1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 /* 29 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/thread.h> 35 #include <sys/sysmacros.h> 36 #include <sys/signal.h> 37 #include <sys/cred.h> 38 #include <sys/user.h> 39 #include <sys/errno.h> 40 #include <sys/vnode.h> 41 #include <sys/mman.h> 42 #include <sys/kmem.h> 43 #include <sys/proc.h> 44 #include <sys/pathname.h> 45 #include <sys/cmn_err.h> 46 #include <sys/systm.h> 47 #include <sys/elf.h> 48 #include <sys/vmsystm.h> 49 #include <sys/debug.h> 50 #include <sys/auxv.h> 51 #include <sys/exec.h> 52 #include <sys/prsystm.h> 53 #include <vm/as.h> 54 #include <vm/rm.h> 55 #include <vm/seg.h> 56 #include <vm/seg_vn.h> 57 #include <sys/modctl.h> 58 #include <sys/systeminfo.h> 59 #include <sys/vmparam.h> 60 #include <sys/machelf.h> 61 #include <sys/shm_impl.h> 62 #include <sys/archsystm.h> 63 #include <sys/fasttrap.h> 64 #include <sys/brand.h> 65 #include "elf_impl.h" 66 #include <sys/sdt.h> 67 #include <sys/siginfo.h> 68 69 extern int at_flags; 70 71 #define ORIGIN_STR "ORIGIN" 72 #define ORIGIN_STR_SIZE 6 73 74 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *); 75 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *, 76 ssize_t *); 77 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *, 78 ssize_t *, caddr_t *, ssize_t *); 79 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *); 80 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t, 81 Phdr **, Phdr **, Phdr **, Phdr **, Phdr *, 82 caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *); 83 84 typedef enum { 85 STR_CTF, 86 STR_SYMTAB, 87 STR_DYNSYM, 88 STR_STRTAB, 89 STR_DYNSTR, 90 STR_SHSTRTAB, 91 STR_NUM 92 } shstrtype_t; 93 94 static const char *shstrtab_data[] = { 95 ".SUNW_ctf", 96 ".symtab", 97 ".dynsym", 98 ".strtab", 99 ".dynstr", 100 ".shstrtab" 101 }; 102 103 typedef struct shstrtab { 104 int sst_ndx[STR_NUM]; 105 int sst_cur; 106 } shstrtab_t; 107 108 static void 109 shstrtab_init(shstrtab_t *s) 110 { 111 bzero(&s->sst_ndx, sizeof (s->sst_ndx)); 112 s->sst_cur = 1; 113 } 114 115 static int 116 shstrtab_ndx(shstrtab_t *s, shstrtype_t type) 117 { 118 int ret; 119 120 if ((ret = s->sst_ndx[type]) != 0) 121 return (ret); 122 123 ret = s->sst_ndx[type] = s->sst_cur; 124 s->sst_cur += strlen(shstrtab_data[type]) + 1; 125 126 return (ret); 127 } 128 129 static size_t 130 shstrtab_size(const shstrtab_t *s) 131 { 132 return (s->sst_cur); 133 } 134 135 static void 136 shstrtab_dump(const shstrtab_t *s, char *buf) 137 { 138 int i, ndx; 139 140 *buf = '\0'; 141 for (i = 0; i < STR_NUM; i++) { 142 if ((ndx = s->sst_ndx[i]) != 0) 143 (void) strcpy(buf + ndx, shstrtab_data[i]); 144 } 145 } 146 147 static int 148 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base) 149 { 150 ASSERT(phdrp->p_type == PT_SUNWDTRACE); 151 152 /* 153 * See the comment in fasttrap.h for information on how to safely 154 * update this program header. 155 */ 156 if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE || 157 (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X)) 158 return (-1); 159 160 args->thrptr = phdrp->p_vaddr + base; 161 162 return (0); 163 } 164 165 /* 166 * Map in the executable pointed to by vp. Returns 0 on success. 167 */ 168 int 169 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr, 170 intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase, 171 caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap) 172 { 173 size_t len; 174 struct vattr vat; 175 caddr_t phdrbase = NULL; 176 ssize_t phdrsize; 177 int nshdrs, shstrndx, nphdrs; 178 int error = 0; 179 Phdr *uphdr = NULL; 180 Phdr *junk = NULL; 181 Phdr *dynphdr = NULL; 182 Phdr *dtrphdr = NULL; 183 uintptr_t lddata; 184 long execsz; 185 intptr_t minaddr; 186 187 if (lddatap != NULL) 188 *lddatap = NULL; 189 190 if (error = execpermissions(vp, &vat, args)) { 191 uprintf("%s: Cannot execute %s\n", exec_file, args->pathname); 192 return (error); 193 } 194 195 if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx, 196 &nphdrs)) != 0 || 197 (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase, 198 &phdrsize)) != 0) { 199 uprintf("%s: Cannot read %s\n", exec_file, args->pathname); 200 return (error); 201 } 202 203 if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) { 204 uprintf("%s: Nothing to load in %s", exec_file, args->pathname); 205 kmem_free(phdrbase, phdrsize); 206 return (ENOEXEC); 207 } 208 if (lddatap != NULL) 209 *lddatap = lddata; 210 211 if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr, 212 &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr, 213 len, &execsz, brksize)) { 214 uprintf("%s: Cannot map %s\n", exec_file, args->pathname); 215 kmem_free(phdrbase, phdrsize); 216 return (error); 217 } 218 219 /* 220 * Inform our caller if the executable needs an interpreter. 221 */ 222 *interp = (dynphdr == NULL) ? 0 : 1; 223 224 /* 225 * If this is a statically linked executable, voffset should indicate 226 * the address of the executable itself (it normally holds the address 227 * of the interpreter). 228 */ 229 if (ehdr->e_type == ET_EXEC && *interp == 0) 230 *voffset = minaddr; 231 232 if (uphdr != NULL) { 233 *uphdr_vaddr = uphdr->p_vaddr; 234 } else { 235 *uphdr_vaddr = (Addr)-1; 236 } 237 238 kmem_free(phdrbase, phdrsize); 239 return (error); 240 } 241 242 /*ARGSUSED*/ 243 int 244 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, 245 int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred, 246 int brand_action) 247 { 248 caddr_t phdrbase = NULL; 249 caddr_t bssbase = 0; 250 caddr_t brkbase = 0; 251 size_t brksize = 0; 252 ssize_t dlnsize; 253 aux_entry_t *aux; 254 int error; 255 ssize_t resid; 256 int fd = -1; 257 intptr_t voffset; 258 Phdr *dyphdr = NULL; 259 Phdr *stphdr = NULL; 260 Phdr *uphdr = NULL; 261 Phdr *junk = NULL; 262 size_t len; 263 ssize_t phdrsize; 264 int postfixsize = 0; 265 int i, hsize; 266 Phdr *phdrp; 267 Phdr *dataphdrp = NULL; 268 Phdr *dtrphdr; 269 Phdr *capphdr = NULL; 270 Cap *cap = NULL; 271 ssize_t capsize; 272 int hasu = 0; 273 int hasauxv = 0; 274 int hasdy = 0; 275 int branded = 0; 276 277 struct proc *p = ttoproc(curthread); 278 struct user *up = PTOU(p); 279 struct bigwad { 280 Ehdr ehdr; 281 aux_entry_t elfargs[__KERN_NAUXV_IMPL]; 282 char dl_name[MAXPATHLEN]; 283 char pathbuf[MAXPATHLEN]; 284 struct vattr vattr; 285 struct execenv exenv; 286 } *bigwad; /* kmem_alloc this behemoth so we don't blow stack */ 287 Ehdr *ehdrp; 288 int nshdrs, shstrndx, nphdrs; 289 char *dlnp; 290 char *pathbufp; 291 rlim64_t limit; 292 rlim64_t roundlimit; 293 294 ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64); 295 296 bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP); 297 ehdrp = &bigwad->ehdr; 298 dlnp = bigwad->dl_name; 299 pathbufp = bigwad->pathbuf; 300 301 /* 302 * Obtain ELF and program header information. 303 */ 304 if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx, 305 &nphdrs)) != 0 || 306 (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase, 307 &phdrsize)) != 0) 308 goto out; 309 310 /* 311 * Prevent executing an ELF file that has no entry point. 312 */ 313 if (ehdrp->e_entry == 0) { 314 uprintf("%s: Bad entry point\n", exec_file); 315 goto bad; 316 } 317 318 /* 319 * Put data model that we're exec-ing to into the args passed to 320 * exec_args(), so it will know what it is copying to on new stack. 321 * Now that we know whether we are exec-ing a 32-bit or 64-bit 322 * executable, we can set execsz with the appropriate NCARGS. 323 */ 324 #ifdef _LP64 325 if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) { 326 args->to_model = DATAMODEL_ILP32; 327 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1); 328 } else { 329 args->to_model = DATAMODEL_LP64; 330 args->stk_prot &= ~PROT_EXEC; 331 #if defined(__i386) || defined(__amd64) 332 args->dat_prot &= ~PROT_EXEC; 333 #endif 334 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1); 335 } 336 #else /* _LP64 */ 337 args->to_model = DATAMODEL_ILP32; 338 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1); 339 #endif /* _LP64 */ 340 341 /* 342 * We delay invoking the brand callback until we've figured out 343 * what kind of elf binary we're trying to run, 32-bit or 64-bit. 344 * We do this because now the brand library can just check 345 * args->to_model to see if the target is 32-bit or 64-bit without 346 * having do duplicate all the code above. 347 * 348 * The level checks associated with brand handling below are used to 349 * prevent a loop since the brand elfexec function typically comes back 350 * through this function. We must check <= here since the nested 351 * handling in the #! interpreter code will increment the level before 352 * calling gexec to run the final elfexec interpreter. 353 */ 354 if ((level <= INTP_MAXDEPTH) && 355 (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 356 error = BROP(p)->b_elfexec(vp, uap, args, 357 idatap, level + 1, execsz, setid, exec_file, cred, 358 brand_action); 359 goto out; 360 } 361 362 /* 363 * Determine aux size now so that stack can be built 364 * in one shot (except actual copyout of aux image), 365 * determine any non-default stack protections, 366 * and still have this code be machine independent. 367 */ 368 hsize = ehdrp->e_phentsize; 369 phdrp = (Phdr *)phdrbase; 370 for (i = nphdrs; i > 0; i--) { 371 switch (phdrp->p_type) { 372 case PT_INTERP: 373 hasauxv = hasdy = 1; 374 break; 375 case PT_PHDR: 376 hasu = 1; 377 break; 378 case PT_SUNWSTACK: 379 args->stk_prot = PROT_USER; 380 if (phdrp->p_flags & PF_R) 381 args->stk_prot |= PROT_READ; 382 if (phdrp->p_flags & PF_W) 383 args->stk_prot |= PROT_WRITE; 384 if (phdrp->p_flags & PF_X) 385 args->stk_prot |= PROT_EXEC; 386 break; 387 case PT_LOAD: 388 dataphdrp = phdrp; 389 break; 390 case PT_SUNWCAP: 391 capphdr = phdrp; 392 break; 393 } 394 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 395 } 396 397 if (ehdrp->e_type != ET_EXEC) { 398 dataphdrp = NULL; 399 hasauxv = 1; 400 } 401 402 /* Copy BSS permissions to args->dat_prot */ 403 if (dataphdrp != NULL) { 404 args->dat_prot = PROT_USER; 405 if (dataphdrp->p_flags & PF_R) 406 args->dat_prot |= PROT_READ; 407 if (dataphdrp->p_flags & PF_W) 408 args->dat_prot |= PROT_WRITE; 409 if (dataphdrp->p_flags & PF_X) 410 args->dat_prot |= PROT_EXEC; 411 } 412 413 /* 414 * If a auxvector will be required - reserve the space for 415 * it now. This may be increased by exec_args if there are 416 * ISA-specific types (included in __KERN_NAUXV_IMPL). 417 */ 418 if (hasauxv) { 419 /* 420 * If a AUX vector is being built - the base AUX 421 * entries are: 422 * 423 * AT_BASE 424 * AT_FLAGS 425 * AT_PAGESZ 426 * AT_SUN_AUXFLAGS 427 * AT_SUN_HWCAP 428 * AT_SUN_HWCAP2 429 * AT_SUN_PLATFORM (added in stk_copyout) 430 * AT_SUN_EXECNAME (added in stk_copyout) 431 * AT_NULL 432 * 433 * total == 9 434 */ 435 if (hasdy && hasu) { 436 /* 437 * Has PT_INTERP & PT_PHDR - the auxvectors that 438 * will be built are: 439 * 440 * AT_PHDR 441 * AT_PHENT 442 * AT_PHNUM 443 * AT_ENTRY 444 * AT_LDDATA 445 * 446 * total = 5 447 */ 448 args->auxsize = (9 + 5) * sizeof (aux_entry_t); 449 } else if (hasdy) { 450 /* 451 * Has PT_INTERP but no PT_PHDR 452 * 453 * AT_EXECFD 454 * AT_LDDATA 455 * 456 * total = 2 457 */ 458 args->auxsize = (9 + 2) * sizeof (aux_entry_t); 459 } else { 460 args->auxsize = 9 * sizeof (aux_entry_t); 461 } 462 } else { 463 args->auxsize = 0; 464 } 465 466 /* 467 * If this binary is using an emulator, we need to add an 468 * AT_SUN_EMULATOR aux entry. 469 */ 470 if (args->emulator != NULL) 471 args->auxsize += sizeof (aux_entry_t); 472 473 if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 474 branded = 1; 475 /* 476 * We will be adding 4 entries to the aux vectors. One for 477 * the the brandname and 3 for the brand specific aux vectors. 478 */ 479 args->auxsize += 4 * sizeof (aux_entry_t); 480 } 481 482 /* Hardware/Software capabilities */ 483 if (capphdr != NULL && 484 (capsize = capphdr->p_filesz) > 0 && 485 capsize <= 16 * sizeof (*cap)) { 486 int ncaps = capsize / sizeof (*cap); 487 Cap *cp; 488 489 cap = kmem_alloc(capsize, KM_SLEEP); 490 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap, 491 capsize, (offset_t)capphdr->p_offset, 492 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { 493 uprintf("%s: Cannot read capabilities section\n", 494 exec_file); 495 goto out; 496 } 497 for (cp = cap; cp < cap + ncaps; cp++) { 498 if (cp->c_tag == CA_SUNW_SF_1 && 499 (cp->c_un.c_val & SF1_SUNW_ADDR32)) { 500 if (args->to_model == DATAMODEL_LP64) 501 args->addr32 = 1; 502 break; 503 } 504 } 505 } 506 507 aux = bigwad->elfargs; 508 /* 509 * Move args to the user's stack. 510 * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries. 511 */ 512 if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) { 513 if (error == -1) { 514 error = ENOEXEC; 515 goto bad; 516 } 517 goto out; 518 } 519 /* we're single threaded after this point */ 520 521 /* 522 * If this is an ET_DYN executable (shared object), 523 * determine its memory size so that mapelfexec() can load it. 524 */ 525 if (ehdrp->e_type == ET_DYN) 526 len = elfsize(ehdrp, nphdrs, phdrbase, NULL); 527 else 528 len = 0; 529 530 dtrphdr = NULL; 531 532 if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &dyphdr, 533 &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL, 534 len, execsz, &brksize)) != 0) 535 goto bad; 536 537 if (uphdr != NULL && dyphdr == NULL) 538 goto bad; 539 540 if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 541 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file); 542 goto bad; 543 } 544 545 if (dyphdr != NULL) { 546 size_t len; 547 uintptr_t lddata; 548 char *p; 549 struct vnode *nvp; 550 551 dlnsize = dyphdr->p_filesz; 552 553 if (dlnsize > MAXPATHLEN || dlnsize <= 0) 554 goto bad; 555 556 /* 557 * Read in "interpreter" pathname. 558 */ 559 if ((error = vn_rdwr(UIO_READ, vp, dlnp, dyphdr->p_filesz, 560 (offset_t)dyphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 561 CRED(), &resid)) != 0) { 562 uprintf("%s: Cannot obtain interpreter pathname\n", 563 exec_file); 564 goto bad; 565 } 566 567 if (resid != 0 || dlnp[dlnsize - 1] != '\0') 568 goto bad; 569 570 /* 571 * Search for '$ORIGIN' token in interpreter path. 572 * If found, expand it. 573 */ 574 for (p = dlnp; p = strchr(p, '$'); ) { 575 uint_t len, curlen; 576 char *_ptr; 577 578 if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE)) 579 continue; 580 581 /* 582 * We don't support $ORIGIN on setid programs to close 583 * a potential attack vector. 584 */ 585 if ((setid & EXECSETID_SETID) != 0) { 586 error = ENOEXEC; 587 goto bad; 588 } 589 590 curlen = 0; 591 len = p - dlnp - 1; 592 if (len) { 593 bcopy(dlnp, pathbufp, len); 594 curlen += len; 595 } 596 if (_ptr = strrchr(args->pathname, '/')) { 597 len = _ptr - args->pathname; 598 if ((curlen + len) > MAXPATHLEN) 599 break; 600 601 bcopy(args->pathname, &pathbufp[curlen], len); 602 curlen += len; 603 } else { 604 /* 605 * executable is a basename found in the 606 * current directory. So - just substitue 607 * '.' for ORIGIN. 608 */ 609 pathbufp[curlen] = '.'; 610 curlen++; 611 } 612 p += ORIGIN_STR_SIZE; 613 len = strlen(p); 614 615 if ((curlen + len) > MAXPATHLEN) 616 break; 617 bcopy(p, &pathbufp[curlen], len); 618 curlen += len; 619 pathbufp[curlen++] = '\0'; 620 bcopy(pathbufp, dlnp, curlen); 621 } 622 623 /* 624 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1 625 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1). 626 * Just in case /usr is not mounted, change it now. 627 */ 628 if (strcmp(dlnp, USR_LIB_RTLD) == 0) 629 dlnp += 4; 630 error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); 631 if (error && dlnp != bigwad->dl_name) { 632 /* new kernel, old user-level */ 633 error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW, 634 NULLVPP, &nvp); 635 } 636 if (error) { 637 uprintf("%s: Cannot find %s\n", exec_file, dlnp); 638 goto bad; 639 } 640 641 /* 642 * Setup the "aux" vector. 643 */ 644 if (uphdr) { 645 if (ehdrp->e_type == ET_DYN) { 646 /* don't use the first page */ 647 bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE; 648 bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE; 649 } else { 650 bigwad->exenv.ex_bssbase = bssbase; 651 bigwad->exenv.ex_brkbase = brkbase; 652 } 653 bigwad->exenv.ex_brksize = brksize; 654 bigwad->exenv.ex_magic = elfmagic; 655 bigwad->exenv.ex_vp = vp; 656 setexecenv(&bigwad->exenv); 657 658 ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset) 659 ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize) 660 ADDAUX(aux, AT_PHNUM, nphdrs) 661 ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset) 662 } else { 663 if ((error = execopen(&vp, &fd)) != 0) { 664 VN_RELE(nvp); 665 goto bad; 666 } 667 668 ADDAUX(aux, AT_EXECFD, fd) 669 } 670 671 if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) { 672 VN_RELE(nvp); 673 uprintf("%s: Cannot execute %s\n", exec_file, dlnp); 674 goto bad; 675 } 676 677 /* 678 * Now obtain the ELF header along with the entire program 679 * header contained in "nvp". 680 */ 681 kmem_free(phdrbase, phdrsize); 682 phdrbase = NULL; 683 if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs, 684 &shstrndx, &nphdrs)) != 0 || 685 (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase, 686 &phdrsize)) != 0) { 687 VN_RELE(nvp); 688 uprintf("%s: Cannot read %s\n", exec_file, dlnp); 689 goto bad; 690 } 691 692 /* 693 * Determine memory size of the "interpreter's" loadable 694 * sections. This size is then used to obtain the virtual 695 * address of a hole, in the user's address space, large 696 * enough to map the "interpreter". 697 */ 698 if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) { 699 VN_RELE(nvp); 700 uprintf("%s: Nothing to load in %s\n", exec_file, dlnp); 701 goto bad; 702 } 703 704 dtrphdr = NULL; 705 706 error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk, 707 &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len, 708 execsz, NULL); 709 if (error || junk != NULL) { 710 VN_RELE(nvp); 711 uprintf("%s: Cannot map %s\n", exec_file, dlnp); 712 goto bad; 713 } 714 715 /* 716 * We use the DTrace program header to initialize the 717 * architecture-specific user per-LWP location. The dtrace 718 * fasttrap provider requires ready access to per-LWP scratch 719 * space. We assume that there is only one such program header 720 * in the interpreter. 721 */ 722 if (dtrphdr != NULL && 723 dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 724 VN_RELE(nvp); 725 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp); 726 goto bad; 727 } 728 729 VN_RELE(nvp); 730 ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata) 731 } 732 733 if (hasauxv) { 734 int auxf = AF_SUN_HWCAPVERIFY; 735 /* 736 * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via 737 * exec_args() 738 */ 739 ADDAUX(aux, AT_BASE, voffset) 740 ADDAUX(aux, AT_FLAGS, at_flags) 741 ADDAUX(aux, AT_PAGESZ, PAGESIZE) 742 /* 743 * Linker flags. (security) 744 * p_flag not yet set at this time. 745 * We rely on gexec() to provide us with the information. 746 * If the application is set-uid but this is not reflected 747 * in a mismatch between real/effective uids/gids, then 748 * don't treat this as a set-uid exec. So we care about 749 * the EXECSETID_UGIDS flag but not the ...SETID flag. 750 */ 751 if ((setid &= ~EXECSETID_SETID) != 0) 752 auxf |= AF_SUN_SETUGID; 753 754 /* 755 * If we're running a native process from within a branded 756 * zone under pfexec then we clear the AF_SUN_SETUGID flag so 757 * that the native ld.so.1 is able to link with the native 758 * libraries instead of using the brand libraries that are 759 * installed in the zone. We only do this for processes 760 * which we trust because we see they are already running 761 * under pfexec (where uid != euid). This prevents a 762 * malicious user within the zone from crafting a wrapper to 763 * run native suid commands with unsecure libraries interposed. 764 */ 765 if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) && 766 (setid &= ~EXECSETID_SETID) != 0)) 767 auxf &= ~AF_SUN_SETUGID; 768 769 /* 770 * Record the user addr of the auxflags aux vector entry 771 * since brands may optionally want to manipulate this field. 772 */ 773 args->auxp_auxflags = 774 (char *)((char *)args->stackend + 775 ((char *)&aux->a_type - 776 (char *)bigwad->elfargs)); 777 ADDAUX(aux, AT_SUN_AUXFLAGS, auxf); 778 /* 779 * Hardware capability flag word (performance hints) 780 * Used for choosing faster library routines. 781 * (Potentially different between 32-bit and 64-bit ABIs) 782 */ 783 #if defined(_LP64) 784 if (args->to_model == DATAMODEL_NATIVE) { 785 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 786 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 787 } else { 788 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32) 789 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2) 790 } 791 #else 792 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 793 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 794 #endif 795 if (branded) { 796 /* 797 * Reserve space for the brand-private aux vectors, 798 * and record the user addr of that space. 799 */ 800 args->auxp_brand = 801 (char *)((char *)args->stackend + 802 ((char *)&aux->a_type - 803 (char *)bigwad->elfargs)); 804 ADDAUX(aux, AT_SUN_BRAND_AUX1, 0) 805 ADDAUX(aux, AT_SUN_BRAND_AUX2, 0) 806 ADDAUX(aux, AT_SUN_BRAND_AUX3, 0) 807 } 808 809 ADDAUX(aux, AT_NULL, 0) 810 postfixsize = (char *)aux - (char *)bigwad->elfargs; 811 812 /* 813 * We make assumptions above when we determine how many aux 814 * vector entries we will be adding. However, if we have an 815 * invalid elf file, it is possible that mapelfexec might 816 * behave differently (but not return an error), in which case 817 * the number of aux entries we actually add will be different. 818 * We detect that now and error out. 819 */ 820 if (postfixsize != args->auxsize) { 821 DTRACE_PROBE2(elfexec_badaux, int, postfixsize, 822 int, args->auxsize); 823 goto bad; 824 } 825 ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t)); 826 } 827 828 /* 829 * For the 64-bit kernel, the limit is big enough that rounding it up 830 * to a page can overflow the 64-bit limit, so we check for btopr() 831 * overflowing here by comparing it with the unrounded limit in pages. 832 * If it hasn't overflowed, compare the exec size with the rounded up 833 * limit in pages. Otherwise, just compare with the unrounded limit. 834 */ 835 limit = btop(p->p_vmem_ctl); 836 roundlimit = btopr(p->p_vmem_ctl); 837 if ((roundlimit > limit && *execsz > roundlimit) || 838 (roundlimit < limit && *execsz > limit)) { 839 mutex_enter(&p->p_lock); 840 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 841 RCA_SAFE); 842 mutex_exit(&p->p_lock); 843 error = ENOMEM; 844 goto bad; 845 } 846 847 bzero(up->u_auxv, sizeof (up->u_auxv)); 848 if (postfixsize) { 849 int num_auxv; 850 851 /* 852 * Copy the aux vector to the user stack. 853 */ 854 error = execpoststack(args, bigwad->elfargs, postfixsize); 855 if (error) 856 goto bad; 857 858 /* 859 * Copy auxv to the process's user structure for use by /proc. 860 * If this is a branded process, the brand's exec routine will 861 * copy it's private entries to the user structure later. It 862 * relies on the fact that the blank entries are at the end. 863 */ 864 num_auxv = postfixsize / sizeof (aux_entry_t); 865 ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t)); 866 aux = bigwad->elfargs; 867 for (i = 0; i < num_auxv; i++) { 868 up->u_auxv[i].a_type = aux[i].a_type; 869 up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val; 870 } 871 } 872 873 /* 874 * Pass back the starting address so we can set the program counter. 875 */ 876 args->entry = (uintptr_t)(ehdrp->e_entry + voffset); 877 878 if (!uphdr) { 879 if (ehdrp->e_type == ET_DYN) { 880 /* 881 * If we are executing a shared library which doesn't 882 * have a interpreter (probably ld.so.1) then 883 * we don't set the brkbase now. Instead we 884 * delay it's setting until the first call 885 * via grow.c::brk(). This permits ld.so.1 to 886 * initialize brkbase to the tail of the executable it 887 * loads (which is where it needs to be). 888 */ 889 bigwad->exenv.ex_brkbase = (caddr_t)0; 890 bigwad->exenv.ex_bssbase = (caddr_t)0; 891 bigwad->exenv.ex_brksize = 0; 892 } else { 893 bigwad->exenv.ex_brkbase = brkbase; 894 bigwad->exenv.ex_bssbase = bssbase; 895 bigwad->exenv.ex_brksize = brksize; 896 } 897 bigwad->exenv.ex_magic = elfmagic; 898 bigwad->exenv.ex_vp = vp; 899 setexecenv(&bigwad->exenv); 900 } 901 902 ASSERT(error == 0); 903 goto out; 904 905 bad: 906 if (fd != -1) /* did we open the a.out yet */ 907 (void) execclose(fd); 908 909 psignal(p, SIGKILL); 910 911 if (error == 0) 912 error = ENOEXEC; 913 out: 914 if (phdrbase != NULL) 915 kmem_free(phdrbase, phdrsize); 916 if (cap != NULL) 917 kmem_free(cap, capsize); 918 kmem_free(bigwad, sizeof (struct bigwad)); 919 return (error); 920 } 921 922 /* 923 * Compute the memory size requirement for the ELF file. 924 */ 925 static size_t 926 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata) 927 { 928 size_t len; 929 Phdr *phdrp = (Phdr *)phdrbase; 930 int hsize = ehdrp->e_phentsize; 931 int first = 1; 932 int dfirst = 1; /* first data segment */ 933 uintptr_t loaddr = 0; 934 uintptr_t hiaddr = 0; 935 uintptr_t lo, hi; 936 int i; 937 938 for (i = nphdrs; i > 0; i--) { 939 if (phdrp->p_type == PT_LOAD) { 940 lo = phdrp->p_vaddr; 941 hi = lo + phdrp->p_memsz; 942 if (first) { 943 loaddr = lo; 944 hiaddr = hi; 945 first = 0; 946 } else { 947 if (loaddr > lo) 948 loaddr = lo; 949 if (hiaddr < hi) 950 hiaddr = hi; 951 } 952 953 /* 954 * save the address of the first data segment 955 * of a object - used for the AT_SUNW_LDDATA 956 * aux entry. 957 */ 958 if ((lddata != NULL) && dfirst && 959 (phdrp->p_flags & PF_W)) { 960 *lddata = lo; 961 dfirst = 0; 962 } 963 } 964 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 965 } 966 967 len = hiaddr - (loaddr & PAGEMASK); 968 len = roundup(len, PAGESIZE); 969 970 return (len); 971 } 972 973 /* 974 * Read in the ELF header and program header table. 975 * SUSV3 requires: 976 * ENOEXEC File format is not recognized 977 * EINVAL Format recognized but execution not supported 978 */ 979 static int 980 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx, 981 int *nphdrs) 982 { 983 int error; 984 ssize_t resid; 985 986 /* 987 * We got here by the first two bytes in ident, 988 * now read the entire ELF header. 989 */ 990 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr, 991 sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0, 992 (rlim64_t)0, credp, &resid)) != 0) 993 return (error); 994 995 /* 996 * Since a separate version is compiled for handling 32-bit and 997 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version 998 * doesn't need to be able to deal with 32-bit ELF files. 999 */ 1000 if (resid != 0 || 1001 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1002 ehdr->e_ident[EI_MAG3] != ELFMAG3) 1003 return (ENOEXEC); 1004 1005 if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) || 1006 #if defined(_ILP32) || defined(_ELF32_COMPAT) 1007 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 1008 #else 1009 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 1010 #endif 1011 !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine, 1012 ehdr->e_flags)) 1013 return (EINVAL); 1014 1015 *nshdrs = ehdr->e_shnum; 1016 *shstrndx = ehdr->e_shstrndx; 1017 *nphdrs = ehdr->e_phnum; 1018 1019 /* 1020 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need 1021 * to read in the section header at index zero to acces the true 1022 * values for those fields. 1023 */ 1024 if ((*nshdrs == 0 && ehdr->e_shoff != 0) || 1025 *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) { 1026 Shdr shdr; 1027 1028 if (ehdr->e_shoff == 0) 1029 return (EINVAL); 1030 1031 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr, 1032 sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, 1033 (rlim64_t)0, credp, &resid)) != 0) 1034 return (error); 1035 1036 if (*nshdrs == 0) 1037 *nshdrs = shdr.sh_size; 1038 if (*shstrndx == SHN_XINDEX) 1039 *shstrndx = shdr.sh_link; 1040 if (*nphdrs == PN_XNUM && shdr.sh_info != 0) 1041 *nphdrs = shdr.sh_info; 1042 } 1043 1044 return (0); 1045 } 1046 1047 #ifdef _ELF32_COMPAT 1048 extern size_t elf_nphdr_max; 1049 #else 1050 size_t elf_nphdr_max = 1000; 1051 #endif 1052 1053 static int 1054 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs, 1055 caddr_t *phbasep, ssize_t *phsizep) 1056 { 1057 ssize_t resid, minsize; 1058 int err; 1059 1060 /* 1061 * Since we're going to be using e_phentsize to iterate down the 1062 * array of program headers, it must be 8-byte aligned or else 1063 * a we might cause a misaligned access. We use all members through 1064 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so 1065 * e_phentsize must be at least large enough to include those 1066 * members. 1067 */ 1068 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1069 minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags); 1070 #else 1071 minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz); 1072 #endif 1073 if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3)) 1074 return (EINVAL); 1075 1076 *phsizep = nphdrs * ehdr->e_phentsize; 1077 1078 if (*phsizep > sizeof (Phdr) * elf_nphdr_max) { 1079 if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL) 1080 return (ENOMEM); 1081 } else { 1082 *phbasep = kmem_alloc(*phsizep, KM_SLEEP); 1083 } 1084 1085 if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep, 1086 (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1087 credp, &resid)) != 0) { 1088 kmem_free(*phbasep, *phsizep); 1089 *phbasep = NULL; 1090 return (err); 1091 } 1092 1093 return (0); 1094 } 1095 1096 #ifdef _ELF32_COMPAT 1097 extern size_t elf_nshdr_max; 1098 extern size_t elf_shstrtab_max; 1099 #else 1100 size_t elf_nshdr_max = 10000; 1101 size_t elf_shstrtab_max = 100 * 1024; 1102 #endif 1103 1104 1105 static int 1106 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, 1107 int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep, 1108 char **shstrbasep, ssize_t *shstrsizep) 1109 { 1110 ssize_t resid, minsize; 1111 int err; 1112 Shdr *shdr; 1113 1114 /* 1115 * Since we're going to be using e_shentsize to iterate down the 1116 * array of section headers, it must be 8-byte aligned or else 1117 * a we might cause a misaligned access. We use all members through 1118 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize 1119 * must be at least large enough to include that member. The index 1120 * of the string table section must also be valid. 1121 */ 1122 minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize); 1123 if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) || 1124 shstrndx >= nshdrs) 1125 return (EINVAL); 1126 1127 *shsizep = nshdrs * ehdr->e_shentsize; 1128 1129 if (*shsizep > sizeof (Shdr) * elf_nshdr_max) { 1130 if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL) 1131 return (ENOMEM); 1132 } else { 1133 *shbasep = kmem_alloc(*shsizep, KM_SLEEP); 1134 } 1135 1136 if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep, 1137 (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1138 credp, &resid)) != 0) { 1139 kmem_free(*shbasep, *shsizep); 1140 return (err); 1141 } 1142 1143 /* 1144 * Pull the section string table out of the vnode; fail if the size 1145 * is zero. 1146 */ 1147 shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize); 1148 if ((*shstrsizep = shdr->sh_size) == 0) { 1149 kmem_free(*shbasep, *shsizep); 1150 return (EINVAL); 1151 } 1152 1153 if (*shstrsizep > elf_shstrtab_max) { 1154 if ((*shstrbasep = kmem_alloc(*shstrsizep, 1155 KM_NOSLEEP)) == NULL) { 1156 kmem_free(*shbasep, *shsizep); 1157 return (ENOMEM); 1158 } 1159 } else { 1160 *shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP); 1161 } 1162 1163 if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep, 1164 (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 1165 credp, &resid)) != 0) { 1166 kmem_free(*shbasep, *shsizep); 1167 kmem_free(*shstrbasep, *shstrsizep); 1168 return (err); 1169 } 1170 1171 /* 1172 * Make sure the strtab is null-terminated to make sure we 1173 * don't run off the end of the table. 1174 */ 1175 (*shstrbasep)[*shstrsizep - 1] = '\0'; 1176 1177 return (0); 1178 } 1179 1180 static int 1181 mapelfexec( 1182 vnode_t *vp, 1183 Ehdr *ehdr, 1184 int nphdrs, 1185 caddr_t phdrbase, 1186 Phdr **uphdr, 1187 Phdr **dyphdr, 1188 Phdr **stphdr, 1189 Phdr **dtphdr, 1190 Phdr *dataphdrp, 1191 caddr_t *bssbase, 1192 caddr_t *brkbase, 1193 intptr_t *voffset, 1194 intptr_t *minaddr, 1195 size_t len, 1196 long *execsz, 1197 size_t *brksize) 1198 { 1199 Phdr *phdr; 1200 int i, prot, error; 1201 caddr_t addr = NULL; 1202 size_t zfodsz; 1203 int ptload = 0; 1204 int page; 1205 off_t offset; 1206 int hsize = ehdr->e_phentsize; 1207 caddr_t mintmp = (caddr_t)-1; 1208 extern int use_brk_lpg; 1209 1210 if (ehdr->e_type == ET_DYN) { 1211 /* 1212 * Obtain the virtual address of a hole in the 1213 * address space to map the "interpreter". 1214 */ 1215 map_addr(&addr, len, (offset_t)0, 1, 0); 1216 if (addr == NULL) 1217 return (ENOMEM); 1218 *voffset = (intptr_t)addr; 1219 1220 /* 1221 * Calculate the minimum vaddr so it can be subtracted out. 1222 * According to the ELF specification, since PT_LOAD sections 1223 * must be sorted by increasing p_vaddr values, this is 1224 * guaranteed to be the first PT_LOAD section. 1225 */ 1226 phdr = (Phdr *)phdrbase; 1227 for (i = nphdrs; i > 0; i--) { 1228 if (phdr->p_type == PT_LOAD) { 1229 *voffset -= (uintptr_t)phdr->p_vaddr; 1230 break; 1231 } 1232 phdr = (Phdr *)((caddr_t)phdr + hsize); 1233 } 1234 1235 } else { 1236 *voffset = 0; 1237 } 1238 phdr = (Phdr *)phdrbase; 1239 for (i = nphdrs; i > 0; i--) { 1240 switch (phdr->p_type) { 1241 case PT_LOAD: 1242 if ((*dyphdr != NULL) && (*uphdr == NULL)) 1243 return (0); 1244 1245 ptload = 1; 1246 prot = PROT_USER; 1247 if (phdr->p_flags & PF_R) 1248 prot |= PROT_READ; 1249 if (phdr->p_flags & PF_W) 1250 prot |= PROT_WRITE; 1251 if (phdr->p_flags & PF_X) 1252 prot |= PROT_EXEC; 1253 1254 addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset); 1255 1256 /* 1257 * Keep track of the segment with the lowest starting 1258 * address. 1259 */ 1260 if (addr < mintmp) 1261 mintmp = addr; 1262 1263 zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz; 1264 1265 offset = phdr->p_offset; 1266 if (((uintptr_t)offset & PAGEOFFSET) == 1267 ((uintptr_t)addr & PAGEOFFSET) && 1268 (!(vp->v_flag & VNOMAP))) { 1269 page = 1; 1270 } else { 1271 page = 0; 1272 } 1273 1274 /* 1275 * Set the heap pagesize for OOB when the bss size 1276 * is known and use_brk_lpg is not 0. 1277 */ 1278 if (brksize != NULL && use_brk_lpg && 1279 zfodsz != 0 && phdr == dataphdrp && 1280 (prot & PROT_WRITE)) { 1281 size_t tlen = P2NPHASE((uintptr_t)addr + 1282 phdr->p_filesz, PAGESIZE); 1283 1284 if (zfodsz > tlen) { 1285 curproc->p_brkpageszc = 1286 page_szc(map_pgsz(MAPPGSZ_HEAP, 1287 curproc, addr + phdr->p_filesz + 1288 tlen, zfodsz - tlen, 0)); 1289 } 1290 } 1291 1292 if (curproc->p_brkpageszc != 0 && phdr == dataphdrp && 1293 (prot & PROT_WRITE)) { 1294 uint_t szc = curproc->p_brkpageszc; 1295 size_t pgsz = page_get_pagesize(szc); 1296 caddr_t ebss = addr + phdr->p_memsz; 1297 size_t extra_zfodsz; 1298 1299 ASSERT(pgsz > PAGESIZE); 1300 1301 extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz); 1302 1303 if (error = execmap(vp, addr, phdr->p_filesz, 1304 zfodsz + extra_zfodsz, phdr->p_offset, 1305 prot, page, szc)) 1306 goto bad; 1307 if (brksize != NULL) 1308 *brksize = extra_zfodsz; 1309 } else { 1310 if (error = execmap(vp, addr, phdr->p_filesz, 1311 zfodsz, phdr->p_offset, prot, page, 0)) 1312 goto bad; 1313 } 1314 1315 if (bssbase != NULL && addr >= *bssbase && 1316 phdr == dataphdrp) { 1317 *bssbase = addr + phdr->p_filesz; 1318 } 1319 if (brkbase != NULL && addr >= *brkbase) { 1320 *brkbase = addr + phdr->p_memsz; 1321 } 1322 1323 *execsz += btopr(phdr->p_memsz); 1324 break; 1325 1326 case PT_INTERP: 1327 if (ptload) 1328 goto bad; 1329 *dyphdr = phdr; 1330 break; 1331 1332 case PT_SHLIB: 1333 *stphdr = phdr; 1334 break; 1335 1336 case PT_PHDR: 1337 if (ptload) 1338 goto bad; 1339 *uphdr = phdr; 1340 break; 1341 1342 case PT_NULL: 1343 case PT_DYNAMIC: 1344 case PT_NOTE: 1345 break; 1346 1347 case PT_SUNWDTRACE: 1348 if (dtphdr != NULL) 1349 *dtphdr = phdr; 1350 break; 1351 1352 default: 1353 break; 1354 } 1355 phdr = (Phdr *)((caddr_t)phdr + hsize); 1356 } 1357 1358 if (minaddr != NULL) { 1359 ASSERT(mintmp != (caddr_t)-1); 1360 *minaddr = (intptr_t)mintmp; 1361 } 1362 1363 return (0); 1364 bad: 1365 if (error == 0) 1366 error = EINVAL; 1367 return (error); 1368 } 1369 1370 int 1371 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc, 1372 rlim64_t rlimit, cred_t *credp) 1373 { 1374 Note note; 1375 int error; 1376 1377 bzero(¬e, sizeof (note)); 1378 bcopy("CORE", note.name, 4); 1379 note.nhdr.n_type = type; 1380 /* 1381 * The System V ABI states that n_namesz must be the length of the 1382 * string that follows the Nhdr structure including the terminating 1383 * null. The ABI also specifies that sufficient padding should be 1384 * included so that the description that follows the name string 1385 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries 1386 * respectively. However, since this change was not made correctly 1387 * at the time of the 64-bit port, both 32- and 64-bit binaries 1388 * descriptions are only guaranteed to begin on a 4-byte boundary. 1389 */ 1390 note.nhdr.n_namesz = 5; 1391 note.nhdr.n_descsz = roundup(descsz, sizeof (Word)); 1392 1393 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, ¬e, 1394 sizeof (note), rlimit, credp)) 1395 return (error); 1396 1397 *offsetp += sizeof (note); 1398 1399 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc, 1400 note.nhdr.n_descsz, rlimit, credp)) 1401 return (error); 1402 1403 *offsetp += note.nhdr.n_descsz; 1404 return (0); 1405 } 1406 1407 /* 1408 * Copy the section data from one vnode to the section of another vnode. 1409 */ 1410 static void 1411 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset, 1412 void *buf, size_t size, cred_t *credp, rlim64_t rlimit) 1413 { 1414 ssize_t resid; 1415 size_t len, n = src->sh_size; 1416 offset_t off = 0; 1417 1418 while (n != 0) { 1419 len = MIN(size, n); 1420 if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off, 1421 UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 || 1422 resid >= len || 1423 core_write(dst_vp, UIO_SYSSPACE, *doffset + off, 1424 buf, len - resid, rlimit, credp) != 0) { 1425 dst->sh_size = 0; 1426 dst->sh_offset = 0; 1427 return; 1428 } 1429 1430 ASSERT(n >= len - resid); 1431 1432 n -= len - resid; 1433 off += len - resid; 1434 } 1435 1436 *doffset += src->sh_size; 1437 } 1438 1439 #ifdef _ELF32_COMPAT 1440 extern size_t elf_datasz_max; 1441 #else 1442 size_t elf_datasz_max = 1 * 1024 * 1024; 1443 #endif 1444 1445 /* 1446 * This function processes mappings that correspond to load objects to 1447 * examine their respective sections for elfcore(). It's called once with 1448 * v set to NULL to count the number of sections that we're going to need 1449 * and then again with v set to some allocated buffer that we fill in with 1450 * all the section data. 1451 */ 1452 static int 1453 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp, 1454 Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp) 1455 { 1456 vnode_t *lastvp = NULL; 1457 struct seg *seg; 1458 int i, j; 1459 void *data = NULL; 1460 size_t datasz = 0; 1461 shstrtab_t shstrtab; 1462 struct as *as = p->p_as; 1463 int error = 0; 1464 1465 if (v != NULL) 1466 shstrtab_init(&shstrtab); 1467 1468 i = 1; 1469 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1470 uint_t prot; 1471 vnode_t *mvp; 1472 void *tmp = NULL; 1473 caddr_t saddr = seg->s_base; 1474 caddr_t naddr; 1475 caddr_t eaddr; 1476 size_t segsize; 1477 1478 Ehdr ehdr; 1479 int nshdrs, shstrndx, nphdrs; 1480 caddr_t shbase; 1481 ssize_t shsize; 1482 char *shstrbase; 1483 ssize_t shstrsize; 1484 1485 Shdr *shdr; 1486 const char *name; 1487 size_t sz; 1488 uintptr_t off; 1489 1490 int ctf_ndx = 0; 1491 int symtab_ndx = 0; 1492 1493 /* 1494 * Since we're just looking for text segments of load 1495 * objects, we only care about the protection bits; we don't 1496 * care about the actual size of the segment so we use the 1497 * reserved size. If the segment's size is zero, there's 1498 * something fishy going on so we ignore this segment. 1499 */ 1500 if (seg->s_ops != &segvn_ops || 1501 SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 1502 mvp == lastvp || mvp == NULL || mvp->v_type != VREG || 1503 (segsize = pr_getsegsize(seg, 1)) == 0) 1504 continue; 1505 1506 eaddr = saddr + segsize; 1507 prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr); 1508 pr_getprot_done(&tmp); 1509 1510 /* 1511 * Skip this segment unless the protection bits look like 1512 * what we'd expect for a text segment. 1513 */ 1514 if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC) 1515 continue; 1516 1517 if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx, 1518 &nphdrs) != 0 || 1519 getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx, 1520 &shbase, &shsize, &shstrbase, &shstrsize) != 0) 1521 continue; 1522 1523 off = ehdr.e_shentsize; 1524 for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) { 1525 Shdr *symtab = NULL, *strtab; 1526 1527 shdr = (Shdr *)(shbase + off); 1528 1529 if (shdr->sh_name >= shstrsize) 1530 continue; 1531 1532 name = shstrbase + shdr->sh_name; 1533 1534 if (strcmp(name, shstrtab_data[STR_CTF]) == 0) { 1535 if ((content & CC_CONTENT_CTF) == 0 || 1536 ctf_ndx != 0) 1537 continue; 1538 1539 if (shdr->sh_link > 0 && 1540 shdr->sh_link < nshdrs) { 1541 symtab = (Shdr *)(shbase + 1542 shdr->sh_link * ehdr.e_shentsize); 1543 } 1544 1545 if (v != NULL && i < nv - 1) { 1546 if (shdr->sh_size > datasz && 1547 shdr->sh_size <= elf_datasz_max) { 1548 if (data != NULL) 1549 kmem_free(data, datasz); 1550 1551 datasz = shdr->sh_size; 1552 data = kmem_alloc(datasz, 1553 KM_SLEEP); 1554 } 1555 1556 v[i].sh_name = shstrtab_ndx(&shstrtab, 1557 STR_CTF); 1558 v[i].sh_addr = (Addr)(uintptr_t)saddr; 1559 v[i].sh_type = SHT_PROGBITS; 1560 v[i].sh_addralign = 4; 1561 *doffsetp = roundup(*doffsetp, 1562 v[i].sh_addralign); 1563 v[i].sh_offset = *doffsetp; 1564 v[i].sh_size = shdr->sh_size; 1565 if (symtab == NULL) { 1566 v[i].sh_link = 0; 1567 } else if (symtab->sh_type == 1568 SHT_SYMTAB && 1569 symtab_ndx != 0) { 1570 v[i].sh_link = 1571 symtab_ndx; 1572 } else { 1573 v[i].sh_link = i + 1; 1574 } 1575 1576 copy_scn(shdr, mvp, &v[i], vp, 1577 doffsetp, data, datasz, credp, 1578 rlimit); 1579 } 1580 1581 ctf_ndx = i++; 1582 1583 /* 1584 * We've already dumped the symtab. 1585 */ 1586 if (symtab != NULL && 1587 symtab->sh_type == SHT_SYMTAB && 1588 symtab_ndx != 0) 1589 continue; 1590 1591 } else if (strcmp(name, 1592 shstrtab_data[STR_SYMTAB]) == 0) { 1593 if ((content & CC_CONTENT_SYMTAB) == 0 || 1594 symtab != 0) 1595 continue; 1596 1597 symtab = shdr; 1598 } 1599 1600 if (symtab != NULL) { 1601 if ((symtab->sh_type != SHT_DYNSYM && 1602 symtab->sh_type != SHT_SYMTAB) || 1603 symtab->sh_link == 0 || 1604 symtab->sh_link >= nshdrs) 1605 continue; 1606 1607 strtab = (Shdr *)(shbase + 1608 symtab->sh_link * ehdr.e_shentsize); 1609 1610 if (strtab->sh_type != SHT_STRTAB) 1611 continue; 1612 1613 if (v != NULL && i < nv - 2) { 1614 sz = MAX(symtab->sh_size, 1615 strtab->sh_size); 1616 if (sz > datasz && 1617 sz <= elf_datasz_max) { 1618 if (data != NULL) 1619 kmem_free(data, datasz); 1620 1621 datasz = sz; 1622 data = kmem_alloc(datasz, 1623 KM_SLEEP); 1624 } 1625 1626 if (symtab->sh_type == SHT_DYNSYM) { 1627 v[i].sh_name = shstrtab_ndx( 1628 &shstrtab, STR_DYNSYM); 1629 v[i + 1].sh_name = shstrtab_ndx( 1630 &shstrtab, STR_DYNSTR); 1631 } else { 1632 v[i].sh_name = shstrtab_ndx( 1633 &shstrtab, STR_SYMTAB); 1634 v[i + 1].sh_name = shstrtab_ndx( 1635 &shstrtab, STR_STRTAB); 1636 } 1637 1638 v[i].sh_type = symtab->sh_type; 1639 v[i].sh_addr = symtab->sh_addr; 1640 if (ehdr.e_type == ET_DYN || 1641 v[i].sh_addr == 0) 1642 v[i].sh_addr += 1643 (Addr)(uintptr_t)saddr; 1644 v[i].sh_addralign = 1645 symtab->sh_addralign; 1646 *doffsetp = roundup(*doffsetp, 1647 v[i].sh_addralign); 1648 v[i].sh_offset = *doffsetp; 1649 v[i].sh_size = symtab->sh_size; 1650 v[i].sh_link = i + 1; 1651 v[i].sh_entsize = symtab->sh_entsize; 1652 v[i].sh_info = symtab->sh_info; 1653 1654 copy_scn(symtab, mvp, &v[i], vp, 1655 doffsetp, data, datasz, credp, 1656 rlimit); 1657 1658 v[i + 1].sh_type = SHT_STRTAB; 1659 v[i + 1].sh_flags = SHF_STRINGS; 1660 v[i + 1].sh_addr = symtab->sh_addr; 1661 if (ehdr.e_type == ET_DYN || 1662 v[i + 1].sh_addr == 0) 1663 v[i + 1].sh_addr += 1664 (Addr)(uintptr_t)saddr; 1665 v[i + 1].sh_addralign = 1666 strtab->sh_addralign; 1667 *doffsetp = roundup(*doffsetp, 1668 v[i + 1].sh_addralign); 1669 v[i + 1].sh_offset = *doffsetp; 1670 v[i + 1].sh_size = strtab->sh_size; 1671 1672 copy_scn(strtab, mvp, &v[i + 1], vp, 1673 doffsetp, data, datasz, credp, 1674 rlimit); 1675 } 1676 1677 if (symtab->sh_type == SHT_SYMTAB) 1678 symtab_ndx = i; 1679 i += 2; 1680 } 1681 } 1682 1683 kmem_free(shstrbase, shstrsize); 1684 kmem_free(shbase, shsize); 1685 1686 lastvp = mvp; 1687 } 1688 1689 if (v == NULL) { 1690 if (i == 1) 1691 *nshdrsp = 0; 1692 else 1693 *nshdrsp = i + 1; 1694 goto done; 1695 } 1696 1697 if (i != nv - 1) { 1698 cmn_err(CE_WARN, "elfcore: core dump failed for " 1699 "process %d; address space is changing", p->p_pid); 1700 error = EIO; 1701 goto done; 1702 } 1703 1704 v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB); 1705 v[i].sh_size = shstrtab_size(&shstrtab); 1706 v[i].sh_addralign = 1; 1707 *doffsetp = roundup(*doffsetp, v[i].sh_addralign); 1708 v[i].sh_offset = *doffsetp; 1709 v[i].sh_flags = SHF_STRINGS; 1710 v[i].sh_type = SHT_STRTAB; 1711 1712 if (v[i].sh_size > datasz) { 1713 if (data != NULL) 1714 kmem_free(data, datasz); 1715 1716 datasz = v[i].sh_size; 1717 data = kmem_alloc(datasz, 1718 KM_SLEEP); 1719 } 1720 1721 shstrtab_dump(&shstrtab, data); 1722 1723 if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp, 1724 data, v[i].sh_size, rlimit, credp)) != 0) 1725 goto done; 1726 1727 *doffsetp += v[i].sh_size; 1728 1729 done: 1730 if (data != NULL) 1731 kmem_free(data, datasz); 1732 1733 return (error); 1734 } 1735 1736 int 1737 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, 1738 core_content_t content) 1739 { 1740 offset_t poffset, soffset; 1741 Off doffset; 1742 int error, i, nphdrs, nshdrs; 1743 int overflow = 0; 1744 struct seg *seg; 1745 struct as *as = p->p_as; 1746 union { 1747 Ehdr ehdr; 1748 Phdr phdr[1]; 1749 Shdr shdr[1]; 1750 } *bigwad; 1751 size_t bigsize; 1752 size_t phdrsz, shdrsz; 1753 Ehdr *ehdr; 1754 Phdr *v; 1755 caddr_t brkbase; 1756 size_t brksize; 1757 caddr_t stkbase; 1758 size_t stksize; 1759 int ntries = 0; 1760 klwp_t *lwp = ttolwp(curthread); 1761 1762 top: 1763 /* 1764 * Make sure we have everything we need (registers, etc.). 1765 * All other lwps have already stopped and are in an orderly state. 1766 */ 1767 ASSERT(p == ttoproc(curthread)); 1768 prstop(0, 0); 1769 1770 AS_LOCK_ENTER(as, RW_WRITER); 1771 nphdrs = prnsegs(as, 0) + 2; /* two CORE note sections */ 1772 1773 /* 1774 * Count the number of section headers we're going to need. 1775 */ 1776 nshdrs = 0; 1777 if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) { 1778 (void) process_scns(content, p, credp, NULL, NULL, NULL, 0, 1779 NULL, &nshdrs); 1780 } 1781 AS_LOCK_EXIT(as); 1782 1783 ASSERT(nshdrs == 0 || nshdrs > 1); 1784 1785 /* 1786 * The core file contents may required zero section headers, but if 1787 * we overflow the 16 bits allotted to the program header count in 1788 * the ELF header, we'll need that program header at index zero. 1789 */ 1790 if (nshdrs == 0 && nphdrs >= PN_XNUM) 1791 nshdrs = 1; 1792 1793 phdrsz = nphdrs * sizeof (Phdr); 1794 shdrsz = nshdrs * sizeof (Shdr); 1795 1796 bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz)); 1797 bigwad = kmem_alloc(bigsize, KM_SLEEP); 1798 1799 ehdr = &bigwad->ehdr; 1800 bzero(ehdr, sizeof (*ehdr)); 1801 1802 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1803 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1804 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1805 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1806 ehdr->e_ident[EI_CLASS] = ELFCLASS; 1807 ehdr->e_type = ET_CORE; 1808 1809 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1810 1811 #if defined(__sparc) 1812 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1813 ehdr->e_machine = EM_SPARC; 1814 #elif defined(__i386) || defined(__i386_COMPAT) 1815 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1816 ehdr->e_machine = EM_386; 1817 #else 1818 #error "no recognized machine type is defined" 1819 #endif 1820 1821 #else /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1822 1823 #if defined(__sparc) 1824 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1825 ehdr->e_machine = EM_SPARCV9; 1826 #elif defined(__amd64) 1827 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1828 ehdr->e_machine = EM_AMD64; 1829 #else 1830 #error "no recognized 64-bit machine type is defined" 1831 #endif 1832 1833 #endif /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1834 1835 /* 1836 * If the count of program headers or section headers or the index 1837 * of the section string table can't fit in the mere 16 bits 1838 * shortsightedly allotted to them in the ELF header, we use the 1839 * extended formats and put the real values in the section header 1840 * as index 0. 1841 */ 1842 ehdr->e_version = EV_CURRENT; 1843 ehdr->e_ehsize = sizeof (Ehdr); 1844 1845 if (nphdrs >= PN_XNUM) 1846 ehdr->e_phnum = PN_XNUM; 1847 else 1848 ehdr->e_phnum = (unsigned short)nphdrs; 1849 1850 ehdr->e_phoff = sizeof (Ehdr); 1851 ehdr->e_phentsize = sizeof (Phdr); 1852 1853 if (nshdrs > 0) { 1854 if (nshdrs >= SHN_LORESERVE) 1855 ehdr->e_shnum = 0; 1856 else 1857 ehdr->e_shnum = (unsigned short)nshdrs; 1858 1859 if (nshdrs - 1 >= SHN_LORESERVE) 1860 ehdr->e_shstrndx = SHN_XINDEX; 1861 else 1862 ehdr->e_shstrndx = (unsigned short)(nshdrs - 1); 1863 1864 ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs; 1865 ehdr->e_shentsize = sizeof (Shdr); 1866 } 1867 1868 if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr, 1869 sizeof (Ehdr), rlimit, credp)) 1870 goto done; 1871 1872 poffset = sizeof (Ehdr); 1873 soffset = sizeof (Ehdr) + phdrsz; 1874 doffset = sizeof (Ehdr) + phdrsz + shdrsz; 1875 1876 v = &bigwad->phdr[0]; 1877 bzero(v, phdrsz); 1878 1879 setup_old_note_header(&v[0], p); 1880 v[0].p_offset = doffset = roundup(doffset, sizeof (Word)); 1881 doffset += v[0].p_filesz; 1882 1883 setup_note_header(&v[1], p); 1884 v[1].p_offset = doffset = roundup(doffset, sizeof (Word)); 1885 doffset += v[1].p_filesz; 1886 1887 mutex_enter(&p->p_lock); 1888 1889 brkbase = p->p_brkbase; 1890 brksize = p->p_brksize; 1891 1892 stkbase = p->p_usrstack - p->p_stksize; 1893 stksize = p->p_stksize; 1894 1895 mutex_exit(&p->p_lock); 1896 1897 AS_LOCK_ENTER(as, RW_WRITER); 1898 i = 2; 1899 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1900 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1901 caddr_t saddr, naddr; 1902 void *tmp = NULL; 1903 extern struct seg_ops segspt_shmops; 1904 1905 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1906 uint_t prot; 1907 size_t size; 1908 int type; 1909 vnode_t *mvp; 1910 1911 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1912 prot &= PROT_READ | PROT_WRITE | PROT_EXEC; 1913 if ((size = (size_t)(naddr - saddr)) == 0) 1914 continue; 1915 if (i == nphdrs) { 1916 overflow++; 1917 continue; 1918 } 1919 v[i].p_type = PT_LOAD; 1920 v[i].p_vaddr = (Addr)(uintptr_t)saddr; 1921 v[i].p_memsz = size; 1922 if (prot & PROT_READ) 1923 v[i].p_flags |= PF_R; 1924 if (prot & PROT_WRITE) 1925 v[i].p_flags |= PF_W; 1926 if (prot & PROT_EXEC) 1927 v[i].p_flags |= PF_X; 1928 1929 /* 1930 * Figure out which mappings to include in the core. 1931 */ 1932 type = SEGOP_GETTYPE(seg, saddr); 1933 1934 if (saddr == stkbase && size == stksize) { 1935 if (!(content & CC_CONTENT_STACK)) 1936 goto exclude; 1937 1938 } else if (saddr == brkbase && size == brksize) { 1939 if (!(content & CC_CONTENT_HEAP)) 1940 goto exclude; 1941 1942 } else if (seg->s_ops == &segspt_shmops) { 1943 if (type & MAP_NORESERVE) { 1944 if (!(content & CC_CONTENT_DISM)) 1945 goto exclude; 1946 } else { 1947 if (!(content & CC_CONTENT_ISM)) 1948 goto exclude; 1949 } 1950 1951 } else if (seg->s_ops != &segvn_ops) { 1952 goto exclude; 1953 1954 } else if (type & MAP_SHARED) { 1955 if (shmgetid(p, saddr) != SHMID_NONE) { 1956 if (!(content & CC_CONTENT_SHM)) 1957 goto exclude; 1958 1959 } else if (SEGOP_GETVP(seg, seg->s_base, 1960 &mvp) != 0 || mvp == NULL || 1961 mvp->v_type != VREG) { 1962 if (!(content & CC_CONTENT_SHANON)) 1963 goto exclude; 1964 1965 } else { 1966 if (!(content & CC_CONTENT_SHFILE)) 1967 goto exclude; 1968 } 1969 1970 } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 1971 mvp == NULL || mvp->v_type != VREG) { 1972 if (!(content & CC_CONTENT_ANON)) 1973 goto exclude; 1974 1975 } else if (prot == (PROT_READ | PROT_EXEC)) { 1976 if (!(content & CC_CONTENT_TEXT)) 1977 goto exclude; 1978 1979 } else if (prot == PROT_READ) { 1980 if (!(content & CC_CONTENT_RODATA)) 1981 goto exclude; 1982 1983 } else { 1984 if (!(content & CC_CONTENT_DATA)) 1985 goto exclude; 1986 } 1987 1988 doffset = roundup(doffset, sizeof (Word)); 1989 v[i].p_offset = doffset; 1990 v[i].p_filesz = size; 1991 doffset += size; 1992 exclude: 1993 i++; 1994 } 1995 ASSERT(tmp == NULL); 1996 } 1997 AS_LOCK_EXIT(as); 1998 1999 if (overflow || i != nphdrs) { 2000 if (ntries++ == 0) { 2001 kmem_free(bigwad, bigsize); 2002 overflow = 0; 2003 goto top; 2004 } 2005 cmn_err(CE_WARN, "elfcore: core dump failed for " 2006 "process %d; address space is changing", p->p_pid); 2007 error = EIO; 2008 goto done; 2009 } 2010 2011 if ((error = core_write(vp, UIO_SYSSPACE, poffset, 2012 v, phdrsz, rlimit, credp)) != 0) 2013 goto done; 2014 2015 if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit, 2016 credp)) != 0) 2017 goto done; 2018 2019 if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit, 2020 credp, content)) != 0) 2021 goto done; 2022 2023 for (i = 2; i < nphdrs; i++) { 2024 prkillinfo_t killinfo; 2025 sigqueue_t *sq; 2026 int sig, j; 2027 2028 if (v[i].p_filesz == 0) 2029 continue; 2030 2031 /* 2032 * If dumping out this segment fails, rather than failing 2033 * the core dump entirely, we reset the size of the mapping 2034 * to zero to indicate that the data is absent from the core 2035 * file and or in the PF_SUNW_FAILURE flag to differentiate 2036 * this from mappings that were excluded due to the core file 2037 * content settings. 2038 */ 2039 if ((error = core_seg(p, vp, v[i].p_offset, 2040 (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz, 2041 rlimit, credp)) == 0) { 2042 continue; 2043 } 2044 2045 if ((sig = lwp->lwp_cursig) == 0) { 2046 /* 2047 * We failed due to something other than a signal. 2048 * Since the space reserved for the segment is now 2049 * unused, we stash the errno in the first four 2050 * bytes. This undocumented interface will let us 2051 * understand the nature of the failure. 2052 */ 2053 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2054 &error, sizeof (error), rlimit, credp); 2055 2056 v[i].p_filesz = 0; 2057 v[i].p_flags |= PF_SUNW_FAILURE; 2058 if ((error = core_write(vp, UIO_SYSSPACE, 2059 poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]), 2060 rlimit, credp)) != 0) 2061 goto done; 2062 2063 continue; 2064 } 2065 2066 /* 2067 * We took a signal. We want to abort the dump entirely, but 2068 * we also want to indicate what failed and why. We therefore 2069 * use the space reserved for the first failing segment to 2070 * write our error (which, for purposes of compatability with 2071 * older core dump readers, we set to EINTR) followed by any 2072 * siginfo associated with the signal. 2073 */ 2074 bzero(&killinfo, sizeof (killinfo)); 2075 killinfo.prk_error = EINTR; 2076 2077 sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo; 2078 2079 if (sq != NULL) { 2080 bcopy(&sq->sq_info, &killinfo.prk_info, 2081 sizeof (sq->sq_info)); 2082 } else { 2083 killinfo.prk_info.si_signo = lwp->lwp_cursig; 2084 killinfo.prk_info.si_code = SI_NOINFO; 2085 } 2086 2087 #if (defined(_SYSCALL32_IMPL) || defined(_LP64)) 2088 /* 2089 * If this is a 32-bit process, we need to translate from the 2090 * native siginfo to the 32-bit variant. (Core readers must 2091 * always have the same data model as their target or must 2092 * be aware of -- and compensate for -- data model differences.) 2093 */ 2094 if (curproc->p_model == DATAMODEL_ILP32) { 2095 siginfo32_t si32; 2096 2097 siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32); 2098 bcopy(&si32, &killinfo.prk_info, sizeof (si32)); 2099 } 2100 #endif 2101 2102 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2103 &killinfo, sizeof (killinfo), rlimit, credp); 2104 2105 /* 2106 * For the segment on which we took the signal, indicate that 2107 * its data now refers to a siginfo. 2108 */ 2109 v[i].p_filesz = 0; 2110 v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED | 2111 PF_SUNW_SIGINFO; 2112 2113 /* 2114 * And for every other segment, indicate that its absence 2115 * is due to a signal. 2116 */ 2117 for (j = i + 1; j < nphdrs; j++) { 2118 v[j].p_filesz = 0; 2119 v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED; 2120 } 2121 2122 /* 2123 * Finally, write out our modified program headers. 2124 */ 2125 if ((error = core_write(vp, UIO_SYSSPACE, 2126 poffset + sizeof (v[i]) * i, &v[i], 2127 sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0) 2128 goto done; 2129 2130 break; 2131 } 2132 2133 if (nshdrs > 0) { 2134 bzero(&bigwad->shdr[0], shdrsz); 2135 2136 if (nshdrs >= SHN_LORESERVE) 2137 bigwad->shdr[0].sh_size = nshdrs; 2138 2139 if (nshdrs - 1 >= SHN_LORESERVE) 2140 bigwad->shdr[0].sh_link = nshdrs - 1; 2141 2142 if (nphdrs >= PN_XNUM) 2143 bigwad->shdr[0].sh_info = nphdrs; 2144 2145 if (nshdrs > 1) { 2146 AS_LOCK_ENTER(as, RW_WRITER); 2147 if ((error = process_scns(content, p, credp, vp, 2148 &bigwad->shdr[0], nshdrs, rlimit, &doffset, 2149 NULL)) != 0) { 2150 AS_LOCK_EXIT(as); 2151 goto done; 2152 } 2153 AS_LOCK_EXIT(as); 2154 } 2155 2156 if ((error = core_write(vp, UIO_SYSSPACE, soffset, 2157 &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0) 2158 goto done; 2159 } 2160 2161 done: 2162 kmem_free(bigwad, bigsize); 2163 return (error); 2164 } 2165 2166 #ifndef _ELF32_COMPAT 2167 2168 static struct execsw esw = { 2169 #ifdef _LP64 2170 elf64magicstr, 2171 #else /* _LP64 */ 2172 elf32magicstr, 2173 #endif /* _LP64 */ 2174 0, 2175 5, 2176 elfexec, 2177 elfcore 2178 }; 2179 2180 static struct modlexec modlexec = { 2181 &mod_execops, "exec module for elf", &esw 2182 }; 2183 2184 #ifdef _LP64 2185 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args, 2186 intpdata_t *idatap, int level, long *execsz, 2187 int setid, caddr_t exec_file, cred_t *cred, 2188 int brand_action); 2189 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp, 2190 rlim64_t rlimit, int sig, core_content_t content); 2191 2192 static struct execsw esw32 = { 2193 elf32magicstr, 2194 0, 2195 5, 2196 elf32exec, 2197 elf32core 2198 }; 2199 2200 static struct modlexec modlexec32 = { 2201 &mod_execops, "32-bit exec module for elf", &esw32 2202 }; 2203 #endif /* _LP64 */ 2204 2205 static struct modlinkage modlinkage = { 2206 MODREV_1, 2207 (void *)&modlexec, 2208 #ifdef _LP64 2209 (void *)&modlexec32, 2210 #endif /* _LP64 */ 2211 NULL 2212 }; 2213 2214 int 2215 _init(void) 2216 { 2217 return (mod_install(&modlinkage)); 2218 } 2219 2220 int 2221 _fini(void) 2222 { 2223 return (mod_remove(&modlinkage)); 2224 } 2225 2226 int 2227 _info(struct modinfo *modinfop) 2228 { 2229 return (mod_info(&modlinkage, modinfop)); 2230 } 2231 2232 #endif /* !_ELF32_COMPAT */ 2233