1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Vnode operations for the High Sierra filesystem 31 */ 32 33 #include <sys/types.h> 34 #include <sys/t_lock.h> 35 #include <sys/param.h> 36 #include <sys/time.h> 37 #include <sys/systm.h> 38 #include <sys/sysmacros.h> 39 #include <sys/resource.h> 40 #include <sys/signal.h> 41 #include <sys/cred.h> 42 #include <sys/user.h> 43 #include <sys/buf.h> 44 #include <sys/vfs.h> 45 #include <sys/stat.h> 46 #include <sys/vnode.h> 47 #include <sys/mode.h> 48 #include <sys/proc.h> 49 #include <sys/disp.h> 50 #include <sys/file.h> 51 #include <sys/fcntl.h> 52 #include <sys/flock.h> 53 #include <sys/kmem.h> 54 #include <sys/uio.h> 55 #include <sys/conf.h> 56 #include <sys/errno.h> 57 #include <sys/mman.h> 58 #include <sys/pathname.h> 59 #include <sys/debug.h> 60 #include <sys/vmsystm.h> 61 #include <sys/cmn_err.h> 62 #include <sys/fbuf.h> 63 #include <sys/dirent.h> 64 #include <sys/errno.h> 65 66 #include <vm/hat.h> 67 #include <vm/page.h> 68 #include <vm/pvn.h> 69 #include <vm/as.h> 70 #include <vm/seg.h> 71 #include <vm/seg_map.h> 72 #include <vm/seg_kmem.h> 73 #include <vm/seg_vn.h> 74 #include <vm/rm.h> 75 #include <vm/page.h> 76 #include <sys/swap.h> 77 78 #include <sys/fs/hsfs_spec.h> 79 #include <sys/fs/hsfs_node.h> 80 #include <sys/fs/hsfs_impl.h> 81 #include <sys/fs/hsfs_susp.h> 82 #include <sys/fs/hsfs_rrip.h> 83 84 #include <fs/fs_subr.h> 85 86 /* ARGSUSED */ 87 static int 88 hsfs_fsync(vnode_t *cp, int syncflag, cred_t *cred) 89 { 90 return (0); 91 } 92 93 94 /*ARGSUSED*/ 95 static int 96 hsfs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cred, 97 struct caller_context *ct) 98 { 99 caddr_t base; 100 offset_t diff; 101 int error; 102 struct hsnode *hp; 103 uint_t filesize; 104 105 hp = VTOH(vp); 106 /* 107 * if vp is of type VDIR, make sure dirent 108 * is filled up with all info (because of ptbl) 109 */ 110 if (vp->v_type == VDIR) { 111 if (hp->hs_dirent.ext_size == 0) 112 hs_filldirent(vp, &hp->hs_dirent); 113 } 114 filesize = hp->hs_dirent.ext_size; 115 116 /* Sanity checks. */ 117 if (uiop->uio_resid == 0 || /* No data wanted. */ 118 uiop->uio_loffset >= MAXOFF_T || /* Offset too big. */ 119 uiop->uio_loffset >= filesize) /* Past EOF. */ 120 return (0); 121 122 do { 123 /* 124 * We want to ask for only the "right" amount of data. 125 * In this case that means:- 126 * 127 * We can't get data from beyond our EOF. If asked, 128 * we will give a short read. 129 * 130 * segmap_getmapflt returns buffers of MAXBSIZE bytes. 131 * These buffers are always MAXBSIZE aligned. 132 * If our starting offset is not MAXBSIZE aligned, 133 * we can only ask for less than MAXBSIZE bytes. 134 * 135 * If our requested offset and length are such that 136 * they belong in different MAXBSIZE aligned slots 137 * then we'll be making more than one call on 138 * segmap_getmapflt. 139 * 140 * This diagram shows the variables we use and their 141 * relationships. 142 * 143 * |<-----MAXBSIZE----->| 144 * +--------------------------...+ 145 * |.....mapon->|<--n-->|....*...|EOF 146 * +--------------------------...+ 147 * uio_loffset->| 148 * uio_resid....|<---------->| 149 * diff.........|<-------------->| 150 * 151 * So, in this case our offset is not aligned 152 * and our request takes us outside of the 153 * MAXBSIZE window. We will break this up into 154 * two segmap_getmapflt calls. 155 */ 156 size_t nbytes; 157 offset_t mapon; 158 size_t n; 159 uint_t flags; 160 161 mapon = uiop->uio_loffset & MAXBOFFSET; 162 diff = filesize - uiop->uio_loffset; 163 nbytes = (size_t)MIN(MAXBSIZE - mapon, uiop->uio_resid); 164 n = MIN(diff, nbytes); 165 if (n <= 0) { 166 /* EOF or request satisfied. */ 167 return (0); 168 } 169 170 base = segmap_getmapflt(segkmap, vp, 171 (u_offset_t)uiop->uio_loffset, n, 1, S_READ); 172 173 error = uiomove(base + mapon, n, UIO_READ, uiop); 174 175 if (error == 0) { 176 /* 177 * if read a whole block, or read to eof, 178 * won't need this buffer again soon. 179 */ 180 if (n + mapon == MAXBSIZE || 181 uiop->uio_loffset == filesize) 182 flags = SM_DONTNEED; 183 else 184 flags = 0; 185 error = segmap_release(segkmap, base, flags); 186 } else 187 (void) segmap_release(segkmap, base, 0); 188 } while (error == 0 && uiop->uio_resid > 0); 189 190 return (error); 191 } 192 193 /*ARGSUSED2*/ 194 static int 195 hsfs_getattr( 196 struct vnode *vp, 197 struct vattr *vap, 198 int flags, 199 struct cred *cred) 200 { 201 struct hsnode *hp; 202 struct vfs *vfsp; 203 struct hsfs *fsp; 204 205 hp = VTOH(vp); 206 fsp = VFS_TO_HSFS(vp->v_vfsp); 207 vfsp = vp->v_vfsp; 208 209 if ((hp->hs_dirent.ext_size == 0) && (vp->v_type == VDIR)) { 210 hs_filldirent(vp, &hp->hs_dirent); 211 } 212 vap->va_type = IFTOVT(hp->hs_dirent.mode); 213 vap->va_mode = hp->hs_dirent.mode; 214 vap->va_uid = hp->hs_dirent.uid; 215 vap->va_gid = hp->hs_dirent.gid; 216 217 vap->va_fsid = vfsp->vfs_dev; 218 vap->va_nodeid = (ino64_t)hp->hs_nodeid; 219 vap->va_nlink = hp->hs_dirent.nlink; 220 vap->va_size = (offset_t)hp->hs_dirent.ext_size; 221 222 vap->va_atime.tv_sec = hp->hs_dirent.adate.tv_sec; 223 vap->va_atime.tv_nsec = hp->hs_dirent.adate.tv_usec*1000; 224 vap->va_mtime.tv_sec = hp->hs_dirent.mdate.tv_sec; 225 vap->va_mtime.tv_nsec = hp->hs_dirent.mdate.tv_usec*1000; 226 vap->va_ctime.tv_sec = hp->hs_dirent.cdate.tv_sec; 227 vap->va_ctime.tv_nsec = hp->hs_dirent.cdate.tv_usec*1000; 228 if (vp->v_type == VCHR || vp->v_type == VBLK) 229 vap->va_rdev = hp->hs_dirent.r_dev; 230 else 231 vap->va_rdev = 0; 232 vap->va_blksize = vfsp->vfs_bsize; 233 /* no. of blocks = no. of data blocks + no. of xar blocks */ 234 vap->va_nblocks = (fsblkcnt64_t)howmany(vap->va_size + (u_longlong_t) 235 (hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift), DEV_BSIZE); 236 vap->va_seq = hp->hs_seq; 237 return (0); 238 } 239 240 /*ARGSUSED*/ 241 static int 242 hsfs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cred) 243 { 244 struct hsnode *hp; 245 246 if (vp->v_type != VLNK) 247 return (EINVAL); 248 249 hp = VTOH(vp); 250 251 if (hp->hs_dirent.sym_link == (char *)NULL) 252 return (ENOENT); 253 254 return (uiomove(hp->hs_dirent.sym_link, 255 (size_t)MIN(hp->hs_dirent.ext_size, 256 uiop->uio_resid), UIO_READ, uiop)); 257 } 258 259 /*ARGSUSED*/ 260 static void 261 hsfs_inactive(struct vnode *vp, struct cred *cred) 262 { 263 struct hsnode *hp; 264 struct hsfs *fsp; 265 266 int nopage; 267 268 hp = VTOH(vp); 269 fsp = VFS_TO_HSFS(vp->v_vfsp); 270 /* 271 * Note: acquiring and holding v_lock for quite a while 272 * here serializes on the vnode; this is unfortunate, but 273 * likely not to overly impact performance, as the underlying 274 * device (CDROM drive) is quite slow. 275 */ 276 rw_enter(&fsp->hsfs_hash_lock, RW_WRITER); 277 mutex_enter(&hp->hs_contents_lock); 278 mutex_enter(&vp->v_lock); 279 280 if (vp->v_count < 1) { 281 panic("hsfs_inactive: v_count < 1"); 282 /*NOTREACHED*/ 283 } 284 285 if (vp->v_count > 1 || (hp->hs_flags & HREF) == 0) { 286 vp->v_count--; /* release hold from vn_rele */ 287 mutex_exit(&vp->v_lock); 288 mutex_exit(&hp->hs_contents_lock); 289 rw_exit(&fsp->hsfs_hash_lock); 290 return; 291 } 292 vp->v_count--; /* release hold from vn_rele */ 293 if (vp->v_count == 0) { 294 /* 295 * Free the hsnode. 296 * If there are no pages associated with the 297 * hsnode, give it back to the kmem_cache, 298 * else put at the end of this file system's 299 * internal free list. 300 */ 301 nopage = !vn_has_cached_data(vp); 302 hp->hs_flags = 0; 303 /* 304 * exit these locks now, since hs_freenode may 305 * kmem_free the hsnode and embedded vnode 306 */ 307 mutex_exit(&vp->v_lock); 308 mutex_exit(&hp->hs_contents_lock); 309 hs_freenode(vp, fsp, nopage); 310 } else { 311 mutex_exit(&vp->v_lock); 312 mutex_exit(&hp->hs_contents_lock); 313 } 314 rw_exit(&fsp->hsfs_hash_lock); 315 } 316 317 318 /*ARGSUSED*/ 319 static int 320 hsfs_lookup( 321 struct vnode *dvp, 322 char *nm, 323 struct vnode **vpp, 324 struct pathname *pnp, 325 int flags, 326 struct vnode *rdir, 327 struct cred *cred) 328 { 329 int error; 330 int namelen = (int)strlen(nm); 331 332 if (*nm == '\0') { 333 VN_HOLD(dvp); 334 *vpp = dvp; 335 return (0); 336 } 337 338 /* 339 * If we're looking for ourself, life is simple. 340 */ 341 if (namelen == 1 && *nm == '.') { 342 if (error = hs_access(dvp, (mode_t)VEXEC, cred)) 343 return (error); 344 VN_HOLD(dvp); 345 *vpp = dvp; 346 return (0); 347 } 348 349 return (hs_dirlook(dvp, nm, namelen, vpp, cred)); 350 } 351 352 353 /*ARGSUSED*/ 354 static int 355 hsfs_readdir( 356 struct vnode *vp, 357 struct uio *uiop, 358 struct cred *cred, 359 int *eofp) 360 { 361 struct hsnode *dhp; 362 struct hsfs *fsp; 363 struct hs_direntry hd; 364 struct dirent64 *nd; 365 int error; 366 uint_t offset; /* real offset in directory */ 367 uint_t dirsiz; /* real size of directory */ 368 uchar_t *blkp; 369 int hdlen; /* length of hs directory entry */ 370 long ndlen; /* length of dirent entry */ 371 int bytes_wanted; 372 size_t bufsize; /* size of dirent buffer */ 373 char *outbuf; /* ptr to dirent buffer */ 374 char *dname; 375 int dnamelen; 376 size_t dname_size; 377 struct fbuf *fbp; 378 uint_t last_offset; /* last index into current dir block */ 379 ulong_t dir_lbn; /* lbn of directory */ 380 ino64_t dirino; /* temporary storage before storing in dirent */ 381 off_t diroff; 382 383 dhp = VTOH(vp); 384 fsp = VFS_TO_HSFS(vp->v_vfsp); 385 if (dhp->hs_dirent.ext_size == 0) 386 hs_filldirent(vp, &dhp->hs_dirent); 387 dirsiz = dhp->hs_dirent.ext_size; 388 dir_lbn = dhp->hs_dirent.ext_lbn; 389 if (uiop->uio_loffset >= dirsiz) { /* at or beyond EOF */ 390 if (eofp) 391 *eofp = 1; 392 return (0); 393 } 394 ASSERT(uiop->uio_loffset <= MAXOFF_T); 395 offset = (uint_t)uiop->uio_offset; 396 397 dname_size = fsp->hsfs_namemax + 1; /* 1 for the ending NUL */ 398 dname = kmem_alloc(dname_size, KM_SLEEP); 399 bufsize = uiop->uio_resid + sizeof (struct dirent64); 400 401 outbuf = kmem_alloc(bufsize, KM_SLEEP); 402 nd = (struct dirent64 *)outbuf; 403 404 while (offset < dirsiz) { 405 if ((offset & MAXBMASK) + MAXBSIZE > dirsiz) 406 bytes_wanted = dirsiz - (offset & MAXBMASK); 407 else 408 bytes_wanted = MAXBSIZE; 409 410 error = fbread(vp, (offset_t)(offset & MAXBMASK), 411 (unsigned int)bytes_wanted, S_READ, &fbp); 412 if (error) 413 goto done; 414 415 blkp = (uchar_t *)fbp->fb_addr; 416 last_offset = (offset & MAXBMASK) + fbp->fb_count - 1; 417 418 #define rel_offset(offset) ((offset) & MAXBOFFSET) /* index into blkp */ 419 420 while (offset < last_offset) { 421 /* 422 * Directory Entries cannot span sectors. 423 * Unused bytes at the end of each sector are zeroed. 424 * Therefore, detect this condition when the size 425 * field of the directory entry is zero. 426 */ 427 hdlen = (int)((uchar_t) 428 HDE_DIR_LEN(&blkp[rel_offset(offset)])); 429 if (hdlen == 0) { 430 /* advance to next sector boundary */ 431 offset = (offset & MAXHSMASK) + HS_SECTOR_SIZE; 432 433 /* 434 * Have we reached the end of current block? 435 */ 436 if (offset > last_offset) 437 break; 438 else 439 continue; 440 } 441 442 /* make sure this is nullified before reading it */ 443 bzero(&hd, sizeof (hd)); 444 445 /* 446 * Just ignore invalid directory entries. 447 * XXX - maybe hs_parsedir() will detect EXISTENCE bit 448 */ 449 if (!hs_parsedir(fsp, &blkp[rel_offset(offset)], 450 &hd, dname, &dnamelen)) { 451 /* 452 * Determine if there is enough room 453 */ 454 ndlen = (long)DIRENT64_RECLEN((dnamelen)); 455 456 if ((ndlen + ((char *)nd - outbuf)) > 457 uiop->uio_resid) { 458 fbrelse(fbp, S_READ); 459 goto done; /* output buffer full */ 460 } 461 462 diroff = offset + hdlen; 463 /* 464 * Generate nodeid. 465 * If a directory, nodeid points to the 466 * canonical dirent describing the directory: 467 * the dirent of the "." entry for the 468 * directory, which is pointed to by all 469 * dirents for that directory. 470 * Otherwise, nodeid points to dirent of file. 471 */ 472 if (hd.type == VDIR) { 473 dirino = (ino64_t) 474 MAKE_NODEID(hd.ext_lbn, 0, 475 vp->v_vfsp); 476 } else { 477 struct hs_volume *hvp; 478 offset_t lbn, off; 479 480 /* 481 * Normalize lbn and off 482 */ 483 hvp = &fsp->hsfs_vol; 484 lbn = dir_lbn + 485 (offset >> hvp->lbn_shift); 486 off = offset & hvp->lbn_maxoffset; 487 dirino = (ino64_t)MAKE_NODEID(lbn, 488 off, vp->v_vfsp); 489 } 490 491 492 /* strncpy(9f) will zero uninitialized bytes */ 493 494 ASSERT(strlen(dname) + 1 <= 495 DIRENT64_NAMELEN(ndlen)); 496 (void) strncpy(nd->d_name, dname, 497 DIRENT64_NAMELEN(ndlen)); 498 nd->d_reclen = (ushort_t)ndlen; 499 nd->d_off = (offset_t)diroff; 500 nd->d_ino = dirino; 501 nd = (struct dirent64 *)((char *)nd + ndlen); 502 503 /* 504 * free up space allocated for symlink 505 */ 506 if (hd.sym_link != (char *)NULL) { 507 kmem_free(hd.sym_link, 508 (size_t)(hd.ext_size+1)); 509 hd.sym_link = (char *)NULL; 510 } 511 } 512 513 offset += hdlen; 514 } 515 fbrelse(fbp, S_READ); 516 } 517 518 /* 519 * Got here for one of the following reasons: 520 * 1) outbuf is full (error == 0) 521 * 2) end of directory reached (error == 0) 522 * 3) error reading directory sector (error != 0) 523 * 4) directory entry crosses sector boundary (error == 0) 524 * 525 * If any directory entries have been copied, don't report 526 * case 4. Instead, return the valid directory entries. 527 * 528 * If no entries have been copied, report the error. 529 * If case 4, this will be indistiguishable from EOF. 530 */ 531 done: 532 ndlen = ((char *)nd - outbuf); 533 if (ndlen != 0) { 534 error = uiomove(outbuf, (size_t)ndlen, UIO_READ, uiop); 535 uiop->uio_offset = offset; 536 } 537 kmem_free(dname, dname_size); 538 kmem_free(outbuf, bufsize); 539 if (eofp && error == 0) 540 *eofp = (uiop->uio_offset >= dirsiz); 541 return (error); 542 } 543 544 static int 545 hsfs_fid(struct vnode *vp, struct fid *fidp) 546 { 547 struct hsnode *hp; 548 struct hsfid *fid; 549 550 if (fidp->fid_len < (sizeof (*fid) - sizeof (fid->hf_len))) { 551 fidp->fid_len = sizeof (*fid) - sizeof (fid->hf_len); 552 return (ENOSPC); 553 } 554 555 fid = (struct hsfid *)fidp; 556 fid->hf_len = sizeof (*fid) - sizeof (fid->hf_len); 557 hp = VTOH(vp); 558 mutex_enter(&hp->hs_contents_lock); 559 fid->hf_dir_lbn = hp->hs_dir_lbn; 560 fid->hf_dir_off = (ushort_t)hp->hs_dir_off; 561 mutex_exit(&hp->hs_contents_lock); 562 return (0); 563 } 564 565 /*ARGSUSED*/ 566 static int 567 hsfs_open(struct vnode **vpp, int flag, struct cred *cred) 568 { 569 return (0); 570 } 571 572 /*ARGSUSED*/ 573 static int 574 hsfs_close( 575 struct vnode *vp, 576 int flag, 577 int count, 578 offset_t offset, 579 struct cred *cred) 580 { 581 (void) cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 582 cleanshares(vp, ttoproc(curthread)->p_pid); 583 return (0); 584 } 585 586 /*ARGSUSED2*/ 587 static int 588 hsfs_access(struct vnode *vp, int mode, int flags, cred_t *cred) 589 { 590 return (hs_access(vp, (mode_t)mode, cred)); 591 } 592 593 /* 594 * the seek time of a CD-ROM is very slow, and data transfer 595 * rate is even worse (max. 150K per sec). The design 596 * decision is to reduce access to cd-rom as much as possible, 597 * and to transfer a sizable block (read-ahead) of data at a time. 598 * UFS style of read ahead one block at a time is not appropriate, 599 * and is not supported 600 */ 601 602 /* 603 * KLUSTSIZE should be a multiple of PAGESIZE and <= MAXPHYS. 604 */ 605 #define KLUSTSIZE (56 * 1024) 606 /* we don't support read ahead */ 607 int hsfs_lostpage; /* no. of times we lost original page */ 608 609 /* 610 * Used to prevent biodone() from releasing buf resources that 611 * we didn't allocate in quite the usual way. 612 */ 613 /*ARGSUSED*/ 614 int 615 hsfs_iodone(struct buf *bp) 616 { 617 sema_v(&bp->b_io); 618 return (0); 619 } 620 621 /* 622 * Each file may have a different interleaving on disk. This makes 623 * things somewhat interesting. The gist is that there are some 624 * number of contiguous data sectors, followed by some other number 625 * of contiguous skip sectors. The sum of those two sets of sectors 626 * defines the interleave size. Unfortunately, it means that we generally 627 * can't simply read N sectors starting at a given offset to satisfy 628 * any given request. 629 * 630 * What we do is get the relevant memory pages via pvn_read_kluster(), 631 * then stride through the interleaves, setting up a buf for each 632 * sector that needs to be brought in. Instead of kmem_alloc'ing 633 * space for the sectors, though, we just point at the appropriate 634 * spot in the relevant page for each of them. This saves us a bunch 635 * of copying. 636 */ 637 /*ARGSUSED*/ 638 static int 639 hsfs_getapage( 640 struct vnode *vp, 641 u_offset_t off, 642 size_t len, 643 uint_t *protp, 644 struct page *pl[], 645 size_t plsz, 646 struct seg *seg, 647 caddr_t addr, 648 enum seg_rw rw, 649 struct cred *cred) 650 { 651 struct hsnode *hp; 652 struct hsfs *fsp; 653 int err; 654 struct buf *bufs; 655 caddr_t *vas; 656 caddr_t va; 657 struct page *pp, *searchp, *lastp; 658 page_t *pagefound; 659 offset_t bof; 660 struct vnode *devvp; 661 ulong_t byte_offset; 662 size_t io_len_tmp; 663 uint_t io_off, io_len; 664 uint_t xlen; 665 uint_t filsiz; 666 uint_t secsize; 667 uint_t bufcnt; 668 uint_t bufsused; 669 uint_t count; 670 uint_t io_end; 671 uint_t which_chunk_lbn; 672 uint_t offset_lbn; 673 uint_t offset_extra; 674 offset_t offset_bytes; 675 uint_t remaining_bytes; 676 uint_t extension; 677 int remainder; /* must be signed */ 678 int chunk_lbn_count; 679 int chunk_data_bytes; 680 int xarsiz; 681 diskaddr_t driver_block; 682 u_offset_t io_off_tmp; 683 684 /* 685 * We don't support asynchronous operation at the moment, so 686 * just pretend we did it. If the pages are ever actually 687 * needed, they'll get brought in then. 688 */ 689 if (pl == NULL) 690 return (0); 691 692 hp = VTOH(vp); 693 fsp = VFS_TO_HSFS(vp->v_vfsp); 694 devvp = fsp->hsfs_devvp; 695 secsize = fsp->hsfs_vol.lbn_size; /* bytes per logical block */ 696 697 /* file data size */ 698 filsiz = hp->hs_dirent.ext_size; 699 700 /* disk addr for start of file */ 701 bof = LBN_TO_BYTE((offset_t)hp->hs_dirent.ext_lbn, vp->v_vfsp); 702 703 /* xarsiz byte must be skipped for data */ 704 xarsiz = hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift; 705 706 /* how many logical blocks in an interleave (data+skip) */ 707 chunk_lbn_count = hp->hs_dirent.intlf_sz + hp->hs_dirent.intlf_sk; 708 709 if (chunk_lbn_count == 0) { 710 chunk_lbn_count = 1; 711 } 712 713 /* 714 * Convert interleaving size into bytes. The zero case 715 * (no interleaving) optimization is handled as a side- 716 * effect of the read-ahead logic. 717 */ 718 if (hp->hs_dirent.intlf_sz == 0) { 719 chunk_data_bytes = LBN_TO_BYTE(1, vp->v_vfsp); 720 } else { 721 chunk_data_bytes = LBN_TO_BYTE(hp->hs_dirent.intlf_sz, 722 vp->v_vfsp); 723 } 724 725 reread: 726 err = 0; 727 pagefound = 0; 728 729 /* 730 * Do some read-ahead. This mostly saves us a bit of 731 * system cpu time more than anything else when doing 732 * sequential reads. At some point, could do the 733 * read-ahead asynchronously which might gain us something 734 * on wall time, but it seems unlikely.... 735 * 736 * We do the easy case here, which is to read through 737 * the end of the chunk, minus whatever's at the end that 738 * won't exactly fill a page. 739 */ 740 which_chunk_lbn = (off + len) / chunk_data_bytes; 741 extension = ((which_chunk_lbn + 1) * chunk_data_bytes) - off; 742 extension -= (extension % PAGESIZE); 743 if (extension != 0 && extension < filsiz - off) { 744 len = extension; 745 } else { 746 len = PAGESIZE; 747 } 748 /* 749 * Some cd writers don't write sectors that aren't used. Also, 750 * there's no point in reading sectors we'll never look at. So, 751 * if we're asked to go beyond the end of a file, truncate to the 752 * length of that file. 753 * 754 * Additionally, this behaviour is required by section 6.4.5 of 755 * ISO 9660:1988(E). 756 */ 757 if (len > (filsiz - off)) { 758 len = filsiz - off; 759 } 760 761 /* A little paranoia. */ 762 ASSERT(len > 0); 763 764 /* 765 * After all that, make sure we're asking for things in units 766 * that bdev_strategy() will understand (see bug 4202551). 767 */ 768 len = roundup(len, DEV_BSIZE); 769 770 pp = NULL; 771 again: 772 /* search for page in buffer */ 773 if ((pagefound = page_exists(vp, off)) == 0) { 774 /* 775 * Need to really do disk IO to get the page. 776 */ 777 pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp, 778 &io_len_tmp, off, len, 0); 779 780 if (pp == NULL) 781 goto again; 782 783 io_off = (uint_t)io_off_tmp; 784 io_len = (uint_t)io_len_tmp; 785 786 /* check for truncation */ 787 /* 788 * xxx Clean up and return EIO instead? 789 * xxx Ought to go to u_offset_t for everything, but we 790 * xxx call lots of things that want uint_t arguments. 791 */ 792 ASSERT(io_off == io_off_tmp); 793 794 /* 795 * get enough buffers for worst-case scenario 796 * (i.e., no coalescing possible). 797 */ 798 bufcnt = (len + secsize - 1) / secsize; 799 bufs = kmem_zalloc(bufcnt * sizeof (struct buf), KM_SLEEP); 800 vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP); 801 for (count = 0; count < bufcnt; count++) { 802 bufs[count].b_edev = devvp->v_rdev; 803 bufs[count].b_dev = cmpdev(devvp->v_rdev); 804 bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ; 805 bufs[count].b_iodone = hsfs_iodone; 806 bufs[count].b_vp = vp; 807 bufs[count].b_file = vp; 808 sema_init(&bufs[count].b_io, 0, NULL, 809 SEMA_DEFAULT, NULL); 810 sema_init(&bufs[count].b_sem, 0, NULL, 811 SEMA_DEFAULT, NULL); 812 } 813 814 /* 815 * If our filesize is not an integer multiple of PAGESIZE, 816 * we zero that part of the last page that's between EOF and 817 * the PAGESIZE boundary. 818 */ 819 xlen = io_len & PAGEOFFSET; 820 if (xlen != 0) 821 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 822 823 va = NULL; 824 lastp = NULL; 825 searchp = pp; 826 io_end = io_off + io_len; 827 for (count = 0, byte_offset = io_off; 828 byte_offset < io_end; 829 count++) { 830 ASSERT(count < bufcnt); 831 832 /* Compute disk address for interleaving. */ 833 834 /* considered without skips */ 835 which_chunk_lbn = byte_offset / chunk_data_bytes; 836 837 /* factor in skips */ 838 offset_lbn = which_chunk_lbn * chunk_lbn_count; 839 840 /* convert to physical byte offset for lbn */ 841 offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp); 842 843 /* don't forget offset into lbn */ 844 offset_extra = byte_offset % chunk_data_bytes; 845 846 /* get virtual block number for driver */ 847 driver_block = lbtodb(bof + xarsiz 848 + offset_bytes + offset_extra); 849 850 if (lastp != searchp) { 851 /* this branch taken first time through loop */ 852 va = vas[count] 853 = ppmapin(searchp, PROT_WRITE, 854 (caddr_t)-1); 855 /* ppmapin() guarantees not to return NULL */ 856 } else { 857 vas[count] = NULL; 858 } 859 860 bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE; 861 bufs[count].b_offset = 862 (offset_t)(byte_offset - io_off + off); 863 864 /* 865 * We specifically use the b_lblkno member here 866 * as even in the 32 bit world driver_block can 867 * get very large in line with the ISO9660 spec. 868 */ 869 870 bufs[count].b_lblkno = driver_block; 871 872 remaining_bytes = ((which_chunk_lbn + 1) 873 * chunk_data_bytes) 874 - byte_offset; 875 876 /* 877 * remaining_bytes can't be zero, as we derived 878 * which_chunk_lbn directly from byte_offset. 879 */ 880 if ((remaining_bytes+byte_offset) < (off+len)) { 881 /* coalesce-read the rest of the chunk */ 882 bufs[count].b_bcount = remaining_bytes; 883 } else { 884 /* get the final bits */ 885 bufs[count].b_bcount = off + len - byte_offset; 886 } 887 888 /* 889 * It would be nice to do multiple pages' 890 * worth at once here when the opportunity 891 * arises, as that has been shown to improve 892 * our wall time. However, to do that 893 * requires that we use the pageio subsystem, 894 * which doesn't mix well with what we're 895 * already using here. We can't use pageio 896 * all the time, because that subsystem 897 * assumes that a page is stored in N 898 * contiguous blocks on the device. 899 * Interleaving violates that assumption. 900 */ 901 902 remainder = PAGESIZE - (byte_offset % PAGESIZE); 903 if (bufs[count].b_bcount > remainder) { 904 bufs[count].b_bcount = remainder; 905 } 906 907 bufs[count].b_bufsize = bufs[count].b_bcount; 908 byte_offset += bufs[count].b_bcount; 909 910 (void) bdev_strategy(&bufs[count]); 911 912 lwp_stat_update(LWP_STAT_INBLK, 1); 913 lastp = searchp; 914 if ((remainder - bufs[count].b_bcount) < 1) { 915 searchp = searchp->p_next; 916 } 917 } 918 919 bufsused = count; 920 /* Now wait for everything to come in */ 921 for (count = 0; count < bufsused; count++) { 922 if (err == 0) { 923 err = biowait(&bufs[count]); 924 } else 925 (void) biowait(&bufs[count]); 926 } 927 928 /* Don't leak resources */ 929 for (count = 0; count < bufcnt; count++) { 930 sema_destroy(&bufs[count].b_io); 931 sema_destroy(&bufs[count].b_sem); 932 if (count < bufsused && vas[count] != NULL) { 933 ppmapout(vas[count]); 934 } 935 } 936 937 kmem_free(vas, bufcnt * sizeof (caddr_t)); 938 kmem_free(bufs, bufcnt * sizeof (struct buf)); 939 } 940 941 if (err) { 942 pvn_read_done(pp, B_ERROR); 943 return (err); 944 } 945 946 /* 947 * Lock the requested page, and the one after it if possible. 948 * Don't bother if our caller hasn't given us a place to stash 949 * the page pointers, since otherwise we'd lock pages that would 950 * never get unlocked. 951 */ 952 if (pagefound) { 953 int index; 954 ulong_t soff; 955 956 /* 957 * Make sure it's in memory before we say it's here. 958 */ 959 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) { 960 hsfs_lostpage++; 961 goto reread; 962 } 963 964 pl[0] = pp; 965 index = 1; 966 967 /* 968 * Try to lock the next page, if it exists, without 969 * blocking. 970 */ 971 plsz -= PAGESIZE; 972 /* LINTED (plsz is unsigned) */ 973 for (soff = off + PAGESIZE; plsz > 0; 974 soff += PAGESIZE, plsz -= PAGESIZE) { 975 pp = page_lookup_nowait(vp, (u_offset_t)soff, 976 SE_SHARED); 977 if (pp == NULL) 978 break; 979 pl[index++] = pp; 980 } 981 pl[index] = NULL; 982 return (0); 983 } 984 985 if (pp != NULL) { 986 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 987 } 988 989 return (err); 990 } 991 992 static int 993 hsfs_getpage( 994 struct vnode *vp, 995 offset_t off, 996 size_t len, 997 uint_t *protp, 998 struct page *pl[], 999 size_t plsz, 1000 struct seg *seg, 1001 caddr_t addr, 1002 enum seg_rw rw, 1003 struct cred *cred) 1004 { 1005 int err; 1006 uint_t filsiz; 1007 struct hsnode *hp = VTOH(vp); 1008 1009 /* does not support write */ 1010 if (rw == S_WRITE) { 1011 panic("write attempt on READ ONLY HSFS"); 1012 /*NOTREACHED*/ 1013 } 1014 1015 if (vp->v_flag & VNOMAP) { 1016 return (ENOSYS); 1017 } 1018 1019 ASSERT(off <= MAXOFF_T); 1020 1021 /* 1022 * Determine file data size for EOF check. 1023 */ 1024 filsiz = hp->hs_dirent.ext_size; 1025 if ((off + len) > (offset_t)(filsiz + PAGEOFFSET) && seg != segkmap) 1026 return (EFAULT); /* beyond EOF */ 1027 1028 if (protp != NULL) 1029 *protp = PROT_ALL; 1030 1031 if (len <= PAGESIZE) 1032 err = hsfs_getapage(vp, (u_offset_t)off, len, protp, pl, plsz, 1033 seg, addr, rw, cred); 1034 else 1035 err = pvn_getpages(hsfs_getapage, vp, off, len, protp, 1036 pl, plsz, seg, addr, rw, cred); 1037 1038 return (err); 1039 } 1040 1041 1042 1043 /* 1044 * This function should never be called. We need to have it to pass 1045 * it as an argument to other functions. 1046 */ 1047 /*ARGSUSED*/ 1048 int 1049 hsfs_putapage( 1050 vnode_t *vp, 1051 page_t *pp, 1052 u_offset_t *offp, 1053 size_t *lenp, 1054 int flags, 1055 cred_t *cr) 1056 { 1057 /* should never happen - just destroy it */ 1058 cmn_err(CE_NOTE, "hsfs_putapage: dirty HSFS page"); 1059 pvn_write_done(pp, B_ERROR | B_WRITE | B_INVAL | B_FORCE | flags); 1060 return (0); 1061 } 1062 1063 1064 /* 1065 * The only flags we support are B_INVAL, B_FREE and B_DONTNEED. 1066 * B_INVAL is set by: 1067 * 1068 * 1) the MC_SYNC command of memcntl(2) to support the MS_INVALIDATE flag. 1069 * 2) the MC_ADVISE command of memcntl(2) with the MADV_DONTNEED advice 1070 * which translates to an MC_SYNC with the MS_INVALIDATE flag. 1071 * 1072 * The B_FREE (as well as the B_DONTNEED) flag is set when the 1073 * MADV_SEQUENTIAL advice has been used. VOP_PUTPAGE is invoked 1074 * from SEGVN to release pages behind a pagefault. 1075 */ 1076 /*ARGSUSED*/ 1077 static int 1078 hsfs_putpage( 1079 struct vnode *vp, 1080 offset_t off, 1081 size_t len, 1082 int flags, 1083 struct cred *cr) 1084 { 1085 int error = 0; 1086 1087 if (vp->v_count == 0) { 1088 panic("hsfs_putpage: bad v_count"); 1089 /*NOTREACHED*/ 1090 } 1091 1092 if (vp->v_flag & VNOMAP) 1093 return (ENOSYS); 1094 1095 ASSERT(off <= MAXOFF_T); 1096 1097 if (!vn_has_cached_data(vp)) /* no pages mapped */ 1098 return (0); 1099 1100 if (len == 0) /* from 'off' to EOF */ 1101 error = pvn_vplist_dirty(vp, off, 1102 hsfs_putapage, flags, cr); 1103 else { 1104 offset_t end_off = off + len; 1105 offset_t file_size = VTOH(vp)->hs_dirent.ext_size; 1106 offset_t io_off; 1107 1108 file_size = (file_size + PAGESIZE - 1) & PAGEMASK; 1109 if (end_off > file_size) 1110 end_off = file_size; 1111 1112 for (io_off = off; io_off < end_off; io_off += PAGESIZE) { 1113 page_t *pp; 1114 1115 /* 1116 * We insist on getting the page only if we are 1117 * about to invalidate, free or write it and 1118 * the B_ASYNC flag is not set. 1119 */ 1120 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 1121 pp = page_lookup(vp, io_off, 1122 (flags & (B_INVAL | B_FREE)) ? 1123 SE_EXCL : SE_SHARED); 1124 } else { 1125 pp = page_lookup_nowait(vp, io_off, 1126 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 1127 } 1128 1129 if (pp == NULL) 1130 continue; 1131 /* 1132 * Normally pvn_getdirty() should return 0, which 1133 * impies that it has done the job for us. 1134 * The shouldn't-happen scenario is when it returns 1. 1135 * This means that the page has been modified and 1136 * needs to be put back. 1137 * Since we can't write on a CD, we fake a failed 1138 * I/O and force pvn_write_done() to destroy the page. 1139 */ 1140 if (pvn_getdirty(pp, flags) == 1) { 1141 cmn_err(CE_NOTE, 1142 "hsfs_putpage: dirty HSFS page"); 1143 pvn_write_done(pp, flags | 1144 B_ERROR | B_WRITE | B_INVAL | B_FORCE); 1145 } 1146 } 1147 } 1148 return (error); 1149 } 1150 1151 1152 /*ARGSUSED*/ 1153 static int 1154 hsfs_map( 1155 struct vnode *vp, 1156 offset_t off, 1157 struct as *as, 1158 caddr_t *addrp, 1159 size_t len, 1160 uchar_t prot, 1161 uchar_t maxprot, 1162 uint_t flags, 1163 struct cred *cred) 1164 { 1165 struct segvn_crargs vn_a; 1166 int error; 1167 1168 /* VFS_RECORD(vp->v_vfsp, VS_MAP, VS_CALL); */ 1169 1170 if (vp->v_flag & VNOMAP) 1171 return (ENOSYS); 1172 1173 if (off > MAXOFF_T || off < 0 || 1174 (off + len) < 0 || (off + len) > MAXOFF_T) 1175 return (ENXIO); 1176 1177 if (vp->v_type != VREG) { 1178 return (ENODEV); 1179 } 1180 1181 /* 1182 * If file is being locked, disallow mapping. 1183 */ 1184 if (vn_has_mandatory_locks(vp, VTOH(vp)->hs_dirent.mode)) 1185 return (EAGAIN); 1186 1187 as_rangelock(as); 1188 1189 if ((flags & MAP_FIXED) == 0) { 1190 map_addr(addrp, len, off, 1, flags); 1191 if (*addrp == NULL) { 1192 as_rangeunlock(as); 1193 return (ENOMEM); 1194 } 1195 } else { 1196 /* 1197 * User specified address - blow away any previous mappings 1198 */ 1199 (void) as_unmap(as, *addrp, len); 1200 } 1201 1202 vn_a.vp = vp; 1203 vn_a.offset = off; 1204 vn_a.type = flags & MAP_TYPE; 1205 vn_a.prot = prot; 1206 vn_a.maxprot = maxprot; 1207 vn_a.flags = flags & ~MAP_TYPE; 1208 vn_a.cred = cred; 1209 vn_a.amp = NULL; 1210 vn_a.szc = 0; 1211 vn_a.lgrp_mem_policy_flags = 0; 1212 1213 error = as_map(as, *addrp, len, segvn_create, &vn_a); 1214 as_rangeunlock(as); 1215 return (error); 1216 } 1217 1218 /* ARGSUSED */ 1219 static int 1220 hsfs_addmap( 1221 struct vnode *vp, 1222 offset_t off, 1223 struct as *as, 1224 caddr_t addr, 1225 size_t len, 1226 uchar_t prot, 1227 uchar_t maxprot, 1228 uint_t flags, 1229 struct cred *cr) 1230 { 1231 struct hsnode *hp; 1232 1233 if (vp->v_flag & VNOMAP) 1234 return (ENOSYS); 1235 1236 hp = VTOH(vp); 1237 mutex_enter(&hp->hs_contents_lock); 1238 hp->hs_mapcnt += btopr(len); 1239 mutex_exit(&hp->hs_contents_lock); 1240 return (0); 1241 } 1242 1243 /*ARGSUSED*/ 1244 static int 1245 hsfs_delmap( 1246 struct vnode *vp, 1247 offset_t off, 1248 struct as *as, 1249 caddr_t addr, 1250 size_t len, 1251 uint_t prot, 1252 uint_t maxprot, 1253 uint_t flags, 1254 struct cred *cr) 1255 { 1256 struct hsnode *hp; 1257 1258 if (vp->v_flag & VNOMAP) 1259 return (ENOSYS); 1260 1261 hp = VTOH(vp); 1262 mutex_enter(&hp->hs_contents_lock); 1263 hp->hs_mapcnt -= btopr(len); /* Count released mappings */ 1264 ASSERT(hp->hs_mapcnt >= 0); 1265 mutex_exit(&hp->hs_contents_lock); 1266 return (0); 1267 } 1268 1269 /* ARGSUSED */ 1270 static int 1271 hsfs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp) 1272 { 1273 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 1274 } 1275 1276 /* ARGSUSED */ 1277 static int 1278 hsfs_frlock( 1279 struct vnode *vp, 1280 int cmd, 1281 struct flock64 *bfp, 1282 int flag, 1283 offset_t offset, 1284 struct flk_callback *flk_cbp, 1285 cred_t *cr) 1286 { 1287 struct hsnode *hp = VTOH(vp); 1288 1289 /* 1290 * If the file is being mapped, disallow fs_frlock. 1291 * We are not holding the hs_contents_lock while checking 1292 * hs_mapcnt because the current locking strategy drops all 1293 * locks before calling fs_frlock. 1294 * So, hs_mapcnt could change before we enter fs_frlock making 1295 * it meaningless to have held hs_contents_lock in the first place. 1296 */ 1297 if (hp->hs_mapcnt > 0 && MANDLOCK(vp, hp->hs_dirent.mode)) 1298 return (EAGAIN); 1299 1300 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 1301 } 1302 1303 const fs_operation_def_t hsfs_vnodeops_template[] = { 1304 VOPNAME_OPEN, hsfs_open, 1305 VOPNAME_CLOSE, hsfs_close, 1306 VOPNAME_READ, hsfs_read, 1307 VOPNAME_GETATTR, hsfs_getattr, 1308 VOPNAME_ACCESS, hsfs_access, 1309 VOPNAME_LOOKUP, hsfs_lookup, 1310 VOPNAME_READDIR, hsfs_readdir, 1311 VOPNAME_READLINK, hsfs_readlink, 1312 VOPNAME_FSYNC, hsfs_fsync, 1313 VOPNAME_INACTIVE, (fs_generic_func_p) hsfs_inactive, 1314 VOPNAME_FID, hsfs_fid, 1315 VOPNAME_SEEK, hsfs_seek, 1316 VOPNAME_FRLOCK, hsfs_frlock, 1317 VOPNAME_GETPAGE, hsfs_getpage, 1318 VOPNAME_PUTPAGE, hsfs_putpage, 1319 VOPNAME_MAP, (fs_generic_func_p) hsfs_map, 1320 VOPNAME_ADDMAP, (fs_generic_func_p) hsfs_addmap, 1321 VOPNAME_DELMAP, hsfs_delmap, 1322 NULL, NULL 1323 }; 1324 1325 struct vnodeops *hsfs_vnodeops; 1326