xref: /illumos-gate/usr/src/uts/common/exec/elf/elf.c (revision 48edc7cf07b5dccc3ad84bf2dafe4150bd666d60)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 /*
29  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
30  */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/thread.h>
35 #include <sys/sysmacros.h>
36 #include <sys/signal.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/errno.h>
40 #include <sys/vnode.h>
41 #include <sys/mman.h>
42 #include <sys/kmem.h>
43 #include <sys/proc.h>
44 #include <sys/pathname.h>
45 #include <sys/policy.h>
46 #include <sys/cmn_err.h>
47 #include <sys/systm.h>
48 #include <sys/elf.h>
49 #include <sys/vmsystm.h>
50 #include <sys/debug.h>
51 #include <sys/auxv.h>
52 #include <sys/exec.h>
53 #include <sys/prsystm.h>
54 #include <vm/as.h>
55 #include <vm/rm.h>
56 #include <vm/seg.h>
57 #include <vm/seg_vn.h>
58 #include <sys/modctl.h>
59 #include <sys/systeminfo.h>
60 #include <sys/vmparam.h>
61 #include <sys/machelf.h>
62 #include <sys/shm_impl.h>
63 #include <sys/archsystm.h>
64 #include <sys/fasttrap.h>
65 #include <sys/brand.h>
66 #include "elf_impl.h"
67 #include <sys/sdt.h>
68 #include <sys/siginfo.h>
69 #include <sys/random.h>
70 
71 extern int at_flags;
72 extern volatile size_t aslr_max_brk_skew;
73 
74 #define	ORIGIN_STR	"ORIGIN"
75 #define	ORIGIN_STR_SIZE	6
76 
77 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *);
78 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *,
79     ssize_t *);
80 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *,
81     ssize_t *, caddr_t *, ssize_t *);
82 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *);
83 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t,
84     Phdr **, Phdr **, Phdr **, Phdr **, Phdr *,
85     caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *);
86 
87 typedef enum {
88 	STR_CTF,
89 	STR_SYMTAB,
90 	STR_DYNSYM,
91 	STR_STRTAB,
92 	STR_DYNSTR,
93 	STR_SHSTRTAB,
94 	STR_NUM
95 } shstrtype_t;
96 
97 static const char *shstrtab_data[] = {
98 	".SUNW_ctf",
99 	".symtab",
100 	".dynsym",
101 	".strtab",
102 	".dynstr",
103 	".shstrtab"
104 };
105 
106 typedef struct shstrtab {
107 	int	sst_ndx[STR_NUM];
108 	int	sst_cur;
109 } shstrtab_t;
110 
111 static void
112 shstrtab_init(shstrtab_t *s)
113 {
114 	bzero(&s->sst_ndx, sizeof (s->sst_ndx));
115 	s->sst_cur = 1;
116 }
117 
118 static int
119 shstrtab_ndx(shstrtab_t *s, shstrtype_t type)
120 {
121 	int ret;
122 
123 	if ((ret = s->sst_ndx[type]) != 0)
124 		return (ret);
125 
126 	ret = s->sst_ndx[type] = s->sst_cur;
127 	s->sst_cur += strlen(shstrtab_data[type]) + 1;
128 
129 	return (ret);
130 }
131 
132 static size_t
133 shstrtab_size(const shstrtab_t *s)
134 {
135 	return (s->sst_cur);
136 }
137 
138 static void
139 shstrtab_dump(const shstrtab_t *s, char *buf)
140 {
141 	int i, ndx;
142 
143 	*buf = '\0';
144 	for (i = 0; i < STR_NUM; i++) {
145 		if ((ndx = s->sst_ndx[i]) != 0)
146 			(void) strcpy(buf + ndx, shstrtab_data[i]);
147 	}
148 }
149 
150 static int
151 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base)
152 {
153 	ASSERT(phdrp->p_type == PT_SUNWDTRACE);
154 
155 	/*
156 	 * See the comment in fasttrap.h for information on how to safely
157 	 * update this program header.
158 	 */
159 	if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE ||
160 	    (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X))
161 		return (-1);
162 
163 	args->thrptr = phdrp->p_vaddr + base;
164 
165 	return (0);
166 }
167 
168 static int
169 handle_secflag_dt(proc_t *p, uint_t dt, uint_t val)
170 {
171 	uint_t flag;
172 
173 	switch (dt) {
174 	case DT_SUNW_ASLR:
175 		flag = PROC_SEC_ASLR;
176 		break;
177 	default:
178 		return (EINVAL);
179 	}
180 
181 	if (val == 0) {
182 		if (secflag_isset(p->p_secflags.psf_lower, flag))
183 			return (EPERM);
184 		if ((secpolicy_psecflags(CRED(), p, p) != 0) &&
185 		    secflag_isset(p->p_secflags.psf_inherit, flag))
186 			return (EPERM);
187 
188 		secflag_clear(&p->p_secflags.psf_effective, flag);
189 	} else {
190 		if (!secflag_isset(p->p_secflags.psf_upper, flag))
191 			return (EPERM);
192 
193 		if ((secpolicy_psecflags(CRED(), p, p) != 0) &&
194 		    !secflag_isset(p->p_secflags.psf_inherit, flag))
195 			return (EPERM);
196 
197 		secflag_set(&p->p_secflags.psf_effective, flag);
198 	}
199 
200 	return (0);
201 }
202 
203 /*
204  * Map in the executable pointed to by vp. Returns 0 on success.
205  */
206 int
207 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr,
208     intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase,
209     caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap)
210 {
211 	size_t		len;
212 	struct vattr	vat;
213 	caddr_t		phdrbase = NULL;
214 	ssize_t		phdrsize;
215 	int		nshdrs, shstrndx, nphdrs;
216 	int		error = 0;
217 	Phdr		*uphdr = NULL;
218 	Phdr		*junk = NULL;
219 	Phdr		*dynphdr = NULL;
220 	Phdr		*dtrphdr = NULL;
221 	uintptr_t	lddata;
222 	long		execsz;
223 	intptr_t	minaddr;
224 
225 	if (lddatap != NULL)
226 		*lddatap = NULL;
227 
228 	if (error = execpermissions(vp, &vat, args)) {
229 		uprintf("%s: Cannot execute %s\n", exec_file, args->pathname);
230 		return (error);
231 	}
232 
233 	if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx,
234 	    &nphdrs)) != 0 ||
235 	    (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase,
236 	    &phdrsize)) != 0) {
237 		uprintf("%s: Cannot read %s\n", exec_file, args->pathname);
238 		return (error);
239 	}
240 
241 	if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) {
242 		uprintf("%s: Nothing to load in %s", exec_file, args->pathname);
243 		kmem_free(phdrbase, phdrsize);
244 		return (ENOEXEC);
245 	}
246 	if (lddatap != NULL)
247 		*lddatap = lddata;
248 
249 	if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr,
250 	    &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr,
251 	    len, &execsz, brksize)) {
252 		uprintf("%s: Cannot map %s\n", exec_file, args->pathname);
253 		kmem_free(phdrbase, phdrsize);
254 		return (error);
255 	}
256 
257 	/*
258 	 * Inform our caller if the executable needs an interpreter.
259 	 */
260 	*interp = (dynphdr == NULL) ? 0 : 1;
261 
262 	/*
263 	 * If this is a statically linked executable, voffset should indicate
264 	 * the address of the executable itself (it normally holds the address
265 	 * of the interpreter).
266 	 */
267 	if (ehdr->e_type == ET_EXEC && *interp == 0)
268 		*voffset = minaddr;
269 
270 	if (uphdr != NULL) {
271 		*uphdr_vaddr = uphdr->p_vaddr;
272 	} else {
273 		*uphdr_vaddr = (Addr)-1;
274 	}
275 
276 	kmem_free(phdrbase, phdrsize);
277 	return (error);
278 }
279 
280 /*ARGSUSED*/
281 int
282 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap,
283     int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred,
284     int brand_action)
285 {
286 	caddr_t		phdrbase = NULL;
287 	caddr_t 	bssbase = 0;
288 	caddr_t 	brkbase = 0;
289 	size_t		brksize = 0;
290 	ssize_t		dlnsize;
291 	aux_entry_t	*aux;
292 	int		error;
293 	ssize_t		resid;
294 	int		fd = -1;
295 	intptr_t	voffset;
296 	Phdr		*intphdr = NULL;
297 	Phdr		*dynamicphdr = NULL;
298 	Phdr		*stphdr = NULL;
299 	Phdr		*uphdr = NULL;
300 	Phdr		*junk = NULL;
301 	size_t		len;
302 	ssize_t		phdrsize;
303 	int		postfixsize = 0;
304 	int		i, hsize;
305 	Phdr		*phdrp;
306 	Phdr		*dataphdrp = NULL;
307 	Phdr		*dtrphdr;
308 	Phdr		*capphdr = NULL;
309 	Cap		*cap = NULL;
310 	ssize_t		capsize;
311 	Dyn		*dyn = NULL;
312 	int		hasu = 0;
313 	int		hasauxv = 0;
314 	int		hasintp = 0;
315 	int		branded = 0;
316 
317 	struct proc *p = ttoproc(curthread);
318 	struct user *up = PTOU(p);
319 	struct bigwad {
320 		Ehdr	ehdr;
321 		aux_entry_t	elfargs[__KERN_NAUXV_IMPL];
322 		char		dl_name[MAXPATHLEN];
323 		char		pathbuf[MAXPATHLEN];
324 		struct vattr	vattr;
325 		struct execenv	exenv;
326 	} *bigwad;	/* kmem_alloc this behemoth so we don't blow stack */
327 	Ehdr		*ehdrp;
328 	int		nshdrs, shstrndx, nphdrs;
329 	char		*dlnp;
330 	char		*pathbufp;
331 	rlim64_t	limit;
332 	rlim64_t	roundlimit;
333 
334 	ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64);
335 
336 	bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP);
337 	ehdrp = &bigwad->ehdr;
338 	dlnp = bigwad->dl_name;
339 	pathbufp = bigwad->pathbuf;
340 
341 	/*
342 	 * Obtain ELF and program header information.
343 	 */
344 	if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx,
345 	    &nphdrs)) != 0 ||
346 	    (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase,
347 	    &phdrsize)) != 0)
348 		goto out;
349 
350 	/*
351 	 * Prevent executing an ELF file that has no entry point.
352 	 */
353 	if (ehdrp->e_entry == 0) {
354 		uprintf("%s: Bad entry point\n", exec_file);
355 		goto bad;
356 	}
357 
358 	/*
359 	 * Put data model that we're exec-ing to into the args passed to
360 	 * exec_args(), so it will know what it is copying to on new stack.
361 	 * Now that we know whether we are exec-ing a 32-bit or 64-bit
362 	 * executable, we can set execsz with the appropriate NCARGS.
363 	 */
364 #ifdef	_LP64
365 	if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) {
366 		args->to_model = DATAMODEL_ILP32;
367 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1);
368 	} else {
369 		args->to_model = DATAMODEL_LP64;
370 		args->stk_prot &= ~PROT_EXEC;
371 #if defined(__i386) || defined(__amd64)
372 		args->dat_prot &= ~PROT_EXEC;
373 #endif
374 		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1);
375 	}
376 #else	/* _LP64 */
377 	args->to_model = DATAMODEL_ILP32;
378 	*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1);
379 #endif	/* _LP64 */
380 
381 	/*
382 	 * We delay invoking the brand callback until we've figured out
383 	 * what kind of elf binary we're trying to run, 32-bit or 64-bit.
384 	 * We do this because now the brand library can just check
385 	 * args->to_model to see if the target is 32-bit or 64-bit without
386 	 * having do duplicate all the code above.
387 	 *
388 	 * The level checks associated with brand handling below are used to
389 	 * prevent a loop since the brand elfexec function typically comes back
390 	 * through this function. We must check <= here since the nested
391 	 * handling in the #! interpreter code will increment the level before
392 	 * calling gexec to run the final elfexec interpreter.
393 	 */
394 	if ((level <= INTP_MAXDEPTH) &&
395 	    (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
396 		error = BROP(p)->b_elfexec(vp, uap, args,
397 		    idatap, level + 1, execsz, setid, exec_file, cred,
398 		    brand_action);
399 		goto out;
400 	}
401 
402 	/*
403 	 * Determine aux size now so that stack can be built
404 	 * in one shot (except actual copyout of aux image),
405 	 * determine any non-default stack protections,
406 	 * and still have this code be machine independent.
407 	 */
408 	hsize = ehdrp->e_phentsize;
409 	phdrp = (Phdr *)phdrbase;
410 	for (i = nphdrs; i > 0; i--) {
411 		switch (phdrp->p_type) {
412 		case PT_INTERP:
413 			hasauxv = hasintp = 1;
414 			break;
415 		case PT_PHDR:
416 			hasu = 1;
417 			break;
418 		case PT_SUNWSTACK:
419 			args->stk_prot = PROT_USER;
420 			if (phdrp->p_flags & PF_R)
421 				args->stk_prot |= PROT_READ;
422 			if (phdrp->p_flags & PF_W)
423 				args->stk_prot |= PROT_WRITE;
424 			if (phdrp->p_flags & PF_X)
425 				args->stk_prot |= PROT_EXEC;
426 			break;
427 		case PT_LOAD:
428 			dataphdrp = phdrp;
429 			break;
430 		case PT_SUNWCAP:
431 			capphdr = phdrp;
432 			break;
433 		case PT_DYNAMIC:
434 			dynamicphdr = phdrp;
435 			break;
436 		}
437 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
438 	}
439 
440 	if (ehdrp->e_type != ET_EXEC) {
441 		dataphdrp = NULL;
442 		hasauxv = 1;
443 	}
444 
445 	/* Copy BSS permissions to args->dat_prot */
446 	if (dataphdrp != NULL) {
447 		args->dat_prot = PROT_USER;
448 		if (dataphdrp->p_flags & PF_R)
449 			args->dat_prot |= PROT_READ;
450 		if (dataphdrp->p_flags & PF_W)
451 			args->dat_prot |= PROT_WRITE;
452 		if (dataphdrp->p_flags & PF_X)
453 			args->dat_prot |= PROT_EXEC;
454 	}
455 
456 	/*
457 	 * If a auxvector will be required - reserve the space for
458 	 * it now.  This may be increased by exec_args if there are
459 	 * ISA-specific types (included in __KERN_NAUXV_IMPL).
460 	 */
461 	if (hasauxv) {
462 		/*
463 		 * If a AUX vector is being built - the base AUX
464 		 * entries are:
465 		 *
466 		 *	AT_BASE
467 		 *	AT_FLAGS
468 		 *	AT_PAGESZ
469 		 *	AT_SUN_AUXFLAGS
470 		 *	AT_SUN_HWCAP
471 		 *	AT_SUN_HWCAP2
472 		 *	AT_SUN_PLATFORM (added in stk_copyout)
473 		 *	AT_SUN_EXECNAME (added in stk_copyout)
474 		 *	AT_NULL
475 		 *
476 		 * total == 9
477 		 */
478 		if (hasintp && hasu) {
479 			/*
480 			 * Has PT_INTERP & PT_PHDR - the auxvectors that
481 			 * will be built are:
482 			 *
483 			 *	AT_PHDR
484 			 *	AT_PHENT
485 			 *	AT_PHNUM
486 			 *	AT_ENTRY
487 			 *	AT_LDDATA
488 			 *
489 			 * total = 5
490 			 */
491 			args->auxsize = (9 + 5) * sizeof (aux_entry_t);
492 		} else if (hasintp) {
493 			/*
494 			 * Has PT_INTERP but no PT_PHDR
495 			 *
496 			 *	AT_EXECFD
497 			 *	AT_LDDATA
498 			 *
499 			 * total = 2
500 			 */
501 			args->auxsize = (9 + 2) * sizeof (aux_entry_t);
502 		} else {
503 			args->auxsize = 9 * sizeof (aux_entry_t);
504 		}
505 	} else {
506 		args->auxsize = 0;
507 	}
508 
509 	/*
510 	 * If this binary is using an emulator, we need to add an
511 	 * AT_SUN_EMULATOR aux entry.
512 	 */
513 	if (args->emulator != NULL)
514 		args->auxsize += sizeof (aux_entry_t);
515 
516 	if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
517 		branded = 1;
518 		/*
519 		 * We will be adding 4 entries to the aux vectors.  One for
520 		 * the the brandname and 3 for the brand specific aux vectors.
521 		 */
522 		args->auxsize += 4 * sizeof (aux_entry_t);
523 	}
524 
525 	/* If the binary has an explicit ASLR flag, it must be honoured */
526 	if ((dynamicphdr != NULL) &&
527 	    (dynamicphdr->p_filesz > 0)) {
528 		Dyn *dp;
529 		off_t i = 0;
530 
531 #define	DYN_STRIDE	100
532 		for (i = 0; i < dynamicphdr->p_filesz;
533 		    i += sizeof (*dyn) * DYN_STRIDE) {
534 			int ndyns = (dynamicphdr->p_filesz - i) / sizeof (*dyn);
535 			size_t dynsize;
536 
537 			ndyns = MIN(DYN_STRIDE, ndyns);
538 			dynsize = ndyns * sizeof (*dyn);
539 
540 			dyn = kmem_alloc(dynsize, KM_SLEEP);
541 
542 			if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)dyn,
543 			    dynsize, (offset_t)(dynamicphdr->p_offset + i),
544 			    UIO_SYSSPACE, 0, (rlim64_t)0,
545 			    CRED(), &resid)) != 0) {
546 				uprintf("%s: cannot read .dynamic section\n",
547 				    exec_file);
548 				goto out;
549 			}
550 
551 			for (dp = dyn; dp < (dyn + ndyns); dp++) {
552 				if (dp->d_tag == DT_SUNW_ASLR) {
553 					if ((error = handle_secflag_dt(p,
554 					    DT_SUNW_ASLR,
555 					    dp->d_un.d_val)) != 0) {
556 						uprintf("%s: error setting "
557 						    "security-flag from "
558 						    "DT_SUNW_ASLR: %d\n",
559 						    exec_file, error);
560 						goto out;
561 					}
562 				}
563 			}
564 
565 			kmem_free(dyn, dynsize);
566 		}
567 	}
568 
569 	/* Hardware/Software capabilities */
570 	if (capphdr != NULL &&
571 	    (capsize = capphdr->p_filesz) > 0 &&
572 	    capsize <= 16 * sizeof (*cap)) {
573 		int ncaps = capsize / sizeof (*cap);
574 		Cap *cp;
575 
576 		cap = kmem_alloc(capsize, KM_SLEEP);
577 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap,
578 		    capsize, (offset_t)capphdr->p_offset,
579 		    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
580 			uprintf("%s: Cannot read capabilities section\n",
581 			    exec_file);
582 			goto out;
583 		}
584 		for (cp = cap; cp < cap + ncaps; cp++) {
585 			if (cp->c_tag == CA_SUNW_SF_1 &&
586 			    (cp->c_un.c_val & SF1_SUNW_ADDR32)) {
587 				if (args->to_model == DATAMODEL_LP64)
588 					args->addr32 = 1;
589 				break;
590 			}
591 		}
592 	}
593 
594 	aux = bigwad->elfargs;
595 	/*
596 	 * Move args to the user's stack.
597 	 * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries.
598 	 */
599 	if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) {
600 		if (error == -1) {
601 			error = ENOEXEC;
602 			goto bad;
603 		}
604 		goto out;
605 	}
606 	/* we're single threaded after this point */
607 
608 	/*
609 	 * If this is an ET_DYN executable (shared object),
610 	 * determine its memory size so that mapelfexec() can load it.
611 	 */
612 	if (ehdrp->e_type == ET_DYN)
613 		len = elfsize(ehdrp, nphdrs, phdrbase, NULL);
614 	else
615 		len = 0;
616 
617 	dtrphdr = NULL;
618 
619 	if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &intphdr,
620 	    &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL,
621 	    len, execsz, &brksize)) != 0)
622 		goto bad;
623 
624 	if (uphdr != NULL && intphdr == NULL)
625 		goto bad;
626 
627 	if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
628 		uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file);
629 		goto bad;
630 	}
631 
632 	if (intphdr != NULL) {
633 		size_t		len;
634 		uintptr_t	lddata;
635 		char		*p;
636 		struct vnode	*nvp;
637 
638 		dlnsize = intphdr->p_filesz;
639 
640 		if (dlnsize > MAXPATHLEN || dlnsize <= 0)
641 			goto bad;
642 
643 		/*
644 		 * Read in "interpreter" pathname.
645 		 */
646 		if ((error = vn_rdwr(UIO_READ, vp, dlnp, intphdr->p_filesz,
647 		    (offset_t)intphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
648 		    CRED(), &resid)) != 0) {
649 			uprintf("%s: Cannot obtain interpreter pathname\n",
650 			    exec_file);
651 			goto bad;
652 		}
653 
654 		if (resid != 0 || dlnp[dlnsize - 1] != '\0')
655 			goto bad;
656 
657 		/*
658 		 * Search for '$ORIGIN' token in interpreter path.
659 		 * If found, expand it.
660 		 */
661 		for (p = dlnp; p = strchr(p, '$'); ) {
662 			uint_t	len, curlen;
663 			char	*_ptr;
664 
665 			if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE))
666 				continue;
667 
668 			/*
669 			 * We don't support $ORIGIN on setid programs to close
670 			 * a potential attack vector.
671 			 */
672 			if ((setid & EXECSETID_SETID) != 0) {
673 				error = ENOEXEC;
674 				goto bad;
675 			}
676 
677 			curlen = 0;
678 			len = p - dlnp - 1;
679 			if (len) {
680 				bcopy(dlnp, pathbufp, len);
681 				curlen += len;
682 			}
683 			if (_ptr = strrchr(args->pathname, '/')) {
684 				len = _ptr - args->pathname;
685 				if ((curlen + len) > MAXPATHLEN)
686 					break;
687 
688 				bcopy(args->pathname, &pathbufp[curlen], len);
689 				curlen += len;
690 			} else {
691 				/*
692 				 * executable is a basename found in the
693 				 * current directory.  So - just substitue
694 				 * '.' for ORIGIN.
695 				 */
696 				pathbufp[curlen] = '.';
697 				curlen++;
698 			}
699 			p += ORIGIN_STR_SIZE;
700 			len = strlen(p);
701 
702 			if ((curlen + len) > MAXPATHLEN)
703 				break;
704 			bcopy(p, &pathbufp[curlen], len);
705 			curlen += len;
706 			pathbufp[curlen++] = '\0';
707 			bcopy(pathbufp, dlnp, curlen);
708 		}
709 
710 		/*
711 		 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1
712 		 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1).
713 		 * Just in case /usr is not mounted, change it now.
714 		 */
715 		if (strcmp(dlnp, USR_LIB_RTLD) == 0)
716 			dlnp += 4;
717 		error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp);
718 		if (error && dlnp != bigwad->dl_name) {
719 			/* new kernel, old user-level */
720 			error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW,
721 			    NULLVPP, &nvp);
722 		}
723 		if (error) {
724 			uprintf("%s: Cannot find %s\n", exec_file, dlnp);
725 			goto bad;
726 		}
727 
728 		/*
729 		 * Setup the "aux" vector.
730 		 */
731 		if (uphdr) {
732 			if (ehdrp->e_type == ET_DYN) {
733 				/* don't use the first page */
734 				bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE;
735 				bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE;
736 			} else {
737 				bigwad->exenv.ex_bssbase = bssbase;
738 				bigwad->exenv.ex_brkbase = brkbase;
739 			}
740 			bigwad->exenv.ex_brksize = brksize;
741 			bigwad->exenv.ex_magic = elfmagic;
742 			bigwad->exenv.ex_vp = vp;
743 			setexecenv(&bigwad->exenv);
744 
745 			ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset)
746 			ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize)
747 			ADDAUX(aux, AT_PHNUM, nphdrs)
748 			ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset)
749 		} else {
750 			if ((error = execopen(&vp, &fd)) != 0) {
751 				VN_RELE(nvp);
752 				goto bad;
753 			}
754 
755 			ADDAUX(aux, AT_EXECFD, fd)
756 		}
757 
758 		if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) {
759 			VN_RELE(nvp);
760 			uprintf("%s: Cannot execute %s\n", exec_file, dlnp);
761 			goto bad;
762 		}
763 
764 		/*
765 		 * Now obtain the ELF header along with the entire program
766 		 * header contained in "nvp".
767 		 */
768 		kmem_free(phdrbase, phdrsize);
769 		phdrbase = NULL;
770 		if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs,
771 		    &shstrndx, &nphdrs)) != 0 ||
772 		    (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase,
773 		    &phdrsize)) != 0) {
774 			VN_RELE(nvp);
775 			uprintf("%s: Cannot read %s\n", exec_file, dlnp);
776 			goto bad;
777 		}
778 
779 		/*
780 		 * Determine memory size of the "interpreter's" loadable
781 		 * sections.  This size is then used to obtain the virtual
782 		 * address of a hole, in the user's address space, large
783 		 * enough to map the "interpreter".
784 		 */
785 		if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) {
786 			VN_RELE(nvp);
787 			uprintf("%s: Nothing to load in %s\n", exec_file, dlnp);
788 			goto bad;
789 		}
790 
791 		dtrphdr = NULL;
792 
793 		error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk,
794 		    &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len,
795 		    execsz, NULL);
796 		if (error || junk != NULL) {
797 			VN_RELE(nvp);
798 			uprintf("%s: Cannot map %s\n", exec_file, dlnp);
799 			goto bad;
800 		}
801 
802 		/*
803 		 * We use the DTrace program header to initialize the
804 		 * architecture-specific user per-LWP location. The dtrace
805 		 * fasttrap provider requires ready access to per-LWP scratch
806 		 * space. We assume that there is only one such program header
807 		 * in the interpreter.
808 		 */
809 		if (dtrphdr != NULL &&
810 		    dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
811 			VN_RELE(nvp);
812 			uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp);
813 			goto bad;
814 		}
815 
816 		VN_RELE(nvp);
817 		ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata)
818 	}
819 
820 	if (hasauxv) {
821 		int auxf = AF_SUN_HWCAPVERIFY;
822 		/*
823 		 * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via
824 		 * exec_args()
825 		 */
826 		ADDAUX(aux, AT_BASE, voffset)
827 		ADDAUX(aux, AT_FLAGS, at_flags)
828 		ADDAUX(aux, AT_PAGESZ, PAGESIZE)
829 		/*
830 		 * Linker flags. (security)
831 		 * p_flag not yet set at this time.
832 		 * We rely on gexec() to provide us with the information.
833 		 * If the application is set-uid but this is not reflected
834 		 * in a mismatch between real/effective uids/gids, then
835 		 * don't treat this as a set-uid exec.  So we care about
836 		 * the EXECSETID_UGIDS flag but not the ...SETID flag.
837 		 */
838 		if ((setid &= ~EXECSETID_SETID) != 0)
839 			auxf |= AF_SUN_SETUGID;
840 
841 		/*
842 		 * If we're running a native process from within a branded
843 		 * zone under pfexec then we clear the AF_SUN_SETUGID flag so
844 		 * that the native ld.so.1 is able to link with the native
845 		 * libraries instead of using the brand libraries that are
846 		 * installed in the zone.  We only do this for processes
847 		 * which we trust because we see they are already running
848 		 * under pfexec (where uid != euid).  This prevents a
849 		 * malicious user within the zone from crafting a wrapper to
850 		 * run native suid commands with unsecure libraries interposed.
851 		 */
852 		if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) &&
853 		    (setid &= ~EXECSETID_SETID) != 0))
854 			auxf &= ~AF_SUN_SETUGID;
855 
856 		/*
857 		 * Record the user addr of the auxflags aux vector entry
858 		 * since brands may optionally want to manipulate this field.
859 		 */
860 		args->auxp_auxflags =
861 		    (char *)((char *)args->stackend +
862 		    ((char *)&aux->a_type -
863 		    (char *)bigwad->elfargs));
864 		ADDAUX(aux, AT_SUN_AUXFLAGS, auxf);
865 
866 		/*
867 		 * Hardware capability flag word (performance hints)
868 		 * Used for choosing faster library routines.
869 		 * (Potentially different between 32-bit and 64-bit ABIs)
870 		 */
871 #if defined(_LP64)
872 		if (args->to_model == DATAMODEL_NATIVE) {
873 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
874 			ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2)
875 		} else {
876 			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32)
877 			ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2)
878 		}
879 #else
880 		ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
881 		ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2)
882 #endif
883 		if (branded) {
884 			/*
885 			 * Reserve space for the brand-private aux vectors,
886 			 * and record the user addr of that space.
887 			 */
888 			args->auxp_brand =
889 			    (char *)((char *)args->stackend +
890 			    ((char *)&aux->a_type -
891 			    (char *)bigwad->elfargs));
892 			ADDAUX(aux, AT_SUN_BRAND_AUX1, 0)
893 			ADDAUX(aux, AT_SUN_BRAND_AUX2, 0)
894 			ADDAUX(aux, AT_SUN_BRAND_AUX3, 0)
895 		}
896 
897 		ADDAUX(aux, AT_NULL, 0)
898 		postfixsize = (char *)aux - (char *)bigwad->elfargs;
899 
900 		/*
901 		 * We make assumptions above when we determine how many aux
902 		 * vector entries we will be adding. However, if we have an
903 		 * invalid elf file, it is possible that mapelfexec might
904 		 * behave differently (but not return an error), in which case
905 		 * the number of aux entries we actually add will be different.
906 		 * We detect that now and error out.
907 		 */
908 		if (postfixsize != args->auxsize) {
909 			DTRACE_PROBE2(elfexec_badaux, int, postfixsize,
910 			    int, args->auxsize);
911 			goto bad;
912 		}
913 		ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t));
914 	}
915 
916 	/*
917 	 * For the 64-bit kernel, the limit is big enough that rounding it up
918 	 * to a page can overflow the 64-bit limit, so we check for btopr()
919 	 * overflowing here by comparing it with the unrounded limit in pages.
920 	 * If it hasn't overflowed, compare the exec size with the rounded up
921 	 * limit in pages.  Otherwise, just compare with the unrounded limit.
922 	 */
923 	limit = btop(p->p_vmem_ctl);
924 	roundlimit = btopr(p->p_vmem_ctl);
925 	if ((roundlimit > limit && *execsz > roundlimit) ||
926 	    (roundlimit < limit && *execsz > limit)) {
927 		mutex_enter(&p->p_lock);
928 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
929 		    RCA_SAFE);
930 		mutex_exit(&p->p_lock);
931 		error = ENOMEM;
932 		goto bad;
933 	}
934 
935 	bzero(up->u_auxv, sizeof (up->u_auxv));
936 	if (postfixsize) {
937 		int num_auxv;
938 
939 		/*
940 		 * Copy the aux vector to the user stack.
941 		 */
942 		error = execpoststack(args, bigwad->elfargs, postfixsize);
943 		if (error)
944 			goto bad;
945 
946 		/*
947 		 * Copy auxv to the process's user structure for use by /proc.
948 		 * If this is a branded process, the brand's exec routine will
949 		 * copy it's private entries to the user structure later. It
950 		 * relies on the fact that the blank entries are at the end.
951 		 */
952 		num_auxv = postfixsize / sizeof (aux_entry_t);
953 		ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t));
954 		aux = bigwad->elfargs;
955 		for (i = 0; i < num_auxv; i++) {
956 			up->u_auxv[i].a_type = aux[i].a_type;
957 			up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val;
958 		}
959 	}
960 
961 	/*
962 	 * Pass back the starting address so we can set the program counter.
963 	 */
964 	args->entry = (uintptr_t)(ehdrp->e_entry + voffset);
965 
966 	if (!uphdr) {
967 		if (ehdrp->e_type == ET_DYN) {
968 			/*
969 			 * If we are executing a shared library which doesn't
970 			 * have a interpreter (probably ld.so.1) then
971 			 * we don't set the brkbase now.  Instead we
972 			 * delay it's setting until the first call
973 			 * via grow.c::brk().  This permits ld.so.1 to
974 			 * initialize brkbase to the tail of the executable it
975 			 * loads (which is where it needs to be).
976 			 */
977 			bigwad->exenv.ex_brkbase = (caddr_t)0;
978 			bigwad->exenv.ex_bssbase = (caddr_t)0;
979 			bigwad->exenv.ex_brksize = 0;
980 		} else {
981 			bigwad->exenv.ex_brkbase = brkbase;
982 			bigwad->exenv.ex_bssbase = bssbase;
983 			bigwad->exenv.ex_brksize = brksize;
984 		}
985 		bigwad->exenv.ex_magic = elfmagic;
986 		bigwad->exenv.ex_vp = vp;
987 		setexecenv(&bigwad->exenv);
988 	}
989 
990 	ASSERT(error == 0);
991 	goto out;
992 
993 bad:
994 	if (fd != -1)		/* did we open the a.out yet */
995 		(void) execclose(fd);
996 
997 	psignal(p, SIGKILL);
998 
999 	if (error == 0)
1000 		error = ENOEXEC;
1001 out:
1002 	if (phdrbase != NULL)
1003 		kmem_free(phdrbase, phdrsize);
1004 	if (cap != NULL)
1005 		kmem_free(cap, capsize);
1006 	kmem_free(bigwad, sizeof (struct bigwad));
1007 	return (error);
1008 }
1009 
1010 /*
1011  * Compute the memory size requirement for the ELF file.
1012  */
1013 static size_t
1014 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata)
1015 {
1016 	size_t	len;
1017 	Phdr	*phdrp = (Phdr *)phdrbase;
1018 	int	hsize = ehdrp->e_phentsize;
1019 	int	first = 1;
1020 	int	dfirst = 1;	/* first data segment */
1021 	uintptr_t loaddr = 0;
1022 	uintptr_t hiaddr = 0;
1023 	uintptr_t lo, hi;
1024 	int	i;
1025 
1026 	for (i = nphdrs; i > 0; i--) {
1027 		if (phdrp->p_type == PT_LOAD) {
1028 			lo = phdrp->p_vaddr;
1029 			hi = lo + phdrp->p_memsz;
1030 			if (first) {
1031 				loaddr = lo;
1032 				hiaddr = hi;
1033 				first = 0;
1034 			} else {
1035 				if (loaddr > lo)
1036 					loaddr = lo;
1037 				if (hiaddr < hi)
1038 					hiaddr = hi;
1039 			}
1040 
1041 			/*
1042 			 * save the address of the first data segment
1043 			 * of a object - used for the AT_SUNW_LDDATA
1044 			 * aux entry.
1045 			 */
1046 			if ((lddata != NULL) && dfirst &&
1047 			    (phdrp->p_flags & PF_W)) {
1048 				*lddata = lo;
1049 				dfirst = 0;
1050 			}
1051 		}
1052 		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
1053 	}
1054 
1055 	len = hiaddr - (loaddr & PAGEMASK);
1056 	len = roundup(len, PAGESIZE);
1057 
1058 	return (len);
1059 }
1060 
1061 /*
1062  * Read in the ELF header and program header table.
1063  * SUSV3 requires:
1064  *	ENOEXEC	File format is not recognized
1065  *	EINVAL	Format recognized but execution not supported
1066  */
1067 static int
1068 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx,
1069     int *nphdrs)
1070 {
1071 	int error;
1072 	ssize_t resid;
1073 
1074 	/*
1075 	 * We got here by the first two bytes in ident,
1076 	 * now read the entire ELF header.
1077 	 */
1078 	if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr,
1079 	    sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0,
1080 	    (rlim64_t)0, credp, &resid)) != 0)
1081 		return (error);
1082 
1083 	/*
1084 	 * Since a separate version is compiled for handling 32-bit and
1085 	 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version
1086 	 * doesn't need to be able to deal with 32-bit ELF files.
1087 	 */
1088 	if (resid != 0 ||
1089 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1090 	    ehdr->e_ident[EI_MAG3] != ELFMAG3)
1091 		return (ENOEXEC);
1092 
1093 	if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) ||
1094 #if defined(_ILP32) || defined(_ELF32_COMPAT)
1095 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1096 #else
1097 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1098 #endif
1099 	    !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine,
1100 	    ehdr->e_flags))
1101 		return (EINVAL);
1102 
1103 	*nshdrs = ehdr->e_shnum;
1104 	*shstrndx = ehdr->e_shstrndx;
1105 	*nphdrs = ehdr->e_phnum;
1106 
1107 	/*
1108 	 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need
1109 	 * to read in the section header at index zero to acces the true
1110 	 * values for those fields.
1111 	 */
1112 	if ((*nshdrs == 0 && ehdr->e_shoff != 0) ||
1113 	    *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) {
1114 		Shdr shdr;
1115 
1116 		if (ehdr->e_shoff == 0)
1117 			return (EINVAL);
1118 
1119 		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr,
1120 		    sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0,
1121 		    (rlim64_t)0, credp, &resid)) != 0)
1122 			return (error);
1123 
1124 		if (*nshdrs == 0)
1125 			*nshdrs = shdr.sh_size;
1126 		if (*shstrndx == SHN_XINDEX)
1127 			*shstrndx = shdr.sh_link;
1128 		if (*nphdrs == PN_XNUM && shdr.sh_info != 0)
1129 			*nphdrs = shdr.sh_info;
1130 	}
1131 
1132 	return (0);
1133 }
1134 
1135 #ifdef _ELF32_COMPAT
1136 extern size_t elf_nphdr_max;
1137 #else
1138 size_t elf_nphdr_max = 1000;
1139 #endif
1140 
1141 static int
1142 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs,
1143     caddr_t *phbasep, ssize_t *phsizep)
1144 {
1145 	ssize_t resid, minsize;
1146 	int err;
1147 
1148 	/*
1149 	 * Since we're going to be using e_phentsize to iterate down the
1150 	 * array of program headers, it must be 8-byte aligned or else
1151 	 * a we might cause a misaligned access. We use all members through
1152 	 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so
1153 	 * e_phentsize must be at least large enough to include those
1154 	 * members.
1155 	 */
1156 #if !defined(_LP64) || defined(_ELF32_COMPAT)
1157 	minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags);
1158 #else
1159 	minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz);
1160 #endif
1161 	if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3))
1162 		return (EINVAL);
1163 
1164 	*phsizep = nphdrs * ehdr->e_phentsize;
1165 
1166 	if (*phsizep > sizeof (Phdr) * elf_nphdr_max) {
1167 		if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL)
1168 			return (ENOMEM);
1169 	} else {
1170 		*phbasep = kmem_alloc(*phsizep, KM_SLEEP);
1171 	}
1172 
1173 	if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep,
1174 	    (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1175 	    credp, &resid)) != 0) {
1176 		kmem_free(*phbasep, *phsizep);
1177 		*phbasep = NULL;
1178 		return (err);
1179 	}
1180 
1181 	return (0);
1182 }
1183 
1184 #ifdef _ELF32_COMPAT
1185 extern size_t elf_nshdr_max;
1186 extern size_t elf_shstrtab_max;
1187 #else
1188 size_t elf_nshdr_max = 10000;
1189 size_t elf_shstrtab_max = 100 * 1024;
1190 #endif
1191 
1192 
1193 static int
1194 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr,
1195     int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep,
1196     char **shstrbasep, ssize_t *shstrsizep)
1197 {
1198 	ssize_t resid, minsize;
1199 	int err;
1200 	Shdr *shdr;
1201 
1202 	/*
1203 	 * Since we're going to be using e_shentsize to iterate down the
1204 	 * array of section headers, it must be 8-byte aligned or else
1205 	 * a we might cause a misaligned access. We use all members through
1206 	 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize
1207 	 * must be at least large enough to include that member. The index
1208 	 * of the string table section must also be valid.
1209 	 */
1210 	minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize);
1211 	if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) ||
1212 	    shstrndx >= nshdrs)
1213 		return (EINVAL);
1214 
1215 	*shsizep = nshdrs * ehdr->e_shentsize;
1216 
1217 	if (*shsizep > sizeof (Shdr) * elf_nshdr_max) {
1218 		if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL)
1219 			return (ENOMEM);
1220 	} else {
1221 		*shbasep = kmem_alloc(*shsizep, KM_SLEEP);
1222 	}
1223 
1224 	if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep,
1225 	    (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1226 	    credp, &resid)) != 0) {
1227 		kmem_free(*shbasep, *shsizep);
1228 		return (err);
1229 	}
1230 
1231 	/*
1232 	 * Pull the section string table out of the vnode; fail if the size
1233 	 * is zero.
1234 	 */
1235 	shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize);
1236 	if ((*shstrsizep = shdr->sh_size) == 0) {
1237 		kmem_free(*shbasep, *shsizep);
1238 		return (EINVAL);
1239 	}
1240 
1241 	if (*shstrsizep > elf_shstrtab_max) {
1242 		if ((*shstrbasep = kmem_alloc(*shstrsizep,
1243 		    KM_NOSLEEP)) == NULL) {
1244 			kmem_free(*shbasep, *shsizep);
1245 			return (ENOMEM);
1246 		}
1247 	} else {
1248 		*shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP);
1249 	}
1250 
1251 	if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep,
1252 	    (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
1253 	    credp, &resid)) != 0) {
1254 		kmem_free(*shbasep, *shsizep);
1255 		kmem_free(*shstrbasep, *shstrsizep);
1256 		return (err);
1257 	}
1258 
1259 	/*
1260 	 * Make sure the strtab is null-terminated to make sure we
1261 	 * don't run off the end of the table.
1262 	 */
1263 	(*shstrbasep)[*shstrsizep - 1] = '\0';
1264 
1265 	return (0);
1266 }
1267 
1268 static int
1269 mapelfexec(
1270 	vnode_t *vp,
1271 	Ehdr *ehdr,
1272 	int nphdrs,
1273 	caddr_t phdrbase,
1274 	Phdr **uphdr,
1275 	Phdr **intphdr,
1276 	Phdr **stphdr,
1277 	Phdr **dtphdr,
1278 	Phdr *dataphdrp,
1279 	caddr_t *bssbase,
1280 	caddr_t *brkbase,
1281 	intptr_t *voffset,
1282 	intptr_t *minaddr,
1283 	size_t len,
1284 	long *execsz,
1285 	size_t *brksize)
1286 {
1287 	Phdr *phdr;
1288 	int i, prot, error;
1289 	caddr_t addr = NULL;
1290 	size_t zfodsz;
1291 	int ptload = 0;
1292 	int page;
1293 	off_t offset;
1294 	int hsize = ehdr->e_phentsize;
1295 	caddr_t mintmp = (caddr_t)-1;
1296 	extern int use_brk_lpg;
1297 
1298 	if (ehdr->e_type == ET_DYN) {
1299 		secflagset_t flags = 0;
1300 		/*
1301 		 * Obtain the virtual address of a hole in the
1302 		 * address space to map the "interpreter".
1303 		 */
1304 		if (secflag_enabled(curproc, PROC_SEC_ASLR))
1305 			flags |= _MAP_RANDOMIZE;
1306 
1307 		map_addr(&addr, len, (offset_t)0, 1, flags);
1308 		if (addr == NULL)
1309 			return (ENOMEM);
1310 		*voffset = (intptr_t)addr;
1311 
1312 		/*
1313 		 * Calculate the minimum vaddr so it can be subtracted out.
1314 		 * According to the ELF specification, since PT_LOAD sections
1315 		 * must be sorted by increasing p_vaddr values, this is
1316 		 * guaranteed to be the first PT_LOAD section.
1317 		 */
1318 		phdr = (Phdr *)phdrbase;
1319 		for (i = nphdrs; i > 0; i--) {
1320 			if (phdr->p_type == PT_LOAD) {
1321 				*voffset -= (uintptr_t)phdr->p_vaddr;
1322 				break;
1323 			}
1324 			phdr = (Phdr *)((caddr_t)phdr + hsize);
1325 		}
1326 
1327 	} else {
1328 		*voffset = 0;
1329 	}
1330 	phdr = (Phdr *)phdrbase;
1331 	for (i = nphdrs; i > 0; i--) {
1332 		switch (phdr->p_type) {
1333 		case PT_LOAD:
1334 			if ((*intphdr != NULL) && (*uphdr == NULL))
1335 				return (0);
1336 
1337 			ptload = 1;
1338 			prot = PROT_USER;
1339 			if (phdr->p_flags & PF_R)
1340 				prot |= PROT_READ;
1341 			if (phdr->p_flags & PF_W)
1342 				prot |= PROT_WRITE;
1343 			if (phdr->p_flags & PF_X)
1344 				prot |= PROT_EXEC;
1345 
1346 			addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset);
1347 
1348 			/*
1349 			 * Keep track of the segment with the lowest starting
1350 			 * address.
1351 			 */
1352 			if (addr < mintmp)
1353 				mintmp = addr;
1354 
1355 			zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz;
1356 
1357 			offset = phdr->p_offset;
1358 			if (((uintptr_t)offset & PAGEOFFSET) ==
1359 			    ((uintptr_t)addr & PAGEOFFSET) &&
1360 			    (!(vp->v_flag & VNOMAP))) {
1361 				page = 1;
1362 			} else {
1363 				page = 0;
1364 			}
1365 
1366 			/*
1367 			 * Set the heap pagesize for OOB when the bss size
1368 			 * is known and use_brk_lpg is not 0.
1369 			 */
1370 			if (brksize != NULL && use_brk_lpg &&
1371 			    zfodsz != 0 && phdr == dataphdrp &&
1372 			    (prot & PROT_WRITE)) {
1373 				size_t tlen = P2NPHASE((uintptr_t)addr +
1374 				    phdr->p_filesz, PAGESIZE);
1375 
1376 				if (zfodsz > tlen) {
1377 					curproc->p_brkpageszc =
1378 					    page_szc(map_pgsz(MAPPGSZ_HEAP,
1379 					    curproc, addr + phdr->p_filesz +
1380 					    tlen, zfodsz - tlen, 0));
1381 				}
1382 			}
1383 
1384 			if (curproc->p_brkpageszc != 0 && phdr == dataphdrp &&
1385 			    (prot & PROT_WRITE)) {
1386 				uint_t	szc = curproc->p_brkpageszc;
1387 				size_t pgsz = page_get_pagesize(szc);
1388 				caddr_t ebss = addr + phdr->p_memsz;
1389 				/*
1390 				 * If we need extra space to keep the BSS an
1391 				 * integral number of pages in size, some of
1392 				 * that space may fall beyond p_brkbase, so we
1393 				 * need to set p_brksize to account for it
1394 				 * being (logically) part of the brk.
1395 				 */
1396 				size_t extra_zfodsz;
1397 
1398 				ASSERT(pgsz > PAGESIZE);
1399 
1400 				extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz);
1401 
1402 				if (error = execmap(vp, addr, phdr->p_filesz,
1403 				    zfodsz + extra_zfodsz, phdr->p_offset,
1404 				    prot, page, szc))
1405 					goto bad;
1406 				if (brksize != NULL)
1407 					*brksize = extra_zfodsz;
1408 			} else {
1409 				if (error = execmap(vp, addr, phdr->p_filesz,
1410 				    zfodsz, phdr->p_offset, prot, page, 0))
1411 					goto bad;
1412 			}
1413 
1414 			if (bssbase != NULL && addr >= *bssbase &&
1415 			    phdr == dataphdrp) {
1416 				*bssbase = addr + phdr->p_filesz;
1417 			}
1418 			if (brkbase != NULL && addr >= *brkbase) {
1419 				*brkbase = addr + phdr->p_memsz;
1420 			}
1421 
1422 			*execsz += btopr(phdr->p_memsz);
1423 			break;
1424 
1425 		case PT_INTERP:
1426 			if (ptload)
1427 				goto bad;
1428 			*intphdr = phdr;
1429 			break;
1430 
1431 		case PT_SHLIB:
1432 			*stphdr = phdr;
1433 			break;
1434 
1435 		case PT_PHDR:
1436 			if (ptload)
1437 				goto bad;
1438 			*uphdr = phdr;
1439 			break;
1440 
1441 		case PT_NULL:
1442 		case PT_DYNAMIC:
1443 		case PT_NOTE:
1444 			break;
1445 
1446 		case PT_SUNWDTRACE:
1447 			if (dtphdr != NULL)
1448 				*dtphdr = phdr;
1449 			break;
1450 
1451 		default:
1452 			break;
1453 		}
1454 		phdr = (Phdr *)((caddr_t)phdr + hsize);
1455 	}
1456 
1457 	if (minaddr != NULL) {
1458 		ASSERT(mintmp != (caddr_t)-1);
1459 		*minaddr = (intptr_t)mintmp;
1460 	}
1461 
1462 	if (brkbase != NULL && secflag_enabled(curproc, PROC_SEC_ASLR)) {
1463 		size_t off;
1464 		uintptr_t base = (uintptr_t)*brkbase;
1465 		uintptr_t oend = base + *brksize;
1466 
1467 		ASSERT(ISP2(aslr_max_brk_skew));
1468 
1469 		(void) random_get_pseudo_bytes((uint8_t *)&off, sizeof (off));
1470 		base += P2PHASE(off, aslr_max_brk_skew);
1471 		base = P2ROUNDUP(base, PAGESIZE);
1472 		*brkbase = (caddr_t)base;
1473 		/*
1474 		 * Above, we set *brksize to account for the possibility we
1475 		 * had to grow the 'brk' in padding out the BSS to a page
1476 		 * boundary.
1477 		 *
1478 		 * We now need to adjust that based on where we now are
1479 		 * actually putting the brk.
1480 		 */
1481 		if (oend > base)
1482 			*brksize = oend - base;
1483 		else
1484 			*brksize = 0;
1485 	}
1486 
1487 	return (0);
1488 bad:
1489 	if (error == 0)
1490 		error = EINVAL;
1491 	return (error);
1492 }
1493 
1494 int
1495 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc,
1496     rlim64_t rlimit, cred_t *credp)
1497 {
1498 	Note note;
1499 	int error;
1500 
1501 	bzero(&note, sizeof (note));
1502 	bcopy("CORE", note.name, 4);
1503 	note.nhdr.n_type = type;
1504 	/*
1505 	 * The System V ABI states that n_namesz must be the length of the
1506 	 * string that follows the Nhdr structure including the terminating
1507 	 * null. The ABI also specifies that sufficient padding should be
1508 	 * included so that the description that follows the name string
1509 	 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries
1510 	 * respectively. However, since this change was not made correctly
1511 	 * at the time of the 64-bit port, both 32- and 64-bit binaries
1512 	 * descriptions are only guaranteed to begin on a 4-byte boundary.
1513 	 */
1514 	note.nhdr.n_namesz = 5;
1515 	note.nhdr.n_descsz = roundup(descsz, sizeof (Word));
1516 
1517 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, &note,
1518 	    sizeof (note), rlimit, credp))
1519 		return (error);
1520 
1521 	*offsetp += sizeof (note);
1522 
1523 	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc,
1524 	    note.nhdr.n_descsz, rlimit, credp))
1525 		return (error);
1526 
1527 	*offsetp += note.nhdr.n_descsz;
1528 	return (0);
1529 }
1530 
1531 /*
1532  * Copy the section data from one vnode to the section of another vnode.
1533  */
1534 static void
1535 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset,
1536     void *buf, size_t size, cred_t *credp, rlim64_t rlimit)
1537 {
1538 	ssize_t resid;
1539 	size_t len, n = src->sh_size;
1540 	offset_t off = 0;
1541 
1542 	while (n != 0) {
1543 		len = MIN(size, n);
1544 		if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off,
1545 		    UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 ||
1546 		    resid >= len ||
1547 		    core_write(dst_vp, UIO_SYSSPACE, *doffset + off,
1548 		    buf, len - resid, rlimit, credp) != 0) {
1549 			dst->sh_size = 0;
1550 			dst->sh_offset = 0;
1551 			return;
1552 		}
1553 
1554 		ASSERT(n >= len - resid);
1555 
1556 		n -= len - resid;
1557 		off += len - resid;
1558 	}
1559 
1560 	*doffset += src->sh_size;
1561 }
1562 
1563 #ifdef _ELF32_COMPAT
1564 extern size_t elf_datasz_max;
1565 #else
1566 size_t elf_datasz_max = 1 * 1024 * 1024;
1567 #endif
1568 
1569 /*
1570  * This function processes mappings that correspond to load objects to
1571  * examine their respective sections for elfcore(). It's called once with
1572  * v set to NULL to count the number of sections that we're going to need
1573  * and then again with v set to some allocated buffer that we fill in with
1574  * all the section data.
1575  */
1576 static int
1577 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp,
1578     Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp)
1579 {
1580 	vnode_t *lastvp = NULL;
1581 	struct seg *seg;
1582 	int i, j;
1583 	void *data = NULL;
1584 	size_t datasz = 0;
1585 	shstrtab_t shstrtab;
1586 	struct as *as = p->p_as;
1587 	int error = 0;
1588 
1589 	if (v != NULL)
1590 		shstrtab_init(&shstrtab);
1591 
1592 	i = 1;
1593 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1594 		uint_t prot;
1595 		vnode_t *mvp;
1596 		void *tmp = NULL;
1597 		caddr_t saddr = seg->s_base;
1598 		caddr_t naddr;
1599 		caddr_t eaddr;
1600 		size_t segsize;
1601 
1602 		Ehdr ehdr;
1603 		int nshdrs, shstrndx, nphdrs;
1604 		caddr_t shbase;
1605 		ssize_t shsize;
1606 		char *shstrbase;
1607 		ssize_t shstrsize;
1608 
1609 		Shdr *shdr;
1610 		const char *name;
1611 		size_t sz;
1612 		uintptr_t off;
1613 
1614 		int ctf_ndx = 0;
1615 		int symtab_ndx = 0;
1616 
1617 		/*
1618 		 * Since we're just looking for text segments of load
1619 		 * objects, we only care about the protection bits; we don't
1620 		 * care about the actual size of the segment so we use the
1621 		 * reserved size. If the segment's size is zero, there's
1622 		 * something fishy going on so we ignore this segment.
1623 		 */
1624 		if (seg->s_ops != &segvn_ops ||
1625 		    SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1626 		    mvp == lastvp || mvp == NULL || mvp->v_type != VREG ||
1627 		    (segsize = pr_getsegsize(seg, 1)) == 0)
1628 			continue;
1629 
1630 		eaddr = saddr + segsize;
1631 		prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr);
1632 		pr_getprot_done(&tmp);
1633 
1634 		/*
1635 		 * Skip this segment unless the protection bits look like
1636 		 * what we'd expect for a text segment.
1637 		 */
1638 		if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC)
1639 			continue;
1640 
1641 		if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx,
1642 		    &nphdrs) != 0 ||
1643 		    getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx,
1644 		    &shbase, &shsize, &shstrbase, &shstrsize) != 0)
1645 			continue;
1646 
1647 		off = ehdr.e_shentsize;
1648 		for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) {
1649 			Shdr *symtab = NULL, *strtab;
1650 
1651 			shdr = (Shdr *)(shbase + off);
1652 
1653 			if (shdr->sh_name >= shstrsize)
1654 				continue;
1655 
1656 			name = shstrbase + shdr->sh_name;
1657 
1658 			if (strcmp(name, shstrtab_data[STR_CTF]) == 0) {
1659 				if ((content & CC_CONTENT_CTF) == 0 ||
1660 				    ctf_ndx != 0)
1661 					continue;
1662 
1663 				if (shdr->sh_link > 0 &&
1664 				    shdr->sh_link < nshdrs) {
1665 					symtab = (Shdr *)(shbase +
1666 					    shdr->sh_link * ehdr.e_shentsize);
1667 				}
1668 
1669 				if (v != NULL && i < nv - 1) {
1670 					if (shdr->sh_size > datasz &&
1671 					    shdr->sh_size <= elf_datasz_max) {
1672 						if (data != NULL)
1673 							kmem_free(data, datasz);
1674 
1675 						datasz = shdr->sh_size;
1676 						data = kmem_alloc(datasz,
1677 						    KM_SLEEP);
1678 					}
1679 
1680 					v[i].sh_name = shstrtab_ndx(&shstrtab,
1681 					    STR_CTF);
1682 					v[i].sh_addr = (Addr)(uintptr_t)saddr;
1683 					v[i].sh_type = SHT_PROGBITS;
1684 					v[i].sh_addralign = 4;
1685 					*doffsetp = roundup(*doffsetp,
1686 					    v[i].sh_addralign);
1687 					v[i].sh_offset = *doffsetp;
1688 					v[i].sh_size = shdr->sh_size;
1689 					if (symtab == NULL)  {
1690 						v[i].sh_link = 0;
1691 					} else if (symtab->sh_type ==
1692 					    SHT_SYMTAB &&
1693 					    symtab_ndx != 0) {
1694 						v[i].sh_link =
1695 						    symtab_ndx;
1696 					} else {
1697 						v[i].sh_link = i + 1;
1698 					}
1699 
1700 					copy_scn(shdr, mvp, &v[i], vp,
1701 					    doffsetp, data, datasz, credp,
1702 					    rlimit);
1703 				}
1704 
1705 				ctf_ndx = i++;
1706 
1707 				/*
1708 				 * We've already dumped the symtab.
1709 				 */
1710 				if (symtab != NULL &&
1711 				    symtab->sh_type == SHT_SYMTAB &&
1712 				    symtab_ndx != 0)
1713 					continue;
1714 
1715 			} else if (strcmp(name,
1716 			    shstrtab_data[STR_SYMTAB]) == 0) {
1717 				if ((content & CC_CONTENT_SYMTAB) == 0 ||
1718 				    symtab != 0)
1719 					continue;
1720 
1721 				symtab = shdr;
1722 			}
1723 
1724 			if (symtab != NULL) {
1725 				if ((symtab->sh_type != SHT_DYNSYM &&
1726 				    symtab->sh_type != SHT_SYMTAB) ||
1727 				    symtab->sh_link == 0 ||
1728 				    symtab->sh_link >= nshdrs)
1729 					continue;
1730 
1731 				strtab = (Shdr *)(shbase +
1732 				    symtab->sh_link * ehdr.e_shentsize);
1733 
1734 				if (strtab->sh_type != SHT_STRTAB)
1735 					continue;
1736 
1737 				if (v != NULL && i < nv - 2) {
1738 					sz = MAX(symtab->sh_size,
1739 					    strtab->sh_size);
1740 					if (sz > datasz &&
1741 					    sz <= elf_datasz_max) {
1742 						if (data != NULL)
1743 							kmem_free(data, datasz);
1744 
1745 						datasz = sz;
1746 						data = kmem_alloc(datasz,
1747 						    KM_SLEEP);
1748 					}
1749 
1750 					if (symtab->sh_type == SHT_DYNSYM) {
1751 						v[i].sh_name = shstrtab_ndx(
1752 						    &shstrtab, STR_DYNSYM);
1753 						v[i + 1].sh_name = shstrtab_ndx(
1754 						    &shstrtab, STR_DYNSTR);
1755 					} else {
1756 						v[i].sh_name = shstrtab_ndx(
1757 						    &shstrtab, STR_SYMTAB);
1758 						v[i + 1].sh_name = shstrtab_ndx(
1759 						    &shstrtab, STR_STRTAB);
1760 					}
1761 
1762 					v[i].sh_type = symtab->sh_type;
1763 					v[i].sh_addr = symtab->sh_addr;
1764 					if (ehdr.e_type == ET_DYN ||
1765 					    v[i].sh_addr == 0)
1766 						v[i].sh_addr +=
1767 						    (Addr)(uintptr_t)saddr;
1768 					v[i].sh_addralign =
1769 					    symtab->sh_addralign;
1770 					*doffsetp = roundup(*doffsetp,
1771 					    v[i].sh_addralign);
1772 					v[i].sh_offset = *doffsetp;
1773 					v[i].sh_size = symtab->sh_size;
1774 					v[i].sh_link = i + 1;
1775 					v[i].sh_entsize = symtab->sh_entsize;
1776 					v[i].sh_info = symtab->sh_info;
1777 
1778 					copy_scn(symtab, mvp, &v[i], vp,
1779 					    doffsetp, data, datasz, credp,
1780 					    rlimit);
1781 
1782 					v[i + 1].sh_type = SHT_STRTAB;
1783 					v[i + 1].sh_flags = SHF_STRINGS;
1784 					v[i + 1].sh_addr = symtab->sh_addr;
1785 					if (ehdr.e_type == ET_DYN ||
1786 					    v[i + 1].sh_addr == 0)
1787 						v[i + 1].sh_addr +=
1788 						    (Addr)(uintptr_t)saddr;
1789 					v[i + 1].sh_addralign =
1790 					    strtab->sh_addralign;
1791 					*doffsetp = roundup(*doffsetp,
1792 					    v[i + 1].sh_addralign);
1793 					v[i + 1].sh_offset = *doffsetp;
1794 					v[i + 1].sh_size = strtab->sh_size;
1795 
1796 					copy_scn(strtab, mvp, &v[i + 1], vp,
1797 					    doffsetp, data, datasz, credp,
1798 					    rlimit);
1799 				}
1800 
1801 				if (symtab->sh_type == SHT_SYMTAB)
1802 					symtab_ndx = i;
1803 				i += 2;
1804 			}
1805 		}
1806 
1807 		kmem_free(shstrbase, shstrsize);
1808 		kmem_free(shbase, shsize);
1809 
1810 		lastvp = mvp;
1811 	}
1812 
1813 	if (v == NULL) {
1814 		if (i == 1)
1815 			*nshdrsp = 0;
1816 		else
1817 			*nshdrsp = i + 1;
1818 		goto done;
1819 	}
1820 
1821 	if (i != nv - 1) {
1822 		cmn_err(CE_WARN, "elfcore: core dump failed for "
1823 		    "process %d; address space is changing", p->p_pid);
1824 		error = EIO;
1825 		goto done;
1826 	}
1827 
1828 	v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB);
1829 	v[i].sh_size = shstrtab_size(&shstrtab);
1830 	v[i].sh_addralign = 1;
1831 	*doffsetp = roundup(*doffsetp, v[i].sh_addralign);
1832 	v[i].sh_offset = *doffsetp;
1833 	v[i].sh_flags = SHF_STRINGS;
1834 	v[i].sh_type = SHT_STRTAB;
1835 
1836 	if (v[i].sh_size > datasz) {
1837 		if (data != NULL)
1838 			kmem_free(data, datasz);
1839 
1840 		datasz = v[i].sh_size;
1841 		data = kmem_alloc(datasz,
1842 		    KM_SLEEP);
1843 	}
1844 
1845 	shstrtab_dump(&shstrtab, data);
1846 
1847 	if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp,
1848 	    data, v[i].sh_size, rlimit, credp)) != 0)
1849 		goto done;
1850 
1851 	*doffsetp += v[i].sh_size;
1852 
1853 done:
1854 	if (data != NULL)
1855 		kmem_free(data, datasz);
1856 
1857 	return (error);
1858 }
1859 
1860 int
1861 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig,
1862     core_content_t content)
1863 {
1864 	offset_t poffset, soffset;
1865 	Off doffset;
1866 	int error, i, nphdrs, nshdrs;
1867 	int overflow = 0;
1868 	struct seg *seg;
1869 	struct as *as = p->p_as;
1870 	union {
1871 		Ehdr ehdr;
1872 		Phdr phdr[1];
1873 		Shdr shdr[1];
1874 	} *bigwad;
1875 	size_t bigsize;
1876 	size_t phdrsz, shdrsz;
1877 	Ehdr *ehdr;
1878 	Phdr *v;
1879 	caddr_t brkbase;
1880 	size_t brksize;
1881 	caddr_t stkbase;
1882 	size_t stksize;
1883 	int ntries = 0;
1884 	klwp_t *lwp = ttolwp(curthread);
1885 
1886 top:
1887 	/*
1888 	 * Make sure we have everything we need (registers, etc.).
1889 	 * All other lwps have already stopped and are in an orderly state.
1890 	 */
1891 	ASSERT(p == ttoproc(curthread));
1892 	prstop(0, 0);
1893 
1894 	AS_LOCK_ENTER(as, RW_WRITER);
1895 	nphdrs = prnsegs(as, 0) + 2;		/* two CORE note sections */
1896 
1897 	/*
1898 	 * Count the number of section headers we're going to need.
1899 	 */
1900 	nshdrs = 0;
1901 	if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) {
1902 		(void) process_scns(content, p, credp, NULL, NULL, NULL, 0,
1903 		    NULL, &nshdrs);
1904 	}
1905 	AS_LOCK_EXIT(as);
1906 
1907 	ASSERT(nshdrs == 0 || nshdrs > 1);
1908 
1909 	/*
1910 	 * The core file contents may required zero section headers, but if
1911 	 * we overflow the 16 bits allotted to the program header count in
1912 	 * the ELF header, we'll need that program header at index zero.
1913 	 */
1914 	if (nshdrs == 0 && nphdrs >= PN_XNUM)
1915 		nshdrs = 1;
1916 
1917 	phdrsz = nphdrs * sizeof (Phdr);
1918 	shdrsz = nshdrs * sizeof (Shdr);
1919 
1920 	bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz));
1921 	bigwad = kmem_alloc(bigsize, KM_SLEEP);
1922 
1923 	ehdr = &bigwad->ehdr;
1924 	bzero(ehdr, sizeof (*ehdr));
1925 
1926 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1927 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1928 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1929 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1930 	ehdr->e_ident[EI_CLASS] = ELFCLASS;
1931 	ehdr->e_type = ET_CORE;
1932 
1933 #if !defined(_LP64) || defined(_ELF32_COMPAT)
1934 
1935 #if defined(__sparc)
1936 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1937 	ehdr->e_machine = EM_SPARC;
1938 #elif defined(__i386) || defined(__i386_COMPAT)
1939 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1940 	ehdr->e_machine = EM_386;
1941 #else
1942 #error "no recognized machine type is defined"
1943 #endif
1944 
1945 #else	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
1946 
1947 #if defined(__sparc)
1948 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1949 	ehdr->e_machine = EM_SPARCV9;
1950 #elif defined(__amd64)
1951 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1952 	ehdr->e_machine = EM_AMD64;
1953 #else
1954 #error "no recognized 64-bit machine type is defined"
1955 #endif
1956 
1957 #endif	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
1958 
1959 	/*
1960 	 * If the count of program headers or section headers or the index
1961 	 * of the section string table can't fit in the mere 16 bits
1962 	 * shortsightedly allotted to them in the ELF header, we use the
1963 	 * extended formats and put the real values in the section header
1964 	 * as index 0.
1965 	 */
1966 	ehdr->e_version = EV_CURRENT;
1967 	ehdr->e_ehsize = sizeof (Ehdr);
1968 
1969 	if (nphdrs >= PN_XNUM)
1970 		ehdr->e_phnum = PN_XNUM;
1971 	else
1972 		ehdr->e_phnum = (unsigned short)nphdrs;
1973 
1974 	ehdr->e_phoff = sizeof (Ehdr);
1975 	ehdr->e_phentsize = sizeof (Phdr);
1976 
1977 	if (nshdrs > 0) {
1978 		if (nshdrs >= SHN_LORESERVE)
1979 			ehdr->e_shnum = 0;
1980 		else
1981 			ehdr->e_shnum = (unsigned short)nshdrs;
1982 
1983 		if (nshdrs - 1 >= SHN_LORESERVE)
1984 			ehdr->e_shstrndx = SHN_XINDEX;
1985 		else
1986 			ehdr->e_shstrndx = (unsigned short)(nshdrs - 1);
1987 
1988 		ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs;
1989 		ehdr->e_shentsize = sizeof (Shdr);
1990 	}
1991 
1992 	if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr,
1993 	    sizeof (Ehdr), rlimit, credp))
1994 		goto done;
1995 
1996 	poffset = sizeof (Ehdr);
1997 	soffset = sizeof (Ehdr) + phdrsz;
1998 	doffset = sizeof (Ehdr) + phdrsz + shdrsz;
1999 
2000 	v = &bigwad->phdr[0];
2001 	bzero(v, phdrsz);
2002 
2003 	setup_old_note_header(&v[0], p);
2004 	v[0].p_offset = doffset = roundup(doffset, sizeof (Word));
2005 	doffset += v[0].p_filesz;
2006 
2007 	setup_note_header(&v[1], p);
2008 	v[1].p_offset = doffset = roundup(doffset, sizeof (Word));
2009 	doffset += v[1].p_filesz;
2010 
2011 	mutex_enter(&p->p_lock);
2012 
2013 	brkbase = p->p_brkbase;
2014 	brksize = p->p_brksize;
2015 
2016 	stkbase = p->p_usrstack - p->p_stksize;
2017 	stksize = p->p_stksize;
2018 
2019 	mutex_exit(&p->p_lock);
2020 
2021 	AS_LOCK_ENTER(as, RW_WRITER);
2022 	i = 2;
2023 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
2024 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
2025 		caddr_t saddr, naddr;
2026 		void *tmp = NULL;
2027 		extern struct seg_ops segspt_shmops;
2028 
2029 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
2030 			uint_t prot;
2031 			size_t size;
2032 			int type;
2033 			vnode_t *mvp;
2034 
2035 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
2036 			prot &= PROT_READ | PROT_WRITE | PROT_EXEC;
2037 			if ((size = (size_t)(naddr - saddr)) == 0)
2038 				continue;
2039 			if (i == nphdrs) {
2040 				overflow++;
2041 				continue;
2042 			}
2043 			v[i].p_type = PT_LOAD;
2044 			v[i].p_vaddr = (Addr)(uintptr_t)saddr;
2045 			v[i].p_memsz = size;
2046 			if (prot & PROT_READ)
2047 				v[i].p_flags |= PF_R;
2048 			if (prot & PROT_WRITE)
2049 				v[i].p_flags |= PF_W;
2050 			if (prot & PROT_EXEC)
2051 				v[i].p_flags |= PF_X;
2052 
2053 			/*
2054 			 * Figure out which mappings to include in the core.
2055 			 */
2056 			type = SEGOP_GETTYPE(seg, saddr);
2057 
2058 			if (saddr == stkbase && size == stksize) {
2059 				if (!(content & CC_CONTENT_STACK))
2060 					goto exclude;
2061 
2062 			} else if (saddr == brkbase && size == brksize) {
2063 				if (!(content & CC_CONTENT_HEAP))
2064 					goto exclude;
2065 
2066 			} else if (seg->s_ops == &segspt_shmops) {
2067 				if (type & MAP_NORESERVE) {
2068 					if (!(content & CC_CONTENT_DISM))
2069 						goto exclude;
2070 				} else {
2071 					if (!(content & CC_CONTENT_ISM))
2072 						goto exclude;
2073 				}
2074 
2075 			} else if (seg->s_ops != &segvn_ops) {
2076 				goto exclude;
2077 
2078 			} else if (type & MAP_SHARED) {
2079 				if (shmgetid(p, saddr) != SHMID_NONE) {
2080 					if (!(content & CC_CONTENT_SHM))
2081 						goto exclude;
2082 
2083 				} else if (SEGOP_GETVP(seg, seg->s_base,
2084 				    &mvp) != 0 || mvp == NULL ||
2085 				    mvp->v_type != VREG) {
2086 					if (!(content & CC_CONTENT_SHANON))
2087 						goto exclude;
2088 
2089 				} else {
2090 					if (!(content & CC_CONTENT_SHFILE))
2091 						goto exclude;
2092 				}
2093 
2094 			} else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
2095 			    mvp == NULL || mvp->v_type != VREG) {
2096 				if (!(content & CC_CONTENT_ANON))
2097 					goto exclude;
2098 
2099 			} else if (prot == (PROT_READ | PROT_EXEC)) {
2100 				if (!(content & CC_CONTENT_TEXT))
2101 					goto exclude;
2102 
2103 			} else if (prot == PROT_READ) {
2104 				if (!(content & CC_CONTENT_RODATA))
2105 					goto exclude;
2106 
2107 			} else {
2108 				if (!(content & CC_CONTENT_DATA))
2109 					goto exclude;
2110 			}
2111 
2112 			doffset = roundup(doffset, sizeof (Word));
2113 			v[i].p_offset = doffset;
2114 			v[i].p_filesz = size;
2115 			doffset += size;
2116 exclude:
2117 			i++;
2118 		}
2119 		ASSERT(tmp == NULL);
2120 	}
2121 	AS_LOCK_EXIT(as);
2122 
2123 	if (overflow || i != nphdrs) {
2124 		if (ntries++ == 0) {
2125 			kmem_free(bigwad, bigsize);
2126 			overflow = 0;
2127 			goto top;
2128 		}
2129 		cmn_err(CE_WARN, "elfcore: core dump failed for "
2130 		    "process %d; address space is changing", p->p_pid);
2131 		error = EIO;
2132 		goto done;
2133 	}
2134 
2135 	if ((error = core_write(vp, UIO_SYSSPACE, poffset,
2136 	    v, phdrsz, rlimit, credp)) != 0)
2137 		goto done;
2138 
2139 	if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit,
2140 	    credp)) != 0)
2141 		goto done;
2142 
2143 	if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit,
2144 	    credp, content)) != 0)
2145 		goto done;
2146 
2147 	for (i = 2; i < nphdrs; i++) {
2148 		prkillinfo_t killinfo;
2149 		sigqueue_t *sq;
2150 		int sig, j;
2151 
2152 		if (v[i].p_filesz == 0)
2153 			continue;
2154 
2155 		/*
2156 		 * If dumping out this segment fails, rather than failing
2157 		 * the core dump entirely, we reset the size of the mapping
2158 		 * to zero to indicate that the data is absent from the core
2159 		 * file and or in the PF_SUNW_FAILURE flag to differentiate
2160 		 * this from mappings that were excluded due to the core file
2161 		 * content settings.
2162 		 */
2163 		if ((error = core_seg(p, vp, v[i].p_offset,
2164 		    (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz,
2165 		    rlimit, credp)) == 0) {
2166 			continue;
2167 		}
2168 
2169 		if ((sig = lwp->lwp_cursig) == 0) {
2170 			/*
2171 			 * We failed due to something other than a signal.
2172 			 * Since the space reserved for the segment is now
2173 			 * unused, we stash the errno in the first four
2174 			 * bytes. This undocumented interface will let us
2175 			 * understand the nature of the failure.
2176 			 */
2177 			(void) core_write(vp, UIO_SYSSPACE, v[i].p_offset,
2178 			    &error, sizeof (error), rlimit, credp);
2179 
2180 			v[i].p_filesz = 0;
2181 			v[i].p_flags |= PF_SUNW_FAILURE;
2182 			if ((error = core_write(vp, UIO_SYSSPACE,
2183 			    poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]),
2184 			    rlimit, credp)) != 0)
2185 				goto done;
2186 
2187 			continue;
2188 		}
2189 
2190 		/*
2191 		 * We took a signal.  We want to abort the dump entirely, but
2192 		 * we also want to indicate what failed and why.  We therefore
2193 		 * use the space reserved for the first failing segment to
2194 		 * write our error (which, for purposes of compatability with
2195 		 * older core dump readers, we set to EINTR) followed by any
2196 		 * siginfo associated with the signal.
2197 		 */
2198 		bzero(&killinfo, sizeof (killinfo));
2199 		killinfo.prk_error = EINTR;
2200 
2201 		sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo;
2202 
2203 		if (sq != NULL) {
2204 			bcopy(&sq->sq_info, &killinfo.prk_info,
2205 			    sizeof (sq->sq_info));
2206 		} else {
2207 			killinfo.prk_info.si_signo = lwp->lwp_cursig;
2208 			killinfo.prk_info.si_code = SI_NOINFO;
2209 		}
2210 
2211 #if (defined(_SYSCALL32_IMPL) || defined(_LP64))
2212 		/*
2213 		 * If this is a 32-bit process, we need to translate from the
2214 		 * native siginfo to the 32-bit variant.  (Core readers must
2215 		 * always have the same data model as their target or must
2216 		 * be aware of -- and compensate for -- data model differences.)
2217 		 */
2218 		if (curproc->p_model == DATAMODEL_ILP32) {
2219 			siginfo32_t si32;
2220 
2221 			siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32);
2222 			bcopy(&si32, &killinfo.prk_info, sizeof (si32));
2223 		}
2224 #endif
2225 
2226 		(void) core_write(vp, UIO_SYSSPACE, v[i].p_offset,
2227 		    &killinfo, sizeof (killinfo), rlimit, credp);
2228 
2229 		/*
2230 		 * For the segment on which we took the signal, indicate that
2231 		 * its data now refers to a siginfo.
2232 		 */
2233 		v[i].p_filesz = 0;
2234 		v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED |
2235 		    PF_SUNW_SIGINFO;
2236 
2237 		/*
2238 		 * And for every other segment, indicate that its absence
2239 		 * is due to a signal.
2240 		 */
2241 		for (j = i + 1; j < nphdrs; j++) {
2242 			v[j].p_filesz = 0;
2243 			v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED;
2244 		}
2245 
2246 		/*
2247 		 * Finally, write out our modified program headers.
2248 		 */
2249 		if ((error = core_write(vp, UIO_SYSSPACE,
2250 		    poffset + sizeof (v[i]) * i, &v[i],
2251 		    sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0)
2252 			goto done;
2253 
2254 		break;
2255 	}
2256 
2257 	if (nshdrs > 0) {
2258 		bzero(&bigwad->shdr[0], shdrsz);
2259 
2260 		if (nshdrs >= SHN_LORESERVE)
2261 			bigwad->shdr[0].sh_size = nshdrs;
2262 
2263 		if (nshdrs - 1 >= SHN_LORESERVE)
2264 			bigwad->shdr[0].sh_link = nshdrs - 1;
2265 
2266 		if (nphdrs >= PN_XNUM)
2267 			bigwad->shdr[0].sh_info = nphdrs;
2268 
2269 		if (nshdrs > 1) {
2270 			AS_LOCK_ENTER(as, RW_WRITER);
2271 			if ((error = process_scns(content, p, credp, vp,
2272 			    &bigwad->shdr[0], nshdrs, rlimit, &doffset,
2273 			    NULL)) != 0) {
2274 				AS_LOCK_EXIT(as);
2275 				goto done;
2276 			}
2277 			AS_LOCK_EXIT(as);
2278 		}
2279 
2280 		if ((error = core_write(vp, UIO_SYSSPACE, soffset,
2281 		    &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0)
2282 			goto done;
2283 	}
2284 
2285 done:
2286 	kmem_free(bigwad, bigsize);
2287 	return (error);
2288 }
2289 
2290 #ifndef	_ELF32_COMPAT
2291 
2292 static struct execsw esw = {
2293 #ifdef	_LP64
2294 	elf64magicstr,
2295 #else	/* _LP64 */
2296 	elf32magicstr,
2297 #endif	/* _LP64 */
2298 	0,
2299 	5,
2300 	elfexec,
2301 	elfcore
2302 };
2303 
2304 static struct modlexec modlexec = {
2305 	&mod_execops, "exec module for elf", &esw
2306 };
2307 
2308 #ifdef	_LP64
2309 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args,
2310 			intpdata_t *idatap, int level, long *execsz,
2311 			int setid, caddr_t exec_file, cred_t *cred,
2312 			int brand_action);
2313 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp,
2314 			rlim64_t rlimit, int sig, core_content_t content);
2315 
2316 static struct execsw esw32 = {
2317 	elf32magicstr,
2318 	0,
2319 	5,
2320 	elf32exec,
2321 	elf32core
2322 };
2323 
2324 static struct modlexec modlexec32 = {
2325 	&mod_execops, "32-bit exec module for elf", &esw32
2326 };
2327 #endif	/* _LP64 */
2328 
2329 static struct modlinkage modlinkage = {
2330 	MODREV_1,
2331 	(void *)&modlexec,
2332 #ifdef	_LP64
2333 	(void *)&modlexec32,
2334 #endif	/* _LP64 */
2335 	NULL
2336 };
2337 
2338 int
2339 _init(void)
2340 {
2341 	return (mod_install(&modlinkage));
2342 }
2343 
2344 int
2345 _fini(void)
2346 {
2347 	return (mod_remove(&modlinkage));
2348 }
2349 
2350 int
2351 _info(struct modinfo *modinfop)
2352 {
2353 	return (mod_info(&modlinkage, modinfop));
2354 }
2355 
2356 #endif	/* !_ELF32_COMPAT */
2357