xref: /illumos-gate/usr/src/uts/common/fs/devfs/devfs_subr.c (revision d501bbfebe95a313ee5e78368177b1667a71c628)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * miscellaneous routines for the devfs
28  */
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/t_lock.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/user.h>
36 #include <sys/time.h>
37 #include <sys/vfs.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/fcntl.h>
41 #include <sys/flock.h>
42 #include <sys/kmem.h>
43 #include <sys/uio.h>
44 #include <sys/errno.h>
45 #include <sys/stat.h>
46 #include <sys/cred.h>
47 #include <sys/dirent.h>
48 #include <sys/pathname.h>
49 #include <sys/cmn_err.h>
50 #include <sys/debug.h>
51 #include <sys/modctl.h>
52 #include <fs/fs_subr.h>
53 #include <sys/fs/dv_node.h>
54 #include <sys/fs/snode.h>
55 #include <sys/sunndi.h>
56 #include <sys/sunmdi.h>
57 #include <sys/conf.h>
58 
59 #ifdef DEBUG
60 int devfs_debug = 0x0;
61 #endif
62 
63 const char	dvnm[] = "devfs";
64 kmem_cache_t	*dv_node_cache;	/* dv_node cache */
65 
66 /*
67  * The devfs_clean_key is taken during a devfs_clean operation: it is used to
68  * prevent unnecessary code execution and for detection of potential deadlocks.
69  */
70 uint_t		devfs_clean_key;
71 
72 struct dv_node *dvroot;
73 
74 /* prototype memory vattrs */
75 vattr_t dv_vattr_dir = {
76 	AT_TYPE|AT_MODE|AT_UID|AT_GID, 		/* va_mask */
77 	VDIR,					/* va_type */
78 	DV_DIRMODE_DEFAULT,			/* va_mode */
79 	DV_UID_DEFAULT,				/* va_uid */
80 	DV_GID_DEFAULT,				/* va_gid */
81 	0,					/* va_fsid; */
82 	0,					/* va_nodeid; */
83 	0,					/* va_nlink; */
84 	0,					/* va_size; */
85 	0,					/* va_atime; */
86 	0,					/* va_mtime; */
87 	0,					/* va_ctime; */
88 	0,					/* va_rdev; */
89 	0,					/* va_blksize; */
90 	0,					/* va_nblocks; */
91 	0,					/* va_seq; */
92 };
93 
94 vattr_t dv_vattr_file = {
95 	AT_TYPE|AT_MODE|AT_SIZE|AT_UID|AT_GID|AT_RDEV,	/* va_mask */
96 	0,					/* va_type */
97 	DV_DEVMODE_DEFAULT,			/* va_mode */
98 	DV_UID_DEFAULT,				/* va_uid */
99 	DV_GID_DEFAULT,				/* va_gid */
100 	0,					/* va_fsid; */
101 	0,					/* va_nodeid; */
102 	0,					/* va_nlink; */
103 	0,					/* va_size; */
104 	0,					/* va_atime; */
105 	0,					/* va_mtime; */
106 	0,					/* va_ctime; */
107 	0,					/* va_rdev; */
108 	0,					/* va_blksize; */
109 	0,					/* va_nblocks; */
110 	0,					/* va_seq; */
111 };
112 
113 vattr_t dv_vattr_priv = {
114 	AT_TYPE|AT_MODE|AT_SIZE|AT_UID|AT_GID|AT_RDEV,	/* va_mask */
115 	0,					/* va_type */
116 	DV_DEVMODE_PRIV,			/* va_mode */
117 	DV_UID_DEFAULT,				/* va_uid */
118 	DV_GID_DEFAULT,				/* va_gid */
119 	0,					/* va_fsid; */
120 	0,					/* va_nodeid; */
121 	0,					/* va_nlink; */
122 	0,					/* va_size; */
123 	0,					/* va_atime; */
124 	0,					/* va_mtime; */
125 	0,					/* va_ctime; */
126 	0,					/* va_rdev; */
127 	0,					/* va_blksize; */
128 	0,					/* va_nblocks; */
129 	0,					/* va_seq; */
130 };
131 
132 extern dev_info_t	*clone_dip;
133 extern major_t		clone_major;
134 extern struct dev_ops	*ddi_hold_driver(major_t);
135 
136 /* dv_node node constructor for kmem cache */
137 static int
138 i_dv_node_ctor(void *buf, void *cfarg, int flag)
139 {
140 	_NOTE(ARGUNUSED(cfarg, flag))
141 	struct dv_node	*dv = (struct dv_node *)buf;
142 	struct vnode	*vp;
143 
144 	bzero(buf, sizeof (struct dv_node));
145 	vp = dv->dv_vnode = vn_alloc(flag);
146 	if (vp == NULL) {
147 		return (-1);
148 	}
149 	vp->v_data = dv;
150 	rw_init(&dv->dv_contents, NULL, RW_DEFAULT, NULL);
151 	return (0);
152 }
153 
154 /* dv_node node destructor for kmem cache */
155 static void
156 i_dv_node_dtor(void *buf, void *arg)
157 {
158 	_NOTE(ARGUNUSED(arg))
159 	struct dv_node	*dv = (struct dv_node *)buf;
160 	struct vnode	*vp = DVTOV(dv);
161 
162 	rw_destroy(&dv->dv_contents);
163 	vn_invalid(vp);
164 	vn_free(vp);
165 }
166 
167 
168 /* initialize dv_node node cache */
169 void
170 dv_node_cache_init()
171 {
172 	ASSERT(dv_node_cache == NULL);
173 	dv_node_cache = kmem_cache_create("dv_node_cache",
174 	    sizeof (struct dv_node), 0, i_dv_node_ctor, i_dv_node_dtor,
175 	    NULL, NULL, NULL, 0);
176 
177 	tsd_create(&devfs_clean_key, NULL);
178 }
179 
180 /* destroy dv_node node cache */
181 void
182 dv_node_cache_fini()
183 {
184 	ASSERT(dv_node_cache != NULL);
185 	kmem_cache_destroy(dv_node_cache);
186 	dv_node_cache = NULL;
187 
188 	tsd_destroy(&devfs_clean_key);
189 }
190 
191 /*
192  * dv_mkino - Generate a unique inode number for devfs nodes.
193  *
194  * Although ino_t is 64 bits, the inode number is truncated to 32 bits for 32
195  * bit non-LARGEFILE applications. This means that there is a requirement to
196  * maintain the inode number as a 32 bit value or applications will have
197  * stat(2) calls fail with EOVERFLOW.  We form a 32 bit inode number from the
198  * dev_t. but if the minor number is larger than L_MAXMIN32 we fold extra minor
199  *
200  * To generate inode numbers for directories, we assume that we will never use
201  * more than half the major space - this allows for ~8190 drivers. We use this
202  * upper major number space to allocate inode numbers for directories by
203  * encoding the major and instance into this space.
204  *
205  * We also skew the result so that inode 2 is reserved for the root of the file
206  * system.
207  *
208  * As part of the future support for 64-bit dev_t APIs, the upper minor bits
209  * should be folded into the high inode bits by adding the following code
210  * after "ino |= 1":
211  *
212  * #if (L_BITSMINOR32 != L_BITSMINOR)
213  *		|* fold overflow minor bits into high bits of inode number *|
214  *		ino |= ((ino_t)(minor >> L_BITSMINOR32)) << L_BITSMINOR;
215  * #endif |* (L_BITSMINOR32 != L_BITSMINOR) *|
216  *
217  * This way only applications that use devices that overflow their minor
218  * space will have an application level impact.
219  */
220 static ino_t
221 dv_mkino(dev_info_t *devi, vtype_t typ, dev_t dev)
222 {
223 	major_t		major;
224 	minor_t		minor;
225 	ino_t		ino;
226 	static int	warn;
227 
228 	if (typ == VDIR) {
229 		major = ((L_MAXMAJ32 + 1) >> 1) + DEVI(devi)->devi_major;
230 		minor = ddi_get_instance(devi);
231 
232 		/* makedevice32 in high half of major number space */
233 		ino = (ino_t)((major << L_BITSMINOR32) | (minor & L_MAXMIN32));
234 
235 		major = DEVI(devi)->devi_major;
236 	} else {
237 		major = getmajor(dev);
238 		minor = getminor(dev);
239 
240 		/* makedevice32 */
241 		ino = (ino_t)((major << L_BITSMINOR32) | (minor & L_MAXMIN32));
242 
243 		/* make ino for VCHR different than VBLK */
244 		ino <<= 1;
245 		if (typ == VCHR)
246 			ino |= 1;
247 	}
248 
249 	ino += DV_ROOTINO + 1;		/* skew */
250 
251 	/*
252 	 * diagnose things a little early because adding the skew to a large
253 	 * minor number could roll over the major.
254 	 */
255 	if ((major >= (L_MAXMAJ32 >> 1)) && (warn == 0)) {
256 		warn = 1;
257 		cmn_err(CE_WARN, "%s: inode numbers are not unique", dvnm);
258 	}
259 
260 	return (ino);
261 }
262 
263 /*
264  * Compare two nodes lexographically to balance avl tree
265  */
266 static int
267 dv_compare_nodes(const struct dv_node *dv1, const struct dv_node *dv2)
268 {
269 	int	rv;
270 
271 	if ((rv = strcmp(dv1->dv_name, dv2->dv_name)) == 0)
272 		return (0);
273 	return ((rv < 0) ? -1 : 1);
274 }
275 
276 /*
277  * dv_mkroot
278  *
279  * Build the first VDIR dv_node.
280  */
281 struct dv_node *
282 dv_mkroot(struct vfs *vfsp, dev_t devfsdev)
283 {
284 	struct dv_node	*dv;
285 	struct vnode	*vp;
286 
287 	ASSERT(ddi_root_node() != NULL);
288 	ASSERT(dv_node_cache != NULL);
289 
290 	dcmn_err3(("dv_mkroot\n"));
291 	dv = kmem_cache_alloc(dv_node_cache, KM_SLEEP);
292 	vp = DVTOV(dv);
293 	vn_reinit(vp);
294 	vp->v_flag = VROOT;
295 	vp->v_vfsp = vfsp;
296 	vp->v_type = VDIR;
297 	vp->v_rdev = devfsdev;
298 	vn_setops(vp, dv_vnodeops);
299 	vn_exists(vp);
300 
301 	dvroot = dv;
302 
303 	dv->dv_name = NULL;		/* not needed */
304 	dv->dv_namelen = 0;
305 
306 	dv->dv_devi = ddi_root_node();
307 
308 	dv->dv_ino = DV_ROOTINO;
309 	dv->dv_nlink = 2;		/* name + . (no dv_insert) */
310 	dv->dv_dotdot = dv;		/* .. == self */
311 	dv->dv_attrvp = NULLVP;
312 	dv->dv_attr = NULL;
313 	dv->dv_flags = DV_BUILD;
314 	dv->dv_priv = NULL;
315 	dv->dv_busy = 0;
316 	dv->dv_dflt_mode = 0;
317 
318 	avl_create(&dv->dv_entries,
319 	    (int (*)(const void *, const void *))dv_compare_nodes,
320 	    sizeof (struct dv_node), offsetof(struct dv_node, dv_avllink));
321 
322 	return (dv);
323 }
324 
325 /*
326  * dv_mkdir
327  *
328  * Given an probed or attached nexus node, create a VDIR dv_node.
329  * No dv_attrvp is created at this point.
330  */
331 struct dv_node *
332 dv_mkdir(struct dv_node *ddv, dev_info_t *devi, char *nm)
333 {
334 	struct dv_node	*dv;
335 	struct vnode	*vp;
336 	size_t		nmlen;
337 
338 	ASSERT((devi));
339 	dcmn_err4(("dv_mkdir: %s\n", nm));
340 
341 	dv = kmem_cache_alloc(dv_node_cache, KM_SLEEP);
342 	nmlen = strlen(nm) + 1;
343 	dv->dv_name = kmem_alloc(nmlen, KM_SLEEP);
344 	bcopy(nm, dv->dv_name, nmlen);
345 	dv->dv_namelen = nmlen - 1;	/* '\0' not included */
346 
347 	vp = DVTOV(dv);
348 	vn_reinit(vp);
349 	vp->v_flag = 0;
350 	vp->v_vfsp = DVTOV(ddv)->v_vfsp;
351 	vp->v_type = VDIR;
352 	vp->v_rdev = DVTOV(ddv)->v_rdev;
353 	vn_setops(vp, vn_getops(DVTOV(ddv)));
354 	vn_exists(vp);
355 
356 	dv->dv_devi = devi;
357 	ndi_hold_devi(devi);
358 
359 	dv->dv_ino = dv_mkino(devi, VDIR, NODEV);
360 	dv->dv_nlink = 0;		/* updated on insert */
361 	dv->dv_dotdot = ddv;
362 	dv->dv_attrvp = NULLVP;
363 	dv->dv_attr = NULL;
364 	dv->dv_flags = DV_BUILD;
365 	dv->dv_priv = NULL;
366 	dv->dv_busy = 0;
367 	dv->dv_dflt_mode = 0;
368 
369 	avl_create(&dv->dv_entries,
370 	    (int (*)(const void *, const void *))dv_compare_nodes,
371 	    sizeof (struct dv_node), offsetof(struct dv_node, dv_avllink));
372 
373 	return (dv);
374 }
375 
376 /*
377  * dv_mknod
378  *
379  * Given a minor node, create a VCHR or VBLK dv_node.
380  * No dv_attrvp is created at this point.
381  */
382 static struct dv_node *
383 dv_mknod(struct dv_node *ddv, dev_info_t *devi, char *nm,
384 	struct ddi_minor_data *dmd)
385 {
386 	struct dv_node	*dv;
387 	struct vnode	*vp;
388 	size_t		nmlen;
389 
390 	dcmn_err4(("dv_mknod: %s\n", nm));
391 
392 	dv = kmem_cache_alloc(dv_node_cache, KM_SLEEP);
393 	nmlen = strlen(nm) + 1;
394 	dv->dv_name = kmem_alloc(nmlen, KM_SLEEP);
395 	bcopy(nm, dv->dv_name, nmlen);
396 	dv->dv_namelen = nmlen - 1;	/* no '\0' */
397 
398 	vp = DVTOV(dv);
399 	vn_reinit(vp);
400 	vp->v_flag = 0;
401 	vp->v_vfsp = DVTOV(ddv)->v_vfsp;
402 	vp->v_type = dmd->ddm_spec_type == S_IFCHR ? VCHR : VBLK;
403 	vp->v_rdev = dmd->ddm_dev;
404 	vn_setops(vp, vn_getops(DVTOV(ddv)));
405 	vn_exists(vp);
406 
407 	/* increment dev_ref with devi_lock held */
408 	ASSERT(DEVI_BUSY_OWNED(devi));
409 	mutex_enter(&DEVI(devi)->devi_lock);
410 	dv->dv_devi = devi;
411 	DEVI(devi)->devi_ref++;		/* ndi_hold_devi(dip) */
412 	mutex_exit(&DEVI(devi)->devi_lock);
413 
414 	dv->dv_ino = dv_mkino(devi, vp->v_type, vp->v_rdev);
415 	dv->dv_nlink = 0;		/* updated on insert */
416 	dv->dv_dotdot = ddv;
417 	dv->dv_attrvp = NULLVP;
418 	dv->dv_attr = NULL;
419 	dv->dv_flags = 0;
420 
421 	if (dmd->type == DDM_INTERNAL_PATH)
422 		dv->dv_flags |= DV_INTERNAL;
423 	if (dmd->ddm_flags & DM_NO_FSPERM)
424 		dv->dv_flags |= DV_NO_FSPERM;
425 
426 	dv->dv_priv = dmd->ddm_node_priv;
427 	if (dv->dv_priv)
428 		dphold(dv->dv_priv);
429 
430 	/*
431 	 * Minors created with ddi_create_priv_minor_node can specify
432 	 * a default mode permission other than the devfs default.
433 	 */
434 	if (dv->dv_priv || dv->dv_flags & DV_NO_FSPERM) {
435 		dcmn_err5(("%s: dv_mknod default priv mode 0%o\n",
436 		    dv->dv_name, dmd->ddm_priv_mode));
437 		dv->dv_flags |= DV_DFLT_MODE;
438 		dv->dv_dflt_mode = dmd->ddm_priv_mode & S_IAMB;
439 	}
440 
441 	return (dv);
442 }
443 
444 /*
445  * dv_destroy
446  *
447  * Destroy what we created in dv_mkdir or dv_mknod.
448  * In the case of a *referenced* directory, do nothing.
449  */
450 void
451 dv_destroy(struct dv_node *dv, uint_t flags)
452 {
453 	vnode_t *vp = DVTOV(dv);
454 	ASSERT(dv->dv_nlink == 0);		/* no references */
455 
456 	dcmn_err4(("dv_destroy: %s\n", dv->dv_name));
457 
458 	/*
459 	 * We may be asked to unlink referenced directories.
460 	 * In this case, there is nothing to be done.
461 	 * The eventual memory free will be done in
462 	 * devfs_inactive.
463 	 */
464 	if (vp->v_count != 0) {
465 		ASSERT(vp->v_type == VDIR);
466 		ASSERT(flags & DV_CLEAN_FORCE);
467 		ASSERT(DV_STALE(dv));
468 		return;
469 	}
470 
471 	if (vp->v_type == VDIR) {
472 		ASSERT(DV_FIRST_ENTRY(dv) == NULL);
473 		avl_destroy(&dv->dv_entries);
474 	}
475 
476 	if (dv->dv_attrvp != NULLVP)
477 		VN_RELE(dv->dv_attrvp);
478 	if (dv->dv_attr != NULL)
479 		kmem_free(dv->dv_attr, sizeof (struct vattr));
480 	if (dv->dv_name != NULL)
481 		kmem_free(dv->dv_name, dv->dv_namelen + 1);
482 	if (dv->dv_devi != NULL) {
483 		ndi_rele_devi(dv->dv_devi);
484 	}
485 	if (dv->dv_priv != NULL) {
486 		dpfree(dv->dv_priv);
487 	}
488 
489 	kmem_cache_free(dv_node_cache, dv);
490 }
491 
492 /*
493  * Find and hold dv_node by name
494  */
495 static struct dv_node *
496 dv_findbyname(struct dv_node *ddv, char *nm)
497 {
498 	struct dv_node  *dv;
499 	avl_index_t	where;
500 	struct dv_node	dvtmp;
501 
502 	ASSERT(RW_LOCK_HELD(&ddv->dv_contents));
503 	dcmn_err3(("dv_findbyname: %s\n", nm));
504 
505 	dvtmp.dv_name = nm;
506 	dv = avl_find(&ddv->dv_entries, &dvtmp, &where);
507 	if (dv) {
508 		ASSERT(dv->dv_dotdot == ddv);
509 		ASSERT(strcmp(dv->dv_name, nm) == 0);
510 		VN_HOLD(DVTOV(dv));
511 		return (dv);
512 	}
513 	return (NULL);
514 }
515 
516 /*
517  * Inserts a new dv_node in a parent directory
518  */
519 void
520 dv_insert(struct dv_node *ddv, struct dv_node *dv)
521 {
522 	avl_index_t	where;
523 
524 	ASSERT(RW_WRITE_HELD(&ddv->dv_contents));
525 	ASSERT(DVTOV(ddv)->v_type == VDIR);
526 	ASSERT(ddv->dv_nlink >= 2);
527 	ASSERT(dv->dv_nlink == 0);
528 
529 	dcmn_err3(("dv_insert: %s\n", dv->dv_name));
530 
531 	dv->dv_dotdot = ddv;
532 	if (DVTOV(dv)->v_type == VDIR) {
533 		ddv->dv_nlink++;	/* .. to containing directory */
534 		dv->dv_nlink = 2;	/* name + . */
535 	} else {
536 		dv->dv_nlink = 1;	/* name */
537 	}
538 
539 	/* enter node in the avl tree */
540 	VERIFY(avl_find(&ddv->dv_entries, dv, &where) == NULL);
541 	avl_insert(&ddv->dv_entries, dv, where);
542 }
543 
544 /*
545  * Unlink a dv_node from a perent directory
546  */
547 void
548 dv_unlink(struct dv_node *ddv, struct dv_node *dv)
549 {
550 	/* verify linkage of arguments */
551 	ASSERT(ddv && dv);
552 	ASSERT(dv->dv_dotdot == ddv);
553 	ASSERT(RW_WRITE_HELD(&ddv->dv_contents));
554 	ASSERT(DVTOV(ddv)->v_type == VDIR);
555 
556 	dcmn_err3(("dv_unlink: %s\n", dv->dv_name));
557 
558 	if (DVTOV(dv)->v_type == VDIR) {
559 		ddv->dv_nlink--;	/* .. to containing directory */
560 		dv->dv_nlink -= 2;	/* name + . */
561 	} else {
562 		dv->dv_nlink -= 1;	/* name */
563 	}
564 	ASSERT(ddv->dv_nlink >= 2);
565 	ASSERT(dv->dv_nlink == 0);
566 
567 	dv->dv_dotdot = NULL;
568 
569 	/* remove from avl tree */
570 	avl_remove(&ddv->dv_entries, dv);
571 }
572 
573 /*
574  * Merge devfs node specific information into an attribute structure.
575  *
576  * NOTE: specfs provides ATIME,MTIME,CTIME,SIZE,BLKSIZE,NBLOCKS on leaf node.
577  */
578 void
579 dv_vattr_merge(struct dv_node *dv, struct vattr *vap)
580 {
581 	struct vnode	*vp = DVTOV(dv);
582 
583 	vap->va_nodeid = dv->dv_ino;
584 	vap->va_nlink = dv->dv_nlink;
585 
586 	if (vp->v_type == VDIR) {
587 		vap->va_rdev = 0;
588 		vap->va_fsid = vp->v_rdev;
589 	} else {
590 		vap->va_rdev = vp->v_rdev;
591 		vap->va_fsid = DVTOV(dv->dv_dotdot)->v_rdev;
592 		vap->va_type = vp->v_type;
593 		/* don't trust the shadow file type */
594 		vap->va_mode &= ~S_IFMT;
595 		if (vap->va_type == VCHR)
596 			vap->va_mode |= S_IFCHR;
597 		else
598 			vap->va_mode |= S_IFBLK;
599 	}
600 }
601 
602 /*
603  * Get default device permission by consulting rules in
604  * privilege specification in minor node and /etc/minor_perm.
605  *
606  * This function is called from the devname filesystem to get default
607  * permissions for a device exported to a non-global zone.
608  */
609 void
610 devfs_get_defattr(struct vnode *vp, struct vattr *vap, int *no_fs_perm)
611 {
612 	mperm_t		mp;
613 	struct dv_node	*dv;
614 
615 	/* If vp isn't a dv_node, return something sensible */
616 	if (!vn_matchops(vp, dv_vnodeops)) {
617 		if (no_fs_perm)
618 			*no_fs_perm = 0;
619 		*vap = dv_vattr_file;
620 		return;
621 	}
622 
623 	/*
624 	 * For minors not created by ddi_create_priv_minor_node(),
625 	 * use devfs defaults.
626 	 */
627 	dv = VTODV(vp);
628 	if (vp->v_type == VDIR) {
629 		*vap = dv_vattr_dir;
630 	} else if (dv->dv_flags & DV_NO_FSPERM) {
631 		if (no_fs_perm)
632 			*no_fs_perm = 1;
633 		*vap = dv_vattr_priv;
634 	} else {
635 		/*
636 		 * look up perm bits from minor_perm
637 		 */
638 		*vap = dv_vattr_file;
639 		if (dev_minorperm(dv->dv_devi, dv->dv_name, &mp) == 0) {
640 			VATTR_MP_MERGE((*vap), mp);
641 			dcmn_err5(("%s: minor perm mode 0%o\n",
642 			    dv->dv_name, vap->va_mode));
643 		} else if (dv->dv_flags & DV_DFLT_MODE) {
644 			ASSERT((dv->dv_dflt_mode & ~S_IAMB) == 0);
645 			vap->va_mode &= ~S_IAMB;
646 			vap->va_mode |= dv->dv_dflt_mode;
647 			dcmn_err5(("%s: priv mode 0%o\n",
648 			    dv->dv_name, vap->va_mode));
649 		}
650 	}
651 }
652 
653 /*
654  * dv_shadow_node
655  *
656  * Given a VDIR dv_node, find/create the associated VDIR
657  * node in the shadow attribute filesystem.
658  *
659  * Given a VCHR/VBLK dv_node, find the associated VREG
660  * node in the shadow attribute filesystem.  These nodes
661  * are only created to persist non-default attributes.
662  * Lack of such a node implies the default permissions
663  * are sufficient.
664  *
665  * Managing the attribute file entries is slightly tricky (mostly
666  * because we can't intercept VN_HOLD and VN_RELE except on the last
667  * release).
668  *
669  * We assert that if the dv_attrvp pointer is non-NULL, it points
670  * to a singly-held (by us) vnode that represents the shadow entry
671  * in the underlying filesystem.  To avoid store-ordering issues,
672  * we assert that the pointer can only be tested under the dv_contents
673  * READERS lock.
674  */
675 
676 void
677 dv_shadow_node(
678 	struct vnode *dvp,	/* devfs parent directory vnode */
679 	char *nm,		/* name component */
680 	struct vnode *vp,	/* devfs vnode */
681 	struct pathname *pnp,	/* the path .. */
682 	struct vnode *rdir,	/* the root .. */
683 	struct cred *cred,	/* who's asking? */
684 	int flags)		/* optionally create shadow node */
685 {
686 	struct dv_node	*dv;	/* dv_node of named directory */
687 	struct vnode	*rdvp;	/* shadow parent directory vnode */
688 	struct vnode	*rvp;	/* shadow vnode */
689 	struct vnode	*rrvp;	/* realvp of shadow vnode */
690 	struct vattr	vattr;
691 	int		create_tried;
692 	int		error;
693 
694 	ASSERT(vp->v_type == VDIR || vp->v_type == VCHR || vp->v_type == VBLK);
695 	dv = VTODV(vp);
696 	dcmn_err3(("dv_shadow_node: name %s attr %p\n",
697 	    nm, (void *)dv->dv_attrvp));
698 
699 	if ((flags & DV_SHADOW_WRITE_HELD) == 0) {
700 		ASSERT(RW_READ_HELD(&dv->dv_contents));
701 		if (dv->dv_attrvp != NULLVP)
702 			return;
703 		if (!rw_tryupgrade(&dv->dv_contents)) {
704 			rw_exit(&dv->dv_contents);
705 			rw_enter(&dv->dv_contents, RW_WRITER);
706 			if (dv->dv_attrvp != NULLVP) {
707 				rw_downgrade(&dv->dv_contents);
708 				return;
709 			}
710 		}
711 	} else {
712 		ASSERT(RW_WRITE_HELD(&dv->dv_contents));
713 		if (dv->dv_attrvp != NULLVP)
714 			return;
715 	}
716 
717 	ASSERT(RW_WRITE_HELD(&dv->dv_contents) && dv->dv_attrvp == NULL);
718 
719 	rdvp = VTODV(dvp)->dv_attrvp;
720 	create_tried = 0;
721 lookup:
722 	if (rdvp && (dv->dv_flags & DV_NO_FSPERM) == 0) {
723 		error = VOP_LOOKUP(rdvp, nm, &rvp, pnp, LOOKUP_DIR, rdir, cred,
724 		    NULL, NULL, NULL);
725 
726 		/* factor out the snode since we only want the attribute node */
727 		if ((error == 0) && (VOP_REALVP(rvp, &rrvp, NULL) == 0)) {
728 			VN_HOLD(rrvp);
729 			VN_RELE(rvp);
730 			rvp = rrvp;
731 		}
732 	} else
733 		error = EROFS;		/* no parent, no entry */
734 
735 	/*
736 	 * All we want is the permissions (and maybe ACLs and
737 	 * extended attributes), and we want to perform lookups
738 	 * by name.  Drivers occasionally change their minor
739 	 * number space.  If something changes, there's no
740 	 * much we can do about it here.
741 	 */
742 
743 	/* The shadow node checks out. We are done */
744 	if (error == 0) {
745 		dv->dv_attrvp = rvp;	/* with one hold */
746 
747 		/*
748 		 * Determine if we have non-trivial ACLs on this node.
749 		 * It is not necessary to VOP_RWLOCK since fs_acl_nontrivial
750 		 * only does VOP_GETSECATTR.
751 		 */
752 		dv->dv_flags &= ~DV_ACL;
753 
754 		if (fs_acl_nontrivial(rvp, cred))
755 			dv->dv_flags |= DV_ACL;
756 
757 		/*
758 		 * If we have synced out the memory attributes, free
759 		 * them and switch back to using the persistent store.
760 		 */
761 		if (rvp && dv->dv_attr) {
762 			kmem_free(dv->dv_attr, sizeof (struct vattr));
763 			dv->dv_attr = NULL;
764 		}
765 		if ((flags & DV_SHADOW_WRITE_HELD) == 0)
766 			rw_downgrade(&dv->dv_contents);
767 		ASSERT(RW_LOCK_HELD(&dv->dv_contents));
768 		return;
769 	}
770 
771 	/*
772 	 * Failed to find attribute in persistent backing store,
773 	 * get default permission bits.
774 	 */
775 	devfs_get_defattr(vp, &vattr, NULL);
776 
777 	dv_vattr_merge(dv, &vattr);
778 	gethrestime(&vattr.va_atime);
779 	vattr.va_mtime = vattr.va_atime;
780 	vattr.va_ctime = vattr.va_atime;
781 
782 	/*
783 	 * Try to create shadow dir. This is necessary in case
784 	 * we need to create a shadow leaf node later, when user
785 	 * executes chmod.
786 	 */
787 	if ((error == ENOENT) && !create_tried) {
788 		switch (vp->v_type) {
789 		case VDIR:
790 			error = VOP_MKDIR(rdvp, nm, &vattr, &rvp, kcred,
791 			    NULL, 0, NULL);
792 			dsysdebug(error, ("vop_mkdir %s %s %d\n",
793 			    VTODV(dvp)->dv_name, nm, error));
794 			create_tried = 1;
795 			break;
796 
797 		case VCHR:
798 		case VBLK:
799 			/*
800 			 * Shadow nodes are only created on demand
801 			 */
802 			if (flags & DV_SHADOW_CREATE) {
803 				error = VOP_CREATE(rdvp, nm, &vattr, NONEXCL,
804 				    VREAD|VWRITE, &rvp, kcred, 0, NULL, NULL);
805 				dsysdebug(error, ("vop_create %s %s %d\n",
806 				    VTODV(dvp)->dv_name, nm, error));
807 				create_tried = 1;
808 			}
809 			break;
810 
811 		default:
812 			cmn_err(CE_PANIC, "devfs: %s: create", dvnm);
813 			/*NOTREACHED*/
814 		}
815 
816 		if (create_tried &&
817 		    (error == 0) || (error == EEXIST)) {
818 			VN_RELE(rvp);
819 			goto lookup;
820 		}
821 	}
822 
823 	/* Store attribute in memory */
824 	if (dv->dv_attr == NULL) {
825 		dv->dv_attr = kmem_alloc(sizeof (struct vattr), KM_SLEEP);
826 		*(dv->dv_attr) = vattr;
827 	}
828 
829 	if ((flags & DV_SHADOW_WRITE_HELD) == 0)
830 		rw_downgrade(&dv->dv_contents);
831 	ASSERT(RW_LOCK_HELD(&dv->dv_contents));
832 }
833 
834 /*
835  * Given a devinfo node, and a name, returns the appropriate
836  * minor information for that named node, if it exists.
837  */
838 static int
839 dv_find_leafnode(dev_info_t *devi, char *minor_nm, struct ddi_minor_data *r_mi)
840 {
841 	struct ddi_minor_data	*dmd;
842 
843 	ASSERT(i_ddi_devi_attached(devi));
844 
845 	dcmn_err3(("dv_find_leafnode: %s\n", minor_nm));
846 	ASSERT(DEVI_BUSY_OWNED(devi));
847 	for (dmd = DEVI(devi)->devi_minor; dmd; dmd = dmd->next) {
848 
849 		/*
850 		 * Skip alias nodes and nodes without a name.
851 		 */
852 		if ((dmd->type == DDM_ALIAS) || (dmd->ddm_name == NULL))
853 			continue;
854 
855 		dcmn_err4(("dv_find_leafnode: (%s,%s)\n",
856 		    minor_nm, dmd->ddm_name));
857 		if (strcmp(minor_nm, dmd->ddm_name) == 0) {
858 			r_mi->ddm_dev = dmd->ddm_dev;
859 			r_mi->ddm_spec_type = dmd->ddm_spec_type;
860 			r_mi->type = dmd->type;
861 			r_mi->ddm_flags = dmd->ddm_flags;
862 			r_mi->ddm_node_priv = dmd->ddm_node_priv;
863 			r_mi->ddm_priv_mode = dmd->ddm_priv_mode;
864 			if (r_mi->ddm_node_priv)
865 				dphold(r_mi->ddm_node_priv);
866 			return (0);
867 		}
868 	}
869 
870 	dcmn_err3(("dv_find_leafnode: %s: ENOENT\n", minor_nm));
871 	return (ENOENT);
872 }
873 
874 /*
875  * Special handling for clone node:
876  *	Clone minor name is a driver name, the minor number will
877  *	be the major number of the driver. There is no minor
878  *	node under the clone driver, so we'll manufacture the
879  *	dev_t.
880  */
881 static struct dv_node *
882 dv_clone_mknod(struct dv_node *ddv, char *drvname)
883 {
884 	major_t			major;
885 	struct dv_node		*dvp;
886 	char			*devnm;
887 	struct ddi_minor_data	*dmd;
888 
889 	/*
890 	 * Make sure drvname is a STREAMS driver. We load the driver,
891 	 * but don't attach to any instances. This makes stat(2)
892 	 * relatively cheap.
893 	 */
894 	major = ddi_name_to_major(drvname);
895 	if (major == DDI_MAJOR_T_NONE)
896 		return (NULL);
897 
898 	if (ddi_hold_driver(major) == NULL)
899 		return (NULL);
900 
901 	if (STREAMSTAB(major) == NULL) {
902 		ddi_rele_driver(major);
903 		return (NULL);
904 	}
905 
906 	ddi_rele_driver(major);
907 	devnm = kmem_alloc(MAXNAMELEN, KM_SLEEP);
908 	(void) snprintf(devnm, MAXNAMELEN, "clone@0:%s", drvname);
909 	dmd = kmem_zalloc(sizeof (*dmd), KM_SLEEP);
910 	dmd->ddm_dev = makedevice(clone_major, (minor_t)major);
911 	dmd->ddm_spec_type = S_IFCHR;
912 	dvp = dv_mknod(ddv, clone_dip, devnm, dmd);
913 	kmem_free(dmd, sizeof (*dmd));
914 	kmem_free(devnm, MAXNAMELEN);
915 	return (dvp);
916 }
917 
918 /*
919  * Given the parent directory node, and a name in it, returns the
920  * named dv_node to the caller (as a vnode).
921  *
922  * (We need pnp and rdir for doing shadow lookups; they can be NULL)
923  */
924 int
925 dv_find(struct dv_node *ddv, char *nm, struct vnode **vpp, struct pathname *pnp,
926 	struct vnode *rdir, struct cred *cred, uint_t ndi_flags)
927 {
928 	extern int isminiroot;	/* see modctl.c */
929 
930 	int			circ;
931 	int			rv = 0, was_busy = 0, nmlen, write_held = 0;
932 	struct vnode		*vp;
933 	struct dv_node		*dv, *dup;
934 	dev_info_t		*pdevi, *devi = NULL;
935 	char			*mnm;
936 	struct ddi_minor_data	*dmd;
937 
938 	dcmn_err3(("dv_find %s\n", nm));
939 
940 	rw_enter(&ddv->dv_contents, RW_READER);
941 start:
942 	if (DV_STALE(ddv)) {
943 		rw_exit(&ddv->dv_contents);
944 		return (ESTALE);
945 	}
946 
947 	/*
948 	 * Empty name or ., return node itself.
949 	 */
950 	nmlen = strlen(nm);
951 	if ((nmlen == 0) || ((nmlen == 1) && (nm[0] == '.'))) {
952 		*vpp = DVTOV(ddv);
953 		rw_exit(&ddv->dv_contents);
954 		VN_HOLD(*vpp);
955 		return (0);
956 	}
957 
958 	/*
959 	 * .., return the parent directory
960 	 */
961 	if ((nmlen == 2) && (strcmp(nm, "..") == 0)) {
962 		*vpp = DVTOV(ddv->dv_dotdot);
963 		rw_exit(&ddv->dv_contents);
964 		VN_HOLD(*vpp);
965 		return (0);
966 	}
967 
968 	/*
969 	 * Fail anything without a valid device name component
970 	 */
971 	if (nm[0] == '@' || nm[0] == ':') {
972 		dcmn_err3(("devfs: no driver '%s'\n", nm));
973 		rw_exit(&ddv->dv_contents);
974 		return (ENOENT);
975 	}
976 
977 	/*
978 	 * So, now we have to deal with the trickier stuff.
979 	 *
980 	 * (a) search the existing list of dv_nodes on this directory
981 	 */
982 	if ((dv = dv_findbyname(ddv, nm)) != NULL) {
983 founddv:
984 		ASSERT(RW_LOCK_HELD(&ddv->dv_contents));
985 
986 		if (!rw_tryenter(&dv->dv_contents, RW_READER)) {
987 			if (tsd_get(devfs_clean_key)) {
988 				VN_RELE(DVTOV(dv));
989 				rw_exit(&ddv->dv_contents);
990 				return (EBUSY);
991 			}
992 			rw_enter(&dv->dv_contents, RW_READER);
993 		}
994 
995 		vp = DVTOV(dv);
996 		if ((dv->dv_attrvp != NULLVP) ||
997 		    (vp->v_type != VDIR && dv->dv_attr != NULL)) {
998 			/*
999 			 * Common case - we already have attributes
1000 			 */
1001 			rw_exit(&dv->dv_contents);
1002 			rw_exit(&ddv->dv_contents);
1003 			goto found;
1004 		}
1005 
1006 		/*
1007 		 * No attribute vp, try and build one.
1008 		 *
1009 		 * dv_shadow_node() can briefly drop &dv->dv_contents lock
1010 		 * if it is unable to upgrade it to a write lock. If the
1011 		 * current thread has come in through the bottom-up device
1012 		 * configuration devfs_clean() path, we may deadlock against
1013 		 * a thread performing top-down device configuration if it
1014 		 * grabs the contents lock. To avoid this, when we are on the
1015 		 * devfs_clean() path we attempt to upgrade the dv_contents
1016 		 * lock before we call dv_shadow_node().
1017 		 */
1018 		if (tsd_get(devfs_clean_key)) {
1019 			if (!rw_tryupgrade(&dv->dv_contents)) {
1020 				VN_RELE(DVTOV(dv));
1021 				rw_exit(&dv->dv_contents);
1022 				rw_exit(&ddv->dv_contents);
1023 				return (EBUSY);
1024 			}
1025 
1026 			write_held = DV_SHADOW_WRITE_HELD;
1027 		}
1028 
1029 		dv_shadow_node(DVTOV(ddv), nm, vp, pnp, rdir, cred,
1030 		    write_held);
1031 
1032 		rw_exit(&dv->dv_contents);
1033 		rw_exit(&ddv->dv_contents);
1034 		goto found;
1035 	}
1036 
1037 	/*
1038 	 * (b) Search the child devinfo nodes of our parent directory,
1039 	 * looking for the named node.  If we find it, build a new
1040 	 * node, then grab the writers lock, search the directory
1041 	 * if it's still not there, then insert it.
1042 	 *
1043 	 * We drop the devfs locks before accessing the device tree.
1044 	 * Take care to mark the node BUSY so that a forced devfs_clean
1045 	 * doesn't mark the directory node stale.
1046 	 *
1047 	 * Also, check if we are called as part of devfs_clean or
1048 	 * reset_perm. If so, simply return not found because there
1049 	 * is nothing to clean.
1050 	 */
1051 	if (tsd_get(devfs_clean_key)) {
1052 		rw_exit(&ddv->dv_contents);
1053 		return (ENOENT);
1054 	}
1055 
1056 	/*
1057 	 * We could be either READ or WRITE locked at
1058 	 * this point. Upgrade if we are read locked.
1059 	 */
1060 	ASSERT(RW_LOCK_HELD(&ddv->dv_contents));
1061 	if (rw_read_locked(&ddv->dv_contents) &&
1062 	    !rw_tryupgrade(&ddv->dv_contents)) {
1063 		rw_exit(&ddv->dv_contents);
1064 		rw_enter(&ddv->dv_contents, RW_WRITER);
1065 		/*
1066 		 * Things may have changed when we dropped
1067 		 * the contents lock, so start from top again
1068 		 */
1069 		goto start;
1070 	}
1071 	ddv->dv_busy++;		/* mark busy before dropping lock */
1072 	was_busy++;
1073 	rw_exit(&ddv->dv_contents);
1074 
1075 	pdevi = ddv->dv_devi;
1076 	ASSERT(pdevi != NULL);
1077 
1078 	mnm = strchr(nm, ':');
1079 	if (mnm)
1080 		*mnm = (char)0;
1081 
1082 	/*
1083 	 * Configure one nexus child, will call nexus's bus_ops
1084 	 * If successful, devi is held upon returning.
1085 	 * Note: devfs lookup should not be configuring grandchildren.
1086 	 */
1087 	ASSERT((ndi_flags & NDI_CONFIG) == 0);
1088 
1089 	rv = ndi_devi_config_one(pdevi, nm, &devi, ndi_flags | NDI_NO_EVENT);
1090 	if (mnm)
1091 		*mnm = ':';
1092 	if (rv != NDI_SUCCESS) {
1093 		rv = ENOENT;
1094 		goto notfound;
1095 	}
1096 
1097 	/*
1098 	 * If we configured a hidden node, consider it notfound.
1099 	 */
1100 	if (ndi_dev_is_hidden_node(devi)) {
1101 		ndi_rele_devi(devi);
1102 		rv = ENOENT;
1103 		goto notfound;
1104 	}
1105 
1106 	/*
1107 	 * Don't make vhci clients visible under phci, unless we
1108 	 * are in miniroot.
1109 	 */
1110 	if (isminiroot == 0 && ddi_get_parent(devi) != pdevi) {
1111 		ndi_rele_devi(devi);
1112 		rv = ENOENT;
1113 		goto notfound;
1114 	}
1115 
1116 	ASSERT(devi && i_ddi_devi_attached(devi));
1117 
1118 	/*
1119 	 * Invalidate cache to notice newly created minor nodes.
1120 	 */
1121 	rw_enter(&ddv->dv_contents, RW_WRITER);
1122 	ddv->dv_flags |= DV_BUILD;
1123 	rw_exit(&ddv->dv_contents);
1124 
1125 	/*
1126 	 * mkdir for nexus drivers and leaf nodes as well.  If we are racing
1127 	 * and create a duplicate, the duplicate will be destroyed below.
1128 	 */
1129 	if (mnm == NULL) {
1130 		dv = dv_mkdir(ddv, devi, nm);
1131 	} else {
1132 		/*
1133 		 * Allocate dmd first to avoid KM_SLEEP with active
1134 		 * ndi_devi_enter.
1135 		 */
1136 		dmd = kmem_zalloc(sizeof (*dmd), KM_SLEEP);
1137 		ndi_devi_enter(devi, &circ);
1138 		if (devi == clone_dip) {
1139 			/*
1140 			 * For clone minors, load the driver indicated by
1141 			 * minor name.
1142 			 */
1143 			dv = dv_clone_mknod(ddv, mnm + 1);
1144 		} else {
1145 			/*
1146 			 * Find minor node and make a dv_node
1147 			 */
1148 			if (dv_find_leafnode(devi, mnm + 1, dmd) == 0) {
1149 				dv = dv_mknod(ddv, devi, nm, dmd);
1150 				if (dmd->ddm_node_priv)
1151 					dpfree(dmd->ddm_node_priv);
1152 			}
1153 		}
1154 		ndi_devi_exit(devi, circ);
1155 		kmem_free(dmd, sizeof (*dmd));
1156 	}
1157 	/*
1158 	 * Release hold from ndi_devi_config_one()
1159 	 */
1160 	ndi_rele_devi(devi);
1161 
1162 	if (dv == NULL) {
1163 		rv = ENOENT;
1164 		goto notfound;
1165 	}
1166 
1167 	/*
1168 	 * We have released the dv_contents lock, need to check
1169 	 * if another thread already created a duplicate node
1170 	 */
1171 	rw_enter(&ddv->dv_contents, RW_WRITER);
1172 	if ((dup = dv_findbyname(ddv, nm)) == NULL) {
1173 		dv_insert(ddv, dv);
1174 	} else {
1175 		/*
1176 		 * Duplicate found, use the existing node
1177 		 */
1178 		VN_RELE(DVTOV(dv));
1179 		dv_destroy(dv, 0);
1180 		dv = dup;
1181 	}
1182 	goto founddv;
1183 	/*NOTREACHED*/
1184 
1185 found:
1186 	/*
1187 	 * Fail lookup of device that has now become hidden (typically via
1188 	 * hot removal of open device).
1189 	 */
1190 	if (dv->dv_devi && ndi_dev_is_hidden_node(dv->dv_devi)) {
1191 		dcmn_err2(("dv_find: nm %s failed: hidden/removed\n", nm));
1192 		VN_RELE(vp);
1193 		rv = ENOENT;
1194 		goto notfound;
1195 	}
1196 
1197 	/*
1198 	 * Skip non-kernel lookups of internal nodes.
1199 	 * This use of kcred to distinguish between user and
1200 	 * internal kernel lookups is unfortunate.  The information
1201 	 * provided by the seg argument to lookupnameat should
1202 	 * evolve into a lookup flag for filesystems that need
1203 	 * this distinction.
1204 	 */
1205 	if ((dv->dv_flags & DV_INTERNAL) && (cred != kcred)) {
1206 		dcmn_err2(("dv_find: nm %s failed: internal\n", nm));
1207 		VN_RELE(vp);
1208 		rv = ENOENT;
1209 		goto notfound;
1210 	}
1211 
1212 	dcmn_err2(("dv_find: returning vp for nm %s\n", nm));
1213 	if (vp->v_type == VCHR || vp->v_type == VBLK) {
1214 		/*
1215 		 * If vnode is a device, return special vnode instead
1216 		 * (though it knows all about -us- via sp->s_realvp,
1217 		 * sp->s_devvp, and sp->s_dip)
1218 		 */
1219 		*vpp = specvp_devfs(vp, vp->v_rdev, vp->v_type, cred,
1220 		    dv->dv_devi);
1221 		VN_RELE(vp);
1222 		if (*vpp == NULLVP)
1223 			rv = ENOSYS;
1224 	} else
1225 		*vpp = vp;
1226 
1227 notfound:
1228 	rw_enter(&ddv->dv_contents, RW_WRITER);
1229 	if (was_busy)
1230 		ddv->dv_busy--;
1231 	rw_exit(&ddv->dv_contents);
1232 	return (rv);
1233 }
1234 
1235 /*
1236  * The given directory node is out-of-date; that is, it has been
1237  * marked as needing to be rebuilt, possibly because some new devinfo
1238  * node has come into existence, or possibly because this is the first
1239  * time we've been here.
1240  */
1241 void
1242 dv_filldir(struct dv_node *ddv)
1243 {
1244 	struct dv_node		*dv;
1245 	dev_info_t		*devi, *pdevi;
1246 	struct ddi_minor_data	*dmd;
1247 	char			devnm[MAXNAMELEN];
1248 	int			circ, ccirc;
1249 
1250 	ASSERT(DVTOV(ddv)->v_type == VDIR);
1251 	ASSERT(RW_WRITE_HELD(&ddv->dv_contents));
1252 	ASSERT(ddv->dv_flags & DV_BUILD);
1253 
1254 	dcmn_err3(("dv_filldir: %s\n", ddv->dv_name));
1255 	if (DV_STALE(ddv))
1256 		return;
1257 	pdevi = ddv->dv_devi;
1258 
1259 	if (ndi_devi_config(pdevi, NDI_NO_EVENT) != NDI_SUCCESS) {
1260 		dcmn_err3(("dv_filldir: config error %s\n", ddv->dv_name));
1261 	}
1262 
1263 	ndi_devi_enter(pdevi, &circ);
1264 	for (devi = ddi_get_child(pdevi); devi;
1265 	    devi = ddi_get_next_sibling(devi)) {
1266 		if (i_ddi_node_state(devi) < DS_INITIALIZED)
1267 			continue;
1268 
1269 		/* skip hidden nodes */
1270 		if (ndi_dev_is_hidden_node(devi))
1271 			continue;
1272 
1273 		dcmn_err3(("dv_filldir: node %s\n", ddi_node_name(devi)));
1274 
1275 		ndi_devi_enter(devi, &ccirc);
1276 		for (dmd = DEVI(devi)->devi_minor; dmd; dmd = dmd->next) {
1277 			char *addr;
1278 
1279 			/*
1280 			 * Skip alias nodes, internal nodes, and nodes
1281 			 * without a name.  We allow DDM_DEFAULT nodes
1282 			 * to appear in readdir.
1283 			 */
1284 			if ((dmd->type == DDM_ALIAS) ||
1285 			    (dmd->type == DDM_INTERNAL_PATH) ||
1286 			    (dmd->ddm_name == NULL))
1287 				continue;
1288 
1289 			addr = ddi_get_name_addr(devi);
1290 			if (addr && *addr)
1291 				(void) sprintf(devnm, "%s@%s:%s",
1292 				    ddi_node_name(devi), addr, dmd->ddm_name);
1293 			else
1294 				(void) sprintf(devnm, "%s:%s",
1295 				    ddi_node_name(devi), dmd->ddm_name);
1296 
1297 			if ((dv = dv_findbyname(ddv, devnm)) != NULL) {
1298 				/* dv_node already exists */
1299 				VN_RELE(DVTOV(dv));
1300 				continue;
1301 			}
1302 
1303 			dv = dv_mknod(ddv, devi, devnm, dmd);
1304 			dv_insert(ddv, dv);
1305 			VN_RELE(DVTOV(dv));
1306 		}
1307 		ndi_devi_exit(devi, ccirc);
1308 
1309 		(void) ddi_deviname(devi, devnm);
1310 		if ((dv = dv_findbyname(ddv, devnm + 1)) == NULL) {
1311 			/* directory doesn't exist */
1312 			dv = dv_mkdir(ddv, devi, devnm + 1);
1313 			dv_insert(ddv, dv);
1314 		}
1315 		VN_RELE(DVTOV(dv));
1316 	}
1317 	ndi_devi_exit(pdevi, circ);
1318 
1319 	ddv->dv_flags &= ~DV_BUILD;
1320 }
1321 
1322 /*
1323  * Given a directory node, clean out all the nodes beneath.
1324  *
1325  * VDIR:	Reinvoke to clean them, then delete the directory.
1326  * VCHR, VBLK:	Just blow them away.
1327  *
1328  * Mark the directories touched as in need of a rebuild, in case
1329  * we fall over part way through. When DV_CLEAN_FORCE is specified,
1330  * we mark referenced empty directories as stale to facilitate DR.
1331  */
1332 int
1333 dv_cleandir(struct dv_node *ddv, char *devnm, uint_t flags)
1334 {
1335 	struct dv_node	*dv;
1336 	struct dv_node	*next;
1337 	struct vnode	*vp;
1338 	int		busy = 0;
1339 
1340 	/*
1341 	 * We should always be holding the tsd_clean_key here: dv_cleandir()
1342 	 * will be called as a result of a devfs_clean request and the
1343 	 * tsd_clean_key will be set in either in devfs_clean() itself or in
1344 	 * devfs_clean_vhci().
1345 	 *
1346 	 * Since we are on the devfs_clean path, we return EBUSY if we cannot
1347 	 * get the contents lock: if we blocked here we might deadlock against
1348 	 * a thread performing top-down device configuration.
1349 	 */
1350 	ASSERT(tsd_get(devfs_clean_key));
1351 
1352 	dcmn_err3(("dv_cleandir: %s\n", ddv->dv_name));
1353 
1354 	if (!(flags & DV_CLEANDIR_LCK) &&
1355 	    !rw_tryenter(&ddv->dv_contents, RW_WRITER))
1356 		return (EBUSY);
1357 
1358 	for (dv = DV_FIRST_ENTRY(ddv); dv; dv = next) {
1359 		next = DV_NEXT_ENTRY(ddv, dv);
1360 
1361 		/*
1362 		 * If devnm is specified, the non-minor portion of the
1363 		 * name must match devnm.
1364 		 */
1365 		if (devnm &&
1366 		    (strncmp(devnm, dv->dv_name, strlen(devnm)) ||
1367 		    (dv->dv_name[strlen(devnm)] != ':' &&
1368 		    dv->dv_name[strlen(devnm)] != '\0')))
1369 			continue;
1370 
1371 		/* check type of what we are cleaning */
1372 		vp = DVTOV(dv);
1373 		if (vp->v_type == VDIR) {
1374 			/* recurse on directories */
1375 			rw_enter(&dv->dv_contents, RW_WRITER);
1376 			if (dv_cleandir(dv, NULL,
1377 			    flags | DV_CLEANDIR_LCK) == EBUSY) {
1378 				rw_exit(&dv->dv_contents);
1379 				goto set_busy;
1380 			}
1381 
1382 			/* A clean directory is an empty directory... */
1383 			ASSERT(dv->dv_nlink == 2);
1384 			mutex_enter(&vp->v_lock);
1385 			if (vp->v_count > 0) {
1386 				/*
1387 				 * ... but an empty directory can still have
1388 				 * references to it. If we have dv_busy or
1389 				 * DV_CLEAN_FORCE is *not* specified then a
1390 				 * referenced directory is considered busy.
1391 				 */
1392 				if (dv->dv_busy || !(flags & DV_CLEAN_FORCE)) {
1393 					mutex_exit(&vp->v_lock);
1394 					rw_exit(&dv->dv_contents);
1395 					goto set_busy;
1396 				}
1397 
1398 				/*
1399 				 * Mark referenced directory stale so that DR
1400 				 * will succeed even if a shell has
1401 				 * /devices/xxx as current directory (causing
1402 				 * VN_HOLD reference to an empty directory).
1403 				 */
1404 				ASSERT(!DV_STALE(dv));
1405 				ndi_rele_devi(dv->dv_devi);
1406 				dv->dv_devi = NULL;	/* mark DV_STALE */
1407 			}
1408 		} else {
1409 			ASSERT((vp->v_type == VCHR) || (vp->v_type == VBLK));
1410 			ASSERT(dv->dv_nlink == 1);	/* no hard links */
1411 			mutex_enter(&vp->v_lock);
1412 			if (vp->v_count > 0) {
1413 				mutex_exit(&vp->v_lock);
1414 				goto set_busy;
1415 			}
1416 		}
1417 
1418 		/* unlink from directory */
1419 		dv_unlink(ddv, dv);
1420 
1421 		/* drop locks */
1422 		mutex_exit(&vp->v_lock);
1423 		if (vp->v_type == VDIR)
1424 			rw_exit(&dv->dv_contents);
1425 
1426 		/* destroy vnode if ref count is zero */
1427 		if (vp->v_count == 0)
1428 			dv_destroy(dv, flags);
1429 
1430 		continue;
1431 
1432 		/*
1433 		 * If devnm is not NULL we return immediately on busy,
1434 		 * otherwise we continue destroying unused dv_node's.
1435 		 */
1436 set_busy:	busy++;
1437 		if (devnm)
1438 			break;
1439 	}
1440 
1441 	/*
1442 	 * This code may be invoked to inform devfs that a new node has
1443 	 * been created in the kernel device tree. So we always set
1444 	 * the DV_BUILD flag to allow the next dv_filldir() to pick
1445 	 * the new devinfo nodes.
1446 	 */
1447 	ddv->dv_flags |= DV_BUILD;
1448 
1449 	if (!(flags & DV_CLEANDIR_LCK))
1450 		rw_exit(&ddv->dv_contents);
1451 
1452 	return (busy ? EBUSY : 0);
1453 }
1454 
1455 /*
1456  * Walk through the devfs hierarchy, correcting the permissions of
1457  * devices with default permissions that do not match those specified
1458  * by minor perm.  This can only be done for all drivers for now.
1459  */
1460 static int
1461 dv_reset_perm_dir(struct dv_node *ddv, uint_t flags)
1462 {
1463 	struct dv_node	*dv;
1464 	struct vnode	*vp;
1465 	int		retval = 0;
1466 	struct vattr	*attrp;
1467 	mperm_t		mp;
1468 	char		*nm;
1469 	uid_t		old_uid;
1470 	gid_t		old_gid;
1471 	mode_t		old_mode;
1472 
1473 	rw_enter(&ddv->dv_contents, RW_WRITER);
1474 	for (dv = DV_FIRST_ENTRY(ddv); dv; dv = DV_NEXT_ENTRY(ddv, dv)) {
1475 		int error = 0;
1476 		nm = dv->dv_name;
1477 
1478 		rw_enter(&dv->dv_contents, RW_READER);
1479 		vp = DVTOV(dv);
1480 		if (vp->v_type == VDIR) {
1481 			rw_exit(&dv->dv_contents);
1482 			if (dv_reset_perm_dir(dv, flags) != 0) {
1483 				error = EBUSY;
1484 			}
1485 		} else {
1486 			ASSERT(vp->v_type == VCHR || vp->v_type == VBLK);
1487 
1488 			/*
1489 			 * Check for permissions from minor_perm
1490 			 * If there are none, we're done
1491 			 */
1492 			rw_exit(&dv->dv_contents);
1493 			if (dev_minorperm(dv->dv_devi, nm, &mp) != 0)
1494 				continue;
1495 
1496 			rw_enter(&dv->dv_contents, RW_READER);
1497 
1498 			/*
1499 			 * Allow a node's permissions to be altered
1500 			 * permanently from the defaults by chmod,
1501 			 * using the shadow node as backing store.
1502 			 * Otherwise, update node to minor_perm permissions.
1503 			 */
1504 			if (dv->dv_attrvp == NULLVP) {
1505 				/*
1506 				 * No attribute vp, try to find one.
1507 				 */
1508 				dv_shadow_node(DVTOV(ddv), nm, vp,
1509 				    NULL, NULLVP, kcred, 0);
1510 			}
1511 			if (dv->dv_attrvp != NULLVP || dv->dv_attr == NULL) {
1512 				rw_exit(&dv->dv_contents);
1513 				continue;
1514 			}
1515 
1516 			attrp = dv->dv_attr;
1517 
1518 			if (VATTRP_MP_CMP(attrp, mp) == 0) {
1519 				dcmn_err5(("%s: no perm change: "
1520 				    "%d %d 0%o\n", nm, attrp->va_uid,
1521 				    attrp->va_gid, attrp->va_mode));
1522 				rw_exit(&dv->dv_contents);
1523 				continue;
1524 			}
1525 
1526 			old_uid = attrp->va_uid;
1527 			old_gid = attrp->va_gid;
1528 			old_mode = attrp->va_mode;
1529 
1530 			VATTRP_MP_MERGE(attrp, mp);
1531 			mutex_enter(&vp->v_lock);
1532 			if (vp->v_count > 0) {
1533 				error = EBUSY;
1534 			}
1535 			mutex_exit(&vp->v_lock);
1536 
1537 			dcmn_err5(("%s: perm %d/%d/0%o -> %d/%d/0%o (%d)\n",
1538 			    nm, old_uid, old_gid, old_mode, attrp->va_uid,
1539 			    attrp->va_gid, attrp->va_mode, error));
1540 
1541 			rw_exit(&dv->dv_contents);
1542 		}
1543 
1544 		if (error != 0) {
1545 			retval = error;
1546 		}
1547 	}
1548 
1549 	ddv->dv_flags |= DV_BUILD;
1550 
1551 	rw_exit(&ddv->dv_contents);
1552 
1553 	return (retval);
1554 }
1555 
1556 int
1557 devfs_reset_perm(uint_t flags)
1558 {
1559 	struct dv_node	*dvp;
1560 	int		rval;
1561 
1562 	if ((dvp = devfs_dip_to_dvnode(ddi_root_node())) == NULL)
1563 		return (0);
1564 
1565 	VN_HOLD(DVTOV(dvp));
1566 	rval = dv_reset_perm_dir(dvp, flags);
1567 	VN_RELE(DVTOV(dvp));
1568 	return (rval);
1569 }
1570 
1571 /*
1572  * Clean up dangling devfs shadow nodes for removed
1573  * drivers so that, in the event the driver is re-added
1574  * to the system, newly created nodes won't incorrectly
1575  * pick up these stale shadow node permissions.
1576  *
1577  * This is accomplished by walking down the pathname
1578  * to the directory, starting at the root's attribute
1579  * node, then removing all minors matching the specified
1580  * node name.  Care must be taken to remove all entries
1581  * in a directory before the directory itself, so that
1582  * the clean-up associated with rem_drv'ing a nexus driver
1583  * does not inadvertently result in an inconsistent
1584  * filesystem underlying devfs.
1585  */
1586 
1587 static int
1588 devfs_remdrv_rmdir(vnode_t *dirvp, const char *dir, vnode_t *rvp)
1589 {
1590 	int		error;
1591 	vnode_t		*vp;
1592 	int		eof;
1593 	struct iovec	iov;
1594 	struct uio	uio;
1595 	struct dirent64	*dp;
1596 	dirent64_t	*dbuf;
1597 	size_t		dlen;
1598 	size_t		dbuflen;
1599 	int		ndirents = 64;
1600 	char		*nm;
1601 
1602 	VN_HOLD(dirvp);
1603 
1604 	dlen = ndirents * (sizeof (*dbuf));
1605 	dbuf = kmem_alloc(dlen, KM_SLEEP);
1606 
1607 	uio.uio_iov = &iov;
1608 	uio.uio_iovcnt = 1;
1609 	uio.uio_segflg = UIO_SYSSPACE;
1610 	uio.uio_fmode = 0;
1611 	uio.uio_extflg = UIO_COPY_CACHED;
1612 	uio.uio_loffset = 0;
1613 	uio.uio_llimit = MAXOFFSET_T;
1614 
1615 	eof = 0;
1616 	error = 0;
1617 	while (!error && !eof) {
1618 		uio.uio_resid = dlen;
1619 		iov.iov_base = (char *)dbuf;
1620 		iov.iov_len = dlen;
1621 
1622 		(void) VOP_RWLOCK(dirvp, V_WRITELOCK_FALSE, NULL);
1623 		error = VOP_READDIR(dirvp, &uio, kcred, &eof, NULL, 0);
1624 		VOP_RWUNLOCK(dirvp, V_WRITELOCK_FALSE, NULL);
1625 
1626 		dbuflen = dlen - uio.uio_resid;
1627 
1628 		if (error || dbuflen == 0)
1629 			break;
1630 
1631 		for (dp = dbuf; ((intptr_t)dp < (intptr_t)dbuf + dbuflen);
1632 		    dp = (dirent64_t *)((intptr_t)dp + dp->d_reclen)) {
1633 
1634 			nm = dp->d_name;
1635 
1636 			if (strcmp(nm, ".") == 0 || strcmp(nm, "..") == 0)
1637 				continue;
1638 
1639 			error = VOP_LOOKUP(dirvp, nm,
1640 			    &vp, NULL, 0, NULL, kcred, NULL, NULL, NULL);
1641 
1642 			dsysdebug(error,
1643 			    ("rem_drv %s/%s lookup (%d)\n",
1644 			    dir, nm, error));
1645 
1646 			if (error)
1647 				continue;
1648 
1649 			ASSERT(vp->v_type == VDIR ||
1650 			    vp->v_type == VCHR || vp->v_type == VBLK);
1651 
1652 			if (vp->v_type == VDIR) {
1653 				error = devfs_remdrv_rmdir(vp, nm, rvp);
1654 				if (error == 0) {
1655 					error = VOP_RMDIR(dirvp,
1656 					    (char *)nm, rvp, kcred, NULL, 0);
1657 					dsysdebug(error,
1658 					    ("rem_drv %s/%s rmdir (%d)\n",
1659 					    dir, nm, error));
1660 				}
1661 			} else {
1662 				error = VOP_REMOVE(dirvp, (char *)nm, kcred,
1663 				    NULL, 0);
1664 				dsysdebug(error,
1665 				    ("rem_drv %s/%s remove (%d)\n",
1666 				    dir, nm, error));
1667 			}
1668 
1669 			VN_RELE(vp);
1670 			if (error) {
1671 				goto exit;
1672 			}
1673 		}
1674 	}
1675 
1676 exit:
1677 	VN_RELE(dirvp);
1678 	kmem_free(dbuf, dlen);
1679 
1680 	return (error);
1681 }
1682 
1683 int
1684 devfs_remdrv_cleanup(const char *dir, const char *nodename)
1685 {
1686 	int		error;
1687 	vnode_t		*vp;
1688 	vnode_t		*dirvp;
1689 	int		eof;
1690 	struct iovec	iov;
1691 	struct uio	uio;
1692 	struct dirent64	*dp;
1693 	dirent64_t	*dbuf;
1694 	size_t		dlen;
1695 	size_t		dbuflen;
1696 	int		ndirents = 64;
1697 	int		nodenamelen = strlen(nodename);
1698 	char		*nm;
1699 	struct pathname	pn;
1700 	vnode_t		*rvp;	/* root node of the underlying attribute fs */
1701 
1702 	dcmn_err5(("devfs_remdrv_cleanup: %s %s\n", dir, nodename));
1703 
1704 	if (error = pn_get((char *)dir, UIO_SYSSPACE, &pn))
1705 		return (0);
1706 
1707 	rvp = dvroot->dv_attrvp;
1708 	ASSERT(rvp != NULL);
1709 	VN_HOLD(rvp);
1710 
1711 	pn_skipslash(&pn);
1712 	dirvp = rvp;
1713 	VN_HOLD(dirvp);
1714 
1715 	nm = kmem_alloc(MAXNAMELEN, KM_SLEEP);
1716 
1717 	while (pn_pathleft(&pn)) {
1718 		ASSERT(dirvp->v_type == VDIR);
1719 		(void) pn_getcomponent(&pn, nm);
1720 		ASSERT((strcmp(nm, ".") != 0) && (strcmp(nm, "..") != 0));
1721 		error = VOP_LOOKUP(dirvp, nm, &vp, NULL, 0, rvp, kcred,
1722 		    NULL, NULL, NULL);
1723 		if (error) {
1724 			dcmn_err5(("remdrv_cleanup %s lookup error %d\n",
1725 			    nm, error));
1726 			VN_RELE(dirvp);
1727 			if (dirvp != rvp)
1728 				VN_RELE(rvp);
1729 			pn_free(&pn);
1730 			kmem_free(nm, MAXNAMELEN);
1731 			return (0);
1732 		}
1733 		VN_RELE(dirvp);
1734 		dirvp = vp;
1735 		pn_skipslash(&pn);
1736 	}
1737 
1738 	ASSERT(dirvp->v_type == VDIR);
1739 	if (dirvp != rvp)
1740 		VN_RELE(rvp);
1741 	pn_free(&pn);
1742 	kmem_free(nm, MAXNAMELEN);
1743 
1744 	dlen = ndirents * (sizeof (*dbuf));
1745 	dbuf = kmem_alloc(dlen, KM_SLEEP);
1746 
1747 	uio.uio_iov = &iov;
1748 	uio.uio_iovcnt = 1;
1749 	uio.uio_segflg = UIO_SYSSPACE;
1750 	uio.uio_fmode = 0;
1751 	uio.uio_extflg = UIO_COPY_CACHED;
1752 	uio.uio_loffset = 0;
1753 	uio.uio_llimit = MAXOFFSET_T;
1754 
1755 	eof = 0;
1756 	error = 0;
1757 	while (!error && !eof) {
1758 		uio.uio_resid = dlen;
1759 		iov.iov_base = (char *)dbuf;
1760 		iov.iov_len = dlen;
1761 
1762 		(void) VOP_RWLOCK(dirvp, V_WRITELOCK_FALSE, NULL);
1763 		error = VOP_READDIR(dirvp, &uio, kcred, &eof, NULL, 0);
1764 		VOP_RWUNLOCK(dirvp, V_WRITELOCK_FALSE, NULL);
1765 
1766 		dbuflen = dlen - uio.uio_resid;
1767 
1768 		if (error || dbuflen == 0)
1769 			break;
1770 
1771 		for (dp = dbuf; ((intptr_t)dp < (intptr_t)dbuf + dbuflen);
1772 		    dp = (dirent64_t *)((intptr_t)dp + dp->d_reclen)) {
1773 
1774 			nm = dp->d_name;
1775 
1776 			if (strcmp(nm, ".") == 0 || strcmp(nm, "..") == 0)
1777 				continue;
1778 
1779 			if (strncmp(nm, nodename, nodenamelen) != 0)
1780 				continue;
1781 
1782 			error = VOP_LOOKUP(dirvp, nm, &vp,
1783 			    NULL, 0, NULL, kcred, NULL, NULL, NULL);
1784 
1785 			dsysdebug(error,
1786 			    ("rem_drv %s/%s lookup (%d)\n",
1787 			    dir, nm, error));
1788 
1789 			if (error)
1790 				continue;
1791 
1792 			ASSERT(vp->v_type == VDIR ||
1793 			    vp->v_type == VCHR || vp->v_type == VBLK);
1794 
1795 			if (vp->v_type == VDIR) {
1796 				error = devfs_remdrv_rmdir(vp, nm, rvp);
1797 				if (error == 0) {
1798 					error = VOP_RMDIR(dirvp, (char *)nm,
1799 					    rvp, kcred, NULL, 0);
1800 					dsysdebug(error,
1801 					    ("rem_drv %s/%s rmdir (%d)\n",
1802 					    dir, nm, error));
1803 				}
1804 			} else {
1805 				error = VOP_REMOVE(dirvp, (char *)nm, kcred,
1806 				    NULL, 0);
1807 				dsysdebug(error,
1808 				    ("rem_drv %s/%s remove (%d)\n",
1809 				    dir, nm, error));
1810 			}
1811 
1812 			VN_RELE(vp);
1813 			if (error)
1814 				goto exit;
1815 		}
1816 	}
1817 
1818 exit:
1819 	VN_RELE(dirvp);
1820 
1821 	kmem_free(dbuf, dlen);
1822 
1823 	return (0);
1824 }
1825 
1826 struct dv_list {
1827 	struct dv_node	*dv;
1828 	struct dv_list	*next;
1829 };
1830 
1831 void
1832 dv_walk(
1833 	struct dv_node	*ddv,
1834 	char		*devnm,
1835 	void		(*callback)(struct dv_node *, void *),
1836 	void		*arg)
1837 {
1838 	struct vnode	*dvp;
1839 	struct dv_node	*dv;
1840 	struct dv_list	*head, *tail, *next;
1841 	int		len;
1842 
1843 	dcmn_err3(("dv_walk: ddv = %s, devnm = %s\n",
1844 	    ddv->dv_name, devnm ? devnm : "<null>"));
1845 
1846 	dvp = DVTOV(ddv);
1847 
1848 	ASSERT(dvp->v_type == VDIR);
1849 
1850 	head = tail = next = NULL;
1851 
1852 	rw_enter(&ddv->dv_contents, RW_READER);
1853 	mutex_enter(&dvp->v_lock);
1854 	for (dv = DV_FIRST_ENTRY(ddv); dv; dv = DV_NEXT_ENTRY(ddv, dv)) {
1855 		/*
1856 		 * If devnm is not NULL and is not the empty string,
1857 		 * select only dv_nodes with matching non-minor name
1858 		 */
1859 		if (devnm && (len = strlen(devnm)) &&
1860 		    (strncmp(devnm, dv->dv_name, len) ||
1861 		    (dv->dv_name[len] != ':' && dv->dv_name[len] != '\0')))
1862 			continue;
1863 
1864 		callback(dv, arg);
1865 
1866 		if (DVTOV(dv)->v_type != VDIR)
1867 			continue;
1868 
1869 		next = kmem_zalloc(sizeof (*next), KM_SLEEP);
1870 		next->dv = dv;
1871 
1872 		if (tail)
1873 			tail->next = next;
1874 		else
1875 			head = next;
1876 
1877 		tail = next;
1878 	}
1879 
1880 	while (head) {
1881 		dv_walk(head->dv, NULL, callback, arg);
1882 		next = head->next;
1883 		kmem_free(head, sizeof (*head));
1884 		head = next;
1885 	}
1886 	rw_exit(&ddv->dv_contents);
1887 	mutex_exit(&dvp->v_lock);
1888 }
1889