xref: /illumos-gate/usr/src/uts/common/fs/hsfs/hsfs_vnops.c (revision 1bff1300cebf1ea8e11ce928b10e208097e67f24)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2017 by Delphix. All rights reserved.
27  */
28 
29 /*
30  * Vnode operations for the High Sierra filesystem
31  */
32 
33 #include <sys/types.h>
34 #include <sys/t_lock.h>
35 #include <sys/param.h>
36 #include <sys/time.h>
37 #include <sys/systm.h>
38 #include <sys/sysmacros.h>
39 #include <sys/resource.h>
40 #include <sys/signal.h>
41 #include <sys/cred.h>
42 #include <sys/user.h>
43 #include <sys/buf.h>
44 #include <sys/vfs.h>
45 #include <sys/vfs_opreg.h>
46 #include <sys/stat.h>
47 #include <sys/vnode.h>
48 #include <sys/mode.h>
49 #include <sys/proc.h>
50 #include <sys/disp.h>
51 #include <sys/file.h>
52 #include <sys/fcntl.h>
53 #include <sys/flock.h>
54 #include <sys/kmem.h>
55 #include <sys/uio.h>
56 #include <sys/conf.h>
57 #include <sys/errno.h>
58 #include <sys/mman.h>
59 #include <sys/pathname.h>
60 #include <sys/debug.h>
61 #include <sys/vmsystm.h>
62 #include <sys/cmn_err.h>
63 #include <sys/fbuf.h>
64 #include <sys/dirent.h>
65 #include <sys/errno.h>
66 #include <sys/dkio.h>
67 #include <sys/cmn_err.h>
68 #include <sys/atomic.h>
69 
70 #include <vm/hat.h>
71 #include <vm/page.h>
72 #include <vm/pvn.h>
73 #include <vm/as.h>
74 #include <vm/seg.h>
75 #include <vm/seg_map.h>
76 #include <vm/seg_kmem.h>
77 #include <vm/seg_vn.h>
78 #include <vm/rm.h>
79 #include <vm/page.h>
80 #include <sys/swap.h>
81 #include <sys/avl.h>
82 #include <sys/sunldi.h>
83 #include <sys/ddi.h>
84 #include <sys/sunddi.h>
85 #include <sys/sdt.h>
86 
87 /*
88  * For struct modlinkage
89  */
90 #include <sys/modctl.h>
91 
92 #include <sys/fs/hsfs_spec.h>
93 #include <sys/fs/hsfs_node.h>
94 #include <sys/fs/hsfs_impl.h>
95 #include <sys/fs/hsfs_susp.h>
96 #include <sys/fs/hsfs_rrip.h>
97 
98 #include <fs/fs_subr.h>
99 
100 /* # of contiguous requests to detect sequential access pattern */
101 static int seq_contig_requests = 2;
102 
103 /*
104  * This is the max number os taskq threads that will be created
105  * if required. Since we are using a Dynamic TaskQ by default only
106  * one thread is created initially.
107  *
108  * NOTE: In the usual hsfs use case this per fs instance number
109  * of taskq threads should not place any undue load on a system.
110  * Even on an unusual system with say 100 CDROM drives, 800 threads
111  * will not be created unless all the drives are loaded and all
112  * of them are saturated with I/O at the same time! If there is at
113  * all a complaint of system load due to such an unusual case it
114  * should be easy enough to change to one per-machine Dynamic TaskQ
115  * for all hsfs mounts with a nthreads of say 32.
116  */
117 static int hsfs_taskq_nthreads = 8;	/* # of taskq threads per fs */
118 
119 /* Min count of adjacent bufs that will avoid buf coalescing */
120 static int hsched_coalesce_min = 2;
121 
122 /*
123  * Kmem caches for heavily used small allocations. Using these kmem
124  * caches provides a factor of 3 reduction in system time and greatly
125  * aids overall throughput esp. on SPARC.
126  */
127 struct kmem_cache *hio_cache;
128 struct kmem_cache *hio_info_cache;
129 
130 /*
131  * This tunable allows us to ignore inode numbers from rrip-1.12.
132  * In this case, we fall back to our default inode algorithm.
133  */
134 extern int use_rrip_inodes;
135 
136 static int hsched_deadline_compare(const void *x1, const void *x2);
137 static int hsched_offset_compare(const void *x1, const void *x2);
138 static void hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra);
139 int hsched_invoke_strategy(struct hsfs *fsp);
140 
141 /* ARGSUSED */
142 static int
143 hsfs_fsync(vnode_t *cp, int syncflag, cred_t *cred, caller_context_t *ct)
144 {
145 	return (0);
146 }
147 
148 
149 /*ARGSUSED*/
150 static int
151 hsfs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cred,
152     struct caller_context *ct)
153 {
154 	caddr_t base;
155 	offset_t diff;
156 	int error;
157 	struct hsnode *hp;
158 	uint_t filesize;
159 
160 	hp = VTOH(vp);
161 	/*
162 	 * if vp is of type VDIR, make sure dirent
163 	 * is filled up with all info (because of ptbl)
164 	 */
165 	if (vp->v_type == VDIR) {
166 		if (hp->hs_dirent.ext_size == 0)
167 			hs_filldirent(vp, &hp->hs_dirent);
168 	}
169 	filesize = hp->hs_dirent.ext_size;
170 
171 	/* Sanity checks. */
172 	if (uiop->uio_resid == 0 ||		/* No data wanted. */
173 	    uiop->uio_loffset > HS_MAXFILEOFF ||	/* Offset too big. */
174 	    uiop->uio_loffset >= filesize)	/* Past EOF. */
175 		return (0);
176 
177 	do {
178 		/*
179 		 * We want to ask for only the "right" amount of data.
180 		 * In this case that means:-
181 		 *
182 		 * We can't get data from beyond our EOF. If asked,
183 		 * we will give a short read.
184 		 *
185 		 * segmap_getmapflt returns buffers of MAXBSIZE bytes.
186 		 * These buffers are always MAXBSIZE aligned.
187 		 * If our starting offset is not MAXBSIZE aligned,
188 		 * we can only ask for less than MAXBSIZE bytes.
189 		 *
190 		 * If our requested offset and length are such that
191 		 * they belong in different MAXBSIZE aligned slots
192 		 * then we'll be making more than one call on
193 		 * segmap_getmapflt.
194 		 *
195 		 * This diagram shows the variables we use and their
196 		 * relationships.
197 		 *
198 		 * |<-----MAXBSIZE----->|
199 		 * +--------------------------...+
200 		 * |.....mapon->|<--n-->|....*...|EOF
201 		 * +--------------------------...+
202 		 * uio_loffset->|
203 		 * uio_resid....|<---------->|
204 		 * diff.........|<-------------->|
205 		 *
206 		 * So, in this case our offset is not aligned
207 		 * and our request takes us outside of the
208 		 * MAXBSIZE window. We will break this up into
209 		 * two segmap_getmapflt calls.
210 		 */
211 		size_t nbytes;
212 		offset_t mapon;
213 		size_t n;
214 		uint_t flags;
215 
216 		mapon = uiop->uio_loffset & MAXBOFFSET;
217 		diff = filesize - uiop->uio_loffset;
218 		nbytes = (size_t)MIN(MAXBSIZE - mapon, uiop->uio_resid);
219 		n = MIN(diff, nbytes);
220 		if (n <= 0) {
221 			/* EOF or request satisfied. */
222 			return (0);
223 		}
224 
225 		base = segmap_getmapflt(segkmap, vp,
226 		    (u_offset_t)uiop->uio_loffset, n, 1, S_READ);
227 
228 		error = uiomove(base + mapon, n, UIO_READ, uiop);
229 
230 		if (error == 0) {
231 			/*
232 			 * if read a whole block, or read to eof,
233 			 *  won't need this buffer again soon.
234 			 */
235 			if (n + mapon == MAXBSIZE ||
236 			    uiop->uio_loffset == filesize)
237 				flags = SM_DONTNEED;
238 			else
239 				flags = 0;
240 
241 			error = segmap_release(segkmap, base, flags);
242 		} else
243 			(void) segmap_release(segkmap, base, 0);
244 	} while (error == 0 && uiop->uio_resid > 0);
245 
246 	return (error);
247 }
248 
249 /*ARGSUSED2*/
250 static int
251 hsfs_getattr(struct vnode *vp, struct vattr *vap, int flags, struct cred *cred,
252     caller_context_t *ct)
253 {
254 	struct hsnode *hp;
255 	struct vfs *vfsp;
256 	struct hsfs *fsp;
257 
258 	hp = VTOH(vp);
259 	fsp = VFS_TO_HSFS(vp->v_vfsp);
260 	vfsp = vp->v_vfsp;
261 
262 	if ((hp->hs_dirent.ext_size == 0) && (vp->v_type == VDIR)) {
263 		hs_filldirent(vp, &hp->hs_dirent);
264 	}
265 	vap->va_type = IFTOVT(hp->hs_dirent.mode);
266 	vap->va_mode = hp->hs_dirent.mode;
267 	vap->va_uid = hp->hs_dirent.uid;
268 	vap->va_gid = hp->hs_dirent.gid;
269 
270 	vap->va_fsid = vfsp->vfs_dev;
271 	vap->va_nodeid = (ino64_t)hp->hs_nodeid;
272 	vap->va_nlink = hp->hs_dirent.nlink;
273 	vap->va_size =	(offset_t)hp->hs_dirent.ext_size;
274 
275 	vap->va_atime.tv_sec = hp->hs_dirent.adate.tv_sec;
276 	vap->va_atime.tv_nsec = hp->hs_dirent.adate.tv_usec*1000;
277 	vap->va_mtime.tv_sec = hp->hs_dirent.mdate.tv_sec;
278 	vap->va_mtime.tv_nsec = hp->hs_dirent.mdate.tv_usec*1000;
279 	vap->va_ctime.tv_sec = hp->hs_dirent.cdate.tv_sec;
280 	vap->va_ctime.tv_nsec = hp->hs_dirent.cdate.tv_usec*1000;
281 	if (vp->v_type == VCHR || vp->v_type == VBLK)
282 		vap->va_rdev = hp->hs_dirent.r_dev;
283 	else
284 		vap->va_rdev = 0;
285 	vap->va_blksize = vfsp->vfs_bsize;
286 	/* no. of blocks = no. of data blocks + no. of xar blocks */
287 	vap->va_nblocks = (fsblkcnt64_t)howmany(vap->va_size + (u_longlong_t)
288 	    (hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift), DEV_BSIZE);
289 	vap->va_seq = hp->hs_seq;
290 	return (0);
291 }
292 
293 /*ARGSUSED*/
294 static int
295 hsfs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cred,
296     caller_context_t *ct)
297 {
298 	struct hsnode *hp;
299 
300 	if (vp->v_type != VLNK)
301 		return (EINVAL);
302 
303 	hp = VTOH(vp);
304 
305 	if (hp->hs_dirent.sym_link == (char *)NULL)
306 		return (ENOENT);
307 
308 	return (uiomove(hp->hs_dirent.sym_link,
309 	    (size_t)MIN(hp->hs_dirent.ext_size,
310 	    uiop->uio_resid), UIO_READ, uiop));
311 }
312 
313 /*ARGSUSED*/
314 static void
315 hsfs_inactive(struct vnode *vp, struct cred *cred, caller_context_t *ct)
316 {
317 	struct hsnode *hp;
318 	struct hsfs *fsp;
319 
320 	int nopage;
321 
322 	hp = VTOH(vp);
323 	fsp = VFS_TO_HSFS(vp->v_vfsp);
324 	/*
325 	 * Note: acquiring and holding v_lock for quite a while
326 	 * here serializes on the vnode; this is unfortunate, but
327 	 * likely not to overly impact performance, as the underlying
328 	 * device (CDROM drive) is quite slow.
329 	 */
330 	rw_enter(&fsp->hsfs_hash_lock, RW_WRITER);
331 	mutex_enter(&hp->hs_contents_lock);
332 	mutex_enter(&vp->v_lock);
333 
334 	if (vp->v_count < 1) {
335 		panic("hsfs_inactive: v_count < 1");
336 		/*NOTREACHED*/
337 	}
338 
339 	VN_RELE_LOCKED(vp);
340 	if (vp->v_count > 0 || (hp->hs_flags & HREF) == 0) {
341 		mutex_exit(&vp->v_lock);
342 		mutex_exit(&hp->hs_contents_lock);
343 		rw_exit(&fsp->hsfs_hash_lock);
344 		return;
345 	}
346 	if (vp->v_count == 0) {
347 		/*
348 		 * Free the hsnode.
349 		 * If there are no pages associated with the
350 		 * hsnode, give it back to the kmem_cache,
351 		 * else put at the end of this file system's
352 		 * internal free list.
353 		 */
354 		nopage = !vn_has_cached_data(vp);
355 		hp->hs_flags = 0;
356 		/*
357 		 * exit these locks now, since hs_freenode may
358 		 * kmem_free the hsnode and embedded vnode
359 		 */
360 		mutex_exit(&vp->v_lock);
361 		mutex_exit(&hp->hs_contents_lock);
362 		hs_freenode(vp, fsp, nopage);
363 	} else {
364 		mutex_exit(&vp->v_lock);
365 		mutex_exit(&hp->hs_contents_lock);
366 	}
367 	rw_exit(&fsp->hsfs_hash_lock);
368 }
369 
370 
371 /*ARGSUSED*/
372 static int
373 hsfs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp,
374     struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cred,
375     caller_context_t *ct, int *direntflags, pathname_t *realpnp)
376 {
377 	int error;
378 	int namelen = (int)strlen(nm);
379 
380 	if (*nm == '\0') {
381 		VN_HOLD(dvp);
382 		*vpp = dvp;
383 		return (0);
384 	}
385 
386 	/*
387 	 * If we're looking for ourself, life is simple.
388 	 */
389 	if (namelen == 1 && *nm == '.') {
390 		if (error = hs_access(dvp, (mode_t)VEXEC, cred))
391 			return (error);
392 		VN_HOLD(dvp);
393 		*vpp = dvp;
394 		return (0);
395 	}
396 
397 	return (hs_dirlook(dvp, nm, namelen, vpp, cred));
398 }
399 
400 
401 /*ARGSUSED*/
402 static int
403 hsfs_readdir(struct vnode *vp, struct uio *uiop, struct cred *cred, int *eofp,
404     caller_context_t *ct, int flags)
405 {
406 	struct hsnode	*dhp;
407 	struct hsfs	*fsp;
408 	struct hs_direntry hd;
409 	struct dirent64	*nd;
410 	int		error;
411 	uint_t		offset;		/* real offset in directory */
412 	uint_t		dirsiz;		/* real size of directory */
413 	uchar_t		*blkp;
414 	int		hdlen;		/* length of hs directory entry */
415 	long		ndlen;		/* length of dirent entry */
416 	int		bytes_wanted;
417 	size_t		bufsize;	/* size of dirent buffer */
418 	char		*outbuf;	/* ptr to dirent buffer */
419 	char		*dname;
420 	int		dnamelen;
421 	size_t		dname_size;
422 	struct fbuf	*fbp;
423 	uint_t		last_offset;	/* last index into current dir block */
424 	ino64_t		dirino;	/* temporary storage before storing in dirent */
425 	off_t		diroff;
426 
427 	dhp = VTOH(vp);
428 	fsp = VFS_TO_HSFS(vp->v_vfsp);
429 	if (dhp->hs_dirent.ext_size == 0)
430 		hs_filldirent(vp, &dhp->hs_dirent);
431 	dirsiz = dhp->hs_dirent.ext_size;
432 	if (uiop->uio_loffset >= dirsiz) {	/* at or beyond EOF */
433 		if (eofp)
434 			*eofp = 1;
435 		return (0);
436 	}
437 	ASSERT(uiop->uio_loffset <= HS_MAXFILEOFF);
438 	offset = uiop->uio_loffset;
439 
440 	dname_size = fsp->hsfs_namemax + 1;	/* 1 for the ending NUL */
441 	dname = kmem_alloc(dname_size, KM_SLEEP);
442 	bufsize = uiop->uio_resid + sizeof (struct dirent64);
443 
444 	outbuf = kmem_alloc(bufsize, KM_SLEEP);
445 	nd = (struct dirent64 *)outbuf;
446 
447 	while (offset < dirsiz) {
448 		bytes_wanted = MIN(MAXBSIZE, dirsiz - (offset & MAXBMASK));
449 
450 		error = fbread(vp, (offset_t)(offset & MAXBMASK),
451 		    (unsigned int)bytes_wanted, S_READ, &fbp);
452 		if (error)
453 			goto done;
454 
455 		blkp = (uchar_t *)fbp->fb_addr;
456 		last_offset = (offset & MAXBMASK) + fbp->fb_count;
457 
458 #define	rel_offset(offset) ((offset) & MAXBOFFSET)	/* index into blkp */
459 
460 		while (offset < last_offset) {
461 			/*
462 			 * Very similar validation code is found in
463 			 * process_dirblock(), hsfs_node.c.
464 			 * For an explanation, see there.
465 			 * It may make sense for the future to
466 			 * "consolidate" the code in hs_parsedir(),
467 			 * process_dirblock() and hsfs_readdir() into
468 			 * a single utility function.
469 			 */
470 			hdlen = (int)((uchar_t)
471 			    HDE_DIR_LEN(&blkp[rel_offset(offset)]));
472 			if (hdlen < HDE_ROOT_DIR_REC_SIZE ||
473 			    offset + hdlen > last_offset) {
474 				/*
475 				 * advance to next sector boundary
476 				 */
477 				offset = roundup(offset + 1, HS_SECTOR_SIZE);
478 				if (hdlen)
479 					hs_log_bogus_disk_warning(fsp,
480 					    HSFS_ERR_TRAILING_JUNK, 0);
481 
482 				continue;
483 			}
484 
485 			bzero(&hd, sizeof (hd));
486 
487 			/*
488 			 * Just ignore invalid directory entries.
489 			 * XXX - maybe hs_parsedir() will detect EXISTENCE bit
490 			 */
491 			if (!hs_parsedir(fsp, &blkp[rel_offset(offset)],
492 			    &hd, dname, &dnamelen, last_offset - offset)) {
493 				/*
494 				 * Determine if there is enough room
495 				 */
496 				ndlen = (long)DIRENT64_RECLEN((dnamelen));
497 
498 				if ((ndlen + ((char *)nd - outbuf)) >
499 				    uiop->uio_resid) {
500 					fbrelse(fbp, S_READ);
501 					goto done; /* output buffer full */
502 				}
503 
504 				diroff = offset + hdlen;
505 				/*
506 				 * If the media carries rrip-v1.12 or newer,
507 				 * and we trust the inodes from the rrip data
508 				 * (use_rrip_inodes != 0), use that data. If the
509 				 * media has been created by a recent mkisofs
510 				 * version, we may trust all numbers in the
511 				 * starting extent number; otherwise, we cannot
512 				 * do this for zero sized files and symlinks,
513 				 * because if we did we'd end up mapping all of
514 				 * them to the same node. We use HS_DUMMY_INO
515 				 * in this case and make sure that we will not
516 				 * map all files to the same meta data.
517 				 */
518 				if (hd.inode != 0 && use_rrip_inodes) {
519 					dirino = hd.inode;
520 				} else if ((hd.ext_size == 0 ||
521 				    hd.sym_link != (char *)NULL) &&
522 				    (fsp->hsfs_flags & HSFSMNT_INODE) == 0) {
523 					dirino = HS_DUMMY_INO;
524 				} else {
525 					dirino = hd.ext_lbn;
526 				}
527 
528 				/* strncpy(9f) will zero uninitialized bytes */
529 
530 				ASSERT(strlen(dname) + 1 <=
531 				    DIRENT64_NAMELEN(ndlen));
532 				(void) strncpy(nd->d_name, dname,
533 				    DIRENT64_NAMELEN(ndlen));
534 				nd->d_reclen = (ushort_t)ndlen;
535 				nd->d_off = (offset_t)diroff;
536 				nd->d_ino = dirino;
537 				nd = (struct dirent64 *)((char *)nd + ndlen);
538 
539 				/*
540 				 * free up space allocated for symlink
541 				 */
542 				if (hd.sym_link != (char *)NULL) {
543 					kmem_free(hd.sym_link,
544 					    (size_t)(hd.ext_size+1));
545 					hd.sym_link = (char *)NULL;
546 				}
547 			}
548 			offset += hdlen;
549 		}
550 		fbrelse(fbp, S_READ);
551 	}
552 
553 	/*
554 	 * Got here for one of the following reasons:
555 	 *	1) outbuf is full (error == 0)
556 	 *	2) end of directory reached (error == 0)
557 	 *	3) error reading directory sector (error != 0)
558 	 *	4) directory entry crosses sector boundary (error == 0)
559 	 *
560 	 * If any directory entries have been copied, don't report
561 	 * case 4.  Instead, return the valid directory entries.
562 	 *
563 	 * If no entries have been copied, report the error.
564 	 * If case 4, this will be indistiguishable from EOF.
565 	 */
566 done:
567 	ndlen = ((char *)nd - outbuf);
568 	if (ndlen != 0) {
569 		error = uiomove(outbuf, (size_t)ndlen, UIO_READ, uiop);
570 		uiop->uio_loffset = offset;
571 	}
572 	kmem_free(dname, dname_size);
573 	kmem_free(outbuf, bufsize);
574 	if (eofp && error == 0)
575 		*eofp = (uiop->uio_loffset >= dirsiz);
576 	return (error);
577 }
578 
579 /*ARGSUSED2*/
580 static int
581 hsfs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
582 {
583 	struct hsnode *hp;
584 	struct hsfid *fid;
585 
586 	if (fidp->fid_len < (sizeof (*fid) - sizeof (fid->hf_len))) {
587 		fidp->fid_len = sizeof (*fid) - sizeof (fid->hf_len);
588 		return (ENOSPC);
589 	}
590 
591 	fid = (struct hsfid *)fidp;
592 	fid->hf_len = sizeof (*fid) - sizeof (fid->hf_len);
593 	hp = VTOH(vp);
594 	mutex_enter(&hp->hs_contents_lock);
595 	fid->hf_dir_lbn = hp->hs_dir_lbn;
596 	fid->hf_dir_off = (ushort_t)hp->hs_dir_off;
597 	fid->hf_ino = hp->hs_nodeid;
598 	mutex_exit(&hp->hs_contents_lock);
599 	return (0);
600 }
601 
602 /*ARGSUSED*/
603 static int
604 hsfs_open(struct vnode **vpp, int flag, struct cred *cred, caller_context_t *ct)
605 {
606 	return (0);
607 }
608 
609 /*ARGSUSED*/
610 static int
611 hsfs_close(struct vnode *vp, int flag, int count, offset_t offset,
612     struct cred *cred, caller_context_t *ct)
613 {
614 	(void) cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
615 	cleanshares(vp, ttoproc(curthread)->p_pid);
616 	return (0);
617 }
618 
619 /*ARGSUSED2*/
620 static int
621 hsfs_access(struct vnode *vp, int mode, int flags, cred_t *cred,
622     caller_context_t *ct)
623 {
624 	return (hs_access(vp, (mode_t)mode, cred));
625 }
626 
627 /*
628  * the seek time of a CD-ROM is very slow, and data transfer
629  * rate is even worse (max. 150K per sec).  The design
630  * decision is to reduce access to cd-rom as much as possible,
631  * and to transfer a sizable block (read-ahead) of data at a time.
632  * UFS style of read ahead one block at a time is not appropriate,
633  * and is not supported
634  */
635 
636 /*
637  * KLUSTSIZE should be a multiple of PAGESIZE and <= MAXPHYS.
638  */
639 #define	KLUSTSIZE	(56 * 1024)
640 /* we don't support read ahead */
641 int hsfs_lostpage;	/* no. of times we lost original page */
642 
643 /*
644  * Used to prevent biodone() from releasing buf resources that
645  * we didn't allocate in quite the usual way.
646  */
647 /*ARGSUSED*/
648 int
649 hsfs_iodone(struct buf *bp)
650 {
651 	sema_v(&bp->b_io);
652 	return (0);
653 }
654 
655 /*
656  * The taskq thread that invokes the scheduling function to ensure
657  * that all readaheads are complete and cleans up the associated
658  * memory and releases the page lock.
659  */
660 void
661 hsfs_ra_task(void *arg)
662 {
663 	struct hio_info *info = arg;
664 	uint_t count;
665 	struct buf *wbuf;
666 
667 	ASSERT(info->pp != NULL);
668 
669 	for (count = 0; count < info->bufsused; count++) {
670 		wbuf = &(info->bufs[count]);
671 
672 		DTRACE_PROBE1(hsfs_io_wait_ra, struct buf *, wbuf);
673 		while (sema_tryp(&(info->sema[count])) == 0) {
674 			if (hsched_invoke_strategy(info->fsp)) {
675 				sema_p(&(info->sema[count]));
676 				break;
677 			}
678 		}
679 		sema_destroy(&(info->sema[count]));
680 		DTRACE_PROBE1(hsfs_io_done_ra, struct buf *, wbuf);
681 		biofini(&(info->bufs[count]));
682 	}
683 	for (count = 0; count < info->bufsused; count++) {
684 		if (info->vas[count] != NULL) {
685 			ppmapout(info->vas[count]);
686 		}
687 	}
688 	kmem_free(info->vas, info->bufcnt * sizeof (caddr_t));
689 	kmem_free(info->bufs, info->bufcnt * sizeof (struct buf));
690 	kmem_free(info->sema, info->bufcnt * sizeof (ksema_t));
691 
692 	pvn_read_done(info->pp, 0);
693 	kmem_cache_free(hio_info_cache, info);
694 }
695 
696 /*
697  * Submit asynchronous readahead requests to the I/O scheduler
698  * depending on the number of pages to read ahead. These requests
699  * are asynchronous to the calling thread but I/O requests issued
700  * subsequently by other threads with higher LBNs must wait for
701  * these readaheads to complete since we have a single ordered
702  * I/O pipeline. Thus these readaheads are semi-asynchronous.
703  * A TaskQ handles waiting for the readaheads to complete.
704  *
705  * This function is mostly a copy of hsfs_getapage but somewhat
706  * simpler. A readahead request is aborted if page allocation
707  * fails.
708  */
709 /*ARGSUSED*/
710 static int
711 hsfs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg,
712     caddr_t addr, struct hsnode *hp, struct hsfs *fsp, int xarsiz,
713     offset_t bof, int chunk_lbn_count, int chunk_data_bytes)
714 {
715 	struct buf *bufs;
716 	caddr_t *vas;
717 	caddr_t va;
718 	struct page *pp, *searchp, *lastp;
719 	struct vnode *devvp;
720 	ulong_t	byte_offset;
721 	size_t	io_len_tmp;
722 	uint_t	io_off, io_len;
723 	uint_t	xlen;
724 	uint_t	filsiz;
725 	uint_t	secsize;
726 	uint_t	bufcnt;
727 	uint_t	bufsused;
728 	uint_t	count;
729 	uint_t	io_end;
730 	uint_t	which_chunk_lbn;
731 	uint_t	offset_lbn;
732 	uint_t	offset_extra;
733 	offset_t	offset_bytes;
734 	uint_t	remaining_bytes;
735 	uint_t	extension;
736 	int	remainder;	/* must be signed */
737 	diskaddr_t driver_block;
738 	u_offset_t io_off_tmp;
739 	ksema_t	*fio_done;
740 	struct hio_info *info;
741 	size_t len;
742 
743 	ASSERT(fsp->hqueue != NULL);
744 
745 	if (addr >= seg->s_base + seg->s_size) {
746 		return (-1);
747 	}
748 
749 	devvp = fsp->hsfs_devvp;
750 	secsize = fsp->hsfs_vol.lbn_size;  /* bytes per logical block */
751 
752 	/* file data size */
753 	filsiz = hp->hs_dirent.ext_size;
754 
755 	if (off >= filsiz)
756 		return (0);
757 
758 	extension = 0;
759 	pp = NULL;
760 
761 	extension += hp->hs_ra_bytes;
762 
763 	/*
764 	 * Some CD writers (e.g. Kodak Photo CD writers)
765 	 * create CDs in TAO mode and reserve tracks that
766 	 * are not completely written. Some sectors remain
767 	 * unreadable for this reason and give I/O errors.
768 	 * Also, there's no point in reading sectors
769 	 * we'll never look at.  So, if we're asked to go
770 	 * beyond the end of a file, truncate to the length
771 	 * of that file.
772 	 *
773 	 * Additionally, this behaviour is required by section
774 	 * 6.4.5 of ISO 9660:1988(E).
775 	 */
776 	len = MIN(extension ? extension : PAGESIZE, filsiz - off);
777 
778 	/* A little paranoia */
779 	if (len <= 0)
780 		return (-1);
781 
782 	/*
783 	 * After all that, make sure we're asking for things in units
784 	 * that bdev_strategy() will understand (see bug 4202551).
785 	 */
786 	len = roundup(len, DEV_BSIZE);
787 
788 	pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp,
789 	    &io_len_tmp, off, len, 1);
790 
791 	if (pp == NULL) {
792 		hp->hs_num_contig = 0;
793 		hp->hs_ra_bytes = 0;
794 		hp->hs_prev_offset = 0;
795 		return (-1);
796 	}
797 
798 	io_off = (uint_t)io_off_tmp;
799 	io_len = (uint_t)io_len_tmp;
800 
801 	/* check for truncation */
802 	/*
803 	 * xxx Clean up and return EIO instead?
804 	 * xxx Ought to go to u_offset_t for everything, but we
805 	 * xxx call lots of things that want uint_t arguments.
806 	 */
807 	ASSERT(io_off == io_off_tmp);
808 
809 	/*
810 	 * get enough buffers for worst-case scenario
811 	 * (i.e., no coalescing possible).
812 	 */
813 	bufcnt = (len + secsize - 1) / secsize;
814 	bufs = kmem_alloc(bufcnt * sizeof (struct buf), KM_SLEEP);
815 	vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP);
816 
817 	/*
818 	 * Allocate a array of semaphores since we are doing I/O
819 	 * scheduling.
820 	 */
821 	fio_done = kmem_alloc(bufcnt * sizeof (ksema_t), KM_SLEEP);
822 
823 	/*
824 	 * If our filesize is not an integer multiple of PAGESIZE,
825 	 * we zero that part of the last page that's between EOF and
826 	 * the PAGESIZE boundary.
827 	 */
828 	xlen = io_len & PAGEOFFSET;
829 	if (xlen != 0)
830 		pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
831 
832 	DTRACE_PROBE2(hsfs_readahead, struct vnode *, vp, uint_t, io_len);
833 
834 	va = NULL;
835 	lastp = NULL;
836 	searchp = pp;
837 	io_end = io_off + io_len;
838 	for (count = 0, byte_offset = io_off;
839 	    byte_offset < io_end;
840 	    count++) {
841 		ASSERT(count < bufcnt);
842 
843 		bioinit(&bufs[count]);
844 		bufs[count].b_edev = devvp->v_rdev;
845 		bufs[count].b_dev = cmpdev(devvp->v_rdev);
846 		bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ;
847 		bufs[count].b_iodone = hsfs_iodone;
848 		bufs[count].b_vp = vp;
849 		bufs[count].b_file = vp;
850 
851 		/* Compute disk address for interleaving. */
852 
853 		/* considered without skips */
854 		which_chunk_lbn = byte_offset / chunk_data_bytes;
855 
856 		/* factor in skips */
857 		offset_lbn = which_chunk_lbn * chunk_lbn_count;
858 
859 		/* convert to physical byte offset for lbn */
860 		offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp);
861 
862 		/* don't forget offset into lbn */
863 		offset_extra = byte_offset % chunk_data_bytes;
864 
865 		/* get virtual block number for driver */
866 		driver_block = lbtodb(bof + xarsiz
867 		    + offset_bytes + offset_extra);
868 
869 		if (lastp != searchp) {
870 			/* this branch taken first time through loop */
871 			va = vas[count] = ppmapin(searchp, PROT_WRITE,
872 			    (caddr_t)-1);
873 			/* ppmapin() guarantees not to return NULL */
874 		} else {
875 			vas[count] = NULL;
876 		}
877 
878 		bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE;
879 		bufs[count].b_offset =
880 		    (offset_t)(byte_offset - io_off + off);
881 
882 		/*
883 		 * We specifically use the b_lblkno member here
884 		 * as even in the 32 bit world driver_block can
885 		 * get very large in line with the ISO9660 spec.
886 		 */
887 
888 		bufs[count].b_lblkno = driver_block;
889 
890 		remaining_bytes = ((which_chunk_lbn + 1) * chunk_data_bytes)
891 		    - byte_offset;
892 
893 		/*
894 		 * remaining_bytes can't be zero, as we derived
895 		 * which_chunk_lbn directly from byte_offset.
896 		 */
897 		if ((remaining_bytes + byte_offset) < (off + len)) {
898 			/* coalesce-read the rest of the chunk */
899 			bufs[count].b_bcount = remaining_bytes;
900 		} else {
901 			/* get the final bits */
902 			bufs[count].b_bcount = off + len - byte_offset;
903 		}
904 
905 		remainder = PAGESIZE - (byte_offset % PAGESIZE);
906 		if (bufs[count].b_bcount > remainder) {
907 			bufs[count].b_bcount = remainder;
908 		}
909 
910 		bufs[count].b_bufsize = bufs[count].b_bcount;
911 		if (((offset_t)byte_offset + bufs[count].b_bcount) >
912 		    HS_MAXFILEOFF) {
913 			break;
914 		}
915 		byte_offset += bufs[count].b_bcount;
916 
917 		/*
918 		 * We are scheduling I/O so we need to enqueue
919 		 * requests rather than calling bdev_strategy
920 		 * here. A later invocation of the scheduling
921 		 * function will take care of doing the actual
922 		 * I/O as it selects requests from the queue as
923 		 * per the scheduling logic.
924 		 */
925 		struct hio *hsio = kmem_cache_alloc(hio_cache,
926 		    KM_SLEEP);
927 
928 		sema_init(&fio_done[count], 0, NULL,
929 		    SEMA_DEFAULT, NULL);
930 		hsio->bp = &bufs[count];
931 		hsio->sema = &fio_done[count];
932 		hsio->io_lblkno = bufs[count].b_lblkno;
933 		hsio->nblocks = howmany(hsio->bp->b_bcount,
934 		    DEV_BSIZE);
935 
936 		/* used for deadline */
937 		hsio->io_timestamp = drv_hztousec(ddi_get_lbolt());
938 
939 		/* for I/O coalescing */
940 		hsio->contig_chain = NULL;
941 		hsched_enqueue_io(fsp, hsio, 1);
942 
943 		lwp_stat_update(LWP_STAT_INBLK, 1);
944 		lastp = searchp;
945 		if ((remainder - bufs[count].b_bcount) < 1) {
946 			searchp = searchp->p_next;
947 		}
948 	}
949 
950 	bufsused = count;
951 	info = kmem_cache_alloc(hio_info_cache, KM_SLEEP);
952 	info->bufs = bufs;
953 	info->vas = vas;
954 	info->sema = fio_done;
955 	info->bufsused = bufsused;
956 	info->bufcnt = bufcnt;
957 	info->fsp = fsp;
958 	info->pp = pp;
959 
960 	(void) taskq_dispatch(fsp->hqueue->ra_task,
961 	    hsfs_ra_task, info, KM_SLEEP);
962 	/*
963 	 * The I/O locked pages are unlocked in our taskq thread.
964 	 */
965 	return (0);
966 }
967 
968 /*
969  * Each file may have a different interleaving on disk.  This makes
970  * things somewhat interesting.  The gist is that there are some
971  * number of contiguous data sectors, followed by some other number
972  * of contiguous skip sectors.  The sum of those two sets of sectors
973  * defines the interleave size.  Unfortunately, it means that we generally
974  * can't simply read N sectors starting at a given offset to satisfy
975  * any given request.
976  *
977  * What we do is get the relevant memory pages via pvn_read_kluster(),
978  * then stride through the interleaves, setting up a buf for each
979  * sector that needs to be brought in.  Instead of kmem_alloc'ing
980  * space for the sectors, though, we just point at the appropriate
981  * spot in the relevant page for each of them.  This saves us a bunch
982  * of copying.
983  *
984  * NOTICE: The code below in hsfs_getapage is mostly same as the code
985  *         in hsfs_getpage_ra above (with some omissions). If you are
986  *         making any change to this function, please also look at
987  *         hsfs_getpage_ra.
988  */
989 /*ARGSUSED*/
990 static int
991 hsfs_getapage(struct vnode *vp, u_offset_t off, size_t len, uint_t *protp,
992     struct page *pl[], size_t plsz, struct seg *seg, caddr_t addr,
993     enum seg_rw rw, struct cred *cred)
994 {
995 	struct hsnode *hp;
996 	struct hsfs *fsp;
997 	int	err;
998 	struct buf *bufs;
999 	caddr_t *vas;
1000 	caddr_t va;
1001 	struct page *pp, *searchp, *lastp;
1002 	page_t	*pagefound;
1003 	offset_t	bof;
1004 	struct vnode *devvp;
1005 	ulong_t	byte_offset;
1006 	size_t	io_len_tmp;
1007 	uint_t	io_off, io_len;
1008 	uint_t	xlen;
1009 	uint_t	filsiz;
1010 	uint_t	secsize;
1011 	uint_t	bufcnt;
1012 	uint_t	bufsused;
1013 	uint_t	count;
1014 	uint_t	io_end;
1015 	uint_t	which_chunk_lbn;
1016 	uint_t	offset_lbn;
1017 	uint_t	offset_extra;
1018 	offset_t	offset_bytes;
1019 	uint_t	remaining_bytes;
1020 	uint_t	extension;
1021 	int	remainder;	/* must be signed */
1022 	int	chunk_lbn_count;
1023 	int	chunk_data_bytes;
1024 	int	xarsiz;
1025 	diskaddr_t driver_block;
1026 	u_offset_t io_off_tmp;
1027 	ksema_t *fio_done;
1028 	int	calcdone;
1029 
1030 	/*
1031 	 * We don't support asynchronous operation at the moment, so
1032 	 * just pretend we did it.  If the pages are ever actually
1033 	 * needed, they'll get brought in then.
1034 	 */
1035 	if (pl == NULL)
1036 		return (0);
1037 
1038 	hp = VTOH(vp);
1039 	fsp = VFS_TO_HSFS(vp->v_vfsp);
1040 	devvp = fsp->hsfs_devvp;
1041 	secsize = fsp->hsfs_vol.lbn_size;  /* bytes per logical block */
1042 
1043 	/* file data size */
1044 	filsiz = hp->hs_dirent.ext_size;
1045 
1046 	/* disk addr for start of file */
1047 	bof = LBN_TO_BYTE((offset_t)hp->hs_dirent.ext_lbn, vp->v_vfsp);
1048 
1049 	/* xarsiz byte must be skipped for data */
1050 	xarsiz = hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift;
1051 
1052 	/* how many logical blocks in an interleave (data+skip) */
1053 	chunk_lbn_count = hp->hs_dirent.intlf_sz + hp->hs_dirent.intlf_sk;
1054 
1055 	if (chunk_lbn_count == 0) {
1056 		chunk_lbn_count = 1;
1057 	}
1058 
1059 	/*
1060 	 * Convert interleaving size into bytes.  The zero case
1061 	 * (no interleaving) optimization is handled as a side-
1062 	 * effect of the read-ahead logic.
1063 	 */
1064 	if (hp->hs_dirent.intlf_sz == 0) {
1065 		chunk_data_bytes = LBN_TO_BYTE(1, vp->v_vfsp);
1066 		/*
1067 		 * Optimization: If our pagesize is a multiple of LBN
1068 		 * bytes, we can avoid breaking up a page into individual
1069 		 * lbn-sized requests.
1070 		 */
1071 		if (PAGESIZE % chunk_data_bytes == 0) {
1072 			chunk_lbn_count = BYTE_TO_LBN(PAGESIZE, vp->v_vfsp);
1073 			chunk_data_bytes = PAGESIZE;
1074 		}
1075 	} else {
1076 		chunk_data_bytes =
1077 		    LBN_TO_BYTE(hp->hs_dirent.intlf_sz, vp->v_vfsp);
1078 	}
1079 
1080 reread:
1081 	err = 0;
1082 	pagefound = 0;
1083 	calcdone = 0;
1084 
1085 	/*
1086 	 * Do some read-ahead.  This mostly saves us a bit of
1087 	 * system cpu time more than anything else when doing
1088 	 * sequential reads.  At some point, could do the
1089 	 * read-ahead asynchronously which might gain us something
1090 	 * on wall time, but it seems unlikely....
1091 	 *
1092 	 * We do the easy case here, which is to read through
1093 	 * the end of the chunk, minus whatever's at the end that
1094 	 * won't exactly fill a page.
1095 	 */
1096 	if (hp->hs_ra_bytes > 0 && chunk_data_bytes != PAGESIZE) {
1097 		which_chunk_lbn = (off + len) / chunk_data_bytes;
1098 		extension = ((which_chunk_lbn + 1) * chunk_data_bytes) - off;
1099 		extension -= (extension % PAGESIZE);
1100 	} else {
1101 		extension = roundup(len, PAGESIZE);
1102 	}
1103 
1104 	atomic_inc_64(&fsp->total_pages_requested);
1105 
1106 	pp = NULL;
1107 again:
1108 	/* search for page in buffer */
1109 	if ((pagefound = page_exists(vp, off)) == 0) {
1110 		/*
1111 		 * Need to really do disk IO to get the page.
1112 		 */
1113 		if (!calcdone) {
1114 			extension += hp->hs_ra_bytes;
1115 
1116 			/*
1117 			 * Some cd writers don't write sectors that aren't
1118 			 * used. Also, there's no point in reading sectors
1119 			 * we'll never look at.  So, if we're asked to go
1120 			 * beyond the end of a file, truncate to the length
1121 			 * of that file.
1122 			 *
1123 			 * Additionally, this behaviour is required by section
1124 			 * 6.4.5 of ISO 9660:1988(E).
1125 			 */
1126 			len = MIN(extension ? extension : PAGESIZE,
1127 			    filsiz - off);
1128 
1129 			/* A little paranoia. */
1130 			ASSERT(len > 0);
1131 
1132 			/*
1133 			 * After all that, make sure we're asking for things
1134 			 * in units that bdev_strategy() will understand
1135 			 * (see bug 4202551).
1136 			 */
1137 			len = roundup(len, DEV_BSIZE);
1138 			calcdone = 1;
1139 		}
1140 
1141 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp,
1142 		    &io_len_tmp, off, len, 0);
1143 
1144 		if (pp == NULL) {
1145 			/*
1146 			 * Pressure on memory, roll back readahead
1147 			 */
1148 			hp->hs_num_contig = 0;
1149 			hp->hs_ra_bytes = 0;
1150 			hp->hs_prev_offset = 0;
1151 			goto again;
1152 		}
1153 
1154 		io_off = (uint_t)io_off_tmp;
1155 		io_len = (uint_t)io_len_tmp;
1156 
1157 		/* check for truncation */
1158 		/*
1159 		 * xxx Clean up and return EIO instead?
1160 		 * xxx Ought to go to u_offset_t for everything, but we
1161 		 * xxx call lots of things that want uint_t arguments.
1162 		 */
1163 		ASSERT(io_off == io_off_tmp);
1164 
1165 		/*
1166 		 * get enough buffers for worst-case scenario
1167 		 * (i.e., no coalescing possible).
1168 		 */
1169 		bufcnt = (len + secsize - 1) / secsize;
1170 		bufs = kmem_zalloc(bufcnt * sizeof (struct buf), KM_SLEEP);
1171 		vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP);
1172 
1173 		/*
1174 		 * Allocate a array of semaphores if we are doing I/O
1175 		 * scheduling.
1176 		 */
1177 		if (fsp->hqueue != NULL)
1178 			fio_done = kmem_alloc(bufcnt * sizeof (ksema_t),
1179 			    KM_SLEEP);
1180 		for (count = 0; count < bufcnt; count++) {
1181 			bioinit(&bufs[count]);
1182 			bufs[count].b_edev = devvp->v_rdev;
1183 			bufs[count].b_dev = cmpdev(devvp->v_rdev);
1184 			bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ;
1185 			bufs[count].b_iodone = hsfs_iodone;
1186 			bufs[count].b_vp = vp;
1187 			bufs[count].b_file = vp;
1188 		}
1189 
1190 		/*
1191 		 * If our filesize is not an integer multiple of PAGESIZE,
1192 		 * we zero that part of the last page that's between EOF and
1193 		 * the PAGESIZE boundary.
1194 		 */
1195 		xlen = io_len & PAGEOFFSET;
1196 		if (xlen != 0)
1197 			pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
1198 
1199 		va = NULL;
1200 		lastp = NULL;
1201 		searchp = pp;
1202 		io_end = io_off + io_len;
1203 		for (count = 0, byte_offset = io_off;
1204 		    byte_offset < io_end; count++) {
1205 			ASSERT(count < bufcnt);
1206 
1207 			/* Compute disk address for interleaving. */
1208 
1209 			/* considered without skips */
1210 			which_chunk_lbn = byte_offset / chunk_data_bytes;
1211 
1212 			/* factor in skips */
1213 			offset_lbn = which_chunk_lbn * chunk_lbn_count;
1214 
1215 			/* convert to physical byte offset for lbn */
1216 			offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp);
1217 
1218 			/* don't forget offset into lbn */
1219 			offset_extra = byte_offset % chunk_data_bytes;
1220 
1221 			/* get virtual block number for driver */
1222 			driver_block =
1223 			    lbtodb(bof + xarsiz + offset_bytes + offset_extra);
1224 
1225 			if (lastp != searchp) {
1226 				/* this branch taken first time through loop */
1227 				va = vas[count] =
1228 				    ppmapin(searchp, PROT_WRITE, (caddr_t)-1);
1229 				/* ppmapin() guarantees not to return NULL */
1230 			} else {
1231 				vas[count] = NULL;
1232 			}
1233 
1234 			bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE;
1235 			bufs[count].b_offset =
1236 			    (offset_t)(byte_offset - io_off + off);
1237 
1238 			/*
1239 			 * We specifically use the b_lblkno member here
1240 			 * as even in the 32 bit world driver_block can
1241 			 * get very large in line with the ISO9660 spec.
1242 			 */
1243 
1244 			bufs[count].b_lblkno = driver_block;
1245 
1246 			remaining_bytes =
1247 			    ((which_chunk_lbn + 1) * chunk_data_bytes)
1248 			    - byte_offset;
1249 
1250 			/*
1251 			 * remaining_bytes can't be zero, as we derived
1252 			 * which_chunk_lbn directly from byte_offset.
1253 			 */
1254 			if ((remaining_bytes + byte_offset) < (off + len)) {
1255 				/* coalesce-read the rest of the chunk */
1256 				bufs[count].b_bcount = remaining_bytes;
1257 			} else {
1258 				/* get the final bits */
1259 				bufs[count].b_bcount = off + len - byte_offset;
1260 			}
1261 
1262 			/*
1263 			 * It would be nice to do multiple pages'
1264 			 * worth at once here when the opportunity
1265 			 * arises, as that has been shown to improve
1266 			 * our wall time.  However, to do that
1267 			 * requires that we use the pageio subsystem,
1268 			 * which doesn't mix well with what we're
1269 			 * already using here.  We can't use pageio
1270 			 * all the time, because that subsystem
1271 			 * assumes that a page is stored in N
1272 			 * contiguous blocks on the device.
1273 			 * Interleaving violates that assumption.
1274 			 *
1275 			 * Update: This is now not so big a problem
1276 			 * because of the I/O scheduler sitting below
1277 			 * that can re-order and coalesce I/O requests.
1278 			 */
1279 
1280 			remainder = PAGESIZE - (byte_offset % PAGESIZE);
1281 			if (bufs[count].b_bcount > remainder) {
1282 				bufs[count].b_bcount = remainder;
1283 			}
1284 
1285 			bufs[count].b_bufsize = bufs[count].b_bcount;
1286 			if (((offset_t)byte_offset + bufs[count].b_bcount) >
1287 			    HS_MAXFILEOFF) {
1288 				break;
1289 			}
1290 			byte_offset += bufs[count].b_bcount;
1291 
1292 			if (fsp->hqueue == NULL) {
1293 				(void) bdev_strategy(&bufs[count]);
1294 
1295 			} else {
1296 				/*
1297 				 * We are scheduling I/O so we need to enqueue
1298 				 * requests rather than calling bdev_strategy
1299 				 * here. A later invocation of the scheduling
1300 				 * function will take care of doing the actual
1301 				 * I/O as it selects requests from the queue as
1302 				 * per the scheduling logic.
1303 				 */
1304 				struct hio *hsio = kmem_cache_alloc(hio_cache,
1305 				    KM_SLEEP);
1306 
1307 				sema_init(&fio_done[count], 0, NULL,
1308 				    SEMA_DEFAULT, NULL);
1309 				hsio->bp = &bufs[count];
1310 				hsio->sema = &fio_done[count];
1311 				hsio->io_lblkno = bufs[count].b_lblkno;
1312 				hsio->nblocks = howmany(hsio->bp->b_bcount,
1313 				    DEV_BSIZE);
1314 
1315 				/* used for deadline */
1316 				hsio->io_timestamp =
1317 				    drv_hztousec(ddi_get_lbolt());
1318 
1319 				/* for I/O coalescing */
1320 				hsio->contig_chain = NULL;
1321 				hsched_enqueue_io(fsp, hsio, 0);
1322 			}
1323 
1324 			lwp_stat_update(LWP_STAT_INBLK, 1);
1325 			lastp = searchp;
1326 			if ((remainder - bufs[count].b_bcount) < 1) {
1327 				searchp = searchp->p_next;
1328 			}
1329 		}
1330 
1331 		bufsused = count;
1332 		/* Now wait for everything to come in */
1333 		if (fsp->hqueue == NULL) {
1334 			for (count = 0; count < bufsused; count++) {
1335 				if (err == 0) {
1336 					err = biowait(&bufs[count]);
1337 				} else
1338 					(void) biowait(&bufs[count]);
1339 			}
1340 		} else {
1341 			for (count = 0; count < bufsused; count++) {
1342 				struct buf *wbuf;
1343 
1344 				/*
1345 				 * Invoke scheduling function till our buf
1346 				 * is processed. In doing this it might
1347 				 * process bufs enqueued by other threads
1348 				 * which is good.
1349 				 */
1350 				wbuf = &bufs[count];
1351 				DTRACE_PROBE1(hsfs_io_wait, struct buf *, wbuf);
1352 				while (sema_tryp(&fio_done[count]) == 0) {
1353 					/*
1354 					 * hsched_invoke_strategy will return 1
1355 					 * if the I/O queue is empty. This means
1356 					 * that there is another thread who has
1357 					 * issued our buf and is waiting. So we
1358 					 * just block instead of spinning.
1359 					 */
1360 					if (hsched_invoke_strategy(fsp)) {
1361 						sema_p(&fio_done[count]);
1362 						break;
1363 					}
1364 				}
1365 				sema_destroy(&fio_done[count]);
1366 				DTRACE_PROBE1(hsfs_io_done, struct buf *, wbuf);
1367 
1368 				if (err == 0) {
1369 					err = geterror(wbuf);
1370 				}
1371 			}
1372 			kmem_free(fio_done, bufcnt * sizeof (ksema_t));
1373 		}
1374 
1375 		/* Don't leak resources */
1376 		for (count = 0; count < bufcnt; count++) {
1377 			biofini(&bufs[count]);
1378 			if (count < bufsused && vas[count] != NULL) {
1379 				ppmapout(vas[count]);
1380 			}
1381 		}
1382 
1383 		kmem_free(vas, bufcnt * sizeof (caddr_t));
1384 		kmem_free(bufs, bufcnt * sizeof (struct buf));
1385 	}
1386 
1387 	if (err) {
1388 		pvn_read_done(pp, B_ERROR);
1389 		return (err);
1390 	}
1391 
1392 	/*
1393 	 * Lock the requested page, and the one after it if possible.
1394 	 * Don't bother if our caller hasn't given us a place to stash
1395 	 * the page pointers, since otherwise we'd lock pages that would
1396 	 * never get unlocked.
1397 	 */
1398 	if (pagefound) {
1399 		int index;
1400 		ulong_t soff;
1401 
1402 		/*
1403 		 * Make sure it's in memory before we say it's here.
1404 		 */
1405 		if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) {
1406 			hsfs_lostpage++;
1407 			goto reread;
1408 		}
1409 
1410 		pl[0] = pp;
1411 		index = 1;
1412 		atomic_inc_64(&fsp->cache_read_pages);
1413 
1414 		/*
1415 		 * Try to lock the next page, if it exists, without
1416 		 * blocking.
1417 		 */
1418 		plsz -= PAGESIZE;
1419 		/* LINTED (plsz is unsigned) */
1420 		for (soff = off + PAGESIZE; plsz > 0;
1421 		    soff += PAGESIZE, plsz -= PAGESIZE) {
1422 			pp = page_lookup_nowait(vp, (u_offset_t)soff,
1423 			    SE_SHARED);
1424 			if (pp == NULL)
1425 				break;
1426 			pl[index++] = pp;
1427 		}
1428 		pl[index] = NULL;
1429 
1430 		/*
1431 		 * Schedule a semi-asynchronous readahead if we are
1432 		 * accessing the last cached page for the current
1433 		 * file.
1434 		 *
1435 		 * Doing this here means that readaheads will be
1436 		 * issued only if cache-hits occur. This is an advantage
1437 		 * since cache-hits would mean that readahead is giving
1438 		 * the desired benefit. If cache-hits do not occur there
1439 		 * is no point in reading ahead of time - the system
1440 		 * is loaded anyway.
1441 		 */
1442 		if (fsp->hqueue != NULL &&
1443 		    hp->hs_prev_offset - off == PAGESIZE &&
1444 		    hp->hs_prev_offset < filsiz &&
1445 		    hp->hs_ra_bytes > 0 &&
1446 		    !page_exists(vp, hp->hs_prev_offset)) {
1447 			(void) hsfs_getpage_ra(vp, hp->hs_prev_offset, seg,
1448 			    addr + PAGESIZE, hp, fsp, xarsiz, bof,
1449 			    chunk_lbn_count, chunk_data_bytes);
1450 		}
1451 
1452 		return (0);
1453 	}
1454 
1455 	if (pp != NULL) {
1456 		pvn_plist_init(pp, pl, plsz, off, io_len, rw);
1457 	}
1458 
1459 	return (err);
1460 }
1461 
1462 /*ARGSUSED*/
1463 static int
1464 hsfs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp,
1465     struct page *pl[], size_t plsz, struct seg *seg, caddr_t addr,
1466     enum seg_rw rw, struct cred *cred, caller_context_t *ct)
1467 {
1468 	uint_t filsiz;
1469 	struct hsfs *fsp;
1470 	struct hsnode *hp;
1471 
1472 	fsp = VFS_TO_HSFS(vp->v_vfsp);
1473 	hp = VTOH(vp);
1474 
1475 	/* does not support write */
1476 	if (rw == S_WRITE) {
1477 		return (EROFS);
1478 	}
1479 
1480 	if (vp->v_flag & VNOMAP) {
1481 		return (ENOSYS);
1482 	}
1483 
1484 	ASSERT(off <= HS_MAXFILEOFF);
1485 
1486 	/*
1487 	 * Determine file data size for EOF check.
1488 	 */
1489 	filsiz = hp->hs_dirent.ext_size;
1490 	if ((off + len) > (offset_t)(filsiz + PAGEOFFSET) && seg != segkmap)
1491 		return (EFAULT);	/* beyond EOF */
1492 
1493 	/*
1494 	 * Async Read-ahead computation.
1495 	 * This attempts to detect sequential access pattern and
1496 	 * enables reading extra pages ahead of time.
1497 	 */
1498 	if (fsp->hqueue != NULL) {
1499 		/*
1500 		 * This check for sequential access also takes into
1501 		 * account segmap weirdness when reading in chunks
1502 		 * less than the segmap size of 8K.
1503 		 */
1504 		if (hp->hs_prev_offset == off || (off <
1505 		    hp->hs_prev_offset && off + MAX(len, PAGESIZE)
1506 		    >= hp->hs_prev_offset)) {
1507 			if (hp->hs_num_contig <
1508 			    (seq_contig_requests - 1)) {
1509 				hp->hs_num_contig++;
1510 
1511 			} else {
1512 				/*
1513 				 * We increase readahead quantum till
1514 				 * a predefined max. max_readahead_bytes
1515 				 * is a multiple of PAGESIZE.
1516 				 */
1517 				if (hp->hs_ra_bytes <
1518 				    fsp->hqueue->max_ra_bytes) {
1519 					hp->hs_ra_bytes += PAGESIZE;
1520 				}
1521 			}
1522 		} else {
1523 			/*
1524 			 * Not contiguous so reduce read ahead counters.
1525 			 */
1526 			if (hp->hs_ra_bytes > 0)
1527 				hp->hs_ra_bytes -= PAGESIZE;
1528 
1529 			if (hp->hs_ra_bytes <= 0) {
1530 				hp->hs_ra_bytes = 0;
1531 				if (hp->hs_num_contig > 0)
1532 					hp->hs_num_contig--;
1533 			}
1534 		}
1535 		/*
1536 		 * Length must be rounded up to page boundary.
1537 		 * since we read in units of pages.
1538 		 */
1539 		hp->hs_prev_offset = off + roundup(len, PAGESIZE);
1540 		DTRACE_PROBE1(hsfs_compute_ra, struct hsnode *, hp);
1541 	}
1542 	if (protp != NULL)
1543 		*protp = PROT_ALL;
1544 
1545 	return (pvn_getpages(hsfs_getapage, vp, off, len, protp, pl, plsz,
1546 	    seg, addr, rw, cred));
1547 }
1548 
1549 
1550 
1551 /*
1552  * This function should never be called. We need to have it to pass
1553  * it as an argument to other functions.
1554  */
1555 /*ARGSUSED*/
1556 int
1557 hsfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1558     int flags, cred_t *cr)
1559 {
1560 	/* should never happen - just destroy it */
1561 	cmn_err(CE_NOTE, "hsfs_putapage: dirty HSFS page");
1562 	pvn_write_done(pp, B_ERROR | B_WRITE | B_INVAL | B_FORCE | flags);
1563 	return (0);
1564 }
1565 
1566 
1567 /*
1568  * The only flags we support are B_INVAL, B_FREE and B_DONTNEED.
1569  * B_INVAL is set by:
1570  *
1571  *	1) the MC_SYNC command of memcntl(2) to support the MS_INVALIDATE flag.
1572  *	2) the MC_ADVISE command of memcntl(2) with the MADV_DONTNEED advice
1573  *	   which translates to an MC_SYNC with the MS_INVALIDATE flag.
1574  *
1575  * The B_FREE (as well as the B_DONTNEED) flag is set when the
1576  * MADV_SEQUENTIAL advice has been used. VOP_PUTPAGE is invoked
1577  * from SEGVN to release pages behind a pagefault.
1578  */
1579 /*ARGSUSED*/
1580 static int
1581 hsfs_putpage(struct vnode *vp, offset_t off, size_t len, int flags,
1582     struct cred *cr, caller_context_t *ct)
1583 {
1584 	int error = 0;
1585 
1586 	if (vp->v_count == 0) {
1587 		panic("hsfs_putpage: bad v_count");
1588 		/*NOTREACHED*/
1589 	}
1590 
1591 	if (vp->v_flag & VNOMAP)
1592 		return (ENOSYS);
1593 
1594 	ASSERT(off <= HS_MAXFILEOFF);
1595 
1596 	if (!vn_has_cached_data(vp))	/* no pages mapped */
1597 		return (0);
1598 
1599 	if (len == 0) {		/* from 'off' to EOF */
1600 		error = pvn_vplist_dirty(vp, off, hsfs_putapage, flags, cr);
1601 	} else {
1602 		offset_t end_off = off + len;
1603 		offset_t file_size = VTOH(vp)->hs_dirent.ext_size;
1604 		offset_t io_off;
1605 
1606 		file_size = (file_size + PAGESIZE - 1) & PAGEMASK;
1607 		if (end_off > file_size)
1608 			end_off = file_size;
1609 
1610 		for (io_off = off; io_off < end_off; io_off += PAGESIZE) {
1611 			page_t *pp;
1612 
1613 			/*
1614 			 * We insist on getting the page only if we are
1615 			 * about to invalidate, free or write it and
1616 			 * the B_ASYNC flag is not set.
1617 			 */
1618 			if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
1619 				pp = page_lookup(vp, io_off,
1620 				    (flags & (B_INVAL | B_FREE)) ?
1621 				    SE_EXCL : SE_SHARED);
1622 			} else {
1623 				pp = page_lookup_nowait(vp, io_off,
1624 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
1625 			}
1626 
1627 			if (pp == NULL)
1628 				continue;
1629 
1630 			/*
1631 			 * Normally pvn_getdirty() should return 0, which
1632 			 * impies that it has done the job for us.
1633 			 * The shouldn't-happen scenario is when it returns 1.
1634 			 * This means that the page has been modified and
1635 			 * needs to be put back.
1636 			 * Since we can't write on a CD, we fake a failed
1637 			 * I/O and force pvn_write_done() to destroy the page.
1638 			 */
1639 			if (pvn_getdirty(pp, flags) == 1) {
1640 				cmn_err(CE_NOTE,
1641 				    "hsfs_putpage: dirty HSFS page");
1642 				pvn_write_done(pp, flags |
1643 				    B_ERROR | B_WRITE | B_INVAL | B_FORCE);
1644 			}
1645 		}
1646 	}
1647 	return (error);
1648 }
1649 
1650 
1651 /*ARGSUSED*/
1652 static int
1653 hsfs_map(struct vnode *vp, offset_t off, struct as *as, caddr_t *addrp,
1654     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, struct cred *cred,
1655     caller_context_t *ct)
1656 {
1657 	struct segvn_crargs vn_a;
1658 	int error;
1659 
1660 	/* VFS_RECORD(vp->v_vfsp, VS_MAP, VS_CALL); */
1661 
1662 	if (vp->v_flag & VNOMAP)
1663 		return (ENOSYS);
1664 
1665 	if ((prot & PROT_WRITE) && (flags & MAP_SHARED))
1666 		return (ENOSYS);
1667 
1668 	if (off > HS_MAXFILEOFF || off < 0 ||
1669 	    (off + len) < 0 || (off + len) > HS_MAXFILEOFF)
1670 		return (ENXIO);
1671 
1672 	if (vp->v_type != VREG) {
1673 		return (ENODEV);
1674 	}
1675 
1676 	/*
1677 	 * If file is being locked, disallow mapping.
1678 	 */
1679 	if (vn_has_mandatory_locks(vp, VTOH(vp)->hs_dirent.mode))
1680 		return (EAGAIN);
1681 
1682 	as_rangelock(as);
1683 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
1684 	if (error != 0) {
1685 		as_rangeunlock(as);
1686 		return (error);
1687 	}
1688 
1689 	vn_a.vp = vp;
1690 	vn_a.offset = off;
1691 	vn_a.type = flags & MAP_TYPE;
1692 	vn_a.prot = prot;
1693 	vn_a.maxprot = maxprot;
1694 	vn_a.flags = flags & ~MAP_TYPE;
1695 	vn_a.cred = cred;
1696 	vn_a.amp = NULL;
1697 	vn_a.szc = 0;
1698 	vn_a.lgrp_mem_policy_flags = 0;
1699 
1700 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
1701 	as_rangeunlock(as);
1702 	return (error);
1703 }
1704 
1705 /* ARGSUSED */
1706 static int
1707 hsfs_addmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
1708     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, struct cred *cr,
1709     caller_context_t *ct)
1710 {
1711 	struct hsnode *hp;
1712 
1713 	if (vp->v_flag & VNOMAP)
1714 		return (ENOSYS);
1715 
1716 	hp = VTOH(vp);
1717 	mutex_enter(&hp->hs_contents_lock);
1718 	hp->hs_mapcnt += btopr(len);
1719 	mutex_exit(&hp->hs_contents_lock);
1720 	return (0);
1721 }
1722 
1723 /*ARGSUSED*/
1724 static int
1725 hsfs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
1726     size_t len, uint_t prot, uint_t maxprot, uint_t flags, struct cred *cr,
1727     caller_context_t *ct)
1728 {
1729 	struct hsnode *hp;
1730 
1731 	if (vp->v_flag & VNOMAP)
1732 		return (ENOSYS);
1733 
1734 	hp = VTOH(vp);
1735 	mutex_enter(&hp->hs_contents_lock);
1736 	hp->hs_mapcnt -= btopr(len);	/* Count released mappings */
1737 	ASSERT(hp->hs_mapcnt >= 0);
1738 	mutex_exit(&hp->hs_contents_lock);
1739 	return (0);
1740 }
1741 
1742 /* ARGSUSED */
1743 static int
1744 hsfs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp,
1745     caller_context_t *ct)
1746 {
1747 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
1748 }
1749 
1750 /* ARGSUSED */
1751 static int
1752 hsfs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
1753     offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
1754     caller_context_t *ct)
1755 {
1756 	struct hsnode *hp = VTOH(vp);
1757 
1758 	/*
1759 	 * If the file is being mapped, disallow fs_frlock.
1760 	 * We are not holding the hs_contents_lock while checking
1761 	 * hs_mapcnt because the current locking strategy drops all
1762 	 * locks before calling fs_frlock.
1763 	 * So, hs_mapcnt could change before we enter fs_frlock making
1764 	 * it meaningless to have held hs_contents_lock in the first place.
1765 	 */
1766 	if (hp->hs_mapcnt > 0 && MANDLOCK(vp, hp->hs_dirent.mode))
1767 		return (EAGAIN);
1768 
1769 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
1770 }
1771 
1772 static int
1773 hsched_deadline_compare(const void *x1, const void *x2)
1774 {
1775 	const struct hio *h1 = x1;
1776 	const struct hio *h2 = x2;
1777 
1778 	if (h1->io_timestamp < h2->io_timestamp)
1779 		return (-1);
1780 	if (h1->io_timestamp > h2->io_timestamp)
1781 		return (1);
1782 
1783 	if (h1->io_lblkno < h2->io_lblkno)
1784 		return (-1);
1785 	if (h1->io_lblkno > h2->io_lblkno)
1786 		return (1);
1787 
1788 	if (h1 < h2)
1789 		return (-1);
1790 	if (h1 > h2)
1791 		return (1);
1792 
1793 	return (0);
1794 }
1795 
1796 static int
1797 hsched_offset_compare(const void *x1, const void *x2)
1798 {
1799 	const struct hio *h1 = x1;
1800 	const struct hio *h2 = x2;
1801 
1802 	if (h1->io_lblkno < h2->io_lblkno)
1803 		return (-1);
1804 	if (h1->io_lblkno > h2->io_lblkno)
1805 		return (1);
1806 
1807 	if (h1 < h2)
1808 		return (-1);
1809 	if (h1 > h2)
1810 		return (1);
1811 
1812 	return (0);
1813 }
1814 
1815 void
1816 hsched_init_caches(void)
1817 {
1818 	hio_cache = kmem_cache_create("hsfs_hio_cache",
1819 	    sizeof (struct hio), 0, NULL,
1820 	    NULL, NULL, NULL, NULL, 0);
1821 
1822 	hio_info_cache = kmem_cache_create("hsfs_hio_info_cache",
1823 	    sizeof (struct hio_info), 0, NULL,
1824 	    NULL, NULL, NULL, NULL, 0);
1825 }
1826 
1827 void
1828 hsched_fini_caches(void)
1829 {
1830 	kmem_cache_destroy(hio_cache);
1831 	kmem_cache_destroy(hio_info_cache);
1832 }
1833 
1834 /*
1835  * Initialize I/O scheduling structures. This is called via hsfs_mount
1836  */
1837 void
1838 hsched_init(struct hsfs *fsp, int fsid, struct modlinkage *modlinkage)
1839 {
1840 	struct hsfs_queue *hqueue = fsp->hqueue;
1841 	struct vnode *vp = fsp->hsfs_devvp;
1842 
1843 	/* TaskQ name of the form: hsched_task_ + stringof(int) */
1844 	char namebuf[23];
1845 	int error, err;
1846 	struct dk_cinfo info;
1847 	ldi_handle_t lh;
1848 	ldi_ident_t li;
1849 
1850 	/*
1851 	 * Default maxtransfer = 16k chunk
1852 	 */
1853 	hqueue->dev_maxtransfer = 16384;
1854 
1855 	/*
1856 	 * Try to fetch the maximum device transfer size. This is used to
1857 	 * ensure that a coalesced block does not exceed the maxtransfer.
1858 	 */
1859 	err  = ldi_ident_from_mod(modlinkage, &li);
1860 	if (err) {
1861 		cmn_err(CE_NOTE, "hsched_init: Querying device failed");
1862 		cmn_err(CE_NOTE, "hsched_init: ldi_ident_from_mod err=%d\n",
1863 		    err);
1864 		goto set_ra;
1865 	}
1866 
1867 	err = ldi_open_by_dev(&(vp->v_rdev), OTYP_CHR, FREAD, CRED(), &lh, li);
1868 	ldi_ident_release(li);
1869 	if (err) {
1870 		cmn_err(CE_NOTE, "hsched_init: Querying device failed");
1871 		cmn_err(CE_NOTE, "hsched_init: ldi_open err=%d\n", err);
1872 		goto set_ra;
1873 	}
1874 
1875 	error = ldi_ioctl(lh, DKIOCINFO, (intptr_t)&info, FKIOCTL,
1876 	    CRED(), &err);
1877 	err = ldi_close(lh, FREAD, CRED());
1878 	if (err) {
1879 		cmn_err(CE_NOTE, "hsched_init: Querying device failed");
1880 		cmn_err(CE_NOTE, "hsched_init: ldi_close err=%d\n", err);
1881 	}
1882 
1883 	if (error == 0) {
1884 		hqueue->dev_maxtransfer = ldbtob(info.dki_maxtransfer);
1885 	}
1886 
1887 set_ra:
1888 	/*
1889 	 * Max size of data to read ahead for sequential access pattern.
1890 	 * Conservative to avoid letting the underlying CD drive to spin
1891 	 * down, in case the application is reading slowly.
1892 	 * We read ahead upto a max of 4 pages.
1893 	 */
1894 	hqueue->max_ra_bytes = PAGESIZE * 8;
1895 
1896 	mutex_init(&(hqueue->hsfs_queue_lock), NULL, MUTEX_DEFAULT, NULL);
1897 	mutex_init(&(hqueue->strategy_lock), NULL, MUTEX_DEFAULT, NULL);
1898 	avl_create(&(hqueue->read_tree), hsched_offset_compare,
1899 	    sizeof (struct hio), offsetof(struct hio, io_offset_node));
1900 	avl_create(&(hqueue->deadline_tree), hsched_deadline_compare,
1901 	    sizeof (struct hio), offsetof(struct hio, io_deadline_node));
1902 
1903 	(void) snprintf(namebuf, sizeof (namebuf), "hsched_task_%d", fsid);
1904 	hqueue->ra_task = taskq_create(namebuf, hsfs_taskq_nthreads,
1905 	    minclsyspri + 2, 1, 104857600 / PAGESIZE, TASKQ_DYNAMIC);
1906 
1907 	hqueue->next = NULL;
1908 	hqueue->nbuf = kmem_zalloc(sizeof (struct buf), KM_SLEEP);
1909 }
1910 
1911 void
1912 hsched_fini(struct hsfs_queue *hqueue)
1913 {
1914 	if (hqueue != NULL) {
1915 		/*
1916 		 * Remove the sentinel if there was one.
1917 		 */
1918 		if (hqueue->next != NULL) {
1919 			avl_remove(&hqueue->read_tree, hqueue->next);
1920 			kmem_cache_free(hio_cache, hqueue->next);
1921 		}
1922 		avl_destroy(&(hqueue->read_tree));
1923 		avl_destroy(&(hqueue->deadline_tree));
1924 		mutex_destroy(&(hqueue->hsfs_queue_lock));
1925 		mutex_destroy(&(hqueue->strategy_lock));
1926 
1927 		/*
1928 		 * If there are any existing readahead threads running
1929 		 * taskq_destroy will wait for them to finish.
1930 		 */
1931 		taskq_destroy(hqueue->ra_task);
1932 		kmem_free(hqueue->nbuf, sizeof (struct buf));
1933 	}
1934 }
1935 
1936 /*
1937  * Determine if two I/O requests are adjacent to each other so
1938  * that they can coalesced.
1939  */
1940 #define	IS_ADJACENT(io, nio) \
1941 	(((io)->io_lblkno + (io)->nblocks == (nio)->io_lblkno) && \
1942 	(io)->bp->b_edev == (nio)->bp->b_edev)
1943 
1944 /*
1945  * This performs the actual I/O scheduling logic. We use the Circular
1946  * Look algorithm here. Sort the I/O requests in ascending order of
1947  * logical block number and process them starting with the lowest
1948  * numbered block and progressing towards higher block numbers in the
1949  * queue. Once there are no more higher numbered blocks, start again
1950  * with the lowest one. This is good for CD/DVD as you keep moving
1951  * the head in one direction along the outward spiral track and avoid
1952  * too many seeks as much as possible. The re-ordering also allows
1953  * us to coalesce adjacent requests into one larger request.
1954  * This is thus essentially a 1-way Elevator with front merging.
1955  *
1956  * In addition each read request here has a deadline and will be
1957  * processed out of turn if the deadline (500ms) expires.
1958  *
1959  * This function is necessarily serialized via hqueue->strategy_lock.
1960  * This function sits just below hsfs_getapage and processes all read
1961  * requests orginating from that function.
1962  */
1963 int
1964 hsched_invoke_strategy(struct hsfs *fsp)
1965 {
1966 	struct hsfs_queue *hqueue;
1967 	struct buf *nbuf;
1968 	struct hio *fio, *nio, *tio, *prev, *last;
1969 	size_t bsize, soffset, offset, data;
1970 	int bioret, bufcount;
1971 	struct vnode *fvp;
1972 	ksema_t *io_done;
1973 	caddr_t iodata;
1974 
1975 	hqueue = fsp->hqueue;
1976 	mutex_enter(&hqueue->strategy_lock);
1977 	mutex_enter(&hqueue->hsfs_queue_lock);
1978 
1979 	/*
1980 	 * Check for Deadline expiration first
1981 	 */
1982 	fio = avl_first(&hqueue->deadline_tree);
1983 
1984 	/*
1985 	 * Paranoid check for empty I/O queue. Both deadline
1986 	 * and read trees contain same data sorted in different
1987 	 * ways. So empty deadline tree = empty read tree.
1988 	 */
1989 	if (fio == NULL) {
1990 		/*
1991 		 * Remove the sentinel if there was one.
1992 		 */
1993 		if (hqueue->next != NULL) {
1994 			avl_remove(&hqueue->read_tree, hqueue->next);
1995 			kmem_cache_free(hio_cache, hqueue->next);
1996 			hqueue->next = NULL;
1997 		}
1998 		mutex_exit(&hqueue->hsfs_queue_lock);
1999 		mutex_exit(&hqueue->strategy_lock);
2000 		return (1);
2001 	}
2002 
2003 	if (drv_hztousec(ddi_get_lbolt()) - fio->io_timestamp
2004 	    < HSFS_READ_DEADLINE) {
2005 		/*
2006 		 * Apply standard scheduling logic. This uses the
2007 		 * C-LOOK approach. Process I/O requests in ascending
2008 		 * order of logical block address till no subsequent
2009 		 * higher numbered block request remains. Then start
2010 		 * again from the lowest numbered block in the queue.
2011 		 *
2012 		 * We do this cheaply here by means of a sentinel.
2013 		 * The last processed I/O structure from the previous
2014 		 * invocation of this func, is left dangling in the
2015 		 * read_tree so that we can easily scan to the next
2016 		 * higher numbered request and remove the sentinel.
2017 		 */
2018 		fio = NULL;
2019 		if (hqueue->next != NULL) {
2020 			fio = AVL_NEXT(&hqueue->read_tree, hqueue->next);
2021 			avl_remove(&hqueue->read_tree, hqueue->next);
2022 			kmem_cache_free(hio_cache, hqueue->next);
2023 			hqueue->next = NULL;
2024 		}
2025 		if (fio == NULL) {
2026 			fio = avl_first(&hqueue->read_tree);
2027 		}
2028 	} else if (hqueue->next != NULL) {
2029 		DTRACE_PROBE1(hsfs_deadline_expiry, struct hio *, fio);
2030 
2031 		avl_remove(&hqueue->read_tree, hqueue->next);
2032 		kmem_cache_free(hio_cache, hqueue->next);
2033 		hqueue->next = NULL;
2034 	}
2035 
2036 	/*
2037 	 * In addition we try to coalesce contiguous
2038 	 * requests into one bigger request.
2039 	 */
2040 	bufcount = 1;
2041 	bsize = ldbtob(fio->nblocks);
2042 	fvp = fio->bp->b_file;
2043 	nio = AVL_NEXT(&hqueue->read_tree, fio);
2044 	tio = fio;
2045 	while (nio != NULL && IS_ADJACENT(tio, nio) &&
2046 	    bsize < hqueue->dev_maxtransfer) {
2047 		avl_remove(&hqueue->deadline_tree, tio);
2048 		avl_remove(&hqueue->read_tree, tio);
2049 		tio->contig_chain = nio;
2050 		bsize += ldbtob(nio->nblocks);
2051 		prev = tio;
2052 		tio = nio;
2053 
2054 		/*
2055 		 * This check is required to detect the case where
2056 		 * we are merging adjacent buffers belonging to
2057 		 * different files. fvp is used to set the b_file
2058 		 * parameter in the coalesced buf. b_file is used
2059 		 * by DTrace so we do not want DTrace to accrue
2060 		 * requests to two different files to any one file.
2061 		 */
2062 		if (fvp && tio->bp->b_file != fvp) {
2063 			fvp = NULL;
2064 		}
2065 
2066 		nio = AVL_NEXT(&hqueue->read_tree, nio);
2067 		bufcount++;
2068 	}
2069 
2070 	/*
2071 	 * tio is not removed from the read_tree as it serves as a sentinel
2072 	 * to cheaply allow us to scan to the next higher numbered I/O
2073 	 * request.
2074 	 */
2075 	hqueue->next = tio;
2076 	avl_remove(&hqueue->deadline_tree, tio);
2077 	mutex_exit(&hqueue->hsfs_queue_lock);
2078 	DTRACE_PROBE3(hsfs_io_dequeued, struct hio *, fio, int, bufcount,
2079 	    size_t, bsize);
2080 
2081 	/*
2082 	 * The benefit of coalescing occurs if the the savings in I/O outweighs
2083 	 * the cost of doing the additional work below.
2084 	 * It was observed that coalescing 2 buffers results in diminishing
2085 	 * returns, so we do coalescing if we have >2 adjacent bufs.
2086 	 */
2087 	if (bufcount > hsched_coalesce_min) {
2088 		/*
2089 		 * We have coalesced blocks. First allocate mem and buf for
2090 		 * the entire coalesced chunk.
2091 		 * Since we are guaranteed single-threaded here we pre-allocate
2092 		 * one buf at mount time and that is re-used every time. This
2093 		 * is a synthesized buf structure that uses kmem_alloced chunk.
2094 		 * Not quite a normal buf attached to pages.
2095 		 */
2096 		fsp->coalesced_bytes += bsize;
2097 		nbuf = hqueue->nbuf;
2098 		bioinit(nbuf);
2099 		nbuf->b_edev = fio->bp->b_edev;
2100 		nbuf->b_dev = fio->bp->b_dev;
2101 		nbuf->b_flags = fio->bp->b_flags;
2102 		nbuf->b_iodone = fio->bp->b_iodone;
2103 		iodata = kmem_alloc(bsize, KM_SLEEP);
2104 		nbuf->b_un.b_addr = iodata;
2105 		nbuf->b_lblkno = fio->bp->b_lblkno;
2106 		nbuf->b_vp = fvp;
2107 		nbuf->b_file = fvp;
2108 		nbuf->b_bcount = bsize;
2109 		nbuf->b_bufsize = bsize;
2110 
2111 		DTRACE_PROBE3(hsfs_coalesced_io_start, struct hio *, fio, int,
2112 		    bufcount, size_t, bsize);
2113 
2114 		/*
2115 		 * Perform I/O for the coalesced block.
2116 		 */
2117 		(void) bdev_strategy(nbuf);
2118 
2119 		/*
2120 		 * Duplicate the last IO node to leave the sentinel alone.
2121 		 * The sentinel is freed in the next invocation of this
2122 		 * function.
2123 		 */
2124 		prev->contig_chain = kmem_cache_alloc(hio_cache, KM_SLEEP);
2125 		prev->contig_chain->bp = tio->bp;
2126 		prev->contig_chain->sema = tio->sema;
2127 		tio = prev->contig_chain;
2128 		tio->contig_chain = NULL;
2129 		soffset = ldbtob(fio->bp->b_lblkno);
2130 		nio = fio;
2131 
2132 		bioret = biowait(nbuf);
2133 		data = bsize - nbuf->b_resid;
2134 		biofini(nbuf);
2135 		mutex_exit(&hqueue->strategy_lock);
2136 
2137 		/*
2138 		 * We use the b_resid parameter to detect how much
2139 		 * data was succesfully transferred. We will signal
2140 		 * a success to all the fully retrieved actual bufs
2141 		 * before coalescing, rest is signaled as error,
2142 		 * if any.
2143 		 */
2144 		tio = nio;
2145 		DTRACE_PROBE3(hsfs_coalesced_io_done, struct hio *, nio,
2146 		    int, bioret, size_t, data);
2147 
2148 		/*
2149 		 * Copy data and signal success to all the bufs
2150 		 * which can be fully satisfied from b_resid.
2151 		 */
2152 		while (nio != NULL && data >= nio->bp->b_bcount) {
2153 			offset = ldbtob(nio->bp->b_lblkno) - soffset;
2154 			bcopy(iodata + offset, nio->bp->b_un.b_addr,
2155 			    nio->bp->b_bcount);
2156 			data -= nio->bp->b_bcount;
2157 			bioerror(nio->bp, 0);
2158 			biodone(nio->bp);
2159 			sema_v(nio->sema);
2160 			tio = nio;
2161 			nio = nio->contig_chain;
2162 			kmem_cache_free(hio_cache, tio);
2163 		}
2164 
2165 		/*
2166 		 * Signal error to all the leftover bufs (if any)
2167 		 * after b_resid data is exhausted.
2168 		 */
2169 		while (nio != NULL) {
2170 			nio->bp->b_resid = nio->bp->b_bcount - data;
2171 			bzero(nio->bp->b_un.b_addr + data, nio->bp->b_resid);
2172 			bioerror(nio->bp, bioret);
2173 			biodone(nio->bp);
2174 			sema_v(nio->sema);
2175 			tio = nio;
2176 			nio = nio->contig_chain;
2177 			kmem_cache_free(hio_cache, tio);
2178 			data = 0;
2179 		}
2180 		kmem_free(iodata, bsize);
2181 	} else {
2182 
2183 		nbuf = tio->bp;
2184 		io_done = tio->sema;
2185 		nio = fio;
2186 		last = tio;
2187 
2188 		while (nio != NULL) {
2189 			(void) bdev_strategy(nio->bp);
2190 			nio = nio->contig_chain;
2191 		}
2192 		nio = fio;
2193 		mutex_exit(&hqueue->strategy_lock);
2194 
2195 		while (nio != NULL) {
2196 			if (nio == last) {
2197 				(void) biowait(nbuf);
2198 				sema_v(io_done);
2199 				break;
2200 				/* sentinel last not freed. See above. */
2201 			} else {
2202 				(void) biowait(nio->bp);
2203 				sema_v(nio->sema);
2204 			}
2205 			tio = nio;
2206 			nio = nio->contig_chain;
2207 			kmem_cache_free(hio_cache, tio);
2208 		}
2209 	}
2210 	return (0);
2211 }
2212 
2213 /*
2214  * Insert an I/O request in the I/O scheduler's pipeline
2215  * Using AVL tree makes it easy to reorder the I/O request
2216  * based on logical block number.
2217  */
2218 static void
2219 hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra)
2220 {
2221 	struct hsfs_queue *hqueue = fsp->hqueue;
2222 
2223 	mutex_enter(&hqueue->hsfs_queue_lock);
2224 
2225 	fsp->physical_read_bytes += hsio->bp->b_bcount;
2226 	if (ra)
2227 		fsp->readahead_bytes += hsio->bp->b_bcount;
2228 
2229 	avl_add(&hqueue->deadline_tree, hsio);
2230 	avl_add(&hqueue->read_tree, hsio);
2231 
2232 	DTRACE_PROBE3(hsfs_io_enqueued, struct hio *, hsio,
2233 	    struct hsfs_queue *, hqueue, int, ra);
2234 
2235 	mutex_exit(&hqueue->hsfs_queue_lock);
2236 }
2237 
2238 /* ARGSUSED */
2239 static int
2240 hsfs_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr,
2241     caller_context_t *ct)
2242 {
2243 	struct hsfs	*fsp;
2244 
2245 	int		error = 0;
2246 
2247 	switch (cmd) {
2248 
2249 	case _PC_NAME_MAX:
2250 		fsp = VFS_TO_HSFS(vp->v_vfsp);
2251 		*valp = fsp->hsfs_namemax;
2252 		break;
2253 
2254 	case _PC_FILESIZEBITS:
2255 		*valp = 33;	/* Without multi extent support: 4 GB - 2k */
2256 		break;
2257 
2258 	case _PC_TIMESTAMP_RESOLUTION:
2259 		/*
2260 		 * HSFS keeps, at best, 1/100 second timestamp resolution.
2261 		 */
2262 		*valp = 10000000L;
2263 		break;
2264 
2265 	default:
2266 		error = fs_pathconf(vp, cmd, valp, cr, ct);
2267 		break;
2268 	}
2269 
2270 	return (error);
2271 }
2272 
2273 
2274 
2275 const fs_operation_def_t hsfs_vnodeops_template[] = {
2276 	VOPNAME_OPEN,		{ .vop_open = hsfs_open },
2277 	VOPNAME_CLOSE,		{ .vop_close = hsfs_close },
2278 	VOPNAME_READ,		{ .vop_read = hsfs_read },
2279 	VOPNAME_GETATTR,	{ .vop_getattr = hsfs_getattr },
2280 	VOPNAME_ACCESS,		{ .vop_access = hsfs_access },
2281 	VOPNAME_LOOKUP,		{ .vop_lookup = hsfs_lookup },
2282 	VOPNAME_READDIR,	{ .vop_readdir = hsfs_readdir },
2283 	VOPNAME_READLINK,	{ .vop_readlink = hsfs_readlink },
2284 	VOPNAME_FSYNC,		{ .vop_fsync = hsfs_fsync },
2285 	VOPNAME_INACTIVE,	{ .vop_inactive = hsfs_inactive },
2286 	VOPNAME_FID,		{ .vop_fid = hsfs_fid },
2287 	VOPNAME_SEEK,		{ .vop_seek = hsfs_seek },
2288 	VOPNAME_FRLOCK,		{ .vop_frlock = hsfs_frlock },
2289 	VOPNAME_GETPAGE,	{ .vop_getpage = hsfs_getpage },
2290 	VOPNAME_PUTPAGE,	{ .vop_putpage = hsfs_putpage },
2291 	VOPNAME_MAP,		{ .vop_map = hsfs_map },
2292 	VOPNAME_ADDMAP,		{ .vop_addmap = hsfs_addmap },
2293 	VOPNAME_DELMAP,		{ .vop_delmap = hsfs_delmap },
2294 	VOPNAME_PATHCONF,	{ .vop_pathconf = hsfs_pathconf },
2295 	NULL,			NULL
2296 };
2297 
2298 struct vnodeops *hsfs_vnodeops;
2299