1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 /* 29 * Copyright (c) 2019, Joyent, Inc. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/thread.h> 35 #include <sys/sysmacros.h> 36 #include <sys/signal.h> 37 #include <sys/cred.h> 38 #include <sys/user.h> 39 #include <sys/errno.h> 40 #include <sys/vnode.h> 41 #include <sys/mman.h> 42 #include <sys/kmem.h> 43 #include <sys/proc.h> 44 #include <sys/pathname.h> 45 #include <sys/policy.h> 46 #include <sys/cmn_err.h> 47 #include <sys/systm.h> 48 #include <sys/elf.h> 49 #include <sys/vmsystm.h> 50 #include <sys/debug.h> 51 #include <sys/auxv.h> 52 #include <sys/exec.h> 53 #include <sys/prsystm.h> 54 #include <vm/as.h> 55 #include <vm/rm.h> 56 #include <vm/seg.h> 57 #include <vm/seg_vn.h> 58 #include <sys/modctl.h> 59 #include <sys/systeminfo.h> 60 #include <sys/vmparam.h> 61 #include <sys/machelf.h> 62 #include <sys/shm_impl.h> 63 #include <sys/archsystm.h> 64 #include <sys/fasttrap.h> 65 #include <sys/brand.h> 66 #include "elf_impl.h" 67 #include <sys/sdt.h> 68 #include <sys/siginfo.h> 69 #include <sys/random.h> 70 71 #if defined(__x86) 72 #include <sys/comm_page_util.h> 73 #include <sys/fp.h> 74 #endif /* defined(__x86) */ 75 76 77 extern int at_flags; 78 extern volatile size_t aslr_max_brk_skew; 79 80 #define ORIGIN_STR "ORIGIN" 81 #define ORIGIN_STR_SIZE 6 82 83 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *); 84 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *, 85 ssize_t *); 86 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *, 87 ssize_t *, caddr_t *, ssize_t *); 88 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *); 89 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t, 90 Phdr **, Phdr **, Phdr **, Phdr **, Phdr *, 91 caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *); 92 93 typedef enum { 94 STR_CTF, 95 STR_SYMTAB, 96 STR_DYNSYM, 97 STR_STRTAB, 98 STR_DYNSTR, 99 STR_SHSTRTAB, 100 STR_NUM 101 } shstrtype_t; 102 103 static const char *shstrtab_data[] = { 104 ".SUNW_ctf", 105 ".symtab", 106 ".dynsym", 107 ".strtab", 108 ".dynstr", 109 ".shstrtab" 110 }; 111 112 typedef struct shstrtab { 113 int sst_ndx[STR_NUM]; 114 int sst_cur; 115 } shstrtab_t; 116 117 static void 118 shstrtab_init(shstrtab_t *s) 119 { 120 bzero(&s->sst_ndx, sizeof (s->sst_ndx)); 121 s->sst_cur = 1; 122 } 123 124 static int 125 shstrtab_ndx(shstrtab_t *s, shstrtype_t type) 126 { 127 int ret; 128 129 if ((ret = s->sst_ndx[type]) != 0) 130 return (ret); 131 132 ret = s->sst_ndx[type] = s->sst_cur; 133 s->sst_cur += strlen(shstrtab_data[type]) + 1; 134 135 return (ret); 136 } 137 138 static size_t 139 shstrtab_size(const shstrtab_t *s) 140 { 141 return (s->sst_cur); 142 } 143 144 static void 145 shstrtab_dump(const shstrtab_t *s, char *buf) 146 { 147 int i, ndx; 148 149 *buf = '\0'; 150 for (i = 0; i < STR_NUM; i++) { 151 if ((ndx = s->sst_ndx[i]) != 0) 152 (void) strcpy(buf + ndx, shstrtab_data[i]); 153 } 154 } 155 156 static int 157 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base) 158 { 159 ASSERT(phdrp->p_type == PT_SUNWDTRACE); 160 161 /* 162 * See the comment in fasttrap.h for information on how to safely 163 * update this program header. 164 */ 165 if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE || 166 (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X)) 167 return (-1); 168 169 args->thrptr = phdrp->p_vaddr + base; 170 171 return (0); 172 } 173 174 static int 175 handle_secflag_dt(proc_t *p, uint_t dt, uint_t val) 176 { 177 uint_t flag; 178 179 switch (dt) { 180 case DT_SUNW_ASLR: 181 flag = PROC_SEC_ASLR; 182 break; 183 default: 184 return (EINVAL); 185 } 186 187 if (val == 0) { 188 if (secflag_isset(p->p_secflags.psf_lower, flag)) 189 return (EPERM); 190 if ((secpolicy_psecflags(CRED(), p, p) != 0) && 191 secflag_isset(p->p_secflags.psf_inherit, flag)) 192 return (EPERM); 193 194 secflag_clear(&p->p_secflags.psf_effective, flag); 195 } else { 196 if (!secflag_isset(p->p_secflags.psf_upper, flag)) 197 return (EPERM); 198 199 if ((secpolicy_psecflags(CRED(), p, p) != 0) && 200 !secflag_isset(p->p_secflags.psf_inherit, flag)) 201 return (EPERM); 202 203 secflag_set(&p->p_secflags.psf_effective, flag); 204 } 205 206 return (0); 207 } 208 209 /* 210 * Map in the executable pointed to by vp. Returns 0 on success. 211 */ 212 int 213 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr, 214 intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase, 215 caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap) 216 { 217 size_t len; 218 struct vattr vat; 219 caddr_t phdrbase = NULL; 220 ssize_t phdrsize; 221 int nshdrs, shstrndx, nphdrs; 222 int error = 0; 223 Phdr *uphdr = NULL; 224 Phdr *junk = NULL; 225 Phdr *dynphdr = NULL; 226 Phdr *dtrphdr = NULL; 227 uintptr_t lddata; 228 long execsz; 229 intptr_t minaddr; 230 231 if (lddatap != NULL) 232 *lddatap = NULL; 233 234 if (error = execpermissions(vp, &vat, args)) { 235 uprintf("%s: Cannot execute %s\n", exec_file, args->pathname); 236 return (error); 237 } 238 239 if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx, 240 &nphdrs)) != 0 || 241 (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase, 242 &phdrsize)) != 0) { 243 uprintf("%s: Cannot read %s\n", exec_file, args->pathname); 244 return (error); 245 } 246 247 if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) { 248 uprintf("%s: Nothing to load in %s", exec_file, args->pathname); 249 kmem_free(phdrbase, phdrsize); 250 return (ENOEXEC); 251 } 252 if (lddatap != NULL) 253 *lddatap = lddata; 254 255 if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr, 256 &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr, 257 len, &execsz, brksize)) { 258 uprintf("%s: Cannot map %s\n", exec_file, args->pathname); 259 kmem_free(phdrbase, phdrsize); 260 return (error); 261 } 262 263 /* 264 * Inform our caller if the executable needs an interpreter. 265 */ 266 *interp = (dynphdr == NULL) ? 0 : 1; 267 268 /* 269 * If this is a statically linked executable, voffset should indicate 270 * the address of the executable itself (it normally holds the address 271 * of the interpreter). 272 */ 273 if (ehdr->e_type == ET_EXEC && *interp == 0) 274 *voffset = minaddr; 275 276 if (uphdr != NULL) { 277 *uphdr_vaddr = uphdr->p_vaddr; 278 } else { 279 *uphdr_vaddr = (Addr)-1; 280 } 281 282 kmem_free(phdrbase, phdrsize); 283 return (error); 284 } 285 286 /*ARGSUSED*/ 287 int 288 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, 289 int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred, 290 int brand_action) 291 { 292 caddr_t phdrbase = NULL; 293 caddr_t bssbase = 0; 294 caddr_t brkbase = 0; 295 size_t brksize = 0; 296 ssize_t dlnsize; 297 aux_entry_t *aux; 298 int error; 299 ssize_t resid; 300 int fd = -1; 301 intptr_t voffset; 302 Phdr *intphdr = NULL; 303 Phdr *dynamicphdr = NULL; 304 Phdr *stphdr = NULL; 305 Phdr *uphdr = NULL; 306 Phdr *junk = NULL; 307 size_t len; 308 size_t i; 309 ssize_t phdrsize; 310 int postfixsize = 0; 311 int hsize; 312 Phdr *phdrp; 313 Phdr *dataphdrp = NULL; 314 Phdr *dtrphdr; 315 Phdr *capphdr = NULL; 316 Cap *cap = NULL; 317 ssize_t capsize; 318 int hasu = 0; 319 int hasauxv = 0; 320 int hasintp = 0; 321 int branded = 0; 322 323 struct proc *p = ttoproc(curthread); 324 struct user *up = PTOU(p); 325 struct bigwad { 326 Ehdr ehdr; 327 aux_entry_t elfargs[__KERN_NAUXV_IMPL]; 328 char dl_name[MAXPATHLEN]; 329 char pathbuf[MAXPATHLEN]; 330 struct vattr vattr; 331 struct execenv exenv; 332 } *bigwad; /* kmem_alloc this behemoth so we don't blow stack */ 333 Ehdr *ehdrp; 334 int nshdrs, shstrndx, nphdrs; 335 char *dlnp; 336 char *pathbufp; 337 rlim64_t limit; 338 rlim64_t roundlimit; 339 340 ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64); 341 342 bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP); 343 ehdrp = &bigwad->ehdr; 344 dlnp = bigwad->dl_name; 345 pathbufp = bigwad->pathbuf; 346 347 /* 348 * Obtain ELF and program header information. 349 */ 350 if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx, 351 &nphdrs)) != 0 || 352 (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase, 353 &phdrsize)) != 0) 354 goto out; 355 356 /* 357 * Prevent executing an ELF file that has no entry point. 358 */ 359 if (ehdrp->e_entry == 0) { 360 uprintf("%s: Bad entry point\n", exec_file); 361 goto bad; 362 } 363 364 /* 365 * Put data model that we're exec-ing to into the args passed to 366 * exec_args(), so it will know what it is copying to on new stack. 367 * Now that we know whether we are exec-ing a 32-bit or 64-bit 368 * executable, we can set execsz with the appropriate NCARGS. 369 */ 370 #ifdef _LP64 371 if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) { 372 args->to_model = DATAMODEL_ILP32; 373 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1); 374 } else { 375 args->to_model = DATAMODEL_LP64; 376 args->stk_prot &= ~PROT_EXEC; 377 #if defined(__i386) || defined(__amd64) 378 args->dat_prot &= ~PROT_EXEC; 379 #endif 380 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1); 381 } 382 #else /* _LP64 */ 383 args->to_model = DATAMODEL_ILP32; 384 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1); 385 #endif /* _LP64 */ 386 387 /* 388 * We delay invoking the brand callback until we've figured out 389 * what kind of elf binary we're trying to run, 32-bit or 64-bit. 390 * We do this because now the brand library can just check 391 * args->to_model to see if the target is 32-bit or 64-bit without 392 * having do duplicate all the code above. 393 * 394 * The level checks associated with brand handling below are used to 395 * prevent a loop since the brand elfexec function typically comes back 396 * through this function. We must check <= here since the nested 397 * handling in the #! interpreter code will increment the level before 398 * calling gexec to run the final elfexec interpreter. 399 */ 400 if ((level <= INTP_MAXDEPTH) && 401 (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 402 error = BROP(p)->b_elfexec(vp, uap, args, 403 idatap, level + 1, execsz, setid, exec_file, cred, 404 brand_action); 405 goto out; 406 } 407 408 /* 409 * Determine aux size now so that stack can be built 410 * in one shot (except actual copyout of aux image), 411 * determine any non-default stack protections, 412 * and still have this code be machine independent. 413 */ 414 hsize = ehdrp->e_phentsize; 415 phdrp = (Phdr *)phdrbase; 416 for (i = nphdrs; i > 0; i--) { 417 switch (phdrp->p_type) { 418 case PT_INTERP: 419 hasauxv = hasintp = 1; 420 break; 421 case PT_PHDR: 422 hasu = 1; 423 break; 424 case PT_SUNWSTACK: 425 args->stk_prot = PROT_USER; 426 if (phdrp->p_flags & PF_R) 427 args->stk_prot |= PROT_READ; 428 if (phdrp->p_flags & PF_W) 429 args->stk_prot |= PROT_WRITE; 430 if (phdrp->p_flags & PF_X) 431 args->stk_prot |= PROT_EXEC; 432 break; 433 case PT_LOAD: 434 dataphdrp = phdrp; 435 break; 436 case PT_SUNWCAP: 437 capphdr = phdrp; 438 break; 439 case PT_DYNAMIC: 440 dynamicphdr = phdrp; 441 break; 442 } 443 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 444 } 445 446 if (ehdrp->e_type != ET_EXEC) { 447 dataphdrp = NULL; 448 hasauxv = 1; 449 } 450 451 /* Copy BSS permissions to args->dat_prot */ 452 if (dataphdrp != NULL) { 453 args->dat_prot = PROT_USER; 454 if (dataphdrp->p_flags & PF_R) 455 args->dat_prot |= PROT_READ; 456 if (dataphdrp->p_flags & PF_W) 457 args->dat_prot |= PROT_WRITE; 458 if (dataphdrp->p_flags & PF_X) 459 args->dat_prot |= PROT_EXEC; 460 } 461 462 /* 463 * If a auxvector will be required - reserve the space for 464 * it now. This may be increased by exec_args if there are 465 * ISA-specific types (included in __KERN_NAUXV_IMPL). 466 */ 467 if (hasauxv) { 468 /* 469 * If a AUX vector is being built - the base AUX 470 * entries are: 471 * 472 * AT_BASE 473 * AT_FLAGS 474 * AT_PAGESZ 475 * AT_SUN_AUXFLAGS 476 * AT_SUN_HWCAP 477 * AT_SUN_HWCAP2 478 * AT_SUN_PLATFORM (added in stk_copyout) 479 * AT_SUN_EXECNAME (added in stk_copyout) 480 * AT_NULL 481 * 482 * total == 9 483 */ 484 if (hasintp && hasu) { 485 /* 486 * Has PT_INTERP & PT_PHDR - the auxvectors that 487 * will be built are: 488 * 489 * AT_PHDR 490 * AT_PHENT 491 * AT_PHNUM 492 * AT_ENTRY 493 * AT_LDDATA 494 * 495 * total = 5 496 */ 497 args->auxsize = (9 + 5) * sizeof (aux_entry_t); 498 } else if (hasintp) { 499 /* 500 * Has PT_INTERP but no PT_PHDR 501 * 502 * AT_EXECFD 503 * AT_LDDATA 504 * 505 * total = 2 506 */ 507 args->auxsize = (9 + 2) * sizeof (aux_entry_t); 508 } else { 509 args->auxsize = 9 * sizeof (aux_entry_t); 510 } 511 } else { 512 args->auxsize = 0; 513 } 514 515 /* 516 * If this binary is using an emulator, we need to add an 517 * AT_SUN_EMULATOR aux entry. 518 */ 519 if (args->emulator != NULL) 520 args->auxsize += sizeof (aux_entry_t); 521 522 /* 523 * On supported kernels (x86_64) make room in the auxv for the 524 * AT_SUN_COMMPAGE entry. This will go unpopulated on i86xpv systems 525 * which do not provide such functionality. 526 * 527 * Additionally cover the floating point information AT_SUN_FPSIZE and 528 * AT_SUN_FPTYPE. 529 */ 530 #if defined(__amd64) 531 args->auxsize += 3 * sizeof (aux_entry_t); 532 #endif /* defined(__amd64) */ 533 534 if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 535 branded = 1; 536 /* 537 * We will be adding 4 entries to the aux vectors. One for 538 * the the brandname and 3 for the brand specific aux vectors. 539 */ 540 args->auxsize += 4 * sizeof (aux_entry_t); 541 } 542 543 /* If the binary has an explicit ASLR flag, it must be honoured */ 544 if ((dynamicphdr != NULL) && (dynamicphdr->p_filesz > 0)) { 545 const size_t dynfilesz = dynamicphdr->p_filesz; 546 const size_t dynoffset = dynamicphdr->p_offset; 547 Dyn *dyn, *dp; 548 549 if (dynoffset > MAXOFFSET_T || 550 dynfilesz > MAXOFFSET_T || 551 dynoffset + dynfilesz > MAXOFFSET_T) { 552 uprintf("%s: cannot read full .dynamic section\n", 553 exec_file); 554 error = EINVAL; 555 goto out; 556 } 557 558 #define DYN_STRIDE 100 559 for (i = 0; i < dynfilesz; i += sizeof (*dyn) * DYN_STRIDE) { 560 const size_t remdyns = (dynfilesz - i) / sizeof (*dyn); 561 const size_t ndyns = MIN(DYN_STRIDE, remdyns); 562 const size_t dynsize = ndyns * sizeof (*dyn); 563 564 dyn = kmem_alloc(dynsize, KM_SLEEP); 565 566 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)dyn, 567 (ssize_t)dynsize, (offset_t)(dynoffset + i), 568 UIO_SYSSPACE, 0, (rlim64_t)0, 569 CRED(), &resid)) != 0) { 570 uprintf("%s: cannot read .dynamic section\n", 571 exec_file); 572 goto out; 573 } 574 575 for (dp = dyn; dp < (dyn + ndyns); dp++) { 576 if (dp->d_tag == DT_SUNW_ASLR) { 577 if ((error = handle_secflag_dt(p, 578 DT_SUNW_ASLR, 579 dp->d_un.d_val)) != 0) { 580 uprintf("%s: error setting " 581 "security-flag from " 582 "DT_SUNW_ASLR: %d\n", 583 exec_file, error); 584 goto out; 585 } 586 } 587 } 588 589 kmem_free(dyn, dynsize); 590 } 591 } 592 593 /* Hardware/Software capabilities */ 594 if (capphdr != NULL && 595 (capsize = capphdr->p_filesz) > 0 && 596 capsize <= 16 * sizeof (*cap)) { 597 int ncaps = capsize / sizeof (*cap); 598 Cap *cp; 599 600 cap = kmem_alloc(capsize, KM_SLEEP); 601 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap, 602 capsize, (offset_t)capphdr->p_offset, 603 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { 604 uprintf("%s: Cannot read capabilities section\n", 605 exec_file); 606 goto out; 607 } 608 for (cp = cap; cp < cap + ncaps; cp++) { 609 if (cp->c_tag == CA_SUNW_SF_1 && 610 (cp->c_un.c_val & SF1_SUNW_ADDR32)) { 611 if (args->to_model == DATAMODEL_LP64) 612 args->addr32 = 1; 613 break; 614 } 615 } 616 } 617 618 aux = bigwad->elfargs; 619 /* 620 * Move args to the user's stack. 621 * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries. 622 */ 623 if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) { 624 if (error == -1) { 625 error = ENOEXEC; 626 goto bad; 627 } 628 goto out; 629 } 630 /* we're single threaded after this point */ 631 632 /* 633 * If this is an ET_DYN executable (shared object), 634 * determine its memory size so that mapelfexec() can load it. 635 */ 636 if (ehdrp->e_type == ET_DYN) 637 len = elfsize(ehdrp, nphdrs, phdrbase, NULL); 638 else 639 len = 0; 640 641 dtrphdr = NULL; 642 643 if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &intphdr, 644 &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL, 645 len, execsz, &brksize)) != 0) 646 goto bad; 647 648 if (uphdr != NULL && intphdr == NULL) 649 goto bad; 650 651 if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 652 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file); 653 goto bad; 654 } 655 656 if (intphdr != NULL) { 657 size_t len; 658 uintptr_t lddata; 659 char *p; 660 struct vnode *nvp; 661 662 dlnsize = intphdr->p_filesz; 663 664 if (dlnsize > MAXPATHLEN || dlnsize <= 0) 665 goto bad; 666 667 /* 668 * Read in "interpreter" pathname. 669 */ 670 if ((error = vn_rdwr(UIO_READ, vp, dlnp, intphdr->p_filesz, 671 (offset_t)intphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 672 CRED(), &resid)) != 0) { 673 uprintf("%s: Cannot obtain interpreter pathname\n", 674 exec_file); 675 goto bad; 676 } 677 678 if (resid != 0 || dlnp[dlnsize - 1] != '\0') 679 goto bad; 680 681 /* 682 * Search for '$ORIGIN' token in interpreter path. 683 * If found, expand it. 684 */ 685 for (p = dlnp; p = strchr(p, '$'); ) { 686 uint_t len, curlen; 687 char *_ptr; 688 689 if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE)) 690 continue; 691 692 /* 693 * We don't support $ORIGIN on setid programs to close 694 * a potential attack vector. 695 */ 696 if ((setid & EXECSETID_SETID) != 0) { 697 error = ENOEXEC; 698 goto bad; 699 } 700 701 curlen = 0; 702 len = p - dlnp - 1; 703 if (len) { 704 bcopy(dlnp, pathbufp, len); 705 curlen += len; 706 } 707 if (_ptr = strrchr(args->pathname, '/')) { 708 len = _ptr - args->pathname; 709 if ((curlen + len) > MAXPATHLEN) 710 break; 711 712 bcopy(args->pathname, &pathbufp[curlen], len); 713 curlen += len; 714 } else { 715 /* 716 * executable is a basename found in the 717 * current directory. So - just substitue 718 * '.' for ORIGIN. 719 */ 720 pathbufp[curlen] = '.'; 721 curlen++; 722 } 723 p += ORIGIN_STR_SIZE; 724 len = strlen(p); 725 726 if ((curlen + len) > MAXPATHLEN) 727 break; 728 bcopy(p, &pathbufp[curlen], len); 729 curlen += len; 730 pathbufp[curlen++] = '\0'; 731 bcopy(pathbufp, dlnp, curlen); 732 } 733 734 /* 735 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1 736 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1). 737 * Just in case /usr is not mounted, change it now. 738 */ 739 if (strcmp(dlnp, USR_LIB_RTLD) == 0) 740 dlnp += 4; 741 error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); 742 if (error && dlnp != bigwad->dl_name) { 743 /* new kernel, old user-level */ 744 error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW, 745 NULLVPP, &nvp); 746 } 747 if (error) { 748 uprintf("%s: Cannot find %s\n", exec_file, dlnp); 749 goto bad; 750 } 751 752 /* 753 * Setup the "aux" vector. 754 */ 755 if (uphdr) { 756 if (ehdrp->e_type == ET_DYN) { 757 /* don't use the first page */ 758 bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE; 759 bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE; 760 } else { 761 bigwad->exenv.ex_bssbase = bssbase; 762 bigwad->exenv.ex_brkbase = brkbase; 763 } 764 bigwad->exenv.ex_brksize = brksize; 765 bigwad->exenv.ex_magic = elfmagic; 766 bigwad->exenv.ex_vp = vp; 767 setexecenv(&bigwad->exenv); 768 769 ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset) 770 ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize) 771 ADDAUX(aux, AT_PHNUM, nphdrs) 772 ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset) 773 } else { 774 if ((error = execopen(&vp, &fd)) != 0) { 775 VN_RELE(nvp); 776 goto bad; 777 } 778 779 ADDAUX(aux, AT_EXECFD, fd) 780 } 781 782 if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) { 783 VN_RELE(nvp); 784 uprintf("%s: Cannot execute %s\n", exec_file, dlnp); 785 goto bad; 786 } 787 788 /* 789 * Now obtain the ELF header along with the entire program 790 * header contained in "nvp". 791 */ 792 kmem_free(phdrbase, phdrsize); 793 phdrbase = NULL; 794 if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs, 795 &shstrndx, &nphdrs)) != 0 || 796 (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase, 797 &phdrsize)) != 0) { 798 VN_RELE(nvp); 799 uprintf("%s: Cannot read %s\n", exec_file, dlnp); 800 goto bad; 801 } 802 803 /* 804 * Determine memory size of the "interpreter's" loadable 805 * sections. This size is then used to obtain the virtual 806 * address of a hole, in the user's address space, large 807 * enough to map the "interpreter". 808 */ 809 if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) { 810 VN_RELE(nvp); 811 uprintf("%s: Nothing to load in %s\n", exec_file, dlnp); 812 goto bad; 813 } 814 815 dtrphdr = NULL; 816 817 error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk, 818 &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len, 819 execsz, NULL); 820 if (error || junk != NULL) { 821 VN_RELE(nvp); 822 uprintf("%s: Cannot map %s\n", exec_file, dlnp); 823 goto bad; 824 } 825 826 /* 827 * We use the DTrace program header to initialize the 828 * architecture-specific user per-LWP location. The dtrace 829 * fasttrap provider requires ready access to per-LWP scratch 830 * space. We assume that there is only one such program header 831 * in the interpreter. 832 */ 833 if (dtrphdr != NULL && 834 dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 835 VN_RELE(nvp); 836 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp); 837 goto bad; 838 } 839 840 VN_RELE(nvp); 841 ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata) 842 } 843 844 if (hasauxv) { 845 int auxf = AF_SUN_HWCAPVERIFY; 846 #if defined(__amd64) 847 size_t fpsize; 848 int fptype; 849 #endif /* defined(__amd64) */ 850 851 /* 852 * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via 853 * exec_args() 854 */ 855 ADDAUX(aux, AT_BASE, voffset) 856 ADDAUX(aux, AT_FLAGS, at_flags) 857 ADDAUX(aux, AT_PAGESZ, PAGESIZE) 858 /* 859 * Linker flags. (security) 860 * p_flag not yet set at this time. 861 * We rely on gexec() to provide us with the information. 862 * If the application is set-uid but this is not reflected 863 * in a mismatch between real/effective uids/gids, then 864 * don't treat this as a set-uid exec. So we care about 865 * the EXECSETID_UGIDS flag but not the ...SETID flag. 866 */ 867 if ((setid &= ~EXECSETID_SETID) != 0) 868 auxf |= AF_SUN_SETUGID; 869 870 /* 871 * If we're running a native process from within a branded 872 * zone under pfexec then we clear the AF_SUN_SETUGID flag so 873 * that the native ld.so.1 is able to link with the native 874 * libraries instead of using the brand libraries that are 875 * installed in the zone. We only do this for processes 876 * which we trust because we see they are already running 877 * under pfexec (where uid != euid). This prevents a 878 * malicious user within the zone from crafting a wrapper to 879 * run native suid commands with unsecure libraries interposed. 880 */ 881 if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) && 882 (setid &= ~EXECSETID_SETID) != 0)) 883 auxf &= ~AF_SUN_SETUGID; 884 885 /* 886 * Record the user addr of the auxflags aux vector entry 887 * since brands may optionally want to manipulate this field. 888 */ 889 args->auxp_auxflags = 890 (char *)((char *)args->stackend + 891 ((char *)&aux->a_type - 892 (char *)bigwad->elfargs)); 893 ADDAUX(aux, AT_SUN_AUXFLAGS, auxf); 894 895 /* 896 * Hardware capability flag word (performance hints) 897 * Used for choosing faster library routines. 898 * (Potentially different between 32-bit and 64-bit ABIs) 899 */ 900 #if defined(_LP64) 901 if (args->to_model == DATAMODEL_NATIVE) { 902 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 903 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 904 } else { 905 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32) 906 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2) 907 } 908 #else 909 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 910 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 911 #endif 912 if (branded) { 913 /* 914 * Reserve space for the brand-private aux vectors, 915 * and record the user addr of that space. 916 */ 917 args->auxp_brand = 918 (char *)((char *)args->stackend + 919 ((char *)&aux->a_type - 920 (char *)bigwad->elfargs)); 921 ADDAUX(aux, AT_SUN_BRAND_AUX1, 0) 922 ADDAUX(aux, AT_SUN_BRAND_AUX2, 0) 923 ADDAUX(aux, AT_SUN_BRAND_AUX3, 0) 924 } 925 926 /* 927 * Add the comm page auxv entry, mapping it in if needed. Also 928 * take care of the FPU entries. 929 */ 930 #if defined(__amd64) 931 if (args->commpage != NULL || 932 (args->commpage = (uintptr_t)comm_page_mapin()) != NULL) { 933 ADDAUX(aux, AT_SUN_COMMPAGE, args->commpage) 934 } else { 935 /* 936 * If the comm page cannot be mapped, pad out the auxv 937 * to satisfy later size checks. 938 */ 939 ADDAUX(aux, AT_NULL, 0) 940 } 941 942 fptype = AT_386_FPINFO_NONE; 943 fpu_auxv_info(&fptype, &fpsize); 944 if (fptype != AT_386_FPINFO_NONE) { 945 ADDAUX(aux, AT_SUN_FPTYPE, fptype) 946 ADDAUX(aux, AT_SUN_FPSIZE, fpsize) 947 } else { 948 ADDAUX(aux, AT_NULL, 0) 949 ADDAUX(aux, AT_NULL, 0) 950 } 951 #endif /* defined(__amd64) */ 952 953 ADDAUX(aux, AT_NULL, 0) 954 postfixsize = (char *)aux - (char *)bigwad->elfargs; 955 956 /* 957 * We make assumptions above when we determine how many aux 958 * vector entries we will be adding. However, if we have an 959 * invalid elf file, it is possible that mapelfexec might 960 * behave differently (but not return an error), in which case 961 * the number of aux entries we actually add will be different. 962 * We detect that now and error out. 963 */ 964 if (postfixsize != args->auxsize) { 965 DTRACE_PROBE2(elfexec_badaux, int, postfixsize, 966 int, args->auxsize); 967 goto bad; 968 } 969 ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t)); 970 } 971 972 /* 973 * For the 64-bit kernel, the limit is big enough that rounding it up 974 * to a page can overflow the 64-bit limit, so we check for btopr() 975 * overflowing here by comparing it with the unrounded limit in pages. 976 * If it hasn't overflowed, compare the exec size with the rounded up 977 * limit in pages. Otherwise, just compare with the unrounded limit. 978 */ 979 limit = btop(p->p_vmem_ctl); 980 roundlimit = btopr(p->p_vmem_ctl); 981 if ((roundlimit > limit && *execsz > roundlimit) || 982 (roundlimit < limit && *execsz > limit)) { 983 mutex_enter(&p->p_lock); 984 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 985 RCA_SAFE); 986 mutex_exit(&p->p_lock); 987 error = ENOMEM; 988 goto bad; 989 } 990 991 bzero(up->u_auxv, sizeof (up->u_auxv)); 992 up->u_commpagep = args->commpage; 993 if (postfixsize) { 994 int num_auxv; 995 996 /* 997 * Copy the aux vector to the user stack. 998 */ 999 error = execpoststack(args, bigwad->elfargs, postfixsize); 1000 if (error) 1001 goto bad; 1002 1003 /* 1004 * Copy auxv to the process's user structure for use by /proc. 1005 * If this is a branded process, the brand's exec routine will 1006 * copy it's private entries to the user structure later. It 1007 * relies on the fact that the blank entries are at the end. 1008 */ 1009 num_auxv = postfixsize / sizeof (aux_entry_t); 1010 ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t)); 1011 aux = bigwad->elfargs; 1012 for (i = 0; i < num_auxv; i++) { 1013 up->u_auxv[i].a_type = aux[i].a_type; 1014 up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val; 1015 } 1016 } 1017 1018 /* 1019 * Pass back the starting address so we can set the program counter. 1020 */ 1021 args->entry = (uintptr_t)(ehdrp->e_entry + voffset); 1022 1023 if (!uphdr) { 1024 if (ehdrp->e_type == ET_DYN) { 1025 /* 1026 * If we are executing a shared library which doesn't 1027 * have a interpreter (probably ld.so.1) then 1028 * we don't set the brkbase now. Instead we 1029 * delay it's setting until the first call 1030 * via grow.c::brk(). This permits ld.so.1 to 1031 * initialize brkbase to the tail of the executable it 1032 * loads (which is where it needs to be). 1033 */ 1034 bigwad->exenv.ex_brkbase = (caddr_t)0; 1035 bigwad->exenv.ex_bssbase = (caddr_t)0; 1036 bigwad->exenv.ex_brksize = 0; 1037 } else { 1038 bigwad->exenv.ex_brkbase = brkbase; 1039 bigwad->exenv.ex_bssbase = bssbase; 1040 bigwad->exenv.ex_brksize = brksize; 1041 } 1042 bigwad->exenv.ex_magic = elfmagic; 1043 bigwad->exenv.ex_vp = vp; 1044 setexecenv(&bigwad->exenv); 1045 } 1046 1047 ASSERT(error == 0); 1048 goto out; 1049 1050 bad: 1051 if (fd != -1) /* did we open the a.out yet */ 1052 (void) execclose(fd); 1053 1054 psignal(p, SIGKILL); 1055 1056 if (error == 0) 1057 error = ENOEXEC; 1058 out: 1059 if (phdrbase != NULL) 1060 kmem_free(phdrbase, phdrsize); 1061 if (cap != NULL) 1062 kmem_free(cap, capsize); 1063 kmem_free(bigwad, sizeof (struct bigwad)); 1064 return (error); 1065 } 1066 1067 /* 1068 * Compute the memory size requirement for the ELF file. 1069 */ 1070 static size_t 1071 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata) 1072 { 1073 size_t len; 1074 Phdr *phdrp = (Phdr *)phdrbase; 1075 int hsize = ehdrp->e_phentsize; 1076 int first = 1; 1077 int dfirst = 1; /* first data segment */ 1078 uintptr_t loaddr = 0; 1079 uintptr_t hiaddr = 0; 1080 uintptr_t lo, hi; 1081 int i; 1082 1083 for (i = nphdrs; i > 0; i--) { 1084 if (phdrp->p_type == PT_LOAD) { 1085 lo = phdrp->p_vaddr; 1086 hi = lo + phdrp->p_memsz; 1087 if (first) { 1088 loaddr = lo; 1089 hiaddr = hi; 1090 first = 0; 1091 } else { 1092 if (loaddr > lo) 1093 loaddr = lo; 1094 if (hiaddr < hi) 1095 hiaddr = hi; 1096 } 1097 1098 /* 1099 * save the address of the first data segment 1100 * of a object - used for the AT_SUNW_LDDATA 1101 * aux entry. 1102 */ 1103 if ((lddata != NULL) && dfirst && 1104 (phdrp->p_flags & PF_W)) { 1105 *lddata = lo; 1106 dfirst = 0; 1107 } 1108 } 1109 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 1110 } 1111 1112 len = hiaddr - (loaddr & PAGEMASK); 1113 len = roundup(len, PAGESIZE); 1114 1115 return (len); 1116 } 1117 1118 /* 1119 * Read in the ELF header and program header table. 1120 * SUSV3 requires: 1121 * ENOEXEC File format is not recognized 1122 * EINVAL Format recognized but execution not supported 1123 */ 1124 static int 1125 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx, 1126 int *nphdrs) 1127 { 1128 int error; 1129 ssize_t resid; 1130 1131 /* 1132 * We got here by the first two bytes in ident, 1133 * now read the entire ELF header. 1134 */ 1135 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr, 1136 sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0, 1137 (rlim64_t)0, credp, &resid)) != 0) 1138 return (error); 1139 1140 /* 1141 * Since a separate version is compiled for handling 32-bit and 1142 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version 1143 * doesn't need to be able to deal with 32-bit ELF files. 1144 */ 1145 if (resid != 0 || 1146 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1147 ehdr->e_ident[EI_MAG3] != ELFMAG3) 1148 return (ENOEXEC); 1149 1150 if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) || 1151 #if defined(_ILP32) || defined(_ELF32_COMPAT) 1152 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 1153 #else 1154 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 1155 #endif 1156 !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine, 1157 ehdr->e_flags)) 1158 return (EINVAL); 1159 1160 *nshdrs = ehdr->e_shnum; 1161 *shstrndx = ehdr->e_shstrndx; 1162 *nphdrs = ehdr->e_phnum; 1163 1164 /* 1165 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need 1166 * to read in the section header at index zero to acces the true 1167 * values for those fields. 1168 */ 1169 if ((*nshdrs == 0 && ehdr->e_shoff != 0) || 1170 *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) { 1171 Shdr shdr; 1172 1173 if (ehdr->e_shoff == 0) 1174 return (EINVAL); 1175 1176 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr, 1177 sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, 1178 (rlim64_t)0, credp, &resid)) != 0) 1179 return (error); 1180 1181 if (*nshdrs == 0) 1182 *nshdrs = shdr.sh_size; 1183 if (*shstrndx == SHN_XINDEX) 1184 *shstrndx = shdr.sh_link; 1185 if (*nphdrs == PN_XNUM && shdr.sh_info != 0) 1186 *nphdrs = shdr.sh_info; 1187 } 1188 1189 return (0); 1190 } 1191 1192 #ifdef _ELF32_COMPAT 1193 extern size_t elf_nphdr_max; 1194 #else 1195 size_t elf_nphdr_max = 1000; 1196 #endif 1197 1198 static int 1199 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs, 1200 caddr_t *phbasep, ssize_t *phsizep) 1201 { 1202 ssize_t resid, minsize; 1203 int err; 1204 1205 /* 1206 * Since we're going to be using e_phentsize to iterate down the 1207 * array of program headers, it must be 8-byte aligned or else 1208 * a we might cause a misaligned access. We use all members through 1209 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so 1210 * e_phentsize must be at least large enough to include those 1211 * members. 1212 */ 1213 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1214 minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags); 1215 #else 1216 minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz); 1217 #endif 1218 if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3)) 1219 return (EINVAL); 1220 1221 *phsizep = nphdrs * ehdr->e_phentsize; 1222 1223 if (*phsizep > sizeof (Phdr) * elf_nphdr_max) { 1224 if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL) 1225 return (ENOMEM); 1226 } else { 1227 *phbasep = kmem_alloc(*phsizep, KM_SLEEP); 1228 } 1229 1230 if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep, 1231 (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1232 credp, &resid)) != 0) { 1233 kmem_free(*phbasep, *phsizep); 1234 *phbasep = NULL; 1235 return (err); 1236 } 1237 1238 return (0); 1239 } 1240 1241 #ifdef _ELF32_COMPAT 1242 extern size_t elf_nshdr_max; 1243 extern size_t elf_shstrtab_max; 1244 #else 1245 size_t elf_nshdr_max = 10000; 1246 size_t elf_shstrtab_max = 100 * 1024; 1247 #endif 1248 1249 1250 static int 1251 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, 1252 int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep, 1253 char **shstrbasep, ssize_t *shstrsizep) 1254 { 1255 ssize_t resid, minsize; 1256 int err; 1257 Shdr *shdr; 1258 1259 /* 1260 * Since we're going to be using e_shentsize to iterate down the 1261 * array of section headers, it must be 8-byte aligned or else 1262 * a we might cause a misaligned access. We use all members through 1263 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize 1264 * must be at least large enough to include that member. The index 1265 * of the string table section must also be valid. 1266 */ 1267 minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize); 1268 if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) || 1269 shstrndx >= nshdrs) 1270 return (EINVAL); 1271 1272 *shsizep = nshdrs * ehdr->e_shentsize; 1273 1274 if (*shsizep > sizeof (Shdr) * elf_nshdr_max) { 1275 if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL) 1276 return (ENOMEM); 1277 } else { 1278 *shbasep = kmem_alloc(*shsizep, KM_SLEEP); 1279 } 1280 1281 if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep, 1282 (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1283 credp, &resid)) != 0) { 1284 kmem_free(*shbasep, *shsizep); 1285 return (err); 1286 } 1287 1288 /* 1289 * Pull the section string table out of the vnode; fail if the size 1290 * is zero. 1291 */ 1292 shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize); 1293 if ((*shstrsizep = shdr->sh_size) == 0) { 1294 kmem_free(*shbasep, *shsizep); 1295 return (EINVAL); 1296 } 1297 1298 if (*shstrsizep > elf_shstrtab_max) { 1299 if ((*shstrbasep = kmem_alloc(*shstrsizep, 1300 KM_NOSLEEP)) == NULL) { 1301 kmem_free(*shbasep, *shsizep); 1302 return (ENOMEM); 1303 } 1304 } else { 1305 *shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP); 1306 } 1307 1308 if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep, 1309 (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 1310 credp, &resid)) != 0) { 1311 kmem_free(*shbasep, *shsizep); 1312 kmem_free(*shstrbasep, *shstrsizep); 1313 return (err); 1314 } 1315 1316 /* 1317 * Make sure the strtab is null-terminated to make sure we 1318 * don't run off the end of the table. 1319 */ 1320 (*shstrbasep)[*shstrsizep - 1] = '\0'; 1321 1322 return (0); 1323 } 1324 1325 static int 1326 mapelfexec( 1327 vnode_t *vp, 1328 Ehdr *ehdr, 1329 int nphdrs, 1330 caddr_t phdrbase, 1331 Phdr **uphdr, 1332 Phdr **intphdr, 1333 Phdr **stphdr, 1334 Phdr **dtphdr, 1335 Phdr *dataphdrp, 1336 caddr_t *bssbase, 1337 caddr_t *brkbase, 1338 intptr_t *voffset, 1339 intptr_t *minaddr, 1340 size_t len, 1341 long *execsz, 1342 size_t *brksize) 1343 { 1344 Phdr *phdr; 1345 int i, prot, error; 1346 caddr_t addr = NULL; 1347 size_t zfodsz; 1348 int ptload = 0; 1349 int page; 1350 off_t offset; 1351 int hsize = ehdr->e_phentsize; 1352 caddr_t mintmp = (caddr_t)-1; 1353 extern int use_brk_lpg; 1354 1355 if (ehdr->e_type == ET_DYN) { 1356 secflagset_t flags = 0; 1357 /* 1358 * Obtain the virtual address of a hole in the 1359 * address space to map the "interpreter". 1360 */ 1361 if (secflag_enabled(curproc, PROC_SEC_ASLR)) 1362 flags |= _MAP_RANDOMIZE; 1363 1364 map_addr(&addr, len, (offset_t)0, 1, flags); 1365 if (addr == NULL) 1366 return (ENOMEM); 1367 *voffset = (intptr_t)addr; 1368 1369 /* 1370 * Calculate the minimum vaddr so it can be subtracted out. 1371 * According to the ELF specification, since PT_LOAD sections 1372 * must be sorted by increasing p_vaddr values, this is 1373 * guaranteed to be the first PT_LOAD section. 1374 */ 1375 phdr = (Phdr *)phdrbase; 1376 for (i = nphdrs; i > 0; i--) { 1377 if (phdr->p_type == PT_LOAD) { 1378 *voffset -= (uintptr_t)phdr->p_vaddr; 1379 break; 1380 } 1381 phdr = (Phdr *)((caddr_t)phdr + hsize); 1382 } 1383 1384 } else { 1385 *voffset = 0; 1386 } 1387 phdr = (Phdr *)phdrbase; 1388 for (i = nphdrs; i > 0; i--) { 1389 switch (phdr->p_type) { 1390 case PT_LOAD: 1391 if ((*intphdr != NULL) && (*uphdr == NULL)) 1392 return (0); 1393 1394 ptload = 1; 1395 prot = PROT_USER; 1396 if (phdr->p_flags & PF_R) 1397 prot |= PROT_READ; 1398 if (phdr->p_flags & PF_W) 1399 prot |= PROT_WRITE; 1400 if (phdr->p_flags & PF_X) 1401 prot |= PROT_EXEC; 1402 1403 addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset); 1404 1405 /* 1406 * Keep track of the segment with the lowest starting 1407 * address. 1408 */ 1409 if (addr < mintmp) 1410 mintmp = addr; 1411 1412 zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz; 1413 1414 offset = phdr->p_offset; 1415 if (((uintptr_t)offset & PAGEOFFSET) == 1416 ((uintptr_t)addr & PAGEOFFSET) && 1417 (!(vp->v_flag & VNOMAP))) { 1418 page = 1; 1419 } else { 1420 page = 0; 1421 } 1422 1423 /* 1424 * Set the heap pagesize for OOB when the bss size 1425 * is known and use_brk_lpg is not 0. 1426 */ 1427 if (brksize != NULL && use_brk_lpg && 1428 zfodsz != 0 && phdr == dataphdrp && 1429 (prot & PROT_WRITE)) { 1430 size_t tlen = P2NPHASE((uintptr_t)addr + 1431 phdr->p_filesz, PAGESIZE); 1432 1433 if (zfodsz > tlen) { 1434 curproc->p_brkpageszc = 1435 page_szc(map_pgsz(MAPPGSZ_HEAP, 1436 curproc, addr + phdr->p_filesz + 1437 tlen, zfodsz - tlen, 0)); 1438 } 1439 } 1440 1441 if (curproc->p_brkpageszc != 0 && phdr == dataphdrp && 1442 (prot & PROT_WRITE)) { 1443 uint_t szc = curproc->p_brkpageszc; 1444 size_t pgsz = page_get_pagesize(szc); 1445 caddr_t ebss = addr + phdr->p_memsz; 1446 /* 1447 * If we need extra space to keep the BSS an 1448 * integral number of pages in size, some of 1449 * that space may fall beyond p_brkbase, so we 1450 * need to set p_brksize to account for it 1451 * being (logically) part of the brk. 1452 */ 1453 size_t extra_zfodsz; 1454 1455 ASSERT(pgsz > PAGESIZE); 1456 1457 extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz); 1458 1459 if (error = execmap(vp, addr, phdr->p_filesz, 1460 zfodsz + extra_zfodsz, phdr->p_offset, 1461 prot, page, szc)) 1462 goto bad; 1463 if (brksize != NULL) 1464 *brksize = extra_zfodsz; 1465 } else { 1466 if (error = execmap(vp, addr, phdr->p_filesz, 1467 zfodsz, phdr->p_offset, prot, page, 0)) 1468 goto bad; 1469 } 1470 1471 if (bssbase != NULL && addr >= *bssbase && 1472 phdr == dataphdrp) { 1473 *bssbase = addr + phdr->p_filesz; 1474 } 1475 if (brkbase != NULL && addr >= *brkbase) { 1476 *brkbase = addr + phdr->p_memsz; 1477 } 1478 1479 *execsz += btopr(phdr->p_memsz); 1480 break; 1481 1482 case PT_INTERP: 1483 if (ptload) 1484 goto bad; 1485 *intphdr = phdr; 1486 break; 1487 1488 case PT_SHLIB: 1489 *stphdr = phdr; 1490 break; 1491 1492 case PT_PHDR: 1493 if (ptload) 1494 goto bad; 1495 *uphdr = phdr; 1496 break; 1497 1498 case PT_NULL: 1499 case PT_DYNAMIC: 1500 case PT_NOTE: 1501 break; 1502 1503 case PT_SUNWDTRACE: 1504 if (dtphdr != NULL) 1505 *dtphdr = phdr; 1506 break; 1507 1508 default: 1509 break; 1510 } 1511 phdr = (Phdr *)((caddr_t)phdr + hsize); 1512 } 1513 1514 if (minaddr != NULL) { 1515 ASSERT(mintmp != (caddr_t)-1); 1516 *minaddr = (intptr_t)mintmp; 1517 } 1518 1519 if (brkbase != NULL && secflag_enabled(curproc, PROC_SEC_ASLR)) { 1520 size_t off; 1521 uintptr_t base = (uintptr_t)*brkbase; 1522 uintptr_t oend = base + *brksize; 1523 1524 ASSERT(ISP2(aslr_max_brk_skew)); 1525 1526 (void) random_get_pseudo_bytes((uint8_t *)&off, sizeof (off)); 1527 base += P2PHASE(off, aslr_max_brk_skew); 1528 base = P2ROUNDUP(base, PAGESIZE); 1529 *brkbase = (caddr_t)base; 1530 /* 1531 * Above, we set *brksize to account for the possibility we 1532 * had to grow the 'brk' in padding out the BSS to a page 1533 * boundary. 1534 * 1535 * We now need to adjust that based on where we now are 1536 * actually putting the brk. 1537 */ 1538 if (oend > base) 1539 *brksize = oend - base; 1540 else 1541 *brksize = 0; 1542 } 1543 1544 return (0); 1545 bad: 1546 if (error == 0) 1547 error = EINVAL; 1548 return (error); 1549 } 1550 1551 int 1552 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc, 1553 rlim64_t rlimit, cred_t *credp) 1554 { 1555 Note note; 1556 int error; 1557 1558 bzero(¬e, sizeof (note)); 1559 bcopy("CORE", note.name, 4); 1560 note.nhdr.n_type = type; 1561 /* 1562 * The System V ABI states that n_namesz must be the length of the 1563 * string that follows the Nhdr structure including the terminating 1564 * null. The ABI also specifies that sufficient padding should be 1565 * included so that the description that follows the name string 1566 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries 1567 * respectively. However, since this change was not made correctly 1568 * at the time of the 64-bit port, both 32- and 64-bit binaries 1569 * descriptions are only guaranteed to begin on a 4-byte boundary. 1570 */ 1571 note.nhdr.n_namesz = 5; 1572 note.nhdr.n_descsz = roundup(descsz, sizeof (Word)); 1573 1574 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, ¬e, 1575 sizeof (note), rlimit, credp)) 1576 return (error); 1577 1578 *offsetp += sizeof (note); 1579 1580 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc, 1581 note.nhdr.n_descsz, rlimit, credp)) 1582 return (error); 1583 1584 *offsetp += note.nhdr.n_descsz; 1585 return (0); 1586 } 1587 1588 /* 1589 * Copy the section data from one vnode to the section of another vnode. 1590 */ 1591 static void 1592 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset, 1593 void *buf, size_t size, cred_t *credp, rlim64_t rlimit) 1594 { 1595 ssize_t resid; 1596 size_t len, n = src->sh_size; 1597 offset_t off = 0; 1598 1599 while (n != 0) { 1600 len = MIN(size, n); 1601 if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off, 1602 UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 || 1603 resid >= len || 1604 core_write(dst_vp, UIO_SYSSPACE, *doffset + off, 1605 buf, len - resid, rlimit, credp) != 0) { 1606 dst->sh_size = 0; 1607 dst->sh_offset = 0; 1608 return; 1609 } 1610 1611 ASSERT(n >= len - resid); 1612 1613 n -= len - resid; 1614 off += len - resid; 1615 } 1616 1617 *doffset += src->sh_size; 1618 } 1619 1620 #ifdef _ELF32_COMPAT 1621 extern size_t elf_datasz_max; 1622 #else 1623 size_t elf_datasz_max = 1 * 1024 * 1024; 1624 #endif 1625 1626 /* 1627 * This function processes mappings that correspond to load objects to 1628 * examine their respective sections for elfcore(). It's called once with 1629 * v set to NULL to count the number of sections that we're going to need 1630 * and then again with v set to some allocated buffer that we fill in with 1631 * all the section data. 1632 */ 1633 static int 1634 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp, 1635 Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp) 1636 { 1637 vnode_t *lastvp = NULL; 1638 struct seg *seg; 1639 int i, j; 1640 void *data = NULL; 1641 size_t datasz = 0; 1642 shstrtab_t shstrtab; 1643 struct as *as = p->p_as; 1644 int error = 0; 1645 1646 if (v != NULL) 1647 shstrtab_init(&shstrtab); 1648 1649 i = 1; 1650 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1651 uint_t prot; 1652 vnode_t *mvp; 1653 void *tmp = NULL; 1654 caddr_t saddr = seg->s_base; 1655 caddr_t naddr; 1656 caddr_t eaddr; 1657 size_t segsize; 1658 1659 Ehdr ehdr; 1660 int nshdrs, shstrndx, nphdrs; 1661 caddr_t shbase; 1662 ssize_t shsize; 1663 char *shstrbase; 1664 ssize_t shstrsize; 1665 1666 Shdr *shdr; 1667 const char *name; 1668 size_t sz; 1669 uintptr_t off; 1670 1671 int ctf_ndx = 0; 1672 int symtab_ndx = 0; 1673 1674 /* 1675 * Since we're just looking for text segments of load 1676 * objects, we only care about the protection bits; we don't 1677 * care about the actual size of the segment so we use the 1678 * reserved size. If the segment's size is zero, there's 1679 * something fishy going on so we ignore this segment. 1680 */ 1681 if (seg->s_ops != &segvn_ops || 1682 SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 1683 mvp == lastvp || mvp == NULL || mvp->v_type != VREG || 1684 (segsize = pr_getsegsize(seg, 1)) == 0) 1685 continue; 1686 1687 eaddr = saddr + segsize; 1688 prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr); 1689 pr_getprot_done(&tmp); 1690 1691 /* 1692 * Skip this segment unless the protection bits look like 1693 * what we'd expect for a text segment. 1694 */ 1695 if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC) 1696 continue; 1697 1698 if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx, 1699 &nphdrs) != 0 || 1700 getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx, 1701 &shbase, &shsize, &shstrbase, &shstrsize) != 0) 1702 continue; 1703 1704 off = ehdr.e_shentsize; 1705 for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) { 1706 Shdr *symtab = NULL, *strtab; 1707 1708 shdr = (Shdr *)(shbase + off); 1709 1710 if (shdr->sh_name >= shstrsize) 1711 continue; 1712 1713 name = shstrbase + shdr->sh_name; 1714 1715 if (strcmp(name, shstrtab_data[STR_CTF]) == 0) { 1716 if ((content & CC_CONTENT_CTF) == 0 || 1717 ctf_ndx != 0) 1718 continue; 1719 1720 if (shdr->sh_link > 0 && 1721 shdr->sh_link < nshdrs) { 1722 symtab = (Shdr *)(shbase + 1723 shdr->sh_link * ehdr.e_shentsize); 1724 } 1725 1726 if (v != NULL && i < nv - 1) { 1727 if (shdr->sh_size > datasz && 1728 shdr->sh_size <= elf_datasz_max) { 1729 if (data != NULL) 1730 kmem_free(data, datasz); 1731 1732 datasz = shdr->sh_size; 1733 data = kmem_alloc(datasz, 1734 KM_SLEEP); 1735 } 1736 1737 v[i].sh_name = shstrtab_ndx(&shstrtab, 1738 STR_CTF); 1739 v[i].sh_addr = (Addr)(uintptr_t)saddr; 1740 v[i].sh_type = SHT_PROGBITS; 1741 v[i].sh_addralign = 4; 1742 *doffsetp = roundup(*doffsetp, 1743 v[i].sh_addralign); 1744 v[i].sh_offset = *doffsetp; 1745 v[i].sh_size = shdr->sh_size; 1746 if (symtab == NULL) { 1747 v[i].sh_link = 0; 1748 } else if (symtab->sh_type == 1749 SHT_SYMTAB && 1750 symtab_ndx != 0) { 1751 v[i].sh_link = 1752 symtab_ndx; 1753 } else { 1754 v[i].sh_link = i + 1; 1755 } 1756 1757 copy_scn(shdr, mvp, &v[i], vp, 1758 doffsetp, data, datasz, credp, 1759 rlimit); 1760 } 1761 1762 ctf_ndx = i++; 1763 1764 /* 1765 * We've already dumped the symtab. 1766 */ 1767 if (symtab != NULL && 1768 symtab->sh_type == SHT_SYMTAB && 1769 symtab_ndx != 0) 1770 continue; 1771 1772 } else if (strcmp(name, 1773 shstrtab_data[STR_SYMTAB]) == 0) { 1774 if ((content & CC_CONTENT_SYMTAB) == 0 || 1775 symtab != 0) 1776 continue; 1777 1778 symtab = shdr; 1779 } 1780 1781 if (symtab != NULL) { 1782 if ((symtab->sh_type != SHT_DYNSYM && 1783 symtab->sh_type != SHT_SYMTAB) || 1784 symtab->sh_link == 0 || 1785 symtab->sh_link >= nshdrs) 1786 continue; 1787 1788 strtab = (Shdr *)(shbase + 1789 symtab->sh_link * ehdr.e_shentsize); 1790 1791 if (strtab->sh_type != SHT_STRTAB) 1792 continue; 1793 1794 if (v != NULL && i < nv - 2) { 1795 sz = MAX(symtab->sh_size, 1796 strtab->sh_size); 1797 if (sz > datasz && 1798 sz <= elf_datasz_max) { 1799 if (data != NULL) 1800 kmem_free(data, datasz); 1801 1802 datasz = sz; 1803 data = kmem_alloc(datasz, 1804 KM_SLEEP); 1805 } 1806 1807 if (symtab->sh_type == SHT_DYNSYM) { 1808 v[i].sh_name = shstrtab_ndx( 1809 &shstrtab, STR_DYNSYM); 1810 v[i + 1].sh_name = shstrtab_ndx( 1811 &shstrtab, STR_DYNSTR); 1812 } else { 1813 v[i].sh_name = shstrtab_ndx( 1814 &shstrtab, STR_SYMTAB); 1815 v[i + 1].sh_name = shstrtab_ndx( 1816 &shstrtab, STR_STRTAB); 1817 } 1818 1819 v[i].sh_type = symtab->sh_type; 1820 v[i].sh_addr = symtab->sh_addr; 1821 if (ehdr.e_type == ET_DYN || 1822 v[i].sh_addr == 0) 1823 v[i].sh_addr += 1824 (Addr)(uintptr_t)saddr; 1825 v[i].sh_addralign = 1826 symtab->sh_addralign; 1827 *doffsetp = roundup(*doffsetp, 1828 v[i].sh_addralign); 1829 v[i].sh_offset = *doffsetp; 1830 v[i].sh_size = symtab->sh_size; 1831 v[i].sh_link = i + 1; 1832 v[i].sh_entsize = symtab->sh_entsize; 1833 v[i].sh_info = symtab->sh_info; 1834 1835 copy_scn(symtab, mvp, &v[i], vp, 1836 doffsetp, data, datasz, credp, 1837 rlimit); 1838 1839 v[i + 1].sh_type = SHT_STRTAB; 1840 v[i + 1].sh_flags = SHF_STRINGS; 1841 v[i + 1].sh_addr = symtab->sh_addr; 1842 if (ehdr.e_type == ET_DYN || 1843 v[i + 1].sh_addr == 0) 1844 v[i + 1].sh_addr += 1845 (Addr)(uintptr_t)saddr; 1846 v[i + 1].sh_addralign = 1847 strtab->sh_addralign; 1848 *doffsetp = roundup(*doffsetp, 1849 v[i + 1].sh_addralign); 1850 v[i + 1].sh_offset = *doffsetp; 1851 v[i + 1].sh_size = strtab->sh_size; 1852 1853 copy_scn(strtab, mvp, &v[i + 1], vp, 1854 doffsetp, data, datasz, credp, 1855 rlimit); 1856 } 1857 1858 if (symtab->sh_type == SHT_SYMTAB) 1859 symtab_ndx = i; 1860 i += 2; 1861 } 1862 } 1863 1864 kmem_free(shstrbase, shstrsize); 1865 kmem_free(shbase, shsize); 1866 1867 lastvp = mvp; 1868 } 1869 1870 if (v == NULL) { 1871 if (i == 1) 1872 *nshdrsp = 0; 1873 else 1874 *nshdrsp = i + 1; 1875 goto done; 1876 } 1877 1878 if (i != nv - 1) { 1879 cmn_err(CE_WARN, "elfcore: core dump failed for " 1880 "process %d; address space is changing", p->p_pid); 1881 error = EIO; 1882 goto done; 1883 } 1884 1885 v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB); 1886 v[i].sh_size = shstrtab_size(&shstrtab); 1887 v[i].sh_addralign = 1; 1888 *doffsetp = roundup(*doffsetp, v[i].sh_addralign); 1889 v[i].sh_offset = *doffsetp; 1890 v[i].sh_flags = SHF_STRINGS; 1891 v[i].sh_type = SHT_STRTAB; 1892 1893 if (v[i].sh_size > datasz) { 1894 if (data != NULL) 1895 kmem_free(data, datasz); 1896 1897 datasz = v[i].sh_size; 1898 data = kmem_alloc(datasz, 1899 KM_SLEEP); 1900 } 1901 1902 shstrtab_dump(&shstrtab, data); 1903 1904 if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp, 1905 data, v[i].sh_size, rlimit, credp)) != 0) 1906 goto done; 1907 1908 *doffsetp += v[i].sh_size; 1909 1910 done: 1911 if (data != NULL) 1912 kmem_free(data, datasz); 1913 1914 return (error); 1915 } 1916 1917 int 1918 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, 1919 core_content_t content) 1920 { 1921 offset_t poffset, soffset; 1922 Off doffset; 1923 int error, i, nphdrs, nshdrs; 1924 int overflow = 0; 1925 struct seg *seg; 1926 struct as *as = p->p_as; 1927 union { 1928 Ehdr ehdr; 1929 Phdr phdr[1]; 1930 Shdr shdr[1]; 1931 } *bigwad; 1932 size_t bigsize; 1933 size_t phdrsz, shdrsz; 1934 Ehdr *ehdr; 1935 Phdr *v; 1936 caddr_t brkbase; 1937 size_t brksize; 1938 caddr_t stkbase; 1939 size_t stksize; 1940 int ntries = 0; 1941 klwp_t *lwp = ttolwp(curthread); 1942 1943 top: 1944 /* 1945 * Make sure we have everything we need (registers, etc.). 1946 * All other lwps have already stopped and are in an orderly state. 1947 */ 1948 ASSERT(p == ttoproc(curthread)); 1949 prstop(0, 0); 1950 1951 AS_LOCK_ENTER(as, RW_WRITER); 1952 nphdrs = prnsegs(as, 0) + 2; /* two CORE note sections */ 1953 1954 /* 1955 * Count the number of section headers we're going to need. 1956 */ 1957 nshdrs = 0; 1958 if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) { 1959 (void) process_scns(content, p, credp, NULL, NULL, NULL, 0, 1960 NULL, &nshdrs); 1961 } 1962 AS_LOCK_EXIT(as); 1963 1964 ASSERT(nshdrs == 0 || nshdrs > 1); 1965 1966 /* 1967 * The core file contents may required zero section headers, but if 1968 * we overflow the 16 bits allotted to the program header count in 1969 * the ELF header, we'll need that program header at index zero. 1970 */ 1971 if (nshdrs == 0 && nphdrs >= PN_XNUM) 1972 nshdrs = 1; 1973 1974 phdrsz = nphdrs * sizeof (Phdr); 1975 shdrsz = nshdrs * sizeof (Shdr); 1976 1977 bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz)); 1978 bigwad = kmem_alloc(bigsize, KM_SLEEP); 1979 1980 ehdr = &bigwad->ehdr; 1981 bzero(ehdr, sizeof (*ehdr)); 1982 1983 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1984 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1985 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1986 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1987 ehdr->e_ident[EI_CLASS] = ELFCLASS; 1988 ehdr->e_type = ET_CORE; 1989 1990 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1991 1992 #if defined(__sparc) 1993 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1994 ehdr->e_machine = EM_SPARC; 1995 #elif defined(__i386) || defined(__i386_COMPAT) 1996 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1997 ehdr->e_machine = EM_386; 1998 #else 1999 #error "no recognized machine type is defined" 2000 #endif 2001 2002 #else /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 2003 2004 #if defined(__sparc) 2005 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 2006 ehdr->e_machine = EM_SPARCV9; 2007 #elif defined(__amd64) 2008 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 2009 ehdr->e_machine = EM_AMD64; 2010 #else 2011 #error "no recognized 64-bit machine type is defined" 2012 #endif 2013 2014 #endif /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 2015 2016 /* 2017 * If the count of program headers or section headers or the index 2018 * of the section string table can't fit in the mere 16 bits 2019 * shortsightedly allotted to them in the ELF header, we use the 2020 * extended formats and put the real values in the section header 2021 * as index 0. 2022 */ 2023 ehdr->e_version = EV_CURRENT; 2024 ehdr->e_ehsize = sizeof (Ehdr); 2025 2026 if (nphdrs >= PN_XNUM) 2027 ehdr->e_phnum = PN_XNUM; 2028 else 2029 ehdr->e_phnum = (unsigned short)nphdrs; 2030 2031 ehdr->e_phoff = sizeof (Ehdr); 2032 ehdr->e_phentsize = sizeof (Phdr); 2033 2034 if (nshdrs > 0) { 2035 if (nshdrs >= SHN_LORESERVE) 2036 ehdr->e_shnum = 0; 2037 else 2038 ehdr->e_shnum = (unsigned short)nshdrs; 2039 2040 if (nshdrs - 1 >= SHN_LORESERVE) 2041 ehdr->e_shstrndx = SHN_XINDEX; 2042 else 2043 ehdr->e_shstrndx = (unsigned short)(nshdrs - 1); 2044 2045 ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs; 2046 ehdr->e_shentsize = sizeof (Shdr); 2047 } 2048 2049 if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr, 2050 sizeof (Ehdr), rlimit, credp)) 2051 goto done; 2052 2053 poffset = sizeof (Ehdr); 2054 soffset = sizeof (Ehdr) + phdrsz; 2055 doffset = sizeof (Ehdr) + phdrsz + shdrsz; 2056 2057 v = &bigwad->phdr[0]; 2058 bzero(v, phdrsz); 2059 2060 setup_old_note_header(&v[0], p); 2061 v[0].p_offset = doffset = roundup(doffset, sizeof (Word)); 2062 doffset += v[0].p_filesz; 2063 2064 setup_note_header(&v[1], p); 2065 v[1].p_offset = doffset = roundup(doffset, sizeof (Word)); 2066 doffset += v[1].p_filesz; 2067 2068 mutex_enter(&p->p_lock); 2069 2070 brkbase = p->p_brkbase; 2071 brksize = p->p_brksize; 2072 2073 stkbase = p->p_usrstack - p->p_stksize; 2074 stksize = p->p_stksize; 2075 2076 mutex_exit(&p->p_lock); 2077 2078 AS_LOCK_ENTER(as, RW_WRITER); 2079 i = 2; 2080 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 2081 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 2082 caddr_t saddr, naddr; 2083 void *tmp = NULL; 2084 extern struct seg_ops segspt_shmops; 2085 2086 if ((seg->s_flags & S_HOLE) != 0) { 2087 continue; 2088 } 2089 2090 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 2091 uint_t prot; 2092 size_t size; 2093 int type; 2094 vnode_t *mvp; 2095 2096 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 2097 prot &= PROT_READ | PROT_WRITE | PROT_EXEC; 2098 if ((size = (size_t)(naddr - saddr)) == 0) 2099 continue; 2100 if (i == nphdrs) { 2101 overflow++; 2102 continue; 2103 } 2104 v[i].p_type = PT_LOAD; 2105 v[i].p_vaddr = (Addr)(uintptr_t)saddr; 2106 v[i].p_memsz = size; 2107 if (prot & PROT_READ) 2108 v[i].p_flags |= PF_R; 2109 if (prot & PROT_WRITE) 2110 v[i].p_flags |= PF_W; 2111 if (prot & PROT_EXEC) 2112 v[i].p_flags |= PF_X; 2113 2114 /* 2115 * Figure out which mappings to include in the core. 2116 */ 2117 type = SEGOP_GETTYPE(seg, saddr); 2118 2119 if (saddr == stkbase && size == stksize) { 2120 if (!(content & CC_CONTENT_STACK)) 2121 goto exclude; 2122 2123 } else if (saddr == brkbase && size == brksize) { 2124 if (!(content & CC_CONTENT_HEAP)) 2125 goto exclude; 2126 2127 } else if (seg->s_ops == &segspt_shmops) { 2128 if (type & MAP_NORESERVE) { 2129 if (!(content & CC_CONTENT_DISM)) 2130 goto exclude; 2131 } else { 2132 if (!(content & CC_CONTENT_ISM)) 2133 goto exclude; 2134 } 2135 2136 } else if (seg->s_ops != &segvn_ops) { 2137 goto exclude; 2138 2139 } else if (type & MAP_SHARED) { 2140 if (shmgetid(p, saddr) != SHMID_NONE) { 2141 if (!(content & CC_CONTENT_SHM)) 2142 goto exclude; 2143 2144 } else if (SEGOP_GETVP(seg, seg->s_base, 2145 &mvp) != 0 || mvp == NULL || 2146 mvp->v_type != VREG) { 2147 if (!(content & CC_CONTENT_SHANON)) 2148 goto exclude; 2149 2150 } else { 2151 if (!(content & CC_CONTENT_SHFILE)) 2152 goto exclude; 2153 } 2154 2155 } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 2156 mvp == NULL || mvp->v_type != VREG) { 2157 if (!(content & CC_CONTENT_ANON)) 2158 goto exclude; 2159 2160 } else if (prot == (PROT_READ | PROT_EXEC)) { 2161 if (!(content & CC_CONTENT_TEXT)) 2162 goto exclude; 2163 2164 } else if (prot == PROT_READ) { 2165 if (!(content & CC_CONTENT_RODATA)) 2166 goto exclude; 2167 2168 } else { 2169 if (!(content & CC_CONTENT_DATA)) 2170 goto exclude; 2171 } 2172 2173 doffset = roundup(doffset, sizeof (Word)); 2174 v[i].p_offset = doffset; 2175 v[i].p_filesz = size; 2176 doffset += size; 2177 exclude: 2178 i++; 2179 } 2180 ASSERT(tmp == NULL); 2181 } 2182 AS_LOCK_EXIT(as); 2183 2184 if (overflow || i != nphdrs) { 2185 if (ntries++ == 0) { 2186 kmem_free(bigwad, bigsize); 2187 overflow = 0; 2188 goto top; 2189 } 2190 cmn_err(CE_WARN, "elfcore: core dump failed for " 2191 "process %d; address space is changing", p->p_pid); 2192 error = EIO; 2193 goto done; 2194 } 2195 2196 if ((error = core_write(vp, UIO_SYSSPACE, poffset, 2197 v, phdrsz, rlimit, credp)) != 0) 2198 goto done; 2199 2200 if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit, 2201 credp)) != 0) 2202 goto done; 2203 2204 if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit, 2205 credp, content)) != 0) 2206 goto done; 2207 2208 for (i = 2; i < nphdrs; i++) { 2209 prkillinfo_t killinfo; 2210 sigqueue_t *sq; 2211 int sig, j; 2212 2213 if (v[i].p_filesz == 0) 2214 continue; 2215 2216 /* 2217 * If dumping out this segment fails, rather than failing 2218 * the core dump entirely, we reset the size of the mapping 2219 * to zero to indicate that the data is absent from the core 2220 * file and or in the PF_SUNW_FAILURE flag to differentiate 2221 * this from mappings that were excluded due to the core file 2222 * content settings. 2223 */ 2224 if ((error = core_seg(p, vp, v[i].p_offset, 2225 (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz, 2226 rlimit, credp)) == 0) { 2227 continue; 2228 } 2229 2230 if ((sig = lwp->lwp_cursig) == 0) { 2231 /* 2232 * We failed due to something other than a signal. 2233 * Since the space reserved for the segment is now 2234 * unused, we stash the errno in the first four 2235 * bytes. This undocumented interface will let us 2236 * understand the nature of the failure. 2237 */ 2238 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2239 &error, sizeof (error), rlimit, credp); 2240 2241 v[i].p_filesz = 0; 2242 v[i].p_flags |= PF_SUNW_FAILURE; 2243 if ((error = core_write(vp, UIO_SYSSPACE, 2244 poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]), 2245 rlimit, credp)) != 0) 2246 goto done; 2247 2248 continue; 2249 } 2250 2251 /* 2252 * We took a signal. We want to abort the dump entirely, but 2253 * we also want to indicate what failed and why. We therefore 2254 * use the space reserved for the first failing segment to 2255 * write our error (which, for purposes of compatability with 2256 * older core dump readers, we set to EINTR) followed by any 2257 * siginfo associated with the signal. 2258 */ 2259 bzero(&killinfo, sizeof (killinfo)); 2260 killinfo.prk_error = EINTR; 2261 2262 sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo; 2263 2264 if (sq != NULL) { 2265 bcopy(&sq->sq_info, &killinfo.prk_info, 2266 sizeof (sq->sq_info)); 2267 } else { 2268 killinfo.prk_info.si_signo = lwp->lwp_cursig; 2269 killinfo.prk_info.si_code = SI_NOINFO; 2270 } 2271 2272 #if (defined(_SYSCALL32_IMPL) || defined(_LP64)) 2273 /* 2274 * If this is a 32-bit process, we need to translate from the 2275 * native siginfo to the 32-bit variant. (Core readers must 2276 * always have the same data model as their target or must 2277 * be aware of -- and compensate for -- data model differences.) 2278 */ 2279 if (curproc->p_model == DATAMODEL_ILP32) { 2280 siginfo32_t si32; 2281 2282 siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32); 2283 bcopy(&si32, &killinfo.prk_info, sizeof (si32)); 2284 } 2285 #endif 2286 2287 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2288 &killinfo, sizeof (killinfo), rlimit, credp); 2289 2290 /* 2291 * For the segment on which we took the signal, indicate that 2292 * its data now refers to a siginfo. 2293 */ 2294 v[i].p_filesz = 0; 2295 v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED | 2296 PF_SUNW_SIGINFO; 2297 2298 /* 2299 * And for every other segment, indicate that its absence 2300 * is due to a signal. 2301 */ 2302 for (j = i + 1; j < nphdrs; j++) { 2303 v[j].p_filesz = 0; 2304 v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED; 2305 } 2306 2307 /* 2308 * Finally, write out our modified program headers. 2309 */ 2310 if ((error = core_write(vp, UIO_SYSSPACE, 2311 poffset + sizeof (v[i]) * i, &v[i], 2312 sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0) 2313 goto done; 2314 2315 break; 2316 } 2317 2318 if (nshdrs > 0) { 2319 bzero(&bigwad->shdr[0], shdrsz); 2320 2321 if (nshdrs >= SHN_LORESERVE) 2322 bigwad->shdr[0].sh_size = nshdrs; 2323 2324 if (nshdrs - 1 >= SHN_LORESERVE) 2325 bigwad->shdr[0].sh_link = nshdrs - 1; 2326 2327 if (nphdrs >= PN_XNUM) 2328 bigwad->shdr[0].sh_info = nphdrs; 2329 2330 if (nshdrs > 1) { 2331 AS_LOCK_ENTER(as, RW_WRITER); 2332 if ((error = process_scns(content, p, credp, vp, 2333 &bigwad->shdr[0], nshdrs, rlimit, &doffset, 2334 NULL)) != 0) { 2335 AS_LOCK_EXIT(as); 2336 goto done; 2337 } 2338 AS_LOCK_EXIT(as); 2339 } 2340 2341 if ((error = core_write(vp, UIO_SYSSPACE, soffset, 2342 &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0) 2343 goto done; 2344 } 2345 2346 done: 2347 kmem_free(bigwad, bigsize); 2348 return (error); 2349 } 2350 2351 #ifndef _ELF32_COMPAT 2352 2353 static struct execsw esw = { 2354 #ifdef _LP64 2355 elf64magicstr, 2356 #else /* _LP64 */ 2357 elf32magicstr, 2358 #endif /* _LP64 */ 2359 0, 2360 5, 2361 elfexec, 2362 elfcore 2363 }; 2364 2365 static struct modlexec modlexec = { 2366 &mod_execops, "exec module for elf", &esw 2367 }; 2368 2369 #ifdef _LP64 2370 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args, 2371 intpdata_t *idatap, int level, long *execsz, 2372 int setid, caddr_t exec_file, cred_t *cred, 2373 int brand_action); 2374 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp, 2375 rlim64_t rlimit, int sig, core_content_t content); 2376 2377 static struct execsw esw32 = { 2378 elf32magicstr, 2379 0, 2380 5, 2381 elf32exec, 2382 elf32core 2383 }; 2384 2385 static struct modlexec modlexec32 = { 2386 &mod_execops, "32-bit exec module for elf", &esw32 2387 }; 2388 #endif /* _LP64 */ 2389 2390 static struct modlinkage modlinkage = { 2391 MODREV_1, 2392 (void *)&modlexec, 2393 #ifdef _LP64 2394 (void *)&modlexec32, 2395 #endif /* _LP64 */ 2396 NULL 2397 }; 2398 2399 int 2400 _init(void) 2401 { 2402 return (mod_install(&modlinkage)); 2403 } 2404 2405 int 2406 _fini(void) 2407 { 2408 return (mod_remove(&modlinkage)); 2409 } 2410 2411 int 2412 _info(struct modinfo *modinfop) 2413 { 2414 return (mod_info(&modlinkage, modinfop)); 2415 } 2416 2417 #endif /* !_ELF32_COMPAT */ 2418