1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 /* 29 * Copyright 2016 Joyent, Inc. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/thread.h> 35 #include <sys/sysmacros.h> 36 #include <sys/signal.h> 37 #include <sys/cred.h> 38 #include <sys/user.h> 39 #include <sys/errno.h> 40 #include <sys/vnode.h> 41 #include <sys/mman.h> 42 #include <sys/kmem.h> 43 #include <sys/proc.h> 44 #include <sys/pathname.h> 45 #include <sys/policy.h> 46 #include <sys/cmn_err.h> 47 #include <sys/systm.h> 48 #include <sys/elf.h> 49 #include <sys/vmsystm.h> 50 #include <sys/debug.h> 51 #include <sys/auxv.h> 52 #include <sys/exec.h> 53 #include <sys/prsystm.h> 54 #include <vm/as.h> 55 #include <vm/rm.h> 56 #include <vm/seg.h> 57 #include <vm/seg_vn.h> 58 #include <sys/modctl.h> 59 #include <sys/systeminfo.h> 60 #include <sys/vmparam.h> 61 #include <sys/machelf.h> 62 #include <sys/shm_impl.h> 63 #include <sys/archsystm.h> 64 #include <sys/fasttrap.h> 65 #include <sys/brand.h> 66 #include "elf_impl.h" 67 #include <sys/sdt.h> 68 #include <sys/siginfo.h> 69 #include <sys/random.h> 70 71 #if defined(__x86) 72 #include <sys/comm_page_util.h> 73 #endif /* defined(__x86) */ 74 75 76 extern int at_flags; 77 extern volatile size_t aslr_max_brk_skew; 78 79 #define ORIGIN_STR "ORIGIN" 80 #define ORIGIN_STR_SIZE 6 81 82 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *); 83 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *, 84 ssize_t *); 85 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *, 86 ssize_t *, caddr_t *, ssize_t *); 87 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *); 88 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t, 89 Phdr **, Phdr **, Phdr **, Phdr **, Phdr *, 90 caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *); 91 92 typedef enum { 93 STR_CTF, 94 STR_SYMTAB, 95 STR_DYNSYM, 96 STR_STRTAB, 97 STR_DYNSTR, 98 STR_SHSTRTAB, 99 STR_NUM 100 } shstrtype_t; 101 102 static const char *shstrtab_data[] = { 103 ".SUNW_ctf", 104 ".symtab", 105 ".dynsym", 106 ".strtab", 107 ".dynstr", 108 ".shstrtab" 109 }; 110 111 typedef struct shstrtab { 112 int sst_ndx[STR_NUM]; 113 int sst_cur; 114 } shstrtab_t; 115 116 static void 117 shstrtab_init(shstrtab_t *s) 118 { 119 bzero(&s->sst_ndx, sizeof (s->sst_ndx)); 120 s->sst_cur = 1; 121 } 122 123 static int 124 shstrtab_ndx(shstrtab_t *s, shstrtype_t type) 125 { 126 int ret; 127 128 if ((ret = s->sst_ndx[type]) != 0) 129 return (ret); 130 131 ret = s->sst_ndx[type] = s->sst_cur; 132 s->sst_cur += strlen(shstrtab_data[type]) + 1; 133 134 return (ret); 135 } 136 137 static size_t 138 shstrtab_size(const shstrtab_t *s) 139 { 140 return (s->sst_cur); 141 } 142 143 static void 144 shstrtab_dump(const shstrtab_t *s, char *buf) 145 { 146 int i, ndx; 147 148 *buf = '\0'; 149 for (i = 0; i < STR_NUM; i++) { 150 if ((ndx = s->sst_ndx[i]) != 0) 151 (void) strcpy(buf + ndx, shstrtab_data[i]); 152 } 153 } 154 155 static int 156 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base) 157 { 158 ASSERT(phdrp->p_type == PT_SUNWDTRACE); 159 160 /* 161 * See the comment in fasttrap.h for information on how to safely 162 * update this program header. 163 */ 164 if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE || 165 (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X)) 166 return (-1); 167 168 args->thrptr = phdrp->p_vaddr + base; 169 170 return (0); 171 } 172 173 static int 174 handle_secflag_dt(proc_t *p, uint_t dt, uint_t val) 175 { 176 uint_t flag; 177 178 switch (dt) { 179 case DT_SUNW_ASLR: 180 flag = PROC_SEC_ASLR; 181 break; 182 default: 183 return (EINVAL); 184 } 185 186 if (val == 0) { 187 if (secflag_isset(p->p_secflags.psf_lower, flag)) 188 return (EPERM); 189 if ((secpolicy_psecflags(CRED(), p, p) != 0) && 190 secflag_isset(p->p_secflags.psf_inherit, flag)) 191 return (EPERM); 192 193 secflag_clear(&p->p_secflags.psf_effective, flag); 194 } else { 195 if (!secflag_isset(p->p_secflags.psf_upper, flag)) 196 return (EPERM); 197 198 if ((secpolicy_psecflags(CRED(), p, p) != 0) && 199 !secflag_isset(p->p_secflags.psf_inherit, flag)) 200 return (EPERM); 201 202 secflag_set(&p->p_secflags.psf_effective, flag); 203 } 204 205 return (0); 206 } 207 208 /* 209 * Map in the executable pointed to by vp. Returns 0 on success. 210 */ 211 int 212 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr, 213 intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase, 214 caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap) 215 { 216 size_t len; 217 struct vattr vat; 218 caddr_t phdrbase = NULL; 219 ssize_t phdrsize; 220 int nshdrs, shstrndx, nphdrs; 221 int error = 0; 222 Phdr *uphdr = NULL; 223 Phdr *junk = NULL; 224 Phdr *dynphdr = NULL; 225 Phdr *dtrphdr = NULL; 226 uintptr_t lddata; 227 long execsz; 228 intptr_t minaddr; 229 230 if (lddatap != NULL) 231 *lddatap = NULL; 232 233 if (error = execpermissions(vp, &vat, args)) { 234 uprintf("%s: Cannot execute %s\n", exec_file, args->pathname); 235 return (error); 236 } 237 238 if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx, 239 &nphdrs)) != 0 || 240 (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase, 241 &phdrsize)) != 0) { 242 uprintf("%s: Cannot read %s\n", exec_file, args->pathname); 243 return (error); 244 } 245 246 if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) { 247 uprintf("%s: Nothing to load in %s", exec_file, args->pathname); 248 kmem_free(phdrbase, phdrsize); 249 return (ENOEXEC); 250 } 251 if (lddatap != NULL) 252 *lddatap = lddata; 253 254 if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr, 255 &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr, 256 len, &execsz, brksize)) { 257 uprintf("%s: Cannot map %s\n", exec_file, args->pathname); 258 kmem_free(phdrbase, phdrsize); 259 return (error); 260 } 261 262 /* 263 * Inform our caller if the executable needs an interpreter. 264 */ 265 *interp = (dynphdr == NULL) ? 0 : 1; 266 267 /* 268 * If this is a statically linked executable, voffset should indicate 269 * the address of the executable itself (it normally holds the address 270 * of the interpreter). 271 */ 272 if (ehdr->e_type == ET_EXEC && *interp == 0) 273 *voffset = minaddr; 274 275 if (uphdr != NULL) { 276 *uphdr_vaddr = uphdr->p_vaddr; 277 } else { 278 *uphdr_vaddr = (Addr)-1; 279 } 280 281 kmem_free(phdrbase, phdrsize); 282 return (error); 283 } 284 285 /*ARGSUSED*/ 286 int 287 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, 288 int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred, 289 int brand_action) 290 { 291 caddr_t phdrbase = NULL; 292 caddr_t bssbase = 0; 293 caddr_t brkbase = 0; 294 size_t brksize = 0; 295 ssize_t dlnsize; 296 aux_entry_t *aux; 297 int error; 298 ssize_t resid; 299 int fd = -1; 300 intptr_t voffset; 301 Phdr *intphdr = NULL; 302 Phdr *dynamicphdr = NULL; 303 Phdr *stphdr = NULL; 304 Phdr *uphdr = NULL; 305 Phdr *junk = NULL; 306 size_t len; 307 ssize_t phdrsize; 308 int postfixsize = 0; 309 int i, hsize; 310 Phdr *phdrp; 311 Phdr *dataphdrp = NULL; 312 Phdr *dtrphdr; 313 Phdr *capphdr = NULL; 314 Cap *cap = NULL; 315 ssize_t capsize; 316 Dyn *dyn = NULL; 317 int hasu = 0; 318 int hasauxv = 0; 319 int hasintp = 0; 320 int branded = 0; 321 322 struct proc *p = ttoproc(curthread); 323 struct user *up = PTOU(p); 324 struct bigwad { 325 Ehdr ehdr; 326 aux_entry_t elfargs[__KERN_NAUXV_IMPL]; 327 char dl_name[MAXPATHLEN]; 328 char pathbuf[MAXPATHLEN]; 329 struct vattr vattr; 330 struct execenv exenv; 331 } *bigwad; /* kmem_alloc this behemoth so we don't blow stack */ 332 Ehdr *ehdrp; 333 int nshdrs, shstrndx, nphdrs; 334 char *dlnp; 335 char *pathbufp; 336 rlim64_t limit; 337 rlim64_t roundlimit; 338 339 ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64); 340 341 bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP); 342 ehdrp = &bigwad->ehdr; 343 dlnp = bigwad->dl_name; 344 pathbufp = bigwad->pathbuf; 345 346 /* 347 * Obtain ELF and program header information. 348 */ 349 if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx, 350 &nphdrs)) != 0 || 351 (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase, 352 &phdrsize)) != 0) 353 goto out; 354 355 /* 356 * Prevent executing an ELF file that has no entry point. 357 */ 358 if (ehdrp->e_entry == 0) { 359 uprintf("%s: Bad entry point\n", exec_file); 360 goto bad; 361 } 362 363 /* 364 * Put data model that we're exec-ing to into the args passed to 365 * exec_args(), so it will know what it is copying to on new stack. 366 * Now that we know whether we are exec-ing a 32-bit or 64-bit 367 * executable, we can set execsz with the appropriate NCARGS. 368 */ 369 #ifdef _LP64 370 if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) { 371 args->to_model = DATAMODEL_ILP32; 372 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1); 373 } else { 374 args->to_model = DATAMODEL_LP64; 375 args->stk_prot &= ~PROT_EXEC; 376 #if defined(__i386) || defined(__amd64) 377 args->dat_prot &= ~PROT_EXEC; 378 #endif 379 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1); 380 } 381 #else /* _LP64 */ 382 args->to_model = DATAMODEL_ILP32; 383 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1); 384 #endif /* _LP64 */ 385 386 /* 387 * We delay invoking the brand callback until we've figured out 388 * what kind of elf binary we're trying to run, 32-bit or 64-bit. 389 * We do this because now the brand library can just check 390 * args->to_model to see if the target is 32-bit or 64-bit without 391 * having do duplicate all the code above. 392 * 393 * The level checks associated with brand handling below are used to 394 * prevent a loop since the brand elfexec function typically comes back 395 * through this function. We must check <= here since the nested 396 * handling in the #! interpreter code will increment the level before 397 * calling gexec to run the final elfexec interpreter. 398 */ 399 if ((level <= INTP_MAXDEPTH) && 400 (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 401 error = BROP(p)->b_elfexec(vp, uap, args, 402 idatap, level + 1, execsz, setid, exec_file, cred, 403 brand_action); 404 goto out; 405 } 406 407 /* 408 * Determine aux size now so that stack can be built 409 * in one shot (except actual copyout of aux image), 410 * determine any non-default stack protections, 411 * and still have this code be machine independent. 412 */ 413 hsize = ehdrp->e_phentsize; 414 phdrp = (Phdr *)phdrbase; 415 for (i = nphdrs; i > 0; i--) { 416 switch (phdrp->p_type) { 417 case PT_INTERP: 418 hasauxv = hasintp = 1; 419 break; 420 case PT_PHDR: 421 hasu = 1; 422 break; 423 case PT_SUNWSTACK: 424 args->stk_prot = PROT_USER; 425 if (phdrp->p_flags & PF_R) 426 args->stk_prot |= PROT_READ; 427 if (phdrp->p_flags & PF_W) 428 args->stk_prot |= PROT_WRITE; 429 if (phdrp->p_flags & PF_X) 430 args->stk_prot |= PROT_EXEC; 431 break; 432 case PT_LOAD: 433 dataphdrp = phdrp; 434 break; 435 case PT_SUNWCAP: 436 capphdr = phdrp; 437 break; 438 case PT_DYNAMIC: 439 dynamicphdr = phdrp; 440 break; 441 } 442 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 443 } 444 445 if (ehdrp->e_type != ET_EXEC) { 446 dataphdrp = NULL; 447 hasauxv = 1; 448 } 449 450 /* Copy BSS permissions to args->dat_prot */ 451 if (dataphdrp != NULL) { 452 args->dat_prot = PROT_USER; 453 if (dataphdrp->p_flags & PF_R) 454 args->dat_prot |= PROT_READ; 455 if (dataphdrp->p_flags & PF_W) 456 args->dat_prot |= PROT_WRITE; 457 if (dataphdrp->p_flags & PF_X) 458 args->dat_prot |= PROT_EXEC; 459 } 460 461 /* 462 * If a auxvector will be required - reserve the space for 463 * it now. This may be increased by exec_args if there are 464 * ISA-specific types (included in __KERN_NAUXV_IMPL). 465 */ 466 if (hasauxv) { 467 /* 468 * If a AUX vector is being built - the base AUX 469 * entries are: 470 * 471 * AT_BASE 472 * AT_FLAGS 473 * AT_PAGESZ 474 * AT_SUN_AUXFLAGS 475 * AT_SUN_HWCAP 476 * AT_SUN_HWCAP2 477 * AT_SUN_PLATFORM (added in stk_copyout) 478 * AT_SUN_EXECNAME (added in stk_copyout) 479 * AT_NULL 480 * 481 * total == 9 482 */ 483 if (hasintp && hasu) { 484 /* 485 * Has PT_INTERP & PT_PHDR - the auxvectors that 486 * will be built are: 487 * 488 * AT_PHDR 489 * AT_PHENT 490 * AT_PHNUM 491 * AT_ENTRY 492 * AT_LDDATA 493 * 494 * total = 5 495 */ 496 args->auxsize = (9 + 5) * sizeof (aux_entry_t); 497 } else if (hasintp) { 498 /* 499 * Has PT_INTERP but no PT_PHDR 500 * 501 * AT_EXECFD 502 * AT_LDDATA 503 * 504 * total = 2 505 */ 506 args->auxsize = (9 + 2) * sizeof (aux_entry_t); 507 } else { 508 args->auxsize = 9 * sizeof (aux_entry_t); 509 } 510 } else { 511 args->auxsize = 0; 512 } 513 514 /* 515 * If this binary is using an emulator, we need to add an 516 * AT_SUN_EMULATOR aux entry. 517 */ 518 if (args->emulator != NULL) 519 args->auxsize += sizeof (aux_entry_t); 520 521 /* 522 * On supported kernels (x86_64) make room in the auxv for the 523 * AT_SUN_COMMPAGE entry. This will go unpopulated on i86xpv systems 524 * which do not provide such functionality. 525 */ 526 #if defined(__amd64) 527 args->auxsize += sizeof (aux_entry_t); 528 #endif /* defined(__amd64) */ 529 530 if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 531 branded = 1; 532 /* 533 * We will be adding 4 entries to the aux vectors. One for 534 * the the brandname and 3 for the brand specific aux vectors. 535 */ 536 args->auxsize += 4 * sizeof (aux_entry_t); 537 } 538 539 /* If the binary has an explicit ASLR flag, it must be honoured */ 540 if ((dynamicphdr != NULL) && 541 (dynamicphdr->p_filesz > 0)) { 542 Dyn *dp; 543 off_t i = 0; 544 545 #define DYN_STRIDE 100 546 for (i = 0; i < dynamicphdr->p_filesz; 547 i += sizeof (*dyn) * DYN_STRIDE) { 548 int ndyns = (dynamicphdr->p_filesz - i) / sizeof (*dyn); 549 size_t dynsize; 550 551 ndyns = MIN(DYN_STRIDE, ndyns); 552 dynsize = ndyns * sizeof (*dyn); 553 554 dyn = kmem_alloc(dynsize, KM_SLEEP); 555 556 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)dyn, 557 dynsize, (offset_t)(dynamicphdr->p_offset + i), 558 UIO_SYSSPACE, 0, (rlim64_t)0, 559 CRED(), &resid)) != 0) { 560 uprintf("%s: cannot read .dynamic section\n", 561 exec_file); 562 goto out; 563 } 564 565 for (dp = dyn; dp < (dyn + ndyns); dp++) { 566 if (dp->d_tag == DT_SUNW_ASLR) { 567 if ((error = handle_secflag_dt(p, 568 DT_SUNW_ASLR, 569 dp->d_un.d_val)) != 0) { 570 uprintf("%s: error setting " 571 "security-flag from " 572 "DT_SUNW_ASLR: %d\n", 573 exec_file, error); 574 goto out; 575 } 576 } 577 } 578 579 kmem_free(dyn, dynsize); 580 } 581 } 582 583 /* Hardware/Software capabilities */ 584 if (capphdr != NULL && 585 (capsize = capphdr->p_filesz) > 0 && 586 capsize <= 16 * sizeof (*cap)) { 587 int ncaps = capsize / sizeof (*cap); 588 Cap *cp; 589 590 cap = kmem_alloc(capsize, KM_SLEEP); 591 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap, 592 capsize, (offset_t)capphdr->p_offset, 593 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { 594 uprintf("%s: Cannot read capabilities section\n", 595 exec_file); 596 goto out; 597 } 598 for (cp = cap; cp < cap + ncaps; cp++) { 599 if (cp->c_tag == CA_SUNW_SF_1 && 600 (cp->c_un.c_val & SF1_SUNW_ADDR32)) { 601 if (args->to_model == DATAMODEL_LP64) 602 args->addr32 = 1; 603 break; 604 } 605 } 606 } 607 608 aux = bigwad->elfargs; 609 /* 610 * Move args to the user's stack. 611 * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries. 612 */ 613 if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) { 614 if (error == -1) { 615 error = ENOEXEC; 616 goto bad; 617 } 618 goto out; 619 } 620 /* we're single threaded after this point */ 621 622 /* 623 * If this is an ET_DYN executable (shared object), 624 * determine its memory size so that mapelfexec() can load it. 625 */ 626 if (ehdrp->e_type == ET_DYN) 627 len = elfsize(ehdrp, nphdrs, phdrbase, NULL); 628 else 629 len = 0; 630 631 dtrphdr = NULL; 632 633 if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &intphdr, 634 &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL, 635 len, execsz, &brksize)) != 0) 636 goto bad; 637 638 if (uphdr != NULL && intphdr == NULL) 639 goto bad; 640 641 if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 642 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file); 643 goto bad; 644 } 645 646 if (intphdr != NULL) { 647 size_t len; 648 uintptr_t lddata; 649 char *p; 650 struct vnode *nvp; 651 652 dlnsize = intphdr->p_filesz; 653 654 if (dlnsize > MAXPATHLEN || dlnsize <= 0) 655 goto bad; 656 657 /* 658 * Read in "interpreter" pathname. 659 */ 660 if ((error = vn_rdwr(UIO_READ, vp, dlnp, intphdr->p_filesz, 661 (offset_t)intphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 662 CRED(), &resid)) != 0) { 663 uprintf("%s: Cannot obtain interpreter pathname\n", 664 exec_file); 665 goto bad; 666 } 667 668 if (resid != 0 || dlnp[dlnsize - 1] != '\0') 669 goto bad; 670 671 /* 672 * Search for '$ORIGIN' token in interpreter path. 673 * If found, expand it. 674 */ 675 for (p = dlnp; p = strchr(p, '$'); ) { 676 uint_t len, curlen; 677 char *_ptr; 678 679 if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE)) 680 continue; 681 682 /* 683 * We don't support $ORIGIN on setid programs to close 684 * a potential attack vector. 685 */ 686 if ((setid & EXECSETID_SETID) != 0) { 687 error = ENOEXEC; 688 goto bad; 689 } 690 691 curlen = 0; 692 len = p - dlnp - 1; 693 if (len) { 694 bcopy(dlnp, pathbufp, len); 695 curlen += len; 696 } 697 if (_ptr = strrchr(args->pathname, '/')) { 698 len = _ptr - args->pathname; 699 if ((curlen + len) > MAXPATHLEN) 700 break; 701 702 bcopy(args->pathname, &pathbufp[curlen], len); 703 curlen += len; 704 } else { 705 /* 706 * executable is a basename found in the 707 * current directory. So - just substitue 708 * '.' for ORIGIN. 709 */ 710 pathbufp[curlen] = '.'; 711 curlen++; 712 } 713 p += ORIGIN_STR_SIZE; 714 len = strlen(p); 715 716 if ((curlen + len) > MAXPATHLEN) 717 break; 718 bcopy(p, &pathbufp[curlen], len); 719 curlen += len; 720 pathbufp[curlen++] = '\0'; 721 bcopy(pathbufp, dlnp, curlen); 722 } 723 724 /* 725 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1 726 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1). 727 * Just in case /usr is not mounted, change it now. 728 */ 729 if (strcmp(dlnp, USR_LIB_RTLD) == 0) 730 dlnp += 4; 731 error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); 732 if (error && dlnp != bigwad->dl_name) { 733 /* new kernel, old user-level */ 734 error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW, 735 NULLVPP, &nvp); 736 } 737 if (error) { 738 uprintf("%s: Cannot find %s\n", exec_file, dlnp); 739 goto bad; 740 } 741 742 /* 743 * Setup the "aux" vector. 744 */ 745 if (uphdr) { 746 if (ehdrp->e_type == ET_DYN) { 747 /* don't use the first page */ 748 bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE; 749 bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE; 750 } else { 751 bigwad->exenv.ex_bssbase = bssbase; 752 bigwad->exenv.ex_brkbase = brkbase; 753 } 754 bigwad->exenv.ex_brksize = brksize; 755 bigwad->exenv.ex_magic = elfmagic; 756 bigwad->exenv.ex_vp = vp; 757 setexecenv(&bigwad->exenv); 758 759 ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset) 760 ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize) 761 ADDAUX(aux, AT_PHNUM, nphdrs) 762 ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset) 763 } else { 764 if ((error = execopen(&vp, &fd)) != 0) { 765 VN_RELE(nvp); 766 goto bad; 767 } 768 769 ADDAUX(aux, AT_EXECFD, fd) 770 } 771 772 if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) { 773 VN_RELE(nvp); 774 uprintf("%s: Cannot execute %s\n", exec_file, dlnp); 775 goto bad; 776 } 777 778 /* 779 * Now obtain the ELF header along with the entire program 780 * header contained in "nvp". 781 */ 782 kmem_free(phdrbase, phdrsize); 783 phdrbase = NULL; 784 if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs, 785 &shstrndx, &nphdrs)) != 0 || 786 (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase, 787 &phdrsize)) != 0) { 788 VN_RELE(nvp); 789 uprintf("%s: Cannot read %s\n", exec_file, dlnp); 790 goto bad; 791 } 792 793 /* 794 * Determine memory size of the "interpreter's" loadable 795 * sections. This size is then used to obtain the virtual 796 * address of a hole, in the user's address space, large 797 * enough to map the "interpreter". 798 */ 799 if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) { 800 VN_RELE(nvp); 801 uprintf("%s: Nothing to load in %s\n", exec_file, dlnp); 802 goto bad; 803 } 804 805 dtrphdr = NULL; 806 807 error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk, 808 &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len, 809 execsz, NULL); 810 if (error || junk != NULL) { 811 VN_RELE(nvp); 812 uprintf("%s: Cannot map %s\n", exec_file, dlnp); 813 goto bad; 814 } 815 816 /* 817 * We use the DTrace program header to initialize the 818 * architecture-specific user per-LWP location. The dtrace 819 * fasttrap provider requires ready access to per-LWP scratch 820 * space. We assume that there is only one such program header 821 * in the interpreter. 822 */ 823 if (dtrphdr != NULL && 824 dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 825 VN_RELE(nvp); 826 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp); 827 goto bad; 828 } 829 830 VN_RELE(nvp); 831 ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata) 832 } 833 834 if (hasauxv) { 835 int auxf = AF_SUN_HWCAPVERIFY; 836 837 /* 838 * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via 839 * exec_args() 840 */ 841 ADDAUX(aux, AT_BASE, voffset) 842 ADDAUX(aux, AT_FLAGS, at_flags) 843 ADDAUX(aux, AT_PAGESZ, PAGESIZE) 844 /* 845 * Linker flags. (security) 846 * p_flag not yet set at this time. 847 * We rely on gexec() to provide us with the information. 848 * If the application is set-uid but this is not reflected 849 * in a mismatch between real/effective uids/gids, then 850 * don't treat this as a set-uid exec. So we care about 851 * the EXECSETID_UGIDS flag but not the ...SETID flag. 852 */ 853 if ((setid &= ~EXECSETID_SETID) != 0) 854 auxf |= AF_SUN_SETUGID; 855 856 /* 857 * If we're running a native process from within a branded 858 * zone under pfexec then we clear the AF_SUN_SETUGID flag so 859 * that the native ld.so.1 is able to link with the native 860 * libraries instead of using the brand libraries that are 861 * installed in the zone. We only do this for processes 862 * which we trust because we see they are already running 863 * under pfexec (where uid != euid). This prevents a 864 * malicious user within the zone from crafting a wrapper to 865 * run native suid commands with unsecure libraries interposed. 866 */ 867 if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) && 868 (setid &= ~EXECSETID_SETID) != 0)) 869 auxf &= ~AF_SUN_SETUGID; 870 871 /* 872 * Record the user addr of the auxflags aux vector entry 873 * since brands may optionally want to manipulate this field. 874 */ 875 args->auxp_auxflags = 876 (char *)((char *)args->stackend + 877 ((char *)&aux->a_type - 878 (char *)bigwad->elfargs)); 879 ADDAUX(aux, AT_SUN_AUXFLAGS, auxf); 880 881 /* 882 * Hardware capability flag word (performance hints) 883 * Used for choosing faster library routines. 884 * (Potentially different between 32-bit and 64-bit ABIs) 885 */ 886 #if defined(_LP64) 887 if (args->to_model == DATAMODEL_NATIVE) { 888 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 889 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 890 } else { 891 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32) 892 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2) 893 } 894 #else 895 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 896 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 897 #endif 898 if (branded) { 899 /* 900 * Reserve space for the brand-private aux vectors, 901 * and record the user addr of that space. 902 */ 903 args->auxp_brand = 904 (char *)((char *)args->stackend + 905 ((char *)&aux->a_type - 906 (char *)bigwad->elfargs)); 907 ADDAUX(aux, AT_SUN_BRAND_AUX1, 0) 908 ADDAUX(aux, AT_SUN_BRAND_AUX2, 0) 909 ADDAUX(aux, AT_SUN_BRAND_AUX3, 0) 910 } 911 912 /* 913 * Add the comm page auxv entry, mapping it in if needed. 914 */ 915 #if defined(__amd64) 916 if (args->commpage != NULL || 917 (args->commpage = (uintptr_t)comm_page_mapin()) != NULL) { 918 ADDAUX(aux, AT_SUN_COMMPAGE, args->commpage) 919 } else { 920 /* 921 * If the comm page cannot be mapped, pad out the auxv 922 * to satisfy later size checks. 923 */ 924 ADDAUX(aux, AT_NULL, 0) 925 } 926 #endif /* defined(__amd64) */ 927 928 ADDAUX(aux, AT_NULL, 0) 929 postfixsize = (char *)aux - (char *)bigwad->elfargs; 930 931 /* 932 * We make assumptions above when we determine how many aux 933 * vector entries we will be adding. However, if we have an 934 * invalid elf file, it is possible that mapelfexec might 935 * behave differently (but not return an error), in which case 936 * the number of aux entries we actually add will be different. 937 * We detect that now and error out. 938 */ 939 if (postfixsize != args->auxsize) { 940 DTRACE_PROBE2(elfexec_badaux, int, postfixsize, 941 int, args->auxsize); 942 goto bad; 943 } 944 ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t)); 945 } 946 947 /* 948 * For the 64-bit kernel, the limit is big enough that rounding it up 949 * to a page can overflow the 64-bit limit, so we check for btopr() 950 * overflowing here by comparing it with the unrounded limit in pages. 951 * If it hasn't overflowed, compare the exec size with the rounded up 952 * limit in pages. Otherwise, just compare with the unrounded limit. 953 */ 954 limit = btop(p->p_vmem_ctl); 955 roundlimit = btopr(p->p_vmem_ctl); 956 if ((roundlimit > limit && *execsz > roundlimit) || 957 (roundlimit < limit && *execsz > limit)) { 958 mutex_enter(&p->p_lock); 959 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 960 RCA_SAFE); 961 mutex_exit(&p->p_lock); 962 error = ENOMEM; 963 goto bad; 964 } 965 966 bzero(up->u_auxv, sizeof (up->u_auxv)); 967 up->u_commpagep = args->commpage; 968 if (postfixsize) { 969 int num_auxv; 970 971 /* 972 * Copy the aux vector to the user stack. 973 */ 974 error = execpoststack(args, bigwad->elfargs, postfixsize); 975 if (error) 976 goto bad; 977 978 /* 979 * Copy auxv to the process's user structure for use by /proc. 980 * If this is a branded process, the brand's exec routine will 981 * copy it's private entries to the user structure later. It 982 * relies on the fact that the blank entries are at the end. 983 */ 984 num_auxv = postfixsize / sizeof (aux_entry_t); 985 ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t)); 986 aux = bigwad->elfargs; 987 for (i = 0; i < num_auxv; i++) { 988 up->u_auxv[i].a_type = aux[i].a_type; 989 up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val; 990 } 991 } 992 993 /* 994 * Pass back the starting address so we can set the program counter. 995 */ 996 args->entry = (uintptr_t)(ehdrp->e_entry + voffset); 997 998 if (!uphdr) { 999 if (ehdrp->e_type == ET_DYN) { 1000 /* 1001 * If we are executing a shared library which doesn't 1002 * have a interpreter (probably ld.so.1) then 1003 * we don't set the brkbase now. Instead we 1004 * delay it's setting until the first call 1005 * via grow.c::brk(). This permits ld.so.1 to 1006 * initialize brkbase to the tail of the executable it 1007 * loads (which is where it needs to be). 1008 */ 1009 bigwad->exenv.ex_brkbase = (caddr_t)0; 1010 bigwad->exenv.ex_bssbase = (caddr_t)0; 1011 bigwad->exenv.ex_brksize = 0; 1012 } else { 1013 bigwad->exenv.ex_brkbase = brkbase; 1014 bigwad->exenv.ex_bssbase = bssbase; 1015 bigwad->exenv.ex_brksize = brksize; 1016 } 1017 bigwad->exenv.ex_magic = elfmagic; 1018 bigwad->exenv.ex_vp = vp; 1019 setexecenv(&bigwad->exenv); 1020 } 1021 1022 ASSERT(error == 0); 1023 goto out; 1024 1025 bad: 1026 if (fd != -1) /* did we open the a.out yet */ 1027 (void) execclose(fd); 1028 1029 psignal(p, SIGKILL); 1030 1031 if (error == 0) 1032 error = ENOEXEC; 1033 out: 1034 if (phdrbase != NULL) 1035 kmem_free(phdrbase, phdrsize); 1036 if (cap != NULL) 1037 kmem_free(cap, capsize); 1038 kmem_free(bigwad, sizeof (struct bigwad)); 1039 return (error); 1040 } 1041 1042 /* 1043 * Compute the memory size requirement for the ELF file. 1044 */ 1045 static size_t 1046 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata) 1047 { 1048 size_t len; 1049 Phdr *phdrp = (Phdr *)phdrbase; 1050 int hsize = ehdrp->e_phentsize; 1051 int first = 1; 1052 int dfirst = 1; /* first data segment */ 1053 uintptr_t loaddr = 0; 1054 uintptr_t hiaddr = 0; 1055 uintptr_t lo, hi; 1056 int i; 1057 1058 for (i = nphdrs; i > 0; i--) { 1059 if (phdrp->p_type == PT_LOAD) { 1060 lo = phdrp->p_vaddr; 1061 hi = lo + phdrp->p_memsz; 1062 if (first) { 1063 loaddr = lo; 1064 hiaddr = hi; 1065 first = 0; 1066 } else { 1067 if (loaddr > lo) 1068 loaddr = lo; 1069 if (hiaddr < hi) 1070 hiaddr = hi; 1071 } 1072 1073 /* 1074 * save the address of the first data segment 1075 * of a object - used for the AT_SUNW_LDDATA 1076 * aux entry. 1077 */ 1078 if ((lddata != NULL) && dfirst && 1079 (phdrp->p_flags & PF_W)) { 1080 *lddata = lo; 1081 dfirst = 0; 1082 } 1083 } 1084 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 1085 } 1086 1087 len = hiaddr - (loaddr & PAGEMASK); 1088 len = roundup(len, PAGESIZE); 1089 1090 return (len); 1091 } 1092 1093 /* 1094 * Read in the ELF header and program header table. 1095 * SUSV3 requires: 1096 * ENOEXEC File format is not recognized 1097 * EINVAL Format recognized but execution not supported 1098 */ 1099 static int 1100 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx, 1101 int *nphdrs) 1102 { 1103 int error; 1104 ssize_t resid; 1105 1106 /* 1107 * We got here by the first two bytes in ident, 1108 * now read the entire ELF header. 1109 */ 1110 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr, 1111 sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0, 1112 (rlim64_t)0, credp, &resid)) != 0) 1113 return (error); 1114 1115 /* 1116 * Since a separate version is compiled for handling 32-bit and 1117 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version 1118 * doesn't need to be able to deal with 32-bit ELF files. 1119 */ 1120 if (resid != 0 || 1121 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1122 ehdr->e_ident[EI_MAG3] != ELFMAG3) 1123 return (ENOEXEC); 1124 1125 if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) || 1126 #if defined(_ILP32) || defined(_ELF32_COMPAT) 1127 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 1128 #else 1129 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 1130 #endif 1131 !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine, 1132 ehdr->e_flags)) 1133 return (EINVAL); 1134 1135 *nshdrs = ehdr->e_shnum; 1136 *shstrndx = ehdr->e_shstrndx; 1137 *nphdrs = ehdr->e_phnum; 1138 1139 /* 1140 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need 1141 * to read in the section header at index zero to acces the true 1142 * values for those fields. 1143 */ 1144 if ((*nshdrs == 0 && ehdr->e_shoff != 0) || 1145 *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) { 1146 Shdr shdr; 1147 1148 if (ehdr->e_shoff == 0) 1149 return (EINVAL); 1150 1151 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr, 1152 sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, 1153 (rlim64_t)0, credp, &resid)) != 0) 1154 return (error); 1155 1156 if (*nshdrs == 0) 1157 *nshdrs = shdr.sh_size; 1158 if (*shstrndx == SHN_XINDEX) 1159 *shstrndx = shdr.sh_link; 1160 if (*nphdrs == PN_XNUM && shdr.sh_info != 0) 1161 *nphdrs = shdr.sh_info; 1162 } 1163 1164 return (0); 1165 } 1166 1167 #ifdef _ELF32_COMPAT 1168 extern size_t elf_nphdr_max; 1169 #else 1170 size_t elf_nphdr_max = 1000; 1171 #endif 1172 1173 static int 1174 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs, 1175 caddr_t *phbasep, ssize_t *phsizep) 1176 { 1177 ssize_t resid, minsize; 1178 int err; 1179 1180 /* 1181 * Since we're going to be using e_phentsize to iterate down the 1182 * array of program headers, it must be 8-byte aligned or else 1183 * a we might cause a misaligned access. We use all members through 1184 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so 1185 * e_phentsize must be at least large enough to include those 1186 * members. 1187 */ 1188 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1189 minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags); 1190 #else 1191 minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz); 1192 #endif 1193 if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3)) 1194 return (EINVAL); 1195 1196 *phsizep = nphdrs * ehdr->e_phentsize; 1197 1198 if (*phsizep > sizeof (Phdr) * elf_nphdr_max) { 1199 if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL) 1200 return (ENOMEM); 1201 } else { 1202 *phbasep = kmem_alloc(*phsizep, KM_SLEEP); 1203 } 1204 1205 if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep, 1206 (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1207 credp, &resid)) != 0) { 1208 kmem_free(*phbasep, *phsizep); 1209 *phbasep = NULL; 1210 return (err); 1211 } 1212 1213 return (0); 1214 } 1215 1216 #ifdef _ELF32_COMPAT 1217 extern size_t elf_nshdr_max; 1218 extern size_t elf_shstrtab_max; 1219 #else 1220 size_t elf_nshdr_max = 10000; 1221 size_t elf_shstrtab_max = 100 * 1024; 1222 #endif 1223 1224 1225 static int 1226 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, 1227 int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep, 1228 char **shstrbasep, ssize_t *shstrsizep) 1229 { 1230 ssize_t resid, minsize; 1231 int err; 1232 Shdr *shdr; 1233 1234 /* 1235 * Since we're going to be using e_shentsize to iterate down the 1236 * array of section headers, it must be 8-byte aligned or else 1237 * a we might cause a misaligned access. We use all members through 1238 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize 1239 * must be at least large enough to include that member. The index 1240 * of the string table section must also be valid. 1241 */ 1242 minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize); 1243 if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) || 1244 shstrndx >= nshdrs) 1245 return (EINVAL); 1246 1247 *shsizep = nshdrs * ehdr->e_shentsize; 1248 1249 if (*shsizep > sizeof (Shdr) * elf_nshdr_max) { 1250 if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL) 1251 return (ENOMEM); 1252 } else { 1253 *shbasep = kmem_alloc(*shsizep, KM_SLEEP); 1254 } 1255 1256 if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep, 1257 (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1258 credp, &resid)) != 0) { 1259 kmem_free(*shbasep, *shsizep); 1260 return (err); 1261 } 1262 1263 /* 1264 * Pull the section string table out of the vnode; fail if the size 1265 * is zero. 1266 */ 1267 shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize); 1268 if ((*shstrsizep = shdr->sh_size) == 0) { 1269 kmem_free(*shbasep, *shsizep); 1270 return (EINVAL); 1271 } 1272 1273 if (*shstrsizep > elf_shstrtab_max) { 1274 if ((*shstrbasep = kmem_alloc(*shstrsizep, 1275 KM_NOSLEEP)) == NULL) { 1276 kmem_free(*shbasep, *shsizep); 1277 return (ENOMEM); 1278 } 1279 } else { 1280 *shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP); 1281 } 1282 1283 if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep, 1284 (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 1285 credp, &resid)) != 0) { 1286 kmem_free(*shbasep, *shsizep); 1287 kmem_free(*shstrbasep, *shstrsizep); 1288 return (err); 1289 } 1290 1291 /* 1292 * Make sure the strtab is null-terminated to make sure we 1293 * don't run off the end of the table. 1294 */ 1295 (*shstrbasep)[*shstrsizep - 1] = '\0'; 1296 1297 return (0); 1298 } 1299 1300 static int 1301 mapelfexec( 1302 vnode_t *vp, 1303 Ehdr *ehdr, 1304 int nphdrs, 1305 caddr_t phdrbase, 1306 Phdr **uphdr, 1307 Phdr **intphdr, 1308 Phdr **stphdr, 1309 Phdr **dtphdr, 1310 Phdr *dataphdrp, 1311 caddr_t *bssbase, 1312 caddr_t *brkbase, 1313 intptr_t *voffset, 1314 intptr_t *minaddr, 1315 size_t len, 1316 long *execsz, 1317 size_t *brksize) 1318 { 1319 Phdr *phdr; 1320 int i, prot, error; 1321 caddr_t addr = NULL; 1322 size_t zfodsz; 1323 int ptload = 0; 1324 int page; 1325 off_t offset; 1326 int hsize = ehdr->e_phentsize; 1327 caddr_t mintmp = (caddr_t)-1; 1328 extern int use_brk_lpg; 1329 1330 if (ehdr->e_type == ET_DYN) { 1331 secflagset_t flags = 0; 1332 /* 1333 * Obtain the virtual address of a hole in the 1334 * address space to map the "interpreter". 1335 */ 1336 if (secflag_enabled(curproc, PROC_SEC_ASLR)) 1337 flags |= _MAP_RANDOMIZE; 1338 1339 map_addr(&addr, len, (offset_t)0, 1, flags); 1340 if (addr == NULL) 1341 return (ENOMEM); 1342 *voffset = (intptr_t)addr; 1343 1344 /* 1345 * Calculate the minimum vaddr so it can be subtracted out. 1346 * According to the ELF specification, since PT_LOAD sections 1347 * must be sorted by increasing p_vaddr values, this is 1348 * guaranteed to be the first PT_LOAD section. 1349 */ 1350 phdr = (Phdr *)phdrbase; 1351 for (i = nphdrs; i > 0; i--) { 1352 if (phdr->p_type == PT_LOAD) { 1353 *voffset -= (uintptr_t)phdr->p_vaddr; 1354 break; 1355 } 1356 phdr = (Phdr *)((caddr_t)phdr + hsize); 1357 } 1358 1359 } else { 1360 *voffset = 0; 1361 } 1362 phdr = (Phdr *)phdrbase; 1363 for (i = nphdrs; i > 0; i--) { 1364 switch (phdr->p_type) { 1365 case PT_LOAD: 1366 if ((*intphdr != NULL) && (*uphdr == NULL)) 1367 return (0); 1368 1369 ptload = 1; 1370 prot = PROT_USER; 1371 if (phdr->p_flags & PF_R) 1372 prot |= PROT_READ; 1373 if (phdr->p_flags & PF_W) 1374 prot |= PROT_WRITE; 1375 if (phdr->p_flags & PF_X) 1376 prot |= PROT_EXEC; 1377 1378 addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset); 1379 1380 /* 1381 * Keep track of the segment with the lowest starting 1382 * address. 1383 */ 1384 if (addr < mintmp) 1385 mintmp = addr; 1386 1387 zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz; 1388 1389 offset = phdr->p_offset; 1390 if (((uintptr_t)offset & PAGEOFFSET) == 1391 ((uintptr_t)addr & PAGEOFFSET) && 1392 (!(vp->v_flag & VNOMAP))) { 1393 page = 1; 1394 } else { 1395 page = 0; 1396 } 1397 1398 /* 1399 * Set the heap pagesize for OOB when the bss size 1400 * is known and use_brk_lpg is not 0. 1401 */ 1402 if (brksize != NULL && use_brk_lpg && 1403 zfodsz != 0 && phdr == dataphdrp && 1404 (prot & PROT_WRITE)) { 1405 size_t tlen = P2NPHASE((uintptr_t)addr + 1406 phdr->p_filesz, PAGESIZE); 1407 1408 if (zfodsz > tlen) { 1409 curproc->p_brkpageszc = 1410 page_szc(map_pgsz(MAPPGSZ_HEAP, 1411 curproc, addr + phdr->p_filesz + 1412 tlen, zfodsz - tlen, 0)); 1413 } 1414 } 1415 1416 if (curproc->p_brkpageszc != 0 && phdr == dataphdrp && 1417 (prot & PROT_WRITE)) { 1418 uint_t szc = curproc->p_brkpageszc; 1419 size_t pgsz = page_get_pagesize(szc); 1420 caddr_t ebss = addr + phdr->p_memsz; 1421 /* 1422 * If we need extra space to keep the BSS an 1423 * integral number of pages in size, some of 1424 * that space may fall beyond p_brkbase, so we 1425 * need to set p_brksize to account for it 1426 * being (logically) part of the brk. 1427 */ 1428 size_t extra_zfodsz; 1429 1430 ASSERT(pgsz > PAGESIZE); 1431 1432 extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz); 1433 1434 if (error = execmap(vp, addr, phdr->p_filesz, 1435 zfodsz + extra_zfodsz, phdr->p_offset, 1436 prot, page, szc)) 1437 goto bad; 1438 if (brksize != NULL) 1439 *brksize = extra_zfodsz; 1440 } else { 1441 if (error = execmap(vp, addr, phdr->p_filesz, 1442 zfodsz, phdr->p_offset, prot, page, 0)) 1443 goto bad; 1444 } 1445 1446 if (bssbase != NULL && addr >= *bssbase && 1447 phdr == dataphdrp) { 1448 *bssbase = addr + phdr->p_filesz; 1449 } 1450 if (brkbase != NULL && addr >= *brkbase) { 1451 *brkbase = addr + phdr->p_memsz; 1452 } 1453 1454 *execsz += btopr(phdr->p_memsz); 1455 break; 1456 1457 case PT_INTERP: 1458 if (ptload) 1459 goto bad; 1460 *intphdr = phdr; 1461 break; 1462 1463 case PT_SHLIB: 1464 *stphdr = phdr; 1465 break; 1466 1467 case PT_PHDR: 1468 if (ptload) 1469 goto bad; 1470 *uphdr = phdr; 1471 break; 1472 1473 case PT_NULL: 1474 case PT_DYNAMIC: 1475 case PT_NOTE: 1476 break; 1477 1478 case PT_SUNWDTRACE: 1479 if (dtphdr != NULL) 1480 *dtphdr = phdr; 1481 break; 1482 1483 default: 1484 break; 1485 } 1486 phdr = (Phdr *)((caddr_t)phdr + hsize); 1487 } 1488 1489 if (minaddr != NULL) { 1490 ASSERT(mintmp != (caddr_t)-1); 1491 *minaddr = (intptr_t)mintmp; 1492 } 1493 1494 if (brkbase != NULL && secflag_enabled(curproc, PROC_SEC_ASLR)) { 1495 size_t off; 1496 uintptr_t base = (uintptr_t)*brkbase; 1497 uintptr_t oend = base + *brksize; 1498 1499 ASSERT(ISP2(aslr_max_brk_skew)); 1500 1501 (void) random_get_pseudo_bytes((uint8_t *)&off, sizeof (off)); 1502 base += P2PHASE(off, aslr_max_brk_skew); 1503 base = P2ROUNDUP(base, PAGESIZE); 1504 *brkbase = (caddr_t)base; 1505 /* 1506 * Above, we set *brksize to account for the possibility we 1507 * had to grow the 'brk' in padding out the BSS to a page 1508 * boundary. 1509 * 1510 * We now need to adjust that based on where we now are 1511 * actually putting the brk. 1512 */ 1513 if (oend > base) 1514 *brksize = oend - base; 1515 else 1516 *brksize = 0; 1517 } 1518 1519 return (0); 1520 bad: 1521 if (error == 0) 1522 error = EINVAL; 1523 return (error); 1524 } 1525 1526 int 1527 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc, 1528 rlim64_t rlimit, cred_t *credp) 1529 { 1530 Note note; 1531 int error; 1532 1533 bzero(¬e, sizeof (note)); 1534 bcopy("CORE", note.name, 4); 1535 note.nhdr.n_type = type; 1536 /* 1537 * The System V ABI states that n_namesz must be the length of the 1538 * string that follows the Nhdr structure including the terminating 1539 * null. The ABI also specifies that sufficient padding should be 1540 * included so that the description that follows the name string 1541 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries 1542 * respectively. However, since this change was not made correctly 1543 * at the time of the 64-bit port, both 32- and 64-bit binaries 1544 * descriptions are only guaranteed to begin on a 4-byte boundary. 1545 */ 1546 note.nhdr.n_namesz = 5; 1547 note.nhdr.n_descsz = roundup(descsz, sizeof (Word)); 1548 1549 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, ¬e, 1550 sizeof (note), rlimit, credp)) 1551 return (error); 1552 1553 *offsetp += sizeof (note); 1554 1555 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc, 1556 note.nhdr.n_descsz, rlimit, credp)) 1557 return (error); 1558 1559 *offsetp += note.nhdr.n_descsz; 1560 return (0); 1561 } 1562 1563 /* 1564 * Copy the section data from one vnode to the section of another vnode. 1565 */ 1566 static void 1567 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset, 1568 void *buf, size_t size, cred_t *credp, rlim64_t rlimit) 1569 { 1570 ssize_t resid; 1571 size_t len, n = src->sh_size; 1572 offset_t off = 0; 1573 1574 while (n != 0) { 1575 len = MIN(size, n); 1576 if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off, 1577 UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 || 1578 resid >= len || 1579 core_write(dst_vp, UIO_SYSSPACE, *doffset + off, 1580 buf, len - resid, rlimit, credp) != 0) { 1581 dst->sh_size = 0; 1582 dst->sh_offset = 0; 1583 return; 1584 } 1585 1586 ASSERT(n >= len - resid); 1587 1588 n -= len - resid; 1589 off += len - resid; 1590 } 1591 1592 *doffset += src->sh_size; 1593 } 1594 1595 #ifdef _ELF32_COMPAT 1596 extern size_t elf_datasz_max; 1597 #else 1598 size_t elf_datasz_max = 1 * 1024 * 1024; 1599 #endif 1600 1601 /* 1602 * This function processes mappings that correspond to load objects to 1603 * examine their respective sections for elfcore(). It's called once with 1604 * v set to NULL to count the number of sections that we're going to need 1605 * and then again with v set to some allocated buffer that we fill in with 1606 * all the section data. 1607 */ 1608 static int 1609 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp, 1610 Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp) 1611 { 1612 vnode_t *lastvp = NULL; 1613 struct seg *seg; 1614 int i, j; 1615 void *data = NULL; 1616 size_t datasz = 0; 1617 shstrtab_t shstrtab; 1618 struct as *as = p->p_as; 1619 int error = 0; 1620 1621 if (v != NULL) 1622 shstrtab_init(&shstrtab); 1623 1624 i = 1; 1625 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1626 uint_t prot; 1627 vnode_t *mvp; 1628 void *tmp = NULL; 1629 caddr_t saddr = seg->s_base; 1630 caddr_t naddr; 1631 caddr_t eaddr; 1632 size_t segsize; 1633 1634 Ehdr ehdr; 1635 int nshdrs, shstrndx, nphdrs; 1636 caddr_t shbase; 1637 ssize_t shsize; 1638 char *shstrbase; 1639 ssize_t shstrsize; 1640 1641 Shdr *shdr; 1642 const char *name; 1643 size_t sz; 1644 uintptr_t off; 1645 1646 int ctf_ndx = 0; 1647 int symtab_ndx = 0; 1648 1649 /* 1650 * Since we're just looking for text segments of load 1651 * objects, we only care about the protection bits; we don't 1652 * care about the actual size of the segment so we use the 1653 * reserved size. If the segment's size is zero, there's 1654 * something fishy going on so we ignore this segment. 1655 */ 1656 if (seg->s_ops != &segvn_ops || 1657 SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 1658 mvp == lastvp || mvp == NULL || mvp->v_type != VREG || 1659 (segsize = pr_getsegsize(seg, 1)) == 0) 1660 continue; 1661 1662 eaddr = saddr + segsize; 1663 prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr); 1664 pr_getprot_done(&tmp); 1665 1666 /* 1667 * Skip this segment unless the protection bits look like 1668 * what we'd expect for a text segment. 1669 */ 1670 if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC) 1671 continue; 1672 1673 if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx, 1674 &nphdrs) != 0 || 1675 getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx, 1676 &shbase, &shsize, &shstrbase, &shstrsize) != 0) 1677 continue; 1678 1679 off = ehdr.e_shentsize; 1680 for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) { 1681 Shdr *symtab = NULL, *strtab; 1682 1683 shdr = (Shdr *)(shbase + off); 1684 1685 if (shdr->sh_name >= shstrsize) 1686 continue; 1687 1688 name = shstrbase + shdr->sh_name; 1689 1690 if (strcmp(name, shstrtab_data[STR_CTF]) == 0) { 1691 if ((content & CC_CONTENT_CTF) == 0 || 1692 ctf_ndx != 0) 1693 continue; 1694 1695 if (shdr->sh_link > 0 && 1696 shdr->sh_link < nshdrs) { 1697 symtab = (Shdr *)(shbase + 1698 shdr->sh_link * ehdr.e_shentsize); 1699 } 1700 1701 if (v != NULL && i < nv - 1) { 1702 if (shdr->sh_size > datasz && 1703 shdr->sh_size <= elf_datasz_max) { 1704 if (data != NULL) 1705 kmem_free(data, datasz); 1706 1707 datasz = shdr->sh_size; 1708 data = kmem_alloc(datasz, 1709 KM_SLEEP); 1710 } 1711 1712 v[i].sh_name = shstrtab_ndx(&shstrtab, 1713 STR_CTF); 1714 v[i].sh_addr = (Addr)(uintptr_t)saddr; 1715 v[i].sh_type = SHT_PROGBITS; 1716 v[i].sh_addralign = 4; 1717 *doffsetp = roundup(*doffsetp, 1718 v[i].sh_addralign); 1719 v[i].sh_offset = *doffsetp; 1720 v[i].sh_size = shdr->sh_size; 1721 if (symtab == NULL) { 1722 v[i].sh_link = 0; 1723 } else if (symtab->sh_type == 1724 SHT_SYMTAB && 1725 symtab_ndx != 0) { 1726 v[i].sh_link = 1727 symtab_ndx; 1728 } else { 1729 v[i].sh_link = i + 1; 1730 } 1731 1732 copy_scn(shdr, mvp, &v[i], vp, 1733 doffsetp, data, datasz, credp, 1734 rlimit); 1735 } 1736 1737 ctf_ndx = i++; 1738 1739 /* 1740 * We've already dumped the symtab. 1741 */ 1742 if (symtab != NULL && 1743 symtab->sh_type == SHT_SYMTAB && 1744 symtab_ndx != 0) 1745 continue; 1746 1747 } else if (strcmp(name, 1748 shstrtab_data[STR_SYMTAB]) == 0) { 1749 if ((content & CC_CONTENT_SYMTAB) == 0 || 1750 symtab != 0) 1751 continue; 1752 1753 symtab = shdr; 1754 } 1755 1756 if (symtab != NULL) { 1757 if ((symtab->sh_type != SHT_DYNSYM && 1758 symtab->sh_type != SHT_SYMTAB) || 1759 symtab->sh_link == 0 || 1760 symtab->sh_link >= nshdrs) 1761 continue; 1762 1763 strtab = (Shdr *)(shbase + 1764 symtab->sh_link * ehdr.e_shentsize); 1765 1766 if (strtab->sh_type != SHT_STRTAB) 1767 continue; 1768 1769 if (v != NULL && i < nv - 2) { 1770 sz = MAX(symtab->sh_size, 1771 strtab->sh_size); 1772 if (sz > datasz && 1773 sz <= elf_datasz_max) { 1774 if (data != NULL) 1775 kmem_free(data, datasz); 1776 1777 datasz = sz; 1778 data = kmem_alloc(datasz, 1779 KM_SLEEP); 1780 } 1781 1782 if (symtab->sh_type == SHT_DYNSYM) { 1783 v[i].sh_name = shstrtab_ndx( 1784 &shstrtab, STR_DYNSYM); 1785 v[i + 1].sh_name = shstrtab_ndx( 1786 &shstrtab, STR_DYNSTR); 1787 } else { 1788 v[i].sh_name = shstrtab_ndx( 1789 &shstrtab, STR_SYMTAB); 1790 v[i + 1].sh_name = shstrtab_ndx( 1791 &shstrtab, STR_STRTAB); 1792 } 1793 1794 v[i].sh_type = symtab->sh_type; 1795 v[i].sh_addr = symtab->sh_addr; 1796 if (ehdr.e_type == ET_DYN || 1797 v[i].sh_addr == 0) 1798 v[i].sh_addr += 1799 (Addr)(uintptr_t)saddr; 1800 v[i].sh_addralign = 1801 symtab->sh_addralign; 1802 *doffsetp = roundup(*doffsetp, 1803 v[i].sh_addralign); 1804 v[i].sh_offset = *doffsetp; 1805 v[i].sh_size = symtab->sh_size; 1806 v[i].sh_link = i + 1; 1807 v[i].sh_entsize = symtab->sh_entsize; 1808 v[i].sh_info = symtab->sh_info; 1809 1810 copy_scn(symtab, mvp, &v[i], vp, 1811 doffsetp, data, datasz, credp, 1812 rlimit); 1813 1814 v[i + 1].sh_type = SHT_STRTAB; 1815 v[i + 1].sh_flags = SHF_STRINGS; 1816 v[i + 1].sh_addr = symtab->sh_addr; 1817 if (ehdr.e_type == ET_DYN || 1818 v[i + 1].sh_addr == 0) 1819 v[i + 1].sh_addr += 1820 (Addr)(uintptr_t)saddr; 1821 v[i + 1].sh_addralign = 1822 strtab->sh_addralign; 1823 *doffsetp = roundup(*doffsetp, 1824 v[i + 1].sh_addralign); 1825 v[i + 1].sh_offset = *doffsetp; 1826 v[i + 1].sh_size = strtab->sh_size; 1827 1828 copy_scn(strtab, mvp, &v[i + 1], vp, 1829 doffsetp, data, datasz, credp, 1830 rlimit); 1831 } 1832 1833 if (symtab->sh_type == SHT_SYMTAB) 1834 symtab_ndx = i; 1835 i += 2; 1836 } 1837 } 1838 1839 kmem_free(shstrbase, shstrsize); 1840 kmem_free(shbase, shsize); 1841 1842 lastvp = mvp; 1843 } 1844 1845 if (v == NULL) { 1846 if (i == 1) 1847 *nshdrsp = 0; 1848 else 1849 *nshdrsp = i + 1; 1850 goto done; 1851 } 1852 1853 if (i != nv - 1) { 1854 cmn_err(CE_WARN, "elfcore: core dump failed for " 1855 "process %d; address space is changing", p->p_pid); 1856 error = EIO; 1857 goto done; 1858 } 1859 1860 v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB); 1861 v[i].sh_size = shstrtab_size(&shstrtab); 1862 v[i].sh_addralign = 1; 1863 *doffsetp = roundup(*doffsetp, v[i].sh_addralign); 1864 v[i].sh_offset = *doffsetp; 1865 v[i].sh_flags = SHF_STRINGS; 1866 v[i].sh_type = SHT_STRTAB; 1867 1868 if (v[i].sh_size > datasz) { 1869 if (data != NULL) 1870 kmem_free(data, datasz); 1871 1872 datasz = v[i].sh_size; 1873 data = kmem_alloc(datasz, 1874 KM_SLEEP); 1875 } 1876 1877 shstrtab_dump(&shstrtab, data); 1878 1879 if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp, 1880 data, v[i].sh_size, rlimit, credp)) != 0) 1881 goto done; 1882 1883 *doffsetp += v[i].sh_size; 1884 1885 done: 1886 if (data != NULL) 1887 kmem_free(data, datasz); 1888 1889 return (error); 1890 } 1891 1892 int 1893 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, 1894 core_content_t content) 1895 { 1896 offset_t poffset, soffset; 1897 Off doffset; 1898 int error, i, nphdrs, nshdrs; 1899 int overflow = 0; 1900 struct seg *seg; 1901 struct as *as = p->p_as; 1902 union { 1903 Ehdr ehdr; 1904 Phdr phdr[1]; 1905 Shdr shdr[1]; 1906 } *bigwad; 1907 size_t bigsize; 1908 size_t phdrsz, shdrsz; 1909 Ehdr *ehdr; 1910 Phdr *v; 1911 caddr_t brkbase; 1912 size_t brksize; 1913 caddr_t stkbase; 1914 size_t stksize; 1915 int ntries = 0; 1916 klwp_t *lwp = ttolwp(curthread); 1917 1918 top: 1919 /* 1920 * Make sure we have everything we need (registers, etc.). 1921 * All other lwps have already stopped and are in an orderly state. 1922 */ 1923 ASSERT(p == ttoproc(curthread)); 1924 prstop(0, 0); 1925 1926 AS_LOCK_ENTER(as, RW_WRITER); 1927 nphdrs = prnsegs(as, 0) + 2; /* two CORE note sections */ 1928 1929 /* 1930 * Count the number of section headers we're going to need. 1931 */ 1932 nshdrs = 0; 1933 if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) { 1934 (void) process_scns(content, p, credp, NULL, NULL, NULL, 0, 1935 NULL, &nshdrs); 1936 } 1937 AS_LOCK_EXIT(as); 1938 1939 ASSERT(nshdrs == 0 || nshdrs > 1); 1940 1941 /* 1942 * The core file contents may required zero section headers, but if 1943 * we overflow the 16 bits allotted to the program header count in 1944 * the ELF header, we'll need that program header at index zero. 1945 */ 1946 if (nshdrs == 0 && nphdrs >= PN_XNUM) 1947 nshdrs = 1; 1948 1949 phdrsz = nphdrs * sizeof (Phdr); 1950 shdrsz = nshdrs * sizeof (Shdr); 1951 1952 bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz)); 1953 bigwad = kmem_alloc(bigsize, KM_SLEEP); 1954 1955 ehdr = &bigwad->ehdr; 1956 bzero(ehdr, sizeof (*ehdr)); 1957 1958 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1959 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1960 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1961 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1962 ehdr->e_ident[EI_CLASS] = ELFCLASS; 1963 ehdr->e_type = ET_CORE; 1964 1965 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1966 1967 #if defined(__sparc) 1968 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1969 ehdr->e_machine = EM_SPARC; 1970 #elif defined(__i386) || defined(__i386_COMPAT) 1971 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1972 ehdr->e_machine = EM_386; 1973 #else 1974 #error "no recognized machine type is defined" 1975 #endif 1976 1977 #else /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1978 1979 #if defined(__sparc) 1980 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1981 ehdr->e_machine = EM_SPARCV9; 1982 #elif defined(__amd64) 1983 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1984 ehdr->e_machine = EM_AMD64; 1985 #else 1986 #error "no recognized 64-bit machine type is defined" 1987 #endif 1988 1989 #endif /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1990 1991 /* 1992 * If the count of program headers or section headers or the index 1993 * of the section string table can't fit in the mere 16 bits 1994 * shortsightedly allotted to them in the ELF header, we use the 1995 * extended formats and put the real values in the section header 1996 * as index 0. 1997 */ 1998 ehdr->e_version = EV_CURRENT; 1999 ehdr->e_ehsize = sizeof (Ehdr); 2000 2001 if (nphdrs >= PN_XNUM) 2002 ehdr->e_phnum = PN_XNUM; 2003 else 2004 ehdr->e_phnum = (unsigned short)nphdrs; 2005 2006 ehdr->e_phoff = sizeof (Ehdr); 2007 ehdr->e_phentsize = sizeof (Phdr); 2008 2009 if (nshdrs > 0) { 2010 if (nshdrs >= SHN_LORESERVE) 2011 ehdr->e_shnum = 0; 2012 else 2013 ehdr->e_shnum = (unsigned short)nshdrs; 2014 2015 if (nshdrs - 1 >= SHN_LORESERVE) 2016 ehdr->e_shstrndx = SHN_XINDEX; 2017 else 2018 ehdr->e_shstrndx = (unsigned short)(nshdrs - 1); 2019 2020 ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs; 2021 ehdr->e_shentsize = sizeof (Shdr); 2022 } 2023 2024 if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr, 2025 sizeof (Ehdr), rlimit, credp)) 2026 goto done; 2027 2028 poffset = sizeof (Ehdr); 2029 soffset = sizeof (Ehdr) + phdrsz; 2030 doffset = sizeof (Ehdr) + phdrsz + shdrsz; 2031 2032 v = &bigwad->phdr[0]; 2033 bzero(v, phdrsz); 2034 2035 setup_old_note_header(&v[0], p); 2036 v[0].p_offset = doffset = roundup(doffset, sizeof (Word)); 2037 doffset += v[0].p_filesz; 2038 2039 setup_note_header(&v[1], p); 2040 v[1].p_offset = doffset = roundup(doffset, sizeof (Word)); 2041 doffset += v[1].p_filesz; 2042 2043 mutex_enter(&p->p_lock); 2044 2045 brkbase = p->p_brkbase; 2046 brksize = p->p_brksize; 2047 2048 stkbase = p->p_usrstack - p->p_stksize; 2049 stksize = p->p_stksize; 2050 2051 mutex_exit(&p->p_lock); 2052 2053 AS_LOCK_ENTER(as, RW_WRITER); 2054 i = 2; 2055 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 2056 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 2057 caddr_t saddr, naddr; 2058 void *tmp = NULL; 2059 extern struct seg_ops segspt_shmops; 2060 2061 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 2062 uint_t prot; 2063 size_t size; 2064 int type; 2065 vnode_t *mvp; 2066 2067 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 2068 prot &= PROT_READ | PROT_WRITE | PROT_EXEC; 2069 if ((size = (size_t)(naddr - saddr)) == 0) 2070 continue; 2071 if (i == nphdrs) { 2072 overflow++; 2073 continue; 2074 } 2075 v[i].p_type = PT_LOAD; 2076 v[i].p_vaddr = (Addr)(uintptr_t)saddr; 2077 v[i].p_memsz = size; 2078 if (prot & PROT_READ) 2079 v[i].p_flags |= PF_R; 2080 if (prot & PROT_WRITE) 2081 v[i].p_flags |= PF_W; 2082 if (prot & PROT_EXEC) 2083 v[i].p_flags |= PF_X; 2084 2085 /* 2086 * Figure out which mappings to include in the core. 2087 */ 2088 type = SEGOP_GETTYPE(seg, saddr); 2089 2090 if (saddr == stkbase && size == stksize) { 2091 if (!(content & CC_CONTENT_STACK)) 2092 goto exclude; 2093 2094 } else if (saddr == brkbase && size == brksize) { 2095 if (!(content & CC_CONTENT_HEAP)) 2096 goto exclude; 2097 2098 } else if (seg->s_ops == &segspt_shmops) { 2099 if (type & MAP_NORESERVE) { 2100 if (!(content & CC_CONTENT_DISM)) 2101 goto exclude; 2102 } else { 2103 if (!(content & CC_CONTENT_ISM)) 2104 goto exclude; 2105 } 2106 2107 } else if (seg->s_ops != &segvn_ops) { 2108 goto exclude; 2109 2110 } else if (type & MAP_SHARED) { 2111 if (shmgetid(p, saddr) != SHMID_NONE) { 2112 if (!(content & CC_CONTENT_SHM)) 2113 goto exclude; 2114 2115 } else if (SEGOP_GETVP(seg, seg->s_base, 2116 &mvp) != 0 || mvp == NULL || 2117 mvp->v_type != VREG) { 2118 if (!(content & CC_CONTENT_SHANON)) 2119 goto exclude; 2120 2121 } else { 2122 if (!(content & CC_CONTENT_SHFILE)) 2123 goto exclude; 2124 } 2125 2126 } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 2127 mvp == NULL || mvp->v_type != VREG) { 2128 if (!(content & CC_CONTENT_ANON)) 2129 goto exclude; 2130 2131 } else if (prot == (PROT_READ | PROT_EXEC)) { 2132 if (!(content & CC_CONTENT_TEXT)) 2133 goto exclude; 2134 2135 } else if (prot == PROT_READ) { 2136 if (!(content & CC_CONTENT_RODATA)) 2137 goto exclude; 2138 2139 } else { 2140 if (!(content & CC_CONTENT_DATA)) 2141 goto exclude; 2142 } 2143 2144 doffset = roundup(doffset, sizeof (Word)); 2145 v[i].p_offset = doffset; 2146 v[i].p_filesz = size; 2147 doffset += size; 2148 exclude: 2149 i++; 2150 } 2151 ASSERT(tmp == NULL); 2152 } 2153 AS_LOCK_EXIT(as); 2154 2155 if (overflow || i != nphdrs) { 2156 if (ntries++ == 0) { 2157 kmem_free(bigwad, bigsize); 2158 overflow = 0; 2159 goto top; 2160 } 2161 cmn_err(CE_WARN, "elfcore: core dump failed for " 2162 "process %d; address space is changing", p->p_pid); 2163 error = EIO; 2164 goto done; 2165 } 2166 2167 if ((error = core_write(vp, UIO_SYSSPACE, poffset, 2168 v, phdrsz, rlimit, credp)) != 0) 2169 goto done; 2170 2171 if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit, 2172 credp)) != 0) 2173 goto done; 2174 2175 if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit, 2176 credp, content)) != 0) 2177 goto done; 2178 2179 for (i = 2; i < nphdrs; i++) { 2180 prkillinfo_t killinfo; 2181 sigqueue_t *sq; 2182 int sig, j; 2183 2184 if (v[i].p_filesz == 0) 2185 continue; 2186 2187 /* 2188 * If dumping out this segment fails, rather than failing 2189 * the core dump entirely, we reset the size of the mapping 2190 * to zero to indicate that the data is absent from the core 2191 * file and or in the PF_SUNW_FAILURE flag to differentiate 2192 * this from mappings that were excluded due to the core file 2193 * content settings. 2194 */ 2195 if ((error = core_seg(p, vp, v[i].p_offset, 2196 (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz, 2197 rlimit, credp)) == 0) { 2198 continue; 2199 } 2200 2201 if ((sig = lwp->lwp_cursig) == 0) { 2202 /* 2203 * We failed due to something other than a signal. 2204 * Since the space reserved for the segment is now 2205 * unused, we stash the errno in the first four 2206 * bytes. This undocumented interface will let us 2207 * understand the nature of the failure. 2208 */ 2209 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2210 &error, sizeof (error), rlimit, credp); 2211 2212 v[i].p_filesz = 0; 2213 v[i].p_flags |= PF_SUNW_FAILURE; 2214 if ((error = core_write(vp, UIO_SYSSPACE, 2215 poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]), 2216 rlimit, credp)) != 0) 2217 goto done; 2218 2219 continue; 2220 } 2221 2222 /* 2223 * We took a signal. We want to abort the dump entirely, but 2224 * we also want to indicate what failed and why. We therefore 2225 * use the space reserved for the first failing segment to 2226 * write our error (which, for purposes of compatability with 2227 * older core dump readers, we set to EINTR) followed by any 2228 * siginfo associated with the signal. 2229 */ 2230 bzero(&killinfo, sizeof (killinfo)); 2231 killinfo.prk_error = EINTR; 2232 2233 sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo; 2234 2235 if (sq != NULL) { 2236 bcopy(&sq->sq_info, &killinfo.prk_info, 2237 sizeof (sq->sq_info)); 2238 } else { 2239 killinfo.prk_info.si_signo = lwp->lwp_cursig; 2240 killinfo.prk_info.si_code = SI_NOINFO; 2241 } 2242 2243 #if (defined(_SYSCALL32_IMPL) || defined(_LP64)) 2244 /* 2245 * If this is a 32-bit process, we need to translate from the 2246 * native siginfo to the 32-bit variant. (Core readers must 2247 * always have the same data model as their target or must 2248 * be aware of -- and compensate for -- data model differences.) 2249 */ 2250 if (curproc->p_model == DATAMODEL_ILP32) { 2251 siginfo32_t si32; 2252 2253 siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32); 2254 bcopy(&si32, &killinfo.prk_info, sizeof (si32)); 2255 } 2256 #endif 2257 2258 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2259 &killinfo, sizeof (killinfo), rlimit, credp); 2260 2261 /* 2262 * For the segment on which we took the signal, indicate that 2263 * its data now refers to a siginfo. 2264 */ 2265 v[i].p_filesz = 0; 2266 v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED | 2267 PF_SUNW_SIGINFO; 2268 2269 /* 2270 * And for every other segment, indicate that its absence 2271 * is due to a signal. 2272 */ 2273 for (j = i + 1; j < nphdrs; j++) { 2274 v[j].p_filesz = 0; 2275 v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED; 2276 } 2277 2278 /* 2279 * Finally, write out our modified program headers. 2280 */ 2281 if ((error = core_write(vp, UIO_SYSSPACE, 2282 poffset + sizeof (v[i]) * i, &v[i], 2283 sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0) 2284 goto done; 2285 2286 break; 2287 } 2288 2289 if (nshdrs > 0) { 2290 bzero(&bigwad->shdr[0], shdrsz); 2291 2292 if (nshdrs >= SHN_LORESERVE) 2293 bigwad->shdr[0].sh_size = nshdrs; 2294 2295 if (nshdrs - 1 >= SHN_LORESERVE) 2296 bigwad->shdr[0].sh_link = nshdrs - 1; 2297 2298 if (nphdrs >= PN_XNUM) 2299 bigwad->shdr[0].sh_info = nphdrs; 2300 2301 if (nshdrs > 1) { 2302 AS_LOCK_ENTER(as, RW_WRITER); 2303 if ((error = process_scns(content, p, credp, vp, 2304 &bigwad->shdr[0], nshdrs, rlimit, &doffset, 2305 NULL)) != 0) { 2306 AS_LOCK_EXIT(as); 2307 goto done; 2308 } 2309 AS_LOCK_EXIT(as); 2310 } 2311 2312 if ((error = core_write(vp, UIO_SYSSPACE, soffset, 2313 &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0) 2314 goto done; 2315 } 2316 2317 done: 2318 kmem_free(bigwad, bigsize); 2319 return (error); 2320 } 2321 2322 #ifndef _ELF32_COMPAT 2323 2324 static struct execsw esw = { 2325 #ifdef _LP64 2326 elf64magicstr, 2327 #else /* _LP64 */ 2328 elf32magicstr, 2329 #endif /* _LP64 */ 2330 0, 2331 5, 2332 elfexec, 2333 elfcore 2334 }; 2335 2336 static struct modlexec modlexec = { 2337 &mod_execops, "exec module for elf", &esw 2338 }; 2339 2340 #ifdef _LP64 2341 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args, 2342 intpdata_t *idatap, int level, long *execsz, 2343 int setid, caddr_t exec_file, cred_t *cred, 2344 int brand_action); 2345 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp, 2346 rlim64_t rlimit, int sig, core_content_t content); 2347 2348 static struct execsw esw32 = { 2349 elf32magicstr, 2350 0, 2351 5, 2352 elf32exec, 2353 elf32core 2354 }; 2355 2356 static struct modlexec modlexec32 = { 2357 &mod_execops, "32-bit exec module for elf", &esw32 2358 }; 2359 #endif /* _LP64 */ 2360 2361 static struct modlinkage modlinkage = { 2362 MODREV_1, 2363 (void *)&modlexec, 2364 #ifdef _LP64 2365 (void *)&modlexec32, 2366 #endif /* _LP64 */ 2367 NULL 2368 }; 2369 2370 int 2371 _init(void) 2372 { 2373 return (mod_install(&modlinkage)); 2374 } 2375 2376 int 2377 _fini(void) 2378 { 2379 return (mod_remove(&modlinkage)); 2380 } 2381 2382 int 2383 _info(struct modinfo *modinfop) 2384 { 2385 return (mod_info(&modlinkage, modinfop)); 2386 } 2387 2388 #endif /* !_ELF32_COMPAT */ 2389