xref: /illumos-gate/usr/src/uts/common/fs/hsfs/hsfs_vnops.c (revision d7dc20313645bcb9c9960a816baebe924d60bcf3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2017 by Delphix. All rights reserved.
27  */
28 
29 /*
30  * Vnode operations for the High Sierra filesystem
31  */
32 
33 #include <sys/types.h>
34 #include <sys/t_lock.h>
35 #include <sys/param.h>
36 #include <sys/time.h>
37 #include <sys/systm.h>
38 #include <sys/sysmacros.h>
39 #include <sys/resource.h>
40 #include <sys/signal.h>
41 #include <sys/cred.h>
42 #include <sys/user.h>
43 #include <sys/buf.h>
44 #include <sys/vfs.h>
45 #include <sys/vfs_opreg.h>
46 #include <sys/stat.h>
47 #include <sys/vnode.h>
48 #include <sys/mode.h>
49 #include <sys/proc.h>
50 #include <sys/disp.h>
51 #include <sys/file.h>
52 #include <sys/fcntl.h>
53 #include <sys/flock.h>
54 #include <sys/kmem.h>
55 #include <sys/uio.h>
56 #include <sys/conf.h>
57 #include <sys/errno.h>
58 #include <sys/mman.h>
59 #include <sys/pathname.h>
60 #include <sys/debug.h>
61 #include <sys/vmsystm.h>
62 #include <sys/cmn_err.h>
63 #include <sys/fbuf.h>
64 #include <sys/dirent.h>
65 #include <sys/errno.h>
66 #include <sys/dkio.h>
67 #include <sys/cmn_err.h>
68 #include <sys/atomic.h>
69 
70 #include <vm/hat.h>
71 #include <vm/page.h>
72 #include <vm/pvn.h>
73 #include <vm/as.h>
74 #include <vm/seg.h>
75 #include <vm/seg_map.h>
76 #include <vm/seg_kmem.h>
77 #include <vm/seg_vn.h>
78 #include <vm/rm.h>
79 #include <vm/page.h>
80 #include <sys/swap.h>
81 #include <sys/avl.h>
82 #include <sys/sunldi.h>
83 #include <sys/ddi.h>
84 #include <sys/sunddi.h>
85 #include <sys/sdt.h>
86 
87 /*
88  * For struct modlinkage
89  */
90 #include <sys/modctl.h>
91 
92 #include <sys/fs/hsfs_spec.h>
93 #include <sys/fs/hsfs_node.h>
94 #include <sys/fs/hsfs_impl.h>
95 #include <sys/fs/hsfs_susp.h>
96 #include <sys/fs/hsfs_rrip.h>
97 
98 #include <fs/fs_subr.h>
99 
100 /* # of contiguous requests to detect sequential access pattern */
101 static int seq_contig_requests = 2;
102 
103 /*
104  * This is the max number os taskq threads that will be created
105  * if required. Since we are using a Dynamic TaskQ by default only
106  * one thread is created initially.
107  *
108  * NOTE: In the usual hsfs use case this per fs instance number
109  * of taskq threads should not place any undue load on a system.
110  * Even on an unusual system with say 100 CDROM drives, 800 threads
111  * will not be created unless all the drives are loaded and all
112  * of them are saturated with I/O at the same time! If there is at
113  * all a complaint of system load due to such an unusual case it
114  * should be easy enough to change to one per-machine Dynamic TaskQ
115  * for all hsfs mounts with a nthreads of say 32.
116  */
117 static int hsfs_taskq_nthreads = 8;	/* # of taskq threads per fs */
118 
119 /* Min count of adjacent bufs that will avoid buf coalescing */
120 static int hsched_coalesce_min = 2;
121 
122 /*
123  * Kmem caches for heavily used small allocations. Using these kmem
124  * caches provides a factor of 3 reduction in system time and greatly
125  * aids overall throughput esp. on SPARC.
126  */
127 struct kmem_cache *hio_cache;
128 struct kmem_cache *hio_info_cache;
129 
130 /*
131  * This tunable allows us to ignore inode numbers from rrip-1.12.
132  * In this case, we fall back to our default inode algorithm.
133  */
134 extern int use_rrip_inodes;
135 
136 /*
137  * Free behind logic from UFS to tame our thirst for
138  * the page cache.
139  * See usr/src/uts/common/fs/ufs/ufs_vnops.c for more
140  * explanation.
141  */
142 static int	freebehind = 1;
143 static int	smallfile = 0;
144 static int	cache_read_ahead = 0;
145 static u_offset_t smallfile64 = 32 * 1024;
146 #define	SMALLFILE1_D 1000
147 #define	SMALLFILE2_D 10
148 static u_offset_t smallfile1 = 32 * 1024;
149 static u_offset_t smallfile2 = 32 * 1024;
150 static clock_t smallfile_update = 0; /* when to recompute */
151 static uint_t smallfile1_d = SMALLFILE1_D;
152 static uint_t smallfile2_d = SMALLFILE2_D;
153 
154 static int hsched_deadline_compare(const void *x1, const void *x2);
155 static int hsched_offset_compare(const void *x1, const void *x2);
156 static void hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra);
157 int hsched_invoke_strategy(struct hsfs *fsp);
158 
159 /* ARGSUSED */
160 static int
161 hsfs_fsync(vnode_t *cp, int syncflag, cred_t *cred, caller_context_t *ct)
162 {
163 	return (0);
164 }
165 
166 
167 /*ARGSUSED*/
168 static int
169 hsfs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cred,
170     struct caller_context *ct)
171 {
172 	caddr_t base;
173 	offset_t diff;
174 	int error;
175 	struct hsnode *hp;
176 	uint_t filesize;
177 	int dofree;
178 
179 	hp = VTOH(vp);
180 	/*
181 	 * if vp is of type VDIR, make sure dirent
182 	 * is filled up with all info (because of ptbl)
183 	 */
184 	if (vp->v_type == VDIR) {
185 		if (hp->hs_dirent.ext_size == 0)
186 			hs_filldirent(vp, &hp->hs_dirent);
187 	}
188 	filesize = hp->hs_dirent.ext_size;
189 
190 	/* Sanity checks. */
191 	if (uiop->uio_resid == 0 ||		/* No data wanted. */
192 	    uiop->uio_loffset > HS_MAXFILEOFF ||	/* Offset too big. */
193 	    uiop->uio_loffset >= filesize)	/* Past EOF. */
194 		return (0);
195 
196 	do {
197 		/*
198 		 * We want to ask for only the "right" amount of data.
199 		 * In this case that means:-
200 		 *
201 		 * We can't get data from beyond our EOF. If asked,
202 		 * we will give a short read.
203 		 *
204 		 * segmap_getmapflt returns buffers of MAXBSIZE bytes.
205 		 * These buffers are always MAXBSIZE aligned.
206 		 * If our starting offset is not MAXBSIZE aligned,
207 		 * we can only ask for less than MAXBSIZE bytes.
208 		 *
209 		 * If our requested offset and length are such that
210 		 * they belong in different MAXBSIZE aligned slots
211 		 * then we'll be making more than one call on
212 		 * segmap_getmapflt.
213 		 *
214 		 * This diagram shows the variables we use and their
215 		 * relationships.
216 		 *
217 		 * |<-----MAXBSIZE----->|
218 		 * +--------------------------...+
219 		 * |.....mapon->|<--n-->|....*...|EOF
220 		 * +--------------------------...+
221 		 * uio_loffset->|
222 		 * uio_resid....|<---------->|
223 		 * diff.........|<-------------->|
224 		 *
225 		 * So, in this case our offset is not aligned
226 		 * and our request takes us outside of the
227 		 * MAXBSIZE window. We will break this up into
228 		 * two segmap_getmapflt calls.
229 		 */
230 		size_t nbytes;
231 		offset_t mapon;
232 		size_t n;
233 		uint_t flags;
234 
235 		mapon = uiop->uio_loffset & MAXBOFFSET;
236 		diff = filesize - uiop->uio_loffset;
237 		nbytes = (size_t)MIN(MAXBSIZE - mapon, uiop->uio_resid);
238 		n = MIN(diff, nbytes);
239 		if (n <= 0) {
240 			/* EOF or request satisfied. */
241 			return (0);
242 		}
243 
244 		/*
245 		 * Freebehind computation taken from:
246 		 * usr/src/uts/common/fs/ufs/ufs_vnops.c
247 		 */
248 		if (drv_hztousec(ddi_get_lbolt()) >= smallfile_update) {
249 			uint64_t percpufreeb;
250 			if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D;
251 			if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D;
252 			percpufreeb = ptob((uint64_t)freemem) / ncpus_online;
253 			smallfile1 = percpufreeb / smallfile1_d;
254 			smallfile2 = percpufreeb / smallfile2_d;
255 			smallfile1 = MAX(smallfile1, smallfile);
256 			smallfile1 = MAX(smallfile1, smallfile64);
257 			smallfile2 = MAX(smallfile1, smallfile2);
258 			smallfile_update = drv_hztousec(ddi_get_lbolt())
259 			    + 1000000;
260 		}
261 
262 		dofree = freebehind &&
263 		    hp->hs_prev_offset == uiop->uio_loffset &&
264 		    hp->hs_ra_bytes > 0;
265 
266 		base = segmap_getmapflt(segkmap, vp,
267 		    (u_offset_t)uiop->uio_loffset, n, 1, S_READ);
268 
269 		error = uiomove(base + mapon, n, UIO_READ, uiop);
270 
271 		if (error == 0) {
272 			/*
273 			 * if read a whole block, or read to eof,
274 			 *  won't need this buffer again soon.
275 			 */
276 			if (n + mapon == MAXBSIZE ||
277 			    uiop->uio_loffset == filesize)
278 				flags = SM_DONTNEED;
279 			else
280 				flags = 0;
281 
282 			if (dofree) {
283 				flags = SM_FREE | SM_ASYNC;
284 				if ((cache_read_ahead == 0) &&
285 				    uiop->uio_loffset > smallfile2)
286 					flags |=  SM_DONTNEED;
287 			}
288 
289 			error = segmap_release(segkmap, base, flags);
290 		} else
291 			(void) segmap_release(segkmap, base, 0);
292 	} while (error == 0 && uiop->uio_resid > 0);
293 
294 	return (error);
295 }
296 
297 /*ARGSUSED2*/
298 static int
299 hsfs_getattr(struct vnode *vp, struct vattr *vap, int flags, struct cred *cred,
300     caller_context_t *ct)
301 {
302 	struct hsnode *hp;
303 	struct vfs *vfsp;
304 	struct hsfs *fsp;
305 
306 	hp = VTOH(vp);
307 	fsp = VFS_TO_HSFS(vp->v_vfsp);
308 	vfsp = vp->v_vfsp;
309 
310 	if ((hp->hs_dirent.ext_size == 0) && (vp->v_type == VDIR)) {
311 		hs_filldirent(vp, &hp->hs_dirent);
312 	}
313 	vap->va_type = IFTOVT(hp->hs_dirent.mode);
314 	vap->va_mode = hp->hs_dirent.mode;
315 	vap->va_uid = hp->hs_dirent.uid;
316 	vap->va_gid = hp->hs_dirent.gid;
317 
318 	vap->va_fsid = vfsp->vfs_dev;
319 	vap->va_nodeid = (ino64_t)hp->hs_nodeid;
320 	vap->va_nlink = hp->hs_dirent.nlink;
321 	vap->va_size =	(offset_t)hp->hs_dirent.ext_size;
322 
323 	vap->va_atime.tv_sec = hp->hs_dirent.adate.tv_sec;
324 	vap->va_atime.tv_nsec = hp->hs_dirent.adate.tv_usec*1000;
325 	vap->va_mtime.tv_sec = hp->hs_dirent.mdate.tv_sec;
326 	vap->va_mtime.tv_nsec = hp->hs_dirent.mdate.tv_usec*1000;
327 	vap->va_ctime.tv_sec = hp->hs_dirent.cdate.tv_sec;
328 	vap->va_ctime.tv_nsec = hp->hs_dirent.cdate.tv_usec*1000;
329 	if (vp->v_type == VCHR || vp->v_type == VBLK)
330 		vap->va_rdev = hp->hs_dirent.r_dev;
331 	else
332 		vap->va_rdev = 0;
333 	vap->va_blksize = vfsp->vfs_bsize;
334 	/* no. of blocks = no. of data blocks + no. of xar blocks */
335 	vap->va_nblocks = (fsblkcnt64_t)howmany(vap->va_size + (u_longlong_t)
336 	    (hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift), DEV_BSIZE);
337 	vap->va_seq = hp->hs_seq;
338 	return (0);
339 }
340 
341 /*ARGSUSED*/
342 static int
343 hsfs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cred,
344     caller_context_t *ct)
345 {
346 	struct hsnode *hp;
347 
348 	if (vp->v_type != VLNK)
349 		return (EINVAL);
350 
351 	hp = VTOH(vp);
352 
353 	if (hp->hs_dirent.sym_link == (char *)NULL)
354 		return (ENOENT);
355 
356 	return (uiomove(hp->hs_dirent.sym_link,
357 	    (size_t)MIN(hp->hs_dirent.ext_size,
358 	    uiop->uio_resid), UIO_READ, uiop));
359 }
360 
361 /*ARGSUSED*/
362 static void
363 hsfs_inactive(struct vnode *vp, struct cred *cred, caller_context_t *ct)
364 {
365 	struct hsnode *hp;
366 	struct hsfs *fsp;
367 
368 	int nopage;
369 
370 	hp = VTOH(vp);
371 	fsp = VFS_TO_HSFS(vp->v_vfsp);
372 	/*
373 	 * Note: acquiring and holding v_lock for quite a while
374 	 * here serializes on the vnode; this is unfortunate, but
375 	 * likely not to overly impact performance, as the underlying
376 	 * device (CDROM drive) is quite slow.
377 	 */
378 	rw_enter(&fsp->hsfs_hash_lock, RW_WRITER);
379 	mutex_enter(&hp->hs_contents_lock);
380 	mutex_enter(&vp->v_lock);
381 
382 	if (vp->v_count < 1) {
383 		panic("hsfs_inactive: v_count < 1");
384 		/*NOTREACHED*/
385 	}
386 
387 	VN_RELE_LOCKED(vp);
388 	if (vp->v_count > 0 || (hp->hs_flags & HREF) == 0) {
389 		mutex_exit(&vp->v_lock);
390 		mutex_exit(&hp->hs_contents_lock);
391 		rw_exit(&fsp->hsfs_hash_lock);
392 		return;
393 	}
394 	if (vp->v_count == 0) {
395 		/*
396 		 * Free the hsnode.
397 		 * If there are no pages associated with the
398 		 * hsnode, give it back to the kmem_cache,
399 		 * else put at the end of this file system's
400 		 * internal free list.
401 		 */
402 		nopage = !vn_has_cached_data(vp);
403 		hp->hs_flags = 0;
404 		/*
405 		 * exit these locks now, since hs_freenode may
406 		 * kmem_free the hsnode and embedded vnode
407 		 */
408 		mutex_exit(&vp->v_lock);
409 		mutex_exit(&hp->hs_contents_lock);
410 		hs_freenode(vp, fsp, nopage);
411 	} else {
412 		mutex_exit(&vp->v_lock);
413 		mutex_exit(&hp->hs_contents_lock);
414 	}
415 	rw_exit(&fsp->hsfs_hash_lock);
416 }
417 
418 
419 /*ARGSUSED*/
420 static int
421 hsfs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp,
422     struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cred,
423     caller_context_t *ct, int *direntflags, pathname_t *realpnp)
424 {
425 	int error;
426 	int namelen = (int)strlen(nm);
427 
428 	if (*nm == '\0') {
429 		VN_HOLD(dvp);
430 		*vpp = dvp;
431 		return (0);
432 	}
433 
434 	/*
435 	 * If we're looking for ourself, life is simple.
436 	 */
437 	if (namelen == 1 && *nm == '.') {
438 		if (error = hs_access(dvp, (mode_t)VEXEC, cred))
439 			return (error);
440 		VN_HOLD(dvp);
441 		*vpp = dvp;
442 		return (0);
443 	}
444 
445 	return (hs_dirlook(dvp, nm, namelen, vpp, cred));
446 }
447 
448 
449 /*ARGSUSED*/
450 static int
451 hsfs_readdir(struct vnode *vp, struct uio *uiop, struct cred *cred, int *eofp,
452     caller_context_t *ct, int flags)
453 {
454 	struct hsnode	*dhp;
455 	struct hsfs	*fsp;
456 	struct hs_direntry hd;
457 	struct dirent64	*nd;
458 	int		error;
459 	uint_t		offset;		/* real offset in directory */
460 	uint_t		dirsiz;		/* real size of directory */
461 	uchar_t		*blkp;
462 	int		hdlen;		/* length of hs directory entry */
463 	long		ndlen;		/* length of dirent entry */
464 	int		bytes_wanted;
465 	size_t		bufsize;	/* size of dirent buffer */
466 	char		*outbuf;	/* ptr to dirent buffer */
467 	char		*dname;
468 	int		dnamelen;
469 	size_t		dname_size;
470 	struct fbuf	*fbp;
471 	uint_t		last_offset;	/* last index into current dir block */
472 	ino64_t		dirino;	/* temporary storage before storing in dirent */
473 	off_t		diroff;
474 
475 	dhp = VTOH(vp);
476 	fsp = VFS_TO_HSFS(vp->v_vfsp);
477 	if (dhp->hs_dirent.ext_size == 0)
478 		hs_filldirent(vp, &dhp->hs_dirent);
479 	dirsiz = dhp->hs_dirent.ext_size;
480 	if (uiop->uio_loffset >= dirsiz) {	/* at or beyond EOF */
481 		if (eofp)
482 			*eofp = 1;
483 		return (0);
484 	}
485 	ASSERT(uiop->uio_loffset <= HS_MAXFILEOFF);
486 	offset = uiop->uio_loffset;
487 
488 	dname_size = fsp->hsfs_namemax + 1;	/* 1 for the ending NUL */
489 	dname = kmem_alloc(dname_size, KM_SLEEP);
490 	bufsize = uiop->uio_resid + sizeof (struct dirent64);
491 
492 	outbuf = kmem_alloc(bufsize, KM_SLEEP);
493 	nd = (struct dirent64 *)outbuf;
494 
495 	while (offset < dirsiz) {
496 		bytes_wanted = MIN(MAXBSIZE, dirsiz - (offset & MAXBMASK));
497 
498 		error = fbread(vp, (offset_t)(offset & MAXBMASK),
499 		    (unsigned int)bytes_wanted, S_READ, &fbp);
500 		if (error)
501 			goto done;
502 
503 		blkp = (uchar_t *)fbp->fb_addr;
504 		last_offset = (offset & MAXBMASK) + fbp->fb_count;
505 
506 #define	rel_offset(offset) ((offset) & MAXBOFFSET)	/* index into blkp */
507 
508 		while (offset < last_offset) {
509 			/*
510 			 * Very similar validation code is found in
511 			 * process_dirblock(), hsfs_node.c.
512 			 * For an explanation, see there.
513 			 * It may make sense for the future to
514 			 * "consolidate" the code in hs_parsedir(),
515 			 * process_dirblock() and hsfs_readdir() into
516 			 * a single utility function.
517 			 */
518 			hdlen = (int)((uchar_t)
519 			    HDE_DIR_LEN(&blkp[rel_offset(offset)]));
520 			if (hdlen < HDE_ROOT_DIR_REC_SIZE ||
521 			    offset + hdlen > last_offset) {
522 				/*
523 				 * advance to next sector boundary
524 				 */
525 				offset = roundup(offset + 1, HS_SECTOR_SIZE);
526 				if (hdlen)
527 					hs_log_bogus_disk_warning(fsp,
528 					    HSFS_ERR_TRAILING_JUNK, 0);
529 
530 				continue;
531 			}
532 
533 			bzero(&hd, sizeof (hd));
534 
535 			/*
536 			 * Just ignore invalid directory entries.
537 			 * XXX - maybe hs_parsedir() will detect EXISTENCE bit
538 			 */
539 			if (!hs_parsedir(fsp, &blkp[rel_offset(offset)],
540 			    &hd, dname, &dnamelen, last_offset - offset)) {
541 				/*
542 				 * Determine if there is enough room
543 				 */
544 				ndlen = (long)DIRENT64_RECLEN((dnamelen));
545 
546 				if ((ndlen + ((char *)nd - outbuf)) >
547 				    uiop->uio_resid) {
548 					fbrelse(fbp, S_READ);
549 					goto done; /* output buffer full */
550 				}
551 
552 				diroff = offset + hdlen;
553 				/*
554 				 * If the media carries rrip-v1.12 or newer,
555 				 * and we trust the inodes from the rrip data
556 				 * (use_rrip_inodes != 0), use that data. If the
557 				 * media has been created by a recent mkisofs
558 				 * version, we may trust all numbers in the
559 				 * starting extent number; otherwise, we cannot
560 				 * do this for zero sized files and symlinks,
561 				 * because if we did we'd end up mapping all of
562 				 * them to the same node. We use HS_DUMMY_INO
563 				 * in this case and make sure that we will not
564 				 * map all files to the same meta data.
565 				 */
566 				if (hd.inode != 0 && use_rrip_inodes) {
567 					dirino = hd.inode;
568 				} else if ((hd.ext_size == 0 ||
569 				    hd.sym_link != (char *)NULL) &&
570 				    (fsp->hsfs_flags & HSFSMNT_INODE) == 0) {
571 					dirino = HS_DUMMY_INO;
572 				} else {
573 					dirino = hd.ext_lbn;
574 				}
575 
576 				/* strncpy(9f) will zero uninitialized bytes */
577 
578 				ASSERT(strlen(dname) + 1 <=
579 				    DIRENT64_NAMELEN(ndlen));
580 				(void) strncpy(nd->d_name, dname,
581 				    DIRENT64_NAMELEN(ndlen));
582 				nd->d_reclen = (ushort_t)ndlen;
583 				nd->d_off = (offset_t)diroff;
584 				nd->d_ino = dirino;
585 				nd = (struct dirent64 *)((char *)nd + ndlen);
586 
587 				/*
588 				 * free up space allocated for symlink
589 				 */
590 				if (hd.sym_link != (char *)NULL) {
591 					kmem_free(hd.sym_link,
592 					    (size_t)(hd.ext_size+1));
593 					hd.sym_link = (char *)NULL;
594 				}
595 			}
596 			offset += hdlen;
597 		}
598 		fbrelse(fbp, S_READ);
599 	}
600 
601 	/*
602 	 * Got here for one of the following reasons:
603 	 *	1) outbuf is full (error == 0)
604 	 *	2) end of directory reached (error == 0)
605 	 *	3) error reading directory sector (error != 0)
606 	 *	4) directory entry crosses sector boundary (error == 0)
607 	 *
608 	 * If any directory entries have been copied, don't report
609 	 * case 4.  Instead, return the valid directory entries.
610 	 *
611 	 * If no entries have been copied, report the error.
612 	 * If case 4, this will be indistiguishable from EOF.
613 	 */
614 done:
615 	ndlen = ((char *)nd - outbuf);
616 	if (ndlen != 0) {
617 		error = uiomove(outbuf, (size_t)ndlen, UIO_READ, uiop);
618 		uiop->uio_loffset = offset;
619 	}
620 	kmem_free(dname, dname_size);
621 	kmem_free(outbuf, bufsize);
622 	if (eofp && error == 0)
623 		*eofp = (uiop->uio_loffset >= dirsiz);
624 	return (error);
625 }
626 
627 /*ARGSUSED2*/
628 static int
629 hsfs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
630 {
631 	struct hsnode *hp;
632 	struct hsfid *fid;
633 
634 	if (fidp->fid_len < (sizeof (*fid) - sizeof (fid->hf_len))) {
635 		fidp->fid_len = sizeof (*fid) - sizeof (fid->hf_len);
636 		return (ENOSPC);
637 	}
638 
639 	fid = (struct hsfid *)fidp;
640 	fid->hf_len = sizeof (*fid) - sizeof (fid->hf_len);
641 	hp = VTOH(vp);
642 	mutex_enter(&hp->hs_contents_lock);
643 	fid->hf_dir_lbn = hp->hs_dir_lbn;
644 	fid->hf_dir_off = (ushort_t)hp->hs_dir_off;
645 	fid->hf_ino = hp->hs_nodeid;
646 	mutex_exit(&hp->hs_contents_lock);
647 	return (0);
648 }
649 
650 /*ARGSUSED*/
651 static int
652 hsfs_open(struct vnode **vpp, int flag, struct cred *cred, caller_context_t *ct)
653 {
654 	return (0);
655 }
656 
657 /*ARGSUSED*/
658 static int
659 hsfs_close(struct vnode *vp, int flag, int count, offset_t offset,
660     struct cred *cred, caller_context_t *ct)
661 {
662 	(void) cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
663 	cleanshares(vp, ttoproc(curthread)->p_pid);
664 	return (0);
665 }
666 
667 /*ARGSUSED2*/
668 static int
669 hsfs_access(struct vnode *vp, int mode, int flags, cred_t *cred,
670     caller_context_t *ct)
671 {
672 	return (hs_access(vp, (mode_t)mode, cred));
673 }
674 
675 /*
676  * the seek time of a CD-ROM is very slow, and data transfer
677  * rate is even worse (max. 150K per sec).  The design
678  * decision is to reduce access to cd-rom as much as possible,
679  * and to transfer a sizable block (read-ahead) of data at a time.
680  * UFS style of read ahead one block at a time is not appropriate,
681  * and is not supported
682  */
683 
684 /*
685  * KLUSTSIZE should be a multiple of PAGESIZE and <= MAXPHYS.
686  */
687 #define	KLUSTSIZE	(56 * 1024)
688 /* we don't support read ahead */
689 int hsfs_lostpage;	/* no. of times we lost original page */
690 
691 /*
692  * Used to prevent biodone() from releasing buf resources that
693  * we didn't allocate in quite the usual way.
694  */
695 /*ARGSUSED*/
696 int
697 hsfs_iodone(struct buf *bp)
698 {
699 	sema_v(&bp->b_io);
700 	return (0);
701 }
702 
703 /*
704  * The taskq thread that invokes the scheduling function to ensure
705  * that all readaheads are complete and cleans up the associated
706  * memory and releases the page lock.
707  */
708 void
709 hsfs_ra_task(void *arg)
710 {
711 	struct hio_info *info = arg;
712 	uint_t count;
713 	struct buf *wbuf;
714 
715 	ASSERT(info->pp != NULL);
716 
717 	for (count = 0; count < info->bufsused; count++) {
718 		wbuf = &(info->bufs[count]);
719 
720 		DTRACE_PROBE1(hsfs_io_wait_ra, struct buf *, wbuf);
721 		while (sema_tryp(&(info->sema[count])) == 0) {
722 			if (hsched_invoke_strategy(info->fsp)) {
723 				sema_p(&(info->sema[count]));
724 				break;
725 			}
726 		}
727 		sema_destroy(&(info->sema[count]));
728 		DTRACE_PROBE1(hsfs_io_done_ra, struct buf *, wbuf);
729 		biofini(&(info->bufs[count]));
730 	}
731 	for (count = 0; count < info->bufsused; count++) {
732 		if (info->vas[count] != NULL) {
733 			ppmapout(info->vas[count]);
734 		}
735 	}
736 	kmem_free(info->vas, info->bufcnt * sizeof (caddr_t));
737 	kmem_free(info->bufs, info->bufcnt * sizeof (struct buf));
738 	kmem_free(info->sema, info->bufcnt * sizeof (ksema_t));
739 
740 	pvn_read_done(info->pp, 0);
741 	kmem_cache_free(hio_info_cache, info);
742 }
743 
744 /*
745  * Submit asynchronous readahead requests to the I/O scheduler
746  * depending on the number of pages to read ahead. These requests
747  * are asynchronous to the calling thread but I/O requests issued
748  * subsequently by other threads with higher LBNs must wait for
749  * these readaheads to complete since we have a single ordered
750  * I/O pipeline. Thus these readaheads are semi-asynchronous.
751  * A TaskQ handles waiting for the readaheads to complete.
752  *
753  * This function is mostly a copy of hsfs_getapage but somewhat
754  * simpler. A readahead request is aborted if page allocation
755  * fails.
756  */
757 /*ARGSUSED*/
758 static int
759 hsfs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg,
760     caddr_t addr, struct hsnode *hp, struct hsfs *fsp, int xarsiz,
761     offset_t bof, int chunk_lbn_count, int chunk_data_bytes)
762 {
763 	struct buf *bufs;
764 	caddr_t *vas;
765 	caddr_t va;
766 	struct page *pp, *searchp, *lastp;
767 	struct vnode *devvp;
768 	ulong_t	byte_offset;
769 	size_t	io_len_tmp;
770 	uint_t	io_off, io_len;
771 	uint_t	xlen;
772 	uint_t	filsiz;
773 	uint_t	secsize;
774 	uint_t	bufcnt;
775 	uint_t	bufsused;
776 	uint_t	count;
777 	uint_t	io_end;
778 	uint_t	which_chunk_lbn;
779 	uint_t	offset_lbn;
780 	uint_t	offset_extra;
781 	offset_t	offset_bytes;
782 	uint_t	remaining_bytes;
783 	uint_t	extension;
784 	int	remainder;	/* must be signed */
785 	diskaddr_t driver_block;
786 	u_offset_t io_off_tmp;
787 	ksema_t	*fio_done;
788 	struct hio_info *info;
789 	size_t len;
790 
791 	ASSERT(fsp->hqueue != NULL);
792 
793 	if (addr >= seg->s_base + seg->s_size) {
794 		return (-1);
795 	}
796 
797 	devvp = fsp->hsfs_devvp;
798 	secsize = fsp->hsfs_vol.lbn_size;  /* bytes per logical block */
799 
800 	/* file data size */
801 	filsiz = hp->hs_dirent.ext_size;
802 
803 	if (off >= filsiz)
804 		return (0);
805 
806 	extension = 0;
807 	pp = NULL;
808 
809 	extension += hp->hs_ra_bytes;
810 
811 	/*
812 	 * Some CD writers (e.g. Kodak Photo CD writers)
813 	 * create CDs in TAO mode and reserve tracks that
814 	 * are not completely written. Some sectors remain
815 	 * unreadable for this reason and give I/O errors.
816 	 * Also, there's no point in reading sectors
817 	 * we'll never look at.  So, if we're asked to go
818 	 * beyond the end of a file, truncate to the length
819 	 * of that file.
820 	 *
821 	 * Additionally, this behaviour is required by section
822 	 * 6.4.5 of ISO 9660:1988(E).
823 	 */
824 	len = MIN(extension ? extension : PAGESIZE, filsiz - off);
825 
826 	/* A little paranoia */
827 	if (len <= 0)
828 		return (-1);
829 
830 	/*
831 	 * After all that, make sure we're asking for things in units
832 	 * that bdev_strategy() will understand (see bug 4202551).
833 	 */
834 	len = roundup(len, DEV_BSIZE);
835 
836 	pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp,
837 	    &io_len_tmp, off, len, 1);
838 
839 	if (pp == NULL) {
840 		hp->hs_num_contig = 0;
841 		hp->hs_ra_bytes = 0;
842 		hp->hs_prev_offset = 0;
843 		return (-1);
844 	}
845 
846 	io_off = (uint_t)io_off_tmp;
847 	io_len = (uint_t)io_len_tmp;
848 
849 	/* check for truncation */
850 	/*
851 	 * xxx Clean up and return EIO instead?
852 	 * xxx Ought to go to u_offset_t for everything, but we
853 	 * xxx call lots of things that want uint_t arguments.
854 	 */
855 	ASSERT(io_off == io_off_tmp);
856 
857 	/*
858 	 * get enough buffers for worst-case scenario
859 	 * (i.e., no coalescing possible).
860 	 */
861 	bufcnt = (len + secsize - 1) / secsize;
862 	bufs = kmem_alloc(bufcnt * sizeof (struct buf), KM_SLEEP);
863 	vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP);
864 
865 	/*
866 	 * Allocate a array of semaphores since we are doing I/O
867 	 * scheduling.
868 	 */
869 	fio_done = kmem_alloc(bufcnt * sizeof (ksema_t), KM_SLEEP);
870 
871 	/*
872 	 * If our filesize is not an integer multiple of PAGESIZE,
873 	 * we zero that part of the last page that's between EOF and
874 	 * the PAGESIZE boundary.
875 	 */
876 	xlen = io_len & PAGEOFFSET;
877 	if (xlen != 0)
878 		pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
879 
880 	DTRACE_PROBE2(hsfs_readahead, struct vnode *, vp, uint_t, io_len);
881 
882 	va = NULL;
883 	lastp = NULL;
884 	searchp = pp;
885 	io_end = io_off + io_len;
886 	for (count = 0, byte_offset = io_off;
887 	    byte_offset < io_end;
888 	    count++) {
889 		ASSERT(count < bufcnt);
890 
891 		bioinit(&bufs[count]);
892 		bufs[count].b_edev = devvp->v_rdev;
893 		bufs[count].b_dev = cmpdev(devvp->v_rdev);
894 		bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ;
895 		bufs[count].b_iodone = hsfs_iodone;
896 		bufs[count].b_vp = vp;
897 		bufs[count].b_file = vp;
898 
899 		/* Compute disk address for interleaving. */
900 
901 		/* considered without skips */
902 		which_chunk_lbn = byte_offset / chunk_data_bytes;
903 
904 		/* factor in skips */
905 		offset_lbn = which_chunk_lbn * chunk_lbn_count;
906 
907 		/* convert to physical byte offset for lbn */
908 		offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp);
909 
910 		/* don't forget offset into lbn */
911 		offset_extra = byte_offset % chunk_data_bytes;
912 
913 		/* get virtual block number for driver */
914 		driver_block = lbtodb(bof + xarsiz
915 		    + offset_bytes + offset_extra);
916 
917 		if (lastp != searchp) {
918 			/* this branch taken first time through loop */
919 			va = vas[count] = ppmapin(searchp, PROT_WRITE,
920 			    (caddr_t)-1);
921 			/* ppmapin() guarantees not to return NULL */
922 		} else {
923 			vas[count] = NULL;
924 		}
925 
926 		bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE;
927 		bufs[count].b_offset =
928 		    (offset_t)(byte_offset - io_off + off);
929 
930 		/*
931 		 * We specifically use the b_lblkno member here
932 		 * as even in the 32 bit world driver_block can
933 		 * get very large in line with the ISO9660 spec.
934 		 */
935 
936 		bufs[count].b_lblkno = driver_block;
937 
938 		remaining_bytes = ((which_chunk_lbn + 1) * chunk_data_bytes)
939 		    - byte_offset;
940 
941 		/*
942 		 * remaining_bytes can't be zero, as we derived
943 		 * which_chunk_lbn directly from byte_offset.
944 		 */
945 		if ((remaining_bytes + byte_offset) < (off + len)) {
946 			/* coalesce-read the rest of the chunk */
947 			bufs[count].b_bcount = remaining_bytes;
948 		} else {
949 			/* get the final bits */
950 			bufs[count].b_bcount = off + len - byte_offset;
951 		}
952 
953 		remainder = PAGESIZE - (byte_offset % PAGESIZE);
954 		if (bufs[count].b_bcount > remainder) {
955 			bufs[count].b_bcount = remainder;
956 		}
957 
958 		bufs[count].b_bufsize = bufs[count].b_bcount;
959 		if (((offset_t)byte_offset + bufs[count].b_bcount) >
960 		    HS_MAXFILEOFF) {
961 			break;
962 		}
963 		byte_offset += bufs[count].b_bcount;
964 
965 		/*
966 		 * We are scheduling I/O so we need to enqueue
967 		 * requests rather than calling bdev_strategy
968 		 * here. A later invocation of the scheduling
969 		 * function will take care of doing the actual
970 		 * I/O as it selects requests from the queue as
971 		 * per the scheduling logic.
972 		 */
973 		struct hio *hsio = kmem_cache_alloc(hio_cache,
974 		    KM_SLEEP);
975 
976 		sema_init(&fio_done[count], 0, NULL,
977 		    SEMA_DEFAULT, NULL);
978 		hsio->bp = &bufs[count];
979 		hsio->sema = &fio_done[count];
980 		hsio->io_lblkno = bufs[count].b_lblkno;
981 		hsio->nblocks = howmany(hsio->bp->b_bcount,
982 		    DEV_BSIZE);
983 
984 		/* used for deadline */
985 		hsio->io_timestamp = drv_hztousec(ddi_get_lbolt());
986 
987 		/* for I/O coalescing */
988 		hsio->contig_chain = NULL;
989 		hsched_enqueue_io(fsp, hsio, 1);
990 
991 		lwp_stat_update(LWP_STAT_INBLK, 1);
992 		lastp = searchp;
993 		if ((remainder - bufs[count].b_bcount) < 1) {
994 			searchp = searchp->p_next;
995 		}
996 	}
997 
998 	bufsused = count;
999 	info = kmem_cache_alloc(hio_info_cache, KM_SLEEP);
1000 	info->bufs = bufs;
1001 	info->vas = vas;
1002 	info->sema = fio_done;
1003 	info->bufsused = bufsused;
1004 	info->bufcnt = bufcnt;
1005 	info->fsp = fsp;
1006 	info->pp = pp;
1007 
1008 	(void) taskq_dispatch(fsp->hqueue->ra_task,
1009 	    hsfs_ra_task, info, KM_SLEEP);
1010 	/*
1011 	 * The I/O locked pages are unlocked in our taskq thread.
1012 	 */
1013 	return (0);
1014 }
1015 
1016 /*
1017  * Each file may have a different interleaving on disk.  This makes
1018  * things somewhat interesting.  The gist is that there are some
1019  * number of contiguous data sectors, followed by some other number
1020  * of contiguous skip sectors.  The sum of those two sets of sectors
1021  * defines the interleave size.  Unfortunately, it means that we generally
1022  * can't simply read N sectors starting at a given offset to satisfy
1023  * any given request.
1024  *
1025  * What we do is get the relevant memory pages via pvn_read_kluster(),
1026  * then stride through the interleaves, setting up a buf for each
1027  * sector that needs to be brought in.  Instead of kmem_alloc'ing
1028  * space for the sectors, though, we just point at the appropriate
1029  * spot in the relevant page for each of them.  This saves us a bunch
1030  * of copying.
1031  *
1032  * NOTICE: The code below in hsfs_getapage is mostly same as the code
1033  *         in hsfs_getpage_ra above (with some omissions). If you are
1034  *         making any change to this function, please also look at
1035  *         hsfs_getpage_ra.
1036  */
1037 /*ARGSUSED*/
1038 static int
1039 hsfs_getapage(struct vnode *vp, u_offset_t off, size_t len, uint_t *protp,
1040     struct page *pl[], size_t plsz, struct seg *seg, caddr_t addr,
1041     enum seg_rw rw, struct cred *cred)
1042 {
1043 	struct hsnode *hp;
1044 	struct hsfs *fsp;
1045 	int	err;
1046 	struct buf *bufs;
1047 	caddr_t *vas;
1048 	caddr_t va;
1049 	struct page *pp, *searchp, *lastp;
1050 	page_t	*pagefound;
1051 	offset_t	bof;
1052 	struct vnode *devvp;
1053 	ulong_t	byte_offset;
1054 	size_t	io_len_tmp;
1055 	uint_t	io_off, io_len;
1056 	uint_t	xlen;
1057 	uint_t	filsiz;
1058 	uint_t	secsize;
1059 	uint_t	bufcnt;
1060 	uint_t	bufsused;
1061 	uint_t	count;
1062 	uint_t	io_end;
1063 	uint_t	which_chunk_lbn;
1064 	uint_t	offset_lbn;
1065 	uint_t	offset_extra;
1066 	offset_t	offset_bytes;
1067 	uint_t	remaining_bytes;
1068 	uint_t	extension;
1069 	int	remainder;	/* must be signed */
1070 	int	chunk_lbn_count;
1071 	int	chunk_data_bytes;
1072 	int	xarsiz;
1073 	diskaddr_t driver_block;
1074 	u_offset_t io_off_tmp;
1075 	ksema_t *fio_done;
1076 	int	calcdone;
1077 
1078 	/*
1079 	 * We don't support asynchronous operation at the moment, so
1080 	 * just pretend we did it.  If the pages are ever actually
1081 	 * needed, they'll get brought in then.
1082 	 */
1083 	if (pl == NULL)
1084 		return (0);
1085 
1086 	hp = VTOH(vp);
1087 	fsp = VFS_TO_HSFS(vp->v_vfsp);
1088 	devvp = fsp->hsfs_devvp;
1089 	secsize = fsp->hsfs_vol.lbn_size;  /* bytes per logical block */
1090 
1091 	/* file data size */
1092 	filsiz = hp->hs_dirent.ext_size;
1093 
1094 	/* disk addr for start of file */
1095 	bof = LBN_TO_BYTE((offset_t)hp->hs_dirent.ext_lbn, vp->v_vfsp);
1096 
1097 	/* xarsiz byte must be skipped for data */
1098 	xarsiz = hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift;
1099 
1100 	/* how many logical blocks in an interleave (data+skip) */
1101 	chunk_lbn_count = hp->hs_dirent.intlf_sz + hp->hs_dirent.intlf_sk;
1102 
1103 	if (chunk_lbn_count == 0) {
1104 		chunk_lbn_count = 1;
1105 	}
1106 
1107 	/*
1108 	 * Convert interleaving size into bytes.  The zero case
1109 	 * (no interleaving) optimization is handled as a side-
1110 	 * effect of the read-ahead logic.
1111 	 */
1112 	if (hp->hs_dirent.intlf_sz == 0) {
1113 		chunk_data_bytes = LBN_TO_BYTE(1, vp->v_vfsp);
1114 		/*
1115 		 * Optimization: If our pagesize is a multiple of LBN
1116 		 * bytes, we can avoid breaking up a page into individual
1117 		 * lbn-sized requests.
1118 		 */
1119 		if (PAGESIZE % chunk_data_bytes == 0) {
1120 			chunk_lbn_count = BYTE_TO_LBN(PAGESIZE, vp->v_vfsp);
1121 			chunk_data_bytes = PAGESIZE;
1122 		}
1123 	} else {
1124 		chunk_data_bytes =
1125 		    LBN_TO_BYTE(hp->hs_dirent.intlf_sz, vp->v_vfsp);
1126 	}
1127 
1128 reread:
1129 	err = 0;
1130 	pagefound = 0;
1131 	calcdone = 0;
1132 
1133 	/*
1134 	 * Do some read-ahead.  This mostly saves us a bit of
1135 	 * system cpu time more than anything else when doing
1136 	 * sequential reads.  At some point, could do the
1137 	 * read-ahead asynchronously which might gain us something
1138 	 * on wall time, but it seems unlikely....
1139 	 *
1140 	 * We do the easy case here, which is to read through
1141 	 * the end of the chunk, minus whatever's at the end that
1142 	 * won't exactly fill a page.
1143 	 */
1144 	if (hp->hs_ra_bytes > 0 && chunk_data_bytes != PAGESIZE) {
1145 		which_chunk_lbn = (off + len) / chunk_data_bytes;
1146 		extension = ((which_chunk_lbn + 1) * chunk_data_bytes) - off;
1147 		extension -= (extension % PAGESIZE);
1148 	} else {
1149 		extension = roundup(len, PAGESIZE);
1150 	}
1151 
1152 	atomic_inc_64(&fsp->total_pages_requested);
1153 
1154 	pp = NULL;
1155 again:
1156 	/* search for page in buffer */
1157 	if ((pagefound = page_exists(vp, off)) == 0) {
1158 		/*
1159 		 * Need to really do disk IO to get the page.
1160 		 */
1161 		if (!calcdone) {
1162 			extension += hp->hs_ra_bytes;
1163 
1164 			/*
1165 			 * Some cd writers don't write sectors that aren't
1166 			 * used. Also, there's no point in reading sectors
1167 			 * we'll never look at.  So, if we're asked to go
1168 			 * beyond the end of a file, truncate to the length
1169 			 * of that file.
1170 			 *
1171 			 * Additionally, this behaviour is required by section
1172 			 * 6.4.5 of ISO 9660:1988(E).
1173 			 */
1174 			len = MIN(extension ? extension : PAGESIZE,
1175 			    filsiz - off);
1176 
1177 			/* A little paranoia. */
1178 			ASSERT(len > 0);
1179 
1180 			/*
1181 			 * After all that, make sure we're asking for things
1182 			 * in units that bdev_strategy() will understand
1183 			 * (see bug 4202551).
1184 			 */
1185 			len = roundup(len, DEV_BSIZE);
1186 			calcdone = 1;
1187 		}
1188 
1189 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp,
1190 		    &io_len_tmp, off, len, 0);
1191 
1192 		if (pp == NULL) {
1193 			/*
1194 			 * Pressure on memory, roll back readahead
1195 			 */
1196 			hp->hs_num_contig = 0;
1197 			hp->hs_ra_bytes = 0;
1198 			hp->hs_prev_offset = 0;
1199 			goto again;
1200 		}
1201 
1202 		io_off = (uint_t)io_off_tmp;
1203 		io_len = (uint_t)io_len_tmp;
1204 
1205 		/* check for truncation */
1206 		/*
1207 		 * xxx Clean up and return EIO instead?
1208 		 * xxx Ought to go to u_offset_t for everything, but we
1209 		 * xxx call lots of things that want uint_t arguments.
1210 		 */
1211 		ASSERT(io_off == io_off_tmp);
1212 
1213 		/*
1214 		 * get enough buffers for worst-case scenario
1215 		 * (i.e., no coalescing possible).
1216 		 */
1217 		bufcnt = (len + secsize - 1) / secsize;
1218 		bufs = kmem_zalloc(bufcnt * sizeof (struct buf), KM_SLEEP);
1219 		vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP);
1220 
1221 		/*
1222 		 * Allocate a array of semaphores if we are doing I/O
1223 		 * scheduling.
1224 		 */
1225 		if (fsp->hqueue != NULL)
1226 			fio_done = kmem_alloc(bufcnt * sizeof (ksema_t),
1227 			    KM_SLEEP);
1228 		for (count = 0; count < bufcnt; count++) {
1229 			bioinit(&bufs[count]);
1230 			bufs[count].b_edev = devvp->v_rdev;
1231 			bufs[count].b_dev = cmpdev(devvp->v_rdev);
1232 			bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ;
1233 			bufs[count].b_iodone = hsfs_iodone;
1234 			bufs[count].b_vp = vp;
1235 			bufs[count].b_file = vp;
1236 		}
1237 
1238 		/*
1239 		 * If our filesize is not an integer multiple of PAGESIZE,
1240 		 * we zero that part of the last page that's between EOF and
1241 		 * the PAGESIZE boundary.
1242 		 */
1243 		xlen = io_len & PAGEOFFSET;
1244 		if (xlen != 0)
1245 			pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
1246 
1247 		va = NULL;
1248 		lastp = NULL;
1249 		searchp = pp;
1250 		io_end = io_off + io_len;
1251 		for (count = 0, byte_offset = io_off;
1252 		    byte_offset < io_end; count++) {
1253 			ASSERT(count < bufcnt);
1254 
1255 			/* Compute disk address for interleaving. */
1256 
1257 			/* considered without skips */
1258 			which_chunk_lbn = byte_offset / chunk_data_bytes;
1259 
1260 			/* factor in skips */
1261 			offset_lbn = which_chunk_lbn * chunk_lbn_count;
1262 
1263 			/* convert to physical byte offset for lbn */
1264 			offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp);
1265 
1266 			/* don't forget offset into lbn */
1267 			offset_extra = byte_offset % chunk_data_bytes;
1268 
1269 			/* get virtual block number for driver */
1270 			driver_block =
1271 			    lbtodb(bof + xarsiz + offset_bytes + offset_extra);
1272 
1273 			if (lastp != searchp) {
1274 				/* this branch taken first time through loop */
1275 				va = vas[count] =
1276 				    ppmapin(searchp, PROT_WRITE, (caddr_t)-1);
1277 				/* ppmapin() guarantees not to return NULL */
1278 			} else {
1279 				vas[count] = NULL;
1280 			}
1281 
1282 			bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE;
1283 			bufs[count].b_offset =
1284 			    (offset_t)(byte_offset - io_off + off);
1285 
1286 			/*
1287 			 * We specifically use the b_lblkno member here
1288 			 * as even in the 32 bit world driver_block can
1289 			 * get very large in line with the ISO9660 spec.
1290 			 */
1291 
1292 			bufs[count].b_lblkno = driver_block;
1293 
1294 			remaining_bytes =
1295 			    ((which_chunk_lbn + 1) * chunk_data_bytes)
1296 			    - byte_offset;
1297 
1298 			/*
1299 			 * remaining_bytes can't be zero, as we derived
1300 			 * which_chunk_lbn directly from byte_offset.
1301 			 */
1302 			if ((remaining_bytes + byte_offset) < (off + len)) {
1303 				/* coalesce-read the rest of the chunk */
1304 				bufs[count].b_bcount = remaining_bytes;
1305 			} else {
1306 				/* get the final bits */
1307 				bufs[count].b_bcount = off + len - byte_offset;
1308 			}
1309 
1310 			/*
1311 			 * It would be nice to do multiple pages'
1312 			 * worth at once here when the opportunity
1313 			 * arises, as that has been shown to improve
1314 			 * our wall time.  However, to do that
1315 			 * requires that we use the pageio subsystem,
1316 			 * which doesn't mix well with what we're
1317 			 * already using here.  We can't use pageio
1318 			 * all the time, because that subsystem
1319 			 * assumes that a page is stored in N
1320 			 * contiguous blocks on the device.
1321 			 * Interleaving violates that assumption.
1322 			 *
1323 			 * Update: This is now not so big a problem
1324 			 * because of the I/O scheduler sitting below
1325 			 * that can re-order and coalesce I/O requests.
1326 			 */
1327 
1328 			remainder = PAGESIZE - (byte_offset % PAGESIZE);
1329 			if (bufs[count].b_bcount > remainder) {
1330 				bufs[count].b_bcount = remainder;
1331 			}
1332 
1333 			bufs[count].b_bufsize = bufs[count].b_bcount;
1334 			if (((offset_t)byte_offset + bufs[count].b_bcount) >
1335 			    HS_MAXFILEOFF) {
1336 				break;
1337 			}
1338 			byte_offset += bufs[count].b_bcount;
1339 
1340 			if (fsp->hqueue == NULL) {
1341 				(void) bdev_strategy(&bufs[count]);
1342 
1343 			} else {
1344 				/*
1345 				 * We are scheduling I/O so we need to enqueue
1346 				 * requests rather than calling bdev_strategy
1347 				 * here. A later invocation of the scheduling
1348 				 * function will take care of doing the actual
1349 				 * I/O as it selects requests from the queue as
1350 				 * per the scheduling logic.
1351 				 */
1352 				struct hio *hsio = kmem_cache_alloc(hio_cache,
1353 				    KM_SLEEP);
1354 
1355 				sema_init(&fio_done[count], 0, NULL,
1356 				    SEMA_DEFAULT, NULL);
1357 				hsio->bp = &bufs[count];
1358 				hsio->sema = &fio_done[count];
1359 				hsio->io_lblkno = bufs[count].b_lblkno;
1360 				hsio->nblocks = howmany(hsio->bp->b_bcount,
1361 				    DEV_BSIZE);
1362 
1363 				/* used for deadline */
1364 				hsio->io_timestamp =
1365 				    drv_hztousec(ddi_get_lbolt());
1366 
1367 				/* for I/O coalescing */
1368 				hsio->contig_chain = NULL;
1369 				hsched_enqueue_io(fsp, hsio, 0);
1370 			}
1371 
1372 			lwp_stat_update(LWP_STAT_INBLK, 1);
1373 			lastp = searchp;
1374 			if ((remainder - bufs[count].b_bcount) < 1) {
1375 				searchp = searchp->p_next;
1376 			}
1377 		}
1378 
1379 		bufsused = count;
1380 		/* Now wait for everything to come in */
1381 		if (fsp->hqueue == NULL) {
1382 			for (count = 0; count < bufsused; count++) {
1383 				if (err == 0) {
1384 					err = biowait(&bufs[count]);
1385 				} else
1386 					(void) biowait(&bufs[count]);
1387 			}
1388 		} else {
1389 			for (count = 0; count < bufsused; count++) {
1390 				struct buf *wbuf;
1391 
1392 				/*
1393 				 * Invoke scheduling function till our buf
1394 				 * is processed. In doing this it might
1395 				 * process bufs enqueued by other threads
1396 				 * which is good.
1397 				 */
1398 				wbuf = &bufs[count];
1399 				DTRACE_PROBE1(hsfs_io_wait, struct buf *, wbuf);
1400 				while (sema_tryp(&fio_done[count]) == 0) {
1401 					/*
1402 					 * hsched_invoke_strategy will return 1
1403 					 * if the I/O queue is empty. This means
1404 					 * that there is another thread who has
1405 					 * issued our buf and is waiting. So we
1406 					 * just block instead of spinning.
1407 					 */
1408 					if (hsched_invoke_strategy(fsp)) {
1409 						sema_p(&fio_done[count]);
1410 						break;
1411 					}
1412 				}
1413 				sema_destroy(&fio_done[count]);
1414 				DTRACE_PROBE1(hsfs_io_done, struct buf *, wbuf);
1415 
1416 				if (err == 0) {
1417 					err = geterror(wbuf);
1418 				}
1419 			}
1420 			kmem_free(fio_done, bufcnt * sizeof (ksema_t));
1421 		}
1422 
1423 		/* Don't leak resources */
1424 		for (count = 0; count < bufcnt; count++) {
1425 			biofini(&bufs[count]);
1426 			if (count < bufsused && vas[count] != NULL) {
1427 				ppmapout(vas[count]);
1428 			}
1429 		}
1430 
1431 		kmem_free(vas, bufcnt * sizeof (caddr_t));
1432 		kmem_free(bufs, bufcnt * sizeof (struct buf));
1433 	}
1434 
1435 	if (err) {
1436 		pvn_read_done(pp, B_ERROR);
1437 		return (err);
1438 	}
1439 
1440 	/*
1441 	 * Lock the requested page, and the one after it if possible.
1442 	 * Don't bother if our caller hasn't given us a place to stash
1443 	 * the page pointers, since otherwise we'd lock pages that would
1444 	 * never get unlocked.
1445 	 */
1446 	if (pagefound) {
1447 		int index;
1448 		ulong_t soff;
1449 
1450 		/*
1451 		 * Make sure it's in memory before we say it's here.
1452 		 */
1453 		if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) {
1454 			hsfs_lostpage++;
1455 			goto reread;
1456 		}
1457 
1458 		pl[0] = pp;
1459 		index = 1;
1460 		atomic_inc_64(&fsp->cache_read_pages);
1461 
1462 		/*
1463 		 * Try to lock the next page, if it exists, without
1464 		 * blocking.
1465 		 */
1466 		plsz -= PAGESIZE;
1467 		/* LINTED (plsz is unsigned) */
1468 		for (soff = off + PAGESIZE; plsz > 0;
1469 		    soff += PAGESIZE, plsz -= PAGESIZE) {
1470 			pp = page_lookup_nowait(vp, (u_offset_t)soff,
1471 			    SE_SHARED);
1472 			if (pp == NULL)
1473 				break;
1474 			pl[index++] = pp;
1475 		}
1476 		pl[index] = NULL;
1477 
1478 		/*
1479 		 * Schedule a semi-asynchronous readahead if we are
1480 		 * accessing the last cached page for the current
1481 		 * file.
1482 		 *
1483 		 * Doing this here means that readaheads will be
1484 		 * issued only if cache-hits occur. This is an advantage
1485 		 * since cache-hits would mean that readahead is giving
1486 		 * the desired benefit. If cache-hits do not occur there
1487 		 * is no point in reading ahead of time - the system
1488 		 * is loaded anyway.
1489 		 */
1490 		if (fsp->hqueue != NULL &&
1491 		    hp->hs_prev_offset - off == PAGESIZE &&
1492 		    hp->hs_prev_offset < filsiz &&
1493 		    hp->hs_ra_bytes > 0 &&
1494 		    !page_exists(vp, hp->hs_prev_offset)) {
1495 			(void) hsfs_getpage_ra(vp, hp->hs_prev_offset, seg,
1496 			    addr + PAGESIZE, hp, fsp, xarsiz, bof,
1497 			    chunk_lbn_count, chunk_data_bytes);
1498 		}
1499 
1500 		return (0);
1501 	}
1502 
1503 	if (pp != NULL) {
1504 		pvn_plist_init(pp, pl, plsz, off, io_len, rw);
1505 	}
1506 
1507 	return (err);
1508 }
1509 
1510 /*ARGSUSED*/
1511 static int
1512 hsfs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp,
1513     struct page *pl[], size_t plsz, struct seg *seg, caddr_t addr,
1514     enum seg_rw rw, struct cred *cred, caller_context_t *ct)
1515 {
1516 	uint_t filsiz;
1517 	struct hsfs *fsp;
1518 	struct hsnode *hp;
1519 
1520 	fsp = VFS_TO_HSFS(vp->v_vfsp);
1521 	hp = VTOH(vp);
1522 
1523 	/* does not support write */
1524 	if (rw == S_WRITE) {
1525 		return (EROFS);
1526 	}
1527 
1528 	if (vp->v_flag & VNOMAP) {
1529 		return (ENOSYS);
1530 	}
1531 
1532 	ASSERT(off <= HS_MAXFILEOFF);
1533 
1534 	/*
1535 	 * Determine file data size for EOF check.
1536 	 */
1537 	filsiz = hp->hs_dirent.ext_size;
1538 	if ((off + len) > (offset_t)(filsiz + PAGEOFFSET) && seg != segkmap)
1539 		return (EFAULT);	/* beyond EOF */
1540 
1541 	/*
1542 	 * Async Read-ahead computation.
1543 	 * This attempts to detect sequential access pattern and
1544 	 * enables reading extra pages ahead of time.
1545 	 */
1546 	if (fsp->hqueue != NULL) {
1547 		/*
1548 		 * This check for sequential access also takes into
1549 		 * account segmap weirdness when reading in chunks
1550 		 * less than the segmap size of 8K.
1551 		 */
1552 		if (hp->hs_prev_offset == off || (off <
1553 		    hp->hs_prev_offset && off + MAX(len, PAGESIZE)
1554 		    >= hp->hs_prev_offset)) {
1555 			if (hp->hs_num_contig <
1556 			    (seq_contig_requests - 1)) {
1557 				hp->hs_num_contig++;
1558 
1559 			} else {
1560 				/*
1561 				 * We increase readahead quantum till
1562 				 * a predefined max. max_readahead_bytes
1563 				 * is a multiple of PAGESIZE.
1564 				 */
1565 				if (hp->hs_ra_bytes <
1566 				    fsp->hqueue->max_ra_bytes) {
1567 					hp->hs_ra_bytes += PAGESIZE;
1568 				}
1569 			}
1570 		} else {
1571 			/*
1572 			 * Not contiguous so reduce read ahead counters.
1573 			 */
1574 			if (hp->hs_ra_bytes > 0)
1575 				hp->hs_ra_bytes -= PAGESIZE;
1576 
1577 			if (hp->hs_ra_bytes <= 0) {
1578 				hp->hs_ra_bytes = 0;
1579 				if (hp->hs_num_contig > 0)
1580 					hp->hs_num_contig--;
1581 			}
1582 		}
1583 		/*
1584 		 * Length must be rounded up to page boundary.
1585 		 * since we read in units of pages.
1586 		 */
1587 		hp->hs_prev_offset = off + roundup(len, PAGESIZE);
1588 		DTRACE_PROBE1(hsfs_compute_ra, struct hsnode *, hp);
1589 	}
1590 	if (protp != NULL)
1591 		*protp = PROT_ALL;
1592 
1593 	return (pvn_getpages(hsfs_getapage, vp, off, len, protp, pl, plsz,
1594 	    seg, addr, rw, cred));
1595 }
1596 
1597 
1598 
1599 /*
1600  * This function should never be called. We need to have it to pass
1601  * it as an argument to other functions.
1602  */
1603 /*ARGSUSED*/
1604 int
1605 hsfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1606     int flags, cred_t *cr)
1607 {
1608 	/* should never happen - just destroy it */
1609 	cmn_err(CE_NOTE, "hsfs_putapage: dirty HSFS page");
1610 	pvn_write_done(pp, B_ERROR | B_WRITE | B_INVAL | B_FORCE | flags);
1611 	return (0);
1612 }
1613 
1614 
1615 /*
1616  * The only flags we support are B_INVAL, B_FREE and B_DONTNEED.
1617  * B_INVAL is set by:
1618  *
1619  *	1) the MC_SYNC command of memcntl(2) to support the MS_INVALIDATE flag.
1620  *	2) the MC_ADVISE command of memcntl(2) with the MADV_DONTNEED advice
1621  *	   which translates to an MC_SYNC with the MS_INVALIDATE flag.
1622  *
1623  * The B_FREE (as well as the B_DONTNEED) flag is set when the
1624  * MADV_SEQUENTIAL advice has been used. VOP_PUTPAGE is invoked
1625  * from SEGVN to release pages behind a pagefault.
1626  */
1627 /*ARGSUSED*/
1628 static int
1629 hsfs_putpage(struct vnode *vp, offset_t off, size_t len, int flags,
1630     struct cred *cr, caller_context_t *ct)
1631 {
1632 	int error = 0;
1633 
1634 	if (vp->v_count == 0) {
1635 		panic("hsfs_putpage: bad v_count");
1636 		/*NOTREACHED*/
1637 	}
1638 
1639 	if (vp->v_flag & VNOMAP)
1640 		return (ENOSYS);
1641 
1642 	ASSERT(off <= HS_MAXFILEOFF);
1643 
1644 	if (!vn_has_cached_data(vp))	/* no pages mapped */
1645 		return (0);
1646 
1647 	if (len == 0) {		/* from 'off' to EOF */
1648 		error = pvn_vplist_dirty(vp, off, hsfs_putapage, flags, cr);
1649 	} else {
1650 		offset_t end_off = off + len;
1651 		offset_t file_size = VTOH(vp)->hs_dirent.ext_size;
1652 		offset_t io_off;
1653 
1654 		file_size = (file_size + PAGESIZE - 1) & PAGEMASK;
1655 		if (end_off > file_size)
1656 			end_off = file_size;
1657 
1658 		for (io_off = off; io_off < end_off; io_off += PAGESIZE) {
1659 			page_t *pp;
1660 
1661 			/*
1662 			 * We insist on getting the page only if we are
1663 			 * about to invalidate, free or write it and
1664 			 * the B_ASYNC flag is not set.
1665 			 */
1666 			if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
1667 				pp = page_lookup(vp, io_off,
1668 				    (flags & (B_INVAL | B_FREE)) ?
1669 				    SE_EXCL : SE_SHARED);
1670 			} else {
1671 				pp = page_lookup_nowait(vp, io_off,
1672 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
1673 			}
1674 
1675 			if (pp == NULL)
1676 				continue;
1677 
1678 			/*
1679 			 * Normally pvn_getdirty() should return 0, which
1680 			 * impies that it has done the job for us.
1681 			 * The shouldn't-happen scenario is when it returns 1.
1682 			 * This means that the page has been modified and
1683 			 * needs to be put back.
1684 			 * Since we can't write on a CD, we fake a failed
1685 			 * I/O and force pvn_write_done() to destroy the page.
1686 			 */
1687 			if (pvn_getdirty(pp, flags) == 1) {
1688 				cmn_err(CE_NOTE,
1689 				    "hsfs_putpage: dirty HSFS page");
1690 				pvn_write_done(pp, flags |
1691 				    B_ERROR | B_WRITE | B_INVAL | B_FORCE);
1692 			}
1693 		}
1694 	}
1695 	return (error);
1696 }
1697 
1698 
1699 /*ARGSUSED*/
1700 static int
1701 hsfs_map(struct vnode *vp, offset_t off, struct as *as, caddr_t *addrp,
1702     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, struct cred *cred,
1703     caller_context_t *ct)
1704 {
1705 	struct segvn_crargs vn_a;
1706 	int error;
1707 
1708 	/* VFS_RECORD(vp->v_vfsp, VS_MAP, VS_CALL); */
1709 
1710 	if (vp->v_flag & VNOMAP)
1711 		return (ENOSYS);
1712 
1713 	if ((prot & PROT_WRITE) && (flags & MAP_SHARED))
1714 		return (ENOSYS);
1715 
1716 	if (off > HS_MAXFILEOFF || off < 0 ||
1717 	    (off + len) < 0 || (off + len) > HS_MAXFILEOFF)
1718 		return (ENXIO);
1719 
1720 	if (vp->v_type != VREG) {
1721 		return (ENODEV);
1722 	}
1723 
1724 	/*
1725 	 * If file is being locked, disallow mapping.
1726 	 */
1727 	if (vn_has_mandatory_locks(vp, VTOH(vp)->hs_dirent.mode))
1728 		return (EAGAIN);
1729 
1730 	as_rangelock(as);
1731 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
1732 	if (error != 0) {
1733 		as_rangeunlock(as);
1734 		return (error);
1735 	}
1736 
1737 	vn_a.vp = vp;
1738 	vn_a.offset = off;
1739 	vn_a.type = flags & MAP_TYPE;
1740 	vn_a.prot = prot;
1741 	vn_a.maxprot = maxprot;
1742 	vn_a.flags = flags & ~MAP_TYPE;
1743 	vn_a.cred = cred;
1744 	vn_a.amp = NULL;
1745 	vn_a.szc = 0;
1746 	vn_a.lgrp_mem_policy_flags = 0;
1747 
1748 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
1749 	as_rangeunlock(as);
1750 	return (error);
1751 }
1752 
1753 /* ARGSUSED */
1754 static int
1755 hsfs_addmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
1756     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, struct cred *cr,
1757     caller_context_t *ct)
1758 {
1759 	struct hsnode *hp;
1760 
1761 	if (vp->v_flag & VNOMAP)
1762 		return (ENOSYS);
1763 
1764 	hp = VTOH(vp);
1765 	mutex_enter(&hp->hs_contents_lock);
1766 	hp->hs_mapcnt += btopr(len);
1767 	mutex_exit(&hp->hs_contents_lock);
1768 	return (0);
1769 }
1770 
1771 /*ARGSUSED*/
1772 static int
1773 hsfs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
1774     size_t len, uint_t prot, uint_t maxprot, uint_t flags, struct cred *cr,
1775     caller_context_t *ct)
1776 {
1777 	struct hsnode *hp;
1778 
1779 	if (vp->v_flag & VNOMAP)
1780 		return (ENOSYS);
1781 
1782 	hp = VTOH(vp);
1783 	mutex_enter(&hp->hs_contents_lock);
1784 	hp->hs_mapcnt -= btopr(len);	/* Count released mappings */
1785 	ASSERT(hp->hs_mapcnt >= 0);
1786 	mutex_exit(&hp->hs_contents_lock);
1787 	return (0);
1788 }
1789 
1790 /* ARGSUSED */
1791 static int
1792 hsfs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp,
1793     caller_context_t *ct)
1794 {
1795 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
1796 }
1797 
1798 /* ARGSUSED */
1799 static int
1800 hsfs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
1801     offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
1802     caller_context_t *ct)
1803 {
1804 	struct hsnode *hp = VTOH(vp);
1805 
1806 	/*
1807 	 * If the file is being mapped, disallow fs_frlock.
1808 	 * We are not holding the hs_contents_lock while checking
1809 	 * hs_mapcnt because the current locking strategy drops all
1810 	 * locks before calling fs_frlock.
1811 	 * So, hs_mapcnt could change before we enter fs_frlock making
1812 	 * it meaningless to have held hs_contents_lock in the first place.
1813 	 */
1814 	if (hp->hs_mapcnt > 0 && MANDLOCK(vp, hp->hs_dirent.mode))
1815 		return (EAGAIN);
1816 
1817 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
1818 }
1819 
1820 static int
1821 hsched_deadline_compare(const void *x1, const void *x2)
1822 {
1823 	const struct hio *h1 = x1;
1824 	const struct hio *h2 = x2;
1825 
1826 	if (h1->io_timestamp < h2->io_timestamp)
1827 		return (-1);
1828 	if (h1->io_timestamp > h2->io_timestamp)
1829 		return (1);
1830 
1831 	if (h1->io_lblkno < h2->io_lblkno)
1832 		return (-1);
1833 	if (h1->io_lblkno > h2->io_lblkno)
1834 		return (1);
1835 
1836 	if (h1 < h2)
1837 		return (-1);
1838 	if (h1 > h2)
1839 		return (1);
1840 
1841 	return (0);
1842 }
1843 
1844 static int
1845 hsched_offset_compare(const void *x1, const void *x2)
1846 {
1847 	const struct hio *h1 = x1;
1848 	const struct hio *h2 = x2;
1849 
1850 	if (h1->io_lblkno < h2->io_lblkno)
1851 		return (-1);
1852 	if (h1->io_lblkno > h2->io_lblkno)
1853 		return (1);
1854 
1855 	if (h1 < h2)
1856 		return (-1);
1857 	if (h1 > h2)
1858 		return (1);
1859 
1860 	return (0);
1861 }
1862 
1863 void
1864 hsched_init_caches(void)
1865 {
1866 	hio_cache = kmem_cache_create("hsfs_hio_cache",
1867 	    sizeof (struct hio), 0, NULL,
1868 	    NULL, NULL, NULL, NULL, 0);
1869 
1870 	hio_info_cache = kmem_cache_create("hsfs_hio_info_cache",
1871 	    sizeof (struct hio_info), 0, NULL,
1872 	    NULL, NULL, NULL, NULL, 0);
1873 }
1874 
1875 void
1876 hsched_fini_caches(void)
1877 {
1878 	kmem_cache_destroy(hio_cache);
1879 	kmem_cache_destroy(hio_info_cache);
1880 }
1881 
1882 /*
1883  * Initialize I/O scheduling structures. This is called via hsfs_mount
1884  */
1885 void
1886 hsched_init(struct hsfs *fsp, int fsid, struct modlinkage *modlinkage)
1887 {
1888 	struct hsfs_queue *hqueue = fsp->hqueue;
1889 	struct vnode *vp = fsp->hsfs_devvp;
1890 
1891 	/* TaskQ name of the form: hsched_task_ + stringof(int) */
1892 	char namebuf[23];
1893 	int error, err;
1894 	struct dk_cinfo info;
1895 	ldi_handle_t lh;
1896 	ldi_ident_t li;
1897 
1898 	/*
1899 	 * Default maxtransfer = 16k chunk
1900 	 */
1901 	hqueue->dev_maxtransfer = 16384;
1902 
1903 	/*
1904 	 * Try to fetch the maximum device transfer size. This is used to
1905 	 * ensure that a coalesced block does not exceed the maxtransfer.
1906 	 */
1907 	err  = ldi_ident_from_mod(modlinkage, &li);
1908 	if (err) {
1909 		cmn_err(CE_NOTE, "hsched_init: Querying device failed");
1910 		cmn_err(CE_NOTE, "hsched_init: ldi_ident_from_mod err=%d\n",
1911 		    err);
1912 		goto set_ra;
1913 	}
1914 
1915 	err = ldi_open_by_dev(&(vp->v_rdev), OTYP_CHR, FREAD, CRED(), &lh, li);
1916 	ldi_ident_release(li);
1917 	if (err) {
1918 		cmn_err(CE_NOTE, "hsched_init: Querying device failed");
1919 		cmn_err(CE_NOTE, "hsched_init: ldi_open err=%d\n", err);
1920 		goto set_ra;
1921 	}
1922 
1923 	error = ldi_ioctl(lh, DKIOCINFO, (intptr_t)&info, FKIOCTL,
1924 	    CRED(), &err);
1925 	err = ldi_close(lh, FREAD, CRED());
1926 	if (err) {
1927 		cmn_err(CE_NOTE, "hsched_init: Querying device failed");
1928 		cmn_err(CE_NOTE, "hsched_init: ldi_close err=%d\n", err);
1929 	}
1930 
1931 	if (error == 0) {
1932 		hqueue->dev_maxtransfer = ldbtob(info.dki_maxtransfer);
1933 	}
1934 
1935 set_ra:
1936 	/*
1937 	 * Max size of data to read ahead for sequential access pattern.
1938 	 * Conservative to avoid letting the underlying CD drive to spin
1939 	 * down, in case the application is reading slowly.
1940 	 * We read ahead upto a max of 4 pages.
1941 	 */
1942 	hqueue->max_ra_bytes = PAGESIZE * 8;
1943 
1944 	mutex_init(&(hqueue->hsfs_queue_lock), NULL, MUTEX_DEFAULT, NULL);
1945 	mutex_init(&(hqueue->strategy_lock), NULL, MUTEX_DEFAULT, NULL);
1946 	avl_create(&(hqueue->read_tree), hsched_offset_compare,
1947 	    sizeof (struct hio), offsetof(struct hio, io_offset_node));
1948 	avl_create(&(hqueue->deadline_tree), hsched_deadline_compare,
1949 	    sizeof (struct hio), offsetof(struct hio, io_deadline_node));
1950 
1951 	(void) snprintf(namebuf, sizeof (namebuf), "hsched_task_%d", fsid);
1952 	hqueue->ra_task = taskq_create(namebuf, hsfs_taskq_nthreads,
1953 	    minclsyspri + 2, 1, 104857600 / PAGESIZE, TASKQ_DYNAMIC);
1954 
1955 	hqueue->next = NULL;
1956 	hqueue->nbuf = kmem_zalloc(sizeof (struct buf), KM_SLEEP);
1957 }
1958 
1959 void
1960 hsched_fini(struct hsfs_queue *hqueue)
1961 {
1962 	if (hqueue != NULL) {
1963 		/*
1964 		 * Remove the sentinel if there was one.
1965 		 */
1966 		if (hqueue->next != NULL) {
1967 			avl_remove(&hqueue->read_tree, hqueue->next);
1968 			kmem_cache_free(hio_cache, hqueue->next);
1969 		}
1970 		avl_destroy(&(hqueue->read_tree));
1971 		avl_destroy(&(hqueue->deadline_tree));
1972 		mutex_destroy(&(hqueue->hsfs_queue_lock));
1973 		mutex_destroy(&(hqueue->strategy_lock));
1974 
1975 		/*
1976 		 * If there are any existing readahead threads running
1977 		 * taskq_destroy will wait for them to finish.
1978 		 */
1979 		taskq_destroy(hqueue->ra_task);
1980 		kmem_free(hqueue->nbuf, sizeof (struct buf));
1981 	}
1982 }
1983 
1984 /*
1985  * Determine if two I/O requests are adjacent to each other so
1986  * that they can coalesced.
1987  */
1988 #define	IS_ADJACENT(io, nio) \
1989 	(((io)->io_lblkno + (io)->nblocks == (nio)->io_lblkno) && \
1990 	(io)->bp->b_edev == (nio)->bp->b_edev)
1991 
1992 /*
1993  * This performs the actual I/O scheduling logic. We use the Circular
1994  * Look algorithm here. Sort the I/O requests in ascending order of
1995  * logical block number and process them starting with the lowest
1996  * numbered block and progressing towards higher block numbers in the
1997  * queue. Once there are no more higher numbered blocks, start again
1998  * with the lowest one. This is good for CD/DVD as you keep moving
1999  * the head in one direction along the outward spiral track and avoid
2000  * too many seeks as much as possible. The re-ordering also allows
2001  * us to coalesce adjacent requests into one larger request.
2002  * This is thus essentially a 1-way Elevator with front merging.
2003  *
2004  * In addition each read request here has a deadline and will be
2005  * processed out of turn if the deadline (500ms) expires.
2006  *
2007  * This function is necessarily serialized via hqueue->strategy_lock.
2008  * This function sits just below hsfs_getapage and processes all read
2009  * requests orginating from that function.
2010  */
2011 int
2012 hsched_invoke_strategy(struct hsfs *fsp)
2013 {
2014 	struct hsfs_queue *hqueue;
2015 	struct buf *nbuf;
2016 	struct hio *fio, *nio, *tio, *prev, *last;
2017 	size_t bsize, soffset, offset, data;
2018 	int bioret, bufcount;
2019 	struct vnode *fvp;
2020 	ksema_t *io_done;
2021 	caddr_t iodata;
2022 
2023 	hqueue = fsp->hqueue;
2024 	mutex_enter(&hqueue->strategy_lock);
2025 	mutex_enter(&hqueue->hsfs_queue_lock);
2026 
2027 	/*
2028 	 * Check for Deadline expiration first
2029 	 */
2030 	fio = avl_first(&hqueue->deadline_tree);
2031 
2032 	/*
2033 	 * Paranoid check for empty I/O queue. Both deadline
2034 	 * and read trees contain same data sorted in different
2035 	 * ways. So empty deadline tree = empty read tree.
2036 	 */
2037 	if (fio == NULL) {
2038 		/*
2039 		 * Remove the sentinel if there was one.
2040 		 */
2041 		if (hqueue->next != NULL) {
2042 			avl_remove(&hqueue->read_tree, hqueue->next);
2043 			kmem_cache_free(hio_cache, hqueue->next);
2044 			hqueue->next = NULL;
2045 		}
2046 		mutex_exit(&hqueue->hsfs_queue_lock);
2047 		mutex_exit(&hqueue->strategy_lock);
2048 		return (1);
2049 	}
2050 
2051 	if (drv_hztousec(ddi_get_lbolt()) - fio->io_timestamp
2052 	    < HSFS_READ_DEADLINE) {
2053 		/*
2054 		 * Apply standard scheduling logic. This uses the
2055 		 * C-LOOK approach. Process I/O requests in ascending
2056 		 * order of logical block address till no subsequent
2057 		 * higher numbered block request remains. Then start
2058 		 * again from the lowest numbered block in the queue.
2059 		 *
2060 		 * We do this cheaply here by means of a sentinel.
2061 		 * The last processed I/O structure from the previous
2062 		 * invocation of this func, is left dangling in the
2063 		 * read_tree so that we can easily scan to the next
2064 		 * higher numbered request and remove the sentinel.
2065 		 */
2066 		fio = NULL;
2067 		if (hqueue->next != NULL) {
2068 			fio = AVL_NEXT(&hqueue->read_tree, hqueue->next);
2069 			avl_remove(&hqueue->read_tree, hqueue->next);
2070 			kmem_cache_free(hio_cache, hqueue->next);
2071 			hqueue->next = NULL;
2072 		}
2073 		if (fio == NULL) {
2074 			fio = avl_first(&hqueue->read_tree);
2075 		}
2076 	} else if (hqueue->next != NULL) {
2077 		DTRACE_PROBE1(hsfs_deadline_expiry, struct hio *, fio);
2078 
2079 		avl_remove(&hqueue->read_tree, hqueue->next);
2080 		kmem_cache_free(hio_cache, hqueue->next);
2081 		hqueue->next = NULL;
2082 	}
2083 
2084 	/*
2085 	 * In addition we try to coalesce contiguous
2086 	 * requests into one bigger request.
2087 	 */
2088 	bufcount = 1;
2089 	bsize = ldbtob(fio->nblocks);
2090 	fvp = fio->bp->b_file;
2091 	nio = AVL_NEXT(&hqueue->read_tree, fio);
2092 	tio = fio;
2093 	while (nio != NULL && IS_ADJACENT(tio, nio) &&
2094 	    bsize < hqueue->dev_maxtransfer) {
2095 		avl_remove(&hqueue->deadline_tree, tio);
2096 		avl_remove(&hqueue->read_tree, tio);
2097 		tio->contig_chain = nio;
2098 		bsize += ldbtob(nio->nblocks);
2099 		prev = tio;
2100 		tio = nio;
2101 
2102 		/*
2103 		 * This check is required to detect the case where
2104 		 * we are merging adjacent buffers belonging to
2105 		 * different files. fvp is used to set the b_file
2106 		 * parameter in the coalesced buf. b_file is used
2107 		 * by DTrace so we do not want DTrace to accrue
2108 		 * requests to two different files to any one file.
2109 		 */
2110 		if (fvp && tio->bp->b_file != fvp) {
2111 			fvp = NULL;
2112 		}
2113 
2114 		nio = AVL_NEXT(&hqueue->read_tree, nio);
2115 		bufcount++;
2116 	}
2117 
2118 	/*
2119 	 * tio is not removed from the read_tree as it serves as a sentinel
2120 	 * to cheaply allow us to scan to the next higher numbered I/O
2121 	 * request.
2122 	 */
2123 	hqueue->next = tio;
2124 	avl_remove(&hqueue->deadline_tree, tio);
2125 	mutex_exit(&hqueue->hsfs_queue_lock);
2126 	DTRACE_PROBE3(hsfs_io_dequeued, struct hio *, fio, int, bufcount,
2127 	    size_t, bsize);
2128 
2129 	/*
2130 	 * The benefit of coalescing occurs if the the savings in I/O outweighs
2131 	 * the cost of doing the additional work below.
2132 	 * It was observed that coalescing 2 buffers results in diminishing
2133 	 * returns, so we do coalescing if we have >2 adjacent bufs.
2134 	 */
2135 	if (bufcount > hsched_coalesce_min) {
2136 		/*
2137 		 * We have coalesced blocks. First allocate mem and buf for
2138 		 * the entire coalesced chunk.
2139 		 * Since we are guaranteed single-threaded here we pre-allocate
2140 		 * one buf at mount time and that is re-used every time. This
2141 		 * is a synthesized buf structure that uses kmem_alloced chunk.
2142 		 * Not quite a normal buf attached to pages.
2143 		 */
2144 		fsp->coalesced_bytes += bsize;
2145 		nbuf = hqueue->nbuf;
2146 		bioinit(nbuf);
2147 		nbuf->b_edev = fio->bp->b_edev;
2148 		nbuf->b_dev = fio->bp->b_dev;
2149 		nbuf->b_flags = fio->bp->b_flags;
2150 		nbuf->b_iodone = fio->bp->b_iodone;
2151 		iodata = kmem_alloc(bsize, KM_SLEEP);
2152 		nbuf->b_un.b_addr = iodata;
2153 		nbuf->b_lblkno = fio->bp->b_lblkno;
2154 		nbuf->b_vp = fvp;
2155 		nbuf->b_file = fvp;
2156 		nbuf->b_bcount = bsize;
2157 		nbuf->b_bufsize = bsize;
2158 
2159 		DTRACE_PROBE3(hsfs_coalesced_io_start, struct hio *, fio, int,
2160 		    bufcount, size_t, bsize);
2161 
2162 		/*
2163 		 * Perform I/O for the coalesced block.
2164 		 */
2165 		(void) bdev_strategy(nbuf);
2166 
2167 		/*
2168 		 * Duplicate the last IO node to leave the sentinel alone.
2169 		 * The sentinel is freed in the next invocation of this
2170 		 * function.
2171 		 */
2172 		prev->contig_chain = kmem_cache_alloc(hio_cache, KM_SLEEP);
2173 		prev->contig_chain->bp = tio->bp;
2174 		prev->contig_chain->sema = tio->sema;
2175 		tio = prev->contig_chain;
2176 		tio->contig_chain = NULL;
2177 		soffset = ldbtob(fio->bp->b_lblkno);
2178 		nio = fio;
2179 
2180 		bioret = biowait(nbuf);
2181 		data = bsize - nbuf->b_resid;
2182 		biofini(nbuf);
2183 		mutex_exit(&hqueue->strategy_lock);
2184 
2185 		/*
2186 		 * We use the b_resid parameter to detect how much
2187 		 * data was succesfully transferred. We will signal
2188 		 * a success to all the fully retrieved actual bufs
2189 		 * before coalescing, rest is signaled as error,
2190 		 * if any.
2191 		 */
2192 		tio = nio;
2193 		DTRACE_PROBE3(hsfs_coalesced_io_done, struct hio *, nio,
2194 		    int, bioret, size_t, data);
2195 
2196 		/*
2197 		 * Copy data and signal success to all the bufs
2198 		 * which can be fully satisfied from b_resid.
2199 		 */
2200 		while (nio != NULL && data >= nio->bp->b_bcount) {
2201 			offset = ldbtob(nio->bp->b_lblkno) - soffset;
2202 			bcopy(iodata + offset, nio->bp->b_un.b_addr,
2203 			    nio->bp->b_bcount);
2204 			data -= nio->bp->b_bcount;
2205 			bioerror(nio->bp, 0);
2206 			biodone(nio->bp);
2207 			sema_v(nio->sema);
2208 			tio = nio;
2209 			nio = nio->contig_chain;
2210 			kmem_cache_free(hio_cache, tio);
2211 		}
2212 
2213 		/*
2214 		 * Signal error to all the leftover bufs (if any)
2215 		 * after b_resid data is exhausted.
2216 		 */
2217 		while (nio != NULL) {
2218 			nio->bp->b_resid = nio->bp->b_bcount - data;
2219 			bzero(nio->bp->b_un.b_addr + data, nio->bp->b_resid);
2220 			bioerror(nio->bp, bioret);
2221 			biodone(nio->bp);
2222 			sema_v(nio->sema);
2223 			tio = nio;
2224 			nio = nio->contig_chain;
2225 			kmem_cache_free(hio_cache, tio);
2226 			data = 0;
2227 		}
2228 		kmem_free(iodata, bsize);
2229 	} else {
2230 
2231 		nbuf = tio->bp;
2232 		io_done = tio->sema;
2233 		nio = fio;
2234 		last = tio;
2235 
2236 		while (nio != NULL) {
2237 			(void) bdev_strategy(nio->bp);
2238 			nio = nio->contig_chain;
2239 		}
2240 		nio = fio;
2241 		mutex_exit(&hqueue->strategy_lock);
2242 
2243 		while (nio != NULL) {
2244 			if (nio == last) {
2245 				(void) biowait(nbuf);
2246 				sema_v(io_done);
2247 				break;
2248 				/* sentinel last not freed. See above. */
2249 			} else {
2250 				(void) biowait(nio->bp);
2251 				sema_v(nio->sema);
2252 			}
2253 			tio = nio;
2254 			nio = nio->contig_chain;
2255 			kmem_cache_free(hio_cache, tio);
2256 		}
2257 	}
2258 	return (0);
2259 }
2260 
2261 /*
2262  * Insert an I/O request in the I/O scheduler's pipeline
2263  * Using AVL tree makes it easy to reorder the I/O request
2264  * based on logical block number.
2265  */
2266 static void
2267 hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra)
2268 {
2269 	struct hsfs_queue *hqueue = fsp->hqueue;
2270 
2271 	mutex_enter(&hqueue->hsfs_queue_lock);
2272 
2273 	fsp->physical_read_bytes += hsio->bp->b_bcount;
2274 	if (ra)
2275 		fsp->readahead_bytes += hsio->bp->b_bcount;
2276 
2277 	avl_add(&hqueue->deadline_tree, hsio);
2278 	avl_add(&hqueue->read_tree, hsio);
2279 
2280 	DTRACE_PROBE3(hsfs_io_enqueued, struct hio *, hsio,
2281 	    struct hsfs_queue *, hqueue, int, ra);
2282 
2283 	mutex_exit(&hqueue->hsfs_queue_lock);
2284 }
2285 
2286 /* ARGSUSED */
2287 static int
2288 hsfs_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr,
2289     caller_context_t *ct)
2290 {
2291 	struct hsfs	*fsp;
2292 
2293 	int		error = 0;
2294 
2295 	switch (cmd) {
2296 
2297 	case _PC_NAME_MAX:
2298 		fsp = VFS_TO_HSFS(vp->v_vfsp);
2299 		*valp = fsp->hsfs_namemax;
2300 		break;
2301 
2302 	case _PC_FILESIZEBITS:
2303 		*valp = 33;	/* Without multi extent support: 4 GB - 2k */
2304 		break;
2305 
2306 	case _PC_TIMESTAMP_RESOLUTION:
2307 		/*
2308 		 * HSFS keeps, at best, 1/100 second timestamp resolution.
2309 		 */
2310 		*valp = 10000000L;
2311 		break;
2312 
2313 	default:
2314 		error = fs_pathconf(vp, cmd, valp, cr, ct);
2315 		break;
2316 	}
2317 
2318 	return (error);
2319 }
2320 
2321 
2322 
2323 const fs_operation_def_t hsfs_vnodeops_template[] = {
2324 	VOPNAME_OPEN,		{ .vop_open = hsfs_open },
2325 	VOPNAME_CLOSE,		{ .vop_close = hsfs_close },
2326 	VOPNAME_READ,		{ .vop_read = hsfs_read },
2327 	VOPNAME_GETATTR,	{ .vop_getattr = hsfs_getattr },
2328 	VOPNAME_ACCESS,		{ .vop_access = hsfs_access },
2329 	VOPNAME_LOOKUP,		{ .vop_lookup = hsfs_lookup },
2330 	VOPNAME_READDIR,	{ .vop_readdir = hsfs_readdir },
2331 	VOPNAME_READLINK,	{ .vop_readlink = hsfs_readlink },
2332 	VOPNAME_FSYNC,		{ .vop_fsync = hsfs_fsync },
2333 	VOPNAME_INACTIVE,	{ .vop_inactive = hsfs_inactive },
2334 	VOPNAME_FID,		{ .vop_fid = hsfs_fid },
2335 	VOPNAME_SEEK,		{ .vop_seek = hsfs_seek },
2336 	VOPNAME_FRLOCK,		{ .vop_frlock = hsfs_frlock },
2337 	VOPNAME_GETPAGE,	{ .vop_getpage = hsfs_getpage },
2338 	VOPNAME_PUTPAGE,	{ .vop_putpage = hsfs_putpage },
2339 	VOPNAME_MAP,		{ .vop_map = hsfs_map },
2340 	VOPNAME_ADDMAP,		{ .vop_addmap = hsfs_addmap },
2341 	VOPNAME_DELMAP,		{ .vop_delmap = hsfs_delmap },
2342 	VOPNAME_PATHCONF,	{ .vop_pathconf = hsfs_pathconf },
2343 	NULL,			NULL
2344 };
2345 
2346 struct vnodeops *hsfs_vnodeops;
2347