xref: /illumos-gate/usr/src/uts/common/exec/elf/elf.c (revision 56726c7e321b6e5ecb2f10215f5386016547e68c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	   All Rights Reserved	*/
28 /*
29  * Copyright (c) 2019, Joyent, Inc.
30  * Copyright 2022 Oxide Computer Company
31  */
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/thread.h>
36 #include <sys/sysmacros.h>
37 #include <sys/signal.h>
38 #include <sys/cred.h>
39 #include <sys/user.h>
40 #include <sys/errno.h>
41 #include <sys/vnode.h>
42 #include <sys/mman.h>
43 #include <sys/kmem.h>
44 #include <sys/proc.h>
45 #include <sys/pathname.h>
46 #include <sys/policy.h>
47 #include <sys/cmn_err.h>
48 #include <sys/systm.h>
49 #include <sys/elf.h>
50 #include <sys/vmsystm.h>
51 #include <sys/debug.h>
52 #include <sys/auxv.h>
53 #include <sys/exec.h>
54 #include <sys/prsystm.h>
55 #include <vm/as.h>
56 #include <vm/rm.h>
57 #include <vm/seg.h>
58 #include <vm/seg_vn.h>
59 #include <sys/modctl.h>
60 #include <sys/systeminfo.h>
61 #include <sys/vmparam.h>
62 #include <sys/machelf.h>
63 #include <sys/shm_impl.h>
64 #include <sys/archsystm.h>
65 #include <sys/fasttrap.h>
66 #include <sys/brand.h>
67 #include "elf_impl.h"
68 #include <sys/sdt.h>
69 #include <sys/siginfo.h>
70 #include <sys/random.h>
71 
72 #include <core_shstrtab.h>
73 
74 #if defined(__x86)
75 #include <sys/comm_page_util.h>
76 #include <sys/fp.h>
77 #endif /* defined(__x86) */
78 
79 
80 extern int at_flags;
81 extern volatile size_t aslr_max_brk_skew;
82 
83 #define	ORIGIN_STR	"ORIGIN"
84 #define	ORIGIN_STR_SIZE	6
85 
86 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *);
87 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *,
88     ssize_t *);
89 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *,
90     ssize_t *, caddr_t *, ssize_t *);
91 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *);
92 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t,
93     Phdr **, Phdr **, Phdr **, Phdr **, Phdr *,
94     caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *);
95 
96 static int
97 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base)
98 {
99 	ASSERT(phdrp->p_type == PT_SUNWDTRACE);
100 
101 	/*
102 	 * See the comment in fasttrap.h for information on how to safely
103 	 * update this program header.
104 	 */
105 	if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE ||
106 	    (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X))
107 		return (-1);
108 
109 	args->thrptr = phdrp->p_vaddr + base;
110 
111 	return (0);
112 }
113 
114 static int
115 handle_secflag_dt(proc_t *p, uint_t dt, uint_t val)
116 {
117 	uint_t flag;
118 
119 	switch (dt) {
120 	case DT_SUNW_ASLR:
121 		flag = PROC_SEC_ASLR;
122 		break;
123 	default:
124 		return (EINVAL);
125 	}
126 
127 	if (val == 0) {
128 		if (secflag_isset(p->p_secflags.psf_lower, flag))
129 			return (EPERM);
130 		if ((secpolicy_psecflags(CRED(), p, p) != 0) &&
131 		    secflag_isset(p->p_secflags.psf_inherit, flag))
132 			return (EPERM);
133 
134 		secflag_clear(&p->p_secflags.psf_effective, flag);
135 	} else {
136 		if (!secflag_isset(p->p_secflags.psf_upper, flag))
137 			return (EPERM);
138 
139 		if ((secpolicy_psecflags(CRED(), p, p) != 0) &&
140 		    !secflag_isset(p->p_secflags.psf_inherit, flag))
141 			return (EPERM);
142 
143 		secflag_set(&p->p_secflags.psf_effective, flag);
144 	}
145 
146 	return (0);
147 }
148 
149 /*
150  * Map in the executable pointed to by vp. Returns 0 on success.
151  */
152 int
153 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr,
154     intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase,
155     caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap)
156 {
157 	size_t		len;
158 	struct vattr	vat;
159 	caddr_t		phdrbase = NULL;
160 	ssize_t		phdrsize;
161 	int		nshdrs, shstrndx, nphdrs;
162 	int		error = 0;
163 	Phdr		*uphdr = NULL;
164 	Phdr		*junk = NULL;
165 	Phdr		*dynphdr = NULL;
166 	Phdr		*dtrphdr = NULL;
167 	uintptr_t	lddata;
168 	long		execsz;
169 	intptr_t	minaddr;
170 
171 	if (lddatap != NULL)
172 		*lddatap = 0;
173 
174 	if (error = execpermissions(vp, &vat, args)) {
175 		uprintf("%s: Cannot execute %s\n", exec_file, args->pathname);
176 		return (error);
177 	}
178 
179 	if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx,
180 	    &nphdrs)) != 0 ||
181 	    (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase,
182 	    &phdrsize)) != 0) {
183 		uprintf("%s: Cannot read %s\n", exec_file, args->pathname);
184 		return (error);
185 	}
186 
187 	if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) {
188 		uprintf("%s: Nothing to load in %s", exec_file, args->pathname);
189 		kmem_free(phdrbase, phdrsize);
190 		return (ENOEXEC);
191 	}
192 	if (lddatap != NULL)
193 		*lddatap = lddata;
194 
195 	if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr,
196 	    &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr,
197 	    len, &execsz, brksize)) {
198 		uprintf("%s: Cannot map %s\n", exec_file, args->pathname);
199 		kmem_free(phdrbase, phdrsize);
200 		return (error);
201 	}
202 
203 	/*
204 	 * Inform our caller if the executable needs an interpreter.
205 	 */
206 	*interp = (dynphdr == NULL) ? 0 : 1;
207 
208 	/*
209 	 * If this is a statically linked executable, voffset should indicate
210 	 * the address of the executable itself (it normally holds the address
211 	 * of the interpreter).
212 	 */
213 	if (ehdr->e_type == ET_EXEC && *interp == 0)
214 		*voffset = minaddr;
215 
216 	if (uphdr != NULL) {
217 		*uphdr_vaddr = uphdr->p_vaddr;
218 	} else {
219 		*uphdr_vaddr = (Addr)-1;
220 	}
221 
222 	kmem_free(phdrbase, phdrsize);
223 	return (error);
224 }
225 
226 /*ARGSUSED*/
227 int
228 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap,
229     int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred,
230     int brand_action)
231 {
232 	caddr_t		phdrbase = NULL;
233 	caddr_t		bssbase = 0;
234 	caddr_t		brkbase = 0;
235 	size_t		brksize = 0;
236 	ssize_t		dlnsize;
237 	aux_entry_t	*aux;
238 	int		error;
239 	ssize_t		resid;
240 	int		fd = -1;
241 	intptr_t	voffset;
242 	Phdr		*intphdr = NULL;
243 	Phdr		*dynamicphdr = NULL;
244 	Phdr		*stphdr = NULL;
245 	Phdr		*uphdr = NULL;
246 	Phdr		*junk = NULL;
247 	size_t		len;
248 	size_t		i;
249 	ssize_t		phdrsize;
250 	int		postfixsize = 0;
251 	int		hsize;
252 	Phdr		*phdrp;
253 	Phdr		*dataphdrp = NULL;
254 	Phdr		*dtrphdr;
255 	Phdr		*capphdr = NULL;
256 	Cap		*cap = NULL;
257 	ssize_t		capsize;
258 	int		hasu = 0;
259 	int		hasauxv = 0;
260 	int		hasintp = 0;
261 	int		branded = 0;
262 
263 	struct proc *p = ttoproc(curthread);
264 	struct user *up = PTOU(p);
265 	struct bigwad {
266 		Ehdr	ehdr;
267 		aux_entry_t	elfargs[__KERN_NAUXV_IMPL];
268 		char		dl_name[MAXPATHLEN];
269 		char		pathbuf[MAXPATHLEN];
270 		struct vattr	vattr;
271 		struct execenv	exenv;
272 	} *bigwad;	/* kmem_alloc this behemoth so we don't blow stack */
273 	Ehdr		*ehdrp;
274 	int		nshdrs, shstrndx, nphdrs;
275 	char		*dlnp;
276 	char		*pathbufp;
277 	rlim64_t	limit;
278 	rlim64_t	roundlimit;
279 
280 	ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64);
281 
282 	bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP);
283 	ehdrp = &bigwad->ehdr;
284 	dlnp = bigwad->dl_name;
285 	pathbufp = bigwad->pathbuf;
286 
287 	/*
288 	 * Obtain ELF and program header information.
289 	 */
290 	if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx,
291 	    &nphdrs)) != 0 ||
292 	    (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase,
293 	    &phdrsize)) != 0)
294 		goto out;
295 
296 	/*
297 	 * Prevent executing an ELF file that has no entry point.
298 	 */
299 	if (ehdrp->e_entry == 0) {
300 		uprintf("%s: Bad entry point\n", exec_file);
301 		goto bad;
302 	}
303 
304 	/*
305 	 * Put data model that we're exec-ing to into the args passed to
306 	 * exec_args(), so it will know what it is copying to on new stack.
307 	 * Now that we know whether we are exec-ing a 32-bit or 64-bit
308 	 * executable, we can set execsz with the appropriate NCARGS.
309 	 */
310 #ifdef	_LP64
311 	if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) {
312 		args->to_model = DATAMODEL_ILP32;
313 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1);
314 	} else {
315 		args->to_model = DATAMODEL_LP64;
316 		args->stk_prot &= ~PROT_EXEC;
317 #if defined(__x86)
318 		args->dat_prot &= ~PROT_EXEC;
319 #endif
320 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1);
321 	}
322 #else	/* _LP64 */
323 	args->to_model = DATAMODEL_ILP32;
324 	*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1);
325 #endif	/* _LP64 */
326 
327 	/*
328 	 * We delay invoking the brand callback until we've figured out
329 	 * what kind of elf binary we're trying to run, 32-bit or 64-bit.
330 	 * We do this because now the brand library can just check
331 	 * args->to_model to see if the target is 32-bit or 64-bit without
332 	 * having do duplicate all the code above.
333 	 *
334 	 * The level checks associated with brand handling below are used to
335 	 * prevent a loop since the brand elfexec function typically comes back
336 	 * through this function. We must check <= here since the nested
337 	 * handling in the #! interpreter code will increment the level before
338 	 * calling gexec to run the final elfexec interpreter.
339 	 */
340 	if ((level <= INTP_MAXDEPTH) &&
341 	    (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
342 		error = BROP(p)->b_elfexec(vp, uap, args,
343 		    idatap, level + 1, execsz, setid, exec_file, cred,
344 		    brand_action);
345 		goto out;
346 	}
347 
348 	/*
349 	 * Determine aux size now so that stack can be built
350 	 * in one shot (except actual copyout of aux image),
351 	 * determine any non-default stack protections,
352 	 * and still have this code be machine independent.
353 	 */
354 	hsize = ehdrp->e_phentsize;
355 	phdrp = (Phdr *)phdrbase;
356 	for (i = nphdrs; i > 0; i--) {
357 		switch (phdrp->p_type) {
358 		case PT_INTERP:
359 			hasauxv = hasintp = 1;
360 			break;
361 		case PT_PHDR:
362 			hasu = 1;
363 			break;
364 		case PT_SUNWSTACK:
365 			args->stk_prot = PROT_USER;
366 			if (phdrp->p_flags & PF_R)
367 				args->stk_prot |= PROT_READ;
368 			if (phdrp->p_flags & PF_W)
369 				args->stk_prot |= PROT_WRITE;
370 			if (phdrp->p_flags & PF_X)
371 				args->stk_prot |= PROT_EXEC;
372 			break;
373 		case PT_LOAD:
374 			dataphdrp = phdrp;
375 			break;
376 		case PT_SUNWCAP:
377 			capphdr = phdrp;
378 			break;
379 		case PT_DYNAMIC:
380 			dynamicphdr = phdrp;
381 			break;
382 		}
383 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
384 	}
385 
386 	if (ehdrp->e_type != ET_EXEC) {
387 		dataphdrp = NULL;
388 		hasauxv = 1;
389 	}
390 
391 	/* Copy BSS permissions to args->dat_prot */
392 	if (dataphdrp != NULL) {
393 		args->dat_prot = PROT_USER;
394 		if (dataphdrp->p_flags & PF_R)
395 			args->dat_prot |= PROT_READ;
396 		if (dataphdrp->p_flags & PF_W)
397 			args->dat_prot |= PROT_WRITE;
398 		if (dataphdrp->p_flags & PF_X)
399 			args->dat_prot |= PROT_EXEC;
400 	}
401 
402 	/*
403 	 * If a auxvector will be required - reserve the space for
404 	 * it now.  This may be increased by exec_args if there are
405 	 * ISA-specific types (included in __KERN_NAUXV_IMPL).
406 	 */
407 	if (hasauxv) {
408 		/*
409 		 * If a AUX vector is being built - the base AUX
410 		 * entries are:
411 		 *
412 		 *	AT_BASE
413 		 *	AT_FLAGS
414 		 *	AT_PAGESZ
415 		 *	AT_SUN_AUXFLAGS
416 		 *	AT_SUN_HWCAP
417 		 *	AT_SUN_HWCAP2
418 		 *	AT_SUN_HWCAP3
419 		 *	AT_SUN_PLATFORM (added in stk_copyout)
420 		 *	AT_SUN_EXECNAME (added in stk_copyout)
421 		 *	AT_NULL
422 		 *
423 		 * total == 10
424 		 */
425 		if (hasintp && hasu) {
426 			/*
427 			 * Has PT_INTERP & PT_PHDR - the auxvectors that
428 			 * will be built are:
429 			 *
430 			 *	AT_PHDR
431 			 *	AT_PHENT
432 			 *	AT_PHNUM
433 			 *	AT_ENTRY
434 			 *	AT_LDDATA
435 			 *
436 			 * total = 5
437 			 */
438 			args->auxsize = (10 + 5) * sizeof (aux_entry_t);
439 		} else if (hasintp) {
440 			/*
441 			 * Has PT_INTERP but no PT_PHDR
442 			 *
443 			 *	AT_EXECFD
444 			 *	AT_LDDATA
445 			 *
446 			 * total = 2
447 			 */
448 			args->auxsize = (10 + 2) * sizeof (aux_entry_t);
449 		} else {
450 			args->auxsize = 10 * sizeof (aux_entry_t);
451 		}
452 	} else {
453 		args->auxsize = 0;
454 	}
455 
456 	/*
457 	 * If this binary is using an emulator, we need to add an
458 	 * AT_SUN_EMULATOR aux entry.
459 	 */
460 	if (args->emulator != NULL)
461 		args->auxsize += sizeof (aux_entry_t);
462 
463 	/*
464 	 * On supported kernels (x86_64) make room in the auxv for the
465 	 * AT_SUN_COMMPAGE entry.  This will go unpopulated on i86xpv systems
466 	 * which do not provide such functionality.
467 	 *
468 	 * Additionally cover the floating point information AT_SUN_FPSIZE and
469 	 * AT_SUN_FPTYPE.
470 	 */
471 #if defined(__amd64)
472 	args->auxsize += 3 * sizeof (aux_entry_t);
473 #endif /* defined(__amd64) */
474 
475 	if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
476 		branded = 1;
477 		/*
478 		 * We will be adding 4 entries to the aux vectors.  One for
479 		 * the the brandname and 3 for the brand specific aux vectors.
480 		 */
481 		args->auxsize += 4 * sizeof (aux_entry_t);
482 	}
483 
484 	/* If the binary has an explicit ASLR flag, it must be honoured */
485 	if ((dynamicphdr != NULL) && (dynamicphdr->p_filesz > 0)) {
486 		const size_t dynfilesz = dynamicphdr->p_filesz;
487 		const size_t dynoffset = dynamicphdr->p_offset;
488 		Dyn *dyn, *dp;
489 
490 		if (dynoffset > MAXOFFSET_T ||
491 		    dynfilesz > MAXOFFSET_T ||
492 		    dynoffset + dynfilesz > MAXOFFSET_T) {
493 			uprintf("%s: cannot read full .dynamic section\n",
494 			    exec_file);
495 			error = EINVAL;
496 			goto out;
497 		}
498 
499 #define	DYN_STRIDE	100
500 		for (i = 0; i < dynfilesz; i += sizeof (*dyn) * DYN_STRIDE) {
501 			const size_t remdyns = (dynfilesz - i) / sizeof (*dyn);
502 			const size_t ndyns = MIN(DYN_STRIDE, remdyns);
503 			const size_t dynsize = ndyns * sizeof (*dyn);
504 
505 			dyn = kmem_alloc(dynsize, KM_SLEEP);
506 
507 			if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)dyn,
508 			    (ssize_t)dynsize, (offset_t)(dynoffset + i),
509 			    UIO_SYSSPACE, 0, (rlim64_t)0,
510 			    CRED(), &resid)) != 0) {
511 				uprintf("%s: cannot read .dynamic section\n",
512 				    exec_file);
513 				goto out;
514 			}
515 
516 			for (dp = dyn; dp < (dyn + ndyns); dp++) {
517 				if (dp->d_tag == DT_SUNW_ASLR) {
518 					if ((error = handle_secflag_dt(p,
519 					    DT_SUNW_ASLR,
520 					    dp->d_un.d_val)) != 0) {
521 						uprintf("%s: error setting "
522 						    "security-flag from "
523 						    "DT_SUNW_ASLR: %d\n",
524 						    exec_file, error);
525 						goto out;
526 					}
527 				}
528 			}
529 
530 			kmem_free(dyn, dynsize);
531 		}
532 	}
533 
534 	/* Hardware/Software capabilities */
535 	if (capphdr != NULL &&
536 	    (capsize = capphdr->p_filesz) > 0 &&
537 	    capsize <= 16 * sizeof (*cap)) {
538 		int ncaps = capsize / sizeof (*cap);
539 		Cap *cp;
540 
541 		cap = kmem_alloc(capsize, KM_SLEEP);
542 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap,
543 		    capsize, (offset_t)capphdr->p_offset,
544 		    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
545 			uprintf("%s: Cannot read capabilities section\n",
546 			    exec_file);
547 			goto out;
548 		}
549 		for (cp = cap; cp < cap + ncaps; cp++) {
550 			if (cp->c_tag == CA_SUNW_SF_1 &&
551 			    (cp->c_un.c_val & SF1_SUNW_ADDR32)) {
552 				if (args->to_model == DATAMODEL_LP64)
553 					args->addr32 = 1;
554 				break;
555 			}
556 		}
557 	}
558 
559 	aux = bigwad->elfargs;
560 	/*
561 	 * Move args to the user's stack.
562 	 * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries.
563 	 */
564 	if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) {
565 		if (error == -1) {
566 			error = ENOEXEC;
567 			goto bad;
568 		}
569 		goto out;
570 	}
571 	/* we're single threaded after this point */
572 
573 	/*
574 	 * If this is an ET_DYN executable (shared object),
575 	 * determine its memory size so that mapelfexec() can load it.
576 	 */
577 	if (ehdrp->e_type == ET_DYN)
578 		len = elfsize(ehdrp, nphdrs, phdrbase, NULL);
579 	else
580 		len = 0;
581 
582 	dtrphdr = NULL;
583 
584 	if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &intphdr,
585 	    &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL,
586 	    len, execsz, &brksize)) != 0)
587 		goto bad;
588 
589 	if (uphdr != NULL && intphdr == NULL)
590 		goto bad;
591 
592 	if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
593 		uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file);
594 		goto bad;
595 	}
596 
597 	if (intphdr != NULL) {
598 		size_t		len;
599 		uintptr_t	lddata;
600 		char		*p;
601 		struct vnode	*nvp;
602 
603 		dlnsize = intphdr->p_filesz;
604 
605 		if (dlnsize > MAXPATHLEN || dlnsize <= 0)
606 			goto bad;
607 
608 		/*
609 		 * Read in "interpreter" pathname.
610 		 */
611 		if ((error = vn_rdwr(UIO_READ, vp, dlnp, intphdr->p_filesz,
612 		    (offset_t)intphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
613 		    CRED(), &resid)) != 0) {
614 			uprintf("%s: Cannot obtain interpreter pathname\n",
615 			    exec_file);
616 			goto bad;
617 		}
618 
619 		if (resid != 0 || dlnp[dlnsize - 1] != '\0')
620 			goto bad;
621 
622 		/*
623 		 * Search for '$ORIGIN' token in interpreter path.
624 		 * If found, expand it.
625 		 */
626 		for (p = dlnp; p = strchr(p, '$'); ) {
627 			uint_t	len, curlen;
628 			char	*_ptr;
629 
630 			if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE))
631 				continue;
632 
633 			/*
634 			 * We don't support $ORIGIN on setid programs to close
635 			 * a potential attack vector.
636 			 */
637 			if ((setid & EXECSETID_SETID) != 0) {
638 				error = ENOEXEC;
639 				goto bad;
640 			}
641 
642 			curlen = 0;
643 			len = p - dlnp - 1;
644 			if (len) {
645 				bcopy(dlnp, pathbufp, len);
646 				curlen += len;
647 			}
648 			if (_ptr = strrchr(args->pathname, '/')) {
649 				len = _ptr - args->pathname;
650 				if ((curlen + len) > MAXPATHLEN)
651 					break;
652 
653 				bcopy(args->pathname, &pathbufp[curlen], len);
654 				curlen += len;
655 			} else {
656 				/*
657 				 * executable is a basename found in the
658 				 * current directory.  So - just substitue
659 				 * '.' for ORIGIN.
660 				 */
661 				pathbufp[curlen] = '.';
662 				curlen++;
663 			}
664 			p += ORIGIN_STR_SIZE;
665 			len = strlen(p);
666 
667 			if ((curlen + len) > MAXPATHLEN)
668 				break;
669 			bcopy(p, &pathbufp[curlen], len);
670 			curlen += len;
671 			pathbufp[curlen++] = '\0';
672 			bcopy(pathbufp, dlnp, curlen);
673 		}
674 
675 		/*
676 		 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1
677 		 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1).
678 		 * Just in case /usr is not mounted, change it now.
679 		 */
680 		if (strcmp(dlnp, USR_LIB_RTLD) == 0)
681 			dlnp += 4;
682 		error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp);
683 		if (error && dlnp != bigwad->dl_name) {
684 			/* new kernel, old user-level */
685 			error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW,
686 			    NULLVPP, &nvp);
687 		}
688 		if (error) {
689 			uprintf("%s: Cannot find %s\n", exec_file, dlnp);
690 			goto bad;
691 		}
692 
693 		/*
694 		 * Setup the "aux" vector.
695 		 */
696 		if (uphdr) {
697 			if (ehdrp->e_type == ET_DYN) {
698 				/* don't use the first page */
699 				bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE;
700 				bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE;
701 			} else {
702 				bigwad->exenv.ex_bssbase = bssbase;
703 				bigwad->exenv.ex_brkbase = brkbase;
704 			}
705 			bigwad->exenv.ex_brksize = brksize;
706 			bigwad->exenv.ex_magic = elfmagic;
707 			bigwad->exenv.ex_vp = vp;
708 			setexecenv(&bigwad->exenv);
709 
710 			ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset)
711 			ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize)
712 			ADDAUX(aux, AT_PHNUM, nphdrs)
713 			ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset)
714 		} else {
715 			if ((error = execopen(&vp, &fd)) != 0) {
716 				VN_RELE(nvp);
717 				goto bad;
718 			}
719 
720 			ADDAUX(aux, AT_EXECFD, fd)
721 		}
722 
723 		if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) {
724 			VN_RELE(nvp);
725 			uprintf("%s: Cannot execute %s\n", exec_file, dlnp);
726 			goto bad;
727 		}
728 
729 		/*
730 		 * Now obtain the ELF header along with the entire program
731 		 * header contained in "nvp".
732 		 */
733 		kmem_free(phdrbase, phdrsize);
734 		phdrbase = NULL;
735 		if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs,
736 		    &shstrndx, &nphdrs)) != 0 ||
737 		    (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase,
738 		    &phdrsize)) != 0) {
739 			VN_RELE(nvp);
740 			uprintf("%s: Cannot read %s\n", exec_file, dlnp);
741 			goto bad;
742 		}
743 
744 		/*
745 		 * Determine memory size of the "interpreter's" loadable
746 		 * sections.  This size is then used to obtain the virtual
747 		 * address of a hole, in the user's address space, large
748 		 * enough to map the "interpreter".
749 		 */
750 		if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) {
751 			VN_RELE(nvp);
752 			uprintf("%s: Nothing to load in %s\n", exec_file, dlnp);
753 			goto bad;
754 		}
755 
756 		dtrphdr = NULL;
757 
758 		error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk,
759 		    &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len,
760 		    execsz, NULL);
761 		if (error || junk != NULL) {
762 			VN_RELE(nvp);
763 			uprintf("%s: Cannot map %s\n", exec_file, dlnp);
764 			goto bad;
765 		}
766 
767 		/*
768 		 * We use the DTrace program header to initialize the
769 		 * architecture-specific user per-LWP location. The dtrace
770 		 * fasttrap provider requires ready access to per-LWP scratch
771 		 * space. We assume that there is only one such program header
772 		 * in the interpreter.
773 		 */
774 		if (dtrphdr != NULL &&
775 		    dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
776 			VN_RELE(nvp);
777 			uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp);
778 			goto bad;
779 		}
780 
781 		VN_RELE(nvp);
782 		ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata)
783 	}
784 
785 	if (hasauxv) {
786 		int auxf = AF_SUN_HWCAPVERIFY;
787 #if defined(__amd64)
788 		size_t fpsize;
789 		int fptype;
790 #endif /* defined(__amd64) */
791 
792 		/*
793 		 * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via
794 		 * exec_args()
795 		 */
796 		ADDAUX(aux, AT_BASE, voffset)
797 		ADDAUX(aux, AT_FLAGS, at_flags)
798 		ADDAUX(aux, AT_PAGESZ, PAGESIZE)
799 		/*
800 		 * Linker flags. (security)
801 		 * p_flag not yet set at this time.
802 		 * We rely on gexec() to provide us with the information.
803 		 * If the application is set-uid but this is not reflected
804 		 * in a mismatch between real/effective uids/gids, then
805 		 * don't treat this as a set-uid exec.  So we care about
806 		 * the EXECSETID_UGIDS flag but not the ...SETID flag.
807 		 */
808 		if ((setid &= ~EXECSETID_SETID) != 0)
809 			auxf |= AF_SUN_SETUGID;
810 
811 		/*
812 		 * If we're running a native process from within a branded
813 		 * zone under pfexec then we clear the AF_SUN_SETUGID flag so
814 		 * that the native ld.so.1 is able to link with the native
815 		 * libraries instead of using the brand libraries that are
816 		 * installed in the zone.  We only do this for processes
817 		 * which we trust because we see they are already running
818 		 * under pfexec (where uid != euid).  This prevents a
819 		 * malicious user within the zone from crafting a wrapper to
820 		 * run native suid commands with unsecure libraries interposed.
821 		 */
822 		if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) &&
823 		    (setid &= ~EXECSETID_SETID) != 0))
824 			auxf &= ~AF_SUN_SETUGID;
825 
826 		/*
827 		 * Record the user addr of the auxflags aux vector entry
828 		 * since brands may optionally want to manipulate this field.
829 		 */
830 		args->auxp_auxflags =
831 		    (char *)((char *)args->stackend +
832 		    ((char *)&aux->a_type -
833 		    (char *)bigwad->elfargs));
834 		ADDAUX(aux, AT_SUN_AUXFLAGS, auxf);
835 
836 		/*
837 		 * Hardware capability flag word (performance hints)
838 		 * Used for choosing faster library routines.
839 		 * (Potentially different between 32-bit and 64-bit ABIs)
840 		 */
841 		if (args->to_model == DATAMODEL_NATIVE) {
842 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
843 			ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2)
844 			ADDAUX(aux, AT_SUN_HWCAP3, auxv_hwcap_3)
845 		} else {
846 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32)
847 			ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2)
848 			ADDAUX(aux, AT_SUN_HWCAP3, auxv_hwcap32_3)
849 		}
850 
851 		if (branded) {
852 			/*
853 			 * Reserve space for the brand-private aux vectors,
854 			 * and record the user addr of that space.
855 			 */
856 			args->auxp_brand =
857 			    (char *)((char *)args->stackend +
858 			    ((char *)&aux->a_type -
859 			    (char *)bigwad->elfargs));
860 			ADDAUX(aux, AT_SUN_BRAND_AUX1, 0)
861 			ADDAUX(aux, AT_SUN_BRAND_AUX2, 0)
862 			ADDAUX(aux, AT_SUN_BRAND_AUX3, 0)
863 		}
864 
865 		/*
866 		 * Add the comm page auxv entry, mapping it in if needed. Also
867 		 * take care of the FPU entries.
868 		 */
869 #if defined(__amd64)
870 		if (args->commpage != (uintptr_t)NULL ||
871 		    (args->commpage = (uintptr_t)comm_page_mapin()) !=
872 		    (uintptr_t)NULL) {
873 			ADDAUX(aux, AT_SUN_COMMPAGE, args->commpage)
874 		} else {
875 			/*
876 			 * If the comm page cannot be mapped, pad out the auxv
877 			 * to satisfy later size checks.
878 			 */
879 			ADDAUX(aux, AT_NULL, 0)
880 		}
881 
882 		fptype = AT_386_FPINFO_NONE;
883 		fpu_auxv_info(&fptype, &fpsize);
884 		if (fptype != AT_386_FPINFO_NONE) {
885 			ADDAUX(aux, AT_SUN_FPTYPE, fptype)
886 			ADDAUX(aux, AT_SUN_FPSIZE, fpsize)
887 		} else {
888 			ADDAUX(aux, AT_NULL, 0)
889 			ADDAUX(aux, AT_NULL, 0)
890 		}
891 #endif /* defined(__amd64) */
892 
893 		ADDAUX(aux, AT_NULL, 0)
894 		postfixsize = (char *)aux - (char *)bigwad->elfargs;
895 
896 		/*
897 		 * We make assumptions above when we determine how many aux
898 		 * vector entries we will be adding. However, if we have an
899 		 * invalid elf file, it is possible that mapelfexec might
900 		 * behave differently (but not return an error), in which case
901 		 * the number of aux entries we actually add will be different.
902 		 * We detect that now and error out.
903 		 */
904 		if (postfixsize != args->auxsize) {
905 			DTRACE_PROBE2(elfexec_badaux, int, postfixsize,
906 			    int, args->auxsize);
907 			goto bad;
908 		}
909 		ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t));
910 	}
911 
912 	/*
913 	 * For the 64-bit kernel, the limit is big enough that rounding it up
914 	 * to a page can overflow the 64-bit limit, so we check for btopr()
915 	 * overflowing here by comparing it with the unrounded limit in pages.
916 	 * If it hasn't overflowed, compare the exec size with the rounded up
917 	 * limit in pages.  Otherwise, just compare with the unrounded limit.
918 	 */
919 	limit = btop(p->p_vmem_ctl);
920 	roundlimit = btopr(p->p_vmem_ctl);
921 	if ((roundlimit > limit && *execsz > roundlimit) ||
922 	    (roundlimit < limit && *execsz > limit)) {
923 		mutex_enter(&p->p_lock);
924 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
925 		    RCA_SAFE);
926 		mutex_exit(&p->p_lock);
927 		error = ENOMEM;
928 		goto bad;
929 	}
930 
931 	bzero(up->u_auxv, sizeof (up->u_auxv));
932 	up->u_commpagep = args->commpage;
933 	if (postfixsize) {
934 		int num_auxv;
935 
936 		/*
937 		 * Copy the aux vector to the user stack.
938 		 */
939 		error = execpoststack(args, bigwad->elfargs, postfixsize);
940 		if (error)
941 			goto bad;
942 
943 		/*
944 		 * Copy auxv to the process's user structure for use by /proc.
945 		 * If this is a branded process, the brand's exec routine will
946 		 * copy it's private entries to the user structure later. It
947 		 * relies on the fact that the blank entries are at the end.
948 		 */
949 		num_auxv = postfixsize / sizeof (aux_entry_t);
950 		ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t));
951 		aux = bigwad->elfargs;
952 		for (i = 0; i < num_auxv; i++) {
953 			up->u_auxv[i].a_type = aux[i].a_type;
954 			up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val;
955 		}
956 	}
957 
958 	/*
959 	 * Pass back the starting address so we can set the program counter.
960 	 */
961 	args->entry = (uintptr_t)(ehdrp->e_entry + voffset);
962 
963 	if (!uphdr) {
964 		if (ehdrp->e_type == ET_DYN) {
965 			/*
966 			 * If we are executing a shared library which doesn't
967 			 * have a interpreter (probably ld.so.1) then
968 			 * we don't set the brkbase now.  Instead we
969 			 * delay it's setting until the first call
970 			 * via grow.c::brk().  This permits ld.so.1 to
971 			 * initialize brkbase to the tail of the executable it
972 			 * loads (which is where it needs to be).
973 			 */
974 			bigwad->exenv.ex_brkbase = (caddr_t)0;
975 			bigwad->exenv.ex_bssbase = (caddr_t)0;
976 			bigwad->exenv.ex_brksize = 0;
977 		} else {
978 			bigwad->exenv.ex_brkbase = brkbase;
979 			bigwad->exenv.ex_bssbase = bssbase;
980 			bigwad->exenv.ex_brksize = brksize;
981 		}
982 		bigwad->exenv.ex_magic = elfmagic;
983 		bigwad->exenv.ex_vp = vp;
984 		setexecenv(&bigwad->exenv);
985 	}
986 
987 	ASSERT(error == 0);
988 	goto out;
989 
990 bad:
991 	if (fd != -1)		/* did we open the a.out yet */
992 		(void) execclose(fd);
993 
994 	psignal(p, SIGKILL);
995 
996 	if (error == 0)
997 		error = ENOEXEC;
998 out:
999 	if (phdrbase != NULL)
1000 		kmem_free(phdrbase, phdrsize);
1001 	if (cap != NULL)
1002 		kmem_free(cap, capsize);
1003 	kmem_free(bigwad, sizeof (struct bigwad));
1004 	return (error);
1005 }
1006 
1007 /*
1008  * Compute the memory size requirement for the ELF file.
1009  */
1010 static size_t
1011 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata)
1012 {
1013 	size_t	len;
1014 	Phdr	*phdrp = (Phdr *)phdrbase;
1015 	int	hsize = ehdrp->e_phentsize;
1016 	int	first = 1;
1017 	int	dfirst = 1;	/* first data segment */
1018 	uintptr_t loaddr = 0;
1019 	uintptr_t hiaddr = 0;
1020 	uintptr_t lo, hi;
1021 	int	i;
1022 
1023 	for (i = nphdrs; i > 0; i--) {
1024 		if (phdrp->p_type == PT_LOAD) {
1025 			lo = phdrp->p_vaddr;
1026 			hi = lo + phdrp->p_memsz;
1027 			if (first) {
1028 				loaddr = lo;
1029 				hiaddr = hi;
1030 				first = 0;
1031 			} else {
1032 				if (loaddr > lo)
1033 					loaddr = lo;
1034 				if (hiaddr < hi)
1035 					hiaddr = hi;
1036 			}
1037 
1038 			/*
1039 			 * save the address of the first data segment
1040 			 * of a object - used for the AT_SUNW_LDDATA
1041 			 * aux entry.
1042 			 */
1043 			if ((lddata != NULL) && dfirst &&
1044 			    (phdrp->p_flags & PF_W)) {
1045 				*lddata = lo;
1046 				dfirst = 0;
1047 			}
1048 		}
1049 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
1050 	}
1051 
1052 	len = hiaddr - (loaddr & PAGEMASK);
1053 	len = roundup(len, PAGESIZE);
1054 
1055 	return (len);
1056 }
1057 
1058 /*
1059  * Read in the ELF header and program header table.
1060  * SUSV3 requires:
1061  *	ENOEXEC	File format is not recognized
1062  *	EINVAL	Format recognized but execution not supported
1063  */
1064 static int
1065 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx,
1066     int *nphdrs)
1067 {
1068 	int error;
1069 	ssize_t resid;
1070 
1071 	/*
1072 	 * We got here by the first two bytes in ident,
1073 	 * now read the entire ELF header.
1074 	 */
1075 	if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr,
1076 	    sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0,
1077 	    (rlim64_t)0, credp, &resid)) != 0)
1078 		return (error);
1079 
1080 	/*
1081 	 * Since a separate version is compiled for handling 32-bit and
1082 	 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version
1083 	 * doesn't need to be able to deal with 32-bit ELF files.
1084 	 */
1085 	if (resid != 0 ||
1086 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1087 	    ehdr->e_ident[EI_MAG3] != ELFMAG3)
1088 		return (ENOEXEC);
1089 
1090 	if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) ||
1091 #if defined(_ILP32) || defined(_ELF32_COMPAT)
1092 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1093 #else
1094 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1095 #endif
1096 	    !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine,
1097 	    ehdr->e_flags))
1098 		return (EINVAL);
1099 
1100 	*nshdrs = ehdr->e_shnum;
1101 	*shstrndx = ehdr->e_shstrndx;
1102 	*nphdrs = ehdr->e_phnum;
1103 
1104 	/*
1105 	 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need
1106 	 * to read in the section header at index zero to acces the true
1107 	 * values for those fields.
1108 	 */
1109 	if ((*nshdrs == 0 && ehdr->e_shoff != 0) ||
1110 	    *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) {
1111 		Shdr shdr;
1112 
1113 		if (ehdr->e_shoff == 0)
1114 			return (EINVAL);
1115 
1116 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr,
1117 		    sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0,
1118 		    (rlim64_t)0, credp, &resid)) != 0)
1119 			return (error);
1120 
1121 		if (*nshdrs == 0)
1122 			*nshdrs = shdr.sh_size;
1123 		if (*shstrndx == SHN_XINDEX)
1124 			*shstrndx = shdr.sh_link;
1125 		if (*nphdrs == PN_XNUM && shdr.sh_info != 0)
1126 			*nphdrs = shdr.sh_info;
1127 	}
1128 
1129 	return (0);
1130 }
1131 
1132 #ifdef _ELF32_COMPAT
1133 extern size_t elf_nphdr_max;
1134 #else
1135 size_t elf_nphdr_max = 1000;
1136 #endif
1137 
1138 static int
1139 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs,
1140     caddr_t *phbasep, ssize_t *phsizep)
1141 {
1142 	ssize_t resid, minsize;
1143 	int err;
1144 
1145 	/*
1146 	 * Since we're going to be using e_phentsize to iterate down the
1147 	 * array of program headers, it must be 8-byte aligned or else
1148 	 * a we might cause a misaligned access. We use all members through
1149 	 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so
1150 	 * e_phentsize must be at least large enough to include those
1151 	 * members.
1152 	 */
1153 #if !defined(_LP64) || defined(_ELF32_COMPAT)
1154 	minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags);
1155 #else
1156 	minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz);
1157 #endif
1158 	if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3))
1159 		return (EINVAL);
1160 
1161 	*phsizep = nphdrs * ehdr->e_phentsize;
1162 
1163 	if (*phsizep > sizeof (Phdr) * elf_nphdr_max) {
1164 		if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL)
1165 			return (ENOMEM);
1166 	} else {
1167 		*phbasep = kmem_alloc(*phsizep, KM_SLEEP);
1168 	}
1169 
1170 	if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep,
1171 	    (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1172 	    credp, &resid)) != 0) {
1173 		kmem_free(*phbasep, *phsizep);
1174 		*phbasep = NULL;
1175 		return (err);
1176 	}
1177 
1178 	return (0);
1179 }
1180 
1181 #ifdef _ELF32_COMPAT
1182 extern size_t elf_nshdr_max;
1183 extern size_t elf_shstrtab_max;
1184 #else
1185 size_t elf_nshdr_max = 10000;
1186 size_t elf_shstrtab_max = 100 * 1024;
1187 #endif
1188 
1189 
1190 static int
1191 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr,
1192     int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep,
1193     char **shstrbasep, ssize_t *shstrsizep)
1194 {
1195 	ssize_t resid, minsize;
1196 	int err;
1197 	Shdr *shdr;
1198 
1199 	/*
1200 	 * Since we're going to be using e_shentsize to iterate down the
1201 	 * array of section headers, it must be 8-byte aligned or else
1202 	 * a we might cause a misaligned access. We use all members through
1203 	 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize
1204 	 * must be at least large enough to include that member. The index
1205 	 * of the string table section must also be valid.
1206 	 */
1207 	minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize);
1208 	if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) ||
1209 	    shstrndx >= nshdrs)
1210 		return (EINVAL);
1211 
1212 	*shsizep = nshdrs * ehdr->e_shentsize;
1213 
1214 	if (*shsizep > sizeof (Shdr) * elf_nshdr_max) {
1215 		if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL)
1216 			return (ENOMEM);
1217 	} else {
1218 		*shbasep = kmem_alloc(*shsizep, KM_SLEEP);
1219 	}
1220 
1221 	if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep,
1222 	    (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1223 	    credp, &resid)) != 0) {
1224 		kmem_free(*shbasep, *shsizep);
1225 		return (err);
1226 	}
1227 
1228 	/*
1229 	 * Pull the section string table out of the vnode; fail if the size
1230 	 * is zero.
1231 	 */
1232 	shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize);
1233 	if ((*shstrsizep = shdr->sh_size) == 0) {
1234 		kmem_free(*shbasep, *shsizep);
1235 		return (EINVAL);
1236 	}
1237 
1238 	if (*shstrsizep > elf_shstrtab_max) {
1239 		if ((*shstrbasep = kmem_alloc(*shstrsizep,
1240 		    KM_NOSLEEP)) == NULL) {
1241 			kmem_free(*shbasep, *shsizep);
1242 			return (ENOMEM);
1243 		}
1244 	} else {
1245 		*shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP);
1246 	}
1247 
1248 	if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep,
1249 	    (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
1250 	    credp, &resid)) != 0) {
1251 		kmem_free(*shbasep, *shsizep);
1252 		kmem_free(*shstrbasep, *shstrsizep);
1253 		return (err);
1254 	}
1255 
1256 	/*
1257 	 * Make sure the strtab is null-terminated to make sure we
1258 	 * don't run off the end of the table.
1259 	 */
1260 	(*shstrbasep)[*shstrsizep - 1] = '\0';
1261 
1262 	return (0);
1263 }
1264 
1265 static int
1266 mapelfexec(
1267 	vnode_t *vp,
1268 	Ehdr *ehdr,
1269 	int nphdrs,
1270 	caddr_t phdrbase,
1271 	Phdr **uphdr,
1272 	Phdr **intphdr,
1273 	Phdr **stphdr,
1274 	Phdr **dtphdr,
1275 	Phdr *dataphdrp,
1276 	caddr_t *bssbase,
1277 	caddr_t *brkbase,
1278 	intptr_t *voffset,
1279 	intptr_t *minaddr,
1280 	size_t len,
1281 	long *execsz,
1282 	size_t *brksize)
1283 {
1284 	Phdr *phdr;
1285 	int i, prot, error;
1286 	caddr_t addr = NULL;
1287 	size_t zfodsz;
1288 	int ptload = 0;
1289 	int page;
1290 	off_t offset;
1291 	int hsize = ehdr->e_phentsize;
1292 	caddr_t mintmp = (caddr_t)-1;
1293 	extern int use_brk_lpg;
1294 
1295 	if (ehdr->e_type == ET_DYN) {
1296 		secflagset_t flags = 0;
1297 		/*
1298 		 * Obtain the virtual address of a hole in the
1299 		 * address space to map the "interpreter".
1300 		 */
1301 		if (secflag_enabled(curproc, PROC_SEC_ASLR))
1302 			flags |= _MAP_RANDOMIZE;
1303 
1304 		map_addr(&addr, len, (offset_t)0, 1, flags);
1305 		if (addr == NULL)
1306 			return (ENOMEM);
1307 		*voffset = (intptr_t)addr;
1308 
1309 		/*
1310 		 * Calculate the minimum vaddr so it can be subtracted out.
1311 		 * According to the ELF specification, since PT_LOAD sections
1312 		 * must be sorted by increasing p_vaddr values, this is
1313 		 * guaranteed to be the first PT_LOAD section.
1314 		 */
1315 		phdr = (Phdr *)phdrbase;
1316 		for (i = nphdrs; i > 0; i--) {
1317 			if (phdr->p_type == PT_LOAD) {
1318 				*voffset -= (uintptr_t)phdr->p_vaddr;
1319 				break;
1320 			}
1321 			phdr = (Phdr *)((caddr_t)phdr + hsize);
1322 		}
1323 
1324 	} else {
1325 		*voffset = 0;
1326 	}
1327 	phdr = (Phdr *)phdrbase;
1328 	for (i = nphdrs; i > 0; i--) {
1329 		switch (phdr->p_type) {
1330 		case PT_LOAD:
1331 			if ((*intphdr != NULL) && (*uphdr == NULL))
1332 				return (0);
1333 
1334 			ptload = 1;
1335 			prot = PROT_USER;
1336 			if (phdr->p_flags & PF_R)
1337 				prot |= PROT_READ;
1338 			if (phdr->p_flags & PF_W)
1339 				prot |= PROT_WRITE;
1340 			if (phdr->p_flags & PF_X)
1341 				prot |= PROT_EXEC;
1342 
1343 			addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset);
1344 
1345 			/*
1346 			 * Keep track of the segment with the lowest starting
1347 			 * address.
1348 			 */
1349 			if (addr < mintmp)
1350 				mintmp = addr;
1351 
1352 			zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz;
1353 
1354 			offset = phdr->p_offset;
1355 			if (((uintptr_t)offset & PAGEOFFSET) ==
1356 			    ((uintptr_t)addr & PAGEOFFSET) &&
1357 			    (!(vp->v_flag & VNOMAP))) {
1358 				page = 1;
1359 			} else {
1360 				page = 0;
1361 			}
1362 
1363 			/*
1364 			 * Set the heap pagesize for OOB when the bss size
1365 			 * is known and use_brk_lpg is not 0.
1366 			 */
1367 			if (brksize != NULL && use_brk_lpg &&
1368 			    zfodsz != 0 && phdr == dataphdrp &&
1369 			    (prot & PROT_WRITE)) {
1370 				size_t tlen = P2NPHASE((uintptr_t)addr +
1371 				    phdr->p_filesz, PAGESIZE);
1372 
1373 				if (zfodsz > tlen) {
1374 					curproc->p_brkpageszc =
1375 					    page_szc(map_pgsz(MAPPGSZ_HEAP,
1376 					    curproc, addr + phdr->p_filesz +
1377 					    tlen, zfodsz - tlen, 0));
1378 				}
1379 			}
1380 
1381 			if (curproc->p_brkpageszc != 0 && phdr == dataphdrp &&
1382 			    (prot & PROT_WRITE)) {
1383 				uint_t	szc = curproc->p_brkpageszc;
1384 				size_t pgsz = page_get_pagesize(szc);
1385 				caddr_t ebss = addr + phdr->p_memsz;
1386 				/*
1387 				 * If we need extra space to keep the BSS an
1388 				 * integral number of pages in size, some of
1389 				 * that space may fall beyond p_brkbase, so we
1390 				 * need to set p_brksize to account for it
1391 				 * being (logically) part of the brk.
1392 				 */
1393 				size_t extra_zfodsz;
1394 
1395 				ASSERT(pgsz > PAGESIZE);
1396 
1397 				extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz);
1398 
1399 				if (error = execmap(vp, addr, phdr->p_filesz,
1400 				    zfodsz + extra_zfodsz, phdr->p_offset,
1401 				    prot, page, szc))
1402 					goto bad;
1403 				if (brksize != NULL)
1404 					*brksize = extra_zfodsz;
1405 			} else {
1406 				if (error = execmap(vp, addr, phdr->p_filesz,
1407 				    zfodsz, phdr->p_offset, prot, page, 0))
1408 					goto bad;
1409 			}
1410 
1411 			if (bssbase != NULL && addr >= *bssbase &&
1412 			    phdr == dataphdrp) {
1413 				*bssbase = addr + phdr->p_filesz;
1414 			}
1415 			if (brkbase != NULL && addr >= *brkbase) {
1416 				*brkbase = addr + phdr->p_memsz;
1417 			}
1418 
1419 			*execsz += btopr(phdr->p_memsz);
1420 			break;
1421 
1422 		case PT_INTERP:
1423 			if (ptload)
1424 				goto bad;
1425 			*intphdr = phdr;
1426 			break;
1427 
1428 		case PT_SHLIB:
1429 			*stphdr = phdr;
1430 			break;
1431 
1432 		case PT_PHDR:
1433 			if (ptload)
1434 				goto bad;
1435 			*uphdr = phdr;
1436 			break;
1437 
1438 		case PT_NULL:
1439 		case PT_DYNAMIC:
1440 		case PT_NOTE:
1441 			break;
1442 
1443 		case PT_SUNWDTRACE:
1444 			if (dtphdr != NULL)
1445 				*dtphdr = phdr;
1446 			break;
1447 
1448 		default:
1449 			break;
1450 		}
1451 		phdr = (Phdr *)((caddr_t)phdr + hsize);
1452 	}
1453 
1454 	if (minaddr != NULL) {
1455 		ASSERT(mintmp != (caddr_t)-1);
1456 		*minaddr = (intptr_t)mintmp;
1457 	}
1458 
1459 	if (brkbase != NULL && secflag_enabled(curproc, PROC_SEC_ASLR)) {
1460 		size_t off;
1461 		uintptr_t base = (uintptr_t)*brkbase;
1462 		uintptr_t oend = base + *brksize;
1463 
1464 		ASSERT(ISP2(aslr_max_brk_skew));
1465 
1466 		(void) random_get_pseudo_bytes((uint8_t *)&off, sizeof (off));
1467 		base += P2PHASE(off, aslr_max_brk_skew);
1468 		base = P2ROUNDUP(base, PAGESIZE);
1469 		*brkbase = (caddr_t)base;
1470 		/*
1471 		 * Above, we set *brksize to account for the possibility we
1472 		 * had to grow the 'brk' in padding out the BSS to a page
1473 		 * boundary.
1474 		 *
1475 		 * We now need to adjust that based on where we now are
1476 		 * actually putting the brk.
1477 		 */
1478 		if (oend > base)
1479 			*brksize = oend - base;
1480 		else
1481 			*brksize = 0;
1482 	}
1483 
1484 	return (0);
1485 bad:
1486 	if (error == 0)
1487 		error = EINVAL;
1488 	return (error);
1489 }
1490 
1491 int
1492 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc,
1493     rlim64_t rlimit, cred_t *credp)
1494 {
1495 	Note note;
1496 	int error;
1497 
1498 	bzero(&note, sizeof (note));
1499 	bcopy("CORE", note.name, 4);
1500 	note.nhdr.n_type = type;
1501 	/*
1502 	 * The System V ABI states that n_namesz must be the length of the
1503 	 * string that follows the Nhdr structure including the terminating
1504 	 * null. The ABI also specifies that sufficient padding should be
1505 	 * included so that the description that follows the name string
1506 	 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries
1507 	 * respectively. However, since this change was not made correctly
1508 	 * at the time of the 64-bit port, both 32- and 64-bit binaries
1509 	 * descriptions are only guaranteed to begin on a 4-byte boundary.
1510 	 */
1511 	note.nhdr.n_namesz = 5;
1512 	note.nhdr.n_descsz = roundup(descsz, sizeof (Word));
1513 
1514 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, &note,
1515 	    sizeof (note), rlimit, credp))
1516 		return (error);
1517 
1518 	*offsetp += sizeof (note);
1519 
1520 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc,
1521 	    note.nhdr.n_descsz, rlimit, credp))
1522 		return (error);
1523 
1524 	*offsetp += note.nhdr.n_descsz;
1525 	return (0);
1526 }
1527 
1528 /*
1529  * Copy the section data from one vnode to the section of another vnode.
1530  */
1531 static void
1532 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset,
1533     void *buf, size_t size, cred_t *credp, rlim64_t rlimit)
1534 {
1535 	ssize_t resid;
1536 	size_t len, n = src->sh_size;
1537 	offset_t off = 0;
1538 
1539 	while (n != 0) {
1540 		len = MIN(size, n);
1541 		if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off,
1542 		    UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 ||
1543 		    resid >= len ||
1544 		    core_write(dst_vp, UIO_SYSSPACE, *doffset + off,
1545 		    buf, len - resid, rlimit, credp) != 0) {
1546 			dst->sh_size = 0;
1547 			dst->sh_offset = 0;
1548 			return;
1549 		}
1550 
1551 		ASSERT(n >= len - resid);
1552 
1553 		n -= len - resid;
1554 		off += len - resid;
1555 	}
1556 
1557 	*doffset += src->sh_size;
1558 }
1559 
1560 #ifdef _ELF32_COMPAT
1561 extern size_t elf_datasz_max;
1562 extern size_t elf_zeropg_sz;
1563 #else
1564 size_t elf_datasz_max = 1 * 1024 * 1024;
1565 size_t elf_zeropg_sz = 4 * 1024;
1566 #endif
1567 
1568 /*
1569  * This function processes mappings that correspond to load objects to
1570  * examine their respective sections for elfcore(). It's called once with
1571  * v set to NULL to count the number of sections that we're going to need
1572  * and then again with v set to some allocated buffer that we fill in with
1573  * all the section data.
1574  */
1575 static int
1576 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp,
1577     Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp)
1578 {
1579 	vnode_t *lastvp = NULL;
1580 	struct seg *seg;
1581 	int i, j;
1582 	void *data = NULL;
1583 	size_t datasz = 0;
1584 	shstrtab_t shstrtab;
1585 	struct as *as = p->p_as;
1586 	int error = 0;
1587 
1588 	if (!shstrtab_init(&shstrtab)) {
1589 		error = ENOMEM;
1590 		goto done;
1591 	}
1592 
1593 	i = 1;
1594 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1595 		uint_t prot;
1596 		vnode_t *mvp;
1597 		void *tmp = NULL;
1598 		caddr_t saddr = seg->s_base;
1599 		caddr_t naddr;
1600 		caddr_t eaddr;
1601 		size_t segsize;
1602 
1603 		Ehdr ehdr;
1604 		int nshdrs, shstrndx, nphdrs;
1605 		caddr_t shbase;
1606 		ssize_t shsize;
1607 		char *shstrbase;
1608 		ssize_t shstrsize;
1609 
1610 		Shdr *shdr;
1611 		const char *name;
1612 		size_t sz;
1613 		uintptr_t off;
1614 
1615 		int ctf_ndx = 0;
1616 		int symtab_ndx = 0;
1617 
1618 		/*
1619 		 * Since we're just looking for text segments of load
1620 		 * objects, we only care about the protection bits; we don't
1621 		 * care about the actual size of the segment so we use the
1622 		 * reserved size. If the segment's size is zero, there's
1623 		 * something fishy going on so we ignore this segment.
1624 		 */
1625 		if (seg->s_ops != &segvn_ops ||
1626 		    SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1627 		    mvp == lastvp || mvp == NULL || mvp->v_type != VREG ||
1628 		    (segsize = pr_getsegsize(seg, 1)) == 0)
1629 			continue;
1630 
1631 		eaddr = saddr + segsize;
1632 		prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr);
1633 		pr_getprot_done(&tmp);
1634 
1635 		/*
1636 		 * Skip this segment unless the protection bits look like
1637 		 * what we'd expect for a text segment.
1638 		 */
1639 		if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC)
1640 			continue;
1641 
1642 		if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx,
1643 		    &nphdrs) != 0 ||
1644 		    getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx,
1645 		    &shbase, &shsize, &shstrbase, &shstrsize) != 0)
1646 			continue;
1647 
1648 		off = ehdr.e_shentsize;
1649 		for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) {
1650 			Shdr *symtab = NULL, *strtab;
1651 			size_t allocsz;
1652 
1653 			shdr = (Shdr *)(shbase + off);
1654 			allocsz = MIN(shdr->sh_size, elf_datasz_max);
1655 
1656 			if (shdr->sh_name >= shstrsize)
1657 				continue;
1658 
1659 			name = shstrbase + shdr->sh_name;
1660 
1661 			if (strcmp(name, shstrtab_data[STR_CTF]) == 0) {
1662 				if ((content & CC_CONTENT_CTF) == 0 ||
1663 				    ctf_ndx != 0)
1664 					continue;
1665 
1666 				if (shdr->sh_link > 0 &&
1667 				    shdr->sh_link < nshdrs) {
1668 					symtab = (Shdr *)(shbase +
1669 					    shdr->sh_link * ehdr.e_shentsize);
1670 				}
1671 
1672 				if (v != NULL && i < nv - 1) {
1673 					if (allocsz > datasz) {
1674 						if (data != NULL)
1675 							kmem_free(data, datasz);
1676 
1677 						datasz = allocsz;
1678 						data = kmem_alloc(datasz,
1679 						    KM_SLEEP);
1680 					}
1681 
1682 					if (!shstrtab_ndx(&shstrtab,
1683 					    shstrtab_data[STR_CTF],
1684 					    &v[i].sh_name)) {
1685 						error = ENOMEM;
1686 						goto done;
1687 					}
1688 					v[i].sh_addr = (Addr)(uintptr_t)saddr;
1689 					v[i].sh_type = SHT_PROGBITS;
1690 					v[i].sh_addralign = 4;
1691 					*doffsetp = roundup(*doffsetp,
1692 					    v[i].sh_addralign);
1693 					v[i].sh_offset = *doffsetp;
1694 					v[i].sh_size = shdr->sh_size;
1695 					if (symtab == NULL)  {
1696 						v[i].sh_link = 0;
1697 					} else if (symtab->sh_type ==
1698 					    SHT_SYMTAB &&
1699 					    symtab_ndx != 0) {
1700 						v[i].sh_link =
1701 						    symtab_ndx;
1702 					} else {
1703 						v[i].sh_link = i + 1;
1704 					}
1705 
1706 					copy_scn(shdr, mvp, &v[i], vp,
1707 					    doffsetp, data, datasz, credp,
1708 					    rlimit);
1709 				}
1710 
1711 				ctf_ndx = i++;
1712 
1713 				/*
1714 				 * We've already dumped the symtab.
1715 				 */
1716 				if (symtab != NULL &&
1717 				    symtab->sh_type == SHT_SYMTAB &&
1718 				    symtab_ndx != 0)
1719 					continue;
1720 
1721 			} else if (strcmp(name,
1722 			    shstrtab_data[STR_SYMTAB]) == 0) {
1723 				if ((content & CC_CONTENT_SYMTAB) == 0 ||
1724 				    symtab != 0)
1725 					continue;
1726 
1727 				symtab = shdr;
1728 			} else if (strncmp(name, ".debug_",
1729 			    strlen(".debug_")) == 0) {
1730 				/*
1731 				 * The design of the above check is intentional.
1732 				 * In particular, we want to capture any
1733 				 * sections that begin with '.debug_' for a few
1734 				 * reasons:
1735 				 *
1736 				 * 1) Various revisions to the DWARF spec end up
1737 				 * changing the set of section headers that
1738 				 * exist. This ensures that we don't need to
1739 				 * change the kernel to get a new version.
1740 				 *
1741 				 * 2) Other software uses .debug_ sections for
1742 				 * things which aren't DWARF. This allows them
1743 				 * to be captured as well.
1744 				 */
1745 				if ((content & CC_CONTENT_DEBUG) == 0)
1746 					continue;
1747 
1748 				if (v != NULL && i < nv - 1) {
1749 					if (allocsz > datasz) {
1750 						if (data != NULL)
1751 							kmem_free(data, datasz);
1752 
1753 						datasz = allocsz;
1754 						data = kmem_alloc(datasz,
1755 						    KM_SLEEP);
1756 					}
1757 
1758 					if (!shstrtab_ndx(&shstrtab,
1759 					    name, &v[i].sh_name)) {
1760 						error = ENOMEM;
1761 						goto done;
1762 					}
1763 					v[i].sh_addr = (Addr)(uintptr_t)saddr;
1764 					v[i].sh_type = shdr->sh_type;
1765 					v[i].sh_addralign = shdr->sh_addralign;
1766 					*doffsetp = roundup(*doffsetp,
1767 					    v[i].sh_addralign);
1768 					v[i].sh_offset = *doffsetp;
1769 					v[i].sh_size = shdr->sh_size;
1770 					v[i].sh_link = 0;
1771 					v[i].sh_entsize = shdr->sh_entsize;
1772 					v[i].sh_info = shdr->sh_info;
1773 
1774 					copy_scn(shdr, mvp, &v[i], vp,
1775 					    doffsetp, data, datasz, credp,
1776 					    rlimit);
1777 				}
1778 
1779 				i++;
1780 				continue;
1781 			}
1782 
1783 			if (symtab != NULL) {
1784 				if ((symtab->sh_type != SHT_DYNSYM &&
1785 				    symtab->sh_type != SHT_SYMTAB) ||
1786 				    symtab->sh_link == 0 ||
1787 				    symtab->sh_link >= nshdrs)
1788 					continue;
1789 
1790 				strtab = (Shdr *)(shbase +
1791 				    symtab->sh_link * ehdr.e_shentsize);
1792 
1793 				if (strtab->sh_type != SHT_STRTAB)
1794 					continue;
1795 
1796 				if (v != NULL && i < nv - 2) {
1797 					sz = MAX(symtab->sh_size,
1798 					    strtab->sh_size);
1799 					allocsz = MIN(sz, elf_datasz_max);
1800 					if (allocsz > datasz) {
1801 						if (data != NULL)
1802 							kmem_free(data, datasz);
1803 
1804 						datasz = allocsz;
1805 						data = kmem_alloc(datasz,
1806 						    KM_SLEEP);
1807 					}
1808 
1809 					if (symtab->sh_type == SHT_DYNSYM) {
1810 						if (!shstrtab_ndx(&shstrtab,
1811 						    shstrtab_data[STR_DYNSYM],
1812 						    &v[i].sh_name)) {
1813 							error = ENOMEM;
1814 							goto done;
1815 						}
1816 						if (!shstrtab_ndx(&shstrtab,
1817 						    shstrtab_data[STR_DYNSTR],
1818 						    &v[i + 1].sh_name)) {
1819 							error = ENOMEM;
1820 							goto done;
1821 						}
1822 					} else {
1823 						if (!shstrtab_ndx(&shstrtab,
1824 						    shstrtab_data[STR_SYMTAB],
1825 						    &v[i].sh_name)) {
1826 							error = ENOMEM;
1827 							goto done;
1828 						}
1829 						if (!shstrtab_ndx(&shstrtab,
1830 						    shstrtab_data[STR_STRTAB],
1831 						    &v[i + 1].sh_name)) {
1832 							error = ENOMEM;
1833 							goto done;
1834 						}
1835 					}
1836 
1837 					v[i].sh_type = symtab->sh_type;
1838 					v[i].sh_addr = symtab->sh_addr;
1839 					if (ehdr.e_type == ET_DYN ||
1840 					    v[i].sh_addr == 0)
1841 						v[i].sh_addr +=
1842 						    (Addr)(uintptr_t)saddr;
1843 					v[i].sh_addralign =
1844 					    symtab->sh_addralign;
1845 					*doffsetp = roundup(*doffsetp,
1846 					    v[i].sh_addralign);
1847 					v[i].sh_offset = *doffsetp;
1848 					v[i].sh_size = symtab->sh_size;
1849 					v[i].sh_link = i + 1;
1850 					v[i].sh_entsize = symtab->sh_entsize;
1851 					v[i].sh_info = symtab->sh_info;
1852 
1853 					copy_scn(symtab, mvp, &v[i], vp,
1854 					    doffsetp, data, datasz, credp,
1855 					    rlimit);
1856 
1857 					v[i + 1].sh_type = SHT_STRTAB;
1858 					v[i + 1].sh_flags = SHF_STRINGS;
1859 					v[i + 1].sh_addr = symtab->sh_addr;
1860 					if (ehdr.e_type == ET_DYN ||
1861 					    v[i + 1].sh_addr == 0)
1862 						v[i + 1].sh_addr +=
1863 						    (Addr)(uintptr_t)saddr;
1864 					v[i + 1].sh_addralign =
1865 					    strtab->sh_addralign;
1866 					*doffsetp = roundup(*doffsetp,
1867 					    v[i + 1].sh_addralign);
1868 					v[i + 1].sh_offset = *doffsetp;
1869 					v[i + 1].sh_size = strtab->sh_size;
1870 
1871 					copy_scn(strtab, mvp, &v[i + 1], vp,
1872 					    doffsetp, data, datasz, credp,
1873 					    rlimit);
1874 				}
1875 
1876 				if (symtab->sh_type == SHT_SYMTAB)
1877 					symtab_ndx = i;
1878 				i += 2;
1879 			}
1880 		}
1881 
1882 		kmem_free(shstrbase, shstrsize);
1883 		kmem_free(shbase, shsize);
1884 
1885 		lastvp = mvp;
1886 	}
1887 
1888 	if (v == NULL) {
1889 		if (i == 1)
1890 			*nshdrsp = 0;
1891 		else
1892 			*nshdrsp = i + 1;
1893 		goto done;
1894 	}
1895 
1896 	if (i != nv - 1) {
1897 		cmn_err(CE_WARN, "elfcore: core dump failed for "
1898 		    "process %d; address space is changing", p->p_pid);
1899 		error = EIO;
1900 		goto done;
1901 	}
1902 
1903 	if (!shstrtab_ndx(&shstrtab, shstrtab_data[STR_SHSTRTAB],
1904 	    &v[i].sh_name)) {
1905 		error = ENOMEM;
1906 		goto done;
1907 	}
1908 	v[i].sh_size = shstrtab_size(&shstrtab);
1909 	v[i].sh_addralign = 1;
1910 	*doffsetp = roundup(*doffsetp, v[i].sh_addralign);
1911 	v[i].sh_offset = *doffsetp;
1912 	v[i].sh_flags = SHF_STRINGS;
1913 	v[i].sh_type = SHT_STRTAB;
1914 
1915 	if (v[i].sh_size > datasz) {
1916 		if (data != NULL)
1917 			kmem_free(data, datasz);
1918 
1919 		datasz = v[i].sh_size;
1920 		data = kmem_alloc(datasz,
1921 		    KM_SLEEP);
1922 	}
1923 
1924 	shstrtab_dump(&shstrtab, data);
1925 
1926 	if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp,
1927 	    data, v[i].sh_size, rlimit, credp)) != 0)
1928 		goto done;
1929 
1930 	*doffsetp += v[i].sh_size;
1931 
1932 done:
1933 	if (data != NULL)
1934 		kmem_free(data, datasz);
1935 
1936 	shstrtab_fini(&shstrtab);
1937 
1938 	return (error);
1939 }
1940 
1941 int
1942 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig,
1943     core_content_t content)
1944 {
1945 	offset_t poffset, soffset;
1946 	Off doffset;
1947 	int error, i, nphdrs, nshdrs;
1948 	int overflow = 0;
1949 	struct seg *seg;
1950 	struct as *as = p->p_as;
1951 	union {
1952 		Ehdr ehdr;
1953 		Phdr phdr[1];
1954 		Shdr shdr[1];
1955 	} *bigwad;
1956 	size_t bigsize;
1957 	size_t phdrsz, shdrsz;
1958 	Ehdr *ehdr;
1959 	Phdr *v;
1960 	void *zeropg = NULL;
1961 	caddr_t brkbase;
1962 	size_t brksize;
1963 	caddr_t stkbase;
1964 	size_t stksize;
1965 	int ntries = 0;
1966 	klwp_t *lwp = ttolwp(curthread);
1967 
1968 top:
1969 	/*
1970 	 * Make sure we have everything we need (registers, etc.).
1971 	 * All other lwps have already stopped and are in an orderly state.
1972 	 */
1973 	ASSERT(p == ttoproc(curthread));
1974 	prstop(0, 0);
1975 
1976 	AS_LOCK_ENTER(as, RW_WRITER);
1977 	nphdrs = prnsegs(as, 0) + 2;		/* two CORE note sections */
1978 
1979 	/*
1980 	 * Count the number of section headers we're going to need.
1981 	 */
1982 	nshdrs = 0;
1983 	if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB | CC_CONTENT_DEBUG)) {
1984 		(void) process_scns(content, p, credp, NULL, NULL, 0, 0,
1985 		    NULL, &nshdrs);
1986 	}
1987 	AS_LOCK_EXIT(as);
1988 
1989 	ASSERT(nshdrs == 0 || nshdrs > 1);
1990 
1991 	/*
1992 	 * The core file contents may required zero section headers, but if
1993 	 * we overflow the 16 bits allotted to the program header count in
1994 	 * the ELF header, we'll need that program header at index zero.
1995 	 */
1996 	if (nshdrs == 0 && nphdrs >= PN_XNUM)
1997 		nshdrs = 1;
1998 
1999 	phdrsz = nphdrs * sizeof (Phdr);
2000 	shdrsz = nshdrs * sizeof (Shdr);
2001 
2002 	bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz));
2003 	bigwad = kmem_alloc(bigsize, KM_SLEEP);
2004 
2005 	ehdr = &bigwad->ehdr;
2006 	bzero(ehdr, sizeof (*ehdr));
2007 
2008 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
2009 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
2010 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
2011 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
2012 	ehdr->e_ident[EI_CLASS] = ELFCLASS;
2013 	ehdr->e_type = ET_CORE;
2014 
2015 #if !defined(_LP64) || defined(_ELF32_COMPAT)
2016 
2017 #if defined(__sparc)
2018 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
2019 	ehdr->e_machine = EM_SPARC;
2020 #elif defined(__i386_COMPAT)
2021 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
2022 	ehdr->e_machine = EM_386;
2023 #else
2024 #error "no recognized machine type is defined"
2025 #endif
2026 
2027 #else	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
2028 
2029 #if defined(__sparc)
2030 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
2031 	ehdr->e_machine = EM_SPARCV9;
2032 #elif defined(__amd64)
2033 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
2034 	ehdr->e_machine = EM_AMD64;
2035 #else
2036 #error "no recognized 64-bit machine type is defined"
2037 #endif
2038 
2039 #endif	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
2040 
2041 	/*
2042 	 * If the count of program headers or section headers or the index
2043 	 * of the section string table can't fit in the mere 16 bits
2044 	 * shortsightedly allotted to them in the ELF header, we use the
2045 	 * extended formats and put the real values in the section header
2046 	 * as index 0.
2047 	 */
2048 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
2049 	ehdr->e_version = EV_CURRENT;
2050 	ehdr->e_ehsize = sizeof (Ehdr);
2051 
2052 	if (nphdrs >= PN_XNUM)
2053 		ehdr->e_phnum = PN_XNUM;
2054 	else
2055 		ehdr->e_phnum = (unsigned short)nphdrs;
2056 
2057 	ehdr->e_phoff = sizeof (Ehdr);
2058 	ehdr->e_phentsize = sizeof (Phdr);
2059 
2060 	if (nshdrs > 0) {
2061 		if (nshdrs >= SHN_LORESERVE)
2062 			ehdr->e_shnum = 0;
2063 		else
2064 			ehdr->e_shnum = (unsigned short)nshdrs;
2065 
2066 		if (nshdrs - 1 >= SHN_LORESERVE)
2067 			ehdr->e_shstrndx = SHN_XINDEX;
2068 		else
2069 			ehdr->e_shstrndx = (unsigned short)(nshdrs - 1);
2070 
2071 		ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs;
2072 		ehdr->e_shentsize = sizeof (Shdr);
2073 	}
2074 
2075 	if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr,
2076 	    sizeof (Ehdr), rlimit, credp))
2077 		goto done;
2078 
2079 	poffset = sizeof (Ehdr);
2080 	soffset = sizeof (Ehdr) + phdrsz;
2081 	doffset = sizeof (Ehdr) + phdrsz + shdrsz;
2082 
2083 	v = &bigwad->phdr[0];
2084 	bzero(v, phdrsz);
2085 
2086 	setup_old_note_header(&v[0], p);
2087 	v[0].p_offset = doffset = roundup(doffset, sizeof (Word));
2088 	doffset += v[0].p_filesz;
2089 
2090 	setup_note_header(&v[1], p);
2091 	v[1].p_offset = doffset = roundup(doffset, sizeof (Word));
2092 	doffset += v[1].p_filesz;
2093 
2094 	mutex_enter(&p->p_lock);
2095 
2096 	brkbase = p->p_brkbase;
2097 	brksize = p->p_brksize;
2098 
2099 	stkbase = p->p_usrstack - p->p_stksize;
2100 	stksize = p->p_stksize;
2101 
2102 	mutex_exit(&p->p_lock);
2103 
2104 	AS_LOCK_ENTER(as, RW_WRITER);
2105 	i = 2;
2106 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
2107 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
2108 		caddr_t saddr, naddr;
2109 		void *tmp = NULL;
2110 		extern struct seg_ops segspt_shmops;
2111 
2112 		if ((seg->s_flags & S_HOLE) != 0) {
2113 			continue;
2114 		}
2115 
2116 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
2117 			uint_t prot;
2118 			size_t size;
2119 			int type;
2120 			vnode_t *mvp;
2121 
2122 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
2123 			prot &= PROT_READ | PROT_WRITE | PROT_EXEC;
2124 			if ((size = (size_t)(naddr - saddr)) == 0)
2125 				continue;
2126 			if (i == nphdrs) {
2127 				overflow++;
2128 				continue;
2129 			}
2130 			v[i].p_type = PT_LOAD;
2131 			v[i].p_vaddr = (Addr)(uintptr_t)saddr;
2132 			v[i].p_memsz = size;
2133 			if (prot & PROT_READ)
2134 				v[i].p_flags |= PF_R;
2135 			if (prot & PROT_WRITE)
2136 				v[i].p_flags |= PF_W;
2137 			if (prot & PROT_EXEC)
2138 				v[i].p_flags |= PF_X;
2139 
2140 			/*
2141 			 * Figure out which mappings to include in the core.
2142 			 */
2143 			type = SEGOP_GETTYPE(seg, saddr);
2144 
2145 			if (saddr == stkbase && size == stksize) {
2146 				if (!(content & CC_CONTENT_STACK))
2147 					goto exclude;
2148 
2149 			} else if (saddr == brkbase && size == brksize) {
2150 				if (!(content & CC_CONTENT_HEAP))
2151 					goto exclude;
2152 
2153 			} else if (seg->s_ops == &segspt_shmops) {
2154 				if (type & MAP_NORESERVE) {
2155 					if (!(content & CC_CONTENT_DISM))
2156 						goto exclude;
2157 				} else {
2158 					if (!(content & CC_CONTENT_ISM))
2159 						goto exclude;
2160 				}
2161 
2162 			} else if (seg->s_ops != &segvn_ops) {
2163 				goto exclude;
2164 
2165 			} else if (type & MAP_SHARED) {
2166 				if (shmgetid(p, saddr) != SHMID_NONE) {
2167 					if (!(content & CC_CONTENT_SHM))
2168 						goto exclude;
2169 
2170 				} else if (SEGOP_GETVP(seg, seg->s_base,
2171 				    &mvp) != 0 || mvp == NULL ||
2172 				    mvp->v_type != VREG) {
2173 					if (!(content & CC_CONTENT_SHANON))
2174 						goto exclude;
2175 
2176 				} else {
2177 					if (!(content & CC_CONTENT_SHFILE))
2178 						goto exclude;
2179 				}
2180 
2181 			} else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
2182 			    mvp == NULL || mvp->v_type != VREG) {
2183 				if (!(content & CC_CONTENT_ANON))
2184 					goto exclude;
2185 
2186 			} else if (prot == (PROT_READ | PROT_EXEC)) {
2187 				if (!(content & CC_CONTENT_TEXT))
2188 					goto exclude;
2189 
2190 			} else if (prot == PROT_READ) {
2191 				if (!(content & CC_CONTENT_RODATA))
2192 					goto exclude;
2193 
2194 			} else {
2195 				if (!(content & CC_CONTENT_DATA))
2196 					goto exclude;
2197 			}
2198 
2199 			doffset = roundup(doffset, sizeof (Word));
2200 			v[i].p_offset = doffset;
2201 			v[i].p_filesz = size;
2202 			doffset += size;
2203 exclude:
2204 			i++;
2205 		}
2206 		ASSERT(tmp == NULL);
2207 	}
2208 	AS_LOCK_EXIT(as);
2209 
2210 	if (overflow || i != nphdrs) {
2211 		if (ntries++ == 0) {
2212 			kmem_free(bigwad, bigsize);
2213 			overflow = 0;
2214 			goto top;
2215 		}
2216 		cmn_err(CE_WARN, "elfcore: core dump failed for "
2217 		    "process %d; address space is changing", p->p_pid);
2218 		error = EIO;
2219 		goto done;
2220 	}
2221 
2222 	if ((error = core_write(vp, UIO_SYSSPACE, poffset,
2223 	    v, phdrsz, rlimit, credp)) != 0)
2224 		goto done;
2225 
2226 	if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit,
2227 	    credp)) != 0)
2228 		goto done;
2229 
2230 	if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit,
2231 	    credp, content)) != 0)
2232 		goto done;
2233 
2234 	for (i = 2; i < nphdrs; i++) {
2235 		prkillinfo_t killinfo;
2236 		sigqueue_t *sq;
2237 		int sig, j;
2238 
2239 		if (v[i].p_filesz == 0)
2240 			continue;
2241 
2242 		/*
2243 		 * If we hit a region that was mapped PROT_NONE then we cannot
2244 		 * continue dumping this normally as the kernel would be unable
2245 		 * to read from the page and that would result in us failing to
2246 		 * dump the page. As such, any region mapped PROT_NONE, we dump
2247 		 * as a zero-filled page such that this is still represented in
2248 		 * the map.
2249 		 *
2250 		 * If dumping out this segment fails, rather than failing
2251 		 * the core dump entirely, we reset the size of the mapping
2252 		 * to zero to indicate that the data is absent from the core
2253 		 * file and or in the PF_SUNW_FAILURE flag to differentiate
2254 		 * this from mappings that were excluded due to the core file
2255 		 * content settings.
2256 		 */
2257 		if ((v[i].p_flags & (PF_R | PF_W | PF_X)) == 0) {
2258 			size_t towrite = v[i].p_filesz;
2259 			size_t curoff = 0;
2260 
2261 			if (zeropg == NULL) {
2262 				zeropg = kmem_zalloc(elf_zeropg_sz, KM_SLEEP);
2263 			}
2264 
2265 			error = 0;
2266 			while (towrite != 0) {
2267 				size_t len = MIN(towrite, elf_zeropg_sz);
2268 
2269 				error = core_write(vp, UIO_SYSSPACE,
2270 				    v[i].p_offset + curoff, zeropg, len, rlimit,
2271 				    credp);
2272 				if (error != 0)
2273 					break;
2274 
2275 				towrite -= len;
2276 				curoff += len;
2277 			}
2278 
2279 			if (error == 0)
2280 				continue;
2281 		} else {
2282 			error = core_seg(p, vp, v[i].p_offset,
2283 			    (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz,
2284 			    rlimit, credp);
2285 			if (error == 0)
2286 				continue;
2287 		}
2288 
2289 		if ((sig = lwp->lwp_cursig) == 0) {
2290 			/*
2291 			 * We failed due to something other than a signal.
2292 			 * Since the space reserved for the segment is now
2293 			 * unused, we stash the errno in the first four
2294 			 * bytes. This undocumented interface will let us
2295 			 * understand the nature of the failure.
2296 			 */
2297 			(void) core_write(vp, UIO_SYSSPACE, v[i].p_offset,
2298 			    &error, sizeof (error), rlimit, credp);
2299 
2300 			v[i].p_filesz = 0;
2301 			v[i].p_flags |= PF_SUNW_FAILURE;
2302 			if ((error = core_write(vp, UIO_SYSSPACE,
2303 			    poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]),
2304 			    rlimit, credp)) != 0)
2305 				goto done;
2306 
2307 			continue;
2308 		}
2309 
2310 		/*
2311 		 * We took a signal.  We want to abort the dump entirely, but
2312 		 * we also want to indicate what failed and why.  We therefore
2313 		 * use the space reserved for the first failing segment to
2314 		 * write our error (which, for purposes of compatability with
2315 		 * older core dump readers, we set to EINTR) followed by any
2316 		 * siginfo associated with the signal.
2317 		 */
2318 		bzero(&killinfo, sizeof (killinfo));
2319 		killinfo.prk_error = EINTR;
2320 
2321 		sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo;
2322 
2323 		if (sq != NULL) {
2324 			bcopy(&sq->sq_info, &killinfo.prk_info,
2325 			    sizeof (sq->sq_info));
2326 		} else {
2327 			killinfo.prk_info.si_signo = lwp->lwp_cursig;
2328 			killinfo.prk_info.si_code = SI_NOINFO;
2329 		}
2330 
2331 #if (defined(_SYSCALL32_IMPL) || defined(_LP64))
2332 		/*
2333 		 * If this is a 32-bit process, we need to translate from the
2334 		 * native siginfo to the 32-bit variant.  (Core readers must
2335 		 * always have the same data model as their target or must
2336 		 * be aware of -- and compensate for -- data model differences.)
2337 		 */
2338 		if (curproc->p_model == DATAMODEL_ILP32) {
2339 			siginfo32_t si32;
2340 
2341 			siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32);
2342 			bcopy(&si32, &killinfo.prk_info, sizeof (si32));
2343 		}
2344 #endif
2345 
2346 		(void) core_write(vp, UIO_SYSSPACE, v[i].p_offset,
2347 		    &killinfo, sizeof (killinfo), rlimit, credp);
2348 
2349 		/*
2350 		 * For the segment on which we took the signal, indicate that
2351 		 * its data now refers to a siginfo.
2352 		 */
2353 		v[i].p_filesz = 0;
2354 		v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED |
2355 		    PF_SUNW_SIGINFO;
2356 
2357 		/*
2358 		 * And for every other segment, indicate that its absence
2359 		 * is due to a signal.
2360 		 */
2361 		for (j = i + 1; j < nphdrs; j++) {
2362 			v[j].p_filesz = 0;
2363 			v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED;
2364 		}
2365 
2366 		/*
2367 		 * Finally, write out our modified program headers.
2368 		 */
2369 		if ((error = core_write(vp, UIO_SYSSPACE,
2370 		    poffset + sizeof (v[i]) * i, &v[i],
2371 		    sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0)
2372 			goto done;
2373 
2374 		break;
2375 	}
2376 
2377 	if (nshdrs > 0) {
2378 		bzero(&bigwad->shdr[0], shdrsz);
2379 
2380 		if (nshdrs >= SHN_LORESERVE)
2381 			bigwad->shdr[0].sh_size = nshdrs;
2382 
2383 		if (nshdrs - 1 >= SHN_LORESERVE)
2384 			bigwad->shdr[0].sh_link = nshdrs - 1;
2385 
2386 		if (nphdrs >= PN_XNUM)
2387 			bigwad->shdr[0].sh_info = nphdrs;
2388 
2389 		if (nshdrs > 1) {
2390 			AS_LOCK_ENTER(as, RW_WRITER);
2391 			if ((error = process_scns(content, p, credp, vp,
2392 			    &bigwad->shdr[0], nshdrs, rlimit, &doffset,
2393 			    NULL)) != 0) {
2394 				AS_LOCK_EXIT(as);
2395 				goto done;
2396 			}
2397 			AS_LOCK_EXIT(as);
2398 		}
2399 
2400 		if ((error = core_write(vp, UIO_SYSSPACE, soffset,
2401 		    &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0)
2402 			goto done;
2403 	}
2404 
2405 done:
2406 	if (zeropg != NULL) {
2407 		kmem_free(zeropg, elf_zeropg_sz);
2408 	}
2409 	kmem_free(bigwad, bigsize);
2410 	return (error);
2411 }
2412 
2413 #ifndef	_ELF32_COMPAT
2414 
2415 static struct execsw esw = {
2416 #ifdef	_LP64
2417 	elf64magicstr,
2418 #else	/* _LP64 */
2419 	elf32magicstr,
2420 #endif	/* _LP64 */
2421 	0,
2422 	5,
2423 	elfexec,
2424 	elfcore
2425 };
2426 
2427 static struct modlexec modlexec = {
2428 	&mod_execops, "exec module for elf", &esw
2429 };
2430 
2431 #ifdef	_LP64
2432 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args,
2433 			intpdata_t *idatap, int level, long *execsz,
2434 			int setid, caddr_t exec_file, cred_t *cred,
2435 			int brand_action);
2436 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp,
2437 			rlim64_t rlimit, int sig, core_content_t content);
2438 
2439 static struct execsw esw32 = {
2440 	elf32magicstr,
2441 	0,
2442 	5,
2443 	elf32exec,
2444 	elf32core
2445 };
2446 
2447 static struct modlexec modlexec32 = {
2448 	&mod_execops, "32-bit exec module for elf", &esw32
2449 };
2450 #endif	/* _LP64 */
2451 
2452 static struct modlinkage modlinkage = {
2453 	MODREV_1,
2454 	(void *)&modlexec,
2455 #ifdef	_LP64
2456 	(void *)&modlexec32,
2457 #endif	/* _LP64 */
2458 	NULL
2459 };
2460 
2461 int
2462 _init(void)
2463 {
2464 	return (mod_install(&modlinkage));
2465 }
2466 
2467 int
2468 _fini(void)
2469 {
2470 	return (mod_remove(&modlinkage));
2471 }
2472 
2473 int
2474 _info(struct modinfo *modinfop)
2475 {
2476 	return (mod_info(&modlinkage, modinfop));
2477 }
2478 
2479 #endif	/* !_ELF32_COMPAT */
2480