(vp, flag, offset, cr);
391
392 if (count > 1)
393 return (0);
394
395 /*
396 * If the file has been `unlinked', then purge the
397 * DNLC so that this vnode will get reycled quicker
398 * and the .nfs* file on the server will get removed.
399 */
400 rp = VTOR(vp);
401 if (rp->r_unldvp != NULL)
402 dnlc_purge_vp(vp);
403
404 /*
405 * If the file was open for write and there are pages,
406 * then if the file system was mounted using the "no-close-
407 * to-open" semantics, then start an asynchronous flush
408 * of the all of the pages in the file.
409 * else the file system was not mounted using the "no-close-
410 * to-open" semantics, then do a synchronous flush and
411 * commit of all of the dirty and uncommitted pages.
412 *
413 * The asynchronous flush of the pages in the "nocto" path
414 * mostly just associates a cred pointer with the rnode so
415 * writes which happen later will have a better chance of
416 * working. It also starts the data being written to the
417 * server, but without unnecessarily delaying the application.
418 */
419 if ((flag & FWRITE) && vn_has_cached_data(vp)) {
420 if (VTOMI(vp)->mi_flags & MI_NOCTO) {
421 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC,
422 cr, ct);
423 if (error == EAGAIN)
424 error = 0;
425 } else
426 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
427 if (!error) {
428 mutex_enter(&rp->r_statelock);
429 error = rp->r_error;
430 rp->r_error = 0;
431 mutex_exit(&rp->r_statelock);
432 }
433 } else {
434 mutex_enter(&rp->r_statelock);
435 error = rp->r_error;
436 rp->r_error = 0;
437 mutex_exit(&rp->r_statelock);
438 }
439
440 /*
441 * If RWRITEATTR is set, then issue an over the wire GETATTR to
442 * refresh the attribute cache with a set of attributes which
443 * weren't returned from a WRITE. This will enable the close-
444 * to-open processing to work.
445 */
446 if (rp->r_flags & RWRITEATTR)
447 (void) nfs3_getattr_otw(vp, &va, cr);
448
449 return (error);
450 }
451
452 /* ARGSUSED */
453 static int
nfs3_directio_read(vnode_t * vp,struct uio * uiop,cred_t * cr)454 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr)
455 {
456 mntinfo_t *mi;
457 READ3args args;
458 READ3uiores res;
459 int tsize;
460 offset_t offset;
461 ssize_t count;
462 int error;
463 int douprintf;
464 failinfo_t fi;
465 char *sv_hostname;
466
467 mi = VTOMI(vp);
468 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
469 sv_hostname = VTOR(vp)->r_server->sv_hostname;
470
471 douprintf = 1;
472 args.file = *VTOFH3(vp);
473 fi.vp = vp;
474 fi.fhp = (caddr_t)&args.file;
475 fi.copyproc = nfs3copyfh;
476 fi.lookupproc = nfs3lookup;
477 fi.xattrdirproc = acl_getxattrdir3;
478
479 res.uiop = uiop;
480
481 res.wlist = NULL;
482
483 offset = uiop->uio_loffset;
484 count = uiop->uio_resid;
485
486 do {
487 if (mi->mi_io_kstats) {
488 mutex_enter(&mi->mi_lock);
489 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
490 mutex_exit(&mi->mi_lock);
491 }
492
493 do {
494 tsize = MIN(mi->mi_tsize, count);
495 args.offset = (offset3)offset;
496 args.count = (count3)tsize;
497 res.size = (uint_t)tsize;
498 args.res_uiop = uiop;
499 args.res_data_val_alt = NULL;
500
501 error = rfs3call(mi, NFSPROC3_READ,
502 xdr_READ3args, (caddr_t)&args,
503 xdr_READ3uiores, (caddr_t)&res, cr,
504 &douprintf, &res.status, 0, &fi);
505 } while (error == ENFS_TRYAGAIN);
506
507 if (mi->mi_io_kstats) {
508 mutex_enter(&mi->mi_lock);
509 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
510 mutex_exit(&mi->mi_lock);
511 }
512
513 if (error)
514 return (error);
515
516 error = geterrno3(res.status);
517 if (error)
518 return (error);
519
520 if (res.count != res.size) {
521 zcmn_err(getzoneid(), CE_WARN,
522 "nfs3_directio_read: server %s returned incorrect amount",
523 sv_hostname);
524 return (EIO);
525 }
526 count -= res.count;
527 offset += res.count;
528 if (mi->mi_io_kstats) {
529 mutex_enter(&mi->mi_lock);
530 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
531 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
532 mutex_exit(&mi->mi_lock);
533 }
534 lwp_stat_update(LWP_STAT_INBLK, 1);
535 } while (count && !res.eof);
536
537 return (0);
538 }
539
540 /* ARGSUSED */
541 static int
nfs3_read(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)542 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
543 caller_context_t *ct)
544 {
545 rnode_t *rp;
546 u_offset_t off;
547 offset_t diff;
548 int on;
549 size_t n;
550 caddr_t base;
551 uint_t flags;
552 int error = 0;
553 mntinfo_t *mi;
554
555 rp = VTOR(vp);
556 mi = VTOMI(vp);
557
558 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
559
560 if (nfs_zone() != mi->mi_zone)
561 return (EIO);
562
563 if (vp->v_type != VREG)
564 return (EISDIR);
565
566 if (uiop->uio_resid == 0)
567 return (0);
568
569 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
570 return (EINVAL);
571
572 /*
573 * Bypass VM if caching has been disabled (e.g., locking) or if
574 * using client-side direct I/O and the file is not mmap'd and
575 * there are no cached pages.
576 */
577 if ((vp->v_flag & VNOCACHE) ||
578 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
579 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
580 !vn_has_cached_data(vp))) {
581 return (nfs3_directio_read(vp, uiop, cr));
582 }
583
584 do {
585 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
586 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
587 n = MIN(MAXBSIZE - on, uiop->uio_resid);
588
589 error = nfs3_validate_caches(vp, cr);
590 if (error)
591 break;
592
593 mutex_enter(&rp->r_statelock);
594 while (rp->r_flags & RINCACHEPURGE) {
595 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
596 mutex_exit(&rp->r_statelock);
597 return (EINTR);
598 }
599 }
600 diff = rp->r_size - uiop->uio_loffset;
601 mutex_exit(&rp->r_statelock);
602 if (diff <= 0)
603 break;
604 if (diff < n)
605 n = (size_t)diff;
606
607 if (vpm_enable) {
608 /*
609 * Copy data.
610 */
611 error = vpm_data_copy(vp, off + on, n, uiop,
612 1, NULL, 0, S_READ);
613 } else {
614 base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
615 S_READ);
616
617 error = uiomove(base + on, n, UIO_READ, uiop);
618 }
619
620 if (!error) {
621 /*
622 * If read a whole block or read to eof,
623 * won't need this buffer again soon.
624 */
625 mutex_enter(&rp->r_statelock);
626 if (n + on == MAXBSIZE ||
627 uiop->uio_loffset == rp->r_size)
628 flags = SM_DONTNEED;
629 else
630 flags = 0;
631 mutex_exit(&rp->r_statelock);
632 if (vpm_enable) {
633 error = vpm_sync_pages(vp, off, n, flags);
634 } else {
635 error = segmap_release(segkmap, base, flags);
636 }
637 } else {
638 if (vpm_enable) {
639 (void) vpm_sync_pages(vp, off, n, 0);
640 } else {
641 (void) segmap_release(segkmap, base, 0);
642 }
643 }
644 } while (!error && uiop->uio_resid > 0);
645
646 return (error);
647 }
648
649 /* ARGSUSED */
650 static int
nfs3_write(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)651 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
652 caller_context_t *ct)
653 {
654 rlim64_t limit = uiop->uio_llimit;
655 rnode_t *rp;
656 u_offset_t off;
657 caddr_t base;
658 uint_t flags;
659 int remainder;
660 size_t n;
661 int on;
662 int error;
663 int resid;
664 offset_t offset;
665 mntinfo_t *mi;
666 uint_t bsize;
667
668 rp = VTOR(vp);
669
670 if (vp->v_type != VREG)
671 return (EISDIR);
672
673 mi = VTOMI(vp);
674 if (nfs_zone() != mi->mi_zone)
675 return (EIO);
676 if (uiop->uio_resid == 0)
677 return (0);
678
679 if (ioflag & FAPPEND) {
680 struct vattr va;
681
682 /*
683 * Must serialize if appending.
684 */
685 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
686 nfs_rw_exit(&rp->r_rwlock);
687 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
688 INTR(vp)))
689 return (EINTR);
690 }
691
692 va.va_mask = AT_SIZE;
693 error = nfs3getattr(vp, &va, cr);
694 if (error)
695 return (error);
696 uiop->uio_loffset = va.va_size;
697 }
698
699 offset = uiop->uio_loffset + uiop->uio_resid;
700
701 if (uiop->uio_loffset < 0 || offset < 0)
702 return (EINVAL);
703
704 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
705 limit = MAXOFFSET_T;
706
707 /*
708 * Check to make sure that the process will not exceed
709 * its limit on file size. It is okay to write up to
710 * the limit, but not beyond. Thus, the write which
711 * reaches the limit will be short and the next write
712 * will return an error.
713 */
714 remainder = 0;
715 if (offset > limit) {
716 remainder = offset - limit;
717 uiop->uio_resid = limit - uiop->uio_loffset;
718 if (uiop->uio_resid <= 0) {
719 proc_t *p = ttoproc(curthread);
720
721 uiop->uio_resid += remainder;
722 mutex_enter(&p->p_lock);
723 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
724 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
725 mutex_exit(&p->p_lock);
726 return (EFBIG);
727 }
728 }
729
730 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
731 return (EINTR);
732
733 /*
734 * Bypass VM if caching has been disabled (e.g., locking) or if
735 * using client-side direct I/O and the file is not mmap'd and
736 * there are no cached pages.
737 */
738 if ((vp->v_flag & VNOCACHE) ||
739 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
740 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
741 !vn_has_cached_data(vp))) {
742 size_t bufsize;
743 int count;
744 u_offset_t org_offset;
745 stable_how stab_comm;
746
747 nfs3_fwrite:
748 if (rp->r_flags & RSTALE) {
749 resid = uiop->uio_resid;
750 offset = uiop->uio_loffset;
751 error = rp->r_error;
752 /*
753 * A close may have cleared r_error, if so,
754 * propagate ESTALE error return properly
755 */
756 if (error == 0)
757 error = ESTALE;
758 goto bottom;
759 }
760 bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
761 base = kmem_alloc(bufsize, KM_SLEEP);
762 do {
763 if (ioflag & FDSYNC)
764 stab_comm = DATA_SYNC;
765 else
766 stab_comm = FILE_SYNC;
767 resid = uiop->uio_resid;
768 offset = uiop->uio_loffset;
769 count = MIN(uiop->uio_resid, bufsize);
770 org_offset = uiop->uio_loffset;
771 error = uiomove(base, count, UIO_WRITE, uiop);
772 if (!error) {
773 error = nfs3write(vp, base, org_offset,
774 count, cr, &stab_comm);
775 }
776 } while (!error && uiop->uio_resid > 0);
777 kmem_free(base, bufsize);
778 goto bottom;
779 }
780
781
782 bsize = vp->v_vfsp->vfs_bsize;
783
784 do {
785 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
786 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
787 n = MIN(MAXBSIZE - on, uiop->uio_resid);
788
789 resid = uiop->uio_resid;
790 offset = uiop->uio_loffset;
791
792 if (rp->r_flags & RSTALE) {
793 error = rp->r_error;
794 /*
795 * A close may have cleared r_error, if so,
796 * propagate ESTALE error return properly
797 */
798 if (error == 0)
799 error = ESTALE;
800 break;
801 }
802
803 /*
804 * Don't create dirty pages faster than they
805 * can be cleaned so that the system doesn't
806 * get imbalanced. If the async queue is
807 * maxed out, then wait for it to drain before
808 * creating more dirty pages. Also, wait for
809 * any threads doing pagewalks in the vop_getattr
810 * entry points so that they don't block for
811 * long periods.
812 */
813 mutex_enter(&rp->r_statelock);
814 while ((mi->mi_max_threads != 0 &&
815 rp->r_awcount > 2 * mi->mi_max_threads) ||
816 rp->r_gcount > 0) {
817 if (INTR(vp)) {
818 klwp_t *lwp = ttolwp(curthread);
819
820 if (lwp != NULL)
821 lwp->lwp_nostop++;
822 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
823 mutex_exit(&rp->r_statelock);
824 if (lwp != NULL)
825 lwp->lwp_nostop--;
826 error = EINTR;
827 goto bottom;
828 }
829 if (lwp != NULL)
830 lwp->lwp_nostop--;
831 } else
832 cv_wait(&rp->r_cv, &rp->r_statelock);
833 }
834 mutex_exit(&rp->r_statelock);
835
836 /*
837 * Touch the page and fault it in if it is not in core
838 * before segmap_getmapflt or vpm_data_copy can lock it.
839 * This is to avoid the deadlock if the buffer is mapped
840 * to the same file through mmap which we want to write.
841 */
842 uio_prefaultpages((long)n, uiop);
843
844 if (vpm_enable) {
845 /*
846 * It will use kpm mappings, so no need to
847 * pass an address.
848 */
849 error = writerp(rp, NULL, n, uiop, 0);
850 } else {
851 if (segmap_kpm) {
852 int pon = uiop->uio_loffset & PAGEOFFSET;
853 size_t pn = MIN(PAGESIZE - pon,
854 uiop->uio_resid);
855 int pagecreate;
856
857 mutex_enter(&rp->r_statelock);
858 pagecreate = (pon == 0) && (pn == PAGESIZE ||
859 uiop->uio_loffset + pn >= rp->r_size);
860 mutex_exit(&rp->r_statelock);
861
862 base = segmap_getmapflt(segkmap, vp, off + on,
863 pn, !pagecreate, S_WRITE);
864
865 error = writerp(rp, base + pon, n, uiop,
866 pagecreate);
867
868 } else {
869 base = segmap_getmapflt(segkmap, vp, off + on,
870 n, 0, S_READ);
871 error = writerp(rp, base + on, n, uiop, 0);
872 }
873 }
874
875 if (!error) {
876 if (mi->mi_flags & MI_NOAC)
877 flags = SM_WRITE;
878 else if ((uiop->uio_loffset % bsize) == 0 ||
879 IS_SWAPVP(vp)) {
880 /*
881 * Have written a whole block.
882 * Start an asynchronous write
883 * and mark the buffer to
884 * indicate that it won't be
885 * needed again soon.
886 */
887 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
888 } else
889 flags = 0;
890 if ((ioflag & (FSYNC|FDSYNC)) ||
891 (rp->r_flags & ROUTOFSPACE)) {
892 flags &= ~SM_ASYNC;
893 flags |= SM_WRITE;
894 }
895 if (vpm_enable) {
896 error = vpm_sync_pages(vp, off, n, flags);
897 } else {
898 error = segmap_release(segkmap, base, flags);
899 }
900 } else {
901 if (vpm_enable) {
902 (void) vpm_sync_pages(vp, off, n, 0);
903 } else {
904 (void) segmap_release(segkmap, base, 0);
905 }
906 /*
907 * In the event that we got an access error while
908 * faulting in a page for a write-only file just
909 * force a write.
910 */
911 if (error == EACCES)
912 goto nfs3_fwrite;
913 }
914 } while (!error && uiop->uio_resid > 0);
915
916 bottom:
917 if (error) {
918 uiop->uio_resid = resid + remainder;
919 uiop->uio_loffset = offset;
920 } else
921 uiop->uio_resid += remainder;
922
923 nfs_rw_exit(&rp->r_lkserlock);
924
925 return (error);
926 }
927
928 /*
929 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
930 */
931 static int
nfs3_rdwrlbn(vnode_t * vp,page_t * pp,u_offset_t off,size_t len,int flags,cred_t * cr)932 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
933 int flags, cred_t *cr)
934 {
935 struct buf *bp;
936 int error;
937 page_t *savepp;
938 uchar_t fsdata;
939 stable_how stab_comm;
940
941 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
942 bp = pageio_setup(pp, len, vp, flags);
943 ASSERT(bp != NULL);
944
945 /*
946 * pageio_setup should have set b_addr to 0. This
947 * is correct since we want to do I/O on a page
948 * boundary. bp_mapin will use this addr to calculate
949 * an offset, and then set b_addr to the kernel virtual
950 * address it allocated for us.
951 */
952 ASSERT(bp->b_un.b_addr == 0);
953
954 bp->b_edev = 0;
955 bp->b_dev = 0;
956 bp->b_lblkno = lbtodb(off);
957 bp->b_file = vp;
958 bp->b_offset = (offset_t)off;
959 bp_mapin(bp);
960
961 /*
962 * Calculate the desired level of stability to write data
963 * on the server and then mark all of the pages to reflect
964 * this.
965 */
966 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
967 freemem > desfree) {
968 stab_comm = UNSTABLE;
969 fsdata = C_DELAYCOMMIT;
970 } else {
971 stab_comm = FILE_SYNC;
972 fsdata = C_NOCOMMIT;
973 }
974
975 savepp = pp;
976 do {
977 pp->p_fsdata = fsdata;
978 } while ((pp = pp->p_next) != savepp);
979
980 error = nfs3_bio(bp, &stab_comm, cr);
981
982 bp_mapout(bp);
983 pageio_done(bp);
984
985 /*
986 * If the server wrote pages in a more stable fashion than
987 * was requested, then clear all of the marks in the pages
988 * indicating that COMMIT operations were required.
989 */
990 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) {
991 do {
992 pp->p_fsdata = C_NOCOMMIT;
993 } while ((pp = pp->p_next) != savepp);
994 }
995
996 return (error);
997 }
998
999 /*
1000 * Write to file. Writes to remote server in largest size
1001 * chunks that the server can handle. Write is synchronous.
1002 */
1003 static int
nfs3write(vnode_t * vp,caddr_t base,u_offset_t offset,int count,cred_t * cr,stable_how * stab_comm)1004 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
1005 stable_how *stab_comm)
1006 {
1007 mntinfo_t *mi;
1008 WRITE3args args;
1009 WRITE3res res;
1010 int error;
1011 int tsize;
1012 rnode_t *rp;
1013 int douprintf;
1014
1015 rp = VTOR(vp);
1016 mi = VTOMI(vp);
1017
1018 ASSERT(nfs_zone() == mi->mi_zone);
1019
1020 args.file = *VTOFH3(vp);
1021 args.stable = *stab_comm;
1022
1023 *stab_comm = FILE_SYNC;
1024
1025 douprintf = 1;
1026
1027 do {
1028 if ((vp->v_flag & VNOCACHE) ||
1029 (rp->r_flags & RDIRECTIO) ||
1030 (mi->mi_flags & MI_DIRECTIO))
1031 tsize = MIN(mi->mi_stsize, count);
1032 else
1033 tsize = MIN(mi->mi_curwrite, count);
1034 args.offset = (offset3)offset;
1035 args.count = (count3)tsize;
1036 args.data.data_len = (uint_t)tsize;
1037 args.data.data_val = base;
1038
1039 if (mi->mi_io_kstats) {
1040 mutex_enter(&mi->mi_lock);
1041 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1042 mutex_exit(&mi->mi_lock);
1043 }
1044 args.mblk = NULL;
1045 do {
1046 error = rfs3call(mi, NFSPROC3_WRITE,
1047 xdr_WRITE3args, (caddr_t)&args,
1048 xdr_WRITE3res, (caddr_t)&res, cr,
1049 &douprintf, &res.status, 0, NULL);
1050 } while (error == ENFS_TRYAGAIN);
1051 if (mi->mi_io_kstats) {
1052 mutex_enter(&mi->mi_lock);
1053 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1054 mutex_exit(&mi->mi_lock);
1055 }
1056
1057 if (error)
1058 return (error);
1059 error = geterrno3(res.status);
1060 if (!error) {
1061 if (res.resok.count > args.count) {
1062 zcmn_err(getzoneid(), CE_WARN,
1063 "nfs3write: server %s wrote %u, "
1064 "requested was %u",
1065 rp->r_server->sv_hostname,
1066 res.resok.count, args.count);
1067 return (EIO);
1068 }
1069 if (res.resok.committed == UNSTABLE) {
1070 *stab_comm = UNSTABLE;
1071 if (args.stable == DATA_SYNC ||
1072 args.stable == FILE_SYNC) {
1073 zcmn_err(getzoneid(), CE_WARN,
1074 "nfs3write: server %s did not commit to stable storage",
1075 rp->r_server->sv_hostname);
1076 return (EIO);
1077 }
1078 }
1079 tsize = (int)res.resok.count;
1080 count -= tsize;
1081 base += tsize;
1082 offset += tsize;
1083 if (mi->mi_io_kstats) {
1084 mutex_enter(&mi->mi_lock);
1085 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
1086 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
1087 tsize;
1088 mutex_exit(&mi->mi_lock);
1089 }
1090 lwp_stat_update(LWP_STAT_OUBLK, 1);
1091 mutex_enter(&rp->r_statelock);
1092 if (rp->r_flags & RHAVEVERF) {
1093 if (rp->r_verf != res.resok.verf) {
1094 nfs3_set_mod(vp);
1095 rp->r_verf = res.resok.verf;
1096 /*
1097 * If the data was written UNSTABLE,
1098 * then might as well stop because
1099 * the whole block will have to get
1100 * rewritten anyway.
1101 */
1102 if (*stab_comm == UNSTABLE) {
1103 mutex_exit(&rp->r_statelock);
1104 break;
1105 }
1106 }
1107 } else {
1108 rp->r_verf = res.resok.verf;
1109 rp->r_flags |= RHAVEVERF;
1110 }
1111 /*
1112 * Mark the attribute cache as timed out and
1113 * set RWRITEATTR to indicate that the file
1114 * was modified with a WRITE operation and
1115 * that the attributes can not be trusted.
1116 */
1117 PURGE_ATTRCACHE_LOCKED(rp);
1118 rp->r_flags |= RWRITEATTR;
1119 mutex_exit(&rp->r_statelock);
1120 }
1121 } while (!error && count);
1122
1123 return (error);
1124 }
1125
1126 /*
1127 * Read from a file. Reads data in largest chunks our interface can handle.
1128 */
1129 static int
nfs3read(vnode_t * vp,caddr_t base,offset_t offset,int count,size_t * residp,cred_t * cr)1130 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, size_t *residp,
1131 cred_t *cr)
1132 {
1133 mntinfo_t *mi;
1134 READ3args args;
1135 READ3vres res;
1136 int tsize;
1137 int error;
1138 int douprintf;
1139 failinfo_t fi;
1140 rnode_t *rp;
1141 struct vattr va;
1142 hrtime_t t;
1143
1144 rp = VTOR(vp);
1145 mi = VTOMI(vp);
1146 ASSERT(nfs_zone() == mi->mi_zone);
1147 douprintf = 1;
1148
1149 args.file = *VTOFH3(vp);
1150 fi.vp = vp;
1151 fi.fhp = (caddr_t)&args.file;
1152 fi.copyproc = nfs3copyfh;
1153 fi.lookupproc = nfs3lookup;
1154 fi.xattrdirproc = acl_getxattrdir3;
1155
1156 res.pov.fres.vp = vp;
1157 res.pov.fres.vap = &va;
1158
1159 res.wlist = NULL;
1160 *residp = count;
1161 do {
1162 if (mi->mi_io_kstats) {
1163 mutex_enter(&mi->mi_lock);
1164 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1165 mutex_exit(&mi->mi_lock);
1166 }
1167
1168 do {
1169 if ((vp->v_flag & VNOCACHE) ||
1170 (rp->r_flags & RDIRECTIO) ||
1171 (mi->mi_flags & MI_DIRECTIO))
1172 tsize = MIN(mi->mi_tsize, count);
1173 else
1174 tsize = MIN(mi->mi_curread, count);
1175 res.data.data_val = base;
1176 res.data.data_len = tsize;
1177 args.offset = (offset3)offset;
1178 args.count = (count3)tsize;
1179 args.res_uiop = NULL;
1180 args.res_data_val_alt = base;
1181
1182 t = gethrtime();
1183 error = rfs3call(mi, NFSPROC3_READ,
1184 xdr_READ3args, (caddr_t)&args,
1185 xdr_READ3vres, (caddr_t)&res, cr,
1186 &douprintf, &res.status, 0, &fi);
1187 } while (error == ENFS_TRYAGAIN);
1188
1189 if (mi->mi_io_kstats) {
1190 mutex_enter(&mi->mi_lock);
1191 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1192 mutex_exit(&mi->mi_lock);
1193 }
1194
1195 if (error)
1196 return (error);
1197
1198 error = geterrno3(res.status);
1199 if (error)
1200 return (error);
1201
1202 if (res.count != res.data.data_len) {
1203 zcmn_err(getzoneid(), CE_WARN,
1204 "nfs3read: server %s returned incorrect amount",
1205 rp->r_server->sv_hostname);
1206 return (EIO);
1207 }
1208
1209 count -= res.count;
1210 *residp = count;
1211 base += res.count;
1212 offset += res.count;
1213 if (mi->mi_io_kstats) {
1214 mutex_enter(&mi->mi_lock);
1215 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
1216 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
1217 mutex_exit(&mi->mi_lock);
1218 }
1219 lwp_stat_update(LWP_STAT_INBLK, 1);
1220 } while (count && !res.eof);
1221
1222 if (res.pov.attributes) {
1223 mutex_enter(&rp->r_statelock);
1224 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) {
1225 mutex_exit(&rp->r_statelock);
1226 PURGE_ATTRCACHE(vp);
1227 } else {
1228 if (rp->r_mtime <= t)
1229 nfs_attrcache_va(vp, &va);
1230 mutex_exit(&rp->r_statelock);
1231 }
1232 }
1233
1234 return (0);
1235 }
1236
1237 /* ARGSUSED */
1238 static int
nfs3_ioctl(vnode_t * vp,int cmd,intptr_t arg,int flag,cred_t * cr,int * rvalp,caller_context_t * ct)1239 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
1240 caller_context_t *ct)
1241 {
1242
1243 if (nfs_zone() != VTOMI(vp)->mi_zone)
1244 return (EIO);
1245 switch (cmd) {
1246 case _FIODIRECTIO:
1247 return (nfs_directio(vp, (int)arg, cr));
1248 default:
1249 return (ENOTTY);
1250 }
1251 }
1252
1253 /* ARGSUSED */
1254 static int
nfs3_getattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)1255 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1256 caller_context_t *ct)
1257 {
1258 int error;
1259 rnode_t *rp;
1260
1261 if (nfs_zone() != VTOMI(vp)->mi_zone)
1262 return (EIO);
1263 /*
1264 * If it has been specified that the return value will
1265 * just be used as a hint, and we are only being asked
1266 * for size, fsid or rdevid, then return the client's
1267 * notion of these values without checking to make sure
1268 * that the attribute cache is up to date.
1269 * The whole point is to avoid an over the wire GETATTR
1270 * call.
1271 */
1272 rp = VTOR(vp);
1273 if (flags & ATTR_HINT) {
1274 if (vap->va_mask ==
1275 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
1276 mutex_enter(&rp->r_statelock);
1277 if (vap->va_mask | AT_SIZE)
1278 vap->va_size = rp->r_size;
1279 if (vap->va_mask | AT_FSID)
1280 vap->va_fsid = rp->r_attr.va_fsid;
1281 if (vap->va_mask | AT_RDEV)
1282 vap->va_rdev = rp->r_attr.va_rdev;
1283 mutex_exit(&rp->r_statelock);
1284 return (0);
1285 }
1286 }
1287
1288 /*
1289 * Only need to flush pages if asking for the mtime
1290 * and if there any dirty pages or any outstanding
1291 * asynchronous (write) requests for this file.
1292 */
1293 if (vap->va_mask & AT_MTIME) {
1294 if (vn_has_cached_data(vp) &&
1295 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) {
1296 mutex_enter(&rp->r_statelock);
1297 rp->r_gcount++;
1298 mutex_exit(&rp->r_statelock);
1299 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
1300 mutex_enter(&rp->r_statelock);
1301 if (error && (error == ENOSPC || error == EDQUOT)) {
1302 if (!rp->r_error)
1303 rp->r_error = error;
1304 }
1305 if (--rp->r_gcount == 0)
1306 cv_broadcast(&rp->r_cv);
1307 mutex_exit(&rp->r_statelock);
1308 }
1309 }
1310
1311 return (nfs3getattr(vp, vap, cr));
1312 }
1313
1314 /*ARGSUSED4*/
1315 static int
nfs3_setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)1316 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1317 caller_context_t *ct)
1318 {
1319 int error;
1320 struct vattr va;
1321
1322 if (vap->va_mask & AT_NOSET)
1323 return (EINVAL);
1324 if (nfs_zone() != VTOMI(vp)->mi_zone)
1325 return (EIO);
1326
1327 va.va_mask = AT_UID | AT_MODE;
1328 error = nfs3getattr(vp, &va, cr);
1329 if (error)
1330 return (error);
1331
1332 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx,
1333 vp);
1334 if (error)
1335 return (error);
1336
1337 error = nfs3setattr(vp, vap, flags, cr);
1338
1339 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0)
1340 vnevent_truncate(vp, ct);
1341
1342 return (error);
1343 }
1344
1345 static int
nfs3setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr)1346 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1347 {
1348 int error;
1349 uint_t mask;
1350 SETATTR3args args;
1351 SETATTR3res res;
1352 int douprintf;
1353 rnode_t *rp;
1354 struct vattr va;
1355 mode_t omode;
1356 vsecattr_t *vsp;
1357 hrtime_t t;
1358
1359 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
1360 mask = vap->va_mask;
1361
1362 rp = VTOR(vp);
1363
1364 /*
1365 * Only need to flush pages if there are any pages and
1366 * if the file is marked as dirty in some fashion. The
1367 * file must be flushed so that we can accurately
1368 * determine the size of the file and the cached data
1369 * after the SETATTR returns. A file is considered to
1370 * be dirty if it is either marked with RDIRTY, has
1371 * outstanding i/o's active, or is mmap'd. In this
1372 * last case, we can't tell whether there are dirty
1373 * pages, so we flush just to be sure.
1374 */
1375 if (vn_has_cached_data(vp) &&
1376 ((rp->r_flags & RDIRTY) ||
1377 rp->r_count > 0 ||
1378 rp->r_mapcnt > 0)) {
1379 ASSERT(vp->v_type != VCHR);
1380 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
1381 if (error && (error == ENOSPC || error == EDQUOT)) {
1382 mutex_enter(&rp->r_statelock);
1383 if (!rp->r_error)
1384 rp->r_error = error;
1385 mutex_exit(&rp->r_statelock);
1386 }
1387 }
1388
1389 args.object = *RTOFH3(rp);
1390 /*
1391 * If the intent is for the server to set the times,
1392 * there is no point in have the mask indicating set mtime or
1393 * atime, because the vap values may be junk, and so result
1394 * in an overflow error. Remove these flags from the vap mask
1395 * before calling in this case, and restore them afterwards.
1396 */
1397 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) {
1398 /* Use server times, so don't set the args time fields */
1399 vap->va_mask &= ~(AT_ATIME | AT_MTIME);
1400 error = vattr_to_sattr3(vap, &args.new_attributes);
1401 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME));
1402 if (mask & AT_ATIME) {
1403 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
1404 }
1405 if (mask & AT_MTIME) {
1406 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
1407 }
1408 } else {
1409 /* Either do not set times or use the client specified times */
1410 error = vattr_to_sattr3(vap, &args.new_attributes);
1411 }
1412
1413 if (error) {
1414 /* req time field(s) overflow - return immediately */
1415 return (error);
1416 }
1417
1418 va.va_mask = AT_MODE | AT_CTIME;
1419 error = nfs3getattr(vp, &va, cr);
1420 if (error)
1421 return (error);
1422 omode = va.va_mode;
1423
1424 tryagain:
1425 if (mask & AT_SIZE) {
1426 args.guard.check = TRUE;
1427 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec;
1428 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec;
1429 } else
1430 args.guard.check = FALSE;
1431
1432 douprintf = 1;
1433
1434 t = gethrtime();
1435
1436 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
1437 xdr_SETATTR3args, (caddr_t)&args,
1438 xdr_SETATTR3res, (caddr_t)&res, cr,
1439 &douprintf, &res.status, 0, NULL);
1440
1441 /*
1442 * Purge the access cache and ACL cache if changing either the
1443 * owner of the file, the group owner, or the mode. These may
1444 * change the access permissions of the file, so purge old
1445 * information and start over again.
1446 */
1447 if (mask & (AT_UID | AT_GID | AT_MODE)) {
1448 (void) nfs_access_purge_rp(rp);
1449 if (rp->r_secattr != NULL) {
1450 mutex_enter(&rp->r_statelock);
1451 vsp = rp->r_secattr;
1452 rp->r_secattr = NULL;
1453 mutex_exit(&rp->r_statelock);
1454 if (vsp != NULL)
1455 nfs_acl_free(vsp);
1456 }
1457 }
1458
1459 if (error) {
1460 PURGE_ATTRCACHE(vp);
1461 return (error);
1462 }
1463
1464 error = geterrno3(res.status);
1465 if (!error) {
1466 /*
1467 * If changing the size of the file, invalidate
1468 * any local cached data which is no longer part
1469 * of the file. We also possibly invalidate the
1470 * last page in the file. We could use
1471 * pvn_vpzero(), but this would mark the page as
1472 * modified and require it to be written back to
1473 * the server for no particularly good reason.
1474 * This way, if we access it, then we bring it
1475 * back in. A read should be cheaper than a
1476 * write.
1477 */
1478 if (mask & AT_SIZE) {
1479 nfs_invalidate_pages(vp,
1480 (vap->va_size & PAGEMASK), cr);
1481 }
1482 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
1483 /*
1484 * Some servers will change the mode to clear the setuid
1485 * and setgid bits when changing the uid or gid. The
1486 * client needs to compensate appropriately.
1487 */
1488 if (mask & (AT_UID | AT_GID)) {
1489 int terror;
1490
1491 va.va_mask = AT_MODE;
1492 terror = nfs3getattr(vp, &va, cr);
1493 if (!terror &&
1494 (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
1495 (!(mask & AT_MODE) && va.va_mode != omode))) {
1496 va.va_mask = AT_MODE;
1497 if (mask & AT_MODE)
1498 va.va_mode = vap->va_mode;
1499 else
1500 va.va_mode = omode;
1501 (void) nfs3setattr(vp, &va, 0, cr);
1502 }
1503 }
1504 } else {
1505 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
1506 /*
1507 * If we got back a "not synchronized" error, then
1508 * we need to retry with a new guard value. The
1509 * guard value used is the change time. If the
1510 * server returned post_op_attr, then we can just
1511 * retry because we have the latest attributes.
1512 * Otherwise, we issue a GETATTR to get the latest
1513 * attributes and then retry. If we couldn't get
1514 * the attributes this way either, then we give
1515 * up because we can't complete the operation as
1516 * required.
1517 */
1518 if (res.status == NFS3ERR_NOT_SYNC) {
1519 va.va_mask = AT_CTIME;
1520 if (nfs3getattr(vp, &va, cr) == 0)
1521 goto tryagain;
1522 }
1523 PURGE_STALE_FH(error, vp, cr);
1524 }
1525
1526 return (error);
1527 }
1528
1529 static int
nfs3_accessx(void * vp,int mode,cred_t * cr)1530 nfs3_accessx(void *vp, int mode, cred_t *cr)
1531 {
1532 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone);
1533 return (nfs3_access(vp, mode, 0, cr, NULL));
1534 }
1535
1536 /* ARGSUSED */
1537 static int
nfs3_access(vnode_t * vp,int mode,int flags,cred_t * cr,caller_context_t * ct)1538 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
1539 {
1540 int error;
1541 ACCESS3args args;
1542 ACCESS3res res;
1543 int douprintf;
1544 uint32 acc;
1545 rnode_t *rp;
1546 cred_t *cred, *ncr, *ncrfree = NULL;
1547 failinfo_t fi;
1548 nfs_access_type_t cacc;
1549 hrtime_t t;
1550
1551 acc = 0;
1552 if (nfs_zone() != VTOMI(vp)->mi_zone)
1553 return (EIO);
1554 if (mode & VREAD)
1555 acc |= ACCESS3_READ;
1556 if (mode & VWRITE) {
1557 if (vn_is_readonly(vp) && !IS_DEVVP(vp))
1558 return (EROFS);
1559 if (vp->v_type == VDIR)
1560 acc |= ACCESS3_DELETE;
1561 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND;
1562 }
1563 if (mode & VEXEC) {
1564 if (vp->v_type == VDIR)
1565 acc |= ACCESS3_LOOKUP;
1566 else
1567 acc |= ACCESS3_EXECUTE;
1568 }
1569
1570 rp = VTOR(vp);
1571 args.object = *VTOFH3(vp);
1572 if (vp->v_type == VDIR) {
1573 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY |
1574 ACCESS3_EXTEND | ACCESS3_LOOKUP;
1575 } else {
1576 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND |
1577 ACCESS3_EXECUTE;
1578 }
1579 fi.vp = vp;
1580 fi.fhp = (caddr_t)&args.object;
1581 fi.copyproc = nfs3copyfh;
1582 fi.lookupproc = nfs3lookup;
1583 fi.xattrdirproc = acl_getxattrdir3;
1584
1585 cred = cr;
1586 /*
1587 * ncr and ncrfree both initially
1588 * point to the memory area returned
1589 * by crnetadjust();
1590 * ncrfree not NULL when exiting means
1591 * that we need to release it
1592 */
1593 ncr = crnetadjust(cred);
1594 ncrfree = ncr;
1595 tryagain:
1596 if (rp->r_acache != NULL) {
1597 cacc = nfs_access_check(rp, acc, cred);
1598 if (cacc == NFS_ACCESS_ALLOWED) {
1599 if (ncrfree != NULL)
1600 crfree(ncrfree);
1601 return (0);
1602 }
1603 if (cacc == NFS_ACCESS_DENIED) {
1604 /*
1605 * If the cred can be adjusted, try again
1606 * with the new cred.
1607 */
1608 if (ncr != NULL) {
1609 cred = ncr;
1610 ncr = NULL;
1611 goto tryagain;
1612 }
1613 if (ncrfree != NULL)
1614 crfree(ncrfree);
1615 return (EACCES);
1616 }
1617 }
1618
1619 douprintf = 1;
1620
1621 t = gethrtime();
1622
1623 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS,
1624 xdr_ACCESS3args, (caddr_t)&args,
1625 xdr_ACCESS3res, (caddr_t)&res, cred,
1626 &douprintf, &res.status, 0, &fi);
1627
1628 if (error) {
1629 if (ncrfree != NULL)
1630 crfree(ncrfree);
1631 return (error);
1632 }
1633
1634 error = geterrno3(res.status);
1635 if (!error) {
1636 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
1637 nfs_access_cache(rp, args.access, res.resok.access, cred);
1638 /*
1639 * we just cached results with cred; if cred is the
1640 * adjusted credentials from crnetadjust, we do not want
1641 * to release them before exiting: hence setting ncrfree
1642 * to NULL
1643 */
1644 if (cred != cr)
1645 ncrfree = NULL;
1646 if ((acc & res.resok.access) != acc) {
1647 /*
1648 * If the cred can be adjusted, try again
1649 * with the new cred.
1650 */
1651 if (ncr != NULL) {
1652 cred = ncr;
1653 ncr = NULL;
1654 goto tryagain;
1655 }
1656 error = EACCES;
1657 }
1658 } else {
1659 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
1660 PURGE_STALE_FH(error, vp, cr);
1661 }
1662
1663 if (ncrfree != NULL)
1664 crfree(ncrfree);
1665
1666 return (error);
1667 }
1668
1669 static int nfs3_do_symlink_cache = 1;
1670
1671 /* ARGSUSED */
1672 static int
nfs3_readlink(vnode_t * vp,struct uio * uiop,cred_t * cr,caller_context_t * ct)1673 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
1674 {
1675 int error;
1676 READLINK3args args;
1677 READLINK3res res;
1678 nfspath3 resdata_backup;
1679 rnode_t *rp;
1680 int douprintf;
1681 int len;
1682 failinfo_t fi;
1683 hrtime_t t;
1684
1685 /*
1686 * Can't readlink anything other than a symbolic link.
1687 */
1688 if (vp->v_type != VLNK)
1689 return (EINVAL);
1690 if (nfs_zone() != VTOMI(vp)->mi_zone)
1691 return (EIO);
1692
1693 rp = VTOR(vp);
1694 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) {
1695 error = nfs3_validate_caches(vp, cr);
1696 if (error)
1697 return (error);
1698 mutex_enter(&rp->r_statelock);
1699 if (rp->r_symlink.contents != NULL) {
1700 error = uiomove(rp->r_symlink.contents,
1701 rp->r_symlink.len, UIO_READ, uiop);
1702 mutex_exit(&rp->r_statelock);
1703 return (error);
1704 }
1705 mutex_exit(&rp->r_statelock);
1706 }
1707
1708 args.symlink = *VTOFH3(vp);
1709 fi.vp = vp;
1710 fi.fhp = (caddr_t)&args.symlink;
1711 fi.copyproc = nfs3copyfh;
1712 fi.lookupproc = nfs3lookup;
1713 fi.xattrdirproc = acl_getxattrdir3;
1714
1715 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1716
1717 resdata_backup = res.resok.data;
1718
1719 douprintf = 1;
1720
1721 t = gethrtime();
1722
1723 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK,
1724 xdr_READLINK3args, (caddr_t)&args,
1725 xdr_READLINK3res, (caddr_t)&res, cr,
1726 &douprintf, &res.status, 0, &fi);
1727
1728 if (res.resok.data == nfs3nametoolong)
1729 error = EINVAL;
1730
1731 if (error) {
1732 kmem_free(resdata_backup, MAXPATHLEN);
1733 return (error);
1734 }
1735
1736 error = geterrno3(res.status);
1737 if (!error) {
1738 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t,
1739 cr);
1740 len = strlen(res.resok.data);
1741 error = uiomove(res.resok.data, len, UIO_READ, uiop);
1742 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) {
1743 mutex_enter(&rp->r_statelock);
1744 if (rp->r_symlink.contents == NULL) {
1745 rp->r_symlink.contents = res.resok.data;
1746 rp->r_symlink.len = len;
1747 rp->r_symlink.size = MAXPATHLEN;
1748 mutex_exit(&rp->r_statelock);
1749 } else {
1750 mutex_exit(&rp->r_statelock);
1751
1752 kmem_free((void *)res.resok.data, MAXPATHLEN);
1753 }
1754 } else {
1755 kmem_free((void *)res.resok.data, MAXPATHLEN);
1756 }
1757 } else {
1758 nfs3_cache_post_op_attr(vp,
1759 &res.resfail.symlink_attributes, t, cr);
1760 PURGE_STALE_FH(error, vp, cr);
1761
1762 kmem_free((void *)res.resok.data, MAXPATHLEN);
1763
1764 }
1765
1766 /*
1767 * The over the wire error for attempting to readlink something
1768 * other than a symbolic link is ENXIO. However, we need to
1769 * return EINVAL instead of ENXIO, so we map it here.
1770 */
1771 return (error == ENXIO ? EINVAL : error);
1772 }
1773
1774 /*
1775 * Flush local dirty pages to stable storage on the server.
1776 *
1777 * If FNODSYNC is specified, then there is nothing to do because
1778 * metadata changes are not cached on the client before being
1779 * sent to the server.
1780 */
1781 /* ARGSUSED */
1782 static int
nfs3_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)1783 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
1784 {
1785 int error;
1786
1787 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
1788 return (0);
1789 if (nfs_zone() != VTOMI(vp)->mi_zone)
1790 return (EIO);
1791
1792 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
1793 if (!error)
1794 error = VTOR(vp)->r_error;
1795 return (error);
1796 }
1797
1798 /*
1799 * Weirdness: if the file was removed or the target of a rename
1800 * operation while it was open, it got renamed instead. Here we
1801 * remove the renamed file.
1802 */
1803 /* ARGSUSED */
1804 static void
nfs3_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)1805 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1806 {
1807 rnode_t *rp;
1808
1809 ASSERT(vp != DNLC_NO_VNODE);
1810
1811 /*
1812 * If this is coming from the wrong zone, we let someone in the right
1813 * zone take care of it asynchronously. We can get here due to
1814 * VN_RELE() being called from pageout() or fsflush(). This call may
1815 * potentially turn into an expensive no-op if, for instance, v_count
1816 * gets incremented in the meantime, but it's still correct.
1817 */
1818 if (nfs_zone() != VTOMI(vp)->mi_zone) {
1819 nfs_async_inactive(vp, cr, nfs3_inactive);
1820 return;
1821 }
1822
1823 rp = VTOR(vp);
1824 redo:
1825 if (rp->r_unldvp != NULL) {
1826 /*
1827 * Save the vnode pointer for the directory where the
1828 * unlinked-open file got renamed, then set it to NULL
1829 * to prevent another thread from getting here before
1830 * we're done with the remove. While we have the
1831 * statelock, make local copies of the pertinent rnode
1832 * fields. If we weren't to do this in an atomic way, the
1833 * the unl* fields could become inconsistent with respect
1834 * to each other due to a race condition between this
1835 * code and nfs_remove(). See bug report 1034328.
1836 */
1837 mutex_enter(&rp->r_statelock);
1838 if (rp->r_unldvp != NULL) {
1839 vnode_t *unldvp;
1840 char *unlname;
1841 cred_t *unlcred;
1842 REMOVE3args args;
1843 REMOVE3res res;
1844 int douprintf;
1845 int error;
1846 hrtime_t t;
1847
1848 unldvp = rp->r_unldvp;
1849 rp->r_unldvp = NULL;
1850 unlname = rp->r_unlname;
1851 rp->r_unlname = NULL;
1852 unlcred = rp->r_unlcred;
1853 rp->r_unlcred = NULL;
1854 mutex_exit(&rp->r_statelock);
1855
1856 /*
1857 * If there are any dirty pages left, then flush
1858 * them. This is unfortunate because they just
1859 * may get thrown away during the remove operation,
1860 * but we have to do this for correctness.
1861 */
1862 if (vn_has_cached_data(vp) &&
1863 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
1864 ASSERT(vp->v_type != VCHR);
1865 error = nfs3_putpage(vp, (offset_t)0, 0, 0,
1866 cr, ct);
1867 if (error) {
1868 mutex_enter(&rp->r_statelock);
1869 if (!rp->r_error)
1870 rp->r_error = error;
1871 mutex_exit(&rp->r_statelock);
1872 }
1873 }
1874
1875 /*
1876 * Do the remove operation on the renamed file
1877 */
1878 setdiropargs3(&args.object, unlname, unldvp);
1879
1880 douprintf = 1;
1881
1882 t = gethrtime();
1883
1884 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE,
1885 xdr_diropargs3, (caddr_t)&args,
1886 xdr_REMOVE3res, (caddr_t)&res, unlcred,
1887 &douprintf, &res.status, 0, NULL);
1888
1889 if (error) {
1890 PURGE_ATTRCACHE(unldvp);
1891 } else {
1892 error = geterrno3(res.status);
1893 if (!error) {
1894 nfs3_cache_wcc_data(unldvp,
1895 &res.resok.dir_wcc, t, cr);
1896 if (HAVE_RDDIR_CACHE(VTOR(unldvp)))
1897 nfs_purge_rddir_cache(unldvp);
1898 } else {
1899 nfs3_cache_wcc_data(unldvp,
1900 &res.resfail.dir_wcc, t, cr);
1901 PURGE_STALE_FH(error, unldvp, cr);
1902 }
1903 }
1904
1905 /*
1906 * Release stuff held for the remove
1907 */
1908 VN_RELE(unldvp);
1909 kmem_free(unlname, MAXNAMELEN);
1910 crfree(unlcred);
1911 goto redo;
1912 }
1913 mutex_exit(&rp->r_statelock);
1914 }
1915
1916 rp_addfree(rp, cr);
1917 }
1918
1919 /*
1920 * Remote file system operations having to do with directory manipulation.
1921 */
1922
1923 /* ARGSUSED */
1924 static int
nfs3_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)1925 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1926 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1927 int *direntflags, pathname_t *realpnp)
1928 {
1929 int error;
1930 vnode_t *vp;
1931 vnode_t *avp = NULL;
1932 rnode_t *drp;
1933
1934 if (nfs_zone() != VTOMI(dvp)->mi_zone)
1935 return (EPERM);
1936
1937 drp = VTOR(dvp);
1938
1939 /*
1940 * Are we looking up extended attributes? If so, "dvp" is
1941 * the file or directory for which we want attributes, and
1942 * we need a lookup of the hidden attribute directory
1943 * before we lookup the rest of the path.
1944 */
1945 if (flags & LOOKUP_XATTR) {
1946 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0);
1947 mntinfo_t *mi;
1948
1949 mi = VTOMI(dvp);
1950 if (!(mi->mi_flags & MI_EXTATTR))
1951 return (EINVAL);
1952
1953 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp)))
1954 return (EINTR);
1955
1956 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr);
1957 if (avp == NULL)
1958 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0);
1959 else
1960 error = 0;
1961
1962 nfs_rw_exit(&drp->r_rwlock);
1963
1964 if (error) {
1965 if (mi->mi_flags & MI_EXTATTR)
1966 return (error);
1967 return (EINVAL);
1968 }
1969 dvp = avp;
1970 drp = VTOR(dvp);
1971 }
1972
1973 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) {
1974 error = EINTR;
1975 goto out;
1976 }
1977
1978 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0);
1979
1980 nfs_rw_exit(&drp->r_rwlock);
1981
1982 /*
1983 * If vnode is a device, create special vnode.
1984 */
1985 if (!error && IS_DEVVP(*vpp)) {
1986 vp = *vpp;
1987 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
1988 VN_RELE(vp);
1989 }
1990
1991 out:
1992 if (avp != NULL)
1993 VN_RELE(avp);
1994
1995 return (error);
1996 }
1997
1998 static int nfs3_lookup_neg_cache = 1;
1999
2000 #ifdef DEBUG
2001 static int nfs3_lookup_dnlc_hits = 0;
2002 static int nfs3_lookup_dnlc_misses = 0;
2003 static int nfs3_lookup_dnlc_neg_hits = 0;
2004 static int nfs3_lookup_dnlc_disappears = 0;
2005 static int nfs3_lookup_dnlc_lookups = 0;
2006 #endif
2007
2008 /* ARGSUSED */
2009 int
nfs3lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,int rfscall_flags)2010 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
2011 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags)
2012 {
2013 int error;
2014 rnode_t *drp;
2015
2016 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2017 /*
2018 * If lookup is for "", just return dvp. Don't need
2019 * to send it over the wire, look it up in the dnlc,
2020 * or perform any access checks.
2021 */
2022 if (*nm == '\0') {
2023 VN_HOLD(dvp);
2024 *vpp = dvp;
2025 return (0);
2026 }
2027
2028 /*
2029 * Can't do lookups in non-directories.
2030 */
2031 if (dvp->v_type != VDIR)
2032 return (ENOTDIR);
2033
2034 /*
2035 * If we're called with RFSCALL_SOFT, it's important that
2036 * the only rfscall is one we make directly; if we permit
2037 * an access call because we're looking up "." or validating
2038 * a dnlc hit, we'll deadlock because that rfscall will not
2039 * have the RFSCALL_SOFT set.
2040 */
2041 if (rfscall_flags & RFSCALL_SOFT)
2042 goto callit;
2043
2044 /*
2045 * If lookup is for ".", just return dvp. Don't need
2046 * to send it over the wire or look it up in the dnlc,
2047 * just need to check access.
2048 */
2049 if (strcmp(nm, ".") == 0) {
2050 error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
2051 if (error)
2052 return (error);
2053 VN_HOLD(dvp);
2054 *vpp = dvp;
2055 return (0);
2056 }
2057
2058 drp = VTOR(dvp);
2059 if (!(drp->r_flags & RLOOKUP)) {
2060 mutex_enter(&drp->r_statelock);
2061 drp->r_flags |= RLOOKUP;
2062 mutex_exit(&drp->r_statelock);
2063 }
2064
2065 /*
2066 * Lookup this name in the DNLC. If there was a valid entry,
2067 * then return the results of the lookup.
2068 */
2069 error = nfs3lookup_dnlc(dvp, nm, vpp, cr);
2070 if (error || *vpp != NULL)
2071 return (error);
2072
2073 callit:
2074 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags);
2075
2076 return (error);
2077 }
2078
2079 static int
nfs3lookup_dnlc(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr)2080 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
2081 {
2082 int error;
2083 vnode_t *vp;
2084
2085 ASSERT(*nm != '\0');
2086 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2087 /*
2088 * Lookup this name in the DNLC. If successful, then validate
2089 * the caches and then recheck the DNLC. The DNLC is rechecked
2090 * just in case this entry got invalidated during the call
2091 * to nfs3_validate_caches.
2092 *
2093 * An assumption is being made that it is safe to say that a
2094 * file exists which may not on the server. Any operations to
2095 * the server will fail with ESTALE.
2096 */
2097 #ifdef DEBUG
2098 nfs3_lookup_dnlc_lookups++;
2099 #endif
2100 vp = dnlc_lookup(dvp, nm);
2101 if (vp != NULL) {
2102 VN_RELE(vp);
2103 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) {
2104 PURGE_ATTRCACHE(dvp);
2105 }
2106 error = nfs3_validate_caches(dvp, cr);
2107 if (error)
2108 return (error);
2109 vp = dnlc_lookup(dvp, nm);
2110 if (vp != NULL) {
2111 error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
2112 if (error) {
2113 VN_RELE(vp);
2114 return (error);
2115 }
2116 if (vp == DNLC_NO_VNODE) {
2117 VN_RELE(vp);
2118 #ifdef DEBUG
2119 nfs3_lookup_dnlc_neg_hits++;
2120 #endif
2121 return (ENOENT);
2122 }
2123 *vpp = vp;
2124 #ifdef DEBUG
2125 nfs3_lookup_dnlc_hits++;
2126 #endif
2127 return (0);
2128 }
2129 #ifdef DEBUG
2130 nfs3_lookup_dnlc_disappears++;
2131 #endif
2132 }
2133 #ifdef DEBUG
2134 else
2135 nfs3_lookup_dnlc_misses++;
2136 #endif
2137
2138 *vpp = NULL;
2139
2140 return (0);
2141 }
2142
2143 static int
nfs3lookup_otw(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr,int rfscall_flags)2144 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
2145 int rfscall_flags)
2146 {
2147 int error;
2148 LOOKUP3args args;
2149 LOOKUP3vres res;
2150 int douprintf;
2151 struct vattr vattr;
2152 struct vattr dvattr;
2153 vnode_t *vp;
2154 failinfo_t fi;
2155 hrtime_t t;
2156
2157 ASSERT(*nm != '\0');
2158 ASSERT(dvp->v_type == VDIR);
2159 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2160
2161 setdiropargs3(&args.what, nm, dvp);
2162
2163 fi.vp = dvp;
2164 fi.fhp = (caddr_t)&args.what.dir;
2165 fi.copyproc = nfs3copyfh;
2166 fi.lookupproc = nfs3lookup;
2167 fi.xattrdirproc = acl_getxattrdir3;
2168 res.obj_attributes.fres.vp = dvp;
2169 res.obj_attributes.fres.vap = &vattr;
2170 res.dir_attributes.fres.vp = dvp;
2171 res.dir_attributes.fres.vap = &dvattr;
2172
2173 douprintf = 1;
2174
2175 t = gethrtime();
2176
2177 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP,
2178 xdr_diropargs3, (caddr_t)&args,
2179 xdr_LOOKUP3vres, (caddr_t)&res, cr,
2180 &douprintf, &res.status, rfscall_flags, &fi);
2181
2182 if (error)
2183 return (error);
2184
2185 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr);
2186
2187 error = geterrno3(res.status);
2188 if (error) {
2189 PURGE_STALE_FH(error, dvp, cr);
2190 if (error == ENOENT && nfs3_lookup_neg_cache)
2191 dnlc_enter(dvp, nm, DNLC_NO_VNODE);
2192 return (error);
2193 }
2194
2195 if (res.obj_attributes.attributes) {
2196 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap,
2197 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2198 } else {
2199 vp = makenfs3node_va(&res.object, NULL,
2200 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2201 if (vp->v_type == VNON) {
2202 vattr.va_mask = AT_TYPE;
2203 error = nfs3getattr(vp, &vattr, cr);
2204 if (error) {
2205 VN_RELE(vp);
2206 return (error);
2207 }
2208 vp->v_type = vattr.va_type;
2209 }
2210 }
2211
2212 if (!(rfscall_flags & RFSCALL_SOFT))
2213 dnlc_update(dvp, nm, vp);
2214
2215 *vpp = vp;
2216
2217 return (error);
2218 }
2219
2220 #ifdef DEBUG
2221 static int nfs3_create_misses = 0;
2222 #endif
2223
2224 /* ARGSUSED */
2225 static int
nfs3_create(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr,int lfaware,caller_context_t * ct,vsecattr_t * vsecp)2226 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2227 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct,
2228 vsecattr_t *vsecp)
2229 {
2230 int error;
2231 vnode_t *vp;
2232 rnode_t *rp;
2233 struct vattr vattr;
2234 rnode_t *drp;
2235 vnode_t *tempvp;
2236
2237 drp = VTOR(dvp);
2238 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2239 return (EPERM);
2240 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2241 return (EINTR);
2242
2243 top:
2244 /*
2245 * We make a copy of the attributes because the caller does not
2246 * expect us to change what va points to.
2247 */
2248 vattr = *va;
2249
2250 /*
2251 * If the pathname is "", just use dvp. Don't need
2252 * to send it over the wire, look it up in the dnlc,
2253 * or perform any access checks.
2254 */
2255 if (*nm == '\0') {
2256 error = 0;
2257 VN_HOLD(dvp);
2258 vp = dvp;
2259 /*
2260 * If the pathname is ".", just use dvp. Don't need
2261 * to send it over the wire or look it up in the dnlc,
2262 * just need to check access.
2263 */
2264 } else if (strcmp(nm, ".") == 0) {
2265 error = nfs3_access(dvp, VEXEC, 0, cr, ct);
2266 if (error) {
2267 nfs_rw_exit(&drp->r_rwlock);
2268 return (error);
2269 }
2270 VN_HOLD(dvp);
2271 vp = dvp;
2272 /*
2273 * We need to go over the wire, just to be sure whether the
2274 * file exists or not. Using the DNLC can be dangerous in
2275 * this case when making a decision regarding existence.
2276 */
2277 } else {
2278 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0);
2279 }
2280 if (!error) {
2281 if (exclusive == EXCL)
2282 error = EEXIST;
2283 else if (vp->v_type == VDIR && (mode & VWRITE))
2284 error = EISDIR;
2285 else {
2286 /*
2287 * If vnode is a device, create special vnode.
2288 */
2289 if (IS_DEVVP(vp)) {
2290 tempvp = vp;
2291 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2292 VN_RELE(tempvp);
2293 }
2294 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
2295 if ((vattr.va_mask & AT_SIZE) &&
2296 vp->v_type == VREG) {
2297 rp = VTOR(vp);
2298 /*
2299 * Check here for large file handled
2300 * by LF-unaware process (as
2301 * ufs_create() does)
2302 */
2303 if (!(lfaware & FOFFMAX)) {
2304 mutex_enter(&rp->r_statelock);
2305 if (rp->r_size > MAXOFF32_T)
2306 error = EOVERFLOW;
2307 mutex_exit(&rp->r_statelock);
2308 }
2309 if (!error) {
2310 vattr.va_mask = AT_SIZE;
2311 error = nfs3setattr(vp,
2312 &vattr, 0, cr);
2313
2314 /*
2315 * Existing file was truncated;
2316 * emit a create event.
2317 */
2318 vnevent_create(vp, ct);
2319 }
2320 }
2321 }
2322 }
2323 nfs_rw_exit(&drp->r_rwlock);
2324 if (error) {
2325 VN_RELE(vp);
2326 } else {
2327 *vpp = vp;
2328 }
2329
2330 return (error);
2331 }
2332
2333 dnlc_remove(dvp, nm);
2334
2335 /*
2336 * Decide what the group-id of the created file should be.
2337 * Set it in attribute list as advisory...
2338 */
2339 error = setdirgid(dvp, &vattr.va_gid, cr);
2340 if (error) {
2341 nfs_rw_exit(&drp->r_rwlock);
2342 return (error);
2343 }
2344 vattr.va_mask |= AT_GID;
2345
2346 ASSERT(vattr.va_mask & AT_TYPE);
2347 if (vattr.va_type == VREG) {
2348 ASSERT(vattr.va_mask & AT_MODE);
2349 if (MANDMODE(vattr.va_mode)) {
2350 nfs_rw_exit(&drp->r_rwlock);
2351 return (EACCES);
2352 }
2353 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr,
2354 lfaware);
2355 /*
2356 * If this is not an exclusive create, then the CREATE
2357 * request will be made with the GUARDED mode set. This
2358 * means that the server will return EEXIST if the file
2359 * exists. The file could exist because of a retransmitted
2360 * request. In this case, we recover by starting over and
2361 * checking to see whether the file exists. This second
2362 * time through it should and a CREATE request will not be
2363 * sent.
2364 *
2365 * This handles the problem of a dangling CREATE request
2366 * which contains attributes which indicate that the file
2367 * should be truncated. This retransmitted request could
2368 * possibly truncate valid data in the file if not caught
2369 * by the duplicate request mechanism on the server or if
2370 * not caught by other means. The scenario is:
2371 *
2372 * Client transmits CREATE request with size = 0
2373 * Client times out, retransmits request.
2374 * Response to the first request arrives from the server
2375 * and the client proceeds on.
2376 * Client writes data to the file.
2377 * The server now processes retransmitted CREATE request
2378 * and truncates file.
2379 *
2380 * The use of the GUARDED CREATE request prevents this from
2381 * happening because the retransmitted CREATE would fail
2382 * with EEXIST and would not truncate the file.
2383 */
2384 if (error == EEXIST && exclusive == NONEXCL) {
2385 #ifdef DEBUG
2386 nfs3_create_misses++;
2387 #endif
2388 goto top;
2389 }
2390 nfs_rw_exit(&drp->r_rwlock);
2391 return (error);
2392 }
2393 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
2394 nfs_rw_exit(&drp->r_rwlock);
2395 return (error);
2396 }
2397
2398 /* ARGSUSED */
2399 static int
nfs3create(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr,int lfaware)2400 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2401 int mode, vnode_t **vpp, cred_t *cr, int lfaware)
2402 {
2403 int error;
2404 CREATE3args args;
2405 CREATE3res res;
2406 int douprintf;
2407 vnode_t *vp;
2408 struct vattr vattr;
2409 nfstime3 *verfp;
2410 rnode_t *rp;
2411 timestruc_t now;
2412 hrtime_t t;
2413
2414 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2415 setdiropargs3(&args.where, nm, dvp);
2416 if (exclusive == EXCL) {
2417 args.how.mode = EXCLUSIVE;
2418 /*
2419 * Construct the create verifier. This verifier needs
2420 * to be unique between different clients. It also needs
2421 * to vary for each exclusive create request generated
2422 * from the client to the server.
2423 *
2424 * The first attempt is made to use the hostid and a
2425 * unique number on the client. If the hostid has not
2426 * been set, the high resolution time that the exclusive
2427 * create request is being made is used. This will work
2428 * unless two different clients, both with the hostid
2429 * not set, attempt an exclusive create request on the
2430 * same file, at exactly the same clock time. The
2431 * chances of this happening seem small enough to be
2432 * reasonable.
2433 */
2434 verfp = (nfstime3 *)&args.how.createhow3_u.verf;
2435 verfp->seconds = zone_get_hostid(NULL);
2436 if (verfp->seconds != 0)
2437 verfp->nseconds = newnum();
2438 else {
2439 gethrestime(&now);
2440 verfp->seconds = now.tv_sec;
2441 verfp->nseconds = now.tv_nsec;
2442 }
2443 /*
2444 * Since the server will use this value for the mtime,
2445 * make sure that it can't overflow. Zero out the MSB.
2446 * The actual value does not matter here, only its uniqeness.
2447 */
2448 verfp->seconds %= INT32_MAX;
2449 } else {
2450 /*
2451 * Issue the non-exclusive create in guarded mode. This
2452 * may result in some false EEXIST responses for
2453 * retransmitted requests, but these will be handled at
2454 * a higher level. By using GUARDED, duplicate requests
2455 * to do file truncation and possible access problems
2456 * can be avoided.
2457 */
2458 args.how.mode = GUARDED;
2459 error = vattr_to_sattr3(va,
2460 &args.how.createhow3_u.obj_attributes);
2461 if (error) {
2462 /* req time field(s) overflow - return immediately */
2463 return (error);
2464 }
2465 }
2466
2467 douprintf = 1;
2468
2469 t = gethrtime();
2470
2471 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE,
2472 xdr_CREATE3args, (caddr_t)&args,
2473 xdr_CREATE3res, (caddr_t)&res, cr,
2474 &douprintf, &res.status, 0, NULL);
2475
2476 if (error) {
2477 PURGE_ATTRCACHE(dvp);
2478 return (error);
2479 }
2480
2481 error = geterrno3(res.status);
2482 if (!error) {
2483 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2484 if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2485 nfs_purge_rddir_cache(dvp);
2486
2487 /*
2488 * On exclusive create the times need to be explicitly
2489 * set to clear any potential verifier that may be stored
2490 * in one of these fields (see comment below). This
2491 * is done here to cover the case where no post op attrs
2492 * were returned or a 'invalid' time was returned in
2493 * the attributes.
2494 */
2495 if (exclusive == EXCL)
2496 va->va_mask |= (AT_MTIME | AT_ATIME);
2497
2498 if (!res.resok.obj.handle_follows) {
2499 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2500 if (error)
2501 return (error);
2502 } else {
2503 if (res.resok.obj_attributes.attributes) {
2504 vp = makenfs3node(&res.resok.obj.handle,
2505 &res.resok.obj_attributes.attr,
2506 dvp->v_vfsp, t, cr, NULL, NULL);
2507 } else {
2508 vp = makenfs3node(&res.resok.obj.handle, NULL,
2509 dvp->v_vfsp, t, cr, NULL, NULL);
2510
2511 /*
2512 * On an exclusive create, it is possible
2513 * that attributes were returned but those
2514 * postop attributes failed to decode
2515 * properly. If this is the case,
2516 * then most likely the atime or mtime
2517 * were invalid for our client; this
2518 * is caused by the server storing the
2519 * create verifier in one of the time
2520 * fields(most likely mtime).
2521 * So... we are going to setattr just the
2522 * atime/mtime to clear things up.
2523 */
2524 if (exclusive == EXCL) {
2525 if (error =
2526 nfs3excl_create_settimes(vp,
2527 va, cr)) {
2528 /*
2529 * Setting the times failed.
2530 * Remove the file and return
2531 * the error.
2532 */
2533 VN_RELE(vp);
2534 (void) nfs3_remove(dvp,
2535 nm, cr, NULL, 0);
2536 return (error);
2537 }
2538 }
2539
2540 /*
2541 * This handles the non-exclusive case
2542 * and the exclusive case where no post op
2543 * attrs were returned.
2544 */
2545 if (vp->v_type == VNON) {
2546 vattr.va_mask = AT_TYPE;
2547 error = nfs3getattr(vp, &vattr, cr);
2548 if (error) {
2549 VN_RELE(vp);
2550 return (error);
2551 }
2552 vp->v_type = vattr.va_type;
2553 }
2554 }
2555 dnlc_update(dvp, nm, vp);
2556 }
2557
2558 rp = VTOR(vp);
2559
2560 /*
2561 * Check here for large file handled by
2562 * LF-unaware process (as ufs_create() does)
2563 */
2564 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG &&
2565 !(lfaware & FOFFMAX)) {
2566 mutex_enter(&rp->r_statelock);
2567 if (rp->r_size > MAXOFF32_T) {
2568 mutex_exit(&rp->r_statelock);
2569 VN_RELE(vp);
2570 return (EOVERFLOW);
2571 }
2572 mutex_exit(&rp->r_statelock);
2573 }
2574
2575 if (exclusive == EXCL &&
2576 (va->va_mask & ~(AT_GID | AT_SIZE))) {
2577 /*
2578 * If doing an exclusive create, then generate
2579 * a SETATTR to set the initial attributes.
2580 * Try to set the mtime and the atime to the
2581 * server's current time. It is somewhat
2582 * expected that these fields will be used to
2583 * store the exclusive create cookie. If not,
2584 * server implementors will need to know that
2585 * a SETATTR will follow an exclusive create
2586 * and the cookie should be destroyed if
2587 * appropriate. This work may have been done
2588 * earlier in this function if post op attrs
2589 * were not available.
2590 *
2591 * The AT_GID and AT_SIZE bits are turned off
2592 * so that the SETATTR request will not attempt
2593 * to process these. The gid will be set
2594 * separately if appropriate. The size is turned
2595 * off because it is assumed that a new file will
2596 * be created empty and if the file wasn't empty,
2597 * then the exclusive create will have failed
2598 * because the file must have existed already.
2599 * Therefore, no truncate operation is needed.
2600 */
2601 va->va_mask &= ~(AT_GID | AT_SIZE);
2602 error = nfs3setattr(vp, va, 0, cr);
2603 if (error) {
2604 /*
2605 * Couldn't correct the attributes of
2606 * the newly created file and the
2607 * attributes are wrong. Remove the
2608 * file and return an error to the
2609 * application.
2610 */
2611 VN_RELE(vp);
2612 (void) nfs3_remove(dvp, nm, cr, NULL, 0);
2613 return (error);
2614 }
2615 }
2616
2617 if (va->va_gid != rp->r_attr.va_gid) {
2618 /*
2619 * If the gid on the file isn't right, then
2620 * generate a SETATTR to attempt to change
2621 * it. This may or may not work, depending
2622 * upon the server's semantics for allowing
2623 * file ownership changes.
2624 */
2625 va->va_mask = AT_GID;
2626 (void) nfs3setattr(vp, va, 0, cr);
2627 }
2628
2629 /*
2630 * If vnode is a device create special vnode
2631 */
2632 if (IS_DEVVP(vp)) {
2633 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2634 VN_RELE(vp);
2635 } else
2636 *vpp = vp;
2637 } else {
2638 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2639 PURGE_STALE_FH(error, dvp, cr);
2640 }
2641
2642 return (error);
2643 }
2644
2645 /*
2646 * Special setattr function to take care of rest of atime/mtime
2647 * after successful exclusive create. This function exists to avoid
2648 * handling attributes from the server; exclusive the atime/mtime fields
2649 * may be 'invalid' in client's view and therefore can not be trusted.
2650 */
2651 static int
nfs3excl_create_settimes(vnode_t * vp,struct vattr * vap,cred_t * cr)2652 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr)
2653 {
2654 int error;
2655 uint_t mask;
2656 SETATTR3args args;
2657 SETATTR3res res;
2658 int douprintf;
2659 rnode_t *rp;
2660 hrtime_t t;
2661
2662 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
2663 /* save the caller's mask so that it can be reset later */
2664 mask = vap->va_mask;
2665
2666 rp = VTOR(vp);
2667
2668 args.object = *RTOFH3(rp);
2669 args.guard.check = FALSE;
2670
2671 /* Use the mask to initialize the arguments */
2672 vap->va_mask = 0;
2673 error = vattr_to_sattr3(vap, &args.new_attributes);
2674
2675 /* We want to set just atime/mtime on this request */
2676 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
2677 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
2678
2679 douprintf = 1;
2680
2681 t = gethrtime();
2682
2683 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
2684 xdr_SETATTR3args, (caddr_t)&args,
2685 xdr_SETATTR3res, (caddr_t)&res, cr,
2686 &douprintf, &res.status, 0, NULL);
2687
2688 if (error) {
2689 vap->va_mask = mask;
2690 return (error);
2691 }
2692
2693 error = geterrno3(res.status);
2694 if (!error) {
2695 /*
2696 * It is important to pick up the attributes.
2697 * Since this is the exclusive create path, the
2698 * attributes on the initial create were ignored
2699 * and we need these to have the correct info.
2700 */
2701 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
2702 /*
2703 * No need to do the atime/mtime work again so clear
2704 * the bits.
2705 */
2706 mask &= ~(AT_ATIME | AT_MTIME);
2707 } else {
2708 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
2709 }
2710
2711 vap->va_mask = mask;
2712
2713 return (error);
2714 }
2715
2716 /* ARGSUSED */
2717 static int
nfs3mknod(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr)2718 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2719 int mode, vnode_t **vpp, cred_t *cr)
2720 {
2721 int error;
2722 MKNOD3args args;
2723 MKNOD3res res;
2724 int douprintf;
2725 vnode_t *vp;
2726 struct vattr vattr;
2727 hrtime_t t;
2728
2729 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2730 switch (va->va_type) {
2731 case VCHR:
2732 case VBLK:
2733 setdiropargs3(&args.where, nm, dvp);
2734 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK;
2735 error = vattr_to_sattr3(va,
2736 &args.what.mknoddata3_u.device.dev_attributes);
2737 if (error) {
2738 /* req time field(s) overflow - return immediately */
2739 return (error);
2740 }
2741 args.what.mknoddata3_u.device.spec.specdata1 =
2742 getmajor(va->va_rdev);
2743 args.what.mknoddata3_u.device.spec.specdata2 =
2744 getminor(va->va_rdev);
2745 break;
2746
2747 case VFIFO:
2748 case VSOCK:
2749 setdiropargs3(&args.where, nm, dvp);
2750 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK;
2751 error = vattr_to_sattr3(va,
2752 &args.what.mknoddata3_u.pipe_attributes);
2753 if (error) {
2754 /* req time field(s) overflow - return immediately */
2755 return (error);
2756 }
2757 break;
2758
2759 default:
2760 return (EINVAL);
2761 }
2762
2763 douprintf = 1;
2764
2765 t = gethrtime();
2766
2767 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD,
2768 xdr_MKNOD3args, (caddr_t)&args,
2769 xdr_MKNOD3res, (caddr_t)&res, cr,
2770 &douprintf, &res.status, 0, NULL);
2771
2772 if (error) {
2773 PURGE_ATTRCACHE(dvp);
2774 return (error);
2775 }
2776
2777 error = geterrno3(res.status);
2778 if (!error) {
2779 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2780 if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2781 nfs_purge_rddir_cache(dvp);
2782
2783 if (!res.resok.obj.handle_follows) {
2784 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2785 if (error)
2786 return (error);
2787 } else {
2788 if (res.resok.obj_attributes.attributes) {
2789 vp = makenfs3node(&res.resok.obj.handle,
2790 &res.resok.obj_attributes.attr,
2791 dvp->v_vfsp, t, cr, NULL, NULL);
2792 } else {
2793 vp = makenfs3node(&res.resok.obj.handle, NULL,
2794 dvp->v_vfsp, t, cr, NULL, NULL);
2795 if (vp->v_type == VNON) {
2796 vattr.va_mask = AT_TYPE;
2797 error = nfs3getattr(vp, &vattr, cr);
2798 if (error) {
2799 VN_RELE(vp);
2800 return (error);
2801 }
2802 vp->v_type = vattr.va_type;
2803 }
2804
2805 }
2806 dnlc_update(dvp, nm, vp);
2807 }
2808
2809 if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
2810 va->va_mask = AT_GID;
2811 (void) nfs3setattr(vp, va, 0, cr);
2812 }
2813
2814 /*
2815 * If vnode is a device create special vnode
2816 */
2817 if (IS_DEVVP(vp)) {
2818 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2819 VN_RELE(vp);
2820 } else
2821 *vpp = vp;
2822 } else {
2823 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2824 PURGE_STALE_FH(error, dvp, cr);
2825 }
2826 return (error);
2827 }
2828
2829 /*
2830 * Weirdness: if the vnode to be removed is open
2831 * we rename it instead of removing it and nfs_inactive
2832 * will remove the new name.
2833 */
2834 /* ARGSUSED */
2835 static int
nfs3_remove(vnode_t * dvp,char * nm,cred_t * cr,caller_context_t * ct,int flags)2836 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
2837 {
2838 int error;
2839 REMOVE3args args;
2840 REMOVE3res res;
2841 vnode_t *vp;
2842 char *tmpname;
2843 int douprintf;
2844 rnode_t *rp;
2845 rnode_t *drp;
2846 hrtime_t t;
2847
2848 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2849 return (EPERM);
2850 drp = VTOR(dvp);
2851 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2852 return (EINTR);
2853
2854 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2855 if (error) {
2856 nfs_rw_exit(&drp->r_rwlock);
2857 return (error);
2858 }
2859
2860 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) {
2861 VN_RELE(vp);
2862 nfs_rw_exit(&drp->r_rwlock);
2863 return (EPERM);
2864 }
2865
2866 /*
2867 * First just remove the entry from the name cache, as it
2868 * is most likely the only entry for this vp.
2869 */
2870 dnlc_remove(dvp, nm);
2871
2872 /*
2873 * If the file has a v_count > 1 then there may be more than one
2874 * entry in the name cache due multiple links or an open file,
2875 * but we don't have the real reference count so flush all
2876 * possible entries.
2877 */
2878 if (vp->v_count > 1)
2879 dnlc_purge_vp(vp);
2880
2881 /*
2882 * Now we have the real reference count on the vnode
2883 */
2884 rp = VTOR(vp);
2885 mutex_enter(&rp->r_statelock);
2886 if (vp->v_count > 1 &&
2887 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
2888 mutex_exit(&rp->r_statelock);
2889 tmpname = newname();
2890 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct);
2891 if (error)
2892 kmem_free(tmpname, MAXNAMELEN);
2893 else {
2894 mutex_enter(&rp->r_statelock);
2895 if (rp->r_unldvp == NULL) {
2896 VN_HOLD(dvp);
2897 rp->r_unldvp = dvp;
2898 if (rp->r_unlcred != NULL)
2899 crfree(rp->r_unlcred);
2900 crhold(cr);
2901 rp->r_unlcred = cr;
2902 rp->r_unlname = tmpname;
2903 } else {
2904 kmem_free(rp->r_unlname, MAXNAMELEN);
2905 rp->r_unlname = tmpname;
2906 }
2907 mutex_exit(&rp->r_statelock);
2908 }
2909 } else {
2910 mutex_exit(&rp->r_statelock);
2911 /*
2912 * We need to flush any dirty pages which happen to
2913 * be hanging around before removing the file. This
2914 * shouldn't happen very often and mostly on file
2915 * systems mounted "nocto".
2916 */
2917 if (vn_has_cached_data(vp) &&
2918 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
2919 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
2920 if (error && (error == ENOSPC || error == EDQUOT)) {
2921 mutex_enter(&rp->r_statelock);
2922 if (!rp->r_error)
2923 rp->r_error = error;
2924 mutex_exit(&rp->r_statelock);
2925 }
2926 }
2927
2928 setdiropargs3(&args.object, nm, dvp);
2929
2930 douprintf = 1;
2931
2932 t = gethrtime();
2933
2934 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE,
2935 xdr_diropargs3, (caddr_t)&args,
2936 xdr_REMOVE3res, (caddr_t)&res, cr,
2937 &douprintf, &res.status, 0, NULL);
2938
2939 /*
2940 * The xattr dir may be gone after last attr is removed,
2941 * so flush it from dnlc.
2942 */
2943 if (dvp->v_flag & V_XATTRDIR)
2944 dnlc_purge_vp(dvp);
2945
2946 PURGE_ATTRCACHE(vp);
2947
2948 if (error) {
2949 PURGE_ATTRCACHE(dvp);
2950 } else {
2951 error = geterrno3(res.status);
2952 if (!error) {
2953 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t,
2954 cr);
2955 if (HAVE_RDDIR_CACHE(drp))
2956 nfs_purge_rddir_cache(dvp);
2957 } else {
2958 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc,
2959 t, cr);
2960 PURGE_STALE_FH(error, dvp, cr);
2961 }
2962 }
2963 }
2964
2965 if (error == 0) {
2966 vnevent_remove(vp, dvp, nm, ct);
2967 }
2968 VN_RELE(vp);
2969
2970 nfs_rw_exit(&drp->r_rwlock);
2971
2972 return (error);
2973 }
2974
2975 /* ARGSUSED */
2976 static int
nfs3_link(vnode_t * tdvp,vnode_t * svp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)2977 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
2978 caller_context_t *ct, int flags)
2979 {
2980 int error;
2981 LINK3args args;
2982 LINK3res res;
2983 vnode_t *realvp;
2984 int douprintf;
2985 mntinfo_t *mi;
2986 rnode_t *tdrp;
2987 hrtime_t t;
2988
2989 if (nfs_zone() != VTOMI(tdvp)->mi_zone)
2990 return (EPERM);
2991 if (VOP_REALVP(svp, &realvp, ct) == 0)
2992 svp = realvp;
2993
2994 mi = VTOMI(svp);
2995
2996 if (!(mi->mi_flags & MI_LINK))
2997 return (EOPNOTSUPP);
2998
2999 args.file = *VTOFH3(svp);
3000 setdiropargs3(&args.link, tnm, tdvp);
3001
3002 tdrp = VTOR(tdvp);
3003 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp)))
3004 return (EINTR);
3005
3006 dnlc_remove(tdvp, tnm);
3007
3008 douprintf = 1;
3009
3010 t = gethrtime();
3011
3012 error = rfs3call(mi, NFSPROC3_LINK,
3013 xdr_LINK3args, (caddr_t)&args,
3014 xdr_LINK3res, (caddr_t)&res, cr,
3015 &douprintf, &res.status, 0, NULL);
3016
3017 if (error) {
3018 PURGE_ATTRCACHE(tdvp);
3019 PURGE_ATTRCACHE(svp);
3020 nfs_rw_exit(&tdrp->r_rwlock);
3021 return (error);
3022 }
3023
3024 error = geterrno3(res.status);
3025
3026 if (!error) {
3027 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr);
3028 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr);
3029 if (HAVE_RDDIR_CACHE(tdrp))
3030 nfs_purge_rddir_cache(tdvp);
3031 dnlc_update(tdvp, tnm, svp);
3032 } else {
3033 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t,
3034 cr);
3035 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr);
3036 if (error == EOPNOTSUPP) {
3037 mutex_enter(&mi->mi_lock);
3038 mi->mi_flags &= ~MI_LINK;
3039 mutex_exit(&mi->mi_lock);
3040 }
3041 }
3042
3043 nfs_rw_exit(&tdrp->r_rwlock);
3044
3045 if (!error) {
3046 /*
3047 * Notify the source file of this link operation.
3048 */
3049 vnevent_link(svp, ct);
3050 }
3051 return (error);
3052 }
3053
3054 /* ARGSUSED */
3055 static int
nfs3_rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct,int flags)3056 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
3057 caller_context_t *ct, int flags)
3058 {
3059 vnode_t *realvp;
3060
3061 if (nfs_zone() != VTOMI(odvp)->mi_zone)
3062 return (EPERM);
3063 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
3064 ndvp = realvp;
3065
3066 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct));
3067 }
3068
3069 /*
3070 * nfs3rename does the real work of renaming in NFS Version 3.
3071 */
3072 static int
nfs3rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct)3073 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
3074 caller_context_t *ct)
3075 {
3076 int error;
3077 RENAME3args args;
3078 RENAME3res res;
3079 int douprintf;
3080 vnode_t *nvp = NULL;
3081 vnode_t *ovp = NULL;
3082 char *tmpname;
3083 rnode_t *rp;
3084 rnode_t *odrp;
3085 rnode_t *ndrp;
3086 hrtime_t t;
3087
3088 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone);
3089
3090 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
3091 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
3092 return (EINVAL);
3093
3094 odrp = VTOR(odvp);
3095 ndrp = VTOR(ndvp);
3096 if ((intptr_t)odrp < (intptr_t)ndrp) {
3097 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp)))
3098 return (EINTR);
3099 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) {
3100 nfs_rw_exit(&odrp->r_rwlock);
3101 return (EINTR);
3102 }
3103 } else {
3104 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp)))
3105 return (EINTR);
3106 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) {
3107 nfs_rw_exit(&ndrp->r_rwlock);
3108 return (EINTR);
3109 }
3110 }
3111
3112 /*
3113 * Lookup the target file. If it exists, it needs to be
3114 * checked to see whether it is a mount point and whether
3115 * it is active (open).
3116 */
3117 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0);
3118 if (!error) {
3119 /*
3120 * If this file has been mounted on, then just
3121 * return busy because renaming to it would remove
3122 * the mounted file system from the name space.
3123 */
3124 if (vn_mountedvfs(nvp) != NULL) {
3125 VN_RELE(nvp);
3126 nfs_rw_exit(&odrp->r_rwlock);
3127 nfs_rw_exit(&ndrp->r_rwlock);
3128 return (EBUSY);
3129 }
3130
3131 /*
3132 * Purge the name cache of all references to this vnode
3133 * so that we can check the reference count to infer
3134 * whether it is active or not.
3135 */
3136 /*
3137 * First just remove the entry from the name cache, as it
3138 * is most likely the only entry for this vp.
3139 */
3140 dnlc_remove(ndvp, nnm);
3141 /*
3142 * If the file has a v_count > 1 then there may be more
3143 * than one entry in the name cache due multiple links
3144 * or an open file, but we don't have the real reference
3145 * count so flush all possible entries.
3146 */
3147 if (nvp->v_count > 1)
3148 dnlc_purge_vp(nvp);
3149
3150 /*
3151 * If the vnode is active and is not a directory,
3152 * arrange to rename it to a
3153 * temporary file so that it will continue to be
3154 * accessible. This implements the "unlink-open-file"
3155 * semantics for the target of a rename operation.
3156 * Before doing this though, make sure that the
3157 * source and target files are not already the same.
3158 */
3159 if (nvp->v_count > 1 && nvp->v_type != VDIR) {
3160 /*
3161 * Lookup the source name.
3162 */
3163 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL,
3164 cr, 0);
3165
3166 /*
3167 * The source name *should* already exist.
3168 */
3169 if (error) {
3170 VN_RELE(nvp);
3171 nfs_rw_exit(&odrp->r_rwlock);
3172 nfs_rw_exit(&ndrp->r_rwlock);
3173 return (error);
3174 }
3175
3176 /*
3177 * Compare the two vnodes. If they are the same,
3178 * just release all held vnodes and return success.
3179 */
3180 if (ovp == nvp) {
3181 VN_RELE(ovp);
3182 VN_RELE(nvp);
3183 nfs_rw_exit(&odrp->r_rwlock);
3184 nfs_rw_exit(&ndrp->r_rwlock);
3185 return (0);
3186 }
3187
3188 /*
3189 * Can't mix and match directories and non-
3190 * directories in rename operations. We already
3191 * know that the target is not a directory. If
3192 * the source is a directory, return an error.
3193 */
3194 if (ovp->v_type == VDIR) {
3195 VN_RELE(ovp);
3196 VN_RELE(nvp);
3197 nfs_rw_exit(&odrp->r_rwlock);
3198 nfs_rw_exit(&ndrp->r_rwlock);
3199 return (ENOTDIR);
3200 }
3201
3202 /*
3203 * The target file exists, is not the same as
3204 * the source file, and is active. Link it
3205 * to a temporary filename to avoid having
3206 * the server removing the file completely.
3207 */
3208 tmpname = newname();
3209 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0);
3210 if (error == EOPNOTSUPP) {
3211 error = nfs3_rename(ndvp, nnm, ndvp, tmpname,
3212 cr, NULL, 0);
3213 }
3214 if (error) {
3215 kmem_free(tmpname, MAXNAMELEN);
3216 VN_RELE(ovp);
3217 VN_RELE(nvp);
3218 nfs_rw_exit(&odrp->r_rwlock);
3219 nfs_rw_exit(&ndrp->r_rwlock);
3220 return (error);
3221 }
3222 rp = VTOR(nvp);
3223 mutex_enter(&rp->r_statelock);
3224 if (rp->r_unldvp == NULL) {
3225 VN_HOLD(ndvp);
3226 rp->r_unldvp = ndvp;
3227 if (rp->r_unlcred != NULL)
3228 crfree(rp->r_unlcred);
3229 crhold(cr);
3230 rp->r_unlcred = cr;
3231 rp->r_unlname = tmpname;
3232 } else {
3233 kmem_free(rp->r_unlname, MAXNAMELEN);
3234 rp->r_unlname = tmpname;
3235 }
3236 mutex_exit(&rp->r_statelock);
3237 }
3238 }
3239
3240 if (ovp == NULL) {
3241 /*
3242 * When renaming directories to be a subdirectory of a
3243 * different parent, the dnlc entry for ".." will no
3244 * longer be valid, so it must be removed.
3245 *
3246 * We do a lookup here to determine whether we are renaming
3247 * a directory and we need to check if we are renaming
3248 * an unlinked file. This might have already been done
3249 * in previous code, so we check ovp == NULL to avoid
3250 * doing it twice.
3251 */
3252
3253 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0);
3254 /*
3255 * The source name *should* already exist.
3256 */
3257 if (error) {
3258 nfs_rw_exit(&odrp->r_rwlock);
3259 nfs_rw_exit(&ndrp->r_rwlock);
3260 if (nvp) {
3261 VN_RELE(nvp);
3262 }
3263 return (error);
3264 }
3265 ASSERT(ovp != NULL);
3266 }
3267
3268 dnlc_remove(odvp, onm);
3269 dnlc_remove(ndvp, nnm);
3270
3271 setdiropargs3(&args.from, onm, odvp);
3272 setdiropargs3(&args.to, nnm, ndvp);
3273
3274 douprintf = 1;
3275
3276 t = gethrtime();
3277
3278 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME,
3279 xdr_RENAME3args, (caddr_t)&args,
3280 xdr_RENAME3res, (caddr_t)&res, cr,
3281 &douprintf, &res.status, 0, NULL);
3282
3283 if (error) {
3284 PURGE_ATTRCACHE(odvp);
3285 PURGE_ATTRCACHE(ndvp);
3286 VN_RELE(ovp);
3287 nfs_rw_exit(&odrp->r_rwlock);
3288 nfs_rw_exit(&ndrp->r_rwlock);
3289 if (nvp) {
3290 VN_RELE(nvp);
3291 }
3292 return (error);
3293 }
3294
3295 error = geterrno3(res.status);
3296
3297 if (!error) {
3298 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr);
3299 if (HAVE_RDDIR_CACHE(odrp))
3300 nfs_purge_rddir_cache(odvp);
3301 if (ndvp != odvp) {
3302 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr);
3303 if (HAVE_RDDIR_CACHE(ndrp))
3304 nfs_purge_rddir_cache(ndvp);
3305 }
3306 /*
3307 * when renaming directories to be a subdirectory of a
3308 * different parent, the dnlc entry for ".." will no
3309 * longer be valid, so it must be removed
3310 */
3311 rp = VTOR(ovp);
3312 if (ndvp != odvp) {
3313 if (ovp->v_type == VDIR) {
3314 dnlc_remove(ovp, "..");
3315 if (HAVE_RDDIR_CACHE(rp))
3316 nfs_purge_rddir_cache(ovp);
3317 }
3318 }
3319
3320 /*
3321 * If we are renaming the unlinked file, update the
3322 * r_unldvp and r_unlname as needed.
3323 */
3324 mutex_enter(&rp->r_statelock);
3325 if (rp->r_unldvp != NULL) {
3326 if (strcmp(rp->r_unlname, onm) == 0) {
3327 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
3328 rp->r_unlname[MAXNAMELEN - 1] = '\0';
3329
3330 if (ndvp != rp->r_unldvp) {
3331 VN_RELE(rp->r_unldvp);
3332 rp->r_unldvp = ndvp;
3333 VN_HOLD(ndvp);
3334 }
3335 }
3336 }
3337 mutex_exit(&rp->r_statelock);
3338 } else {
3339 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr);
3340 if (ndvp != odvp) {
3341 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t,
3342 cr);
3343 }
3344 /*
3345 * System V defines rename to return EEXIST, not
3346 * ENOTEMPTY if the target directory is not empty.
3347 * Over the wire, the error is NFSERR_ENOTEMPTY
3348 * which geterrno maps to ENOTEMPTY.
3349 */
3350 if (error == ENOTEMPTY)
3351 error = EEXIST;
3352 }
3353
3354 if (error == 0) {
3355 if (nvp)
3356 vnevent_rename_dest(nvp, ndvp, nnm, ct);
3357
3358 if (odvp != ndvp)
3359 vnevent_rename_dest_dir(ndvp, ct);
3360 ASSERT(ovp != NULL);
3361 vnevent_rename_src(ovp, odvp, onm, ct);
3362 }
3363
3364 if (nvp) {
3365 VN_RELE(nvp);
3366 }
3367 VN_RELE(ovp);
3368
3369 nfs_rw_exit(&odrp->r_rwlock);
3370 nfs_rw_exit(&ndrp->r_rwlock);
3371
3372 return (error);
3373 }
3374
3375 /* ARGSUSED */
3376 static int
nfs3_mkdir(vnode_t * dvp,char * nm,struct vattr * va,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)3377 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
3378 caller_context_t *ct, int flags, vsecattr_t *vsecp)
3379 {
3380 int error;
3381 MKDIR3args args;
3382 MKDIR3res res;
3383 int douprintf;
3384 struct vattr vattr;
3385 vnode_t *vp;
3386 rnode_t *drp;
3387 hrtime_t t;
3388
3389 if (nfs_zone() != VTOMI(dvp)->mi_zone)
3390 return (EPERM);
3391 setdiropargs3(&args.where, nm, dvp);
3392
3393 /*
3394 * Decide what the group-id and set-gid bit of the created directory
3395 * should be. May have to do a setattr to get the gid right.
3396 */
3397 error = setdirgid(dvp, &va->va_gid, cr);
3398 if (error)
3399 return (error);
3400 error = setdirmode(dvp, &va->va_mode, cr);
3401 if (error)
3402 return (error);
3403 va->va_mask |= AT_MODE|AT_GID;
3404
3405 error = vattr_to_sattr3(va, &args.attributes);
3406 if (error) {
3407 /* req time field(s) overflow - return immediately */
3408 return (error);
3409 }
3410
3411 drp = VTOR(dvp);
3412 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3413 return (EINTR);
3414
3415 dnlc_remove(dvp, nm);
3416
3417 douprintf = 1;
3418
3419 t = gethrtime();
3420
3421 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR,
3422 xdr_MKDIR3args, (caddr_t)&args,
3423 xdr_MKDIR3res, (caddr_t)&res, cr,
3424 &douprintf, &res.status, 0, NULL);
3425
3426 if (error) {
3427 PURGE_ATTRCACHE(dvp);
3428 nfs_rw_exit(&drp->r_rwlock);
3429 return (error);
3430 }
3431
3432 error = geterrno3(res.status);
3433 if (!error) {
3434 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3435 if (HAVE_RDDIR_CACHE(drp))
3436 nfs_purge_rddir_cache(dvp);
3437
3438 if (!res.resok.obj.handle_follows) {
3439 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3440 if (error) {
3441 nfs_rw_exit(&drp->r_rwlock);
3442 return (error);
3443 }
3444 } else {
3445 if (res.resok.obj_attributes.attributes) {
3446 vp = makenfs3node(&res.resok.obj.handle,
3447 &res.resok.obj_attributes.attr,
3448 dvp->v_vfsp, t, cr, NULL, NULL);
3449 } else {
3450 vp = makenfs3node(&res.resok.obj.handle, NULL,
3451 dvp->v_vfsp, t, cr, NULL, NULL);
3452 if (vp->v_type == VNON) {
3453 vattr.va_mask = AT_TYPE;
3454 error = nfs3getattr(vp, &vattr, cr);
3455 if (error) {
3456 VN_RELE(vp);
3457 nfs_rw_exit(&drp->r_rwlock);
3458 return (error);
3459 }
3460 vp->v_type = vattr.va_type;
3461 }
3462 }
3463 dnlc_update(dvp, nm, vp);
3464 }
3465 if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
3466 va->va_mask = AT_GID;
3467 (void) nfs3setattr(vp, va, 0, cr);
3468 }
3469 *vpp = vp;
3470 } else {
3471 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3472 PURGE_STALE_FH(error, dvp, cr);
3473 }
3474
3475 nfs_rw_exit(&drp->r_rwlock);
3476
3477 return (error);
3478 }
3479
3480 /* ARGSUSED */
3481 static int
nfs3_rmdir(vnode_t * dvp,char * nm,vnode_t * cdir,cred_t * cr,caller_context_t * ct,int flags)3482 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
3483 caller_context_t *ct, int flags)
3484 {
3485 int error;
3486 RMDIR3args args;
3487 RMDIR3res res;
3488 vnode_t *vp;
3489 int douprintf;
3490 rnode_t *drp;
3491 hrtime_t t;
3492
3493 if (nfs_zone() != VTOMI(dvp)->mi_zone)
3494 return (EPERM);
3495 drp = VTOR(dvp);
3496 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3497 return (EINTR);
3498
3499 /*
3500 * Attempt to prevent a rmdir(".") from succeeding.
3501 */
3502 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3503 if (error) {
3504 nfs_rw_exit(&drp->r_rwlock);
3505 return (error);
3506 }
3507
3508 if (vp == cdir) {
3509 VN_RELE(vp);
3510 nfs_rw_exit(&drp->r_rwlock);
3511 return (EINVAL);
3512 }
3513
3514 setdiropargs3(&args.object, nm, dvp);
3515
3516 /*
3517 * First just remove the entry from the name cache, as it
3518 * is most likely an entry for this vp.
3519 */
3520 dnlc_remove(dvp, nm);
3521
3522 /*
3523 * If there vnode reference count is greater than one, then
3524 * there may be additional references in the DNLC which will
3525 * need to be purged. First, trying removing the entry for
3526 * the parent directory and see if that removes the additional
3527 * reference(s). If that doesn't do it, then use dnlc_purge_vp
3528 * to completely remove any references to the directory which
3529 * might still exist in the DNLC.
3530 */
3531 if (vp->v_count > 1) {
3532 dnlc_remove(vp, "..");
3533 if (vp->v_count > 1)
3534 dnlc_purge_vp(vp);
3535 }
3536
3537 douprintf = 1;
3538
3539 t = gethrtime();
3540
3541 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR,
3542 xdr_diropargs3, (caddr_t)&args,
3543 xdr_RMDIR3res, (caddr_t)&res, cr,
3544 &douprintf, &res.status, 0, NULL);
3545
3546 PURGE_ATTRCACHE(vp);
3547
3548 if (error) {
3549 PURGE_ATTRCACHE(dvp);
3550 VN_RELE(vp);
3551 nfs_rw_exit(&drp->r_rwlock);
3552 return (error);
3553 }
3554
3555 error = geterrno3(res.status);
3556 if (!error) {
3557 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3558 if (HAVE_RDDIR_CACHE(drp))
3559 nfs_purge_rddir_cache(dvp);
3560 if (HAVE_RDDIR_CACHE(VTOR(vp)))
3561 nfs_purge_rddir_cache(vp);
3562 } else {
3563 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3564 PURGE_STALE_FH(error, dvp, cr);
3565 /*
3566 * System V defines rmdir to return EEXIST, not
3567 * ENOTEMPTY if the directory is not empty. Over
3568 * the wire, the error is NFSERR_ENOTEMPTY which
3569 * geterrno maps to ENOTEMPTY.
3570 */
3571 if (error == ENOTEMPTY)
3572 error = EEXIST;
3573 }
3574
3575 if (error == 0) {
3576 vnevent_rmdir(vp, dvp, nm, ct);
3577 }
3578 VN_RELE(vp);
3579
3580 nfs_rw_exit(&drp->r_rwlock);
3581
3582 return (error);
3583 }
3584
3585 /* ARGSUSED */
3586 static int
nfs3_symlink(vnode_t * dvp,char * lnm,struct vattr * tva,char * tnm,cred_t * cr,caller_context_t * ct,int flags)3587 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
3588 caller_context_t *ct, int flags)
3589 {
3590 int error;
3591 SYMLINK3args args;
3592 SYMLINK3res res;
3593 int douprintf;
3594 mntinfo_t *mi;
3595 vnode_t *vp;
3596 rnode_t *rp;
3597 char *contents;
3598 rnode_t *drp;
3599 hrtime_t t;
3600
3601 mi = VTOMI(dvp);
3602
3603 if (nfs_zone() != mi->mi_zone)
3604 return (EPERM);
3605 if (!(mi->mi_flags & MI_SYMLINK))
3606 return (EOPNOTSUPP);
3607
3608 setdiropargs3(&args.where, lnm, dvp);
3609 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes);
3610 if (error) {
3611 /* req time field(s) overflow - return immediately */
3612 return (error);
3613 }
3614 args.symlink.symlink_data = tnm;
3615
3616 drp = VTOR(dvp);
3617 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3618 return (EINTR);
3619
3620 dnlc_remove(dvp, lnm);
3621
3622 douprintf = 1;
3623
3624 t = gethrtime();
3625
3626 error = rfs3call(mi, NFSPROC3_SYMLINK,
3627 xdr_SYMLINK3args, (caddr_t)&args,
3628 xdr_SYMLINK3res, (caddr_t)&res, cr,
3629 &douprintf, &res.status, 0, NULL);
3630
3631 if (error) {
3632 PURGE_ATTRCACHE(dvp);
3633 nfs_rw_exit(&drp->r_rwlock);
3634 return (error);
3635 }
3636
3637 error = geterrno3(res.status);
3638 if (!error) {
3639 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3640 if (HAVE_RDDIR_CACHE(drp))
3641 nfs_purge_rddir_cache(dvp);
3642
3643 if (res.resok.obj.handle_follows) {
3644 if (res.resok.obj_attributes.attributes) {
3645 vp = makenfs3node(&res.resok.obj.handle,
3646 &res.resok.obj_attributes.attr,
3647 dvp->v_vfsp, t, cr, NULL, NULL);
3648 } else {
3649 vp = makenfs3node(&res.resok.obj.handle, NULL,
3650 dvp->v_vfsp, t, cr, NULL, NULL);
3651 vp->v_type = VLNK;
3652 vp->v_rdev = 0;
3653 }
3654 dnlc_update(dvp, lnm, vp);
3655 rp = VTOR(vp);
3656 if (nfs3_do_symlink_cache &&
3657 rp->r_symlink.contents == NULL) {
3658
3659 contents = kmem_alloc(MAXPATHLEN,
3660 KM_NOSLEEP);
3661
3662 if (contents != NULL) {
3663 mutex_enter(&rp->r_statelock);
3664 if (rp->r_symlink.contents == NULL) {
3665 rp->r_symlink.len = strlen(tnm);
3666 bcopy(tnm, contents,
3667 rp->r_symlink.len);
3668 rp->r_symlink.contents =
3669 contents;
3670 rp->r_symlink.size = MAXPATHLEN;
3671 mutex_exit(&rp->r_statelock);
3672 } else {
3673 mutex_exit(&rp->r_statelock);
3674 kmem_free((void *)contents,
3675 MAXPATHLEN);
3676 }
3677 }
3678 }
3679 VN_RELE(vp);
3680 }
3681 } else {
3682 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3683 PURGE_STALE_FH(error, dvp, cr);
3684 if (error == EOPNOTSUPP) {
3685 mutex_enter(&mi->mi_lock);
3686 mi->mi_flags &= ~MI_SYMLINK;
3687 mutex_exit(&mi->mi_lock);
3688 }
3689 }
3690
3691 nfs_rw_exit(&drp->r_rwlock);
3692
3693 return (error);
3694 }
3695
3696 #ifdef DEBUG
3697 static int nfs3_readdir_cache_hits = 0;
3698 static int nfs3_readdir_cache_shorts = 0;
3699 static int nfs3_readdir_cache_waits = 0;
3700 static int nfs3_readdir_cache_misses = 0;
3701 static int nfs3_readdir_readahead = 0;
3702 #endif
3703
3704 static int nfs3_shrinkreaddir = 0;
3705
3706 /*
3707 * Read directory entries.
3708 * There are some weird things to look out for here. The uio_loffset
3709 * field is either 0 or it is the offset returned from a previous
3710 * readdir. It is an opaque value used by the server to find the
3711 * correct directory block to read. The count field is the number
3712 * of blocks to read on the server. This is advisory only, the server
3713 * may return only one block's worth of entries. Entries may be compressed
3714 * on the server.
3715 */
3716 /* ARGSUSED */
3717 static int
nfs3_readdir(vnode_t * vp,struct uio * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)3718 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
3719 caller_context_t *ct, int flags)
3720 {
3721 int error;
3722 size_t count;
3723 rnode_t *rp;
3724 rddir_cache *rdc;
3725 rddir_cache *nrdc;
3726 rddir_cache *rrdc;
3727 #ifdef DEBUG
3728 int missed;
3729 #endif
3730 int doreadahead;
3731 rddir_cache srdc;
3732 avl_index_t where;
3733
3734 if (nfs_zone() != VTOMI(vp)->mi_zone)
3735 return (EIO);
3736 rp = VTOR(vp);
3737
3738 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
3739
3740 /*
3741 * Make sure that the directory cache is valid.
3742 */
3743 if (HAVE_RDDIR_CACHE(rp)) {
3744 if (nfs_disable_rddir_cache) {
3745 /*
3746 * Setting nfs_disable_rddir_cache in /etc/system
3747 * allows interoperability with servers that do not
3748 * properly update the attributes of directories.
3749 * Any cached information gets purged before an
3750 * access is made to it.
3751 */
3752 nfs_purge_rddir_cache(vp);
3753 } else {
3754 error = nfs3_validate_caches(vp, cr);
3755 if (error)
3756 return (error);
3757 }
3758 }
3759
3760 /*
3761 * It is possible that some servers may not be able to correctly
3762 * handle a large READDIR or READDIRPLUS request due to bugs in
3763 * their implementation. In order to continue to interoperate
3764 * with them, this workaround is provided to limit the maximum
3765 * size of a READDIRPLUS request to 1024. In any case, the request
3766 * size is limited to MAXBSIZE.
3767 */
3768 count = MIN(uiop->uio_iov->iov_len,
3769 nfs3_shrinkreaddir ? 1024 : MAXBSIZE);
3770
3771 nrdc = NULL;
3772 #ifdef DEBUG
3773 missed = 0;
3774 #endif
3775 top:
3776 /*
3777 * Short circuit last readdir which always returns 0 bytes.
3778 * This can be done after the directory has been read through
3779 * completely at least once. This will set r_direof which
3780 * can be used to find the value of the last cookie.
3781 */
3782 mutex_enter(&rp->r_statelock);
3783 if (rp->r_direof != NULL &&
3784 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) {
3785 mutex_exit(&rp->r_statelock);
3786 #ifdef DEBUG
3787 nfs3_readdir_cache_shorts++;
3788 #endif
3789 if (eofp)
3790 *eofp = 1;
3791 if (nrdc != NULL)
3792 rddir_cache_rele(nrdc);
3793 return (0);
3794 }
3795 /*
3796 * Look for a cache entry. Cache entries are identified
3797 * by the NFS cookie value and the byte count requested.
3798 */
3799 srdc.nfs3_cookie = uiop->uio_loffset;
3800 srdc.buflen = count;
3801 rdc = avl_find(&rp->r_dir, &srdc, &where);
3802 if (rdc != NULL) {
3803 rddir_cache_hold(rdc);
3804 /*
3805 * If the cache entry is in the process of being
3806 * filled in, wait until this completes. The
3807 * RDDIRWAIT bit is set to indicate that someone
3808 * is waiting and then the thread currently
3809 * filling the entry is done, it should do a
3810 * cv_broadcast to wakeup all of the threads
3811 * waiting for it to finish.
3812 */
3813 if (rdc->flags & RDDIR) {
3814 nfs_rw_exit(&rp->r_rwlock);
3815 rdc->flags |= RDDIRWAIT;
3816 #ifdef DEBUG
3817 nfs3_readdir_cache_waits++;
3818 #endif
3819 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
3820 /*
3821 * We got interrupted, probably
3822 * the user typed ^C or an alarm
3823 * fired. We free the new entry
3824 * if we allocated one.
3825 */
3826 mutex_exit(&rp->r_statelock);
3827 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3828 RW_READER, FALSE);
3829 rddir_cache_rele(rdc);
3830 if (nrdc != NULL)
3831 rddir_cache_rele(nrdc);
3832 return (EINTR);
3833 }
3834 mutex_exit(&rp->r_statelock);
3835 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3836 RW_READER, FALSE);
3837 rddir_cache_rele(rdc);
3838 goto top;
3839 }
3840 /*
3841 * Check to see if a readdir is required to
3842 * fill the entry. If so, mark this entry
3843 * as being filled, remove our reference,
3844 * and branch to the code to fill the entry.
3845 */
3846 if (rdc->flags & RDDIRREQ) {
3847 rdc->flags &= ~RDDIRREQ;
3848 rdc->flags |= RDDIR;
3849 if (nrdc != NULL)
3850 rddir_cache_rele(nrdc);
3851 nrdc = rdc;
3852 mutex_exit(&rp->r_statelock);
3853 goto bottom;
3854 }
3855 #ifdef DEBUG
3856 if (!missed)
3857 nfs3_readdir_cache_hits++;
3858 #endif
3859 /*
3860 * If an error occurred while attempting
3861 * to fill the cache entry, just return it.
3862 */
3863 if (rdc->error) {
3864 error = rdc->error;
3865 mutex_exit(&rp->r_statelock);
3866 rddir_cache_rele(rdc);
3867 if (nrdc != NULL)
3868 rddir_cache_rele(nrdc);
3869 return (error);
3870 }
3871
3872 /*
3873 * The cache entry is complete and good,
3874 * copyout the dirent structs to the calling
3875 * thread.
3876 */
3877 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop);
3878
3879 /*
3880 * If no error occurred during the copyout,
3881 * update the offset in the uio struct to
3882 * contain the value of the next cookie
3883 * and set the eof value appropriately.
3884 */
3885 if (!error) {
3886 uiop->uio_loffset = rdc->nfs3_ncookie;
3887 if (eofp)
3888 *eofp = rdc->eof;
3889 }
3890
3891 /*
3892 * Decide whether to do readahead.
3893 *
3894 * Don't if have already read to the end of
3895 * directory. There is nothing more to read.
3896 *
3897 * Don't if the application is not doing
3898 * lookups in the directory. The readahead
3899 * is only effective if the application can
3900 * be doing work while an async thread is
3901 * handling the over the wire request.
3902 */
3903 if (rdc->eof) {
3904 rp->r_direof = rdc;
3905 doreadahead = FALSE;
3906 } else if (!(rp->r_flags & RLOOKUP))
3907 doreadahead = FALSE;
3908 else
3909 doreadahead = TRUE;
3910
3911 if (!doreadahead) {
3912 mutex_exit(&rp->r_statelock);
3913 rddir_cache_rele(rdc);
3914 if (nrdc != NULL)
3915 rddir_cache_rele(nrdc);
3916 return (error);
3917 }
3918
3919 /*
3920 * Check to see whether we found an entry
3921 * for the readahead. If so, we don't need
3922 * to do anything further, so free the new
3923 * entry if one was allocated. Otherwise,
3924 * allocate a new entry, add it to the cache,
3925 * and then initiate an asynchronous readdir
3926 * operation to fill it.
3927 */
3928 srdc.nfs3_cookie = rdc->nfs3_ncookie;
3929 srdc.buflen = count;
3930 rrdc = avl_find(&rp->r_dir, &srdc, &where);
3931 if (rrdc != NULL) {
3932 if (nrdc != NULL)
3933 rddir_cache_rele(nrdc);
3934 } else {
3935 if (nrdc != NULL)
3936 rrdc = nrdc;
3937 else {
3938 rrdc = rddir_cache_alloc(KM_NOSLEEP);
3939 }
3940 if (rrdc != NULL) {
3941 rrdc->nfs3_cookie = rdc->nfs3_ncookie;
3942 rrdc->buflen = count;
3943 avl_insert(&rp->r_dir, rrdc, where);
3944 rddir_cache_hold(rrdc);
3945 mutex_exit(&rp->r_statelock);
3946 rddir_cache_rele(rdc);
3947 #ifdef DEBUG
3948 nfs3_readdir_readahead++;
3949 #endif
3950 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir);
3951 return (error);
3952 }
3953 }
3954
3955 mutex_exit(&rp->r_statelock);
3956 rddir_cache_rele(rdc);
3957 return (error);
3958 }
3959
3960 /*
3961 * Didn't find an entry in the cache. Construct a new empty
3962 * entry and link it into the cache. Other processes attempting
3963 * to access this entry will need to wait until it is filled in.
3964 *
3965 * Since kmem_alloc may block, another pass through the cache
3966 * will need to be taken to make sure that another process
3967 * hasn't already added an entry to the cache for this request.
3968 */
3969 if (nrdc == NULL) {
3970 mutex_exit(&rp->r_statelock);
3971 nrdc = rddir_cache_alloc(KM_SLEEP);
3972 nrdc->nfs3_cookie = uiop->uio_loffset;
3973 nrdc->buflen = count;
3974 goto top;
3975 }
3976
3977 /*
3978 * Add this entry to the cache.
3979 */
3980 avl_insert(&rp->r_dir, nrdc, where);
3981 rddir_cache_hold(nrdc);
3982 mutex_exit(&rp->r_statelock);
3983
3984 bottom:
3985 #ifdef DEBUG
3986 missed = 1;
3987 nfs3_readdir_cache_misses++;
3988 #endif
3989 /*
3990 * Do the readdir. This routine decides whether to use
3991 * READDIR or READDIRPLUS.
3992 */
3993 error = do_nfs3readdir(vp, nrdc, cr);
3994
3995 /*
3996 * If this operation failed, just return the error which occurred.
3997 */
3998 if (error != 0)
3999 return (error);
4000
4001 /*
4002 * Since the RPC operation will have taken sometime and blocked
4003 * this process, another pass through the cache will need to be
4004 * taken to find the correct cache entry. It is possible that
4005 * the correct cache entry will not be there (although one was
4006 * added) because the directory changed during the RPC operation
4007 * and the readdir cache was flushed. In this case, just start
4008 * over. It is hoped that this will not happen too often... :-)
4009 */
4010 nrdc = NULL;
4011 goto top;
4012 /* NOTREACHED */
4013 }
4014
4015 static int
do_nfs3readdir(vnode_t * vp,rddir_cache * rdc,cred_t * cr)4016 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4017 {
4018 int error;
4019 rnode_t *rp;
4020 mntinfo_t *mi;
4021
4022 rp = VTOR(vp);
4023 mi = VTOMI(vp);
4024 ASSERT(nfs_zone() == mi->mi_zone);
4025 /*
4026 * Issue the proper request.
4027 *
4028 * If the server does not support READDIRPLUS, then use READDIR.
4029 *
4030 * Otherwise --
4031 * Issue a READDIRPLUS if reading to fill an empty cache or if
4032 * an application has performed a lookup in the directory which
4033 * required an over the wire lookup. The use of READDIRPLUS
4034 * will help to (re)populate the DNLC.
4035 */
4036 if (!(mi->mi_flags & MI_READDIRONLY) &&
4037 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) {
4038 if (rp->r_flags & RREADDIRPLUS) {
4039 mutex_enter(&rp->r_statelock);
4040 rp->r_flags &= ~RREADDIRPLUS;
4041 mutex_exit(&rp->r_statelock);
4042 }
4043 nfs3readdirplus(vp, rdc, cr);
4044 if (rdc->error == EOPNOTSUPP)
4045 nfs3readdir(vp, rdc, cr);
4046 } else
4047 nfs3readdir(vp, rdc, cr);
4048
4049 mutex_enter(&rp->r_statelock);
4050 rdc->flags &= ~RDDIR;
4051 if (rdc->flags & RDDIRWAIT) {
4052 rdc->flags &= ~RDDIRWAIT;
4053 cv_broadcast(&rdc->cv);
4054 }
4055 error = rdc->error;
4056 if (error)
4057 rdc->flags |= RDDIRREQ;
4058 mutex_exit(&rp->r_statelock);
4059
4060 rddir_cache_rele(rdc);
4061
4062 return (error);
4063 }
4064
4065 static void
nfs3readdir(vnode_t * vp,rddir_cache * rdc,cred_t * cr)4066 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4067 {
4068 int error;
4069 READDIR3args args;
4070 READDIR3vres res;
4071 vattr_t dva;
4072 rnode_t *rp;
4073 int douprintf;
4074 failinfo_t fi, *fip = NULL;
4075 mntinfo_t *mi;
4076 hrtime_t t;
4077
4078 rp = VTOR(vp);
4079 mi = VTOMI(vp);
4080 ASSERT(nfs_zone() == mi->mi_zone);
4081
4082 args.dir = *RTOFH3(rp);
4083 args.cookie = (cookie3)rdc->nfs3_cookie;
4084 args.cookieverf = (args.cookie == 0) ? 0 : rp->r_cookieverf;
4085 args.count = rdc->buflen;
4086
4087 /*
4088 * NFS client failover support
4089 * suppress failover unless we have a zero cookie
4090 */
4091 if (args.cookie == (cookie3) 0) {
4092 fi.vp = vp;
4093 fi.fhp = (caddr_t)&args.dir;
4094 fi.copyproc = nfs3copyfh;
4095 fi.lookupproc = nfs3lookup;
4096 fi.xattrdirproc = acl_getxattrdir3;
4097 fip = &fi;
4098 }
4099
4100 #ifdef DEBUG
4101 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4102 #else
4103 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4104 #endif
4105
4106 res.entries = (dirent64_t *)rdc->entries;
4107 res.entries_size = rdc->buflen;
4108 res.dir_attributes.fres.vap = &dva;
4109 res.dir_attributes.fres.vp = vp;
4110 res.loff = rdc->nfs3_cookie;
4111
4112 douprintf = 1;
4113
4114 if (mi->mi_io_kstats) {
4115 mutex_enter(&mi->mi_lock);
4116 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4117 mutex_exit(&mi->mi_lock);
4118 }
4119
4120 t = gethrtime();
4121
4122 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR,
4123 xdr_READDIR3args, (caddr_t)&args,
4124 xdr_READDIR3vres, (caddr_t)&res, cr,
4125 &douprintf, &res.status, 0, fip);
4126
4127 if (mi->mi_io_kstats) {
4128 mutex_enter(&mi->mi_lock);
4129 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4130 mutex_exit(&mi->mi_lock);
4131 }
4132
4133 if (error)
4134 goto err;
4135
4136 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr);
4137
4138 error = geterrno3(res.status);
4139 if (error) {
4140 PURGE_STALE_FH(error, vp, cr);
4141 goto err;
4142 }
4143
4144 if (mi->mi_io_kstats) {
4145 mutex_enter(&mi->mi_lock);
4146 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4147 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4148 mutex_exit(&mi->mi_lock);
4149 }
4150
4151 rdc->nfs3_ncookie = res.loff;
4152 rp->r_cookieverf = res.cookieverf;
4153 rdc->eof = res.eof ? 1 : 0;
4154 rdc->entlen = res.size;
4155 ASSERT(rdc->entlen <= rdc->buflen);
4156 rdc->error = 0;
4157 return;
4158
4159 err:
4160 kmem_free(rdc->entries, rdc->buflen);
4161 rdc->entries = NULL;
4162 rdc->error = error;
4163 }
4164
4165 /*
4166 * Read directory entries.
4167 * There are some weird things to look out for here. The uio_loffset
4168 * field is either 0 or it is the offset returned from a previous
4169 * readdir. It is an opaque value used by the server to find the
4170 * correct directory block to read. The count field is the number
4171 * of blocks to read on the server. This is advisory only, the server
4172 * may return only one block's worth of entries. Entries may be compressed
4173 * on the server.
4174 */
4175 static void
nfs3readdirplus(vnode_t * vp,rddir_cache * rdc,cred_t * cr)4176 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4177 {
4178 int error;
4179 READDIRPLUS3args args;
4180 READDIRPLUS3vres res;
4181 vattr_t dva;
4182 rnode_t *rp;
4183 mntinfo_t *mi;
4184 int douprintf;
4185 failinfo_t fi, *fip = NULL;
4186
4187 rp = VTOR(vp);
4188 mi = VTOMI(vp);
4189 ASSERT(nfs_zone() == mi->mi_zone);
4190
4191 args.dir = *RTOFH3(rp);
4192 args.cookie = (cookie3)rdc->nfs3_cookie;
4193 args.cookieverf = (args.cookie == 0) ? 0 : rp->r_cookieverf;
4194 args.dircount = rdc->buflen;
4195 args.maxcount = mi->mi_tsize;
4196
4197 /*
4198 * NFS client failover support
4199 * suppress failover unless we have a zero cookie
4200 */
4201 if (args.cookie == (cookie3)0) {
4202 fi.vp = vp;
4203 fi.fhp = (caddr_t)&args.dir;
4204 fi.copyproc = nfs3copyfh;
4205 fi.lookupproc = nfs3lookup;
4206 fi.xattrdirproc = acl_getxattrdir3;
4207 fip = &fi;
4208 }
4209
4210 #ifdef DEBUG
4211 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4212 #else
4213 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4214 #endif
4215
4216 res.entries = (dirent64_t *)rdc->entries;
4217 res.entries_size = rdc->buflen;
4218 res.dir_attributes.fres.vap = &dva;
4219 res.dir_attributes.fres.vp = vp;
4220 res.loff = rdc->nfs3_cookie;
4221 res.credentials = cr;
4222
4223 douprintf = 1;
4224
4225 if (mi->mi_io_kstats) {
4226 mutex_enter(&mi->mi_lock);
4227 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4228 mutex_exit(&mi->mi_lock);
4229 }
4230
4231 res.time = gethrtime();
4232
4233 error = rfs3call(mi, NFSPROC3_READDIRPLUS,
4234 xdr_READDIRPLUS3args, (caddr_t)&args,
4235 xdr_READDIRPLUS3vres, (caddr_t)&res, cr,
4236 &douprintf, &res.status, 0, fip);
4237
4238 if (mi->mi_io_kstats) {
4239 mutex_enter(&mi->mi_lock);
4240 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4241 mutex_exit(&mi->mi_lock);
4242 }
4243
4244 if (error) {
4245 goto err;
4246 }
4247
4248 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr);
4249
4250 error = geterrno3(res.status);
4251 if (error) {
4252 PURGE_STALE_FH(error, vp, cr);
4253 if (error == EOPNOTSUPP) {
4254 mutex_enter(&mi->mi_lock);
4255 mi->mi_flags |= MI_READDIRONLY;
4256 mutex_exit(&mi->mi_lock);
4257 }
4258 goto err;
4259 }
4260
4261 if (mi->mi_io_kstats) {
4262 mutex_enter(&mi->mi_lock);
4263 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4264 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4265 mutex_exit(&mi->mi_lock);
4266 }
4267
4268 rdc->nfs3_ncookie = res.loff;
4269 rp->r_cookieverf = res.cookieverf;
4270 rdc->eof = res.eof ? 1 : 0;
4271 rdc->entlen = res.size;
4272 ASSERT(rdc->entlen <= rdc->buflen);
4273 rdc->error = 0;
4274
4275 return;
4276
4277 err:
4278 kmem_free(rdc->entries, rdc->buflen);
4279 rdc->entries = NULL;
4280 rdc->error = error;
4281 }
4282
4283 #ifdef DEBUG
4284 static int nfs3_bio_do_stop = 0;
4285 #endif
4286
4287 static int
nfs3_bio(struct buf * bp,stable_how * stab_comm,cred_t * cr)4288 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr)
4289 {
4290 rnode_t *rp = VTOR(bp->b_vp);
4291 int count;
4292 int error;
4293 cred_t *cred;
4294 offset_t offset;
4295
4296 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone);
4297 offset = ldbtob(bp->b_lblkno);
4298
4299 DTRACE_IO1(start, struct buf *, bp);
4300
4301 if (bp->b_flags & B_READ) {
4302 mutex_enter(&rp->r_statelock);
4303 if (rp->r_cred != NULL) {
4304 cred = rp->r_cred;
4305 crhold(cred);
4306 } else {
4307 rp->r_cred = cr;
4308 crhold(cr);
4309 cred = cr;
4310 crhold(cred);
4311 }
4312 mutex_exit(&rp->r_statelock);
4313 read_again:
4314 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr,
4315 offset, bp->b_bcount, &bp->b_resid, cred);
4316 crfree(cred);
4317 if (!error) {
4318 if (bp->b_resid) {
4319 /*
4320 * Didn't get it all because we hit EOF,
4321 * zero all the memory beyond the EOF.
4322 */
4323 /* bzero(rdaddr + */
4324 bzero(bp->b_un.b_addr +
4325 bp->b_bcount - bp->b_resid, bp->b_resid);
4326 }
4327 mutex_enter(&rp->r_statelock);
4328 if (bp->b_resid == bp->b_bcount &&
4329 offset >= rp->r_size) {
4330 /*
4331 * We didn't read anything at all as we are
4332 * past EOF. Return an error indicator back
4333 * but don't destroy the pages (yet).
4334 */
4335 error = NFS_EOF;
4336 }
4337 mutex_exit(&rp->r_statelock);
4338 } else if (error == EACCES) {
4339 mutex_enter(&rp->r_statelock);
4340 if (cred != cr) {
4341 if (rp->r_cred != NULL)
4342 crfree(rp->r_cred);
4343 rp->r_cred = cr;
4344 crhold(cr);
4345 cred = cr;
4346 crhold(cred);
4347 mutex_exit(&rp->r_statelock);
4348 goto read_again;
4349 }
4350 mutex_exit(&rp->r_statelock);
4351 }
4352 } else {
4353 if (!(rp->r_flags & RSTALE)) {
4354 mutex_enter(&rp->r_statelock);
4355 if (rp->r_cred != NULL) {
4356 cred = rp->r_cred;
4357 crhold(cred);
4358 } else {
4359 rp->r_cred = cr;
4360 crhold(cr);
4361 cred = cr;
4362 crhold(cred);
4363 }
4364 mutex_exit(&rp->r_statelock);
4365 write_again:
4366 mutex_enter(&rp->r_statelock);
4367 count = MIN(bp->b_bcount, rp->r_size - offset);
4368 mutex_exit(&rp->r_statelock);
4369 if (count < 0)
4370 cmn_err(CE_PANIC, "nfs3_bio: write count < 0");
4371 #ifdef DEBUG
4372 if (count == 0) {
4373 zcmn_err(getzoneid(), CE_WARN,
4374 "nfs3_bio: zero length write at %lld",
4375 offset);
4376 nfs_printfhandle(&rp->r_fh);
4377 if (nfs3_bio_do_stop)
4378 debug_enter("nfs3_bio");
4379 }
4380 #endif
4381 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset,
4382 count, cred, stab_comm);
4383 if (error == EACCES) {
4384 mutex_enter(&rp->r_statelock);
4385 if (cred != cr) {
4386 if (rp->r_cred != NULL)
4387 crfree(rp->r_cred);
4388 rp->r_cred = cr;
4389 crhold(cr);
4390 crfree(cred);
4391 cred = cr;
4392 crhold(cred);
4393 mutex_exit(&rp->r_statelock);
4394 goto write_again;
4395 }
4396 mutex_exit(&rp->r_statelock);
4397 }
4398 bp->b_error = error;
4399 if (error && error != EINTR) {
4400 /*
4401 * Don't print EDQUOT errors on the console.
4402 * Don't print asynchronous EACCES errors.
4403 * Don't print EFBIG errors.
4404 * Print all other write errors.
4405 */
4406 if (error != EDQUOT && error != EFBIG &&
4407 (error != EACCES ||
4408 !(bp->b_flags & B_ASYNC)))
4409 nfs_write_error(bp->b_vp, error, cred);
4410 /*
4411 * Update r_error and r_flags as appropriate.
4412 * If the error was ESTALE, then mark the
4413 * rnode as not being writeable and save
4414 * the error status. Otherwise, save any
4415 * errors which occur from asynchronous
4416 * page invalidations. Any errors occurring
4417 * from other operations should be saved
4418 * by the caller.
4419 */
4420 mutex_enter(&rp->r_statelock);
4421 if (error == ESTALE) {
4422 rp->r_flags |= RSTALE;
4423 if (!rp->r_error)
4424 rp->r_error = error;
4425 } else if (!rp->r_error &&
4426 (bp->b_flags &
4427 (B_INVAL|B_FORCE|B_ASYNC)) ==
4428 (B_INVAL|B_FORCE|B_ASYNC)) {
4429 rp->r_error = error;
4430 }
4431 mutex_exit(&rp->r_statelock);
4432 }
4433 crfree(cred);
4434 } else {
4435 error = rp->r_error;
4436 /*
4437 * A close may have cleared r_error, if so,
4438 * propagate ESTALE error return properly
4439 */
4440 if (error == 0)
4441 error = ESTALE;
4442 }
4443 }
4444
4445 if (error != 0 && error != NFS_EOF)
4446 bp->b_flags |= B_ERROR;
4447
4448 DTRACE_IO1(done, struct buf *, bp);
4449
4450 return (error);
4451 }
4452
4453 /* ARGSUSED */
4454 static int
nfs3_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)4455 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4456 {
4457 rnode_t *rp;
4458
4459 if (nfs_zone() != VTOMI(vp)->mi_zone)
4460 return (EIO);
4461 rp = VTOR(vp);
4462
4463 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) {
4464 fidp->fid_len = rp->r_fh.fh_len;
4465 return (ENOSPC);
4466 }
4467 fidp->fid_len = rp->r_fh.fh_len;
4468 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len);
4469 return (0);
4470 }
4471
4472 /* ARGSUSED2 */
4473 static int
nfs3_rwlock(vnode_t * vp,int write_lock,caller_context_t * ctp)4474 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4475 {
4476 rnode_t *rp = VTOR(vp);
4477
4478 if (!write_lock) {
4479 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4480 return (V_WRITELOCK_FALSE);
4481 }
4482
4483 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) {
4484 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4485 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp))
4486 return (V_WRITELOCK_FALSE);
4487 nfs_rw_exit(&rp->r_rwlock);
4488 }
4489
4490 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
4491 return (V_WRITELOCK_TRUE);
4492 }
4493
4494 /* ARGSUSED */
4495 static void
nfs3_rwunlock(vnode_t * vp,int write_lock,caller_context_t * ctp)4496 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4497 {
4498 rnode_t *rp = VTOR(vp);
4499
4500 nfs_rw_exit(&rp->r_rwlock);
4501 }
4502
4503 /* ARGSUSED */
4504 static int
nfs3_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)4505 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
4506 {
4507
4508 /*
4509 * Because we stuff the readdir cookie into the offset field
4510 * someone may attempt to do an lseek with the cookie which
4511 * we want to succeed.
4512 */
4513 if (vp->v_type == VDIR)
4514 return (0);
4515 if (*noffp < 0)
4516 return (EINVAL);
4517 return (0);
4518 }
4519
4520 /*
4521 * number of nfs3_bsize blocks to read ahead.
4522 */
4523 static int nfs3_nra = 4;
4524
4525 #ifdef DEBUG
4526 static int nfs3_lostpage = 0; /* number of times we lost original page */
4527 #endif
4528
4529 /*
4530 * Return all the pages from [off..off+len) in file
4531 */
4532 /* ARGSUSED */
4533 static int
nfs3_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)4534 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4535 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4536 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4537 {
4538 rnode_t *rp;
4539 int error;
4540 mntinfo_t *mi;
4541
4542 if (vp->v_flag & VNOMAP)
4543 return (ENOSYS);
4544
4545 if (nfs_zone() != VTOMI(vp)->mi_zone)
4546 return (EIO);
4547 if (protp != NULL)
4548 *protp = PROT_ALL;
4549
4550 /*
4551 * Now valididate that the caches are up to date.
4552 */
4553 error = nfs3_validate_caches(vp, cr);
4554 if (error)
4555 return (error);
4556
4557 rp = VTOR(vp);
4558 mi = VTOMI(vp);
4559 retry:
4560 mutex_enter(&rp->r_statelock);
4561
4562 /*
4563 * Don't create dirty pages faster than they
4564 * can be cleaned so that the system doesn't
4565 * get imbalanced. If the async queue is
4566 * maxed out, then wait for it to drain before
4567 * creating more dirty pages. Also, wait for
4568 * any threads doing pagewalks in the vop_getattr
4569 * entry points so that they don't block for
4570 * long periods.
4571 */
4572 if (rw == S_CREATE) {
4573 while ((mi->mi_max_threads != 0 &&
4574 rp->r_awcount > 2 * mi->mi_max_threads) ||
4575 rp->r_gcount > 0)
4576 cv_wait(&rp->r_cv, &rp->r_statelock);
4577 }
4578
4579 /*
4580 * If we are getting called as a side effect of an nfs_write()
4581 * operation the local file size might not be extended yet.
4582 * In this case we want to be able to return pages of zeroes.
4583 */
4584 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
4585 mutex_exit(&rp->r_statelock);
4586 return (EFAULT); /* beyond EOF */
4587 }
4588
4589 mutex_exit(&rp->r_statelock);
4590
4591 error = pvn_getpages(nfs3_getapage, vp, off, len, protp,
4592 pl, plsz, seg, addr, rw, cr);
4593
4594 switch (error) {
4595 case NFS_EOF:
4596 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
4597 goto retry;
4598 case ESTALE:
4599 PURGE_STALE_FH(error, vp, cr);
4600 }
4601
4602 return (error);
4603 }
4604
4605 /*
4606 * Called from pvn_getpages to get a particular page.
4607 */
4608 /* ARGSUSED */
4609 static int
nfs3_getapage(vnode_t * vp,u_offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr)4610 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
4611 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4612 enum seg_rw rw, cred_t *cr)
4613 {
4614 rnode_t *rp;
4615 uint_t bsize;
4616 struct buf *bp;
4617 page_t *pp;
4618 u_offset_t lbn;
4619 u_offset_t io_off;
4620 u_offset_t blkoff;
4621 u_offset_t rablkoff;
4622 size_t io_len;
4623 uint_t blksize;
4624 int error;
4625 int readahead;
4626 int readahead_issued = 0;
4627 int ra_window; /* readahead window */
4628 page_t *pagefound;
4629 page_t *savepp;
4630
4631 if (nfs_zone() != VTOMI(vp)->mi_zone)
4632 return (EIO);
4633 rp = VTOR(vp);
4634 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4635
4636 reread:
4637 bp = NULL;
4638 pp = NULL;
4639 pagefound = NULL;
4640
4641 if (pl != NULL)
4642 pl[0] = NULL;
4643
4644 error = 0;
4645 lbn = off / bsize;
4646 blkoff = lbn * bsize;
4647
4648 /*
4649 * Queueing up the readahead before doing the synchronous read
4650 * results in a significant increase in read throughput because
4651 * of the increased parallelism between the async threads and
4652 * the process context.
4653 */
4654 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
4655 rw != S_CREATE &&
4656 !(vp->v_flag & VNOCACHE)) {
4657 mutex_enter(&rp->r_statelock);
4658
4659 /*
4660 * Calculate the number of readaheads to do.
4661 * a) No readaheads at offset = 0.
4662 * b) Do maximum(nfs3_nra) readaheads when the readahead
4663 * window is closed.
4664 * c) Do readaheads between 1 to (nfs3_nra - 1) depending
4665 * upon how far the readahead window is open or close.
4666 * d) No readaheads if rp->r_nextr is not within the scope
4667 * of the readahead window (random i/o).
4668 */
4669
4670 if (off == 0)
4671 readahead = 0;
4672 else if (blkoff == rp->r_nextr)
4673 readahead = nfs3_nra;
4674 else if (rp->r_nextr > blkoff &&
4675 ((ra_window = (rp->r_nextr - blkoff) / bsize)
4676 <= (nfs3_nra - 1)))
4677 readahead = nfs3_nra - ra_window;
4678 else
4679 readahead = 0;
4680
4681 rablkoff = rp->r_nextr;
4682 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
4683 mutex_exit(&rp->r_statelock);
4684 if (nfs_async_readahead(vp, rablkoff + bsize,
4685 addr + (rablkoff + bsize - off), seg, cr,
4686 nfs3_readahead) < 0) {
4687 mutex_enter(&rp->r_statelock);
4688 break;
4689 }
4690 readahead--;
4691 rablkoff += bsize;
4692 /*
4693 * Indicate that we did a readahead so
4694 * readahead offset is not updated
4695 * by the synchronous read below.
4696 */
4697 readahead_issued = 1;
4698 mutex_enter(&rp->r_statelock);
4699 /*
4700 * set readahead offset to
4701 * offset of last async readahead
4702 * request.
4703 */
4704 rp->r_nextr = rablkoff;
4705 }
4706 mutex_exit(&rp->r_statelock);
4707 }
4708
4709 again:
4710 if ((pagefound = page_exists(vp, off)) == NULL) {
4711 if (pl == NULL) {
4712 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr,
4713 nfs3_readahead);
4714 } else if (rw == S_CREATE) {
4715 /*
4716 * Block for this page is not allocated, or the offset
4717 * is beyond the current allocation size, or we're
4718 * allocating a swap slot and the page was not found,
4719 * so allocate it and return a zero page.
4720 */
4721 if ((pp = page_create_va(vp, off,
4722 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
4723 cmn_err(CE_PANIC, "nfs3_getapage: page_create");
4724 io_len = PAGESIZE;
4725 mutex_enter(&rp->r_statelock);
4726 rp->r_nextr = off + PAGESIZE;
4727 mutex_exit(&rp->r_statelock);
4728 } else {
4729 /*
4730 * Need to go to server to get a BLOCK, exception to
4731 * that being while reading at offset = 0 or doing
4732 * random i/o, in that case read only a PAGE.
4733 */
4734 mutex_enter(&rp->r_statelock);
4735 if (blkoff < rp->r_size &&
4736 blkoff + bsize >= rp->r_size) {
4737 /*
4738 * If only a block or less is left in
4739 * the file, read all that is remaining.
4740 */
4741 if (rp->r_size <= off) {
4742 /*
4743 * Trying to access beyond EOF,
4744 * set up to get at least one page.
4745 */
4746 blksize = off + PAGESIZE - blkoff;
4747 } else
4748 blksize = rp->r_size - blkoff;
4749 } else if ((off == 0) ||
4750 (off != rp->r_nextr && !readahead_issued)) {
4751 blksize = PAGESIZE;
4752 blkoff = off; /* block = page here */
4753 } else
4754 blksize = bsize;
4755 mutex_exit(&rp->r_statelock);
4756
4757 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4758 &io_len, blkoff, blksize, 0);
4759
4760 /*
4761 * Some other thread has entered the page,
4762 * so just use it.
4763 */
4764 if (pp == NULL)
4765 goto again;
4766
4767 /*
4768 * Now round the request size up to page boundaries.
4769 * This ensures that the entire page will be
4770 * initialized to zeroes if EOF is encountered.
4771 */
4772 io_len = ptob(btopr(io_len));
4773
4774 bp = pageio_setup(pp, io_len, vp, B_READ);
4775 ASSERT(bp != NULL);
4776
4777 /*
4778 * pageio_setup should have set b_addr to 0. This
4779 * is correct since we want to do I/O on a page
4780 * boundary. bp_mapin will use this addr to calculate
4781 * an offset, and then set b_addr to the kernel virtual
4782 * address it allocated for us.
4783 */
4784 ASSERT(bp->b_un.b_addr == 0);
4785
4786 bp->b_edev = 0;
4787 bp->b_dev = 0;
4788 bp->b_lblkno = lbtodb(io_off);
4789 bp->b_file = vp;
4790 bp->b_offset = (offset_t)off;
4791 bp_mapin(bp);
4792
4793 /*
4794 * If doing a write beyond what we believe is EOF,
4795 * don't bother trying to read the pages from the
4796 * server, we'll just zero the pages here. We
4797 * don't check that the rw flag is S_WRITE here
4798 * because some implementations may attempt a
4799 * read access to the buffer before copying data.
4800 */
4801 mutex_enter(&rp->r_statelock);
4802 if (io_off >= rp->r_size && seg == segkmap) {
4803 mutex_exit(&rp->r_statelock);
4804 bzero(bp->b_un.b_addr, io_len);
4805 } else {
4806 mutex_exit(&rp->r_statelock);
4807 error = nfs3_bio(bp, NULL, cr);
4808 }
4809
4810 /*
4811 * Unmap the buffer before freeing it.
4812 */
4813 bp_mapout(bp);
4814 pageio_done(bp);
4815
4816 savepp = pp;
4817 do {
4818 pp->p_fsdata = C_NOCOMMIT;
4819 } while ((pp = pp->p_next) != savepp);
4820
4821 if (error == NFS_EOF) {
4822 /*
4823 * If doing a write system call just return
4824 * zeroed pages, else user tried to get pages
4825 * beyond EOF, return error. We don't check
4826 * that the rw flag is S_WRITE here because
4827 * some implementations may attempt a read
4828 * access to the buffer before copying data.
4829 */
4830 if (seg == segkmap)
4831 error = 0;
4832 else
4833 error = EFAULT;
4834 }
4835
4836 if (!readahead_issued && !error) {
4837 mutex_enter(&rp->r_statelock);
4838 rp->r_nextr = io_off + io_len;
4839 mutex_exit(&rp->r_statelock);
4840 }
4841 }
4842 }
4843
4844 out:
4845 if (pl == NULL)
4846 return (error);
4847
4848 if (error) {
4849 if (pp != NULL)
4850 pvn_read_done(pp, B_ERROR);
4851 return (error);
4852 }
4853
4854 if (pagefound) {
4855 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
4856
4857 /*
4858 * Page exists in the cache, acquire the appropriate lock.
4859 * If this fails, start all over again.
4860 */
4861 if ((pp = page_lookup(vp, off, se)) == NULL) {
4862 #ifdef DEBUG
4863 nfs3_lostpage++;
4864 #endif
4865 goto reread;
4866 }
4867 pl[0] = pp;
4868 pl[1] = NULL;
4869 return (0);
4870 }
4871
4872 if (pp != NULL)
4873 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4874
4875 return (error);
4876 }
4877
4878 static void
nfs3_readahead(vnode_t * vp,u_offset_t blkoff,caddr_t addr,struct seg * seg,cred_t * cr)4879 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
4880 cred_t *cr)
4881 {
4882 int error;
4883 page_t *pp;
4884 u_offset_t io_off;
4885 size_t io_len;
4886 struct buf *bp;
4887 uint_t bsize, blksize;
4888 rnode_t *rp = VTOR(vp);
4889 page_t *savepp;
4890
4891 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4892 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4893
4894 mutex_enter(&rp->r_statelock);
4895 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
4896 /*
4897 * If less than a block left in file read less
4898 * than a block.
4899 */
4900 blksize = rp->r_size - blkoff;
4901 } else
4902 blksize = bsize;
4903 mutex_exit(&rp->r_statelock);
4904
4905 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
4906 &io_off, &io_len, blkoff, blksize, 1);
4907 /*
4908 * The isra flag passed to the kluster function is 1, we may have
4909 * gotten a return value of NULL for a variety of reasons (# of free
4910 * pages < minfree, someone entered the page on the vnode etc). In all
4911 * cases, we want to punt on the readahead.
4912 */
4913 if (pp == NULL)
4914 return;
4915
4916 /*
4917 * Now round the request size up to page boundaries.
4918 * This ensures that the entire page will be
4919 * initialized to zeroes if EOF is encountered.
4920 */
4921 io_len = ptob(btopr(io_len));
4922
4923 bp = pageio_setup(pp, io_len, vp, B_READ);
4924 ASSERT(bp != NULL);
4925
4926 /*
4927 * pageio_setup should have set b_addr to 0. This is correct since
4928 * we want to do I/O on a page boundary. bp_mapin() will use this addr
4929 * to calculate an offset, and then set b_addr to the kernel virtual
4930 * address it allocated for us.
4931 */
4932 ASSERT(bp->b_un.b_addr == 0);
4933
4934 bp->b_edev = 0;
4935 bp->b_dev = 0;
4936 bp->b_lblkno = lbtodb(io_off);
4937 bp->b_file = vp;
4938 bp->b_offset = (offset_t)blkoff;
4939 bp_mapin(bp);
4940
4941 /*
4942 * If doing a write beyond what we believe is EOF, don't bother trying
4943 * to read the pages from the server, we'll just zero the pages here.
4944 * We don't check that the rw flag is S_WRITE here because some
4945 * implementations may attempt a read access to the buffer before
4946 * copying data.
4947 */
4948 mutex_enter(&rp->r_statelock);
4949 if (io_off >= rp->r_size && seg == segkmap) {
4950 mutex_exit(&rp->r_statelock);
4951 bzero(bp->b_un.b_addr, io_len);
4952 error = 0;
4953 } else {
4954 mutex_exit(&rp->r_statelock);
4955 error = nfs3_bio(bp, NULL, cr);
4956 if (error == NFS_EOF)
4957 error = 0;
4958 }
4959
4960 /*
4961 * Unmap the buffer before freeing it.
4962 */
4963 bp_mapout(bp);
4964 pageio_done(bp);
4965
4966 savepp = pp;
4967 do {
4968 pp->p_fsdata = C_NOCOMMIT;
4969 } while ((pp = pp->p_next) != savepp);
4970
4971 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
4972
4973 /*
4974 * In case of error set readahead offset
4975 * to the lowest offset.
4976 * pvn_read_done() calls VN_DISPOSE to destroy the pages
4977 */
4978 if (error && rp->r_nextr > io_off) {
4979 mutex_enter(&rp->r_statelock);
4980 if (rp->r_nextr > io_off)
4981 rp->r_nextr = io_off;
4982 mutex_exit(&rp->r_statelock);
4983 }
4984 }
4985
4986 /*
4987 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
4988 * If len == 0, do from off to EOF.
4989 *
4990 * The normal cases should be len == 0 && off == 0 (entire vp list),
4991 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
4992 * (from pageout).
4993 */
4994 /* ARGSUSED */
4995 static int
nfs3_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)4996 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4997 caller_context_t *ct)
4998 {
4999 int error;
5000 rnode_t *rp;
5001
5002 ASSERT(cr != NULL);
5003
5004 /*
5005 * XXX - Why should this check be made here?
5006 */
5007 if (vp->v_flag & VNOMAP)
5008 return (ENOSYS);
5009 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp))
5010 return (0);
5011 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5012 return (EIO);
5013
5014 rp = VTOR(vp);
5015 mutex_enter(&rp->r_statelock);
5016 rp->r_count++;
5017 mutex_exit(&rp->r_statelock);
5018 error = nfs_putpages(vp, off, len, flags, cr);
5019 mutex_enter(&rp->r_statelock);
5020 rp->r_count--;
5021 cv_broadcast(&rp->r_cv);
5022 mutex_exit(&rp->r_statelock);
5023
5024 return (error);
5025 }
5026
5027 /*
5028 * Write out a single page, possibly klustering adjacent dirty pages.
5029 */
5030 int
nfs3_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)5031 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
5032 int flags, cred_t *cr)
5033 {
5034 u_offset_t io_off;
5035 u_offset_t lbn_off;
5036 u_offset_t lbn;
5037 size_t io_len;
5038 uint_t bsize;
5039 int error;
5040 rnode_t *rp;
5041
5042 ASSERT(!vn_is_readonly(vp));
5043 ASSERT(pp != NULL);
5044 ASSERT(cr != NULL);
5045 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone);
5046
5047 rp = VTOR(vp);
5048 ASSERT(rp->r_count > 0);
5049
5050 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
5051 lbn = pp->p_offset / bsize;
5052 lbn_off = lbn * bsize;
5053
5054 /*
5055 * Find a kluster that fits in one block, or in
5056 * one page if pages are bigger than blocks. If
5057 * there is less file space allocated than a whole
5058 * page, we'll shorten the i/o request below.
5059 */
5060 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
5061 roundup(bsize, PAGESIZE), flags);
5062
5063 /*
5064 * pvn_write_kluster shouldn't have returned a page with offset
5065 * behind the original page we were given. Verify that.
5066 */
5067 ASSERT((pp->p_offset / bsize) >= lbn);
5068
5069 /*
5070 * Now pp will have the list of kept dirty pages marked for
5071 * write back. It will also handle invalidation and freeing
5072 * of pages that are not dirty. Check for page length rounding
5073 * problems.
5074 */
5075 if (io_off + io_len > lbn_off + bsize) {
5076 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
5077 io_len = lbn_off + bsize - io_off;
5078 }
5079 /*
5080 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
5081 * consistent value of r_size. RMODINPROGRESS is set in writerp().
5082 * When RMODINPROGRESS is set it indicates that a uiomove() is in
5083 * progress and the r_size has not been made consistent with the
5084 * new size of the file. When the uiomove() completes the r_size is
5085 * updated and the RMODINPROGRESS flag is cleared.
5086 *
5087 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
5088 * consistent value of r_size. Without this handshaking, it is
5089 * possible that nfs(3)_bio() picks up the old value of r_size
5090 * before the uiomove() in writerp() completes. This will result
5091 * in the write through nfs(3)_bio() being dropped.
5092 *
5093 * More precisely, there is a window between the time the uiomove()
5094 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
5095 * operation intervenes in this window, the page will be picked up,
5096 * because it is dirty (it will be unlocked, unless it was
5097 * pagecreate'd). When the page is picked up as dirty, the dirty
5098 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is
5099 * checked. This will still be the old size. Therefore the page will
5100 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
5101 * the page will be found to be clean and the write will be dropped.
5102 */
5103 if (rp->r_flags & RMODINPROGRESS) {
5104 mutex_enter(&rp->r_statelock);
5105 if ((rp->r_flags & RMODINPROGRESS) &&
5106 rp->r_modaddr + MAXBSIZE > io_off &&
5107 rp->r_modaddr < io_off + io_len) {
5108 page_t *plist;
5109 /*
5110 * A write is in progress for this region of the file.
5111 * If we did not detect RMODINPROGRESS here then this
5112 * path through nfs_putapage() would eventually go to
5113 * nfs(3)_bio() and may not write out all of the data
5114 * in the pages. We end up losing data. So we decide
5115 * to set the modified bit on each page in the page
5116 * list and mark the rnode with RDIRTY. This write
5117 * will be restarted at some later time.
5118 */
5119 plist = pp;
5120 while (plist != NULL) {
5121 pp = plist;
5122 page_sub(&plist, pp);
5123 hat_setmod(pp);
5124 page_io_unlock(pp);
5125 page_unlock(pp);
5126 }
5127 rp->r_flags |= RDIRTY;
5128 mutex_exit(&rp->r_statelock);
5129 if (offp)
5130 *offp = io_off;
5131 if (lenp)
5132 *lenp = io_len;
5133 return (0);
5134 }
5135 mutex_exit(&rp->r_statelock);
5136 }
5137
5138 if (flags & B_ASYNC) {
5139 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr,
5140 nfs3_sync_putapage);
5141 } else
5142 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr);
5143
5144 if (offp)
5145 *offp = io_off;
5146 if (lenp)
5147 *lenp = io_len;
5148 return (error);
5149 }
5150
5151 static int
nfs3_sync_putapage(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)5152 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5153 int flags, cred_t *cr)
5154 {
5155 int error;
5156 rnode_t *rp;
5157
5158 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5159
5160 flags |= B_WRITE;
5161
5162 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5163
5164 rp = VTOR(vp);
5165
5166 if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
5167 error == EACCES) &&
5168 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
5169 if (!(rp->r_flags & ROUTOFSPACE)) {
5170 mutex_enter(&rp->r_statelock);
5171 rp->r_flags |= ROUTOFSPACE;
5172 mutex_exit(&rp->r_statelock);
5173 }
5174 flags |= B_ERROR;
5175 pvn_write_done(pp, flags);
5176 /*
5177 * If this was not an async thread, then try again to
5178 * write out the pages, but this time, also destroy
5179 * them whether or not the write is successful. This
5180 * will prevent memory from filling up with these
5181 * pages and destroying them is the only alternative
5182 * if they can't be written out.
5183 *
5184 * Don't do this if this is an async thread because
5185 * when the pages are unlocked in pvn_write_done,
5186 * some other thread could have come along, locked
5187 * them, and queued for an async thread. It would be
5188 * possible for all of the async threads to be tied
5189 * up waiting to lock the pages again and they would
5190 * all already be locked and waiting for an async
5191 * thread to handle them. Deadlock.
5192 */
5193 if (!(flags & B_ASYNC)) {
5194 error = nfs3_putpage(vp, io_off, io_len,
5195 B_INVAL | B_FORCE, cr, NULL);
5196 }
5197 } else {
5198 if (error)
5199 flags |= B_ERROR;
5200 else if (rp->r_flags & ROUTOFSPACE) {
5201 mutex_enter(&rp->r_statelock);
5202 rp->r_flags &= ~ROUTOFSPACE;
5203 mutex_exit(&rp->r_statelock);
5204 }
5205 pvn_write_done(pp, flags);
5206 if (freemem < desfree)
5207 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr);
5208 }
5209
5210 return (error);
5211 }
5212
5213 /* ARGSUSED */
5214 static int
nfs3_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)5215 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
5216 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5217 cred_t *cr, caller_context_t *ct)
5218 {
5219 struct segvn_crargs vn_a;
5220 int error;
5221 rnode_t *rp;
5222 struct vattr va;
5223
5224 if (nfs_zone() != VTOMI(vp)->mi_zone)
5225 return (EIO);
5226
5227 if (vp->v_flag & VNOMAP)
5228 return (ENOSYS);
5229
5230 if (off < 0 || off + len < 0)
5231 return (ENXIO);
5232
5233 if (vp->v_type != VREG)
5234 return (ENODEV);
5235
5236 /*
5237 * If there is cached data and if close-to-open consistency
5238 * checking is not turned off and if the file system is not
5239 * mounted readonly, then force an over the wire getattr.
5240 * Otherwise, just invoke nfs3getattr to get a copy of the
5241 * attributes. The attribute cache will be used unless it
5242 * is timed out and if it is, then an over the wire getattr
5243 * will be issued.
5244 */
5245 va.va_mask = AT_ALL;
5246 if (vn_has_cached_data(vp) &&
5247 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp))
5248 error = nfs3_getattr_otw(vp, &va, cr);
5249 else
5250 error = nfs3getattr(vp, &va, cr);
5251 if (error)
5252 return (error);
5253
5254 /*
5255 * Check to see if the vnode is currently marked as not cachable.
5256 * This means portions of the file are locked (through VOP_FRLOCK).
5257 * In this case the map request must be refused. We use
5258 * rp->r_lkserlock to avoid a race with concurrent lock requests.
5259 */
5260 rp = VTOR(vp);
5261
5262 /*
5263 * Atomically increment r_inmap after acquiring r_rwlock. The
5264 * idea here is to acquire r_rwlock to block read/write and
5265 * not to protect r_inmap. r_inmap will inform nfs3_read/write()
5266 * that we are in nfs3_map(). Now, r_rwlock is acquired in order
5267 * and we can prevent the deadlock that would have occurred
5268 * when nfs3_addmap() would have acquired it out of order.
5269 *
5270 * Since we are not protecting r_inmap by any lock, we do not
5271 * hold any lock when we decrement it. We atomically decrement
5272 * r_inmap after we release r_lkserlock.
5273 */
5274
5275 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp)))
5276 return (EINTR);
5277 atomic_inc_uint(&rp->r_inmap);
5278 nfs_rw_exit(&rp->r_rwlock);
5279
5280 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) {
5281 atomic_dec_uint(&rp->r_inmap);
5282 return (EINTR);
5283 }
5284
5285 if (vp->v_flag & VNOCACHE) {
5286 error = EAGAIN;
5287 goto done;
5288 }
5289
5290 /*
5291 * Don't allow concurrent locks and mapping if mandatory locking is
5292 * enabled.
5293 */
5294 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) &&
5295 MANDLOCK(vp, va.va_mode)) {
5296 error = EAGAIN;
5297 goto done;
5298 }
5299
5300 as_rangelock(as);
5301 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5302 if (error != 0) {
5303 as_rangeunlock(as);
5304 goto done;
5305 }
5306
5307 vn_a.vp = vp;
5308 vn_a.offset = off;
5309 vn_a.type = (flags & MAP_TYPE);
5310 vn_a.prot = (uchar_t)prot;
5311 vn_a.maxprot = (uchar_t)maxprot;
5312 vn_a.flags = (flags & ~MAP_TYPE);
5313 vn_a.cred = cr;
5314 vn_a.amp = NULL;
5315 vn_a.szc = 0;
5316 vn_a.lgrp_mem_policy_flags = 0;
5317
5318 error = as_map(as, *addrp, len, segvn_create, &vn_a);
5319 as_rangeunlock(as);
5320
5321 done:
5322 nfs_rw_exit(&rp->r_lkserlock);
5323 atomic_dec_uint(&rp->r_inmap);
5324 return (error);
5325 }
5326
5327 /* ARGSUSED */
5328 static int
nfs3_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)5329 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5330 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5331 cred_t *cr, caller_context_t *ct)
5332 {
5333 rnode_t *rp;
5334
5335 if (vp->v_flag & VNOMAP)
5336 return (ENOSYS);
5337 if (nfs_zone() != VTOMI(vp)->mi_zone)
5338 return (EIO);
5339
5340 rp = VTOR(vp);
5341 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
5342
5343 return (0);
5344 }
5345
5346 /* ARGSUSED */
5347 static int
nfs3_frlock(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,cred_t * cr,caller_context_t * ct)5348 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5349 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
5350 caller_context_t *ct)
5351 {
5352 netobj lm_fh3;
5353 int rc;
5354 u_offset_t start, end;
5355 rnode_t *rp;
5356 int error = 0, intr = INTR(vp);
5357
5358 if (nfs_zone() != VTOMI(vp)->mi_zone)
5359 return (EIO);
5360
5361 /* check for valid cmd parameter */
5362 switch (cmd) {
5363 case F_FLOCK:
5364 case F_FLOCKW:
5365 case F_OFD_GETLK:
5366 case F_OFD_SETLK:
5367 case F_OFD_SETLKW:
5368 return (EOPNOTSUPP);
5369 case F_GETLK:
5370 case F_SETLK:
5371 case F_SETLKW:
5372 break;
5373 default:
5374 return (EINVAL);
5375 }
5376
5377 /* Verify l_type. */
5378 switch (bfp->l_type) {
5379 case F_RDLCK:
5380 if (cmd != F_GETLK && !(flag & FREAD))
5381 return (EBADF);
5382 break;
5383 case F_WRLCK:
5384 if (cmd != F_GETLK && !(flag & FWRITE))
5385 return (EBADF);
5386 break;
5387 case F_UNLCK:
5388 intr = 0;
5389 break;
5390
5391 default:
5392 return (EINVAL);
5393 }
5394
5395 /* check the validity of the lock range */
5396 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
5397 return (rc);
5398 if (rc = flk_check_lock_data(start, end, MAXEND))
5399 return (rc);
5400
5401 /*
5402 * If the filesystem is mounted using local locking, pass the
5403 * request off to the local locking code.
5404 */
5405 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
5406 if (cmd == F_SETLK || cmd == F_SETLKW) {
5407 /*
5408 * For complete safety, we should be holding
5409 * r_lkserlock. However, we can't call
5410 * lm_safelock and then fs_frlock while
5411 * holding r_lkserlock, so just invoke
5412 * lm_safelock and expect that this will
5413 * catch enough of the cases.
5414 */
5415 if (!lm_safelock(vp, bfp, cr))
5416 return (EAGAIN);
5417 }
5418 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
5419 }
5420
5421 rp = VTOR(vp);
5422
5423 /*
5424 * Check whether the given lock request can proceed, given the
5425 * current file mappings.
5426 */
5427 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
5428 return (EINTR);
5429 if (cmd == F_SETLK || cmd == F_SETLKW) {
5430 if (!lm_safelock(vp, bfp, cr)) {
5431 rc = EAGAIN;
5432 goto done;
5433 }
5434 }
5435
5436 /*
5437 * Flush the cache after waiting for async I/O to finish. For new
5438 * locks, this is so that the process gets the latest bits from the
5439 * server. For unlocks, this is so that other clients see the
5440 * latest bits once the file has been unlocked. If currently dirty
5441 * pages can't be flushed, then don't allow a lock to be set. But
5442 * allow unlocks to succeed, to avoid having orphan locks on the
5443 * server.
5444 */
5445 if (cmd != F_GETLK) {
5446 mutex_enter(&rp->r_statelock);
5447 while (rp->r_count > 0) {
5448 if (intr) {
5449 klwp_t *lwp = ttolwp(curthread);
5450
5451 if (lwp != NULL)
5452 lwp->lwp_nostop++;
5453 if (cv_wait_sig(&rp->r_cv,
5454 &rp->r_statelock) == 0) {
5455 if (lwp != NULL)
5456 lwp->lwp_nostop--;
5457 rc = EINTR;
5458 break;
5459 }
5460 if (lwp != NULL)
5461 lwp->lwp_nostop--;
5462 } else
5463 cv_wait(&rp->r_cv, &rp->r_statelock);
5464 }
5465 mutex_exit(&rp->r_statelock);
5466 if (rc != 0)
5467 goto done;
5468 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
5469 if (error) {
5470 if (error == ENOSPC || error == EDQUOT) {
5471 mutex_enter(&rp->r_statelock);
5472 if (!rp->r_error)
5473 rp->r_error = error;
5474 mutex_exit(&rp->r_statelock);
5475 }
5476 if (bfp->l_type != F_UNLCK) {
5477 rc = ENOLCK;
5478 goto done;
5479 }
5480 }
5481 }
5482
5483 lm_fh3.n_len = VTOFH3(vp)->fh3_length;
5484 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
5485
5486 /*
5487 * Call the lock manager to do the real work of contacting
5488 * the server and obtaining the lock.
5489 */
5490 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp);
5491
5492 if (rc == 0)
5493 nfs_lockcompletion(vp, cmd);
5494
5495 done:
5496 nfs_rw_exit(&rp->r_lkserlock);
5497 return (rc);
5498 }
5499
5500 /*
5501 * Free storage space associated with the specified vnode. The portion
5502 * to be freed is specified by bfp->l_start and bfp->l_len (already
5503 * normalized to a "whence" of 0).
5504 *
5505 * This is an experimental facility whose continued existence is not
5506 * guaranteed. Currently, we only support the special case
5507 * of l_len == 0, meaning free to end of file.
5508 */
5509 /* ARGSUSED */
5510 static int
nfs3_space(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)5511 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5512 offset_t offset, cred_t *cr, caller_context_t *ct)
5513 {
5514 int error;
5515
5516 ASSERT(vp->v_type == VREG);
5517 if (cmd != F_FREESP)
5518 return (EINVAL);
5519 if (nfs_zone() != VTOMI(vp)->mi_zone)
5520 return (EIO);
5521
5522 error = convoff(vp, bfp, 0, offset);
5523 if (!error) {
5524 ASSERT(bfp->l_start >= 0);
5525 if (bfp->l_len == 0) {
5526 struct vattr va;
5527
5528 /*
5529 * ftruncate should not change the ctime and
5530 * mtime if we truncate the file to its
5531 * previous size.
5532 */
5533 va.va_mask = AT_SIZE;
5534 error = nfs3getattr(vp, &va, cr);
5535 if (error || va.va_size == bfp->l_start)
5536 return (error);
5537 va.va_mask = AT_SIZE;
5538 va.va_size = bfp->l_start;
5539 error = nfs3setattr(vp, &va, 0, cr);
5540
5541 if (error == 0 && bfp->l_start == 0)
5542 vnevent_truncate(vp, ct);
5543 } else
5544 error = EINVAL;
5545 }
5546
5547 return (error);
5548 }
5549
5550 /* ARGSUSED */
5551 static int
nfs3_realvp(vnode_t * vp,vnode_t ** vpp,caller_context_t * ct)5552 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
5553 {
5554
5555 return (EINVAL);
5556 }
5557
5558 /*
5559 * Setup and add an address space callback to do the work of the delmap call.
5560 * The callback will (and must be) deleted in the actual callback function.
5561 *
5562 * This is done in order to take care of the problem that we have with holding
5563 * the address space's a_lock for a long period of time (e.g. if the NFS server
5564 * is down). Callbacks will be executed in the address space code while the
5565 * a_lock is not held. Holding the address space's a_lock causes things such
5566 * as ps and fork to hang because they are trying to acquire this lock as well.
5567 */
5568 /* ARGSUSED */
5569 static int
nfs3_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)5570 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5571 size_t len, uint_t prot, uint_t maxprot, uint_t flags,
5572 cred_t *cr, caller_context_t *ct)
5573 {
5574 int caller_found;
5575 int error;
5576 rnode_t *rp;
5577 nfs_delmap_args_t *dmapp;
5578 nfs_delmapcall_t *delmap_call;
5579
5580 if (vp->v_flag & VNOMAP)
5581 return (ENOSYS);
5582 /*
5583 * A process may not change zones if it has NFS pages mmap'ed
5584 * in, so we can't legitimately get here from the wrong zone.
5585 */
5586 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5587
5588 rp = VTOR(vp);
5589
5590 /*
5591 * The way that the address space of this process deletes its mapping
5592 * of this file is via the following call chains:
5593 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
5594 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
5595 *
5596 * With the use of address space callbacks we are allowed to drop the
5597 * address space lock, a_lock, while executing the NFS operations that
5598 * need to go over the wire. Returning EAGAIN to the caller of this
5599 * function is what drives the execution of the callback that we add
5600 * below. The callback will be executed by the address space code
5601 * after dropping the a_lock. When the callback is finished, since
5602 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
5603 * is called again on the same segment to finish the rest of the work
5604 * that needs to happen during unmapping.
5605 *
5606 * This action of calling back into the segment driver causes
5607 * nfs3_delmap() to get called again, but since the callback was
5608 * already executed at this point, it already did the work and there
5609 * is nothing left for us to do.
5610 *
5611 * To Summarize:
5612 * - The first time nfs3_delmap is called by the current thread is when
5613 * we add the caller associated with this delmap to the delmap caller
5614 * list, add the callback, and return EAGAIN.
5615 * - The second time in this call chain when nfs3_delmap is called we
5616 * will find this caller in the delmap caller list and realize there
5617 * is no more work to do thus removing this caller from the list and
5618 * returning the error that was set in the callback execution.
5619 */
5620 caller_found = nfs_find_and_delete_delmapcall(rp, &error);
5621 if (caller_found) {
5622 /*
5623 * 'error' is from the actual delmap operations. To avoid
5624 * hangs, we need to handle the return of EAGAIN differently
5625 * since this is what drives the callback execution.
5626 * In this case, we don't want to return EAGAIN and do the
5627 * callback execution because there are none to execute.
5628 */
5629 if (error == EAGAIN)
5630 return (0);
5631 else
5632 return (error);
5633 }
5634
5635 /* current caller was not in the list */
5636 delmap_call = nfs_init_delmapcall();
5637
5638 mutex_enter(&rp->r_statelock);
5639 list_insert_tail(&rp->r_indelmap, delmap_call);
5640 mutex_exit(&rp->r_statelock);
5641
5642 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP);
5643
5644 dmapp->vp = vp;
5645 dmapp->off = off;
5646 dmapp->addr = addr;
5647 dmapp->len = len;
5648 dmapp->prot = prot;
5649 dmapp->maxprot = maxprot;
5650 dmapp->flags = flags;
5651 dmapp->cr = cr;
5652 dmapp->caller = delmap_call;
5653
5654 error = as_add_callback(as, nfs3_delmap_callback, dmapp,
5655 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
5656
5657 return (error ? error : EAGAIN);
5658 }
5659
5660 /*
5661 * Remove some pages from an mmap'd vnode. Just update the
5662 * count of pages. If doing close-to-open, then flush and
5663 * commit all of the pages associated with this file.
5664 * Otherwise, start an asynchronous page flush to write out
5665 * any dirty pages. This will also associate a credential
5666 * with the rnode which can be used to write the pages.
5667 */
5668 /* ARGSUSED */
5669 static void
nfs3_delmap_callback(struct as * as,void * arg,uint_t event)5670 nfs3_delmap_callback(struct as *as, void *arg, uint_t event)
5671 {
5672 int error;
5673 rnode_t *rp;
5674 mntinfo_t *mi;
5675 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg;
5676
5677 rp = VTOR(dmapp->vp);
5678 mi = VTOMI(dmapp->vp);
5679
5680 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
5681 ASSERT(rp->r_mapcnt >= 0);
5682
5683 /*
5684 * Initiate a page flush and potential commit if there are
5685 * pages, the file system was not mounted readonly, the segment
5686 * was mapped shared, and the pages themselves were writeable.
5687 */
5688 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) &&
5689 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
5690 mutex_enter(&rp->r_statelock);
5691 rp->r_flags |= RDIRTY;
5692 mutex_exit(&rp->r_statelock);
5693 /*
5694 * If this is a cross-zone access a sync putpage won't work, so
5695 * the best we can do is try an async putpage. That seems
5696 * better than something more draconian such as discarding the
5697 * dirty pages.
5698 */
5699 if ((mi->mi_flags & MI_NOCTO) ||
5700 nfs_zone() != mi->mi_zone)
5701 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5702 B_ASYNC, dmapp->cr, NULL);
5703 else
5704 error = nfs3_putpage_commit(dmapp->vp, dmapp->off,
5705 dmapp->len, dmapp->cr);
5706 if (!error) {
5707 mutex_enter(&rp->r_statelock);
5708 error = rp->r_error;
5709 rp->r_error = 0;
5710 mutex_exit(&rp->r_statelock);
5711 }
5712 } else
5713 error = 0;
5714
5715 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO))
5716 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5717 B_INVAL, dmapp->cr, NULL);
5718
5719 dmapp->caller->error = error;
5720 (void) as_delete_callback(as, arg);
5721 kmem_free(dmapp, sizeof (nfs_delmap_args_t));
5722 }
5723
5724 static int nfs3_pathconf_disable_cache = 0;
5725
5726 #ifdef DEBUG
5727 static int nfs3_pathconf_cache_hits = 0;
5728 static int nfs3_pathconf_cache_misses = 0;
5729 #endif
5730
5731 /* ARGSUSED */
5732 static int
nfs3_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)5733 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5734 caller_context_t *ct)
5735 {
5736 int error;
5737 PATHCONF3args args;
5738 PATHCONF3res res;
5739 int douprintf;
5740 failinfo_t fi;
5741 rnode_t *rp;
5742 hrtime_t t;
5743
5744 if (nfs_zone() != VTOMI(vp)->mi_zone)
5745 return (EIO);
5746 /*
5747 * Large file spec - need to base answer on info stored
5748 * on original FSINFO response.
5749 */
5750 if (cmd == _PC_FILESIZEBITS) {
5751 unsigned long long ll;
5752 long l = 1;
5753
5754 ll = VTOMI(vp)->mi_maxfilesize;
5755
5756 if (ll == 0) {
5757 *valp = 0;
5758 return (0);
5759 }
5760
5761 if (ll & 0xffffffff00000000) {
5762 l += 32; ll >>= 32;
5763 }
5764 if (ll & 0xffff0000) {
5765 l += 16; ll >>= 16;
5766 }
5767 if (ll & 0xff00) {
5768 l += 8; ll >>= 8;
5769 }
5770 if (ll & 0xf0) {
5771 l += 4; ll >>= 4;
5772 }
5773 if (ll & 0xc) {
5774 l += 2; ll >>= 2;
5775 }
5776 if (ll & 0x2)
5777 l += 2;
5778 else if (ll & 0x1)
5779 l += 1;
5780 *valp = l;
5781 return (0);
5782 }
5783
5784 if (cmd == _PC_ACL_ENABLED) {
5785 *valp = _ACL_ACLENT_ENABLED;
5786 return (0);
5787 }
5788
5789 if (cmd == _PC_XATTR_EXISTS) {
5790 error = 0;
5791 *valp = 0;
5792 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5793 vnode_t *avp;
5794 rnode_t *rp;
5795 int error = 0;
5796 mntinfo_t *mi = VTOMI(vp);
5797
5798 if (!(mi->mi_flags & MI_EXTATTR))
5799 return (0);
5800
5801 rp = VTOR(vp);
5802 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER,
5803 INTR(vp)))
5804 return (EINTR);
5805
5806 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr);
5807 if (error || avp == NULL)
5808 error = acl_getxattrdir3(vp, &avp, 0, cr, 0);
5809
5810 nfs_rw_exit(&rp->r_rwlock);
5811
5812 if (error == 0 && avp != NULL) {
5813 error = do_xattr_exists_check(avp, valp, cr);
5814 VN_RELE(avp);
5815 } else if (error == ENOENT) {
5816 error = 0;
5817 *valp = 0;
5818 }
5819 }
5820 return (error);
5821 }
5822
5823 rp = VTOR(vp);
5824 if (rp->r_pathconf != NULL) {
5825 mutex_enter(&rp->r_statelock);
5826 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) {
5827 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf));
5828 rp->r_pathconf = NULL;
5829 }
5830 if (rp->r_pathconf != NULL) {
5831 error = 0;
5832 switch (cmd) {
5833 case _PC_LINK_MAX:
5834 *valp = rp->r_pathconf->link_max;
5835 break;
5836 case _PC_NAME_MAX:
5837 *valp = rp->r_pathconf->name_max;
5838 break;
5839 case _PC_PATH_MAX:
5840 case _PC_SYMLINK_MAX:
5841 *valp = MAXPATHLEN;
5842 break;
5843 case _PC_CHOWN_RESTRICTED:
5844 *valp = rp->r_pathconf->chown_restricted;
5845 break;
5846 case _PC_NO_TRUNC:
5847 *valp = rp->r_pathconf->no_trunc;
5848 break;
5849 default:
5850 error = EINVAL;
5851 break;
5852 }
5853 mutex_exit(&rp->r_statelock);
5854 #ifdef DEBUG
5855 nfs3_pathconf_cache_hits++;
5856 #endif
5857 return (error);
5858 }
5859 mutex_exit(&rp->r_statelock);
5860 }
5861 #ifdef DEBUG
5862 nfs3_pathconf_cache_misses++;
5863 #endif
5864
5865 args.object = *VTOFH3(vp);
5866 fi.vp = vp;
5867 fi.fhp = (caddr_t)&args.object;
5868 fi.copyproc = nfs3copyfh;
5869 fi.lookupproc = nfs3lookup;
5870 fi.xattrdirproc = acl_getxattrdir3;
5871
5872 douprintf = 1;
5873
5874 t = gethrtime();
5875
5876 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF,
5877 xdr_nfs_fh3, (caddr_t)&args,
5878 xdr_PATHCONF3res, (caddr_t)&res, cr,
5879 &douprintf, &res.status, 0, &fi);
5880
5881 if (error)
5882 return (error);
5883
5884 error = geterrno3(res.status);
5885
5886 if (!error) {
5887 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
5888 if (!nfs3_pathconf_disable_cache) {
5889 mutex_enter(&rp->r_statelock);
5890 if (rp->r_pathconf == NULL) {
5891 rp->r_pathconf = kmem_alloc(
5892 sizeof (*rp->r_pathconf), KM_NOSLEEP);
5893 if (rp->r_pathconf != NULL)
5894 *rp->r_pathconf = res.resok.info;
5895 }
5896 mutex_exit(&rp->r_statelock);
5897 }
5898 switch (cmd) {
5899 case _PC_LINK_MAX:
5900 *valp = res.resok.info.link_max;
5901 break;
5902 case _PC_NAME_MAX:
5903 *valp = res.resok.info.name_max;
5904 break;
5905 case _PC_PATH_MAX:
5906 case _PC_SYMLINK_MAX:
5907 *valp = MAXPATHLEN;
5908 break;
5909 case _PC_CHOWN_RESTRICTED:
5910 *valp = res.resok.info.chown_restricted;
5911 break;
5912 case _PC_NO_TRUNC:
5913 *valp = res.resok.info.no_trunc;
5914 break;
5915 default:
5916 return (EINVAL);
5917 }
5918 } else {
5919 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
5920 PURGE_STALE_FH(error, vp, cr);
5921 }
5922
5923 return (error);
5924 }
5925
5926 /*
5927 * Called by async thread to do synchronous pageio. Do the i/o, wait
5928 * for it to complete, and cleanup the page list when done.
5929 */
5930 static int
nfs3_sync_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)5931 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5932 int flags, cred_t *cr)
5933 {
5934 int error;
5935
5936 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5937 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5938 if (flags & B_READ)
5939 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
5940 else
5941 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
5942 return (error);
5943 }
5944
5945 /* ARGSUSED */
5946 static int
nfs3_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,caller_context_t * ct)5947 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5948 int flags, cred_t *cr, caller_context_t *ct)
5949 {
5950 int error;
5951 rnode_t *rp;
5952
5953 if (pp == NULL)
5954 return (EINVAL);
5955 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5956 return (EIO);
5957
5958 rp = VTOR(vp);
5959 mutex_enter(&rp->r_statelock);
5960 rp->r_count++;
5961 mutex_exit(&rp->r_statelock);
5962
5963 if (flags & B_ASYNC) {
5964 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr,
5965 nfs3_sync_pageio);
5966 } else
5967 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5968 mutex_enter(&rp->r_statelock);
5969 rp->r_count--;
5970 cv_broadcast(&rp->r_cv);
5971 mutex_exit(&rp->r_statelock);
5972 return (error);
5973 }
5974
5975 /* ARGSUSED */
5976 static void
nfs3_dispose(vnode_t * vp,page_t * pp,int fl,int dn,cred_t * cr,caller_context_t * ct)5977 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
5978 caller_context_t *ct)
5979 {
5980 int error;
5981 rnode_t *rp;
5982 page_t *plist;
5983 page_t *pptr;
5984 offset3 offset;
5985 count3 len;
5986 k_sigset_t smask;
5987
5988 /*
5989 * We should get called with fl equal to either B_FREE or
5990 * B_INVAL. Any other value is illegal.
5991 *
5992 * The page that we are either supposed to free or destroy
5993 * should be exclusive locked and its io lock should not
5994 * be held.
5995 */
5996 ASSERT(fl == B_FREE || fl == B_INVAL);
5997 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
5998 rp = VTOR(vp);
5999
6000 /*
6001 * If the page doesn't need to be committed or we shouldn't
6002 * even bother attempting to commit it, then just make sure
6003 * that the p_fsdata byte is clear and then either free or
6004 * destroy the page as appropriate.
6005 */
6006 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) {
6007 pp->p_fsdata = C_NOCOMMIT;
6008 if (fl == B_FREE)
6009 page_free(pp, dn);
6010 else
6011 page_destroy(pp, dn);
6012 return;
6013 }
6014
6015 /*
6016 * If there is a page invalidation operation going on, then
6017 * if this is one of the pages being destroyed, then just
6018 * clear the p_fsdata byte and then either free or destroy
6019 * the page as appropriate.
6020 */
6021 mutex_enter(&rp->r_statelock);
6022 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
6023 mutex_exit(&rp->r_statelock);
6024 pp->p_fsdata = C_NOCOMMIT;
6025 if (fl == B_FREE)
6026 page_free(pp, dn);
6027 else
6028 page_destroy(pp, dn);
6029 return;
6030 }
6031
6032 /*
6033 * If we are freeing this page and someone else is already
6034 * waiting to do a commit, then just unlock the page and
6035 * return. That other thread will take care of commiting
6036 * this page. The page can be freed sometime after the
6037 * commit has finished. Otherwise, if the page is marked
6038 * as delay commit, then we may be getting called from
6039 * pvn_write_done, one page at a time. This could result
6040 * in one commit per page, so we end up doing lots of small
6041 * commits instead of fewer larger commits. This is bad,
6042 * we want do as few commits as possible.
6043 */
6044 if (fl == B_FREE) {
6045 if (rp->r_flags & RCOMMITWAIT) {
6046 page_unlock(pp);
6047 mutex_exit(&rp->r_statelock);
6048 return;
6049 }
6050 if (pp->p_fsdata == C_DELAYCOMMIT) {
6051 pp->p_fsdata = C_COMMIT;
6052 page_unlock(pp);
6053 mutex_exit(&rp->r_statelock);
6054 return;
6055 }
6056 }
6057
6058 /*
6059 * Check to see if there is a signal which would prevent an
6060 * attempt to commit the pages from being successful. If so,
6061 * then don't bother with all of the work to gather pages and
6062 * generate the unsuccessful RPC. Just return from here and
6063 * let the page be committed at some later time.
6064 */
6065 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
6066 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
6067 sigunintr(&smask);
6068 page_unlock(pp);
6069 mutex_exit(&rp->r_statelock);
6070 return;
6071 }
6072 sigunintr(&smask);
6073
6074 /*
6075 * We are starting to need to commit pages, so let's try
6076 * to commit as many as possible at once to reduce the
6077 * overhead.
6078 *
6079 * Set the `commit inprogress' state bit. We must
6080 * first wait until any current one finishes. Then
6081 * we initialize the c_pages list with this page.
6082 */
6083 while (rp->r_flags & RCOMMIT) {
6084 rp->r_flags |= RCOMMITWAIT;
6085 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6086 rp->r_flags &= ~RCOMMITWAIT;
6087 }
6088 rp->r_flags |= RCOMMIT;
6089 mutex_exit(&rp->r_statelock);
6090 ASSERT(rp->r_commit.c_pages == NULL);
6091 rp->r_commit.c_pages = pp;
6092 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6093 rp->r_commit.c_commlen = PAGESIZE;
6094
6095 /*
6096 * Gather together all other pages which can be committed.
6097 * They will all be chained off r_commit.c_pages.
6098 */
6099 nfs3_get_commit(vp);
6100
6101 /*
6102 * Clear the `commit inprogress' status and disconnect
6103 * the list of pages to be committed from the rnode.
6104 * At this same time, we also save the starting offset
6105 * and length of data to be committed on the server.
6106 */
6107 plist = rp->r_commit.c_pages;
6108 rp->r_commit.c_pages = NULL;
6109 offset = rp->r_commit.c_commbase;
6110 len = rp->r_commit.c_commlen;
6111 mutex_enter(&rp->r_statelock);
6112 rp->r_flags &= ~RCOMMIT;
6113 cv_broadcast(&rp->r_commit.c_cv);
6114 mutex_exit(&rp->r_statelock);
6115
6116 if (curproc == proc_pageout || curproc == proc_fsflush ||
6117 nfs_zone() != VTOMI(vp)->mi_zone) {
6118 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit);
6119 return;
6120 }
6121
6122 /*
6123 * Actually generate the COMMIT3 over the wire operation.
6124 */
6125 error = nfs3_commit(vp, offset, len, cr);
6126
6127 /*
6128 * If we got an error during the commit, just unlock all
6129 * of the pages. The pages will get retransmitted to the
6130 * server during a putpage operation.
6131 */
6132 if (error) {
6133 while (plist != NULL) {
6134 pptr = plist;
6135 page_sub(&plist, pptr);
6136 page_unlock(pptr);
6137 }
6138 return;
6139 }
6140
6141 /*
6142 * We've tried as hard as we can to commit the data to stable
6143 * storage on the server. We release the rest of the pages
6144 * and clear the commit required state. They will be put
6145 * onto the tail of the cachelist if they are nolonger
6146 * mapped.
6147 */
6148 while (plist != pp) {
6149 pptr = plist;
6150 page_sub(&plist, pptr);
6151 pptr->p_fsdata = C_NOCOMMIT;
6152 (void) page_release(pptr, 1);
6153 }
6154
6155 /*
6156 * It is possible that nfs3_commit didn't return error but
6157 * some other thread has modified the page we are going
6158 * to free/destroy.
6159 * In this case we need to rewrite the page. Do an explicit check
6160 * before attempting to free/destroy the page. If modified, needs to
6161 * be rewritten so unlock the page and return.
6162 */
6163 if (hat_ismod(pp)) {
6164 pp->p_fsdata = C_NOCOMMIT;
6165 page_unlock(pp);
6166 return;
6167 }
6168
6169 /*
6170 * Now, as appropriate, either free or destroy the page
6171 * that we were called with.
6172 */
6173 pp->p_fsdata = C_NOCOMMIT;
6174 if (fl == B_FREE)
6175 page_free(pp, dn);
6176 else
6177 page_destroy(pp, dn);
6178 }
6179
6180 static int
nfs3_commit(vnode_t * vp,offset3 offset,count3 count,cred_t * cr)6181 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr)
6182 {
6183 int error;
6184 rnode_t *rp;
6185 COMMIT3args args;
6186 COMMIT3res res;
6187 int douprintf;
6188 cred_t *cred;
6189
6190 rp = VTOR(vp);
6191 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6192
6193 mutex_enter(&rp->r_statelock);
6194 if (rp->r_cred != NULL) {
6195 cred = rp->r_cred;
6196 crhold(cred);
6197 } else {
6198 rp->r_cred = cr;
6199 crhold(cr);
6200 cred = cr;
6201 crhold(cred);
6202 }
6203 mutex_exit(&rp->r_statelock);
6204
6205 args.file = *VTOFH3(vp);
6206 args.offset = offset;
6207 args.count = count;
6208
6209 doitagain:
6210 douprintf = 1;
6211 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT,
6212 xdr_COMMIT3args, (caddr_t)&args,
6213 xdr_COMMIT3res, (caddr_t)&res, cred,
6214 &douprintf, &res.status, 0, NULL);
6215
6216 crfree(cred);
6217
6218 if (error)
6219 return (error);
6220
6221 error = geterrno3(res.status);
6222 if (!error) {
6223 ASSERT(rp->r_flags & RHAVEVERF);
6224 mutex_enter(&rp->r_statelock);
6225 if (rp->r_verf == res.resok.verf) {
6226 mutex_exit(&rp->r_statelock);
6227 return (0);
6228 }
6229 nfs3_set_mod(vp);
6230 rp->r_verf = res.resok.verf;
6231 mutex_exit(&rp->r_statelock);
6232 error = NFS_VERF_MISMATCH;
6233 } else {
6234 if (error == EACCES) {
6235 mutex_enter(&rp->r_statelock);
6236 if (cred != cr) {
6237 if (rp->r_cred != NULL)
6238 crfree(rp->r_cred);
6239 rp->r_cred = cr;
6240 crhold(cr);
6241 cred = cr;
6242 crhold(cred);
6243 mutex_exit(&rp->r_statelock);
6244 goto doitagain;
6245 }
6246 mutex_exit(&rp->r_statelock);
6247 }
6248 /*
6249 * Can't do a PURGE_STALE_FH here because this
6250 * can cause a deadlock. nfs3_commit can
6251 * be called from nfs3_dispose which can be called
6252 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH
6253 * can call back to pvn_vplist_dirty.
6254 */
6255 if (error == ESTALE) {
6256 mutex_enter(&rp->r_statelock);
6257 rp->r_flags |= RSTALE;
6258 if (!rp->r_error)
6259 rp->r_error = error;
6260 mutex_exit(&rp->r_statelock);
6261 PURGE_ATTRCACHE(vp);
6262 } else {
6263 mutex_enter(&rp->r_statelock);
6264 if (!rp->r_error)
6265 rp->r_error = error;
6266 mutex_exit(&rp->r_statelock);
6267 }
6268 }
6269
6270 return (error);
6271 }
6272
6273 static void
nfs3_set_mod(vnode_t * vp)6274 nfs3_set_mod(vnode_t *vp)
6275 {
6276 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6277
6278 pvn_vplist_setdirty(vp, nfs_setmod_check);
6279 }
6280
6281 /*
6282 * This routine is used to gather together a page list of the pages
6283 * which are to be committed on the server. This routine must not
6284 * be called if the calling thread holds any locked pages.
6285 *
6286 * The calling thread must have set RCOMMIT. This bit is used to
6287 * serialize access to the commit structure in the rnode. As long
6288 * as the thread has set RCOMMIT, then it can manipulate the commit
6289 * structure without requiring any other locks.
6290 */
6291 static void
nfs3_get_commit(vnode_t * vp)6292 nfs3_get_commit(vnode_t *vp)
6293 {
6294 rnode_t *rp;
6295 page_t *pp;
6296 kmutex_t *vphm;
6297
6298 rp = VTOR(vp);
6299
6300 ASSERT(rp->r_flags & RCOMMIT);
6301
6302 vphm = page_vnode_mutex(vp);
6303 mutex_enter(vphm);
6304
6305 /*
6306 * If there are no pages associated with this vnode, then
6307 * just return.
6308 */
6309 if ((pp = vp->v_pages) == NULL) {
6310 mutex_exit(vphm);
6311 return;
6312 }
6313
6314 /*
6315 * Step through all of the pages associated with this vnode
6316 * looking for pages which need to be committed.
6317 */
6318 do {
6319 /* Skip marker pages. */
6320 if (pp->p_hash == PVN_VPLIST_HASH_TAG)
6321 continue;
6322
6323 /*
6324 * If this page does not need to be committed or is
6325 * modified, then just skip it.
6326 */
6327 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
6328 continue;
6329
6330 /*
6331 * Attempt to lock the page. If we can't, then
6332 * someone else is messing with it and we will
6333 * just skip it.
6334 */
6335 if (!page_trylock(pp, SE_EXCL))
6336 continue;
6337
6338 /*
6339 * If this page does not need to be committed or is
6340 * modified, then just skip it. Recheck now that
6341 * the page is locked.
6342 */
6343 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6344 page_unlock(pp);
6345 continue;
6346 }
6347
6348 if (PP_ISFREE(pp)) {
6349 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free",
6350 (void *)pp);
6351 }
6352
6353 /*
6354 * The page needs to be committed and we locked it.
6355 * Update the base and length parameters and add it
6356 * to r_pages.
6357 */
6358 if (rp->r_commit.c_pages == NULL) {
6359 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6360 rp->r_commit.c_commlen = PAGESIZE;
6361 } else if (pp->p_offset < rp->r_commit.c_commbase) {
6362 rp->r_commit.c_commlen = rp->r_commit.c_commbase -
6363 (offset3)pp->p_offset + rp->r_commit.c_commlen;
6364 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6365 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
6366 <= pp->p_offset) {
6367 rp->r_commit.c_commlen = (offset3)pp->p_offset -
6368 rp->r_commit.c_commbase + PAGESIZE;
6369 }
6370 page_add(&rp->r_commit.c_pages, pp);
6371 } while ((pp = pp->p_vpnext) != vp->v_pages);
6372
6373 mutex_exit(vphm);
6374 }
6375
6376 /*
6377 * This routine is used to gather together a page list of the pages
6378 * which are to be committed on the server. This routine must not
6379 * be called if the calling thread holds any locked pages.
6380 *
6381 * The calling thread must have set RCOMMIT. This bit is used to
6382 * serialize access to the commit structure in the rnode. As long
6383 * as the thread has set RCOMMIT, then it can manipulate the commit
6384 * structure without requiring any other locks.
6385 */
6386 static void
nfs3_get_commit_range(vnode_t * vp,u_offset_t soff,size_t len)6387 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
6388 {
6389
6390 rnode_t *rp;
6391 page_t *pp;
6392 u_offset_t end;
6393 u_offset_t off;
6394
6395 ASSERT(len != 0);
6396
6397 rp = VTOR(vp);
6398
6399 ASSERT(rp->r_flags & RCOMMIT);
6400 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6401
6402 /*
6403 * If there are no pages associated with this vnode, then
6404 * just return.
6405 */
6406 if ((pp = vp->v_pages) == NULL)
6407 return;
6408
6409 /*
6410 * Calculate the ending offset.
6411 */
6412 end = soff + len;
6413
6414 for (off = soff; off < end; off += PAGESIZE) {
6415 /*
6416 * Lookup each page by vp, offset.
6417 */
6418 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
6419 continue;
6420
6421 /*
6422 * If this page does not need to be committed or is
6423 * modified, then just skip it.
6424 */
6425 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6426 page_unlock(pp);
6427 continue;
6428 }
6429
6430 ASSERT(PP_ISFREE(pp) == 0);
6431
6432 /*
6433 * The page needs to be committed and we locked it.
6434 * Update the base and length parameters and add it
6435 * to r_pages.
6436 */
6437 if (rp->r_commit.c_pages == NULL) {
6438 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6439 rp->r_commit.c_commlen = PAGESIZE;
6440 } else {
6441 rp->r_commit.c_commlen = (offset3)pp->p_offset -
6442 rp->r_commit.c_commbase + PAGESIZE;
6443 }
6444 page_add(&rp->r_commit.c_pages, pp);
6445 }
6446 }
6447
6448 static int
nfs3_putpage_commit(vnode_t * vp,offset_t poff,size_t plen,cred_t * cr)6449 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
6450 {
6451 int error;
6452 writeverf3 write_verf;
6453 rnode_t *rp = VTOR(vp);
6454
6455 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6456 /*
6457 * Flush the data portion of the file and then commit any
6458 * portions which need to be committed. This may need to
6459 * be done twice if the server has changed state since
6460 * data was last written. The data will need to be
6461 * rewritten to the server and then a new commit done.
6462 *
6463 * In fact, this may need to be done several times if the
6464 * server is having problems and crashing while we are
6465 * attempting to do this.
6466 */
6467
6468 top:
6469 /*
6470 * Do a flush based on the poff and plen arguments. This
6471 * will asynchronously write out any modified pages in the
6472 * range specified by (poff, plen). This starts all of the
6473 * i/o operations which will be waited for in the next
6474 * call to nfs3_putpage
6475 */
6476
6477 mutex_enter(&rp->r_statelock);
6478 write_verf = rp->r_verf;
6479 mutex_exit(&rp->r_statelock);
6480
6481 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
6482 if (error == EAGAIN)
6483 error = 0;
6484
6485 /*
6486 * Do a flush based on the poff and plen arguments. This
6487 * will synchronously write out any modified pages in the
6488 * range specified by (poff, plen) and wait until all of
6489 * the asynchronous i/o's in that range are done as well.
6490 */
6491 if (!error)
6492 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL);
6493
6494 if (error)
6495 return (error);
6496
6497 mutex_enter(&rp->r_statelock);
6498 if (rp->r_verf != write_verf) {
6499 mutex_exit(&rp->r_statelock);
6500 goto top;
6501 }
6502 mutex_exit(&rp->r_statelock);
6503
6504 /*
6505 * Now commit any pages which might need to be committed.
6506 * If the error, NFS_VERF_MISMATCH, is returned, then
6507 * start over with the flush operation.
6508 */
6509
6510 error = nfs3_commit_vp(vp, poff, plen, cr);
6511
6512 if (error == NFS_VERF_MISMATCH)
6513 goto top;
6514
6515 return (error);
6516 }
6517
6518 static int
nfs3_commit_vp(vnode_t * vp,u_offset_t poff,size_t plen,cred_t * cr)6519 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr)
6520 {
6521 rnode_t *rp;
6522 page_t *plist;
6523 offset3 offset;
6524 count3 len;
6525
6526
6527 rp = VTOR(vp);
6528
6529 if (nfs_zone() != VTOMI(vp)->mi_zone)
6530 return (EIO);
6531 /*
6532 * Set the `commit inprogress' state bit. We must
6533 * first wait until any current one finishes.
6534 */
6535 mutex_enter(&rp->r_statelock);
6536 while (rp->r_flags & RCOMMIT) {
6537 rp->r_flags |= RCOMMITWAIT;
6538 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6539 rp->r_flags &= ~RCOMMITWAIT;
6540 }
6541 rp->r_flags |= RCOMMIT;
6542 mutex_exit(&rp->r_statelock);
6543
6544 /*
6545 * Gather together all of the pages which need to be
6546 * committed.
6547 */
6548 if (plen == 0)
6549 nfs3_get_commit(vp);
6550 else
6551 nfs3_get_commit_range(vp, poff, plen);
6552
6553 /*
6554 * Clear the `commit inprogress' bit and disconnect the
6555 * page list which was gathered together in nfs3_get_commit.
6556 */
6557 plist = rp->r_commit.c_pages;
6558 rp->r_commit.c_pages = NULL;
6559 offset = rp->r_commit.c_commbase;
6560 len = rp->r_commit.c_commlen;
6561 mutex_enter(&rp->r_statelock);
6562 rp->r_flags &= ~RCOMMIT;
6563 cv_broadcast(&rp->r_commit.c_cv);
6564 mutex_exit(&rp->r_statelock);
6565
6566 /*
6567 * If any pages need to be committed, commit them and
6568 * then unlock them so that they can be freed some
6569 * time later.
6570 */
6571 if (plist != NULL) {
6572 /*
6573 * No error occurred during the flush portion
6574 * of this operation, so now attempt to commit
6575 * the data to stable storage on the server.
6576 *
6577 * This will unlock all of the pages on the list.
6578 */
6579 return (nfs3_sync_commit(vp, plist, offset, len, cr));
6580 }
6581 return (0);
6582 }
6583
6584 static int
nfs3_sync_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)6585 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6586 cred_t *cr)
6587 {
6588 int error;
6589 page_t *pp;
6590
6591 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6592 error = nfs3_commit(vp, offset, count, cr);
6593
6594 /*
6595 * If we got an error, then just unlock all of the pages
6596 * on the list.
6597 */
6598 if (error) {
6599 while (plist != NULL) {
6600 pp = plist;
6601 page_sub(&plist, pp);
6602 page_unlock(pp);
6603 }
6604 return (error);
6605 }
6606 /*
6607 * We've tried as hard as we can to commit the data to stable
6608 * storage on the server. We just unlock the pages and clear
6609 * the commit required state. They will get freed later.
6610 */
6611 while (plist != NULL) {
6612 pp = plist;
6613 page_sub(&plist, pp);
6614 pp->p_fsdata = C_NOCOMMIT;
6615 page_unlock(pp);
6616 }
6617
6618 return (error);
6619 }
6620
6621 static void
nfs3_async_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)6622 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6623 cred_t *cr)
6624 {
6625 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6626 (void) nfs3_sync_commit(vp, plist, offset, count, cr);
6627 }
6628
6629 /* ARGSUSED */
6630 static int
nfs3_setsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)6631 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
6632 caller_context_t *ct)
6633 {
6634 int error;
6635 mntinfo_t *mi;
6636
6637 mi = VTOMI(vp);
6638
6639 if (nfs_zone() != mi->mi_zone)
6640 return (EIO);
6641
6642 if (mi->mi_flags & MI_ACL) {
6643 error = acl_setacl3(vp, vsecattr, flag, cr);
6644 if (mi->mi_flags & MI_ACL)
6645 return (error);
6646 }
6647
6648 return (ENOSYS);
6649 }
6650
6651 /* ARGSUSED */
6652 static int
nfs3_getsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)6653 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
6654 caller_context_t *ct)
6655 {
6656 int error;
6657 mntinfo_t *mi;
6658
6659 mi = VTOMI(vp);
6660
6661 if (nfs_zone() != mi->mi_zone)
6662 return (EIO);
6663
6664 if (mi->mi_flags & MI_ACL) {
6665 error = acl_getacl3(vp, vsecattr, flag, cr);
6666 if (mi->mi_flags & MI_ACL)
6667 return (error);
6668 }
6669
6670 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
6671 }
6672
6673 /* ARGSUSED */
6674 static int
nfs3_shrlock(vnode_t * vp,int cmd,struct shrlock * shr,int flag,cred_t * cr,caller_context_t * ct)6675 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
6676 caller_context_t *ct)
6677 {
6678 int error;
6679 struct shrlock nshr;
6680 struct nfs_owner nfs_owner;
6681 netobj lm_fh3;
6682
6683 if (nfs_zone() != VTOMI(vp)->mi_zone)
6684 return (EIO);
6685
6686 /*
6687 * check for valid cmd parameter
6688 */
6689 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
6690 return (EINVAL);
6691
6692 /*
6693 * Check access permissions
6694 */
6695 if (cmd == F_SHARE &&
6696 (((shr->s_access & F_RDACC) && !(flag & FREAD)) ||
6697 ((shr->s_access & F_WRACC) && !(flag & FWRITE))))
6698 return (EBADF);
6699
6700 /*
6701 * If the filesystem is mounted using local locking, pass the
6702 * request off to the local share code.
6703 */
6704 if (VTOMI(vp)->mi_flags & MI_LLOCK)
6705 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
6706
6707 switch (cmd) {
6708 case F_SHARE:
6709 case F_UNSHARE:
6710 lm_fh3.n_len = VTOFH3(vp)->fh3_length;
6711 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
6712
6713 /*
6714 * If passed an owner that is too large to fit in an
6715 * nfs_owner it is likely a recursive call from the
6716 * lock manager client and pass it straight through. If
6717 * it is not a nfs_owner then simply return an error.
6718 */
6719 if (shr->s_own_len > sizeof (nfs_owner.lowner)) {
6720 if (((struct nfs_owner *)shr->s_owner)->magic !=
6721 NFS_OWNER_MAGIC)
6722 return (EINVAL);
6723
6724 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) {
6725 error = set_errno(error);
6726 }
6727 return (error);
6728 }
6729 /*
6730 * Remote share reservations owner is a combination of
6731 * a magic number, hostname, and the local owner
6732 */
6733 bzero(&nfs_owner, sizeof (nfs_owner));
6734 nfs_owner.magic = NFS_OWNER_MAGIC;
6735 (void) strncpy(nfs_owner.hname, uts_nodename(),
6736 sizeof (nfs_owner.hname));
6737 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len);
6738 nshr.s_access = shr->s_access;
6739 nshr.s_deny = shr->s_deny;
6740 nshr.s_sysid = 0;
6741 nshr.s_pid = ttoproc(curthread)->p_pid;
6742 nshr.s_own_len = sizeof (nfs_owner);
6743 nshr.s_owner = (caddr_t)&nfs_owner;
6744
6745 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) {
6746 error = set_errno(error);
6747 }
6748
6749 break;
6750
6751 case F_HASREMOTELOCKS:
6752 /*
6753 * NFS client can't store remote locks itself
6754 */
6755 shr->s_access = 0;
6756 error = 0;
6757 break;
6758
6759 default:
6760 error = EINVAL;
6761 break;
6762 }
6763
6764 return (error);
6765 }
6766