xref: /illumos-gate/usr/src/uts/common/exec/elf/elf.c (revision a6f561b4aee75d0d028e7b36b151c8ed8a86bc76)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 /*
29  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
30  */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/thread.h>
35 #include <sys/sysmacros.h>
36 #include <sys/signal.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/errno.h>
40 #include <sys/vnode.h>
41 #include <sys/mman.h>
42 #include <sys/kmem.h>
43 #include <sys/proc.h>
44 #include <sys/pathname.h>
45 #include <sys/cmn_err.h>
46 #include <sys/systm.h>
47 #include <sys/elf.h>
48 #include <sys/vmsystm.h>
49 #include <sys/debug.h>
50 #include <sys/auxv.h>
51 #include <sys/exec.h>
52 #include <sys/prsystm.h>
53 #include <vm/as.h>
54 #include <vm/rm.h>
55 #include <vm/seg.h>
56 #include <vm/seg_vn.h>
57 #include <sys/modctl.h>
58 #include <sys/systeminfo.h>
59 #include <sys/vmparam.h>
60 #include <sys/machelf.h>
61 #include <sys/shm_impl.h>
62 #include <sys/archsystm.h>
63 #include <sys/fasttrap.h>
64 #include <sys/brand.h>
65 #include "elf_impl.h"
66 #include <sys/sdt.h>
67 
68 extern int at_flags;
69 
70 #define	ORIGIN_STR	"ORIGIN"
71 #define	ORIGIN_STR_SIZE	6
72 
73 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *);
74 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *,
75     ssize_t *);
76 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *,
77     ssize_t *, caddr_t *, ssize_t *);
78 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *);
79 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t,
80     Phdr **, Phdr **, Phdr **, Phdr **, Phdr *,
81     caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *);
82 
83 typedef enum {
84 	STR_CTF,
85 	STR_SYMTAB,
86 	STR_DYNSYM,
87 	STR_STRTAB,
88 	STR_DYNSTR,
89 	STR_SHSTRTAB,
90 	STR_NUM
91 } shstrtype_t;
92 
93 static const char *shstrtab_data[] = {
94 	".SUNW_ctf",
95 	".symtab",
96 	".dynsym",
97 	".strtab",
98 	".dynstr",
99 	".shstrtab"
100 };
101 
102 typedef struct shstrtab {
103 	int	sst_ndx[STR_NUM];
104 	int	sst_cur;
105 } shstrtab_t;
106 
107 static void
108 shstrtab_init(shstrtab_t *s)
109 {
110 	bzero(&s->sst_ndx, sizeof (s->sst_ndx));
111 	s->sst_cur = 1;
112 }
113 
114 static int
115 shstrtab_ndx(shstrtab_t *s, shstrtype_t type)
116 {
117 	int ret;
118 
119 	if ((ret = s->sst_ndx[type]) != 0)
120 		return (ret);
121 
122 	ret = s->sst_ndx[type] = s->sst_cur;
123 	s->sst_cur += strlen(shstrtab_data[type]) + 1;
124 
125 	return (ret);
126 }
127 
128 static size_t
129 shstrtab_size(const shstrtab_t *s)
130 {
131 	return (s->sst_cur);
132 }
133 
134 static void
135 shstrtab_dump(const shstrtab_t *s, char *buf)
136 {
137 	int i, ndx;
138 
139 	*buf = '\0';
140 	for (i = 0; i < STR_NUM; i++) {
141 		if ((ndx = s->sst_ndx[i]) != 0)
142 			(void) strcpy(buf + ndx, shstrtab_data[i]);
143 	}
144 }
145 
146 static int
147 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base)
148 {
149 	ASSERT(phdrp->p_type == PT_SUNWDTRACE);
150 
151 	/*
152 	 * See the comment in fasttrap.h for information on how to safely
153 	 * update this program header.
154 	 */
155 	if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE ||
156 	    (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X))
157 		return (-1);
158 
159 	args->thrptr = phdrp->p_vaddr + base;
160 
161 	return (0);
162 }
163 
164 /*
165  * Map in the executable pointed to by vp. Returns 0 on success.
166  */
167 int
168 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr,
169     intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase,
170     caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap)
171 {
172 	size_t		len;
173 	struct vattr	vat;
174 	caddr_t		phdrbase = NULL;
175 	ssize_t		phdrsize;
176 	int		nshdrs, shstrndx, nphdrs;
177 	int		error = 0;
178 	Phdr		*uphdr = NULL;
179 	Phdr		*junk = NULL;
180 	Phdr		*dynphdr = NULL;
181 	Phdr		*dtrphdr = NULL;
182 	uintptr_t	lddata;
183 	long		execsz;
184 	intptr_t	minaddr;
185 
186 	if (lddatap != NULL)
187 		*lddatap = NULL;
188 
189 	if (error = execpermissions(vp, &vat, args)) {
190 		uprintf("%s: Cannot execute %s\n", exec_file, args->pathname);
191 		return (error);
192 	}
193 
194 	if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx,
195 	    &nphdrs)) != 0 ||
196 	    (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase,
197 	    &phdrsize)) != 0) {
198 		uprintf("%s: Cannot read %s\n", exec_file, args->pathname);
199 		return (error);
200 	}
201 
202 	if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) {
203 		uprintf("%s: Nothing to load in %s", exec_file, args->pathname);
204 		kmem_free(phdrbase, phdrsize);
205 		return (ENOEXEC);
206 	}
207 	if (lddatap != NULL)
208 		*lddatap = lddata;
209 
210 	if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr,
211 	    &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr,
212 	    len, &execsz, brksize)) {
213 		uprintf("%s: Cannot map %s\n", exec_file, args->pathname);
214 		kmem_free(phdrbase, phdrsize);
215 		return (error);
216 	}
217 
218 	/*
219 	 * Inform our caller if the executable needs an interpreter.
220 	 */
221 	*interp = (dynphdr == NULL) ? 0 : 1;
222 
223 	/*
224 	 * If this is a statically linked executable, voffset should indicate
225 	 * the address of the executable itself (it normally holds the address
226 	 * of the interpreter).
227 	 */
228 	if (ehdr->e_type == ET_EXEC && *interp == 0)
229 		*voffset = minaddr;
230 
231 	if (uphdr != NULL) {
232 		*uphdr_vaddr = uphdr->p_vaddr;
233 	} else {
234 		*uphdr_vaddr = (Addr)-1;
235 	}
236 
237 	kmem_free(phdrbase, phdrsize);
238 	return (error);
239 }
240 
241 /*ARGSUSED*/
242 int
243 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap,
244     int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred,
245     int brand_action)
246 {
247 	caddr_t		phdrbase = NULL;
248 	caddr_t 	bssbase = 0;
249 	caddr_t 	brkbase = 0;
250 	size_t		brksize = 0;
251 	ssize_t		dlnsize;
252 	aux_entry_t	*aux;
253 	int		error;
254 	ssize_t		resid;
255 	int		fd = -1;
256 	intptr_t	voffset;
257 	Phdr		*dyphdr = NULL;
258 	Phdr		*stphdr = NULL;
259 	Phdr		*uphdr = NULL;
260 	Phdr		*junk = NULL;
261 	size_t		len;
262 	ssize_t		phdrsize;
263 	int		postfixsize = 0;
264 	int		i, hsize;
265 	Phdr		*phdrp;
266 	Phdr		*dataphdrp = NULL;
267 	Phdr		*dtrphdr;
268 	Phdr		*capphdr = NULL;
269 	Cap		*cap = NULL;
270 	ssize_t		capsize;
271 	int		hasu = 0;
272 	int		hasauxv = 0;
273 	int		hasdy = 0;
274 	int		branded = 0;
275 
276 	struct proc *p = ttoproc(curthread);
277 	struct user *up = PTOU(p);
278 	struct bigwad {
279 		Ehdr	ehdr;
280 		aux_entry_t	elfargs[__KERN_NAUXV_IMPL];
281 		char		dl_name[MAXPATHLEN];
282 		char		pathbuf[MAXPATHLEN];
283 		struct vattr	vattr;
284 		struct execenv	exenv;
285 	} *bigwad;	/* kmem_alloc this behemoth so we don't blow stack */
286 	Ehdr		*ehdrp;
287 	int		nshdrs, shstrndx, nphdrs;
288 	char		*dlnp;
289 	char		*pathbufp;
290 	rlim64_t	limit;
291 	rlim64_t	roundlimit;
292 
293 	ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64);
294 
295 	bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP);
296 	ehdrp = &bigwad->ehdr;
297 	dlnp = bigwad->dl_name;
298 	pathbufp = bigwad->pathbuf;
299 
300 	/*
301 	 * Obtain ELF and program header information.
302 	 */
303 	if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx,
304 	    &nphdrs)) != 0 ||
305 	    (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase,
306 	    &phdrsize)) != 0)
307 		goto out;
308 
309 	/*
310 	 * Prevent executing an ELF file that has no entry point.
311 	 */
312 	if (ehdrp->e_entry == 0) {
313 		uprintf("%s: Bad entry point\n", exec_file);
314 		goto bad;
315 	}
316 
317 	/*
318 	 * Put data model that we're exec-ing to into the args passed to
319 	 * exec_args(), so it will know what it is copying to on new stack.
320 	 * Now that we know whether we are exec-ing a 32-bit or 64-bit
321 	 * executable, we can set execsz with the appropriate NCARGS.
322 	 */
323 #ifdef	_LP64
324 	if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) {
325 		args->to_model = DATAMODEL_ILP32;
326 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1);
327 	} else {
328 		args->to_model = DATAMODEL_LP64;
329 		args->stk_prot &= ~PROT_EXEC;
330 #if defined(__i386) || defined(__amd64)
331 		args->dat_prot &= ~PROT_EXEC;
332 #endif
333 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1);
334 	}
335 #else	/* _LP64 */
336 	args->to_model = DATAMODEL_ILP32;
337 	*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1);
338 #endif	/* _LP64 */
339 
340 	/*
341 	 * We delay invoking the brand callback until we've figured out
342 	 * what kind of elf binary we're trying to run, 32-bit or 64-bit.
343 	 * We do this because now the brand library can just check
344 	 * args->to_model to see if the target is 32-bit or 64-bit without
345 	 * having do duplicate all the code above.
346 	 */
347 	if ((level < 2) &&
348 	    (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
349 		error = BROP(p)->b_elfexec(vp, uap, args,
350 		    idatap, level + 1, execsz, setid, exec_file, cred,
351 		    brand_action);
352 		goto out;
353 	}
354 
355 	/*
356 	 * Determine aux size now so that stack can be built
357 	 * in one shot (except actual copyout of aux image),
358 	 * determine any non-default stack protections,
359 	 * and still have this code be machine independent.
360 	 */
361 	hsize = ehdrp->e_phentsize;
362 	phdrp = (Phdr *)phdrbase;
363 	for (i = nphdrs; i > 0; i--) {
364 		switch (phdrp->p_type) {
365 		case PT_INTERP:
366 			hasauxv = hasdy = 1;
367 			break;
368 		case PT_PHDR:
369 			hasu = 1;
370 			break;
371 		case PT_SUNWSTACK:
372 			args->stk_prot = PROT_USER;
373 			if (phdrp->p_flags & PF_R)
374 				args->stk_prot |= PROT_READ;
375 			if (phdrp->p_flags & PF_W)
376 				args->stk_prot |= PROT_WRITE;
377 			if (phdrp->p_flags & PF_X)
378 				args->stk_prot |= PROT_EXEC;
379 			break;
380 		case PT_LOAD:
381 			dataphdrp = phdrp;
382 			break;
383 		case PT_SUNWCAP:
384 			capphdr = phdrp;
385 			break;
386 		}
387 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
388 	}
389 
390 	if (ehdrp->e_type != ET_EXEC) {
391 		dataphdrp = NULL;
392 		hasauxv = 1;
393 	}
394 
395 	/* Copy BSS permissions to args->dat_prot */
396 	if (dataphdrp != NULL) {
397 		args->dat_prot = PROT_USER;
398 		if (dataphdrp->p_flags & PF_R)
399 			args->dat_prot |= PROT_READ;
400 		if (dataphdrp->p_flags & PF_W)
401 			args->dat_prot |= PROT_WRITE;
402 		if (dataphdrp->p_flags & PF_X)
403 			args->dat_prot |= PROT_EXEC;
404 	}
405 
406 	/*
407 	 * If a auxvector will be required - reserve the space for
408 	 * it now.  This may be increased by exec_args if there are
409 	 * ISA-specific types (included in __KERN_NAUXV_IMPL).
410 	 */
411 	if (hasauxv) {
412 		/*
413 		 * If a AUX vector is being built - the base AUX
414 		 * entries are:
415 		 *
416 		 *	AT_BASE
417 		 *	AT_FLAGS
418 		 *	AT_PAGESZ
419 		 *	AT_SUN_LDSECURE
420 		 *	AT_SUN_HWCAP
421 		 *	AT_SUN_HWCAP2
422 		 *	AT_SUN_PLATFORM
423 		 *	AT_SUN_EXECNAME
424 		 *	AT_NULL
425 		 *
426 		 * total == 9
427 		 */
428 		if (hasdy && hasu) {
429 			/*
430 			 * Has PT_INTERP & PT_PHDR - the auxvectors that
431 			 * will be built are:
432 			 *
433 			 *	AT_PHDR
434 			 *	AT_PHENT
435 			 *	AT_PHNUM
436 			 *	AT_ENTRY
437 			 *	AT_LDDATA
438 			 *
439 			 * total = 5
440 			 */
441 			args->auxsize = (9 + 5) * sizeof (aux_entry_t);
442 		} else if (hasdy) {
443 			/*
444 			 * Has PT_INTERP but no PT_PHDR
445 			 *
446 			 *	AT_EXECFD
447 			 *	AT_LDDATA
448 			 *
449 			 * total = 2
450 			 */
451 			args->auxsize = (9 + 2) * sizeof (aux_entry_t);
452 		} else {
453 			args->auxsize = 9 * sizeof (aux_entry_t);
454 		}
455 	} else {
456 		args->auxsize = 0;
457 	}
458 
459 	/*
460 	 * If this binary is using an emulator, we need to add an
461 	 * AT_SUN_EMULATOR aux entry.
462 	 */
463 	if (args->emulator != NULL)
464 		args->auxsize += sizeof (aux_entry_t);
465 
466 	if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
467 		branded = 1;
468 		/*
469 		 * We will be adding 4 entries to the aux vectors.  One for
470 		 * the the brandname and 3 for the brand specific aux vectors.
471 		 */
472 		args->auxsize += 4 * sizeof (aux_entry_t);
473 	}
474 
475 	/* Hardware/Software capabilities */
476 	if (capphdr != NULL &&
477 	    (capsize = capphdr->p_filesz) > 0 &&
478 	    capsize <= 16 * sizeof (*cap)) {
479 		int ncaps = capsize / sizeof (*cap);
480 		Cap *cp;
481 
482 		cap = kmem_alloc(capsize, KM_SLEEP);
483 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap,
484 		    capsize, (offset_t)capphdr->p_offset,
485 		    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
486 			uprintf("%s: Cannot read capabilities section\n",
487 			    exec_file);
488 			goto out;
489 		}
490 		for (cp = cap; cp < cap + ncaps; cp++) {
491 			if (cp->c_tag == CA_SUNW_SF_1 &&
492 			    (cp->c_un.c_val & SF1_SUNW_ADDR32)) {
493 				if (args->to_model == DATAMODEL_LP64)
494 					args->addr32 = 1;
495 				break;
496 			}
497 		}
498 	}
499 
500 	aux = bigwad->elfargs;
501 	/*
502 	 * Move args to the user's stack.
503 	 */
504 	if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) {
505 		if (error == -1) {
506 			error = ENOEXEC;
507 			goto bad;
508 		}
509 		goto out;
510 	}
511 	/* we're single threaded after this point */
512 
513 	/*
514 	 * If this is an ET_DYN executable (shared object),
515 	 * determine its memory size so that mapelfexec() can load it.
516 	 */
517 	if (ehdrp->e_type == ET_DYN)
518 		len = elfsize(ehdrp, nphdrs, phdrbase, NULL);
519 	else
520 		len = 0;
521 
522 	dtrphdr = NULL;
523 
524 	if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &dyphdr,
525 	    &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL,
526 	    len, execsz, &brksize)) != 0)
527 		goto bad;
528 
529 	if (uphdr != NULL && dyphdr == NULL)
530 		goto bad;
531 
532 	if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
533 		uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file);
534 		goto bad;
535 	}
536 
537 	if (dyphdr != NULL) {
538 		size_t		len;
539 		uintptr_t	lddata;
540 		char		*p;
541 		struct vnode	*nvp;
542 
543 		dlnsize = dyphdr->p_filesz;
544 
545 		if (dlnsize > MAXPATHLEN || dlnsize <= 0)
546 			goto bad;
547 
548 		/*
549 		 * Read in "interpreter" pathname.
550 		 */
551 		if ((error = vn_rdwr(UIO_READ, vp, dlnp, dyphdr->p_filesz,
552 		    (offset_t)dyphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
553 		    CRED(), &resid)) != 0) {
554 			uprintf("%s: Cannot obtain interpreter pathname\n",
555 			    exec_file);
556 			goto bad;
557 		}
558 
559 		if (resid != 0 || dlnp[dlnsize - 1] != '\0')
560 			goto bad;
561 
562 		/*
563 		 * Search for '$ORIGIN' token in interpreter path.
564 		 * If found, expand it.
565 		 */
566 		for (p = dlnp; p = strchr(p, '$'); ) {
567 			uint_t	len, curlen;
568 			char	*_ptr;
569 
570 			if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE))
571 				continue;
572 
573 			curlen = 0;
574 			len = p - dlnp - 1;
575 			if (len) {
576 				bcopy(dlnp, pathbufp, len);
577 				curlen += len;
578 			}
579 			if (_ptr = strrchr(args->pathname, '/')) {
580 				len = _ptr - args->pathname;
581 				if ((curlen + len) > MAXPATHLEN)
582 					break;
583 
584 				bcopy(args->pathname, &pathbufp[curlen], len);
585 				curlen += len;
586 			} else {
587 				/*
588 				 * executable is a basename found in the
589 				 * current directory.  So - just substitue
590 				 * '.' for ORIGIN.
591 				 */
592 				pathbufp[curlen] = '.';
593 				curlen++;
594 			}
595 			p += ORIGIN_STR_SIZE;
596 			len = strlen(p);
597 
598 			if ((curlen + len) > MAXPATHLEN)
599 				break;
600 			bcopy(p, &pathbufp[curlen], len);
601 			curlen += len;
602 			pathbufp[curlen++] = '\0';
603 			bcopy(pathbufp, dlnp, curlen);
604 		}
605 
606 		/*
607 		 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1
608 		 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1).
609 		 * Just in case /usr is not mounted, change it now.
610 		 */
611 		if (strcmp(dlnp, USR_LIB_RTLD) == 0)
612 			dlnp += 4;
613 		error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp);
614 		if (error && dlnp != bigwad->dl_name) {
615 			/* new kernel, old user-level */
616 			error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW,
617 			    NULLVPP, &nvp);
618 		}
619 		if (error) {
620 			uprintf("%s: Cannot find %s\n", exec_file, dlnp);
621 			goto bad;
622 		}
623 
624 		/*
625 		 * Setup the "aux" vector.
626 		 */
627 		if (uphdr) {
628 			if (ehdrp->e_type == ET_DYN) {
629 				/* don't use the first page */
630 				bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE;
631 				bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE;
632 			} else {
633 				bigwad->exenv.ex_bssbase = bssbase;
634 				bigwad->exenv.ex_brkbase = brkbase;
635 			}
636 			bigwad->exenv.ex_brksize = brksize;
637 			bigwad->exenv.ex_magic = elfmagic;
638 			bigwad->exenv.ex_vp = vp;
639 			setexecenv(&bigwad->exenv);
640 
641 			ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset)
642 			ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize)
643 			ADDAUX(aux, AT_PHNUM, nphdrs)
644 			ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset)
645 		} else {
646 			if ((error = execopen(&vp, &fd)) != 0) {
647 				VN_RELE(nvp);
648 				goto bad;
649 			}
650 
651 			ADDAUX(aux, AT_EXECFD, fd)
652 		}
653 
654 		if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) {
655 			VN_RELE(nvp);
656 			uprintf("%s: Cannot execute %s\n", exec_file, dlnp);
657 			goto bad;
658 		}
659 
660 		/*
661 		 * Now obtain the ELF header along with the entire program
662 		 * header contained in "nvp".
663 		 */
664 		kmem_free(phdrbase, phdrsize);
665 		phdrbase = NULL;
666 		if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs,
667 		    &shstrndx, &nphdrs)) != 0 ||
668 		    (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase,
669 		    &phdrsize)) != 0) {
670 			VN_RELE(nvp);
671 			uprintf("%s: Cannot read %s\n", exec_file, dlnp);
672 			goto bad;
673 		}
674 
675 		/*
676 		 * Determine memory size of the "interpreter's" loadable
677 		 * sections.  This size is then used to obtain the virtual
678 		 * address of a hole, in the user's address space, large
679 		 * enough to map the "interpreter".
680 		 */
681 		if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) {
682 			VN_RELE(nvp);
683 			uprintf("%s: Nothing to load in %s\n", exec_file, dlnp);
684 			goto bad;
685 		}
686 
687 		dtrphdr = NULL;
688 
689 		error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk,
690 		    &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len,
691 		    execsz, NULL);
692 		if (error || junk != NULL) {
693 			VN_RELE(nvp);
694 			uprintf("%s: Cannot map %s\n", exec_file, dlnp);
695 			goto bad;
696 		}
697 
698 		/*
699 		 * We use the DTrace program header to initialize the
700 		 * architecture-specific user per-LWP location. The dtrace
701 		 * fasttrap provider requires ready access to per-LWP scratch
702 		 * space. We assume that there is only one such program header
703 		 * in the interpreter.
704 		 */
705 		if (dtrphdr != NULL &&
706 		    dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
707 			VN_RELE(nvp);
708 			uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp);
709 			goto bad;
710 		}
711 
712 		VN_RELE(nvp);
713 		ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata)
714 	}
715 
716 	if (hasauxv) {
717 		int auxf = AF_SUN_HWCAPVERIFY;
718 		/*
719 		 * Note: AT_SUN_PLATFORM was filled in via exec_args()
720 		 */
721 		ADDAUX(aux, AT_BASE, voffset)
722 		ADDAUX(aux, AT_FLAGS, at_flags)
723 		ADDAUX(aux, AT_PAGESZ, PAGESIZE)
724 		/*
725 		 * Linker flags. (security)
726 		 * p_flag not yet set at this time.
727 		 * We rely on gexec() to provide us with the information.
728 		 * If the application is set-uid but this is not reflected
729 		 * in a mismatch between real/effective uids/gids, then
730 		 * don't treat this as a set-uid exec.  So we care about
731 		 * the EXECSETID_UGIDS flag but not the ...SETID flag.
732 		 */
733 		if ((setid &= ~EXECSETID_SETID) != 0)
734 			auxf |= AF_SUN_SETUGID;
735 
736 		/*
737 		 * If we're running a native process from within a branded
738 		 * zone under pfexec then we clear the AF_SUN_SETUGID flag so
739 		 * that the native ld.so.1 is able to link with the native
740 		 * libraries instead of using the brand libraries that are
741 		 * installed in the zone.  We only do this for processes
742 		 * which we trust because we see they are already running
743 		 * under pfexec (where uid != euid).  This prevents a
744 		 * malicious user within the zone from crafting a wrapper to
745 		 * run native suid commands with unsecure libraries interposed.
746 		 */
747 		if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) &&
748 		    (setid &= ~EXECSETID_SETID) != 0))
749 			auxf &= ~AF_SUN_SETUGID;
750 
751 		/*
752 		 * Record the user addr of the auxflags aux vector entry
753 		 * since brands may optionally want to manipulate this field.
754 		 */
755 		args->auxp_auxflags =
756 		    (char *)((char *)args->stackend +
757 		    ((char *)&aux->a_type -
758 		    (char *)bigwad->elfargs));
759 		ADDAUX(aux, AT_SUN_AUXFLAGS, auxf);
760 		/*
761 		 * Hardware capability flag word (performance hints)
762 		 * Used for choosing faster library routines.
763 		 * (Potentially different between 32-bit and 64-bit ABIs)
764 		 */
765 #if defined(_LP64)
766 		if (args->to_model == DATAMODEL_NATIVE) {
767 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
768 			ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2)
769 		} else {
770 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32)
771 			ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2)
772 		}
773 #else
774 		ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
775 		ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2)
776 #endif
777 		if (branded) {
778 			/*
779 			 * Reserve space for the brand-private aux vectors,
780 			 * and record the user addr of that space.
781 			 */
782 			args->auxp_brand =
783 			    (char *)((char *)args->stackend +
784 			    ((char *)&aux->a_type -
785 			    (char *)bigwad->elfargs));
786 			ADDAUX(aux, AT_SUN_BRAND_AUX1, 0)
787 			ADDAUX(aux, AT_SUN_BRAND_AUX2, 0)
788 			ADDAUX(aux, AT_SUN_BRAND_AUX3, 0)
789 		}
790 
791 		ADDAUX(aux, AT_NULL, 0)
792 		postfixsize = (char *)aux - (char *)bigwad->elfargs;
793 		ASSERT(postfixsize == args->auxsize);
794 		ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t));
795 	}
796 
797 	/*
798 	 * For the 64-bit kernel, the limit is big enough that rounding it up
799 	 * to a page can overflow the 64-bit limit, so we check for btopr()
800 	 * overflowing here by comparing it with the unrounded limit in pages.
801 	 * If it hasn't overflowed, compare the exec size with the rounded up
802 	 * limit in pages.  Otherwise, just compare with the unrounded limit.
803 	 */
804 	limit = btop(p->p_vmem_ctl);
805 	roundlimit = btopr(p->p_vmem_ctl);
806 	if ((roundlimit > limit && *execsz > roundlimit) ||
807 	    (roundlimit < limit && *execsz > limit)) {
808 		mutex_enter(&p->p_lock);
809 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
810 		    RCA_SAFE);
811 		mutex_exit(&p->p_lock);
812 		error = ENOMEM;
813 		goto bad;
814 	}
815 
816 	bzero(up->u_auxv, sizeof (up->u_auxv));
817 	if (postfixsize) {
818 		int num_auxv;
819 
820 		/*
821 		 * Copy the aux vector to the user stack.
822 		 */
823 		error = execpoststack(args, bigwad->elfargs, postfixsize);
824 		if (error)
825 			goto bad;
826 
827 		/*
828 		 * Copy auxv to the process's user structure for use by /proc.
829 		 * If this is a branded process, the brand's exec routine will
830 		 * copy it's private entries to the user structure later. It
831 		 * relies on the fact that the blank entries are at the end.
832 		 */
833 		num_auxv = postfixsize / sizeof (aux_entry_t);
834 		ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t));
835 		aux = bigwad->elfargs;
836 		for (i = 0; i < num_auxv; i++) {
837 			up->u_auxv[i].a_type = aux[i].a_type;
838 			up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val;
839 		}
840 	}
841 
842 	/*
843 	 * Pass back the starting address so we can set the program counter.
844 	 */
845 	args->entry = (uintptr_t)(ehdrp->e_entry + voffset);
846 
847 	if (!uphdr) {
848 		if (ehdrp->e_type == ET_DYN) {
849 			/*
850 			 * If we are executing a shared library which doesn't
851 			 * have a interpreter (probably ld.so.1) then
852 			 * we don't set the brkbase now.  Instead we
853 			 * delay it's setting until the first call
854 			 * via grow.c::brk().  This permits ld.so.1 to
855 			 * initialize brkbase to the tail of the executable it
856 			 * loads (which is where it needs to be).
857 			 */
858 			bigwad->exenv.ex_brkbase = (caddr_t)0;
859 			bigwad->exenv.ex_bssbase = (caddr_t)0;
860 			bigwad->exenv.ex_brksize = 0;
861 		} else {
862 			bigwad->exenv.ex_brkbase = brkbase;
863 			bigwad->exenv.ex_bssbase = bssbase;
864 			bigwad->exenv.ex_brksize = brksize;
865 		}
866 		bigwad->exenv.ex_magic = elfmagic;
867 		bigwad->exenv.ex_vp = vp;
868 		setexecenv(&bigwad->exenv);
869 	}
870 
871 	ASSERT(error == 0);
872 	goto out;
873 
874 bad:
875 	if (fd != -1)		/* did we open the a.out yet */
876 		(void) execclose(fd);
877 
878 	psignal(p, SIGKILL);
879 
880 	if (error == 0)
881 		error = ENOEXEC;
882 out:
883 	if (phdrbase != NULL)
884 		kmem_free(phdrbase, phdrsize);
885 	if (cap != NULL)
886 		kmem_free(cap, capsize);
887 	kmem_free(bigwad, sizeof (struct bigwad));
888 	return (error);
889 }
890 
891 /*
892  * Compute the memory size requirement for the ELF file.
893  */
894 static size_t
895 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata)
896 {
897 	size_t	len;
898 	Phdr	*phdrp = (Phdr *)phdrbase;
899 	int	hsize = ehdrp->e_phentsize;
900 	int	first = 1;
901 	int	dfirst = 1;	/* first data segment */
902 	uintptr_t loaddr = 0;
903 	uintptr_t hiaddr = 0;
904 	uintptr_t lo, hi;
905 	int	i;
906 
907 	for (i = nphdrs; i > 0; i--) {
908 		if (phdrp->p_type == PT_LOAD) {
909 			lo = phdrp->p_vaddr;
910 			hi = lo + phdrp->p_memsz;
911 			if (first) {
912 				loaddr = lo;
913 				hiaddr = hi;
914 				first = 0;
915 			} else {
916 				if (loaddr > lo)
917 					loaddr = lo;
918 				if (hiaddr < hi)
919 					hiaddr = hi;
920 			}
921 
922 			/*
923 			 * save the address of the first data segment
924 			 * of a object - used for the AT_SUNW_LDDATA
925 			 * aux entry.
926 			 */
927 			if ((lddata != NULL) && dfirst &&
928 			    (phdrp->p_flags & PF_W)) {
929 				*lddata = lo;
930 				dfirst = 0;
931 			}
932 		}
933 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
934 	}
935 
936 	len = hiaddr - (loaddr & PAGEMASK);
937 	len = roundup(len, PAGESIZE);
938 
939 	return (len);
940 }
941 
942 /*
943  * Read in the ELF header and program header table.
944  * SUSV3 requires:
945  *	ENOEXEC	File format is not recognized
946  *	EINVAL	Format recognized but execution not supported
947  */
948 static int
949 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx,
950     int *nphdrs)
951 {
952 	int error;
953 	ssize_t resid;
954 
955 	/*
956 	 * We got here by the first two bytes in ident,
957 	 * now read the entire ELF header.
958 	 */
959 	if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr,
960 	    sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0,
961 	    (rlim64_t)0, credp, &resid)) != 0)
962 		return (error);
963 
964 	/*
965 	 * Since a separate version is compiled for handling 32-bit and
966 	 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version
967 	 * doesn't need to be able to deal with 32-bit ELF files.
968 	 */
969 	if (resid != 0 ||
970 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
971 	    ehdr->e_ident[EI_MAG3] != ELFMAG3)
972 		return (ENOEXEC);
973 
974 	if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) ||
975 #if defined(_ILP32) || defined(_ELF32_COMPAT)
976 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
977 #else
978 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
979 #endif
980 	    !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine,
981 	    ehdr->e_flags))
982 		return (EINVAL);
983 
984 	*nshdrs = ehdr->e_shnum;
985 	*shstrndx = ehdr->e_shstrndx;
986 	*nphdrs = ehdr->e_phnum;
987 
988 	/*
989 	 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need
990 	 * to read in the section header at index zero to acces the true
991 	 * values for those fields.
992 	 */
993 	if ((*nshdrs == 0 && ehdr->e_shoff != 0) ||
994 	    *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) {
995 		Shdr shdr;
996 
997 		if (ehdr->e_shoff == 0)
998 			return (EINVAL);
999 
1000 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr,
1001 		    sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0,
1002 		    (rlim64_t)0, credp, &resid)) != 0)
1003 			return (error);
1004 
1005 		if (*nshdrs == 0)
1006 			*nshdrs = shdr.sh_size;
1007 		if (*shstrndx == SHN_XINDEX)
1008 			*shstrndx = shdr.sh_link;
1009 		if (*nphdrs == PN_XNUM && shdr.sh_info != 0)
1010 			*nphdrs = shdr.sh_info;
1011 	}
1012 
1013 	return (0);
1014 }
1015 
1016 #ifdef _ELF32_COMPAT
1017 extern size_t elf_nphdr_max;
1018 #else
1019 size_t elf_nphdr_max = 1000;
1020 #endif
1021 
1022 static int
1023 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs,
1024     caddr_t *phbasep, ssize_t *phsizep)
1025 {
1026 	ssize_t resid, minsize;
1027 	int err;
1028 
1029 	/*
1030 	 * Since we're going to be using e_phentsize to iterate down the
1031 	 * array of program headers, it must be 8-byte aligned or else
1032 	 * a we might cause a misaligned access. We use all members through
1033 	 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so
1034 	 * e_phentsize must be at least large enough to include those
1035 	 * members.
1036 	 */
1037 #if !defined(_LP64) || defined(_ELF32_COMPAT)
1038 	minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags);
1039 #else
1040 	minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz);
1041 #endif
1042 	if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3))
1043 		return (EINVAL);
1044 
1045 	*phsizep = nphdrs * ehdr->e_phentsize;
1046 
1047 	if (*phsizep > sizeof (Phdr) * elf_nphdr_max) {
1048 		if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL)
1049 			return (ENOMEM);
1050 	} else {
1051 		*phbasep = kmem_alloc(*phsizep, KM_SLEEP);
1052 	}
1053 
1054 	if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep,
1055 	    (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1056 	    credp, &resid)) != 0) {
1057 		kmem_free(*phbasep, *phsizep);
1058 		*phbasep = NULL;
1059 		return (err);
1060 	}
1061 
1062 	return (0);
1063 }
1064 
1065 #ifdef _ELF32_COMPAT
1066 extern size_t elf_nshdr_max;
1067 extern size_t elf_shstrtab_max;
1068 #else
1069 size_t elf_nshdr_max = 10000;
1070 size_t elf_shstrtab_max = 100 * 1024;
1071 #endif
1072 
1073 
1074 static int
1075 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr,
1076     int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep,
1077     char **shstrbasep, ssize_t *shstrsizep)
1078 {
1079 	ssize_t resid, minsize;
1080 	int err;
1081 	Shdr *shdr;
1082 
1083 	/*
1084 	 * Since we're going to be using e_shentsize to iterate down the
1085 	 * array of section headers, it must be 8-byte aligned or else
1086 	 * a we might cause a misaligned access. We use all members through
1087 	 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize
1088 	 * must be at least large enough to include that member. The index
1089 	 * of the string table section must also be valid.
1090 	 */
1091 	minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize);
1092 	if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) ||
1093 	    shstrndx >= nshdrs)
1094 		return (EINVAL);
1095 
1096 	*shsizep = nshdrs * ehdr->e_shentsize;
1097 
1098 	if (*shsizep > sizeof (Shdr) * elf_nshdr_max) {
1099 		if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL)
1100 			return (ENOMEM);
1101 	} else {
1102 		*shbasep = kmem_alloc(*shsizep, KM_SLEEP);
1103 	}
1104 
1105 	if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep,
1106 	    (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1107 	    credp, &resid)) != 0) {
1108 		kmem_free(*shbasep, *shsizep);
1109 		return (err);
1110 	}
1111 
1112 	/*
1113 	 * Pull the section string table out of the vnode; fail if the size
1114 	 * is zero.
1115 	 */
1116 	shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize);
1117 	if ((*shstrsizep = shdr->sh_size) == 0) {
1118 		kmem_free(*shbasep, *shsizep);
1119 		return (EINVAL);
1120 	}
1121 
1122 	if (*shstrsizep > elf_shstrtab_max) {
1123 		if ((*shstrbasep = kmem_alloc(*shstrsizep,
1124 		    KM_NOSLEEP)) == NULL) {
1125 			kmem_free(*shbasep, *shsizep);
1126 			return (ENOMEM);
1127 		}
1128 	} else {
1129 		*shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP);
1130 	}
1131 
1132 	if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep,
1133 	    (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
1134 	    credp, &resid)) != 0) {
1135 		kmem_free(*shbasep, *shsizep);
1136 		kmem_free(*shstrbasep, *shstrsizep);
1137 		return (err);
1138 	}
1139 
1140 	/*
1141 	 * Make sure the strtab is null-terminated to make sure we
1142 	 * don't run off the end of the table.
1143 	 */
1144 	(*shstrbasep)[*shstrsizep - 1] = '\0';
1145 
1146 	return (0);
1147 }
1148 
1149 static int
1150 mapelfexec(
1151 	vnode_t *vp,
1152 	Ehdr *ehdr,
1153 	int nphdrs,
1154 	caddr_t phdrbase,
1155 	Phdr **uphdr,
1156 	Phdr **dyphdr,
1157 	Phdr **stphdr,
1158 	Phdr **dtphdr,
1159 	Phdr *dataphdrp,
1160 	caddr_t *bssbase,
1161 	caddr_t *brkbase,
1162 	intptr_t *voffset,
1163 	intptr_t *minaddr,
1164 	size_t len,
1165 	long *execsz,
1166 	size_t *brksize)
1167 {
1168 	Phdr *phdr;
1169 	int i, prot, error;
1170 	caddr_t addr = NULL;
1171 	size_t zfodsz;
1172 	int ptload = 0;
1173 	int page;
1174 	off_t offset;
1175 	int hsize = ehdr->e_phentsize;
1176 	caddr_t mintmp = (caddr_t)-1;
1177 	extern int use_brk_lpg;
1178 
1179 	if (ehdr->e_type == ET_DYN) {
1180 		/*
1181 		 * Obtain the virtual address of a hole in the
1182 		 * address space to map the "interpreter".
1183 		 */
1184 		map_addr(&addr, len, (offset_t)0, 1, 0);
1185 		if (addr == NULL)
1186 			return (ENOMEM);
1187 		*voffset = (intptr_t)addr;
1188 
1189 		/*
1190 		 * Calculate the minimum vaddr so it can be subtracted out.
1191 		 * According to the ELF specification, since PT_LOAD sections
1192 		 * must be sorted by increasing p_vaddr values, this is
1193 		 * guaranteed to be the first PT_LOAD section.
1194 		 */
1195 		phdr = (Phdr *)phdrbase;
1196 		for (i = nphdrs; i > 0; i--) {
1197 			if (phdr->p_type == PT_LOAD) {
1198 				*voffset -= (uintptr_t)phdr->p_vaddr;
1199 				break;
1200 			}
1201 			phdr = (Phdr *)((caddr_t)phdr + hsize);
1202 		}
1203 
1204 	} else {
1205 		*voffset = 0;
1206 	}
1207 	phdr = (Phdr *)phdrbase;
1208 	for (i = nphdrs; i > 0; i--) {
1209 		switch (phdr->p_type) {
1210 		case PT_LOAD:
1211 			if ((*dyphdr != NULL) && (*uphdr == NULL))
1212 				return (0);
1213 
1214 			ptload = 1;
1215 			prot = PROT_USER;
1216 			if (phdr->p_flags & PF_R)
1217 				prot |= PROT_READ;
1218 			if (phdr->p_flags & PF_W)
1219 				prot |= PROT_WRITE;
1220 			if (phdr->p_flags & PF_X)
1221 				prot |= PROT_EXEC;
1222 
1223 			addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset);
1224 
1225 			/*
1226 			 * Keep track of the segment with the lowest starting
1227 			 * address.
1228 			 */
1229 			if (addr < mintmp)
1230 				mintmp = addr;
1231 
1232 			zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz;
1233 
1234 			offset = phdr->p_offset;
1235 			if (((uintptr_t)offset & PAGEOFFSET) ==
1236 			    ((uintptr_t)addr & PAGEOFFSET) &&
1237 			    (!(vp->v_flag & VNOMAP))) {
1238 				page = 1;
1239 			} else {
1240 				page = 0;
1241 			}
1242 
1243 			/*
1244 			 * Set the heap pagesize for OOB when the bss size
1245 			 * is known and use_brk_lpg is not 0.
1246 			 */
1247 			if (brksize != NULL && use_brk_lpg &&
1248 			    zfodsz != 0 && phdr == dataphdrp &&
1249 			    (prot & PROT_WRITE)) {
1250 				size_t tlen = P2NPHASE((uintptr_t)addr +
1251 				    phdr->p_filesz, PAGESIZE);
1252 
1253 				if (zfodsz > tlen) {
1254 					curproc->p_brkpageszc =
1255 					    page_szc(map_pgsz(MAPPGSZ_HEAP,
1256 					    curproc, addr + phdr->p_filesz +
1257 					    tlen, zfodsz - tlen, 0));
1258 				}
1259 			}
1260 
1261 			if (curproc->p_brkpageszc != 0 && phdr == dataphdrp &&
1262 			    (prot & PROT_WRITE)) {
1263 				uint_t	szc = curproc->p_brkpageszc;
1264 				size_t pgsz = page_get_pagesize(szc);
1265 				caddr_t ebss = addr + phdr->p_memsz;
1266 				size_t extra_zfodsz;
1267 
1268 				ASSERT(pgsz > PAGESIZE);
1269 
1270 				extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz);
1271 
1272 				if (error = execmap(vp, addr, phdr->p_filesz,
1273 				    zfodsz + extra_zfodsz, phdr->p_offset,
1274 				    prot, page, szc))
1275 					goto bad;
1276 				if (brksize != NULL)
1277 					*brksize = extra_zfodsz;
1278 			} else {
1279 				if (error = execmap(vp, addr, phdr->p_filesz,
1280 				    zfodsz, phdr->p_offset, prot, page, 0))
1281 					goto bad;
1282 			}
1283 
1284 			if (bssbase != NULL && addr >= *bssbase &&
1285 			    phdr == dataphdrp) {
1286 				*bssbase = addr + phdr->p_filesz;
1287 			}
1288 			if (brkbase != NULL && addr >= *brkbase) {
1289 				*brkbase = addr + phdr->p_memsz;
1290 			}
1291 
1292 			*execsz += btopr(phdr->p_memsz);
1293 			break;
1294 
1295 		case PT_INTERP:
1296 			if (ptload)
1297 				goto bad;
1298 			*dyphdr = phdr;
1299 			break;
1300 
1301 		case PT_SHLIB:
1302 			*stphdr = phdr;
1303 			break;
1304 
1305 		case PT_PHDR:
1306 			if (ptload)
1307 				goto bad;
1308 			*uphdr = phdr;
1309 			break;
1310 
1311 		case PT_NULL:
1312 		case PT_DYNAMIC:
1313 		case PT_NOTE:
1314 			break;
1315 
1316 		case PT_SUNWDTRACE:
1317 			if (dtphdr != NULL)
1318 				*dtphdr = phdr;
1319 			break;
1320 
1321 		default:
1322 			break;
1323 		}
1324 		phdr = (Phdr *)((caddr_t)phdr + hsize);
1325 	}
1326 
1327 	if (minaddr != NULL) {
1328 		ASSERT(mintmp != (caddr_t)-1);
1329 		*minaddr = (intptr_t)mintmp;
1330 	}
1331 
1332 	return (0);
1333 bad:
1334 	if (error == 0)
1335 		error = EINVAL;
1336 	return (error);
1337 }
1338 
1339 int
1340 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc,
1341     rlim64_t rlimit, cred_t *credp)
1342 {
1343 	Note note;
1344 	int error;
1345 
1346 	bzero(&note, sizeof (note));
1347 	bcopy("CORE", note.name, 4);
1348 	note.nhdr.n_type = type;
1349 	/*
1350 	 * The System V ABI states that n_namesz must be the length of the
1351 	 * string that follows the Nhdr structure including the terminating
1352 	 * null. The ABI also specifies that sufficient padding should be
1353 	 * included so that the description that follows the name string
1354 	 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries
1355 	 * respectively. However, since this change was not made correctly
1356 	 * at the time of the 64-bit port, both 32- and 64-bit binaries
1357 	 * descriptions are only guaranteed to begin on a 4-byte boundary.
1358 	 */
1359 	note.nhdr.n_namesz = 5;
1360 	note.nhdr.n_descsz = roundup(descsz, sizeof (Word));
1361 
1362 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, &note,
1363 	    sizeof (note), rlimit, credp))
1364 		return (error);
1365 
1366 	*offsetp += sizeof (note);
1367 
1368 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc,
1369 	    note.nhdr.n_descsz, rlimit, credp))
1370 		return (error);
1371 
1372 	*offsetp += note.nhdr.n_descsz;
1373 	return (0);
1374 }
1375 
1376 /*
1377  * Copy the section data from one vnode to the section of another vnode.
1378  */
1379 static void
1380 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset,
1381     void *buf, size_t size, cred_t *credp, rlim64_t rlimit)
1382 {
1383 	ssize_t resid;
1384 	size_t len, n = src->sh_size;
1385 	offset_t off = 0;
1386 
1387 	while (n != 0) {
1388 		len = MIN(size, n);
1389 		if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off,
1390 		    UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 ||
1391 		    resid >= len ||
1392 		    core_write(dst_vp, UIO_SYSSPACE, *doffset + off,
1393 		    buf, len - resid, rlimit, credp) != 0) {
1394 			dst->sh_size = 0;
1395 			dst->sh_offset = 0;
1396 			return;
1397 		}
1398 
1399 		ASSERT(n >= len - resid);
1400 
1401 		n -= len - resid;
1402 		off += len - resid;
1403 	}
1404 
1405 	*doffset += src->sh_size;
1406 }
1407 
1408 #ifdef _ELF32_COMPAT
1409 extern size_t elf_datasz_max;
1410 #else
1411 size_t elf_datasz_max = 1 * 1024 * 1024;
1412 #endif
1413 
1414 /*
1415  * This function processes mappings that correspond to load objects to
1416  * examine their respective sections for elfcore(). It's called once with
1417  * v set to NULL to count the number of sections that we're going to need
1418  * and then again with v set to some allocated buffer that we fill in with
1419  * all the section data.
1420  */
1421 static int
1422 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp,
1423     Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp)
1424 {
1425 	vnode_t *lastvp = NULL;
1426 	struct seg *seg;
1427 	int i, j;
1428 	void *data = NULL;
1429 	size_t datasz = 0;
1430 	shstrtab_t shstrtab;
1431 	struct as *as = p->p_as;
1432 	int error = 0;
1433 
1434 	if (v != NULL)
1435 		shstrtab_init(&shstrtab);
1436 
1437 	i = 1;
1438 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1439 		uint_t prot;
1440 		vnode_t *mvp;
1441 		void *tmp = NULL;
1442 		caddr_t saddr = seg->s_base;
1443 		caddr_t naddr;
1444 		caddr_t eaddr;
1445 		size_t segsize;
1446 
1447 		Ehdr ehdr;
1448 		int nshdrs, shstrndx, nphdrs;
1449 		caddr_t shbase;
1450 		ssize_t shsize;
1451 		char *shstrbase;
1452 		ssize_t shstrsize;
1453 
1454 		Shdr *shdr;
1455 		const char *name;
1456 		size_t sz;
1457 		uintptr_t off;
1458 
1459 		int ctf_ndx = 0;
1460 		int symtab_ndx = 0;
1461 
1462 		/*
1463 		 * Since we're just looking for text segments of load
1464 		 * objects, we only care about the protection bits; we don't
1465 		 * care about the actual size of the segment so we use the
1466 		 * reserved size. If the segment's size is zero, there's
1467 		 * something fishy going on so we ignore this segment.
1468 		 */
1469 		if (seg->s_ops != &segvn_ops ||
1470 		    SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1471 		    mvp == lastvp || mvp == NULL || mvp->v_type != VREG ||
1472 		    (segsize = pr_getsegsize(seg, 1)) == 0)
1473 			continue;
1474 
1475 		eaddr = saddr + segsize;
1476 		prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr);
1477 		pr_getprot_done(&tmp);
1478 
1479 		/*
1480 		 * Skip this segment unless the protection bits look like
1481 		 * what we'd expect for a text segment.
1482 		 */
1483 		if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC)
1484 			continue;
1485 
1486 		if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx,
1487 		    &nphdrs) != 0 ||
1488 		    getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx,
1489 		    &shbase, &shsize, &shstrbase, &shstrsize) != 0)
1490 			continue;
1491 
1492 		off = ehdr.e_shentsize;
1493 		for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) {
1494 			Shdr *symtab = NULL, *strtab;
1495 
1496 			shdr = (Shdr *)(shbase + off);
1497 
1498 			if (shdr->sh_name >= shstrsize)
1499 				continue;
1500 
1501 			name = shstrbase + shdr->sh_name;
1502 
1503 			if (strcmp(name, shstrtab_data[STR_CTF]) == 0) {
1504 				if ((content & CC_CONTENT_CTF) == 0 ||
1505 				    ctf_ndx != 0)
1506 					continue;
1507 
1508 				if (shdr->sh_link > 0 &&
1509 				    shdr->sh_link < nshdrs) {
1510 					symtab = (Shdr *)(shbase +
1511 					    shdr->sh_link * ehdr.e_shentsize);
1512 				}
1513 
1514 				if (v != NULL && i < nv - 1) {
1515 					if (shdr->sh_size > datasz &&
1516 					    shdr->sh_size <= elf_datasz_max) {
1517 						if (data != NULL)
1518 							kmem_free(data, datasz);
1519 
1520 						datasz = shdr->sh_size;
1521 						data = kmem_alloc(datasz,
1522 						    KM_SLEEP);
1523 					}
1524 
1525 					v[i].sh_name = shstrtab_ndx(&shstrtab,
1526 					    STR_CTF);
1527 					v[i].sh_addr = (Addr)(uintptr_t)saddr;
1528 					v[i].sh_type = SHT_PROGBITS;
1529 					v[i].sh_addralign = 4;
1530 					*doffsetp = roundup(*doffsetp,
1531 					    v[i].sh_addralign);
1532 					v[i].sh_offset = *doffsetp;
1533 					v[i].sh_size = shdr->sh_size;
1534 					if (symtab == NULL)  {
1535 						v[i].sh_link = 0;
1536 					} else if (symtab->sh_type ==
1537 					    SHT_SYMTAB &&
1538 					    symtab_ndx != 0) {
1539 						v[i].sh_link =
1540 						    symtab_ndx;
1541 					} else {
1542 						v[i].sh_link = i + 1;
1543 					}
1544 
1545 					copy_scn(shdr, mvp, &v[i], vp,
1546 					    doffsetp, data, datasz, credp,
1547 					    rlimit);
1548 				}
1549 
1550 				ctf_ndx = i++;
1551 
1552 				/*
1553 				 * We've already dumped the symtab.
1554 				 */
1555 				if (symtab != NULL &&
1556 				    symtab->sh_type == SHT_SYMTAB &&
1557 				    symtab_ndx != 0)
1558 					continue;
1559 
1560 			} else if (strcmp(name,
1561 			    shstrtab_data[STR_SYMTAB]) == 0) {
1562 				if ((content & CC_CONTENT_SYMTAB) == 0 ||
1563 				    symtab != 0)
1564 					continue;
1565 
1566 				symtab = shdr;
1567 			}
1568 
1569 			if (symtab != NULL) {
1570 				if ((symtab->sh_type != SHT_DYNSYM &&
1571 				    symtab->sh_type != SHT_SYMTAB) ||
1572 				    symtab->sh_link == 0 ||
1573 				    symtab->sh_link >= nshdrs)
1574 					continue;
1575 
1576 				strtab = (Shdr *)(shbase +
1577 				    symtab->sh_link * ehdr.e_shentsize);
1578 
1579 				if (strtab->sh_type != SHT_STRTAB)
1580 					continue;
1581 
1582 				if (v != NULL && i < nv - 2) {
1583 					sz = MAX(symtab->sh_size,
1584 					    strtab->sh_size);
1585 					if (sz > datasz &&
1586 					    sz <= elf_datasz_max) {
1587 						if (data != NULL)
1588 							kmem_free(data, datasz);
1589 
1590 						datasz = sz;
1591 						data = kmem_alloc(datasz,
1592 						    KM_SLEEP);
1593 					}
1594 
1595 					if (symtab->sh_type == SHT_DYNSYM) {
1596 						v[i].sh_name = shstrtab_ndx(
1597 						    &shstrtab, STR_DYNSYM);
1598 						v[i + 1].sh_name = shstrtab_ndx(
1599 						    &shstrtab, STR_DYNSTR);
1600 					} else {
1601 						v[i].sh_name = shstrtab_ndx(
1602 						    &shstrtab, STR_SYMTAB);
1603 						v[i + 1].sh_name = shstrtab_ndx(
1604 						    &shstrtab, STR_STRTAB);
1605 					}
1606 
1607 					v[i].sh_type = symtab->sh_type;
1608 					v[i].sh_addr = symtab->sh_addr;
1609 					if (ehdr.e_type == ET_DYN ||
1610 					    v[i].sh_addr == 0)
1611 						v[i].sh_addr +=
1612 						    (Addr)(uintptr_t)saddr;
1613 					v[i].sh_addralign =
1614 					    symtab->sh_addralign;
1615 					*doffsetp = roundup(*doffsetp,
1616 					    v[i].sh_addralign);
1617 					v[i].sh_offset = *doffsetp;
1618 					v[i].sh_size = symtab->sh_size;
1619 					v[i].sh_link = i + 1;
1620 					v[i].sh_entsize = symtab->sh_entsize;
1621 					v[i].sh_info = symtab->sh_info;
1622 
1623 					copy_scn(symtab, mvp, &v[i], vp,
1624 					    doffsetp, data, datasz, credp,
1625 					    rlimit);
1626 
1627 					v[i + 1].sh_type = SHT_STRTAB;
1628 					v[i + 1].sh_flags = SHF_STRINGS;
1629 					v[i + 1].sh_addr = symtab->sh_addr;
1630 					if (ehdr.e_type == ET_DYN ||
1631 					    v[i + 1].sh_addr == 0)
1632 						v[i + 1].sh_addr +=
1633 						    (Addr)(uintptr_t)saddr;
1634 					v[i + 1].sh_addralign =
1635 					    strtab->sh_addralign;
1636 					*doffsetp = roundup(*doffsetp,
1637 					    v[i + 1].sh_addralign);
1638 					v[i + 1].sh_offset = *doffsetp;
1639 					v[i + 1].sh_size = strtab->sh_size;
1640 
1641 					copy_scn(strtab, mvp, &v[i + 1], vp,
1642 					    doffsetp, data, datasz, credp,
1643 					    rlimit);
1644 				}
1645 
1646 				if (symtab->sh_type == SHT_SYMTAB)
1647 					symtab_ndx = i;
1648 				i += 2;
1649 			}
1650 		}
1651 
1652 		kmem_free(shstrbase, shstrsize);
1653 		kmem_free(shbase, shsize);
1654 
1655 		lastvp = mvp;
1656 	}
1657 
1658 	if (v == NULL) {
1659 		if (i == 1)
1660 			*nshdrsp = 0;
1661 		else
1662 			*nshdrsp = i + 1;
1663 		goto done;
1664 	}
1665 
1666 	if (i != nv - 1) {
1667 		cmn_err(CE_WARN, "elfcore: core dump failed for "
1668 		    "process %d; address space is changing", p->p_pid);
1669 		error = EIO;
1670 		goto done;
1671 	}
1672 
1673 	v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB);
1674 	v[i].sh_size = shstrtab_size(&shstrtab);
1675 	v[i].sh_addralign = 1;
1676 	*doffsetp = roundup(*doffsetp, v[i].sh_addralign);
1677 	v[i].sh_offset = *doffsetp;
1678 	v[i].sh_flags = SHF_STRINGS;
1679 	v[i].sh_type = SHT_STRTAB;
1680 
1681 	if (v[i].sh_size > datasz) {
1682 		if (data != NULL)
1683 			kmem_free(data, datasz);
1684 
1685 		datasz = v[i].sh_size;
1686 		data = kmem_alloc(datasz,
1687 		    KM_SLEEP);
1688 	}
1689 
1690 	shstrtab_dump(&shstrtab, data);
1691 
1692 	if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp,
1693 	    data, v[i].sh_size, rlimit, credp)) != 0)
1694 		goto done;
1695 
1696 	*doffsetp += v[i].sh_size;
1697 
1698 done:
1699 	if (data != NULL)
1700 		kmem_free(data, datasz);
1701 
1702 	return (error);
1703 }
1704 
1705 int
1706 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig,
1707     core_content_t content)
1708 {
1709 	offset_t poffset, soffset;
1710 	Off doffset;
1711 	int error, i, nphdrs, nshdrs;
1712 	int overflow = 0;
1713 	struct seg *seg;
1714 	struct as *as = p->p_as;
1715 	union {
1716 		Ehdr ehdr;
1717 		Phdr phdr[1];
1718 		Shdr shdr[1];
1719 	} *bigwad;
1720 	size_t bigsize;
1721 	size_t phdrsz, shdrsz;
1722 	Ehdr *ehdr;
1723 	Phdr *v;
1724 	caddr_t brkbase;
1725 	size_t brksize;
1726 	caddr_t stkbase;
1727 	size_t stksize;
1728 	int ntries = 0;
1729 
1730 top:
1731 	/*
1732 	 * Make sure we have everything we need (registers, etc.).
1733 	 * All other lwps have already stopped and are in an orderly state.
1734 	 */
1735 	ASSERT(p == ttoproc(curthread));
1736 	prstop(0, 0);
1737 
1738 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1739 	nphdrs = prnsegs(as, 0) + 2;		/* two CORE note sections */
1740 
1741 	/*
1742 	 * Count the number of section headers we're going to need.
1743 	 */
1744 	nshdrs = 0;
1745 	if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) {
1746 		(void) process_scns(content, p, credp, NULL, NULL, NULL, 0,
1747 		    NULL, &nshdrs);
1748 	}
1749 	AS_LOCK_EXIT(as, &as->a_lock);
1750 
1751 	ASSERT(nshdrs == 0 || nshdrs > 1);
1752 
1753 	/*
1754 	 * The core file contents may required zero section headers, but if
1755 	 * we overflow the 16 bits allotted to the program header count in
1756 	 * the ELF header, we'll need that program header at index zero.
1757 	 */
1758 	if (nshdrs == 0 && nphdrs >= PN_XNUM)
1759 		nshdrs = 1;
1760 
1761 	phdrsz = nphdrs * sizeof (Phdr);
1762 	shdrsz = nshdrs * sizeof (Shdr);
1763 
1764 	bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz));
1765 	bigwad = kmem_alloc(bigsize, KM_SLEEP);
1766 
1767 	ehdr = &bigwad->ehdr;
1768 	bzero(ehdr, sizeof (*ehdr));
1769 
1770 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1771 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1772 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1773 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1774 	ehdr->e_ident[EI_CLASS] = ELFCLASS;
1775 	ehdr->e_type = ET_CORE;
1776 
1777 #if !defined(_LP64) || defined(_ELF32_COMPAT)
1778 
1779 #if defined(__sparc)
1780 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1781 	ehdr->e_machine = EM_SPARC;
1782 #elif defined(__i386) || defined(__i386_COMPAT)
1783 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1784 	ehdr->e_machine = EM_386;
1785 #else
1786 #error "no recognized machine type is defined"
1787 #endif
1788 
1789 #else	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
1790 
1791 #if defined(__sparc)
1792 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1793 	ehdr->e_machine = EM_SPARCV9;
1794 #elif defined(__amd64)
1795 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1796 	ehdr->e_machine = EM_AMD64;
1797 #else
1798 #error "no recognized 64-bit machine type is defined"
1799 #endif
1800 
1801 #endif	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
1802 
1803 	/*
1804 	 * If the count of program headers or section headers or the index
1805 	 * of the section string table can't fit in the mere 16 bits
1806 	 * shortsightedly allotted to them in the ELF header, we use the
1807 	 * extended formats and put the real values in the section header
1808 	 * as index 0.
1809 	 */
1810 	ehdr->e_version = EV_CURRENT;
1811 	ehdr->e_ehsize = sizeof (Ehdr);
1812 
1813 	if (nphdrs >= PN_XNUM)
1814 		ehdr->e_phnum = PN_XNUM;
1815 	else
1816 		ehdr->e_phnum = (unsigned short)nphdrs;
1817 
1818 	ehdr->e_phoff = sizeof (Ehdr);
1819 	ehdr->e_phentsize = sizeof (Phdr);
1820 
1821 	if (nshdrs > 0) {
1822 		if (nshdrs >= SHN_LORESERVE)
1823 			ehdr->e_shnum = 0;
1824 		else
1825 			ehdr->e_shnum = (unsigned short)nshdrs;
1826 
1827 		if (nshdrs - 1 >= SHN_LORESERVE)
1828 			ehdr->e_shstrndx = SHN_XINDEX;
1829 		else
1830 			ehdr->e_shstrndx = (unsigned short)(nshdrs - 1);
1831 
1832 		ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs;
1833 		ehdr->e_shentsize = sizeof (Shdr);
1834 	}
1835 
1836 	if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr,
1837 	    sizeof (Ehdr), rlimit, credp))
1838 		goto done;
1839 
1840 	poffset = sizeof (Ehdr);
1841 	soffset = sizeof (Ehdr) + phdrsz;
1842 	doffset = sizeof (Ehdr) + phdrsz + shdrsz;
1843 
1844 	v = &bigwad->phdr[0];
1845 	bzero(v, phdrsz);
1846 
1847 	setup_old_note_header(&v[0], p);
1848 	v[0].p_offset = doffset = roundup(doffset, sizeof (Word));
1849 	doffset += v[0].p_filesz;
1850 
1851 	setup_note_header(&v[1], p);
1852 	v[1].p_offset = doffset = roundup(doffset, sizeof (Word));
1853 	doffset += v[1].p_filesz;
1854 
1855 	mutex_enter(&p->p_lock);
1856 
1857 	brkbase = p->p_brkbase;
1858 	brksize = p->p_brksize;
1859 
1860 	stkbase = p->p_usrstack - p->p_stksize;
1861 	stksize = p->p_stksize;
1862 
1863 	mutex_exit(&p->p_lock);
1864 
1865 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1866 	i = 2;
1867 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1868 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1869 		caddr_t saddr, naddr;
1870 		void *tmp = NULL;
1871 		extern struct seg_ops segspt_shmops;
1872 
1873 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1874 			uint_t prot;
1875 			size_t size;
1876 			int type;
1877 			vnode_t *mvp;
1878 
1879 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1880 			prot &= PROT_READ | PROT_WRITE | PROT_EXEC;
1881 			if ((size = (size_t)(naddr - saddr)) == 0)
1882 				continue;
1883 			if (i == nphdrs) {
1884 				overflow++;
1885 				continue;
1886 			}
1887 			v[i].p_type = PT_LOAD;
1888 			v[i].p_vaddr = (Addr)(uintptr_t)saddr;
1889 			v[i].p_memsz = size;
1890 			if (prot & PROT_READ)
1891 				v[i].p_flags |= PF_R;
1892 			if (prot & PROT_WRITE)
1893 				v[i].p_flags |= PF_W;
1894 			if (prot & PROT_EXEC)
1895 				v[i].p_flags |= PF_X;
1896 
1897 			/*
1898 			 * Figure out which mappings to include in the core.
1899 			 */
1900 			type = SEGOP_GETTYPE(seg, saddr);
1901 
1902 			if (saddr == stkbase && size == stksize) {
1903 				if (!(content & CC_CONTENT_STACK))
1904 					goto exclude;
1905 
1906 			} else if (saddr == brkbase && size == brksize) {
1907 				if (!(content & CC_CONTENT_HEAP))
1908 					goto exclude;
1909 
1910 			} else if (seg->s_ops == &segspt_shmops) {
1911 				if (type & MAP_NORESERVE) {
1912 					if (!(content & CC_CONTENT_DISM))
1913 						goto exclude;
1914 				} else {
1915 					if (!(content & CC_CONTENT_ISM))
1916 						goto exclude;
1917 				}
1918 
1919 			} else if (seg->s_ops != &segvn_ops) {
1920 				goto exclude;
1921 
1922 			} else if (type & MAP_SHARED) {
1923 				if (shmgetid(p, saddr) != SHMID_NONE) {
1924 					if (!(content & CC_CONTENT_SHM))
1925 						goto exclude;
1926 
1927 				} else if (SEGOP_GETVP(seg, seg->s_base,
1928 				    &mvp) != 0 || mvp == NULL ||
1929 				    mvp->v_type != VREG) {
1930 					if (!(content & CC_CONTENT_SHANON))
1931 						goto exclude;
1932 
1933 				} else {
1934 					if (!(content & CC_CONTENT_SHFILE))
1935 						goto exclude;
1936 				}
1937 
1938 			} else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1939 			    mvp == NULL || mvp->v_type != VREG) {
1940 				if (!(content & CC_CONTENT_ANON))
1941 					goto exclude;
1942 
1943 			} else if (prot == (PROT_READ | PROT_EXEC)) {
1944 				if (!(content & CC_CONTENT_TEXT))
1945 					goto exclude;
1946 
1947 			} else if (prot == PROT_READ) {
1948 				if (!(content & CC_CONTENT_RODATA))
1949 					goto exclude;
1950 
1951 			} else {
1952 				if (!(content & CC_CONTENT_DATA))
1953 					goto exclude;
1954 			}
1955 
1956 			doffset = roundup(doffset, sizeof (Word));
1957 			v[i].p_offset = doffset;
1958 			v[i].p_filesz = size;
1959 			doffset += size;
1960 exclude:
1961 			i++;
1962 		}
1963 		ASSERT(tmp == NULL);
1964 	}
1965 	AS_LOCK_EXIT(as, &as->a_lock);
1966 
1967 	if (overflow || i != nphdrs) {
1968 		if (ntries++ == 0) {
1969 			kmem_free(bigwad, bigsize);
1970 			overflow = 0;
1971 			goto top;
1972 		}
1973 		cmn_err(CE_WARN, "elfcore: core dump failed for "
1974 		    "process %d; address space is changing", p->p_pid);
1975 		error = EIO;
1976 		goto done;
1977 	}
1978 
1979 	if ((error = core_write(vp, UIO_SYSSPACE, poffset,
1980 	    v, phdrsz, rlimit, credp)) != 0)
1981 		goto done;
1982 
1983 	if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit,
1984 	    credp)) != 0)
1985 		goto done;
1986 
1987 	if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit,
1988 	    credp, content)) != 0)
1989 		goto done;
1990 
1991 	for (i = 2; i < nphdrs; i++) {
1992 		if (v[i].p_filesz == 0)
1993 			continue;
1994 
1995 		/*
1996 		 * If dumping out this segment fails, rather than failing
1997 		 * the core dump entirely, we reset the size of the mapping
1998 		 * to zero to indicate that the data is absent from the core
1999 		 * file and or in the PF_SUNW_FAILURE flag to differentiate
2000 		 * this from mappings that were excluded due to the core file
2001 		 * content settings.
2002 		 */
2003 		if ((error = core_seg(p, vp, v[i].p_offset,
2004 		    (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz,
2005 		    rlimit, credp)) != 0) {
2006 
2007 			/*
2008 			 * Since the space reserved for the segment is now
2009 			 * unused, we stash the errno in the first four
2010 			 * bytes. This undocumented interface will let us
2011 			 * understand the nature of the failure.
2012 			 */
2013 			(void) core_write(vp, UIO_SYSSPACE, v[i].p_offset,
2014 			    &error, sizeof (error), rlimit, credp);
2015 
2016 			v[i].p_filesz = 0;
2017 			v[i].p_flags |= PF_SUNW_FAILURE;
2018 			if ((error = core_write(vp, UIO_SYSSPACE,
2019 			    poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]),
2020 			    rlimit, credp)) != 0)
2021 				goto done;
2022 		}
2023 	}
2024 
2025 	if (nshdrs > 0) {
2026 		bzero(&bigwad->shdr[0], shdrsz);
2027 
2028 		if (nshdrs >= SHN_LORESERVE)
2029 			bigwad->shdr[0].sh_size = nshdrs;
2030 
2031 		if (nshdrs - 1 >= SHN_LORESERVE)
2032 			bigwad->shdr[0].sh_link = nshdrs - 1;
2033 
2034 		if (nphdrs >= PN_XNUM)
2035 			bigwad->shdr[0].sh_info = nphdrs;
2036 
2037 		if (nshdrs > 1) {
2038 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2039 			if ((error = process_scns(content, p, credp, vp,
2040 			    &bigwad->shdr[0], nshdrs, rlimit, &doffset,
2041 			    NULL)) != 0) {
2042 				AS_LOCK_EXIT(as, &as->a_lock);
2043 				goto done;
2044 			}
2045 			AS_LOCK_EXIT(as, &as->a_lock);
2046 		}
2047 
2048 		if ((error = core_write(vp, UIO_SYSSPACE, soffset,
2049 		    &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0)
2050 			goto done;
2051 	}
2052 
2053 done:
2054 	kmem_free(bigwad, bigsize);
2055 	return (error);
2056 }
2057 
2058 #ifndef	_ELF32_COMPAT
2059 
2060 static struct execsw esw = {
2061 #ifdef	_LP64
2062 	elf64magicstr,
2063 #else	/* _LP64 */
2064 	elf32magicstr,
2065 #endif	/* _LP64 */
2066 	0,
2067 	5,
2068 	elfexec,
2069 	elfcore
2070 };
2071 
2072 static struct modlexec modlexec = {
2073 	&mod_execops, "exec module for elf", &esw
2074 };
2075 
2076 #ifdef	_LP64
2077 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args,
2078 			intpdata_t *idatap, int level, long *execsz,
2079 			int setid, caddr_t exec_file, cred_t *cred,
2080 			int brand_action);
2081 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp,
2082 			rlim64_t rlimit, int sig, core_content_t content);
2083 
2084 static struct execsw esw32 = {
2085 	elf32magicstr,
2086 	0,
2087 	5,
2088 	elf32exec,
2089 	elf32core
2090 };
2091 
2092 static struct modlexec modlexec32 = {
2093 	&mod_execops, "32-bit exec module for elf", &esw32
2094 };
2095 #endif	/* _LP64 */
2096 
2097 static struct modlinkage modlinkage = {
2098 	MODREV_1,
2099 	(void *)&modlexec,
2100 #ifdef	_LP64
2101 	(void *)&modlexec32,
2102 #endif	/* _LP64 */
2103 	NULL
2104 };
2105 
2106 int
2107 _init(void)
2108 {
2109 	return (mod_install(&modlinkage));
2110 }
2111 
2112 int
2113 _fini(void)
2114 {
2115 	return (mod_remove(&modlinkage));
2116 }
2117 
2118 int
2119 _info(struct modinfo *modinfop)
2120 {
2121 	return (mod_info(&modlinkage, modinfop));
2122 }
2123 
2124 #endif	/* !_ELF32_COMPAT */
2125