1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * vnode ops for the devfs 30 * 31 * For leaf vnode special files (VCHR|VBLK) specfs will always see the VOP 32 * first because dv_find always performs leaf vnode substitution, returning 33 * a specfs vnode with an s_realvp pointing to the devfs leaf vnode. This 34 * means that the only leaf special file VOP operations that devfs will see 35 * after VOP_LOOKUP are the ones that specfs forwards. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <sys/t_lock.h> 41 #include <sys/systm.h> 42 #include <sys/sysmacros.h> 43 #include <sys/user.h> 44 #include <sys/time.h> 45 #include <sys/vfs.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs_opreg.h> 48 #include <sys/file.h> 49 #include <sys/fcntl.h> 50 #include <sys/flock.h> 51 #include <sys/kmem.h> 52 #include <sys/uio.h> 53 #include <sys/errno.h> 54 #include <sys/stat.h> 55 #include <sys/cred.h> 56 #include <sys/dirent.h> 57 #include <sys/pathname.h> 58 #include <sys/cmn_err.h> 59 #include <sys/debug.h> 60 #include <sys/policy.h> 61 #include <sys/modctl.h> 62 63 #include <fs/fs_subr.h> 64 #include <sys/fs/dv_node.h> 65 #include <sys/sunndi.h> 66 67 extern struct vattr dv_vattr_dir, dv_vattr_file; 68 extern dev_t rconsdev; 69 70 /* 71 * Open of devices (leaf nodes) is handled by specfs. 72 * There is nothing to do to open a directory 73 */ 74 /*ARGSUSED*/ 75 static int 76 devfs_open(struct vnode **vpp, int flag, struct cred *cred) 77 { 78 struct dv_node *dv = VTODV(*vpp); 79 80 dcmn_err2(("devfs_open %s\n", dv->dv_name)); 81 ASSERT((*vpp)->v_type == VDIR); 82 return (0); 83 } 84 85 /* 86 * Close of devices (leaf nodes) is handled by specfs. 87 * There is nothing much to do inorder to close a directory. 88 */ 89 /*ARGSUSED1*/ 90 static int 91 devfs_close(struct vnode *vp, int flag, int count, 92 offset_t offset, struct cred *cred) 93 { 94 struct dv_node *dv = VTODV(vp); 95 96 dcmn_err2(("devfs_close %s\n", dv->dv_name)); 97 ASSERT(vp->v_type == VDIR); 98 99 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 100 cleanshares(vp, ttoproc(curthread)->p_pid); 101 return (0); 102 } 103 104 /* 105 * Read of devices (leaf nodes) is handled by specfs. 106 * Read of directories is not supported. 107 */ 108 /*ARGSUSED*/ 109 static int 110 devfs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cred, 111 struct caller_context *ct) 112 { 113 dcmn_err2(("devfs_read %s\n", VTODV(vp)->dv_name)); 114 ASSERT(vp->v_type == VDIR); 115 ASSERT(RW_READ_HELD(&VTODV(vp)->dv_contents)); 116 return (EISDIR); 117 } 118 119 /* 120 * Write of devices (leaf nodes) is handled by specfs. 121 * Write of directories is not supported. 122 */ 123 /*ARGSUSED*/ 124 static int 125 devfs_write(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cred, 126 struct caller_context *ct) 127 { 128 dcmn_err2(("devfs_write %s\n", VTODV(vp)->dv_name)); 129 ASSERT(vp->v_type == VDIR); 130 ASSERT(RW_WRITE_HELD(&VTODV(vp)->dv_contents)); 131 return (EISDIR); 132 } 133 134 /* 135 * Ioctls to device (leaf nodes) is handled by specfs. 136 * Ioctl to directories is not supported. 137 */ 138 /*ARGSUSED*/ 139 static int 140 devfs_ioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, 141 struct cred *cred, int *rvalp) 142 { 143 dcmn_err2(("devfs_ioctl %s\n", VTODV(vp)->dv_name)); 144 ASSERT(vp->v_type == VDIR); 145 146 return (ENOTTY); /* no ioctls supported */ 147 } 148 149 /* 150 * We can be asked directly about the attributes of directories, or 151 * (via sp->s_realvp) about the filesystem attributes of special files. 152 * 153 * For directories, we just believe the attribute store 154 * though we mangle the nodeid, fsid, and rdev to convince userland we 155 * really are a different filesystem. 156 * 157 * For special files, a little more fakery is required. 158 * 159 * If the attribute store is not there (read only root), we believe our 160 * memory based attributes. 161 */ 162 static int 163 devfs_getattr(struct vnode *vp, struct vattr *vap, int flags, struct cred *cr) 164 { 165 struct dv_node *dv = VTODV(vp); 166 int error = 0; 167 uint_t mask; 168 169 /* 170 * Message goes to console only. Otherwise, the message 171 * causes devfs_getattr to be invoked again... infinite loop 172 */ 173 dcmn_err2(("?devfs_getattr %s\n", dv->dv_name)); 174 ASSERT(dv->dv_attr || dv->dv_attrvp); 175 176 if (!(vp->v_type == VDIR || vp->v_type == VCHR || vp->v_type == VBLK)) { 177 cmn_err(CE_WARN, /* panic ? */ 178 "?%s: getattr on vnode type %d", dvnm, vp->v_type); 179 return (ENOENT); 180 } 181 182 if (dv->dv_attr) { 183 /* 184 * obtain from the memory version of attribute. 185 * preserve mask for those that optimize. 186 * devfs specific fields are already merged on creation. 187 */ 188 mask = vap->va_mask; 189 *vap = *dv->dv_attr; 190 vap->va_mask = mask; 191 } else { 192 /* obtain from attribute store and merge */ 193 error = VOP_GETATTR(dv->dv_attrvp, vap, flags, cr); 194 dsysdebug(error, ("vop_getattr %s %d\n", dv->dv_name, error)); 195 dv_vattr_merge(dv, vap); 196 } 197 198 /* 199 * Restrict the permissions of the node fronting the console 200 * to 0600 with root as the owner. This prevents a non-root 201 * user from gaining access to a serial terminal (like /dev/term/a) 202 * which is in reality serving as the console device (/dev/console). 203 */ 204 if (vp->v_rdev == rconsdev) { 205 mode_t rconsmask = S_IXUSR|S_IRWXG|S_IRWXO; 206 vap->va_mode &= (~rconsmask); 207 vap->va_uid = 0; 208 } 209 210 return (error); 211 } 212 213 static int devfs_unlocked_access(void *, int, struct cred *); 214 215 /*ARGSUSED4*/ 216 static int 217 devfs_setattr_dir( 218 struct dv_node *dv, 219 struct vnode *vp, 220 struct vattr *vap, 221 int flags, 222 struct cred *cr) 223 { 224 struct vattr *map; 225 long int mask; 226 int error = 0; 227 struct vattr vattr; 228 229 ASSERT(dv->dv_attr || dv->dv_attrvp); 230 231 ASSERT(vp->v_type == VDIR); 232 ASSERT((dv->dv_flags & DV_NO_FSPERM) == 0); 233 234 if (vap->va_mask & AT_NOSET) 235 return (EINVAL); 236 237 /* to ensure consistency, single thread setting of attributes */ 238 rw_enter(&dv->dv_contents, RW_WRITER); 239 240 again: if (dv->dv_attr) { 241 242 error = secpolicy_vnode_setattr(cr, vp, vap, dv->dv_attr, 243 flags, devfs_unlocked_access, dv); 244 245 if (error) 246 goto out; 247 248 /* 249 * Apply changes to the memory based attribute. This code 250 * is modeled after the tmpfs implementation of memory 251 * based vnodes 252 */ 253 map = dv->dv_attr; 254 mask = vap->va_mask; 255 256 /* Change file access modes. */ 257 if (mask & AT_MODE) { 258 map->va_mode &= S_IFMT; 259 map->va_mode |= vap->va_mode & ~S_IFMT; 260 } 261 if (mask & AT_UID) 262 map->va_uid = vap->va_uid; 263 if (mask & AT_GID) 264 map->va_gid = vap->va_gid; 265 if (mask & AT_ATIME) 266 map->va_atime = vap->va_atime; 267 if (mask & AT_MTIME) 268 map->va_mtime = vap->va_mtime; 269 270 if (mask & (AT_MODE | AT_UID | AT_GID | AT_MTIME)) 271 gethrestime(&map->va_ctime); 272 } else { 273 /* use the backing attribute store */ 274 ASSERT(dv->dv_attrvp); 275 276 /* 277 * See if we are changing something we care about 278 * the persistence of - return success if we don't care. 279 */ 280 if (vap->va_mask & (AT_MODE|AT_UID|AT_GID|AT_ATIME|AT_MTIME)) { 281 /* Set the attributes */ 282 error = VOP_SETATTR(dv->dv_attrvp, 283 vap, flags, cr, NULL); 284 dsysdebug(error, 285 ("vop_setattr %s %d\n", dv->dv_name, error)); 286 287 /* 288 * Some file systems may return EROFS for a setattr 289 * on a readonly file system. In this case we create 290 * our own memory based attribute. 291 */ 292 if (error == EROFS) { 293 /* 294 * obtain attributes from existing file 295 * that we will modify and switch to memory 296 * based attribute until attribute store is 297 * read/write. 298 */ 299 vattr = dv_vattr_dir; 300 if (VOP_GETATTR(dv->dv_attrvp, &vattr, 301 flags, cr) == 0) { 302 dv->dv_attr = kmem_alloc( 303 sizeof (struct vattr), KM_SLEEP); 304 *dv->dv_attr = vattr; 305 dv_vattr_merge(dv, dv->dv_attr); 306 goto again; 307 } 308 } 309 } 310 } 311 out: 312 rw_exit(&dv->dv_contents); 313 return (error); 314 } 315 316 317 /* 318 * Compare the uid/gid/mode changes requested for a setattr 319 * operation with the same details of a node's default minor 320 * perm information. Return 0 if identical. 321 */ 322 static int 323 dv_setattr_cmp(struct vattr *map, mperm_t *mp) 324 { 325 if ((map->va_mode & S_IAMB) != (mp->mp_mode & S_IAMB)) 326 return (1); 327 if (map->va_uid != mp->mp_uid) 328 return (1); 329 if (map->va_gid != mp->mp_gid) 330 return (1); 331 return (0); 332 } 333 334 335 /*ARGSUSED4*/ 336 static int 337 devfs_setattr( 338 struct vnode *vp, 339 struct vattr *vap, 340 int flags, 341 struct cred *cr, 342 caller_context_t *ct) 343 { 344 struct dv_node *dv = VTODV(vp); 345 struct dv_node *ddv; 346 struct vnode *dvp; 347 struct vattr *map; 348 long int mask; 349 int error = 0; 350 struct vattr *free_vattr = NULL; 351 struct vattr *vattrp = NULL; 352 mperm_t mp; 353 int persist; 354 355 /* 356 * Message goes to console only. Otherwise, the message 357 * causes devfs_getattr to be invoked again... infinite loop 358 */ 359 dcmn_err2(("?devfs_setattr %s\n", dv->dv_name)); 360 ASSERT(dv->dv_attr || dv->dv_attrvp); 361 362 if (!(vp->v_type == VDIR || vp->v_type == VCHR || vp->v_type == VBLK)) { 363 cmn_err(CE_WARN, /* panic ? */ 364 "?%s: getattr on vnode type %d", dvnm, vp->v_type); 365 return (ENOENT); 366 } 367 368 if (vap->va_mask & AT_NOSET) 369 return (EINVAL); 370 371 /* 372 * If we are changing something we don't care about 373 * the persistence of, return success. 374 */ 375 if ((vap->va_mask & 376 (AT_MODE|AT_UID|AT_GID|AT_ATIME|AT_MTIME)) == 0) 377 return (0); 378 379 /* 380 * If driver overrides fs perm, disallow chmod 381 * and do not create attribute nodes. 382 */ 383 if (dv->dv_flags & DV_NO_FSPERM) { 384 ASSERT(dv->dv_attr); 385 if (vap->va_mask & (AT_MODE | AT_UID | AT_GID)) 386 return (EPERM); 387 if ((vap->va_mask & (AT_ATIME|AT_MTIME)) == 0) 388 return (0); 389 rw_enter(&dv->dv_contents, RW_WRITER); 390 if (vap->va_mask & AT_ATIME) 391 dv->dv_attr->va_atime = vap->va_atime; 392 if (vap->va_mask & AT_MTIME) 393 dv->dv_attr->va_mtime = vap->va_mtime; 394 rw_exit(&dv->dv_contents); 395 return (0); 396 } 397 398 /* 399 * Directories are always created but device nodes are 400 * only used to persist non-default permissions. 401 */ 402 if (vp->v_type == VDIR) { 403 ASSERT(dv->dv_attr || dv->dv_attrvp); 404 return (devfs_setattr_dir(dv, vp, vap, flags, cr)); 405 } 406 407 /* 408 * Allocate now before we take any locks 409 */ 410 vattrp = kmem_zalloc(sizeof (*vattrp), KM_SLEEP); 411 412 /* to ensure consistency, single thread setting of attributes */ 413 rw_enter(&dv->dv_contents, RW_WRITER); 414 415 /* 416 * We don't need to create an attribute node 417 * to persist access or modification times. 418 */ 419 persist = (vap->va_mask & (AT_MODE | AT_UID | AT_GID)); 420 421 /* 422 * If persisting something, get the default permissions 423 * for this minor to compare against what the attributes 424 * are now being set to. Default ordering is: 425 * - minor_perm match for this minor 426 * - mode supplied by ddi_create_priv_minor_node 427 * - devfs defaults 428 */ 429 if (persist) { 430 if (dev_minorperm(dv->dv_devi, dv->dv_name, &mp) != 0) { 431 mp.mp_uid = dv_vattr_file.va_uid; 432 mp.mp_gid = dv_vattr_file.va_gid; 433 mp.mp_mode = dv_vattr_file.va_mode; 434 if (dv->dv_flags & DV_DFLT_MODE) { 435 ASSERT((dv->dv_dflt_mode & ~S_IAMB) == 0); 436 mp.mp_mode &= ~S_IAMB; 437 mp.mp_mode |= dv->dv_dflt_mode; 438 dcmn_err5(("%s: setattr priv default 0%o\n", 439 dv->dv_name, mp.mp_mode)); 440 } else { 441 dcmn_err5(("%s: setattr devfs default 0%o\n", 442 dv->dv_name, mp.mp_mode)); 443 } 444 } else { 445 dcmn_err5(("%s: setattr minor perm default 0%o\n", 446 dv->dv_name, mp.mp_mode)); 447 } 448 } 449 450 /* 451 * If we don't have a vattr for this node, construct one. 452 */ 453 if (dv->dv_attr) { 454 free_vattr = vattrp; 455 vattrp = NULL; 456 } else { 457 ASSERT(dv->dv_attrvp); 458 ASSERT(vp->v_type != VDIR); 459 *vattrp = dv_vattr_file; 460 error = VOP_GETATTR(dv->dv_attrvp, vattrp, 0, cr); 461 dsysdebug(error, ("vop_getattr %s %d\n", 462 dv->dv_name, error)); 463 if (error) 464 goto out; 465 dv->dv_attr = vattrp; 466 dv_vattr_merge(dv, dv->dv_attr); 467 vattrp = NULL; 468 } 469 470 error = secpolicy_vnode_setattr(cr, vp, vap, dv->dv_attr, 471 flags, devfs_unlocked_access, dv); 472 if (error) { 473 dsysdebug(error, ("devfs_setattr %s secpolicy error %d\n", 474 dv->dv_name, error)); 475 goto out; 476 } 477 478 /* 479 * Apply changes to the memory based attribute. This code 480 * is modeled after the tmpfs implementation of memory 481 * based vnodes 482 */ 483 map = dv->dv_attr; 484 mask = vap->va_mask; 485 486 /* Change file access modes. */ 487 if (mask & AT_MODE) { 488 map->va_mode &= S_IFMT; 489 map->va_mode |= vap->va_mode & ~S_IFMT; 490 } 491 if (mask & AT_UID) 492 map->va_uid = vap->va_uid; 493 if (mask & AT_GID) 494 map->va_gid = vap->va_gid; 495 if (mask & AT_ATIME) 496 map->va_atime = vap->va_atime; 497 if (mask & AT_MTIME) 498 map->va_mtime = vap->va_mtime; 499 500 if (mask & (AT_MODE | AT_UID | AT_GID | AT_MTIME)) { 501 gethrestime(&map->va_ctime); 502 } 503 504 /* 505 * A setattr to defaults means we no longer need the 506 * shadow node as a persistent store, unless there 507 * are ACLs. Otherwise create a shadow node if one 508 * doesn't exist yet. 509 */ 510 if (persist) { 511 if ((dv_setattr_cmp(map, &mp) == 0) && 512 ((dv->dv_flags & DV_ACL) == 0)) { 513 514 if (dv->dv_attrvp) { 515 ddv = dv->dv_dotdot; 516 ASSERT(ddv->dv_attrvp); 517 error = VOP_REMOVE(ddv->dv_attrvp, 518 dv->dv_name, cr); 519 dsysdebug(error, 520 ("vop_remove %s %s %d\n", 521 ddv->dv_name, dv->dv_name, error)); 522 523 if (error == EROFS) 524 error = 0; 525 VN_RELE(dv->dv_attrvp); 526 dv->dv_attrvp = NULL; 527 } 528 ASSERT(dv->dv_attr); 529 } else { 530 if (mask & AT_MODE) 531 dcmn_err5(("%s persisting mode 0%o\n", 532 dv->dv_name, vap->va_mode)); 533 if (mask & AT_UID) 534 dcmn_err5(("%s persisting uid %d\n", 535 dv->dv_name, vap->va_uid)); 536 if (mask & AT_GID) 537 dcmn_err5(("%s persisting gid %d\n", 538 dv->dv_name, vap->va_gid)); 539 540 if (dv->dv_attrvp == NULL) { 541 dvp = DVTOV(dv->dv_dotdot); 542 dv_shadow_node(dvp, dv->dv_name, vp, 543 NULL, NULLVP, cr, 544 DV_SHADOW_CREATE | DV_SHADOW_WRITE_HELD); 545 } 546 if (dv->dv_attrvp) { 547 error = VOP_SETATTR(dv->dv_attrvp, 548 vap, flags, cr, NULL); 549 dsysdebug(error, ("vop_setattr %s %d\n", 550 dv->dv_name, error)); 551 } 552 /* 553 * Some file systems may return EROFS for a setattr 554 * on a readonly file system. In this case save 555 * as our own memory based attribute. 556 * NOTE: ufs is NOT one of these (see ufs_iupdat). 557 */ 558 if (dv->dv_attr && dv->dv_attrvp && error == 0) { 559 vattrp = dv->dv_attr; 560 dv->dv_attr = NULL; 561 } else if (error == EROFS) 562 error = 0; 563 } 564 } 565 566 out: 567 rw_exit(&dv->dv_contents); 568 569 if (vattrp) 570 kmem_free(vattrp, sizeof (*vattrp)); 571 if (free_vattr) 572 kmem_free(free_vattr, sizeof (*free_vattr)); 573 return (error); 574 } 575 576 static int 577 devfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 578 { 579 switch (cmd) { 580 case _PC_ACL_ENABLED: 581 /* 582 * We rely on the underlying filesystem for ACLs, 583 * so direct the query for ACL support there. 584 * ACL support isn't relative to the file 585 * and we can't guarantee that the dv node 586 * has an attribute node, so any valid 587 * attribute node will suffice. 588 */ 589 ASSERT(dvroot); 590 ASSERT(dvroot->dv_attrvp); 591 return (VOP_PATHCONF(dvroot->dv_attrvp, cmd, valp, cr)); 592 /*NOTREACHED*/ 593 } 594 595 return (fs_pathconf(vp, cmd, valp, cr)); 596 } 597 598 /* 599 * Let avp handle security attributes (acl's). 600 */ 601 static int 602 devfs_getsecattr(struct vnode *vp, struct vsecattr *vsap, int flags, 603 struct cred *cr) 604 { 605 dvnode_t *dv = VTODV(vp); 606 struct vnode *avp; 607 int error; 608 609 dcmn_err2(("devfs_getsecattr %s\n", dv->dv_name)); 610 ASSERT(vp->v_type == VDIR || vp->v_type == VCHR || vp->v_type == VBLK); 611 612 rw_enter(&dv->dv_contents, RW_READER); 613 614 avp = dv->dv_attrvp; 615 616 /* fabricate the acl */ 617 if (avp == NULL) { 618 error = fs_fab_acl(vp, vsap, flags, cr); 619 rw_exit(&dv->dv_contents); 620 return (error); 621 } 622 623 error = VOP_GETSECATTR(avp, vsap, flags, cr); 624 dsysdebug(error, ("vop_getsecattr %s %d\n", VTODV(vp)->dv_name, error)); 625 rw_exit(&dv->dv_contents); 626 return (error); 627 } 628 629 /* 630 * Set security attributes (acl's) 631 * 632 * Note that the dv_contents lock has already been acquired 633 * by the caller's VOP_RWLOCK. 634 */ 635 static int 636 devfs_setsecattr(struct vnode *vp, struct vsecattr *vsap, int flags, 637 struct cred *cr) 638 { 639 dvnode_t *dv = VTODV(vp); 640 struct vnode *avp; 641 int error; 642 643 dcmn_err2(("devfs_setsecattr %s\n", dv->dv_name)); 644 ASSERT(vp->v_type == VDIR || vp->v_type == VCHR || vp->v_type == VBLK); 645 ASSERT(RW_LOCK_HELD(&dv->dv_contents)); 646 647 /* 648 * Not a supported operation on drivers not providing 649 * file system based permissions. 650 */ 651 if (dv->dv_flags & DV_NO_FSPERM) 652 return (ENOTSUP); 653 654 /* 655 * To complete, the setsecattr requires an underlying attribute node. 656 */ 657 if (dv->dv_attrvp == NULL) { 658 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 659 dv_shadow_node(DVTOV(dv->dv_dotdot), dv->dv_name, vp, 660 NULL, NULLVP, cr, DV_SHADOW_CREATE | DV_SHADOW_WRITE_HELD); 661 } 662 663 if ((avp = dv->dv_attrvp) == NULL) { 664 dcmn_err2(("devfs_setsecattr %s: " 665 "cannot construct attribute node\n", dv->dv_name)); 666 return (fs_nosys()); 667 } 668 669 /* 670 * The acl(2) system call issues a VOP_RWLOCK before setting an ACL. 671 * Since backing file systems expect the lock to be held before seeing 672 * a VOP_SETSECATTR ACL, we need to issue the VOP_RWLOCK to the backing 673 * store before forwarding the ACL. 674 */ 675 (void) VOP_RWLOCK(avp, V_WRITELOCK_TRUE, NULL); 676 error = VOP_SETSECATTR(avp, vsap, flags, cr); 677 dsysdebug(error, ("vop_setsecattr %s %d\n", VTODV(vp)->dv_name, error)); 678 VOP_RWUNLOCK(avp, V_WRITELOCK_TRUE, NULL); 679 680 /* 681 * Set DV_ACL if we have a non-trivial set of ACLs. It is not 682 * necessary to hold VOP_RWLOCK since fs_acl_nontrivial only does 683 * VOP_GETSECATTR calls. 684 */ 685 if (fs_acl_nontrivial(avp, cr)) 686 dv->dv_flags |= DV_ACL; 687 return (error); 688 } 689 690 /* 691 * This function is used for secpolicy_setattr(). It must call an 692 * access() like function while it is already holding the 693 * dv_contents lock. We only care about this when dv_attr != NULL; 694 * so the unlocked access call only concerns itself with that 695 * particular branch of devfs_access(). 696 */ 697 static int 698 devfs_unlocked_access(void *vdv, int mode, struct cred *cr) 699 { 700 struct dv_node *dv = vdv; 701 int shift = 0; 702 uid_t owner = dv->dv_attr->va_uid; 703 704 /* Check access based on owner, group and public permissions. */ 705 if (crgetuid(cr) != owner) { 706 shift += 3; 707 if (groupmember(dv->dv_attr->va_gid, cr) == 0) 708 shift += 3; 709 } 710 711 /* compute missing mode bits */ 712 mode &= ~(dv->dv_attr->va_mode << shift); 713 714 if (mode == 0) 715 return (0); 716 717 return (secpolicy_vnode_access(cr, DVTOV(dv), owner, mode)); 718 } 719 720 static int 721 devfs_access(struct vnode *vp, int mode, int flags, struct cred *cr) 722 { 723 struct dv_node *dv = VTODV(vp); 724 int res; 725 726 dcmn_err2(("devfs_access %s\n", dv->dv_name)); 727 ASSERT(dv->dv_attr || dv->dv_attrvp); 728 729 /* restrict console access to privileged processes */ 730 if ((vp->v_rdev == rconsdev) && secpolicy_console(cr) != 0) { 731 return (EACCES); 732 } 733 734 if (dv->dv_attr && ((dv->dv_flags & DV_ACL) == 0)) { 735 rw_enter(&dv->dv_contents, RW_READER); 736 if (dv->dv_attr) { 737 res = devfs_unlocked_access(dv, mode, cr); 738 rw_exit(&dv->dv_contents); 739 return (res); 740 } 741 rw_exit(&dv->dv_contents); 742 } 743 return (VOP_ACCESS(dv->dv_attrvp, mode, flags, cr)); 744 } 745 746 /* 747 * Lookup 748 * 749 * Given the directory vnode and the name of the component, return 750 * the corresponding held vnode for that component. 751 * 752 * Of course in these fictional filesystems, nothing's ever quite 753 * -that- simple. 754 * 755 * devfs name type shadow (fs attributes) type comments 756 * ------------------------------------------------------------------------- 757 * drv[@addr] VDIR drv[@addr] VDIR nexus driver 758 * drv[@addr]:m VCHR/VBLK drv[@addr]:m VREG leaf driver 759 * drv[@addr] VCHR/VBLK drv[@addr]:.default VREG leaf driver 760 * ------------------------------------------------------------------------- 761 * 762 * The following names are reserved for the attribute filesystem (which 763 * could easily be another layer on top of this one - we simply need to 764 * hold the vnode of the thing we're looking at) 765 * 766 * attr name type shadow (fs attributes) type comments 767 * ------------------------------------------------------------------------- 768 * drv[@addr] VDIR - - attribute dir 769 * minorname VDIR - - minorname 770 * attribute VREG - - attribute 771 * ------------------------------------------------------------------------- 772 * 773 * Examples: 774 * 775 * devfs:/devices/.../mm@0:zero VCHR 776 * shadow:/.devices/.../mm@0:zero VREG, fs attrs 777 * devfs:/devices/.../mm@0:/zero/attr VREG, driver attribute 778 * 779 * devfs:/devices/.../sd@0,0:a VBLK 780 * shadow:/.devices/.../sd@0,0:a VREG, fs attrs 781 * devfs:/devices/.../sd@0,0:/a/.type VREG, "ddi_block:chan" 782 * 783 * devfs:/devices/.../mm@0 VCHR 784 * shadow:/.devices/.../mm@0:.default VREG, fs attrs 785 * devfs:/devices/.../mm@0:/.default/attr VREG, driver attribute 786 * devfs:/devices/.../mm@0:/.default/.type VREG, "ddi_pseudo" 787 * 788 * devfs:/devices/.../obio VDIR 789 * shadow:/devices/.../obio VDIR, needed for fs attrs. 790 * devfs:/devices/.../obio:/.default/attr VDIR, driver attribute 791 * 792 * We also need to be able deal with "old" devices that have gone away, 793 * though I think that provided we return them with readdir, they can 794 * be removed (i.e. they don't have to respond to lookup, though it might 795 * be weird if they didn't ;-) 796 * 797 * Lookup has side-effects. 798 * 799 * - It will create directories and fs attribute files in the shadow hierarchy. 800 * - It should cause non-SID devices to be probed (ask the parent nexi). 801 */ 802 /*ARGSUSED3*/ 803 static int 804 devfs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp, 805 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cred) 806 { 807 ASSERT(dvp->v_type == VDIR); 808 dcmn_err2(("devfs_lookup: %s\n", nm)); 809 return (dv_find(VTODV(dvp), nm, vpp, pnp, rdir, cred, 0)); 810 } 811 812 /* 813 * devfs nodes can't really be created directly by userland - however, 814 * we do allow creates to find existing nodes: 815 * 816 * - any create fails if the node doesn't exist - EROFS. 817 * - creating an existing directory read-only succeeds, otherwise EISDIR. 818 * - exclusive creates fail if the node already exists - EEXIST. 819 * - failure to create the snode for an existing device - ENOSYS. 820 */ 821 /*ARGSUSED2*/ 822 static int 823 devfs_create(struct vnode *dvp, char *nm, struct vattr *vap, vcexcl_t excl, 824 int mode, struct vnode **vpp, struct cred *cred, int flag) 825 { 826 int error; 827 struct vnode *vp; 828 829 dcmn_err2(("devfs_create %s\n", nm)); 830 error = dv_find(VTODV(dvp), nm, &vp, NULL, NULLVP, cred, 0); 831 if (error == 0) { 832 if (excl == EXCL) 833 error = EEXIST; 834 else if (vp->v_type == VDIR && (mode & VWRITE)) 835 error = EISDIR; 836 else 837 error = VOP_ACCESS(vp, mode, 0, cred); 838 839 if (error) { 840 VN_RELE(vp); 841 } else 842 *vpp = vp; 843 } else if (error == ENOENT) 844 error = EROFS; 845 846 return (error); 847 } 848 849 /* 850 * If DV_BUILD is set, we call into nexus driver to do a BUS_CONFIG_ALL. 851 * Otherwise, simply return cached dv_node's. Hotplug code always call 852 * devfs_clean() to invalid the dv_node cache. 853 */ 854 static int 855 devfs_readdir(struct vnode *dvp, struct uio *uiop, struct cred *cred, int *eofp) 856 { 857 struct dv_node *ddv, *dv; 858 struct dirent64 *de, *bufp; 859 offset_t diroff; 860 offset_t soff; 861 size_t reclen, movesz; 862 int error; 863 struct vattr va; 864 size_t bufsz; 865 int circ; 866 867 ddv = VTODV(dvp); 868 dcmn_err2(("devfs_readdir %s: offset %lld len %ld\n", 869 ddv->dv_name, uiop->uio_loffset, uiop->uio_iov->iov_len)); 870 ASSERT(ddv->dv_attr || ddv->dv_attrvp); 871 ASSERT(RW_READ_HELD(&ddv->dv_contents)); 872 873 if (uiop->uio_loffset >= MAXOFF_T) { 874 if (eofp) 875 *eofp = 1; 876 return (0); 877 } 878 879 if (uiop->uio_iovcnt != 1) 880 return (EINVAL); 881 882 if (dvp->v_type != VDIR) 883 return (ENOTDIR); 884 885 /* Load the initial contents */ 886 if (ddv->dv_flags & DV_BUILD) { 887 /* Lock the underlying devi structure */ 888 ndi_devi_enter(ddv->dv_devi, &circ); 889 if (!rw_tryupgrade(&ddv->dv_contents)) { 890 rw_exit(&ddv->dv_contents); 891 rw_enter(&ddv->dv_contents, RW_WRITER); 892 } 893 894 /* recheck and fill */ 895 if (ddv->dv_flags & DV_BUILD) 896 dv_filldir(ddv); 897 898 rw_downgrade(&ddv->dv_contents); 899 ndi_devi_exit(ddv->dv_devi, circ); 900 } 901 902 soff = uiop->uio_loffset; 903 bufsz = uiop->uio_iov->iov_len; 904 de = bufp = kmem_alloc(bufsz, KM_SLEEP); 905 movesz = 0; 906 dv = (struct dv_node *)-1; 907 908 /* 909 * Move as many entries into the uio structure as it will take. 910 * Special case "." and "..". 911 */ 912 diroff = 0; 913 if (soff == 0) { /* . */ 914 reclen = DIRENT64_RECLEN(strlen(".")); 915 if ((movesz + reclen) > bufsz) 916 goto full; 917 de->d_ino = (ino64_t)ddv->dv_ino; 918 de->d_off = (off64_t)diroff + 1; 919 de->d_reclen = (ushort_t)reclen; 920 921 /* use strncpy(9f) to zero out uninitialized bytes */ 922 923 (void) strncpy(de->d_name, ".", DIRENT64_NAMELEN(reclen)); 924 movesz += reclen; 925 de = (dirent64_t *)(intptr_t)((char *)de + reclen); 926 dcmn_err3(("devfs_readdir: A: diroff %lld, soff %lld: '%s' " 927 "reclen %lu\n", diroff, soff, ".", reclen)); 928 } 929 930 diroff++; 931 if (soff <= 1) { /* .. */ 932 reclen = DIRENT64_RECLEN(strlen("..")); 933 if ((movesz + reclen) > bufsz) 934 goto full; 935 de->d_ino = (ino64_t)ddv->dv_dotdot->dv_ino; 936 de->d_off = (off64_t)diroff + 1; 937 de->d_reclen = (ushort_t)reclen; 938 939 /* use strncpy(9f) to zero out uninitialized bytes */ 940 941 (void) strncpy(de->d_name, "..", DIRENT64_NAMELEN(reclen)); 942 movesz += reclen; 943 de = (dirent64_t *)(intptr_t)((char *)de + reclen); 944 dcmn_err3(("devfs_readdir: B: diroff %lld, soff %lld: '%s' " 945 "reclen %lu\n", diroff, soff, "..", reclen)); 946 } 947 948 diroff++; 949 for (dv = ddv->dv_dot; dv; dv = dv->dv_next, diroff++) { 950 /* 951 * although DDM_INTERNAL_PATH minor nodes are skipped for 952 * readdirs outside the kernel, they still occupy directory 953 * offsets 954 */ 955 if (diroff < soff || 956 ((dv->dv_flags & DV_INTERNAL) && (cred != kcred))) 957 continue; 958 959 reclen = DIRENT64_RECLEN(strlen(dv->dv_name)); 960 if ((movesz + reclen) > bufsz) { 961 dcmn_err3(("devfs_readdir: C: diroff " 962 "%lld, soff %lld: '%s' reclen %lu\n", 963 diroff, soff, dv->dv_name, reclen)); 964 goto full; 965 } 966 de->d_ino = (ino64_t)dv->dv_ino; 967 de->d_off = (off64_t)diroff + 1; 968 de->d_reclen = (ushort_t)reclen; 969 970 /* use strncpy(9f) to zero out uninitialized bytes */ 971 972 ASSERT(strlen(dv->dv_name) + 1 <= 973 DIRENT64_NAMELEN(reclen)); 974 (void) strncpy(de->d_name, dv->dv_name, 975 DIRENT64_NAMELEN(reclen)); 976 977 movesz += reclen; 978 de = (dirent64_t *)(intptr_t)((char *)de + reclen); 979 dcmn_err4(("devfs_readdir: D: diroff " 980 "%lld, soff %lld: '%s' reclen %lu\n", diroff, soff, 981 dv->dv_name, reclen)); 982 } 983 984 /* the buffer is full, or we exhausted everything */ 985 full: dcmn_err3(("devfs_readdir: moving %lu bytes: " 986 "diroff %lld, soff %lld, dv %p\n", 987 movesz, diroff, soff, (void *)dv)); 988 989 if ((movesz == 0) && dv) 990 error = EINVAL; /* cannot be represented */ 991 else { 992 error = uiomove(bufp, movesz, UIO_READ, uiop); 993 if (error == 0) { 994 if (eofp) 995 *eofp = dv ? 0 : 1; 996 uiop->uio_loffset = diroff; 997 } 998 999 va.va_mask = AT_ATIME; 1000 gethrestime(&va.va_atime); 1001 rw_exit(&ddv->dv_contents); 1002 (void) devfs_setattr(dvp, &va, 0, cred, NULL); 1003 rw_enter(&ddv->dv_contents, RW_READER); 1004 } 1005 1006 kmem_free(bufp, bufsz); 1007 return (error); 1008 } 1009 1010 /*ARGSUSED*/ 1011 static int 1012 devfs_fsync(struct vnode *vp, int syncflag, struct cred *cred) 1013 { 1014 /* 1015 * Message goes to console only. Otherwise, the message 1016 * causes devfs_fsync to be invoked again... infinite loop 1017 */ 1018 dcmn_err2(("devfs_fsync %s\n", VTODV(vp)->dv_name)); 1019 return (0); 1020 } 1021 1022 /* 1023 * Normally, we leave the dv_node here at count of 0. 1024 * The node will be destroyed when dv_cleandir() is called. 1025 * 1026 * Stale dv_node's are already unlinked from the fs tree, 1027 * so dv_cleandir() won't find them. We destroy such nodes 1028 * immediately. 1029 */ 1030 /*ARGSUSED1*/ 1031 static void 1032 devfs_inactive(struct vnode *vp, struct cred *cred) 1033 { 1034 int destroy; 1035 struct dv_node *dv = VTODV(vp); 1036 1037 dcmn_err2(("devfs_inactive: %s\n", dv->dv_name)); 1038 mutex_enter(&vp->v_lock); 1039 ASSERT(vp->v_count >= 1); 1040 --vp->v_count; 1041 destroy = (DV_STALE(dv) && vp->v_count == 0); 1042 mutex_exit(&vp->v_lock); 1043 1044 /* stale nodes cannot be rediscovered, destroy it here */ 1045 if (destroy) 1046 dv_destroy(dv, 0); 1047 } 1048 1049 /* 1050 * XXX Why do we need this? NFS mounted /dev directories? 1051 * XXX Talk to peter staubach about this. 1052 */ 1053 static int 1054 devfs_fid(struct vnode *vp, struct fid *fidp) 1055 { 1056 struct dv_node *dv = VTODV(vp); 1057 struct dv_fid *dv_fid; 1058 1059 if (fidp->fid_len < (sizeof (struct dv_fid) - sizeof (ushort_t))) { 1060 fidp->fid_len = sizeof (struct dv_fid) - sizeof (ushort_t); 1061 return (ENOSPC); 1062 } 1063 1064 dv_fid = (struct dv_fid *)fidp; 1065 bzero(dv_fid, sizeof (struct dv_fid)); 1066 dv_fid->dvfid_len = (int)sizeof (struct dv_fid) - sizeof (ushort_t); 1067 dv_fid->dvfid_ino = dv->dv_ino; 1068 /* dv_fid->dvfid_gen = dv->tn_gen; XXX ? */ 1069 1070 return (0); 1071 } 1072 1073 /* 1074 * This pair of routines bracket all VOP_READ, VOP_WRITE 1075 * and VOP_READDIR requests. The contents lock stops things 1076 * moving around while we're looking at them. 1077 * 1078 * Also used by file and record locking. 1079 */ 1080 /*ARGSUSED2*/ 1081 static int 1082 devfs_rwlock(struct vnode *vp, int write_flag, caller_context_t *ct) 1083 { 1084 dcmn_err2(("devfs_rwlock %s\n", VTODV(vp)->dv_name)); 1085 rw_enter(&VTODV(vp)->dv_contents, write_flag ? RW_WRITER : RW_READER); 1086 return (write_flag); 1087 } 1088 1089 /*ARGSUSED1*/ 1090 static void 1091 devfs_rwunlock(struct vnode *vp, int write_flag, caller_context_t *ct) 1092 { 1093 dcmn_err2(("devfs_rwunlock %s\n", VTODV(vp)->dv_name)); 1094 rw_exit(&VTODV(vp)->dv_contents); 1095 } 1096 1097 /* 1098 * XXX Should probably do a better job of computing the maximum 1099 * offset available in the directory. 1100 */ 1101 /*ARGSUSED1*/ 1102 static int 1103 devfs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp) 1104 { 1105 ASSERT(vp->v_type == VDIR); 1106 dcmn_err2(("devfs_seek %s\n", VTODV(vp)->dv_name)); 1107 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 1108 } 1109 1110 vnodeops_t *dv_vnodeops; 1111 1112 const fs_operation_def_t dv_vnodeops_template[] = { 1113 VOPNAME_OPEN, { .vop_open = devfs_open }, 1114 VOPNAME_CLOSE, { .vop_close = devfs_close }, 1115 VOPNAME_READ, { .vop_read = devfs_read }, 1116 VOPNAME_WRITE, { .vop_write = devfs_write }, 1117 VOPNAME_IOCTL, { .vop_ioctl = devfs_ioctl }, 1118 VOPNAME_GETATTR, { .vop_getattr = devfs_getattr }, 1119 VOPNAME_SETATTR, { .vop_setattr = devfs_setattr }, 1120 VOPNAME_ACCESS, { .vop_access = devfs_access }, 1121 VOPNAME_LOOKUP, { .vop_lookup = devfs_lookup }, 1122 VOPNAME_CREATE, { .vop_create = devfs_create }, 1123 VOPNAME_READDIR, { .vop_readdir = devfs_readdir }, 1124 VOPNAME_FSYNC, { .vop_fsync = devfs_fsync }, 1125 VOPNAME_INACTIVE, { .vop_inactive = devfs_inactive }, 1126 VOPNAME_FID, { .vop_fid = devfs_fid }, 1127 VOPNAME_RWLOCK, { .vop_rwlock = devfs_rwlock }, 1128 VOPNAME_RWUNLOCK, { .vop_rwunlock = devfs_rwunlock }, 1129 VOPNAME_SEEK, { .vop_seek = devfs_seek }, 1130 VOPNAME_PATHCONF, { .vop_pathconf = devfs_pathconf }, 1131 VOPNAME_DISPOSE, { .error = fs_error }, 1132 VOPNAME_SETSECATTR, { .vop_setsecattr = devfs_setsecattr }, 1133 VOPNAME_GETSECATTR, { .vop_getsecattr = devfs_getsecattr }, 1134 NULL, NULL 1135 }; 1136