1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2015, Joyent, Inc. 24 * Copyright (c) 2017 by Delphix. All rights reserved. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 #include <sys/types.h> 41 #include <sys/systm.h> 42 #include <sys/param.h> 43 #include <sys/t_lock.h> 44 #include <sys/systm.h> 45 #include <sys/vfs.h> 46 #include <sys/vnode.h> 47 #include <sys/dnlc.h> 48 #include <sys/kmem.h> 49 #include <sys/cmn_err.h> 50 #include <sys/vtrace.h> 51 #include <sys/bitmap.h> 52 #include <sys/var.h> 53 #include <sys/sysmacros.h> 54 #include <sys/kstat.h> 55 #include <sys/atomic.h> 56 #include <sys/taskq.h> 57 58 /* 59 * Directory name lookup cache. 60 * Based on code originally done by Robert Elz at Melbourne. 61 * 62 * Names found by directory scans are retained in a cache 63 * for future reference. Each hash chain is ordered by LRU 64 * Cache is indexed by hash value obtained from (vp, name) 65 * where the vp refers to the directory containing the name. 66 */ 67 68 /* 69 * We want to be able to identify files that are referenced only by the DNLC. 70 * When adding a reference from the DNLC, call VN_HOLD_DNLC instead of VN_HOLD, 71 * since multiple DNLC references should only be counted once in v_count. The 72 * VN_HOLD macro itself is aliased to VN_HOLD_CALLER in this file to help 73 * differentiate the behaviors. (Unfortunately it is not possible to #undef 74 * VN_HOLD and retain VN_HOLD_CALLER. Ideally a Makefile rule would grep 75 * uncommented C tokens to check that VN_HOLD is referenced only once in this 76 * file, to define VN_HOLD_CALLER.) 77 */ 78 #define VN_HOLD_CALLER VN_HOLD 79 #define VN_HOLD_DNLC(vp) { \ 80 mutex_enter(&(vp)->v_lock); \ 81 if ((vp)->v_count_dnlc == 0) { \ 82 VN_HOLD_LOCKED(vp); \ 83 } \ 84 (vp)->v_count_dnlc++; \ 85 mutex_exit(&(vp)->v_lock); \ 86 } 87 #define VN_RELE_DNLC(vp) { \ 88 vn_rele_dnlc(vp); \ 89 } 90 91 /* 92 * Tunable nc_hashavelen is the average length desired for this chain, from 93 * which the size of the nc_hash table is derived at create time. 94 */ 95 #define NC_HASHAVELEN_DEFAULT 4 96 int nc_hashavelen = NC_HASHAVELEN_DEFAULT; 97 98 /* 99 * NC_MOVETOFRONT is the move-to-front threshold: if the hash lookup 100 * depth exceeds this value, we move the looked-up entry to the front of 101 * its hash chain. The idea is to make sure that the most frequently 102 * accessed entries are found most quickly (by keeping them near the 103 * front of their hash chains). 104 */ 105 #define NC_MOVETOFRONT 2 106 107 /* 108 * 109 * DNLC_MAX_RELE is used to size an array on the stack when releasing 110 * vnodes. This array is used rather than calling VN_RELE() inline because 111 * all dnlc locks must be dropped by that time in order to avoid a 112 * possible deadlock. This deadlock occurs when the dnlc holds the last 113 * reference to the vnode and so the VOP_INACTIVE vector is called which 114 * can in turn call back into the dnlc. A global array was used but had 115 * many problems: 116 * 1) Actually doesn't have an upper bound on the array size as 117 * entries can be added after starting the purge. 118 * 2) The locking scheme causes a hang. 119 * 3) Caused serialisation on the global lock. 120 * 4) The array was often unnecessarily huge. 121 * 122 * Note the current value 8 allows up to 4 cache entries (to be purged 123 * from each hash chain), before having to cycle around and retry. 124 * This ought to be ample given that nc_hashavelen is typically very small. 125 */ 126 #define DNLC_MAX_RELE 8 /* must be even */ 127 128 /* 129 * Hash table of name cache entries for fast lookup, dynamically 130 * allocated at startup. 131 */ 132 nc_hash_t *nc_hash; 133 134 /* 135 * Rotors. Used to select entries on a round-robin basis. 136 */ 137 static nc_hash_t *dnlc_purge_fs1_rotor; 138 static nc_hash_t *dnlc_free_rotor; 139 140 /* 141 * # of dnlc entries (uninitialized) 142 * 143 * the initial value was chosen as being 144 * a random string of bits, probably not 145 * normally chosen by a systems administrator 146 */ 147 int ncsize = -1; 148 volatile uint32_t dnlc_nentries = 0; /* current num of name cache entries */ 149 static int nc_hashsz; /* size of hash table */ 150 static int nc_hashmask; /* size of hash table minus 1 */ 151 152 /* 153 * The dnlc_reduce_cache() taskq queue is activated when there are 154 * ncsize name cache entries and if no parameter is provided, it reduces 155 * the size down to dnlc_nentries_low_water, which is by default one 156 * hundreth less (or 99%) of ncsize. 157 * 158 * If a parameter is provided to dnlc_reduce_cache(), then we reduce 159 * the size down based on ncsize_onepercent - where ncsize_onepercent 160 * is 1% of ncsize; however, we never let dnlc_reduce_cache() reduce 161 * the size below 3% of ncsize (ncsize_min_percent). 162 */ 163 #define DNLC_LOW_WATER_DIVISOR_DEFAULT 100 164 uint_t dnlc_low_water_divisor = DNLC_LOW_WATER_DIVISOR_DEFAULT; 165 uint_t dnlc_nentries_low_water; 166 int dnlc_reduce_idle = 1; /* no locking needed */ 167 uint_t ncsize_onepercent; 168 uint_t ncsize_min_percent; 169 170 /* 171 * If dnlc_nentries hits dnlc_max_nentries (twice ncsize) 172 * then this means the dnlc_reduce_cache() taskq is failing to 173 * keep up. In this case we refuse to add new entries to the dnlc 174 * until the taskq catches up. 175 */ 176 uint_t dnlc_max_nentries; /* twice ncsize */ 177 uint64_t dnlc_max_nentries_cnt = 0; /* statistic on times we failed */ 178 179 /* 180 * Tunable to define when we should just remove items from 181 * the end of the chain. 182 */ 183 #define DNLC_LONG_CHAIN 8 184 uint_t dnlc_long_chain = DNLC_LONG_CHAIN; 185 186 /* 187 * ncstats has been deprecated, due to the integer size of the counters 188 * which can easily overflow in the dnlc. 189 * It is maintained (at some expense) for compatability. 190 * The preferred interface is the kstat accessible nc_stats below. 191 */ 192 struct ncstats ncstats; 193 194 struct nc_stats ncs = { 195 { "hits", KSTAT_DATA_UINT64 }, 196 { "misses", KSTAT_DATA_UINT64 }, 197 { "negative_cache_hits", KSTAT_DATA_UINT64 }, 198 { "enters", KSTAT_DATA_UINT64 }, 199 { "double_enters", KSTAT_DATA_UINT64 }, 200 { "purge_total_entries", KSTAT_DATA_UINT64 }, 201 { "purge_all", KSTAT_DATA_UINT64 }, 202 { "purge_vp", KSTAT_DATA_UINT64 }, 203 { "purge_vfs", KSTAT_DATA_UINT64 }, 204 { "purge_fs1", KSTAT_DATA_UINT64 }, 205 { "pick_free", KSTAT_DATA_UINT64 }, 206 { "pick_heuristic", KSTAT_DATA_UINT64 }, 207 { "pick_last", KSTAT_DATA_UINT64 }, 208 209 /* directory caching stats */ 210 211 { "dir_hits", KSTAT_DATA_UINT64 }, 212 { "dir_misses", KSTAT_DATA_UINT64 }, 213 { "dir_cached_current", KSTAT_DATA_UINT64 }, 214 { "dir_entries_cached_current", KSTAT_DATA_UINT64 }, 215 { "dir_cached_total", KSTAT_DATA_UINT64 }, 216 { "dir_start_no_memory", KSTAT_DATA_UINT64 }, 217 { "dir_add_no_memory", KSTAT_DATA_UINT64 }, 218 { "dir_add_abort", KSTAT_DATA_UINT64 }, 219 { "dir_add_max", KSTAT_DATA_UINT64 }, 220 { "dir_remove_entry_fail", KSTAT_DATA_UINT64 }, 221 { "dir_remove_space_fail", KSTAT_DATA_UINT64 }, 222 { "dir_update_fail", KSTAT_DATA_UINT64 }, 223 { "dir_fini_purge", KSTAT_DATA_UINT64 }, 224 { "dir_reclaim_last", KSTAT_DATA_UINT64 }, 225 { "dir_reclaim_any", KSTAT_DATA_UINT64 }, 226 }; 227 228 static int doingcache = 1; 229 230 vnode_t negative_cache_vnode; 231 232 /* 233 * Insert entry at the front of the queue 234 */ 235 #define nc_inshash(ncp, hp) \ 236 { \ 237 (ncp)->hash_next = (hp)->hash_next; \ 238 (ncp)->hash_prev = (ncache_t *)(hp); \ 239 (hp)->hash_next->hash_prev = (ncp); \ 240 (hp)->hash_next = (ncp); \ 241 } 242 243 /* 244 * Remove entry from hash queue 245 */ 246 #define nc_rmhash(ncp) \ 247 { \ 248 (ncp)->hash_prev->hash_next = (ncp)->hash_next; \ 249 (ncp)->hash_next->hash_prev = (ncp)->hash_prev; \ 250 (ncp)->hash_prev = NULL; \ 251 (ncp)->hash_next = NULL; \ 252 } 253 254 /* 255 * Free an entry. 256 */ 257 #define dnlc_free(ncp) \ 258 { \ 259 kmem_free((ncp), sizeof (ncache_t) + (ncp)->namlen); \ 260 atomic_dec_32(&dnlc_nentries); \ 261 } 262 263 264 /* 265 * Cached directory info. 266 * ====================== 267 */ 268 269 /* 270 * Cached directory free space hash function. 271 * Needs the free space handle and the dcp to get the hash table size 272 * Returns the hash index. 273 */ 274 #define DDFHASH(handle, dcp) ((handle >> 2) & (dcp)->dc_fhash_mask) 275 276 /* 277 * Cached directory name entry hash function. 278 * Uses the name and returns in the input arguments the hash and the name 279 * length. 280 */ 281 #define DNLC_DIR_HASH(name, hash, namelen) \ 282 { \ 283 char Xc; \ 284 const char *Xcp; \ 285 hash = *name; \ 286 for (Xcp = (name + 1); (Xc = *Xcp) != 0; Xcp++) \ 287 hash = (hash << 4) + hash + Xc; \ 288 ASSERT((Xcp - (name)) <= ((1 << NBBY) - 1)); \ 289 namelen = Xcp - (name); \ 290 } 291 292 /* special dircache_t pointer to indicate error should be returned */ 293 /* 294 * The anchor directory cache pointer can contain 3 types of values, 295 * 1) NULL: No directory cache 296 * 2) DC_RET_LOW_MEM (-1): There was a directory cache that found to be 297 * too big or a memory shortage occurred. This value remains in the 298 * pointer until a dnlc_dir_start() which returns the a DNOMEM error. 299 * This is kludgy but efficient and only visible in this source file. 300 * 3) A valid cache pointer. 301 */ 302 #define DC_RET_LOW_MEM (dircache_t *)1 303 #define VALID_DIR_CACHE(dcp) ((dircache_t *)(dcp) > DC_RET_LOW_MEM) 304 305 /* Tunables */ 306 uint_t dnlc_dir_enable = 1; /* disable caching directories by setting to 0 */ 307 uint_t dnlc_dir_min_size = 40; /* min no of directory entries before caching */ 308 uint_t dnlc_dir_max_size = UINT_MAX; /* ditto maximum */ 309 uint_t dnlc_dir_hash_size_shift = 3; /* 8 entries per hash bucket */ 310 uint_t dnlc_dir_min_reclaim = 350000; /* approx 1MB of dcentrys */ 311 /* 312 * dnlc_dir_hash_resize_shift determines when the hash tables 313 * get re-adjusted due to growth or shrinkage 314 * - currently 2 indicating that there can be at most 4 315 * times or at least one quarter the number of entries 316 * before hash table readjustment. Note that with 317 * dnlc_dir_hash_size_shift above set at 3 this would 318 * mean readjustment would occur if the average number 319 * of entries went above 32 or below 2 320 */ 321 uint_t dnlc_dir_hash_resize_shift = 2; /* readjust rate */ 322 323 static kmem_cache_t *dnlc_dir_space_cache; /* free space entry cache */ 324 static dchead_t dc_head; /* anchor of cached directories */ 325 326 /* Prototypes */ 327 static ncache_t *dnlc_get(uchar_t namlen); 328 static ncache_t *dnlc_search(vnode_t *dp, const char *name, uchar_t namlen, 329 int hash); 330 static void dnlc_dir_reclaim(void *unused); 331 static void dnlc_dir_abort(dircache_t *dcp); 332 static void dnlc_dir_adjust_fhash(dircache_t *dcp); 333 static void dnlc_dir_adjust_nhash(dircache_t *dcp); 334 static void do_dnlc_reduce_cache(void *); 335 336 337 /* 338 * Initialize the directory cache. 339 */ 340 void 341 dnlc_init() 342 { 343 nc_hash_t *hp; 344 kstat_t *ksp; 345 int i; 346 347 /* 348 * Set up the size of the dnlc (ncsize) and its low water mark. 349 */ 350 if (ncsize == -1) { 351 /* calculate a reasonable size for the low water */ 352 dnlc_nentries_low_water = 4 * (v.v_proc + maxusers) + 320; 353 ncsize = dnlc_nentries_low_water + 354 (dnlc_nentries_low_water / dnlc_low_water_divisor); 355 } else { 356 /* don't change the user specified ncsize */ 357 dnlc_nentries_low_water = 358 ncsize - (ncsize / dnlc_low_water_divisor); 359 } 360 if (ncsize <= 0) { 361 doingcache = 0; 362 dnlc_dir_enable = 0; /* also disable directory caching */ 363 ncsize = 0; 364 cmn_err(CE_NOTE, "name cache (dnlc) disabled"); 365 return; 366 } 367 dnlc_max_nentries = ncsize * 2; 368 ncsize_onepercent = ncsize / 100; 369 ncsize_min_percent = ncsize_onepercent * 3; 370 371 /* 372 * Initialise the hash table. 373 * Compute hash size rounding to the next power of two. 374 */ 375 nc_hashsz = ncsize / nc_hashavelen; 376 nc_hashsz = 1 << highbit(nc_hashsz); 377 nc_hashmask = nc_hashsz - 1; 378 nc_hash = kmem_zalloc(nc_hashsz * sizeof (*nc_hash), KM_SLEEP); 379 for (i = 0; i < nc_hashsz; i++) { 380 hp = (nc_hash_t *)&nc_hash[i]; 381 mutex_init(&hp->hash_lock, NULL, MUTEX_DEFAULT, NULL); 382 hp->hash_next = (ncache_t *)hp; 383 hp->hash_prev = (ncache_t *)hp; 384 } 385 386 /* 387 * Initialize rotors 388 */ 389 dnlc_free_rotor = dnlc_purge_fs1_rotor = &nc_hash[0]; 390 391 /* 392 * Set up the directory caching to use kmem_cache_alloc 393 * for its free space entries so that we can get a callback 394 * when the system is short on memory, to allow us to free 395 * up some memory. we don't use the constructor/deconstructor 396 * functions. 397 */ 398 dnlc_dir_space_cache = kmem_cache_create("dnlc_space_cache", 399 sizeof (dcfree_t), 0, NULL, NULL, dnlc_dir_reclaim, NULL, 400 NULL, 0); 401 402 /* 403 * Initialise the head of the cached directory structures 404 */ 405 mutex_init(&dc_head.dch_lock, NULL, MUTEX_DEFAULT, NULL); 406 dc_head.dch_next = (dircache_t *)&dc_head; 407 dc_head.dch_prev = (dircache_t *)&dc_head; 408 409 /* 410 * Put a hold on the negative cache vnode so that it never goes away 411 * (VOP_INACTIVE isn't called on it). 412 */ 413 vn_reinit(&negative_cache_vnode); 414 415 /* 416 * Initialise kstats - both the old compatability raw kind and 417 * the more extensive named stats. 418 */ 419 ksp = kstat_create("unix", 0, "ncstats", "misc", KSTAT_TYPE_RAW, 420 sizeof (struct ncstats), KSTAT_FLAG_VIRTUAL); 421 if (ksp) { 422 ksp->ks_data = (void *) &ncstats; 423 kstat_install(ksp); 424 } 425 ksp = kstat_create("unix", 0, "dnlcstats", "misc", KSTAT_TYPE_NAMED, 426 sizeof (ncs) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 427 if (ksp) { 428 ksp->ks_data = (void *) &ncs; 429 kstat_install(ksp); 430 } 431 } 432 433 /* 434 * Add a name to the directory cache. 435 */ 436 void 437 dnlc_enter(vnode_t *dp, const char *name, vnode_t *vp) 438 { 439 ncache_t *ncp; 440 nc_hash_t *hp; 441 uchar_t namlen; 442 int hash; 443 444 TRACE_0(TR_FAC_NFS, TR_DNLC_ENTER_START, "dnlc_enter_start:"); 445 446 if (!doingcache) { 447 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 448 "dnlc_enter_end:(%S) %d", "not caching", 0); 449 return; 450 } 451 452 /* 453 * Get a new dnlc entry. Assume the entry won't be in the cache 454 * and initialize it now 455 */ 456 DNLCHASH(name, dp, hash, namlen); 457 if ((ncp = dnlc_get(namlen)) == NULL) 458 return; 459 ncp->dp = dp; 460 VN_HOLD_DNLC(dp); 461 ncp->vp = vp; 462 VN_HOLD_DNLC(vp); 463 bcopy(name, ncp->name, namlen + 1); /* name and null */ 464 ncp->hash = hash; 465 hp = &nc_hash[hash & nc_hashmask]; 466 467 mutex_enter(&hp->hash_lock); 468 if (dnlc_search(dp, name, namlen, hash) != NULL) { 469 mutex_exit(&hp->hash_lock); 470 ncstats.dbl_enters++; 471 ncs.ncs_dbl_enters.value.ui64++; 472 VN_RELE_DNLC(dp); 473 VN_RELE_DNLC(vp); 474 dnlc_free(ncp); /* crfree done here */ 475 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 476 "dnlc_enter_end:(%S) %d", "dbl enter", ncstats.dbl_enters); 477 return; 478 } 479 /* 480 * Insert back into the hash chain. 481 */ 482 nc_inshash(ncp, hp); 483 mutex_exit(&hp->hash_lock); 484 ncstats.enters++; 485 ncs.ncs_enters.value.ui64++; 486 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 487 "dnlc_enter_end:(%S) %d", "done", ncstats.enters); 488 } 489 490 /* 491 * Add a name to the directory cache. 492 * 493 * This function is basically identical with 494 * dnlc_enter(). The difference is that when the 495 * desired dnlc entry is found, the vnode in the 496 * ncache is compared with the vnode passed in. 497 * 498 * If they are not equal then the ncache is 499 * updated with the passed in vnode. Otherwise 500 * it just frees up the newly allocated dnlc entry. 501 */ 502 void 503 dnlc_update(vnode_t *dp, const char *name, vnode_t *vp) 504 { 505 ncache_t *ncp; 506 ncache_t *tcp; 507 vnode_t *tvp; 508 nc_hash_t *hp; 509 int hash; 510 uchar_t namlen; 511 512 TRACE_0(TR_FAC_NFS, TR_DNLC_ENTER_START, "dnlc_update_start:"); 513 514 if (!doingcache) { 515 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 516 "dnlc_update_end:(%S) %d", "not caching", 0); 517 return; 518 } 519 520 /* 521 * Get a new dnlc entry and initialize it now. 522 * If we fail to get a new entry, call dnlc_remove() to purge 523 * any existing dnlc entry including negative cache (DNLC_NO_VNODE) 524 * entry. 525 * Failure to clear an existing entry could result in false dnlc 526 * lookup (negative/stale entry). 527 */ 528 DNLCHASH(name, dp, hash, namlen); 529 if ((ncp = dnlc_get(namlen)) == NULL) { 530 dnlc_remove(dp, name); 531 return; 532 } 533 ncp->dp = dp; 534 VN_HOLD_DNLC(dp); 535 ncp->vp = vp; 536 VN_HOLD_DNLC(vp); 537 bcopy(name, ncp->name, namlen + 1); /* name and null */ 538 ncp->hash = hash; 539 hp = &nc_hash[hash & nc_hashmask]; 540 541 mutex_enter(&hp->hash_lock); 542 if ((tcp = dnlc_search(dp, name, namlen, hash)) != NULL) { 543 if (tcp->vp != vp) { 544 tvp = tcp->vp; 545 tcp->vp = vp; 546 mutex_exit(&hp->hash_lock); 547 VN_RELE_DNLC(tvp); 548 ncstats.enters++; 549 ncs.ncs_enters.value.ui64++; 550 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 551 "dnlc_update_end:(%S) %d", "done", ncstats.enters); 552 } else { 553 mutex_exit(&hp->hash_lock); 554 VN_RELE_DNLC(vp); 555 ncstats.dbl_enters++; 556 ncs.ncs_dbl_enters.value.ui64++; 557 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 558 "dnlc_update_end:(%S) %d", 559 "dbl enter", ncstats.dbl_enters); 560 } 561 VN_RELE_DNLC(dp); 562 dnlc_free(ncp); /* crfree done here */ 563 return; 564 } 565 /* 566 * insert the new entry, since it is not in dnlc yet 567 */ 568 nc_inshash(ncp, hp); 569 mutex_exit(&hp->hash_lock); 570 ncstats.enters++; 571 ncs.ncs_enters.value.ui64++; 572 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 573 "dnlc_update_end:(%S) %d", "done", ncstats.enters); 574 } 575 576 /* 577 * Look up a name in the directory name cache. 578 * 579 * Return a doubly-held vnode if found: one hold so that it may 580 * remain in the cache for other users, the other hold so that 581 * the cache is not re-cycled and the identity of the vnode is 582 * lost before the caller can use the vnode. 583 */ 584 vnode_t * 585 dnlc_lookup(vnode_t *dp, const char *name) 586 { 587 ncache_t *ncp; 588 nc_hash_t *hp; 589 vnode_t *vp; 590 int hash, depth; 591 uchar_t namlen; 592 593 TRACE_2(TR_FAC_NFS, TR_DNLC_LOOKUP_START, 594 "dnlc_lookup_start:dp %x name %s", dp, name); 595 596 if (!doingcache) { 597 TRACE_4(TR_FAC_NFS, TR_DNLC_LOOKUP_END, 598 "dnlc_lookup_end:%S %d vp %x name %s", 599 "not_caching", 0, NULL, name); 600 return (NULL); 601 } 602 603 DNLCHASH(name, dp, hash, namlen); 604 depth = 1; 605 hp = &nc_hash[hash & nc_hashmask]; 606 mutex_enter(&hp->hash_lock); 607 608 for (ncp = hp->hash_next; ncp != (ncache_t *)hp; 609 ncp = ncp->hash_next) { 610 if (ncp->hash == hash && /* fast signature check */ 611 ncp->dp == dp && 612 ncp->namlen == namlen && 613 bcmp(ncp->name, name, namlen) == 0) { 614 /* 615 * Move this entry to the head of its hash chain 616 * if it's not already close. 617 */ 618 if (depth > NC_MOVETOFRONT) { 619 ncache_t *next = ncp->hash_next; 620 ncache_t *prev = ncp->hash_prev; 621 622 prev->hash_next = next; 623 next->hash_prev = prev; 624 ncp->hash_next = next = hp->hash_next; 625 ncp->hash_prev = (ncache_t *)hp; 626 next->hash_prev = ncp; 627 hp->hash_next = ncp; 628 629 ncstats.move_to_front++; 630 } 631 632 /* 633 * Put a hold on the vnode now so its identity 634 * can't change before the caller has a chance to 635 * put a hold on it. 636 */ 637 vp = ncp->vp; 638 VN_HOLD_CALLER(vp); 639 mutex_exit(&hp->hash_lock); 640 ncstats.hits++; 641 ncs.ncs_hits.value.ui64++; 642 if (vp == DNLC_NO_VNODE) { 643 ncs.ncs_neg_hits.value.ui64++; 644 } 645 TRACE_4(TR_FAC_NFS, TR_DNLC_LOOKUP_END, 646 "dnlc_lookup_end:%S %d vp %x name %s", "hit", 647 ncstats.hits, vp, name); 648 return (vp); 649 } 650 depth++; 651 } 652 653 mutex_exit(&hp->hash_lock); 654 ncstats.misses++; 655 ncs.ncs_misses.value.ui64++; 656 TRACE_4(TR_FAC_NFS, TR_DNLC_LOOKUP_END, 657 "dnlc_lookup_end:%S %d vp %x name %s", "miss", ncstats.misses, 658 NULL, name); 659 return (NULL); 660 } 661 662 /* 663 * Remove an entry in the directory name cache. 664 */ 665 void 666 dnlc_remove(vnode_t *dp, const char *name) 667 { 668 ncache_t *ncp; 669 nc_hash_t *hp; 670 uchar_t namlen; 671 int hash; 672 673 if (!doingcache) 674 return; 675 DNLCHASH(name, dp, hash, namlen); 676 hp = &nc_hash[hash & nc_hashmask]; 677 678 mutex_enter(&hp->hash_lock); 679 if (ncp = dnlc_search(dp, name, namlen, hash)) { 680 /* 681 * Free up the entry 682 */ 683 nc_rmhash(ncp); 684 mutex_exit(&hp->hash_lock); 685 VN_RELE_DNLC(ncp->vp); 686 VN_RELE_DNLC(ncp->dp); 687 dnlc_free(ncp); 688 return; 689 } 690 mutex_exit(&hp->hash_lock); 691 } 692 693 /* 694 * Purge the entire cache. 695 */ 696 void 697 dnlc_purge() 698 { 699 nc_hash_t *nch; 700 ncache_t *ncp; 701 int index; 702 int i; 703 vnode_t *nc_rele[DNLC_MAX_RELE]; 704 705 if (!doingcache) 706 return; 707 708 ncstats.purges++; 709 ncs.ncs_purge_all.value.ui64++; 710 711 for (nch = nc_hash; nch < &nc_hash[nc_hashsz]; nch++) { 712 index = 0; 713 mutex_enter(&nch->hash_lock); 714 ncp = nch->hash_next; 715 while (ncp != (ncache_t *)nch) { 716 ncache_t *np; 717 718 np = ncp->hash_next; 719 nc_rele[index++] = ncp->vp; 720 nc_rele[index++] = ncp->dp; 721 722 nc_rmhash(ncp); 723 dnlc_free(ncp); 724 ncp = np; 725 ncs.ncs_purge_total.value.ui64++; 726 if (index == DNLC_MAX_RELE) 727 break; 728 } 729 mutex_exit(&nch->hash_lock); 730 731 /* Release holds on all the vnodes now that we have no locks */ 732 for (i = 0; i < index; i++) { 733 VN_RELE_DNLC(nc_rele[i]); 734 } 735 if (ncp != (ncache_t *)nch) { 736 nch--; /* Do current hash chain again */ 737 } 738 } 739 } 740 741 /* 742 * Purge any cache entries referencing a vnode. Exit as soon as the dnlc 743 * reference count goes to zero (the caller still holds a reference). 744 */ 745 void 746 dnlc_purge_vp(vnode_t *vp) 747 { 748 nc_hash_t *nch; 749 ncache_t *ncp; 750 int index; 751 vnode_t *nc_rele[DNLC_MAX_RELE]; 752 753 ASSERT(vp->v_count > 0); 754 if (vp->v_count_dnlc == 0) { 755 return; 756 } 757 758 if (!doingcache) 759 return; 760 761 ncstats.purges++; 762 ncs.ncs_purge_vp.value.ui64++; 763 764 for (nch = nc_hash; nch < &nc_hash[nc_hashsz]; nch++) { 765 index = 0; 766 mutex_enter(&nch->hash_lock); 767 ncp = nch->hash_next; 768 while (ncp != (ncache_t *)nch) { 769 ncache_t *np; 770 771 np = ncp->hash_next; 772 if (ncp->dp == vp || ncp->vp == vp) { 773 nc_rele[index++] = ncp->vp; 774 nc_rele[index++] = ncp->dp; 775 nc_rmhash(ncp); 776 dnlc_free(ncp); 777 ncs.ncs_purge_total.value.ui64++; 778 if (index == DNLC_MAX_RELE) { 779 ncp = np; 780 break; 781 } 782 } 783 ncp = np; 784 } 785 mutex_exit(&nch->hash_lock); 786 787 /* Release holds on all the vnodes now that we have no locks */ 788 while (index) { 789 VN_RELE_DNLC(nc_rele[--index]); 790 } 791 792 if (vp->v_count_dnlc == 0) { 793 return; 794 } 795 796 if (ncp != (ncache_t *)nch) { 797 nch--; /* Do current hash chain again */ 798 } 799 } 800 } 801 802 /* 803 * Purge cache entries referencing a vfsp. Caller supplies a count 804 * of entries to purge; up to that many will be freed. A count of 805 * zero indicates that all such entries should be purged. Returns 806 * the number of entries that were purged. 807 */ 808 int 809 dnlc_purge_vfsp(vfs_t *vfsp, int count) 810 { 811 nc_hash_t *nch; 812 ncache_t *ncp; 813 int n = 0; 814 int index; 815 int i; 816 vnode_t *nc_rele[DNLC_MAX_RELE]; 817 818 if (!doingcache) 819 return (0); 820 821 ncstats.purges++; 822 ncs.ncs_purge_vfs.value.ui64++; 823 824 for (nch = nc_hash; nch < &nc_hash[nc_hashsz]; nch++) { 825 index = 0; 826 mutex_enter(&nch->hash_lock); 827 ncp = nch->hash_next; 828 while (ncp != (ncache_t *)nch) { 829 ncache_t *np; 830 831 np = ncp->hash_next; 832 ASSERT(ncp->dp != NULL); 833 ASSERT(ncp->vp != NULL); 834 if ((ncp->dp->v_vfsp == vfsp) || 835 (ncp->vp->v_vfsp == vfsp)) { 836 n++; 837 nc_rele[index++] = ncp->vp; 838 nc_rele[index++] = ncp->dp; 839 nc_rmhash(ncp); 840 dnlc_free(ncp); 841 ncs.ncs_purge_total.value.ui64++; 842 if (index == DNLC_MAX_RELE) { 843 ncp = np; 844 break; 845 } 846 if (count != 0 && n >= count) { 847 break; 848 } 849 } 850 ncp = np; 851 } 852 mutex_exit(&nch->hash_lock); 853 /* Release holds on all the vnodes now that we have no locks */ 854 for (i = 0; i < index; i++) { 855 VN_RELE_DNLC(nc_rele[i]); 856 } 857 if (count != 0 && n >= count) { 858 return (n); 859 } 860 if (ncp != (ncache_t *)nch) { 861 nch--; /* Do current hash chain again */ 862 } 863 } 864 return (n); 865 } 866 867 /* 868 * Purge 1 entry from the dnlc that is part of the filesystem(s) 869 * represented by 'vop'. The purpose of this routine is to allow 870 * users of the dnlc to free a vnode that is being held by the dnlc. 871 * 872 * If we find a vnode that we release which will result in 873 * freeing the underlying vnode (count was 1), return 1, 0 874 * if no appropriate vnodes found. 875 * 876 * Note, vop is not the 'right' identifier for a filesystem. 877 */ 878 int 879 dnlc_fs_purge1(vnodeops_t *vop) 880 { 881 nc_hash_t *end; 882 nc_hash_t *hp; 883 ncache_t *ncp; 884 vnode_t *vp; 885 886 if (!doingcache) 887 return (0); 888 889 ncs.ncs_purge_fs1.value.ui64++; 890 891 /* 892 * Scan the dnlc entries looking for a likely candidate. 893 */ 894 hp = end = dnlc_purge_fs1_rotor; 895 896 do { 897 if (++hp == &nc_hash[nc_hashsz]) 898 hp = nc_hash; 899 dnlc_purge_fs1_rotor = hp; 900 if (hp->hash_next == (ncache_t *)hp) 901 continue; 902 mutex_enter(&hp->hash_lock); 903 for (ncp = hp->hash_prev; 904 ncp != (ncache_t *)hp; 905 ncp = ncp->hash_prev) { 906 vp = ncp->vp; 907 if (!vn_has_cached_data(vp) && (vp->v_count == 1) && 908 vn_matchops(vp, vop)) 909 break; 910 } 911 if (ncp != (ncache_t *)hp) { 912 nc_rmhash(ncp); 913 mutex_exit(&hp->hash_lock); 914 VN_RELE_DNLC(ncp->dp); 915 VN_RELE_DNLC(vp) 916 dnlc_free(ncp); 917 ncs.ncs_purge_total.value.ui64++; 918 return (1); 919 } 920 mutex_exit(&hp->hash_lock); 921 } while (hp != end); 922 return (0); 923 } 924 925 /* 926 * Utility routine to search for a cache entry. Return the 927 * ncache entry if found, NULL otherwise. 928 */ 929 static ncache_t * 930 dnlc_search(vnode_t *dp, const char *name, uchar_t namlen, int hash) 931 { 932 nc_hash_t *hp; 933 ncache_t *ncp; 934 935 hp = &nc_hash[hash & nc_hashmask]; 936 937 for (ncp = hp->hash_next; ncp != (ncache_t *)hp; ncp = ncp->hash_next) { 938 if (ncp->hash == hash && 939 ncp->dp == dp && 940 ncp->namlen == namlen && 941 bcmp(ncp->name, name, namlen) == 0) 942 return (ncp); 943 } 944 return (NULL); 945 } 946 947 #if ((1 << NBBY) - 1) < (MAXNAMELEN - 1) 948 #error ncache_t name length representation is too small 949 #endif 950 951 void 952 dnlc_reduce_cache(void *reduce_percent) 953 { 954 if (dnlc_reduce_idle && (dnlc_nentries >= ncsize || reduce_percent)) { 955 dnlc_reduce_idle = 0; 956 if ((taskq_dispatch(system_taskq, do_dnlc_reduce_cache, 957 reduce_percent, TQ_NOSLEEP)) == NULL) 958 dnlc_reduce_idle = 1; 959 } 960 } 961 962 /* 963 * Get a new name cache entry. 964 * If the dnlc_reduce_cache() taskq isn't keeping up with demand, or memory 965 * is short then just return NULL. If we're over ncsize then kick off a 966 * thread to free some in use entries down to dnlc_nentries_low_water. 967 * Caller must initialise all fields except namlen. 968 * Component names are defined to be less than MAXNAMELEN 969 * which includes a null. 970 */ 971 static ncache_t * 972 dnlc_get(uchar_t namlen) 973 { 974 ncache_t *ncp; 975 976 if (dnlc_nentries > dnlc_max_nentries) { 977 dnlc_max_nentries_cnt++; /* keep a statistic */ 978 return (NULL); 979 } 980 ncp = kmem_alloc(sizeof (ncache_t) + namlen, KM_NOSLEEP); 981 if (ncp == NULL) { 982 return (NULL); 983 } 984 ncp->namlen = namlen; 985 atomic_inc_32(&dnlc_nentries); 986 dnlc_reduce_cache(NULL); 987 return (ncp); 988 } 989 990 /* 991 * Taskq routine to free up name cache entries to reduce the 992 * cache size to the low water mark if "reduce_percent" is not provided. 993 * If "reduce_percent" is provided, reduce cache size by 994 * (ncsize_onepercent * reduce_percent). 995 */ 996 /*ARGSUSED*/ 997 static void 998 do_dnlc_reduce_cache(void *reduce_percent) 999 { 1000 nc_hash_t *hp = dnlc_free_rotor, *start_hp = hp; 1001 vnode_t *vp; 1002 ncache_t *ncp; 1003 int cnt; 1004 uint_t low_water = dnlc_nentries_low_water; 1005 1006 if (reduce_percent) { 1007 uint_t reduce_cnt; 1008 1009 /* 1010 * Never try to reduce the current number 1011 * of cache entries below 3% of ncsize. 1012 */ 1013 if (dnlc_nentries <= ncsize_min_percent) { 1014 dnlc_reduce_idle = 1; 1015 return; 1016 } 1017 reduce_cnt = ncsize_onepercent * 1018 (uint_t)(uintptr_t)reduce_percent; 1019 1020 if (reduce_cnt > dnlc_nentries || 1021 dnlc_nentries - reduce_cnt < ncsize_min_percent) 1022 low_water = ncsize_min_percent; 1023 else 1024 low_water = dnlc_nentries - reduce_cnt; 1025 } 1026 1027 do { 1028 /* 1029 * Find the first non empty hash queue without locking. 1030 * Only look at each hash queue once to avoid an infinite loop. 1031 */ 1032 do { 1033 if (++hp == &nc_hash[nc_hashsz]) 1034 hp = nc_hash; 1035 } while (hp->hash_next == (ncache_t *)hp && hp != start_hp); 1036 1037 /* return if all hash queues are empty. */ 1038 if (hp->hash_next == (ncache_t *)hp) { 1039 dnlc_reduce_idle = 1; 1040 return; 1041 } 1042 1043 mutex_enter(&hp->hash_lock); 1044 for (cnt = 0, ncp = hp->hash_prev; ncp != (ncache_t *)hp; 1045 ncp = ncp->hash_prev, cnt++) { 1046 vp = ncp->vp; 1047 /* 1048 * A name cache entry with a reference count 1049 * of one is only referenced by the dnlc. 1050 * Also negative cache entries are purged first. 1051 */ 1052 if (!vn_has_cached_data(vp) && 1053 ((vp->v_count == 1) || (vp == DNLC_NO_VNODE))) { 1054 ncs.ncs_pick_heur.value.ui64++; 1055 goto found; 1056 } 1057 /* 1058 * Remove from the end of the chain if the 1059 * chain is too long 1060 */ 1061 if (cnt > dnlc_long_chain) { 1062 ncp = hp->hash_prev; 1063 ncs.ncs_pick_last.value.ui64++; 1064 vp = ncp->vp; 1065 goto found; 1066 } 1067 } 1068 /* check for race and continue */ 1069 if (hp->hash_next == (ncache_t *)hp) { 1070 mutex_exit(&hp->hash_lock); 1071 continue; 1072 } 1073 1074 ncp = hp->hash_prev; /* pick the last one in the hash queue */ 1075 ncs.ncs_pick_last.value.ui64++; 1076 vp = ncp->vp; 1077 found: 1078 /* 1079 * Remove from hash chain. 1080 */ 1081 nc_rmhash(ncp); 1082 mutex_exit(&hp->hash_lock); 1083 VN_RELE_DNLC(vp); 1084 VN_RELE_DNLC(ncp->dp); 1085 dnlc_free(ncp); 1086 } while (dnlc_nentries > low_water); 1087 1088 dnlc_free_rotor = hp; 1089 dnlc_reduce_idle = 1; 1090 } 1091 1092 /* 1093 * Directory caching routines 1094 * ========================== 1095 * 1096 * See dnlc.h for details of the interfaces below. 1097 */ 1098 1099 /* 1100 * Lookup up an entry in a complete or partial directory cache. 1101 */ 1102 dcret_t 1103 dnlc_dir_lookup(dcanchor_t *dcap, const char *name, uint64_t *handle) 1104 { 1105 dircache_t *dcp; 1106 dcentry_t *dep; 1107 int hash; 1108 int ret; 1109 uchar_t namlen; 1110 1111 /* 1112 * can test without lock as we are only a cache 1113 */ 1114 if (!VALID_DIR_CACHE(dcap->dca_dircache)) { 1115 ncs.ncs_dir_misses.value.ui64++; 1116 return (DNOCACHE); 1117 } 1118 1119 if (!dnlc_dir_enable) { 1120 return (DNOCACHE); 1121 } 1122 1123 mutex_enter(&dcap->dca_lock); 1124 dcp = (dircache_t *)dcap->dca_dircache; 1125 if (VALID_DIR_CACHE(dcp)) { 1126 dcp->dc_actime = ddi_get_lbolt64(); 1127 DNLC_DIR_HASH(name, hash, namlen); 1128 dep = dcp->dc_namehash[hash & dcp->dc_nhash_mask]; 1129 while (dep != NULL) { 1130 if ((dep->de_hash == hash) && 1131 (namlen == dep->de_namelen) && 1132 bcmp(dep->de_name, name, namlen) == 0) { 1133 *handle = dep->de_handle; 1134 mutex_exit(&dcap->dca_lock); 1135 ncs.ncs_dir_hits.value.ui64++; 1136 return (DFOUND); 1137 } 1138 dep = dep->de_next; 1139 } 1140 if (dcp->dc_complete) { 1141 ret = DNOENT; 1142 } else { 1143 ret = DNOCACHE; 1144 } 1145 mutex_exit(&dcap->dca_lock); 1146 return (ret); 1147 } else { 1148 mutex_exit(&dcap->dca_lock); 1149 ncs.ncs_dir_misses.value.ui64++; 1150 return (DNOCACHE); 1151 } 1152 } 1153 1154 /* 1155 * Start a new directory cache. An estimate of the number of 1156 * entries is provided to as a quick check to ensure the directory 1157 * is cacheable. 1158 */ 1159 dcret_t 1160 dnlc_dir_start(dcanchor_t *dcap, uint_t num_entries) 1161 { 1162 dircache_t *dcp; 1163 1164 if (!dnlc_dir_enable || 1165 (num_entries < dnlc_dir_min_size)) { 1166 return (DNOCACHE); 1167 } 1168 1169 if (num_entries > dnlc_dir_max_size) { 1170 return (DTOOBIG); 1171 } 1172 1173 mutex_enter(&dc_head.dch_lock); 1174 mutex_enter(&dcap->dca_lock); 1175 1176 if (dcap->dca_dircache == DC_RET_LOW_MEM) { 1177 dcap->dca_dircache = NULL; 1178 mutex_exit(&dcap->dca_lock); 1179 mutex_exit(&dc_head.dch_lock); 1180 return (DNOMEM); 1181 } 1182 1183 /* 1184 * Check if there's currently a cache. 1185 * This probably only occurs on a race. 1186 */ 1187 if (dcap->dca_dircache != NULL) { 1188 mutex_exit(&dcap->dca_lock); 1189 mutex_exit(&dc_head.dch_lock); 1190 return (DNOCACHE); 1191 } 1192 1193 /* 1194 * Allocate the dircache struct, entry and free space hash tables. 1195 * These tables are initially just one entry but dynamically resize 1196 * when entries and free space are added or removed. 1197 */ 1198 if ((dcp = kmem_zalloc(sizeof (dircache_t), KM_NOSLEEP)) == NULL) { 1199 goto error; 1200 } 1201 if ((dcp->dc_namehash = kmem_zalloc(sizeof (dcentry_t *), 1202 KM_NOSLEEP)) == NULL) { 1203 goto error; 1204 } 1205 if ((dcp->dc_freehash = kmem_zalloc(sizeof (dcfree_t *), 1206 KM_NOSLEEP)) == NULL) { 1207 goto error; 1208 } 1209 1210 dcp->dc_anchor = dcap; /* set back pointer to anchor */ 1211 dcap->dca_dircache = dcp; 1212 1213 /* add into head of global chain */ 1214 dcp->dc_next = dc_head.dch_next; 1215 dcp->dc_prev = (dircache_t *)&dc_head; 1216 dcp->dc_next->dc_prev = dcp; 1217 dc_head.dch_next = dcp; 1218 1219 mutex_exit(&dcap->dca_lock); 1220 mutex_exit(&dc_head.dch_lock); 1221 ncs.ncs_cur_dirs.value.ui64++; 1222 ncs.ncs_dirs_cached.value.ui64++; 1223 return (DOK); 1224 error: 1225 if (dcp != NULL) { 1226 if (dcp->dc_namehash) { 1227 kmem_free(dcp->dc_namehash, sizeof (dcentry_t *)); 1228 } 1229 kmem_free(dcp, sizeof (dircache_t)); 1230 } 1231 /* 1232 * Must also kmem_free dcp->dc_freehash if more error cases are added 1233 */ 1234 mutex_exit(&dcap->dca_lock); 1235 mutex_exit(&dc_head.dch_lock); 1236 ncs.ncs_dir_start_nm.value.ui64++; 1237 return (DNOCACHE); 1238 } 1239 1240 /* 1241 * Add a directopry entry to a partial or complete directory cache. 1242 */ 1243 dcret_t 1244 dnlc_dir_add_entry(dcanchor_t *dcap, const char *name, uint64_t handle) 1245 { 1246 dircache_t *dcp; 1247 dcentry_t **hp, *dep; 1248 int hash; 1249 uint_t capacity; 1250 uchar_t namlen; 1251 1252 /* 1253 * Allocate the dcentry struct, including the variable 1254 * size name. Note, the null terminator is not copied. 1255 * 1256 * We do this outside the lock to avoid possible deadlock if 1257 * dnlc_dir_reclaim() is called as a result of memory shortage. 1258 */ 1259 DNLC_DIR_HASH(name, hash, namlen); 1260 dep = kmem_alloc(sizeof (dcentry_t) - 1 + namlen, KM_NOSLEEP); 1261 if (dep == NULL) { 1262 #ifdef DEBUG 1263 /* 1264 * The kmem allocator generates random failures for 1265 * KM_NOSLEEP calls (see KMEM_RANDOM_ALLOCATION_FAILURE) 1266 * So try again before we blow away a perfectly good cache. 1267 * This is done not to cover an error but purely for 1268 * performance running a debug kernel. 1269 * This random error only occurs in debug mode. 1270 */ 1271 dep = kmem_alloc(sizeof (dcentry_t) - 1 + namlen, KM_NOSLEEP); 1272 if (dep != NULL) 1273 goto ok; 1274 #endif 1275 ncs.ncs_dir_add_nm.value.ui64++; 1276 /* 1277 * Free a directory cache. This may be the one we are 1278 * called with. 1279 */ 1280 dnlc_dir_reclaim(NULL); 1281 dep = kmem_alloc(sizeof (dcentry_t) - 1 + namlen, KM_NOSLEEP); 1282 if (dep == NULL) { 1283 /* 1284 * still no memory, better delete this cache 1285 */ 1286 mutex_enter(&dcap->dca_lock); 1287 dcp = (dircache_t *)dcap->dca_dircache; 1288 if (VALID_DIR_CACHE(dcp)) { 1289 dnlc_dir_abort(dcp); 1290 dcap->dca_dircache = DC_RET_LOW_MEM; 1291 } 1292 mutex_exit(&dcap->dca_lock); 1293 ncs.ncs_dir_addabort.value.ui64++; 1294 return (DNOCACHE); 1295 } 1296 /* 1297 * fall through as if the 1st kmem_alloc had worked 1298 */ 1299 } 1300 #ifdef DEBUG 1301 ok: 1302 #endif 1303 mutex_enter(&dcap->dca_lock); 1304 dcp = (dircache_t *)dcap->dca_dircache; 1305 if (VALID_DIR_CACHE(dcp)) { 1306 /* 1307 * If the total number of entries goes above the max 1308 * then free this cache 1309 */ 1310 if ((dcp->dc_num_entries + dcp->dc_num_free) > 1311 dnlc_dir_max_size) { 1312 mutex_exit(&dcap->dca_lock); 1313 dnlc_dir_purge(dcap); 1314 kmem_free(dep, sizeof (dcentry_t) - 1 + namlen); 1315 ncs.ncs_dir_add_max.value.ui64++; 1316 return (DTOOBIG); 1317 } 1318 dcp->dc_num_entries++; 1319 capacity = (dcp->dc_nhash_mask + 1) << dnlc_dir_hash_size_shift; 1320 if (dcp->dc_num_entries >= 1321 (capacity << dnlc_dir_hash_resize_shift)) { 1322 dnlc_dir_adjust_nhash(dcp); 1323 } 1324 hp = &dcp->dc_namehash[hash & dcp->dc_nhash_mask]; 1325 1326 /* 1327 * Initialise and chain in new entry 1328 */ 1329 dep->de_handle = handle; 1330 dep->de_hash = hash; 1331 /* 1332 * Note de_namelen is a uchar_t to conserve space 1333 * and alignment padding. The max length of any 1334 * pathname component is defined as MAXNAMELEN 1335 * which is 256 (including the terminating null). 1336 * So provided this doesn't change, we don't include the null, 1337 * we always use bcmp to compare strings, and we don't 1338 * start storing full names, then we are ok. 1339 * The space savings is worth it. 1340 */ 1341 dep->de_namelen = namlen; 1342 bcopy(name, dep->de_name, namlen); 1343 dep->de_next = *hp; 1344 *hp = dep; 1345 dcp->dc_actime = ddi_get_lbolt64(); 1346 mutex_exit(&dcap->dca_lock); 1347 ncs.ncs_dir_num_ents.value.ui64++; 1348 return (DOK); 1349 } else { 1350 mutex_exit(&dcap->dca_lock); 1351 kmem_free(dep, sizeof (dcentry_t) - 1 + namlen); 1352 return (DNOCACHE); 1353 } 1354 } 1355 1356 /* 1357 * Add free space to a partial or complete directory cache. 1358 */ 1359 dcret_t 1360 dnlc_dir_add_space(dcanchor_t *dcap, uint_t len, uint64_t handle) 1361 { 1362 dircache_t *dcp; 1363 dcfree_t *dfp, **hp; 1364 uint_t capacity; 1365 1366 /* 1367 * We kmem_alloc outside the lock to avoid possible deadlock if 1368 * dnlc_dir_reclaim() is called as a result of memory shortage. 1369 */ 1370 dfp = kmem_cache_alloc(dnlc_dir_space_cache, KM_NOSLEEP); 1371 if (dfp == NULL) { 1372 #ifdef DEBUG 1373 /* 1374 * The kmem allocator generates random failures for 1375 * KM_NOSLEEP calls (see KMEM_RANDOM_ALLOCATION_FAILURE) 1376 * So try again before we blow away a perfectly good cache. 1377 * This random error only occurs in debug mode 1378 */ 1379 dfp = kmem_cache_alloc(dnlc_dir_space_cache, KM_NOSLEEP); 1380 if (dfp != NULL) 1381 goto ok; 1382 #endif 1383 ncs.ncs_dir_add_nm.value.ui64++; 1384 /* 1385 * Free a directory cache. This may be the one we are 1386 * called with. 1387 */ 1388 dnlc_dir_reclaim(NULL); 1389 dfp = kmem_cache_alloc(dnlc_dir_space_cache, KM_NOSLEEP); 1390 if (dfp == NULL) { 1391 /* 1392 * still no memory, better delete this cache 1393 */ 1394 mutex_enter(&dcap->dca_lock); 1395 dcp = (dircache_t *)dcap->dca_dircache; 1396 if (VALID_DIR_CACHE(dcp)) { 1397 dnlc_dir_abort(dcp); 1398 dcap->dca_dircache = DC_RET_LOW_MEM; 1399 } 1400 mutex_exit(&dcap->dca_lock); 1401 ncs.ncs_dir_addabort.value.ui64++; 1402 return (DNOCACHE); 1403 } 1404 /* 1405 * fall through as if the 1st kmem_alloc had worked 1406 */ 1407 } 1408 1409 #ifdef DEBUG 1410 ok: 1411 #endif 1412 mutex_enter(&dcap->dca_lock); 1413 dcp = (dircache_t *)dcap->dca_dircache; 1414 if (VALID_DIR_CACHE(dcp)) { 1415 if ((dcp->dc_num_entries + dcp->dc_num_free) > 1416 dnlc_dir_max_size) { 1417 mutex_exit(&dcap->dca_lock); 1418 dnlc_dir_purge(dcap); 1419 kmem_cache_free(dnlc_dir_space_cache, dfp); 1420 ncs.ncs_dir_add_max.value.ui64++; 1421 return (DTOOBIG); 1422 } 1423 dcp->dc_num_free++; 1424 capacity = (dcp->dc_fhash_mask + 1) << dnlc_dir_hash_size_shift; 1425 if (dcp->dc_num_free >= 1426 (capacity << dnlc_dir_hash_resize_shift)) { 1427 dnlc_dir_adjust_fhash(dcp); 1428 } 1429 /* 1430 * Initialise and chain a new entry 1431 */ 1432 dfp->df_handle = handle; 1433 dfp->df_len = len; 1434 dcp->dc_actime = ddi_get_lbolt64(); 1435 hp = &(dcp->dc_freehash[DDFHASH(handle, dcp)]); 1436 dfp->df_next = *hp; 1437 *hp = dfp; 1438 mutex_exit(&dcap->dca_lock); 1439 ncs.ncs_dir_num_ents.value.ui64++; 1440 return (DOK); 1441 } else { 1442 mutex_exit(&dcap->dca_lock); 1443 kmem_cache_free(dnlc_dir_space_cache, dfp); 1444 return (DNOCACHE); 1445 } 1446 } 1447 1448 /* 1449 * Mark a directory cache as complete. 1450 */ 1451 void 1452 dnlc_dir_complete(dcanchor_t *dcap) 1453 { 1454 dircache_t *dcp; 1455 1456 mutex_enter(&dcap->dca_lock); 1457 dcp = (dircache_t *)dcap->dca_dircache; 1458 if (VALID_DIR_CACHE(dcp)) { 1459 dcp->dc_complete = B_TRUE; 1460 } 1461 mutex_exit(&dcap->dca_lock); 1462 } 1463 1464 /* 1465 * Internal routine to delete a partial or full directory cache. 1466 * No additional locking needed. 1467 */ 1468 static void 1469 dnlc_dir_abort(dircache_t *dcp) 1470 { 1471 dcentry_t *dep, *nhp; 1472 dcfree_t *fep, *fhp; 1473 uint_t nhtsize = dcp->dc_nhash_mask + 1; /* name hash table size */ 1474 uint_t fhtsize = dcp->dc_fhash_mask + 1; /* free hash table size */ 1475 uint_t i; 1476 1477 /* 1478 * Free up the cached name entries and hash table 1479 */ 1480 for (i = 0; i < nhtsize; i++) { /* for each hash bucket */ 1481 nhp = dcp->dc_namehash[i]; 1482 while (nhp != NULL) { /* for each chained entry */ 1483 dep = nhp->de_next; 1484 kmem_free(nhp, sizeof (dcentry_t) - 1 + 1485 nhp->de_namelen); 1486 nhp = dep; 1487 } 1488 } 1489 kmem_free(dcp->dc_namehash, sizeof (dcentry_t *) * nhtsize); 1490 1491 /* 1492 * Free up the free space entries and hash table 1493 */ 1494 for (i = 0; i < fhtsize; i++) { /* for each hash bucket */ 1495 fhp = dcp->dc_freehash[i]; 1496 while (fhp != NULL) { /* for each chained entry */ 1497 fep = fhp->df_next; 1498 kmem_cache_free(dnlc_dir_space_cache, fhp); 1499 fhp = fep; 1500 } 1501 } 1502 kmem_free(dcp->dc_freehash, sizeof (dcfree_t *) * fhtsize); 1503 1504 /* 1505 * Finally free the directory cache structure itself 1506 */ 1507 ncs.ncs_dir_num_ents.value.ui64 -= (dcp->dc_num_entries + 1508 dcp->dc_num_free); 1509 kmem_free(dcp, sizeof (dircache_t)); 1510 ncs.ncs_cur_dirs.value.ui64--; 1511 } 1512 1513 /* 1514 * Remove a partial or complete directory cache 1515 */ 1516 void 1517 dnlc_dir_purge(dcanchor_t *dcap) 1518 { 1519 dircache_t *dcp; 1520 1521 mutex_enter(&dc_head.dch_lock); 1522 mutex_enter(&dcap->dca_lock); 1523 dcp = (dircache_t *)dcap->dca_dircache; 1524 if (!VALID_DIR_CACHE(dcp)) { 1525 mutex_exit(&dcap->dca_lock); 1526 mutex_exit(&dc_head.dch_lock); 1527 return; 1528 } 1529 dcap->dca_dircache = NULL; 1530 /* 1531 * Unchain from global list 1532 */ 1533 dcp->dc_prev->dc_next = dcp->dc_next; 1534 dcp->dc_next->dc_prev = dcp->dc_prev; 1535 mutex_exit(&dcap->dca_lock); 1536 mutex_exit(&dc_head.dch_lock); 1537 dnlc_dir_abort(dcp); 1538 } 1539 1540 /* 1541 * Remove an entry from a complete or partial directory cache. 1542 * Return the handle if it's non null. 1543 */ 1544 dcret_t 1545 dnlc_dir_rem_entry(dcanchor_t *dcap, const char *name, uint64_t *handlep) 1546 { 1547 dircache_t *dcp; 1548 dcentry_t **prevpp, *te; 1549 uint_t capacity; 1550 int hash; 1551 int ret; 1552 uchar_t namlen; 1553 1554 if (!dnlc_dir_enable) { 1555 return (DNOCACHE); 1556 } 1557 1558 mutex_enter(&dcap->dca_lock); 1559 dcp = (dircache_t *)dcap->dca_dircache; 1560 if (VALID_DIR_CACHE(dcp)) { 1561 dcp->dc_actime = ddi_get_lbolt64(); 1562 if (dcp->dc_nhash_mask > 0) { /* ie not minimum */ 1563 capacity = (dcp->dc_nhash_mask + 1) << 1564 dnlc_dir_hash_size_shift; 1565 if (dcp->dc_num_entries <= 1566 (capacity >> dnlc_dir_hash_resize_shift)) { 1567 dnlc_dir_adjust_nhash(dcp); 1568 } 1569 } 1570 DNLC_DIR_HASH(name, hash, namlen); 1571 prevpp = &dcp->dc_namehash[hash & dcp->dc_nhash_mask]; 1572 while (*prevpp != NULL) { 1573 if (((*prevpp)->de_hash == hash) && 1574 (namlen == (*prevpp)->de_namelen) && 1575 bcmp((*prevpp)->de_name, name, namlen) == 0) { 1576 if (handlep != NULL) { 1577 *handlep = (*prevpp)->de_handle; 1578 } 1579 te = *prevpp; 1580 *prevpp = (*prevpp)->de_next; 1581 kmem_free(te, sizeof (dcentry_t) - 1 + 1582 te->de_namelen); 1583 1584 /* 1585 * If the total number of entries 1586 * falls below half the minimum number 1587 * of entries then free this cache. 1588 */ 1589 if (--dcp->dc_num_entries < 1590 (dnlc_dir_min_size >> 1)) { 1591 mutex_exit(&dcap->dca_lock); 1592 dnlc_dir_purge(dcap); 1593 } else { 1594 mutex_exit(&dcap->dca_lock); 1595 } 1596 ncs.ncs_dir_num_ents.value.ui64--; 1597 return (DFOUND); 1598 } 1599 prevpp = &((*prevpp)->de_next); 1600 } 1601 if (dcp->dc_complete) { 1602 ncs.ncs_dir_reme_fai.value.ui64++; 1603 ret = DNOENT; 1604 } else { 1605 ret = DNOCACHE; 1606 } 1607 mutex_exit(&dcap->dca_lock); 1608 return (ret); 1609 } else { 1610 mutex_exit(&dcap->dca_lock); 1611 return (DNOCACHE); 1612 } 1613 } 1614 1615 1616 /* 1617 * Remove free space of at least the given length from a complete 1618 * or partial directory cache. 1619 */ 1620 dcret_t 1621 dnlc_dir_rem_space_by_len(dcanchor_t *dcap, uint_t len, uint64_t *handlep) 1622 { 1623 dircache_t *dcp; 1624 dcfree_t **prevpp, *tfp; 1625 uint_t fhtsize; /* free hash table size */ 1626 uint_t i; 1627 uint_t capacity; 1628 int ret; 1629 1630 if (!dnlc_dir_enable) { 1631 return (DNOCACHE); 1632 } 1633 1634 mutex_enter(&dcap->dca_lock); 1635 dcp = (dircache_t *)dcap->dca_dircache; 1636 if (VALID_DIR_CACHE(dcp)) { 1637 dcp->dc_actime = ddi_get_lbolt64(); 1638 if (dcp->dc_fhash_mask > 0) { /* ie not minimum */ 1639 capacity = (dcp->dc_fhash_mask + 1) << 1640 dnlc_dir_hash_size_shift; 1641 if (dcp->dc_num_free <= 1642 (capacity >> dnlc_dir_hash_resize_shift)) { 1643 dnlc_dir_adjust_fhash(dcp); 1644 } 1645 } 1646 /* 1647 * Search for an entry of the appropriate size 1648 * on a first fit basis. 1649 */ 1650 fhtsize = dcp->dc_fhash_mask + 1; 1651 for (i = 0; i < fhtsize; i++) { /* for each hash bucket */ 1652 prevpp = &(dcp->dc_freehash[i]); 1653 while (*prevpp != NULL) { 1654 if ((*prevpp)->df_len >= len) { 1655 *handlep = (*prevpp)->df_handle; 1656 tfp = *prevpp; 1657 *prevpp = (*prevpp)->df_next; 1658 dcp->dc_num_free--; 1659 mutex_exit(&dcap->dca_lock); 1660 kmem_cache_free(dnlc_dir_space_cache, 1661 tfp); 1662 ncs.ncs_dir_num_ents.value.ui64--; 1663 return (DFOUND); 1664 } 1665 prevpp = &((*prevpp)->df_next); 1666 } 1667 } 1668 if (dcp->dc_complete) { 1669 ret = DNOENT; 1670 } else { 1671 ret = DNOCACHE; 1672 } 1673 mutex_exit(&dcap->dca_lock); 1674 return (ret); 1675 } else { 1676 mutex_exit(&dcap->dca_lock); 1677 return (DNOCACHE); 1678 } 1679 } 1680 1681 /* 1682 * Remove free space with the given handle from a complete or partial 1683 * directory cache. 1684 */ 1685 dcret_t 1686 dnlc_dir_rem_space_by_handle(dcanchor_t *dcap, uint64_t handle) 1687 { 1688 dircache_t *dcp; 1689 dcfree_t **prevpp, *tfp; 1690 uint_t capacity; 1691 int ret; 1692 1693 if (!dnlc_dir_enable) { 1694 return (DNOCACHE); 1695 } 1696 1697 mutex_enter(&dcap->dca_lock); 1698 dcp = (dircache_t *)dcap->dca_dircache; 1699 if (VALID_DIR_CACHE(dcp)) { 1700 dcp->dc_actime = ddi_get_lbolt64(); 1701 if (dcp->dc_fhash_mask > 0) { /* ie not minimum */ 1702 capacity = (dcp->dc_fhash_mask + 1) << 1703 dnlc_dir_hash_size_shift; 1704 if (dcp->dc_num_free <= 1705 (capacity >> dnlc_dir_hash_resize_shift)) { 1706 dnlc_dir_adjust_fhash(dcp); 1707 } 1708 } 1709 1710 /* 1711 * search for the exact entry 1712 */ 1713 prevpp = &(dcp->dc_freehash[DDFHASH(handle, dcp)]); 1714 while (*prevpp != NULL) { 1715 if ((*prevpp)->df_handle == handle) { 1716 tfp = *prevpp; 1717 *prevpp = (*prevpp)->df_next; 1718 dcp->dc_num_free--; 1719 mutex_exit(&dcap->dca_lock); 1720 kmem_cache_free(dnlc_dir_space_cache, tfp); 1721 ncs.ncs_dir_num_ents.value.ui64--; 1722 return (DFOUND); 1723 } 1724 prevpp = &((*prevpp)->df_next); 1725 } 1726 if (dcp->dc_complete) { 1727 ncs.ncs_dir_rems_fai.value.ui64++; 1728 ret = DNOENT; 1729 } else { 1730 ret = DNOCACHE; 1731 } 1732 mutex_exit(&dcap->dca_lock); 1733 return (ret); 1734 } else { 1735 mutex_exit(&dcap->dca_lock); 1736 return (DNOCACHE); 1737 } 1738 } 1739 1740 /* 1741 * Update the handle of an directory cache entry. 1742 */ 1743 dcret_t 1744 dnlc_dir_update(dcanchor_t *dcap, const char *name, uint64_t handle) 1745 { 1746 dircache_t *dcp; 1747 dcentry_t *dep; 1748 int hash; 1749 int ret; 1750 uchar_t namlen; 1751 1752 if (!dnlc_dir_enable) { 1753 return (DNOCACHE); 1754 } 1755 1756 mutex_enter(&dcap->dca_lock); 1757 dcp = (dircache_t *)dcap->dca_dircache; 1758 if (VALID_DIR_CACHE(dcp)) { 1759 dcp->dc_actime = ddi_get_lbolt64(); 1760 DNLC_DIR_HASH(name, hash, namlen); 1761 dep = dcp->dc_namehash[hash & dcp->dc_nhash_mask]; 1762 while (dep != NULL) { 1763 if ((dep->de_hash == hash) && 1764 (namlen == dep->de_namelen) && 1765 bcmp(dep->de_name, name, namlen) == 0) { 1766 dep->de_handle = handle; 1767 mutex_exit(&dcap->dca_lock); 1768 return (DFOUND); 1769 } 1770 dep = dep->de_next; 1771 } 1772 if (dcp->dc_complete) { 1773 ncs.ncs_dir_upd_fail.value.ui64++; 1774 ret = DNOENT; 1775 } else { 1776 ret = DNOCACHE; 1777 } 1778 mutex_exit(&dcap->dca_lock); 1779 return (ret); 1780 } else { 1781 mutex_exit(&dcap->dca_lock); 1782 return (DNOCACHE); 1783 } 1784 } 1785 1786 void 1787 dnlc_dir_fini(dcanchor_t *dcap) 1788 { 1789 dircache_t *dcp; 1790 1791 mutex_enter(&dc_head.dch_lock); 1792 mutex_enter(&dcap->dca_lock); 1793 dcp = (dircache_t *)dcap->dca_dircache; 1794 if (VALID_DIR_CACHE(dcp)) { 1795 /* 1796 * Unchain from global list 1797 */ 1798 ncs.ncs_dir_finipurg.value.ui64++; 1799 dcp->dc_prev->dc_next = dcp->dc_next; 1800 dcp->dc_next->dc_prev = dcp->dc_prev; 1801 } else { 1802 dcp = NULL; 1803 } 1804 dcap->dca_dircache = NULL; 1805 mutex_exit(&dcap->dca_lock); 1806 mutex_exit(&dc_head.dch_lock); 1807 mutex_destroy(&dcap->dca_lock); 1808 if (dcp) { 1809 dnlc_dir_abort(dcp); 1810 } 1811 } 1812 1813 /* 1814 * Reclaim callback for dnlc directory caching. 1815 * Invoked by the kernel memory allocator when memory gets tight. 1816 * This is a pretty serious condition and can lead easily lead to system 1817 * hangs if not enough space is returned. 1818 * 1819 * Deciding which directory (or directories) to purge is tricky. 1820 * Purging everything is an overkill, but purging just the oldest used 1821 * was found to lead to hangs. The largest cached directories use the 1822 * most memory, but take the most effort to rebuild, whereas the smaller 1823 * ones have little value and give back little space. So what to do? 1824 * 1825 * The current policy is to continue purging the oldest used directories 1826 * until at least dnlc_dir_min_reclaim directory entries have been purged. 1827 */ 1828 /*ARGSUSED*/ 1829 static void 1830 dnlc_dir_reclaim(void *unused) 1831 { 1832 dircache_t *dcp, *oldest; 1833 uint_t dirent_cnt = 0; 1834 1835 mutex_enter(&dc_head.dch_lock); 1836 while (dirent_cnt < dnlc_dir_min_reclaim) { 1837 dcp = dc_head.dch_next; 1838 oldest = NULL; 1839 while (dcp != (dircache_t *)&dc_head) { 1840 if (oldest == NULL) { 1841 oldest = dcp; 1842 } else { 1843 if (dcp->dc_actime < oldest->dc_actime) { 1844 oldest = dcp; 1845 } 1846 } 1847 dcp = dcp->dc_next; 1848 } 1849 if (oldest == NULL) { 1850 /* nothing to delete */ 1851 mutex_exit(&dc_head.dch_lock); 1852 return; 1853 } 1854 /* 1855 * remove from directory chain and purge 1856 */ 1857 oldest->dc_prev->dc_next = oldest->dc_next; 1858 oldest->dc_next->dc_prev = oldest->dc_prev; 1859 mutex_enter(&oldest->dc_anchor->dca_lock); 1860 /* 1861 * If this was the last entry then it must be too large. 1862 * Mark it as such by saving a special dircache_t 1863 * pointer (DC_RET_LOW_MEM) in the anchor. The error DNOMEM 1864 * will be presented to the caller of dnlc_dir_start() 1865 */ 1866 if (oldest->dc_next == oldest->dc_prev) { 1867 oldest->dc_anchor->dca_dircache = DC_RET_LOW_MEM; 1868 ncs.ncs_dir_rec_last.value.ui64++; 1869 } else { 1870 oldest->dc_anchor->dca_dircache = NULL; 1871 ncs.ncs_dir_recl_any.value.ui64++; 1872 } 1873 mutex_exit(&oldest->dc_anchor->dca_lock); 1874 dirent_cnt += oldest->dc_num_entries; 1875 dnlc_dir_abort(oldest); 1876 } 1877 mutex_exit(&dc_head.dch_lock); 1878 } 1879 1880 /* 1881 * Dynamically grow or shrink the size of the name hash table 1882 */ 1883 static void 1884 dnlc_dir_adjust_nhash(dircache_t *dcp) 1885 { 1886 dcentry_t **newhash, *dep, **nhp, *tep; 1887 uint_t newsize; 1888 uint_t oldsize; 1889 uint_t newsizemask; 1890 int i; 1891 1892 /* 1893 * Allocate new hash table 1894 */ 1895 newsize = dcp->dc_num_entries >> dnlc_dir_hash_size_shift; 1896 newhash = kmem_zalloc(sizeof (dcentry_t *) * newsize, KM_NOSLEEP); 1897 if (newhash == NULL) { 1898 /* 1899 * System is short on memory just return 1900 * Note, the old hash table is still usable. 1901 * This return is unlikely to repeatedy occur, because 1902 * either some other directory caches will be reclaimed 1903 * due to memory shortage, thus freeing memory, or this 1904 * directory cahe will be reclaimed. 1905 */ 1906 return; 1907 } 1908 oldsize = dcp->dc_nhash_mask + 1; 1909 dcp->dc_nhash_mask = newsizemask = newsize - 1; 1910 1911 /* 1912 * Move entries from the old table to the new 1913 */ 1914 for (i = 0; i < oldsize; i++) { /* for each hash bucket */ 1915 dep = dcp->dc_namehash[i]; 1916 while (dep != NULL) { /* for each chained entry */ 1917 tep = dep; 1918 dep = dep->de_next; 1919 nhp = &newhash[tep->de_hash & newsizemask]; 1920 tep->de_next = *nhp; 1921 *nhp = tep; 1922 } 1923 } 1924 1925 /* 1926 * delete old hash table and set new one in place 1927 */ 1928 kmem_free(dcp->dc_namehash, sizeof (dcentry_t *) * oldsize); 1929 dcp->dc_namehash = newhash; 1930 } 1931 1932 /* 1933 * Dynamically grow or shrink the size of the free space hash table 1934 */ 1935 static void 1936 dnlc_dir_adjust_fhash(dircache_t *dcp) 1937 { 1938 dcfree_t **newhash, *dfp, **nhp, *tfp; 1939 uint_t newsize; 1940 uint_t oldsize; 1941 int i; 1942 1943 /* 1944 * Allocate new hash table 1945 */ 1946 newsize = dcp->dc_num_free >> dnlc_dir_hash_size_shift; 1947 newhash = kmem_zalloc(sizeof (dcfree_t *) * newsize, KM_NOSLEEP); 1948 if (newhash == NULL) { 1949 /* 1950 * System is short on memory just return 1951 * Note, the old hash table is still usable. 1952 * This return is unlikely to repeatedy occur, because 1953 * either some other directory caches will be reclaimed 1954 * due to memory shortage, thus freeing memory, or this 1955 * directory cahe will be reclaimed. 1956 */ 1957 return; 1958 } 1959 oldsize = dcp->dc_fhash_mask + 1; 1960 dcp->dc_fhash_mask = newsize - 1; 1961 1962 /* 1963 * Move entries from the old table to the new 1964 */ 1965 for (i = 0; i < oldsize; i++) { /* for each hash bucket */ 1966 dfp = dcp->dc_freehash[i]; 1967 while (dfp != NULL) { /* for each chained entry */ 1968 tfp = dfp; 1969 dfp = dfp->df_next; 1970 nhp = &newhash[DDFHASH(tfp->df_handle, dcp)]; 1971 tfp->df_next = *nhp; 1972 *nhp = tfp; 1973 } 1974 } 1975 1976 /* 1977 * delete old hash table and set new one in place 1978 */ 1979 kmem_free(dcp->dc_freehash, sizeof (dcfree_t *) * oldsize); 1980 dcp->dc_freehash = newhash; 1981 } 1982