1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * DTrace - Dynamic Tracing for Solaris 28 * 29 * This is the implementation of the Solaris Dynamic Tracing framework 30 * (DTrace). The user-visible interface to DTrace is described at length in 31 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 32 * library, the in-kernel DTrace framework, and the DTrace providers are 33 * described in the block comments in the <sys/dtrace.h> header file. The 34 * internal architecture of DTrace is described in the block comments in the 35 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 36 * implementation very much assume mastery of all of these sources; if one has 37 * an unanswered question about the implementation, one should consult them 38 * first. 39 * 40 * The functions here are ordered roughly as follows: 41 * 42 * - Probe context functions 43 * - Probe hashing functions 44 * - Non-probe context utility functions 45 * - Matching functions 46 * - Provider-to-Framework API functions 47 * - Probe management functions 48 * - DIF object functions 49 * - Format functions 50 * - Predicate functions 51 * - ECB functions 52 * - Buffer functions 53 * - Enabling functions 54 * - DOF functions 55 * - Anonymous enabling functions 56 * - Consumer state functions 57 * - Helper functions 58 * - Hook functions 59 * - Driver cookbook functions 60 * 61 * Each group of functions begins with a block comment labelled the "DTrace 62 * [Group] Functions", allowing one to find each block by searching forward 63 * on capital-f functions. 64 */ 65 #include <sys/errno.h> 66 #include <sys/stat.h> 67 #include <sys/modctl.h> 68 #include <sys/conf.h> 69 #include <sys/systm.h> 70 #include <sys/ddi.h> 71 #include <sys/sunddi.h> 72 #include <sys/cpuvar.h> 73 #include <sys/kmem.h> 74 #include <sys/strsubr.h> 75 #include <sys/sysmacros.h> 76 #include <sys/dtrace_impl.h> 77 #include <sys/atomic.h> 78 #include <sys/cmn_err.h> 79 #include <sys/mutex_impl.h> 80 #include <sys/rwlock_impl.h> 81 #include <sys/ctf_api.h> 82 #include <sys/panic.h> 83 #include <sys/priv_impl.h> 84 #include <sys/policy.h> 85 #include <sys/cred_impl.h> 86 #include <sys/procfs_isa.h> 87 #include <sys/taskq.h> 88 #include <sys/mkdev.h> 89 #include <sys/kdi.h> 90 #include <sys/zone.h> 91 #include <sys/socket.h> 92 #include <netinet/in.h> 93 94 /* 95 * DTrace Tunable Variables 96 * 97 * The following variables may be tuned by adding a line to /etc/system that 98 * includes both the name of the DTrace module ("dtrace") and the name of the 99 * variable. For example: 100 * 101 * set dtrace:dtrace_destructive_disallow = 1 102 * 103 * In general, the only variables that one should be tuning this way are those 104 * that affect system-wide DTrace behavior, and for which the default behavior 105 * is undesirable. Most of these variables are tunable on a per-consumer 106 * basis using DTrace options, and need not be tuned on a system-wide basis. 107 * When tuning these variables, avoid pathological values; while some attempt 108 * is made to verify the integrity of these variables, they are not considered 109 * part of the supported interface to DTrace, and they are therefore not 110 * checked comprehensively. Further, these variables should not be tuned 111 * dynamically via "mdb -kw" or other means; they should only be tuned via 112 * /etc/system. 113 */ 114 int dtrace_destructive_disallow = 0; 115 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 116 size_t dtrace_difo_maxsize = (256 * 1024); 117 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 118 size_t dtrace_global_maxsize = (16 * 1024); 119 size_t dtrace_actions_max = (16 * 1024); 120 size_t dtrace_retain_max = 1024; 121 dtrace_optval_t dtrace_helper_actions_max = 32; 122 dtrace_optval_t dtrace_helper_providers_max = 32; 123 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 124 size_t dtrace_strsize_default = 256; 125 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 126 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 127 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 128 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 129 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 130 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 131 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_nspec_default = 1; 133 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 134 dtrace_optval_t dtrace_stackframes_default = 20; 135 dtrace_optval_t dtrace_ustackframes_default = 20; 136 dtrace_optval_t dtrace_jstackframes_default = 50; 137 dtrace_optval_t dtrace_jstackstrsize_default = 512; 138 int dtrace_msgdsize_max = 128; 139 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 140 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 141 int dtrace_devdepth_max = 32; 142 int dtrace_err_verbose; 143 hrtime_t dtrace_deadman_interval = NANOSEC; 144 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 145 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 146 147 /* 148 * DTrace External Variables 149 * 150 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 151 * available to DTrace consumers via the backtick (`) syntax. One of these, 152 * dtrace_zero, is made deliberately so: it is provided as a source of 153 * well-known, zero-filled memory. While this variable is not documented, 154 * it is used by some translators as an implementation detail. 155 */ 156 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 157 158 /* 159 * DTrace Internal Variables 160 */ 161 static dev_info_t *dtrace_devi; /* device info */ 162 static vmem_t *dtrace_arena; /* probe ID arena */ 163 static vmem_t *dtrace_minor; /* minor number arena */ 164 static taskq_t *dtrace_taskq; /* task queue */ 165 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 166 static int dtrace_nprobes; /* number of probes */ 167 static dtrace_provider_t *dtrace_provider; /* provider list */ 168 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 169 static int dtrace_opens; /* number of opens */ 170 static int dtrace_helpers; /* number of helpers */ 171 static void *dtrace_softstate; /* softstate pointer */ 172 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 173 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 174 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 175 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 176 static int dtrace_toxranges; /* number of toxic ranges */ 177 static int dtrace_toxranges_max; /* size of toxic range array */ 178 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 179 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 180 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 181 static kthread_t *dtrace_panicked; /* panicking thread */ 182 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 183 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 184 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 185 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 186 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 187 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 188 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 189 190 /* 191 * DTrace Locking 192 * DTrace is protected by three (relatively coarse-grained) locks: 193 * 194 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 195 * including enabling state, probes, ECBs, consumer state, helper state, 196 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 197 * probe context is lock-free -- synchronization is handled via the 198 * dtrace_sync() cross call mechanism. 199 * 200 * (2) dtrace_provider_lock is required when manipulating provider state, or 201 * when provider state must be held constant. 202 * 203 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 204 * when meta provider state must be held constant. 205 * 206 * The lock ordering between these three locks is dtrace_meta_lock before 207 * dtrace_provider_lock before dtrace_lock. (In particular, there are 208 * several places where dtrace_provider_lock is held by the framework as it 209 * calls into the providers -- which then call back into the framework, 210 * grabbing dtrace_lock.) 211 * 212 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 213 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 214 * role as a coarse-grained lock; it is acquired before both of these locks. 215 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 216 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 217 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 218 * acquired _between_ dtrace_provider_lock and dtrace_lock. 219 */ 220 static kmutex_t dtrace_lock; /* probe state lock */ 221 static kmutex_t dtrace_provider_lock; /* provider state lock */ 222 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 223 224 /* 225 * DTrace Provider Variables 226 * 227 * These are the variables relating to DTrace as a provider (that is, the 228 * provider of the BEGIN, END, and ERROR probes). 229 */ 230 static dtrace_pattr_t dtrace_provider_attr = { 231 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 236 }; 237 238 static void 239 dtrace_nullop(void) 240 {} 241 242 static int 243 dtrace_enable_nullop(void) 244 { 245 return (0); 246 } 247 248 static dtrace_pops_t dtrace_provider_ops = { 249 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 250 (void (*)(void *, struct modctl *))dtrace_nullop, 251 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 252 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 253 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 254 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 255 NULL, 256 NULL, 257 NULL, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 259 }; 260 261 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 262 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 263 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 264 265 /* 266 * DTrace Helper Tracing Variables 267 */ 268 uint32_t dtrace_helptrace_next = 0; 269 uint32_t dtrace_helptrace_nlocals; 270 char *dtrace_helptrace_buffer; 271 int dtrace_helptrace_bufsize = 512 * 1024; 272 273 #ifdef DEBUG 274 int dtrace_helptrace_enabled = 1; 275 #else 276 int dtrace_helptrace_enabled = 0; 277 #endif 278 279 /* 280 * DTrace Error Hashing 281 * 282 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 283 * table. This is very useful for checking coverage of tests that are 284 * expected to induce DIF or DOF processing errors, and may be useful for 285 * debugging problems in the DIF code generator or in DOF generation . The 286 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 287 */ 288 #ifdef DEBUG 289 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 290 static const char *dtrace_errlast; 291 static kthread_t *dtrace_errthread; 292 static kmutex_t dtrace_errlock; 293 #endif 294 295 /* 296 * DTrace Macros and Constants 297 * 298 * These are various macros that are useful in various spots in the 299 * implementation, along with a few random constants that have no meaning 300 * outside of the implementation. There is no real structure to this cpp 301 * mishmash -- but is there ever? 302 */ 303 #define DTRACE_HASHSTR(hash, probe) \ 304 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 305 306 #define DTRACE_HASHNEXT(hash, probe) \ 307 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 308 309 #define DTRACE_HASHPREV(hash, probe) \ 310 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 311 312 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 313 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 314 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 315 316 #define DTRACE_AGGHASHSIZE_SLEW 17 317 318 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 319 320 /* 321 * The key for a thread-local variable consists of the lower 61 bits of the 322 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 323 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 324 * equal to a variable identifier. This is necessary (but not sufficient) to 325 * assure that global associative arrays never collide with thread-local 326 * variables. To guarantee that they cannot collide, we must also define the 327 * order for keying dynamic variables. That order is: 328 * 329 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 330 * 331 * Because the variable-key and the tls-key are in orthogonal spaces, there is 332 * no way for a global variable key signature to match a thread-local key 333 * signature. 334 */ 335 #define DTRACE_TLS_THRKEY(where) { \ 336 uint_t intr = 0; \ 337 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 338 for (; actv; actv >>= 1) \ 339 intr++; \ 340 ASSERT(intr < (1 << 3)); \ 341 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 342 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 343 } 344 345 #define DT_BSWAP_8(x) ((x) & 0xff) 346 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 347 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 348 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 349 350 #define DT_MASK_LO 0x00000000FFFFFFFFULL 351 352 #define DTRACE_STORE(type, tomax, offset, what) \ 353 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 354 355 #ifndef __i386 356 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 357 if (addr & (size - 1)) { \ 358 *flags |= CPU_DTRACE_BADALIGN; \ 359 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 360 return (0); \ 361 } 362 #else 363 #define DTRACE_ALIGNCHECK(addr, size, flags) 364 #endif 365 366 /* 367 * Test whether a range of memory starting at testaddr of size testsz falls 368 * within the range of memory described by addr, sz. We take care to avoid 369 * problems with overflow and underflow of the unsigned quantities, and 370 * disallow all negative sizes. Ranges of size 0 are allowed. 371 */ 372 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 373 ((testaddr) - (baseaddr) < (basesz) && \ 374 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 375 (testaddr) + (testsz) >= (testaddr)) 376 377 /* 378 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 379 * alloc_sz on the righthand side of the comparison in order to avoid overflow 380 * or underflow in the comparison with it. This is simpler than the INRANGE 381 * check above, because we know that the dtms_scratch_ptr is valid in the 382 * range. Allocations of size zero are allowed. 383 */ 384 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 385 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 386 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 387 388 #define DTRACE_LOADFUNC(bits) \ 389 /*CSTYLED*/ \ 390 uint##bits##_t \ 391 dtrace_load##bits(uintptr_t addr) \ 392 { \ 393 size_t size = bits / NBBY; \ 394 /*CSTYLED*/ \ 395 uint##bits##_t rval; \ 396 int i; \ 397 volatile uint16_t *flags = (volatile uint16_t *) \ 398 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 399 \ 400 DTRACE_ALIGNCHECK(addr, size, flags); \ 401 \ 402 for (i = 0; i < dtrace_toxranges; i++) { \ 403 if (addr >= dtrace_toxrange[i].dtt_limit) \ 404 continue; \ 405 \ 406 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 407 continue; \ 408 \ 409 /* \ 410 * This address falls within a toxic region; return 0. \ 411 */ \ 412 *flags |= CPU_DTRACE_BADADDR; \ 413 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 414 return (0); \ 415 } \ 416 \ 417 *flags |= CPU_DTRACE_NOFAULT; \ 418 /*CSTYLED*/ \ 419 rval = *((volatile uint##bits##_t *)addr); \ 420 *flags &= ~CPU_DTRACE_NOFAULT; \ 421 \ 422 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 423 } 424 425 #ifdef _LP64 426 #define dtrace_loadptr dtrace_load64 427 #else 428 #define dtrace_loadptr dtrace_load32 429 #endif 430 431 #define DTRACE_DYNHASH_FREE 0 432 #define DTRACE_DYNHASH_SINK 1 433 #define DTRACE_DYNHASH_VALID 2 434 435 #define DTRACE_MATCH_FAIL -1 436 #define DTRACE_MATCH_NEXT 0 437 #define DTRACE_MATCH_DONE 1 438 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 439 #define DTRACE_STATE_ALIGN 64 440 441 #define DTRACE_FLAGS2FLT(flags) \ 442 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 443 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 444 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 445 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 446 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 447 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 448 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 449 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 450 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 451 DTRACEFLT_UNKNOWN) 452 453 #define DTRACEACT_ISSTRING(act) \ 454 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 455 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 456 457 static size_t dtrace_strlen(const char *, size_t); 458 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 459 static void dtrace_enabling_provide(dtrace_provider_t *); 460 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 461 static void dtrace_enabling_matchall(void); 462 static dtrace_state_t *dtrace_anon_grab(void); 463 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 464 dtrace_state_t *, uint64_t, uint64_t); 465 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 466 static void dtrace_buffer_drop(dtrace_buffer_t *); 467 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 468 dtrace_state_t *, dtrace_mstate_t *); 469 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 470 dtrace_optval_t); 471 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 472 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 473 474 /* 475 * DTrace Probe Context Functions 476 * 477 * These functions are called from probe context. Because probe context is 478 * any context in which C may be called, arbitrarily locks may be held, 479 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 480 * As a result, functions called from probe context may only call other DTrace 481 * support functions -- they may not interact at all with the system at large. 482 * (Note that the ASSERT macro is made probe-context safe by redefining it in 483 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 484 * loads are to be performed from probe context, they _must_ be in terms of 485 * the safe dtrace_load*() variants. 486 * 487 * Some functions in this block are not actually called from probe context; 488 * for these functions, there will be a comment above the function reading 489 * "Note: not called from probe context." 490 */ 491 void 492 dtrace_panic(const char *format, ...) 493 { 494 va_list alist; 495 496 va_start(alist, format); 497 dtrace_vpanic(format, alist); 498 va_end(alist); 499 } 500 501 int 502 dtrace_assfail(const char *a, const char *f, int l) 503 { 504 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 505 506 /* 507 * We just need something here that even the most clever compiler 508 * cannot optimize away. 509 */ 510 return (a[(uintptr_t)f]); 511 } 512 513 /* 514 * Atomically increment a specified error counter from probe context. 515 */ 516 static void 517 dtrace_error(uint32_t *counter) 518 { 519 /* 520 * Most counters stored to in probe context are per-CPU counters. 521 * However, there are some error conditions that are sufficiently 522 * arcane that they don't merit per-CPU storage. If these counters 523 * are incremented concurrently on different CPUs, scalability will be 524 * adversely affected -- but we don't expect them to be white-hot in a 525 * correctly constructed enabling... 526 */ 527 uint32_t oval, nval; 528 529 do { 530 oval = *counter; 531 532 if ((nval = oval + 1) == 0) { 533 /* 534 * If the counter would wrap, set it to 1 -- assuring 535 * that the counter is never zero when we have seen 536 * errors. (The counter must be 32-bits because we 537 * aren't guaranteed a 64-bit compare&swap operation.) 538 * To save this code both the infamy of being fingered 539 * by a priggish news story and the indignity of being 540 * the target of a neo-puritan witch trial, we're 541 * carefully avoiding any colorful description of the 542 * likelihood of this condition -- but suffice it to 543 * say that it is only slightly more likely than the 544 * overflow of predicate cache IDs, as discussed in 545 * dtrace_predicate_create(). 546 */ 547 nval = 1; 548 } 549 } while (dtrace_cas32(counter, oval, nval) != oval); 550 } 551 552 /* 553 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 554 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 555 */ 556 DTRACE_LOADFUNC(8) 557 DTRACE_LOADFUNC(16) 558 DTRACE_LOADFUNC(32) 559 DTRACE_LOADFUNC(64) 560 561 static int 562 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 563 { 564 if (dest < mstate->dtms_scratch_base) 565 return (0); 566 567 if (dest + size < dest) 568 return (0); 569 570 if (dest + size > mstate->dtms_scratch_ptr) 571 return (0); 572 573 return (1); 574 } 575 576 static int 577 dtrace_canstore_statvar(uint64_t addr, size_t sz, 578 dtrace_statvar_t **svars, int nsvars) 579 { 580 int i; 581 582 for (i = 0; i < nsvars; i++) { 583 dtrace_statvar_t *svar = svars[i]; 584 585 if (svar == NULL || svar->dtsv_size == 0) 586 continue; 587 588 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 589 return (1); 590 } 591 592 return (0); 593 } 594 595 /* 596 * Check to see if the address is within a memory region to which a store may 597 * be issued. This includes the DTrace scratch areas, and any DTrace variable 598 * region. The caller of dtrace_canstore() is responsible for performing any 599 * alignment checks that are needed before stores are actually executed. 600 */ 601 static int 602 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 603 dtrace_vstate_t *vstate) 604 { 605 /* 606 * First, check to see if the address is in scratch space... 607 */ 608 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 609 mstate->dtms_scratch_size)) 610 return (1); 611 612 /* 613 * Now check to see if it's a dynamic variable. This check will pick 614 * up both thread-local variables and any global dynamically-allocated 615 * variables. 616 */ 617 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 618 vstate->dtvs_dynvars.dtds_size)) { 619 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 620 uintptr_t base = (uintptr_t)dstate->dtds_base + 621 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 622 uintptr_t chunkoffs; 623 624 /* 625 * Before we assume that we can store here, we need to make 626 * sure that it isn't in our metadata -- storing to our 627 * dynamic variable metadata would corrupt our state. For 628 * the range to not include any dynamic variable metadata, 629 * it must: 630 * 631 * (1) Start above the hash table that is at the base of 632 * the dynamic variable space 633 * 634 * (2) Have a starting chunk offset that is beyond the 635 * dtrace_dynvar_t that is at the base of every chunk 636 * 637 * (3) Not span a chunk boundary 638 * 639 */ 640 if (addr < base) 641 return (0); 642 643 chunkoffs = (addr - base) % dstate->dtds_chunksize; 644 645 if (chunkoffs < sizeof (dtrace_dynvar_t)) 646 return (0); 647 648 if (chunkoffs + sz > dstate->dtds_chunksize) 649 return (0); 650 651 return (1); 652 } 653 654 /* 655 * Finally, check the static local and global variables. These checks 656 * take the longest, so we perform them last. 657 */ 658 if (dtrace_canstore_statvar(addr, sz, 659 vstate->dtvs_locals, vstate->dtvs_nlocals)) 660 return (1); 661 662 if (dtrace_canstore_statvar(addr, sz, 663 vstate->dtvs_globals, vstate->dtvs_nglobals)) 664 return (1); 665 666 return (0); 667 } 668 669 670 /* 671 * Convenience routine to check to see if the address is within a memory 672 * region in which a load may be issued given the user's privilege level; 673 * if not, it sets the appropriate error flags and loads 'addr' into the 674 * illegal value slot. 675 * 676 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 677 * appropriate memory access protection. 678 */ 679 static int 680 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 681 dtrace_vstate_t *vstate) 682 { 683 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 684 685 /* 686 * If we hold the privilege to read from kernel memory, then 687 * everything is readable. 688 */ 689 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 690 return (1); 691 692 /* 693 * You can obviously read that which you can store. 694 */ 695 if (dtrace_canstore(addr, sz, mstate, vstate)) 696 return (1); 697 698 /* 699 * We're allowed to read from our own string table. 700 */ 701 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 702 mstate->dtms_difo->dtdo_strlen)) 703 return (1); 704 705 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 706 *illval = addr; 707 return (0); 708 } 709 710 /* 711 * Convenience routine to check to see if a given string is within a memory 712 * region in which a load may be issued given the user's privilege level; 713 * this exists so that we don't need to issue unnecessary dtrace_strlen() 714 * calls in the event that the user has all privileges. 715 */ 716 static int 717 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 718 dtrace_vstate_t *vstate) 719 { 720 size_t strsz; 721 722 /* 723 * If we hold the privilege to read from kernel memory, then 724 * everything is readable. 725 */ 726 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 727 return (1); 728 729 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 730 if (dtrace_canload(addr, strsz, mstate, vstate)) 731 return (1); 732 733 return (0); 734 } 735 736 /* 737 * Convenience routine to check to see if a given variable is within a memory 738 * region in which a load may be issued given the user's privilege level. 739 */ 740 static int 741 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 742 dtrace_vstate_t *vstate) 743 { 744 size_t sz; 745 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 746 747 /* 748 * If we hold the privilege to read from kernel memory, then 749 * everything is readable. 750 */ 751 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 752 return (1); 753 754 if (type->dtdt_kind == DIF_TYPE_STRING) 755 sz = dtrace_strlen(src, 756 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 757 else 758 sz = type->dtdt_size; 759 760 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 761 } 762 763 /* 764 * Compare two strings using safe loads. 765 */ 766 static int 767 dtrace_strncmp(char *s1, char *s2, size_t limit) 768 { 769 uint8_t c1, c2; 770 volatile uint16_t *flags; 771 772 if (s1 == s2 || limit == 0) 773 return (0); 774 775 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 776 777 do { 778 if (s1 == NULL) { 779 c1 = '\0'; 780 } else { 781 c1 = dtrace_load8((uintptr_t)s1++); 782 } 783 784 if (s2 == NULL) { 785 c2 = '\0'; 786 } else { 787 c2 = dtrace_load8((uintptr_t)s2++); 788 } 789 790 if (c1 != c2) 791 return (c1 - c2); 792 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 793 794 return (0); 795 } 796 797 /* 798 * Compute strlen(s) for a string using safe memory accesses. The additional 799 * len parameter is used to specify a maximum length to ensure completion. 800 */ 801 static size_t 802 dtrace_strlen(const char *s, size_t lim) 803 { 804 uint_t len; 805 806 for (len = 0; len != lim; len++) { 807 if (dtrace_load8((uintptr_t)s++) == '\0') 808 break; 809 } 810 811 return (len); 812 } 813 814 /* 815 * Check if an address falls within a toxic region. 816 */ 817 static int 818 dtrace_istoxic(uintptr_t kaddr, size_t size) 819 { 820 uintptr_t taddr, tsize; 821 int i; 822 823 for (i = 0; i < dtrace_toxranges; i++) { 824 taddr = dtrace_toxrange[i].dtt_base; 825 tsize = dtrace_toxrange[i].dtt_limit - taddr; 826 827 if (kaddr - taddr < tsize) { 828 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 829 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 830 return (1); 831 } 832 833 if (taddr - kaddr < size) { 834 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 835 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 836 return (1); 837 } 838 } 839 840 return (0); 841 } 842 843 /* 844 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 845 * memory specified by the DIF program. The dst is assumed to be safe memory 846 * that we can store to directly because it is managed by DTrace. As with 847 * standard bcopy, overlapping copies are handled properly. 848 */ 849 static void 850 dtrace_bcopy(const void *src, void *dst, size_t len) 851 { 852 if (len != 0) { 853 uint8_t *s1 = dst; 854 const uint8_t *s2 = src; 855 856 if (s1 <= s2) { 857 do { 858 *s1++ = dtrace_load8((uintptr_t)s2++); 859 } while (--len != 0); 860 } else { 861 s2 += len; 862 s1 += len; 863 864 do { 865 *--s1 = dtrace_load8((uintptr_t)--s2); 866 } while (--len != 0); 867 } 868 } 869 } 870 871 /* 872 * Copy src to dst using safe memory accesses, up to either the specified 873 * length, or the point that a nul byte is encountered. The src is assumed to 874 * be unsafe memory specified by the DIF program. The dst is assumed to be 875 * safe memory that we can store to directly because it is managed by DTrace. 876 * Unlike dtrace_bcopy(), overlapping regions are not handled. 877 */ 878 static void 879 dtrace_strcpy(const void *src, void *dst, size_t len) 880 { 881 if (len != 0) { 882 uint8_t *s1 = dst, c; 883 const uint8_t *s2 = src; 884 885 do { 886 *s1++ = c = dtrace_load8((uintptr_t)s2++); 887 } while (--len != 0 && c != '\0'); 888 } 889 } 890 891 /* 892 * Copy src to dst, deriving the size and type from the specified (BYREF) 893 * variable type. The src is assumed to be unsafe memory specified by the DIF 894 * program. The dst is assumed to be DTrace variable memory that is of the 895 * specified type; we assume that we can store to directly. 896 */ 897 static void 898 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 899 { 900 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 901 902 if (type->dtdt_kind == DIF_TYPE_STRING) { 903 dtrace_strcpy(src, dst, type->dtdt_size); 904 } else { 905 dtrace_bcopy(src, dst, type->dtdt_size); 906 } 907 } 908 909 /* 910 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 911 * unsafe memory specified by the DIF program. The s2 data is assumed to be 912 * safe memory that we can access directly because it is managed by DTrace. 913 */ 914 static int 915 dtrace_bcmp(const void *s1, const void *s2, size_t len) 916 { 917 volatile uint16_t *flags; 918 919 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 920 921 if (s1 == s2) 922 return (0); 923 924 if (s1 == NULL || s2 == NULL) 925 return (1); 926 927 if (s1 != s2 && len != 0) { 928 const uint8_t *ps1 = s1; 929 const uint8_t *ps2 = s2; 930 931 do { 932 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 933 return (1); 934 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 935 } 936 return (0); 937 } 938 939 /* 940 * Zero the specified region using a simple byte-by-byte loop. Note that this 941 * is for safe DTrace-managed memory only. 942 */ 943 static void 944 dtrace_bzero(void *dst, size_t len) 945 { 946 uchar_t *cp; 947 948 for (cp = dst; len != 0; len--) 949 *cp++ = 0; 950 } 951 952 static void 953 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 954 { 955 uint64_t result[2]; 956 957 result[0] = addend1[0] + addend2[0]; 958 result[1] = addend1[1] + addend2[1] + 959 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 960 961 sum[0] = result[0]; 962 sum[1] = result[1]; 963 } 964 965 /* 966 * Shift the 128-bit value in a by b. If b is positive, shift left. 967 * If b is negative, shift right. 968 */ 969 static void 970 dtrace_shift_128(uint64_t *a, int b) 971 { 972 uint64_t mask; 973 974 if (b == 0) 975 return; 976 977 if (b < 0) { 978 b = -b; 979 if (b >= 64) { 980 a[0] = a[1] >> (b - 64); 981 a[1] = 0; 982 } else { 983 a[0] >>= b; 984 mask = 1LL << (64 - b); 985 mask -= 1; 986 a[0] |= ((a[1] & mask) << (64 - b)); 987 a[1] >>= b; 988 } 989 } else { 990 if (b >= 64) { 991 a[1] = a[0] << (b - 64); 992 a[0] = 0; 993 } else { 994 a[1] <<= b; 995 mask = a[0] >> (64 - b); 996 a[1] |= mask; 997 a[0] <<= b; 998 } 999 } 1000 } 1001 1002 /* 1003 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1004 * use native multiplication on those, and then re-combine into the 1005 * resulting 128-bit value. 1006 * 1007 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1008 * hi1 * hi2 << 64 + 1009 * hi1 * lo2 << 32 + 1010 * hi2 * lo1 << 32 + 1011 * lo1 * lo2 1012 */ 1013 static void 1014 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1015 { 1016 uint64_t hi1, hi2, lo1, lo2; 1017 uint64_t tmp[2]; 1018 1019 hi1 = factor1 >> 32; 1020 hi2 = factor2 >> 32; 1021 1022 lo1 = factor1 & DT_MASK_LO; 1023 lo2 = factor2 & DT_MASK_LO; 1024 1025 product[0] = lo1 * lo2; 1026 product[1] = hi1 * hi2; 1027 1028 tmp[0] = hi1 * lo2; 1029 tmp[1] = 0; 1030 dtrace_shift_128(tmp, 32); 1031 dtrace_add_128(product, tmp, product); 1032 1033 tmp[0] = hi2 * lo1; 1034 tmp[1] = 0; 1035 dtrace_shift_128(tmp, 32); 1036 dtrace_add_128(product, tmp, product); 1037 } 1038 1039 /* 1040 * This privilege check should be used by actions and subroutines to 1041 * verify that the user credentials of the process that enabled the 1042 * invoking ECB match the target credentials 1043 */ 1044 static int 1045 dtrace_priv_proc_common_user(dtrace_state_t *state) 1046 { 1047 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1048 1049 /* 1050 * We should always have a non-NULL state cred here, since if cred 1051 * is null (anonymous tracing), we fast-path bypass this routine. 1052 */ 1053 ASSERT(s_cr != NULL); 1054 1055 if ((cr = CRED()) != NULL && 1056 s_cr->cr_uid == cr->cr_uid && 1057 s_cr->cr_uid == cr->cr_ruid && 1058 s_cr->cr_uid == cr->cr_suid && 1059 s_cr->cr_gid == cr->cr_gid && 1060 s_cr->cr_gid == cr->cr_rgid && 1061 s_cr->cr_gid == cr->cr_sgid) 1062 return (1); 1063 1064 return (0); 1065 } 1066 1067 /* 1068 * This privilege check should be used by actions and subroutines to 1069 * verify that the zone of the process that enabled the invoking ECB 1070 * matches the target credentials 1071 */ 1072 static int 1073 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1074 { 1075 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1076 1077 /* 1078 * We should always have a non-NULL state cred here, since if cred 1079 * is null (anonymous tracing), we fast-path bypass this routine. 1080 */ 1081 ASSERT(s_cr != NULL); 1082 1083 if ((cr = CRED()) != NULL && 1084 s_cr->cr_zone == cr->cr_zone) 1085 return (1); 1086 1087 return (0); 1088 } 1089 1090 /* 1091 * This privilege check should be used by actions and subroutines to 1092 * verify that the process has not setuid or changed credentials. 1093 */ 1094 static int 1095 dtrace_priv_proc_common_nocd() 1096 { 1097 proc_t *proc; 1098 1099 if ((proc = ttoproc(curthread)) != NULL && 1100 !(proc->p_flag & SNOCD)) 1101 return (1); 1102 1103 return (0); 1104 } 1105 1106 static int 1107 dtrace_priv_proc_destructive(dtrace_state_t *state) 1108 { 1109 int action = state->dts_cred.dcr_action; 1110 1111 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1112 dtrace_priv_proc_common_zone(state) == 0) 1113 goto bad; 1114 1115 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1116 dtrace_priv_proc_common_user(state) == 0) 1117 goto bad; 1118 1119 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1120 dtrace_priv_proc_common_nocd() == 0) 1121 goto bad; 1122 1123 return (1); 1124 1125 bad: 1126 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1127 1128 return (0); 1129 } 1130 1131 static int 1132 dtrace_priv_proc_control(dtrace_state_t *state) 1133 { 1134 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1135 return (1); 1136 1137 if (dtrace_priv_proc_common_zone(state) && 1138 dtrace_priv_proc_common_user(state) && 1139 dtrace_priv_proc_common_nocd()) 1140 return (1); 1141 1142 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1143 1144 return (0); 1145 } 1146 1147 static int 1148 dtrace_priv_proc(dtrace_state_t *state) 1149 { 1150 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1151 return (1); 1152 1153 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1154 1155 return (0); 1156 } 1157 1158 static int 1159 dtrace_priv_kernel(dtrace_state_t *state) 1160 { 1161 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1162 return (1); 1163 1164 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1165 1166 return (0); 1167 } 1168 1169 static int 1170 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1171 { 1172 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1173 return (1); 1174 1175 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1176 1177 return (0); 1178 } 1179 1180 /* 1181 * Note: not called from probe context. This function is called 1182 * asynchronously (and at a regular interval) from outside of probe context to 1183 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1184 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1185 */ 1186 void 1187 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1188 { 1189 dtrace_dynvar_t *dirty; 1190 dtrace_dstate_percpu_t *dcpu; 1191 dtrace_dynvar_t **rinsep; 1192 int i, j, work = 0; 1193 1194 for (i = 0; i < NCPU; i++) { 1195 dcpu = &dstate->dtds_percpu[i]; 1196 rinsep = &dcpu->dtdsc_rinsing; 1197 1198 /* 1199 * If the dirty list is NULL, there is no dirty work to do. 1200 */ 1201 if (dcpu->dtdsc_dirty == NULL) 1202 continue; 1203 1204 if (dcpu->dtdsc_rinsing != NULL) { 1205 /* 1206 * If the rinsing list is non-NULL, then it is because 1207 * this CPU was selected to accept another CPU's 1208 * dirty list -- and since that time, dirty buffers 1209 * have accumulated. This is a highly unlikely 1210 * condition, but we choose to ignore the dirty 1211 * buffers -- they'll be picked up a future cleanse. 1212 */ 1213 continue; 1214 } 1215 1216 if (dcpu->dtdsc_clean != NULL) { 1217 /* 1218 * If the clean list is non-NULL, then we're in a 1219 * situation where a CPU has done deallocations (we 1220 * have a non-NULL dirty list) but no allocations (we 1221 * also have a non-NULL clean list). We can't simply 1222 * move the dirty list into the clean list on this 1223 * CPU, yet we also don't want to allow this condition 1224 * to persist, lest a short clean list prevent a 1225 * massive dirty list from being cleaned (which in 1226 * turn could lead to otherwise avoidable dynamic 1227 * drops). To deal with this, we look for some CPU 1228 * with a NULL clean list, NULL dirty list, and NULL 1229 * rinsing list -- and then we borrow this CPU to 1230 * rinse our dirty list. 1231 */ 1232 for (j = 0; j < NCPU; j++) { 1233 dtrace_dstate_percpu_t *rinser; 1234 1235 rinser = &dstate->dtds_percpu[j]; 1236 1237 if (rinser->dtdsc_rinsing != NULL) 1238 continue; 1239 1240 if (rinser->dtdsc_dirty != NULL) 1241 continue; 1242 1243 if (rinser->dtdsc_clean != NULL) 1244 continue; 1245 1246 rinsep = &rinser->dtdsc_rinsing; 1247 break; 1248 } 1249 1250 if (j == NCPU) { 1251 /* 1252 * We were unable to find another CPU that 1253 * could accept this dirty list -- we are 1254 * therefore unable to clean it now. 1255 */ 1256 dtrace_dynvar_failclean++; 1257 continue; 1258 } 1259 } 1260 1261 work = 1; 1262 1263 /* 1264 * Atomically move the dirty list aside. 1265 */ 1266 do { 1267 dirty = dcpu->dtdsc_dirty; 1268 1269 /* 1270 * Before we zap the dirty list, set the rinsing list. 1271 * (This allows for a potential assertion in 1272 * dtrace_dynvar(): if a free dynamic variable appears 1273 * on a hash chain, either the dirty list or the 1274 * rinsing list for some CPU must be non-NULL.) 1275 */ 1276 *rinsep = dirty; 1277 dtrace_membar_producer(); 1278 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1279 dirty, NULL) != dirty); 1280 } 1281 1282 if (!work) { 1283 /* 1284 * We have no work to do; we can simply return. 1285 */ 1286 return; 1287 } 1288 1289 dtrace_sync(); 1290 1291 for (i = 0; i < NCPU; i++) { 1292 dcpu = &dstate->dtds_percpu[i]; 1293 1294 if (dcpu->dtdsc_rinsing == NULL) 1295 continue; 1296 1297 /* 1298 * We are now guaranteed that no hash chain contains a pointer 1299 * into this dirty list; we can make it clean. 1300 */ 1301 ASSERT(dcpu->dtdsc_clean == NULL); 1302 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1303 dcpu->dtdsc_rinsing = NULL; 1304 } 1305 1306 /* 1307 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1308 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1309 * This prevents a race whereby a CPU incorrectly decides that 1310 * the state should be something other than DTRACE_DSTATE_CLEAN 1311 * after dtrace_dynvar_clean() has completed. 1312 */ 1313 dtrace_sync(); 1314 1315 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1316 } 1317 1318 /* 1319 * Depending on the value of the op parameter, this function looks-up, 1320 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1321 * allocation is requested, this function will return a pointer to a 1322 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1323 * variable can be allocated. If NULL is returned, the appropriate counter 1324 * will be incremented. 1325 */ 1326 dtrace_dynvar_t * 1327 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1328 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1329 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1330 { 1331 uint64_t hashval = DTRACE_DYNHASH_VALID; 1332 dtrace_dynhash_t *hash = dstate->dtds_hash; 1333 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1334 processorid_t me = CPU->cpu_id, cpu = me; 1335 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1336 size_t bucket, ksize; 1337 size_t chunksize = dstate->dtds_chunksize; 1338 uintptr_t kdata, lock, nstate; 1339 uint_t i; 1340 1341 ASSERT(nkeys != 0); 1342 1343 /* 1344 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1345 * algorithm. For the by-value portions, we perform the algorithm in 1346 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1347 * bit, and seems to have only a minute effect on distribution. For 1348 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1349 * over each referenced byte. It's painful to do this, but it's much 1350 * better than pathological hash distribution. The efficacy of the 1351 * hashing algorithm (and a comparison with other algorithms) may be 1352 * found by running the ::dtrace_dynstat MDB dcmd. 1353 */ 1354 for (i = 0; i < nkeys; i++) { 1355 if (key[i].dttk_size == 0) { 1356 uint64_t val = key[i].dttk_value; 1357 1358 hashval += (val >> 48) & 0xffff; 1359 hashval += (hashval << 10); 1360 hashval ^= (hashval >> 6); 1361 1362 hashval += (val >> 32) & 0xffff; 1363 hashval += (hashval << 10); 1364 hashval ^= (hashval >> 6); 1365 1366 hashval += (val >> 16) & 0xffff; 1367 hashval += (hashval << 10); 1368 hashval ^= (hashval >> 6); 1369 1370 hashval += val & 0xffff; 1371 hashval += (hashval << 10); 1372 hashval ^= (hashval >> 6); 1373 } else { 1374 /* 1375 * This is incredibly painful, but it beats the hell 1376 * out of the alternative. 1377 */ 1378 uint64_t j, size = key[i].dttk_size; 1379 uintptr_t base = (uintptr_t)key[i].dttk_value; 1380 1381 if (!dtrace_canload(base, size, mstate, vstate)) 1382 break; 1383 1384 for (j = 0; j < size; j++) { 1385 hashval += dtrace_load8(base + j); 1386 hashval += (hashval << 10); 1387 hashval ^= (hashval >> 6); 1388 } 1389 } 1390 } 1391 1392 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1393 return (NULL); 1394 1395 hashval += (hashval << 3); 1396 hashval ^= (hashval >> 11); 1397 hashval += (hashval << 15); 1398 1399 /* 1400 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1401 * comes out to be one of our two sentinel hash values. If this 1402 * actually happens, we set the hashval to be a value known to be a 1403 * non-sentinel value. 1404 */ 1405 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1406 hashval = DTRACE_DYNHASH_VALID; 1407 1408 /* 1409 * Yes, it's painful to do a divide here. If the cycle count becomes 1410 * important here, tricks can be pulled to reduce it. (However, it's 1411 * critical that hash collisions be kept to an absolute minimum; 1412 * they're much more painful than a divide.) It's better to have a 1413 * solution that generates few collisions and still keeps things 1414 * relatively simple. 1415 */ 1416 bucket = hashval % dstate->dtds_hashsize; 1417 1418 if (op == DTRACE_DYNVAR_DEALLOC) { 1419 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1420 1421 for (;;) { 1422 while ((lock = *lockp) & 1) 1423 continue; 1424 1425 if (dtrace_casptr((void *)lockp, 1426 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1427 break; 1428 } 1429 1430 dtrace_membar_producer(); 1431 } 1432 1433 top: 1434 prev = NULL; 1435 lock = hash[bucket].dtdh_lock; 1436 1437 dtrace_membar_consumer(); 1438 1439 start = hash[bucket].dtdh_chain; 1440 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1441 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1442 op != DTRACE_DYNVAR_DEALLOC)); 1443 1444 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1445 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1446 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1447 1448 if (dvar->dtdv_hashval != hashval) { 1449 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1450 /* 1451 * We've reached the sink, and therefore the 1452 * end of the hash chain; we can kick out of 1453 * the loop knowing that we have seen a valid 1454 * snapshot of state. 1455 */ 1456 ASSERT(dvar->dtdv_next == NULL); 1457 ASSERT(dvar == &dtrace_dynhash_sink); 1458 break; 1459 } 1460 1461 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1462 /* 1463 * We've gone off the rails: somewhere along 1464 * the line, one of the members of this hash 1465 * chain was deleted. Note that we could also 1466 * detect this by simply letting this loop run 1467 * to completion, as we would eventually hit 1468 * the end of the dirty list. However, we 1469 * want to avoid running the length of the 1470 * dirty list unnecessarily (it might be quite 1471 * long), so we catch this as early as 1472 * possible by detecting the hash marker. In 1473 * this case, we simply set dvar to NULL and 1474 * break; the conditional after the loop will 1475 * send us back to top. 1476 */ 1477 dvar = NULL; 1478 break; 1479 } 1480 1481 goto next; 1482 } 1483 1484 if (dtuple->dtt_nkeys != nkeys) 1485 goto next; 1486 1487 for (i = 0; i < nkeys; i++, dkey++) { 1488 if (dkey->dttk_size != key[i].dttk_size) 1489 goto next; /* size or type mismatch */ 1490 1491 if (dkey->dttk_size != 0) { 1492 if (dtrace_bcmp( 1493 (void *)(uintptr_t)key[i].dttk_value, 1494 (void *)(uintptr_t)dkey->dttk_value, 1495 dkey->dttk_size)) 1496 goto next; 1497 } else { 1498 if (dkey->dttk_value != key[i].dttk_value) 1499 goto next; 1500 } 1501 } 1502 1503 if (op != DTRACE_DYNVAR_DEALLOC) 1504 return (dvar); 1505 1506 ASSERT(dvar->dtdv_next == NULL || 1507 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1508 1509 if (prev != NULL) { 1510 ASSERT(hash[bucket].dtdh_chain != dvar); 1511 ASSERT(start != dvar); 1512 ASSERT(prev->dtdv_next == dvar); 1513 prev->dtdv_next = dvar->dtdv_next; 1514 } else { 1515 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1516 start, dvar->dtdv_next) != start) { 1517 /* 1518 * We have failed to atomically swing the 1519 * hash table head pointer, presumably because 1520 * of a conflicting allocation on another CPU. 1521 * We need to reread the hash chain and try 1522 * again. 1523 */ 1524 goto top; 1525 } 1526 } 1527 1528 dtrace_membar_producer(); 1529 1530 /* 1531 * Now set the hash value to indicate that it's free. 1532 */ 1533 ASSERT(hash[bucket].dtdh_chain != dvar); 1534 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1535 1536 dtrace_membar_producer(); 1537 1538 /* 1539 * Set the next pointer to point at the dirty list, and 1540 * atomically swing the dirty pointer to the newly freed dvar. 1541 */ 1542 do { 1543 next = dcpu->dtdsc_dirty; 1544 dvar->dtdv_next = next; 1545 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1546 1547 /* 1548 * Finally, unlock this hash bucket. 1549 */ 1550 ASSERT(hash[bucket].dtdh_lock == lock); 1551 ASSERT(lock & 1); 1552 hash[bucket].dtdh_lock++; 1553 1554 return (NULL); 1555 next: 1556 prev = dvar; 1557 continue; 1558 } 1559 1560 if (dvar == NULL) { 1561 /* 1562 * If dvar is NULL, it is because we went off the rails: 1563 * one of the elements that we traversed in the hash chain 1564 * was deleted while we were traversing it. In this case, 1565 * we assert that we aren't doing a dealloc (deallocs lock 1566 * the hash bucket to prevent themselves from racing with 1567 * one another), and retry the hash chain traversal. 1568 */ 1569 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1570 goto top; 1571 } 1572 1573 if (op != DTRACE_DYNVAR_ALLOC) { 1574 /* 1575 * If we are not to allocate a new variable, we want to 1576 * return NULL now. Before we return, check that the value 1577 * of the lock word hasn't changed. If it has, we may have 1578 * seen an inconsistent snapshot. 1579 */ 1580 if (op == DTRACE_DYNVAR_NOALLOC) { 1581 if (hash[bucket].dtdh_lock != lock) 1582 goto top; 1583 } else { 1584 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1585 ASSERT(hash[bucket].dtdh_lock == lock); 1586 ASSERT(lock & 1); 1587 hash[bucket].dtdh_lock++; 1588 } 1589 1590 return (NULL); 1591 } 1592 1593 /* 1594 * We need to allocate a new dynamic variable. The size we need is the 1595 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1596 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1597 * the size of any referred-to data (dsize). We then round the final 1598 * size up to the chunksize for allocation. 1599 */ 1600 for (ksize = 0, i = 0; i < nkeys; i++) 1601 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1602 1603 /* 1604 * This should be pretty much impossible, but could happen if, say, 1605 * strange DIF specified the tuple. Ideally, this should be an 1606 * assertion and not an error condition -- but that requires that the 1607 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1608 * bullet-proof. (That is, it must not be able to be fooled by 1609 * malicious DIF.) Given the lack of backwards branches in DIF, 1610 * solving this would presumably not amount to solving the Halting 1611 * Problem -- but it still seems awfully hard. 1612 */ 1613 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1614 ksize + dsize > chunksize) { 1615 dcpu->dtdsc_drops++; 1616 return (NULL); 1617 } 1618 1619 nstate = DTRACE_DSTATE_EMPTY; 1620 1621 do { 1622 retry: 1623 free = dcpu->dtdsc_free; 1624 1625 if (free == NULL) { 1626 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1627 void *rval; 1628 1629 if (clean == NULL) { 1630 /* 1631 * We're out of dynamic variable space on 1632 * this CPU. Unless we have tried all CPUs, 1633 * we'll try to allocate from a different 1634 * CPU. 1635 */ 1636 switch (dstate->dtds_state) { 1637 case DTRACE_DSTATE_CLEAN: { 1638 void *sp = &dstate->dtds_state; 1639 1640 if (++cpu >= NCPU) 1641 cpu = 0; 1642 1643 if (dcpu->dtdsc_dirty != NULL && 1644 nstate == DTRACE_DSTATE_EMPTY) 1645 nstate = DTRACE_DSTATE_DIRTY; 1646 1647 if (dcpu->dtdsc_rinsing != NULL) 1648 nstate = DTRACE_DSTATE_RINSING; 1649 1650 dcpu = &dstate->dtds_percpu[cpu]; 1651 1652 if (cpu != me) 1653 goto retry; 1654 1655 (void) dtrace_cas32(sp, 1656 DTRACE_DSTATE_CLEAN, nstate); 1657 1658 /* 1659 * To increment the correct bean 1660 * counter, take another lap. 1661 */ 1662 goto retry; 1663 } 1664 1665 case DTRACE_DSTATE_DIRTY: 1666 dcpu->dtdsc_dirty_drops++; 1667 break; 1668 1669 case DTRACE_DSTATE_RINSING: 1670 dcpu->dtdsc_rinsing_drops++; 1671 break; 1672 1673 case DTRACE_DSTATE_EMPTY: 1674 dcpu->dtdsc_drops++; 1675 break; 1676 } 1677 1678 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1679 return (NULL); 1680 } 1681 1682 /* 1683 * The clean list appears to be non-empty. We want to 1684 * move the clean list to the free list; we start by 1685 * moving the clean pointer aside. 1686 */ 1687 if (dtrace_casptr(&dcpu->dtdsc_clean, 1688 clean, NULL) != clean) { 1689 /* 1690 * We are in one of two situations: 1691 * 1692 * (a) The clean list was switched to the 1693 * free list by another CPU. 1694 * 1695 * (b) The clean list was added to by the 1696 * cleansing cyclic. 1697 * 1698 * In either of these situations, we can 1699 * just reattempt the free list allocation. 1700 */ 1701 goto retry; 1702 } 1703 1704 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1705 1706 /* 1707 * Now we'll move the clean list to our free list. 1708 * It's impossible for this to fail: the only way 1709 * the free list can be updated is through this 1710 * code path, and only one CPU can own the clean list. 1711 * Thus, it would only be possible for this to fail if 1712 * this code were racing with dtrace_dynvar_clean(). 1713 * (That is, if dtrace_dynvar_clean() updated the clean 1714 * list, and we ended up racing to update the free 1715 * list.) This race is prevented by the dtrace_sync() 1716 * in dtrace_dynvar_clean() -- which flushes the 1717 * owners of the clean lists out before resetting 1718 * the clean lists. 1719 */ 1720 dcpu = &dstate->dtds_percpu[me]; 1721 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1722 ASSERT(rval == NULL); 1723 goto retry; 1724 } 1725 1726 dvar = free; 1727 new_free = dvar->dtdv_next; 1728 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1729 1730 /* 1731 * We have now allocated a new chunk. We copy the tuple keys into the 1732 * tuple array and copy any referenced key data into the data space 1733 * following the tuple array. As we do this, we relocate dttk_value 1734 * in the final tuple to point to the key data address in the chunk. 1735 */ 1736 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1737 dvar->dtdv_data = (void *)(kdata + ksize); 1738 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1739 1740 for (i = 0; i < nkeys; i++) { 1741 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1742 size_t kesize = key[i].dttk_size; 1743 1744 if (kesize != 0) { 1745 dtrace_bcopy( 1746 (const void *)(uintptr_t)key[i].dttk_value, 1747 (void *)kdata, kesize); 1748 dkey->dttk_value = kdata; 1749 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1750 } else { 1751 dkey->dttk_value = key[i].dttk_value; 1752 } 1753 1754 dkey->dttk_size = kesize; 1755 } 1756 1757 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1758 dvar->dtdv_hashval = hashval; 1759 dvar->dtdv_next = start; 1760 1761 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1762 return (dvar); 1763 1764 /* 1765 * The cas has failed. Either another CPU is adding an element to 1766 * this hash chain, or another CPU is deleting an element from this 1767 * hash chain. The simplest way to deal with both of these cases 1768 * (though not necessarily the most efficient) is to free our 1769 * allocated block and tail-call ourselves. Note that the free is 1770 * to the dirty list and _not_ to the free list. This is to prevent 1771 * races with allocators, above. 1772 */ 1773 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1774 1775 dtrace_membar_producer(); 1776 1777 do { 1778 free = dcpu->dtdsc_dirty; 1779 dvar->dtdv_next = free; 1780 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1781 1782 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1783 } 1784 1785 /*ARGSUSED*/ 1786 static void 1787 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1788 { 1789 if ((int64_t)nval < (int64_t)*oval) 1790 *oval = nval; 1791 } 1792 1793 /*ARGSUSED*/ 1794 static void 1795 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1796 { 1797 if ((int64_t)nval > (int64_t)*oval) 1798 *oval = nval; 1799 } 1800 1801 static void 1802 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1803 { 1804 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1805 int64_t val = (int64_t)nval; 1806 1807 if (val < 0) { 1808 for (i = 0; i < zero; i++) { 1809 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1810 quanta[i] += incr; 1811 return; 1812 } 1813 } 1814 } else { 1815 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1816 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1817 quanta[i - 1] += incr; 1818 return; 1819 } 1820 } 1821 1822 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1823 return; 1824 } 1825 1826 ASSERT(0); 1827 } 1828 1829 static void 1830 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1831 { 1832 uint64_t arg = *lquanta++; 1833 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1834 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1835 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1836 int32_t val = (int32_t)nval, level; 1837 1838 ASSERT(step != 0); 1839 ASSERT(levels != 0); 1840 1841 if (val < base) { 1842 /* 1843 * This is an underflow. 1844 */ 1845 lquanta[0] += incr; 1846 return; 1847 } 1848 1849 level = (val - base) / step; 1850 1851 if (level < levels) { 1852 lquanta[level + 1] += incr; 1853 return; 1854 } 1855 1856 /* 1857 * This is an overflow. 1858 */ 1859 lquanta[levels + 1] += incr; 1860 } 1861 1862 /*ARGSUSED*/ 1863 static void 1864 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 1865 { 1866 data[0]++; 1867 data[1] += nval; 1868 } 1869 1870 /*ARGSUSED*/ 1871 static void 1872 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 1873 { 1874 int64_t snval = (int64_t)nval; 1875 uint64_t tmp[2]; 1876 1877 data[0]++; 1878 data[1] += nval; 1879 1880 /* 1881 * What we want to say here is: 1882 * 1883 * data[2] += nval * nval; 1884 * 1885 * But given that nval is 64-bit, we could easily overflow, so 1886 * we do this as 128-bit arithmetic. 1887 */ 1888 if (snval < 0) 1889 snval = -snval; 1890 1891 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 1892 dtrace_add_128(data + 2, tmp, data + 2); 1893 } 1894 1895 /*ARGSUSED*/ 1896 static void 1897 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 1898 { 1899 *oval = *oval + 1; 1900 } 1901 1902 /*ARGSUSED*/ 1903 static void 1904 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 1905 { 1906 *oval += nval; 1907 } 1908 1909 /* 1910 * Aggregate given the tuple in the principal data buffer, and the aggregating 1911 * action denoted by the specified dtrace_aggregation_t. The aggregation 1912 * buffer is specified as the buf parameter. This routine does not return 1913 * failure; if there is no space in the aggregation buffer, the data will be 1914 * dropped, and a corresponding counter incremented. 1915 */ 1916 static void 1917 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 1918 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 1919 { 1920 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 1921 uint32_t i, ndx, size, fsize; 1922 uint32_t align = sizeof (uint64_t) - 1; 1923 dtrace_aggbuffer_t *agb; 1924 dtrace_aggkey_t *key; 1925 uint32_t hashval = 0, limit, isstr; 1926 caddr_t tomax, data, kdata; 1927 dtrace_actkind_t action; 1928 dtrace_action_t *act; 1929 uintptr_t offs; 1930 1931 if (buf == NULL) 1932 return; 1933 1934 if (!agg->dtag_hasarg) { 1935 /* 1936 * Currently, only quantize() and lquantize() take additional 1937 * arguments, and they have the same semantics: an increment 1938 * value that defaults to 1 when not present. If additional 1939 * aggregating actions take arguments, the setting of the 1940 * default argument value will presumably have to become more 1941 * sophisticated... 1942 */ 1943 arg = 1; 1944 } 1945 1946 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 1947 size = rec->dtrd_offset - agg->dtag_base; 1948 fsize = size + rec->dtrd_size; 1949 1950 ASSERT(dbuf->dtb_tomax != NULL); 1951 data = dbuf->dtb_tomax + offset + agg->dtag_base; 1952 1953 if ((tomax = buf->dtb_tomax) == NULL) { 1954 dtrace_buffer_drop(buf); 1955 return; 1956 } 1957 1958 /* 1959 * The metastructure is always at the bottom of the buffer. 1960 */ 1961 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 1962 sizeof (dtrace_aggbuffer_t)); 1963 1964 if (buf->dtb_offset == 0) { 1965 /* 1966 * We just kludge up approximately 1/8th of the size to be 1967 * buckets. If this guess ends up being routinely 1968 * off-the-mark, we may need to dynamically readjust this 1969 * based on past performance. 1970 */ 1971 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 1972 1973 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 1974 (uintptr_t)tomax || hashsize == 0) { 1975 /* 1976 * We've been given a ludicrously small buffer; 1977 * increment our drop count and leave. 1978 */ 1979 dtrace_buffer_drop(buf); 1980 return; 1981 } 1982 1983 /* 1984 * And now, a pathetic attempt to try to get a an odd (or 1985 * perchance, a prime) hash size for better hash distribution. 1986 */ 1987 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 1988 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 1989 1990 agb->dtagb_hashsize = hashsize; 1991 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 1992 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 1993 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 1994 1995 for (i = 0; i < agb->dtagb_hashsize; i++) 1996 agb->dtagb_hash[i] = NULL; 1997 } 1998 1999 ASSERT(agg->dtag_first != NULL); 2000 ASSERT(agg->dtag_first->dta_intuple); 2001 2002 /* 2003 * Calculate the hash value based on the key. Note that we _don't_ 2004 * include the aggid in the hashing (but we will store it as part of 2005 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2006 * algorithm: a simple, quick algorithm that has no known funnels, and 2007 * gets good distribution in practice. The efficacy of the hashing 2008 * algorithm (and a comparison with other algorithms) may be found by 2009 * running the ::dtrace_aggstat MDB dcmd. 2010 */ 2011 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2012 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2013 limit = i + act->dta_rec.dtrd_size; 2014 ASSERT(limit <= size); 2015 isstr = DTRACEACT_ISSTRING(act); 2016 2017 for (; i < limit; i++) { 2018 hashval += data[i]; 2019 hashval += (hashval << 10); 2020 hashval ^= (hashval >> 6); 2021 2022 if (isstr && data[i] == '\0') 2023 break; 2024 } 2025 } 2026 2027 hashval += (hashval << 3); 2028 hashval ^= (hashval >> 11); 2029 hashval += (hashval << 15); 2030 2031 /* 2032 * Yes, the divide here is expensive -- but it's generally the least 2033 * of the performance issues given the amount of data that we iterate 2034 * over to compute hash values, compare data, etc. 2035 */ 2036 ndx = hashval % agb->dtagb_hashsize; 2037 2038 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2039 ASSERT((caddr_t)key >= tomax); 2040 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2041 2042 if (hashval != key->dtak_hashval || key->dtak_size != size) 2043 continue; 2044 2045 kdata = key->dtak_data; 2046 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2047 2048 for (act = agg->dtag_first; act->dta_intuple; 2049 act = act->dta_next) { 2050 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2051 limit = i + act->dta_rec.dtrd_size; 2052 ASSERT(limit <= size); 2053 isstr = DTRACEACT_ISSTRING(act); 2054 2055 for (; i < limit; i++) { 2056 if (kdata[i] != data[i]) 2057 goto next; 2058 2059 if (isstr && data[i] == '\0') 2060 break; 2061 } 2062 } 2063 2064 if (action != key->dtak_action) { 2065 /* 2066 * We are aggregating on the same value in the same 2067 * aggregation with two different aggregating actions. 2068 * (This should have been picked up in the compiler, 2069 * so we may be dealing with errant or devious DIF.) 2070 * This is an error condition; we indicate as much, 2071 * and return. 2072 */ 2073 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2074 return; 2075 } 2076 2077 /* 2078 * This is a hit: we need to apply the aggregator to 2079 * the value at this key. 2080 */ 2081 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2082 return; 2083 next: 2084 continue; 2085 } 2086 2087 /* 2088 * We didn't find it. We need to allocate some zero-filled space, 2089 * link it into the hash table appropriately, and apply the aggregator 2090 * to the (zero-filled) value. 2091 */ 2092 offs = buf->dtb_offset; 2093 while (offs & (align - 1)) 2094 offs += sizeof (uint32_t); 2095 2096 /* 2097 * If we don't have enough room to both allocate a new key _and_ 2098 * its associated data, increment the drop count and return. 2099 */ 2100 if ((uintptr_t)tomax + offs + fsize > 2101 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2102 dtrace_buffer_drop(buf); 2103 return; 2104 } 2105 2106 /*CONSTCOND*/ 2107 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2108 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2109 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2110 2111 key->dtak_data = kdata = tomax + offs; 2112 buf->dtb_offset = offs + fsize; 2113 2114 /* 2115 * Now copy the data across. 2116 */ 2117 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2118 2119 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2120 kdata[i] = data[i]; 2121 2122 /* 2123 * Because strings are not zeroed out by default, we need to iterate 2124 * looking for actions that store strings, and we need to explicitly 2125 * pad these strings out with zeroes. 2126 */ 2127 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2128 int nul; 2129 2130 if (!DTRACEACT_ISSTRING(act)) 2131 continue; 2132 2133 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2134 limit = i + act->dta_rec.dtrd_size; 2135 ASSERT(limit <= size); 2136 2137 for (nul = 0; i < limit; i++) { 2138 if (nul) { 2139 kdata[i] = '\0'; 2140 continue; 2141 } 2142 2143 if (data[i] != '\0') 2144 continue; 2145 2146 nul = 1; 2147 } 2148 } 2149 2150 for (i = size; i < fsize; i++) 2151 kdata[i] = 0; 2152 2153 key->dtak_hashval = hashval; 2154 key->dtak_size = size; 2155 key->dtak_action = action; 2156 key->dtak_next = agb->dtagb_hash[ndx]; 2157 agb->dtagb_hash[ndx] = key; 2158 2159 /* 2160 * Finally, apply the aggregator. 2161 */ 2162 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2163 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2164 } 2165 2166 /* 2167 * Given consumer state, this routine finds a speculation in the INACTIVE 2168 * state and transitions it into the ACTIVE state. If there is no speculation 2169 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2170 * incremented -- it is up to the caller to take appropriate action. 2171 */ 2172 static int 2173 dtrace_speculation(dtrace_state_t *state) 2174 { 2175 int i = 0; 2176 dtrace_speculation_state_t current; 2177 uint32_t *stat = &state->dts_speculations_unavail, count; 2178 2179 while (i < state->dts_nspeculations) { 2180 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2181 2182 current = spec->dtsp_state; 2183 2184 if (current != DTRACESPEC_INACTIVE) { 2185 if (current == DTRACESPEC_COMMITTINGMANY || 2186 current == DTRACESPEC_COMMITTING || 2187 current == DTRACESPEC_DISCARDING) 2188 stat = &state->dts_speculations_busy; 2189 i++; 2190 continue; 2191 } 2192 2193 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2194 current, DTRACESPEC_ACTIVE) == current) 2195 return (i + 1); 2196 } 2197 2198 /* 2199 * We couldn't find a speculation. If we found as much as a single 2200 * busy speculation buffer, we'll attribute this failure as "busy" 2201 * instead of "unavail". 2202 */ 2203 do { 2204 count = *stat; 2205 } while (dtrace_cas32(stat, count, count + 1) != count); 2206 2207 return (0); 2208 } 2209 2210 /* 2211 * This routine commits an active speculation. If the specified speculation 2212 * is not in a valid state to perform a commit(), this routine will silently do 2213 * nothing. The state of the specified speculation is transitioned according 2214 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2215 */ 2216 static void 2217 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2218 dtrace_specid_t which) 2219 { 2220 dtrace_speculation_t *spec; 2221 dtrace_buffer_t *src, *dest; 2222 uintptr_t daddr, saddr, dlimit; 2223 dtrace_speculation_state_t current, new; 2224 intptr_t offs; 2225 2226 if (which == 0) 2227 return; 2228 2229 if (which > state->dts_nspeculations) { 2230 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2231 return; 2232 } 2233 2234 spec = &state->dts_speculations[which - 1]; 2235 src = &spec->dtsp_buffer[cpu]; 2236 dest = &state->dts_buffer[cpu]; 2237 2238 do { 2239 current = spec->dtsp_state; 2240 2241 if (current == DTRACESPEC_COMMITTINGMANY) 2242 break; 2243 2244 switch (current) { 2245 case DTRACESPEC_INACTIVE: 2246 case DTRACESPEC_DISCARDING: 2247 return; 2248 2249 case DTRACESPEC_COMMITTING: 2250 /* 2251 * This is only possible if we are (a) commit()'ing 2252 * without having done a prior speculate() on this CPU 2253 * and (b) racing with another commit() on a different 2254 * CPU. There's nothing to do -- we just assert that 2255 * our offset is 0. 2256 */ 2257 ASSERT(src->dtb_offset == 0); 2258 return; 2259 2260 case DTRACESPEC_ACTIVE: 2261 new = DTRACESPEC_COMMITTING; 2262 break; 2263 2264 case DTRACESPEC_ACTIVEONE: 2265 /* 2266 * This speculation is active on one CPU. If our 2267 * buffer offset is non-zero, we know that the one CPU 2268 * must be us. Otherwise, we are committing on a 2269 * different CPU from the speculate(), and we must 2270 * rely on being asynchronously cleaned. 2271 */ 2272 if (src->dtb_offset != 0) { 2273 new = DTRACESPEC_COMMITTING; 2274 break; 2275 } 2276 /*FALLTHROUGH*/ 2277 2278 case DTRACESPEC_ACTIVEMANY: 2279 new = DTRACESPEC_COMMITTINGMANY; 2280 break; 2281 2282 default: 2283 ASSERT(0); 2284 } 2285 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2286 current, new) != current); 2287 2288 /* 2289 * We have set the state to indicate that we are committing this 2290 * speculation. Now reserve the necessary space in the destination 2291 * buffer. 2292 */ 2293 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2294 sizeof (uint64_t), state, NULL)) < 0) { 2295 dtrace_buffer_drop(dest); 2296 goto out; 2297 } 2298 2299 /* 2300 * We have the space; copy the buffer across. (Note that this is a 2301 * highly subobtimal bcopy(); in the unlikely event that this becomes 2302 * a serious performance issue, a high-performance DTrace-specific 2303 * bcopy() should obviously be invented.) 2304 */ 2305 daddr = (uintptr_t)dest->dtb_tomax + offs; 2306 dlimit = daddr + src->dtb_offset; 2307 saddr = (uintptr_t)src->dtb_tomax; 2308 2309 /* 2310 * First, the aligned portion. 2311 */ 2312 while (dlimit - daddr >= sizeof (uint64_t)) { 2313 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2314 2315 daddr += sizeof (uint64_t); 2316 saddr += sizeof (uint64_t); 2317 } 2318 2319 /* 2320 * Now any left-over bit... 2321 */ 2322 while (dlimit - daddr) 2323 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2324 2325 /* 2326 * Finally, commit the reserved space in the destination buffer. 2327 */ 2328 dest->dtb_offset = offs + src->dtb_offset; 2329 2330 out: 2331 /* 2332 * If we're lucky enough to be the only active CPU on this speculation 2333 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2334 */ 2335 if (current == DTRACESPEC_ACTIVE || 2336 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2337 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2338 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2339 2340 ASSERT(rval == DTRACESPEC_COMMITTING); 2341 } 2342 2343 src->dtb_offset = 0; 2344 src->dtb_xamot_drops += src->dtb_drops; 2345 src->dtb_drops = 0; 2346 } 2347 2348 /* 2349 * This routine discards an active speculation. If the specified speculation 2350 * is not in a valid state to perform a discard(), this routine will silently 2351 * do nothing. The state of the specified speculation is transitioned 2352 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2353 */ 2354 static void 2355 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2356 dtrace_specid_t which) 2357 { 2358 dtrace_speculation_t *spec; 2359 dtrace_speculation_state_t current, new; 2360 dtrace_buffer_t *buf; 2361 2362 if (which == 0) 2363 return; 2364 2365 if (which > state->dts_nspeculations) { 2366 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2367 return; 2368 } 2369 2370 spec = &state->dts_speculations[which - 1]; 2371 buf = &spec->dtsp_buffer[cpu]; 2372 2373 do { 2374 current = spec->dtsp_state; 2375 2376 switch (current) { 2377 case DTRACESPEC_INACTIVE: 2378 case DTRACESPEC_COMMITTINGMANY: 2379 case DTRACESPEC_COMMITTING: 2380 case DTRACESPEC_DISCARDING: 2381 return; 2382 2383 case DTRACESPEC_ACTIVE: 2384 case DTRACESPEC_ACTIVEMANY: 2385 new = DTRACESPEC_DISCARDING; 2386 break; 2387 2388 case DTRACESPEC_ACTIVEONE: 2389 if (buf->dtb_offset != 0) { 2390 new = DTRACESPEC_INACTIVE; 2391 } else { 2392 new = DTRACESPEC_DISCARDING; 2393 } 2394 break; 2395 2396 default: 2397 ASSERT(0); 2398 } 2399 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2400 current, new) != current); 2401 2402 buf->dtb_offset = 0; 2403 buf->dtb_drops = 0; 2404 } 2405 2406 /* 2407 * Note: not called from probe context. This function is called 2408 * asynchronously from cross call context to clean any speculations that are 2409 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2410 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2411 * speculation. 2412 */ 2413 static void 2414 dtrace_speculation_clean_here(dtrace_state_t *state) 2415 { 2416 dtrace_icookie_t cookie; 2417 processorid_t cpu = CPU->cpu_id; 2418 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2419 dtrace_specid_t i; 2420 2421 cookie = dtrace_interrupt_disable(); 2422 2423 if (dest->dtb_tomax == NULL) { 2424 dtrace_interrupt_enable(cookie); 2425 return; 2426 } 2427 2428 for (i = 0; i < state->dts_nspeculations; i++) { 2429 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2430 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2431 2432 if (src->dtb_tomax == NULL) 2433 continue; 2434 2435 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2436 src->dtb_offset = 0; 2437 continue; 2438 } 2439 2440 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2441 continue; 2442 2443 if (src->dtb_offset == 0) 2444 continue; 2445 2446 dtrace_speculation_commit(state, cpu, i + 1); 2447 } 2448 2449 dtrace_interrupt_enable(cookie); 2450 } 2451 2452 /* 2453 * Note: not called from probe context. This function is called 2454 * asynchronously (and at a regular interval) to clean any speculations that 2455 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2456 * is work to be done, it cross calls all CPUs to perform that work; 2457 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2458 * INACTIVE state until they have been cleaned by all CPUs. 2459 */ 2460 static void 2461 dtrace_speculation_clean(dtrace_state_t *state) 2462 { 2463 int work = 0, rv; 2464 dtrace_specid_t i; 2465 2466 for (i = 0; i < state->dts_nspeculations; i++) { 2467 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2468 2469 ASSERT(!spec->dtsp_cleaning); 2470 2471 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2472 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2473 continue; 2474 2475 work++; 2476 spec->dtsp_cleaning = 1; 2477 } 2478 2479 if (!work) 2480 return; 2481 2482 dtrace_xcall(DTRACE_CPUALL, 2483 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2484 2485 /* 2486 * We now know that all CPUs have committed or discarded their 2487 * speculation buffers, as appropriate. We can now set the state 2488 * to inactive. 2489 */ 2490 for (i = 0; i < state->dts_nspeculations; i++) { 2491 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2492 dtrace_speculation_state_t current, new; 2493 2494 if (!spec->dtsp_cleaning) 2495 continue; 2496 2497 current = spec->dtsp_state; 2498 ASSERT(current == DTRACESPEC_DISCARDING || 2499 current == DTRACESPEC_COMMITTINGMANY); 2500 2501 new = DTRACESPEC_INACTIVE; 2502 2503 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2504 ASSERT(rv == current); 2505 spec->dtsp_cleaning = 0; 2506 } 2507 } 2508 2509 /* 2510 * Called as part of a speculate() to get the speculative buffer associated 2511 * with a given speculation. Returns NULL if the specified speculation is not 2512 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2513 * the active CPU is not the specified CPU -- the speculation will be 2514 * atomically transitioned into the ACTIVEMANY state. 2515 */ 2516 static dtrace_buffer_t * 2517 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2518 dtrace_specid_t which) 2519 { 2520 dtrace_speculation_t *spec; 2521 dtrace_speculation_state_t current, new; 2522 dtrace_buffer_t *buf; 2523 2524 if (which == 0) 2525 return (NULL); 2526 2527 if (which > state->dts_nspeculations) { 2528 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2529 return (NULL); 2530 } 2531 2532 spec = &state->dts_speculations[which - 1]; 2533 buf = &spec->dtsp_buffer[cpuid]; 2534 2535 do { 2536 current = spec->dtsp_state; 2537 2538 switch (current) { 2539 case DTRACESPEC_INACTIVE: 2540 case DTRACESPEC_COMMITTINGMANY: 2541 case DTRACESPEC_DISCARDING: 2542 return (NULL); 2543 2544 case DTRACESPEC_COMMITTING: 2545 ASSERT(buf->dtb_offset == 0); 2546 return (NULL); 2547 2548 case DTRACESPEC_ACTIVEONE: 2549 /* 2550 * This speculation is currently active on one CPU. 2551 * Check the offset in the buffer; if it's non-zero, 2552 * that CPU must be us (and we leave the state alone). 2553 * If it's zero, assume that we're starting on a new 2554 * CPU -- and change the state to indicate that the 2555 * speculation is active on more than one CPU. 2556 */ 2557 if (buf->dtb_offset != 0) 2558 return (buf); 2559 2560 new = DTRACESPEC_ACTIVEMANY; 2561 break; 2562 2563 case DTRACESPEC_ACTIVEMANY: 2564 return (buf); 2565 2566 case DTRACESPEC_ACTIVE: 2567 new = DTRACESPEC_ACTIVEONE; 2568 break; 2569 2570 default: 2571 ASSERT(0); 2572 } 2573 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2574 current, new) != current); 2575 2576 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2577 return (buf); 2578 } 2579 2580 /* 2581 * Return a string. In the event that the user lacks the privilege to access 2582 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2583 * don't fail access checking. 2584 * 2585 * dtrace_dif_variable() uses this routine as a helper for various 2586 * builtin values such as 'execname' and 'probefunc.' 2587 */ 2588 uintptr_t 2589 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2590 dtrace_mstate_t *mstate) 2591 { 2592 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2593 uintptr_t ret; 2594 size_t strsz; 2595 2596 /* 2597 * The easy case: this probe is allowed to read all of memory, so 2598 * we can just return this as a vanilla pointer. 2599 */ 2600 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2601 return (addr); 2602 2603 /* 2604 * This is the tougher case: we copy the string in question from 2605 * kernel memory into scratch memory and return it that way: this 2606 * ensures that we won't trip up when access checking tests the 2607 * BYREF return value. 2608 */ 2609 strsz = dtrace_strlen((char *)addr, size) + 1; 2610 2611 if (mstate->dtms_scratch_ptr + strsz > 2612 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2613 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2614 return (NULL); 2615 } 2616 2617 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2618 strsz); 2619 ret = mstate->dtms_scratch_ptr; 2620 mstate->dtms_scratch_ptr += strsz; 2621 return (ret); 2622 } 2623 2624 /* 2625 * This function implements the DIF emulator's variable lookups. The emulator 2626 * passes a reserved variable identifier and optional built-in array index. 2627 */ 2628 static uint64_t 2629 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2630 uint64_t ndx) 2631 { 2632 /* 2633 * If we're accessing one of the uncached arguments, we'll turn this 2634 * into a reference in the args array. 2635 */ 2636 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2637 ndx = v - DIF_VAR_ARG0; 2638 v = DIF_VAR_ARGS; 2639 } 2640 2641 switch (v) { 2642 case DIF_VAR_ARGS: 2643 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2644 if (ndx >= sizeof (mstate->dtms_arg) / 2645 sizeof (mstate->dtms_arg[0])) { 2646 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2647 dtrace_provider_t *pv; 2648 uint64_t val; 2649 2650 pv = mstate->dtms_probe->dtpr_provider; 2651 if (pv->dtpv_pops.dtps_getargval != NULL) 2652 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2653 mstate->dtms_probe->dtpr_id, 2654 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2655 else 2656 val = dtrace_getarg(ndx, aframes); 2657 2658 /* 2659 * This is regrettably required to keep the compiler 2660 * from tail-optimizing the call to dtrace_getarg(). 2661 * The condition always evaluates to true, but the 2662 * compiler has no way of figuring that out a priori. 2663 * (None of this would be necessary if the compiler 2664 * could be relied upon to _always_ tail-optimize 2665 * the call to dtrace_getarg() -- but it can't.) 2666 */ 2667 if (mstate->dtms_probe != NULL) 2668 return (val); 2669 2670 ASSERT(0); 2671 } 2672 2673 return (mstate->dtms_arg[ndx]); 2674 2675 case DIF_VAR_UREGS: { 2676 klwp_t *lwp; 2677 2678 if (!dtrace_priv_proc(state)) 2679 return (0); 2680 2681 if ((lwp = curthread->t_lwp) == NULL) { 2682 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2683 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2684 return (0); 2685 } 2686 2687 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2688 } 2689 2690 case DIF_VAR_CURTHREAD: 2691 if (!dtrace_priv_kernel(state)) 2692 return (0); 2693 return ((uint64_t)(uintptr_t)curthread); 2694 2695 case DIF_VAR_TIMESTAMP: 2696 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2697 mstate->dtms_timestamp = dtrace_gethrtime(); 2698 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2699 } 2700 return (mstate->dtms_timestamp); 2701 2702 case DIF_VAR_VTIMESTAMP: 2703 ASSERT(dtrace_vtime_references != 0); 2704 return (curthread->t_dtrace_vtime); 2705 2706 case DIF_VAR_WALLTIMESTAMP: 2707 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2708 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2709 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2710 } 2711 return (mstate->dtms_walltimestamp); 2712 2713 case DIF_VAR_IPL: 2714 if (!dtrace_priv_kernel(state)) 2715 return (0); 2716 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2717 mstate->dtms_ipl = dtrace_getipl(); 2718 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2719 } 2720 return (mstate->dtms_ipl); 2721 2722 case DIF_VAR_EPID: 2723 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2724 return (mstate->dtms_epid); 2725 2726 case DIF_VAR_ID: 2727 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2728 return (mstate->dtms_probe->dtpr_id); 2729 2730 case DIF_VAR_STACKDEPTH: 2731 if (!dtrace_priv_kernel(state)) 2732 return (0); 2733 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2734 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2735 2736 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2737 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2738 } 2739 return (mstate->dtms_stackdepth); 2740 2741 case DIF_VAR_USTACKDEPTH: 2742 if (!dtrace_priv_proc(state)) 2743 return (0); 2744 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2745 /* 2746 * See comment in DIF_VAR_PID. 2747 */ 2748 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2749 CPU_ON_INTR(CPU)) { 2750 mstate->dtms_ustackdepth = 0; 2751 } else { 2752 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2753 mstate->dtms_ustackdepth = 2754 dtrace_getustackdepth(); 2755 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2756 } 2757 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2758 } 2759 return (mstate->dtms_ustackdepth); 2760 2761 case DIF_VAR_CALLER: 2762 if (!dtrace_priv_kernel(state)) 2763 return (0); 2764 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2765 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2766 2767 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2768 /* 2769 * If this is an unanchored probe, we are 2770 * required to go through the slow path: 2771 * dtrace_caller() only guarantees correct 2772 * results for anchored probes. 2773 */ 2774 pc_t caller[2]; 2775 2776 dtrace_getpcstack(caller, 2, aframes, 2777 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2778 mstate->dtms_caller = caller[1]; 2779 } else if ((mstate->dtms_caller = 2780 dtrace_caller(aframes)) == -1) { 2781 /* 2782 * We have failed to do this the quick way; 2783 * we must resort to the slower approach of 2784 * calling dtrace_getpcstack(). 2785 */ 2786 pc_t caller; 2787 2788 dtrace_getpcstack(&caller, 1, aframes, NULL); 2789 mstate->dtms_caller = caller; 2790 } 2791 2792 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2793 } 2794 return (mstate->dtms_caller); 2795 2796 case DIF_VAR_UCALLER: 2797 if (!dtrace_priv_proc(state)) 2798 return (0); 2799 2800 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 2801 uint64_t ustack[3]; 2802 2803 /* 2804 * dtrace_getupcstack() fills in the first uint64_t 2805 * with the current PID. The second uint64_t will 2806 * be the program counter at user-level. The third 2807 * uint64_t will contain the caller, which is what 2808 * we're after. 2809 */ 2810 ustack[2] = NULL; 2811 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2812 dtrace_getupcstack(ustack, 3); 2813 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2814 mstate->dtms_ucaller = ustack[2]; 2815 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 2816 } 2817 2818 return (mstate->dtms_ucaller); 2819 2820 case DIF_VAR_PROBEPROV: 2821 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2822 return (dtrace_dif_varstr( 2823 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 2824 state, mstate)); 2825 2826 case DIF_VAR_PROBEMOD: 2827 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2828 return (dtrace_dif_varstr( 2829 (uintptr_t)mstate->dtms_probe->dtpr_mod, 2830 state, mstate)); 2831 2832 case DIF_VAR_PROBEFUNC: 2833 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2834 return (dtrace_dif_varstr( 2835 (uintptr_t)mstate->dtms_probe->dtpr_func, 2836 state, mstate)); 2837 2838 case DIF_VAR_PROBENAME: 2839 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2840 return (dtrace_dif_varstr( 2841 (uintptr_t)mstate->dtms_probe->dtpr_name, 2842 state, mstate)); 2843 2844 case DIF_VAR_PID: 2845 if (!dtrace_priv_proc(state)) 2846 return (0); 2847 2848 /* 2849 * Note that we are assuming that an unanchored probe is 2850 * always due to a high-level interrupt. (And we're assuming 2851 * that there is only a single high level interrupt.) 2852 */ 2853 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2854 return (pid0.pid_id); 2855 2856 /* 2857 * It is always safe to dereference one's own t_procp pointer: 2858 * it always points to a valid, allocated proc structure. 2859 * Further, it is always safe to dereference the p_pidp member 2860 * of one's own proc structure. (These are truisms becuase 2861 * threads and processes don't clean up their own state -- 2862 * they leave that task to whomever reaps them.) 2863 */ 2864 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 2865 2866 case DIF_VAR_PPID: 2867 if (!dtrace_priv_proc(state)) 2868 return (0); 2869 2870 /* 2871 * See comment in DIF_VAR_PID. 2872 */ 2873 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2874 return (pid0.pid_id); 2875 2876 /* 2877 * It is always safe to dereference one's own t_procp pointer: 2878 * it always points to a valid, allocated proc structure. 2879 * (This is true because threads don't clean up their own 2880 * state -- they leave that task to whomever reaps them.) 2881 */ 2882 return ((uint64_t)curthread->t_procp->p_ppid); 2883 2884 case DIF_VAR_TID: 2885 /* 2886 * See comment in DIF_VAR_PID. 2887 */ 2888 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2889 return (0); 2890 2891 return ((uint64_t)curthread->t_tid); 2892 2893 case DIF_VAR_EXECNAME: 2894 if (!dtrace_priv_proc(state)) 2895 return (0); 2896 2897 /* 2898 * See comment in DIF_VAR_PID. 2899 */ 2900 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2901 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 2902 2903 /* 2904 * It is always safe to dereference one's own t_procp pointer: 2905 * it always points to a valid, allocated proc structure. 2906 * (This is true because threads don't clean up their own 2907 * state -- they leave that task to whomever reaps them.) 2908 */ 2909 return (dtrace_dif_varstr( 2910 (uintptr_t)curthread->t_procp->p_user.u_comm, 2911 state, mstate)); 2912 2913 case DIF_VAR_ZONENAME: 2914 if (!dtrace_priv_proc(state)) 2915 return (0); 2916 2917 /* 2918 * See comment in DIF_VAR_PID. 2919 */ 2920 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2921 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 2922 2923 /* 2924 * It is always safe to dereference one's own t_procp pointer: 2925 * it always points to a valid, allocated proc structure. 2926 * (This is true because threads don't clean up their own 2927 * state -- they leave that task to whomever reaps them.) 2928 */ 2929 return (dtrace_dif_varstr( 2930 (uintptr_t)curthread->t_procp->p_zone->zone_name, 2931 state, mstate)); 2932 2933 case DIF_VAR_UID: 2934 if (!dtrace_priv_proc(state)) 2935 return (0); 2936 2937 /* 2938 * See comment in DIF_VAR_PID. 2939 */ 2940 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2941 return ((uint64_t)p0.p_cred->cr_uid); 2942 2943 /* 2944 * It is always safe to dereference one's own t_procp pointer: 2945 * it always points to a valid, allocated proc structure. 2946 * (This is true because threads don't clean up their own 2947 * state -- they leave that task to whomever reaps them.) 2948 * 2949 * Additionally, it is safe to dereference one's own process 2950 * credential, since this is never NULL after process birth. 2951 */ 2952 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 2953 2954 case DIF_VAR_GID: 2955 if (!dtrace_priv_proc(state)) 2956 return (0); 2957 2958 /* 2959 * See comment in DIF_VAR_PID. 2960 */ 2961 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2962 return ((uint64_t)p0.p_cred->cr_gid); 2963 2964 /* 2965 * It is always safe to dereference one's own t_procp pointer: 2966 * it always points to a valid, allocated proc structure. 2967 * (This is true because threads don't clean up their own 2968 * state -- they leave that task to whomever reaps them.) 2969 * 2970 * Additionally, it is safe to dereference one's own process 2971 * credential, since this is never NULL after process birth. 2972 */ 2973 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 2974 2975 case DIF_VAR_ERRNO: { 2976 klwp_t *lwp; 2977 if (!dtrace_priv_proc(state)) 2978 return (0); 2979 2980 /* 2981 * See comment in DIF_VAR_PID. 2982 */ 2983 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2984 return (0); 2985 2986 /* 2987 * It is always safe to dereference one's own t_lwp pointer in 2988 * the event that this pointer is non-NULL. (This is true 2989 * because threads and lwps don't clean up their own state -- 2990 * they leave that task to whomever reaps them.) 2991 */ 2992 if ((lwp = curthread->t_lwp) == NULL) 2993 return (0); 2994 2995 return ((uint64_t)lwp->lwp_errno); 2996 } 2997 default: 2998 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2999 return (0); 3000 } 3001 } 3002 3003 /* 3004 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3005 * Notice that we don't bother validating the proper number of arguments or 3006 * their types in the tuple stack. This isn't needed because all argument 3007 * interpretation is safe because of our load safety -- the worst that can 3008 * happen is that a bogus program can obtain bogus results. 3009 */ 3010 static void 3011 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3012 dtrace_key_t *tupregs, int nargs, 3013 dtrace_mstate_t *mstate, dtrace_state_t *state) 3014 { 3015 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3016 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3017 dtrace_vstate_t *vstate = &state->dts_vstate; 3018 3019 union { 3020 mutex_impl_t mi; 3021 uint64_t mx; 3022 } m; 3023 3024 union { 3025 krwlock_t ri; 3026 uintptr_t rw; 3027 } r; 3028 3029 switch (subr) { 3030 case DIF_SUBR_RAND: 3031 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3032 break; 3033 3034 case DIF_SUBR_MUTEX_OWNED: 3035 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3036 mstate, vstate)) { 3037 regs[rd] = NULL; 3038 break; 3039 } 3040 3041 m.mx = dtrace_load64(tupregs[0].dttk_value); 3042 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3043 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3044 else 3045 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3046 break; 3047 3048 case DIF_SUBR_MUTEX_OWNER: 3049 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3050 mstate, vstate)) { 3051 regs[rd] = NULL; 3052 break; 3053 } 3054 3055 m.mx = dtrace_load64(tupregs[0].dttk_value); 3056 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3057 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3058 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3059 else 3060 regs[rd] = 0; 3061 break; 3062 3063 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3064 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3065 mstate, vstate)) { 3066 regs[rd] = NULL; 3067 break; 3068 } 3069 3070 m.mx = dtrace_load64(tupregs[0].dttk_value); 3071 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3072 break; 3073 3074 case DIF_SUBR_MUTEX_TYPE_SPIN: 3075 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3076 mstate, vstate)) { 3077 regs[rd] = NULL; 3078 break; 3079 } 3080 3081 m.mx = dtrace_load64(tupregs[0].dttk_value); 3082 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3083 break; 3084 3085 case DIF_SUBR_RW_READ_HELD: { 3086 uintptr_t tmp; 3087 3088 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3089 mstate, vstate)) { 3090 regs[rd] = NULL; 3091 break; 3092 } 3093 3094 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3095 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3096 break; 3097 } 3098 3099 case DIF_SUBR_RW_WRITE_HELD: 3100 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3101 mstate, vstate)) { 3102 regs[rd] = NULL; 3103 break; 3104 } 3105 3106 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3107 regs[rd] = _RW_WRITE_HELD(&r.ri); 3108 break; 3109 3110 case DIF_SUBR_RW_ISWRITER: 3111 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3112 mstate, vstate)) { 3113 regs[rd] = NULL; 3114 break; 3115 } 3116 3117 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3118 regs[rd] = _RW_ISWRITER(&r.ri); 3119 break; 3120 3121 case DIF_SUBR_BCOPY: { 3122 /* 3123 * We need to be sure that the destination is in the scratch 3124 * region -- no other region is allowed. 3125 */ 3126 uintptr_t src = tupregs[0].dttk_value; 3127 uintptr_t dest = tupregs[1].dttk_value; 3128 size_t size = tupregs[2].dttk_value; 3129 3130 if (!dtrace_inscratch(dest, size, mstate)) { 3131 *flags |= CPU_DTRACE_BADADDR; 3132 *illval = regs[rd]; 3133 break; 3134 } 3135 3136 if (!dtrace_canload(src, size, mstate, vstate)) { 3137 regs[rd] = NULL; 3138 break; 3139 } 3140 3141 dtrace_bcopy((void *)src, (void *)dest, size); 3142 break; 3143 } 3144 3145 case DIF_SUBR_ALLOCA: 3146 case DIF_SUBR_COPYIN: { 3147 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3148 uint64_t size = 3149 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3150 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3151 3152 /* 3153 * This action doesn't require any credential checks since 3154 * probes will not activate in user contexts to which the 3155 * enabling user does not have permissions. 3156 */ 3157 3158 /* 3159 * Rounding up the user allocation size could have overflowed 3160 * a large, bogus allocation (like -1ULL) to 0. 3161 */ 3162 if (scratch_size < size || 3163 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3164 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3165 regs[rd] = NULL; 3166 break; 3167 } 3168 3169 if (subr == DIF_SUBR_COPYIN) { 3170 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3171 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3172 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3173 } 3174 3175 mstate->dtms_scratch_ptr += scratch_size; 3176 regs[rd] = dest; 3177 break; 3178 } 3179 3180 case DIF_SUBR_COPYINTO: { 3181 uint64_t size = tupregs[1].dttk_value; 3182 uintptr_t dest = tupregs[2].dttk_value; 3183 3184 /* 3185 * This action doesn't require any credential checks since 3186 * probes will not activate in user contexts to which the 3187 * enabling user does not have permissions. 3188 */ 3189 if (!dtrace_inscratch(dest, size, mstate)) { 3190 *flags |= CPU_DTRACE_BADADDR; 3191 *illval = regs[rd]; 3192 break; 3193 } 3194 3195 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3196 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3197 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3198 break; 3199 } 3200 3201 case DIF_SUBR_COPYINSTR: { 3202 uintptr_t dest = mstate->dtms_scratch_ptr; 3203 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3204 3205 if (nargs > 1 && tupregs[1].dttk_value < size) 3206 size = tupregs[1].dttk_value + 1; 3207 3208 /* 3209 * This action doesn't require any credential checks since 3210 * probes will not activate in user contexts to which the 3211 * enabling user does not have permissions. 3212 */ 3213 if (!DTRACE_INSCRATCH(mstate, size)) { 3214 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3215 regs[rd] = NULL; 3216 break; 3217 } 3218 3219 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3220 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3221 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3222 3223 ((char *)dest)[size - 1] = '\0'; 3224 mstate->dtms_scratch_ptr += size; 3225 regs[rd] = dest; 3226 break; 3227 } 3228 3229 case DIF_SUBR_MSGSIZE: 3230 case DIF_SUBR_MSGDSIZE: { 3231 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3232 uintptr_t wptr, rptr; 3233 size_t count = 0; 3234 int cont = 0; 3235 3236 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3237 3238 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3239 vstate)) { 3240 regs[rd] = NULL; 3241 break; 3242 } 3243 3244 wptr = dtrace_loadptr(baddr + 3245 offsetof(mblk_t, b_wptr)); 3246 3247 rptr = dtrace_loadptr(baddr + 3248 offsetof(mblk_t, b_rptr)); 3249 3250 if (wptr < rptr) { 3251 *flags |= CPU_DTRACE_BADADDR; 3252 *illval = tupregs[0].dttk_value; 3253 break; 3254 } 3255 3256 daddr = dtrace_loadptr(baddr + 3257 offsetof(mblk_t, b_datap)); 3258 3259 baddr = dtrace_loadptr(baddr + 3260 offsetof(mblk_t, b_cont)); 3261 3262 /* 3263 * We want to prevent against denial-of-service here, 3264 * so we're only going to search the list for 3265 * dtrace_msgdsize_max mblks. 3266 */ 3267 if (cont++ > dtrace_msgdsize_max) { 3268 *flags |= CPU_DTRACE_ILLOP; 3269 break; 3270 } 3271 3272 if (subr == DIF_SUBR_MSGDSIZE) { 3273 if (dtrace_load8(daddr + 3274 offsetof(dblk_t, db_type)) != M_DATA) 3275 continue; 3276 } 3277 3278 count += wptr - rptr; 3279 } 3280 3281 if (!(*flags & CPU_DTRACE_FAULT)) 3282 regs[rd] = count; 3283 3284 break; 3285 } 3286 3287 case DIF_SUBR_PROGENYOF: { 3288 pid_t pid = tupregs[0].dttk_value; 3289 proc_t *p; 3290 int rval = 0; 3291 3292 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3293 3294 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3295 if (p->p_pidp->pid_id == pid) { 3296 rval = 1; 3297 break; 3298 } 3299 } 3300 3301 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3302 3303 regs[rd] = rval; 3304 break; 3305 } 3306 3307 case DIF_SUBR_SPECULATION: 3308 regs[rd] = dtrace_speculation(state); 3309 break; 3310 3311 case DIF_SUBR_COPYOUT: { 3312 uintptr_t kaddr = tupregs[0].dttk_value; 3313 uintptr_t uaddr = tupregs[1].dttk_value; 3314 uint64_t size = tupregs[2].dttk_value; 3315 3316 if (!dtrace_destructive_disallow && 3317 dtrace_priv_proc_control(state) && 3318 !dtrace_istoxic(kaddr, size)) { 3319 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3320 dtrace_copyout(kaddr, uaddr, size, flags); 3321 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3322 } 3323 break; 3324 } 3325 3326 case DIF_SUBR_COPYOUTSTR: { 3327 uintptr_t kaddr = tupregs[0].dttk_value; 3328 uintptr_t uaddr = tupregs[1].dttk_value; 3329 uint64_t size = tupregs[2].dttk_value; 3330 3331 if (!dtrace_destructive_disallow && 3332 dtrace_priv_proc_control(state) && 3333 !dtrace_istoxic(kaddr, size)) { 3334 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3335 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3336 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3337 } 3338 break; 3339 } 3340 3341 case DIF_SUBR_STRLEN: { 3342 size_t sz; 3343 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3344 sz = dtrace_strlen((char *)addr, 3345 state->dts_options[DTRACEOPT_STRSIZE]); 3346 3347 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3348 regs[rd] = NULL; 3349 break; 3350 } 3351 3352 regs[rd] = sz; 3353 3354 break; 3355 } 3356 3357 case DIF_SUBR_STRCHR: 3358 case DIF_SUBR_STRRCHR: { 3359 /* 3360 * We're going to iterate over the string looking for the 3361 * specified character. We will iterate until we have reached 3362 * the string length or we have found the character. If this 3363 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3364 * of the specified character instead of the first. 3365 */ 3366 uintptr_t saddr = tupregs[0].dttk_value; 3367 uintptr_t addr = tupregs[0].dttk_value; 3368 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3369 char c, target = (char)tupregs[1].dttk_value; 3370 3371 for (regs[rd] = NULL; addr < limit; addr++) { 3372 if ((c = dtrace_load8(addr)) == target) { 3373 regs[rd] = addr; 3374 3375 if (subr == DIF_SUBR_STRCHR) 3376 break; 3377 } 3378 3379 if (c == '\0') 3380 break; 3381 } 3382 3383 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3384 regs[rd] = NULL; 3385 break; 3386 } 3387 3388 break; 3389 } 3390 3391 case DIF_SUBR_STRSTR: 3392 case DIF_SUBR_INDEX: 3393 case DIF_SUBR_RINDEX: { 3394 /* 3395 * We're going to iterate over the string looking for the 3396 * specified string. We will iterate until we have reached 3397 * the string length or we have found the string. (Yes, this 3398 * is done in the most naive way possible -- but considering 3399 * that the string we're searching for is likely to be 3400 * relatively short, the complexity of Rabin-Karp or similar 3401 * hardly seems merited.) 3402 */ 3403 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3404 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3405 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3406 size_t len = dtrace_strlen(addr, size); 3407 size_t sublen = dtrace_strlen(substr, size); 3408 char *limit = addr + len, *orig = addr; 3409 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3410 int inc = 1; 3411 3412 regs[rd] = notfound; 3413 3414 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3415 regs[rd] = NULL; 3416 break; 3417 } 3418 3419 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3420 vstate)) { 3421 regs[rd] = NULL; 3422 break; 3423 } 3424 3425 /* 3426 * strstr() and index()/rindex() have similar semantics if 3427 * both strings are the empty string: strstr() returns a 3428 * pointer to the (empty) string, and index() and rindex() 3429 * both return index 0 (regardless of any position argument). 3430 */ 3431 if (sublen == 0 && len == 0) { 3432 if (subr == DIF_SUBR_STRSTR) 3433 regs[rd] = (uintptr_t)addr; 3434 else 3435 regs[rd] = 0; 3436 break; 3437 } 3438 3439 if (subr != DIF_SUBR_STRSTR) { 3440 if (subr == DIF_SUBR_RINDEX) { 3441 limit = orig - 1; 3442 addr += len; 3443 inc = -1; 3444 } 3445 3446 /* 3447 * Both index() and rindex() take an optional position 3448 * argument that denotes the starting position. 3449 */ 3450 if (nargs == 3) { 3451 int64_t pos = (int64_t)tupregs[2].dttk_value; 3452 3453 /* 3454 * If the position argument to index() is 3455 * negative, Perl implicitly clamps it at 3456 * zero. This semantic is a little surprising 3457 * given the special meaning of negative 3458 * positions to similar Perl functions like 3459 * substr(), but it appears to reflect a 3460 * notion that index() can start from a 3461 * negative index and increment its way up to 3462 * the string. Given this notion, Perl's 3463 * rindex() is at least self-consistent in 3464 * that it implicitly clamps positions greater 3465 * than the string length to be the string 3466 * length. Where Perl completely loses 3467 * coherence, however, is when the specified 3468 * substring is the empty string (""). In 3469 * this case, even if the position is 3470 * negative, rindex() returns 0 -- and even if 3471 * the position is greater than the length, 3472 * index() returns the string length. These 3473 * semantics violate the notion that index() 3474 * should never return a value less than the 3475 * specified position and that rindex() should 3476 * never return a value greater than the 3477 * specified position. (One assumes that 3478 * these semantics are artifacts of Perl's 3479 * implementation and not the results of 3480 * deliberate design -- it beggars belief that 3481 * even Larry Wall could desire such oddness.) 3482 * While in the abstract one would wish for 3483 * consistent position semantics across 3484 * substr(), index() and rindex() -- or at the 3485 * very least self-consistent position 3486 * semantics for index() and rindex() -- we 3487 * instead opt to keep with the extant Perl 3488 * semantics, in all their broken glory. (Do 3489 * we have more desire to maintain Perl's 3490 * semantics than Perl does? Probably.) 3491 */ 3492 if (subr == DIF_SUBR_RINDEX) { 3493 if (pos < 0) { 3494 if (sublen == 0) 3495 regs[rd] = 0; 3496 break; 3497 } 3498 3499 if (pos > len) 3500 pos = len; 3501 } else { 3502 if (pos < 0) 3503 pos = 0; 3504 3505 if (pos >= len) { 3506 if (sublen == 0) 3507 regs[rd] = len; 3508 break; 3509 } 3510 } 3511 3512 addr = orig + pos; 3513 } 3514 } 3515 3516 for (regs[rd] = notfound; addr != limit; addr += inc) { 3517 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3518 if (subr != DIF_SUBR_STRSTR) { 3519 /* 3520 * As D index() and rindex() are 3521 * modeled on Perl (and not on awk), 3522 * we return a zero-based (and not a 3523 * one-based) index. (For you Perl 3524 * weenies: no, we're not going to add 3525 * $[ -- and shouldn't you be at a con 3526 * or something?) 3527 */ 3528 regs[rd] = (uintptr_t)(addr - orig); 3529 break; 3530 } 3531 3532 ASSERT(subr == DIF_SUBR_STRSTR); 3533 regs[rd] = (uintptr_t)addr; 3534 break; 3535 } 3536 } 3537 3538 break; 3539 } 3540 3541 case DIF_SUBR_STRTOK: { 3542 uintptr_t addr = tupregs[0].dttk_value; 3543 uintptr_t tokaddr = tupregs[1].dttk_value; 3544 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3545 uintptr_t limit, toklimit = tokaddr + size; 3546 uint8_t c, tokmap[32]; /* 256 / 8 */ 3547 char *dest = (char *)mstate->dtms_scratch_ptr; 3548 int i; 3549 3550 /* 3551 * Check both the token buffer and (later) the input buffer, 3552 * since both could be non-scratch addresses. 3553 */ 3554 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3555 regs[rd] = NULL; 3556 break; 3557 } 3558 3559 if (!DTRACE_INSCRATCH(mstate, size)) { 3560 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3561 regs[rd] = NULL; 3562 break; 3563 } 3564 3565 if (addr == NULL) { 3566 /* 3567 * If the address specified is NULL, we use our saved 3568 * strtok pointer from the mstate. Note that this 3569 * means that the saved strtok pointer is _only_ 3570 * valid within multiple enablings of the same probe -- 3571 * it behaves like an implicit clause-local variable. 3572 */ 3573 addr = mstate->dtms_strtok; 3574 } else { 3575 /* 3576 * If the user-specified address is non-NULL we must 3577 * access check it. This is the only time we have 3578 * a chance to do so, since this address may reside 3579 * in the string table of this clause-- future calls 3580 * (when we fetch addr from mstate->dtms_strtok) 3581 * would fail this access check. 3582 */ 3583 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3584 regs[rd] = NULL; 3585 break; 3586 } 3587 } 3588 3589 /* 3590 * First, zero the token map, and then process the token 3591 * string -- setting a bit in the map for every character 3592 * found in the token string. 3593 */ 3594 for (i = 0; i < sizeof (tokmap); i++) 3595 tokmap[i] = 0; 3596 3597 for (; tokaddr < toklimit; tokaddr++) { 3598 if ((c = dtrace_load8(tokaddr)) == '\0') 3599 break; 3600 3601 ASSERT((c >> 3) < sizeof (tokmap)); 3602 tokmap[c >> 3] |= (1 << (c & 0x7)); 3603 } 3604 3605 for (limit = addr + size; addr < limit; addr++) { 3606 /* 3607 * We're looking for a character that is _not_ contained 3608 * in the token string. 3609 */ 3610 if ((c = dtrace_load8(addr)) == '\0') 3611 break; 3612 3613 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3614 break; 3615 } 3616 3617 if (c == '\0') { 3618 /* 3619 * We reached the end of the string without finding 3620 * any character that was not in the token string. 3621 * We return NULL in this case, and we set the saved 3622 * address to NULL as well. 3623 */ 3624 regs[rd] = NULL; 3625 mstate->dtms_strtok = NULL; 3626 break; 3627 } 3628 3629 /* 3630 * From here on, we're copying into the destination string. 3631 */ 3632 for (i = 0; addr < limit && i < size - 1; addr++) { 3633 if ((c = dtrace_load8(addr)) == '\0') 3634 break; 3635 3636 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3637 break; 3638 3639 ASSERT(i < size); 3640 dest[i++] = c; 3641 } 3642 3643 ASSERT(i < size); 3644 dest[i] = '\0'; 3645 regs[rd] = (uintptr_t)dest; 3646 mstate->dtms_scratch_ptr += size; 3647 mstate->dtms_strtok = addr; 3648 break; 3649 } 3650 3651 case DIF_SUBR_SUBSTR: { 3652 uintptr_t s = tupregs[0].dttk_value; 3653 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3654 char *d = (char *)mstate->dtms_scratch_ptr; 3655 int64_t index = (int64_t)tupregs[1].dttk_value; 3656 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3657 size_t len = dtrace_strlen((char *)s, size); 3658 int64_t i; 3659 3660 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3661 regs[rd] = NULL; 3662 break; 3663 } 3664 3665 if (!DTRACE_INSCRATCH(mstate, size)) { 3666 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3667 regs[rd] = NULL; 3668 break; 3669 } 3670 3671 if (nargs <= 2) 3672 remaining = (int64_t)size; 3673 3674 if (index < 0) { 3675 index += len; 3676 3677 if (index < 0 && index + remaining > 0) { 3678 remaining += index; 3679 index = 0; 3680 } 3681 } 3682 3683 if (index >= len || index < 0) { 3684 remaining = 0; 3685 } else if (remaining < 0) { 3686 remaining += len - index; 3687 } else if (index + remaining > size) { 3688 remaining = size - index; 3689 } 3690 3691 for (i = 0; i < remaining; i++) { 3692 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 3693 break; 3694 } 3695 3696 d[i] = '\0'; 3697 3698 mstate->dtms_scratch_ptr += size; 3699 regs[rd] = (uintptr_t)d; 3700 break; 3701 } 3702 3703 case DIF_SUBR_GETMAJOR: 3704 #ifdef _LP64 3705 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3706 #else 3707 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3708 #endif 3709 break; 3710 3711 case DIF_SUBR_GETMINOR: 3712 #ifdef _LP64 3713 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3714 #else 3715 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3716 #endif 3717 break; 3718 3719 case DIF_SUBR_DDI_PATHNAME: { 3720 /* 3721 * This one is a galactic mess. We are going to roughly 3722 * emulate ddi_pathname(), but it's made more complicated 3723 * by the fact that we (a) want to include the minor name and 3724 * (b) must proceed iteratively instead of recursively. 3725 */ 3726 uintptr_t dest = mstate->dtms_scratch_ptr; 3727 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3728 char *start = (char *)dest, *end = start + size - 1; 3729 uintptr_t daddr = tupregs[0].dttk_value; 3730 int64_t minor = (int64_t)tupregs[1].dttk_value; 3731 char *s; 3732 int i, len, depth = 0; 3733 3734 /* 3735 * Due to all the pointer jumping we do and context we must 3736 * rely upon, we just mandate that the user must have kernel 3737 * read privileges to use this routine. 3738 */ 3739 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3740 *flags |= CPU_DTRACE_KPRIV; 3741 *illval = daddr; 3742 regs[rd] = NULL; 3743 } 3744 3745 if (!DTRACE_INSCRATCH(mstate, size)) { 3746 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3747 regs[rd] = NULL; 3748 break; 3749 } 3750 3751 *end = '\0'; 3752 3753 /* 3754 * We want to have a name for the minor. In order to do this, 3755 * we need to walk the minor list from the devinfo. We want 3756 * to be sure that we don't infinitely walk a circular list, 3757 * so we check for circularity by sending a scout pointer 3758 * ahead two elements for every element that we iterate over; 3759 * if the list is circular, these will ultimately point to the 3760 * same element. You may recognize this little trick as the 3761 * answer to a stupid interview question -- one that always 3762 * seems to be asked by those who had to have it laboriously 3763 * explained to them, and who can't even concisely describe 3764 * the conditions under which one would be forced to resort to 3765 * this technique. Needless to say, those conditions are 3766 * found here -- and probably only here. Is this the only use 3767 * of this infamous trick in shipping, production code? If it 3768 * isn't, it probably should be... 3769 */ 3770 if (minor != -1) { 3771 uintptr_t maddr = dtrace_loadptr(daddr + 3772 offsetof(struct dev_info, devi_minor)); 3773 3774 uintptr_t next = offsetof(struct ddi_minor_data, next); 3775 uintptr_t name = offsetof(struct ddi_minor_data, 3776 d_minor) + offsetof(struct ddi_minor, name); 3777 uintptr_t dev = offsetof(struct ddi_minor_data, 3778 d_minor) + offsetof(struct ddi_minor, dev); 3779 uintptr_t scout; 3780 3781 if (maddr != NULL) 3782 scout = dtrace_loadptr(maddr + next); 3783 3784 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3785 uint64_t m; 3786 #ifdef _LP64 3787 m = dtrace_load64(maddr + dev) & MAXMIN64; 3788 #else 3789 m = dtrace_load32(maddr + dev) & MAXMIN; 3790 #endif 3791 if (m != minor) { 3792 maddr = dtrace_loadptr(maddr + next); 3793 3794 if (scout == NULL) 3795 continue; 3796 3797 scout = dtrace_loadptr(scout + next); 3798 3799 if (scout == NULL) 3800 continue; 3801 3802 scout = dtrace_loadptr(scout + next); 3803 3804 if (scout == NULL) 3805 continue; 3806 3807 if (scout == maddr) { 3808 *flags |= CPU_DTRACE_ILLOP; 3809 break; 3810 } 3811 3812 continue; 3813 } 3814 3815 /* 3816 * We have the minor data. Now we need to 3817 * copy the minor's name into the end of the 3818 * pathname. 3819 */ 3820 s = (char *)dtrace_loadptr(maddr + name); 3821 len = dtrace_strlen(s, size); 3822 3823 if (*flags & CPU_DTRACE_FAULT) 3824 break; 3825 3826 if (len != 0) { 3827 if ((end -= (len + 1)) < start) 3828 break; 3829 3830 *end = ':'; 3831 } 3832 3833 for (i = 1; i <= len; i++) 3834 end[i] = dtrace_load8((uintptr_t)s++); 3835 break; 3836 } 3837 } 3838 3839 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3840 ddi_node_state_t devi_state; 3841 3842 devi_state = dtrace_load32(daddr + 3843 offsetof(struct dev_info, devi_node_state)); 3844 3845 if (*flags & CPU_DTRACE_FAULT) 3846 break; 3847 3848 if (devi_state >= DS_INITIALIZED) { 3849 s = (char *)dtrace_loadptr(daddr + 3850 offsetof(struct dev_info, devi_addr)); 3851 len = dtrace_strlen(s, size); 3852 3853 if (*flags & CPU_DTRACE_FAULT) 3854 break; 3855 3856 if (len != 0) { 3857 if ((end -= (len + 1)) < start) 3858 break; 3859 3860 *end = '@'; 3861 } 3862 3863 for (i = 1; i <= len; i++) 3864 end[i] = dtrace_load8((uintptr_t)s++); 3865 } 3866 3867 /* 3868 * Now for the node name... 3869 */ 3870 s = (char *)dtrace_loadptr(daddr + 3871 offsetof(struct dev_info, devi_node_name)); 3872 3873 daddr = dtrace_loadptr(daddr + 3874 offsetof(struct dev_info, devi_parent)); 3875 3876 /* 3877 * If our parent is NULL (that is, if we're the root 3878 * node), we're going to use the special path 3879 * "devices". 3880 */ 3881 if (daddr == NULL) 3882 s = "devices"; 3883 3884 len = dtrace_strlen(s, size); 3885 if (*flags & CPU_DTRACE_FAULT) 3886 break; 3887 3888 if ((end -= (len + 1)) < start) 3889 break; 3890 3891 for (i = 1; i <= len; i++) 3892 end[i] = dtrace_load8((uintptr_t)s++); 3893 *end = '/'; 3894 3895 if (depth++ > dtrace_devdepth_max) { 3896 *flags |= CPU_DTRACE_ILLOP; 3897 break; 3898 } 3899 } 3900 3901 if (end < start) 3902 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3903 3904 if (daddr == NULL) { 3905 regs[rd] = (uintptr_t)end; 3906 mstate->dtms_scratch_ptr += size; 3907 } 3908 3909 break; 3910 } 3911 3912 case DIF_SUBR_STRJOIN: { 3913 char *d = (char *)mstate->dtms_scratch_ptr; 3914 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3915 uintptr_t s1 = tupregs[0].dttk_value; 3916 uintptr_t s2 = tupregs[1].dttk_value; 3917 int i = 0; 3918 3919 if (!dtrace_strcanload(s1, size, mstate, vstate) || 3920 !dtrace_strcanload(s2, size, mstate, vstate)) { 3921 regs[rd] = NULL; 3922 break; 3923 } 3924 3925 if (!DTRACE_INSCRATCH(mstate, size)) { 3926 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3927 regs[rd] = NULL; 3928 break; 3929 } 3930 3931 for (;;) { 3932 if (i >= size) { 3933 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3934 regs[rd] = NULL; 3935 break; 3936 } 3937 3938 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 3939 i--; 3940 break; 3941 } 3942 } 3943 3944 for (;;) { 3945 if (i >= size) { 3946 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3947 regs[rd] = NULL; 3948 break; 3949 } 3950 3951 if ((d[i++] = dtrace_load8(s2++)) == '\0') 3952 break; 3953 } 3954 3955 if (i < size) { 3956 mstate->dtms_scratch_ptr += i; 3957 regs[rd] = (uintptr_t)d; 3958 } 3959 3960 break; 3961 } 3962 3963 case DIF_SUBR_LLTOSTR: { 3964 int64_t i = (int64_t)tupregs[0].dttk_value; 3965 int64_t val = i < 0 ? i * -1 : i; 3966 uint64_t size = 22; /* enough room for 2^64 in decimal */ 3967 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 3968 3969 if (!DTRACE_INSCRATCH(mstate, size)) { 3970 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3971 regs[rd] = NULL; 3972 break; 3973 } 3974 3975 for (*end-- = '\0'; val; val /= 10) 3976 *end-- = '0' + (val % 10); 3977 3978 if (i == 0) 3979 *end-- = '0'; 3980 3981 if (i < 0) 3982 *end-- = '-'; 3983 3984 regs[rd] = (uintptr_t)end + 1; 3985 mstate->dtms_scratch_ptr += size; 3986 break; 3987 } 3988 3989 case DIF_SUBR_HTONS: 3990 case DIF_SUBR_NTOHS: 3991 #ifdef _BIG_ENDIAN 3992 regs[rd] = (uint16_t)tupregs[0].dttk_value; 3993 #else 3994 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 3995 #endif 3996 break; 3997 3998 3999 case DIF_SUBR_HTONL: 4000 case DIF_SUBR_NTOHL: 4001 #ifdef _BIG_ENDIAN 4002 regs[rd] = (uint32_t)tupregs[0].dttk_value; 4003 #else 4004 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 4005 #endif 4006 break; 4007 4008 4009 case DIF_SUBR_HTONLL: 4010 case DIF_SUBR_NTOHLL: 4011 #ifdef _BIG_ENDIAN 4012 regs[rd] = (uint64_t)tupregs[0].dttk_value; 4013 #else 4014 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 4015 #endif 4016 break; 4017 4018 4019 case DIF_SUBR_DIRNAME: 4020 case DIF_SUBR_BASENAME: { 4021 char *dest = (char *)mstate->dtms_scratch_ptr; 4022 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4023 uintptr_t src = tupregs[0].dttk_value; 4024 int i, j, len = dtrace_strlen((char *)src, size); 4025 int lastbase = -1, firstbase = -1, lastdir = -1; 4026 int start, end; 4027 4028 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 4029 regs[rd] = NULL; 4030 break; 4031 } 4032 4033 if (!DTRACE_INSCRATCH(mstate, size)) { 4034 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4035 regs[rd] = NULL; 4036 break; 4037 } 4038 4039 /* 4040 * The basename and dirname for a zero-length string is 4041 * defined to be "." 4042 */ 4043 if (len == 0) { 4044 len = 1; 4045 src = (uintptr_t)"."; 4046 } 4047 4048 /* 4049 * Start from the back of the string, moving back toward the 4050 * front until we see a character that isn't a slash. That 4051 * character is the last character in the basename. 4052 */ 4053 for (i = len - 1; i >= 0; i--) { 4054 if (dtrace_load8(src + i) != '/') 4055 break; 4056 } 4057 4058 if (i >= 0) 4059 lastbase = i; 4060 4061 /* 4062 * Starting from the last character in the basename, move 4063 * towards the front until we find a slash. The character 4064 * that we processed immediately before that is the first 4065 * character in the basename. 4066 */ 4067 for (; i >= 0; i--) { 4068 if (dtrace_load8(src + i) == '/') 4069 break; 4070 } 4071 4072 if (i >= 0) 4073 firstbase = i + 1; 4074 4075 /* 4076 * Now keep going until we find a non-slash character. That 4077 * character is the last character in the dirname. 4078 */ 4079 for (; i >= 0; i--) { 4080 if (dtrace_load8(src + i) != '/') 4081 break; 4082 } 4083 4084 if (i >= 0) 4085 lastdir = i; 4086 4087 ASSERT(!(lastbase == -1 && firstbase != -1)); 4088 ASSERT(!(firstbase == -1 && lastdir != -1)); 4089 4090 if (lastbase == -1) { 4091 /* 4092 * We didn't find a non-slash character. We know that 4093 * the length is non-zero, so the whole string must be 4094 * slashes. In either the dirname or the basename 4095 * case, we return '/'. 4096 */ 4097 ASSERT(firstbase == -1); 4098 firstbase = lastbase = lastdir = 0; 4099 } 4100 4101 if (firstbase == -1) { 4102 /* 4103 * The entire string consists only of a basename 4104 * component. If we're looking for dirname, we need 4105 * to change our string to be just "."; if we're 4106 * looking for a basename, we'll just set the first 4107 * character of the basename to be 0. 4108 */ 4109 if (subr == DIF_SUBR_DIRNAME) { 4110 ASSERT(lastdir == -1); 4111 src = (uintptr_t)"."; 4112 lastdir = 0; 4113 } else { 4114 firstbase = 0; 4115 } 4116 } 4117 4118 if (subr == DIF_SUBR_DIRNAME) { 4119 if (lastdir == -1) { 4120 /* 4121 * We know that we have a slash in the name -- 4122 * or lastdir would be set to 0, above. And 4123 * because lastdir is -1, we know that this 4124 * slash must be the first character. (That 4125 * is, the full string must be of the form 4126 * "/basename".) In this case, the last 4127 * character of the directory name is 0. 4128 */ 4129 lastdir = 0; 4130 } 4131 4132 start = 0; 4133 end = lastdir; 4134 } else { 4135 ASSERT(subr == DIF_SUBR_BASENAME); 4136 ASSERT(firstbase != -1 && lastbase != -1); 4137 start = firstbase; 4138 end = lastbase; 4139 } 4140 4141 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 4142 dest[j] = dtrace_load8(src + i); 4143 4144 dest[j] = '\0'; 4145 regs[rd] = (uintptr_t)dest; 4146 mstate->dtms_scratch_ptr += size; 4147 break; 4148 } 4149 4150 case DIF_SUBR_CLEANPATH: { 4151 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4152 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4153 uintptr_t src = tupregs[0].dttk_value; 4154 int i = 0, j = 0; 4155 4156 if (!dtrace_strcanload(src, size, mstate, vstate)) { 4157 regs[rd] = NULL; 4158 break; 4159 } 4160 4161 if (!DTRACE_INSCRATCH(mstate, size)) { 4162 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4163 regs[rd] = NULL; 4164 break; 4165 } 4166 4167 /* 4168 * Move forward, loading each character. 4169 */ 4170 do { 4171 c = dtrace_load8(src + i++); 4172 next: 4173 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4174 break; 4175 4176 if (c != '/') { 4177 dest[j++] = c; 4178 continue; 4179 } 4180 4181 c = dtrace_load8(src + i++); 4182 4183 if (c == '/') { 4184 /* 4185 * We have two slashes -- we can just advance 4186 * to the next character. 4187 */ 4188 goto next; 4189 } 4190 4191 if (c != '.') { 4192 /* 4193 * This is not "." and it's not ".." -- we can 4194 * just store the "/" and this character and 4195 * drive on. 4196 */ 4197 dest[j++] = '/'; 4198 dest[j++] = c; 4199 continue; 4200 } 4201 4202 c = dtrace_load8(src + i++); 4203 4204 if (c == '/') { 4205 /* 4206 * This is a "/./" component. We're not going 4207 * to store anything in the destination buffer; 4208 * we're just going to go to the next component. 4209 */ 4210 goto next; 4211 } 4212 4213 if (c != '.') { 4214 /* 4215 * This is not ".." -- we can just store the 4216 * "/." and this character and continue 4217 * processing. 4218 */ 4219 dest[j++] = '/'; 4220 dest[j++] = '.'; 4221 dest[j++] = c; 4222 continue; 4223 } 4224 4225 c = dtrace_load8(src + i++); 4226 4227 if (c != '/' && c != '\0') { 4228 /* 4229 * This is not ".." -- it's "..[mumble]". 4230 * We'll store the "/.." and this character 4231 * and continue processing. 4232 */ 4233 dest[j++] = '/'; 4234 dest[j++] = '.'; 4235 dest[j++] = '.'; 4236 dest[j++] = c; 4237 continue; 4238 } 4239 4240 /* 4241 * This is "/../" or "/..\0". We need to back up 4242 * our destination pointer until we find a "/". 4243 */ 4244 i--; 4245 while (j != 0 && dest[--j] != '/') 4246 continue; 4247 4248 if (c == '\0') 4249 dest[++j] = '/'; 4250 } while (c != '\0'); 4251 4252 dest[j] = '\0'; 4253 regs[rd] = (uintptr_t)dest; 4254 mstate->dtms_scratch_ptr += size; 4255 break; 4256 } 4257 4258 case DIF_SUBR_INET_NTOA: 4259 case DIF_SUBR_INET_NTOA6: 4260 case DIF_SUBR_INET_NTOP: { 4261 size_t size; 4262 int af, argi, i; 4263 char *base, *end; 4264 4265 if (subr == DIF_SUBR_INET_NTOP) { 4266 af = (int)tupregs[0].dttk_value; 4267 argi = 1; 4268 } else { 4269 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4270 argi = 0; 4271 } 4272 4273 if (af == AF_INET) { 4274 ipaddr_t ip4; 4275 uint8_t *ptr8, val; 4276 4277 /* 4278 * Safely load the IPv4 address. 4279 */ 4280 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4281 4282 /* 4283 * Check an IPv4 string will fit in scratch. 4284 */ 4285 size = INET_ADDRSTRLEN; 4286 if (!DTRACE_INSCRATCH(mstate, size)) { 4287 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4288 regs[rd] = NULL; 4289 break; 4290 } 4291 base = (char *)mstate->dtms_scratch_ptr; 4292 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4293 4294 /* 4295 * Stringify as a dotted decimal quad. 4296 */ 4297 *end-- = '\0'; 4298 ptr8 = (uint8_t *)&ip4; 4299 for (i = 3; i >= 0; i--) { 4300 val = ptr8[i]; 4301 4302 if (val == 0) { 4303 *end-- = '0'; 4304 } else { 4305 for (; val; val /= 10) { 4306 *end-- = '0' + (val % 10); 4307 } 4308 } 4309 4310 if (i > 0) 4311 *end-- = '.'; 4312 } 4313 ASSERT(end + 1 >= base); 4314 4315 } else if (af == AF_INET6) { 4316 struct in6_addr ip6; 4317 int firstzero, tryzero, numzero, v6end; 4318 uint16_t val; 4319 const char digits[] = "0123456789abcdef"; 4320 4321 /* 4322 * Stringify using RFC 1884 convention 2 - 16 bit 4323 * hexadecimal values with a zero-run compression. 4324 * Lower case hexadecimal digits are used. 4325 * eg, fe80::214:4fff:fe0b:76c8. 4326 * The IPv4 embedded form is returned for inet_ntop, 4327 * just the IPv4 string is returned for inet_ntoa6. 4328 */ 4329 4330 /* 4331 * Safely load the IPv6 address. 4332 */ 4333 dtrace_bcopy( 4334 (void *)(uintptr_t)tupregs[argi].dttk_value, 4335 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4336 4337 /* 4338 * Check an IPv6 string will fit in scratch. 4339 */ 4340 size = INET6_ADDRSTRLEN; 4341 if (!DTRACE_INSCRATCH(mstate, size)) { 4342 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4343 regs[rd] = NULL; 4344 break; 4345 } 4346 base = (char *)mstate->dtms_scratch_ptr; 4347 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4348 *end-- = '\0'; 4349 4350 /* 4351 * Find the longest run of 16 bit zero values 4352 * for the single allowed zero compression - "::". 4353 */ 4354 firstzero = -1; 4355 tryzero = -1; 4356 numzero = 1; 4357 for (i = 0; i < sizeof (struct in6_addr); i++) { 4358 if (ip6._S6_un._S6_u8[i] == 0 && 4359 tryzero == -1 && i % 2 == 0) { 4360 tryzero = i; 4361 continue; 4362 } 4363 4364 if (tryzero != -1 && 4365 (ip6._S6_un._S6_u8[i] != 0 || 4366 i == sizeof (struct in6_addr) - 1)) { 4367 4368 if (i - tryzero <= numzero) { 4369 tryzero = -1; 4370 continue; 4371 } 4372 4373 firstzero = tryzero; 4374 numzero = i - i % 2 - tryzero; 4375 tryzero = -1; 4376 4377 if (ip6._S6_un._S6_u8[i] == 0 && 4378 i == sizeof (struct in6_addr) - 1) 4379 numzero += 2; 4380 } 4381 } 4382 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4383 4384 /* 4385 * Check for an IPv4 embedded address. 4386 */ 4387 v6end = sizeof (struct in6_addr) - 2; 4388 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4389 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4390 for (i = sizeof (struct in6_addr) - 1; 4391 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4392 ASSERT(end >= base); 4393 4394 val = ip6._S6_un._S6_u8[i]; 4395 4396 if (val == 0) { 4397 *end-- = '0'; 4398 } else { 4399 for (; val; val /= 10) { 4400 *end-- = '0' + val % 10; 4401 } 4402 } 4403 4404 if (i > DTRACE_V4MAPPED_OFFSET) 4405 *end-- = '.'; 4406 } 4407 4408 if (subr == DIF_SUBR_INET_NTOA6) 4409 goto inetout; 4410 4411 /* 4412 * Set v6end to skip the IPv4 address that 4413 * we have already stringified. 4414 */ 4415 v6end = 10; 4416 } 4417 4418 /* 4419 * Build the IPv6 string by working through the 4420 * address in reverse. 4421 */ 4422 for (i = v6end; i >= 0; i -= 2) { 4423 ASSERT(end >= base); 4424 4425 if (i == firstzero + numzero - 2) { 4426 *end-- = ':'; 4427 *end-- = ':'; 4428 i -= numzero - 2; 4429 continue; 4430 } 4431 4432 if (i < 14 && i != firstzero - 2) 4433 *end-- = ':'; 4434 4435 val = (ip6._S6_un._S6_u8[i] << 8) + 4436 ip6._S6_un._S6_u8[i + 1]; 4437 4438 if (val == 0) { 4439 *end-- = '0'; 4440 } else { 4441 for (; val; val /= 16) { 4442 *end-- = digits[val % 16]; 4443 } 4444 } 4445 } 4446 ASSERT(end + 1 >= base); 4447 4448 } else { 4449 /* 4450 * The user didn't use AH_INET or AH_INET6. 4451 */ 4452 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4453 regs[rd] = NULL; 4454 break; 4455 } 4456 4457 inetout: regs[rd] = (uintptr_t)end + 1; 4458 mstate->dtms_scratch_ptr += size; 4459 break; 4460 } 4461 4462 } 4463 } 4464 4465 /* 4466 * Emulate the execution of DTrace IR instructions specified by the given 4467 * DIF object. This function is deliberately void of assertions as all of 4468 * the necessary checks are handled by a call to dtrace_difo_validate(). 4469 */ 4470 static uint64_t 4471 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4472 dtrace_vstate_t *vstate, dtrace_state_t *state) 4473 { 4474 const dif_instr_t *text = difo->dtdo_buf; 4475 const uint_t textlen = difo->dtdo_len; 4476 const char *strtab = difo->dtdo_strtab; 4477 const uint64_t *inttab = difo->dtdo_inttab; 4478 4479 uint64_t rval = 0; 4480 dtrace_statvar_t *svar; 4481 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4482 dtrace_difv_t *v; 4483 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4484 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4485 4486 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4487 uint64_t regs[DIF_DIR_NREGS]; 4488 uint64_t *tmp; 4489 4490 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4491 int64_t cc_r; 4492 uint_t pc = 0, id, opc; 4493 uint8_t ttop = 0; 4494 dif_instr_t instr; 4495 uint_t r1, r2, rd; 4496 4497 /* 4498 * We stash the current DIF object into the machine state: we need it 4499 * for subsequent access checking. 4500 */ 4501 mstate->dtms_difo = difo; 4502 4503 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4504 4505 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4506 opc = pc; 4507 4508 instr = text[pc++]; 4509 r1 = DIF_INSTR_R1(instr); 4510 r2 = DIF_INSTR_R2(instr); 4511 rd = DIF_INSTR_RD(instr); 4512 4513 switch (DIF_INSTR_OP(instr)) { 4514 case DIF_OP_OR: 4515 regs[rd] = regs[r1] | regs[r2]; 4516 break; 4517 case DIF_OP_XOR: 4518 regs[rd] = regs[r1] ^ regs[r2]; 4519 break; 4520 case DIF_OP_AND: 4521 regs[rd] = regs[r1] & regs[r2]; 4522 break; 4523 case DIF_OP_SLL: 4524 regs[rd] = regs[r1] << regs[r2]; 4525 break; 4526 case DIF_OP_SRL: 4527 regs[rd] = regs[r1] >> regs[r2]; 4528 break; 4529 case DIF_OP_SUB: 4530 regs[rd] = regs[r1] - regs[r2]; 4531 break; 4532 case DIF_OP_ADD: 4533 regs[rd] = regs[r1] + regs[r2]; 4534 break; 4535 case DIF_OP_MUL: 4536 regs[rd] = regs[r1] * regs[r2]; 4537 break; 4538 case DIF_OP_SDIV: 4539 if (regs[r2] == 0) { 4540 regs[rd] = 0; 4541 *flags |= CPU_DTRACE_DIVZERO; 4542 } else { 4543 regs[rd] = (int64_t)regs[r1] / 4544 (int64_t)regs[r2]; 4545 } 4546 break; 4547 4548 case DIF_OP_UDIV: 4549 if (regs[r2] == 0) { 4550 regs[rd] = 0; 4551 *flags |= CPU_DTRACE_DIVZERO; 4552 } else { 4553 regs[rd] = regs[r1] / regs[r2]; 4554 } 4555 break; 4556 4557 case DIF_OP_SREM: 4558 if (regs[r2] == 0) { 4559 regs[rd] = 0; 4560 *flags |= CPU_DTRACE_DIVZERO; 4561 } else { 4562 regs[rd] = (int64_t)regs[r1] % 4563 (int64_t)regs[r2]; 4564 } 4565 break; 4566 4567 case DIF_OP_UREM: 4568 if (regs[r2] == 0) { 4569 regs[rd] = 0; 4570 *flags |= CPU_DTRACE_DIVZERO; 4571 } else { 4572 regs[rd] = regs[r1] % regs[r2]; 4573 } 4574 break; 4575 4576 case DIF_OP_NOT: 4577 regs[rd] = ~regs[r1]; 4578 break; 4579 case DIF_OP_MOV: 4580 regs[rd] = regs[r1]; 4581 break; 4582 case DIF_OP_CMP: 4583 cc_r = regs[r1] - regs[r2]; 4584 cc_n = cc_r < 0; 4585 cc_z = cc_r == 0; 4586 cc_v = 0; 4587 cc_c = regs[r1] < regs[r2]; 4588 break; 4589 case DIF_OP_TST: 4590 cc_n = cc_v = cc_c = 0; 4591 cc_z = regs[r1] == 0; 4592 break; 4593 case DIF_OP_BA: 4594 pc = DIF_INSTR_LABEL(instr); 4595 break; 4596 case DIF_OP_BE: 4597 if (cc_z) 4598 pc = DIF_INSTR_LABEL(instr); 4599 break; 4600 case DIF_OP_BNE: 4601 if (cc_z == 0) 4602 pc = DIF_INSTR_LABEL(instr); 4603 break; 4604 case DIF_OP_BG: 4605 if ((cc_z | (cc_n ^ cc_v)) == 0) 4606 pc = DIF_INSTR_LABEL(instr); 4607 break; 4608 case DIF_OP_BGU: 4609 if ((cc_c | cc_z) == 0) 4610 pc = DIF_INSTR_LABEL(instr); 4611 break; 4612 case DIF_OP_BGE: 4613 if ((cc_n ^ cc_v) == 0) 4614 pc = DIF_INSTR_LABEL(instr); 4615 break; 4616 case DIF_OP_BGEU: 4617 if (cc_c == 0) 4618 pc = DIF_INSTR_LABEL(instr); 4619 break; 4620 case DIF_OP_BL: 4621 if (cc_n ^ cc_v) 4622 pc = DIF_INSTR_LABEL(instr); 4623 break; 4624 case DIF_OP_BLU: 4625 if (cc_c) 4626 pc = DIF_INSTR_LABEL(instr); 4627 break; 4628 case DIF_OP_BLE: 4629 if (cc_z | (cc_n ^ cc_v)) 4630 pc = DIF_INSTR_LABEL(instr); 4631 break; 4632 case DIF_OP_BLEU: 4633 if (cc_c | cc_z) 4634 pc = DIF_INSTR_LABEL(instr); 4635 break; 4636 case DIF_OP_RLDSB: 4637 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4638 *flags |= CPU_DTRACE_KPRIV; 4639 *illval = regs[r1]; 4640 break; 4641 } 4642 /*FALLTHROUGH*/ 4643 case DIF_OP_LDSB: 4644 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4645 break; 4646 case DIF_OP_RLDSH: 4647 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4648 *flags |= CPU_DTRACE_KPRIV; 4649 *illval = regs[r1]; 4650 break; 4651 } 4652 /*FALLTHROUGH*/ 4653 case DIF_OP_LDSH: 4654 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4655 break; 4656 case DIF_OP_RLDSW: 4657 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4658 *flags |= CPU_DTRACE_KPRIV; 4659 *illval = regs[r1]; 4660 break; 4661 } 4662 /*FALLTHROUGH*/ 4663 case DIF_OP_LDSW: 4664 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4665 break; 4666 case DIF_OP_RLDUB: 4667 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4668 *flags |= CPU_DTRACE_KPRIV; 4669 *illval = regs[r1]; 4670 break; 4671 } 4672 /*FALLTHROUGH*/ 4673 case DIF_OP_LDUB: 4674 regs[rd] = dtrace_load8(regs[r1]); 4675 break; 4676 case DIF_OP_RLDUH: 4677 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4678 *flags |= CPU_DTRACE_KPRIV; 4679 *illval = regs[r1]; 4680 break; 4681 } 4682 /*FALLTHROUGH*/ 4683 case DIF_OP_LDUH: 4684 regs[rd] = dtrace_load16(regs[r1]); 4685 break; 4686 case DIF_OP_RLDUW: 4687 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4688 *flags |= CPU_DTRACE_KPRIV; 4689 *illval = regs[r1]; 4690 break; 4691 } 4692 /*FALLTHROUGH*/ 4693 case DIF_OP_LDUW: 4694 regs[rd] = dtrace_load32(regs[r1]); 4695 break; 4696 case DIF_OP_RLDX: 4697 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4698 *flags |= CPU_DTRACE_KPRIV; 4699 *illval = regs[r1]; 4700 break; 4701 } 4702 /*FALLTHROUGH*/ 4703 case DIF_OP_LDX: 4704 regs[rd] = dtrace_load64(regs[r1]); 4705 break; 4706 case DIF_OP_ULDSB: 4707 regs[rd] = (int8_t) 4708 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4709 break; 4710 case DIF_OP_ULDSH: 4711 regs[rd] = (int16_t) 4712 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4713 break; 4714 case DIF_OP_ULDSW: 4715 regs[rd] = (int32_t) 4716 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4717 break; 4718 case DIF_OP_ULDUB: 4719 regs[rd] = 4720 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4721 break; 4722 case DIF_OP_ULDUH: 4723 regs[rd] = 4724 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4725 break; 4726 case DIF_OP_ULDUW: 4727 regs[rd] = 4728 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4729 break; 4730 case DIF_OP_ULDX: 4731 regs[rd] = 4732 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 4733 break; 4734 case DIF_OP_RET: 4735 rval = regs[rd]; 4736 pc = textlen; 4737 break; 4738 case DIF_OP_NOP: 4739 break; 4740 case DIF_OP_SETX: 4741 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 4742 break; 4743 case DIF_OP_SETS: 4744 regs[rd] = (uint64_t)(uintptr_t) 4745 (strtab + DIF_INSTR_STRING(instr)); 4746 break; 4747 case DIF_OP_SCMP: { 4748 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 4749 uintptr_t s1 = regs[r1]; 4750 uintptr_t s2 = regs[r2]; 4751 4752 if (s1 != NULL && 4753 !dtrace_strcanload(s1, sz, mstate, vstate)) 4754 break; 4755 if (s2 != NULL && 4756 !dtrace_strcanload(s2, sz, mstate, vstate)) 4757 break; 4758 4759 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 4760 4761 cc_n = cc_r < 0; 4762 cc_z = cc_r == 0; 4763 cc_v = cc_c = 0; 4764 break; 4765 } 4766 case DIF_OP_LDGA: 4767 regs[rd] = dtrace_dif_variable(mstate, state, 4768 r1, regs[r2]); 4769 break; 4770 case DIF_OP_LDGS: 4771 id = DIF_INSTR_VAR(instr); 4772 4773 if (id >= DIF_VAR_OTHER_UBASE) { 4774 uintptr_t a; 4775 4776 id -= DIF_VAR_OTHER_UBASE; 4777 svar = vstate->dtvs_globals[id]; 4778 ASSERT(svar != NULL); 4779 v = &svar->dtsv_var; 4780 4781 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 4782 regs[rd] = svar->dtsv_data; 4783 break; 4784 } 4785 4786 a = (uintptr_t)svar->dtsv_data; 4787 4788 if (*(uint8_t *)a == UINT8_MAX) { 4789 /* 4790 * If the 0th byte is set to UINT8_MAX 4791 * then this is to be treated as a 4792 * reference to a NULL variable. 4793 */ 4794 regs[rd] = NULL; 4795 } else { 4796 regs[rd] = a + sizeof (uint64_t); 4797 } 4798 4799 break; 4800 } 4801 4802 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 4803 break; 4804 4805 case DIF_OP_STGS: 4806 id = DIF_INSTR_VAR(instr); 4807 4808 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4809 id -= DIF_VAR_OTHER_UBASE; 4810 4811 svar = vstate->dtvs_globals[id]; 4812 ASSERT(svar != NULL); 4813 v = &svar->dtsv_var; 4814 4815 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4816 uintptr_t a = (uintptr_t)svar->dtsv_data; 4817 4818 ASSERT(a != NULL); 4819 ASSERT(svar->dtsv_size != 0); 4820 4821 if (regs[rd] == NULL) { 4822 *(uint8_t *)a = UINT8_MAX; 4823 break; 4824 } else { 4825 *(uint8_t *)a = 0; 4826 a += sizeof (uint64_t); 4827 } 4828 if (!dtrace_vcanload( 4829 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4830 mstate, vstate)) 4831 break; 4832 4833 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4834 (void *)a, &v->dtdv_type); 4835 break; 4836 } 4837 4838 svar->dtsv_data = regs[rd]; 4839 break; 4840 4841 case DIF_OP_LDTA: 4842 /* 4843 * There are no DTrace built-in thread-local arrays at 4844 * present. This opcode is saved for future work. 4845 */ 4846 *flags |= CPU_DTRACE_ILLOP; 4847 regs[rd] = 0; 4848 break; 4849 4850 case DIF_OP_LDLS: 4851 id = DIF_INSTR_VAR(instr); 4852 4853 if (id < DIF_VAR_OTHER_UBASE) { 4854 /* 4855 * For now, this has no meaning. 4856 */ 4857 regs[rd] = 0; 4858 break; 4859 } 4860 4861 id -= DIF_VAR_OTHER_UBASE; 4862 4863 ASSERT(id < vstate->dtvs_nlocals); 4864 ASSERT(vstate->dtvs_locals != NULL); 4865 4866 svar = vstate->dtvs_locals[id]; 4867 ASSERT(svar != NULL); 4868 v = &svar->dtsv_var; 4869 4870 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4871 uintptr_t a = (uintptr_t)svar->dtsv_data; 4872 size_t sz = v->dtdv_type.dtdt_size; 4873 4874 sz += sizeof (uint64_t); 4875 ASSERT(svar->dtsv_size == NCPU * sz); 4876 a += CPU->cpu_id * sz; 4877 4878 if (*(uint8_t *)a == UINT8_MAX) { 4879 /* 4880 * If the 0th byte is set to UINT8_MAX 4881 * then this is to be treated as a 4882 * reference to a NULL variable. 4883 */ 4884 regs[rd] = NULL; 4885 } else { 4886 regs[rd] = a + sizeof (uint64_t); 4887 } 4888 4889 break; 4890 } 4891 4892 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4893 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4894 regs[rd] = tmp[CPU->cpu_id]; 4895 break; 4896 4897 case DIF_OP_STLS: 4898 id = DIF_INSTR_VAR(instr); 4899 4900 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4901 id -= DIF_VAR_OTHER_UBASE; 4902 ASSERT(id < vstate->dtvs_nlocals); 4903 4904 ASSERT(vstate->dtvs_locals != NULL); 4905 svar = vstate->dtvs_locals[id]; 4906 ASSERT(svar != NULL); 4907 v = &svar->dtsv_var; 4908 4909 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4910 uintptr_t a = (uintptr_t)svar->dtsv_data; 4911 size_t sz = v->dtdv_type.dtdt_size; 4912 4913 sz += sizeof (uint64_t); 4914 ASSERT(svar->dtsv_size == NCPU * sz); 4915 a += CPU->cpu_id * sz; 4916 4917 if (regs[rd] == NULL) { 4918 *(uint8_t *)a = UINT8_MAX; 4919 break; 4920 } else { 4921 *(uint8_t *)a = 0; 4922 a += sizeof (uint64_t); 4923 } 4924 4925 if (!dtrace_vcanload( 4926 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4927 mstate, vstate)) 4928 break; 4929 4930 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4931 (void *)a, &v->dtdv_type); 4932 break; 4933 } 4934 4935 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4936 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4937 tmp[CPU->cpu_id] = regs[rd]; 4938 break; 4939 4940 case DIF_OP_LDTS: { 4941 dtrace_dynvar_t *dvar; 4942 dtrace_key_t *key; 4943 4944 id = DIF_INSTR_VAR(instr); 4945 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4946 id -= DIF_VAR_OTHER_UBASE; 4947 v = &vstate->dtvs_tlocals[id]; 4948 4949 key = &tupregs[DIF_DTR_NREGS]; 4950 key[0].dttk_value = (uint64_t)id; 4951 key[0].dttk_size = 0; 4952 DTRACE_TLS_THRKEY(key[1].dttk_value); 4953 key[1].dttk_size = 0; 4954 4955 dvar = dtrace_dynvar(dstate, 2, key, 4956 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 4957 mstate, vstate); 4958 4959 if (dvar == NULL) { 4960 regs[rd] = 0; 4961 break; 4962 } 4963 4964 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4965 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4966 } else { 4967 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4968 } 4969 4970 break; 4971 } 4972 4973 case DIF_OP_STTS: { 4974 dtrace_dynvar_t *dvar; 4975 dtrace_key_t *key; 4976 4977 id = DIF_INSTR_VAR(instr); 4978 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4979 id -= DIF_VAR_OTHER_UBASE; 4980 4981 key = &tupregs[DIF_DTR_NREGS]; 4982 key[0].dttk_value = (uint64_t)id; 4983 key[0].dttk_size = 0; 4984 DTRACE_TLS_THRKEY(key[1].dttk_value); 4985 key[1].dttk_size = 0; 4986 v = &vstate->dtvs_tlocals[id]; 4987 4988 dvar = dtrace_dynvar(dstate, 2, key, 4989 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4990 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4991 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4992 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4993 4994 /* 4995 * Given that we're storing to thread-local data, 4996 * we need to flush our predicate cache. 4997 */ 4998 curthread->t_predcache = NULL; 4999 5000 if (dvar == NULL) 5001 break; 5002 5003 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5004 if (!dtrace_vcanload( 5005 (void *)(uintptr_t)regs[rd], 5006 &v->dtdv_type, mstate, vstate)) 5007 break; 5008 5009 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5010 dvar->dtdv_data, &v->dtdv_type); 5011 } else { 5012 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5013 } 5014 5015 break; 5016 } 5017 5018 case DIF_OP_SRA: 5019 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 5020 break; 5021 5022 case DIF_OP_CALL: 5023 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 5024 regs, tupregs, ttop, mstate, state); 5025 break; 5026 5027 case DIF_OP_PUSHTR: 5028 if (ttop == DIF_DTR_NREGS) { 5029 *flags |= CPU_DTRACE_TUPOFLOW; 5030 break; 5031 } 5032 5033 if (r1 == DIF_TYPE_STRING) { 5034 /* 5035 * If this is a string type and the size is 0, 5036 * we'll use the system-wide default string 5037 * size. Note that we are _not_ looking at 5038 * the value of the DTRACEOPT_STRSIZE option; 5039 * had this been set, we would expect to have 5040 * a non-zero size value in the "pushtr". 5041 */ 5042 tupregs[ttop].dttk_size = 5043 dtrace_strlen((char *)(uintptr_t)regs[rd], 5044 regs[r2] ? regs[r2] : 5045 dtrace_strsize_default) + 1; 5046 } else { 5047 tupregs[ttop].dttk_size = regs[r2]; 5048 } 5049 5050 tupregs[ttop++].dttk_value = regs[rd]; 5051 break; 5052 5053 case DIF_OP_PUSHTV: 5054 if (ttop == DIF_DTR_NREGS) { 5055 *flags |= CPU_DTRACE_TUPOFLOW; 5056 break; 5057 } 5058 5059 tupregs[ttop].dttk_value = regs[rd]; 5060 tupregs[ttop++].dttk_size = 0; 5061 break; 5062 5063 case DIF_OP_POPTS: 5064 if (ttop != 0) 5065 ttop--; 5066 break; 5067 5068 case DIF_OP_FLUSHTS: 5069 ttop = 0; 5070 break; 5071 5072 case DIF_OP_LDGAA: 5073 case DIF_OP_LDTAA: { 5074 dtrace_dynvar_t *dvar; 5075 dtrace_key_t *key = tupregs; 5076 uint_t nkeys = ttop; 5077 5078 id = DIF_INSTR_VAR(instr); 5079 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5080 id -= DIF_VAR_OTHER_UBASE; 5081 5082 key[nkeys].dttk_value = (uint64_t)id; 5083 key[nkeys++].dttk_size = 0; 5084 5085 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 5086 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5087 key[nkeys++].dttk_size = 0; 5088 v = &vstate->dtvs_tlocals[id]; 5089 } else { 5090 v = &vstate->dtvs_globals[id]->dtsv_var; 5091 } 5092 5093 dvar = dtrace_dynvar(dstate, nkeys, key, 5094 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5095 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5096 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 5097 5098 if (dvar == NULL) { 5099 regs[rd] = 0; 5100 break; 5101 } 5102 5103 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5104 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5105 } else { 5106 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5107 } 5108 5109 break; 5110 } 5111 5112 case DIF_OP_STGAA: 5113 case DIF_OP_STTAA: { 5114 dtrace_dynvar_t *dvar; 5115 dtrace_key_t *key = tupregs; 5116 uint_t nkeys = ttop; 5117 5118 id = DIF_INSTR_VAR(instr); 5119 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5120 id -= DIF_VAR_OTHER_UBASE; 5121 5122 key[nkeys].dttk_value = (uint64_t)id; 5123 key[nkeys++].dttk_size = 0; 5124 5125 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 5126 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5127 key[nkeys++].dttk_size = 0; 5128 v = &vstate->dtvs_tlocals[id]; 5129 } else { 5130 v = &vstate->dtvs_globals[id]->dtsv_var; 5131 } 5132 5133 dvar = dtrace_dynvar(dstate, nkeys, key, 5134 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5135 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5136 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5137 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5138 5139 if (dvar == NULL) 5140 break; 5141 5142 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5143 if (!dtrace_vcanload( 5144 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5145 mstate, vstate)) 5146 break; 5147 5148 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5149 dvar->dtdv_data, &v->dtdv_type); 5150 } else { 5151 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5152 } 5153 5154 break; 5155 } 5156 5157 case DIF_OP_ALLOCS: { 5158 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5159 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 5160 5161 /* 5162 * Rounding up the user allocation size could have 5163 * overflowed large, bogus allocations (like -1ULL) to 5164 * 0. 5165 */ 5166 if (size < regs[r1] || 5167 !DTRACE_INSCRATCH(mstate, size)) { 5168 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5169 regs[rd] = NULL; 5170 break; 5171 } 5172 5173 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5174 mstate->dtms_scratch_ptr += size; 5175 regs[rd] = ptr; 5176 break; 5177 } 5178 5179 case DIF_OP_COPYS: 5180 if (!dtrace_canstore(regs[rd], regs[r2], 5181 mstate, vstate)) { 5182 *flags |= CPU_DTRACE_BADADDR; 5183 *illval = regs[rd]; 5184 break; 5185 } 5186 5187 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5188 break; 5189 5190 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5191 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5192 break; 5193 5194 case DIF_OP_STB: 5195 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5196 *flags |= CPU_DTRACE_BADADDR; 5197 *illval = regs[rd]; 5198 break; 5199 } 5200 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5201 break; 5202 5203 case DIF_OP_STH: 5204 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5205 *flags |= CPU_DTRACE_BADADDR; 5206 *illval = regs[rd]; 5207 break; 5208 } 5209 if (regs[rd] & 1) { 5210 *flags |= CPU_DTRACE_BADALIGN; 5211 *illval = regs[rd]; 5212 break; 5213 } 5214 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5215 break; 5216 5217 case DIF_OP_STW: 5218 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5219 *flags |= CPU_DTRACE_BADADDR; 5220 *illval = regs[rd]; 5221 break; 5222 } 5223 if (regs[rd] & 3) { 5224 *flags |= CPU_DTRACE_BADALIGN; 5225 *illval = regs[rd]; 5226 break; 5227 } 5228 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5229 break; 5230 5231 case DIF_OP_STX: 5232 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5233 *flags |= CPU_DTRACE_BADADDR; 5234 *illval = regs[rd]; 5235 break; 5236 } 5237 if (regs[rd] & 7) { 5238 *flags |= CPU_DTRACE_BADALIGN; 5239 *illval = regs[rd]; 5240 break; 5241 } 5242 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5243 break; 5244 } 5245 } 5246 5247 if (!(*flags & CPU_DTRACE_FAULT)) 5248 return (rval); 5249 5250 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5251 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5252 5253 return (0); 5254 } 5255 5256 static void 5257 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5258 { 5259 dtrace_probe_t *probe = ecb->dte_probe; 5260 dtrace_provider_t *prov = probe->dtpr_provider; 5261 char c[DTRACE_FULLNAMELEN + 80], *str; 5262 char *msg = "dtrace: breakpoint action at probe "; 5263 char *ecbmsg = " (ecb "; 5264 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5265 uintptr_t val = (uintptr_t)ecb; 5266 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5267 5268 if (dtrace_destructive_disallow) 5269 return; 5270 5271 /* 5272 * It's impossible to be taking action on the NULL probe. 5273 */ 5274 ASSERT(probe != NULL); 5275 5276 /* 5277 * This is a poor man's (destitute man's?) sprintf(): we want to 5278 * print the provider name, module name, function name and name of 5279 * the probe, along with the hex address of the ECB with the breakpoint 5280 * action -- all of which we must place in the character buffer by 5281 * hand. 5282 */ 5283 while (*msg != '\0') 5284 c[i++] = *msg++; 5285 5286 for (str = prov->dtpv_name; *str != '\0'; str++) 5287 c[i++] = *str; 5288 c[i++] = ':'; 5289 5290 for (str = probe->dtpr_mod; *str != '\0'; str++) 5291 c[i++] = *str; 5292 c[i++] = ':'; 5293 5294 for (str = probe->dtpr_func; *str != '\0'; str++) 5295 c[i++] = *str; 5296 c[i++] = ':'; 5297 5298 for (str = probe->dtpr_name; *str != '\0'; str++) 5299 c[i++] = *str; 5300 5301 while (*ecbmsg != '\0') 5302 c[i++] = *ecbmsg++; 5303 5304 while (shift >= 0) { 5305 mask = (uintptr_t)0xf << shift; 5306 5307 if (val >= ((uintptr_t)1 << shift)) 5308 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5309 shift -= 4; 5310 } 5311 5312 c[i++] = ')'; 5313 c[i] = '\0'; 5314 5315 debug_enter(c); 5316 } 5317 5318 static void 5319 dtrace_action_panic(dtrace_ecb_t *ecb) 5320 { 5321 dtrace_probe_t *probe = ecb->dte_probe; 5322 5323 /* 5324 * It's impossible to be taking action on the NULL probe. 5325 */ 5326 ASSERT(probe != NULL); 5327 5328 if (dtrace_destructive_disallow) 5329 return; 5330 5331 if (dtrace_panicked != NULL) 5332 return; 5333 5334 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5335 return; 5336 5337 /* 5338 * We won the right to panic. (We want to be sure that only one 5339 * thread calls panic() from dtrace_probe(), and that panic() is 5340 * called exactly once.) 5341 */ 5342 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5343 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5344 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5345 } 5346 5347 static void 5348 dtrace_action_raise(uint64_t sig) 5349 { 5350 if (dtrace_destructive_disallow) 5351 return; 5352 5353 if (sig >= NSIG) { 5354 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5355 return; 5356 } 5357 5358 /* 5359 * raise() has a queue depth of 1 -- we ignore all subsequent 5360 * invocations of the raise() action. 5361 */ 5362 if (curthread->t_dtrace_sig == 0) 5363 curthread->t_dtrace_sig = (uint8_t)sig; 5364 5365 curthread->t_sig_check = 1; 5366 aston(curthread); 5367 } 5368 5369 static void 5370 dtrace_action_stop(void) 5371 { 5372 if (dtrace_destructive_disallow) 5373 return; 5374 5375 if (!curthread->t_dtrace_stop) { 5376 curthread->t_dtrace_stop = 1; 5377 curthread->t_sig_check = 1; 5378 aston(curthread); 5379 } 5380 } 5381 5382 static void 5383 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5384 { 5385 hrtime_t now; 5386 volatile uint16_t *flags; 5387 cpu_t *cpu = CPU; 5388 5389 if (dtrace_destructive_disallow) 5390 return; 5391 5392 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5393 5394 now = dtrace_gethrtime(); 5395 5396 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5397 /* 5398 * We need to advance the mark to the current time. 5399 */ 5400 cpu->cpu_dtrace_chillmark = now; 5401 cpu->cpu_dtrace_chilled = 0; 5402 } 5403 5404 /* 5405 * Now check to see if the requested chill time would take us over 5406 * the maximum amount of time allowed in the chill interval. (Or 5407 * worse, if the calculation itself induces overflow.) 5408 */ 5409 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5410 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5411 *flags |= CPU_DTRACE_ILLOP; 5412 return; 5413 } 5414 5415 while (dtrace_gethrtime() - now < val) 5416 continue; 5417 5418 /* 5419 * Normally, we assure that the value of the variable "timestamp" does 5420 * not change within an ECB. The presence of chill() represents an 5421 * exception to this rule, however. 5422 */ 5423 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5424 cpu->cpu_dtrace_chilled += val; 5425 } 5426 5427 static void 5428 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5429 uint64_t *buf, uint64_t arg) 5430 { 5431 int nframes = DTRACE_USTACK_NFRAMES(arg); 5432 int strsize = DTRACE_USTACK_STRSIZE(arg); 5433 uint64_t *pcs = &buf[1], *fps; 5434 char *str = (char *)&pcs[nframes]; 5435 int size, offs = 0, i, j; 5436 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5437 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5438 char *sym; 5439 5440 /* 5441 * Should be taking a faster path if string space has not been 5442 * allocated. 5443 */ 5444 ASSERT(strsize != 0); 5445 5446 /* 5447 * We will first allocate some temporary space for the frame pointers. 5448 */ 5449 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5450 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5451 (nframes * sizeof (uint64_t)); 5452 5453 if (!DTRACE_INSCRATCH(mstate, size)) { 5454 /* 5455 * Not enough room for our frame pointers -- need to indicate 5456 * that we ran out of scratch space. 5457 */ 5458 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5459 return; 5460 } 5461 5462 mstate->dtms_scratch_ptr += size; 5463 saved = mstate->dtms_scratch_ptr; 5464 5465 /* 5466 * Now get a stack with both program counters and frame pointers. 5467 */ 5468 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5469 dtrace_getufpstack(buf, fps, nframes + 1); 5470 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5471 5472 /* 5473 * If that faulted, we're cooked. 5474 */ 5475 if (*flags & CPU_DTRACE_FAULT) 5476 goto out; 5477 5478 /* 5479 * Now we want to walk up the stack, calling the USTACK helper. For 5480 * each iteration, we restore the scratch pointer. 5481 */ 5482 for (i = 0; i < nframes; i++) { 5483 mstate->dtms_scratch_ptr = saved; 5484 5485 if (offs >= strsize) 5486 break; 5487 5488 sym = (char *)(uintptr_t)dtrace_helper( 5489 DTRACE_HELPER_ACTION_USTACK, 5490 mstate, state, pcs[i], fps[i]); 5491 5492 /* 5493 * If we faulted while running the helper, we're going to 5494 * clear the fault and null out the corresponding string. 5495 */ 5496 if (*flags & CPU_DTRACE_FAULT) { 5497 *flags &= ~CPU_DTRACE_FAULT; 5498 str[offs++] = '\0'; 5499 continue; 5500 } 5501 5502 if (sym == NULL) { 5503 str[offs++] = '\0'; 5504 continue; 5505 } 5506 5507 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5508 5509 /* 5510 * Now copy in the string that the helper returned to us. 5511 */ 5512 for (j = 0; offs + j < strsize; j++) { 5513 if ((str[offs + j] = sym[j]) == '\0') 5514 break; 5515 } 5516 5517 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5518 5519 offs += j + 1; 5520 } 5521 5522 if (offs >= strsize) { 5523 /* 5524 * If we didn't have room for all of the strings, we don't 5525 * abort processing -- this needn't be a fatal error -- but we 5526 * still want to increment a counter (dts_stkstroverflows) to 5527 * allow this condition to be warned about. (If this is from 5528 * a jstack() action, it is easily tuned via jstackstrsize.) 5529 */ 5530 dtrace_error(&state->dts_stkstroverflows); 5531 } 5532 5533 while (offs < strsize) 5534 str[offs++] = '\0'; 5535 5536 out: 5537 mstate->dtms_scratch_ptr = old; 5538 } 5539 5540 /* 5541 * If you're looking for the epicenter of DTrace, you just found it. This 5542 * is the function called by the provider to fire a probe -- from which all 5543 * subsequent probe-context DTrace activity emanates. 5544 */ 5545 void 5546 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5547 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5548 { 5549 processorid_t cpuid; 5550 dtrace_icookie_t cookie; 5551 dtrace_probe_t *probe; 5552 dtrace_mstate_t mstate; 5553 dtrace_ecb_t *ecb; 5554 dtrace_action_t *act; 5555 intptr_t offs; 5556 size_t size; 5557 int vtime, onintr; 5558 volatile uint16_t *flags; 5559 hrtime_t now; 5560 5561 /* 5562 * Kick out immediately if this CPU is still being born (in which case 5563 * curthread will be set to -1) or the current thread can't allow 5564 * probes in its current context. 5565 */ 5566 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5567 return; 5568 5569 cookie = dtrace_interrupt_disable(); 5570 probe = dtrace_probes[id - 1]; 5571 cpuid = CPU->cpu_id; 5572 onintr = CPU_ON_INTR(CPU); 5573 5574 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5575 probe->dtpr_predcache == curthread->t_predcache) { 5576 /* 5577 * We have hit in the predicate cache; we know that 5578 * this predicate would evaluate to be false. 5579 */ 5580 dtrace_interrupt_enable(cookie); 5581 return; 5582 } 5583 5584 if (panic_quiesce) { 5585 /* 5586 * We don't trace anything if we're panicking. 5587 */ 5588 dtrace_interrupt_enable(cookie); 5589 return; 5590 } 5591 5592 now = dtrace_gethrtime(); 5593 vtime = dtrace_vtime_references != 0; 5594 5595 if (vtime && curthread->t_dtrace_start) 5596 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5597 5598 mstate.dtms_difo = NULL; 5599 mstate.dtms_probe = probe; 5600 mstate.dtms_strtok = NULL; 5601 mstate.dtms_arg[0] = arg0; 5602 mstate.dtms_arg[1] = arg1; 5603 mstate.dtms_arg[2] = arg2; 5604 mstate.dtms_arg[3] = arg3; 5605 mstate.dtms_arg[4] = arg4; 5606 5607 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5608 5609 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5610 dtrace_predicate_t *pred = ecb->dte_predicate; 5611 dtrace_state_t *state = ecb->dte_state; 5612 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5613 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5614 dtrace_vstate_t *vstate = &state->dts_vstate; 5615 dtrace_provider_t *prov = probe->dtpr_provider; 5616 int committed = 0; 5617 caddr_t tomax; 5618 5619 /* 5620 * A little subtlety with the following (seemingly innocuous) 5621 * declaration of the automatic 'val': by looking at the 5622 * code, you might think that it could be declared in the 5623 * action processing loop, below. (That is, it's only used in 5624 * the action processing loop.) However, it must be declared 5625 * out of that scope because in the case of DIF expression 5626 * arguments to aggregating actions, one iteration of the 5627 * action loop will use the last iteration's value. 5628 */ 5629 #ifdef lint 5630 uint64_t val = 0; 5631 #else 5632 uint64_t val; 5633 #endif 5634 5635 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5636 *flags &= ~CPU_DTRACE_ERROR; 5637 5638 if (prov == dtrace_provider) { 5639 /* 5640 * If dtrace itself is the provider of this probe, 5641 * we're only going to continue processing the ECB if 5642 * arg0 (the dtrace_state_t) is equal to the ECB's 5643 * creating state. (This prevents disjoint consumers 5644 * from seeing one another's metaprobes.) 5645 */ 5646 if (arg0 != (uint64_t)(uintptr_t)state) 5647 continue; 5648 } 5649 5650 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5651 /* 5652 * We're not currently active. If our provider isn't 5653 * the dtrace pseudo provider, we're not interested. 5654 */ 5655 if (prov != dtrace_provider) 5656 continue; 5657 5658 /* 5659 * Now we must further check if we are in the BEGIN 5660 * probe. If we are, we will only continue processing 5661 * if we're still in WARMUP -- if one BEGIN enabling 5662 * has invoked the exit() action, we don't want to 5663 * evaluate subsequent BEGIN enablings. 5664 */ 5665 if (probe->dtpr_id == dtrace_probeid_begin && 5666 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5667 ASSERT(state->dts_activity == 5668 DTRACE_ACTIVITY_DRAINING); 5669 continue; 5670 } 5671 } 5672 5673 if (ecb->dte_cond) { 5674 /* 5675 * If the dte_cond bits indicate that this 5676 * consumer is only allowed to see user-mode firings 5677 * of this probe, call the provider's dtps_usermode() 5678 * entry point to check that the probe was fired 5679 * while in a user context. Skip this ECB if that's 5680 * not the case. 5681 */ 5682 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 5683 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 5684 probe->dtpr_id, probe->dtpr_arg) == 0) 5685 continue; 5686 5687 /* 5688 * This is more subtle than it looks. We have to be 5689 * absolutely certain that CRED() isn't going to 5690 * change out from under us so it's only legit to 5691 * examine that structure if we're in constrained 5692 * situations. Currently, the only times we'll this 5693 * check is if a non-super-user has enabled the 5694 * profile or syscall providers -- providers that 5695 * allow visibility of all processes. For the 5696 * profile case, the check above will ensure that 5697 * we're examining a user context. 5698 */ 5699 if (ecb->dte_cond & DTRACE_COND_OWNER) { 5700 cred_t *cr; 5701 cred_t *s_cr = 5702 ecb->dte_state->dts_cred.dcr_cred; 5703 proc_t *proc; 5704 5705 ASSERT(s_cr != NULL); 5706 5707 if ((cr = CRED()) == NULL || 5708 s_cr->cr_uid != cr->cr_uid || 5709 s_cr->cr_uid != cr->cr_ruid || 5710 s_cr->cr_uid != cr->cr_suid || 5711 s_cr->cr_gid != cr->cr_gid || 5712 s_cr->cr_gid != cr->cr_rgid || 5713 s_cr->cr_gid != cr->cr_sgid || 5714 (proc = ttoproc(curthread)) == NULL || 5715 (proc->p_flag & SNOCD)) 5716 continue; 5717 } 5718 5719 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 5720 cred_t *cr; 5721 cred_t *s_cr = 5722 ecb->dte_state->dts_cred.dcr_cred; 5723 5724 ASSERT(s_cr != NULL); 5725 5726 if ((cr = CRED()) == NULL || 5727 s_cr->cr_zone->zone_id != 5728 cr->cr_zone->zone_id) 5729 continue; 5730 } 5731 } 5732 5733 if (now - state->dts_alive > dtrace_deadman_timeout) { 5734 /* 5735 * We seem to be dead. Unless we (a) have kernel 5736 * destructive permissions (b) have expicitly enabled 5737 * destructive actions and (c) destructive actions have 5738 * not been disabled, we're going to transition into 5739 * the KILLED state, from which no further processing 5740 * on this state will be performed. 5741 */ 5742 if (!dtrace_priv_kernel_destructive(state) || 5743 !state->dts_cred.dcr_destructive || 5744 dtrace_destructive_disallow) { 5745 void *activity = &state->dts_activity; 5746 dtrace_activity_t current; 5747 5748 do { 5749 current = state->dts_activity; 5750 } while (dtrace_cas32(activity, current, 5751 DTRACE_ACTIVITY_KILLED) != current); 5752 5753 continue; 5754 } 5755 } 5756 5757 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5758 ecb->dte_alignment, state, &mstate)) < 0) 5759 continue; 5760 5761 tomax = buf->dtb_tomax; 5762 ASSERT(tomax != NULL); 5763 5764 if (ecb->dte_size != 0) 5765 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5766 5767 mstate.dtms_epid = ecb->dte_epid; 5768 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5769 5770 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5771 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 5772 else 5773 mstate.dtms_access = 0; 5774 5775 if (pred != NULL) { 5776 dtrace_difo_t *dp = pred->dtp_difo; 5777 int rval; 5778 5779 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5780 5781 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5782 dtrace_cacheid_t cid = probe->dtpr_predcache; 5783 5784 if (cid != DTRACE_CACHEIDNONE && !onintr) { 5785 /* 5786 * Update the predicate cache... 5787 */ 5788 ASSERT(cid == pred->dtp_cacheid); 5789 curthread->t_predcache = cid; 5790 } 5791 5792 continue; 5793 } 5794 } 5795 5796 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 5797 act != NULL; act = act->dta_next) { 5798 size_t valoffs; 5799 dtrace_difo_t *dp; 5800 dtrace_recdesc_t *rec = &act->dta_rec; 5801 5802 size = rec->dtrd_size; 5803 valoffs = offs + rec->dtrd_offset; 5804 5805 if (DTRACEACT_ISAGG(act->dta_kind)) { 5806 uint64_t v = 0xbad; 5807 dtrace_aggregation_t *agg; 5808 5809 agg = (dtrace_aggregation_t *)act; 5810 5811 if ((dp = act->dta_difo) != NULL) 5812 v = dtrace_dif_emulate(dp, 5813 &mstate, vstate, state); 5814 5815 if (*flags & CPU_DTRACE_ERROR) 5816 continue; 5817 5818 /* 5819 * Note that we always pass the expression 5820 * value from the previous iteration of the 5821 * action loop. This value will only be used 5822 * if there is an expression argument to the 5823 * aggregating action, denoted by the 5824 * dtag_hasarg field. 5825 */ 5826 dtrace_aggregate(agg, buf, 5827 offs, aggbuf, v, val); 5828 continue; 5829 } 5830 5831 switch (act->dta_kind) { 5832 case DTRACEACT_STOP: 5833 if (dtrace_priv_proc_destructive(state)) 5834 dtrace_action_stop(); 5835 continue; 5836 5837 case DTRACEACT_BREAKPOINT: 5838 if (dtrace_priv_kernel_destructive(state)) 5839 dtrace_action_breakpoint(ecb); 5840 continue; 5841 5842 case DTRACEACT_PANIC: 5843 if (dtrace_priv_kernel_destructive(state)) 5844 dtrace_action_panic(ecb); 5845 continue; 5846 5847 case DTRACEACT_STACK: 5848 if (!dtrace_priv_kernel(state)) 5849 continue; 5850 5851 dtrace_getpcstack((pc_t *)(tomax + valoffs), 5852 size / sizeof (pc_t), probe->dtpr_aframes, 5853 DTRACE_ANCHORED(probe) ? NULL : 5854 (uint32_t *)arg0); 5855 5856 continue; 5857 5858 case DTRACEACT_JSTACK: 5859 case DTRACEACT_USTACK: 5860 if (!dtrace_priv_proc(state)) 5861 continue; 5862 5863 /* 5864 * See comment in DIF_VAR_PID. 5865 */ 5866 if (DTRACE_ANCHORED(mstate.dtms_probe) && 5867 CPU_ON_INTR(CPU)) { 5868 int depth = DTRACE_USTACK_NFRAMES( 5869 rec->dtrd_arg) + 1; 5870 5871 dtrace_bzero((void *)(tomax + valoffs), 5872 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 5873 + depth * sizeof (uint64_t)); 5874 5875 continue; 5876 } 5877 5878 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 5879 curproc->p_dtrace_helpers != NULL) { 5880 /* 5881 * This is the slow path -- we have 5882 * allocated string space, and we're 5883 * getting the stack of a process that 5884 * has helpers. Call into a separate 5885 * routine to perform this processing. 5886 */ 5887 dtrace_action_ustack(&mstate, state, 5888 (uint64_t *)(tomax + valoffs), 5889 rec->dtrd_arg); 5890 continue; 5891 } 5892 5893 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5894 dtrace_getupcstack((uint64_t *) 5895 (tomax + valoffs), 5896 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 5897 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5898 continue; 5899 5900 default: 5901 break; 5902 } 5903 5904 dp = act->dta_difo; 5905 ASSERT(dp != NULL); 5906 5907 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 5908 5909 if (*flags & CPU_DTRACE_ERROR) 5910 continue; 5911 5912 switch (act->dta_kind) { 5913 case DTRACEACT_SPECULATE: 5914 ASSERT(buf == &state->dts_buffer[cpuid]); 5915 buf = dtrace_speculation_buffer(state, 5916 cpuid, val); 5917 5918 if (buf == NULL) { 5919 *flags |= CPU_DTRACE_DROP; 5920 continue; 5921 } 5922 5923 offs = dtrace_buffer_reserve(buf, 5924 ecb->dte_needed, ecb->dte_alignment, 5925 state, NULL); 5926 5927 if (offs < 0) { 5928 *flags |= CPU_DTRACE_DROP; 5929 continue; 5930 } 5931 5932 tomax = buf->dtb_tomax; 5933 ASSERT(tomax != NULL); 5934 5935 if (ecb->dte_size != 0) 5936 DTRACE_STORE(uint32_t, tomax, offs, 5937 ecb->dte_epid); 5938 continue; 5939 5940 case DTRACEACT_CHILL: 5941 if (dtrace_priv_kernel_destructive(state)) 5942 dtrace_action_chill(&mstate, val); 5943 continue; 5944 5945 case DTRACEACT_RAISE: 5946 if (dtrace_priv_proc_destructive(state)) 5947 dtrace_action_raise(val); 5948 continue; 5949 5950 case DTRACEACT_COMMIT: 5951 ASSERT(!committed); 5952 5953 /* 5954 * We need to commit our buffer state. 5955 */ 5956 if (ecb->dte_size) 5957 buf->dtb_offset = offs + ecb->dte_size; 5958 buf = &state->dts_buffer[cpuid]; 5959 dtrace_speculation_commit(state, cpuid, val); 5960 committed = 1; 5961 continue; 5962 5963 case DTRACEACT_DISCARD: 5964 dtrace_speculation_discard(state, cpuid, val); 5965 continue; 5966 5967 case DTRACEACT_DIFEXPR: 5968 case DTRACEACT_LIBACT: 5969 case DTRACEACT_PRINTF: 5970 case DTRACEACT_PRINTA: 5971 case DTRACEACT_SYSTEM: 5972 case DTRACEACT_FREOPEN: 5973 break; 5974 5975 case DTRACEACT_SYM: 5976 case DTRACEACT_MOD: 5977 if (!dtrace_priv_kernel(state)) 5978 continue; 5979 break; 5980 5981 case DTRACEACT_USYM: 5982 case DTRACEACT_UMOD: 5983 case DTRACEACT_UADDR: { 5984 struct pid *pid = curthread->t_procp->p_pidp; 5985 5986 if (!dtrace_priv_proc(state)) 5987 continue; 5988 5989 DTRACE_STORE(uint64_t, tomax, 5990 valoffs, (uint64_t)pid->pid_id); 5991 DTRACE_STORE(uint64_t, tomax, 5992 valoffs + sizeof (uint64_t), val); 5993 5994 continue; 5995 } 5996 5997 case DTRACEACT_EXIT: { 5998 /* 5999 * For the exit action, we are going to attempt 6000 * to atomically set our activity to be 6001 * draining. If this fails (either because 6002 * another CPU has beat us to the exit action, 6003 * or because our current activity is something 6004 * other than ACTIVE or WARMUP), we will 6005 * continue. This assures that the exit action 6006 * can be successfully recorded at most once 6007 * when we're in the ACTIVE state. If we're 6008 * encountering the exit() action while in 6009 * COOLDOWN, however, we want to honor the new 6010 * status code. (We know that we're the only 6011 * thread in COOLDOWN, so there is no race.) 6012 */ 6013 void *activity = &state->dts_activity; 6014 dtrace_activity_t current = state->dts_activity; 6015 6016 if (current == DTRACE_ACTIVITY_COOLDOWN) 6017 break; 6018 6019 if (current != DTRACE_ACTIVITY_WARMUP) 6020 current = DTRACE_ACTIVITY_ACTIVE; 6021 6022 if (dtrace_cas32(activity, current, 6023 DTRACE_ACTIVITY_DRAINING) != current) { 6024 *flags |= CPU_DTRACE_DROP; 6025 continue; 6026 } 6027 6028 break; 6029 } 6030 6031 default: 6032 ASSERT(0); 6033 } 6034 6035 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 6036 uintptr_t end = valoffs + size; 6037 6038 if (!dtrace_vcanload((void *)(uintptr_t)val, 6039 &dp->dtdo_rtype, &mstate, vstate)) 6040 continue; 6041 6042 /* 6043 * If this is a string, we're going to only 6044 * load until we find the zero byte -- after 6045 * which we'll store zero bytes. 6046 */ 6047 if (dp->dtdo_rtype.dtdt_kind == 6048 DIF_TYPE_STRING) { 6049 char c = '\0' + 1; 6050 int intuple = act->dta_intuple; 6051 size_t s; 6052 6053 for (s = 0; s < size; s++) { 6054 if (c != '\0') 6055 c = dtrace_load8(val++); 6056 6057 DTRACE_STORE(uint8_t, tomax, 6058 valoffs++, c); 6059 6060 if (c == '\0' && intuple) 6061 break; 6062 } 6063 6064 continue; 6065 } 6066 6067 while (valoffs < end) { 6068 DTRACE_STORE(uint8_t, tomax, valoffs++, 6069 dtrace_load8(val++)); 6070 } 6071 6072 continue; 6073 } 6074 6075 switch (size) { 6076 case 0: 6077 break; 6078 6079 case sizeof (uint8_t): 6080 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6081 break; 6082 case sizeof (uint16_t): 6083 DTRACE_STORE(uint16_t, tomax, valoffs, val); 6084 break; 6085 case sizeof (uint32_t): 6086 DTRACE_STORE(uint32_t, tomax, valoffs, val); 6087 break; 6088 case sizeof (uint64_t): 6089 DTRACE_STORE(uint64_t, tomax, valoffs, val); 6090 break; 6091 default: 6092 /* 6093 * Any other size should have been returned by 6094 * reference, not by value. 6095 */ 6096 ASSERT(0); 6097 break; 6098 } 6099 } 6100 6101 if (*flags & CPU_DTRACE_DROP) 6102 continue; 6103 6104 if (*flags & CPU_DTRACE_FAULT) { 6105 int ndx; 6106 dtrace_action_t *err; 6107 6108 buf->dtb_errors++; 6109 6110 if (probe->dtpr_id == dtrace_probeid_error) { 6111 /* 6112 * There's nothing we can do -- we had an 6113 * error on the error probe. We bump an 6114 * error counter to at least indicate that 6115 * this condition happened. 6116 */ 6117 dtrace_error(&state->dts_dblerrors); 6118 continue; 6119 } 6120 6121 if (vtime) { 6122 /* 6123 * Before recursing on dtrace_probe(), we 6124 * need to explicitly clear out our start 6125 * time to prevent it from being accumulated 6126 * into t_dtrace_vtime. 6127 */ 6128 curthread->t_dtrace_start = 0; 6129 } 6130 6131 /* 6132 * Iterate over the actions to figure out which action 6133 * we were processing when we experienced the error. 6134 * Note that act points _past_ the faulting action; if 6135 * act is ecb->dte_action, the fault was in the 6136 * predicate, if it's ecb->dte_action->dta_next it's 6137 * in action #1, and so on. 6138 */ 6139 for (err = ecb->dte_action, ndx = 0; 6140 err != act; err = err->dta_next, ndx++) 6141 continue; 6142 6143 dtrace_probe_error(state, ecb->dte_epid, ndx, 6144 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 6145 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 6146 cpu_core[cpuid].cpuc_dtrace_illval); 6147 6148 continue; 6149 } 6150 6151 if (!committed) 6152 buf->dtb_offset = offs + ecb->dte_size; 6153 } 6154 6155 if (vtime) 6156 curthread->t_dtrace_start = dtrace_gethrtime(); 6157 6158 dtrace_interrupt_enable(cookie); 6159 } 6160 6161 /* 6162 * DTrace Probe Hashing Functions 6163 * 6164 * The functions in this section (and indeed, the functions in remaining 6165 * sections) are not _called_ from probe context. (Any exceptions to this are 6166 * marked with a "Note:".) Rather, they are called from elsewhere in the 6167 * DTrace framework to look-up probes in, add probes to and remove probes from 6168 * the DTrace probe hashes. (Each probe is hashed by each element of the 6169 * probe tuple -- allowing for fast lookups, regardless of what was 6170 * specified.) 6171 */ 6172 static uint_t 6173 dtrace_hash_str(char *p) 6174 { 6175 unsigned int g; 6176 uint_t hval = 0; 6177 6178 while (*p) { 6179 hval = (hval << 4) + *p++; 6180 if ((g = (hval & 0xf0000000)) != 0) 6181 hval ^= g >> 24; 6182 hval &= ~g; 6183 } 6184 return (hval); 6185 } 6186 6187 static dtrace_hash_t * 6188 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6189 { 6190 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6191 6192 hash->dth_stroffs = stroffs; 6193 hash->dth_nextoffs = nextoffs; 6194 hash->dth_prevoffs = prevoffs; 6195 6196 hash->dth_size = 1; 6197 hash->dth_mask = hash->dth_size - 1; 6198 6199 hash->dth_tab = kmem_zalloc(hash->dth_size * 6200 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6201 6202 return (hash); 6203 } 6204 6205 static void 6206 dtrace_hash_destroy(dtrace_hash_t *hash) 6207 { 6208 #ifdef DEBUG 6209 int i; 6210 6211 for (i = 0; i < hash->dth_size; i++) 6212 ASSERT(hash->dth_tab[i] == NULL); 6213 #endif 6214 6215 kmem_free(hash->dth_tab, 6216 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6217 kmem_free(hash, sizeof (dtrace_hash_t)); 6218 } 6219 6220 static void 6221 dtrace_hash_resize(dtrace_hash_t *hash) 6222 { 6223 int size = hash->dth_size, i, ndx; 6224 int new_size = hash->dth_size << 1; 6225 int new_mask = new_size - 1; 6226 dtrace_hashbucket_t **new_tab, *bucket, *next; 6227 6228 ASSERT((new_size & new_mask) == 0); 6229 6230 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6231 6232 for (i = 0; i < size; i++) { 6233 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6234 dtrace_probe_t *probe = bucket->dthb_chain; 6235 6236 ASSERT(probe != NULL); 6237 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6238 6239 next = bucket->dthb_next; 6240 bucket->dthb_next = new_tab[ndx]; 6241 new_tab[ndx] = bucket; 6242 } 6243 } 6244 6245 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6246 hash->dth_tab = new_tab; 6247 hash->dth_size = new_size; 6248 hash->dth_mask = new_mask; 6249 } 6250 6251 static void 6252 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6253 { 6254 int hashval = DTRACE_HASHSTR(hash, new); 6255 int ndx = hashval & hash->dth_mask; 6256 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6257 dtrace_probe_t **nextp, **prevp; 6258 6259 for (; bucket != NULL; bucket = bucket->dthb_next) { 6260 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6261 goto add; 6262 } 6263 6264 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6265 dtrace_hash_resize(hash); 6266 dtrace_hash_add(hash, new); 6267 return; 6268 } 6269 6270 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6271 bucket->dthb_next = hash->dth_tab[ndx]; 6272 hash->dth_tab[ndx] = bucket; 6273 hash->dth_nbuckets++; 6274 6275 add: 6276 nextp = DTRACE_HASHNEXT(hash, new); 6277 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6278 *nextp = bucket->dthb_chain; 6279 6280 if (bucket->dthb_chain != NULL) { 6281 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6282 ASSERT(*prevp == NULL); 6283 *prevp = new; 6284 } 6285 6286 bucket->dthb_chain = new; 6287 bucket->dthb_len++; 6288 } 6289 6290 static dtrace_probe_t * 6291 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6292 { 6293 int hashval = DTRACE_HASHSTR(hash, template); 6294 int ndx = hashval & hash->dth_mask; 6295 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6296 6297 for (; bucket != NULL; bucket = bucket->dthb_next) { 6298 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6299 return (bucket->dthb_chain); 6300 } 6301 6302 return (NULL); 6303 } 6304 6305 static int 6306 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6307 { 6308 int hashval = DTRACE_HASHSTR(hash, template); 6309 int ndx = hashval & hash->dth_mask; 6310 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6311 6312 for (; bucket != NULL; bucket = bucket->dthb_next) { 6313 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6314 return (bucket->dthb_len); 6315 } 6316 6317 return (NULL); 6318 } 6319 6320 static void 6321 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6322 { 6323 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6324 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6325 6326 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6327 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6328 6329 /* 6330 * Find the bucket that we're removing this probe from. 6331 */ 6332 for (; bucket != NULL; bucket = bucket->dthb_next) { 6333 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6334 break; 6335 } 6336 6337 ASSERT(bucket != NULL); 6338 6339 if (*prevp == NULL) { 6340 if (*nextp == NULL) { 6341 /* 6342 * The removed probe was the only probe on this 6343 * bucket; we need to remove the bucket. 6344 */ 6345 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6346 6347 ASSERT(bucket->dthb_chain == probe); 6348 ASSERT(b != NULL); 6349 6350 if (b == bucket) { 6351 hash->dth_tab[ndx] = bucket->dthb_next; 6352 } else { 6353 while (b->dthb_next != bucket) 6354 b = b->dthb_next; 6355 b->dthb_next = bucket->dthb_next; 6356 } 6357 6358 ASSERT(hash->dth_nbuckets > 0); 6359 hash->dth_nbuckets--; 6360 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6361 return; 6362 } 6363 6364 bucket->dthb_chain = *nextp; 6365 } else { 6366 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6367 } 6368 6369 if (*nextp != NULL) 6370 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6371 } 6372 6373 /* 6374 * DTrace Utility Functions 6375 * 6376 * These are random utility functions that are _not_ called from probe context. 6377 */ 6378 static int 6379 dtrace_badattr(const dtrace_attribute_t *a) 6380 { 6381 return (a->dtat_name > DTRACE_STABILITY_MAX || 6382 a->dtat_data > DTRACE_STABILITY_MAX || 6383 a->dtat_class > DTRACE_CLASS_MAX); 6384 } 6385 6386 /* 6387 * Return a duplicate copy of a string. If the specified string is NULL, 6388 * this function returns a zero-length string. 6389 */ 6390 static char * 6391 dtrace_strdup(const char *str) 6392 { 6393 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6394 6395 if (str != NULL) 6396 (void) strcpy(new, str); 6397 6398 return (new); 6399 } 6400 6401 #define DTRACE_ISALPHA(c) \ 6402 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6403 6404 static int 6405 dtrace_badname(const char *s) 6406 { 6407 char c; 6408 6409 if (s == NULL || (c = *s++) == '\0') 6410 return (0); 6411 6412 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6413 return (1); 6414 6415 while ((c = *s++) != '\0') { 6416 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6417 c != '-' && c != '_' && c != '.' && c != '`') 6418 return (1); 6419 } 6420 6421 return (0); 6422 } 6423 6424 static void 6425 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6426 { 6427 uint32_t priv; 6428 6429 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6430 /* 6431 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6432 */ 6433 priv = DTRACE_PRIV_ALL; 6434 } else { 6435 *uidp = crgetuid(cr); 6436 *zoneidp = crgetzoneid(cr); 6437 6438 priv = 0; 6439 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6440 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6441 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6442 priv |= DTRACE_PRIV_USER; 6443 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6444 priv |= DTRACE_PRIV_PROC; 6445 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6446 priv |= DTRACE_PRIV_OWNER; 6447 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6448 priv |= DTRACE_PRIV_ZONEOWNER; 6449 } 6450 6451 *privp = priv; 6452 } 6453 6454 #ifdef DTRACE_ERRDEBUG 6455 static void 6456 dtrace_errdebug(const char *str) 6457 { 6458 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6459 int occupied = 0; 6460 6461 mutex_enter(&dtrace_errlock); 6462 dtrace_errlast = str; 6463 dtrace_errthread = curthread; 6464 6465 while (occupied++ < DTRACE_ERRHASHSZ) { 6466 if (dtrace_errhash[hval].dter_msg == str) { 6467 dtrace_errhash[hval].dter_count++; 6468 goto out; 6469 } 6470 6471 if (dtrace_errhash[hval].dter_msg != NULL) { 6472 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6473 continue; 6474 } 6475 6476 dtrace_errhash[hval].dter_msg = str; 6477 dtrace_errhash[hval].dter_count = 1; 6478 goto out; 6479 } 6480 6481 panic("dtrace: undersized error hash"); 6482 out: 6483 mutex_exit(&dtrace_errlock); 6484 } 6485 #endif 6486 6487 /* 6488 * DTrace Matching Functions 6489 * 6490 * These functions are used to match groups of probes, given some elements of 6491 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6492 */ 6493 static int 6494 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6495 zoneid_t zoneid) 6496 { 6497 if (priv != DTRACE_PRIV_ALL) { 6498 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6499 uint32_t match = priv & ppriv; 6500 6501 /* 6502 * No PRIV_DTRACE_* privileges... 6503 */ 6504 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6505 DTRACE_PRIV_KERNEL)) == 0) 6506 return (0); 6507 6508 /* 6509 * No matching bits, but there were bits to match... 6510 */ 6511 if (match == 0 && ppriv != 0) 6512 return (0); 6513 6514 /* 6515 * Need to have permissions to the process, but don't... 6516 */ 6517 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6518 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6519 return (0); 6520 } 6521 6522 /* 6523 * Need to be in the same zone unless we possess the 6524 * privilege to examine all zones. 6525 */ 6526 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6527 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6528 return (0); 6529 } 6530 } 6531 6532 return (1); 6533 } 6534 6535 /* 6536 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6537 * consists of input pattern strings and an ops-vector to evaluate them. 6538 * This function returns >0 for match, 0 for no match, and <0 for error. 6539 */ 6540 static int 6541 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6542 uint32_t priv, uid_t uid, zoneid_t zoneid) 6543 { 6544 dtrace_provider_t *pvp = prp->dtpr_provider; 6545 int rv; 6546 6547 if (pvp->dtpv_defunct) 6548 return (0); 6549 6550 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6551 return (rv); 6552 6553 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6554 return (rv); 6555 6556 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6557 return (rv); 6558 6559 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6560 return (rv); 6561 6562 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6563 return (0); 6564 6565 return (rv); 6566 } 6567 6568 /* 6569 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6570 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6571 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6572 * In addition, all of the recursion cases except for '*' matching have been 6573 * unwound. For '*', we still implement recursive evaluation, but a depth 6574 * counter is maintained and matching is aborted if we recurse too deep. 6575 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6576 */ 6577 static int 6578 dtrace_match_glob(const char *s, const char *p, int depth) 6579 { 6580 const char *olds; 6581 char s1, c; 6582 int gs; 6583 6584 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6585 return (-1); 6586 6587 if (s == NULL) 6588 s = ""; /* treat NULL as empty string */ 6589 6590 top: 6591 olds = s; 6592 s1 = *s++; 6593 6594 if (p == NULL) 6595 return (0); 6596 6597 if ((c = *p++) == '\0') 6598 return (s1 == '\0'); 6599 6600 switch (c) { 6601 case '[': { 6602 int ok = 0, notflag = 0; 6603 char lc = '\0'; 6604 6605 if (s1 == '\0') 6606 return (0); 6607 6608 if (*p == '!') { 6609 notflag = 1; 6610 p++; 6611 } 6612 6613 if ((c = *p++) == '\0') 6614 return (0); 6615 6616 do { 6617 if (c == '-' && lc != '\0' && *p != ']') { 6618 if ((c = *p++) == '\0') 6619 return (0); 6620 if (c == '\\' && (c = *p++) == '\0') 6621 return (0); 6622 6623 if (notflag) { 6624 if (s1 < lc || s1 > c) 6625 ok++; 6626 else 6627 return (0); 6628 } else if (lc <= s1 && s1 <= c) 6629 ok++; 6630 6631 } else if (c == '\\' && (c = *p++) == '\0') 6632 return (0); 6633 6634 lc = c; /* save left-hand 'c' for next iteration */ 6635 6636 if (notflag) { 6637 if (s1 != c) 6638 ok++; 6639 else 6640 return (0); 6641 } else if (s1 == c) 6642 ok++; 6643 6644 if ((c = *p++) == '\0') 6645 return (0); 6646 6647 } while (c != ']'); 6648 6649 if (ok) 6650 goto top; 6651 6652 return (0); 6653 } 6654 6655 case '\\': 6656 if ((c = *p++) == '\0') 6657 return (0); 6658 /*FALLTHRU*/ 6659 6660 default: 6661 if (c != s1) 6662 return (0); 6663 /*FALLTHRU*/ 6664 6665 case '?': 6666 if (s1 != '\0') 6667 goto top; 6668 return (0); 6669 6670 case '*': 6671 while (*p == '*') 6672 p++; /* consecutive *'s are identical to a single one */ 6673 6674 if (*p == '\0') 6675 return (1); 6676 6677 for (s = olds; *s != '\0'; s++) { 6678 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6679 return (gs); 6680 } 6681 6682 return (0); 6683 } 6684 } 6685 6686 /*ARGSUSED*/ 6687 static int 6688 dtrace_match_string(const char *s, const char *p, int depth) 6689 { 6690 return (s != NULL && strcmp(s, p) == 0); 6691 } 6692 6693 /*ARGSUSED*/ 6694 static int 6695 dtrace_match_nul(const char *s, const char *p, int depth) 6696 { 6697 return (1); /* always match the empty pattern */ 6698 } 6699 6700 /*ARGSUSED*/ 6701 static int 6702 dtrace_match_nonzero(const char *s, const char *p, int depth) 6703 { 6704 return (s != NULL && s[0] != '\0'); 6705 } 6706 6707 static int 6708 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6709 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6710 { 6711 dtrace_probe_t template, *probe; 6712 dtrace_hash_t *hash = NULL; 6713 int len, rc, best = INT_MAX, nmatched = 0; 6714 dtrace_id_t i; 6715 6716 ASSERT(MUTEX_HELD(&dtrace_lock)); 6717 6718 /* 6719 * If the probe ID is specified in the key, just lookup by ID and 6720 * invoke the match callback once if a matching probe is found. 6721 */ 6722 if (pkp->dtpk_id != DTRACE_IDNONE) { 6723 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6724 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6725 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 6726 return (DTRACE_MATCH_FAIL); 6727 nmatched++; 6728 } 6729 return (nmatched); 6730 } 6731 6732 template.dtpr_mod = (char *)pkp->dtpk_mod; 6733 template.dtpr_func = (char *)pkp->dtpk_func; 6734 template.dtpr_name = (char *)pkp->dtpk_name; 6735 6736 /* 6737 * We want to find the most distinct of the module name, function 6738 * name, and name. So for each one that is not a glob pattern or 6739 * empty string, we perform a lookup in the corresponding hash and 6740 * use the hash table with the fewest collisions to do our search. 6741 */ 6742 if (pkp->dtpk_mmatch == &dtrace_match_string && 6743 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6744 best = len; 6745 hash = dtrace_bymod; 6746 } 6747 6748 if (pkp->dtpk_fmatch == &dtrace_match_string && 6749 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6750 best = len; 6751 hash = dtrace_byfunc; 6752 } 6753 6754 if (pkp->dtpk_nmatch == &dtrace_match_string && 6755 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 6756 best = len; 6757 hash = dtrace_byname; 6758 } 6759 6760 /* 6761 * If we did not select a hash table, iterate over every probe and 6762 * invoke our callback for each one that matches our input probe key. 6763 */ 6764 if (hash == NULL) { 6765 for (i = 0; i < dtrace_nprobes; i++) { 6766 if ((probe = dtrace_probes[i]) == NULL || 6767 dtrace_match_probe(probe, pkp, priv, uid, 6768 zoneid) <= 0) 6769 continue; 6770 6771 nmatched++; 6772 6773 if ((rc = (*matched)(probe, arg)) != 6774 DTRACE_MATCH_NEXT) { 6775 if (rc == DTRACE_MATCH_FAIL) 6776 return (DTRACE_MATCH_FAIL); 6777 break; 6778 } 6779 } 6780 6781 return (nmatched); 6782 } 6783 6784 /* 6785 * If we selected a hash table, iterate over each probe of the same key 6786 * name and invoke the callback for every probe that matches the other 6787 * attributes of our input probe key. 6788 */ 6789 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 6790 probe = *(DTRACE_HASHNEXT(hash, probe))) { 6791 6792 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 6793 continue; 6794 6795 nmatched++; 6796 6797 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 6798 if (rc == DTRACE_MATCH_FAIL) 6799 return (DTRACE_MATCH_FAIL); 6800 break; 6801 } 6802 } 6803 6804 return (nmatched); 6805 } 6806 6807 /* 6808 * Return the function pointer dtrace_probecmp() should use to compare the 6809 * specified pattern with a string. For NULL or empty patterns, we select 6810 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 6811 * For non-empty non-glob strings, we use dtrace_match_string(). 6812 */ 6813 static dtrace_probekey_f * 6814 dtrace_probekey_func(const char *p) 6815 { 6816 char c; 6817 6818 if (p == NULL || *p == '\0') 6819 return (&dtrace_match_nul); 6820 6821 while ((c = *p++) != '\0') { 6822 if (c == '[' || c == '?' || c == '*' || c == '\\') 6823 return (&dtrace_match_glob); 6824 } 6825 6826 return (&dtrace_match_string); 6827 } 6828 6829 /* 6830 * Build a probe comparison key for use with dtrace_match_probe() from the 6831 * given probe description. By convention, a null key only matches anchored 6832 * probes: if each field is the empty string, reset dtpk_fmatch to 6833 * dtrace_match_nonzero(). 6834 */ 6835 static void 6836 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 6837 { 6838 pkp->dtpk_prov = pdp->dtpd_provider; 6839 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 6840 6841 pkp->dtpk_mod = pdp->dtpd_mod; 6842 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 6843 6844 pkp->dtpk_func = pdp->dtpd_func; 6845 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 6846 6847 pkp->dtpk_name = pdp->dtpd_name; 6848 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 6849 6850 pkp->dtpk_id = pdp->dtpd_id; 6851 6852 if (pkp->dtpk_id == DTRACE_IDNONE && 6853 pkp->dtpk_pmatch == &dtrace_match_nul && 6854 pkp->dtpk_mmatch == &dtrace_match_nul && 6855 pkp->dtpk_fmatch == &dtrace_match_nul && 6856 pkp->dtpk_nmatch == &dtrace_match_nul) 6857 pkp->dtpk_fmatch = &dtrace_match_nonzero; 6858 } 6859 6860 /* 6861 * DTrace Provider-to-Framework API Functions 6862 * 6863 * These functions implement much of the Provider-to-Framework API, as 6864 * described in <sys/dtrace.h>. The parts of the API not in this section are 6865 * the functions in the API for probe management (found below), and 6866 * dtrace_probe() itself (found above). 6867 */ 6868 6869 /* 6870 * Register the calling provider with the DTrace framework. This should 6871 * generally be called by DTrace providers in their attach(9E) entry point. 6872 */ 6873 int 6874 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 6875 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 6876 { 6877 dtrace_provider_t *provider; 6878 6879 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 6880 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6881 "arguments", name ? name : "<NULL>"); 6882 return (EINVAL); 6883 } 6884 6885 if (name[0] == '\0' || dtrace_badname(name)) { 6886 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6887 "provider name", name); 6888 return (EINVAL); 6889 } 6890 6891 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 6892 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 6893 pops->dtps_destroy == NULL || 6894 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 6895 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6896 "provider ops", name); 6897 return (EINVAL); 6898 } 6899 6900 if (dtrace_badattr(&pap->dtpa_provider) || 6901 dtrace_badattr(&pap->dtpa_mod) || 6902 dtrace_badattr(&pap->dtpa_func) || 6903 dtrace_badattr(&pap->dtpa_name) || 6904 dtrace_badattr(&pap->dtpa_args)) { 6905 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6906 "provider attributes", name); 6907 return (EINVAL); 6908 } 6909 6910 if (priv & ~DTRACE_PRIV_ALL) { 6911 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6912 "privilege attributes", name); 6913 return (EINVAL); 6914 } 6915 6916 if ((priv & DTRACE_PRIV_KERNEL) && 6917 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 6918 pops->dtps_usermode == NULL) { 6919 cmn_err(CE_WARN, "failed to register provider '%s': need " 6920 "dtps_usermode() op for given privilege attributes", name); 6921 return (EINVAL); 6922 } 6923 6924 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 6925 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6926 (void) strcpy(provider->dtpv_name, name); 6927 6928 provider->dtpv_attr = *pap; 6929 provider->dtpv_priv.dtpp_flags = priv; 6930 if (cr != NULL) { 6931 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 6932 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 6933 } 6934 provider->dtpv_pops = *pops; 6935 6936 if (pops->dtps_provide == NULL) { 6937 ASSERT(pops->dtps_provide_module != NULL); 6938 provider->dtpv_pops.dtps_provide = 6939 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 6940 } 6941 6942 if (pops->dtps_provide_module == NULL) { 6943 ASSERT(pops->dtps_provide != NULL); 6944 provider->dtpv_pops.dtps_provide_module = 6945 (void (*)(void *, struct modctl *))dtrace_nullop; 6946 } 6947 6948 if (pops->dtps_suspend == NULL) { 6949 ASSERT(pops->dtps_resume == NULL); 6950 provider->dtpv_pops.dtps_suspend = 6951 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6952 provider->dtpv_pops.dtps_resume = 6953 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6954 } 6955 6956 provider->dtpv_arg = arg; 6957 *idp = (dtrace_provider_id_t)provider; 6958 6959 if (pops == &dtrace_provider_ops) { 6960 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6961 ASSERT(MUTEX_HELD(&dtrace_lock)); 6962 ASSERT(dtrace_anon.dta_enabling == NULL); 6963 6964 /* 6965 * We make sure that the DTrace provider is at the head of 6966 * the provider chain. 6967 */ 6968 provider->dtpv_next = dtrace_provider; 6969 dtrace_provider = provider; 6970 return (0); 6971 } 6972 6973 mutex_enter(&dtrace_provider_lock); 6974 mutex_enter(&dtrace_lock); 6975 6976 /* 6977 * If there is at least one provider registered, we'll add this 6978 * provider after the first provider. 6979 */ 6980 if (dtrace_provider != NULL) { 6981 provider->dtpv_next = dtrace_provider->dtpv_next; 6982 dtrace_provider->dtpv_next = provider; 6983 } else { 6984 dtrace_provider = provider; 6985 } 6986 6987 if (dtrace_retained != NULL) { 6988 dtrace_enabling_provide(provider); 6989 6990 /* 6991 * Now we need to call dtrace_enabling_matchall() -- which 6992 * will acquire cpu_lock and dtrace_lock. We therefore need 6993 * to drop all of our locks before calling into it... 6994 */ 6995 mutex_exit(&dtrace_lock); 6996 mutex_exit(&dtrace_provider_lock); 6997 dtrace_enabling_matchall(); 6998 6999 return (0); 7000 } 7001 7002 mutex_exit(&dtrace_lock); 7003 mutex_exit(&dtrace_provider_lock); 7004 7005 return (0); 7006 } 7007 7008 /* 7009 * Unregister the specified provider from the DTrace framework. This should 7010 * generally be called by DTrace providers in their detach(9E) entry point. 7011 */ 7012 int 7013 dtrace_unregister(dtrace_provider_id_t id) 7014 { 7015 dtrace_provider_t *old = (dtrace_provider_t *)id; 7016 dtrace_provider_t *prev = NULL; 7017 int i, self = 0; 7018 dtrace_probe_t *probe, *first = NULL; 7019 7020 if (old->dtpv_pops.dtps_enable == 7021 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 7022 /* 7023 * If DTrace itself is the provider, we're called with locks 7024 * already held. 7025 */ 7026 ASSERT(old == dtrace_provider); 7027 ASSERT(dtrace_devi != NULL); 7028 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7029 ASSERT(MUTEX_HELD(&dtrace_lock)); 7030 self = 1; 7031 7032 if (dtrace_provider->dtpv_next != NULL) { 7033 /* 7034 * There's another provider here; return failure. 7035 */ 7036 return (EBUSY); 7037 } 7038 } else { 7039 mutex_enter(&dtrace_provider_lock); 7040 mutex_enter(&mod_lock); 7041 mutex_enter(&dtrace_lock); 7042 } 7043 7044 /* 7045 * If anyone has /dev/dtrace open, or if there are anonymous enabled 7046 * probes, we refuse to let providers slither away, unless this 7047 * provider has already been explicitly invalidated. 7048 */ 7049 if (!old->dtpv_defunct && 7050 (dtrace_opens || (dtrace_anon.dta_state != NULL && 7051 dtrace_anon.dta_state->dts_necbs > 0))) { 7052 if (!self) { 7053 mutex_exit(&dtrace_lock); 7054 mutex_exit(&mod_lock); 7055 mutex_exit(&dtrace_provider_lock); 7056 } 7057 return (EBUSY); 7058 } 7059 7060 /* 7061 * Attempt to destroy the probes associated with this provider. 7062 */ 7063 for (i = 0; i < dtrace_nprobes; i++) { 7064 if ((probe = dtrace_probes[i]) == NULL) 7065 continue; 7066 7067 if (probe->dtpr_provider != old) 7068 continue; 7069 7070 if (probe->dtpr_ecb == NULL) 7071 continue; 7072 7073 /* 7074 * We have at least one ECB; we can't remove this provider. 7075 */ 7076 if (!self) { 7077 mutex_exit(&dtrace_lock); 7078 mutex_exit(&mod_lock); 7079 mutex_exit(&dtrace_provider_lock); 7080 } 7081 return (EBUSY); 7082 } 7083 7084 /* 7085 * All of the probes for this provider are disabled; we can safely 7086 * remove all of them from their hash chains and from the probe array. 7087 */ 7088 for (i = 0; i < dtrace_nprobes; i++) { 7089 if ((probe = dtrace_probes[i]) == NULL) 7090 continue; 7091 7092 if (probe->dtpr_provider != old) 7093 continue; 7094 7095 dtrace_probes[i] = NULL; 7096 7097 dtrace_hash_remove(dtrace_bymod, probe); 7098 dtrace_hash_remove(dtrace_byfunc, probe); 7099 dtrace_hash_remove(dtrace_byname, probe); 7100 7101 if (first == NULL) { 7102 first = probe; 7103 probe->dtpr_nextmod = NULL; 7104 } else { 7105 probe->dtpr_nextmod = first; 7106 first = probe; 7107 } 7108 } 7109 7110 /* 7111 * The provider's probes have been removed from the hash chains and 7112 * from the probe array. Now issue a dtrace_sync() to be sure that 7113 * everyone has cleared out from any probe array processing. 7114 */ 7115 dtrace_sync(); 7116 7117 for (probe = first; probe != NULL; probe = first) { 7118 first = probe->dtpr_nextmod; 7119 7120 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 7121 probe->dtpr_arg); 7122 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7123 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7124 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7125 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 7126 kmem_free(probe, sizeof (dtrace_probe_t)); 7127 } 7128 7129 if ((prev = dtrace_provider) == old) { 7130 ASSERT(self || dtrace_devi == NULL); 7131 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 7132 dtrace_provider = old->dtpv_next; 7133 } else { 7134 while (prev != NULL && prev->dtpv_next != old) 7135 prev = prev->dtpv_next; 7136 7137 if (prev == NULL) { 7138 panic("attempt to unregister non-existent " 7139 "dtrace provider %p\n", (void *)id); 7140 } 7141 7142 prev->dtpv_next = old->dtpv_next; 7143 } 7144 7145 if (!self) { 7146 mutex_exit(&dtrace_lock); 7147 mutex_exit(&mod_lock); 7148 mutex_exit(&dtrace_provider_lock); 7149 } 7150 7151 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 7152 kmem_free(old, sizeof (dtrace_provider_t)); 7153 7154 return (0); 7155 } 7156 7157 /* 7158 * Invalidate the specified provider. All subsequent probe lookups for the 7159 * specified provider will fail, but its probes will not be removed. 7160 */ 7161 void 7162 dtrace_invalidate(dtrace_provider_id_t id) 7163 { 7164 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7165 7166 ASSERT(pvp->dtpv_pops.dtps_enable != 7167 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7168 7169 mutex_enter(&dtrace_provider_lock); 7170 mutex_enter(&dtrace_lock); 7171 7172 pvp->dtpv_defunct = 1; 7173 7174 mutex_exit(&dtrace_lock); 7175 mutex_exit(&dtrace_provider_lock); 7176 } 7177 7178 /* 7179 * Indicate whether or not DTrace has attached. 7180 */ 7181 int 7182 dtrace_attached(void) 7183 { 7184 /* 7185 * dtrace_provider will be non-NULL iff the DTrace driver has 7186 * attached. (It's non-NULL because DTrace is always itself a 7187 * provider.) 7188 */ 7189 return (dtrace_provider != NULL); 7190 } 7191 7192 /* 7193 * Remove all the unenabled probes for the given provider. This function is 7194 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7195 * -- just as many of its associated probes as it can. 7196 */ 7197 int 7198 dtrace_condense(dtrace_provider_id_t id) 7199 { 7200 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7201 int i; 7202 dtrace_probe_t *probe; 7203 7204 /* 7205 * Make sure this isn't the dtrace provider itself. 7206 */ 7207 ASSERT(prov->dtpv_pops.dtps_enable != 7208 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7209 7210 mutex_enter(&dtrace_provider_lock); 7211 mutex_enter(&dtrace_lock); 7212 7213 /* 7214 * Attempt to destroy the probes associated with this provider. 7215 */ 7216 for (i = 0; i < dtrace_nprobes; i++) { 7217 if ((probe = dtrace_probes[i]) == NULL) 7218 continue; 7219 7220 if (probe->dtpr_provider != prov) 7221 continue; 7222 7223 if (probe->dtpr_ecb != NULL) 7224 continue; 7225 7226 dtrace_probes[i] = NULL; 7227 7228 dtrace_hash_remove(dtrace_bymod, probe); 7229 dtrace_hash_remove(dtrace_byfunc, probe); 7230 dtrace_hash_remove(dtrace_byname, probe); 7231 7232 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7233 probe->dtpr_arg); 7234 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7235 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7236 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7237 kmem_free(probe, sizeof (dtrace_probe_t)); 7238 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7239 } 7240 7241 mutex_exit(&dtrace_lock); 7242 mutex_exit(&dtrace_provider_lock); 7243 7244 return (0); 7245 } 7246 7247 /* 7248 * DTrace Probe Management Functions 7249 * 7250 * The functions in this section perform the DTrace probe management, 7251 * including functions to create probes, look-up probes, and call into the 7252 * providers to request that probes be provided. Some of these functions are 7253 * in the Provider-to-Framework API; these functions can be identified by the 7254 * fact that they are not declared "static". 7255 */ 7256 7257 /* 7258 * Create a probe with the specified module name, function name, and name. 7259 */ 7260 dtrace_id_t 7261 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7262 const char *func, const char *name, int aframes, void *arg) 7263 { 7264 dtrace_probe_t *probe, **probes; 7265 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7266 dtrace_id_t id; 7267 7268 if (provider == dtrace_provider) { 7269 ASSERT(MUTEX_HELD(&dtrace_lock)); 7270 } else { 7271 mutex_enter(&dtrace_lock); 7272 } 7273 7274 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7275 VM_BESTFIT | VM_SLEEP); 7276 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7277 7278 probe->dtpr_id = id; 7279 probe->dtpr_gen = dtrace_probegen++; 7280 probe->dtpr_mod = dtrace_strdup(mod); 7281 probe->dtpr_func = dtrace_strdup(func); 7282 probe->dtpr_name = dtrace_strdup(name); 7283 probe->dtpr_arg = arg; 7284 probe->dtpr_aframes = aframes; 7285 probe->dtpr_provider = provider; 7286 7287 dtrace_hash_add(dtrace_bymod, probe); 7288 dtrace_hash_add(dtrace_byfunc, probe); 7289 dtrace_hash_add(dtrace_byname, probe); 7290 7291 if (id - 1 >= dtrace_nprobes) { 7292 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7293 size_t nsize = osize << 1; 7294 7295 if (nsize == 0) { 7296 ASSERT(osize == 0); 7297 ASSERT(dtrace_probes == NULL); 7298 nsize = sizeof (dtrace_probe_t *); 7299 } 7300 7301 probes = kmem_zalloc(nsize, KM_SLEEP); 7302 7303 if (dtrace_probes == NULL) { 7304 ASSERT(osize == 0); 7305 dtrace_probes = probes; 7306 dtrace_nprobes = 1; 7307 } else { 7308 dtrace_probe_t **oprobes = dtrace_probes; 7309 7310 bcopy(oprobes, probes, osize); 7311 dtrace_membar_producer(); 7312 dtrace_probes = probes; 7313 7314 dtrace_sync(); 7315 7316 /* 7317 * All CPUs are now seeing the new probes array; we can 7318 * safely free the old array. 7319 */ 7320 kmem_free(oprobes, osize); 7321 dtrace_nprobes <<= 1; 7322 } 7323 7324 ASSERT(id - 1 < dtrace_nprobes); 7325 } 7326 7327 ASSERT(dtrace_probes[id - 1] == NULL); 7328 dtrace_probes[id - 1] = probe; 7329 7330 if (provider != dtrace_provider) 7331 mutex_exit(&dtrace_lock); 7332 7333 return (id); 7334 } 7335 7336 static dtrace_probe_t * 7337 dtrace_probe_lookup_id(dtrace_id_t id) 7338 { 7339 ASSERT(MUTEX_HELD(&dtrace_lock)); 7340 7341 if (id == 0 || id > dtrace_nprobes) 7342 return (NULL); 7343 7344 return (dtrace_probes[id - 1]); 7345 } 7346 7347 static int 7348 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7349 { 7350 *((dtrace_id_t *)arg) = probe->dtpr_id; 7351 7352 return (DTRACE_MATCH_DONE); 7353 } 7354 7355 /* 7356 * Look up a probe based on provider and one or more of module name, function 7357 * name and probe name. 7358 */ 7359 dtrace_id_t 7360 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7361 const char *func, const char *name) 7362 { 7363 dtrace_probekey_t pkey; 7364 dtrace_id_t id; 7365 int match; 7366 7367 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7368 pkey.dtpk_pmatch = &dtrace_match_string; 7369 pkey.dtpk_mod = mod; 7370 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7371 pkey.dtpk_func = func; 7372 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7373 pkey.dtpk_name = name; 7374 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7375 pkey.dtpk_id = DTRACE_IDNONE; 7376 7377 mutex_enter(&dtrace_lock); 7378 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7379 dtrace_probe_lookup_match, &id); 7380 mutex_exit(&dtrace_lock); 7381 7382 ASSERT(match == 1 || match == 0); 7383 return (match ? id : 0); 7384 } 7385 7386 /* 7387 * Returns the probe argument associated with the specified probe. 7388 */ 7389 void * 7390 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7391 { 7392 dtrace_probe_t *probe; 7393 void *rval = NULL; 7394 7395 mutex_enter(&dtrace_lock); 7396 7397 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7398 probe->dtpr_provider == (dtrace_provider_t *)id) 7399 rval = probe->dtpr_arg; 7400 7401 mutex_exit(&dtrace_lock); 7402 7403 return (rval); 7404 } 7405 7406 /* 7407 * Copy a probe into a probe description. 7408 */ 7409 static void 7410 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7411 { 7412 bzero(pdp, sizeof (dtrace_probedesc_t)); 7413 pdp->dtpd_id = prp->dtpr_id; 7414 7415 (void) strncpy(pdp->dtpd_provider, 7416 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7417 7418 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7419 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7420 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7421 } 7422 7423 /* 7424 * Called to indicate that a probe -- or probes -- should be provided by a 7425 * specfied provider. If the specified description is NULL, the provider will 7426 * be told to provide all of its probes. (This is done whenever a new 7427 * consumer comes along, or whenever a retained enabling is to be matched.) If 7428 * the specified description is non-NULL, the provider is given the 7429 * opportunity to dynamically provide the specified probe, allowing providers 7430 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7431 * probes.) If the provider is NULL, the operations will be applied to all 7432 * providers; if the provider is non-NULL the operations will only be applied 7433 * to the specified provider. The dtrace_provider_lock must be held, and the 7434 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7435 * will need to grab the dtrace_lock when it reenters the framework through 7436 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7437 */ 7438 static void 7439 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7440 { 7441 struct modctl *ctl; 7442 int all = 0; 7443 7444 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7445 7446 if (prv == NULL) { 7447 all = 1; 7448 prv = dtrace_provider; 7449 } 7450 7451 do { 7452 /* 7453 * First, call the blanket provide operation. 7454 */ 7455 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7456 7457 /* 7458 * Now call the per-module provide operation. We will grab 7459 * mod_lock to prevent the list from being modified. Note 7460 * that this also prevents the mod_busy bits from changing. 7461 * (mod_busy can only be changed with mod_lock held.) 7462 */ 7463 mutex_enter(&mod_lock); 7464 7465 ctl = &modules; 7466 do { 7467 if (ctl->mod_busy || ctl->mod_mp == NULL) 7468 continue; 7469 7470 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7471 7472 } while ((ctl = ctl->mod_next) != &modules); 7473 7474 mutex_exit(&mod_lock); 7475 } while (all && (prv = prv->dtpv_next) != NULL); 7476 } 7477 7478 /* 7479 * Iterate over each probe, and call the Framework-to-Provider API function 7480 * denoted by offs. 7481 */ 7482 static void 7483 dtrace_probe_foreach(uintptr_t offs) 7484 { 7485 dtrace_provider_t *prov; 7486 void (*func)(void *, dtrace_id_t, void *); 7487 dtrace_probe_t *probe; 7488 dtrace_icookie_t cookie; 7489 int i; 7490 7491 /* 7492 * We disable interrupts to walk through the probe array. This is 7493 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7494 * won't see stale data. 7495 */ 7496 cookie = dtrace_interrupt_disable(); 7497 7498 for (i = 0; i < dtrace_nprobes; i++) { 7499 if ((probe = dtrace_probes[i]) == NULL) 7500 continue; 7501 7502 if (probe->dtpr_ecb == NULL) { 7503 /* 7504 * This probe isn't enabled -- don't call the function. 7505 */ 7506 continue; 7507 } 7508 7509 prov = probe->dtpr_provider; 7510 func = *((void(**)(void *, dtrace_id_t, void *)) 7511 ((uintptr_t)&prov->dtpv_pops + offs)); 7512 7513 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7514 } 7515 7516 dtrace_interrupt_enable(cookie); 7517 } 7518 7519 static int 7520 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7521 { 7522 dtrace_probekey_t pkey; 7523 uint32_t priv; 7524 uid_t uid; 7525 zoneid_t zoneid; 7526 7527 ASSERT(MUTEX_HELD(&dtrace_lock)); 7528 dtrace_ecb_create_cache = NULL; 7529 7530 if (desc == NULL) { 7531 /* 7532 * If we're passed a NULL description, we're being asked to 7533 * create an ECB with a NULL probe. 7534 */ 7535 (void) dtrace_ecb_create_enable(NULL, enab); 7536 return (0); 7537 } 7538 7539 dtrace_probekey(desc, &pkey); 7540 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7541 &priv, &uid, &zoneid); 7542 7543 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7544 enab)); 7545 } 7546 7547 /* 7548 * DTrace Helper Provider Functions 7549 */ 7550 static void 7551 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7552 { 7553 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7554 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7555 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7556 } 7557 7558 static void 7559 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7560 const dof_provider_t *dofprov, char *strtab) 7561 { 7562 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7563 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7564 dofprov->dofpv_provattr); 7565 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7566 dofprov->dofpv_modattr); 7567 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7568 dofprov->dofpv_funcattr); 7569 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7570 dofprov->dofpv_nameattr); 7571 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7572 dofprov->dofpv_argsattr); 7573 } 7574 7575 static void 7576 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7577 { 7578 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7579 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7580 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7581 dof_provider_t *provider; 7582 dof_probe_t *probe; 7583 uint32_t *off, *enoff; 7584 uint8_t *arg; 7585 char *strtab; 7586 uint_t i, nprobes; 7587 dtrace_helper_provdesc_t dhpv; 7588 dtrace_helper_probedesc_t dhpb; 7589 dtrace_meta_t *meta = dtrace_meta_pid; 7590 dtrace_mops_t *mops = &meta->dtm_mops; 7591 void *parg; 7592 7593 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7594 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7595 provider->dofpv_strtab * dof->dofh_secsize); 7596 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7597 provider->dofpv_probes * dof->dofh_secsize); 7598 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7599 provider->dofpv_prargs * dof->dofh_secsize); 7600 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7601 provider->dofpv_proffs * dof->dofh_secsize); 7602 7603 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7604 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7605 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7606 enoff = NULL; 7607 7608 /* 7609 * See dtrace_helper_provider_validate(). 7610 */ 7611 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7612 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7613 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7614 provider->dofpv_prenoffs * dof->dofh_secsize); 7615 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7616 } 7617 7618 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7619 7620 /* 7621 * Create the provider. 7622 */ 7623 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7624 7625 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7626 return; 7627 7628 meta->dtm_count++; 7629 7630 /* 7631 * Create the probes. 7632 */ 7633 for (i = 0; i < nprobes; i++) { 7634 probe = (dof_probe_t *)(uintptr_t)(daddr + 7635 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7636 7637 dhpb.dthpb_mod = dhp->dofhp_mod; 7638 dhpb.dthpb_func = strtab + probe->dofpr_func; 7639 dhpb.dthpb_name = strtab + probe->dofpr_name; 7640 dhpb.dthpb_base = probe->dofpr_addr; 7641 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7642 dhpb.dthpb_noffs = probe->dofpr_noffs; 7643 if (enoff != NULL) { 7644 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7645 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7646 } else { 7647 dhpb.dthpb_enoffs = NULL; 7648 dhpb.dthpb_nenoffs = 0; 7649 } 7650 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7651 dhpb.dthpb_nargc = probe->dofpr_nargc; 7652 dhpb.dthpb_xargc = probe->dofpr_xargc; 7653 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7654 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7655 7656 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7657 } 7658 } 7659 7660 static void 7661 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7662 { 7663 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7664 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7665 int i; 7666 7667 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7668 7669 for (i = 0; i < dof->dofh_secnum; i++) { 7670 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7671 dof->dofh_secoff + i * dof->dofh_secsize); 7672 7673 if (sec->dofs_type != DOF_SECT_PROVIDER) 7674 continue; 7675 7676 dtrace_helper_provide_one(dhp, sec, pid); 7677 } 7678 7679 /* 7680 * We may have just created probes, so we must now rematch against 7681 * any retained enablings. Note that this call will acquire both 7682 * cpu_lock and dtrace_lock; the fact that we are holding 7683 * dtrace_meta_lock now is what defines the ordering with respect to 7684 * these three locks. 7685 */ 7686 dtrace_enabling_matchall(); 7687 } 7688 7689 static void 7690 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7691 { 7692 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7693 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7694 dof_sec_t *str_sec; 7695 dof_provider_t *provider; 7696 char *strtab; 7697 dtrace_helper_provdesc_t dhpv; 7698 dtrace_meta_t *meta = dtrace_meta_pid; 7699 dtrace_mops_t *mops = &meta->dtm_mops; 7700 7701 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7702 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7703 provider->dofpv_strtab * dof->dofh_secsize); 7704 7705 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7706 7707 /* 7708 * Create the provider. 7709 */ 7710 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7711 7712 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7713 7714 meta->dtm_count--; 7715 } 7716 7717 static void 7718 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7719 { 7720 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7721 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7722 int i; 7723 7724 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7725 7726 for (i = 0; i < dof->dofh_secnum; i++) { 7727 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7728 dof->dofh_secoff + i * dof->dofh_secsize); 7729 7730 if (sec->dofs_type != DOF_SECT_PROVIDER) 7731 continue; 7732 7733 dtrace_helper_provider_remove_one(dhp, sec, pid); 7734 } 7735 } 7736 7737 /* 7738 * DTrace Meta Provider-to-Framework API Functions 7739 * 7740 * These functions implement the Meta Provider-to-Framework API, as described 7741 * in <sys/dtrace.h>. 7742 */ 7743 int 7744 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 7745 dtrace_meta_provider_id_t *idp) 7746 { 7747 dtrace_meta_t *meta; 7748 dtrace_helpers_t *help, *next; 7749 int i; 7750 7751 *idp = DTRACE_METAPROVNONE; 7752 7753 /* 7754 * We strictly don't need the name, but we hold onto it for 7755 * debuggability. All hail error queues! 7756 */ 7757 if (name == NULL) { 7758 cmn_err(CE_WARN, "failed to register meta-provider: " 7759 "invalid name"); 7760 return (EINVAL); 7761 } 7762 7763 if (mops == NULL || 7764 mops->dtms_create_probe == NULL || 7765 mops->dtms_provide_pid == NULL || 7766 mops->dtms_remove_pid == NULL) { 7767 cmn_err(CE_WARN, "failed to register meta-register %s: " 7768 "invalid ops", name); 7769 return (EINVAL); 7770 } 7771 7772 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 7773 meta->dtm_mops = *mops; 7774 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7775 (void) strcpy(meta->dtm_name, name); 7776 meta->dtm_arg = arg; 7777 7778 mutex_enter(&dtrace_meta_lock); 7779 mutex_enter(&dtrace_lock); 7780 7781 if (dtrace_meta_pid != NULL) { 7782 mutex_exit(&dtrace_lock); 7783 mutex_exit(&dtrace_meta_lock); 7784 cmn_err(CE_WARN, "failed to register meta-register %s: " 7785 "user-land meta-provider exists", name); 7786 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 7787 kmem_free(meta, sizeof (dtrace_meta_t)); 7788 return (EINVAL); 7789 } 7790 7791 dtrace_meta_pid = meta; 7792 *idp = (dtrace_meta_provider_id_t)meta; 7793 7794 /* 7795 * If there are providers and probes ready to go, pass them 7796 * off to the new meta provider now. 7797 */ 7798 7799 help = dtrace_deferred_pid; 7800 dtrace_deferred_pid = NULL; 7801 7802 mutex_exit(&dtrace_lock); 7803 7804 while (help != NULL) { 7805 for (i = 0; i < help->dthps_nprovs; i++) { 7806 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 7807 help->dthps_pid); 7808 } 7809 7810 next = help->dthps_next; 7811 help->dthps_next = NULL; 7812 help->dthps_prev = NULL; 7813 help->dthps_deferred = 0; 7814 help = next; 7815 } 7816 7817 mutex_exit(&dtrace_meta_lock); 7818 7819 return (0); 7820 } 7821 7822 int 7823 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 7824 { 7825 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 7826 7827 mutex_enter(&dtrace_meta_lock); 7828 mutex_enter(&dtrace_lock); 7829 7830 if (old == dtrace_meta_pid) { 7831 pp = &dtrace_meta_pid; 7832 } else { 7833 panic("attempt to unregister non-existent " 7834 "dtrace meta-provider %p\n", (void *)old); 7835 } 7836 7837 if (old->dtm_count != 0) { 7838 mutex_exit(&dtrace_lock); 7839 mutex_exit(&dtrace_meta_lock); 7840 return (EBUSY); 7841 } 7842 7843 *pp = NULL; 7844 7845 mutex_exit(&dtrace_lock); 7846 mutex_exit(&dtrace_meta_lock); 7847 7848 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 7849 kmem_free(old, sizeof (dtrace_meta_t)); 7850 7851 return (0); 7852 } 7853 7854 7855 /* 7856 * DTrace DIF Object Functions 7857 */ 7858 static int 7859 dtrace_difo_err(uint_t pc, const char *format, ...) 7860 { 7861 if (dtrace_err_verbose) { 7862 va_list alist; 7863 7864 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 7865 va_start(alist, format); 7866 (void) vuprintf(format, alist); 7867 va_end(alist); 7868 } 7869 7870 #ifdef DTRACE_ERRDEBUG 7871 dtrace_errdebug(format); 7872 #endif 7873 return (1); 7874 } 7875 7876 /* 7877 * Validate a DTrace DIF object by checking the IR instructions. The following 7878 * rules are currently enforced by dtrace_difo_validate(): 7879 * 7880 * 1. Each instruction must have a valid opcode 7881 * 2. Each register, string, variable, or subroutine reference must be valid 7882 * 3. No instruction can modify register %r0 (must be zero) 7883 * 4. All instruction reserved bits must be set to zero 7884 * 5. The last instruction must be a "ret" instruction 7885 * 6. All branch targets must reference a valid instruction _after_ the branch 7886 */ 7887 static int 7888 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 7889 cred_t *cr) 7890 { 7891 int err = 0, i; 7892 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 7893 int kcheckload; 7894 uint_t pc; 7895 7896 kcheckload = cr == NULL || 7897 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 7898 7899 dp->dtdo_destructive = 0; 7900 7901 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 7902 dif_instr_t instr = dp->dtdo_buf[pc]; 7903 7904 uint_t r1 = DIF_INSTR_R1(instr); 7905 uint_t r2 = DIF_INSTR_R2(instr); 7906 uint_t rd = DIF_INSTR_RD(instr); 7907 uint_t rs = DIF_INSTR_RS(instr); 7908 uint_t label = DIF_INSTR_LABEL(instr); 7909 uint_t v = DIF_INSTR_VAR(instr); 7910 uint_t subr = DIF_INSTR_SUBR(instr); 7911 uint_t type = DIF_INSTR_TYPE(instr); 7912 uint_t op = DIF_INSTR_OP(instr); 7913 7914 switch (op) { 7915 case DIF_OP_OR: 7916 case DIF_OP_XOR: 7917 case DIF_OP_AND: 7918 case DIF_OP_SLL: 7919 case DIF_OP_SRL: 7920 case DIF_OP_SRA: 7921 case DIF_OP_SUB: 7922 case DIF_OP_ADD: 7923 case DIF_OP_MUL: 7924 case DIF_OP_SDIV: 7925 case DIF_OP_UDIV: 7926 case DIF_OP_SREM: 7927 case DIF_OP_UREM: 7928 case DIF_OP_COPYS: 7929 if (r1 >= nregs) 7930 err += efunc(pc, "invalid register %u\n", r1); 7931 if (r2 >= nregs) 7932 err += efunc(pc, "invalid register %u\n", r2); 7933 if (rd >= nregs) 7934 err += efunc(pc, "invalid register %u\n", rd); 7935 if (rd == 0) 7936 err += efunc(pc, "cannot write to %r0\n"); 7937 break; 7938 case DIF_OP_NOT: 7939 case DIF_OP_MOV: 7940 case DIF_OP_ALLOCS: 7941 if (r1 >= nregs) 7942 err += efunc(pc, "invalid register %u\n", r1); 7943 if (r2 != 0) 7944 err += efunc(pc, "non-zero reserved bits\n"); 7945 if (rd >= nregs) 7946 err += efunc(pc, "invalid register %u\n", rd); 7947 if (rd == 0) 7948 err += efunc(pc, "cannot write to %r0\n"); 7949 break; 7950 case DIF_OP_LDSB: 7951 case DIF_OP_LDSH: 7952 case DIF_OP_LDSW: 7953 case DIF_OP_LDUB: 7954 case DIF_OP_LDUH: 7955 case DIF_OP_LDUW: 7956 case DIF_OP_LDX: 7957 if (r1 >= nregs) 7958 err += efunc(pc, "invalid register %u\n", r1); 7959 if (r2 != 0) 7960 err += efunc(pc, "non-zero reserved bits\n"); 7961 if (rd >= nregs) 7962 err += efunc(pc, "invalid register %u\n", rd); 7963 if (rd == 0) 7964 err += efunc(pc, "cannot write to %r0\n"); 7965 if (kcheckload) 7966 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 7967 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 7968 break; 7969 case DIF_OP_RLDSB: 7970 case DIF_OP_RLDSH: 7971 case DIF_OP_RLDSW: 7972 case DIF_OP_RLDUB: 7973 case DIF_OP_RLDUH: 7974 case DIF_OP_RLDUW: 7975 case DIF_OP_RLDX: 7976 if (r1 >= nregs) 7977 err += efunc(pc, "invalid register %u\n", r1); 7978 if (r2 != 0) 7979 err += efunc(pc, "non-zero reserved bits\n"); 7980 if (rd >= nregs) 7981 err += efunc(pc, "invalid register %u\n", rd); 7982 if (rd == 0) 7983 err += efunc(pc, "cannot write to %r0\n"); 7984 break; 7985 case DIF_OP_ULDSB: 7986 case DIF_OP_ULDSH: 7987 case DIF_OP_ULDSW: 7988 case DIF_OP_ULDUB: 7989 case DIF_OP_ULDUH: 7990 case DIF_OP_ULDUW: 7991 case DIF_OP_ULDX: 7992 if (r1 >= nregs) 7993 err += efunc(pc, "invalid register %u\n", r1); 7994 if (r2 != 0) 7995 err += efunc(pc, "non-zero reserved bits\n"); 7996 if (rd >= nregs) 7997 err += efunc(pc, "invalid register %u\n", rd); 7998 if (rd == 0) 7999 err += efunc(pc, "cannot write to %r0\n"); 8000 break; 8001 case DIF_OP_STB: 8002 case DIF_OP_STH: 8003 case DIF_OP_STW: 8004 case DIF_OP_STX: 8005 if (r1 >= nregs) 8006 err += efunc(pc, "invalid register %u\n", r1); 8007 if (r2 != 0) 8008 err += efunc(pc, "non-zero reserved bits\n"); 8009 if (rd >= nregs) 8010 err += efunc(pc, "invalid register %u\n", rd); 8011 if (rd == 0) 8012 err += efunc(pc, "cannot write to 0 address\n"); 8013 break; 8014 case DIF_OP_CMP: 8015 case DIF_OP_SCMP: 8016 if (r1 >= nregs) 8017 err += efunc(pc, "invalid register %u\n", r1); 8018 if (r2 >= nregs) 8019 err += efunc(pc, "invalid register %u\n", r2); 8020 if (rd != 0) 8021 err += efunc(pc, "non-zero reserved bits\n"); 8022 break; 8023 case DIF_OP_TST: 8024 if (r1 >= nregs) 8025 err += efunc(pc, "invalid register %u\n", r1); 8026 if (r2 != 0 || rd != 0) 8027 err += efunc(pc, "non-zero reserved bits\n"); 8028 break; 8029 case DIF_OP_BA: 8030 case DIF_OP_BE: 8031 case DIF_OP_BNE: 8032 case DIF_OP_BG: 8033 case DIF_OP_BGU: 8034 case DIF_OP_BGE: 8035 case DIF_OP_BGEU: 8036 case DIF_OP_BL: 8037 case DIF_OP_BLU: 8038 case DIF_OP_BLE: 8039 case DIF_OP_BLEU: 8040 if (label >= dp->dtdo_len) { 8041 err += efunc(pc, "invalid branch target %u\n", 8042 label); 8043 } 8044 if (label <= pc) { 8045 err += efunc(pc, "backward branch to %u\n", 8046 label); 8047 } 8048 break; 8049 case DIF_OP_RET: 8050 if (r1 != 0 || r2 != 0) 8051 err += efunc(pc, "non-zero reserved bits\n"); 8052 if (rd >= nregs) 8053 err += efunc(pc, "invalid register %u\n", rd); 8054 break; 8055 case DIF_OP_NOP: 8056 case DIF_OP_POPTS: 8057 case DIF_OP_FLUSHTS: 8058 if (r1 != 0 || r2 != 0 || rd != 0) 8059 err += efunc(pc, "non-zero reserved bits\n"); 8060 break; 8061 case DIF_OP_SETX: 8062 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 8063 err += efunc(pc, "invalid integer ref %u\n", 8064 DIF_INSTR_INTEGER(instr)); 8065 } 8066 if (rd >= nregs) 8067 err += efunc(pc, "invalid register %u\n", rd); 8068 if (rd == 0) 8069 err += efunc(pc, "cannot write to %r0\n"); 8070 break; 8071 case DIF_OP_SETS: 8072 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 8073 err += efunc(pc, "invalid string ref %u\n", 8074 DIF_INSTR_STRING(instr)); 8075 } 8076 if (rd >= nregs) 8077 err += efunc(pc, "invalid register %u\n", rd); 8078 if (rd == 0) 8079 err += efunc(pc, "cannot write to %r0\n"); 8080 break; 8081 case DIF_OP_LDGA: 8082 case DIF_OP_LDTA: 8083 if (r1 > DIF_VAR_ARRAY_MAX) 8084 err += efunc(pc, "invalid array %u\n", r1); 8085 if (r2 >= nregs) 8086 err += efunc(pc, "invalid register %u\n", r2); 8087 if (rd >= nregs) 8088 err += efunc(pc, "invalid register %u\n", rd); 8089 if (rd == 0) 8090 err += efunc(pc, "cannot write to %r0\n"); 8091 break; 8092 case DIF_OP_LDGS: 8093 case DIF_OP_LDTS: 8094 case DIF_OP_LDLS: 8095 case DIF_OP_LDGAA: 8096 case DIF_OP_LDTAA: 8097 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 8098 err += efunc(pc, "invalid variable %u\n", v); 8099 if (rd >= nregs) 8100 err += efunc(pc, "invalid register %u\n", rd); 8101 if (rd == 0) 8102 err += efunc(pc, "cannot write to %r0\n"); 8103 break; 8104 case DIF_OP_STGS: 8105 case DIF_OP_STTS: 8106 case DIF_OP_STLS: 8107 case DIF_OP_STGAA: 8108 case DIF_OP_STTAA: 8109 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 8110 err += efunc(pc, "invalid variable %u\n", v); 8111 if (rs >= nregs) 8112 err += efunc(pc, "invalid register %u\n", rd); 8113 break; 8114 case DIF_OP_CALL: 8115 if (subr > DIF_SUBR_MAX) 8116 err += efunc(pc, "invalid subr %u\n", subr); 8117 if (rd >= nregs) 8118 err += efunc(pc, "invalid register %u\n", rd); 8119 if (rd == 0) 8120 err += efunc(pc, "cannot write to %r0\n"); 8121 8122 if (subr == DIF_SUBR_COPYOUT || 8123 subr == DIF_SUBR_COPYOUTSTR) { 8124 dp->dtdo_destructive = 1; 8125 } 8126 break; 8127 case DIF_OP_PUSHTR: 8128 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 8129 err += efunc(pc, "invalid ref type %u\n", type); 8130 if (r2 >= nregs) 8131 err += efunc(pc, "invalid register %u\n", r2); 8132 if (rs >= nregs) 8133 err += efunc(pc, "invalid register %u\n", rs); 8134 break; 8135 case DIF_OP_PUSHTV: 8136 if (type != DIF_TYPE_CTF) 8137 err += efunc(pc, "invalid val type %u\n", type); 8138 if (r2 >= nregs) 8139 err += efunc(pc, "invalid register %u\n", r2); 8140 if (rs >= nregs) 8141 err += efunc(pc, "invalid register %u\n", rs); 8142 break; 8143 default: 8144 err += efunc(pc, "invalid opcode %u\n", 8145 DIF_INSTR_OP(instr)); 8146 } 8147 } 8148 8149 if (dp->dtdo_len != 0 && 8150 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 8151 err += efunc(dp->dtdo_len - 1, 8152 "expected 'ret' as last DIF instruction\n"); 8153 } 8154 8155 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 8156 /* 8157 * If we're not returning by reference, the size must be either 8158 * 0 or the size of one of the base types. 8159 */ 8160 switch (dp->dtdo_rtype.dtdt_size) { 8161 case 0: 8162 case sizeof (uint8_t): 8163 case sizeof (uint16_t): 8164 case sizeof (uint32_t): 8165 case sizeof (uint64_t): 8166 break; 8167 8168 default: 8169 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 8170 } 8171 } 8172 8173 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 8174 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 8175 dtrace_diftype_t *vt, *et; 8176 uint_t id, ndx; 8177 8178 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8179 v->dtdv_scope != DIFV_SCOPE_THREAD && 8180 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8181 err += efunc(i, "unrecognized variable scope %d\n", 8182 v->dtdv_scope); 8183 break; 8184 } 8185 8186 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8187 v->dtdv_kind != DIFV_KIND_SCALAR) { 8188 err += efunc(i, "unrecognized variable type %d\n", 8189 v->dtdv_kind); 8190 break; 8191 } 8192 8193 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8194 err += efunc(i, "%d exceeds variable id limit\n", id); 8195 break; 8196 } 8197 8198 if (id < DIF_VAR_OTHER_UBASE) 8199 continue; 8200 8201 /* 8202 * For user-defined variables, we need to check that this 8203 * definition is identical to any previous definition that we 8204 * encountered. 8205 */ 8206 ndx = id - DIF_VAR_OTHER_UBASE; 8207 8208 switch (v->dtdv_scope) { 8209 case DIFV_SCOPE_GLOBAL: 8210 if (ndx < vstate->dtvs_nglobals) { 8211 dtrace_statvar_t *svar; 8212 8213 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8214 existing = &svar->dtsv_var; 8215 } 8216 8217 break; 8218 8219 case DIFV_SCOPE_THREAD: 8220 if (ndx < vstate->dtvs_ntlocals) 8221 existing = &vstate->dtvs_tlocals[ndx]; 8222 break; 8223 8224 case DIFV_SCOPE_LOCAL: 8225 if (ndx < vstate->dtvs_nlocals) { 8226 dtrace_statvar_t *svar; 8227 8228 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8229 existing = &svar->dtsv_var; 8230 } 8231 8232 break; 8233 } 8234 8235 vt = &v->dtdv_type; 8236 8237 if (vt->dtdt_flags & DIF_TF_BYREF) { 8238 if (vt->dtdt_size == 0) { 8239 err += efunc(i, "zero-sized variable\n"); 8240 break; 8241 } 8242 8243 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8244 vt->dtdt_size > dtrace_global_maxsize) { 8245 err += efunc(i, "oversized by-ref global\n"); 8246 break; 8247 } 8248 } 8249 8250 if (existing == NULL || existing->dtdv_id == 0) 8251 continue; 8252 8253 ASSERT(existing->dtdv_id == v->dtdv_id); 8254 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8255 8256 if (existing->dtdv_kind != v->dtdv_kind) 8257 err += efunc(i, "%d changed variable kind\n", id); 8258 8259 et = &existing->dtdv_type; 8260 8261 if (vt->dtdt_flags != et->dtdt_flags) { 8262 err += efunc(i, "%d changed variable type flags\n", id); 8263 break; 8264 } 8265 8266 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8267 err += efunc(i, "%d changed variable type size\n", id); 8268 break; 8269 } 8270 } 8271 8272 return (err); 8273 } 8274 8275 /* 8276 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8277 * are much more constrained than normal DIFOs. Specifically, they may 8278 * not: 8279 * 8280 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8281 * miscellaneous string routines 8282 * 2. Access DTrace variables other than the args[] array, and the 8283 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8284 * 3. Have thread-local variables. 8285 * 4. Have dynamic variables. 8286 */ 8287 static int 8288 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8289 { 8290 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8291 int err = 0; 8292 uint_t pc; 8293 8294 for (pc = 0; pc < dp->dtdo_len; pc++) { 8295 dif_instr_t instr = dp->dtdo_buf[pc]; 8296 8297 uint_t v = DIF_INSTR_VAR(instr); 8298 uint_t subr = DIF_INSTR_SUBR(instr); 8299 uint_t op = DIF_INSTR_OP(instr); 8300 8301 switch (op) { 8302 case DIF_OP_OR: 8303 case DIF_OP_XOR: 8304 case DIF_OP_AND: 8305 case DIF_OP_SLL: 8306 case DIF_OP_SRL: 8307 case DIF_OP_SRA: 8308 case DIF_OP_SUB: 8309 case DIF_OP_ADD: 8310 case DIF_OP_MUL: 8311 case DIF_OP_SDIV: 8312 case DIF_OP_UDIV: 8313 case DIF_OP_SREM: 8314 case DIF_OP_UREM: 8315 case DIF_OP_COPYS: 8316 case DIF_OP_NOT: 8317 case DIF_OP_MOV: 8318 case DIF_OP_RLDSB: 8319 case DIF_OP_RLDSH: 8320 case DIF_OP_RLDSW: 8321 case DIF_OP_RLDUB: 8322 case DIF_OP_RLDUH: 8323 case DIF_OP_RLDUW: 8324 case DIF_OP_RLDX: 8325 case DIF_OP_ULDSB: 8326 case DIF_OP_ULDSH: 8327 case DIF_OP_ULDSW: 8328 case DIF_OP_ULDUB: 8329 case DIF_OP_ULDUH: 8330 case DIF_OP_ULDUW: 8331 case DIF_OP_ULDX: 8332 case DIF_OP_STB: 8333 case DIF_OP_STH: 8334 case DIF_OP_STW: 8335 case DIF_OP_STX: 8336 case DIF_OP_ALLOCS: 8337 case DIF_OP_CMP: 8338 case DIF_OP_SCMP: 8339 case DIF_OP_TST: 8340 case DIF_OP_BA: 8341 case DIF_OP_BE: 8342 case DIF_OP_BNE: 8343 case DIF_OP_BG: 8344 case DIF_OP_BGU: 8345 case DIF_OP_BGE: 8346 case DIF_OP_BGEU: 8347 case DIF_OP_BL: 8348 case DIF_OP_BLU: 8349 case DIF_OP_BLE: 8350 case DIF_OP_BLEU: 8351 case DIF_OP_RET: 8352 case DIF_OP_NOP: 8353 case DIF_OP_POPTS: 8354 case DIF_OP_FLUSHTS: 8355 case DIF_OP_SETX: 8356 case DIF_OP_SETS: 8357 case DIF_OP_LDGA: 8358 case DIF_OP_LDLS: 8359 case DIF_OP_STGS: 8360 case DIF_OP_STLS: 8361 case DIF_OP_PUSHTR: 8362 case DIF_OP_PUSHTV: 8363 break; 8364 8365 case DIF_OP_LDGS: 8366 if (v >= DIF_VAR_OTHER_UBASE) 8367 break; 8368 8369 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8370 break; 8371 8372 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8373 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8374 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8375 v == DIF_VAR_UID || v == DIF_VAR_GID) 8376 break; 8377 8378 err += efunc(pc, "illegal variable %u\n", v); 8379 break; 8380 8381 case DIF_OP_LDTA: 8382 case DIF_OP_LDTS: 8383 case DIF_OP_LDGAA: 8384 case DIF_OP_LDTAA: 8385 err += efunc(pc, "illegal dynamic variable load\n"); 8386 break; 8387 8388 case DIF_OP_STTS: 8389 case DIF_OP_STGAA: 8390 case DIF_OP_STTAA: 8391 err += efunc(pc, "illegal dynamic variable store\n"); 8392 break; 8393 8394 case DIF_OP_CALL: 8395 if (subr == DIF_SUBR_ALLOCA || 8396 subr == DIF_SUBR_BCOPY || 8397 subr == DIF_SUBR_COPYIN || 8398 subr == DIF_SUBR_COPYINTO || 8399 subr == DIF_SUBR_COPYINSTR || 8400 subr == DIF_SUBR_INDEX || 8401 subr == DIF_SUBR_INET_NTOA || 8402 subr == DIF_SUBR_INET_NTOA6 || 8403 subr == DIF_SUBR_INET_NTOP || 8404 subr == DIF_SUBR_LLTOSTR || 8405 subr == DIF_SUBR_RINDEX || 8406 subr == DIF_SUBR_STRCHR || 8407 subr == DIF_SUBR_STRJOIN || 8408 subr == DIF_SUBR_STRRCHR || 8409 subr == DIF_SUBR_STRSTR || 8410 subr == DIF_SUBR_HTONS || 8411 subr == DIF_SUBR_HTONL || 8412 subr == DIF_SUBR_HTONLL || 8413 subr == DIF_SUBR_NTOHS || 8414 subr == DIF_SUBR_NTOHL || 8415 subr == DIF_SUBR_NTOHLL) 8416 break; 8417 8418 err += efunc(pc, "invalid subr %u\n", subr); 8419 break; 8420 8421 default: 8422 err += efunc(pc, "invalid opcode %u\n", 8423 DIF_INSTR_OP(instr)); 8424 } 8425 } 8426 8427 return (err); 8428 } 8429 8430 /* 8431 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8432 * basis; 0 if not. 8433 */ 8434 static int 8435 dtrace_difo_cacheable(dtrace_difo_t *dp) 8436 { 8437 int i; 8438 8439 if (dp == NULL) 8440 return (0); 8441 8442 for (i = 0; i < dp->dtdo_varlen; i++) { 8443 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8444 8445 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8446 continue; 8447 8448 switch (v->dtdv_id) { 8449 case DIF_VAR_CURTHREAD: 8450 case DIF_VAR_PID: 8451 case DIF_VAR_TID: 8452 case DIF_VAR_EXECNAME: 8453 case DIF_VAR_ZONENAME: 8454 break; 8455 8456 default: 8457 return (0); 8458 } 8459 } 8460 8461 /* 8462 * This DIF object may be cacheable. Now we need to look for any 8463 * array loading instructions, any memory loading instructions, or 8464 * any stores to thread-local variables. 8465 */ 8466 for (i = 0; i < dp->dtdo_len; i++) { 8467 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8468 8469 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8470 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8471 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8472 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8473 return (0); 8474 } 8475 8476 return (1); 8477 } 8478 8479 static void 8480 dtrace_difo_hold(dtrace_difo_t *dp) 8481 { 8482 int i; 8483 8484 ASSERT(MUTEX_HELD(&dtrace_lock)); 8485 8486 dp->dtdo_refcnt++; 8487 ASSERT(dp->dtdo_refcnt != 0); 8488 8489 /* 8490 * We need to check this DIF object for references to the variable 8491 * DIF_VAR_VTIMESTAMP. 8492 */ 8493 for (i = 0; i < dp->dtdo_varlen; i++) { 8494 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8495 8496 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8497 continue; 8498 8499 if (dtrace_vtime_references++ == 0) 8500 dtrace_vtime_enable(); 8501 } 8502 } 8503 8504 /* 8505 * This routine calculates the dynamic variable chunksize for a given DIF 8506 * object. The calculation is not fool-proof, and can probably be tricked by 8507 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8508 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8509 * if a dynamic variable size exceeds the chunksize. 8510 */ 8511 static void 8512 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8513 { 8514 uint64_t sval; 8515 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8516 const dif_instr_t *text = dp->dtdo_buf; 8517 uint_t pc, srd = 0; 8518 uint_t ttop = 0; 8519 size_t size, ksize; 8520 uint_t id, i; 8521 8522 for (pc = 0; pc < dp->dtdo_len; pc++) { 8523 dif_instr_t instr = text[pc]; 8524 uint_t op = DIF_INSTR_OP(instr); 8525 uint_t rd = DIF_INSTR_RD(instr); 8526 uint_t r1 = DIF_INSTR_R1(instr); 8527 uint_t nkeys = 0; 8528 uchar_t scope; 8529 8530 dtrace_key_t *key = tupregs; 8531 8532 switch (op) { 8533 case DIF_OP_SETX: 8534 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8535 srd = rd; 8536 continue; 8537 8538 case DIF_OP_STTS: 8539 key = &tupregs[DIF_DTR_NREGS]; 8540 key[0].dttk_size = 0; 8541 key[1].dttk_size = 0; 8542 nkeys = 2; 8543 scope = DIFV_SCOPE_THREAD; 8544 break; 8545 8546 case DIF_OP_STGAA: 8547 case DIF_OP_STTAA: 8548 nkeys = ttop; 8549 8550 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8551 key[nkeys++].dttk_size = 0; 8552 8553 key[nkeys++].dttk_size = 0; 8554 8555 if (op == DIF_OP_STTAA) { 8556 scope = DIFV_SCOPE_THREAD; 8557 } else { 8558 scope = DIFV_SCOPE_GLOBAL; 8559 } 8560 8561 break; 8562 8563 case DIF_OP_PUSHTR: 8564 if (ttop == DIF_DTR_NREGS) 8565 return; 8566 8567 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8568 /* 8569 * If the register for the size of the "pushtr" 8570 * is %r0 (or the value is 0) and the type is 8571 * a string, we'll use the system-wide default 8572 * string size. 8573 */ 8574 tupregs[ttop++].dttk_size = 8575 dtrace_strsize_default; 8576 } else { 8577 if (srd == 0) 8578 return; 8579 8580 tupregs[ttop++].dttk_size = sval; 8581 } 8582 8583 break; 8584 8585 case DIF_OP_PUSHTV: 8586 if (ttop == DIF_DTR_NREGS) 8587 return; 8588 8589 tupregs[ttop++].dttk_size = 0; 8590 break; 8591 8592 case DIF_OP_FLUSHTS: 8593 ttop = 0; 8594 break; 8595 8596 case DIF_OP_POPTS: 8597 if (ttop != 0) 8598 ttop--; 8599 break; 8600 } 8601 8602 sval = 0; 8603 srd = 0; 8604 8605 if (nkeys == 0) 8606 continue; 8607 8608 /* 8609 * We have a dynamic variable allocation; calculate its size. 8610 */ 8611 for (ksize = 0, i = 0; i < nkeys; i++) 8612 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8613 8614 size = sizeof (dtrace_dynvar_t); 8615 size += sizeof (dtrace_key_t) * (nkeys - 1); 8616 size += ksize; 8617 8618 /* 8619 * Now we need to determine the size of the stored data. 8620 */ 8621 id = DIF_INSTR_VAR(instr); 8622 8623 for (i = 0; i < dp->dtdo_varlen; i++) { 8624 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8625 8626 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8627 size += v->dtdv_type.dtdt_size; 8628 break; 8629 } 8630 } 8631 8632 if (i == dp->dtdo_varlen) 8633 return; 8634 8635 /* 8636 * We have the size. If this is larger than the chunk size 8637 * for our dynamic variable state, reset the chunk size. 8638 */ 8639 size = P2ROUNDUP(size, sizeof (uint64_t)); 8640 8641 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8642 vstate->dtvs_dynvars.dtds_chunksize = size; 8643 } 8644 } 8645 8646 static void 8647 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8648 { 8649 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8650 uint_t id; 8651 8652 ASSERT(MUTEX_HELD(&dtrace_lock)); 8653 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8654 8655 for (i = 0; i < dp->dtdo_varlen; i++) { 8656 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8657 dtrace_statvar_t *svar, ***svarp; 8658 size_t dsize = 0; 8659 uint8_t scope = v->dtdv_scope; 8660 int *np; 8661 8662 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8663 continue; 8664 8665 id -= DIF_VAR_OTHER_UBASE; 8666 8667 switch (scope) { 8668 case DIFV_SCOPE_THREAD: 8669 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8670 dtrace_difv_t *tlocals; 8671 8672 if ((ntlocals = (otlocals << 1)) == 0) 8673 ntlocals = 1; 8674 8675 osz = otlocals * sizeof (dtrace_difv_t); 8676 nsz = ntlocals * sizeof (dtrace_difv_t); 8677 8678 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8679 8680 if (osz != 0) { 8681 bcopy(vstate->dtvs_tlocals, 8682 tlocals, osz); 8683 kmem_free(vstate->dtvs_tlocals, osz); 8684 } 8685 8686 vstate->dtvs_tlocals = tlocals; 8687 vstate->dtvs_ntlocals = ntlocals; 8688 } 8689 8690 vstate->dtvs_tlocals[id] = *v; 8691 continue; 8692 8693 case DIFV_SCOPE_LOCAL: 8694 np = &vstate->dtvs_nlocals; 8695 svarp = &vstate->dtvs_locals; 8696 8697 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8698 dsize = NCPU * (v->dtdv_type.dtdt_size + 8699 sizeof (uint64_t)); 8700 else 8701 dsize = NCPU * sizeof (uint64_t); 8702 8703 break; 8704 8705 case DIFV_SCOPE_GLOBAL: 8706 np = &vstate->dtvs_nglobals; 8707 svarp = &vstate->dtvs_globals; 8708 8709 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8710 dsize = v->dtdv_type.dtdt_size + 8711 sizeof (uint64_t); 8712 8713 break; 8714 8715 default: 8716 ASSERT(0); 8717 } 8718 8719 while (id >= (oldsvars = *np)) { 8720 dtrace_statvar_t **statics; 8721 int newsvars, oldsize, newsize; 8722 8723 if ((newsvars = (oldsvars << 1)) == 0) 8724 newsvars = 1; 8725 8726 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8727 newsize = newsvars * sizeof (dtrace_statvar_t *); 8728 8729 statics = kmem_zalloc(newsize, KM_SLEEP); 8730 8731 if (oldsize != 0) { 8732 bcopy(*svarp, statics, oldsize); 8733 kmem_free(*svarp, oldsize); 8734 } 8735 8736 *svarp = statics; 8737 *np = newsvars; 8738 } 8739 8740 if ((svar = (*svarp)[id]) == NULL) { 8741 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 8742 svar->dtsv_var = *v; 8743 8744 if ((svar->dtsv_size = dsize) != 0) { 8745 svar->dtsv_data = (uint64_t)(uintptr_t) 8746 kmem_zalloc(dsize, KM_SLEEP); 8747 } 8748 8749 (*svarp)[id] = svar; 8750 } 8751 8752 svar->dtsv_refcnt++; 8753 } 8754 8755 dtrace_difo_chunksize(dp, vstate); 8756 dtrace_difo_hold(dp); 8757 } 8758 8759 static dtrace_difo_t * 8760 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8761 { 8762 dtrace_difo_t *new; 8763 size_t sz; 8764 8765 ASSERT(dp->dtdo_buf != NULL); 8766 ASSERT(dp->dtdo_refcnt != 0); 8767 8768 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 8769 8770 ASSERT(dp->dtdo_buf != NULL); 8771 sz = dp->dtdo_len * sizeof (dif_instr_t); 8772 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 8773 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 8774 new->dtdo_len = dp->dtdo_len; 8775 8776 if (dp->dtdo_strtab != NULL) { 8777 ASSERT(dp->dtdo_strlen != 0); 8778 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 8779 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 8780 new->dtdo_strlen = dp->dtdo_strlen; 8781 } 8782 8783 if (dp->dtdo_inttab != NULL) { 8784 ASSERT(dp->dtdo_intlen != 0); 8785 sz = dp->dtdo_intlen * sizeof (uint64_t); 8786 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 8787 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 8788 new->dtdo_intlen = dp->dtdo_intlen; 8789 } 8790 8791 if (dp->dtdo_vartab != NULL) { 8792 ASSERT(dp->dtdo_varlen != 0); 8793 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 8794 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 8795 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 8796 new->dtdo_varlen = dp->dtdo_varlen; 8797 } 8798 8799 dtrace_difo_init(new, vstate); 8800 return (new); 8801 } 8802 8803 static void 8804 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8805 { 8806 int i; 8807 8808 ASSERT(dp->dtdo_refcnt == 0); 8809 8810 for (i = 0; i < dp->dtdo_varlen; i++) { 8811 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8812 dtrace_statvar_t *svar, **svarp; 8813 uint_t id; 8814 uint8_t scope = v->dtdv_scope; 8815 int *np; 8816 8817 switch (scope) { 8818 case DIFV_SCOPE_THREAD: 8819 continue; 8820 8821 case DIFV_SCOPE_LOCAL: 8822 np = &vstate->dtvs_nlocals; 8823 svarp = vstate->dtvs_locals; 8824 break; 8825 8826 case DIFV_SCOPE_GLOBAL: 8827 np = &vstate->dtvs_nglobals; 8828 svarp = vstate->dtvs_globals; 8829 break; 8830 8831 default: 8832 ASSERT(0); 8833 } 8834 8835 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8836 continue; 8837 8838 id -= DIF_VAR_OTHER_UBASE; 8839 ASSERT(id < *np); 8840 8841 svar = svarp[id]; 8842 ASSERT(svar != NULL); 8843 ASSERT(svar->dtsv_refcnt > 0); 8844 8845 if (--svar->dtsv_refcnt > 0) 8846 continue; 8847 8848 if (svar->dtsv_size != 0) { 8849 ASSERT(svar->dtsv_data != NULL); 8850 kmem_free((void *)(uintptr_t)svar->dtsv_data, 8851 svar->dtsv_size); 8852 } 8853 8854 kmem_free(svar, sizeof (dtrace_statvar_t)); 8855 svarp[id] = NULL; 8856 } 8857 8858 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 8859 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 8860 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 8861 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 8862 8863 kmem_free(dp, sizeof (dtrace_difo_t)); 8864 } 8865 8866 static void 8867 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8868 { 8869 int i; 8870 8871 ASSERT(MUTEX_HELD(&dtrace_lock)); 8872 ASSERT(dp->dtdo_refcnt != 0); 8873 8874 for (i = 0; i < dp->dtdo_varlen; i++) { 8875 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8876 8877 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8878 continue; 8879 8880 ASSERT(dtrace_vtime_references > 0); 8881 if (--dtrace_vtime_references == 0) 8882 dtrace_vtime_disable(); 8883 } 8884 8885 if (--dp->dtdo_refcnt == 0) 8886 dtrace_difo_destroy(dp, vstate); 8887 } 8888 8889 /* 8890 * DTrace Format Functions 8891 */ 8892 static uint16_t 8893 dtrace_format_add(dtrace_state_t *state, char *str) 8894 { 8895 char *fmt, **new; 8896 uint16_t ndx, len = strlen(str) + 1; 8897 8898 fmt = kmem_zalloc(len, KM_SLEEP); 8899 bcopy(str, fmt, len); 8900 8901 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 8902 if (state->dts_formats[ndx] == NULL) { 8903 state->dts_formats[ndx] = fmt; 8904 return (ndx + 1); 8905 } 8906 } 8907 8908 if (state->dts_nformats == USHRT_MAX) { 8909 /* 8910 * This is only likely if a denial-of-service attack is being 8911 * attempted. As such, it's okay to fail silently here. 8912 */ 8913 kmem_free(fmt, len); 8914 return (0); 8915 } 8916 8917 /* 8918 * For simplicity, we always resize the formats array to be exactly the 8919 * number of formats. 8920 */ 8921 ndx = state->dts_nformats++; 8922 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 8923 8924 if (state->dts_formats != NULL) { 8925 ASSERT(ndx != 0); 8926 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 8927 kmem_free(state->dts_formats, ndx * sizeof (char *)); 8928 } 8929 8930 state->dts_formats = new; 8931 state->dts_formats[ndx] = fmt; 8932 8933 return (ndx + 1); 8934 } 8935 8936 static void 8937 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 8938 { 8939 char *fmt; 8940 8941 ASSERT(state->dts_formats != NULL); 8942 ASSERT(format <= state->dts_nformats); 8943 ASSERT(state->dts_formats[format - 1] != NULL); 8944 8945 fmt = state->dts_formats[format - 1]; 8946 kmem_free(fmt, strlen(fmt) + 1); 8947 state->dts_formats[format - 1] = NULL; 8948 } 8949 8950 static void 8951 dtrace_format_destroy(dtrace_state_t *state) 8952 { 8953 int i; 8954 8955 if (state->dts_nformats == 0) { 8956 ASSERT(state->dts_formats == NULL); 8957 return; 8958 } 8959 8960 ASSERT(state->dts_formats != NULL); 8961 8962 for (i = 0; i < state->dts_nformats; i++) { 8963 char *fmt = state->dts_formats[i]; 8964 8965 if (fmt == NULL) 8966 continue; 8967 8968 kmem_free(fmt, strlen(fmt) + 1); 8969 } 8970 8971 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 8972 state->dts_nformats = 0; 8973 state->dts_formats = NULL; 8974 } 8975 8976 /* 8977 * DTrace Predicate Functions 8978 */ 8979 static dtrace_predicate_t * 8980 dtrace_predicate_create(dtrace_difo_t *dp) 8981 { 8982 dtrace_predicate_t *pred; 8983 8984 ASSERT(MUTEX_HELD(&dtrace_lock)); 8985 ASSERT(dp->dtdo_refcnt != 0); 8986 8987 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 8988 pred->dtp_difo = dp; 8989 pred->dtp_refcnt = 1; 8990 8991 if (!dtrace_difo_cacheable(dp)) 8992 return (pred); 8993 8994 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 8995 /* 8996 * This is only theoretically possible -- we have had 2^32 8997 * cacheable predicates on this machine. We cannot allow any 8998 * more predicates to become cacheable: as unlikely as it is, 8999 * there may be a thread caching a (now stale) predicate cache 9000 * ID. (N.B.: the temptation is being successfully resisted to 9001 * have this cmn_err() "Holy shit -- we executed this code!") 9002 */ 9003 return (pred); 9004 } 9005 9006 pred->dtp_cacheid = dtrace_predcache_id++; 9007 9008 return (pred); 9009 } 9010 9011 static void 9012 dtrace_predicate_hold(dtrace_predicate_t *pred) 9013 { 9014 ASSERT(MUTEX_HELD(&dtrace_lock)); 9015 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 9016 ASSERT(pred->dtp_refcnt > 0); 9017 9018 pred->dtp_refcnt++; 9019 } 9020 9021 static void 9022 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 9023 { 9024 dtrace_difo_t *dp = pred->dtp_difo; 9025 9026 ASSERT(MUTEX_HELD(&dtrace_lock)); 9027 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 9028 ASSERT(pred->dtp_refcnt > 0); 9029 9030 if (--pred->dtp_refcnt == 0) { 9031 dtrace_difo_release(pred->dtp_difo, vstate); 9032 kmem_free(pred, sizeof (dtrace_predicate_t)); 9033 } 9034 } 9035 9036 /* 9037 * DTrace Action Description Functions 9038 */ 9039 static dtrace_actdesc_t * 9040 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 9041 uint64_t uarg, uint64_t arg) 9042 { 9043 dtrace_actdesc_t *act; 9044 9045 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 9046 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 9047 9048 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 9049 act->dtad_kind = kind; 9050 act->dtad_ntuple = ntuple; 9051 act->dtad_uarg = uarg; 9052 act->dtad_arg = arg; 9053 act->dtad_refcnt = 1; 9054 9055 return (act); 9056 } 9057 9058 static void 9059 dtrace_actdesc_hold(dtrace_actdesc_t *act) 9060 { 9061 ASSERT(act->dtad_refcnt >= 1); 9062 act->dtad_refcnt++; 9063 } 9064 9065 static void 9066 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 9067 { 9068 dtrace_actkind_t kind = act->dtad_kind; 9069 dtrace_difo_t *dp; 9070 9071 ASSERT(act->dtad_refcnt >= 1); 9072 9073 if (--act->dtad_refcnt != 0) 9074 return; 9075 9076 if ((dp = act->dtad_difo) != NULL) 9077 dtrace_difo_release(dp, vstate); 9078 9079 if (DTRACEACT_ISPRINTFLIKE(kind)) { 9080 char *str = (char *)(uintptr_t)act->dtad_arg; 9081 9082 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 9083 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 9084 9085 if (str != NULL) 9086 kmem_free(str, strlen(str) + 1); 9087 } 9088 9089 kmem_free(act, sizeof (dtrace_actdesc_t)); 9090 } 9091 9092 /* 9093 * DTrace ECB Functions 9094 */ 9095 static dtrace_ecb_t * 9096 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 9097 { 9098 dtrace_ecb_t *ecb; 9099 dtrace_epid_t epid; 9100 9101 ASSERT(MUTEX_HELD(&dtrace_lock)); 9102 9103 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 9104 ecb->dte_predicate = NULL; 9105 ecb->dte_probe = probe; 9106 9107 /* 9108 * The default size is the size of the default action: recording 9109 * the epid. 9110 */ 9111 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9112 ecb->dte_alignment = sizeof (dtrace_epid_t); 9113 9114 epid = state->dts_epid++; 9115 9116 if (epid - 1 >= state->dts_necbs) { 9117 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 9118 int necbs = state->dts_necbs << 1; 9119 9120 ASSERT(epid == state->dts_necbs + 1); 9121 9122 if (necbs == 0) { 9123 ASSERT(oecbs == NULL); 9124 necbs = 1; 9125 } 9126 9127 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 9128 9129 if (oecbs != NULL) 9130 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 9131 9132 dtrace_membar_producer(); 9133 state->dts_ecbs = ecbs; 9134 9135 if (oecbs != NULL) { 9136 /* 9137 * If this state is active, we must dtrace_sync() 9138 * before we can free the old dts_ecbs array: we're 9139 * coming in hot, and there may be active ring 9140 * buffer processing (which indexes into the dts_ecbs 9141 * array) on another CPU. 9142 */ 9143 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 9144 dtrace_sync(); 9145 9146 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 9147 } 9148 9149 dtrace_membar_producer(); 9150 state->dts_necbs = necbs; 9151 } 9152 9153 ecb->dte_state = state; 9154 9155 ASSERT(state->dts_ecbs[epid - 1] == NULL); 9156 dtrace_membar_producer(); 9157 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 9158 9159 return (ecb); 9160 } 9161 9162 static int 9163 dtrace_ecb_enable(dtrace_ecb_t *ecb) 9164 { 9165 dtrace_probe_t *probe = ecb->dte_probe; 9166 9167 ASSERT(MUTEX_HELD(&cpu_lock)); 9168 ASSERT(MUTEX_HELD(&dtrace_lock)); 9169 ASSERT(ecb->dte_next == NULL); 9170 9171 if (probe == NULL) { 9172 /* 9173 * This is the NULL probe -- there's nothing to do. 9174 */ 9175 return (0); 9176 } 9177 9178 if (probe->dtpr_ecb == NULL) { 9179 dtrace_provider_t *prov = probe->dtpr_provider; 9180 9181 /* 9182 * We're the first ECB on this probe. 9183 */ 9184 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9185 9186 if (ecb->dte_predicate != NULL) 9187 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9188 9189 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9190 probe->dtpr_id, probe->dtpr_arg)); 9191 } else { 9192 /* 9193 * This probe is already active. Swing the last pointer to 9194 * point to the new ECB, and issue a dtrace_sync() to assure 9195 * that all CPUs have seen the change. 9196 */ 9197 ASSERT(probe->dtpr_ecb_last != NULL); 9198 probe->dtpr_ecb_last->dte_next = ecb; 9199 probe->dtpr_ecb_last = ecb; 9200 probe->dtpr_predcache = 0; 9201 9202 dtrace_sync(); 9203 return (0); 9204 } 9205 } 9206 9207 static void 9208 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9209 { 9210 uint32_t maxalign = sizeof (dtrace_epid_t); 9211 uint32_t align = sizeof (uint8_t), offs, diff; 9212 dtrace_action_t *act; 9213 int wastuple = 0; 9214 uint32_t aggbase = UINT32_MAX; 9215 dtrace_state_t *state = ecb->dte_state; 9216 9217 /* 9218 * If we record anything, we always record the epid. (And we always 9219 * record it first.) 9220 */ 9221 offs = sizeof (dtrace_epid_t); 9222 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9223 9224 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9225 dtrace_recdesc_t *rec = &act->dta_rec; 9226 9227 if ((align = rec->dtrd_alignment) > maxalign) 9228 maxalign = align; 9229 9230 if (!wastuple && act->dta_intuple) { 9231 /* 9232 * This is the first record in a tuple. Align the 9233 * offset to be at offset 4 in an 8-byte aligned 9234 * block. 9235 */ 9236 diff = offs + sizeof (dtrace_aggid_t); 9237 9238 if (diff = (diff & (sizeof (uint64_t) - 1))) 9239 offs += sizeof (uint64_t) - diff; 9240 9241 aggbase = offs - sizeof (dtrace_aggid_t); 9242 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9243 } 9244 9245 /*LINTED*/ 9246 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9247 /* 9248 * The current offset is not properly aligned; align it. 9249 */ 9250 offs += align - diff; 9251 } 9252 9253 rec->dtrd_offset = offs; 9254 9255 if (offs + rec->dtrd_size > ecb->dte_needed) { 9256 ecb->dte_needed = offs + rec->dtrd_size; 9257 9258 if (ecb->dte_needed > state->dts_needed) 9259 state->dts_needed = ecb->dte_needed; 9260 } 9261 9262 if (DTRACEACT_ISAGG(act->dta_kind)) { 9263 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9264 dtrace_action_t *first = agg->dtag_first, *prev; 9265 9266 ASSERT(rec->dtrd_size != 0 && first != NULL); 9267 ASSERT(wastuple); 9268 ASSERT(aggbase != UINT32_MAX); 9269 9270 agg->dtag_base = aggbase; 9271 9272 while ((prev = first->dta_prev) != NULL && 9273 DTRACEACT_ISAGG(prev->dta_kind)) { 9274 agg = (dtrace_aggregation_t *)prev; 9275 first = agg->dtag_first; 9276 } 9277 9278 if (prev != NULL) { 9279 offs = prev->dta_rec.dtrd_offset + 9280 prev->dta_rec.dtrd_size; 9281 } else { 9282 offs = sizeof (dtrace_epid_t); 9283 } 9284 wastuple = 0; 9285 } else { 9286 if (!act->dta_intuple) 9287 ecb->dte_size = offs + rec->dtrd_size; 9288 9289 offs += rec->dtrd_size; 9290 } 9291 9292 wastuple = act->dta_intuple; 9293 } 9294 9295 if ((act = ecb->dte_action) != NULL && 9296 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9297 ecb->dte_size == sizeof (dtrace_epid_t)) { 9298 /* 9299 * If the size is still sizeof (dtrace_epid_t), then all 9300 * actions store no data; set the size to 0. 9301 */ 9302 ecb->dte_alignment = maxalign; 9303 ecb->dte_size = 0; 9304 9305 /* 9306 * If the needed space is still sizeof (dtrace_epid_t), then 9307 * all actions need no additional space; set the needed 9308 * size to 0. 9309 */ 9310 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9311 ecb->dte_needed = 0; 9312 9313 return; 9314 } 9315 9316 /* 9317 * Set our alignment, and make sure that the dte_size and dte_needed 9318 * are aligned to the size of an EPID. 9319 */ 9320 ecb->dte_alignment = maxalign; 9321 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9322 ~(sizeof (dtrace_epid_t) - 1); 9323 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9324 ~(sizeof (dtrace_epid_t) - 1); 9325 ASSERT(ecb->dte_size <= ecb->dte_needed); 9326 } 9327 9328 static dtrace_action_t * 9329 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9330 { 9331 dtrace_aggregation_t *agg; 9332 size_t size = sizeof (uint64_t); 9333 int ntuple = desc->dtad_ntuple; 9334 dtrace_action_t *act; 9335 dtrace_recdesc_t *frec; 9336 dtrace_aggid_t aggid; 9337 dtrace_state_t *state = ecb->dte_state; 9338 9339 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9340 agg->dtag_ecb = ecb; 9341 9342 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9343 9344 switch (desc->dtad_kind) { 9345 case DTRACEAGG_MIN: 9346 agg->dtag_initial = INT64_MAX; 9347 agg->dtag_aggregate = dtrace_aggregate_min; 9348 break; 9349 9350 case DTRACEAGG_MAX: 9351 agg->dtag_initial = INT64_MIN; 9352 agg->dtag_aggregate = dtrace_aggregate_max; 9353 break; 9354 9355 case DTRACEAGG_COUNT: 9356 agg->dtag_aggregate = dtrace_aggregate_count; 9357 break; 9358 9359 case DTRACEAGG_QUANTIZE: 9360 agg->dtag_aggregate = dtrace_aggregate_quantize; 9361 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9362 sizeof (uint64_t); 9363 break; 9364 9365 case DTRACEAGG_LQUANTIZE: { 9366 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9367 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9368 9369 agg->dtag_initial = desc->dtad_arg; 9370 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9371 9372 if (step == 0 || levels == 0) 9373 goto err; 9374 9375 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9376 break; 9377 } 9378 9379 case DTRACEAGG_AVG: 9380 agg->dtag_aggregate = dtrace_aggregate_avg; 9381 size = sizeof (uint64_t) * 2; 9382 break; 9383 9384 case DTRACEAGG_STDDEV: 9385 agg->dtag_aggregate = dtrace_aggregate_stddev; 9386 size = sizeof (uint64_t) * 4; 9387 break; 9388 9389 case DTRACEAGG_SUM: 9390 agg->dtag_aggregate = dtrace_aggregate_sum; 9391 break; 9392 9393 default: 9394 goto err; 9395 } 9396 9397 agg->dtag_action.dta_rec.dtrd_size = size; 9398 9399 if (ntuple == 0) 9400 goto err; 9401 9402 /* 9403 * We must make sure that we have enough actions for the n-tuple. 9404 */ 9405 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9406 if (DTRACEACT_ISAGG(act->dta_kind)) 9407 break; 9408 9409 if (--ntuple == 0) { 9410 /* 9411 * This is the action with which our n-tuple begins. 9412 */ 9413 agg->dtag_first = act; 9414 goto success; 9415 } 9416 } 9417 9418 /* 9419 * This n-tuple is short by ntuple elements. Return failure. 9420 */ 9421 ASSERT(ntuple != 0); 9422 err: 9423 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9424 return (NULL); 9425 9426 success: 9427 /* 9428 * If the last action in the tuple has a size of zero, it's actually 9429 * an expression argument for the aggregating action. 9430 */ 9431 ASSERT(ecb->dte_action_last != NULL); 9432 act = ecb->dte_action_last; 9433 9434 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9435 ASSERT(act->dta_difo != NULL); 9436 9437 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9438 agg->dtag_hasarg = 1; 9439 } 9440 9441 /* 9442 * We need to allocate an id for this aggregation. 9443 */ 9444 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9445 VM_BESTFIT | VM_SLEEP); 9446 9447 if (aggid - 1 >= state->dts_naggregations) { 9448 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9449 dtrace_aggregation_t **aggs; 9450 int naggs = state->dts_naggregations << 1; 9451 int onaggs = state->dts_naggregations; 9452 9453 ASSERT(aggid == state->dts_naggregations + 1); 9454 9455 if (naggs == 0) { 9456 ASSERT(oaggs == NULL); 9457 naggs = 1; 9458 } 9459 9460 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9461 9462 if (oaggs != NULL) { 9463 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9464 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9465 } 9466 9467 state->dts_aggregations = aggs; 9468 state->dts_naggregations = naggs; 9469 } 9470 9471 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9472 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9473 9474 frec = &agg->dtag_first->dta_rec; 9475 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9476 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9477 9478 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9479 ASSERT(!act->dta_intuple); 9480 act->dta_intuple = 1; 9481 } 9482 9483 return (&agg->dtag_action); 9484 } 9485 9486 static void 9487 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9488 { 9489 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9490 dtrace_state_t *state = ecb->dte_state; 9491 dtrace_aggid_t aggid = agg->dtag_id; 9492 9493 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9494 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9495 9496 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9497 state->dts_aggregations[aggid - 1] = NULL; 9498 9499 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9500 } 9501 9502 static int 9503 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9504 { 9505 dtrace_action_t *action, *last; 9506 dtrace_difo_t *dp = desc->dtad_difo; 9507 uint32_t size = 0, align = sizeof (uint8_t), mask; 9508 uint16_t format = 0; 9509 dtrace_recdesc_t *rec; 9510 dtrace_state_t *state = ecb->dte_state; 9511 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9512 uint64_t arg = desc->dtad_arg; 9513 9514 ASSERT(MUTEX_HELD(&dtrace_lock)); 9515 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9516 9517 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9518 /* 9519 * If this is an aggregating action, there must be neither 9520 * a speculate nor a commit on the action chain. 9521 */ 9522 dtrace_action_t *act; 9523 9524 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9525 if (act->dta_kind == DTRACEACT_COMMIT) 9526 return (EINVAL); 9527 9528 if (act->dta_kind == DTRACEACT_SPECULATE) 9529 return (EINVAL); 9530 } 9531 9532 action = dtrace_ecb_aggregation_create(ecb, desc); 9533 9534 if (action == NULL) 9535 return (EINVAL); 9536 } else { 9537 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9538 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9539 dp != NULL && dp->dtdo_destructive)) { 9540 state->dts_destructive = 1; 9541 } 9542 9543 switch (desc->dtad_kind) { 9544 case DTRACEACT_PRINTF: 9545 case DTRACEACT_PRINTA: 9546 case DTRACEACT_SYSTEM: 9547 case DTRACEACT_FREOPEN: 9548 /* 9549 * We know that our arg is a string -- turn it into a 9550 * format. 9551 */ 9552 if (arg == NULL) { 9553 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 9554 format = 0; 9555 } else { 9556 ASSERT(arg != NULL); 9557 ASSERT(arg > KERNELBASE); 9558 format = dtrace_format_add(state, 9559 (char *)(uintptr_t)arg); 9560 } 9561 9562 /*FALLTHROUGH*/ 9563 case DTRACEACT_LIBACT: 9564 case DTRACEACT_DIFEXPR: 9565 if (dp == NULL) 9566 return (EINVAL); 9567 9568 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9569 break; 9570 9571 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9572 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9573 return (EINVAL); 9574 9575 size = opt[DTRACEOPT_STRSIZE]; 9576 } 9577 9578 break; 9579 9580 case DTRACEACT_STACK: 9581 if ((nframes = arg) == 0) { 9582 nframes = opt[DTRACEOPT_STACKFRAMES]; 9583 ASSERT(nframes > 0); 9584 arg = nframes; 9585 } 9586 9587 size = nframes * sizeof (pc_t); 9588 break; 9589 9590 case DTRACEACT_JSTACK: 9591 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9592 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9593 9594 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9595 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9596 9597 arg = DTRACE_USTACK_ARG(nframes, strsize); 9598 9599 /*FALLTHROUGH*/ 9600 case DTRACEACT_USTACK: 9601 if (desc->dtad_kind != DTRACEACT_JSTACK && 9602 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9603 strsize = DTRACE_USTACK_STRSIZE(arg); 9604 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9605 ASSERT(nframes > 0); 9606 arg = DTRACE_USTACK_ARG(nframes, strsize); 9607 } 9608 9609 /* 9610 * Save a slot for the pid. 9611 */ 9612 size = (nframes + 1) * sizeof (uint64_t); 9613 size += DTRACE_USTACK_STRSIZE(arg); 9614 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9615 9616 break; 9617 9618 case DTRACEACT_SYM: 9619 case DTRACEACT_MOD: 9620 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9621 sizeof (uint64_t)) || 9622 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9623 return (EINVAL); 9624 break; 9625 9626 case DTRACEACT_USYM: 9627 case DTRACEACT_UMOD: 9628 case DTRACEACT_UADDR: 9629 if (dp == NULL || 9630 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9631 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9632 return (EINVAL); 9633 9634 /* 9635 * We have a slot for the pid, plus a slot for the 9636 * argument. To keep things simple (aligned with 9637 * bitness-neutral sizing), we store each as a 64-bit 9638 * quantity. 9639 */ 9640 size = 2 * sizeof (uint64_t); 9641 break; 9642 9643 case DTRACEACT_STOP: 9644 case DTRACEACT_BREAKPOINT: 9645 case DTRACEACT_PANIC: 9646 break; 9647 9648 case DTRACEACT_CHILL: 9649 case DTRACEACT_DISCARD: 9650 case DTRACEACT_RAISE: 9651 if (dp == NULL) 9652 return (EINVAL); 9653 break; 9654 9655 case DTRACEACT_EXIT: 9656 if (dp == NULL || 9657 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9658 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9659 return (EINVAL); 9660 break; 9661 9662 case DTRACEACT_SPECULATE: 9663 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9664 return (EINVAL); 9665 9666 if (dp == NULL) 9667 return (EINVAL); 9668 9669 state->dts_speculates = 1; 9670 break; 9671 9672 case DTRACEACT_COMMIT: { 9673 dtrace_action_t *act = ecb->dte_action; 9674 9675 for (; act != NULL; act = act->dta_next) { 9676 if (act->dta_kind == DTRACEACT_COMMIT) 9677 return (EINVAL); 9678 } 9679 9680 if (dp == NULL) 9681 return (EINVAL); 9682 break; 9683 } 9684 9685 default: 9686 return (EINVAL); 9687 } 9688 9689 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9690 /* 9691 * If this is a data-storing action or a speculate, 9692 * we must be sure that there isn't a commit on the 9693 * action chain. 9694 */ 9695 dtrace_action_t *act = ecb->dte_action; 9696 9697 for (; act != NULL; act = act->dta_next) { 9698 if (act->dta_kind == DTRACEACT_COMMIT) 9699 return (EINVAL); 9700 } 9701 } 9702 9703 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9704 action->dta_rec.dtrd_size = size; 9705 } 9706 9707 action->dta_refcnt = 1; 9708 rec = &action->dta_rec; 9709 size = rec->dtrd_size; 9710 9711 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 9712 if (!(size & mask)) { 9713 align = mask + 1; 9714 break; 9715 } 9716 } 9717 9718 action->dta_kind = desc->dtad_kind; 9719 9720 if ((action->dta_difo = dp) != NULL) 9721 dtrace_difo_hold(dp); 9722 9723 rec->dtrd_action = action->dta_kind; 9724 rec->dtrd_arg = arg; 9725 rec->dtrd_uarg = desc->dtad_uarg; 9726 rec->dtrd_alignment = (uint16_t)align; 9727 rec->dtrd_format = format; 9728 9729 if ((last = ecb->dte_action_last) != NULL) { 9730 ASSERT(ecb->dte_action != NULL); 9731 action->dta_prev = last; 9732 last->dta_next = action; 9733 } else { 9734 ASSERT(ecb->dte_action == NULL); 9735 ecb->dte_action = action; 9736 } 9737 9738 ecb->dte_action_last = action; 9739 9740 return (0); 9741 } 9742 9743 static void 9744 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 9745 { 9746 dtrace_action_t *act = ecb->dte_action, *next; 9747 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 9748 dtrace_difo_t *dp; 9749 uint16_t format; 9750 9751 if (act != NULL && act->dta_refcnt > 1) { 9752 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 9753 act->dta_refcnt--; 9754 } else { 9755 for (; act != NULL; act = next) { 9756 next = act->dta_next; 9757 ASSERT(next != NULL || act == ecb->dte_action_last); 9758 ASSERT(act->dta_refcnt == 1); 9759 9760 if ((format = act->dta_rec.dtrd_format) != 0) 9761 dtrace_format_remove(ecb->dte_state, format); 9762 9763 if ((dp = act->dta_difo) != NULL) 9764 dtrace_difo_release(dp, vstate); 9765 9766 if (DTRACEACT_ISAGG(act->dta_kind)) { 9767 dtrace_ecb_aggregation_destroy(ecb, act); 9768 } else { 9769 kmem_free(act, sizeof (dtrace_action_t)); 9770 } 9771 } 9772 } 9773 9774 ecb->dte_action = NULL; 9775 ecb->dte_action_last = NULL; 9776 ecb->dte_size = sizeof (dtrace_epid_t); 9777 } 9778 9779 static void 9780 dtrace_ecb_disable(dtrace_ecb_t *ecb) 9781 { 9782 /* 9783 * We disable the ECB by removing it from its probe. 9784 */ 9785 dtrace_ecb_t *pecb, *prev = NULL; 9786 dtrace_probe_t *probe = ecb->dte_probe; 9787 9788 ASSERT(MUTEX_HELD(&dtrace_lock)); 9789 9790 if (probe == NULL) { 9791 /* 9792 * This is the NULL probe; there is nothing to disable. 9793 */ 9794 return; 9795 } 9796 9797 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 9798 if (pecb == ecb) 9799 break; 9800 prev = pecb; 9801 } 9802 9803 ASSERT(pecb != NULL); 9804 9805 if (prev == NULL) { 9806 probe->dtpr_ecb = ecb->dte_next; 9807 } else { 9808 prev->dte_next = ecb->dte_next; 9809 } 9810 9811 if (ecb == probe->dtpr_ecb_last) { 9812 ASSERT(ecb->dte_next == NULL); 9813 probe->dtpr_ecb_last = prev; 9814 } 9815 9816 /* 9817 * The ECB has been disconnected from the probe; now sync to assure 9818 * that all CPUs have seen the change before returning. 9819 */ 9820 dtrace_sync(); 9821 9822 if (probe->dtpr_ecb == NULL) { 9823 /* 9824 * That was the last ECB on the probe; clear the predicate 9825 * cache ID for the probe, disable it and sync one more time 9826 * to assure that we'll never hit it again. 9827 */ 9828 dtrace_provider_t *prov = probe->dtpr_provider; 9829 9830 ASSERT(ecb->dte_next == NULL); 9831 ASSERT(probe->dtpr_ecb_last == NULL); 9832 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 9833 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 9834 probe->dtpr_id, probe->dtpr_arg); 9835 dtrace_sync(); 9836 } else { 9837 /* 9838 * There is at least one ECB remaining on the probe. If there 9839 * is _exactly_ one, set the probe's predicate cache ID to be 9840 * the predicate cache ID of the remaining ECB. 9841 */ 9842 ASSERT(probe->dtpr_ecb_last != NULL); 9843 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 9844 9845 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 9846 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 9847 9848 ASSERT(probe->dtpr_ecb->dte_next == NULL); 9849 9850 if (p != NULL) 9851 probe->dtpr_predcache = p->dtp_cacheid; 9852 } 9853 9854 ecb->dte_next = NULL; 9855 } 9856 } 9857 9858 static void 9859 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 9860 { 9861 dtrace_state_t *state = ecb->dte_state; 9862 dtrace_vstate_t *vstate = &state->dts_vstate; 9863 dtrace_predicate_t *pred; 9864 dtrace_epid_t epid = ecb->dte_epid; 9865 9866 ASSERT(MUTEX_HELD(&dtrace_lock)); 9867 ASSERT(ecb->dte_next == NULL); 9868 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 9869 9870 if ((pred = ecb->dte_predicate) != NULL) 9871 dtrace_predicate_release(pred, vstate); 9872 9873 dtrace_ecb_action_remove(ecb); 9874 9875 ASSERT(state->dts_ecbs[epid - 1] == ecb); 9876 state->dts_ecbs[epid - 1] = NULL; 9877 9878 kmem_free(ecb, sizeof (dtrace_ecb_t)); 9879 } 9880 9881 static dtrace_ecb_t * 9882 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 9883 dtrace_enabling_t *enab) 9884 { 9885 dtrace_ecb_t *ecb; 9886 dtrace_predicate_t *pred; 9887 dtrace_actdesc_t *act; 9888 dtrace_provider_t *prov; 9889 dtrace_ecbdesc_t *desc = enab->dten_current; 9890 9891 ASSERT(MUTEX_HELD(&dtrace_lock)); 9892 ASSERT(state != NULL); 9893 9894 ecb = dtrace_ecb_add(state, probe); 9895 ecb->dte_uarg = desc->dted_uarg; 9896 9897 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 9898 dtrace_predicate_hold(pred); 9899 ecb->dte_predicate = pred; 9900 } 9901 9902 if (probe != NULL) { 9903 /* 9904 * If the provider shows more leg than the consumer is old 9905 * enough to see, we need to enable the appropriate implicit 9906 * predicate bits to prevent the ecb from activating at 9907 * revealing times. 9908 * 9909 * Providers specifying DTRACE_PRIV_USER at register time 9910 * are stating that they need the /proc-style privilege 9911 * model to be enforced, and this is what DTRACE_COND_OWNER 9912 * and DTRACE_COND_ZONEOWNER will then do at probe time. 9913 */ 9914 prov = probe->dtpr_provider; 9915 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 9916 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9917 ecb->dte_cond |= DTRACE_COND_OWNER; 9918 9919 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 9920 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9921 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 9922 9923 /* 9924 * If the provider shows us kernel innards and the user 9925 * is lacking sufficient privilege, enable the 9926 * DTRACE_COND_USERMODE implicit predicate. 9927 */ 9928 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 9929 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 9930 ecb->dte_cond |= DTRACE_COND_USERMODE; 9931 } 9932 9933 if (dtrace_ecb_create_cache != NULL) { 9934 /* 9935 * If we have a cached ecb, we'll use its action list instead 9936 * of creating our own (saving both time and space). 9937 */ 9938 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 9939 dtrace_action_t *act = cached->dte_action; 9940 9941 if (act != NULL) { 9942 ASSERT(act->dta_refcnt > 0); 9943 act->dta_refcnt++; 9944 ecb->dte_action = act; 9945 ecb->dte_action_last = cached->dte_action_last; 9946 ecb->dte_needed = cached->dte_needed; 9947 ecb->dte_size = cached->dte_size; 9948 ecb->dte_alignment = cached->dte_alignment; 9949 } 9950 9951 return (ecb); 9952 } 9953 9954 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 9955 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 9956 dtrace_ecb_destroy(ecb); 9957 return (NULL); 9958 } 9959 } 9960 9961 dtrace_ecb_resize(ecb); 9962 9963 return (dtrace_ecb_create_cache = ecb); 9964 } 9965 9966 static int 9967 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 9968 { 9969 dtrace_ecb_t *ecb; 9970 dtrace_enabling_t *enab = arg; 9971 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 9972 9973 ASSERT(state != NULL); 9974 9975 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 9976 /* 9977 * This probe was created in a generation for which this 9978 * enabling has previously created ECBs; we don't want to 9979 * enable it again, so just kick out. 9980 */ 9981 return (DTRACE_MATCH_NEXT); 9982 } 9983 9984 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 9985 return (DTRACE_MATCH_DONE); 9986 9987 if (dtrace_ecb_enable(ecb) < 0) 9988 return (DTRACE_MATCH_FAIL); 9989 9990 return (DTRACE_MATCH_NEXT); 9991 } 9992 9993 static dtrace_ecb_t * 9994 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 9995 { 9996 dtrace_ecb_t *ecb; 9997 9998 ASSERT(MUTEX_HELD(&dtrace_lock)); 9999 10000 if (id == 0 || id > state->dts_necbs) 10001 return (NULL); 10002 10003 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 10004 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 10005 10006 return (state->dts_ecbs[id - 1]); 10007 } 10008 10009 static dtrace_aggregation_t * 10010 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 10011 { 10012 dtrace_aggregation_t *agg; 10013 10014 ASSERT(MUTEX_HELD(&dtrace_lock)); 10015 10016 if (id == 0 || id > state->dts_naggregations) 10017 return (NULL); 10018 10019 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 10020 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 10021 agg->dtag_id == id); 10022 10023 return (state->dts_aggregations[id - 1]); 10024 } 10025 10026 /* 10027 * DTrace Buffer Functions 10028 * 10029 * The following functions manipulate DTrace buffers. Most of these functions 10030 * are called in the context of establishing or processing consumer state; 10031 * exceptions are explicitly noted. 10032 */ 10033 10034 /* 10035 * Note: called from cross call context. This function switches the two 10036 * buffers on a given CPU. The atomicity of this operation is assured by 10037 * disabling interrupts while the actual switch takes place; the disabling of 10038 * interrupts serializes the execution with any execution of dtrace_probe() on 10039 * the same CPU. 10040 */ 10041 static void 10042 dtrace_buffer_switch(dtrace_buffer_t *buf) 10043 { 10044 caddr_t tomax = buf->dtb_tomax; 10045 caddr_t xamot = buf->dtb_xamot; 10046 dtrace_icookie_t cookie; 10047 10048 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10049 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 10050 10051 cookie = dtrace_interrupt_disable(); 10052 buf->dtb_tomax = xamot; 10053 buf->dtb_xamot = tomax; 10054 buf->dtb_xamot_drops = buf->dtb_drops; 10055 buf->dtb_xamot_offset = buf->dtb_offset; 10056 buf->dtb_xamot_errors = buf->dtb_errors; 10057 buf->dtb_xamot_flags = buf->dtb_flags; 10058 buf->dtb_offset = 0; 10059 buf->dtb_drops = 0; 10060 buf->dtb_errors = 0; 10061 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 10062 dtrace_interrupt_enable(cookie); 10063 } 10064 10065 /* 10066 * Note: called from cross call context. This function activates a buffer 10067 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 10068 * is guaranteed by the disabling of interrupts. 10069 */ 10070 static void 10071 dtrace_buffer_activate(dtrace_state_t *state) 10072 { 10073 dtrace_buffer_t *buf; 10074 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 10075 10076 buf = &state->dts_buffer[CPU->cpu_id]; 10077 10078 if (buf->dtb_tomax != NULL) { 10079 /* 10080 * We might like to assert that the buffer is marked inactive, 10081 * but this isn't necessarily true: the buffer for the CPU 10082 * that processes the BEGIN probe has its buffer activated 10083 * manually. In this case, we take the (harmless) action 10084 * re-clearing the bit INACTIVE bit. 10085 */ 10086 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 10087 } 10088 10089 dtrace_interrupt_enable(cookie); 10090 } 10091 10092 static int 10093 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 10094 processorid_t cpu) 10095 { 10096 cpu_t *cp; 10097 dtrace_buffer_t *buf; 10098 10099 ASSERT(MUTEX_HELD(&cpu_lock)); 10100 ASSERT(MUTEX_HELD(&dtrace_lock)); 10101 10102 if (size > dtrace_nonroot_maxsize && 10103 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 10104 return (EFBIG); 10105 10106 cp = cpu_list; 10107 10108 do { 10109 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10110 continue; 10111 10112 buf = &bufs[cp->cpu_id]; 10113 10114 /* 10115 * If there is already a buffer allocated for this CPU, it 10116 * is only possible that this is a DR event. In this case, 10117 * the buffer size must match our specified size. 10118 */ 10119 if (buf->dtb_tomax != NULL) { 10120 ASSERT(buf->dtb_size == size); 10121 continue; 10122 } 10123 10124 ASSERT(buf->dtb_xamot == NULL); 10125 10126 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10127 goto err; 10128 10129 buf->dtb_size = size; 10130 buf->dtb_flags = flags; 10131 buf->dtb_offset = 0; 10132 buf->dtb_drops = 0; 10133 10134 if (flags & DTRACEBUF_NOSWITCH) 10135 continue; 10136 10137 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10138 goto err; 10139 } while ((cp = cp->cpu_next) != cpu_list); 10140 10141 return (0); 10142 10143 err: 10144 cp = cpu_list; 10145 10146 do { 10147 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10148 continue; 10149 10150 buf = &bufs[cp->cpu_id]; 10151 10152 if (buf->dtb_xamot != NULL) { 10153 ASSERT(buf->dtb_tomax != NULL); 10154 ASSERT(buf->dtb_size == size); 10155 kmem_free(buf->dtb_xamot, size); 10156 } 10157 10158 if (buf->dtb_tomax != NULL) { 10159 ASSERT(buf->dtb_size == size); 10160 kmem_free(buf->dtb_tomax, size); 10161 } 10162 10163 buf->dtb_tomax = NULL; 10164 buf->dtb_xamot = NULL; 10165 buf->dtb_size = 0; 10166 } while ((cp = cp->cpu_next) != cpu_list); 10167 10168 return (ENOMEM); 10169 } 10170 10171 /* 10172 * Note: called from probe context. This function just increments the drop 10173 * count on a buffer. It has been made a function to allow for the 10174 * possibility of understanding the source of mysterious drop counts. (A 10175 * problem for which one may be particularly disappointed that DTrace cannot 10176 * be used to understand DTrace.) 10177 */ 10178 static void 10179 dtrace_buffer_drop(dtrace_buffer_t *buf) 10180 { 10181 buf->dtb_drops++; 10182 } 10183 10184 /* 10185 * Note: called from probe context. This function is called to reserve space 10186 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 10187 * mstate. Returns the new offset in the buffer, or a negative value if an 10188 * error has occurred. 10189 */ 10190 static intptr_t 10191 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10192 dtrace_state_t *state, dtrace_mstate_t *mstate) 10193 { 10194 intptr_t offs = buf->dtb_offset, soffs; 10195 intptr_t woffs; 10196 caddr_t tomax; 10197 size_t total; 10198 10199 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10200 return (-1); 10201 10202 if ((tomax = buf->dtb_tomax) == NULL) { 10203 dtrace_buffer_drop(buf); 10204 return (-1); 10205 } 10206 10207 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10208 while (offs & (align - 1)) { 10209 /* 10210 * Assert that our alignment is off by a number which 10211 * is itself sizeof (uint32_t) aligned. 10212 */ 10213 ASSERT(!((align - (offs & (align - 1))) & 10214 (sizeof (uint32_t) - 1))); 10215 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10216 offs += sizeof (uint32_t); 10217 } 10218 10219 if ((soffs = offs + needed) > buf->dtb_size) { 10220 dtrace_buffer_drop(buf); 10221 return (-1); 10222 } 10223 10224 if (mstate == NULL) 10225 return (offs); 10226 10227 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10228 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10229 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10230 10231 return (offs); 10232 } 10233 10234 if (buf->dtb_flags & DTRACEBUF_FILL) { 10235 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10236 (buf->dtb_flags & DTRACEBUF_FULL)) 10237 return (-1); 10238 goto out; 10239 } 10240 10241 total = needed + (offs & (align - 1)); 10242 10243 /* 10244 * For a ring buffer, life is quite a bit more complicated. Before 10245 * we can store any padding, we need to adjust our wrapping offset. 10246 * (If we've never before wrapped or we're not about to, no adjustment 10247 * is required.) 10248 */ 10249 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10250 offs + total > buf->dtb_size) { 10251 woffs = buf->dtb_xamot_offset; 10252 10253 if (offs + total > buf->dtb_size) { 10254 /* 10255 * We can't fit in the end of the buffer. First, a 10256 * sanity check that we can fit in the buffer at all. 10257 */ 10258 if (total > buf->dtb_size) { 10259 dtrace_buffer_drop(buf); 10260 return (-1); 10261 } 10262 10263 /* 10264 * We're going to be storing at the top of the buffer, 10265 * so now we need to deal with the wrapped offset. We 10266 * only reset our wrapped offset to 0 if it is 10267 * currently greater than the current offset. If it 10268 * is less than the current offset, it is because a 10269 * previous allocation induced a wrap -- but the 10270 * allocation didn't subsequently take the space due 10271 * to an error or false predicate evaluation. In this 10272 * case, we'll just leave the wrapped offset alone: if 10273 * the wrapped offset hasn't been advanced far enough 10274 * for this allocation, it will be adjusted in the 10275 * lower loop. 10276 */ 10277 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10278 if (woffs >= offs) 10279 woffs = 0; 10280 } else { 10281 woffs = 0; 10282 } 10283 10284 /* 10285 * Now we know that we're going to be storing to the 10286 * top of the buffer and that there is room for us 10287 * there. We need to clear the buffer from the current 10288 * offset to the end (there may be old gunk there). 10289 */ 10290 while (offs < buf->dtb_size) 10291 tomax[offs++] = 0; 10292 10293 /* 10294 * We need to set our offset to zero. And because we 10295 * are wrapping, we need to set the bit indicating as 10296 * much. We can also adjust our needed space back 10297 * down to the space required by the ECB -- we know 10298 * that the top of the buffer is aligned. 10299 */ 10300 offs = 0; 10301 total = needed; 10302 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10303 } else { 10304 /* 10305 * There is room for us in the buffer, so we simply 10306 * need to check the wrapped offset. 10307 */ 10308 if (woffs < offs) { 10309 /* 10310 * The wrapped offset is less than the offset. 10311 * This can happen if we allocated buffer space 10312 * that induced a wrap, but then we didn't 10313 * subsequently take the space due to an error 10314 * or false predicate evaluation. This is 10315 * okay; we know that _this_ allocation isn't 10316 * going to induce a wrap. We still can't 10317 * reset the wrapped offset to be zero, 10318 * however: the space may have been trashed in 10319 * the previous failed probe attempt. But at 10320 * least the wrapped offset doesn't need to 10321 * be adjusted at all... 10322 */ 10323 goto out; 10324 } 10325 } 10326 10327 while (offs + total > woffs) { 10328 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10329 size_t size; 10330 10331 if (epid == DTRACE_EPIDNONE) { 10332 size = sizeof (uint32_t); 10333 } else { 10334 ASSERT(epid <= state->dts_necbs); 10335 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10336 10337 size = state->dts_ecbs[epid - 1]->dte_size; 10338 } 10339 10340 ASSERT(woffs + size <= buf->dtb_size); 10341 ASSERT(size != 0); 10342 10343 if (woffs + size == buf->dtb_size) { 10344 /* 10345 * We've reached the end of the buffer; we want 10346 * to set the wrapped offset to 0 and break 10347 * out. However, if the offs is 0, then we're 10348 * in a strange edge-condition: the amount of 10349 * space that we want to reserve plus the size 10350 * of the record that we're overwriting is 10351 * greater than the size of the buffer. This 10352 * is problematic because if we reserve the 10353 * space but subsequently don't consume it (due 10354 * to a failed predicate or error) the wrapped 10355 * offset will be 0 -- yet the EPID at offset 0 10356 * will not be committed. This situation is 10357 * relatively easy to deal with: if we're in 10358 * this case, the buffer is indistinguishable 10359 * from one that hasn't wrapped; we need only 10360 * finish the job by clearing the wrapped bit, 10361 * explicitly setting the offset to be 0, and 10362 * zero'ing out the old data in the buffer. 10363 */ 10364 if (offs == 0) { 10365 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10366 buf->dtb_offset = 0; 10367 woffs = total; 10368 10369 while (woffs < buf->dtb_size) 10370 tomax[woffs++] = 0; 10371 } 10372 10373 woffs = 0; 10374 break; 10375 } 10376 10377 woffs += size; 10378 } 10379 10380 /* 10381 * We have a wrapped offset. It may be that the wrapped offset 10382 * has become zero -- that's okay. 10383 */ 10384 buf->dtb_xamot_offset = woffs; 10385 } 10386 10387 out: 10388 /* 10389 * Now we can plow the buffer with any necessary padding. 10390 */ 10391 while (offs & (align - 1)) { 10392 /* 10393 * Assert that our alignment is off by a number which 10394 * is itself sizeof (uint32_t) aligned. 10395 */ 10396 ASSERT(!((align - (offs & (align - 1))) & 10397 (sizeof (uint32_t) - 1))); 10398 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10399 offs += sizeof (uint32_t); 10400 } 10401 10402 if (buf->dtb_flags & DTRACEBUF_FILL) { 10403 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10404 buf->dtb_flags |= DTRACEBUF_FULL; 10405 return (-1); 10406 } 10407 } 10408 10409 if (mstate == NULL) 10410 return (offs); 10411 10412 /* 10413 * For ring buffers and fill buffers, the scratch space is always 10414 * the inactive buffer. 10415 */ 10416 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10417 mstate->dtms_scratch_size = buf->dtb_size; 10418 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10419 10420 return (offs); 10421 } 10422 10423 static void 10424 dtrace_buffer_polish(dtrace_buffer_t *buf) 10425 { 10426 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10427 ASSERT(MUTEX_HELD(&dtrace_lock)); 10428 10429 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10430 return; 10431 10432 /* 10433 * We need to polish the ring buffer. There are three cases: 10434 * 10435 * - The first (and presumably most common) is that there is no gap 10436 * between the buffer offset and the wrapped offset. In this case, 10437 * there is nothing in the buffer that isn't valid data; we can 10438 * mark the buffer as polished and return. 10439 * 10440 * - The second (less common than the first but still more common 10441 * than the third) is that there is a gap between the buffer offset 10442 * and the wrapped offset, and the wrapped offset is larger than the 10443 * buffer offset. This can happen because of an alignment issue, or 10444 * can happen because of a call to dtrace_buffer_reserve() that 10445 * didn't subsequently consume the buffer space. In this case, 10446 * we need to zero the data from the buffer offset to the wrapped 10447 * offset. 10448 * 10449 * - The third (and least common) is that there is a gap between the 10450 * buffer offset and the wrapped offset, but the wrapped offset is 10451 * _less_ than the buffer offset. This can only happen because a 10452 * call to dtrace_buffer_reserve() induced a wrap, but the space 10453 * was not subsequently consumed. In this case, we need to zero the 10454 * space from the offset to the end of the buffer _and_ from the 10455 * top of the buffer to the wrapped offset. 10456 */ 10457 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10458 bzero(buf->dtb_tomax + buf->dtb_offset, 10459 buf->dtb_xamot_offset - buf->dtb_offset); 10460 } 10461 10462 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10463 bzero(buf->dtb_tomax + buf->dtb_offset, 10464 buf->dtb_size - buf->dtb_offset); 10465 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10466 } 10467 } 10468 10469 static void 10470 dtrace_buffer_free(dtrace_buffer_t *bufs) 10471 { 10472 int i; 10473 10474 for (i = 0; i < NCPU; i++) { 10475 dtrace_buffer_t *buf = &bufs[i]; 10476 10477 if (buf->dtb_tomax == NULL) { 10478 ASSERT(buf->dtb_xamot == NULL); 10479 ASSERT(buf->dtb_size == 0); 10480 continue; 10481 } 10482 10483 if (buf->dtb_xamot != NULL) { 10484 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10485 kmem_free(buf->dtb_xamot, buf->dtb_size); 10486 } 10487 10488 kmem_free(buf->dtb_tomax, buf->dtb_size); 10489 buf->dtb_size = 0; 10490 buf->dtb_tomax = NULL; 10491 buf->dtb_xamot = NULL; 10492 } 10493 } 10494 10495 /* 10496 * DTrace Enabling Functions 10497 */ 10498 static dtrace_enabling_t * 10499 dtrace_enabling_create(dtrace_vstate_t *vstate) 10500 { 10501 dtrace_enabling_t *enab; 10502 10503 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10504 enab->dten_vstate = vstate; 10505 10506 return (enab); 10507 } 10508 10509 static void 10510 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10511 { 10512 dtrace_ecbdesc_t **ndesc; 10513 size_t osize, nsize; 10514 10515 /* 10516 * We can't add to enablings after we've enabled them, or after we've 10517 * retained them. 10518 */ 10519 ASSERT(enab->dten_probegen == 0); 10520 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10521 10522 if (enab->dten_ndesc < enab->dten_maxdesc) { 10523 enab->dten_desc[enab->dten_ndesc++] = ecb; 10524 return; 10525 } 10526 10527 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10528 10529 if (enab->dten_maxdesc == 0) { 10530 enab->dten_maxdesc = 1; 10531 } else { 10532 enab->dten_maxdesc <<= 1; 10533 } 10534 10535 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10536 10537 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10538 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10539 bcopy(enab->dten_desc, ndesc, osize); 10540 kmem_free(enab->dten_desc, osize); 10541 10542 enab->dten_desc = ndesc; 10543 enab->dten_desc[enab->dten_ndesc++] = ecb; 10544 } 10545 10546 static void 10547 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10548 dtrace_probedesc_t *pd) 10549 { 10550 dtrace_ecbdesc_t *new; 10551 dtrace_predicate_t *pred; 10552 dtrace_actdesc_t *act; 10553 10554 /* 10555 * We're going to create a new ECB description that matches the 10556 * specified ECB in every way, but has the specified probe description. 10557 */ 10558 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10559 10560 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10561 dtrace_predicate_hold(pred); 10562 10563 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10564 dtrace_actdesc_hold(act); 10565 10566 new->dted_action = ecb->dted_action; 10567 new->dted_pred = ecb->dted_pred; 10568 new->dted_probe = *pd; 10569 new->dted_uarg = ecb->dted_uarg; 10570 10571 dtrace_enabling_add(enab, new); 10572 } 10573 10574 static void 10575 dtrace_enabling_dump(dtrace_enabling_t *enab) 10576 { 10577 int i; 10578 10579 for (i = 0; i < enab->dten_ndesc; i++) { 10580 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10581 10582 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10583 desc->dtpd_provider, desc->dtpd_mod, 10584 desc->dtpd_func, desc->dtpd_name); 10585 } 10586 } 10587 10588 static void 10589 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10590 { 10591 int i; 10592 dtrace_ecbdesc_t *ep; 10593 dtrace_vstate_t *vstate = enab->dten_vstate; 10594 10595 ASSERT(MUTEX_HELD(&dtrace_lock)); 10596 10597 for (i = 0; i < enab->dten_ndesc; i++) { 10598 dtrace_actdesc_t *act, *next; 10599 dtrace_predicate_t *pred; 10600 10601 ep = enab->dten_desc[i]; 10602 10603 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10604 dtrace_predicate_release(pred, vstate); 10605 10606 for (act = ep->dted_action; act != NULL; act = next) { 10607 next = act->dtad_next; 10608 dtrace_actdesc_release(act, vstate); 10609 } 10610 10611 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10612 } 10613 10614 kmem_free(enab->dten_desc, 10615 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10616 10617 /* 10618 * If this was a retained enabling, decrement the dts_nretained count 10619 * and take it off of the dtrace_retained list. 10620 */ 10621 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10622 dtrace_retained == enab) { 10623 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10624 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10625 enab->dten_vstate->dtvs_state->dts_nretained--; 10626 dtrace_retained_gen++; 10627 } 10628 10629 if (enab->dten_prev == NULL) { 10630 if (dtrace_retained == enab) { 10631 dtrace_retained = enab->dten_next; 10632 10633 if (dtrace_retained != NULL) 10634 dtrace_retained->dten_prev = NULL; 10635 } 10636 } else { 10637 ASSERT(enab != dtrace_retained); 10638 ASSERT(dtrace_retained != NULL); 10639 enab->dten_prev->dten_next = enab->dten_next; 10640 } 10641 10642 if (enab->dten_next != NULL) { 10643 ASSERT(dtrace_retained != NULL); 10644 enab->dten_next->dten_prev = enab->dten_prev; 10645 } 10646 10647 kmem_free(enab, sizeof (dtrace_enabling_t)); 10648 } 10649 10650 static int 10651 dtrace_enabling_retain(dtrace_enabling_t *enab) 10652 { 10653 dtrace_state_t *state; 10654 10655 ASSERT(MUTEX_HELD(&dtrace_lock)); 10656 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10657 ASSERT(enab->dten_vstate != NULL); 10658 10659 state = enab->dten_vstate->dtvs_state; 10660 ASSERT(state != NULL); 10661 10662 /* 10663 * We only allow each state to retain dtrace_retain_max enablings. 10664 */ 10665 if (state->dts_nretained >= dtrace_retain_max) 10666 return (ENOSPC); 10667 10668 state->dts_nretained++; 10669 dtrace_retained_gen++; 10670 10671 if (dtrace_retained == NULL) { 10672 dtrace_retained = enab; 10673 return (0); 10674 } 10675 10676 enab->dten_next = dtrace_retained; 10677 dtrace_retained->dten_prev = enab; 10678 dtrace_retained = enab; 10679 10680 return (0); 10681 } 10682 10683 static int 10684 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 10685 dtrace_probedesc_t *create) 10686 { 10687 dtrace_enabling_t *new, *enab; 10688 int found = 0, err = ENOENT; 10689 10690 ASSERT(MUTEX_HELD(&dtrace_lock)); 10691 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 10692 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 10693 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 10694 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 10695 10696 new = dtrace_enabling_create(&state->dts_vstate); 10697 10698 /* 10699 * Iterate over all retained enablings, looking for enablings that 10700 * match the specified state. 10701 */ 10702 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10703 int i; 10704 10705 /* 10706 * dtvs_state can only be NULL for helper enablings -- and 10707 * helper enablings can't be retained. 10708 */ 10709 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10710 10711 if (enab->dten_vstate->dtvs_state != state) 10712 continue; 10713 10714 /* 10715 * Now iterate over each probe description; we're looking for 10716 * an exact match to the specified probe description. 10717 */ 10718 for (i = 0; i < enab->dten_ndesc; i++) { 10719 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10720 dtrace_probedesc_t *pd = &ep->dted_probe; 10721 10722 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 10723 continue; 10724 10725 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 10726 continue; 10727 10728 if (strcmp(pd->dtpd_func, match->dtpd_func)) 10729 continue; 10730 10731 if (strcmp(pd->dtpd_name, match->dtpd_name)) 10732 continue; 10733 10734 /* 10735 * We have a winning probe! Add it to our growing 10736 * enabling. 10737 */ 10738 found = 1; 10739 dtrace_enabling_addlike(new, ep, create); 10740 } 10741 } 10742 10743 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 10744 dtrace_enabling_destroy(new); 10745 return (err); 10746 } 10747 10748 return (0); 10749 } 10750 10751 static void 10752 dtrace_enabling_retract(dtrace_state_t *state) 10753 { 10754 dtrace_enabling_t *enab, *next; 10755 10756 ASSERT(MUTEX_HELD(&dtrace_lock)); 10757 10758 /* 10759 * Iterate over all retained enablings, destroy the enablings retained 10760 * for the specified state. 10761 */ 10762 for (enab = dtrace_retained; enab != NULL; enab = next) { 10763 next = enab->dten_next; 10764 10765 /* 10766 * dtvs_state can only be NULL for helper enablings -- and 10767 * helper enablings can't be retained. 10768 */ 10769 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10770 10771 if (enab->dten_vstate->dtvs_state == state) { 10772 ASSERT(state->dts_nretained > 0); 10773 dtrace_enabling_destroy(enab); 10774 } 10775 } 10776 10777 ASSERT(state->dts_nretained == 0); 10778 } 10779 10780 static int 10781 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 10782 { 10783 int i = 0; 10784 int total_matched = 0, matched = 0; 10785 10786 ASSERT(MUTEX_HELD(&cpu_lock)); 10787 ASSERT(MUTEX_HELD(&dtrace_lock)); 10788 10789 for (i = 0; i < enab->dten_ndesc; i++) { 10790 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10791 10792 enab->dten_current = ep; 10793 enab->dten_error = 0; 10794 10795 /* 10796 * If a provider failed to enable a probe then get out and 10797 * let the consumer know we failed. 10798 */ 10799 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 10800 return (EBUSY); 10801 10802 total_matched += matched; 10803 10804 if (enab->dten_error != 0) { 10805 /* 10806 * If we get an error half-way through enabling the 10807 * probes, we kick out -- perhaps with some number of 10808 * them enabled. Leaving enabled probes enabled may 10809 * be slightly confusing for user-level, but we expect 10810 * that no one will attempt to actually drive on in 10811 * the face of such errors. If this is an anonymous 10812 * enabling (indicated with a NULL nmatched pointer), 10813 * we cmn_err() a message. We aren't expecting to 10814 * get such an error -- such as it can exist at all, 10815 * it would be a result of corrupted DOF in the driver 10816 * properties. 10817 */ 10818 if (nmatched == NULL) { 10819 cmn_err(CE_WARN, "dtrace_enabling_match() " 10820 "error on %p: %d", (void *)ep, 10821 enab->dten_error); 10822 } 10823 10824 return (enab->dten_error); 10825 } 10826 } 10827 10828 enab->dten_probegen = dtrace_probegen; 10829 if (nmatched != NULL) 10830 *nmatched = total_matched; 10831 10832 return (0); 10833 } 10834 10835 static void 10836 dtrace_enabling_matchall(void) 10837 { 10838 dtrace_enabling_t *enab; 10839 10840 mutex_enter(&cpu_lock); 10841 mutex_enter(&dtrace_lock); 10842 10843 /* 10844 * Iterate over all retained enablings to see if any probes match 10845 * against them. We only perform this operation on enablings for which 10846 * we have sufficient permissions by virtue of being in the global zone 10847 * or in the same zone as the DTrace client. Because we can be called 10848 * after dtrace_detach() has been called, we cannot assert that there 10849 * are retained enablings. We can safely load from dtrace_retained, 10850 * however: the taskq_destroy() at the end of dtrace_detach() will 10851 * block pending our completion. 10852 */ 10853 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10854 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred; 10855 10856 if (INGLOBALZONE(curproc) || 10857 cr != NULL && getzoneid() == crgetzoneid(cr)) 10858 (void) dtrace_enabling_match(enab, NULL); 10859 } 10860 10861 mutex_exit(&dtrace_lock); 10862 mutex_exit(&cpu_lock); 10863 } 10864 10865 /* 10866 * If an enabling is to be enabled without having matched probes (that is, if 10867 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 10868 * enabling must be _primed_ by creating an ECB for every ECB description. 10869 * This must be done to assure that we know the number of speculations, the 10870 * number of aggregations, the minimum buffer size needed, etc. before we 10871 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 10872 * enabling any probes, we create ECBs for every ECB decription, but with a 10873 * NULL probe -- which is exactly what this function does. 10874 */ 10875 static void 10876 dtrace_enabling_prime(dtrace_state_t *state) 10877 { 10878 dtrace_enabling_t *enab; 10879 int i; 10880 10881 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10882 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10883 10884 if (enab->dten_vstate->dtvs_state != state) 10885 continue; 10886 10887 /* 10888 * We don't want to prime an enabling more than once, lest 10889 * we allow a malicious user to induce resource exhaustion. 10890 * (The ECBs that result from priming an enabling aren't 10891 * leaked -- but they also aren't deallocated until the 10892 * consumer state is destroyed.) 10893 */ 10894 if (enab->dten_primed) 10895 continue; 10896 10897 for (i = 0; i < enab->dten_ndesc; i++) { 10898 enab->dten_current = enab->dten_desc[i]; 10899 (void) dtrace_probe_enable(NULL, enab); 10900 } 10901 10902 enab->dten_primed = 1; 10903 } 10904 } 10905 10906 /* 10907 * Called to indicate that probes should be provided due to retained 10908 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 10909 * must take an initial lap through the enabling calling the dtps_provide() 10910 * entry point explicitly to allow for autocreated probes. 10911 */ 10912 static void 10913 dtrace_enabling_provide(dtrace_provider_t *prv) 10914 { 10915 int i, all = 0; 10916 dtrace_probedesc_t desc; 10917 dtrace_genid_t gen; 10918 10919 ASSERT(MUTEX_HELD(&dtrace_lock)); 10920 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 10921 10922 if (prv == NULL) { 10923 all = 1; 10924 prv = dtrace_provider; 10925 } 10926 10927 do { 10928 dtrace_enabling_t *enab; 10929 void *parg = prv->dtpv_arg; 10930 10931 retry: 10932 gen = dtrace_retained_gen; 10933 for (enab = dtrace_retained; enab != NULL; 10934 enab = enab->dten_next) { 10935 for (i = 0; i < enab->dten_ndesc; i++) { 10936 desc = enab->dten_desc[i]->dted_probe; 10937 mutex_exit(&dtrace_lock); 10938 prv->dtpv_pops.dtps_provide(parg, &desc); 10939 mutex_enter(&dtrace_lock); 10940 /* 10941 * Process the retained enablings again if 10942 * they have changed while we weren't holding 10943 * dtrace_lock. 10944 */ 10945 if (gen != dtrace_retained_gen) 10946 goto retry; 10947 } 10948 } 10949 } while (all && (prv = prv->dtpv_next) != NULL); 10950 10951 mutex_exit(&dtrace_lock); 10952 dtrace_probe_provide(NULL, all ? NULL : prv); 10953 mutex_enter(&dtrace_lock); 10954 } 10955 10956 /* 10957 * DTrace DOF Functions 10958 */ 10959 /*ARGSUSED*/ 10960 static void 10961 dtrace_dof_error(dof_hdr_t *dof, const char *str) 10962 { 10963 if (dtrace_err_verbose) 10964 cmn_err(CE_WARN, "failed to process DOF: %s", str); 10965 10966 #ifdef DTRACE_ERRDEBUG 10967 dtrace_errdebug(str); 10968 #endif 10969 } 10970 10971 /* 10972 * Create DOF out of a currently enabled state. Right now, we only create 10973 * DOF containing the run-time options -- but this could be expanded to create 10974 * complete DOF representing the enabled state. 10975 */ 10976 static dof_hdr_t * 10977 dtrace_dof_create(dtrace_state_t *state) 10978 { 10979 dof_hdr_t *dof; 10980 dof_sec_t *sec; 10981 dof_optdesc_t *opt; 10982 int i, len = sizeof (dof_hdr_t) + 10983 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 10984 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10985 10986 ASSERT(MUTEX_HELD(&dtrace_lock)); 10987 10988 dof = kmem_zalloc(len, KM_SLEEP); 10989 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 10990 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 10991 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 10992 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 10993 10994 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 10995 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 10996 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 10997 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 10998 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 10999 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 11000 11001 dof->dofh_flags = 0; 11002 dof->dofh_hdrsize = sizeof (dof_hdr_t); 11003 dof->dofh_secsize = sizeof (dof_sec_t); 11004 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 11005 dof->dofh_secoff = sizeof (dof_hdr_t); 11006 dof->dofh_loadsz = len; 11007 dof->dofh_filesz = len; 11008 dof->dofh_pad = 0; 11009 11010 /* 11011 * Fill in the option section header... 11012 */ 11013 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 11014 sec->dofs_type = DOF_SECT_OPTDESC; 11015 sec->dofs_align = sizeof (uint64_t); 11016 sec->dofs_flags = DOF_SECF_LOAD; 11017 sec->dofs_entsize = sizeof (dof_optdesc_t); 11018 11019 opt = (dof_optdesc_t *)((uintptr_t)sec + 11020 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 11021 11022 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 11023 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11024 11025 for (i = 0; i < DTRACEOPT_MAX; i++) { 11026 opt[i].dofo_option = i; 11027 opt[i].dofo_strtab = DOF_SECIDX_NONE; 11028 opt[i].dofo_value = state->dts_options[i]; 11029 } 11030 11031 return (dof); 11032 } 11033 11034 static dof_hdr_t * 11035 dtrace_dof_copyin(uintptr_t uarg, int *errp) 11036 { 11037 dof_hdr_t hdr, *dof; 11038 11039 ASSERT(!MUTEX_HELD(&dtrace_lock)); 11040 11041 /* 11042 * First, we're going to copyin() the sizeof (dof_hdr_t). 11043 */ 11044 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 11045 dtrace_dof_error(NULL, "failed to copyin DOF header"); 11046 *errp = EFAULT; 11047 return (NULL); 11048 } 11049 11050 /* 11051 * Now we'll allocate the entire DOF and copy it in -- provided 11052 * that the length isn't outrageous. 11053 */ 11054 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 11055 dtrace_dof_error(&hdr, "load size exceeds maximum"); 11056 *errp = E2BIG; 11057 return (NULL); 11058 } 11059 11060 if (hdr.dofh_loadsz < sizeof (hdr)) { 11061 dtrace_dof_error(&hdr, "invalid load size"); 11062 *errp = EINVAL; 11063 return (NULL); 11064 } 11065 11066 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 11067 11068 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 11069 dof->dofh_loadsz != hdr.dofh_loadsz) { 11070 kmem_free(dof, hdr.dofh_loadsz); 11071 *errp = EFAULT; 11072 return (NULL); 11073 } 11074 11075 return (dof); 11076 } 11077 11078 static dof_hdr_t * 11079 dtrace_dof_property(const char *name) 11080 { 11081 uchar_t *buf; 11082 uint64_t loadsz; 11083 unsigned int len, i; 11084 dof_hdr_t *dof; 11085 11086 /* 11087 * Unfortunately, array of values in .conf files are always (and 11088 * only) interpreted to be integer arrays. We must read our DOF 11089 * as an integer array, and then squeeze it into a byte array. 11090 */ 11091 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 11092 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 11093 return (NULL); 11094 11095 for (i = 0; i < len; i++) 11096 buf[i] = (uchar_t)(((int *)buf)[i]); 11097 11098 if (len < sizeof (dof_hdr_t)) { 11099 ddi_prop_free(buf); 11100 dtrace_dof_error(NULL, "truncated header"); 11101 return (NULL); 11102 } 11103 11104 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 11105 ddi_prop_free(buf); 11106 dtrace_dof_error(NULL, "truncated DOF"); 11107 return (NULL); 11108 } 11109 11110 if (loadsz >= dtrace_dof_maxsize) { 11111 ddi_prop_free(buf); 11112 dtrace_dof_error(NULL, "oversized DOF"); 11113 return (NULL); 11114 } 11115 11116 dof = kmem_alloc(loadsz, KM_SLEEP); 11117 bcopy(buf, dof, loadsz); 11118 ddi_prop_free(buf); 11119 11120 return (dof); 11121 } 11122 11123 static void 11124 dtrace_dof_destroy(dof_hdr_t *dof) 11125 { 11126 kmem_free(dof, dof->dofh_loadsz); 11127 } 11128 11129 /* 11130 * Return the dof_sec_t pointer corresponding to a given section index. If the 11131 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 11132 * a type other than DOF_SECT_NONE is specified, the header is checked against 11133 * this type and NULL is returned if the types do not match. 11134 */ 11135 static dof_sec_t * 11136 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 11137 { 11138 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 11139 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 11140 11141 if (i >= dof->dofh_secnum) { 11142 dtrace_dof_error(dof, "referenced section index is invalid"); 11143 return (NULL); 11144 } 11145 11146 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 11147 dtrace_dof_error(dof, "referenced section is not loadable"); 11148 return (NULL); 11149 } 11150 11151 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 11152 dtrace_dof_error(dof, "referenced section is the wrong type"); 11153 return (NULL); 11154 } 11155 11156 return (sec); 11157 } 11158 11159 static dtrace_probedesc_t * 11160 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 11161 { 11162 dof_probedesc_t *probe; 11163 dof_sec_t *strtab; 11164 uintptr_t daddr = (uintptr_t)dof; 11165 uintptr_t str; 11166 size_t size; 11167 11168 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 11169 dtrace_dof_error(dof, "invalid probe section"); 11170 return (NULL); 11171 } 11172 11173 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11174 dtrace_dof_error(dof, "bad alignment in probe description"); 11175 return (NULL); 11176 } 11177 11178 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 11179 dtrace_dof_error(dof, "truncated probe description"); 11180 return (NULL); 11181 } 11182 11183 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 11184 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 11185 11186 if (strtab == NULL) 11187 return (NULL); 11188 11189 str = daddr + strtab->dofs_offset; 11190 size = strtab->dofs_size; 11191 11192 if (probe->dofp_provider >= strtab->dofs_size) { 11193 dtrace_dof_error(dof, "corrupt probe provider"); 11194 return (NULL); 11195 } 11196 11197 (void) strncpy(desc->dtpd_provider, 11198 (char *)(str + probe->dofp_provider), 11199 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11200 11201 if (probe->dofp_mod >= strtab->dofs_size) { 11202 dtrace_dof_error(dof, "corrupt probe module"); 11203 return (NULL); 11204 } 11205 11206 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11207 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11208 11209 if (probe->dofp_func >= strtab->dofs_size) { 11210 dtrace_dof_error(dof, "corrupt probe function"); 11211 return (NULL); 11212 } 11213 11214 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11215 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11216 11217 if (probe->dofp_name >= strtab->dofs_size) { 11218 dtrace_dof_error(dof, "corrupt probe name"); 11219 return (NULL); 11220 } 11221 11222 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11223 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11224 11225 return (desc); 11226 } 11227 11228 static dtrace_difo_t * 11229 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11230 cred_t *cr) 11231 { 11232 dtrace_difo_t *dp; 11233 size_t ttl = 0; 11234 dof_difohdr_t *dofd; 11235 uintptr_t daddr = (uintptr_t)dof; 11236 size_t max = dtrace_difo_maxsize; 11237 int i, l, n; 11238 11239 static const struct { 11240 int section; 11241 int bufoffs; 11242 int lenoffs; 11243 int entsize; 11244 int align; 11245 const char *msg; 11246 } difo[] = { 11247 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11248 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11249 sizeof (dif_instr_t), "multiple DIF sections" }, 11250 11251 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11252 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11253 sizeof (uint64_t), "multiple integer tables" }, 11254 11255 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11256 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11257 sizeof (char), "multiple string tables" }, 11258 11259 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11260 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11261 sizeof (uint_t), "multiple variable tables" }, 11262 11263 { DOF_SECT_NONE, 0, 0, 0, NULL } 11264 }; 11265 11266 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11267 dtrace_dof_error(dof, "invalid DIFO header section"); 11268 return (NULL); 11269 } 11270 11271 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11272 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11273 return (NULL); 11274 } 11275 11276 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11277 sec->dofs_size % sizeof (dof_secidx_t)) { 11278 dtrace_dof_error(dof, "bad size in DIFO header"); 11279 return (NULL); 11280 } 11281 11282 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11283 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11284 11285 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11286 dp->dtdo_rtype = dofd->dofd_rtype; 11287 11288 for (l = 0; l < n; l++) { 11289 dof_sec_t *subsec; 11290 void **bufp; 11291 uint32_t *lenp; 11292 11293 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11294 dofd->dofd_links[l])) == NULL) 11295 goto err; /* invalid section link */ 11296 11297 if (ttl + subsec->dofs_size > max) { 11298 dtrace_dof_error(dof, "exceeds maximum size"); 11299 goto err; 11300 } 11301 11302 ttl += subsec->dofs_size; 11303 11304 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11305 if (subsec->dofs_type != difo[i].section) 11306 continue; 11307 11308 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11309 dtrace_dof_error(dof, "section not loaded"); 11310 goto err; 11311 } 11312 11313 if (subsec->dofs_align != difo[i].align) { 11314 dtrace_dof_error(dof, "bad alignment"); 11315 goto err; 11316 } 11317 11318 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11319 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11320 11321 if (*bufp != NULL) { 11322 dtrace_dof_error(dof, difo[i].msg); 11323 goto err; 11324 } 11325 11326 if (difo[i].entsize != subsec->dofs_entsize) { 11327 dtrace_dof_error(dof, "entry size mismatch"); 11328 goto err; 11329 } 11330 11331 if (subsec->dofs_entsize != 0 && 11332 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11333 dtrace_dof_error(dof, "corrupt entry size"); 11334 goto err; 11335 } 11336 11337 *lenp = subsec->dofs_size; 11338 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11339 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11340 *bufp, subsec->dofs_size); 11341 11342 if (subsec->dofs_entsize != 0) 11343 *lenp /= subsec->dofs_entsize; 11344 11345 break; 11346 } 11347 11348 /* 11349 * If we encounter a loadable DIFO sub-section that is not 11350 * known to us, assume this is a broken program and fail. 11351 */ 11352 if (difo[i].section == DOF_SECT_NONE && 11353 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11354 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11355 goto err; 11356 } 11357 } 11358 11359 if (dp->dtdo_buf == NULL) { 11360 /* 11361 * We can't have a DIF object without DIF text. 11362 */ 11363 dtrace_dof_error(dof, "missing DIF text"); 11364 goto err; 11365 } 11366 11367 /* 11368 * Before we validate the DIF object, run through the variable table 11369 * looking for the strings -- if any of their size are under, we'll set 11370 * their size to be the system-wide default string size. Note that 11371 * this should _not_ happen if the "strsize" option has been set -- 11372 * in this case, the compiler should have set the size to reflect the 11373 * setting of the option. 11374 */ 11375 for (i = 0; i < dp->dtdo_varlen; i++) { 11376 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11377 dtrace_diftype_t *t = &v->dtdv_type; 11378 11379 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11380 continue; 11381 11382 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11383 t->dtdt_size = dtrace_strsize_default; 11384 } 11385 11386 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11387 goto err; 11388 11389 dtrace_difo_init(dp, vstate); 11390 return (dp); 11391 11392 err: 11393 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11394 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11395 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11396 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11397 11398 kmem_free(dp, sizeof (dtrace_difo_t)); 11399 return (NULL); 11400 } 11401 11402 static dtrace_predicate_t * 11403 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11404 cred_t *cr) 11405 { 11406 dtrace_difo_t *dp; 11407 11408 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11409 return (NULL); 11410 11411 return (dtrace_predicate_create(dp)); 11412 } 11413 11414 static dtrace_actdesc_t * 11415 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11416 cred_t *cr) 11417 { 11418 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11419 dof_actdesc_t *desc; 11420 dof_sec_t *difosec; 11421 size_t offs; 11422 uintptr_t daddr = (uintptr_t)dof; 11423 uint64_t arg; 11424 dtrace_actkind_t kind; 11425 11426 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11427 dtrace_dof_error(dof, "invalid action section"); 11428 return (NULL); 11429 } 11430 11431 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11432 dtrace_dof_error(dof, "truncated action description"); 11433 return (NULL); 11434 } 11435 11436 if (sec->dofs_align != sizeof (uint64_t)) { 11437 dtrace_dof_error(dof, "bad alignment in action description"); 11438 return (NULL); 11439 } 11440 11441 if (sec->dofs_size < sec->dofs_entsize) { 11442 dtrace_dof_error(dof, "section entry size exceeds total size"); 11443 return (NULL); 11444 } 11445 11446 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11447 dtrace_dof_error(dof, "bad entry size in action description"); 11448 return (NULL); 11449 } 11450 11451 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11452 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11453 return (NULL); 11454 } 11455 11456 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11457 desc = (dof_actdesc_t *)(daddr + 11458 (uintptr_t)sec->dofs_offset + offs); 11459 kind = (dtrace_actkind_t)desc->dofa_kind; 11460 11461 if (DTRACEACT_ISPRINTFLIKE(kind) && 11462 (kind != DTRACEACT_PRINTA || 11463 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11464 dof_sec_t *strtab; 11465 char *str, *fmt; 11466 uint64_t i; 11467 11468 /* 11469 * printf()-like actions must have a format string. 11470 */ 11471 if ((strtab = dtrace_dof_sect(dof, 11472 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11473 goto err; 11474 11475 str = (char *)((uintptr_t)dof + 11476 (uintptr_t)strtab->dofs_offset); 11477 11478 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11479 if (str[i] == '\0') 11480 break; 11481 } 11482 11483 if (i >= strtab->dofs_size) { 11484 dtrace_dof_error(dof, "bogus format string"); 11485 goto err; 11486 } 11487 11488 if (i == desc->dofa_arg) { 11489 dtrace_dof_error(dof, "empty format string"); 11490 goto err; 11491 } 11492 11493 i -= desc->dofa_arg; 11494 fmt = kmem_alloc(i + 1, KM_SLEEP); 11495 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11496 arg = (uint64_t)(uintptr_t)fmt; 11497 } else { 11498 if (kind == DTRACEACT_PRINTA) { 11499 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11500 arg = 0; 11501 } else { 11502 arg = desc->dofa_arg; 11503 } 11504 } 11505 11506 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11507 desc->dofa_uarg, arg); 11508 11509 if (last != NULL) { 11510 last->dtad_next = act; 11511 } else { 11512 first = act; 11513 } 11514 11515 last = act; 11516 11517 if (desc->dofa_difo == DOF_SECIDX_NONE) 11518 continue; 11519 11520 if ((difosec = dtrace_dof_sect(dof, 11521 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11522 goto err; 11523 11524 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11525 11526 if (act->dtad_difo == NULL) 11527 goto err; 11528 } 11529 11530 ASSERT(first != NULL); 11531 return (first); 11532 11533 err: 11534 for (act = first; act != NULL; act = next) { 11535 next = act->dtad_next; 11536 dtrace_actdesc_release(act, vstate); 11537 } 11538 11539 return (NULL); 11540 } 11541 11542 static dtrace_ecbdesc_t * 11543 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11544 cred_t *cr) 11545 { 11546 dtrace_ecbdesc_t *ep; 11547 dof_ecbdesc_t *ecb; 11548 dtrace_probedesc_t *desc; 11549 dtrace_predicate_t *pred = NULL; 11550 11551 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11552 dtrace_dof_error(dof, "truncated ECB description"); 11553 return (NULL); 11554 } 11555 11556 if (sec->dofs_align != sizeof (uint64_t)) { 11557 dtrace_dof_error(dof, "bad alignment in ECB description"); 11558 return (NULL); 11559 } 11560 11561 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11562 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11563 11564 if (sec == NULL) 11565 return (NULL); 11566 11567 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11568 ep->dted_uarg = ecb->dofe_uarg; 11569 desc = &ep->dted_probe; 11570 11571 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11572 goto err; 11573 11574 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11575 if ((sec = dtrace_dof_sect(dof, 11576 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 11577 goto err; 11578 11579 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 11580 goto err; 11581 11582 ep->dted_pred.dtpdd_predicate = pred; 11583 } 11584 11585 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 11586 if ((sec = dtrace_dof_sect(dof, 11587 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 11588 goto err; 11589 11590 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 11591 11592 if (ep->dted_action == NULL) 11593 goto err; 11594 } 11595 11596 return (ep); 11597 11598 err: 11599 if (pred != NULL) 11600 dtrace_predicate_release(pred, vstate); 11601 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11602 return (NULL); 11603 } 11604 11605 /* 11606 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 11607 * specified DOF. At present, this amounts to simply adding 'ubase' to the 11608 * site of any user SETX relocations to account for load object base address. 11609 * In the future, if we need other relocations, this function can be extended. 11610 */ 11611 static int 11612 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 11613 { 11614 uintptr_t daddr = (uintptr_t)dof; 11615 dof_relohdr_t *dofr = 11616 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11617 dof_sec_t *ss, *rs, *ts; 11618 dof_relodesc_t *r; 11619 uint_t i, n; 11620 11621 if (sec->dofs_size < sizeof (dof_relohdr_t) || 11622 sec->dofs_align != sizeof (dof_secidx_t)) { 11623 dtrace_dof_error(dof, "invalid relocation header"); 11624 return (-1); 11625 } 11626 11627 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 11628 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 11629 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 11630 11631 if (ss == NULL || rs == NULL || ts == NULL) 11632 return (-1); /* dtrace_dof_error() has been called already */ 11633 11634 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 11635 rs->dofs_align != sizeof (uint64_t)) { 11636 dtrace_dof_error(dof, "invalid relocation section"); 11637 return (-1); 11638 } 11639 11640 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 11641 n = rs->dofs_size / rs->dofs_entsize; 11642 11643 for (i = 0; i < n; i++) { 11644 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 11645 11646 switch (r->dofr_type) { 11647 case DOF_RELO_NONE: 11648 break; 11649 case DOF_RELO_SETX: 11650 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 11651 sizeof (uint64_t) > ts->dofs_size) { 11652 dtrace_dof_error(dof, "bad relocation offset"); 11653 return (-1); 11654 } 11655 11656 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 11657 dtrace_dof_error(dof, "misaligned setx relo"); 11658 return (-1); 11659 } 11660 11661 *(uint64_t *)taddr += ubase; 11662 break; 11663 default: 11664 dtrace_dof_error(dof, "invalid relocation type"); 11665 return (-1); 11666 } 11667 11668 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 11669 } 11670 11671 return (0); 11672 } 11673 11674 /* 11675 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 11676 * header: it should be at the front of a memory region that is at least 11677 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 11678 * size. It need not be validated in any other way. 11679 */ 11680 static int 11681 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 11682 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 11683 { 11684 uint64_t len = dof->dofh_loadsz, seclen; 11685 uintptr_t daddr = (uintptr_t)dof; 11686 dtrace_ecbdesc_t *ep; 11687 dtrace_enabling_t *enab; 11688 uint_t i; 11689 11690 ASSERT(MUTEX_HELD(&dtrace_lock)); 11691 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 11692 11693 /* 11694 * Check the DOF header identification bytes. In addition to checking 11695 * valid settings, we also verify that unused bits/bytes are zeroed so 11696 * we can use them later without fear of regressing existing binaries. 11697 */ 11698 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 11699 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 11700 dtrace_dof_error(dof, "DOF magic string mismatch"); 11701 return (-1); 11702 } 11703 11704 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 11705 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 11706 dtrace_dof_error(dof, "DOF has invalid data model"); 11707 return (-1); 11708 } 11709 11710 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 11711 dtrace_dof_error(dof, "DOF encoding mismatch"); 11712 return (-1); 11713 } 11714 11715 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 11716 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 11717 dtrace_dof_error(dof, "DOF version mismatch"); 11718 return (-1); 11719 } 11720 11721 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 11722 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 11723 return (-1); 11724 } 11725 11726 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 11727 dtrace_dof_error(dof, "DOF uses too many integer registers"); 11728 return (-1); 11729 } 11730 11731 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 11732 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 11733 return (-1); 11734 } 11735 11736 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 11737 if (dof->dofh_ident[i] != 0) { 11738 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 11739 return (-1); 11740 } 11741 } 11742 11743 if (dof->dofh_flags & ~DOF_FL_VALID) { 11744 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 11745 return (-1); 11746 } 11747 11748 if (dof->dofh_secsize == 0) { 11749 dtrace_dof_error(dof, "zero section header size"); 11750 return (-1); 11751 } 11752 11753 /* 11754 * Check that the section headers don't exceed the amount of DOF 11755 * data. Note that we cast the section size and number of sections 11756 * to uint64_t's to prevent possible overflow in the multiplication. 11757 */ 11758 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 11759 11760 if (dof->dofh_secoff > len || seclen > len || 11761 dof->dofh_secoff + seclen > len) { 11762 dtrace_dof_error(dof, "truncated section headers"); 11763 return (-1); 11764 } 11765 11766 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 11767 dtrace_dof_error(dof, "misaligned section headers"); 11768 return (-1); 11769 } 11770 11771 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 11772 dtrace_dof_error(dof, "misaligned section size"); 11773 return (-1); 11774 } 11775 11776 /* 11777 * Take an initial pass through the section headers to be sure that 11778 * the headers don't have stray offsets. If the 'noprobes' flag is 11779 * set, do not permit sections relating to providers, probes, or args. 11780 */ 11781 for (i = 0; i < dof->dofh_secnum; i++) { 11782 dof_sec_t *sec = (dof_sec_t *)(daddr + 11783 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11784 11785 if (noprobes) { 11786 switch (sec->dofs_type) { 11787 case DOF_SECT_PROVIDER: 11788 case DOF_SECT_PROBES: 11789 case DOF_SECT_PRARGS: 11790 case DOF_SECT_PROFFS: 11791 dtrace_dof_error(dof, "illegal sections " 11792 "for enabling"); 11793 return (-1); 11794 } 11795 } 11796 11797 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 11798 !(sec->dofs_flags & DOF_SECF_LOAD)) { 11799 dtrace_dof_error(dof, "loadable section with load " 11800 "flag unset"); 11801 return (-1); 11802 } 11803 11804 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11805 continue; /* just ignore non-loadable sections */ 11806 11807 if (sec->dofs_align & (sec->dofs_align - 1)) { 11808 dtrace_dof_error(dof, "bad section alignment"); 11809 return (-1); 11810 } 11811 11812 if (sec->dofs_offset & (sec->dofs_align - 1)) { 11813 dtrace_dof_error(dof, "misaligned section"); 11814 return (-1); 11815 } 11816 11817 if (sec->dofs_offset > len || sec->dofs_size > len || 11818 sec->dofs_offset + sec->dofs_size > len) { 11819 dtrace_dof_error(dof, "corrupt section header"); 11820 return (-1); 11821 } 11822 11823 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 11824 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 11825 dtrace_dof_error(dof, "non-terminating string table"); 11826 return (-1); 11827 } 11828 } 11829 11830 /* 11831 * Take a second pass through the sections and locate and perform any 11832 * relocations that are present. We do this after the first pass to 11833 * be sure that all sections have had their headers validated. 11834 */ 11835 for (i = 0; i < dof->dofh_secnum; i++) { 11836 dof_sec_t *sec = (dof_sec_t *)(daddr + 11837 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11838 11839 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11840 continue; /* skip sections that are not loadable */ 11841 11842 switch (sec->dofs_type) { 11843 case DOF_SECT_URELHDR: 11844 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 11845 return (-1); 11846 break; 11847 } 11848 } 11849 11850 if ((enab = *enabp) == NULL) 11851 enab = *enabp = dtrace_enabling_create(vstate); 11852 11853 for (i = 0; i < dof->dofh_secnum; i++) { 11854 dof_sec_t *sec = (dof_sec_t *)(daddr + 11855 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11856 11857 if (sec->dofs_type != DOF_SECT_ECBDESC) 11858 continue; 11859 11860 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 11861 dtrace_enabling_destroy(enab); 11862 *enabp = NULL; 11863 return (-1); 11864 } 11865 11866 dtrace_enabling_add(enab, ep); 11867 } 11868 11869 return (0); 11870 } 11871 11872 /* 11873 * Process DOF for any options. This routine assumes that the DOF has been 11874 * at least processed by dtrace_dof_slurp(). 11875 */ 11876 static int 11877 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 11878 { 11879 int i, rval; 11880 uint32_t entsize; 11881 size_t offs; 11882 dof_optdesc_t *desc; 11883 11884 for (i = 0; i < dof->dofh_secnum; i++) { 11885 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 11886 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11887 11888 if (sec->dofs_type != DOF_SECT_OPTDESC) 11889 continue; 11890 11891 if (sec->dofs_align != sizeof (uint64_t)) { 11892 dtrace_dof_error(dof, "bad alignment in " 11893 "option description"); 11894 return (EINVAL); 11895 } 11896 11897 if ((entsize = sec->dofs_entsize) == 0) { 11898 dtrace_dof_error(dof, "zeroed option entry size"); 11899 return (EINVAL); 11900 } 11901 11902 if (entsize < sizeof (dof_optdesc_t)) { 11903 dtrace_dof_error(dof, "bad option entry size"); 11904 return (EINVAL); 11905 } 11906 11907 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 11908 desc = (dof_optdesc_t *)((uintptr_t)dof + 11909 (uintptr_t)sec->dofs_offset + offs); 11910 11911 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 11912 dtrace_dof_error(dof, "non-zero option string"); 11913 return (EINVAL); 11914 } 11915 11916 if (desc->dofo_value == DTRACEOPT_UNSET) { 11917 dtrace_dof_error(dof, "unset option"); 11918 return (EINVAL); 11919 } 11920 11921 if ((rval = dtrace_state_option(state, 11922 desc->dofo_option, desc->dofo_value)) != 0) { 11923 dtrace_dof_error(dof, "rejected option"); 11924 return (rval); 11925 } 11926 } 11927 } 11928 11929 return (0); 11930 } 11931 11932 /* 11933 * DTrace Consumer State Functions 11934 */ 11935 int 11936 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 11937 { 11938 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 11939 void *base; 11940 uintptr_t limit; 11941 dtrace_dynvar_t *dvar, *next, *start; 11942 int i; 11943 11944 ASSERT(MUTEX_HELD(&dtrace_lock)); 11945 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 11946 11947 bzero(dstate, sizeof (dtrace_dstate_t)); 11948 11949 if ((dstate->dtds_chunksize = chunksize) == 0) 11950 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 11951 11952 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 11953 size = min; 11954 11955 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 11956 return (ENOMEM); 11957 11958 dstate->dtds_size = size; 11959 dstate->dtds_base = base; 11960 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 11961 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 11962 11963 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 11964 11965 if (hashsize != 1 && (hashsize & 1)) 11966 hashsize--; 11967 11968 dstate->dtds_hashsize = hashsize; 11969 dstate->dtds_hash = dstate->dtds_base; 11970 11971 /* 11972 * Set all of our hash buckets to point to the single sink, and (if 11973 * it hasn't already been set), set the sink's hash value to be the 11974 * sink sentinel value. The sink is needed for dynamic variable 11975 * lookups to know that they have iterated over an entire, valid hash 11976 * chain. 11977 */ 11978 for (i = 0; i < hashsize; i++) 11979 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 11980 11981 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 11982 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 11983 11984 /* 11985 * Determine number of active CPUs. Divide free list evenly among 11986 * active CPUs. 11987 */ 11988 start = (dtrace_dynvar_t *) 11989 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 11990 limit = (uintptr_t)base + size; 11991 11992 maxper = (limit - (uintptr_t)start) / NCPU; 11993 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 11994 11995 for (i = 0; i < NCPU; i++) { 11996 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 11997 11998 /* 11999 * If we don't even have enough chunks to make it once through 12000 * NCPUs, we're just going to allocate everything to the first 12001 * CPU. And if we're on the last CPU, we're going to allocate 12002 * whatever is left over. In either case, we set the limit to 12003 * be the limit of the dynamic variable space. 12004 */ 12005 if (maxper == 0 || i == NCPU - 1) { 12006 limit = (uintptr_t)base + size; 12007 start = NULL; 12008 } else { 12009 limit = (uintptr_t)start + maxper; 12010 start = (dtrace_dynvar_t *)limit; 12011 } 12012 12013 ASSERT(limit <= (uintptr_t)base + size); 12014 12015 for (;;) { 12016 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 12017 dstate->dtds_chunksize); 12018 12019 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 12020 break; 12021 12022 dvar->dtdv_next = next; 12023 dvar = next; 12024 } 12025 12026 if (maxper == 0) 12027 break; 12028 } 12029 12030 return (0); 12031 } 12032 12033 void 12034 dtrace_dstate_fini(dtrace_dstate_t *dstate) 12035 { 12036 ASSERT(MUTEX_HELD(&cpu_lock)); 12037 12038 if (dstate->dtds_base == NULL) 12039 return; 12040 12041 kmem_free(dstate->dtds_base, dstate->dtds_size); 12042 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 12043 } 12044 12045 static void 12046 dtrace_vstate_fini(dtrace_vstate_t *vstate) 12047 { 12048 /* 12049 * Logical XOR, where are you? 12050 */ 12051 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 12052 12053 if (vstate->dtvs_nglobals > 0) { 12054 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 12055 sizeof (dtrace_statvar_t *)); 12056 } 12057 12058 if (vstate->dtvs_ntlocals > 0) { 12059 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 12060 sizeof (dtrace_difv_t)); 12061 } 12062 12063 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 12064 12065 if (vstate->dtvs_nlocals > 0) { 12066 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 12067 sizeof (dtrace_statvar_t *)); 12068 } 12069 } 12070 12071 static void 12072 dtrace_state_clean(dtrace_state_t *state) 12073 { 12074 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 12075 return; 12076 12077 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 12078 dtrace_speculation_clean(state); 12079 } 12080 12081 static void 12082 dtrace_state_deadman(dtrace_state_t *state) 12083 { 12084 hrtime_t now; 12085 12086 dtrace_sync(); 12087 12088 now = dtrace_gethrtime(); 12089 12090 if (state != dtrace_anon.dta_state && 12091 now - state->dts_laststatus >= dtrace_deadman_user) 12092 return; 12093 12094 /* 12095 * We must be sure that dts_alive never appears to be less than the 12096 * value upon entry to dtrace_state_deadman(), and because we lack a 12097 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12098 * store INT64_MAX to it, followed by a memory barrier, followed by 12099 * the new value. This assures that dts_alive never appears to be 12100 * less than its true value, regardless of the order in which the 12101 * stores to the underlying storage are issued. 12102 */ 12103 state->dts_alive = INT64_MAX; 12104 dtrace_membar_producer(); 12105 state->dts_alive = now; 12106 } 12107 12108 dtrace_state_t * 12109 dtrace_state_create(dev_t *devp, cred_t *cr) 12110 { 12111 minor_t minor; 12112 major_t major; 12113 char c[30]; 12114 dtrace_state_t *state; 12115 dtrace_optval_t *opt; 12116 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 12117 12118 ASSERT(MUTEX_HELD(&dtrace_lock)); 12119 ASSERT(MUTEX_HELD(&cpu_lock)); 12120 12121 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 12122 VM_BESTFIT | VM_SLEEP); 12123 12124 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 12125 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12126 return (NULL); 12127 } 12128 12129 state = ddi_get_soft_state(dtrace_softstate, minor); 12130 state->dts_epid = DTRACE_EPIDNONE + 1; 12131 12132 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 12133 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 12134 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 12135 12136 if (devp != NULL) { 12137 major = getemajor(*devp); 12138 } else { 12139 major = ddi_driver_major(dtrace_devi); 12140 } 12141 12142 state->dts_dev = makedevice(major, minor); 12143 12144 if (devp != NULL) 12145 *devp = state->dts_dev; 12146 12147 /* 12148 * We allocate NCPU buffers. On the one hand, this can be quite 12149 * a bit of memory per instance (nearly 36K on a Starcat). On the 12150 * other hand, it saves an additional memory reference in the probe 12151 * path. 12152 */ 12153 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 12154 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 12155 state->dts_cleaner = CYCLIC_NONE; 12156 state->dts_deadman = CYCLIC_NONE; 12157 state->dts_vstate.dtvs_state = state; 12158 12159 for (i = 0; i < DTRACEOPT_MAX; i++) 12160 state->dts_options[i] = DTRACEOPT_UNSET; 12161 12162 /* 12163 * Set the default options. 12164 */ 12165 opt = state->dts_options; 12166 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 12167 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 12168 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 12169 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 12170 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 12171 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 12172 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 12173 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 12174 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 12175 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 12176 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 12177 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 12178 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 12179 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 12180 12181 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 12182 12183 /* 12184 * Depending on the user credentials, we set flag bits which alter probe 12185 * visibility or the amount of destructiveness allowed. In the case of 12186 * actual anonymous tracing, or the possession of all privileges, all of 12187 * the normal checks are bypassed. 12188 */ 12189 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 12190 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 12191 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 12192 } else { 12193 /* 12194 * Set up the credentials for this instantiation. We take a 12195 * hold on the credential to prevent it from disappearing on 12196 * us; this in turn prevents the zone_t referenced by this 12197 * credential from disappearing. This means that we can 12198 * examine the credential and the zone from probe context. 12199 */ 12200 crhold(cr); 12201 state->dts_cred.dcr_cred = cr; 12202 12203 /* 12204 * CRA_PROC means "we have *some* privilege for dtrace" and 12205 * unlocks the use of variables like pid, zonename, etc. 12206 */ 12207 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12208 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12209 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12210 } 12211 12212 /* 12213 * dtrace_user allows use of syscall and profile providers. 12214 * If the user also has proc_owner and/or proc_zone, we 12215 * extend the scope to include additional visibility and 12216 * destructive power. 12217 */ 12218 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12219 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12220 state->dts_cred.dcr_visible |= 12221 DTRACE_CRV_ALLPROC; 12222 12223 state->dts_cred.dcr_action |= 12224 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12225 } 12226 12227 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12228 state->dts_cred.dcr_visible |= 12229 DTRACE_CRV_ALLZONE; 12230 12231 state->dts_cred.dcr_action |= 12232 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12233 } 12234 12235 /* 12236 * If we have all privs in whatever zone this is, 12237 * we can do destructive things to processes which 12238 * have altered credentials. 12239 */ 12240 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12241 cr->cr_zone->zone_privset)) { 12242 state->dts_cred.dcr_action |= 12243 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12244 } 12245 } 12246 12247 /* 12248 * Holding the dtrace_kernel privilege also implies that 12249 * the user has the dtrace_user privilege from a visibility 12250 * perspective. But without further privileges, some 12251 * destructive actions are not available. 12252 */ 12253 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12254 /* 12255 * Make all probes in all zones visible. However, 12256 * this doesn't mean that all actions become available 12257 * to all zones. 12258 */ 12259 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12260 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12261 12262 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12263 DTRACE_CRA_PROC; 12264 /* 12265 * Holding proc_owner means that destructive actions 12266 * for *this* zone are allowed. 12267 */ 12268 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12269 state->dts_cred.dcr_action |= 12270 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12271 12272 /* 12273 * Holding proc_zone means that destructive actions 12274 * for this user/group ID in all zones is allowed. 12275 */ 12276 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12277 state->dts_cred.dcr_action |= 12278 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12279 12280 /* 12281 * If we have all privs in whatever zone this is, 12282 * we can do destructive things to processes which 12283 * have altered credentials. 12284 */ 12285 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12286 cr->cr_zone->zone_privset)) { 12287 state->dts_cred.dcr_action |= 12288 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12289 } 12290 } 12291 12292 /* 12293 * Holding the dtrace_proc privilege gives control over fasttrap 12294 * and pid providers. We need to grant wider destructive 12295 * privileges in the event that the user has proc_owner and/or 12296 * proc_zone. 12297 */ 12298 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12299 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12300 state->dts_cred.dcr_action |= 12301 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12302 12303 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12304 state->dts_cred.dcr_action |= 12305 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12306 } 12307 } 12308 12309 return (state); 12310 } 12311 12312 static int 12313 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12314 { 12315 dtrace_optval_t *opt = state->dts_options, size; 12316 processorid_t cpu; 12317 int flags = 0, rval; 12318 12319 ASSERT(MUTEX_HELD(&dtrace_lock)); 12320 ASSERT(MUTEX_HELD(&cpu_lock)); 12321 ASSERT(which < DTRACEOPT_MAX); 12322 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12323 (state == dtrace_anon.dta_state && 12324 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12325 12326 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12327 return (0); 12328 12329 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12330 cpu = opt[DTRACEOPT_CPU]; 12331 12332 if (which == DTRACEOPT_SPECSIZE) 12333 flags |= DTRACEBUF_NOSWITCH; 12334 12335 if (which == DTRACEOPT_BUFSIZE) { 12336 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12337 flags |= DTRACEBUF_RING; 12338 12339 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12340 flags |= DTRACEBUF_FILL; 12341 12342 if (state != dtrace_anon.dta_state || 12343 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12344 flags |= DTRACEBUF_INACTIVE; 12345 } 12346 12347 for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { 12348 /* 12349 * The size must be 8-byte aligned. If the size is not 8-byte 12350 * aligned, drop it down by the difference. 12351 */ 12352 if (size & (sizeof (uint64_t) - 1)) 12353 size -= size & (sizeof (uint64_t) - 1); 12354 12355 if (size < state->dts_reserve) { 12356 /* 12357 * Buffers always must be large enough to accommodate 12358 * their prereserved space. We return E2BIG instead 12359 * of ENOMEM in this case to allow for user-level 12360 * software to differentiate the cases. 12361 */ 12362 return (E2BIG); 12363 } 12364 12365 rval = dtrace_buffer_alloc(buf, size, flags, cpu); 12366 12367 if (rval != ENOMEM) { 12368 opt[which] = size; 12369 return (rval); 12370 } 12371 12372 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12373 return (rval); 12374 } 12375 12376 return (ENOMEM); 12377 } 12378 12379 static int 12380 dtrace_state_buffers(dtrace_state_t *state) 12381 { 12382 dtrace_speculation_t *spec = state->dts_speculations; 12383 int rval, i; 12384 12385 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12386 DTRACEOPT_BUFSIZE)) != 0) 12387 return (rval); 12388 12389 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12390 DTRACEOPT_AGGSIZE)) != 0) 12391 return (rval); 12392 12393 for (i = 0; i < state->dts_nspeculations; i++) { 12394 if ((rval = dtrace_state_buffer(state, 12395 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12396 return (rval); 12397 } 12398 12399 return (0); 12400 } 12401 12402 static void 12403 dtrace_state_prereserve(dtrace_state_t *state) 12404 { 12405 dtrace_ecb_t *ecb; 12406 dtrace_probe_t *probe; 12407 12408 state->dts_reserve = 0; 12409 12410 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12411 return; 12412 12413 /* 12414 * If our buffer policy is a "fill" buffer policy, we need to set the 12415 * prereserved space to be the space required by the END probes. 12416 */ 12417 probe = dtrace_probes[dtrace_probeid_end - 1]; 12418 ASSERT(probe != NULL); 12419 12420 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12421 if (ecb->dte_state != state) 12422 continue; 12423 12424 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12425 } 12426 } 12427 12428 static int 12429 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12430 { 12431 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12432 dtrace_speculation_t *spec; 12433 dtrace_buffer_t *buf; 12434 cyc_handler_t hdlr; 12435 cyc_time_t when; 12436 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12437 dtrace_icookie_t cookie; 12438 12439 mutex_enter(&cpu_lock); 12440 mutex_enter(&dtrace_lock); 12441 12442 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12443 rval = EBUSY; 12444 goto out; 12445 } 12446 12447 /* 12448 * Before we can perform any checks, we must prime all of the 12449 * retained enablings that correspond to this state. 12450 */ 12451 dtrace_enabling_prime(state); 12452 12453 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12454 rval = EACCES; 12455 goto out; 12456 } 12457 12458 dtrace_state_prereserve(state); 12459 12460 /* 12461 * Now we want to do is try to allocate our speculations. 12462 * We do not automatically resize the number of speculations; if 12463 * this fails, we will fail the operation. 12464 */ 12465 nspec = opt[DTRACEOPT_NSPEC]; 12466 ASSERT(nspec != DTRACEOPT_UNSET); 12467 12468 if (nspec > INT_MAX) { 12469 rval = ENOMEM; 12470 goto out; 12471 } 12472 12473 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); 12474 12475 if (spec == NULL) { 12476 rval = ENOMEM; 12477 goto out; 12478 } 12479 12480 state->dts_speculations = spec; 12481 state->dts_nspeculations = (int)nspec; 12482 12483 for (i = 0; i < nspec; i++) { 12484 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { 12485 rval = ENOMEM; 12486 goto err; 12487 } 12488 12489 spec[i].dtsp_buffer = buf; 12490 } 12491 12492 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12493 if (dtrace_anon.dta_state == NULL) { 12494 rval = ENOENT; 12495 goto out; 12496 } 12497 12498 if (state->dts_necbs != 0) { 12499 rval = EALREADY; 12500 goto out; 12501 } 12502 12503 state->dts_anon = dtrace_anon_grab(); 12504 ASSERT(state->dts_anon != NULL); 12505 state = state->dts_anon; 12506 12507 /* 12508 * We want "grabanon" to be set in the grabbed state, so we'll 12509 * copy that option value from the grabbing state into the 12510 * grabbed state. 12511 */ 12512 state->dts_options[DTRACEOPT_GRABANON] = 12513 opt[DTRACEOPT_GRABANON]; 12514 12515 *cpu = dtrace_anon.dta_beganon; 12516 12517 /* 12518 * If the anonymous state is active (as it almost certainly 12519 * is if the anonymous enabling ultimately matched anything), 12520 * we don't allow any further option processing -- but we 12521 * don't return failure. 12522 */ 12523 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12524 goto out; 12525 } 12526 12527 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12528 opt[DTRACEOPT_AGGSIZE] != 0) { 12529 if (state->dts_aggregations == NULL) { 12530 /* 12531 * We're not going to create an aggregation buffer 12532 * because we don't have any ECBs that contain 12533 * aggregations -- set this option to 0. 12534 */ 12535 opt[DTRACEOPT_AGGSIZE] = 0; 12536 } else { 12537 /* 12538 * If we have an aggregation buffer, we must also have 12539 * a buffer to use as scratch. 12540 */ 12541 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12542 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12543 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12544 } 12545 } 12546 } 12547 12548 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12549 opt[DTRACEOPT_SPECSIZE] != 0) { 12550 if (!state->dts_speculates) { 12551 /* 12552 * We're not going to create speculation buffers 12553 * because we don't have any ECBs that actually 12554 * speculate -- set the speculation size to 0. 12555 */ 12556 opt[DTRACEOPT_SPECSIZE] = 0; 12557 } 12558 } 12559 12560 /* 12561 * The bare minimum size for any buffer that we're actually going to 12562 * do anything to is sizeof (uint64_t). 12563 */ 12564 sz = sizeof (uint64_t); 12565 12566 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12567 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12568 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12569 /* 12570 * A buffer size has been explicitly set to 0 (or to a size 12571 * that will be adjusted to 0) and we need the space -- we 12572 * need to return failure. We return ENOSPC to differentiate 12573 * it from failing to allocate a buffer due to failure to meet 12574 * the reserve (for which we return E2BIG). 12575 */ 12576 rval = ENOSPC; 12577 goto out; 12578 } 12579 12580 if ((rval = dtrace_state_buffers(state)) != 0) 12581 goto err; 12582 12583 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 12584 sz = dtrace_dstate_defsize; 12585 12586 do { 12587 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 12588 12589 if (rval == 0) 12590 break; 12591 12592 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12593 goto err; 12594 } while (sz >>= 1); 12595 12596 opt[DTRACEOPT_DYNVARSIZE] = sz; 12597 12598 if (rval != 0) 12599 goto err; 12600 12601 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 12602 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 12603 12604 if (opt[DTRACEOPT_CLEANRATE] == 0) 12605 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12606 12607 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 12608 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 12609 12610 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 12611 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12612 12613 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 12614 hdlr.cyh_arg = state; 12615 hdlr.cyh_level = CY_LOW_LEVEL; 12616 12617 when.cyt_when = 0; 12618 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 12619 12620 state->dts_cleaner = cyclic_add(&hdlr, &when); 12621 12622 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 12623 hdlr.cyh_arg = state; 12624 hdlr.cyh_level = CY_LOW_LEVEL; 12625 12626 when.cyt_when = 0; 12627 when.cyt_interval = dtrace_deadman_interval; 12628 12629 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 12630 state->dts_deadman = cyclic_add(&hdlr, &when); 12631 12632 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 12633 12634 /* 12635 * Now it's time to actually fire the BEGIN probe. We need to disable 12636 * interrupts here both to record the CPU on which we fired the BEGIN 12637 * probe (the data from this CPU will be processed first at user 12638 * level) and to manually activate the buffer for this CPU. 12639 */ 12640 cookie = dtrace_interrupt_disable(); 12641 *cpu = CPU->cpu_id; 12642 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 12643 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12644 12645 dtrace_probe(dtrace_probeid_begin, 12646 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12647 dtrace_interrupt_enable(cookie); 12648 /* 12649 * We may have had an exit action from a BEGIN probe; only change our 12650 * state to ACTIVE if we're still in WARMUP. 12651 */ 12652 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 12653 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 12654 12655 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 12656 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 12657 12658 /* 12659 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 12660 * want each CPU to transition its principal buffer out of the 12661 * INACTIVE state. Doing this assures that no CPU will suddenly begin 12662 * processing an ECB halfway down a probe's ECB chain; all CPUs will 12663 * atomically transition from processing none of a state's ECBs to 12664 * processing all of them. 12665 */ 12666 dtrace_xcall(DTRACE_CPUALL, 12667 (dtrace_xcall_t)dtrace_buffer_activate, state); 12668 goto out; 12669 12670 err: 12671 dtrace_buffer_free(state->dts_buffer); 12672 dtrace_buffer_free(state->dts_aggbuffer); 12673 12674 if ((nspec = state->dts_nspeculations) == 0) { 12675 ASSERT(state->dts_speculations == NULL); 12676 goto out; 12677 } 12678 12679 spec = state->dts_speculations; 12680 ASSERT(spec != NULL); 12681 12682 for (i = 0; i < state->dts_nspeculations; i++) { 12683 if ((buf = spec[i].dtsp_buffer) == NULL) 12684 break; 12685 12686 dtrace_buffer_free(buf); 12687 kmem_free(buf, bufsize); 12688 } 12689 12690 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12691 state->dts_nspeculations = 0; 12692 state->dts_speculations = NULL; 12693 12694 out: 12695 mutex_exit(&dtrace_lock); 12696 mutex_exit(&cpu_lock); 12697 12698 return (rval); 12699 } 12700 12701 static int 12702 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 12703 { 12704 dtrace_icookie_t cookie; 12705 12706 ASSERT(MUTEX_HELD(&dtrace_lock)); 12707 12708 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 12709 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 12710 return (EINVAL); 12711 12712 /* 12713 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 12714 * to be sure that every CPU has seen it. See below for the details 12715 * on why this is done. 12716 */ 12717 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 12718 dtrace_sync(); 12719 12720 /* 12721 * By this point, it is impossible for any CPU to be still processing 12722 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 12723 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 12724 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 12725 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 12726 * iff we're in the END probe. 12727 */ 12728 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 12729 dtrace_sync(); 12730 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 12731 12732 /* 12733 * Finally, we can release the reserve and call the END probe. We 12734 * disable interrupts across calling the END probe to allow us to 12735 * return the CPU on which we actually called the END probe. This 12736 * allows user-land to be sure that this CPU's principal buffer is 12737 * processed last. 12738 */ 12739 state->dts_reserve = 0; 12740 12741 cookie = dtrace_interrupt_disable(); 12742 *cpu = CPU->cpu_id; 12743 dtrace_probe(dtrace_probeid_end, 12744 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12745 dtrace_interrupt_enable(cookie); 12746 12747 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 12748 dtrace_sync(); 12749 12750 return (0); 12751 } 12752 12753 static int 12754 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 12755 dtrace_optval_t val) 12756 { 12757 ASSERT(MUTEX_HELD(&dtrace_lock)); 12758 12759 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12760 return (EBUSY); 12761 12762 if (option >= DTRACEOPT_MAX) 12763 return (EINVAL); 12764 12765 if (option != DTRACEOPT_CPU && val < 0) 12766 return (EINVAL); 12767 12768 switch (option) { 12769 case DTRACEOPT_DESTRUCTIVE: 12770 if (dtrace_destructive_disallow) 12771 return (EACCES); 12772 12773 state->dts_cred.dcr_destructive = 1; 12774 break; 12775 12776 case DTRACEOPT_BUFSIZE: 12777 case DTRACEOPT_DYNVARSIZE: 12778 case DTRACEOPT_AGGSIZE: 12779 case DTRACEOPT_SPECSIZE: 12780 case DTRACEOPT_STRSIZE: 12781 if (val < 0) 12782 return (EINVAL); 12783 12784 if (val >= LONG_MAX) { 12785 /* 12786 * If this is an otherwise negative value, set it to 12787 * the highest multiple of 128m less than LONG_MAX. 12788 * Technically, we're adjusting the size without 12789 * regard to the buffer resizing policy, but in fact, 12790 * this has no effect -- if we set the buffer size to 12791 * ~LONG_MAX and the buffer policy is ultimately set to 12792 * be "manual", the buffer allocation is guaranteed to 12793 * fail, if only because the allocation requires two 12794 * buffers. (We set the the size to the highest 12795 * multiple of 128m because it ensures that the size 12796 * will remain a multiple of a megabyte when 12797 * repeatedly halved -- all the way down to 15m.) 12798 */ 12799 val = LONG_MAX - (1 << 27) + 1; 12800 } 12801 } 12802 12803 state->dts_options[option] = val; 12804 12805 return (0); 12806 } 12807 12808 static void 12809 dtrace_state_destroy(dtrace_state_t *state) 12810 { 12811 dtrace_ecb_t *ecb; 12812 dtrace_vstate_t *vstate = &state->dts_vstate; 12813 minor_t minor = getminor(state->dts_dev); 12814 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12815 dtrace_speculation_t *spec = state->dts_speculations; 12816 int nspec = state->dts_nspeculations; 12817 uint32_t match; 12818 12819 ASSERT(MUTEX_HELD(&dtrace_lock)); 12820 ASSERT(MUTEX_HELD(&cpu_lock)); 12821 12822 /* 12823 * First, retract any retained enablings for this state. 12824 */ 12825 dtrace_enabling_retract(state); 12826 ASSERT(state->dts_nretained == 0); 12827 12828 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 12829 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 12830 /* 12831 * We have managed to come into dtrace_state_destroy() on a 12832 * hot enabling -- almost certainly because of a disorderly 12833 * shutdown of a consumer. (That is, a consumer that is 12834 * exiting without having called dtrace_stop().) In this case, 12835 * we're going to set our activity to be KILLED, and then 12836 * issue a sync to be sure that everyone is out of probe 12837 * context before we start blowing away ECBs. 12838 */ 12839 state->dts_activity = DTRACE_ACTIVITY_KILLED; 12840 dtrace_sync(); 12841 } 12842 12843 /* 12844 * Release the credential hold we took in dtrace_state_create(). 12845 */ 12846 if (state->dts_cred.dcr_cred != NULL) 12847 crfree(state->dts_cred.dcr_cred); 12848 12849 /* 12850 * Now we can safely disable and destroy any enabled probes. Because 12851 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 12852 * (especially if they're all enabled), we take two passes through the 12853 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 12854 * in the second we disable whatever is left over. 12855 */ 12856 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 12857 for (i = 0; i < state->dts_necbs; i++) { 12858 if ((ecb = state->dts_ecbs[i]) == NULL) 12859 continue; 12860 12861 if (match && ecb->dte_probe != NULL) { 12862 dtrace_probe_t *probe = ecb->dte_probe; 12863 dtrace_provider_t *prov = probe->dtpr_provider; 12864 12865 if (!(prov->dtpv_priv.dtpp_flags & match)) 12866 continue; 12867 } 12868 12869 dtrace_ecb_disable(ecb); 12870 dtrace_ecb_destroy(ecb); 12871 } 12872 12873 if (!match) 12874 break; 12875 } 12876 12877 /* 12878 * Before we free the buffers, perform one more sync to assure that 12879 * every CPU is out of probe context. 12880 */ 12881 dtrace_sync(); 12882 12883 dtrace_buffer_free(state->dts_buffer); 12884 dtrace_buffer_free(state->dts_aggbuffer); 12885 12886 for (i = 0; i < nspec; i++) 12887 dtrace_buffer_free(spec[i].dtsp_buffer); 12888 12889 if (state->dts_cleaner != CYCLIC_NONE) 12890 cyclic_remove(state->dts_cleaner); 12891 12892 if (state->dts_deadman != CYCLIC_NONE) 12893 cyclic_remove(state->dts_deadman); 12894 12895 dtrace_dstate_fini(&vstate->dtvs_dynvars); 12896 dtrace_vstate_fini(vstate); 12897 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 12898 12899 if (state->dts_aggregations != NULL) { 12900 #ifdef DEBUG 12901 for (i = 0; i < state->dts_naggregations; i++) 12902 ASSERT(state->dts_aggregations[i] == NULL); 12903 #endif 12904 ASSERT(state->dts_naggregations > 0); 12905 kmem_free(state->dts_aggregations, 12906 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 12907 } 12908 12909 kmem_free(state->dts_buffer, bufsize); 12910 kmem_free(state->dts_aggbuffer, bufsize); 12911 12912 for (i = 0; i < nspec; i++) 12913 kmem_free(spec[i].dtsp_buffer, bufsize); 12914 12915 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12916 12917 dtrace_format_destroy(state); 12918 12919 vmem_destroy(state->dts_aggid_arena); 12920 ddi_soft_state_free(dtrace_softstate, minor); 12921 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12922 } 12923 12924 /* 12925 * DTrace Anonymous Enabling Functions 12926 */ 12927 static dtrace_state_t * 12928 dtrace_anon_grab(void) 12929 { 12930 dtrace_state_t *state; 12931 12932 ASSERT(MUTEX_HELD(&dtrace_lock)); 12933 12934 if ((state = dtrace_anon.dta_state) == NULL) { 12935 ASSERT(dtrace_anon.dta_enabling == NULL); 12936 return (NULL); 12937 } 12938 12939 ASSERT(dtrace_anon.dta_enabling != NULL); 12940 ASSERT(dtrace_retained != NULL); 12941 12942 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 12943 dtrace_anon.dta_enabling = NULL; 12944 dtrace_anon.dta_state = NULL; 12945 12946 return (state); 12947 } 12948 12949 static void 12950 dtrace_anon_property(void) 12951 { 12952 int i, rv; 12953 dtrace_state_t *state; 12954 dof_hdr_t *dof; 12955 char c[32]; /* enough for "dof-data-" + digits */ 12956 12957 ASSERT(MUTEX_HELD(&dtrace_lock)); 12958 ASSERT(MUTEX_HELD(&cpu_lock)); 12959 12960 for (i = 0; ; i++) { 12961 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 12962 12963 dtrace_err_verbose = 1; 12964 12965 if ((dof = dtrace_dof_property(c)) == NULL) { 12966 dtrace_err_verbose = 0; 12967 break; 12968 } 12969 12970 /* 12971 * We want to create anonymous state, so we need to transition 12972 * the kernel debugger to indicate that DTrace is active. If 12973 * this fails (e.g. because the debugger has modified text in 12974 * some way), we won't continue with the processing. 12975 */ 12976 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 12977 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 12978 "enabling ignored."); 12979 dtrace_dof_destroy(dof); 12980 break; 12981 } 12982 12983 /* 12984 * If we haven't allocated an anonymous state, we'll do so now. 12985 */ 12986 if ((state = dtrace_anon.dta_state) == NULL) { 12987 state = dtrace_state_create(NULL, NULL); 12988 dtrace_anon.dta_state = state; 12989 12990 if (state == NULL) { 12991 /* 12992 * This basically shouldn't happen: the only 12993 * failure mode from dtrace_state_create() is a 12994 * failure of ddi_soft_state_zalloc() that 12995 * itself should never happen. Still, the 12996 * interface allows for a failure mode, and 12997 * we want to fail as gracefully as possible: 12998 * we'll emit an error message and cease 12999 * processing anonymous state in this case. 13000 */ 13001 cmn_err(CE_WARN, "failed to create " 13002 "anonymous state"); 13003 dtrace_dof_destroy(dof); 13004 break; 13005 } 13006 } 13007 13008 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 13009 &dtrace_anon.dta_enabling, 0, B_TRUE); 13010 13011 if (rv == 0) 13012 rv = dtrace_dof_options(dof, state); 13013 13014 dtrace_err_verbose = 0; 13015 dtrace_dof_destroy(dof); 13016 13017 if (rv != 0) { 13018 /* 13019 * This is malformed DOF; chuck any anonymous state 13020 * that we created. 13021 */ 13022 ASSERT(dtrace_anon.dta_enabling == NULL); 13023 dtrace_state_destroy(state); 13024 dtrace_anon.dta_state = NULL; 13025 break; 13026 } 13027 13028 ASSERT(dtrace_anon.dta_enabling != NULL); 13029 } 13030 13031 if (dtrace_anon.dta_enabling != NULL) { 13032 int rval; 13033 13034 /* 13035 * dtrace_enabling_retain() can only fail because we are 13036 * trying to retain more enablings than are allowed -- but 13037 * we only have one anonymous enabling, and we are guaranteed 13038 * to be allowed at least one retained enabling; we assert 13039 * that dtrace_enabling_retain() returns success. 13040 */ 13041 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 13042 ASSERT(rval == 0); 13043 13044 dtrace_enabling_dump(dtrace_anon.dta_enabling); 13045 } 13046 } 13047 13048 /* 13049 * DTrace Helper Functions 13050 */ 13051 static void 13052 dtrace_helper_trace(dtrace_helper_action_t *helper, 13053 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 13054 { 13055 uint32_t size, next, nnext, i; 13056 dtrace_helptrace_t *ent; 13057 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13058 13059 if (!dtrace_helptrace_enabled) 13060 return; 13061 13062 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 13063 13064 /* 13065 * What would a tracing framework be without its own tracing 13066 * framework? (Well, a hell of a lot simpler, for starters...) 13067 */ 13068 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 13069 sizeof (uint64_t) - sizeof (uint64_t); 13070 13071 /* 13072 * Iterate until we can allocate a slot in the trace buffer. 13073 */ 13074 do { 13075 next = dtrace_helptrace_next; 13076 13077 if (next + size < dtrace_helptrace_bufsize) { 13078 nnext = next + size; 13079 } else { 13080 nnext = size; 13081 } 13082 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 13083 13084 /* 13085 * We have our slot; fill it in. 13086 */ 13087 if (nnext == size) 13088 next = 0; 13089 13090 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 13091 ent->dtht_helper = helper; 13092 ent->dtht_where = where; 13093 ent->dtht_nlocals = vstate->dtvs_nlocals; 13094 13095 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 13096 mstate->dtms_fltoffs : -1; 13097 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 13098 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 13099 13100 for (i = 0; i < vstate->dtvs_nlocals; i++) { 13101 dtrace_statvar_t *svar; 13102 13103 if ((svar = vstate->dtvs_locals[i]) == NULL) 13104 continue; 13105 13106 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 13107 ent->dtht_locals[i] = 13108 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 13109 } 13110 } 13111 13112 static uint64_t 13113 dtrace_helper(int which, dtrace_mstate_t *mstate, 13114 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 13115 { 13116 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13117 uint64_t sarg0 = mstate->dtms_arg[0]; 13118 uint64_t sarg1 = mstate->dtms_arg[1]; 13119 uint64_t rval; 13120 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 13121 dtrace_helper_action_t *helper; 13122 dtrace_vstate_t *vstate; 13123 dtrace_difo_t *pred; 13124 int i, trace = dtrace_helptrace_enabled; 13125 13126 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 13127 13128 if (helpers == NULL) 13129 return (0); 13130 13131 if ((helper = helpers->dthps_actions[which]) == NULL) 13132 return (0); 13133 13134 vstate = &helpers->dthps_vstate; 13135 mstate->dtms_arg[0] = arg0; 13136 mstate->dtms_arg[1] = arg1; 13137 13138 /* 13139 * Now iterate over each helper. If its predicate evaluates to 'true', 13140 * we'll call the corresponding actions. Note that the below calls 13141 * to dtrace_dif_emulate() may set faults in machine state. This is 13142 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 13143 * the stored DIF offset with its own (which is the desired behavior). 13144 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 13145 * from machine state; this is okay, too. 13146 */ 13147 for (; helper != NULL; helper = helper->dtha_next) { 13148 if ((pred = helper->dtha_predicate) != NULL) { 13149 if (trace) 13150 dtrace_helper_trace(helper, mstate, vstate, 0); 13151 13152 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 13153 goto next; 13154 13155 if (*flags & CPU_DTRACE_FAULT) 13156 goto err; 13157 } 13158 13159 for (i = 0; i < helper->dtha_nactions; i++) { 13160 if (trace) 13161 dtrace_helper_trace(helper, 13162 mstate, vstate, i + 1); 13163 13164 rval = dtrace_dif_emulate(helper->dtha_actions[i], 13165 mstate, vstate, state); 13166 13167 if (*flags & CPU_DTRACE_FAULT) 13168 goto err; 13169 } 13170 13171 next: 13172 if (trace) 13173 dtrace_helper_trace(helper, mstate, vstate, 13174 DTRACE_HELPTRACE_NEXT); 13175 } 13176 13177 if (trace) 13178 dtrace_helper_trace(helper, mstate, vstate, 13179 DTRACE_HELPTRACE_DONE); 13180 13181 /* 13182 * Restore the arg0 that we saved upon entry. 13183 */ 13184 mstate->dtms_arg[0] = sarg0; 13185 mstate->dtms_arg[1] = sarg1; 13186 13187 return (rval); 13188 13189 err: 13190 if (trace) 13191 dtrace_helper_trace(helper, mstate, vstate, 13192 DTRACE_HELPTRACE_ERR); 13193 13194 /* 13195 * Restore the arg0 that we saved upon entry. 13196 */ 13197 mstate->dtms_arg[0] = sarg0; 13198 mstate->dtms_arg[1] = sarg1; 13199 13200 return (NULL); 13201 } 13202 13203 static void 13204 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13205 dtrace_vstate_t *vstate) 13206 { 13207 int i; 13208 13209 if (helper->dtha_predicate != NULL) 13210 dtrace_difo_release(helper->dtha_predicate, vstate); 13211 13212 for (i = 0; i < helper->dtha_nactions; i++) { 13213 ASSERT(helper->dtha_actions[i] != NULL); 13214 dtrace_difo_release(helper->dtha_actions[i], vstate); 13215 } 13216 13217 kmem_free(helper->dtha_actions, 13218 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13219 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13220 } 13221 13222 static int 13223 dtrace_helper_destroygen(int gen) 13224 { 13225 proc_t *p = curproc; 13226 dtrace_helpers_t *help = p->p_dtrace_helpers; 13227 dtrace_vstate_t *vstate; 13228 int i; 13229 13230 ASSERT(MUTEX_HELD(&dtrace_lock)); 13231 13232 if (help == NULL || gen > help->dthps_generation) 13233 return (EINVAL); 13234 13235 vstate = &help->dthps_vstate; 13236 13237 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13238 dtrace_helper_action_t *last = NULL, *h, *next; 13239 13240 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13241 next = h->dtha_next; 13242 13243 if (h->dtha_generation == gen) { 13244 if (last != NULL) { 13245 last->dtha_next = next; 13246 } else { 13247 help->dthps_actions[i] = next; 13248 } 13249 13250 dtrace_helper_action_destroy(h, vstate); 13251 } else { 13252 last = h; 13253 } 13254 } 13255 } 13256 13257 /* 13258 * Interate until we've cleared out all helper providers with the 13259 * given generation number. 13260 */ 13261 for (;;) { 13262 dtrace_helper_provider_t *prov; 13263 13264 /* 13265 * Look for a helper provider with the right generation. We 13266 * have to start back at the beginning of the list each time 13267 * because we drop dtrace_lock. It's unlikely that we'll make 13268 * more than two passes. 13269 */ 13270 for (i = 0; i < help->dthps_nprovs; i++) { 13271 prov = help->dthps_provs[i]; 13272 13273 if (prov->dthp_generation == gen) 13274 break; 13275 } 13276 13277 /* 13278 * If there were no matches, we're done. 13279 */ 13280 if (i == help->dthps_nprovs) 13281 break; 13282 13283 /* 13284 * Move the last helper provider into this slot. 13285 */ 13286 help->dthps_nprovs--; 13287 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13288 help->dthps_provs[help->dthps_nprovs] = NULL; 13289 13290 mutex_exit(&dtrace_lock); 13291 13292 /* 13293 * If we have a meta provider, remove this helper provider. 13294 */ 13295 mutex_enter(&dtrace_meta_lock); 13296 if (dtrace_meta_pid != NULL) { 13297 ASSERT(dtrace_deferred_pid == NULL); 13298 dtrace_helper_provider_remove(&prov->dthp_prov, 13299 p->p_pid); 13300 } 13301 mutex_exit(&dtrace_meta_lock); 13302 13303 dtrace_helper_provider_destroy(prov); 13304 13305 mutex_enter(&dtrace_lock); 13306 } 13307 13308 return (0); 13309 } 13310 13311 static int 13312 dtrace_helper_validate(dtrace_helper_action_t *helper) 13313 { 13314 int err = 0, i; 13315 dtrace_difo_t *dp; 13316 13317 if ((dp = helper->dtha_predicate) != NULL) 13318 err += dtrace_difo_validate_helper(dp); 13319 13320 for (i = 0; i < helper->dtha_nactions; i++) 13321 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13322 13323 return (err == 0); 13324 } 13325 13326 static int 13327 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13328 { 13329 dtrace_helpers_t *help; 13330 dtrace_helper_action_t *helper, *last; 13331 dtrace_actdesc_t *act; 13332 dtrace_vstate_t *vstate; 13333 dtrace_predicate_t *pred; 13334 int count = 0, nactions = 0, i; 13335 13336 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13337 return (EINVAL); 13338 13339 help = curproc->p_dtrace_helpers; 13340 last = help->dthps_actions[which]; 13341 vstate = &help->dthps_vstate; 13342 13343 for (count = 0; last != NULL; last = last->dtha_next) { 13344 count++; 13345 if (last->dtha_next == NULL) 13346 break; 13347 } 13348 13349 /* 13350 * If we already have dtrace_helper_actions_max helper actions for this 13351 * helper action type, we'll refuse to add a new one. 13352 */ 13353 if (count >= dtrace_helper_actions_max) 13354 return (ENOSPC); 13355 13356 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13357 helper->dtha_generation = help->dthps_generation; 13358 13359 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13360 ASSERT(pred->dtp_difo != NULL); 13361 dtrace_difo_hold(pred->dtp_difo); 13362 helper->dtha_predicate = pred->dtp_difo; 13363 } 13364 13365 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13366 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13367 goto err; 13368 13369 if (act->dtad_difo == NULL) 13370 goto err; 13371 13372 nactions++; 13373 } 13374 13375 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13376 (helper->dtha_nactions = nactions), KM_SLEEP); 13377 13378 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13379 dtrace_difo_hold(act->dtad_difo); 13380 helper->dtha_actions[i++] = act->dtad_difo; 13381 } 13382 13383 if (!dtrace_helper_validate(helper)) 13384 goto err; 13385 13386 if (last == NULL) { 13387 help->dthps_actions[which] = helper; 13388 } else { 13389 last->dtha_next = helper; 13390 } 13391 13392 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13393 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13394 dtrace_helptrace_next = 0; 13395 } 13396 13397 return (0); 13398 err: 13399 dtrace_helper_action_destroy(helper, vstate); 13400 return (EINVAL); 13401 } 13402 13403 static void 13404 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13405 dof_helper_t *dofhp) 13406 { 13407 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13408 13409 mutex_enter(&dtrace_meta_lock); 13410 mutex_enter(&dtrace_lock); 13411 13412 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13413 /* 13414 * If the dtrace module is loaded but not attached, or if 13415 * there aren't isn't a meta provider registered to deal with 13416 * these provider descriptions, we need to postpone creating 13417 * the actual providers until later. 13418 */ 13419 13420 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13421 dtrace_deferred_pid != help) { 13422 help->dthps_deferred = 1; 13423 help->dthps_pid = p->p_pid; 13424 help->dthps_next = dtrace_deferred_pid; 13425 help->dthps_prev = NULL; 13426 if (dtrace_deferred_pid != NULL) 13427 dtrace_deferred_pid->dthps_prev = help; 13428 dtrace_deferred_pid = help; 13429 } 13430 13431 mutex_exit(&dtrace_lock); 13432 13433 } else if (dofhp != NULL) { 13434 /* 13435 * If the dtrace module is loaded and we have a particular 13436 * helper provider description, pass that off to the 13437 * meta provider. 13438 */ 13439 13440 mutex_exit(&dtrace_lock); 13441 13442 dtrace_helper_provide(dofhp, p->p_pid); 13443 13444 } else { 13445 /* 13446 * Otherwise, just pass all the helper provider descriptions 13447 * off to the meta provider. 13448 */ 13449 13450 int i; 13451 mutex_exit(&dtrace_lock); 13452 13453 for (i = 0; i < help->dthps_nprovs; i++) { 13454 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13455 p->p_pid); 13456 } 13457 } 13458 13459 mutex_exit(&dtrace_meta_lock); 13460 } 13461 13462 static int 13463 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13464 { 13465 dtrace_helpers_t *help; 13466 dtrace_helper_provider_t *hprov, **tmp_provs; 13467 uint_t tmp_maxprovs, i; 13468 13469 ASSERT(MUTEX_HELD(&dtrace_lock)); 13470 13471 help = curproc->p_dtrace_helpers; 13472 ASSERT(help != NULL); 13473 13474 /* 13475 * If we already have dtrace_helper_providers_max helper providers, 13476 * we're refuse to add a new one. 13477 */ 13478 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13479 return (ENOSPC); 13480 13481 /* 13482 * Check to make sure this isn't a duplicate. 13483 */ 13484 for (i = 0; i < help->dthps_nprovs; i++) { 13485 if (dofhp->dofhp_addr == 13486 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13487 return (EALREADY); 13488 } 13489 13490 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13491 hprov->dthp_prov = *dofhp; 13492 hprov->dthp_ref = 1; 13493 hprov->dthp_generation = gen; 13494 13495 /* 13496 * Allocate a bigger table for helper providers if it's already full. 13497 */ 13498 if (help->dthps_maxprovs == help->dthps_nprovs) { 13499 tmp_maxprovs = help->dthps_maxprovs; 13500 tmp_provs = help->dthps_provs; 13501 13502 if (help->dthps_maxprovs == 0) 13503 help->dthps_maxprovs = 2; 13504 else 13505 help->dthps_maxprovs *= 2; 13506 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13507 help->dthps_maxprovs = dtrace_helper_providers_max; 13508 13509 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13510 13511 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13512 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13513 13514 if (tmp_provs != NULL) { 13515 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13516 sizeof (dtrace_helper_provider_t *)); 13517 kmem_free(tmp_provs, tmp_maxprovs * 13518 sizeof (dtrace_helper_provider_t *)); 13519 } 13520 } 13521 13522 help->dthps_provs[help->dthps_nprovs] = hprov; 13523 help->dthps_nprovs++; 13524 13525 return (0); 13526 } 13527 13528 static void 13529 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13530 { 13531 mutex_enter(&dtrace_lock); 13532 13533 if (--hprov->dthp_ref == 0) { 13534 dof_hdr_t *dof; 13535 mutex_exit(&dtrace_lock); 13536 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13537 dtrace_dof_destroy(dof); 13538 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13539 } else { 13540 mutex_exit(&dtrace_lock); 13541 } 13542 } 13543 13544 static int 13545 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13546 { 13547 uintptr_t daddr = (uintptr_t)dof; 13548 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13549 dof_provider_t *provider; 13550 dof_probe_t *probe; 13551 uint8_t *arg; 13552 char *strtab, *typestr; 13553 dof_stridx_t typeidx; 13554 size_t typesz; 13555 uint_t nprobes, j, k; 13556 13557 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13558 13559 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13560 dtrace_dof_error(dof, "misaligned section offset"); 13561 return (-1); 13562 } 13563 13564 /* 13565 * The section needs to be large enough to contain the DOF provider 13566 * structure appropriate for the given version. 13567 */ 13568 if (sec->dofs_size < 13569 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13570 offsetof(dof_provider_t, dofpv_prenoffs) : 13571 sizeof (dof_provider_t))) { 13572 dtrace_dof_error(dof, "provider section too small"); 13573 return (-1); 13574 } 13575 13576 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 13577 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 13578 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 13579 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 13580 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 13581 13582 if (str_sec == NULL || prb_sec == NULL || 13583 arg_sec == NULL || off_sec == NULL) 13584 return (-1); 13585 13586 enoff_sec = NULL; 13587 13588 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13589 provider->dofpv_prenoffs != DOF_SECT_NONE && 13590 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 13591 provider->dofpv_prenoffs)) == NULL) 13592 return (-1); 13593 13594 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 13595 13596 if (provider->dofpv_name >= str_sec->dofs_size || 13597 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 13598 dtrace_dof_error(dof, "invalid provider name"); 13599 return (-1); 13600 } 13601 13602 if (prb_sec->dofs_entsize == 0 || 13603 prb_sec->dofs_entsize > prb_sec->dofs_size) { 13604 dtrace_dof_error(dof, "invalid entry size"); 13605 return (-1); 13606 } 13607 13608 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 13609 dtrace_dof_error(dof, "misaligned entry size"); 13610 return (-1); 13611 } 13612 13613 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 13614 dtrace_dof_error(dof, "invalid entry size"); 13615 return (-1); 13616 } 13617 13618 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 13619 dtrace_dof_error(dof, "misaligned section offset"); 13620 return (-1); 13621 } 13622 13623 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 13624 dtrace_dof_error(dof, "invalid entry size"); 13625 return (-1); 13626 } 13627 13628 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 13629 13630 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 13631 13632 /* 13633 * Take a pass through the probes to check for errors. 13634 */ 13635 for (j = 0; j < nprobes; j++) { 13636 probe = (dof_probe_t *)(uintptr_t)(daddr + 13637 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 13638 13639 if (probe->dofpr_func >= str_sec->dofs_size) { 13640 dtrace_dof_error(dof, "invalid function name"); 13641 return (-1); 13642 } 13643 13644 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 13645 dtrace_dof_error(dof, "function name too long"); 13646 return (-1); 13647 } 13648 13649 if (probe->dofpr_name >= str_sec->dofs_size || 13650 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 13651 dtrace_dof_error(dof, "invalid probe name"); 13652 return (-1); 13653 } 13654 13655 /* 13656 * The offset count must not wrap the index, and the offsets 13657 * must also not overflow the section's data. 13658 */ 13659 if (probe->dofpr_offidx + probe->dofpr_noffs < 13660 probe->dofpr_offidx || 13661 (probe->dofpr_offidx + probe->dofpr_noffs) * 13662 off_sec->dofs_entsize > off_sec->dofs_size) { 13663 dtrace_dof_error(dof, "invalid probe offset"); 13664 return (-1); 13665 } 13666 13667 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 13668 /* 13669 * If there's no is-enabled offset section, make sure 13670 * there aren't any is-enabled offsets. Otherwise 13671 * perform the same checks as for probe offsets 13672 * (immediately above). 13673 */ 13674 if (enoff_sec == NULL) { 13675 if (probe->dofpr_enoffidx != 0 || 13676 probe->dofpr_nenoffs != 0) { 13677 dtrace_dof_error(dof, "is-enabled " 13678 "offsets with null section"); 13679 return (-1); 13680 } 13681 } else if (probe->dofpr_enoffidx + 13682 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 13683 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 13684 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 13685 dtrace_dof_error(dof, "invalid is-enabled " 13686 "offset"); 13687 return (-1); 13688 } 13689 13690 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 13691 dtrace_dof_error(dof, "zero probe and " 13692 "is-enabled offsets"); 13693 return (-1); 13694 } 13695 } else if (probe->dofpr_noffs == 0) { 13696 dtrace_dof_error(dof, "zero probe offsets"); 13697 return (-1); 13698 } 13699 13700 if (probe->dofpr_argidx + probe->dofpr_xargc < 13701 probe->dofpr_argidx || 13702 (probe->dofpr_argidx + probe->dofpr_xargc) * 13703 arg_sec->dofs_entsize > arg_sec->dofs_size) { 13704 dtrace_dof_error(dof, "invalid args"); 13705 return (-1); 13706 } 13707 13708 typeidx = probe->dofpr_nargv; 13709 typestr = strtab + probe->dofpr_nargv; 13710 for (k = 0; k < probe->dofpr_nargc; k++) { 13711 if (typeidx >= str_sec->dofs_size) { 13712 dtrace_dof_error(dof, "bad " 13713 "native argument type"); 13714 return (-1); 13715 } 13716 13717 typesz = strlen(typestr) + 1; 13718 if (typesz > DTRACE_ARGTYPELEN) { 13719 dtrace_dof_error(dof, "native " 13720 "argument type too long"); 13721 return (-1); 13722 } 13723 typeidx += typesz; 13724 typestr += typesz; 13725 } 13726 13727 typeidx = probe->dofpr_xargv; 13728 typestr = strtab + probe->dofpr_xargv; 13729 for (k = 0; k < probe->dofpr_xargc; k++) { 13730 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 13731 dtrace_dof_error(dof, "bad " 13732 "native argument index"); 13733 return (-1); 13734 } 13735 13736 if (typeidx >= str_sec->dofs_size) { 13737 dtrace_dof_error(dof, "bad " 13738 "translated argument type"); 13739 return (-1); 13740 } 13741 13742 typesz = strlen(typestr) + 1; 13743 if (typesz > DTRACE_ARGTYPELEN) { 13744 dtrace_dof_error(dof, "translated argument " 13745 "type too long"); 13746 return (-1); 13747 } 13748 13749 typeidx += typesz; 13750 typestr += typesz; 13751 } 13752 } 13753 13754 return (0); 13755 } 13756 13757 static int 13758 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 13759 { 13760 dtrace_helpers_t *help; 13761 dtrace_vstate_t *vstate; 13762 dtrace_enabling_t *enab = NULL; 13763 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 13764 uintptr_t daddr = (uintptr_t)dof; 13765 13766 ASSERT(MUTEX_HELD(&dtrace_lock)); 13767 13768 if ((help = curproc->p_dtrace_helpers) == NULL) 13769 help = dtrace_helpers_create(curproc); 13770 13771 vstate = &help->dthps_vstate; 13772 13773 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 13774 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 13775 dtrace_dof_destroy(dof); 13776 return (rv); 13777 } 13778 13779 /* 13780 * Look for helper providers and validate their descriptions. 13781 */ 13782 if (dhp != NULL) { 13783 for (i = 0; i < dof->dofh_secnum; i++) { 13784 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 13785 dof->dofh_secoff + i * dof->dofh_secsize); 13786 13787 if (sec->dofs_type != DOF_SECT_PROVIDER) 13788 continue; 13789 13790 if (dtrace_helper_provider_validate(dof, sec) != 0) { 13791 dtrace_enabling_destroy(enab); 13792 dtrace_dof_destroy(dof); 13793 return (-1); 13794 } 13795 13796 nprovs++; 13797 } 13798 } 13799 13800 /* 13801 * Now we need to walk through the ECB descriptions in the enabling. 13802 */ 13803 for (i = 0; i < enab->dten_ndesc; i++) { 13804 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 13805 dtrace_probedesc_t *desc = &ep->dted_probe; 13806 13807 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 13808 continue; 13809 13810 if (strcmp(desc->dtpd_mod, "helper") != 0) 13811 continue; 13812 13813 if (strcmp(desc->dtpd_func, "ustack") != 0) 13814 continue; 13815 13816 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 13817 ep)) != 0) { 13818 /* 13819 * Adding this helper action failed -- we are now going 13820 * to rip out the entire generation and return failure. 13821 */ 13822 (void) dtrace_helper_destroygen(help->dthps_generation); 13823 dtrace_enabling_destroy(enab); 13824 dtrace_dof_destroy(dof); 13825 return (-1); 13826 } 13827 13828 nhelpers++; 13829 } 13830 13831 if (nhelpers < enab->dten_ndesc) 13832 dtrace_dof_error(dof, "unmatched helpers"); 13833 13834 gen = help->dthps_generation++; 13835 dtrace_enabling_destroy(enab); 13836 13837 if (dhp != NULL && nprovs > 0) { 13838 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 13839 if (dtrace_helper_provider_add(dhp, gen) == 0) { 13840 mutex_exit(&dtrace_lock); 13841 dtrace_helper_provider_register(curproc, help, dhp); 13842 mutex_enter(&dtrace_lock); 13843 13844 destroy = 0; 13845 } 13846 } 13847 13848 if (destroy) 13849 dtrace_dof_destroy(dof); 13850 13851 return (gen); 13852 } 13853 13854 static dtrace_helpers_t * 13855 dtrace_helpers_create(proc_t *p) 13856 { 13857 dtrace_helpers_t *help; 13858 13859 ASSERT(MUTEX_HELD(&dtrace_lock)); 13860 ASSERT(p->p_dtrace_helpers == NULL); 13861 13862 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 13863 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 13864 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 13865 13866 p->p_dtrace_helpers = help; 13867 dtrace_helpers++; 13868 13869 return (help); 13870 } 13871 13872 static void 13873 dtrace_helpers_destroy(void) 13874 { 13875 dtrace_helpers_t *help; 13876 dtrace_vstate_t *vstate; 13877 proc_t *p = curproc; 13878 int i; 13879 13880 mutex_enter(&dtrace_lock); 13881 13882 ASSERT(p->p_dtrace_helpers != NULL); 13883 ASSERT(dtrace_helpers > 0); 13884 13885 help = p->p_dtrace_helpers; 13886 vstate = &help->dthps_vstate; 13887 13888 /* 13889 * We're now going to lose the help from this process. 13890 */ 13891 p->p_dtrace_helpers = NULL; 13892 dtrace_sync(); 13893 13894 /* 13895 * Destory the helper actions. 13896 */ 13897 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13898 dtrace_helper_action_t *h, *next; 13899 13900 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13901 next = h->dtha_next; 13902 dtrace_helper_action_destroy(h, vstate); 13903 h = next; 13904 } 13905 } 13906 13907 mutex_exit(&dtrace_lock); 13908 13909 /* 13910 * Destroy the helper providers. 13911 */ 13912 if (help->dthps_maxprovs > 0) { 13913 mutex_enter(&dtrace_meta_lock); 13914 if (dtrace_meta_pid != NULL) { 13915 ASSERT(dtrace_deferred_pid == NULL); 13916 13917 for (i = 0; i < help->dthps_nprovs; i++) { 13918 dtrace_helper_provider_remove( 13919 &help->dthps_provs[i]->dthp_prov, p->p_pid); 13920 } 13921 } else { 13922 mutex_enter(&dtrace_lock); 13923 ASSERT(help->dthps_deferred == 0 || 13924 help->dthps_next != NULL || 13925 help->dthps_prev != NULL || 13926 help == dtrace_deferred_pid); 13927 13928 /* 13929 * Remove the helper from the deferred list. 13930 */ 13931 if (help->dthps_next != NULL) 13932 help->dthps_next->dthps_prev = help->dthps_prev; 13933 if (help->dthps_prev != NULL) 13934 help->dthps_prev->dthps_next = help->dthps_next; 13935 if (dtrace_deferred_pid == help) { 13936 dtrace_deferred_pid = help->dthps_next; 13937 ASSERT(help->dthps_prev == NULL); 13938 } 13939 13940 mutex_exit(&dtrace_lock); 13941 } 13942 13943 mutex_exit(&dtrace_meta_lock); 13944 13945 for (i = 0; i < help->dthps_nprovs; i++) { 13946 dtrace_helper_provider_destroy(help->dthps_provs[i]); 13947 } 13948 13949 kmem_free(help->dthps_provs, help->dthps_maxprovs * 13950 sizeof (dtrace_helper_provider_t *)); 13951 } 13952 13953 mutex_enter(&dtrace_lock); 13954 13955 dtrace_vstate_fini(&help->dthps_vstate); 13956 kmem_free(help->dthps_actions, 13957 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 13958 kmem_free(help, sizeof (dtrace_helpers_t)); 13959 13960 --dtrace_helpers; 13961 mutex_exit(&dtrace_lock); 13962 } 13963 13964 static void 13965 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 13966 { 13967 dtrace_helpers_t *help, *newhelp; 13968 dtrace_helper_action_t *helper, *new, *last; 13969 dtrace_difo_t *dp; 13970 dtrace_vstate_t *vstate; 13971 int i, j, sz, hasprovs = 0; 13972 13973 mutex_enter(&dtrace_lock); 13974 ASSERT(from->p_dtrace_helpers != NULL); 13975 ASSERT(dtrace_helpers > 0); 13976 13977 help = from->p_dtrace_helpers; 13978 newhelp = dtrace_helpers_create(to); 13979 ASSERT(to->p_dtrace_helpers != NULL); 13980 13981 newhelp->dthps_generation = help->dthps_generation; 13982 vstate = &newhelp->dthps_vstate; 13983 13984 /* 13985 * Duplicate the helper actions. 13986 */ 13987 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13988 if ((helper = help->dthps_actions[i]) == NULL) 13989 continue; 13990 13991 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 13992 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 13993 KM_SLEEP); 13994 new->dtha_generation = helper->dtha_generation; 13995 13996 if ((dp = helper->dtha_predicate) != NULL) { 13997 dp = dtrace_difo_duplicate(dp, vstate); 13998 new->dtha_predicate = dp; 13999 } 14000 14001 new->dtha_nactions = helper->dtha_nactions; 14002 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 14003 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 14004 14005 for (j = 0; j < new->dtha_nactions; j++) { 14006 dtrace_difo_t *dp = helper->dtha_actions[j]; 14007 14008 ASSERT(dp != NULL); 14009 dp = dtrace_difo_duplicate(dp, vstate); 14010 new->dtha_actions[j] = dp; 14011 } 14012 14013 if (last != NULL) { 14014 last->dtha_next = new; 14015 } else { 14016 newhelp->dthps_actions[i] = new; 14017 } 14018 14019 last = new; 14020 } 14021 } 14022 14023 /* 14024 * Duplicate the helper providers and register them with the 14025 * DTrace framework. 14026 */ 14027 if (help->dthps_nprovs > 0) { 14028 newhelp->dthps_nprovs = help->dthps_nprovs; 14029 newhelp->dthps_maxprovs = help->dthps_nprovs; 14030 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 14031 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14032 for (i = 0; i < newhelp->dthps_nprovs; i++) { 14033 newhelp->dthps_provs[i] = help->dthps_provs[i]; 14034 newhelp->dthps_provs[i]->dthp_ref++; 14035 } 14036 14037 hasprovs = 1; 14038 } 14039 14040 mutex_exit(&dtrace_lock); 14041 14042 if (hasprovs) 14043 dtrace_helper_provider_register(to, newhelp, NULL); 14044 } 14045 14046 /* 14047 * DTrace Hook Functions 14048 */ 14049 static void 14050 dtrace_module_loaded(struct modctl *ctl) 14051 { 14052 dtrace_provider_t *prv; 14053 14054 mutex_enter(&dtrace_provider_lock); 14055 mutex_enter(&mod_lock); 14056 14057 ASSERT(ctl->mod_busy); 14058 14059 /* 14060 * We're going to call each providers per-module provide operation 14061 * specifying only this module. 14062 */ 14063 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 14064 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 14065 14066 mutex_exit(&mod_lock); 14067 mutex_exit(&dtrace_provider_lock); 14068 14069 /* 14070 * If we have any retained enablings, we need to match against them. 14071 * Enabling probes requires that cpu_lock be held, and we cannot hold 14072 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 14073 * module. (In particular, this happens when loading scheduling 14074 * classes.) So if we have any retained enablings, we need to dispatch 14075 * our task queue to do the match for us. 14076 */ 14077 mutex_enter(&dtrace_lock); 14078 14079 if (dtrace_retained == NULL) { 14080 mutex_exit(&dtrace_lock); 14081 return; 14082 } 14083 14084 (void) taskq_dispatch(dtrace_taskq, 14085 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 14086 14087 mutex_exit(&dtrace_lock); 14088 14089 /* 14090 * And now, for a little heuristic sleaze: in general, we want to 14091 * match modules as soon as they load. However, we cannot guarantee 14092 * this, because it would lead us to the lock ordering violation 14093 * outlined above. The common case, of course, is that cpu_lock is 14094 * _not_ held -- so we delay here for a clock tick, hoping that that's 14095 * long enough for the task queue to do its work. If it's not, it's 14096 * not a serious problem -- it just means that the module that we 14097 * just loaded may not be immediately instrumentable. 14098 */ 14099 delay(1); 14100 } 14101 14102 static void 14103 dtrace_module_unloaded(struct modctl *ctl) 14104 { 14105 dtrace_probe_t template, *probe, *first, *next; 14106 dtrace_provider_t *prov; 14107 14108 template.dtpr_mod = ctl->mod_modname; 14109 14110 mutex_enter(&dtrace_provider_lock); 14111 mutex_enter(&mod_lock); 14112 mutex_enter(&dtrace_lock); 14113 14114 if (dtrace_bymod == NULL) { 14115 /* 14116 * The DTrace module is loaded (obviously) but not attached; 14117 * we don't have any work to do. 14118 */ 14119 mutex_exit(&dtrace_provider_lock); 14120 mutex_exit(&mod_lock); 14121 mutex_exit(&dtrace_lock); 14122 return; 14123 } 14124 14125 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 14126 probe != NULL; probe = probe->dtpr_nextmod) { 14127 if (probe->dtpr_ecb != NULL) { 14128 mutex_exit(&dtrace_provider_lock); 14129 mutex_exit(&mod_lock); 14130 mutex_exit(&dtrace_lock); 14131 14132 /* 14133 * This shouldn't _actually_ be possible -- we're 14134 * unloading a module that has an enabled probe in it. 14135 * (It's normally up to the provider to make sure that 14136 * this can't happen.) However, because dtps_enable() 14137 * doesn't have a failure mode, there can be an 14138 * enable/unload race. Upshot: we don't want to 14139 * assert, but we're not going to disable the 14140 * probe, either. 14141 */ 14142 if (dtrace_err_verbose) { 14143 cmn_err(CE_WARN, "unloaded module '%s' had " 14144 "enabled probes", ctl->mod_modname); 14145 } 14146 14147 return; 14148 } 14149 } 14150 14151 probe = first; 14152 14153 for (first = NULL; probe != NULL; probe = next) { 14154 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 14155 14156 dtrace_probes[probe->dtpr_id - 1] = NULL; 14157 14158 next = probe->dtpr_nextmod; 14159 dtrace_hash_remove(dtrace_bymod, probe); 14160 dtrace_hash_remove(dtrace_byfunc, probe); 14161 dtrace_hash_remove(dtrace_byname, probe); 14162 14163 if (first == NULL) { 14164 first = probe; 14165 probe->dtpr_nextmod = NULL; 14166 } else { 14167 probe->dtpr_nextmod = first; 14168 first = probe; 14169 } 14170 } 14171 14172 /* 14173 * We've removed all of the module's probes from the hash chains and 14174 * from the probe array. Now issue a dtrace_sync() to be sure that 14175 * everyone has cleared out from any probe array processing. 14176 */ 14177 dtrace_sync(); 14178 14179 for (probe = first; probe != NULL; probe = first) { 14180 first = probe->dtpr_nextmod; 14181 prov = probe->dtpr_provider; 14182 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 14183 probe->dtpr_arg); 14184 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 14185 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 14186 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 14187 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 14188 kmem_free(probe, sizeof (dtrace_probe_t)); 14189 } 14190 14191 mutex_exit(&dtrace_lock); 14192 mutex_exit(&mod_lock); 14193 mutex_exit(&dtrace_provider_lock); 14194 } 14195 14196 void 14197 dtrace_suspend(void) 14198 { 14199 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14200 } 14201 14202 void 14203 dtrace_resume(void) 14204 { 14205 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14206 } 14207 14208 static int 14209 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14210 { 14211 ASSERT(MUTEX_HELD(&cpu_lock)); 14212 mutex_enter(&dtrace_lock); 14213 14214 switch (what) { 14215 case CPU_CONFIG: { 14216 dtrace_state_t *state; 14217 dtrace_optval_t *opt, rs, c; 14218 14219 /* 14220 * For now, we only allocate a new buffer for anonymous state. 14221 */ 14222 if ((state = dtrace_anon.dta_state) == NULL) 14223 break; 14224 14225 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14226 break; 14227 14228 opt = state->dts_options; 14229 c = opt[DTRACEOPT_CPU]; 14230 14231 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14232 break; 14233 14234 /* 14235 * Regardless of what the actual policy is, we're going to 14236 * temporarily set our resize policy to be manual. We're 14237 * also going to temporarily set our CPU option to denote 14238 * the newly configured CPU. 14239 */ 14240 rs = opt[DTRACEOPT_BUFRESIZE]; 14241 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14242 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14243 14244 (void) dtrace_state_buffers(state); 14245 14246 opt[DTRACEOPT_BUFRESIZE] = rs; 14247 opt[DTRACEOPT_CPU] = c; 14248 14249 break; 14250 } 14251 14252 case CPU_UNCONFIG: 14253 /* 14254 * We don't free the buffer in the CPU_UNCONFIG case. (The 14255 * buffer will be freed when the consumer exits.) 14256 */ 14257 break; 14258 14259 default: 14260 break; 14261 } 14262 14263 mutex_exit(&dtrace_lock); 14264 return (0); 14265 } 14266 14267 static void 14268 dtrace_cpu_setup_initial(processorid_t cpu) 14269 { 14270 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14271 } 14272 14273 static void 14274 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14275 { 14276 if (dtrace_toxranges >= dtrace_toxranges_max) { 14277 int osize, nsize; 14278 dtrace_toxrange_t *range; 14279 14280 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14281 14282 if (osize == 0) { 14283 ASSERT(dtrace_toxrange == NULL); 14284 ASSERT(dtrace_toxranges_max == 0); 14285 dtrace_toxranges_max = 1; 14286 } else { 14287 dtrace_toxranges_max <<= 1; 14288 } 14289 14290 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14291 range = kmem_zalloc(nsize, KM_SLEEP); 14292 14293 if (dtrace_toxrange != NULL) { 14294 ASSERT(osize != 0); 14295 bcopy(dtrace_toxrange, range, osize); 14296 kmem_free(dtrace_toxrange, osize); 14297 } 14298 14299 dtrace_toxrange = range; 14300 } 14301 14302 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14303 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14304 14305 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14306 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14307 dtrace_toxranges++; 14308 } 14309 14310 /* 14311 * DTrace Driver Cookbook Functions 14312 */ 14313 /*ARGSUSED*/ 14314 static int 14315 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14316 { 14317 dtrace_provider_id_t id; 14318 dtrace_state_t *state = NULL; 14319 dtrace_enabling_t *enab; 14320 14321 mutex_enter(&cpu_lock); 14322 mutex_enter(&dtrace_provider_lock); 14323 mutex_enter(&dtrace_lock); 14324 14325 if (ddi_soft_state_init(&dtrace_softstate, 14326 sizeof (dtrace_state_t), 0) != 0) { 14327 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14328 mutex_exit(&cpu_lock); 14329 mutex_exit(&dtrace_provider_lock); 14330 mutex_exit(&dtrace_lock); 14331 return (DDI_FAILURE); 14332 } 14333 14334 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14335 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14336 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14337 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14338 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14339 ddi_remove_minor_node(devi, NULL); 14340 ddi_soft_state_fini(&dtrace_softstate); 14341 mutex_exit(&cpu_lock); 14342 mutex_exit(&dtrace_provider_lock); 14343 mutex_exit(&dtrace_lock); 14344 return (DDI_FAILURE); 14345 } 14346 14347 ddi_report_dev(devi); 14348 dtrace_devi = devi; 14349 14350 dtrace_modload = dtrace_module_loaded; 14351 dtrace_modunload = dtrace_module_unloaded; 14352 dtrace_cpu_init = dtrace_cpu_setup_initial; 14353 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14354 dtrace_helpers_fork = dtrace_helpers_duplicate; 14355 dtrace_cpustart_init = dtrace_suspend; 14356 dtrace_cpustart_fini = dtrace_resume; 14357 dtrace_debugger_init = dtrace_suspend; 14358 dtrace_debugger_fini = dtrace_resume; 14359 14360 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14361 14362 ASSERT(MUTEX_HELD(&cpu_lock)); 14363 14364 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14365 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14366 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14367 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14368 VM_SLEEP | VMC_IDENTIFIER); 14369 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14370 1, INT_MAX, 0); 14371 14372 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14373 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14374 NULL, NULL, NULL, NULL, NULL, 0); 14375 14376 ASSERT(MUTEX_HELD(&cpu_lock)); 14377 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14378 offsetof(dtrace_probe_t, dtpr_nextmod), 14379 offsetof(dtrace_probe_t, dtpr_prevmod)); 14380 14381 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14382 offsetof(dtrace_probe_t, dtpr_nextfunc), 14383 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14384 14385 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14386 offsetof(dtrace_probe_t, dtpr_nextname), 14387 offsetof(dtrace_probe_t, dtpr_prevname)); 14388 14389 if (dtrace_retain_max < 1) { 14390 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14391 "setting to 1", dtrace_retain_max); 14392 dtrace_retain_max = 1; 14393 } 14394 14395 /* 14396 * Now discover our toxic ranges. 14397 */ 14398 dtrace_toxic_ranges(dtrace_toxrange_add); 14399 14400 /* 14401 * Before we register ourselves as a provider to our own framework, 14402 * we would like to assert that dtrace_provider is NULL -- but that's 14403 * not true if we were loaded as a dependency of a DTrace provider. 14404 * Once we've registered, we can assert that dtrace_provider is our 14405 * pseudo provider. 14406 */ 14407 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14408 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14409 14410 ASSERT(dtrace_provider != NULL); 14411 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14412 14413 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14414 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14415 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14416 dtrace_provider, NULL, NULL, "END", 0, NULL); 14417 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14418 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14419 14420 dtrace_anon_property(); 14421 mutex_exit(&cpu_lock); 14422 14423 /* 14424 * If DTrace helper tracing is enabled, we need to allocate the 14425 * trace buffer and initialize the values. 14426 */ 14427 if (dtrace_helptrace_enabled) { 14428 ASSERT(dtrace_helptrace_buffer == NULL); 14429 dtrace_helptrace_buffer = 14430 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14431 dtrace_helptrace_next = 0; 14432 } 14433 14434 /* 14435 * If there are already providers, we must ask them to provide their 14436 * probes, and then match any anonymous enabling against them. Note 14437 * that there should be no other retained enablings at this time: 14438 * the only retained enablings at this time should be the anonymous 14439 * enabling. 14440 */ 14441 if (dtrace_anon.dta_enabling != NULL) { 14442 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14443 14444 dtrace_enabling_provide(NULL); 14445 state = dtrace_anon.dta_state; 14446 14447 /* 14448 * We couldn't hold cpu_lock across the above call to 14449 * dtrace_enabling_provide(), but we must hold it to actually 14450 * enable the probes. We have to drop all of our locks, pick 14451 * up cpu_lock, and regain our locks before matching the 14452 * retained anonymous enabling. 14453 */ 14454 mutex_exit(&dtrace_lock); 14455 mutex_exit(&dtrace_provider_lock); 14456 14457 mutex_enter(&cpu_lock); 14458 mutex_enter(&dtrace_provider_lock); 14459 mutex_enter(&dtrace_lock); 14460 14461 if ((enab = dtrace_anon.dta_enabling) != NULL) 14462 (void) dtrace_enabling_match(enab, NULL); 14463 14464 mutex_exit(&cpu_lock); 14465 } 14466 14467 mutex_exit(&dtrace_lock); 14468 mutex_exit(&dtrace_provider_lock); 14469 14470 if (state != NULL) { 14471 /* 14472 * If we created any anonymous state, set it going now. 14473 */ 14474 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14475 } 14476 14477 return (DDI_SUCCESS); 14478 } 14479 14480 /*ARGSUSED*/ 14481 static int 14482 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14483 { 14484 dtrace_state_t *state; 14485 uint32_t priv; 14486 uid_t uid; 14487 zoneid_t zoneid; 14488 14489 if (getminor(*devp) == DTRACEMNRN_HELPER) 14490 return (0); 14491 14492 /* 14493 * If this wasn't an open with the "helper" minor, then it must be 14494 * the "dtrace" minor. 14495 */ 14496 if (getminor(*devp) != DTRACEMNRN_DTRACE) 14497 return (ENXIO); 14498 14499 /* 14500 * If no DTRACE_PRIV_* bits are set in the credential, then the 14501 * caller lacks sufficient permission to do anything with DTrace. 14502 */ 14503 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14504 if (priv == DTRACE_PRIV_NONE) 14505 return (EACCES); 14506 14507 /* 14508 * Ask all providers to provide all their probes. 14509 */ 14510 mutex_enter(&dtrace_provider_lock); 14511 dtrace_probe_provide(NULL, NULL); 14512 mutex_exit(&dtrace_provider_lock); 14513 14514 mutex_enter(&cpu_lock); 14515 mutex_enter(&dtrace_lock); 14516 dtrace_opens++; 14517 dtrace_membar_producer(); 14518 14519 /* 14520 * If the kernel debugger is active (that is, if the kernel debugger 14521 * modified text in some way), we won't allow the open. 14522 */ 14523 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14524 dtrace_opens--; 14525 mutex_exit(&cpu_lock); 14526 mutex_exit(&dtrace_lock); 14527 return (EBUSY); 14528 } 14529 14530 state = dtrace_state_create(devp, cred_p); 14531 mutex_exit(&cpu_lock); 14532 14533 if (state == NULL) { 14534 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 14535 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14536 mutex_exit(&dtrace_lock); 14537 return (EAGAIN); 14538 } 14539 14540 mutex_exit(&dtrace_lock); 14541 14542 return (0); 14543 } 14544 14545 /*ARGSUSED*/ 14546 static int 14547 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14548 { 14549 minor_t minor = getminor(dev); 14550 dtrace_state_t *state; 14551 14552 if (minor == DTRACEMNRN_HELPER) 14553 return (0); 14554 14555 state = ddi_get_soft_state(dtrace_softstate, minor); 14556 14557 mutex_enter(&cpu_lock); 14558 mutex_enter(&dtrace_lock); 14559 14560 if (state->dts_anon) { 14561 /* 14562 * There is anonymous state. Destroy that first. 14563 */ 14564 ASSERT(dtrace_anon.dta_state == NULL); 14565 dtrace_state_destroy(state->dts_anon); 14566 } 14567 14568 dtrace_state_destroy(state); 14569 ASSERT(dtrace_opens > 0); 14570 14571 /* 14572 * Only relinquish control of the kernel debugger interface when there 14573 * are no consumers and no anonymous enablings. 14574 */ 14575 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 14576 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14577 14578 mutex_exit(&dtrace_lock); 14579 mutex_exit(&cpu_lock); 14580 14581 return (0); 14582 } 14583 14584 /*ARGSUSED*/ 14585 static int 14586 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 14587 { 14588 int rval; 14589 dof_helper_t help, *dhp = NULL; 14590 14591 switch (cmd) { 14592 case DTRACEHIOC_ADDDOF: 14593 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 14594 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 14595 return (EFAULT); 14596 } 14597 14598 dhp = &help; 14599 arg = (intptr_t)help.dofhp_dof; 14600 /*FALLTHROUGH*/ 14601 14602 case DTRACEHIOC_ADD: { 14603 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 14604 14605 if (dof == NULL) 14606 return (rval); 14607 14608 mutex_enter(&dtrace_lock); 14609 14610 /* 14611 * dtrace_helper_slurp() takes responsibility for the dof -- 14612 * it may free it now or it may save it and free it later. 14613 */ 14614 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 14615 *rv = rval; 14616 rval = 0; 14617 } else { 14618 rval = EINVAL; 14619 } 14620 14621 mutex_exit(&dtrace_lock); 14622 return (rval); 14623 } 14624 14625 case DTRACEHIOC_REMOVE: { 14626 mutex_enter(&dtrace_lock); 14627 rval = dtrace_helper_destroygen(arg); 14628 mutex_exit(&dtrace_lock); 14629 14630 return (rval); 14631 } 14632 14633 default: 14634 break; 14635 } 14636 14637 return (ENOTTY); 14638 } 14639 14640 /*ARGSUSED*/ 14641 static int 14642 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 14643 { 14644 minor_t minor = getminor(dev); 14645 dtrace_state_t *state; 14646 int rval; 14647 14648 if (minor == DTRACEMNRN_HELPER) 14649 return (dtrace_ioctl_helper(cmd, arg, rv)); 14650 14651 state = ddi_get_soft_state(dtrace_softstate, minor); 14652 14653 if (state->dts_anon) { 14654 ASSERT(dtrace_anon.dta_state == NULL); 14655 state = state->dts_anon; 14656 } 14657 14658 switch (cmd) { 14659 case DTRACEIOC_PROVIDER: { 14660 dtrace_providerdesc_t pvd; 14661 dtrace_provider_t *pvp; 14662 14663 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 14664 return (EFAULT); 14665 14666 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 14667 mutex_enter(&dtrace_provider_lock); 14668 14669 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 14670 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 14671 break; 14672 } 14673 14674 mutex_exit(&dtrace_provider_lock); 14675 14676 if (pvp == NULL) 14677 return (ESRCH); 14678 14679 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 14680 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 14681 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 14682 return (EFAULT); 14683 14684 return (0); 14685 } 14686 14687 case DTRACEIOC_EPROBE: { 14688 dtrace_eprobedesc_t epdesc; 14689 dtrace_ecb_t *ecb; 14690 dtrace_action_t *act; 14691 void *buf; 14692 size_t size; 14693 uintptr_t dest; 14694 int nrecs; 14695 14696 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 14697 return (EFAULT); 14698 14699 mutex_enter(&dtrace_lock); 14700 14701 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 14702 mutex_exit(&dtrace_lock); 14703 return (EINVAL); 14704 } 14705 14706 if (ecb->dte_probe == NULL) { 14707 mutex_exit(&dtrace_lock); 14708 return (EINVAL); 14709 } 14710 14711 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 14712 epdesc.dtepd_uarg = ecb->dte_uarg; 14713 epdesc.dtepd_size = ecb->dte_size; 14714 14715 nrecs = epdesc.dtepd_nrecs; 14716 epdesc.dtepd_nrecs = 0; 14717 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14718 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14719 continue; 14720 14721 epdesc.dtepd_nrecs++; 14722 } 14723 14724 /* 14725 * Now that we have the size, we need to allocate a temporary 14726 * buffer in which to store the complete description. We need 14727 * the temporary buffer to be able to drop dtrace_lock() 14728 * across the copyout(), below. 14729 */ 14730 size = sizeof (dtrace_eprobedesc_t) + 14731 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 14732 14733 buf = kmem_alloc(size, KM_SLEEP); 14734 dest = (uintptr_t)buf; 14735 14736 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 14737 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 14738 14739 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14740 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14741 continue; 14742 14743 if (nrecs-- == 0) 14744 break; 14745 14746 bcopy(&act->dta_rec, (void *)dest, 14747 sizeof (dtrace_recdesc_t)); 14748 dest += sizeof (dtrace_recdesc_t); 14749 } 14750 14751 mutex_exit(&dtrace_lock); 14752 14753 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14754 kmem_free(buf, size); 14755 return (EFAULT); 14756 } 14757 14758 kmem_free(buf, size); 14759 return (0); 14760 } 14761 14762 case DTRACEIOC_AGGDESC: { 14763 dtrace_aggdesc_t aggdesc; 14764 dtrace_action_t *act; 14765 dtrace_aggregation_t *agg; 14766 int nrecs; 14767 uint32_t offs; 14768 dtrace_recdesc_t *lrec; 14769 void *buf; 14770 size_t size; 14771 uintptr_t dest; 14772 14773 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 14774 return (EFAULT); 14775 14776 mutex_enter(&dtrace_lock); 14777 14778 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 14779 mutex_exit(&dtrace_lock); 14780 return (EINVAL); 14781 } 14782 14783 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 14784 14785 nrecs = aggdesc.dtagd_nrecs; 14786 aggdesc.dtagd_nrecs = 0; 14787 14788 offs = agg->dtag_base; 14789 lrec = &agg->dtag_action.dta_rec; 14790 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 14791 14792 for (act = agg->dtag_first; ; act = act->dta_next) { 14793 ASSERT(act->dta_intuple || 14794 DTRACEACT_ISAGG(act->dta_kind)); 14795 14796 /* 14797 * If this action has a record size of zero, it 14798 * denotes an argument to the aggregating action. 14799 * Because the presence of this record doesn't (or 14800 * shouldn't) affect the way the data is interpreted, 14801 * we don't copy it out to save user-level the 14802 * confusion of dealing with a zero-length record. 14803 */ 14804 if (act->dta_rec.dtrd_size == 0) { 14805 ASSERT(agg->dtag_hasarg); 14806 continue; 14807 } 14808 14809 aggdesc.dtagd_nrecs++; 14810 14811 if (act == &agg->dtag_action) 14812 break; 14813 } 14814 14815 /* 14816 * Now that we have the size, we need to allocate a temporary 14817 * buffer in which to store the complete description. We need 14818 * the temporary buffer to be able to drop dtrace_lock() 14819 * across the copyout(), below. 14820 */ 14821 size = sizeof (dtrace_aggdesc_t) + 14822 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 14823 14824 buf = kmem_alloc(size, KM_SLEEP); 14825 dest = (uintptr_t)buf; 14826 14827 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 14828 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 14829 14830 for (act = agg->dtag_first; ; act = act->dta_next) { 14831 dtrace_recdesc_t rec = act->dta_rec; 14832 14833 /* 14834 * See the comment in the above loop for why we pass 14835 * over zero-length records. 14836 */ 14837 if (rec.dtrd_size == 0) { 14838 ASSERT(agg->dtag_hasarg); 14839 continue; 14840 } 14841 14842 if (nrecs-- == 0) 14843 break; 14844 14845 rec.dtrd_offset -= offs; 14846 bcopy(&rec, (void *)dest, sizeof (rec)); 14847 dest += sizeof (dtrace_recdesc_t); 14848 14849 if (act == &agg->dtag_action) 14850 break; 14851 } 14852 14853 mutex_exit(&dtrace_lock); 14854 14855 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14856 kmem_free(buf, size); 14857 return (EFAULT); 14858 } 14859 14860 kmem_free(buf, size); 14861 return (0); 14862 } 14863 14864 case DTRACEIOC_ENABLE: { 14865 dof_hdr_t *dof; 14866 dtrace_enabling_t *enab = NULL; 14867 dtrace_vstate_t *vstate; 14868 int err = 0; 14869 14870 *rv = 0; 14871 14872 /* 14873 * If a NULL argument has been passed, we take this as our 14874 * cue to reevaluate our enablings. 14875 */ 14876 if (arg == NULL) { 14877 dtrace_enabling_matchall(); 14878 14879 return (0); 14880 } 14881 14882 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 14883 return (rval); 14884 14885 mutex_enter(&cpu_lock); 14886 mutex_enter(&dtrace_lock); 14887 vstate = &state->dts_vstate; 14888 14889 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14890 mutex_exit(&dtrace_lock); 14891 mutex_exit(&cpu_lock); 14892 dtrace_dof_destroy(dof); 14893 return (EBUSY); 14894 } 14895 14896 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 14897 mutex_exit(&dtrace_lock); 14898 mutex_exit(&cpu_lock); 14899 dtrace_dof_destroy(dof); 14900 return (EINVAL); 14901 } 14902 14903 if ((rval = dtrace_dof_options(dof, state)) != 0) { 14904 dtrace_enabling_destroy(enab); 14905 mutex_exit(&dtrace_lock); 14906 mutex_exit(&cpu_lock); 14907 dtrace_dof_destroy(dof); 14908 return (rval); 14909 } 14910 14911 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 14912 err = dtrace_enabling_retain(enab); 14913 } else { 14914 dtrace_enabling_destroy(enab); 14915 } 14916 14917 mutex_exit(&cpu_lock); 14918 mutex_exit(&dtrace_lock); 14919 dtrace_dof_destroy(dof); 14920 14921 return (err); 14922 } 14923 14924 case DTRACEIOC_REPLICATE: { 14925 dtrace_repldesc_t desc; 14926 dtrace_probedesc_t *match = &desc.dtrpd_match; 14927 dtrace_probedesc_t *create = &desc.dtrpd_create; 14928 int err; 14929 14930 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14931 return (EFAULT); 14932 14933 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14934 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14935 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14936 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14937 14938 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14939 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14940 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14941 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14942 14943 mutex_enter(&dtrace_lock); 14944 err = dtrace_enabling_replicate(state, match, create); 14945 mutex_exit(&dtrace_lock); 14946 14947 return (err); 14948 } 14949 14950 case DTRACEIOC_PROBEMATCH: 14951 case DTRACEIOC_PROBES: { 14952 dtrace_probe_t *probe = NULL; 14953 dtrace_probedesc_t desc; 14954 dtrace_probekey_t pkey; 14955 dtrace_id_t i; 14956 int m = 0; 14957 uint32_t priv; 14958 uid_t uid; 14959 zoneid_t zoneid; 14960 14961 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14962 return (EFAULT); 14963 14964 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14965 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14966 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14967 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14968 14969 /* 14970 * Before we attempt to match this probe, we want to give 14971 * all providers the opportunity to provide it. 14972 */ 14973 if (desc.dtpd_id == DTRACE_IDNONE) { 14974 mutex_enter(&dtrace_provider_lock); 14975 dtrace_probe_provide(&desc, NULL); 14976 mutex_exit(&dtrace_provider_lock); 14977 desc.dtpd_id++; 14978 } 14979 14980 if (cmd == DTRACEIOC_PROBEMATCH) { 14981 dtrace_probekey(&desc, &pkey); 14982 pkey.dtpk_id = DTRACE_IDNONE; 14983 } 14984 14985 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 14986 14987 mutex_enter(&dtrace_lock); 14988 14989 if (cmd == DTRACEIOC_PROBEMATCH) { 14990 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14991 if ((probe = dtrace_probes[i - 1]) != NULL && 14992 (m = dtrace_match_probe(probe, &pkey, 14993 priv, uid, zoneid)) != 0) 14994 break; 14995 } 14996 14997 if (m < 0) { 14998 mutex_exit(&dtrace_lock); 14999 return (EINVAL); 15000 } 15001 15002 } else { 15003 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15004 if ((probe = dtrace_probes[i - 1]) != NULL && 15005 dtrace_match_priv(probe, priv, uid, zoneid)) 15006 break; 15007 } 15008 } 15009 15010 if (probe == NULL) { 15011 mutex_exit(&dtrace_lock); 15012 return (ESRCH); 15013 } 15014 15015 dtrace_probe_description(probe, &desc); 15016 mutex_exit(&dtrace_lock); 15017 15018 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15019 return (EFAULT); 15020 15021 return (0); 15022 } 15023 15024 case DTRACEIOC_PROBEARG: { 15025 dtrace_argdesc_t desc; 15026 dtrace_probe_t *probe; 15027 dtrace_provider_t *prov; 15028 15029 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15030 return (EFAULT); 15031 15032 if (desc.dtargd_id == DTRACE_IDNONE) 15033 return (EINVAL); 15034 15035 if (desc.dtargd_ndx == DTRACE_ARGNONE) 15036 return (EINVAL); 15037 15038 mutex_enter(&dtrace_provider_lock); 15039 mutex_enter(&mod_lock); 15040 mutex_enter(&dtrace_lock); 15041 15042 if (desc.dtargd_id > dtrace_nprobes) { 15043 mutex_exit(&dtrace_lock); 15044 mutex_exit(&mod_lock); 15045 mutex_exit(&dtrace_provider_lock); 15046 return (EINVAL); 15047 } 15048 15049 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 15050 mutex_exit(&dtrace_lock); 15051 mutex_exit(&mod_lock); 15052 mutex_exit(&dtrace_provider_lock); 15053 return (EINVAL); 15054 } 15055 15056 mutex_exit(&dtrace_lock); 15057 15058 prov = probe->dtpr_provider; 15059 15060 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 15061 /* 15062 * There isn't any typed information for this probe. 15063 * Set the argument number to DTRACE_ARGNONE. 15064 */ 15065 desc.dtargd_ndx = DTRACE_ARGNONE; 15066 } else { 15067 desc.dtargd_native[0] = '\0'; 15068 desc.dtargd_xlate[0] = '\0'; 15069 desc.dtargd_mapping = desc.dtargd_ndx; 15070 15071 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 15072 probe->dtpr_id, probe->dtpr_arg, &desc); 15073 } 15074 15075 mutex_exit(&mod_lock); 15076 mutex_exit(&dtrace_provider_lock); 15077 15078 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15079 return (EFAULT); 15080 15081 return (0); 15082 } 15083 15084 case DTRACEIOC_GO: { 15085 processorid_t cpuid; 15086 rval = dtrace_state_go(state, &cpuid); 15087 15088 if (rval != 0) 15089 return (rval); 15090 15091 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15092 return (EFAULT); 15093 15094 return (0); 15095 } 15096 15097 case DTRACEIOC_STOP: { 15098 processorid_t cpuid; 15099 15100 mutex_enter(&dtrace_lock); 15101 rval = dtrace_state_stop(state, &cpuid); 15102 mutex_exit(&dtrace_lock); 15103 15104 if (rval != 0) 15105 return (rval); 15106 15107 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15108 return (EFAULT); 15109 15110 return (0); 15111 } 15112 15113 case DTRACEIOC_DOFGET: { 15114 dof_hdr_t hdr, *dof; 15115 uint64_t len; 15116 15117 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15118 return (EFAULT); 15119 15120 mutex_enter(&dtrace_lock); 15121 dof = dtrace_dof_create(state); 15122 mutex_exit(&dtrace_lock); 15123 15124 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 15125 rval = copyout(dof, (void *)arg, len); 15126 dtrace_dof_destroy(dof); 15127 15128 return (rval == 0 ? 0 : EFAULT); 15129 } 15130 15131 case DTRACEIOC_AGGSNAP: 15132 case DTRACEIOC_BUFSNAP: { 15133 dtrace_bufdesc_t desc; 15134 caddr_t cached; 15135 dtrace_buffer_t *buf; 15136 15137 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15138 return (EFAULT); 15139 15140 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15141 return (EINVAL); 15142 15143 mutex_enter(&dtrace_lock); 15144 15145 if (cmd == DTRACEIOC_BUFSNAP) { 15146 buf = &state->dts_buffer[desc.dtbd_cpu]; 15147 } else { 15148 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 15149 } 15150 15151 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 15152 size_t sz = buf->dtb_offset; 15153 15154 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 15155 mutex_exit(&dtrace_lock); 15156 return (EBUSY); 15157 } 15158 15159 /* 15160 * If this buffer has already been consumed, we're 15161 * going to indicate that there's nothing left here 15162 * to consume. 15163 */ 15164 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 15165 mutex_exit(&dtrace_lock); 15166 15167 desc.dtbd_size = 0; 15168 desc.dtbd_drops = 0; 15169 desc.dtbd_errors = 0; 15170 desc.dtbd_oldest = 0; 15171 sz = sizeof (desc); 15172 15173 if (copyout(&desc, (void *)arg, sz) != 0) 15174 return (EFAULT); 15175 15176 return (0); 15177 } 15178 15179 /* 15180 * If this is a ring buffer that has wrapped, we want 15181 * to copy the whole thing out. 15182 */ 15183 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 15184 dtrace_buffer_polish(buf); 15185 sz = buf->dtb_size; 15186 } 15187 15188 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 15189 mutex_exit(&dtrace_lock); 15190 return (EFAULT); 15191 } 15192 15193 desc.dtbd_size = sz; 15194 desc.dtbd_drops = buf->dtb_drops; 15195 desc.dtbd_errors = buf->dtb_errors; 15196 desc.dtbd_oldest = buf->dtb_xamot_offset; 15197 15198 mutex_exit(&dtrace_lock); 15199 15200 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15201 return (EFAULT); 15202 15203 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15204 15205 return (0); 15206 } 15207 15208 if (buf->dtb_tomax == NULL) { 15209 ASSERT(buf->dtb_xamot == NULL); 15210 mutex_exit(&dtrace_lock); 15211 return (ENOENT); 15212 } 15213 15214 cached = buf->dtb_tomax; 15215 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15216 15217 dtrace_xcall(desc.dtbd_cpu, 15218 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15219 15220 state->dts_errors += buf->dtb_xamot_errors; 15221 15222 /* 15223 * If the buffers did not actually switch, then the cross call 15224 * did not take place -- presumably because the given CPU is 15225 * not in the ready set. If this is the case, we'll return 15226 * ENOENT. 15227 */ 15228 if (buf->dtb_tomax == cached) { 15229 ASSERT(buf->dtb_xamot != cached); 15230 mutex_exit(&dtrace_lock); 15231 return (ENOENT); 15232 } 15233 15234 ASSERT(cached == buf->dtb_xamot); 15235 15236 /* 15237 * We have our snapshot; now copy it out. 15238 */ 15239 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15240 buf->dtb_xamot_offset) != 0) { 15241 mutex_exit(&dtrace_lock); 15242 return (EFAULT); 15243 } 15244 15245 desc.dtbd_size = buf->dtb_xamot_offset; 15246 desc.dtbd_drops = buf->dtb_xamot_drops; 15247 desc.dtbd_errors = buf->dtb_xamot_errors; 15248 desc.dtbd_oldest = 0; 15249 15250 mutex_exit(&dtrace_lock); 15251 15252 /* 15253 * Finally, copy out the buffer description. 15254 */ 15255 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15256 return (EFAULT); 15257 15258 return (0); 15259 } 15260 15261 case DTRACEIOC_CONF: { 15262 dtrace_conf_t conf; 15263 15264 bzero(&conf, sizeof (conf)); 15265 conf.dtc_difversion = DIF_VERSION; 15266 conf.dtc_difintregs = DIF_DIR_NREGS; 15267 conf.dtc_diftupregs = DIF_DTR_NREGS; 15268 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15269 15270 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15271 return (EFAULT); 15272 15273 return (0); 15274 } 15275 15276 case DTRACEIOC_STATUS: { 15277 dtrace_status_t stat; 15278 dtrace_dstate_t *dstate; 15279 int i, j; 15280 uint64_t nerrs; 15281 15282 /* 15283 * See the comment in dtrace_state_deadman() for the reason 15284 * for setting dts_laststatus to INT64_MAX before setting 15285 * it to the correct value. 15286 */ 15287 state->dts_laststatus = INT64_MAX; 15288 dtrace_membar_producer(); 15289 state->dts_laststatus = dtrace_gethrtime(); 15290 15291 bzero(&stat, sizeof (stat)); 15292 15293 mutex_enter(&dtrace_lock); 15294 15295 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15296 mutex_exit(&dtrace_lock); 15297 return (ENOENT); 15298 } 15299 15300 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15301 stat.dtst_exiting = 1; 15302 15303 nerrs = state->dts_errors; 15304 dstate = &state->dts_vstate.dtvs_dynvars; 15305 15306 for (i = 0; i < NCPU; i++) { 15307 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15308 15309 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15310 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15311 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15312 15313 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15314 stat.dtst_filled++; 15315 15316 nerrs += state->dts_buffer[i].dtb_errors; 15317 15318 for (j = 0; j < state->dts_nspeculations; j++) { 15319 dtrace_speculation_t *spec; 15320 dtrace_buffer_t *buf; 15321 15322 spec = &state->dts_speculations[j]; 15323 buf = &spec->dtsp_buffer[i]; 15324 stat.dtst_specdrops += buf->dtb_xamot_drops; 15325 } 15326 } 15327 15328 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15329 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15330 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15331 stat.dtst_dblerrors = state->dts_dblerrors; 15332 stat.dtst_killed = 15333 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15334 stat.dtst_errors = nerrs; 15335 15336 mutex_exit(&dtrace_lock); 15337 15338 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15339 return (EFAULT); 15340 15341 return (0); 15342 } 15343 15344 case DTRACEIOC_FORMAT: { 15345 dtrace_fmtdesc_t fmt; 15346 char *str; 15347 int len; 15348 15349 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15350 return (EFAULT); 15351 15352 mutex_enter(&dtrace_lock); 15353 15354 if (fmt.dtfd_format == 0 || 15355 fmt.dtfd_format > state->dts_nformats) { 15356 mutex_exit(&dtrace_lock); 15357 return (EINVAL); 15358 } 15359 15360 /* 15361 * Format strings are allocated contiguously and they are 15362 * never freed; if a format index is less than the number 15363 * of formats, we can assert that the format map is non-NULL 15364 * and that the format for the specified index is non-NULL. 15365 */ 15366 ASSERT(state->dts_formats != NULL); 15367 str = state->dts_formats[fmt.dtfd_format - 1]; 15368 ASSERT(str != NULL); 15369 15370 len = strlen(str) + 1; 15371 15372 if (len > fmt.dtfd_length) { 15373 fmt.dtfd_length = len; 15374 15375 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15376 mutex_exit(&dtrace_lock); 15377 return (EINVAL); 15378 } 15379 } else { 15380 if (copyout(str, fmt.dtfd_string, len) != 0) { 15381 mutex_exit(&dtrace_lock); 15382 return (EINVAL); 15383 } 15384 } 15385 15386 mutex_exit(&dtrace_lock); 15387 return (0); 15388 } 15389 15390 default: 15391 break; 15392 } 15393 15394 return (ENOTTY); 15395 } 15396 15397 /*ARGSUSED*/ 15398 static int 15399 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15400 { 15401 dtrace_state_t *state; 15402 15403 switch (cmd) { 15404 case DDI_DETACH: 15405 break; 15406 15407 case DDI_SUSPEND: 15408 return (DDI_SUCCESS); 15409 15410 default: 15411 return (DDI_FAILURE); 15412 } 15413 15414 mutex_enter(&cpu_lock); 15415 mutex_enter(&dtrace_provider_lock); 15416 mutex_enter(&dtrace_lock); 15417 15418 ASSERT(dtrace_opens == 0); 15419 15420 if (dtrace_helpers > 0) { 15421 mutex_exit(&dtrace_provider_lock); 15422 mutex_exit(&dtrace_lock); 15423 mutex_exit(&cpu_lock); 15424 return (DDI_FAILURE); 15425 } 15426 15427 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15428 mutex_exit(&dtrace_provider_lock); 15429 mutex_exit(&dtrace_lock); 15430 mutex_exit(&cpu_lock); 15431 return (DDI_FAILURE); 15432 } 15433 15434 dtrace_provider = NULL; 15435 15436 if ((state = dtrace_anon_grab()) != NULL) { 15437 /* 15438 * If there were ECBs on this state, the provider should 15439 * have not been allowed to detach; assert that there is 15440 * none. 15441 */ 15442 ASSERT(state->dts_necbs == 0); 15443 dtrace_state_destroy(state); 15444 15445 /* 15446 * If we're being detached with anonymous state, we need to 15447 * indicate to the kernel debugger that DTrace is now inactive. 15448 */ 15449 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15450 } 15451 15452 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15453 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15454 dtrace_cpu_init = NULL; 15455 dtrace_helpers_cleanup = NULL; 15456 dtrace_helpers_fork = NULL; 15457 dtrace_cpustart_init = NULL; 15458 dtrace_cpustart_fini = NULL; 15459 dtrace_debugger_init = NULL; 15460 dtrace_debugger_fini = NULL; 15461 dtrace_modload = NULL; 15462 dtrace_modunload = NULL; 15463 15464 mutex_exit(&cpu_lock); 15465 15466 if (dtrace_helptrace_enabled) { 15467 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15468 dtrace_helptrace_buffer = NULL; 15469 } 15470 15471 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15472 dtrace_probes = NULL; 15473 dtrace_nprobes = 0; 15474 15475 dtrace_hash_destroy(dtrace_bymod); 15476 dtrace_hash_destroy(dtrace_byfunc); 15477 dtrace_hash_destroy(dtrace_byname); 15478 dtrace_bymod = NULL; 15479 dtrace_byfunc = NULL; 15480 dtrace_byname = NULL; 15481 15482 kmem_cache_destroy(dtrace_state_cache); 15483 vmem_destroy(dtrace_minor); 15484 vmem_destroy(dtrace_arena); 15485 15486 if (dtrace_toxrange != NULL) { 15487 kmem_free(dtrace_toxrange, 15488 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15489 dtrace_toxrange = NULL; 15490 dtrace_toxranges = 0; 15491 dtrace_toxranges_max = 0; 15492 } 15493 15494 ddi_remove_minor_node(dtrace_devi, NULL); 15495 dtrace_devi = NULL; 15496 15497 ddi_soft_state_fini(&dtrace_softstate); 15498 15499 ASSERT(dtrace_vtime_references == 0); 15500 ASSERT(dtrace_opens == 0); 15501 ASSERT(dtrace_retained == NULL); 15502 15503 mutex_exit(&dtrace_lock); 15504 mutex_exit(&dtrace_provider_lock); 15505 15506 /* 15507 * We don't destroy the task queue until after we have dropped our 15508 * locks (taskq_destroy() may block on running tasks). To prevent 15509 * attempting to do work after we have effectively detached but before 15510 * the task queue has been destroyed, all tasks dispatched via the 15511 * task queue must check that DTrace is still attached before 15512 * performing any operation. 15513 */ 15514 taskq_destroy(dtrace_taskq); 15515 dtrace_taskq = NULL; 15516 15517 return (DDI_SUCCESS); 15518 } 15519 15520 /*ARGSUSED*/ 15521 static int 15522 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15523 { 15524 int error; 15525 15526 switch (infocmd) { 15527 case DDI_INFO_DEVT2DEVINFO: 15528 *result = (void *)dtrace_devi; 15529 error = DDI_SUCCESS; 15530 break; 15531 case DDI_INFO_DEVT2INSTANCE: 15532 *result = (void *)0; 15533 error = DDI_SUCCESS; 15534 break; 15535 default: 15536 error = DDI_FAILURE; 15537 } 15538 return (error); 15539 } 15540 15541 static struct cb_ops dtrace_cb_ops = { 15542 dtrace_open, /* open */ 15543 dtrace_close, /* close */ 15544 nulldev, /* strategy */ 15545 nulldev, /* print */ 15546 nodev, /* dump */ 15547 nodev, /* read */ 15548 nodev, /* write */ 15549 dtrace_ioctl, /* ioctl */ 15550 nodev, /* devmap */ 15551 nodev, /* mmap */ 15552 nodev, /* segmap */ 15553 nochpoll, /* poll */ 15554 ddi_prop_op, /* cb_prop_op */ 15555 0, /* streamtab */ 15556 D_NEW | D_MP /* Driver compatibility flag */ 15557 }; 15558 15559 static struct dev_ops dtrace_ops = { 15560 DEVO_REV, /* devo_rev */ 15561 0, /* refcnt */ 15562 dtrace_info, /* get_dev_info */ 15563 nulldev, /* identify */ 15564 nulldev, /* probe */ 15565 dtrace_attach, /* attach */ 15566 dtrace_detach, /* detach */ 15567 nodev, /* reset */ 15568 &dtrace_cb_ops, /* driver operations */ 15569 NULL, /* bus operations */ 15570 nodev, /* dev power */ 15571 ddi_quiesce_not_needed, /* quiesce */ 15572 }; 15573 15574 static struct modldrv modldrv = { 15575 &mod_driverops, /* module type (this is a pseudo driver) */ 15576 "Dynamic Tracing", /* name of module */ 15577 &dtrace_ops, /* driver ops */ 15578 }; 15579 15580 static struct modlinkage modlinkage = { 15581 MODREV_1, 15582 (void *)&modldrv, 15583 NULL 15584 }; 15585 15586 int 15587 _init(void) 15588 { 15589 return (mod_install(&modlinkage)); 15590 } 15591 15592 int 15593 _info(struct modinfo *modinfop) 15594 { 15595 return (mod_info(&modlinkage, modinfop)); 15596 } 15597 15598 int 15599 _fini(void) 15600 { 15601 return (mod_remove(&modlinkage)); 15602 } 15603