xref: /illumos-gate/usr/src/uts/common/exec/elf/elf.c (revision 8a2b682e57a046b828f37bcde1776f131ef4629f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	   All Rights Reserved	*/
28 /*
29  * Copyright (c) 2019, Joyent, Inc.
30  */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/thread.h>
35 #include <sys/sysmacros.h>
36 #include <sys/signal.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/errno.h>
40 #include <sys/vnode.h>
41 #include <sys/mman.h>
42 #include <sys/kmem.h>
43 #include <sys/proc.h>
44 #include <sys/pathname.h>
45 #include <sys/policy.h>
46 #include <sys/cmn_err.h>
47 #include <sys/systm.h>
48 #include <sys/elf.h>
49 #include <sys/vmsystm.h>
50 #include <sys/debug.h>
51 #include <sys/auxv.h>
52 #include <sys/exec.h>
53 #include <sys/prsystm.h>
54 #include <vm/as.h>
55 #include <vm/rm.h>
56 #include <vm/seg.h>
57 #include <vm/seg_vn.h>
58 #include <sys/modctl.h>
59 #include <sys/systeminfo.h>
60 #include <sys/vmparam.h>
61 #include <sys/machelf.h>
62 #include <sys/shm_impl.h>
63 #include <sys/archsystm.h>
64 #include <sys/fasttrap.h>
65 #include <sys/brand.h>
66 #include "elf_impl.h"
67 #include <sys/sdt.h>
68 #include <sys/siginfo.h>
69 #include <sys/random.h>
70 
71 #if defined(__x86)
72 #include <sys/comm_page_util.h>
73 #include <sys/fp.h>
74 #endif /* defined(__x86) */
75 
76 
77 extern int at_flags;
78 extern volatile size_t aslr_max_brk_skew;
79 
80 #define	ORIGIN_STR	"ORIGIN"
81 #define	ORIGIN_STR_SIZE	6
82 
83 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *);
84 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *,
85     ssize_t *);
86 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *,
87     ssize_t *, caddr_t *, ssize_t *);
88 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *);
89 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t,
90     Phdr **, Phdr **, Phdr **, Phdr **, Phdr *,
91     caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *);
92 
93 typedef enum {
94 	STR_CTF,
95 	STR_SYMTAB,
96 	STR_DYNSYM,
97 	STR_STRTAB,
98 	STR_DYNSTR,
99 	STR_SHSTRTAB,
100 	STR_NUM
101 } shstrtype_t;
102 
103 static const char *shstrtab_data[] = {
104 	".SUNW_ctf",
105 	".symtab",
106 	".dynsym",
107 	".strtab",
108 	".dynstr",
109 	".shstrtab"
110 };
111 
112 typedef struct shstrtab {
113 	int	sst_ndx[STR_NUM];
114 	int	sst_cur;
115 } shstrtab_t;
116 
117 static void
118 shstrtab_init(shstrtab_t *s)
119 {
120 	bzero(&s->sst_ndx, sizeof (s->sst_ndx));
121 	s->sst_cur = 1;
122 }
123 
124 static int
125 shstrtab_ndx(shstrtab_t *s, shstrtype_t type)
126 {
127 	int ret;
128 
129 	if ((ret = s->sst_ndx[type]) != 0)
130 		return (ret);
131 
132 	ret = s->sst_ndx[type] = s->sst_cur;
133 	s->sst_cur += strlen(shstrtab_data[type]) + 1;
134 
135 	return (ret);
136 }
137 
138 static size_t
139 shstrtab_size(const shstrtab_t *s)
140 {
141 	return (s->sst_cur);
142 }
143 
144 static void
145 shstrtab_dump(const shstrtab_t *s, char *buf)
146 {
147 	int i, ndx;
148 
149 	*buf = '\0';
150 	for (i = 0; i < STR_NUM; i++) {
151 		if ((ndx = s->sst_ndx[i]) != 0)
152 			(void) strcpy(buf + ndx, shstrtab_data[i]);
153 	}
154 }
155 
156 static int
157 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base)
158 {
159 	ASSERT(phdrp->p_type == PT_SUNWDTRACE);
160 
161 	/*
162 	 * See the comment in fasttrap.h for information on how to safely
163 	 * update this program header.
164 	 */
165 	if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE ||
166 	    (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X))
167 		return (-1);
168 
169 	args->thrptr = phdrp->p_vaddr + base;
170 
171 	return (0);
172 }
173 
174 static int
175 handle_secflag_dt(proc_t *p, uint_t dt, uint_t val)
176 {
177 	uint_t flag;
178 
179 	switch (dt) {
180 	case DT_SUNW_ASLR:
181 		flag = PROC_SEC_ASLR;
182 		break;
183 	default:
184 		return (EINVAL);
185 	}
186 
187 	if (val == 0) {
188 		if (secflag_isset(p->p_secflags.psf_lower, flag))
189 			return (EPERM);
190 		if ((secpolicy_psecflags(CRED(), p, p) != 0) &&
191 		    secflag_isset(p->p_secflags.psf_inherit, flag))
192 			return (EPERM);
193 
194 		secflag_clear(&p->p_secflags.psf_effective, flag);
195 	} else {
196 		if (!secflag_isset(p->p_secflags.psf_upper, flag))
197 			return (EPERM);
198 
199 		if ((secpolicy_psecflags(CRED(), p, p) != 0) &&
200 		    !secflag_isset(p->p_secflags.psf_inherit, flag))
201 			return (EPERM);
202 
203 		secflag_set(&p->p_secflags.psf_effective, flag);
204 	}
205 
206 	return (0);
207 }
208 
209 /*
210  * Map in the executable pointed to by vp. Returns 0 on success.
211  */
212 int
213 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr,
214     intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase,
215     caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap)
216 {
217 	size_t		len;
218 	struct vattr	vat;
219 	caddr_t		phdrbase = NULL;
220 	ssize_t		phdrsize;
221 	int		nshdrs, shstrndx, nphdrs;
222 	int		error = 0;
223 	Phdr		*uphdr = NULL;
224 	Phdr		*junk = NULL;
225 	Phdr		*dynphdr = NULL;
226 	Phdr		*dtrphdr = NULL;
227 	uintptr_t	lddata;
228 	long		execsz;
229 	intptr_t	minaddr;
230 
231 	if (lddatap != NULL)
232 		*lddatap = 0;
233 
234 	if (error = execpermissions(vp, &vat, args)) {
235 		uprintf("%s: Cannot execute %s\n", exec_file, args->pathname);
236 		return (error);
237 	}
238 
239 	if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx,
240 	    &nphdrs)) != 0 ||
241 	    (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase,
242 	    &phdrsize)) != 0) {
243 		uprintf("%s: Cannot read %s\n", exec_file, args->pathname);
244 		return (error);
245 	}
246 
247 	if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) {
248 		uprintf("%s: Nothing to load in %s", exec_file, args->pathname);
249 		kmem_free(phdrbase, phdrsize);
250 		return (ENOEXEC);
251 	}
252 	if (lddatap != NULL)
253 		*lddatap = lddata;
254 
255 	if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr,
256 	    &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr,
257 	    len, &execsz, brksize)) {
258 		uprintf("%s: Cannot map %s\n", exec_file, args->pathname);
259 		kmem_free(phdrbase, phdrsize);
260 		return (error);
261 	}
262 
263 	/*
264 	 * Inform our caller if the executable needs an interpreter.
265 	 */
266 	*interp = (dynphdr == NULL) ? 0 : 1;
267 
268 	/*
269 	 * If this is a statically linked executable, voffset should indicate
270 	 * the address of the executable itself (it normally holds the address
271 	 * of the interpreter).
272 	 */
273 	if (ehdr->e_type == ET_EXEC && *interp == 0)
274 		*voffset = minaddr;
275 
276 	if (uphdr != NULL) {
277 		*uphdr_vaddr = uphdr->p_vaddr;
278 	} else {
279 		*uphdr_vaddr = (Addr)-1;
280 	}
281 
282 	kmem_free(phdrbase, phdrsize);
283 	return (error);
284 }
285 
286 /*ARGSUSED*/
287 int
288 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap,
289     int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred,
290     int brand_action)
291 {
292 	caddr_t		phdrbase = NULL;
293 	caddr_t		bssbase = 0;
294 	caddr_t		brkbase = 0;
295 	size_t		brksize = 0;
296 	ssize_t		dlnsize;
297 	aux_entry_t	*aux;
298 	int		error;
299 	ssize_t		resid;
300 	int		fd = -1;
301 	intptr_t	voffset;
302 	Phdr		*intphdr = NULL;
303 	Phdr		*dynamicphdr = NULL;
304 	Phdr		*stphdr = NULL;
305 	Phdr		*uphdr = NULL;
306 	Phdr		*junk = NULL;
307 	size_t		len;
308 	size_t		i;
309 	ssize_t		phdrsize;
310 	int		postfixsize = 0;
311 	int		hsize;
312 	Phdr		*phdrp;
313 	Phdr		*dataphdrp = NULL;
314 	Phdr		*dtrphdr;
315 	Phdr		*capphdr = NULL;
316 	Cap		*cap = NULL;
317 	ssize_t		capsize;
318 	int		hasu = 0;
319 	int		hasauxv = 0;
320 	int		hasintp = 0;
321 	int		branded = 0;
322 
323 	struct proc *p = ttoproc(curthread);
324 	struct user *up = PTOU(p);
325 	struct bigwad {
326 		Ehdr	ehdr;
327 		aux_entry_t	elfargs[__KERN_NAUXV_IMPL];
328 		char		dl_name[MAXPATHLEN];
329 		char		pathbuf[MAXPATHLEN];
330 		struct vattr	vattr;
331 		struct execenv	exenv;
332 	} *bigwad;	/* kmem_alloc this behemoth so we don't blow stack */
333 	Ehdr		*ehdrp;
334 	int		nshdrs, shstrndx, nphdrs;
335 	char		*dlnp;
336 	char		*pathbufp;
337 	rlim64_t	limit;
338 	rlim64_t	roundlimit;
339 
340 	ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64);
341 
342 	bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP);
343 	ehdrp = &bigwad->ehdr;
344 	dlnp = bigwad->dl_name;
345 	pathbufp = bigwad->pathbuf;
346 
347 	/*
348 	 * Obtain ELF and program header information.
349 	 */
350 	if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx,
351 	    &nphdrs)) != 0 ||
352 	    (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase,
353 	    &phdrsize)) != 0)
354 		goto out;
355 
356 	/*
357 	 * Prevent executing an ELF file that has no entry point.
358 	 */
359 	if (ehdrp->e_entry == 0) {
360 		uprintf("%s: Bad entry point\n", exec_file);
361 		goto bad;
362 	}
363 
364 	/*
365 	 * Put data model that we're exec-ing to into the args passed to
366 	 * exec_args(), so it will know what it is copying to on new stack.
367 	 * Now that we know whether we are exec-ing a 32-bit or 64-bit
368 	 * executable, we can set execsz with the appropriate NCARGS.
369 	 */
370 #ifdef	_LP64
371 	if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) {
372 		args->to_model = DATAMODEL_ILP32;
373 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1);
374 	} else {
375 		args->to_model = DATAMODEL_LP64;
376 		args->stk_prot &= ~PROT_EXEC;
377 #if defined(__i386) || defined(__amd64)
378 		args->dat_prot &= ~PROT_EXEC;
379 #endif
380 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1);
381 	}
382 #else	/* _LP64 */
383 	args->to_model = DATAMODEL_ILP32;
384 	*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1);
385 #endif	/* _LP64 */
386 
387 	/*
388 	 * We delay invoking the brand callback until we've figured out
389 	 * what kind of elf binary we're trying to run, 32-bit or 64-bit.
390 	 * We do this because now the brand library can just check
391 	 * args->to_model to see if the target is 32-bit or 64-bit without
392 	 * having do duplicate all the code above.
393 	 *
394 	 * The level checks associated with brand handling below are used to
395 	 * prevent a loop since the brand elfexec function typically comes back
396 	 * through this function. We must check <= here since the nested
397 	 * handling in the #! interpreter code will increment the level before
398 	 * calling gexec to run the final elfexec interpreter.
399 	 */
400 	if ((level <= INTP_MAXDEPTH) &&
401 	    (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
402 		error = BROP(p)->b_elfexec(vp, uap, args,
403 		    idatap, level + 1, execsz, setid, exec_file, cred,
404 		    brand_action);
405 		goto out;
406 	}
407 
408 	/*
409 	 * Determine aux size now so that stack can be built
410 	 * in one shot (except actual copyout of aux image),
411 	 * determine any non-default stack protections,
412 	 * and still have this code be machine independent.
413 	 */
414 	hsize = ehdrp->e_phentsize;
415 	phdrp = (Phdr *)phdrbase;
416 	for (i = nphdrs; i > 0; i--) {
417 		switch (phdrp->p_type) {
418 		case PT_INTERP:
419 			hasauxv = hasintp = 1;
420 			break;
421 		case PT_PHDR:
422 			hasu = 1;
423 			break;
424 		case PT_SUNWSTACK:
425 			args->stk_prot = PROT_USER;
426 			if (phdrp->p_flags & PF_R)
427 				args->stk_prot |= PROT_READ;
428 			if (phdrp->p_flags & PF_W)
429 				args->stk_prot |= PROT_WRITE;
430 			if (phdrp->p_flags & PF_X)
431 				args->stk_prot |= PROT_EXEC;
432 			break;
433 		case PT_LOAD:
434 			dataphdrp = phdrp;
435 			break;
436 		case PT_SUNWCAP:
437 			capphdr = phdrp;
438 			break;
439 		case PT_DYNAMIC:
440 			dynamicphdr = phdrp;
441 			break;
442 		}
443 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
444 	}
445 
446 	if (ehdrp->e_type != ET_EXEC) {
447 		dataphdrp = NULL;
448 		hasauxv = 1;
449 	}
450 
451 	/* Copy BSS permissions to args->dat_prot */
452 	if (dataphdrp != NULL) {
453 		args->dat_prot = PROT_USER;
454 		if (dataphdrp->p_flags & PF_R)
455 			args->dat_prot |= PROT_READ;
456 		if (dataphdrp->p_flags & PF_W)
457 			args->dat_prot |= PROT_WRITE;
458 		if (dataphdrp->p_flags & PF_X)
459 			args->dat_prot |= PROT_EXEC;
460 	}
461 
462 	/*
463 	 * If a auxvector will be required - reserve the space for
464 	 * it now.  This may be increased by exec_args if there are
465 	 * ISA-specific types (included in __KERN_NAUXV_IMPL).
466 	 */
467 	if (hasauxv) {
468 		/*
469 		 * If a AUX vector is being built - the base AUX
470 		 * entries are:
471 		 *
472 		 *	AT_BASE
473 		 *	AT_FLAGS
474 		 *	AT_PAGESZ
475 		 *	AT_SUN_AUXFLAGS
476 		 *	AT_SUN_HWCAP
477 		 *	AT_SUN_HWCAP2
478 		 *	AT_SUN_PLATFORM (added in stk_copyout)
479 		 *	AT_SUN_EXECNAME (added in stk_copyout)
480 		 *	AT_NULL
481 		 *
482 		 * total == 9
483 		 */
484 		if (hasintp && hasu) {
485 			/*
486 			 * Has PT_INTERP & PT_PHDR - the auxvectors that
487 			 * will be built are:
488 			 *
489 			 *	AT_PHDR
490 			 *	AT_PHENT
491 			 *	AT_PHNUM
492 			 *	AT_ENTRY
493 			 *	AT_LDDATA
494 			 *
495 			 * total = 5
496 			 */
497 			args->auxsize = (9 + 5) * sizeof (aux_entry_t);
498 		} else if (hasintp) {
499 			/*
500 			 * Has PT_INTERP but no PT_PHDR
501 			 *
502 			 *	AT_EXECFD
503 			 *	AT_LDDATA
504 			 *
505 			 * total = 2
506 			 */
507 			args->auxsize = (9 + 2) * sizeof (aux_entry_t);
508 		} else {
509 			args->auxsize = 9 * sizeof (aux_entry_t);
510 		}
511 	} else {
512 		args->auxsize = 0;
513 	}
514 
515 	/*
516 	 * If this binary is using an emulator, we need to add an
517 	 * AT_SUN_EMULATOR aux entry.
518 	 */
519 	if (args->emulator != NULL)
520 		args->auxsize += sizeof (aux_entry_t);
521 
522 	/*
523 	 * On supported kernels (x86_64) make room in the auxv for the
524 	 * AT_SUN_COMMPAGE entry.  This will go unpopulated on i86xpv systems
525 	 * which do not provide such functionality.
526 	 *
527 	 * Additionally cover the floating point information AT_SUN_FPSIZE and
528 	 * AT_SUN_FPTYPE.
529 	 */
530 #if defined(__amd64)
531 	args->auxsize += 3 * sizeof (aux_entry_t);
532 #endif /* defined(__amd64) */
533 
534 	if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
535 		branded = 1;
536 		/*
537 		 * We will be adding 4 entries to the aux vectors.  One for
538 		 * the the brandname and 3 for the brand specific aux vectors.
539 		 */
540 		args->auxsize += 4 * sizeof (aux_entry_t);
541 	}
542 
543 	/* If the binary has an explicit ASLR flag, it must be honoured */
544 	if ((dynamicphdr != NULL) && (dynamicphdr->p_filesz > 0)) {
545 		const size_t dynfilesz = dynamicphdr->p_filesz;
546 		const size_t dynoffset = dynamicphdr->p_offset;
547 		Dyn *dyn, *dp;
548 
549 		if (dynoffset > MAXOFFSET_T ||
550 		    dynfilesz > MAXOFFSET_T ||
551 		    dynoffset + dynfilesz > MAXOFFSET_T) {
552 			uprintf("%s: cannot read full .dynamic section\n",
553 			    exec_file);
554 			error = EINVAL;
555 			goto out;
556 		}
557 
558 #define	DYN_STRIDE	100
559 		for (i = 0; i < dynfilesz; i += sizeof (*dyn) * DYN_STRIDE) {
560 			const size_t remdyns = (dynfilesz - i) / sizeof (*dyn);
561 			const size_t ndyns = MIN(DYN_STRIDE, remdyns);
562 			const size_t dynsize = ndyns * sizeof (*dyn);
563 
564 			dyn = kmem_alloc(dynsize, KM_SLEEP);
565 
566 			if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)dyn,
567 			    (ssize_t)dynsize, (offset_t)(dynoffset + i),
568 			    UIO_SYSSPACE, 0, (rlim64_t)0,
569 			    CRED(), &resid)) != 0) {
570 				uprintf("%s: cannot read .dynamic section\n",
571 				    exec_file);
572 				goto out;
573 			}
574 
575 			for (dp = dyn; dp < (dyn + ndyns); dp++) {
576 				if (dp->d_tag == DT_SUNW_ASLR) {
577 					if ((error = handle_secflag_dt(p,
578 					    DT_SUNW_ASLR,
579 					    dp->d_un.d_val)) != 0) {
580 						uprintf("%s: error setting "
581 						    "security-flag from "
582 						    "DT_SUNW_ASLR: %d\n",
583 						    exec_file, error);
584 						goto out;
585 					}
586 				}
587 			}
588 
589 			kmem_free(dyn, dynsize);
590 		}
591 	}
592 
593 	/* Hardware/Software capabilities */
594 	if (capphdr != NULL &&
595 	    (capsize = capphdr->p_filesz) > 0 &&
596 	    capsize <= 16 * sizeof (*cap)) {
597 		int ncaps = capsize / sizeof (*cap);
598 		Cap *cp;
599 
600 		cap = kmem_alloc(capsize, KM_SLEEP);
601 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap,
602 		    capsize, (offset_t)capphdr->p_offset,
603 		    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
604 			uprintf("%s: Cannot read capabilities section\n",
605 			    exec_file);
606 			goto out;
607 		}
608 		for (cp = cap; cp < cap + ncaps; cp++) {
609 			if (cp->c_tag == CA_SUNW_SF_1 &&
610 			    (cp->c_un.c_val & SF1_SUNW_ADDR32)) {
611 				if (args->to_model == DATAMODEL_LP64)
612 					args->addr32 = 1;
613 				break;
614 			}
615 		}
616 	}
617 
618 	aux = bigwad->elfargs;
619 	/*
620 	 * Move args to the user's stack.
621 	 * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries.
622 	 */
623 	if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) {
624 		if (error == -1) {
625 			error = ENOEXEC;
626 			goto bad;
627 		}
628 		goto out;
629 	}
630 	/* we're single threaded after this point */
631 
632 	/*
633 	 * If this is an ET_DYN executable (shared object),
634 	 * determine its memory size so that mapelfexec() can load it.
635 	 */
636 	if (ehdrp->e_type == ET_DYN)
637 		len = elfsize(ehdrp, nphdrs, phdrbase, NULL);
638 	else
639 		len = 0;
640 
641 	dtrphdr = NULL;
642 
643 	if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &intphdr,
644 	    &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL,
645 	    len, execsz, &brksize)) != 0)
646 		goto bad;
647 
648 	if (uphdr != NULL && intphdr == NULL)
649 		goto bad;
650 
651 	if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
652 		uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file);
653 		goto bad;
654 	}
655 
656 	if (intphdr != NULL) {
657 		size_t		len;
658 		uintptr_t	lddata;
659 		char		*p;
660 		struct vnode	*nvp;
661 
662 		dlnsize = intphdr->p_filesz;
663 
664 		if (dlnsize > MAXPATHLEN || dlnsize <= 0)
665 			goto bad;
666 
667 		/*
668 		 * Read in "interpreter" pathname.
669 		 */
670 		if ((error = vn_rdwr(UIO_READ, vp, dlnp, intphdr->p_filesz,
671 		    (offset_t)intphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
672 		    CRED(), &resid)) != 0) {
673 			uprintf("%s: Cannot obtain interpreter pathname\n",
674 			    exec_file);
675 			goto bad;
676 		}
677 
678 		if (resid != 0 || dlnp[dlnsize - 1] != '\0')
679 			goto bad;
680 
681 		/*
682 		 * Search for '$ORIGIN' token in interpreter path.
683 		 * If found, expand it.
684 		 */
685 		for (p = dlnp; p = strchr(p, '$'); ) {
686 			uint_t	len, curlen;
687 			char	*_ptr;
688 
689 			if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE))
690 				continue;
691 
692 			/*
693 			 * We don't support $ORIGIN on setid programs to close
694 			 * a potential attack vector.
695 			 */
696 			if ((setid & EXECSETID_SETID) != 0) {
697 				error = ENOEXEC;
698 				goto bad;
699 			}
700 
701 			curlen = 0;
702 			len = p - dlnp - 1;
703 			if (len) {
704 				bcopy(dlnp, pathbufp, len);
705 				curlen += len;
706 			}
707 			if (_ptr = strrchr(args->pathname, '/')) {
708 				len = _ptr - args->pathname;
709 				if ((curlen + len) > MAXPATHLEN)
710 					break;
711 
712 				bcopy(args->pathname, &pathbufp[curlen], len);
713 				curlen += len;
714 			} else {
715 				/*
716 				 * executable is a basename found in the
717 				 * current directory.  So - just substitue
718 				 * '.' for ORIGIN.
719 				 */
720 				pathbufp[curlen] = '.';
721 				curlen++;
722 			}
723 			p += ORIGIN_STR_SIZE;
724 			len = strlen(p);
725 
726 			if ((curlen + len) > MAXPATHLEN)
727 				break;
728 			bcopy(p, &pathbufp[curlen], len);
729 			curlen += len;
730 			pathbufp[curlen++] = '\0';
731 			bcopy(pathbufp, dlnp, curlen);
732 		}
733 
734 		/*
735 		 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1
736 		 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1).
737 		 * Just in case /usr is not mounted, change it now.
738 		 */
739 		if (strcmp(dlnp, USR_LIB_RTLD) == 0)
740 			dlnp += 4;
741 		error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp);
742 		if (error && dlnp != bigwad->dl_name) {
743 			/* new kernel, old user-level */
744 			error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW,
745 			    NULLVPP, &nvp);
746 		}
747 		if (error) {
748 			uprintf("%s: Cannot find %s\n", exec_file, dlnp);
749 			goto bad;
750 		}
751 
752 		/*
753 		 * Setup the "aux" vector.
754 		 */
755 		if (uphdr) {
756 			if (ehdrp->e_type == ET_DYN) {
757 				/* don't use the first page */
758 				bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE;
759 				bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE;
760 			} else {
761 				bigwad->exenv.ex_bssbase = bssbase;
762 				bigwad->exenv.ex_brkbase = brkbase;
763 			}
764 			bigwad->exenv.ex_brksize = brksize;
765 			bigwad->exenv.ex_magic = elfmagic;
766 			bigwad->exenv.ex_vp = vp;
767 			setexecenv(&bigwad->exenv);
768 
769 			ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset)
770 			ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize)
771 			ADDAUX(aux, AT_PHNUM, nphdrs)
772 			ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset)
773 		} else {
774 			if ((error = execopen(&vp, &fd)) != 0) {
775 				VN_RELE(nvp);
776 				goto bad;
777 			}
778 
779 			ADDAUX(aux, AT_EXECFD, fd)
780 		}
781 
782 		if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) {
783 			VN_RELE(nvp);
784 			uprintf("%s: Cannot execute %s\n", exec_file, dlnp);
785 			goto bad;
786 		}
787 
788 		/*
789 		 * Now obtain the ELF header along with the entire program
790 		 * header contained in "nvp".
791 		 */
792 		kmem_free(phdrbase, phdrsize);
793 		phdrbase = NULL;
794 		if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs,
795 		    &shstrndx, &nphdrs)) != 0 ||
796 		    (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase,
797 		    &phdrsize)) != 0) {
798 			VN_RELE(nvp);
799 			uprintf("%s: Cannot read %s\n", exec_file, dlnp);
800 			goto bad;
801 		}
802 
803 		/*
804 		 * Determine memory size of the "interpreter's" loadable
805 		 * sections.  This size is then used to obtain the virtual
806 		 * address of a hole, in the user's address space, large
807 		 * enough to map the "interpreter".
808 		 */
809 		if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) {
810 			VN_RELE(nvp);
811 			uprintf("%s: Nothing to load in %s\n", exec_file, dlnp);
812 			goto bad;
813 		}
814 
815 		dtrphdr = NULL;
816 
817 		error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk,
818 		    &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len,
819 		    execsz, NULL);
820 		if (error || junk != NULL) {
821 			VN_RELE(nvp);
822 			uprintf("%s: Cannot map %s\n", exec_file, dlnp);
823 			goto bad;
824 		}
825 
826 		/*
827 		 * We use the DTrace program header to initialize the
828 		 * architecture-specific user per-LWP location. The dtrace
829 		 * fasttrap provider requires ready access to per-LWP scratch
830 		 * space. We assume that there is only one such program header
831 		 * in the interpreter.
832 		 */
833 		if (dtrphdr != NULL &&
834 		    dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
835 			VN_RELE(nvp);
836 			uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp);
837 			goto bad;
838 		}
839 
840 		VN_RELE(nvp);
841 		ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata)
842 	}
843 
844 	if (hasauxv) {
845 		int auxf = AF_SUN_HWCAPVERIFY;
846 #if defined(__amd64)
847 		size_t fpsize;
848 		int fptype;
849 #endif /* defined(__amd64) */
850 
851 		/*
852 		 * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via
853 		 * exec_args()
854 		 */
855 		ADDAUX(aux, AT_BASE, voffset)
856 		ADDAUX(aux, AT_FLAGS, at_flags)
857 		ADDAUX(aux, AT_PAGESZ, PAGESIZE)
858 		/*
859 		 * Linker flags. (security)
860 		 * p_flag not yet set at this time.
861 		 * We rely on gexec() to provide us with the information.
862 		 * If the application is set-uid but this is not reflected
863 		 * in a mismatch between real/effective uids/gids, then
864 		 * don't treat this as a set-uid exec.  So we care about
865 		 * the EXECSETID_UGIDS flag but not the ...SETID flag.
866 		 */
867 		if ((setid &= ~EXECSETID_SETID) != 0)
868 			auxf |= AF_SUN_SETUGID;
869 
870 		/*
871 		 * If we're running a native process from within a branded
872 		 * zone under pfexec then we clear the AF_SUN_SETUGID flag so
873 		 * that the native ld.so.1 is able to link with the native
874 		 * libraries instead of using the brand libraries that are
875 		 * installed in the zone.  We only do this for processes
876 		 * which we trust because we see they are already running
877 		 * under pfexec (where uid != euid).  This prevents a
878 		 * malicious user within the zone from crafting a wrapper to
879 		 * run native suid commands with unsecure libraries interposed.
880 		 */
881 		if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) &&
882 		    (setid &= ~EXECSETID_SETID) != 0))
883 			auxf &= ~AF_SUN_SETUGID;
884 
885 		/*
886 		 * Record the user addr of the auxflags aux vector entry
887 		 * since brands may optionally want to manipulate this field.
888 		 */
889 		args->auxp_auxflags =
890 		    (char *)((char *)args->stackend +
891 		    ((char *)&aux->a_type -
892 		    (char *)bigwad->elfargs));
893 		ADDAUX(aux, AT_SUN_AUXFLAGS, auxf);
894 
895 		/*
896 		 * Hardware capability flag word (performance hints)
897 		 * Used for choosing faster library routines.
898 		 * (Potentially different between 32-bit and 64-bit ABIs)
899 		 */
900 #if defined(_LP64)
901 		if (args->to_model == DATAMODEL_NATIVE) {
902 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
903 			ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2)
904 		} else {
905 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32)
906 			ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2)
907 		}
908 #else
909 		ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
910 		ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2)
911 #endif
912 		if (branded) {
913 			/*
914 			 * Reserve space for the brand-private aux vectors,
915 			 * and record the user addr of that space.
916 			 */
917 			args->auxp_brand =
918 			    (char *)((char *)args->stackend +
919 			    ((char *)&aux->a_type -
920 			    (char *)bigwad->elfargs));
921 			ADDAUX(aux, AT_SUN_BRAND_AUX1, 0)
922 			ADDAUX(aux, AT_SUN_BRAND_AUX2, 0)
923 			ADDAUX(aux, AT_SUN_BRAND_AUX3, 0)
924 		}
925 
926 		/*
927 		 * Add the comm page auxv entry, mapping it in if needed. Also
928 		 * take care of the FPU entries.
929 		 */
930 #if defined(__amd64)
931 		if (args->commpage != (uintptr_t)NULL ||
932 		    (args->commpage = (uintptr_t)comm_page_mapin()) !=
933 		    (uintptr_t)NULL) {
934 			ADDAUX(aux, AT_SUN_COMMPAGE, args->commpage)
935 		} else {
936 			/*
937 			 * If the comm page cannot be mapped, pad out the auxv
938 			 * to satisfy later size checks.
939 			 */
940 			ADDAUX(aux, AT_NULL, 0)
941 		}
942 
943 		fptype = AT_386_FPINFO_NONE;
944 		fpu_auxv_info(&fptype, &fpsize);
945 		if (fptype != AT_386_FPINFO_NONE) {
946 			ADDAUX(aux, AT_SUN_FPTYPE, fptype)
947 			ADDAUX(aux, AT_SUN_FPSIZE, fpsize)
948 		} else {
949 			ADDAUX(aux, AT_NULL, 0)
950 			ADDAUX(aux, AT_NULL, 0)
951 		}
952 #endif /* defined(__amd64) */
953 
954 		ADDAUX(aux, AT_NULL, 0)
955 		postfixsize = (char *)aux - (char *)bigwad->elfargs;
956 
957 		/*
958 		 * We make assumptions above when we determine how many aux
959 		 * vector entries we will be adding. However, if we have an
960 		 * invalid elf file, it is possible that mapelfexec might
961 		 * behave differently (but not return an error), in which case
962 		 * the number of aux entries we actually add will be different.
963 		 * We detect that now and error out.
964 		 */
965 		if (postfixsize != args->auxsize) {
966 			DTRACE_PROBE2(elfexec_badaux, int, postfixsize,
967 			    int, args->auxsize);
968 			goto bad;
969 		}
970 		ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t));
971 	}
972 
973 	/*
974 	 * For the 64-bit kernel, the limit is big enough that rounding it up
975 	 * to a page can overflow the 64-bit limit, so we check for btopr()
976 	 * overflowing here by comparing it with the unrounded limit in pages.
977 	 * If it hasn't overflowed, compare the exec size with the rounded up
978 	 * limit in pages.  Otherwise, just compare with the unrounded limit.
979 	 */
980 	limit = btop(p->p_vmem_ctl);
981 	roundlimit = btopr(p->p_vmem_ctl);
982 	if ((roundlimit > limit && *execsz > roundlimit) ||
983 	    (roundlimit < limit && *execsz > limit)) {
984 		mutex_enter(&p->p_lock);
985 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
986 		    RCA_SAFE);
987 		mutex_exit(&p->p_lock);
988 		error = ENOMEM;
989 		goto bad;
990 	}
991 
992 	bzero(up->u_auxv, sizeof (up->u_auxv));
993 	up->u_commpagep = args->commpage;
994 	if (postfixsize) {
995 		int num_auxv;
996 
997 		/*
998 		 * Copy the aux vector to the user stack.
999 		 */
1000 		error = execpoststack(args, bigwad->elfargs, postfixsize);
1001 		if (error)
1002 			goto bad;
1003 
1004 		/*
1005 		 * Copy auxv to the process's user structure for use by /proc.
1006 		 * If this is a branded process, the brand's exec routine will
1007 		 * copy it's private entries to the user structure later. It
1008 		 * relies on the fact that the blank entries are at the end.
1009 		 */
1010 		num_auxv = postfixsize / sizeof (aux_entry_t);
1011 		ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t));
1012 		aux = bigwad->elfargs;
1013 		for (i = 0; i < num_auxv; i++) {
1014 			up->u_auxv[i].a_type = aux[i].a_type;
1015 			up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val;
1016 		}
1017 	}
1018 
1019 	/*
1020 	 * Pass back the starting address so we can set the program counter.
1021 	 */
1022 	args->entry = (uintptr_t)(ehdrp->e_entry + voffset);
1023 
1024 	if (!uphdr) {
1025 		if (ehdrp->e_type == ET_DYN) {
1026 			/*
1027 			 * If we are executing a shared library which doesn't
1028 			 * have a interpreter (probably ld.so.1) then
1029 			 * we don't set the brkbase now.  Instead we
1030 			 * delay it's setting until the first call
1031 			 * via grow.c::brk().  This permits ld.so.1 to
1032 			 * initialize brkbase to the tail of the executable it
1033 			 * loads (which is where it needs to be).
1034 			 */
1035 			bigwad->exenv.ex_brkbase = (caddr_t)0;
1036 			bigwad->exenv.ex_bssbase = (caddr_t)0;
1037 			bigwad->exenv.ex_brksize = 0;
1038 		} else {
1039 			bigwad->exenv.ex_brkbase = brkbase;
1040 			bigwad->exenv.ex_bssbase = bssbase;
1041 			bigwad->exenv.ex_brksize = brksize;
1042 		}
1043 		bigwad->exenv.ex_magic = elfmagic;
1044 		bigwad->exenv.ex_vp = vp;
1045 		setexecenv(&bigwad->exenv);
1046 	}
1047 
1048 	ASSERT(error == 0);
1049 	goto out;
1050 
1051 bad:
1052 	if (fd != -1)		/* did we open the a.out yet */
1053 		(void) execclose(fd);
1054 
1055 	psignal(p, SIGKILL);
1056 
1057 	if (error == 0)
1058 		error = ENOEXEC;
1059 out:
1060 	if (phdrbase != NULL)
1061 		kmem_free(phdrbase, phdrsize);
1062 	if (cap != NULL)
1063 		kmem_free(cap, capsize);
1064 	kmem_free(bigwad, sizeof (struct bigwad));
1065 	return (error);
1066 }
1067 
1068 /*
1069  * Compute the memory size requirement for the ELF file.
1070  */
1071 static size_t
1072 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata)
1073 {
1074 	size_t	len;
1075 	Phdr	*phdrp = (Phdr *)phdrbase;
1076 	int	hsize = ehdrp->e_phentsize;
1077 	int	first = 1;
1078 	int	dfirst = 1;	/* first data segment */
1079 	uintptr_t loaddr = 0;
1080 	uintptr_t hiaddr = 0;
1081 	uintptr_t lo, hi;
1082 	int	i;
1083 
1084 	for (i = nphdrs; i > 0; i--) {
1085 		if (phdrp->p_type == PT_LOAD) {
1086 			lo = phdrp->p_vaddr;
1087 			hi = lo + phdrp->p_memsz;
1088 			if (first) {
1089 				loaddr = lo;
1090 				hiaddr = hi;
1091 				first = 0;
1092 			} else {
1093 				if (loaddr > lo)
1094 					loaddr = lo;
1095 				if (hiaddr < hi)
1096 					hiaddr = hi;
1097 			}
1098 
1099 			/*
1100 			 * save the address of the first data segment
1101 			 * of a object - used for the AT_SUNW_LDDATA
1102 			 * aux entry.
1103 			 */
1104 			if ((lddata != NULL) && dfirst &&
1105 			    (phdrp->p_flags & PF_W)) {
1106 				*lddata = lo;
1107 				dfirst = 0;
1108 			}
1109 		}
1110 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
1111 	}
1112 
1113 	len = hiaddr - (loaddr & PAGEMASK);
1114 	len = roundup(len, PAGESIZE);
1115 
1116 	return (len);
1117 }
1118 
1119 /*
1120  * Read in the ELF header and program header table.
1121  * SUSV3 requires:
1122  *	ENOEXEC	File format is not recognized
1123  *	EINVAL	Format recognized but execution not supported
1124  */
1125 static int
1126 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx,
1127     int *nphdrs)
1128 {
1129 	int error;
1130 	ssize_t resid;
1131 
1132 	/*
1133 	 * We got here by the first two bytes in ident,
1134 	 * now read the entire ELF header.
1135 	 */
1136 	if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr,
1137 	    sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0,
1138 	    (rlim64_t)0, credp, &resid)) != 0)
1139 		return (error);
1140 
1141 	/*
1142 	 * Since a separate version is compiled for handling 32-bit and
1143 	 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version
1144 	 * doesn't need to be able to deal with 32-bit ELF files.
1145 	 */
1146 	if (resid != 0 ||
1147 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1148 	    ehdr->e_ident[EI_MAG3] != ELFMAG3)
1149 		return (ENOEXEC);
1150 
1151 	if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) ||
1152 #if defined(_ILP32) || defined(_ELF32_COMPAT)
1153 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1154 #else
1155 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1156 #endif
1157 	    !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine,
1158 	    ehdr->e_flags))
1159 		return (EINVAL);
1160 
1161 	*nshdrs = ehdr->e_shnum;
1162 	*shstrndx = ehdr->e_shstrndx;
1163 	*nphdrs = ehdr->e_phnum;
1164 
1165 	/*
1166 	 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need
1167 	 * to read in the section header at index zero to acces the true
1168 	 * values for those fields.
1169 	 */
1170 	if ((*nshdrs == 0 && ehdr->e_shoff != 0) ||
1171 	    *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) {
1172 		Shdr shdr;
1173 
1174 		if (ehdr->e_shoff == 0)
1175 			return (EINVAL);
1176 
1177 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr,
1178 		    sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0,
1179 		    (rlim64_t)0, credp, &resid)) != 0)
1180 			return (error);
1181 
1182 		if (*nshdrs == 0)
1183 			*nshdrs = shdr.sh_size;
1184 		if (*shstrndx == SHN_XINDEX)
1185 			*shstrndx = shdr.sh_link;
1186 		if (*nphdrs == PN_XNUM && shdr.sh_info != 0)
1187 			*nphdrs = shdr.sh_info;
1188 	}
1189 
1190 	return (0);
1191 }
1192 
1193 #ifdef _ELF32_COMPAT
1194 extern size_t elf_nphdr_max;
1195 #else
1196 size_t elf_nphdr_max = 1000;
1197 #endif
1198 
1199 static int
1200 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs,
1201     caddr_t *phbasep, ssize_t *phsizep)
1202 {
1203 	ssize_t resid, minsize;
1204 	int err;
1205 
1206 	/*
1207 	 * Since we're going to be using e_phentsize to iterate down the
1208 	 * array of program headers, it must be 8-byte aligned or else
1209 	 * a we might cause a misaligned access. We use all members through
1210 	 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so
1211 	 * e_phentsize must be at least large enough to include those
1212 	 * members.
1213 	 */
1214 #if !defined(_LP64) || defined(_ELF32_COMPAT)
1215 	minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags);
1216 #else
1217 	minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz);
1218 #endif
1219 	if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3))
1220 		return (EINVAL);
1221 
1222 	*phsizep = nphdrs * ehdr->e_phentsize;
1223 
1224 	if (*phsizep > sizeof (Phdr) * elf_nphdr_max) {
1225 		if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL)
1226 			return (ENOMEM);
1227 	} else {
1228 		*phbasep = kmem_alloc(*phsizep, KM_SLEEP);
1229 	}
1230 
1231 	if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep,
1232 	    (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1233 	    credp, &resid)) != 0) {
1234 		kmem_free(*phbasep, *phsizep);
1235 		*phbasep = NULL;
1236 		return (err);
1237 	}
1238 
1239 	return (0);
1240 }
1241 
1242 #ifdef _ELF32_COMPAT
1243 extern size_t elf_nshdr_max;
1244 extern size_t elf_shstrtab_max;
1245 #else
1246 size_t elf_nshdr_max = 10000;
1247 size_t elf_shstrtab_max = 100 * 1024;
1248 #endif
1249 
1250 
1251 static int
1252 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr,
1253     int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep,
1254     char **shstrbasep, ssize_t *shstrsizep)
1255 {
1256 	ssize_t resid, minsize;
1257 	int err;
1258 	Shdr *shdr;
1259 
1260 	/*
1261 	 * Since we're going to be using e_shentsize to iterate down the
1262 	 * array of section headers, it must be 8-byte aligned or else
1263 	 * a we might cause a misaligned access. We use all members through
1264 	 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize
1265 	 * must be at least large enough to include that member. The index
1266 	 * of the string table section must also be valid.
1267 	 */
1268 	minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize);
1269 	if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) ||
1270 	    shstrndx >= nshdrs)
1271 		return (EINVAL);
1272 
1273 	*shsizep = nshdrs * ehdr->e_shentsize;
1274 
1275 	if (*shsizep > sizeof (Shdr) * elf_nshdr_max) {
1276 		if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL)
1277 			return (ENOMEM);
1278 	} else {
1279 		*shbasep = kmem_alloc(*shsizep, KM_SLEEP);
1280 	}
1281 
1282 	if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep,
1283 	    (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1284 	    credp, &resid)) != 0) {
1285 		kmem_free(*shbasep, *shsizep);
1286 		return (err);
1287 	}
1288 
1289 	/*
1290 	 * Pull the section string table out of the vnode; fail if the size
1291 	 * is zero.
1292 	 */
1293 	shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize);
1294 	if ((*shstrsizep = shdr->sh_size) == 0) {
1295 		kmem_free(*shbasep, *shsizep);
1296 		return (EINVAL);
1297 	}
1298 
1299 	if (*shstrsizep > elf_shstrtab_max) {
1300 		if ((*shstrbasep = kmem_alloc(*shstrsizep,
1301 		    KM_NOSLEEP)) == NULL) {
1302 			kmem_free(*shbasep, *shsizep);
1303 			return (ENOMEM);
1304 		}
1305 	} else {
1306 		*shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP);
1307 	}
1308 
1309 	if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep,
1310 	    (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
1311 	    credp, &resid)) != 0) {
1312 		kmem_free(*shbasep, *shsizep);
1313 		kmem_free(*shstrbasep, *shstrsizep);
1314 		return (err);
1315 	}
1316 
1317 	/*
1318 	 * Make sure the strtab is null-terminated to make sure we
1319 	 * don't run off the end of the table.
1320 	 */
1321 	(*shstrbasep)[*shstrsizep - 1] = '\0';
1322 
1323 	return (0);
1324 }
1325 
1326 static int
1327 mapelfexec(
1328 	vnode_t *vp,
1329 	Ehdr *ehdr,
1330 	int nphdrs,
1331 	caddr_t phdrbase,
1332 	Phdr **uphdr,
1333 	Phdr **intphdr,
1334 	Phdr **stphdr,
1335 	Phdr **dtphdr,
1336 	Phdr *dataphdrp,
1337 	caddr_t *bssbase,
1338 	caddr_t *brkbase,
1339 	intptr_t *voffset,
1340 	intptr_t *minaddr,
1341 	size_t len,
1342 	long *execsz,
1343 	size_t *brksize)
1344 {
1345 	Phdr *phdr;
1346 	int i, prot, error;
1347 	caddr_t addr = NULL;
1348 	size_t zfodsz;
1349 	int ptload = 0;
1350 	int page;
1351 	off_t offset;
1352 	int hsize = ehdr->e_phentsize;
1353 	caddr_t mintmp = (caddr_t)-1;
1354 	extern int use_brk_lpg;
1355 
1356 	if (ehdr->e_type == ET_DYN) {
1357 		secflagset_t flags = 0;
1358 		/*
1359 		 * Obtain the virtual address of a hole in the
1360 		 * address space to map the "interpreter".
1361 		 */
1362 		if (secflag_enabled(curproc, PROC_SEC_ASLR))
1363 			flags |= _MAP_RANDOMIZE;
1364 
1365 		map_addr(&addr, len, (offset_t)0, 1, flags);
1366 		if (addr == NULL)
1367 			return (ENOMEM);
1368 		*voffset = (intptr_t)addr;
1369 
1370 		/*
1371 		 * Calculate the minimum vaddr so it can be subtracted out.
1372 		 * According to the ELF specification, since PT_LOAD sections
1373 		 * must be sorted by increasing p_vaddr values, this is
1374 		 * guaranteed to be the first PT_LOAD section.
1375 		 */
1376 		phdr = (Phdr *)phdrbase;
1377 		for (i = nphdrs; i > 0; i--) {
1378 			if (phdr->p_type == PT_LOAD) {
1379 				*voffset -= (uintptr_t)phdr->p_vaddr;
1380 				break;
1381 			}
1382 			phdr = (Phdr *)((caddr_t)phdr + hsize);
1383 		}
1384 
1385 	} else {
1386 		*voffset = 0;
1387 	}
1388 	phdr = (Phdr *)phdrbase;
1389 	for (i = nphdrs; i > 0; i--) {
1390 		switch (phdr->p_type) {
1391 		case PT_LOAD:
1392 			if ((*intphdr != NULL) && (*uphdr == NULL))
1393 				return (0);
1394 
1395 			ptload = 1;
1396 			prot = PROT_USER;
1397 			if (phdr->p_flags & PF_R)
1398 				prot |= PROT_READ;
1399 			if (phdr->p_flags & PF_W)
1400 				prot |= PROT_WRITE;
1401 			if (phdr->p_flags & PF_X)
1402 				prot |= PROT_EXEC;
1403 
1404 			addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset);
1405 
1406 			/*
1407 			 * Keep track of the segment with the lowest starting
1408 			 * address.
1409 			 */
1410 			if (addr < mintmp)
1411 				mintmp = addr;
1412 
1413 			zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz;
1414 
1415 			offset = phdr->p_offset;
1416 			if (((uintptr_t)offset & PAGEOFFSET) ==
1417 			    ((uintptr_t)addr & PAGEOFFSET) &&
1418 			    (!(vp->v_flag & VNOMAP))) {
1419 				page = 1;
1420 			} else {
1421 				page = 0;
1422 			}
1423 
1424 			/*
1425 			 * Set the heap pagesize for OOB when the bss size
1426 			 * is known and use_brk_lpg is not 0.
1427 			 */
1428 			if (brksize != NULL && use_brk_lpg &&
1429 			    zfodsz != 0 && phdr == dataphdrp &&
1430 			    (prot & PROT_WRITE)) {
1431 				size_t tlen = P2NPHASE((uintptr_t)addr +
1432 				    phdr->p_filesz, PAGESIZE);
1433 
1434 				if (zfodsz > tlen) {
1435 					curproc->p_brkpageszc =
1436 					    page_szc(map_pgsz(MAPPGSZ_HEAP,
1437 					    curproc, addr + phdr->p_filesz +
1438 					    tlen, zfodsz - tlen, 0));
1439 				}
1440 			}
1441 
1442 			if (curproc->p_brkpageszc != 0 && phdr == dataphdrp &&
1443 			    (prot & PROT_WRITE)) {
1444 				uint_t	szc = curproc->p_brkpageszc;
1445 				size_t pgsz = page_get_pagesize(szc);
1446 				caddr_t ebss = addr + phdr->p_memsz;
1447 				/*
1448 				 * If we need extra space to keep the BSS an
1449 				 * integral number of pages in size, some of
1450 				 * that space may fall beyond p_brkbase, so we
1451 				 * need to set p_brksize to account for it
1452 				 * being (logically) part of the brk.
1453 				 */
1454 				size_t extra_zfodsz;
1455 
1456 				ASSERT(pgsz > PAGESIZE);
1457 
1458 				extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz);
1459 
1460 				if (error = execmap(vp, addr, phdr->p_filesz,
1461 				    zfodsz + extra_zfodsz, phdr->p_offset,
1462 				    prot, page, szc))
1463 					goto bad;
1464 				if (brksize != NULL)
1465 					*brksize = extra_zfodsz;
1466 			} else {
1467 				if (error = execmap(vp, addr, phdr->p_filesz,
1468 				    zfodsz, phdr->p_offset, prot, page, 0))
1469 					goto bad;
1470 			}
1471 
1472 			if (bssbase != NULL && addr >= *bssbase &&
1473 			    phdr == dataphdrp) {
1474 				*bssbase = addr + phdr->p_filesz;
1475 			}
1476 			if (brkbase != NULL && addr >= *brkbase) {
1477 				*brkbase = addr + phdr->p_memsz;
1478 			}
1479 
1480 			*execsz += btopr(phdr->p_memsz);
1481 			break;
1482 
1483 		case PT_INTERP:
1484 			if (ptload)
1485 				goto bad;
1486 			*intphdr = phdr;
1487 			break;
1488 
1489 		case PT_SHLIB:
1490 			*stphdr = phdr;
1491 			break;
1492 
1493 		case PT_PHDR:
1494 			if (ptload)
1495 				goto bad;
1496 			*uphdr = phdr;
1497 			break;
1498 
1499 		case PT_NULL:
1500 		case PT_DYNAMIC:
1501 		case PT_NOTE:
1502 			break;
1503 
1504 		case PT_SUNWDTRACE:
1505 			if (dtphdr != NULL)
1506 				*dtphdr = phdr;
1507 			break;
1508 
1509 		default:
1510 			break;
1511 		}
1512 		phdr = (Phdr *)((caddr_t)phdr + hsize);
1513 	}
1514 
1515 	if (minaddr != NULL) {
1516 		ASSERT(mintmp != (caddr_t)-1);
1517 		*minaddr = (intptr_t)mintmp;
1518 	}
1519 
1520 	if (brkbase != NULL && secflag_enabled(curproc, PROC_SEC_ASLR)) {
1521 		size_t off;
1522 		uintptr_t base = (uintptr_t)*brkbase;
1523 		uintptr_t oend = base + *brksize;
1524 
1525 		ASSERT(ISP2(aslr_max_brk_skew));
1526 
1527 		(void) random_get_pseudo_bytes((uint8_t *)&off, sizeof (off));
1528 		base += P2PHASE(off, aslr_max_brk_skew);
1529 		base = P2ROUNDUP(base, PAGESIZE);
1530 		*brkbase = (caddr_t)base;
1531 		/*
1532 		 * Above, we set *brksize to account for the possibility we
1533 		 * had to grow the 'brk' in padding out the BSS to a page
1534 		 * boundary.
1535 		 *
1536 		 * We now need to adjust that based on where we now are
1537 		 * actually putting the brk.
1538 		 */
1539 		if (oend > base)
1540 			*brksize = oend - base;
1541 		else
1542 			*brksize = 0;
1543 	}
1544 
1545 	return (0);
1546 bad:
1547 	if (error == 0)
1548 		error = EINVAL;
1549 	return (error);
1550 }
1551 
1552 int
1553 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc,
1554     rlim64_t rlimit, cred_t *credp)
1555 {
1556 	Note note;
1557 	int error;
1558 
1559 	bzero(&note, sizeof (note));
1560 	bcopy("CORE", note.name, 4);
1561 	note.nhdr.n_type = type;
1562 	/*
1563 	 * The System V ABI states that n_namesz must be the length of the
1564 	 * string that follows the Nhdr structure including the terminating
1565 	 * null. The ABI also specifies that sufficient padding should be
1566 	 * included so that the description that follows the name string
1567 	 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries
1568 	 * respectively. However, since this change was not made correctly
1569 	 * at the time of the 64-bit port, both 32- and 64-bit binaries
1570 	 * descriptions are only guaranteed to begin on a 4-byte boundary.
1571 	 */
1572 	note.nhdr.n_namesz = 5;
1573 	note.nhdr.n_descsz = roundup(descsz, sizeof (Word));
1574 
1575 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, &note,
1576 	    sizeof (note), rlimit, credp))
1577 		return (error);
1578 
1579 	*offsetp += sizeof (note);
1580 
1581 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc,
1582 	    note.nhdr.n_descsz, rlimit, credp))
1583 		return (error);
1584 
1585 	*offsetp += note.nhdr.n_descsz;
1586 	return (0);
1587 }
1588 
1589 /*
1590  * Copy the section data from one vnode to the section of another vnode.
1591  */
1592 static void
1593 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset,
1594     void *buf, size_t size, cred_t *credp, rlim64_t rlimit)
1595 {
1596 	ssize_t resid;
1597 	size_t len, n = src->sh_size;
1598 	offset_t off = 0;
1599 
1600 	while (n != 0) {
1601 		len = MIN(size, n);
1602 		if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off,
1603 		    UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 ||
1604 		    resid >= len ||
1605 		    core_write(dst_vp, UIO_SYSSPACE, *doffset + off,
1606 		    buf, len - resid, rlimit, credp) != 0) {
1607 			dst->sh_size = 0;
1608 			dst->sh_offset = 0;
1609 			return;
1610 		}
1611 
1612 		ASSERT(n >= len - resid);
1613 
1614 		n -= len - resid;
1615 		off += len - resid;
1616 	}
1617 
1618 	*doffset += src->sh_size;
1619 }
1620 
1621 #ifdef _ELF32_COMPAT
1622 extern size_t elf_datasz_max;
1623 #else
1624 size_t elf_datasz_max = 1 * 1024 * 1024;
1625 #endif
1626 
1627 /*
1628  * This function processes mappings that correspond to load objects to
1629  * examine their respective sections for elfcore(). It's called once with
1630  * v set to NULL to count the number of sections that we're going to need
1631  * and then again with v set to some allocated buffer that we fill in with
1632  * all the section data.
1633  */
1634 static int
1635 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp,
1636     Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp)
1637 {
1638 	vnode_t *lastvp = NULL;
1639 	struct seg *seg;
1640 	int i, j;
1641 	void *data = NULL;
1642 	size_t datasz = 0;
1643 	shstrtab_t shstrtab;
1644 	struct as *as = p->p_as;
1645 	int error = 0;
1646 
1647 	if (v != NULL)
1648 		shstrtab_init(&shstrtab);
1649 
1650 	i = 1;
1651 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1652 		uint_t prot;
1653 		vnode_t *mvp;
1654 		void *tmp = NULL;
1655 		caddr_t saddr = seg->s_base;
1656 		caddr_t naddr;
1657 		caddr_t eaddr;
1658 		size_t segsize;
1659 
1660 		Ehdr ehdr;
1661 		int nshdrs, shstrndx, nphdrs;
1662 		caddr_t shbase;
1663 		ssize_t shsize;
1664 		char *shstrbase;
1665 		ssize_t shstrsize;
1666 
1667 		Shdr *shdr;
1668 		const char *name;
1669 		size_t sz;
1670 		uintptr_t off;
1671 
1672 		int ctf_ndx = 0;
1673 		int symtab_ndx = 0;
1674 
1675 		/*
1676 		 * Since we're just looking for text segments of load
1677 		 * objects, we only care about the protection bits; we don't
1678 		 * care about the actual size of the segment so we use the
1679 		 * reserved size. If the segment's size is zero, there's
1680 		 * something fishy going on so we ignore this segment.
1681 		 */
1682 		if (seg->s_ops != &segvn_ops ||
1683 		    SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1684 		    mvp == lastvp || mvp == NULL || mvp->v_type != VREG ||
1685 		    (segsize = pr_getsegsize(seg, 1)) == 0)
1686 			continue;
1687 
1688 		eaddr = saddr + segsize;
1689 		prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr);
1690 		pr_getprot_done(&tmp);
1691 
1692 		/*
1693 		 * Skip this segment unless the protection bits look like
1694 		 * what we'd expect for a text segment.
1695 		 */
1696 		if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC)
1697 			continue;
1698 
1699 		if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx,
1700 		    &nphdrs) != 0 ||
1701 		    getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx,
1702 		    &shbase, &shsize, &shstrbase, &shstrsize) != 0)
1703 			continue;
1704 
1705 		off = ehdr.e_shentsize;
1706 		for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) {
1707 			Shdr *symtab = NULL, *strtab;
1708 
1709 			shdr = (Shdr *)(shbase + off);
1710 
1711 			if (shdr->sh_name >= shstrsize)
1712 				continue;
1713 
1714 			name = shstrbase + shdr->sh_name;
1715 
1716 			if (strcmp(name, shstrtab_data[STR_CTF]) == 0) {
1717 				if ((content & CC_CONTENT_CTF) == 0 ||
1718 				    ctf_ndx != 0)
1719 					continue;
1720 
1721 				if (shdr->sh_link > 0 &&
1722 				    shdr->sh_link < nshdrs) {
1723 					symtab = (Shdr *)(shbase +
1724 					    shdr->sh_link * ehdr.e_shentsize);
1725 				}
1726 
1727 				if (v != NULL && i < nv - 1) {
1728 					if (shdr->sh_size > datasz &&
1729 					    shdr->sh_size <= elf_datasz_max) {
1730 						if (data != NULL)
1731 							kmem_free(data, datasz);
1732 
1733 						datasz = shdr->sh_size;
1734 						data = kmem_alloc(datasz,
1735 						    KM_SLEEP);
1736 					}
1737 
1738 					v[i].sh_name = shstrtab_ndx(&shstrtab,
1739 					    STR_CTF);
1740 					v[i].sh_addr = (Addr)(uintptr_t)saddr;
1741 					v[i].sh_type = SHT_PROGBITS;
1742 					v[i].sh_addralign = 4;
1743 					*doffsetp = roundup(*doffsetp,
1744 					    v[i].sh_addralign);
1745 					v[i].sh_offset = *doffsetp;
1746 					v[i].sh_size = shdr->sh_size;
1747 					if (symtab == NULL)  {
1748 						v[i].sh_link = 0;
1749 					} else if (symtab->sh_type ==
1750 					    SHT_SYMTAB &&
1751 					    symtab_ndx != 0) {
1752 						v[i].sh_link =
1753 						    symtab_ndx;
1754 					} else {
1755 						v[i].sh_link = i + 1;
1756 					}
1757 
1758 					copy_scn(shdr, mvp, &v[i], vp,
1759 					    doffsetp, data, datasz, credp,
1760 					    rlimit);
1761 				}
1762 
1763 				ctf_ndx = i++;
1764 
1765 				/*
1766 				 * We've already dumped the symtab.
1767 				 */
1768 				if (symtab != NULL &&
1769 				    symtab->sh_type == SHT_SYMTAB &&
1770 				    symtab_ndx != 0)
1771 					continue;
1772 
1773 			} else if (strcmp(name,
1774 			    shstrtab_data[STR_SYMTAB]) == 0) {
1775 				if ((content & CC_CONTENT_SYMTAB) == 0 ||
1776 				    symtab != 0)
1777 					continue;
1778 
1779 				symtab = shdr;
1780 			}
1781 
1782 			if (symtab != NULL) {
1783 				if ((symtab->sh_type != SHT_DYNSYM &&
1784 				    symtab->sh_type != SHT_SYMTAB) ||
1785 				    symtab->sh_link == 0 ||
1786 				    symtab->sh_link >= nshdrs)
1787 					continue;
1788 
1789 				strtab = (Shdr *)(shbase +
1790 				    symtab->sh_link * ehdr.e_shentsize);
1791 
1792 				if (strtab->sh_type != SHT_STRTAB)
1793 					continue;
1794 
1795 				if (v != NULL && i < nv - 2) {
1796 					sz = MAX(symtab->sh_size,
1797 					    strtab->sh_size);
1798 					if (sz > datasz &&
1799 					    sz <= elf_datasz_max) {
1800 						if (data != NULL)
1801 							kmem_free(data, datasz);
1802 
1803 						datasz = sz;
1804 						data = kmem_alloc(datasz,
1805 						    KM_SLEEP);
1806 					}
1807 
1808 					if (symtab->sh_type == SHT_DYNSYM) {
1809 						v[i].sh_name = shstrtab_ndx(
1810 						    &shstrtab, STR_DYNSYM);
1811 						v[i + 1].sh_name = shstrtab_ndx(
1812 						    &shstrtab, STR_DYNSTR);
1813 					} else {
1814 						v[i].sh_name = shstrtab_ndx(
1815 						    &shstrtab, STR_SYMTAB);
1816 						v[i + 1].sh_name = shstrtab_ndx(
1817 						    &shstrtab, STR_STRTAB);
1818 					}
1819 
1820 					v[i].sh_type = symtab->sh_type;
1821 					v[i].sh_addr = symtab->sh_addr;
1822 					if (ehdr.e_type == ET_DYN ||
1823 					    v[i].sh_addr == 0)
1824 						v[i].sh_addr +=
1825 						    (Addr)(uintptr_t)saddr;
1826 					v[i].sh_addralign =
1827 					    symtab->sh_addralign;
1828 					*doffsetp = roundup(*doffsetp,
1829 					    v[i].sh_addralign);
1830 					v[i].sh_offset = *doffsetp;
1831 					v[i].sh_size = symtab->sh_size;
1832 					v[i].sh_link = i + 1;
1833 					v[i].sh_entsize = symtab->sh_entsize;
1834 					v[i].sh_info = symtab->sh_info;
1835 
1836 					copy_scn(symtab, mvp, &v[i], vp,
1837 					    doffsetp, data, datasz, credp,
1838 					    rlimit);
1839 
1840 					v[i + 1].sh_type = SHT_STRTAB;
1841 					v[i + 1].sh_flags = SHF_STRINGS;
1842 					v[i + 1].sh_addr = symtab->sh_addr;
1843 					if (ehdr.e_type == ET_DYN ||
1844 					    v[i + 1].sh_addr == 0)
1845 						v[i + 1].sh_addr +=
1846 						    (Addr)(uintptr_t)saddr;
1847 					v[i + 1].sh_addralign =
1848 					    strtab->sh_addralign;
1849 					*doffsetp = roundup(*doffsetp,
1850 					    v[i + 1].sh_addralign);
1851 					v[i + 1].sh_offset = *doffsetp;
1852 					v[i + 1].sh_size = strtab->sh_size;
1853 
1854 					copy_scn(strtab, mvp, &v[i + 1], vp,
1855 					    doffsetp, data, datasz, credp,
1856 					    rlimit);
1857 				}
1858 
1859 				if (symtab->sh_type == SHT_SYMTAB)
1860 					symtab_ndx = i;
1861 				i += 2;
1862 			}
1863 		}
1864 
1865 		kmem_free(shstrbase, shstrsize);
1866 		kmem_free(shbase, shsize);
1867 
1868 		lastvp = mvp;
1869 	}
1870 
1871 	if (v == NULL) {
1872 		if (i == 1)
1873 			*nshdrsp = 0;
1874 		else
1875 			*nshdrsp = i + 1;
1876 		goto done;
1877 	}
1878 
1879 	if (i != nv - 1) {
1880 		cmn_err(CE_WARN, "elfcore: core dump failed for "
1881 		    "process %d; address space is changing", p->p_pid);
1882 		error = EIO;
1883 		goto done;
1884 	}
1885 
1886 	v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB);
1887 	v[i].sh_size = shstrtab_size(&shstrtab);
1888 	v[i].sh_addralign = 1;
1889 	*doffsetp = roundup(*doffsetp, v[i].sh_addralign);
1890 	v[i].sh_offset = *doffsetp;
1891 	v[i].sh_flags = SHF_STRINGS;
1892 	v[i].sh_type = SHT_STRTAB;
1893 
1894 	if (v[i].sh_size > datasz) {
1895 		if (data != NULL)
1896 			kmem_free(data, datasz);
1897 
1898 		datasz = v[i].sh_size;
1899 		data = kmem_alloc(datasz,
1900 		    KM_SLEEP);
1901 	}
1902 
1903 	shstrtab_dump(&shstrtab, data);
1904 
1905 	if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp,
1906 	    data, v[i].sh_size, rlimit, credp)) != 0)
1907 		goto done;
1908 
1909 	*doffsetp += v[i].sh_size;
1910 
1911 done:
1912 	if (data != NULL)
1913 		kmem_free(data, datasz);
1914 
1915 	return (error);
1916 }
1917 
1918 int
1919 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig,
1920     core_content_t content)
1921 {
1922 	offset_t poffset, soffset;
1923 	Off doffset;
1924 	int error, i, nphdrs, nshdrs;
1925 	int overflow = 0;
1926 	struct seg *seg;
1927 	struct as *as = p->p_as;
1928 	union {
1929 		Ehdr ehdr;
1930 		Phdr phdr[1];
1931 		Shdr shdr[1];
1932 	} *bigwad;
1933 	size_t bigsize;
1934 	size_t phdrsz, shdrsz;
1935 	Ehdr *ehdr;
1936 	Phdr *v;
1937 	caddr_t brkbase;
1938 	size_t brksize;
1939 	caddr_t stkbase;
1940 	size_t stksize;
1941 	int ntries = 0;
1942 	klwp_t *lwp = ttolwp(curthread);
1943 
1944 top:
1945 	/*
1946 	 * Make sure we have everything we need (registers, etc.).
1947 	 * All other lwps have already stopped and are in an orderly state.
1948 	 */
1949 	ASSERT(p == ttoproc(curthread));
1950 	prstop(0, 0);
1951 
1952 	AS_LOCK_ENTER(as, RW_WRITER);
1953 	nphdrs = prnsegs(as, 0) + 2;		/* two CORE note sections */
1954 
1955 	/*
1956 	 * Count the number of section headers we're going to need.
1957 	 */
1958 	nshdrs = 0;
1959 	if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) {
1960 		(void) process_scns(content, p, credp, NULL, NULL, 0, 0,
1961 		    NULL, &nshdrs);
1962 	}
1963 	AS_LOCK_EXIT(as);
1964 
1965 	ASSERT(nshdrs == 0 || nshdrs > 1);
1966 
1967 	/*
1968 	 * The core file contents may required zero section headers, but if
1969 	 * we overflow the 16 bits allotted to the program header count in
1970 	 * the ELF header, we'll need that program header at index zero.
1971 	 */
1972 	if (nshdrs == 0 && nphdrs >= PN_XNUM)
1973 		nshdrs = 1;
1974 
1975 	phdrsz = nphdrs * sizeof (Phdr);
1976 	shdrsz = nshdrs * sizeof (Shdr);
1977 
1978 	bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz));
1979 	bigwad = kmem_alloc(bigsize, KM_SLEEP);
1980 
1981 	ehdr = &bigwad->ehdr;
1982 	bzero(ehdr, sizeof (*ehdr));
1983 
1984 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1985 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1986 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1987 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1988 	ehdr->e_ident[EI_CLASS] = ELFCLASS;
1989 	ehdr->e_type = ET_CORE;
1990 
1991 #if !defined(_LP64) || defined(_ELF32_COMPAT)
1992 
1993 #if defined(__sparc)
1994 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1995 	ehdr->e_machine = EM_SPARC;
1996 #elif defined(__i386) || defined(__i386_COMPAT)
1997 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1998 	ehdr->e_machine = EM_386;
1999 #else
2000 #error "no recognized machine type is defined"
2001 #endif
2002 
2003 #else	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
2004 
2005 #if defined(__sparc)
2006 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
2007 	ehdr->e_machine = EM_SPARCV9;
2008 #elif defined(__amd64)
2009 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
2010 	ehdr->e_machine = EM_AMD64;
2011 #else
2012 #error "no recognized 64-bit machine type is defined"
2013 #endif
2014 
2015 #endif	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
2016 
2017 	/*
2018 	 * If the count of program headers or section headers or the index
2019 	 * of the section string table can't fit in the mere 16 bits
2020 	 * shortsightedly allotted to them in the ELF header, we use the
2021 	 * extended formats and put the real values in the section header
2022 	 * as index 0.
2023 	 */
2024 	ehdr->e_version = EV_CURRENT;
2025 	ehdr->e_ehsize = sizeof (Ehdr);
2026 
2027 	if (nphdrs >= PN_XNUM)
2028 		ehdr->e_phnum = PN_XNUM;
2029 	else
2030 		ehdr->e_phnum = (unsigned short)nphdrs;
2031 
2032 	ehdr->e_phoff = sizeof (Ehdr);
2033 	ehdr->e_phentsize = sizeof (Phdr);
2034 
2035 	if (nshdrs > 0) {
2036 		if (nshdrs >= SHN_LORESERVE)
2037 			ehdr->e_shnum = 0;
2038 		else
2039 			ehdr->e_shnum = (unsigned short)nshdrs;
2040 
2041 		if (nshdrs - 1 >= SHN_LORESERVE)
2042 			ehdr->e_shstrndx = SHN_XINDEX;
2043 		else
2044 			ehdr->e_shstrndx = (unsigned short)(nshdrs - 1);
2045 
2046 		ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs;
2047 		ehdr->e_shentsize = sizeof (Shdr);
2048 	}
2049 
2050 	if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr,
2051 	    sizeof (Ehdr), rlimit, credp))
2052 		goto done;
2053 
2054 	poffset = sizeof (Ehdr);
2055 	soffset = sizeof (Ehdr) + phdrsz;
2056 	doffset = sizeof (Ehdr) + phdrsz + shdrsz;
2057 
2058 	v = &bigwad->phdr[0];
2059 	bzero(v, phdrsz);
2060 
2061 	setup_old_note_header(&v[0], p);
2062 	v[0].p_offset = doffset = roundup(doffset, sizeof (Word));
2063 	doffset += v[0].p_filesz;
2064 
2065 	setup_note_header(&v[1], p);
2066 	v[1].p_offset = doffset = roundup(doffset, sizeof (Word));
2067 	doffset += v[1].p_filesz;
2068 
2069 	mutex_enter(&p->p_lock);
2070 
2071 	brkbase = p->p_brkbase;
2072 	brksize = p->p_brksize;
2073 
2074 	stkbase = p->p_usrstack - p->p_stksize;
2075 	stksize = p->p_stksize;
2076 
2077 	mutex_exit(&p->p_lock);
2078 
2079 	AS_LOCK_ENTER(as, RW_WRITER);
2080 	i = 2;
2081 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
2082 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
2083 		caddr_t saddr, naddr;
2084 		void *tmp = NULL;
2085 		extern struct seg_ops segspt_shmops;
2086 
2087 		if ((seg->s_flags & S_HOLE) != 0) {
2088 			continue;
2089 		}
2090 
2091 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
2092 			uint_t prot;
2093 			size_t size;
2094 			int type;
2095 			vnode_t *mvp;
2096 
2097 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
2098 			prot &= PROT_READ | PROT_WRITE | PROT_EXEC;
2099 			if ((size = (size_t)(naddr - saddr)) == 0)
2100 				continue;
2101 			if (i == nphdrs) {
2102 				overflow++;
2103 				continue;
2104 			}
2105 			v[i].p_type = PT_LOAD;
2106 			v[i].p_vaddr = (Addr)(uintptr_t)saddr;
2107 			v[i].p_memsz = size;
2108 			if (prot & PROT_READ)
2109 				v[i].p_flags |= PF_R;
2110 			if (prot & PROT_WRITE)
2111 				v[i].p_flags |= PF_W;
2112 			if (prot & PROT_EXEC)
2113 				v[i].p_flags |= PF_X;
2114 
2115 			/*
2116 			 * Figure out which mappings to include in the core.
2117 			 */
2118 			type = SEGOP_GETTYPE(seg, saddr);
2119 
2120 			if (saddr == stkbase && size == stksize) {
2121 				if (!(content & CC_CONTENT_STACK))
2122 					goto exclude;
2123 
2124 			} else if (saddr == brkbase && size == brksize) {
2125 				if (!(content & CC_CONTENT_HEAP))
2126 					goto exclude;
2127 
2128 			} else if (seg->s_ops == &segspt_shmops) {
2129 				if (type & MAP_NORESERVE) {
2130 					if (!(content & CC_CONTENT_DISM))
2131 						goto exclude;
2132 				} else {
2133 					if (!(content & CC_CONTENT_ISM))
2134 						goto exclude;
2135 				}
2136 
2137 			} else if (seg->s_ops != &segvn_ops) {
2138 				goto exclude;
2139 
2140 			} else if (type & MAP_SHARED) {
2141 				if (shmgetid(p, saddr) != SHMID_NONE) {
2142 					if (!(content & CC_CONTENT_SHM))
2143 						goto exclude;
2144 
2145 				} else if (SEGOP_GETVP(seg, seg->s_base,
2146 				    &mvp) != 0 || mvp == NULL ||
2147 				    mvp->v_type != VREG) {
2148 					if (!(content & CC_CONTENT_SHANON))
2149 						goto exclude;
2150 
2151 				} else {
2152 					if (!(content & CC_CONTENT_SHFILE))
2153 						goto exclude;
2154 				}
2155 
2156 			} else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
2157 			    mvp == NULL || mvp->v_type != VREG) {
2158 				if (!(content & CC_CONTENT_ANON))
2159 					goto exclude;
2160 
2161 			} else if (prot == (PROT_READ | PROT_EXEC)) {
2162 				if (!(content & CC_CONTENT_TEXT))
2163 					goto exclude;
2164 
2165 			} else if (prot == PROT_READ) {
2166 				if (!(content & CC_CONTENT_RODATA))
2167 					goto exclude;
2168 
2169 			} else {
2170 				if (!(content & CC_CONTENT_DATA))
2171 					goto exclude;
2172 			}
2173 
2174 			doffset = roundup(doffset, sizeof (Word));
2175 			v[i].p_offset = doffset;
2176 			v[i].p_filesz = size;
2177 			doffset += size;
2178 exclude:
2179 			i++;
2180 		}
2181 		ASSERT(tmp == NULL);
2182 	}
2183 	AS_LOCK_EXIT(as);
2184 
2185 	if (overflow || i != nphdrs) {
2186 		if (ntries++ == 0) {
2187 			kmem_free(bigwad, bigsize);
2188 			overflow = 0;
2189 			goto top;
2190 		}
2191 		cmn_err(CE_WARN, "elfcore: core dump failed for "
2192 		    "process %d; address space is changing", p->p_pid);
2193 		error = EIO;
2194 		goto done;
2195 	}
2196 
2197 	if ((error = core_write(vp, UIO_SYSSPACE, poffset,
2198 	    v, phdrsz, rlimit, credp)) != 0)
2199 		goto done;
2200 
2201 	if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit,
2202 	    credp)) != 0)
2203 		goto done;
2204 
2205 	if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit,
2206 	    credp, content)) != 0)
2207 		goto done;
2208 
2209 	for (i = 2; i < nphdrs; i++) {
2210 		prkillinfo_t killinfo;
2211 		sigqueue_t *sq;
2212 		int sig, j;
2213 
2214 		if (v[i].p_filesz == 0)
2215 			continue;
2216 
2217 		/*
2218 		 * If dumping out this segment fails, rather than failing
2219 		 * the core dump entirely, we reset the size of the mapping
2220 		 * to zero to indicate that the data is absent from the core
2221 		 * file and or in the PF_SUNW_FAILURE flag to differentiate
2222 		 * this from mappings that were excluded due to the core file
2223 		 * content settings.
2224 		 */
2225 		if ((error = core_seg(p, vp, v[i].p_offset,
2226 		    (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz,
2227 		    rlimit, credp)) == 0) {
2228 			continue;
2229 		}
2230 
2231 		if ((sig = lwp->lwp_cursig) == 0) {
2232 			/*
2233 			 * We failed due to something other than a signal.
2234 			 * Since the space reserved for the segment is now
2235 			 * unused, we stash the errno in the first four
2236 			 * bytes. This undocumented interface will let us
2237 			 * understand the nature of the failure.
2238 			 */
2239 			(void) core_write(vp, UIO_SYSSPACE, v[i].p_offset,
2240 			    &error, sizeof (error), rlimit, credp);
2241 
2242 			v[i].p_filesz = 0;
2243 			v[i].p_flags |= PF_SUNW_FAILURE;
2244 			if ((error = core_write(vp, UIO_SYSSPACE,
2245 			    poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]),
2246 			    rlimit, credp)) != 0)
2247 				goto done;
2248 
2249 			continue;
2250 		}
2251 
2252 		/*
2253 		 * We took a signal.  We want to abort the dump entirely, but
2254 		 * we also want to indicate what failed and why.  We therefore
2255 		 * use the space reserved for the first failing segment to
2256 		 * write our error (which, for purposes of compatability with
2257 		 * older core dump readers, we set to EINTR) followed by any
2258 		 * siginfo associated with the signal.
2259 		 */
2260 		bzero(&killinfo, sizeof (killinfo));
2261 		killinfo.prk_error = EINTR;
2262 
2263 		sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo;
2264 
2265 		if (sq != NULL) {
2266 			bcopy(&sq->sq_info, &killinfo.prk_info,
2267 			    sizeof (sq->sq_info));
2268 		} else {
2269 			killinfo.prk_info.si_signo = lwp->lwp_cursig;
2270 			killinfo.prk_info.si_code = SI_NOINFO;
2271 		}
2272 
2273 #if (defined(_SYSCALL32_IMPL) || defined(_LP64))
2274 		/*
2275 		 * If this is a 32-bit process, we need to translate from the
2276 		 * native siginfo to the 32-bit variant.  (Core readers must
2277 		 * always have the same data model as their target or must
2278 		 * be aware of -- and compensate for -- data model differences.)
2279 		 */
2280 		if (curproc->p_model == DATAMODEL_ILP32) {
2281 			siginfo32_t si32;
2282 
2283 			siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32);
2284 			bcopy(&si32, &killinfo.prk_info, sizeof (si32));
2285 		}
2286 #endif
2287 
2288 		(void) core_write(vp, UIO_SYSSPACE, v[i].p_offset,
2289 		    &killinfo, sizeof (killinfo), rlimit, credp);
2290 
2291 		/*
2292 		 * For the segment on which we took the signal, indicate that
2293 		 * its data now refers to a siginfo.
2294 		 */
2295 		v[i].p_filesz = 0;
2296 		v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED |
2297 		    PF_SUNW_SIGINFO;
2298 
2299 		/*
2300 		 * And for every other segment, indicate that its absence
2301 		 * is due to a signal.
2302 		 */
2303 		for (j = i + 1; j < nphdrs; j++) {
2304 			v[j].p_filesz = 0;
2305 			v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED;
2306 		}
2307 
2308 		/*
2309 		 * Finally, write out our modified program headers.
2310 		 */
2311 		if ((error = core_write(vp, UIO_SYSSPACE,
2312 		    poffset + sizeof (v[i]) * i, &v[i],
2313 		    sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0)
2314 			goto done;
2315 
2316 		break;
2317 	}
2318 
2319 	if (nshdrs > 0) {
2320 		bzero(&bigwad->shdr[0], shdrsz);
2321 
2322 		if (nshdrs >= SHN_LORESERVE)
2323 			bigwad->shdr[0].sh_size = nshdrs;
2324 
2325 		if (nshdrs - 1 >= SHN_LORESERVE)
2326 			bigwad->shdr[0].sh_link = nshdrs - 1;
2327 
2328 		if (nphdrs >= PN_XNUM)
2329 			bigwad->shdr[0].sh_info = nphdrs;
2330 
2331 		if (nshdrs > 1) {
2332 			AS_LOCK_ENTER(as, RW_WRITER);
2333 			if ((error = process_scns(content, p, credp, vp,
2334 			    &bigwad->shdr[0], nshdrs, rlimit, &doffset,
2335 			    NULL)) != 0) {
2336 				AS_LOCK_EXIT(as);
2337 				goto done;
2338 			}
2339 			AS_LOCK_EXIT(as);
2340 		}
2341 
2342 		if ((error = core_write(vp, UIO_SYSSPACE, soffset,
2343 		    &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0)
2344 			goto done;
2345 	}
2346 
2347 done:
2348 	kmem_free(bigwad, bigsize);
2349 	return (error);
2350 }
2351 
2352 #ifndef	_ELF32_COMPAT
2353 
2354 static struct execsw esw = {
2355 #ifdef	_LP64
2356 	elf64magicstr,
2357 #else	/* _LP64 */
2358 	elf32magicstr,
2359 #endif	/* _LP64 */
2360 	0,
2361 	5,
2362 	elfexec,
2363 	elfcore
2364 };
2365 
2366 static struct modlexec modlexec = {
2367 	&mod_execops, "exec module for elf", &esw
2368 };
2369 
2370 #ifdef	_LP64
2371 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args,
2372 			intpdata_t *idatap, int level, long *execsz,
2373 			int setid, caddr_t exec_file, cred_t *cred,
2374 			int brand_action);
2375 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp,
2376 			rlim64_t rlimit, int sig, core_content_t content);
2377 
2378 static struct execsw esw32 = {
2379 	elf32magicstr,
2380 	0,
2381 	5,
2382 	elf32exec,
2383 	elf32core
2384 };
2385 
2386 static struct modlexec modlexec32 = {
2387 	&mod_execops, "32-bit exec module for elf", &esw32
2388 };
2389 #endif	/* _LP64 */
2390 
2391 static struct modlinkage modlinkage = {
2392 	MODREV_1,
2393 	(void *)&modlexec,
2394 #ifdef	_LP64
2395 	(void *)&modlexec32,
2396 #endif	/* _LP64 */
2397 	NULL
2398 };
2399 
2400 int
2401 _init(void)
2402 {
2403 	return (mod_install(&modlinkage));
2404 }
2405 
2406 int
2407 _fini(void)
2408 {
2409 	return (mod_remove(&modlinkage));
2410 }
2411 
2412 int
2413 _info(struct modinfo *modinfop)
2414 {
2415 	return (mod_info(&modlinkage, modinfop));
2416 }
2417 
2418 #endif	/* !_ELF32_COMPAT */
2419