1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DTrace - Dynamic Tracing for Solaris 31 * 32 * This is the implementation of the Solaris Dynamic Tracing framework 33 * (DTrace). The user-visible interface to DTrace is described at length in 34 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 35 * library, the in-kernel DTrace framework, and the DTrace providers are 36 * described in the block comments in the <sys/dtrace.h> header file. The 37 * internal architecture of DTrace is described in the block comments in the 38 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 39 * implementation very much assume mastery of all of these sources; if one has 40 * an unanswered question about the implementation, one should consult them 41 * first. 42 * 43 * The functions here are ordered roughly as follows: 44 * 45 * - Probe context functions 46 * - Probe hashing functions 47 * - Non-probe context utility functions 48 * - Matching functions 49 * - Provider-to-Framework API functions 50 * - Probe management functions 51 * - DIF object functions 52 * - Format functions 53 * - Predicate functions 54 * - ECB functions 55 * - Buffer functions 56 * - Enabling functions 57 * - DOF functions 58 * - Anonymous enabling functions 59 * - Consumer state functions 60 * - Helper functions 61 * - Hook functions 62 * - Driver cookbook functions 63 * 64 * Each group of functions begins with a block comment labelled the "DTrace 65 * [Group] Functions", allowing one to find each block by searching forward 66 * on capital-f functions. 67 */ 68 #include <sys/errno.h> 69 #include <sys/stat.h> 70 #include <sys/modctl.h> 71 #include <sys/conf.h> 72 #include <sys/systm.h> 73 #include <sys/ddi.h> 74 #include <sys/sunddi.h> 75 #include <sys/cpuvar.h> 76 #include <sys/kmem.h> 77 #include <sys/strsubr.h> 78 #include <sys/sysmacros.h> 79 #include <sys/dtrace_impl.h> 80 #include <sys/atomic.h> 81 #include <sys/cmn_err.h> 82 #include <sys/mutex_impl.h> 83 #include <sys/rwlock_impl.h> 84 #include <sys/ctf_api.h> 85 #include <sys/panic.h> 86 #include <sys/priv_impl.h> 87 #include <sys/policy.h> 88 #include <sys/cred_impl.h> 89 #include <sys/procfs_isa.h> 90 #include <sys/taskq.h> 91 #include <sys/mkdev.h> 92 #include <sys/kdi.h> 93 #include <sys/zone.h> 94 #include <sys/socket.h> 95 #include <netinet/in.h> 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 121 size_t dtrace_global_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 32; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 150 /* 151 * DTrace External Variables 152 * 153 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 154 * available to DTrace consumers via the backtick (`) syntax. One of these, 155 * dtrace_zero, is made deliberately so: it is provided as a source of 156 * well-known, zero-filled memory. While this variable is not documented, 157 * it is used by some translators as an implementation detail. 158 */ 159 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 160 161 /* 162 * DTrace Internal Variables 163 */ 164 static dev_info_t *dtrace_devi; /* device info */ 165 static vmem_t *dtrace_arena; /* probe ID arena */ 166 static vmem_t *dtrace_minor; /* minor number arena */ 167 static taskq_t *dtrace_taskq; /* task queue */ 168 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 169 static int dtrace_nprobes; /* number of probes */ 170 static dtrace_provider_t *dtrace_provider; /* provider list */ 171 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 172 static int dtrace_opens; /* number of opens */ 173 static int dtrace_helpers; /* number of helpers */ 174 static void *dtrace_softstate; /* softstate pointer */ 175 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 176 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 177 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 178 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 179 static int dtrace_toxranges; /* number of toxic ranges */ 180 static int dtrace_toxranges_max; /* size of toxic range array */ 181 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 182 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 183 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 184 static kthread_t *dtrace_panicked; /* panicking thread */ 185 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 186 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 187 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 188 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 189 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 190 191 /* 192 * DTrace Locking 193 * DTrace is protected by three (relatively coarse-grained) locks: 194 * 195 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 196 * including enabling state, probes, ECBs, consumer state, helper state, 197 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 198 * probe context is lock-free -- synchronization is handled via the 199 * dtrace_sync() cross call mechanism. 200 * 201 * (2) dtrace_provider_lock is required when manipulating provider state, or 202 * when provider state must be held constant. 203 * 204 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 205 * when meta provider state must be held constant. 206 * 207 * The lock ordering between these three locks is dtrace_meta_lock before 208 * dtrace_provider_lock before dtrace_lock. (In particular, there are 209 * several places where dtrace_provider_lock is held by the framework as it 210 * calls into the providers -- which then call back into the framework, 211 * grabbing dtrace_lock.) 212 * 213 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 214 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 215 * role as a coarse-grained lock; it is acquired before both of these locks. 216 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 217 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 218 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 219 * acquired _between_ dtrace_provider_lock and dtrace_lock. 220 */ 221 static kmutex_t dtrace_lock; /* probe state lock */ 222 static kmutex_t dtrace_provider_lock; /* provider state lock */ 223 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 224 225 /* 226 * DTrace Provider Variables 227 * 228 * These are the variables relating to DTrace as a provider (that is, the 229 * provider of the BEGIN, END, and ERROR probes). 230 */ 231 static dtrace_pattr_t dtrace_provider_attr = { 232 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 }; 238 239 static void 240 dtrace_nullop(void) 241 {} 242 243 static dtrace_pops_t dtrace_provider_ops = { 244 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 245 (void (*)(void *, struct modctl *))dtrace_nullop, 246 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 247 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 248 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 249 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 250 NULL, 251 NULL, 252 NULL, 253 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 254 }; 255 256 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 257 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 258 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 259 260 /* 261 * DTrace Helper Tracing Variables 262 */ 263 uint32_t dtrace_helptrace_next = 0; 264 uint32_t dtrace_helptrace_nlocals; 265 char *dtrace_helptrace_buffer; 266 int dtrace_helptrace_bufsize = 512 * 1024; 267 268 #ifdef DEBUG 269 int dtrace_helptrace_enabled = 1; 270 #else 271 int dtrace_helptrace_enabled = 0; 272 #endif 273 274 /* 275 * DTrace Error Hashing 276 * 277 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 278 * table. This is very useful for checking coverage of tests that are 279 * expected to induce DIF or DOF processing errors, and may be useful for 280 * debugging problems in the DIF code generator or in DOF generation . The 281 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 282 */ 283 #ifdef DEBUG 284 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 285 static const char *dtrace_errlast; 286 static kthread_t *dtrace_errthread; 287 static kmutex_t dtrace_errlock; 288 #endif 289 290 /* 291 * DTrace Macros and Constants 292 * 293 * These are various macros that are useful in various spots in the 294 * implementation, along with a few random constants that have no meaning 295 * outside of the implementation. There is no real structure to this cpp 296 * mishmash -- but is there ever? 297 */ 298 #define DTRACE_HASHSTR(hash, probe) \ 299 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 300 301 #define DTRACE_HASHNEXT(hash, probe) \ 302 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 303 304 #define DTRACE_HASHPREV(hash, probe) \ 305 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 306 307 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 308 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 309 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 310 311 #define DTRACE_AGGHASHSIZE_SLEW 17 312 313 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 314 315 /* 316 * The key for a thread-local variable consists of the lower 61 bits of the 317 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 318 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 319 * equal to a variable identifier. This is necessary (but not sufficient) to 320 * assure that global associative arrays never collide with thread-local 321 * variables. To guarantee that they cannot collide, we must also define the 322 * order for keying dynamic variables. That order is: 323 * 324 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 325 * 326 * Because the variable-key and the tls-key are in orthogonal spaces, there is 327 * no way for a global variable key signature to match a thread-local key 328 * signature. 329 */ 330 #define DTRACE_TLS_THRKEY(where) { \ 331 uint_t intr = 0; \ 332 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 333 for (; actv; actv >>= 1) \ 334 intr++; \ 335 ASSERT(intr < (1 << 3)); \ 336 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 337 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 338 } 339 340 #define DT_BSWAP_8(x) ((x) & 0xff) 341 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 342 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 343 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 344 345 #define DT_MASK_LO 0x00000000FFFFFFFFULL 346 347 #define DTRACE_STORE(type, tomax, offset, what) \ 348 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 349 350 #ifndef __i386 351 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 352 if (addr & (size - 1)) { \ 353 *flags |= CPU_DTRACE_BADALIGN; \ 354 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 355 return (0); \ 356 } 357 #else 358 #define DTRACE_ALIGNCHECK(addr, size, flags) 359 #endif 360 361 /* 362 * Test whether a range of memory starting at testaddr of size testsz falls 363 * within the range of memory described by addr, sz. We take care to avoid 364 * problems with overflow and underflow of the unsigned quantities, and 365 * disallow all negative sizes. Ranges of size 0 are allowed. 366 */ 367 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 368 ((testaddr) - (baseaddr) < (basesz) && \ 369 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 370 (testaddr) + (testsz) >= (testaddr)) 371 372 /* 373 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 374 * alloc_sz on the righthand side of the comparison in order to avoid overflow 375 * or underflow in the comparison with it. This is simpler than the INRANGE 376 * check above, because we know that the dtms_scratch_ptr is valid in the 377 * range. Allocations of size zero are allowed. 378 */ 379 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 380 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 381 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 382 383 #define DTRACE_LOADFUNC(bits) \ 384 /*CSTYLED*/ \ 385 uint##bits##_t \ 386 dtrace_load##bits(uintptr_t addr) \ 387 { \ 388 size_t size = bits / NBBY; \ 389 /*CSTYLED*/ \ 390 uint##bits##_t rval; \ 391 int i; \ 392 volatile uint16_t *flags = (volatile uint16_t *) \ 393 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 394 \ 395 DTRACE_ALIGNCHECK(addr, size, flags); \ 396 \ 397 for (i = 0; i < dtrace_toxranges; i++) { \ 398 if (addr >= dtrace_toxrange[i].dtt_limit) \ 399 continue; \ 400 \ 401 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 402 continue; \ 403 \ 404 /* \ 405 * This address falls within a toxic region; return 0. \ 406 */ \ 407 *flags |= CPU_DTRACE_BADADDR; \ 408 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 409 return (0); \ 410 } \ 411 \ 412 *flags |= CPU_DTRACE_NOFAULT; \ 413 /*CSTYLED*/ \ 414 rval = *((volatile uint##bits##_t *)addr); \ 415 *flags &= ~CPU_DTRACE_NOFAULT; \ 416 \ 417 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 418 } 419 420 #ifdef _LP64 421 #define dtrace_loadptr dtrace_load64 422 #else 423 #define dtrace_loadptr dtrace_load32 424 #endif 425 426 #define DTRACE_DYNHASH_FREE 0 427 #define DTRACE_DYNHASH_SINK 1 428 #define DTRACE_DYNHASH_VALID 2 429 430 #define DTRACE_MATCH_NEXT 0 431 #define DTRACE_MATCH_DONE 1 432 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 433 #define DTRACE_STATE_ALIGN 64 434 435 #define DTRACE_FLAGS2FLT(flags) \ 436 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 437 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 438 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 439 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 440 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 441 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 442 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 443 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 444 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 445 DTRACEFLT_UNKNOWN) 446 447 #define DTRACEACT_ISSTRING(act) \ 448 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 449 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 450 451 static size_t dtrace_strlen(const char *, size_t); 452 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 453 static void dtrace_enabling_provide(dtrace_provider_t *); 454 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 455 static void dtrace_enabling_matchall(void); 456 static dtrace_state_t *dtrace_anon_grab(void); 457 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 458 dtrace_state_t *, uint64_t, uint64_t); 459 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 460 static void dtrace_buffer_drop(dtrace_buffer_t *); 461 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 462 dtrace_state_t *, dtrace_mstate_t *); 463 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 464 dtrace_optval_t); 465 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 466 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 467 468 /* 469 * DTrace Probe Context Functions 470 * 471 * These functions are called from probe context. Because probe context is 472 * any context in which C may be called, arbitrarily locks may be held, 473 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 474 * As a result, functions called from probe context may only call other DTrace 475 * support functions -- they may not interact at all with the system at large. 476 * (Note that the ASSERT macro is made probe-context safe by redefining it in 477 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 478 * loads are to be performed from probe context, they _must_ be in terms of 479 * the safe dtrace_load*() variants. 480 * 481 * Some functions in this block are not actually called from probe context; 482 * for these functions, there will be a comment above the function reading 483 * "Note: not called from probe context." 484 */ 485 void 486 dtrace_panic(const char *format, ...) 487 { 488 va_list alist; 489 490 va_start(alist, format); 491 dtrace_vpanic(format, alist); 492 va_end(alist); 493 } 494 495 int 496 dtrace_assfail(const char *a, const char *f, int l) 497 { 498 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 499 500 /* 501 * We just need something here that even the most clever compiler 502 * cannot optimize away. 503 */ 504 return (a[(uintptr_t)f]); 505 } 506 507 /* 508 * Atomically increment a specified error counter from probe context. 509 */ 510 static void 511 dtrace_error(uint32_t *counter) 512 { 513 /* 514 * Most counters stored to in probe context are per-CPU counters. 515 * However, there are some error conditions that are sufficiently 516 * arcane that they don't merit per-CPU storage. If these counters 517 * are incremented concurrently on different CPUs, scalability will be 518 * adversely affected -- but we don't expect them to be white-hot in a 519 * correctly constructed enabling... 520 */ 521 uint32_t oval, nval; 522 523 do { 524 oval = *counter; 525 526 if ((nval = oval + 1) == 0) { 527 /* 528 * If the counter would wrap, set it to 1 -- assuring 529 * that the counter is never zero when we have seen 530 * errors. (The counter must be 32-bits because we 531 * aren't guaranteed a 64-bit compare&swap operation.) 532 * To save this code both the infamy of being fingered 533 * by a priggish news story and the indignity of being 534 * the target of a neo-puritan witch trial, we're 535 * carefully avoiding any colorful description of the 536 * likelihood of this condition -- but suffice it to 537 * say that it is only slightly more likely than the 538 * overflow of predicate cache IDs, as discussed in 539 * dtrace_predicate_create(). 540 */ 541 nval = 1; 542 } 543 } while (dtrace_cas32(counter, oval, nval) != oval); 544 } 545 546 /* 547 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 548 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 549 */ 550 DTRACE_LOADFUNC(8) 551 DTRACE_LOADFUNC(16) 552 DTRACE_LOADFUNC(32) 553 DTRACE_LOADFUNC(64) 554 555 static int 556 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 557 { 558 if (dest < mstate->dtms_scratch_base) 559 return (0); 560 561 if (dest + size < dest) 562 return (0); 563 564 if (dest + size > mstate->dtms_scratch_ptr) 565 return (0); 566 567 return (1); 568 } 569 570 static int 571 dtrace_canstore_statvar(uint64_t addr, size_t sz, 572 dtrace_statvar_t **svars, int nsvars) 573 { 574 int i; 575 576 for (i = 0; i < nsvars; i++) { 577 dtrace_statvar_t *svar = svars[i]; 578 579 if (svar == NULL || svar->dtsv_size == 0) 580 continue; 581 582 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 583 return (1); 584 } 585 586 return (0); 587 } 588 589 /* 590 * Check to see if the address is within a memory region to which a store may 591 * be issued. This includes the DTrace scratch areas, and any DTrace variable 592 * region. The caller of dtrace_canstore() is responsible for performing any 593 * alignment checks that are needed before stores are actually executed. 594 */ 595 static int 596 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 597 dtrace_vstate_t *vstate) 598 { 599 /* 600 * First, check to see if the address is in scratch space... 601 */ 602 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 603 mstate->dtms_scratch_size)) 604 return (1); 605 606 /* 607 * Now check to see if it's a dynamic variable. This check will pick 608 * up both thread-local variables and any global dynamically-allocated 609 * variables. 610 */ 611 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 612 vstate->dtvs_dynvars.dtds_size)) { 613 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 614 uintptr_t base = (uintptr_t)dstate->dtds_base + 615 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 616 uintptr_t chunkoffs; 617 618 /* 619 * Before we assume that we can store here, we need to make 620 * sure that it isn't in our metadata -- storing to our 621 * dynamic variable metadata would corrupt our state. For 622 * the range to not include any dynamic variable metadata, 623 * it must: 624 * 625 * (1) Start above the hash table that is at the base of 626 * the dynamic variable space 627 * 628 * (2) Have a starting chunk offset that is beyond the 629 * dtrace_dynvar_t that is at the base of every chunk 630 * 631 * (3) Not span a chunk boundary 632 * 633 */ 634 if (addr < base) 635 return (0); 636 637 chunkoffs = (addr - base) % dstate->dtds_chunksize; 638 639 if (chunkoffs < sizeof (dtrace_dynvar_t)) 640 return (0); 641 642 if (chunkoffs + sz > dstate->dtds_chunksize) 643 return (0); 644 645 return (1); 646 } 647 648 /* 649 * Finally, check the static local and global variables. These checks 650 * take the longest, so we perform them last. 651 */ 652 if (dtrace_canstore_statvar(addr, sz, 653 vstate->dtvs_locals, vstate->dtvs_nlocals)) 654 return (1); 655 656 if (dtrace_canstore_statvar(addr, sz, 657 vstate->dtvs_globals, vstate->dtvs_nglobals)) 658 return (1); 659 660 return (0); 661 } 662 663 664 /* 665 * Convenience routine to check to see if the address is within a memory 666 * region in which a load may be issued given the user's privilege level; 667 * if not, it sets the appropriate error flags and loads 'addr' into the 668 * illegal value slot. 669 * 670 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 671 * appropriate memory access protection. 672 */ 673 static int 674 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 675 dtrace_vstate_t *vstate) 676 { 677 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 678 679 /* 680 * If we hold the privilege to read from kernel memory, then 681 * everything is readable. 682 */ 683 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 684 return (1); 685 686 /* 687 * You can obviously read that which you can store. 688 */ 689 if (dtrace_canstore(addr, sz, mstate, vstate)) 690 return (1); 691 692 /* 693 * We're allowed to read from our own string table. 694 */ 695 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 696 mstate->dtms_difo->dtdo_strlen)) 697 return (1); 698 699 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 700 *illval = addr; 701 return (0); 702 } 703 704 /* 705 * Convenience routine to check to see if a given string is within a memory 706 * region in which a load may be issued given the user's privilege level; 707 * this exists so that we don't need to issue unnecessary dtrace_strlen() 708 * calls in the event that the user has all privileges. 709 */ 710 static int 711 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 712 dtrace_vstate_t *vstate) 713 { 714 size_t strsz; 715 716 /* 717 * If we hold the privilege to read from kernel memory, then 718 * everything is readable. 719 */ 720 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 721 return (1); 722 723 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 724 if (dtrace_canload(addr, strsz, mstate, vstate)) 725 return (1); 726 727 return (0); 728 } 729 730 /* 731 * Convenience routine to check to see if a given variable is within a memory 732 * region in which a load may be issued given the user's privilege level. 733 */ 734 static int 735 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 736 dtrace_vstate_t *vstate) 737 { 738 size_t sz; 739 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 740 741 /* 742 * If we hold the privilege to read from kernel memory, then 743 * everything is readable. 744 */ 745 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 746 return (1); 747 748 if (type->dtdt_kind == DIF_TYPE_STRING) 749 sz = dtrace_strlen(src, 750 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 751 else 752 sz = type->dtdt_size; 753 754 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 755 } 756 757 /* 758 * Compare two strings using safe loads. 759 */ 760 static int 761 dtrace_strncmp(char *s1, char *s2, size_t limit) 762 { 763 uint8_t c1, c2; 764 volatile uint16_t *flags; 765 766 if (s1 == s2 || limit == 0) 767 return (0); 768 769 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 770 771 do { 772 if (s1 == NULL) { 773 c1 = '\0'; 774 } else { 775 c1 = dtrace_load8((uintptr_t)s1++); 776 } 777 778 if (s2 == NULL) { 779 c2 = '\0'; 780 } else { 781 c2 = dtrace_load8((uintptr_t)s2++); 782 } 783 784 if (c1 != c2) 785 return (c1 - c2); 786 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 787 788 return (0); 789 } 790 791 /* 792 * Compute strlen(s) for a string using safe memory accesses. The additional 793 * len parameter is used to specify a maximum length to ensure completion. 794 */ 795 static size_t 796 dtrace_strlen(const char *s, size_t lim) 797 { 798 uint_t len; 799 800 for (len = 0; len != lim; len++) { 801 if (dtrace_load8((uintptr_t)s++) == '\0') 802 break; 803 } 804 805 return (len); 806 } 807 808 /* 809 * Check if an address falls within a toxic region. 810 */ 811 static int 812 dtrace_istoxic(uintptr_t kaddr, size_t size) 813 { 814 uintptr_t taddr, tsize; 815 int i; 816 817 for (i = 0; i < dtrace_toxranges; i++) { 818 taddr = dtrace_toxrange[i].dtt_base; 819 tsize = dtrace_toxrange[i].dtt_limit - taddr; 820 821 if (kaddr - taddr < tsize) { 822 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 823 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 824 return (1); 825 } 826 827 if (taddr - kaddr < size) { 828 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 829 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 830 return (1); 831 } 832 } 833 834 return (0); 835 } 836 837 /* 838 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 839 * memory specified by the DIF program. The dst is assumed to be safe memory 840 * that we can store to directly because it is managed by DTrace. As with 841 * standard bcopy, overlapping copies are handled properly. 842 */ 843 static void 844 dtrace_bcopy(const void *src, void *dst, size_t len) 845 { 846 if (len != 0) { 847 uint8_t *s1 = dst; 848 const uint8_t *s2 = src; 849 850 if (s1 <= s2) { 851 do { 852 *s1++ = dtrace_load8((uintptr_t)s2++); 853 } while (--len != 0); 854 } else { 855 s2 += len; 856 s1 += len; 857 858 do { 859 *--s1 = dtrace_load8((uintptr_t)--s2); 860 } while (--len != 0); 861 } 862 } 863 } 864 865 /* 866 * Copy src to dst using safe memory accesses, up to either the specified 867 * length, or the point that a nul byte is encountered. The src is assumed to 868 * be unsafe memory specified by the DIF program. The dst is assumed to be 869 * safe memory that we can store to directly because it is managed by DTrace. 870 * Unlike dtrace_bcopy(), overlapping regions are not handled. 871 */ 872 static void 873 dtrace_strcpy(const void *src, void *dst, size_t len) 874 { 875 if (len != 0) { 876 uint8_t *s1 = dst, c; 877 const uint8_t *s2 = src; 878 879 do { 880 *s1++ = c = dtrace_load8((uintptr_t)s2++); 881 } while (--len != 0 && c != '\0'); 882 } 883 } 884 885 /* 886 * Copy src to dst, deriving the size and type from the specified (BYREF) 887 * variable type. The src is assumed to be unsafe memory specified by the DIF 888 * program. The dst is assumed to be DTrace variable memory that is of the 889 * specified type; we assume that we can store to directly. 890 */ 891 static void 892 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 893 { 894 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 895 896 if (type->dtdt_kind == DIF_TYPE_STRING) { 897 dtrace_strcpy(src, dst, type->dtdt_size); 898 } else { 899 dtrace_bcopy(src, dst, type->dtdt_size); 900 } 901 } 902 903 /* 904 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 905 * unsafe memory specified by the DIF program. The s2 data is assumed to be 906 * safe memory that we can access directly because it is managed by DTrace. 907 */ 908 static int 909 dtrace_bcmp(const void *s1, const void *s2, size_t len) 910 { 911 volatile uint16_t *flags; 912 913 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 914 915 if (s1 == s2) 916 return (0); 917 918 if (s1 == NULL || s2 == NULL) 919 return (1); 920 921 if (s1 != s2 && len != 0) { 922 const uint8_t *ps1 = s1; 923 const uint8_t *ps2 = s2; 924 925 do { 926 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 927 return (1); 928 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 929 } 930 return (0); 931 } 932 933 /* 934 * Zero the specified region using a simple byte-by-byte loop. Note that this 935 * is for safe DTrace-managed memory only. 936 */ 937 static void 938 dtrace_bzero(void *dst, size_t len) 939 { 940 uchar_t *cp; 941 942 for (cp = dst; len != 0; len--) 943 *cp++ = 0; 944 } 945 946 static void 947 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 948 { 949 uint64_t result[2]; 950 951 result[0] = addend1[0] + addend2[0]; 952 result[1] = addend1[1] + addend2[1] + 953 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 954 955 sum[0] = result[0]; 956 sum[1] = result[1]; 957 } 958 959 /* 960 * Shift the 128-bit value in a by b. If b is positive, shift left. 961 * If b is negative, shift right. 962 */ 963 static void 964 dtrace_shift_128(uint64_t *a, int b) 965 { 966 uint64_t mask; 967 968 if (b == 0) 969 return; 970 971 if (b < 0) { 972 b = -b; 973 if (b >= 64) { 974 a[0] = a[1] >> (b - 64); 975 a[1] = 0; 976 } else { 977 a[0] >>= b; 978 mask = 1LL << (64 - b); 979 mask -= 1; 980 a[0] |= ((a[1] & mask) << (64 - b)); 981 a[1] >>= b; 982 } 983 } else { 984 if (b >= 64) { 985 a[1] = a[0] << (b - 64); 986 a[0] = 0; 987 } else { 988 a[1] <<= b; 989 mask = a[0] >> (64 - b); 990 a[1] |= mask; 991 a[0] <<= b; 992 } 993 } 994 } 995 996 /* 997 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 998 * use native multiplication on those, and then re-combine into the 999 * resulting 128-bit value. 1000 * 1001 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1002 * hi1 * hi2 << 64 + 1003 * hi1 * lo2 << 32 + 1004 * hi2 * lo1 << 32 + 1005 * lo1 * lo2 1006 */ 1007 static void 1008 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1009 { 1010 uint64_t hi1, hi2, lo1, lo2; 1011 uint64_t tmp[2]; 1012 1013 hi1 = factor1 >> 32; 1014 hi2 = factor2 >> 32; 1015 1016 lo1 = factor1 & DT_MASK_LO; 1017 lo2 = factor2 & DT_MASK_LO; 1018 1019 product[0] = lo1 * lo2; 1020 product[1] = hi1 * hi2; 1021 1022 tmp[0] = hi1 * lo2; 1023 tmp[1] = 0; 1024 dtrace_shift_128(tmp, 32); 1025 dtrace_add_128(product, tmp, product); 1026 1027 tmp[0] = hi2 * lo1; 1028 tmp[1] = 0; 1029 dtrace_shift_128(tmp, 32); 1030 dtrace_add_128(product, tmp, product); 1031 } 1032 1033 /* 1034 * This privilege check should be used by actions and subroutines to 1035 * verify that the user credentials of the process that enabled the 1036 * invoking ECB match the target credentials 1037 */ 1038 static int 1039 dtrace_priv_proc_common_user(dtrace_state_t *state) 1040 { 1041 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1042 1043 /* 1044 * We should always have a non-NULL state cred here, since if cred 1045 * is null (anonymous tracing), we fast-path bypass this routine. 1046 */ 1047 ASSERT(s_cr != NULL); 1048 1049 if ((cr = CRED()) != NULL && 1050 s_cr->cr_uid == cr->cr_uid && 1051 s_cr->cr_uid == cr->cr_ruid && 1052 s_cr->cr_uid == cr->cr_suid && 1053 s_cr->cr_gid == cr->cr_gid && 1054 s_cr->cr_gid == cr->cr_rgid && 1055 s_cr->cr_gid == cr->cr_sgid) 1056 return (1); 1057 1058 return (0); 1059 } 1060 1061 /* 1062 * This privilege check should be used by actions and subroutines to 1063 * verify that the zone of the process that enabled the invoking ECB 1064 * matches the target credentials 1065 */ 1066 static int 1067 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1068 { 1069 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1070 1071 /* 1072 * We should always have a non-NULL state cred here, since if cred 1073 * is null (anonymous tracing), we fast-path bypass this routine. 1074 */ 1075 ASSERT(s_cr != NULL); 1076 1077 if ((cr = CRED()) != NULL && 1078 s_cr->cr_zone == cr->cr_zone) 1079 return (1); 1080 1081 return (0); 1082 } 1083 1084 /* 1085 * This privilege check should be used by actions and subroutines to 1086 * verify that the process has not setuid or changed credentials. 1087 */ 1088 static int 1089 dtrace_priv_proc_common_nocd() 1090 { 1091 proc_t *proc; 1092 1093 if ((proc = ttoproc(curthread)) != NULL && 1094 !(proc->p_flag & SNOCD)) 1095 return (1); 1096 1097 return (0); 1098 } 1099 1100 static int 1101 dtrace_priv_proc_destructive(dtrace_state_t *state) 1102 { 1103 int action = state->dts_cred.dcr_action; 1104 1105 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1106 dtrace_priv_proc_common_zone(state) == 0) 1107 goto bad; 1108 1109 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1110 dtrace_priv_proc_common_user(state) == 0) 1111 goto bad; 1112 1113 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1114 dtrace_priv_proc_common_nocd() == 0) 1115 goto bad; 1116 1117 return (1); 1118 1119 bad: 1120 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1121 1122 return (0); 1123 } 1124 1125 static int 1126 dtrace_priv_proc_control(dtrace_state_t *state) 1127 { 1128 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1129 return (1); 1130 1131 if (dtrace_priv_proc_common_zone(state) && 1132 dtrace_priv_proc_common_user(state) && 1133 dtrace_priv_proc_common_nocd()) 1134 return (1); 1135 1136 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1137 1138 return (0); 1139 } 1140 1141 static int 1142 dtrace_priv_proc(dtrace_state_t *state) 1143 { 1144 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) 1145 return (1); 1146 1147 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1148 1149 return (0); 1150 } 1151 1152 static int 1153 dtrace_priv_kernel(dtrace_state_t *state) 1154 { 1155 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1156 return (1); 1157 1158 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1159 1160 return (0); 1161 } 1162 1163 static int 1164 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1165 { 1166 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1167 return (1); 1168 1169 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1170 1171 return (0); 1172 } 1173 1174 /* 1175 * Note: not called from probe context. This function is called 1176 * asynchronously (and at a regular interval) from outside of probe context to 1177 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1178 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1179 */ 1180 void 1181 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1182 { 1183 dtrace_dynvar_t *dirty; 1184 dtrace_dstate_percpu_t *dcpu; 1185 int i, work = 0; 1186 1187 for (i = 0; i < NCPU; i++) { 1188 dcpu = &dstate->dtds_percpu[i]; 1189 1190 ASSERT(dcpu->dtdsc_rinsing == NULL); 1191 1192 /* 1193 * If the dirty list is NULL, there is no dirty work to do. 1194 */ 1195 if (dcpu->dtdsc_dirty == NULL) 1196 continue; 1197 1198 /* 1199 * If the clean list is non-NULL, then we're not going to do 1200 * any work for this CPU -- it means that there has not been 1201 * a dtrace_dynvar() allocation on this CPU (or from this CPU) 1202 * since the last time we cleaned house. 1203 */ 1204 if (dcpu->dtdsc_clean != NULL) 1205 continue; 1206 1207 work = 1; 1208 1209 /* 1210 * Atomically move the dirty list aside. 1211 */ 1212 do { 1213 dirty = dcpu->dtdsc_dirty; 1214 1215 /* 1216 * Before we zap the dirty list, set the rinsing list. 1217 * (This allows for a potential assertion in 1218 * dtrace_dynvar(): if a free dynamic variable appears 1219 * on a hash chain, either the dirty list or the 1220 * rinsing list for some CPU must be non-NULL.) 1221 */ 1222 dcpu->dtdsc_rinsing = dirty; 1223 dtrace_membar_producer(); 1224 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1225 dirty, NULL) != dirty); 1226 } 1227 1228 if (!work) { 1229 /* 1230 * We have no work to do; we can simply return. 1231 */ 1232 return; 1233 } 1234 1235 dtrace_sync(); 1236 1237 for (i = 0; i < NCPU; i++) { 1238 dcpu = &dstate->dtds_percpu[i]; 1239 1240 if (dcpu->dtdsc_rinsing == NULL) 1241 continue; 1242 1243 /* 1244 * We are now guaranteed that no hash chain contains a pointer 1245 * into this dirty list; we can make it clean. 1246 */ 1247 ASSERT(dcpu->dtdsc_clean == NULL); 1248 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1249 dcpu->dtdsc_rinsing = NULL; 1250 } 1251 1252 /* 1253 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1254 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1255 * This prevents a race whereby a CPU incorrectly decides that 1256 * the state should be something other than DTRACE_DSTATE_CLEAN 1257 * after dtrace_dynvar_clean() has completed. 1258 */ 1259 dtrace_sync(); 1260 1261 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1262 } 1263 1264 /* 1265 * Depending on the value of the op parameter, this function looks-up, 1266 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1267 * allocation is requested, this function will return a pointer to a 1268 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1269 * variable can be allocated. If NULL is returned, the appropriate counter 1270 * will be incremented. 1271 */ 1272 dtrace_dynvar_t * 1273 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1274 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1275 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1276 { 1277 uint64_t hashval = DTRACE_DYNHASH_VALID; 1278 dtrace_dynhash_t *hash = dstate->dtds_hash; 1279 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1280 processorid_t me = CPU->cpu_id, cpu = me; 1281 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1282 size_t bucket, ksize; 1283 size_t chunksize = dstate->dtds_chunksize; 1284 uintptr_t kdata, lock, nstate; 1285 uint_t i; 1286 1287 ASSERT(nkeys != 0); 1288 1289 /* 1290 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1291 * algorithm. For the by-value portions, we perform the algorithm in 1292 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1293 * bit, and seems to have only a minute effect on distribution. For 1294 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1295 * over each referenced byte. It's painful to do this, but it's much 1296 * better than pathological hash distribution. The efficacy of the 1297 * hashing algorithm (and a comparison with other algorithms) may be 1298 * found by running the ::dtrace_dynstat MDB dcmd. 1299 */ 1300 for (i = 0; i < nkeys; i++) { 1301 if (key[i].dttk_size == 0) { 1302 uint64_t val = key[i].dttk_value; 1303 1304 hashval += (val >> 48) & 0xffff; 1305 hashval += (hashval << 10); 1306 hashval ^= (hashval >> 6); 1307 1308 hashval += (val >> 32) & 0xffff; 1309 hashval += (hashval << 10); 1310 hashval ^= (hashval >> 6); 1311 1312 hashval += (val >> 16) & 0xffff; 1313 hashval += (hashval << 10); 1314 hashval ^= (hashval >> 6); 1315 1316 hashval += val & 0xffff; 1317 hashval += (hashval << 10); 1318 hashval ^= (hashval >> 6); 1319 } else { 1320 /* 1321 * This is incredibly painful, but it beats the hell 1322 * out of the alternative. 1323 */ 1324 uint64_t j, size = key[i].dttk_size; 1325 uintptr_t base = (uintptr_t)key[i].dttk_value; 1326 1327 if (!dtrace_canload(base, size, mstate, vstate)) 1328 break; 1329 1330 for (j = 0; j < size; j++) { 1331 hashval += dtrace_load8(base + j); 1332 hashval += (hashval << 10); 1333 hashval ^= (hashval >> 6); 1334 } 1335 } 1336 } 1337 1338 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1339 return (NULL); 1340 1341 hashval += (hashval << 3); 1342 hashval ^= (hashval >> 11); 1343 hashval += (hashval << 15); 1344 1345 /* 1346 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1347 * comes out to be one of our two sentinel hash values. If this 1348 * actually happens, we set the hashval to be a value known to be a 1349 * non-sentinel value. 1350 */ 1351 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1352 hashval = DTRACE_DYNHASH_VALID; 1353 1354 /* 1355 * Yes, it's painful to do a divide here. If the cycle count becomes 1356 * important here, tricks can be pulled to reduce it. (However, it's 1357 * critical that hash collisions be kept to an absolute minimum; 1358 * they're much more painful than a divide.) It's better to have a 1359 * solution that generates few collisions and still keeps things 1360 * relatively simple. 1361 */ 1362 bucket = hashval % dstate->dtds_hashsize; 1363 1364 if (op == DTRACE_DYNVAR_DEALLOC) { 1365 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1366 1367 for (;;) { 1368 while ((lock = *lockp) & 1) 1369 continue; 1370 1371 if (dtrace_casptr((void *)lockp, 1372 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1373 break; 1374 } 1375 1376 dtrace_membar_producer(); 1377 } 1378 1379 top: 1380 prev = NULL; 1381 lock = hash[bucket].dtdh_lock; 1382 1383 dtrace_membar_consumer(); 1384 1385 start = hash[bucket].dtdh_chain; 1386 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1387 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1388 op != DTRACE_DYNVAR_DEALLOC)); 1389 1390 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1391 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1392 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1393 1394 if (dvar->dtdv_hashval != hashval) { 1395 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1396 /* 1397 * We've reached the sink, and therefore the 1398 * end of the hash chain; we can kick out of 1399 * the loop knowing that we have seen a valid 1400 * snapshot of state. 1401 */ 1402 ASSERT(dvar->dtdv_next == NULL); 1403 ASSERT(dvar == &dtrace_dynhash_sink); 1404 break; 1405 } 1406 1407 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1408 /* 1409 * We've gone off the rails: somewhere along 1410 * the line, one of the members of this hash 1411 * chain was deleted. Note that we could also 1412 * detect this by simply letting this loop run 1413 * to completion, as we would eventually hit 1414 * the end of the dirty list. However, we 1415 * want to avoid running the length of the 1416 * dirty list unnecessarily (it might be quite 1417 * long), so we catch this as early as 1418 * possible by detecting the hash marker. In 1419 * this case, we simply set dvar to NULL and 1420 * break; the conditional after the loop will 1421 * send us back to top. 1422 */ 1423 dvar = NULL; 1424 break; 1425 } 1426 1427 goto next; 1428 } 1429 1430 if (dtuple->dtt_nkeys != nkeys) 1431 goto next; 1432 1433 for (i = 0; i < nkeys; i++, dkey++) { 1434 if (dkey->dttk_size != key[i].dttk_size) 1435 goto next; /* size or type mismatch */ 1436 1437 if (dkey->dttk_size != 0) { 1438 if (dtrace_bcmp( 1439 (void *)(uintptr_t)key[i].dttk_value, 1440 (void *)(uintptr_t)dkey->dttk_value, 1441 dkey->dttk_size)) 1442 goto next; 1443 } else { 1444 if (dkey->dttk_value != key[i].dttk_value) 1445 goto next; 1446 } 1447 } 1448 1449 if (op != DTRACE_DYNVAR_DEALLOC) 1450 return (dvar); 1451 1452 ASSERT(dvar->dtdv_next == NULL || 1453 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1454 1455 if (prev != NULL) { 1456 ASSERT(hash[bucket].dtdh_chain != dvar); 1457 ASSERT(start != dvar); 1458 ASSERT(prev->dtdv_next == dvar); 1459 prev->dtdv_next = dvar->dtdv_next; 1460 } else { 1461 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1462 start, dvar->dtdv_next) != start) { 1463 /* 1464 * We have failed to atomically swing the 1465 * hash table head pointer, presumably because 1466 * of a conflicting allocation on another CPU. 1467 * We need to reread the hash chain and try 1468 * again. 1469 */ 1470 goto top; 1471 } 1472 } 1473 1474 dtrace_membar_producer(); 1475 1476 /* 1477 * Now set the hash value to indicate that it's free. 1478 */ 1479 ASSERT(hash[bucket].dtdh_chain != dvar); 1480 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1481 1482 dtrace_membar_producer(); 1483 1484 /* 1485 * Set the next pointer to point at the dirty list, and 1486 * atomically swing the dirty pointer to the newly freed dvar. 1487 */ 1488 do { 1489 next = dcpu->dtdsc_dirty; 1490 dvar->dtdv_next = next; 1491 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1492 1493 /* 1494 * Finally, unlock this hash bucket. 1495 */ 1496 ASSERT(hash[bucket].dtdh_lock == lock); 1497 ASSERT(lock & 1); 1498 hash[bucket].dtdh_lock++; 1499 1500 return (NULL); 1501 next: 1502 prev = dvar; 1503 continue; 1504 } 1505 1506 if (dvar == NULL) { 1507 /* 1508 * If dvar is NULL, it is because we went off the rails: 1509 * one of the elements that we traversed in the hash chain 1510 * was deleted while we were traversing it. In this case, 1511 * we assert that we aren't doing a dealloc (deallocs lock 1512 * the hash bucket to prevent themselves from racing with 1513 * one another), and retry the hash chain traversal. 1514 */ 1515 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1516 goto top; 1517 } 1518 1519 if (op != DTRACE_DYNVAR_ALLOC) { 1520 /* 1521 * If we are not to allocate a new variable, we want to 1522 * return NULL now. Before we return, check that the value 1523 * of the lock word hasn't changed. If it has, we may have 1524 * seen an inconsistent snapshot. 1525 */ 1526 if (op == DTRACE_DYNVAR_NOALLOC) { 1527 if (hash[bucket].dtdh_lock != lock) 1528 goto top; 1529 } else { 1530 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1531 ASSERT(hash[bucket].dtdh_lock == lock); 1532 ASSERT(lock & 1); 1533 hash[bucket].dtdh_lock++; 1534 } 1535 1536 return (NULL); 1537 } 1538 1539 /* 1540 * We need to allocate a new dynamic variable. The size we need is the 1541 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1542 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1543 * the size of any referred-to data (dsize). We then round the final 1544 * size up to the chunksize for allocation. 1545 */ 1546 for (ksize = 0, i = 0; i < nkeys; i++) 1547 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1548 1549 /* 1550 * This should be pretty much impossible, but could happen if, say, 1551 * strange DIF specified the tuple. Ideally, this should be an 1552 * assertion and not an error condition -- but that requires that the 1553 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1554 * bullet-proof. (That is, it must not be able to be fooled by 1555 * malicious DIF.) Given the lack of backwards branches in DIF, 1556 * solving this would presumably not amount to solving the Halting 1557 * Problem -- but it still seems awfully hard. 1558 */ 1559 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1560 ksize + dsize > chunksize) { 1561 dcpu->dtdsc_drops++; 1562 return (NULL); 1563 } 1564 1565 nstate = DTRACE_DSTATE_EMPTY; 1566 1567 do { 1568 retry: 1569 free = dcpu->dtdsc_free; 1570 1571 if (free == NULL) { 1572 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1573 void *rval; 1574 1575 if (clean == NULL) { 1576 /* 1577 * We're out of dynamic variable space on 1578 * this CPU. Unless we have tried all CPUs, 1579 * we'll try to allocate from a different 1580 * CPU. 1581 */ 1582 switch (dstate->dtds_state) { 1583 case DTRACE_DSTATE_CLEAN: { 1584 void *sp = &dstate->dtds_state; 1585 1586 if (++cpu >= NCPU) 1587 cpu = 0; 1588 1589 if (dcpu->dtdsc_dirty != NULL && 1590 nstate == DTRACE_DSTATE_EMPTY) 1591 nstate = DTRACE_DSTATE_DIRTY; 1592 1593 if (dcpu->dtdsc_rinsing != NULL) 1594 nstate = DTRACE_DSTATE_RINSING; 1595 1596 dcpu = &dstate->dtds_percpu[cpu]; 1597 1598 if (cpu != me) 1599 goto retry; 1600 1601 (void) dtrace_cas32(sp, 1602 DTRACE_DSTATE_CLEAN, nstate); 1603 1604 /* 1605 * To increment the correct bean 1606 * counter, take another lap. 1607 */ 1608 goto retry; 1609 } 1610 1611 case DTRACE_DSTATE_DIRTY: 1612 dcpu->dtdsc_dirty_drops++; 1613 break; 1614 1615 case DTRACE_DSTATE_RINSING: 1616 dcpu->dtdsc_rinsing_drops++; 1617 break; 1618 1619 case DTRACE_DSTATE_EMPTY: 1620 dcpu->dtdsc_drops++; 1621 break; 1622 } 1623 1624 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1625 return (NULL); 1626 } 1627 1628 /* 1629 * The clean list appears to be non-empty. We want to 1630 * move the clean list to the free list; we start by 1631 * moving the clean pointer aside. 1632 */ 1633 if (dtrace_casptr(&dcpu->dtdsc_clean, 1634 clean, NULL) != clean) { 1635 /* 1636 * We are in one of two situations: 1637 * 1638 * (a) The clean list was switched to the 1639 * free list by another CPU. 1640 * 1641 * (b) The clean list was added to by the 1642 * cleansing cyclic. 1643 * 1644 * In either of these situations, we can 1645 * just reattempt the free list allocation. 1646 */ 1647 goto retry; 1648 } 1649 1650 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1651 1652 /* 1653 * Now we'll move the clean list to the free list. 1654 * It's impossible for this to fail: the only way 1655 * the free list can be updated is through this 1656 * code path, and only one CPU can own the clean list. 1657 * Thus, it would only be possible for this to fail if 1658 * this code were racing with dtrace_dynvar_clean(). 1659 * (That is, if dtrace_dynvar_clean() updated the clean 1660 * list, and we ended up racing to update the free 1661 * list.) This race is prevented by the dtrace_sync() 1662 * in dtrace_dynvar_clean() -- which flushes the 1663 * owners of the clean lists out before resetting 1664 * the clean lists. 1665 */ 1666 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1667 ASSERT(rval == NULL); 1668 goto retry; 1669 } 1670 1671 dvar = free; 1672 new_free = dvar->dtdv_next; 1673 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1674 1675 /* 1676 * We have now allocated a new chunk. We copy the tuple keys into the 1677 * tuple array and copy any referenced key data into the data space 1678 * following the tuple array. As we do this, we relocate dttk_value 1679 * in the final tuple to point to the key data address in the chunk. 1680 */ 1681 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1682 dvar->dtdv_data = (void *)(kdata + ksize); 1683 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1684 1685 for (i = 0; i < nkeys; i++) { 1686 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1687 size_t kesize = key[i].dttk_size; 1688 1689 if (kesize != 0) { 1690 dtrace_bcopy( 1691 (const void *)(uintptr_t)key[i].dttk_value, 1692 (void *)kdata, kesize); 1693 dkey->dttk_value = kdata; 1694 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1695 } else { 1696 dkey->dttk_value = key[i].dttk_value; 1697 } 1698 1699 dkey->dttk_size = kesize; 1700 } 1701 1702 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1703 dvar->dtdv_hashval = hashval; 1704 dvar->dtdv_next = start; 1705 1706 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1707 return (dvar); 1708 1709 /* 1710 * The cas has failed. Either another CPU is adding an element to 1711 * this hash chain, or another CPU is deleting an element from this 1712 * hash chain. The simplest way to deal with both of these cases 1713 * (though not necessarily the most efficient) is to free our 1714 * allocated block and tail-call ourselves. Note that the free is 1715 * to the dirty list and _not_ to the free list. This is to prevent 1716 * races with allocators, above. 1717 */ 1718 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1719 1720 dtrace_membar_producer(); 1721 1722 do { 1723 free = dcpu->dtdsc_dirty; 1724 dvar->dtdv_next = free; 1725 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1726 1727 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1728 } 1729 1730 /*ARGSUSED*/ 1731 static void 1732 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1733 { 1734 if ((int64_t)nval < (int64_t)*oval) 1735 *oval = nval; 1736 } 1737 1738 /*ARGSUSED*/ 1739 static void 1740 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1741 { 1742 if ((int64_t)nval > (int64_t)*oval) 1743 *oval = nval; 1744 } 1745 1746 static void 1747 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1748 { 1749 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1750 int64_t val = (int64_t)nval; 1751 1752 if (val < 0) { 1753 for (i = 0; i < zero; i++) { 1754 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1755 quanta[i] += incr; 1756 return; 1757 } 1758 } 1759 } else { 1760 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1761 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1762 quanta[i - 1] += incr; 1763 return; 1764 } 1765 } 1766 1767 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1768 return; 1769 } 1770 1771 ASSERT(0); 1772 } 1773 1774 static void 1775 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1776 { 1777 uint64_t arg = *lquanta++; 1778 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1779 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1780 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1781 int32_t val = (int32_t)nval, level; 1782 1783 ASSERT(step != 0); 1784 ASSERT(levels != 0); 1785 1786 if (val < base) { 1787 /* 1788 * This is an underflow. 1789 */ 1790 lquanta[0] += incr; 1791 return; 1792 } 1793 1794 level = (val - base) / step; 1795 1796 if (level < levels) { 1797 lquanta[level + 1] += incr; 1798 return; 1799 } 1800 1801 /* 1802 * This is an overflow. 1803 */ 1804 lquanta[levels + 1] += incr; 1805 } 1806 1807 /*ARGSUSED*/ 1808 static void 1809 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 1810 { 1811 data[0]++; 1812 data[1] += nval; 1813 } 1814 1815 /*ARGSUSED*/ 1816 static void 1817 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 1818 { 1819 int64_t snval = (int64_t)nval; 1820 uint64_t tmp[2]; 1821 1822 data[0]++; 1823 data[1] += nval; 1824 1825 /* 1826 * What we want to say here is: 1827 * 1828 * data[2] += nval * nval; 1829 * 1830 * But given that nval is 64-bit, we could easily overflow, so 1831 * we do this as 128-bit arithmetic. 1832 */ 1833 if (snval < 0) 1834 snval = -snval; 1835 1836 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 1837 dtrace_add_128(data + 2, tmp, data + 2); 1838 } 1839 1840 /*ARGSUSED*/ 1841 static void 1842 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 1843 { 1844 *oval = *oval + 1; 1845 } 1846 1847 /*ARGSUSED*/ 1848 static void 1849 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 1850 { 1851 *oval += nval; 1852 } 1853 1854 /* 1855 * Aggregate given the tuple in the principal data buffer, and the aggregating 1856 * action denoted by the specified dtrace_aggregation_t. The aggregation 1857 * buffer is specified as the buf parameter. This routine does not return 1858 * failure; if there is no space in the aggregation buffer, the data will be 1859 * dropped, and a corresponding counter incremented. 1860 */ 1861 static void 1862 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 1863 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 1864 { 1865 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 1866 uint32_t i, ndx, size, fsize; 1867 uint32_t align = sizeof (uint64_t) - 1; 1868 dtrace_aggbuffer_t *agb; 1869 dtrace_aggkey_t *key; 1870 uint32_t hashval = 0, limit, isstr; 1871 caddr_t tomax, data, kdata; 1872 dtrace_actkind_t action; 1873 dtrace_action_t *act; 1874 uintptr_t offs; 1875 1876 if (buf == NULL) 1877 return; 1878 1879 if (!agg->dtag_hasarg) { 1880 /* 1881 * Currently, only quantize() and lquantize() take additional 1882 * arguments, and they have the same semantics: an increment 1883 * value that defaults to 1 when not present. If additional 1884 * aggregating actions take arguments, the setting of the 1885 * default argument value will presumably have to become more 1886 * sophisticated... 1887 */ 1888 arg = 1; 1889 } 1890 1891 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 1892 size = rec->dtrd_offset - agg->dtag_base; 1893 fsize = size + rec->dtrd_size; 1894 1895 ASSERT(dbuf->dtb_tomax != NULL); 1896 data = dbuf->dtb_tomax + offset + agg->dtag_base; 1897 1898 if ((tomax = buf->dtb_tomax) == NULL) { 1899 dtrace_buffer_drop(buf); 1900 return; 1901 } 1902 1903 /* 1904 * The metastructure is always at the bottom of the buffer. 1905 */ 1906 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 1907 sizeof (dtrace_aggbuffer_t)); 1908 1909 if (buf->dtb_offset == 0) { 1910 /* 1911 * We just kludge up approximately 1/8th of the size to be 1912 * buckets. If this guess ends up being routinely 1913 * off-the-mark, we may need to dynamically readjust this 1914 * based on past performance. 1915 */ 1916 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 1917 1918 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 1919 (uintptr_t)tomax || hashsize == 0) { 1920 /* 1921 * We've been given a ludicrously small buffer; 1922 * increment our drop count and leave. 1923 */ 1924 dtrace_buffer_drop(buf); 1925 return; 1926 } 1927 1928 /* 1929 * And now, a pathetic attempt to try to get a an odd (or 1930 * perchance, a prime) hash size for better hash distribution. 1931 */ 1932 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 1933 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 1934 1935 agb->dtagb_hashsize = hashsize; 1936 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 1937 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 1938 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 1939 1940 for (i = 0; i < agb->dtagb_hashsize; i++) 1941 agb->dtagb_hash[i] = NULL; 1942 } 1943 1944 ASSERT(agg->dtag_first != NULL); 1945 ASSERT(agg->dtag_first->dta_intuple); 1946 1947 /* 1948 * Calculate the hash value based on the key. Note that we _don't_ 1949 * include the aggid in the hashing (but we will store it as part of 1950 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 1951 * algorithm: a simple, quick algorithm that has no known funnels, and 1952 * gets good distribution in practice. The efficacy of the hashing 1953 * algorithm (and a comparison with other algorithms) may be found by 1954 * running the ::dtrace_aggstat MDB dcmd. 1955 */ 1956 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 1957 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1958 limit = i + act->dta_rec.dtrd_size; 1959 ASSERT(limit <= size); 1960 isstr = DTRACEACT_ISSTRING(act); 1961 1962 for (; i < limit; i++) { 1963 hashval += data[i]; 1964 hashval += (hashval << 10); 1965 hashval ^= (hashval >> 6); 1966 1967 if (isstr && data[i] == '\0') 1968 break; 1969 } 1970 } 1971 1972 hashval += (hashval << 3); 1973 hashval ^= (hashval >> 11); 1974 hashval += (hashval << 15); 1975 1976 /* 1977 * Yes, the divide here is expensive -- but it's generally the least 1978 * of the performance issues given the amount of data that we iterate 1979 * over to compute hash values, compare data, etc. 1980 */ 1981 ndx = hashval % agb->dtagb_hashsize; 1982 1983 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 1984 ASSERT((caddr_t)key >= tomax); 1985 ASSERT((caddr_t)key < tomax + buf->dtb_size); 1986 1987 if (hashval != key->dtak_hashval || key->dtak_size != size) 1988 continue; 1989 1990 kdata = key->dtak_data; 1991 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 1992 1993 for (act = agg->dtag_first; act->dta_intuple; 1994 act = act->dta_next) { 1995 i = act->dta_rec.dtrd_offset - agg->dtag_base; 1996 limit = i + act->dta_rec.dtrd_size; 1997 ASSERT(limit <= size); 1998 isstr = DTRACEACT_ISSTRING(act); 1999 2000 for (; i < limit; i++) { 2001 if (kdata[i] != data[i]) 2002 goto next; 2003 2004 if (isstr && data[i] == '\0') 2005 break; 2006 } 2007 } 2008 2009 if (action != key->dtak_action) { 2010 /* 2011 * We are aggregating on the same value in the same 2012 * aggregation with two different aggregating actions. 2013 * (This should have been picked up in the compiler, 2014 * so we may be dealing with errant or devious DIF.) 2015 * This is an error condition; we indicate as much, 2016 * and return. 2017 */ 2018 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2019 return; 2020 } 2021 2022 /* 2023 * This is a hit: we need to apply the aggregator to 2024 * the value at this key. 2025 */ 2026 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2027 return; 2028 next: 2029 continue; 2030 } 2031 2032 /* 2033 * We didn't find it. We need to allocate some zero-filled space, 2034 * link it into the hash table appropriately, and apply the aggregator 2035 * to the (zero-filled) value. 2036 */ 2037 offs = buf->dtb_offset; 2038 while (offs & (align - 1)) 2039 offs += sizeof (uint32_t); 2040 2041 /* 2042 * If we don't have enough room to both allocate a new key _and_ 2043 * its associated data, increment the drop count and return. 2044 */ 2045 if ((uintptr_t)tomax + offs + fsize > 2046 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2047 dtrace_buffer_drop(buf); 2048 return; 2049 } 2050 2051 /*CONSTCOND*/ 2052 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2053 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2054 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2055 2056 key->dtak_data = kdata = tomax + offs; 2057 buf->dtb_offset = offs + fsize; 2058 2059 /* 2060 * Now copy the data across. 2061 */ 2062 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2063 2064 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2065 kdata[i] = data[i]; 2066 2067 /* 2068 * Because strings are not zeroed out by default, we need to iterate 2069 * looking for actions that store strings, and we need to explicitly 2070 * pad these strings out with zeroes. 2071 */ 2072 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2073 int nul; 2074 2075 if (!DTRACEACT_ISSTRING(act)) 2076 continue; 2077 2078 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2079 limit = i + act->dta_rec.dtrd_size; 2080 ASSERT(limit <= size); 2081 2082 for (nul = 0; i < limit; i++) { 2083 if (nul) { 2084 kdata[i] = '\0'; 2085 continue; 2086 } 2087 2088 if (data[i] != '\0') 2089 continue; 2090 2091 nul = 1; 2092 } 2093 } 2094 2095 for (i = size; i < fsize; i++) 2096 kdata[i] = 0; 2097 2098 key->dtak_hashval = hashval; 2099 key->dtak_size = size; 2100 key->dtak_action = action; 2101 key->dtak_next = agb->dtagb_hash[ndx]; 2102 agb->dtagb_hash[ndx] = key; 2103 2104 /* 2105 * Finally, apply the aggregator. 2106 */ 2107 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2108 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2109 } 2110 2111 /* 2112 * Given consumer state, this routine finds a speculation in the INACTIVE 2113 * state and transitions it into the ACTIVE state. If there is no speculation 2114 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2115 * incremented -- it is up to the caller to take appropriate action. 2116 */ 2117 static int 2118 dtrace_speculation(dtrace_state_t *state) 2119 { 2120 int i = 0; 2121 dtrace_speculation_state_t current; 2122 uint32_t *stat = &state->dts_speculations_unavail, count; 2123 2124 while (i < state->dts_nspeculations) { 2125 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2126 2127 current = spec->dtsp_state; 2128 2129 if (current != DTRACESPEC_INACTIVE) { 2130 if (current == DTRACESPEC_COMMITTINGMANY || 2131 current == DTRACESPEC_COMMITTING || 2132 current == DTRACESPEC_DISCARDING) 2133 stat = &state->dts_speculations_busy; 2134 i++; 2135 continue; 2136 } 2137 2138 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2139 current, DTRACESPEC_ACTIVE) == current) 2140 return (i + 1); 2141 } 2142 2143 /* 2144 * We couldn't find a speculation. If we found as much as a single 2145 * busy speculation buffer, we'll attribute this failure as "busy" 2146 * instead of "unavail". 2147 */ 2148 do { 2149 count = *stat; 2150 } while (dtrace_cas32(stat, count, count + 1) != count); 2151 2152 return (0); 2153 } 2154 2155 /* 2156 * This routine commits an active speculation. If the specified speculation 2157 * is not in a valid state to perform a commit(), this routine will silently do 2158 * nothing. The state of the specified speculation is transitioned according 2159 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2160 */ 2161 static void 2162 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2163 dtrace_specid_t which) 2164 { 2165 dtrace_speculation_t *spec; 2166 dtrace_buffer_t *src, *dest; 2167 uintptr_t daddr, saddr, dlimit; 2168 dtrace_speculation_state_t current, new; 2169 intptr_t offs; 2170 2171 if (which == 0) 2172 return; 2173 2174 if (which > state->dts_nspeculations) { 2175 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2176 return; 2177 } 2178 2179 spec = &state->dts_speculations[which - 1]; 2180 src = &spec->dtsp_buffer[cpu]; 2181 dest = &state->dts_buffer[cpu]; 2182 2183 do { 2184 current = spec->dtsp_state; 2185 2186 if (current == DTRACESPEC_COMMITTINGMANY) 2187 break; 2188 2189 switch (current) { 2190 case DTRACESPEC_INACTIVE: 2191 case DTRACESPEC_DISCARDING: 2192 return; 2193 2194 case DTRACESPEC_COMMITTING: 2195 /* 2196 * This is only possible if we are (a) commit()'ing 2197 * without having done a prior speculate() on this CPU 2198 * and (b) racing with another commit() on a different 2199 * CPU. There's nothing to do -- we just assert that 2200 * our offset is 0. 2201 */ 2202 ASSERT(src->dtb_offset == 0); 2203 return; 2204 2205 case DTRACESPEC_ACTIVE: 2206 new = DTRACESPEC_COMMITTING; 2207 break; 2208 2209 case DTRACESPEC_ACTIVEONE: 2210 /* 2211 * This speculation is active on one CPU. If our 2212 * buffer offset is non-zero, we know that the one CPU 2213 * must be us. Otherwise, we are committing on a 2214 * different CPU from the speculate(), and we must 2215 * rely on being asynchronously cleaned. 2216 */ 2217 if (src->dtb_offset != 0) { 2218 new = DTRACESPEC_COMMITTING; 2219 break; 2220 } 2221 /*FALLTHROUGH*/ 2222 2223 case DTRACESPEC_ACTIVEMANY: 2224 new = DTRACESPEC_COMMITTINGMANY; 2225 break; 2226 2227 default: 2228 ASSERT(0); 2229 } 2230 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2231 current, new) != current); 2232 2233 /* 2234 * We have set the state to indicate that we are committing this 2235 * speculation. Now reserve the necessary space in the destination 2236 * buffer. 2237 */ 2238 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2239 sizeof (uint64_t), state, NULL)) < 0) { 2240 dtrace_buffer_drop(dest); 2241 goto out; 2242 } 2243 2244 /* 2245 * We have the space; copy the buffer across. (Note that this is a 2246 * highly subobtimal bcopy(); in the unlikely event that this becomes 2247 * a serious performance issue, a high-performance DTrace-specific 2248 * bcopy() should obviously be invented.) 2249 */ 2250 daddr = (uintptr_t)dest->dtb_tomax + offs; 2251 dlimit = daddr + src->dtb_offset; 2252 saddr = (uintptr_t)src->dtb_tomax; 2253 2254 /* 2255 * First, the aligned portion. 2256 */ 2257 while (dlimit - daddr >= sizeof (uint64_t)) { 2258 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2259 2260 daddr += sizeof (uint64_t); 2261 saddr += sizeof (uint64_t); 2262 } 2263 2264 /* 2265 * Now any left-over bit... 2266 */ 2267 while (dlimit - daddr) 2268 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2269 2270 /* 2271 * Finally, commit the reserved space in the destination buffer. 2272 */ 2273 dest->dtb_offset = offs + src->dtb_offset; 2274 2275 out: 2276 /* 2277 * If we're lucky enough to be the only active CPU on this speculation 2278 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2279 */ 2280 if (current == DTRACESPEC_ACTIVE || 2281 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2282 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2283 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2284 2285 ASSERT(rval == DTRACESPEC_COMMITTING); 2286 } 2287 2288 src->dtb_offset = 0; 2289 src->dtb_xamot_drops += src->dtb_drops; 2290 src->dtb_drops = 0; 2291 } 2292 2293 /* 2294 * This routine discards an active speculation. If the specified speculation 2295 * is not in a valid state to perform a discard(), this routine will silently 2296 * do nothing. The state of the specified speculation is transitioned 2297 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2298 */ 2299 static void 2300 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2301 dtrace_specid_t which) 2302 { 2303 dtrace_speculation_t *spec; 2304 dtrace_speculation_state_t current, new; 2305 dtrace_buffer_t *buf; 2306 2307 if (which == 0) 2308 return; 2309 2310 if (which > state->dts_nspeculations) { 2311 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2312 return; 2313 } 2314 2315 spec = &state->dts_speculations[which - 1]; 2316 buf = &spec->dtsp_buffer[cpu]; 2317 2318 do { 2319 current = spec->dtsp_state; 2320 2321 switch (current) { 2322 case DTRACESPEC_INACTIVE: 2323 case DTRACESPEC_COMMITTINGMANY: 2324 case DTRACESPEC_COMMITTING: 2325 case DTRACESPEC_DISCARDING: 2326 return; 2327 2328 case DTRACESPEC_ACTIVE: 2329 case DTRACESPEC_ACTIVEMANY: 2330 new = DTRACESPEC_DISCARDING; 2331 break; 2332 2333 case DTRACESPEC_ACTIVEONE: 2334 if (buf->dtb_offset != 0) { 2335 new = DTRACESPEC_INACTIVE; 2336 } else { 2337 new = DTRACESPEC_DISCARDING; 2338 } 2339 break; 2340 2341 default: 2342 ASSERT(0); 2343 } 2344 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2345 current, new) != current); 2346 2347 buf->dtb_offset = 0; 2348 buf->dtb_drops = 0; 2349 } 2350 2351 /* 2352 * Note: not called from probe context. This function is called 2353 * asynchronously from cross call context to clean any speculations that are 2354 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2355 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2356 * speculation. 2357 */ 2358 static void 2359 dtrace_speculation_clean_here(dtrace_state_t *state) 2360 { 2361 dtrace_icookie_t cookie; 2362 processorid_t cpu = CPU->cpu_id; 2363 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2364 dtrace_specid_t i; 2365 2366 cookie = dtrace_interrupt_disable(); 2367 2368 if (dest->dtb_tomax == NULL) { 2369 dtrace_interrupt_enable(cookie); 2370 return; 2371 } 2372 2373 for (i = 0; i < state->dts_nspeculations; i++) { 2374 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2375 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2376 2377 if (src->dtb_tomax == NULL) 2378 continue; 2379 2380 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2381 src->dtb_offset = 0; 2382 continue; 2383 } 2384 2385 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2386 continue; 2387 2388 if (src->dtb_offset == 0) 2389 continue; 2390 2391 dtrace_speculation_commit(state, cpu, i + 1); 2392 } 2393 2394 dtrace_interrupt_enable(cookie); 2395 } 2396 2397 /* 2398 * Note: not called from probe context. This function is called 2399 * asynchronously (and at a regular interval) to clean any speculations that 2400 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2401 * is work to be done, it cross calls all CPUs to perform that work; 2402 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2403 * INACTIVE state until they have been cleaned by all CPUs. 2404 */ 2405 static void 2406 dtrace_speculation_clean(dtrace_state_t *state) 2407 { 2408 int work = 0, rv; 2409 dtrace_specid_t i; 2410 2411 for (i = 0; i < state->dts_nspeculations; i++) { 2412 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2413 2414 ASSERT(!spec->dtsp_cleaning); 2415 2416 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2417 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2418 continue; 2419 2420 work++; 2421 spec->dtsp_cleaning = 1; 2422 } 2423 2424 if (!work) 2425 return; 2426 2427 dtrace_xcall(DTRACE_CPUALL, 2428 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2429 2430 /* 2431 * We now know that all CPUs have committed or discarded their 2432 * speculation buffers, as appropriate. We can now set the state 2433 * to inactive. 2434 */ 2435 for (i = 0; i < state->dts_nspeculations; i++) { 2436 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2437 dtrace_speculation_state_t current, new; 2438 2439 if (!spec->dtsp_cleaning) 2440 continue; 2441 2442 current = spec->dtsp_state; 2443 ASSERT(current == DTRACESPEC_DISCARDING || 2444 current == DTRACESPEC_COMMITTINGMANY); 2445 2446 new = DTRACESPEC_INACTIVE; 2447 2448 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2449 ASSERT(rv == current); 2450 spec->dtsp_cleaning = 0; 2451 } 2452 } 2453 2454 /* 2455 * Called as part of a speculate() to get the speculative buffer associated 2456 * with a given speculation. Returns NULL if the specified speculation is not 2457 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2458 * the active CPU is not the specified CPU -- the speculation will be 2459 * atomically transitioned into the ACTIVEMANY state. 2460 */ 2461 static dtrace_buffer_t * 2462 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2463 dtrace_specid_t which) 2464 { 2465 dtrace_speculation_t *spec; 2466 dtrace_speculation_state_t current, new; 2467 dtrace_buffer_t *buf; 2468 2469 if (which == 0) 2470 return (NULL); 2471 2472 if (which > state->dts_nspeculations) { 2473 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2474 return (NULL); 2475 } 2476 2477 spec = &state->dts_speculations[which - 1]; 2478 buf = &spec->dtsp_buffer[cpuid]; 2479 2480 do { 2481 current = spec->dtsp_state; 2482 2483 switch (current) { 2484 case DTRACESPEC_INACTIVE: 2485 case DTRACESPEC_COMMITTINGMANY: 2486 case DTRACESPEC_DISCARDING: 2487 return (NULL); 2488 2489 case DTRACESPEC_COMMITTING: 2490 ASSERT(buf->dtb_offset == 0); 2491 return (NULL); 2492 2493 case DTRACESPEC_ACTIVEONE: 2494 /* 2495 * This speculation is currently active on one CPU. 2496 * Check the offset in the buffer; if it's non-zero, 2497 * that CPU must be us (and we leave the state alone). 2498 * If it's zero, assume that we're starting on a new 2499 * CPU -- and change the state to indicate that the 2500 * speculation is active on more than one CPU. 2501 */ 2502 if (buf->dtb_offset != 0) 2503 return (buf); 2504 2505 new = DTRACESPEC_ACTIVEMANY; 2506 break; 2507 2508 case DTRACESPEC_ACTIVEMANY: 2509 return (buf); 2510 2511 case DTRACESPEC_ACTIVE: 2512 new = DTRACESPEC_ACTIVEONE; 2513 break; 2514 2515 default: 2516 ASSERT(0); 2517 } 2518 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2519 current, new) != current); 2520 2521 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2522 return (buf); 2523 } 2524 2525 /* 2526 * Return a string. In the event that the user lacks the privilege to access 2527 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2528 * don't fail access checking. 2529 * 2530 * dtrace_dif_variable() uses this routine as a helper for various 2531 * builtin values such as 'execname' and 'probefunc.' 2532 */ 2533 uintptr_t 2534 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2535 dtrace_mstate_t *mstate) 2536 { 2537 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2538 uintptr_t ret; 2539 size_t strsz; 2540 2541 /* 2542 * The easy case: this probe is allowed to read all of memory, so 2543 * we can just return this as a vanilla pointer. 2544 */ 2545 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2546 return (addr); 2547 2548 /* 2549 * This is the tougher case: we copy the string in question from 2550 * kernel memory into scratch memory and return it that way: this 2551 * ensures that we won't trip up when access checking tests the 2552 * BYREF return value. 2553 */ 2554 strsz = dtrace_strlen((char *)addr, size) + 1; 2555 2556 if (mstate->dtms_scratch_ptr + strsz > 2557 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2558 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2559 return (NULL); 2560 } 2561 2562 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2563 strsz); 2564 ret = mstate->dtms_scratch_ptr; 2565 mstate->dtms_scratch_ptr += strsz; 2566 return (ret); 2567 } 2568 2569 /* 2570 * This function implements the DIF emulator's variable lookups. The emulator 2571 * passes a reserved variable identifier and optional built-in array index. 2572 */ 2573 static uint64_t 2574 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2575 uint64_t ndx) 2576 { 2577 /* 2578 * If we're accessing one of the uncached arguments, we'll turn this 2579 * into a reference in the args array. 2580 */ 2581 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2582 ndx = v - DIF_VAR_ARG0; 2583 v = DIF_VAR_ARGS; 2584 } 2585 2586 switch (v) { 2587 case DIF_VAR_ARGS: 2588 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2589 if (ndx >= sizeof (mstate->dtms_arg) / 2590 sizeof (mstate->dtms_arg[0])) { 2591 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2592 dtrace_provider_t *pv; 2593 uint64_t val; 2594 2595 pv = mstate->dtms_probe->dtpr_provider; 2596 if (pv->dtpv_pops.dtps_getargval != NULL) 2597 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2598 mstate->dtms_probe->dtpr_id, 2599 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2600 else 2601 val = dtrace_getarg(ndx, aframes); 2602 2603 /* 2604 * This is regrettably required to keep the compiler 2605 * from tail-optimizing the call to dtrace_getarg(). 2606 * The condition always evaluates to true, but the 2607 * compiler has no way of figuring that out a priori. 2608 * (None of this would be necessary if the compiler 2609 * could be relied upon to _always_ tail-optimize 2610 * the call to dtrace_getarg() -- but it can't.) 2611 */ 2612 if (mstate->dtms_probe != NULL) 2613 return (val); 2614 2615 ASSERT(0); 2616 } 2617 2618 return (mstate->dtms_arg[ndx]); 2619 2620 case DIF_VAR_UREGS: { 2621 klwp_t *lwp; 2622 2623 if (!dtrace_priv_proc(state)) 2624 return (0); 2625 2626 if ((lwp = curthread->t_lwp) == NULL) { 2627 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2628 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2629 return (0); 2630 } 2631 2632 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2633 } 2634 2635 case DIF_VAR_CURTHREAD: 2636 if (!dtrace_priv_kernel(state)) 2637 return (0); 2638 return ((uint64_t)(uintptr_t)curthread); 2639 2640 case DIF_VAR_TIMESTAMP: 2641 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2642 mstate->dtms_timestamp = dtrace_gethrtime(); 2643 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2644 } 2645 return (mstate->dtms_timestamp); 2646 2647 case DIF_VAR_VTIMESTAMP: 2648 ASSERT(dtrace_vtime_references != 0); 2649 return (curthread->t_dtrace_vtime); 2650 2651 case DIF_VAR_WALLTIMESTAMP: 2652 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2653 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2654 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2655 } 2656 return (mstate->dtms_walltimestamp); 2657 2658 case DIF_VAR_IPL: 2659 if (!dtrace_priv_kernel(state)) 2660 return (0); 2661 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2662 mstate->dtms_ipl = dtrace_getipl(); 2663 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2664 } 2665 return (mstate->dtms_ipl); 2666 2667 case DIF_VAR_EPID: 2668 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2669 return (mstate->dtms_epid); 2670 2671 case DIF_VAR_ID: 2672 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2673 return (mstate->dtms_probe->dtpr_id); 2674 2675 case DIF_VAR_STACKDEPTH: 2676 if (!dtrace_priv_kernel(state)) 2677 return (0); 2678 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2679 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2680 2681 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2682 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2683 } 2684 return (mstate->dtms_stackdepth); 2685 2686 case DIF_VAR_USTACKDEPTH: 2687 if (!dtrace_priv_proc(state)) 2688 return (0); 2689 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2690 /* 2691 * See comment in DIF_VAR_PID. 2692 */ 2693 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2694 CPU_ON_INTR(CPU)) { 2695 mstate->dtms_ustackdepth = 0; 2696 } else { 2697 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2698 mstate->dtms_ustackdepth = 2699 dtrace_getustackdepth(); 2700 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2701 } 2702 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2703 } 2704 return (mstate->dtms_ustackdepth); 2705 2706 case DIF_VAR_CALLER: 2707 if (!dtrace_priv_kernel(state)) 2708 return (0); 2709 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2710 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2711 2712 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2713 /* 2714 * If this is an unanchored probe, we are 2715 * required to go through the slow path: 2716 * dtrace_caller() only guarantees correct 2717 * results for anchored probes. 2718 */ 2719 pc_t caller[2]; 2720 2721 dtrace_getpcstack(caller, 2, aframes, 2722 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2723 mstate->dtms_caller = caller[1]; 2724 } else if ((mstate->dtms_caller = 2725 dtrace_caller(aframes)) == -1) { 2726 /* 2727 * We have failed to do this the quick way; 2728 * we must resort to the slower approach of 2729 * calling dtrace_getpcstack(). 2730 */ 2731 pc_t caller; 2732 2733 dtrace_getpcstack(&caller, 1, aframes, NULL); 2734 mstate->dtms_caller = caller; 2735 } 2736 2737 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2738 } 2739 return (mstate->dtms_caller); 2740 2741 case DIF_VAR_UCALLER: 2742 if (!dtrace_priv_proc(state)) 2743 return (0); 2744 2745 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 2746 uint64_t ustack[3]; 2747 2748 /* 2749 * dtrace_getupcstack() fills in the first uint64_t 2750 * with the current PID. The second uint64_t will 2751 * be the program counter at user-level. The third 2752 * uint64_t will contain the caller, which is what 2753 * we're after. 2754 */ 2755 ustack[2] = NULL; 2756 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2757 dtrace_getupcstack(ustack, 3); 2758 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2759 mstate->dtms_ucaller = ustack[2]; 2760 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 2761 } 2762 2763 return (mstate->dtms_ucaller); 2764 2765 case DIF_VAR_PROBEPROV: 2766 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2767 return (dtrace_dif_varstr( 2768 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 2769 state, mstate)); 2770 2771 case DIF_VAR_PROBEMOD: 2772 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2773 return (dtrace_dif_varstr( 2774 (uintptr_t)mstate->dtms_probe->dtpr_mod, 2775 state, mstate)); 2776 2777 case DIF_VAR_PROBEFUNC: 2778 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2779 return (dtrace_dif_varstr( 2780 (uintptr_t)mstate->dtms_probe->dtpr_func, 2781 state, mstate)); 2782 2783 case DIF_VAR_PROBENAME: 2784 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2785 return (dtrace_dif_varstr( 2786 (uintptr_t)mstate->dtms_probe->dtpr_name, 2787 state, mstate)); 2788 2789 case DIF_VAR_PID: 2790 if (!dtrace_priv_proc(state)) 2791 return (0); 2792 2793 /* 2794 * Note that we are assuming that an unanchored probe is 2795 * always due to a high-level interrupt. (And we're assuming 2796 * that there is only a single high level interrupt.) 2797 */ 2798 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2799 return (pid0.pid_id); 2800 2801 /* 2802 * It is always safe to dereference one's own t_procp pointer: 2803 * it always points to a valid, allocated proc structure. 2804 * Further, it is always safe to dereference the p_pidp member 2805 * of one's own proc structure. (These are truisms becuase 2806 * threads and processes don't clean up their own state -- 2807 * they leave that task to whomever reaps them.) 2808 */ 2809 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 2810 2811 case DIF_VAR_PPID: 2812 if (!dtrace_priv_proc(state)) 2813 return (0); 2814 2815 /* 2816 * See comment in DIF_VAR_PID. 2817 */ 2818 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2819 return (pid0.pid_id); 2820 2821 /* 2822 * It is always safe to dereference one's own t_procp pointer: 2823 * it always points to a valid, allocated proc structure. 2824 * (This is true because threads don't clean up their own 2825 * state -- they leave that task to whomever reaps them.) 2826 */ 2827 return ((uint64_t)curthread->t_procp->p_ppid); 2828 2829 case DIF_VAR_TID: 2830 /* 2831 * See comment in DIF_VAR_PID. 2832 */ 2833 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2834 return (0); 2835 2836 return ((uint64_t)curthread->t_tid); 2837 2838 case DIF_VAR_EXECNAME: 2839 if (!dtrace_priv_proc(state)) 2840 return (0); 2841 2842 /* 2843 * See comment in DIF_VAR_PID. 2844 */ 2845 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2846 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 2847 2848 /* 2849 * It is always safe to dereference one's own t_procp pointer: 2850 * it always points to a valid, allocated proc structure. 2851 * (This is true because threads don't clean up their own 2852 * state -- they leave that task to whomever reaps them.) 2853 */ 2854 return (dtrace_dif_varstr( 2855 (uintptr_t)curthread->t_procp->p_user.u_comm, 2856 state, mstate)); 2857 2858 case DIF_VAR_ZONENAME: 2859 if (!dtrace_priv_proc(state)) 2860 return (0); 2861 2862 /* 2863 * See comment in DIF_VAR_PID. 2864 */ 2865 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2866 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 2867 2868 /* 2869 * It is always safe to dereference one's own t_procp pointer: 2870 * it always points to a valid, allocated proc structure. 2871 * (This is true because threads don't clean up their own 2872 * state -- they leave that task to whomever reaps them.) 2873 */ 2874 return (dtrace_dif_varstr( 2875 (uintptr_t)curthread->t_procp->p_zone->zone_name, 2876 state, mstate)); 2877 2878 case DIF_VAR_UID: 2879 if (!dtrace_priv_proc(state)) 2880 return (0); 2881 2882 /* 2883 * See comment in DIF_VAR_PID. 2884 */ 2885 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2886 return ((uint64_t)p0.p_cred->cr_uid); 2887 2888 /* 2889 * It is always safe to dereference one's own t_procp pointer: 2890 * it always points to a valid, allocated proc structure. 2891 * (This is true because threads don't clean up their own 2892 * state -- they leave that task to whomever reaps them.) 2893 * 2894 * Additionally, it is safe to dereference one's own process 2895 * credential, since this is never NULL after process birth. 2896 */ 2897 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 2898 2899 case DIF_VAR_GID: 2900 if (!dtrace_priv_proc(state)) 2901 return (0); 2902 2903 /* 2904 * See comment in DIF_VAR_PID. 2905 */ 2906 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2907 return ((uint64_t)p0.p_cred->cr_gid); 2908 2909 /* 2910 * It is always safe to dereference one's own t_procp pointer: 2911 * it always points to a valid, allocated proc structure. 2912 * (This is true because threads don't clean up their own 2913 * state -- they leave that task to whomever reaps them.) 2914 * 2915 * Additionally, it is safe to dereference one's own process 2916 * credential, since this is never NULL after process birth. 2917 */ 2918 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 2919 2920 case DIF_VAR_ERRNO: { 2921 klwp_t *lwp; 2922 if (!dtrace_priv_proc(state)) 2923 return (0); 2924 2925 /* 2926 * See comment in DIF_VAR_PID. 2927 */ 2928 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 2929 return (0); 2930 2931 /* 2932 * It is always safe to dereference one's own t_lwp pointer in 2933 * the event that this pointer is non-NULL. (This is true 2934 * because threads and lwps don't clean up their own state -- 2935 * they leave that task to whomever reaps them.) 2936 */ 2937 if ((lwp = curthread->t_lwp) == NULL) 2938 return (0); 2939 2940 return ((uint64_t)lwp->lwp_errno); 2941 } 2942 default: 2943 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2944 return (0); 2945 } 2946 } 2947 2948 /* 2949 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 2950 * Notice that we don't bother validating the proper number of arguments or 2951 * their types in the tuple stack. This isn't needed because all argument 2952 * interpretation is safe because of our load safety -- the worst that can 2953 * happen is that a bogus program can obtain bogus results. 2954 */ 2955 static void 2956 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 2957 dtrace_key_t *tupregs, int nargs, 2958 dtrace_mstate_t *mstate, dtrace_state_t *state) 2959 { 2960 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 2961 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 2962 dtrace_vstate_t *vstate = &state->dts_vstate; 2963 2964 union { 2965 mutex_impl_t mi; 2966 uint64_t mx; 2967 } m; 2968 2969 union { 2970 krwlock_t ri; 2971 uintptr_t rw; 2972 } r; 2973 2974 switch (subr) { 2975 case DIF_SUBR_RAND: 2976 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 2977 break; 2978 2979 case DIF_SUBR_MUTEX_OWNED: 2980 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2981 mstate, vstate)) { 2982 regs[rd] = NULL; 2983 break; 2984 } 2985 2986 m.mx = dtrace_load64(tupregs[0].dttk_value); 2987 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 2988 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 2989 else 2990 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 2991 break; 2992 2993 case DIF_SUBR_MUTEX_OWNER: 2994 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 2995 mstate, vstate)) { 2996 regs[rd] = NULL; 2997 break; 2998 } 2999 3000 m.mx = dtrace_load64(tupregs[0].dttk_value); 3001 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3002 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3003 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3004 else 3005 regs[rd] = 0; 3006 break; 3007 3008 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3009 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3010 mstate, vstate)) { 3011 regs[rd] = NULL; 3012 break; 3013 } 3014 3015 m.mx = dtrace_load64(tupregs[0].dttk_value); 3016 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3017 break; 3018 3019 case DIF_SUBR_MUTEX_TYPE_SPIN: 3020 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3021 mstate, vstate)) { 3022 regs[rd] = NULL; 3023 break; 3024 } 3025 3026 m.mx = dtrace_load64(tupregs[0].dttk_value); 3027 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3028 break; 3029 3030 case DIF_SUBR_RW_READ_HELD: { 3031 uintptr_t tmp; 3032 3033 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3034 mstate, vstate)) { 3035 regs[rd] = NULL; 3036 break; 3037 } 3038 3039 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3040 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3041 break; 3042 } 3043 3044 case DIF_SUBR_RW_WRITE_HELD: 3045 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3046 mstate, vstate)) { 3047 regs[rd] = NULL; 3048 break; 3049 } 3050 3051 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3052 regs[rd] = _RW_WRITE_HELD(&r.ri); 3053 break; 3054 3055 case DIF_SUBR_RW_ISWRITER: 3056 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3057 mstate, vstate)) { 3058 regs[rd] = NULL; 3059 break; 3060 } 3061 3062 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3063 regs[rd] = _RW_ISWRITER(&r.ri); 3064 break; 3065 3066 case DIF_SUBR_BCOPY: { 3067 /* 3068 * We need to be sure that the destination is in the scratch 3069 * region -- no other region is allowed. 3070 */ 3071 uintptr_t src = tupregs[0].dttk_value; 3072 uintptr_t dest = tupregs[1].dttk_value; 3073 size_t size = tupregs[2].dttk_value; 3074 3075 if (!dtrace_inscratch(dest, size, mstate)) { 3076 *flags |= CPU_DTRACE_BADADDR; 3077 *illval = regs[rd]; 3078 break; 3079 } 3080 3081 if (!dtrace_canload(src, size, mstate, vstate)) { 3082 regs[rd] = NULL; 3083 break; 3084 } 3085 3086 dtrace_bcopy((void *)src, (void *)dest, size); 3087 break; 3088 } 3089 3090 case DIF_SUBR_ALLOCA: 3091 case DIF_SUBR_COPYIN: { 3092 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3093 uint64_t size = 3094 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3095 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3096 3097 /* 3098 * This action doesn't require any credential checks since 3099 * probes will not activate in user contexts to which the 3100 * enabling user does not have permissions. 3101 */ 3102 3103 /* 3104 * Rounding up the user allocation size could have overflowed 3105 * a large, bogus allocation (like -1ULL) to 0. 3106 */ 3107 if (scratch_size < size || 3108 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3109 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3110 regs[rd] = NULL; 3111 break; 3112 } 3113 3114 if (subr == DIF_SUBR_COPYIN) { 3115 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3116 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3117 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3118 } 3119 3120 mstate->dtms_scratch_ptr += scratch_size; 3121 regs[rd] = dest; 3122 break; 3123 } 3124 3125 case DIF_SUBR_COPYINTO: { 3126 uint64_t size = tupregs[1].dttk_value; 3127 uintptr_t dest = tupregs[2].dttk_value; 3128 3129 /* 3130 * This action doesn't require any credential checks since 3131 * probes will not activate in user contexts to which the 3132 * enabling user does not have permissions. 3133 */ 3134 if (!dtrace_inscratch(dest, size, mstate)) { 3135 *flags |= CPU_DTRACE_BADADDR; 3136 *illval = regs[rd]; 3137 break; 3138 } 3139 3140 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3141 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3142 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3143 break; 3144 } 3145 3146 case DIF_SUBR_COPYINSTR: { 3147 uintptr_t dest = mstate->dtms_scratch_ptr; 3148 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3149 3150 if (nargs > 1 && tupregs[1].dttk_value < size) 3151 size = tupregs[1].dttk_value + 1; 3152 3153 /* 3154 * This action doesn't require any credential checks since 3155 * probes will not activate in user contexts to which the 3156 * enabling user does not have permissions. 3157 */ 3158 if (!DTRACE_INSCRATCH(mstate, size)) { 3159 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3160 regs[rd] = NULL; 3161 break; 3162 } 3163 3164 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3165 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3166 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3167 3168 ((char *)dest)[size - 1] = '\0'; 3169 mstate->dtms_scratch_ptr += size; 3170 regs[rd] = dest; 3171 break; 3172 } 3173 3174 case DIF_SUBR_MSGSIZE: 3175 case DIF_SUBR_MSGDSIZE: { 3176 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3177 uintptr_t wptr, rptr; 3178 size_t count = 0; 3179 int cont = 0; 3180 3181 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3182 3183 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3184 vstate)) { 3185 regs[rd] = NULL; 3186 break; 3187 } 3188 3189 wptr = dtrace_loadptr(baddr + 3190 offsetof(mblk_t, b_wptr)); 3191 3192 rptr = dtrace_loadptr(baddr + 3193 offsetof(mblk_t, b_rptr)); 3194 3195 if (wptr < rptr) { 3196 *flags |= CPU_DTRACE_BADADDR; 3197 *illval = tupregs[0].dttk_value; 3198 break; 3199 } 3200 3201 daddr = dtrace_loadptr(baddr + 3202 offsetof(mblk_t, b_datap)); 3203 3204 baddr = dtrace_loadptr(baddr + 3205 offsetof(mblk_t, b_cont)); 3206 3207 /* 3208 * We want to prevent against denial-of-service here, 3209 * so we're only going to search the list for 3210 * dtrace_msgdsize_max mblks. 3211 */ 3212 if (cont++ > dtrace_msgdsize_max) { 3213 *flags |= CPU_DTRACE_ILLOP; 3214 break; 3215 } 3216 3217 if (subr == DIF_SUBR_MSGDSIZE) { 3218 if (dtrace_load8(daddr + 3219 offsetof(dblk_t, db_type)) != M_DATA) 3220 continue; 3221 } 3222 3223 count += wptr - rptr; 3224 } 3225 3226 if (!(*flags & CPU_DTRACE_FAULT)) 3227 regs[rd] = count; 3228 3229 break; 3230 } 3231 3232 case DIF_SUBR_PROGENYOF: { 3233 pid_t pid = tupregs[0].dttk_value; 3234 proc_t *p; 3235 int rval = 0; 3236 3237 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3238 3239 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3240 if (p->p_pidp->pid_id == pid) { 3241 rval = 1; 3242 break; 3243 } 3244 } 3245 3246 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3247 3248 regs[rd] = rval; 3249 break; 3250 } 3251 3252 case DIF_SUBR_SPECULATION: 3253 regs[rd] = dtrace_speculation(state); 3254 break; 3255 3256 case DIF_SUBR_COPYOUT: { 3257 uintptr_t kaddr = tupregs[0].dttk_value; 3258 uintptr_t uaddr = tupregs[1].dttk_value; 3259 uint64_t size = tupregs[2].dttk_value; 3260 3261 if (!dtrace_destructive_disallow && 3262 dtrace_priv_proc_control(state) && 3263 !dtrace_istoxic(kaddr, size)) { 3264 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3265 dtrace_copyout(kaddr, uaddr, size, flags); 3266 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3267 } 3268 break; 3269 } 3270 3271 case DIF_SUBR_COPYOUTSTR: { 3272 uintptr_t kaddr = tupregs[0].dttk_value; 3273 uintptr_t uaddr = tupregs[1].dttk_value; 3274 uint64_t size = tupregs[2].dttk_value; 3275 3276 if (!dtrace_destructive_disallow && 3277 dtrace_priv_proc_control(state) && 3278 !dtrace_istoxic(kaddr, size)) { 3279 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3280 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3281 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3282 } 3283 break; 3284 } 3285 3286 case DIF_SUBR_STRLEN: { 3287 size_t sz; 3288 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3289 sz = dtrace_strlen((char *)addr, 3290 state->dts_options[DTRACEOPT_STRSIZE]); 3291 3292 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3293 regs[rd] = NULL; 3294 break; 3295 } 3296 3297 regs[rd] = sz; 3298 3299 break; 3300 } 3301 3302 case DIF_SUBR_STRCHR: 3303 case DIF_SUBR_STRRCHR: { 3304 /* 3305 * We're going to iterate over the string looking for the 3306 * specified character. We will iterate until we have reached 3307 * the string length or we have found the character. If this 3308 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3309 * of the specified character instead of the first. 3310 */ 3311 uintptr_t saddr = tupregs[0].dttk_value; 3312 uintptr_t addr = tupregs[0].dttk_value; 3313 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3314 char c, target = (char)tupregs[1].dttk_value; 3315 3316 for (regs[rd] = NULL; addr < limit; addr++) { 3317 if ((c = dtrace_load8(addr)) == target) { 3318 regs[rd] = addr; 3319 3320 if (subr == DIF_SUBR_STRCHR) 3321 break; 3322 } 3323 3324 if (c == '\0') 3325 break; 3326 } 3327 3328 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3329 regs[rd] = NULL; 3330 break; 3331 } 3332 3333 break; 3334 } 3335 3336 case DIF_SUBR_STRSTR: 3337 case DIF_SUBR_INDEX: 3338 case DIF_SUBR_RINDEX: { 3339 /* 3340 * We're going to iterate over the string looking for the 3341 * specified string. We will iterate until we have reached 3342 * the string length or we have found the string. (Yes, this 3343 * is done in the most naive way possible -- but considering 3344 * that the string we're searching for is likely to be 3345 * relatively short, the complexity of Rabin-Karp or similar 3346 * hardly seems merited.) 3347 */ 3348 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3349 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3350 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3351 size_t len = dtrace_strlen(addr, size); 3352 size_t sublen = dtrace_strlen(substr, size); 3353 char *limit = addr + len, *orig = addr; 3354 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3355 int inc = 1; 3356 3357 regs[rd] = notfound; 3358 3359 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3360 regs[rd] = NULL; 3361 break; 3362 } 3363 3364 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3365 vstate)) { 3366 regs[rd] = NULL; 3367 break; 3368 } 3369 3370 /* 3371 * strstr() and index()/rindex() have similar semantics if 3372 * both strings are the empty string: strstr() returns a 3373 * pointer to the (empty) string, and index() and rindex() 3374 * both return index 0 (regardless of any position argument). 3375 */ 3376 if (sublen == 0 && len == 0) { 3377 if (subr == DIF_SUBR_STRSTR) 3378 regs[rd] = (uintptr_t)addr; 3379 else 3380 regs[rd] = 0; 3381 break; 3382 } 3383 3384 if (subr != DIF_SUBR_STRSTR) { 3385 if (subr == DIF_SUBR_RINDEX) { 3386 limit = orig - 1; 3387 addr += len; 3388 inc = -1; 3389 } 3390 3391 /* 3392 * Both index() and rindex() take an optional position 3393 * argument that denotes the starting position. 3394 */ 3395 if (nargs == 3) { 3396 int64_t pos = (int64_t)tupregs[2].dttk_value; 3397 3398 /* 3399 * If the position argument to index() is 3400 * negative, Perl implicitly clamps it at 3401 * zero. This semantic is a little surprising 3402 * given the special meaning of negative 3403 * positions to similar Perl functions like 3404 * substr(), but it appears to reflect a 3405 * notion that index() can start from a 3406 * negative index and increment its way up to 3407 * the string. Given this notion, Perl's 3408 * rindex() is at least self-consistent in 3409 * that it implicitly clamps positions greater 3410 * than the string length to be the string 3411 * length. Where Perl completely loses 3412 * coherence, however, is when the specified 3413 * substring is the empty string (""). In 3414 * this case, even if the position is 3415 * negative, rindex() returns 0 -- and even if 3416 * the position is greater than the length, 3417 * index() returns the string length. These 3418 * semantics violate the notion that index() 3419 * should never return a value less than the 3420 * specified position and that rindex() should 3421 * never return a value greater than the 3422 * specified position. (One assumes that 3423 * these semantics are artifacts of Perl's 3424 * implementation and not the results of 3425 * deliberate design -- it beggars belief that 3426 * even Larry Wall could desire such oddness.) 3427 * While in the abstract one would wish for 3428 * consistent position semantics across 3429 * substr(), index() and rindex() -- or at the 3430 * very least self-consistent position 3431 * semantics for index() and rindex() -- we 3432 * instead opt to keep with the extant Perl 3433 * semantics, in all their broken glory. (Do 3434 * we have more desire to maintain Perl's 3435 * semantics than Perl does? Probably.) 3436 */ 3437 if (subr == DIF_SUBR_RINDEX) { 3438 if (pos < 0) { 3439 if (sublen == 0) 3440 regs[rd] = 0; 3441 break; 3442 } 3443 3444 if (pos > len) 3445 pos = len; 3446 } else { 3447 if (pos < 0) 3448 pos = 0; 3449 3450 if (pos >= len) { 3451 if (sublen == 0) 3452 regs[rd] = len; 3453 break; 3454 } 3455 } 3456 3457 addr = orig + pos; 3458 } 3459 } 3460 3461 for (regs[rd] = notfound; addr != limit; addr += inc) { 3462 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3463 if (subr != DIF_SUBR_STRSTR) { 3464 /* 3465 * As D index() and rindex() are 3466 * modeled on Perl (and not on awk), 3467 * we return a zero-based (and not a 3468 * one-based) index. (For you Perl 3469 * weenies: no, we're not going to add 3470 * $[ -- and shouldn't you be at a con 3471 * or something?) 3472 */ 3473 regs[rd] = (uintptr_t)(addr - orig); 3474 break; 3475 } 3476 3477 ASSERT(subr == DIF_SUBR_STRSTR); 3478 regs[rd] = (uintptr_t)addr; 3479 break; 3480 } 3481 } 3482 3483 break; 3484 } 3485 3486 case DIF_SUBR_STRTOK: { 3487 uintptr_t addr = tupregs[0].dttk_value; 3488 uintptr_t tokaddr = tupregs[1].dttk_value; 3489 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3490 uintptr_t limit, toklimit = tokaddr + size; 3491 uint8_t c, tokmap[32]; /* 256 / 8 */ 3492 char *dest = (char *)mstate->dtms_scratch_ptr; 3493 int i; 3494 3495 /* 3496 * Check both the token buffer and (later) the input buffer, 3497 * since both could be non-scratch addresses. 3498 */ 3499 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3500 regs[rd] = NULL; 3501 break; 3502 } 3503 3504 if (!DTRACE_INSCRATCH(mstate, size)) { 3505 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3506 regs[rd] = NULL; 3507 break; 3508 } 3509 3510 if (addr == NULL) { 3511 /* 3512 * If the address specified is NULL, we use our saved 3513 * strtok pointer from the mstate. Note that this 3514 * means that the saved strtok pointer is _only_ 3515 * valid within multiple enablings of the same probe -- 3516 * it behaves like an implicit clause-local variable. 3517 */ 3518 addr = mstate->dtms_strtok; 3519 } else { 3520 /* 3521 * If the user-specified address is non-NULL we must 3522 * access check it. This is the only time we have 3523 * a chance to do so, since this address may reside 3524 * in the string table of this clause-- future calls 3525 * (when we fetch addr from mstate->dtms_strtok) 3526 * would fail this access check. 3527 */ 3528 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3529 regs[rd] = NULL; 3530 break; 3531 } 3532 } 3533 3534 /* 3535 * First, zero the token map, and then process the token 3536 * string -- setting a bit in the map for every character 3537 * found in the token string. 3538 */ 3539 for (i = 0; i < sizeof (tokmap); i++) 3540 tokmap[i] = 0; 3541 3542 for (; tokaddr < toklimit; tokaddr++) { 3543 if ((c = dtrace_load8(tokaddr)) == '\0') 3544 break; 3545 3546 ASSERT((c >> 3) < sizeof (tokmap)); 3547 tokmap[c >> 3] |= (1 << (c & 0x7)); 3548 } 3549 3550 for (limit = addr + size; addr < limit; addr++) { 3551 /* 3552 * We're looking for a character that is _not_ contained 3553 * in the token string. 3554 */ 3555 if ((c = dtrace_load8(addr)) == '\0') 3556 break; 3557 3558 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3559 break; 3560 } 3561 3562 if (c == '\0') { 3563 /* 3564 * We reached the end of the string without finding 3565 * any character that was not in the token string. 3566 * We return NULL in this case, and we set the saved 3567 * address to NULL as well. 3568 */ 3569 regs[rd] = NULL; 3570 mstate->dtms_strtok = NULL; 3571 break; 3572 } 3573 3574 /* 3575 * From here on, we're copying into the destination string. 3576 */ 3577 for (i = 0; addr < limit && i < size - 1; addr++) { 3578 if ((c = dtrace_load8(addr)) == '\0') 3579 break; 3580 3581 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3582 break; 3583 3584 ASSERT(i < size); 3585 dest[i++] = c; 3586 } 3587 3588 ASSERT(i < size); 3589 dest[i] = '\0'; 3590 regs[rd] = (uintptr_t)dest; 3591 mstate->dtms_scratch_ptr += size; 3592 mstate->dtms_strtok = addr; 3593 break; 3594 } 3595 3596 case DIF_SUBR_SUBSTR: { 3597 uintptr_t s = tupregs[0].dttk_value; 3598 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3599 char *d = (char *)mstate->dtms_scratch_ptr; 3600 int64_t index = (int64_t)tupregs[1].dttk_value; 3601 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3602 size_t len = dtrace_strlen((char *)s, size); 3603 int64_t i = 0; 3604 3605 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3606 regs[rd] = NULL; 3607 break; 3608 } 3609 3610 if (nargs <= 2) 3611 remaining = (int64_t)size; 3612 3613 if (!DTRACE_INSCRATCH(mstate, size)) { 3614 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3615 regs[rd] = NULL; 3616 break; 3617 } 3618 3619 if (index < 0) { 3620 index += len; 3621 3622 if (index < 0 && index + remaining > 0) { 3623 remaining += index; 3624 index = 0; 3625 } 3626 } 3627 3628 if (index >= len || index < 0) 3629 index = len; 3630 3631 for (d[0] = '\0'; remaining > 0; remaining--) { 3632 if ((d[i++] = dtrace_load8(s++ + index)) == '\0') 3633 break; 3634 3635 if (i == size) { 3636 d[i - 1] = '\0'; 3637 break; 3638 } 3639 } 3640 3641 mstate->dtms_scratch_ptr += size; 3642 regs[rd] = (uintptr_t)d; 3643 break; 3644 } 3645 3646 case DIF_SUBR_GETMAJOR: 3647 #ifdef _LP64 3648 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3649 #else 3650 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3651 #endif 3652 break; 3653 3654 case DIF_SUBR_GETMINOR: 3655 #ifdef _LP64 3656 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3657 #else 3658 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3659 #endif 3660 break; 3661 3662 case DIF_SUBR_DDI_PATHNAME: { 3663 /* 3664 * This one is a galactic mess. We are going to roughly 3665 * emulate ddi_pathname(), but it's made more complicated 3666 * by the fact that we (a) want to include the minor name and 3667 * (b) must proceed iteratively instead of recursively. 3668 */ 3669 uintptr_t dest = mstate->dtms_scratch_ptr; 3670 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3671 char *start = (char *)dest, *end = start + size - 1; 3672 uintptr_t daddr = tupregs[0].dttk_value; 3673 int64_t minor = (int64_t)tupregs[1].dttk_value; 3674 char *s; 3675 int i, len, depth = 0; 3676 3677 /* 3678 * Due to all the pointer jumping we do and context we must 3679 * rely upon, we just mandate that the user must have kernel 3680 * read privileges to use this routine. 3681 */ 3682 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3683 *flags |= CPU_DTRACE_KPRIV; 3684 *illval = daddr; 3685 regs[rd] = NULL; 3686 } 3687 3688 if (!DTRACE_INSCRATCH(mstate, size)) { 3689 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3690 regs[rd] = NULL; 3691 break; 3692 } 3693 3694 *end = '\0'; 3695 3696 /* 3697 * We want to have a name for the minor. In order to do this, 3698 * we need to walk the minor list from the devinfo. We want 3699 * to be sure that we don't infinitely walk a circular list, 3700 * so we check for circularity by sending a scout pointer 3701 * ahead two elements for every element that we iterate over; 3702 * if the list is circular, these will ultimately point to the 3703 * same element. You may recognize this little trick as the 3704 * answer to a stupid interview question -- one that always 3705 * seems to be asked by those who had to have it laboriously 3706 * explained to them, and who can't even concisely describe 3707 * the conditions under which one would be forced to resort to 3708 * this technique. Needless to say, those conditions are 3709 * found here -- and probably only here. Is this is the only 3710 * use of this infamous trick in shipping, production code? 3711 * If it isn't, it probably should be... 3712 */ 3713 if (minor != -1) { 3714 uintptr_t maddr = dtrace_loadptr(daddr + 3715 offsetof(struct dev_info, devi_minor)); 3716 3717 uintptr_t next = offsetof(struct ddi_minor_data, next); 3718 uintptr_t name = offsetof(struct ddi_minor_data, 3719 d_minor) + offsetof(struct ddi_minor, name); 3720 uintptr_t dev = offsetof(struct ddi_minor_data, 3721 d_minor) + offsetof(struct ddi_minor, dev); 3722 uintptr_t scout; 3723 3724 if (maddr != NULL) 3725 scout = dtrace_loadptr(maddr + next); 3726 3727 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3728 uint64_t m; 3729 #ifdef _LP64 3730 m = dtrace_load64(maddr + dev) & MAXMIN64; 3731 #else 3732 m = dtrace_load32(maddr + dev) & MAXMIN; 3733 #endif 3734 if (m != minor) { 3735 maddr = dtrace_loadptr(maddr + next); 3736 3737 if (scout == NULL) 3738 continue; 3739 3740 scout = dtrace_loadptr(scout + next); 3741 3742 if (scout == NULL) 3743 continue; 3744 3745 scout = dtrace_loadptr(scout + next); 3746 3747 if (scout == NULL) 3748 continue; 3749 3750 if (scout == maddr) { 3751 *flags |= CPU_DTRACE_ILLOP; 3752 break; 3753 } 3754 3755 continue; 3756 } 3757 3758 /* 3759 * We have the minor data. Now we need to 3760 * copy the minor's name into the end of the 3761 * pathname. 3762 */ 3763 s = (char *)dtrace_loadptr(maddr + name); 3764 len = dtrace_strlen(s, size); 3765 3766 if (*flags & CPU_DTRACE_FAULT) 3767 break; 3768 3769 if (len != 0) { 3770 if ((end -= (len + 1)) < start) 3771 break; 3772 3773 *end = ':'; 3774 } 3775 3776 for (i = 1; i <= len; i++) 3777 end[i] = dtrace_load8((uintptr_t)s++); 3778 break; 3779 } 3780 } 3781 3782 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3783 ddi_node_state_t devi_state; 3784 3785 devi_state = dtrace_load32(daddr + 3786 offsetof(struct dev_info, devi_node_state)); 3787 3788 if (*flags & CPU_DTRACE_FAULT) 3789 break; 3790 3791 if (devi_state >= DS_INITIALIZED) { 3792 s = (char *)dtrace_loadptr(daddr + 3793 offsetof(struct dev_info, devi_addr)); 3794 len = dtrace_strlen(s, size); 3795 3796 if (*flags & CPU_DTRACE_FAULT) 3797 break; 3798 3799 if (len != 0) { 3800 if ((end -= (len + 1)) < start) 3801 break; 3802 3803 *end = '@'; 3804 } 3805 3806 for (i = 1; i <= len; i++) 3807 end[i] = dtrace_load8((uintptr_t)s++); 3808 } 3809 3810 /* 3811 * Now for the node name... 3812 */ 3813 s = (char *)dtrace_loadptr(daddr + 3814 offsetof(struct dev_info, devi_node_name)); 3815 3816 daddr = dtrace_loadptr(daddr + 3817 offsetof(struct dev_info, devi_parent)); 3818 3819 /* 3820 * If our parent is NULL (that is, if we're the root 3821 * node), we're going to use the special path 3822 * "devices". 3823 */ 3824 if (daddr == NULL) 3825 s = "devices"; 3826 3827 len = dtrace_strlen(s, size); 3828 if (*flags & CPU_DTRACE_FAULT) 3829 break; 3830 3831 if ((end -= (len + 1)) < start) 3832 break; 3833 3834 for (i = 1; i <= len; i++) 3835 end[i] = dtrace_load8((uintptr_t)s++); 3836 *end = '/'; 3837 3838 if (depth++ > dtrace_devdepth_max) { 3839 *flags |= CPU_DTRACE_ILLOP; 3840 break; 3841 } 3842 } 3843 3844 if (end < start) 3845 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3846 3847 if (daddr == NULL) { 3848 regs[rd] = (uintptr_t)end; 3849 mstate->dtms_scratch_ptr += size; 3850 } 3851 3852 break; 3853 } 3854 3855 case DIF_SUBR_STRJOIN: { 3856 char *d = (char *)mstate->dtms_scratch_ptr; 3857 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3858 uintptr_t s1 = tupregs[0].dttk_value; 3859 uintptr_t s2 = tupregs[1].dttk_value; 3860 int i = 0; 3861 3862 if (!dtrace_strcanload(s1, size, mstate, vstate) || 3863 !dtrace_strcanload(s2, size, mstate, vstate)) { 3864 regs[rd] = NULL; 3865 break; 3866 } 3867 3868 if (!DTRACE_INSCRATCH(mstate, size)) { 3869 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3870 regs[rd] = NULL; 3871 break; 3872 } 3873 3874 for (;;) { 3875 if (i >= size) { 3876 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3877 regs[rd] = NULL; 3878 break; 3879 } 3880 3881 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 3882 i--; 3883 break; 3884 } 3885 } 3886 3887 for (;;) { 3888 if (i >= size) { 3889 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3890 regs[rd] = NULL; 3891 break; 3892 } 3893 3894 if ((d[i++] = dtrace_load8(s2++)) == '\0') 3895 break; 3896 } 3897 3898 if (i < size) { 3899 mstate->dtms_scratch_ptr += i; 3900 regs[rd] = (uintptr_t)d; 3901 } 3902 3903 break; 3904 } 3905 3906 case DIF_SUBR_LLTOSTR: { 3907 int64_t i = (int64_t)tupregs[0].dttk_value; 3908 int64_t val = i < 0 ? i * -1 : i; 3909 uint64_t size = 22; /* enough room for 2^64 in decimal */ 3910 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 3911 3912 if (!DTRACE_INSCRATCH(mstate, size)) { 3913 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3914 regs[rd] = NULL; 3915 break; 3916 } 3917 3918 for (*end-- = '\0'; val; val /= 10) 3919 *end-- = '0' + (val % 10); 3920 3921 if (i == 0) 3922 *end-- = '0'; 3923 3924 if (i < 0) 3925 *end-- = '-'; 3926 3927 regs[rd] = (uintptr_t)end + 1; 3928 mstate->dtms_scratch_ptr += size; 3929 break; 3930 } 3931 3932 case DIF_SUBR_HTONS: 3933 case DIF_SUBR_NTOHS: 3934 #ifdef _BIG_ENDIAN 3935 regs[rd] = (uint16_t)tupregs[0].dttk_value; 3936 #else 3937 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 3938 #endif 3939 break; 3940 3941 3942 case DIF_SUBR_HTONL: 3943 case DIF_SUBR_NTOHL: 3944 #ifdef _BIG_ENDIAN 3945 regs[rd] = (uint32_t)tupregs[0].dttk_value; 3946 #else 3947 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 3948 #endif 3949 break; 3950 3951 3952 case DIF_SUBR_HTONLL: 3953 case DIF_SUBR_NTOHLL: 3954 #ifdef _BIG_ENDIAN 3955 regs[rd] = (uint64_t)tupregs[0].dttk_value; 3956 #else 3957 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 3958 #endif 3959 break; 3960 3961 3962 case DIF_SUBR_DIRNAME: 3963 case DIF_SUBR_BASENAME: { 3964 char *dest = (char *)mstate->dtms_scratch_ptr; 3965 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3966 uintptr_t src = tupregs[0].dttk_value; 3967 int i, j, len = dtrace_strlen((char *)src, size); 3968 int lastbase = -1, firstbase = -1, lastdir = -1; 3969 int start, end; 3970 3971 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 3972 regs[rd] = NULL; 3973 break; 3974 } 3975 3976 if (!DTRACE_INSCRATCH(mstate, size)) { 3977 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3978 regs[rd] = NULL; 3979 break; 3980 } 3981 3982 /* 3983 * The basename and dirname for a zero-length string is 3984 * defined to be "." 3985 */ 3986 if (len == 0) { 3987 len = 1; 3988 src = (uintptr_t)"."; 3989 } 3990 3991 /* 3992 * Start from the back of the string, moving back toward the 3993 * front until we see a character that isn't a slash. That 3994 * character is the last character in the basename. 3995 */ 3996 for (i = len - 1; i >= 0; i--) { 3997 if (dtrace_load8(src + i) != '/') 3998 break; 3999 } 4000 4001 if (i >= 0) 4002 lastbase = i; 4003 4004 /* 4005 * Starting from the last character in the basename, move 4006 * towards the front until we find a slash. The character 4007 * that we processed immediately before that is the first 4008 * character in the basename. 4009 */ 4010 for (; i >= 0; i--) { 4011 if (dtrace_load8(src + i) == '/') 4012 break; 4013 } 4014 4015 if (i >= 0) 4016 firstbase = i + 1; 4017 4018 /* 4019 * Now keep going until we find a non-slash character. That 4020 * character is the last character in the dirname. 4021 */ 4022 for (; i >= 0; i--) { 4023 if (dtrace_load8(src + i) != '/') 4024 break; 4025 } 4026 4027 if (i >= 0) 4028 lastdir = i; 4029 4030 ASSERT(!(lastbase == -1 && firstbase != -1)); 4031 ASSERT(!(firstbase == -1 && lastdir != -1)); 4032 4033 if (lastbase == -1) { 4034 /* 4035 * We didn't find a non-slash character. We know that 4036 * the length is non-zero, so the whole string must be 4037 * slashes. In either the dirname or the basename 4038 * case, we return '/'. 4039 */ 4040 ASSERT(firstbase == -1); 4041 firstbase = lastbase = lastdir = 0; 4042 } 4043 4044 if (firstbase == -1) { 4045 /* 4046 * The entire string consists only of a basename 4047 * component. If we're looking for dirname, we need 4048 * to change our string to be just "."; if we're 4049 * looking for a basename, we'll just set the first 4050 * character of the basename to be 0. 4051 */ 4052 if (subr == DIF_SUBR_DIRNAME) { 4053 ASSERT(lastdir == -1); 4054 src = (uintptr_t)"."; 4055 lastdir = 0; 4056 } else { 4057 firstbase = 0; 4058 } 4059 } 4060 4061 if (subr == DIF_SUBR_DIRNAME) { 4062 if (lastdir == -1) { 4063 /* 4064 * We know that we have a slash in the name -- 4065 * or lastdir would be set to 0, above. And 4066 * because lastdir is -1, we know that this 4067 * slash must be the first character. (That 4068 * is, the full string must be of the form 4069 * "/basename".) In this case, the last 4070 * character of the directory name is 0. 4071 */ 4072 lastdir = 0; 4073 } 4074 4075 start = 0; 4076 end = lastdir; 4077 } else { 4078 ASSERT(subr == DIF_SUBR_BASENAME); 4079 ASSERT(firstbase != -1 && lastbase != -1); 4080 start = firstbase; 4081 end = lastbase; 4082 } 4083 4084 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 4085 dest[j] = dtrace_load8(src + i); 4086 4087 dest[j] = '\0'; 4088 regs[rd] = (uintptr_t)dest; 4089 mstate->dtms_scratch_ptr += size; 4090 break; 4091 } 4092 4093 case DIF_SUBR_CLEANPATH: { 4094 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4095 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4096 uintptr_t src = tupregs[0].dttk_value; 4097 int i = 0, j = 0; 4098 4099 if (!dtrace_strcanload(src, size, mstate, vstate)) { 4100 regs[rd] = NULL; 4101 break; 4102 } 4103 4104 if (!DTRACE_INSCRATCH(mstate, size)) { 4105 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4106 regs[rd] = NULL; 4107 break; 4108 } 4109 4110 /* 4111 * Move forward, loading each character. 4112 */ 4113 do { 4114 c = dtrace_load8(src + i++); 4115 next: 4116 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4117 break; 4118 4119 if (c != '/') { 4120 dest[j++] = c; 4121 continue; 4122 } 4123 4124 c = dtrace_load8(src + i++); 4125 4126 if (c == '/') { 4127 /* 4128 * We have two slashes -- we can just advance 4129 * to the next character. 4130 */ 4131 goto next; 4132 } 4133 4134 if (c != '.') { 4135 /* 4136 * This is not "." and it's not ".." -- we can 4137 * just store the "/" and this character and 4138 * drive on. 4139 */ 4140 dest[j++] = '/'; 4141 dest[j++] = c; 4142 continue; 4143 } 4144 4145 c = dtrace_load8(src + i++); 4146 4147 if (c == '/') { 4148 /* 4149 * This is a "/./" component. We're not going 4150 * to store anything in the destination buffer; 4151 * we're just going to go to the next component. 4152 */ 4153 goto next; 4154 } 4155 4156 if (c != '.') { 4157 /* 4158 * This is not ".." -- we can just store the 4159 * "/." and this character and continue 4160 * processing. 4161 */ 4162 dest[j++] = '/'; 4163 dest[j++] = '.'; 4164 dest[j++] = c; 4165 continue; 4166 } 4167 4168 c = dtrace_load8(src + i++); 4169 4170 if (c != '/' && c != '\0') { 4171 /* 4172 * This is not ".." -- it's "..[mumble]". 4173 * We'll store the "/.." and this character 4174 * and continue processing. 4175 */ 4176 dest[j++] = '/'; 4177 dest[j++] = '.'; 4178 dest[j++] = '.'; 4179 dest[j++] = c; 4180 continue; 4181 } 4182 4183 /* 4184 * This is "/../" or "/..\0". We need to back up 4185 * our destination pointer until we find a "/". 4186 */ 4187 i--; 4188 while (j != 0 && dest[--j] != '/') 4189 continue; 4190 4191 if (c == '\0') 4192 dest[++j] = '/'; 4193 } while (c != '\0'); 4194 4195 dest[j] = '\0'; 4196 regs[rd] = (uintptr_t)dest; 4197 mstate->dtms_scratch_ptr += size; 4198 break; 4199 } 4200 4201 case DIF_SUBR_INET_NTOA: 4202 case DIF_SUBR_INET_NTOA6: 4203 case DIF_SUBR_INET_NTOP: { 4204 size_t size; 4205 int af, argi, i; 4206 char *base, *end; 4207 4208 if (subr == DIF_SUBR_INET_NTOP) { 4209 af = (int)tupregs[0].dttk_value; 4210 argi = 1; 4211 } else { 4212 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4213 argi = 0; 4214 } 4215 4216 if (af == AF_INET) { 4217 ipaddr_t ip4; 4218 uint8_t *ptr8, val; 4219 4220 /* 4221 * Safely load the IPv4 address. 4222 */ 4223 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4224 4225 /* 4226 * Check an IPv4 string will fit in scratch. 4227 */ 4228 size = INET_ADDRSTRLEN; 4229 if (!DTRACE_INSCRATCH(mstate, size)) { 4230 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4231 regs[rd] = NULL; 4232 break; 4233 } 4234 base = (char *)mstate->dtms_scratch_ptr; 4235 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4236 4237 /* 4238 * Stringify as a dotted decimal quad. 4239 */ 4240 *end-- = '\0'; 4241 ptr8 = (uint8_t *)&ip4; 4242 for (i = 3; i >= 0; i--) { 4243 val = ptr8[i]; 4244 4245 if (val == 0) { 4246 *end-- = '0'; 4247 } else { 4248 for (; val; val /= 10) { 4249 *end-- = '0' + (val % 10); 4250 } 4251 } 4252 4253 if (i > 0) 4254 *end-- = '.'; 4255 } 4256 ASSERT(end + 1 >= base); 4257 4258 } else if (af == AF_INET6) { 4259 struct in6_addr ip6; 4260 int firstzero, tryzero, numzero, v6end; 4261 uint16_t val; 4262 const char digits[] = "0123456789abcdef"; 4263 4264 /* 4265 * Stringify using RFC 1884 convention 2 - 16 bit 4266 * hexadecimal values with a zero-run compression. 4267 * Lower case hexadecimal digits are used. 4268 * eg, fe80::214:4fff:fe0b:76c8. 4269 * The IPv4 embedded form is returned for inet_ntop, 4270 * just the IPv4 string is returned for inet_ntoa6. 4271 */ 4272 4273 /* 4274 * Safely load the IPv6 address. 4275 */ 4276 dtrace_bcopy( 4277 (void *)(uintptr_t)tupregs[argi].dttk_value, 4278 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4279 4280 /* 4281 * Check an IPv6 string will fit in scratch. 4282 */ 4283 size = INET6_ADDRSTRLEN; 4284 if (!DTRACE_INSCRATCH(mstate, size)) { 4285 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4286 regs[rd] = NULL; 4287 break; 4288 } 4289 base = (char *)mstate->dtms_scratch_ptr; 4290 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4291 *end-- = '\0'; 4292 4293 /* 4294 * Find the longest run of 16 bit zero values 4295 * for the single allowed zero compression - "::". 4296 */ 4297 firstzero = -1; 4298 tryzero = -1; 4299 numzero = 1; 4300 for (i = 0; i < sizeof (struct in6_addr); i++) { 4301 if (ip6._S6_un._S6_u8[i] == 0 && 4302 tryzero == -1 && i % 2 == 0) { 4303 tryzero = i; 4304 continue; 4305 } 4306 4307 if (tryzero != -1 && 4308 (ip6._S6_un._S6_u8[i] != 0 || 4309 i == sizeof (struct in6_addr) - 1)) { 4310 4311 if (i - tryzero <= numzero) { 4312 tryzero = -1; 4313 continue; 4314 } 4315 4316 firstzero = tryzero; 4317 numzero = i - i % 2 - tryzero; 4318 tryzero = -1; 4319 4320 if (ip6._S6_un._S6_u8[i] == 0 && 4321 i == sizeof (struct in6_addr) - 1) 4322 numzero += 2; 4323 } 4324 } 4325 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4326 4327 /* 4328 * Check for an IPv4 embedded address. 4329 */ 4330 v6end = sizeof (struct in6_addr) - 2; 4331 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4332 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4333 for (i = sizeof (struct in6_addr) - 1; 4334 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4335 ASSERT(end >= base); 4336 4337 val = ip6._S6_un._S6_u8[i]; 4338 4339 if (val == 0) { 4340 *end-- = '0'; 4341 } else { 4342 for (; val; val /= 10) { 4343 *end-- = '0' + val % 10; 4344 } 4345 } 4346 4347 if (i > DTRACE_V4MAPPED_OFFSET) 4348 *end-- = '.'; 4349 } 4350 4351 if (subr == DIF_SUBR_INET_NTOA6) 4352 goto inetout; 4353 4354 /* 4355 * Set v6end to skip the IPv4 address that 4356 * we have already stringified. 4357 */ 4358 v6end = 10; 4359 } 4360 4361 /* 4362 * Build the IPv6 string by working through the 4363 * address in reverse. 4364 */ 4365 for (i = v6end; i >= 0; i -= 2) { 4366 ASSERT(end >= base); 4367 4368 if (i == firstzero + numzero - 2) { 4369 *end-- = ':'; 4370 *end-- = ':'; 4371 i -= numzero - 2; 4372 continue; 4373 } 4374 4375 if (i < 14 && i != firstzero - 2) 4376 *end-- = ':'; 4377 4378 val = (ip6._S6_un._S6_u8[i] << 8) + 4379 ip6._S6_un._S6_u8[i + 1]; 4380 4381 if (val == 0) { 4382 *end-- = '0'; 4383 } else { 4384 for (; val; val /= 16) { 4385 *end-- = digits[val % 16]; 4386 } 4387 } 4388 } 4389 ASSERT(end + 1 >= base); 4390 4391 } else { 4392 /* 4393 * The user didn't use AH_INET or AH_INET6. 4394 */ 4395 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4396 regs[rd] = NULL; 4397 break; 4398 } 4399 4400 inetout: regs[rd] = (uintptr_t)end + 1; 4401 mstate->dtms_scratch_ptr += size; 4402 break; 4403 } 4404 4405 } 4406 } 4407 4408 /* 4409 * Emulate the execution of DTrace IR instructions specified by the given 4410 * DIF object. This function is deliberately void of assertions as all of 4411 * the necessary checks are handled by a call to dtrace_difo_validate(). 4412 */ 4413 static uint64_t 4414 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4415 dtrace_vstate_t *vstate, dtrace_state_t *state) 4416 { 4417 const dif_instr_t *text = difo->dtdo_buf; 4418 const uint_t textlen = difo->dtdo_len; 4419 const char *strtab = difo->dtdo_strtab; 4420 const uint64_t *inttab = difo->dtdo_inttab; 4421 4422 uint64_t rval = 0; 4423 dtrace_statvar_t *svar; 4424 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4425 dtrace_difv_t *v; 4426 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4427 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4428 4429 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4430 uint64_t regs[DIF_DIR_NREGS]; 4431 uint64_t *tmp; 4432 4433 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4434 int64_t cc_r; 4435 uint_t pc = 0, id, opc; 4436 uint8_t ttop = 0; 4437 dif_instr_t instr; 4438 uint_t r1, r2, rd; 4439 4440 /* 4441 * We stash the current DIF object into the machine state: we need it 4442 * for subsequent access checking. 4443 */ 4444 mstate->dtms_difo = difo; 4445 4446 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4447 4448 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4449 opc = pc; 4450 4451 instr = text[pc++]; 4452 r1 = DIF_INSTR_R1(instr); 4453 r2 = DIF_INSTR_R2(instr); 4454 rd = DIF_INSTR_RD(instr); 4455 4456 switch (DIF_INSTR_OP(instr)) { 4457 case DIF_OP_OR: 4458 regs[rd] = regs[r1] | regs[r2]; 4459 break; 4460 case DIF_OP_XOR: 4461 regs[rd] = regs[r1] ^ regs[r2]; 4462 break; 4463 case DIF_OP_AND: 4464 regs[rd] = regs[r1] & regs[r2]; 4465 break; 4466 case DIF_OP_SLL: 4467 regs[rd] = regs[r1] << regs[r2]; 4468 break; 4469 case DIF_OP_SRL: 4470 regs[rd] = regs[r1] >> regs[r2]; 4471 break; 4472 case DIF_OP_SUB: 4473 regs[rd] = regs[r1] - regs[r2]; 4474 break; 4475 case DIF_OP_ADD: 4476 regs[rd] = regs[r1] + regs[r2]; 4477 break; 4478 case DIF_OP_MUL: 4479 regs[rd] = regs[r1] * regs[r2]; 4480 break; 4481 case DIF_OP_SDIV: 4482 if (regs[r2] == 0) { 4483 regs[rd] = 0; 4484 *flags |= CPU_DTRACE_DIVZERO; 4485 } else { 4486 regs[rd] = (int64_t)regs[r1] / 4487 (int64_t)regs[r2]; 4488 } 4489 break; 4490 4491 case DIF_OP_UDIV: 4492 if (regs[r2] == 0) { 4493 regs[rd] = 0; 4494 *flags |= CPU_DTRACE_DIVZERO; 4495 } else { 4496 regs[rd] = regs[r1] / regs[r2]; 4497 } 4498 break; 4499 4500 case DIF_OP_SREM: 4501 if (regs[r2] == 0) { 4502 regs[rd] = 0; 4503 *flags |= CPU_DTRACE_DIVZERO; 4504 } else { 4505 regs[rd] = (int64_t)regs[r1] % 4506 (int64_t)regs[r2]; 4507 } 4508 break; 4509 4510 case DIF_OP_UREM: 4511 if (regs[r2] == 0) { 4512 regs[rd] = 0; 4513 *flags |= CPU_DTRACE_DIVZERO; 4514 } else { 4515 regs[rd] = regs[r1] % regs[r2]; 4516 } 4517 break; 4518 4519 case DIF_OP_NOT: 4520 regs[rd] = ~regs[r1]; 4521 break; 4522 case DIF_OP_MOV: 4523 regs[rd] = regs[r1]; 4524 break; 4525 case DIF_OP_CMP: 4526 cc_r = regs[r1] - regs[r2]; 4527 cc_n = cc_r < 0; 4528 cc_z = cc_r == 0; 4529 cc_v = 0; 4530 cc_c = regs[r1] < regs[r2]; 4531 break; 4532 case DIF_OP_TST: 4533 cc_n = cc_v = cc_c = 0; 4534 cc_z = regs[r1] == 0; 4535 break; 4536 case DIF_OP_BA: 4537 pc = DIF_INSTR_LABEL(instr); 4538 break; 4539 case DIF_OP_BE: 4540 if (cc_z) 4541 pc = DIF_INSTR_LABEL(instr); 4542 break; 4543 case DIF_OP_BNE: 4544 if (cc_z == 0) 4545 pc = DIF_INSTR_LABEL(instr); 4546 break; 4547 case DIF_OP_BG: 4548 if ((cc_z | (cc_n ^ cc_v)) == 0) 4549 pc = DIF_INSTR_LABEL(instr); 4550 break; 4551 case DIF_OP_BGU: 4552 if ((cc_c | cc_z) == 0) 4553 pc = DIF_INSTR_LABEL(instr); 4554 break; 4555 case DIF_OP_BGE: 4556 if ((cc_n ^ cc_v) == 0) 4557 pc = DIF_INSTR_LABEL(instr); 4558 break; 4559 case DIF_OP_BGEU: 4560 if (cc_c == 0) 4561 pc = DIF_INSTR_LABEL(instr); 4562 break; 4563 case DIF_OP_BL: 4564 if (cc_n ^ cc_v) 4565 pc = DIF_INSTR_LABEL(instr); 4566 break; 4567 case DIF_OP_BLU: 4568 if (cc_c) 4569 pc = DIF_INSTR_LABEL(instr); 4570 break; 4571 case DIF_OP_BLE: 4572 if (cc_z | (cc_n ^ cc_v)) 4573 pc = DIF_INSTR_LABEL(instr); 4574 break; 4575 case DIF_OP_BLEU: 4576 if (cc_c | cc_z) 4577 pc = DIF_INSTR_LABEL(instr); 4578 break; 4579 case DIF_OP_RLDSB: 4580 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4581 *flags |= CPU_DTRACE_KPRIV; 4582 *illval = regs[r1]; 4583 break; 4584 } 4585 /*FALLTHROUGH*/ 4586 case DIF_OP_LDSB: 4587 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4588 break; 4589 case DIF_OP_RLDSH: 4590 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4591 *flags |= CPU_DTRACE_KPRIV; 4592 *illval = regs[r1]; 4593 break; 4594 } 4595 /*FALLTHROUGH*/ 4596 case DIF_OP_LDSH: 4597 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4598 break; 4599 case DIF_OP_RLDSW: 4600 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4601 *flags |= CPU_DTRACE_KPRIV; 4602 *illval = regs[r1]; 4603 break; 4604 } 4605 /*FALLTHROUGH*/ 4606 case DIF_OP_LDSW: 4607 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4608 break; 4609 case DIF_OP_RLDUB: 4610 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4611 *flags |= CPU_DTRACE_KPRIV; 4612 *illval = regs[r1]; 4613 break; 4614 } 4615 /*FALLTHROUGH*/ 4616 case DIF_OP_LDUB: 4617 regs[rd] = dtrace_load8(regs[r1]); 4618 break; 4619 case DIF_OP_RLDUH: 4620 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4621 *flags |= CPU_DTRACE_KPRIV; 4622 *illval = regs[r1]; 4623 break; 4624 } 4625 /*FALLTHROUGH*/ 4626 case DIF_OP_LDUH: 4627 regs[rd] = dtrace_load16(regs[r1]); 4628 break; 4629 case DIF_OP_RLDUW: 4630 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4631 *flags |= CPU_DTRACE_KPRIV; 4632 *illval = regs[r1]; 4633 break; 4634 } 4635 /*FALLTHROUGH*/ 4636 case DIF_OP_LDUW: 4637 regs[rd] = dtrace_load32(regs[r1]); 4638 break; 4639 case DIF_OP_RLDX: 4640 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4641 *flags |= CPU_DTRACE_KPRIV; 4642 *illval = regs[r1]; 4643 break; 4644 } 4645 /*FALLTHROUGH*/ 4646 case DIF_OP_LDX: 4647 regs[rd] = dtrace_load64(regs[r1]); 4648 break; 4649 case DIF_OP_ULDSB: 4650 regs[rd] = (int8_t) 4651 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4652 break; 4653 case DIF_OP_ULDSH: 4654 regs[rd] = (int16_t) 4655 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4656 break; 4657 case DIF_OP_ULDSW: 4658 regs[rd] = (int32_t) 4659 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4660 break; 4661 case DIF_OP_ULDUB: 4662 regs[rd] = 4663 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4664 break; 4665 case DIF_OP_ULDUH: 4666 regs[rd] = 4667 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4668 break; 4669 case DIF_OP_ULDUW: 4670 regs[rd] = 4671 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4672 break; 4673 case DIF_OP_ULDX: 4674 regs[rd] = 4675 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 4676 break; 4677 case DIF_OP_RET: 4678 rval = regs[rd]; 4679 pc = textlen; 4680 break; 4681 case DIF_OP_NOP: 4682 break; 4683 case DIF_OP_SETX: 4684 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 4685 break; 4686 case DIF_OP_SETS: 4687 regs[rd] = (uint64_t)(uintptr_t) 4688 (strtab + DIF_INSTR_STRING(instr)); 4689 break; 4690 case DIF_OP_SCMP: { 4691 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 4692 uintptr_t s1 = regs[r1]; 4693 uintptr_t s2 = regs[r2]; 4694 4695 if (s1 != NULL && 4696 !dtrace_strcanload(s1, sz, mstate, vstate)) 4697 break; 4698 if (s2 != NULL && 4699 !dtrace_strcanload(s2, sz, mstate, vstate)) 4700 break; 4701 4702 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 4703 4704 cc_n = cc_r < 0; 4705 cc_z = cc_r == 0; 4706 cc_v = cc_c = 0; 4707 break; 4708 } 4709 case DIF_OP_LDGA: 4710 regs[rd] = dtrace_dif_variable(mstate, state, 4711 r1, regs[r2]); 4712 break; 4713 case DIF_OP_LDGS: 4714 id = DIF_INSTR_VAR(instr); 4715 4716 if (id >= DIF_VAR_OTHER_UBASE) { 4717 uintptr_t a; 4718 4719 id -= DIF_VAR_OTHER_UBASE; 4720 svar = vstate->dtvs_globals[id]; 4721 ASSERT(svar != NULL); 4722 v = &svar->dtsv_var; 4723 4724 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 4725 regs[rd] = svar->dtsv_data; 4726 break; 4727 } 4728 4729 a = (uintptr_t)svar->dtsv_data; 4730 4731 if (*(uint8_t *)a == UINT8_MAX) { 4732 /* 4733 * If the 0th byte is set to UINT8_MAX 4734 * then this is to be treated as a 4735 * reference to a NULL variable. 4736 */ 4737 regs[rd] = NULL; 4738 } else { 4739 regs[rd] = a + sizeof (uint64_t); 4740 } 4741 4742 break; 4743 } 4744 4745 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 4746 break; 4747 4748 case DIF_OP_STGS: 4749 id = DIF_INSTR_VAR(instr); 4750 4751 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4752 id -= DIF_VAR_OTHER_UBASE; 4753 4754 svar = vstate->dtvs_globals[id]; 4755 ASSERT(svar != NULL); 4756 v = &svar->dtsv_var; 4757 4758 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4759 uintptr_t a = (uintptr_t)svar->dtsv_data; 4760 4761 ASSERT(a != NULL); 4762 ASSERT(svar->dtsv_size != 0); 4763 4764 if (regs[rd] == NULL) { 4765 *(uint8_t *)a = UINT8_MAX; 4766 break; 4767 } else { 4768 *(uint8_t *)a = 0; 4769 a += sizeof (uint64_t); 4770 } 4771 if (!dtrace_vcanload( 4772 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4773 mstate, vstate)) 4774 break; 4775 4776 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4777 (void *)a, &v->dtdv_type); 4778 break; 4779 } 4780 4781 svar->dtsv_data = regs[rd]; 4782 break; 4783 4784 case DIF_OP_LDTA: 4785 /* 4786 * There are no DTrace built-in thread-local arrays at 4787 * present. This opcode is saved for future work. 4788 */ 4789 *flags |= CPU_DTRACE_ILLOP; 4790 regs[rd] = 0; 4791 break; 4792 4793 case DIF_OP_LDLS: 4794 id = DIF_INSTR_VAR(instr); 4795 4796 if (id < DIF_VAR_OTHER_UBASE) { 4797 /* 4798 * For now, this has no meaning. 4799 */ 4800 regs[rd] = 0; 4801 break; 4802 } 4803 4804 id -= DIF_VAR_OTHER_UBASE; 4805 4806 ASSERT(id < vstate->dtvs_nlocals); 4807 ASSERT(vstate->dtvs_locals != NULL); 4808 4809 svar = vstate->dtvs_locals[id]; 4810 ASSERT(svar != NULL); 4811 v = &svar->dtsv_var; 4812 4813 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4814 uintptr_t a = (uintptr_t)svar->dtsv_data; 4815 size_t sz = v->dtdv_type.dtdt_size; 4816 4817 sz += sizeof (uint64_t); 4818 ASSERT(svar->dtsv_size == NCPU * sz); 4819 a += CPU->cpu_id * sz; 4820 4821 if (*(uint8_t *)a == UINT8_MAX) { 4822 /* 4823 * If the 0th byte is set to UINT8_MAX 4824 * then this is to be treated as a 4825 * reference to a NULL variable. 4826 */ 4827 regs[rd] = NULL; 4828 } else { 4829 regs[rd] = a + sizeof (uint64_t); 4830 } 4831 4832 break; 4833 } 4834 4835 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4836 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4837 regs[rd] = tmp[CPU->cpu_id]; 4838 break; 4839 4840 case DIF_OP_STLS: 4841 id = DIF_INSTR_VAR(instr); 4842 4843 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4844 id -= DIF_VAR_OTHER_UBASE; 4845 ASSERT(id < vstate->dtvs_nlocals); 4846 4847 ASSERT(vstate->dtvs_locals != NULL); 4848 svar = vstate->dtvs_locals[id]; 4849 ASSERT(svar != NULL); 4850 v = &svar->dtsv_var; 4851 4852 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4853 uintptr_t a = (uintptr_t)svar->dtsv_data; 4854 size_t sz = v->dtdv_type.dtdt_size; 4855 4856 sz += sizeof (uint64_t); 4857 ASSERT(svar->dtsv_size == NCPU * sz); 4858 a += CPU->cpu_id * sz; 4859 4860 if (regs[rd] == NULL) { 4861 *(uint8_t *)a = UINT8_MAX; 4862 break; 4863 } else { 4864 *(uint8_t *)a = 0; 4865 a += sizeof (uint64_t); 4866 } 4867 4868 if (!dtrace_vcanload( 4869 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 4870 mstate, vstate)) 4871 break; 4872 4873 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4874 (void *)a, &v->dtdv_type); 4875 break; 4876 } 4877 4878 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 4879 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 4880 tmp[CPU->cpu_id] = regs[rd]; 4881 break; 4882 4883 case DIF_OP_LDTS: { 4884 dtrace_dynvar_t *dvar; 4885 dtrace_key_t *key; 4886 4887 id = DIF_INSTR_VAR(instr); 4888 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4889 id -= DIF_VAR_OTHER_UBASE; 4890 v = &vstate->dtvs_tlocals[id]; 4891 4892 key = &tupregs[DIF_DTR_NREGS]; 4893 key[0].dttk_value = (uint64_t)id; 4894 key[0].dttk_size = 0; 4895 DTRACE_TLS_THRKEY(key[1].dttk_value); 4896 key[1].dttk_size = 0; 4897 4898 dvar = dtrace_dynvar(dstate, 2, key, 4899 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 4900 mstate, vstate); 4901 4902 if (dvar == NULL) { 4903 regs[rd] = 0; 4904 break; 4905 } 4906 4907 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4908 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 4909 } else { 4910 regs[rd] = *((uint64_t *)dvar->dtdv_data); 4911 } 4912 4913 break; 4914 } 4915 4916 case DIF_OP_STTS: { 4917 dtrace_dynvar_t *dvar; 4918 dtrace_key_t *key; 4919 4920 id = DIF_INSTR_VAR(instr); 4921 ASSERT(id >= DIF_VAR_OTHER_UBASE); 4922 id -= DIF_VAR_OTHER_UBASE; 4923 4924 key = &tupregs[DIF_DTR_NREGS]; 4925 key[0].dttk_value = (uint64_t)id; 4926 key[0].dttk_size = 0; 4927 DTRACE_TLS_THRKEY(key[1].dttk_value); 4928 key[1].dttk_size = 0; 4929 v = &vstate->dtvs_tlocals[id]; 4930 4931 dvar = dtrace_dynvar(dstate, 2, key, 4932 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 4933 v->dtdv_type.dtdt_size : sizeof (uint64_t), 4934 regs[rd] ? DTRACE_DYNVAR_ALLOC : 4935 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 4936 4937 /* 4938 * Given that we're storing to thread-local data, 4939 * we need to flush our predicate cache. 4940 */ 4941 curthread->t_predcache = NULL; 4942 4943 if (dvar == NULL) 4944 break; 4945 4946 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 4947 if (!dtrace_vcanload( 4948 (void *)(uintptr_t)regs[rd], 4949 &v->dtdv_type, mstate, vstate)) 4950 break; 4951 4952 dtrace_vcopy((void *)(uintptr_t)regs[rd], 4953 dvar->dtdv_data, &v->dtdv_type); 4954 } else { 4955 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 4956 } 4957 4958 break; 4959 } 4960 4961 case DIF_OP_SRA: 4962 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 4963 break; 4964 4965 case DIF_OP_CALL: 4966 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 4967 regs, tupregs, ttop, mstate, state); 4968 break; 4969 4970 case DIF_OP_PUSHTR: 4971 if (ttop == DIF_DTR_NREGS) { 4972 *flags |= CPU_DTRACE_TUPOFLOW; 4973 break; 4974 } 4975 4976 if (r1 == DIF_TYPE_STRING) { 4977 /* 4978 * If this is a string type and the size is 0, 4979 * we'll use the system-wide default string 4980 * size. Note that we are _not_ looking at 4981 * the value of the DTRACEOPT_STRSIZE option; 4982 * had this been set, we would expect to have 4983 * a non-zero size value in the "pushtr". 4984 */ 4985 tupregs[ttop].dttk_size = 4986 dtrace_strlen((char *)(uintptr_t)regs[rd], 4987 regs[r2] ? regs[r2] : 4988 dtrace_strsize_default) + 1; 4989 } else { 4990 tupregs[ttop].dttk_size = regs[r2]; 4991 } 4992 4993 tupregs[ttop++].dttk_value = regs[rd]; 4994 break; 4995 4996 case DIF_OP_PUSHTV: 4997 if (ttop == DIF_DTR_NREGS) { 4998 *flags |= CPU_DTRACE_TUPOFLOW; 4999 break; 5000 } 5001 5002 tupregs[ttop].dttk_value = regs[rd]; 5003 tupregs[ttop++].dttk_size = 0; 5004 break; 5005 5006 case DIF_OP_POPTS: 5007 if (ttop != 0) 5008 ttop--; 5009 break; 5010 5011 case DIF_OP_FLUSHTS: 5012 ttop = 0; 5013 break; 5014 5015 case DIF_OP_LDGAA: 5016 case DIF_OP_LDTAA: { 5017 dtrace_dynvar_t *dvar; 5018 dtrace_key_t *key = tupregs; 5019 uint_t nkeys = ttop; 5020 5021 id = DIF_INSTR_VAR(instr); 5022 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5023 id -= DIF_VAR_OTHER_UBASE; 5024 5025 key[nkeys].dttk_value = (uint64_t)id; 5026 key[nkeys++].dttk_size = 0; 5027 5028 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 5029 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5030 key[nkeys++].dttk_size = 0; 5031 v = &vstate->dtvs_tlocals[id]; 5032 } else { 5033 v = &vstate->dtvs_globals[id]->dtsv_var; 5034 } 5035 5036 dvar = dtrace_dynvar(dstate, nkeys, key, 5037 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5038 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5039 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 5040 5041 if (dvar == NULL) { 5042 regs[rd] = 0; 5043 break; 5044 } 5045 5046 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5047 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5048 } else { 5049 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5050 } 5051 5052 break; 5053 } 5054 5055 case DIF_OP_STGAA: 5056 case DIF_OP_STTAA: { 5057 dtrace_dynvar_t *dvar; 5058 dtrace_key_t *key = tupregs; 5059 uint_t nkeys = ttop; 5060 5061 id = DIF_INSTR_VAR(instr); 5062 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5063 id -= DIF_VAR_OTHER_UBASE; 5064 5065 key[nkeys].dttk_value = (uint64_t)id; 5066 key[nkeys++].dttk_size = 0; 5067 5068 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 5069 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5070 key[nkeys++].dttk_size = 0; 5071 v = &vstate->dtvs_tlocals[id]; 5072 } else { 5073 v = &vstate->dtvs_globals[id]->dtsv_var; 5074 } 5075 5076 dvar = dtrace_dynvar(dstate, nkeys, key, 5077 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5078 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5079 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5080 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5081 5082 if (dvar == NULL) 5083 break; 5084 5085 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5086 if (!dtrace_vcanload( 5087 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5088 mstate, vstate)) 5089 break; 5090 5091 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5092 dvar->dtdv_data, &v->dtdv_type); 5093 } else { 5094 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5095 } 5096 5097 break; 5098 } 5099 5100 case DIF_OP_ALLOCS: { 5101 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5102 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 5103 5104 /* 5105 * Rounding up the user allocation size could have 5106 * overflowed large, bogus allocations (like -1ULL) to 5107 * 0. 5108 */ 5109 if (size < regs[r1] || 5110 !DTRACE_INSCRATCH(mstate, size)) { 5111 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5112 regs[rd] = NULL; 5113 break; 5114 } 5115 5116 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5117 mstate->dtms_scratch_ptr += size; 5118 regs[rd] = ptr; 5119 break; 5120 } 5121 5122 case DIF_OP_COPYS: 5123 if (!dtrace_canstore(regs[rd], regs[r2], 5124 mstate, vstate)) { 5125 *flags |= CPU_DTRACE_BADADDR; 5126 *illval = regs[rd]; 5127 break; 5128 } 5129 5130 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5131 break; 5132 5133 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5134 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5135 break; 5136 5137 case DIF_OP_STB: 5138 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5139 *flags |= CPU_DTRACE_BADADDR; 5140 *illval = regs[rd]; 5141 break; 5142 } 5143 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5144 break; 5145 5146 case DIF_OP_STH: 5147 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5148 *flags |= CPU_DTRACE_BADADDR; 5149 *illval = regs[rd]; 5150 break; 5151 } 5152 if (regs[rd] & 1) { 5153 *flags |= CPU_DTRACE_BADALIGN; 5154 *illval = regs[rd]; 5155 break; 5156 } 5157 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5158 break; 5159 5160 case DIF_OP_STW: 5161 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5162 *flags |= CPU_DTRACE_BADADDR; 5163 *illval = regs[rd]; 5164 break; 5165 } 5166 if (regs[rd] & 3) { 5167 *flags |= CPU_DTRACE_BADALIGN; 5168 *illval = regs[rd]; 5169 break; 5170 } 5171 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5172 break; 5173 5174 case DIF_OP_STX: 5175 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5176 *flags |= CPU_DTRACE_BADADDR; 5177 *illval = regs[rd]; 5178 break; 5179 } 5180 if (regs[rd] & 7) { 5181 *flags |= CPU_DTRACE_BADALIGN; 5182 *illval = regs[rd]; 5183 break; 5184 } 5185 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5186 break; 5187 } 5188 } 5189 5190 if (!(*flags & CPU_DTRACE_FAULT)) 5191 return (rval); 5192 5193 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5194 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5195 5196 return (0); 5197 } 5198 5199 static void 5200 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5201 { 5202 dtrace_probe_t *probe = ecb->dte_probe; 5203 dtrace_provider_t *prov = probe->dtpr_provider; 5204 char c[DTRACE_FULLNAMELEN + 80], *str; 5205 char *msg = "dtrace: breakpoint action at probe "; 5206 char *ecbmsg = " (ecb "; 5207 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5208 uintptr_t val = (uintptr_t)ecb; 5209 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5210 5211 if (dtrace_destructive_disallow) 5212 return; 5213 5214 /* 5215 * It's impossible to be taking action on the NULL probe. 5216 */ 5217 ASSERT(probe != NULL); 5218 5219 /* 5220 * This is a poor man's (destitute man's?) sprintf(): we want to 5221 * print the provider name, module name, function name and name of 5222 * the probe, along with the hex address of the ECB with the breakpoint 5223 * action -- all of which we must place in the character buffer by 5224 * hand. 5225 */ 5226 while (*msg != '\0') 5227 c[i++] = *msg++; 5228 5229 for (str = prov->dtpv_name; *str != '\0'; str++) 5230 c[i++] = *str; 5231 c[i++] = ':'; 5232 5233 for (str = probe->dtpr_mod; *str != '\0'; str++) 5234 c[i++] = *str; 5235 c[i++] = ':'; 5236 5237 for (str = probe->dtpr_func; *str != '\0'; str++) 5238 c[i++] = *str; 5239 c[i++] = ':'; 5240 5241 for (str = probe->dtpr_name; *str != '\0'; str++) 5242 c[i++] = *str; 5243 5244 while (*ecbmsg != '\0') 5245 c[i++] = *ecbmsg++; 5246 5247 while (shift >= 0) { 5248 mask = (uintptr_t)0xf << shift; 5249 5250 if (val >= ((uintptr_t)1 << shift)) 5251 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5252 shift -= 4; 5253 } 5254 5255 c[i++] = ')'; 5256 c[i] = '\0'; 5257 5258 debug_enter(c); 5259 } 5260 5261 static void 5262 dtrace_action_panic(dtrace_ecb_t *ecb) 5263 { 5264 dtrace_probe_t *probe = ecb->dte_probe; 5265 5266 /* 5267 * It's impossible to be taking action on the NULL probe. 5268 */ 5269 ASSERT(probe != NULL); 5270 5271 if (dtrace_destructive_disallow) 5272 return; 5273 5274 if (dtrace_panicked != NULL) 5275 return; 5276 5277 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5278 return; 5279 5280 /* 5281 * We won the right to panic. (We want to be sure that only one 5282 * thread calls panic() from dtrace_probe(), and that panic() is 5283 * called exactly once.) 5284 */ 5285 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5286 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5287 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5288 } 5289 5290 static void 5291 dtrace_action_raise(uint64_t sig) 5292 { 5293 if (dtrace_destructive_disallow) 5294 return; 5295 5296 if (sig >= NSIG) { 5297 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5298 return; 5299 } 5300 5301 /* 5302 * raise() has a queue depth of 1 -- we ignore all subsequent 5303 * invocations of the raise() action. 5304 */ 5305 if (curthread->t_dtrace_sig == 0) 5306 curthread->t_dtrace_sig = (uint8_t)sig; 5307 5308 curthread->t_sig_check = 1; 5309 aston(curthread); 5310 } 5311 5312 static void 5313 dtrace_action_stop(void) 5314 { 5315 if (dtrace_destructive_disallow) 5316 return; 5317 5318 if (!curthread->t_dtrace_stop) { 5319 curthread->t_dtrace_stop = 1; 5320 curthread->t_sig_check = 1; 5321 aston(curthread); 5322 } 5323 } 5324 5325 static void 5326 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5327 { 5328 hrtime_t now; 5329 volatile uint16_t *flags; 5330 cpu_t *cpu = CPU; 5331 5332 if (dtrace_destructive_disallow) 5333 return; 5334 5335 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5336 5337 now = dtrace_gethrtime(); 5338 5339 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5340 /* 5341 * We need to advance the mark to the current time. 5342 */ 5343 cpu->cpu_dtrace_chillmark = now; 5344 cpu->cpu_dtrace_chilled = 0; 5345 } 5346 5347 /* 5348 * Now check to see if the requested chill time would take us over 5349 * the maximum amount of time allowed in the chill interval. (Or 5350 * worse, if the calculation itself induces overflow.) 5351 */ 5352 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5353 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5354 *flags |= CPU_DTRACE_ILLOP; 5355 return; 5356 } 5357 5358 while (dtrace_gethrtime() - now < val) 5359 continue; 5360 5361 /* 5362 * Normally, we assure that the value of the variable "timestamp" does 5363 * not change within an ECB. The presence of chill() represents an 5364 * exception to this rule, however. 5365 */ 5366 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5367 cpu->cpu_dtrace_chilled += val; 5368 } 5369 5370 static void 5371 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5372 uint64_t *buf, uint64_t arg) 5373 { 5374 int nframes = DTRACE_USTACK_NFRAMES(arg); 5375 int strsize = DTRACE_USTACK_STRSIZE(arg); 5376 uint64_t *pcs = &buf[1], *fps; 5377 char *str = (char *)&pcs[nframes]; 5378 int size, offs = 0, i, j; 5379 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5380 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5381 char *sym; 5382 5383 /* 5384 * Should be taking a faster path if string space has not been 5385 * allocated. 5386 */ 5387 ASSERT(strsize != 0); 5388 5389 /* 5390 * We will first allocate some temporary space for the frame pointers. 5391 */ 5392 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5393 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5394 (nframes * sizeof (uint64_t)); 5395 5396 if (!DTRACE_INSCRATCH(mstate, size)) { 5397 /* 5398 * Not enough room for our frame pointers -- need to indicate 5399 * that we ran out of scratch space. 5400 */ 5401 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5402 return; 5403 } 5404 5405 mstate->dtms_scratch_ptr += size; 5406 saved = mstate->dtms_scratch_ptr; 5407 5408 /* 5409 * Now get a stack with both program counters and frame pointers. 5410 */ 5411 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5412 dtrace_getufpstack(buf, fps, nframes + 1); 5413 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5414 5415 /* 5416 * If that faulted, we're cooked. 5417 */ 5418 if (*flags & CPU_DTRACE_FAULT) 5419 goto out; 5420 5421 /* 5422 * Now we want to walk up the stack, calling the USTACK helper. For 5423 * each iteration, we restore the scratch pointer. 5424 */ 5425 for (i = 0; i < nframes; i++) { 5426 mstate->dtms_scratch_ptr = saved; 5427 5428 if (offs >= strsize) 5429 break; 5430 5431 sym = (char *)(uintptr_t)dtrace_helper( 5432 DTRACE_HELPER_ACTION_USTACK, 5433 mstate, state, pcs[i], fps[i]); 5434 5435 /* 5436 * If we faulted while running the helper, we're going to 5437 * clear the fault and null out the corresponding string. 5438 */ 5439 if (*flags & CPU_DTRACE_FAULT) { 5440 *flags &= ~CPU_DTRACE_FAULT; 5441 str[offs++] = '\0'; 5442 continue; 5443 } 5444 5445 if (sym == NULL) { 5446 str[offs++] = '\0'; 5447 continue; 5448 } 5449 5450 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5451 5452 /* 5453 * Now copy in the string that the helper returned to us. 5454 */ 5455 for (j = 0; offs + j < strsize; j++) { 5456 if ((str[offs + j] = sym[j]) == '\0') 5457 break; 5458 } 5459 5460 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5461 5462 offs += j + 1; 5463 } 5464 5465 if (offs >= strsize) { 5466 /* 5467 * If we didn't have room for all of the strings, we don't 5468 * abort processing -- this needn't be a fatal error -- but we 5469 * still want to increment a counter (dts_stkstroverflows) to 5470 * allow this condition to be warned about. (If this is from 5471 * a jstack() action, it is easily tuned via jstackstrsize.) 5472 */ 5473 dtrace_error(&state->dts_stkstroverflows); 5474 } 5475 5476 while (offs < strsize) 5477 str[offs++] = '\0'; 5478 5479 out: 5480 mstate->dtms_scratch_ptr = old; 5481 } 5482 5483 /* 5484 * If you're looking for the epicenter of DTrace, you just found it. This 5485 * is the function called by the provider to fire a probe -- from which all 5486 * subsequent probe-context DTrace activity emanates. 5487 */ 5488 void 5489 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5490 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5491 { 5492 processorid_t cpuid; 5493 dtrace_icookie_t cookie; 5494 dtrace_probe_t *probe; 5495 dtrace_mstate_t mstate; 5496 dtrace_ecb_t *ecb; 5497 dtrace_action_t *act; 5498 intptr_t offs; 5499 size_t size; 5500 int vtime, onintr; 5501 volatile uint16_t *flags; 5502 hrtime_t now; 5503 5504 /* 5505 * Kick out immediately if this CPU is still being born (in which case 5506 * curthread will be set to -1) or the current thread can't allow 5507 * probes in its current context. 5508 */ 5509 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5510 return; 5511 5512 cookie = dtrace_interrupt_disable(); 5513 probe = dtrace_probes[id - 1]; 5514 cpuid = CPU->cpu_id; 5515 onintr = CPU_ON_INTR(CPU); 5516 5517 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5518 probe->dtpr_predcache == curthread->t_predcache) { 5519 /* 5520 * We have hit in the predicate cache; we know that 5521 * this predicate would evaluate to be false. 5522 */ 5523 dtrace_interrupt_enable(cookie); 5524 return; 5525 } 5526 5527 if (panic_quiesce) { 5528 /* 5529 * We don't trace anything if we're panicking. 5530 */ 5531 dtrace_interrupt_enable(cookie); 5532 return; 5533 } 5534 5535 now = dtrace_gethrtime(); 5536 vtime = dtrace_vtime_references != 0; 5537 5538 if (vtime && curthread->t_dtrace_start) 5539 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5540 5541 mstate.dtms_difo = NULL; 5542 mstate.dtms_probe = probe; 5543 mstate.dtms_strtok = NULL; 5544 mstate.dtms_arg[0] = arg0; 5545 mstate.dtms_arg[1] = arg1; 5546 mstate.dtms_arg[2] = arg2; 5547 mstate.dtms_arg[3] = arg3; 5548 mstate.dtms_arg[4] = arg4; 5549 5550 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5551 5552 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5553 dtrace_predicate_t *pred = ecb->dte_predicate; 5554 dtrace_state_t *state = ecb->dte_state; 5555 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5556 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5557 dtrace_vstate_t *vstate = &state->dts_vstate; 5558 dtrace_provider_t *prov = probe->dtpr_provider; 5559 int committed = 0; 5560 caddr_t tomax; 5561 5562 /* 5563 * A little subtlety with the following (seemingly innocuous) 5564 * declaration of the automatic 'val': by looking at the 5565 * code, you might think that it could be declared in the 5566 * action processing loop, below. (That is, it's only used in 5567 * the action processing loop.) However, it must be declared 5568 * out of that scope because in the case of DIF expression 5569 * arguments to aggregating actions, one iteration of the 5570 * action loop will use the last iteration's value. 5571 */ 5572 #ifdef lint 5573 uint64_t val = 0; 5574 #else 5575 uint64_t val; 5576 #endif 5577 5578 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5579 *flags &= ~CPU_DTRACE_ERROR; 5580 5581 if (prov == dtrace_provider) { 5582 /* 5583 * If dtrace itself is the provider of this probe, 5584 * we're only going to continue processing the ECB if 5585 * arg0 (the dtrace_state_t) is equal to the ECB's 5586 * creating state. (This prevents disjoint consumers 5587 * from seeing one another's metaprobes.) 5588 */ 5589 if (arg0 != (uint64_t)(uintptr_t)state) 5590 continue; 5591 } 5592 5593 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5594 /* 5595 * We're not currently active. If our provider isn't 5596 * the dtrace pseudo provider, we're not interested. 5597 */ 5598 if (prov != dtrace_provider) 5599 continue; 5600 5601 /* 5602 * Now we must further check if we are in the BEGIN 5603 * probe. If we are, we will only continue processing 5604 * if we're still in WARMUP -- if one BEGIN enabling 5605 * has invoked the exit() action, we don't want to 5606 * evaluate subsequent BEGIN enablings. 5607 */ 5608 if (probe->dtpr_id == dtrace_probeid_begin && 5609 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5610 ASSERT(state->dts_activity == 5611 DTRACE_ACTIVITY_DRAINING); 5612 continue; 5613 } 5614 } 5615 5616 if (ecb->dte_cond) { 5617 /* 5618 * If the dte_cond bits indicate that this 5619 * consumer is only allowed to see user-mode firings 5620 * of this probe, call the provider's dtps_usermode() 5621 * entry point to check that the probe was fired 5622 * while in a user context. Skip this ECB if that's 5623 * not the case. 5624 */ 5625 if ((ecb->dte_cond & DTRACE_COND_USERMODE) && 5626 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, 5627 probe->dtpr_id, probe->dtpr_arg) == 0) 5628 continue; 5629 5630 /* 5631 * This is more subtle than it looks. We have to be 5632 * absolutely certain that CRED() isn't going to 5633 * change out from under us so it's only legit to 5634 * examine that structure if we're in constrained 5635 * situations. Currently, the only times we'll this 5636 * check is if a non-super-user has enabled the 5637 * profile or syscall providers -- providers that 5638 * allow visibility of all processes. For the 5639 * profile case, the check above will ensure that 5640 * we're examining a user context. 5641 */ 5642 if (ecb->dte_cond & DTRACE_COND_OWNER) { 5643 cred_t *cr; 5644 cred_t *s_cr = 5645 ecb->dte_state->dts_cred.dcr_cred; 5646 proc_t *proc; 5647 5648 ASSERT(s_cr != NULL); 5649 5650 if ((cr = CRED()) == NULL || 5651 s_cr->cr_uid != cr->cr_uid || 5652 s_cr->cr_uid != cr->cr_ruid || 5653 s_cr->cr_uid != cr->cr_suid || 5654 s_cr->cr_gid != cr->cr_gid || 5655 s_cr->cr_gid != cr->cr_rgid || 5656 s_cr->cr_gid != cr->cr_sgid || 5657 (proc = ttoproc(curthread)) == NULL || 5658 (proc->p_flag & SNOCD)) 5659 continue; 5660 } 5661 5662 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 5663 cred_t *cr; 5664 cred_t *s_cr = 5665 ecb->dte_state->dts_cred.dcr_cred; 5666 5667 ASSERT(s_cr != NULL); 5668 5669 if ((cr = CRED()) == NULL || 5670 s_cr->cr_zone->zone_id != 5671 cr->cr_zone->zone_id) 5672 continue; 5673 } 5674 } 5675 5676 if (now - state->dts_alive > dtrace_deadman_timeout) { 5677 /* 5678 * We seem to be dead. Unless we (a) have kernel 5679 * destructive permissions (b) have expicitly enabled 5680 * destructive actions and (c) destructive actions have 5681 * not been disabled, we're going to transition into 5682 * the KILLED state, from which no further processing 5683 * on this state will be performed. 5684 */ 5685 if (!dtrace_priv_kernel_destructive(state) || 5686 !state->dts_cred.dcr_destructive || 5687 dtrace_destructive_disallow) { 5688 void *activity = &state->dts_activity; 5689 dtrace_activity_t current; 5690 5691 do { 5692 current = state->dts_activity; 5693 } while (dtrace_cas32(activity, current, 5694 DTRACE_ACTIVITY_KILLED) != current); 5695 5696 continue; 5697 } 5698 } 5699 5700 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5701 ecb->dte_alignment, state, &mstate)) < 0) 5702 continue; 5703 5704 tomax = buf->dtb_tomax; 5705 ASSERT(tomax != NULL); 5706 5707 if (ecb->dte_size != 0) 5708 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5709 5710 mstate.dtms_epid = ecb->dte_epid; 5711 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5712 5713 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5714 mstate.dtms_access = DTRACE_ACCESS_KERNEL; 5715 else 5716 mstate.dtms_access = 0; 5717 5718 if (pred != NULL) { 5719 dtrace_difo_t *dp = pred->dtp_difo; 5720 int rval; 5721 5722 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5723 5724 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5725 dtrace_cacheid_t cid = probe->dtpr_predcache; 5726 5727 if (cid != DTRACE_CACHEIDNONE && !onintr) { 5728 /* 5729 * Update the predicate cache... 5730 */ 5731 ASSERT(cid == pred->dtp_cacheid); 5732 curthread->t_predcache = cid; 5733 } 5734 5735 continue; 5736 } 5737 } 5738 5739 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 5740 act != NULL; act = act->dta_next) { 5741 size_t valoffs; 5742 dtrace_difo_t *dp; 5743 dtrace_recdesc_t *rec = &act->dta_rec; 5744 5745 size = rec->dtrd_size; 5746 valoffs = offs + rec->dtrd_offset; 5747 5748 if (DTRACEACT_ISAGG(act->dta_kind)) { 5749 uint64_t v = 0xbad; 5750 dtrace_aggregation_t *agg; 5751 5752 agg = (dtrace_aggregation_t *)act; 5753 5754 if ((dp = act->dta_difo) != NULL) 5755 v = dtrace_dif_emulate(dp, 5756 &mstate, vstate, state); 5757 5758 if (*flags & CPU_DTRACE_ERROR) 5759 continue; 5760 5761 /* 5762 * Note that we always pass the expression 5763 * value from the previous iteration of the 5764 * action loop. This value will only be used 5765 * if there is an expression argument to the 5766 * aggregating action, denoted by the 5767 * dtag_hasarg field. 5768 */ 5769 dtrace_aggregate(agg, buf, 5770 offs, aggbuf, v, val); 5771 continue; 5772 } 5773 5774 switch (act->dta_kind) { 5775 case DTRACEACT_STOP: 5776 if (dtrace_priv_proc_destructive(state)) 5777 dtrace_action_stop(); 5778 continue; 5779 5780 case DTRACEACT_BREAKPOINT: 5781 if (dtrace_priv_kernel_destructive(state)) 5782 dtrace_action_breakpoint(ecb); 5783 continue; 5784 5785 case DTRACEACT_PANIC: 5786 if (dtrace_priv_kernel_destructive(state)) 5787 dtrace_action_panic(ecb); 5788 continue; 5789 5790 case DTRACEACT_STACK: 5791 if (!dtrace_priv_kernel(state)) 5792 continue; 5793 5794 dtrace_getpcstack((pc_t *)(tomax + valoffs), 5795 size / sizeof (pc_t), probe->dtpr_aframes, 5796 DTRACE_ANCHORED(probe) ? NULL : 5797 (uint32_t *)arg0); 5798 5799 continue; 5800 5801 case DTRACEACT_JSTACK: 5802 case DTRACEACT_USTACK: 5803 if (!dtrace_priv_proc(state)) 5804 continue; 5805 5806 /* 5807 * See comment in DIF_VAR_PID. 5808 */ 5809 if (DTRACE_ANCHORED(mstate.dtms_probe) && 5810 CPU_ON_INTR(CPU)) { 5811 int depth = DTRACE_USTACK_NFRAMES( 5812 rec->dtrd_arg) + 1; 5813 5814 dtrace_bzero((void *)(tomax + valoffs), 5815 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 5816 + depth * sizeof (uint64_t)); 5817 5818 continue; 5819 } 5820 5821 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 5822 curproc->p_dtrace_helpers != NULL) { 5823 /* 5824 * This is the slow path -- we have 5825 * allocated string space, and we're 5826 * getting the stack of a process that 5827 * has helpers. Call into a separate 5828 * routine to perform this processing. 5829 */ 5830 dtrace_action_ustack(&mstate, state, 5831 (uint64_t *)(tomax + valoffs), 5832 rec->dtrd_arg); 5833 continue; 5834 } 5835 5836 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5837 dtrace_getupcstack((uint64_t *) 5838 (tomax + valoffs), 5839 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 5840 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5841 continue; 5842 5843 default: 5844 break; 5845 } 5846 5847 dp = act->dta_difo; 5848 ASSERT(dp != NULL); 5849 5850 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 5851 5852 if (*flags & CPU_DTRACE_ERROR) 5853 continue; 5854 5855 switch (act->dta_kind) { 5856 case DTRACEACT_SPECULATE: 5857 ASSERT(buf == &state->dts_buffer[cpuid]); 5858 buf = dtrace_speculation_buffer(state, 5859 cpuid, val); 5860 5861 if (buf == NULL) { 5862 *flags |= CPU_DTRACE_DROP; 5863 continue; 5864 } 5865 5866 offs = dtrace_buffer_reserve(buf, 5867 ecb->dte_needed, ecb->dte_alignment, 5868 state, NULL); 5869 5870 if (offs < 0) { 5871 *flags |= CPU_DTRACE_DROP; 5872 continue; 5873 } 5874 5875 tomax = buf->dtb_tomax; 5876 ASSERT(tomax != NULL); 5877 5878 if (ecb->dte_size != 0) 5879 DTRACE_STORE(uint32_t, tomax, offs, 5880 ecb->dte_epid); 5881 continue; 5882 5883 case DTRACEACT_CHILL: 5884 if (dtrace_priv_kernel_destructive(state)) 5885 dtrace_action_chill(&mstate, val); 5886 continue; 5887 5888 case DTRACEACT_RAISE: 5889 if (dtrace_priv_proc_destructive(state)) 5890 dtrace_action_raise(val); 5891 continue; 5892 5893 case DTRACEACT_COMMIT: 5894 ASSERT(!committed); 5895 5896 /* 5897 * We need to commit our buffer state. 5898 */ 5899 if (ecb->dte_size) 5900 buf->dtb_offset = offs + ecb->dte_size; 5901 buf = &state->dts_buffer[cpuid]; 5902 dtrace_speculation_commit(state, cpuid, val); 5903 committed = 1; 5904 continue; 5905 5906 case DTRACEACT_DISCARD: 5907 dtrace_speculation_discard(state, cpuid, val); 5908 continue; 5909 5910 case DTRACEACT_DIFEXPR: 5911 case DTRACEACT_LIBACT: 5912 case DTRACEACT_PRINTF: 5913 case DTRACEACT_PRINTA: 5914 case DTRACEACT_SYSTEM: 5915 case DTRACEACT_FREOPEN: 5916 break; 5917 5918 case DTRACEACT_SYM: 5919 case DTRACEACT_MOD: 5920 if (!dtrace_priv_kernel(state)) 5921 continue; 5922 break; 5923 5924 case DTRACEACT_USYM: 5925 case DTRACEACT_UMOD: 5926 case DTRACEACT_UADDR: { 5927 struct pid *pid = curthread->t_procp->p_pidp; 5928 5929 if (!dtrace_priv_proc(state)) 5930 continue; 5931 5932 DTRACE_STORE(uint64_t, tomax, 5933 valoffs, (uint64_t)pid->pid_id); 5934 DTRACE_STORE(uint64_t, tomax, 5935 valoffs + sizeof (uint64_t), val); 5936 5937 continue; 5938 } 5939 5940 case DTRACEACT_EXIT: { 5941 /* 5942 * For the exit action, we are going to attempt 5943 * to atomically set our activity to be 5944 * draining. If this fails (either because 5945 * another CPU has beat us to the exit action, 5946 * or because our current activity is something 5947 * other than ACTIVE or WARMUP), we will 5948 * continue. This assures that the exit action 5949 * can be successfully recorded at most once 5950 * when we're in the ACTIVE state. If we're 5951 * encountering the exit() action while in 5952 * COOLDOWN, however, we want to honor the new 5953 * status code. (We know that we're the only 5954 * thread in COOLDOWN, so there is no race.) 5955 */ 5956 void *activity = &state->dts_activity; 5957 dtrace_activity_t current = state->dts_activity; 5958 5959 if (current == DTRACE_ACTIVITY_COOLDOWN) 5960 break; 5961 5962 if (current != DTRACE_ACTIVITY_WARMUP) 5963 current = DTRACE_ACTIVITY_ACTIVE; 5964 5965 if (dtrace_cas32(activity, current, 5966 DTRACE_ACTIVITY_DRAINING) != current) { 5967 *flags |= CPU_DTRACE_DROP; 5968 continue; 5969 } 5970 5971 break; 5972 } 5973 5974 default: 5975 ASSERT(0); 5976 } 5977 5978 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 5979 uintptr_t end = valoffs + size; 5980 5981 if (!dtrace_vcanload((void *)(uintptr_t)val, 5982 &dp->dtdo_rtype, &mstate, vstate)) 5983 continue; 5984 5985 /* 5986 * If this is a string, we're going to only 5987 * load until we find the zero byte -- after 5988 * which we'll store zero bytes. 5989 */ 5990 if (dp->dtdo_rtype.dtdt_kind == 5991 DIF_TYPE_STRING) { 5992 char c = '\0' + 1; 5993 int intuple = act->dta_intuple; 5994 size_t s; 5995 5996 for (s = 0; s < size; s++) { 5997 if (c != '\0') 5998 c = dtrace_load8(val++); 5999 6000 DTRACE_STORE(uint8_t, tomax, 6001 valoffs++, c); 6002 6003 if (c == '\0' && intuple) 6004 break; 6005 } 6006 6007 continue; 6008 } 6009 6010 while (valoffs < end) { 6011 DTRACE_STORE(uint8_t, tomax, valoffs++, 6012 dtrace_load8(val++)); 6013 } 6014 6015 continue; 6016 } 6017 6018 switch (size) { 6019 case 0: 6020 break; 6021 6022 case sizeof (uint8_t): 6023 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6024 break; 6025 case sizeof (uint16_t): 6026 DTRACE_STORE(uint16_t, tomax, valoffs, val); 6027 break; 6028 case sizeof (uint32_t): 6029 DTRACE_STORE(uint32_t, tomax, valoffs, val); 6030 break; 6031 case sizeof (uint64_t): 6032 DTRACE_STORE(uint64_t, tomax, valoffs, val); 6033 break; 6034 default: 6035 /* 6036 * Any other size should have been returned by 6037 * reference, not by value. 6038 */ 6039 ASSERT(0); 6040 break; 6041 } 6042 } 6043 6044 if (*flags & CPU_DTRACE_DROP) 6045 continue; 6046 6047 if (*flags & CPU_DTRACE_FAULT) { 6048 int ndx; 6049 dtrace_action_t *err; 6050 6051 buf->dtb_errors++; 6052 6053 if (probe->dtpr_id == dtrace_probeid_error) { 6054 /* 6055 * There's nothing we can do -- we had an 6056 * error on the error probe. We bump an 6057 * error counter to at least indicate that 6058 * this condition happened. 6059 */ 6060 dtrace_error(&state->dts_dblerrors); 6061 continue; 6062 } 6063 6064 if (vtime) { 6065 /* 6066 * Before recursing on dtrace_probe(), we 6067 * need to explicitly clear out our start 6068 * time to prevent it from being accumulated 6069 * into t_dtrace_vtime. 6070 */ 6071 curthread->t_dtrace_start = 0; 6072 } 6073 6074 /* 6075 * Iterate over the actions to figure out which action 6076 * we were processing when we experienced the error. 6077 * Note that act points _past_ the faulting action; if 6078 * act is ecb->dte_action, the fault was in the 6079 * predicate, if it's ecb->dte_action->dta_next it's 6080 * in action #1, and so on. 6081 */ 6082 for (err = ecb->dte_action, ndx = 0; 6083 err != act; err = err->dta_next, ndx++) 6084 continue; 6085 6086 dtrace_probe_error(state, ecb->dte_epid, ndx, 6087 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 6088 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 6089 cpu_core[cpuid].cpuc_dtrace_illval); 6090 6091 continue; 6092 } 6093 6094 if (!committed) 6095 buf->dtb_offset = offs + ecb->dte_size; 6096 } 6097 6098 if (vtime) 6099 curthread->t_dtrace_start = dtrace_gethrtime(); 6100 6101 dtrace_interrupt_enable(cookie); 6102 } 6103 6104 /* 6105 * DTrace Probe Hashing Functions 6106 * 6107 * The functions in this section (and indeed, the functions in remaining 6108 * sections) are not _called_ from probe context. (Any exceptions to this are 6109 * marked with a "Note:".) Rather, they are called from elsewhere in the 6110 * DTrace framework to look-up probes in, add probes to and remove probes from 6111 * the DTrace probe hashes. (Each probe is hashed by each element of the 6112 * probe tuple -- allowing for fast lookups, regardless of what was 6113 * specified.) 6114 */ 6115 static uint_t 6116 dtrace_hash_str(char *p) 6117 { 6118 unsigned int g; 6119 uint_t hval = 0; 6120 6121 while (*p) { 6122 hval = (hval << 4) + *p++; 6123 if ((g = (hval & 0xf0000000)) != 0) 6124 hval ^= g >> 24; 6125 hval &= ~g; 6126 } 6127 return (hval); 6128 } 6129 6130 static dtrace_hash_t * 6131 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6132 { 6133 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6134 6135 hash->dth_stroffs = stroffs; 6136 hash->dth_nextoffs = nextoffs; 6137 hash->dth_prevoffs = prevoffs; 6138 6139 hash->dth_size = 1; 6140 hash->dth_mask = hash->dth_size - 1; 6141 6142 hash->dth_tab = kmem_zalloc(hash->dth_size * 6143 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6144 6145 return (hash); 6146 } 6147 6148 static void 6149 dtrace_hash_destroy(dtrace_hash_t *hash) 6150 { 6151 #ifdef DEBUG 6152 int i; 6153 6154 for (i = 0; i < hash->dth_size; i++) 6155 ASSERT(hash->dth_tab[i] == NULL); 6156 #endif 6157 6158 kmem_free(hash->dth_tab, 6159 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6160 kmem_free(hash, sizeof (dtrace_hash_t)); 6161 } 6162 6163 static void 6164 dtrace_hash_resize(dtrace_hash_t *hash) 6165 { 6166 int size = hash->dth_size, i, ndx; 6167 int new_size = hash->dth_size << 1; 6168 int new_mask = new_size - 1; 6169 dtrace_hashbucket_t **new_tab, *bucket, *next; 6170 6171 ASSERT((new_size & new_mask) == 0); 6172 6173 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6174 6175 for (i = 0; i < size; i++) { 6176 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6177 dtrace_probe_t *probe = bucket->dthb_chain; 6178 6179 ASSERT(probe != NULL); 6180 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6181 6182 next = bucket->dthb_next; 6183 bucket->dthb_next = new_tab[ndx]; 6184 new_tab[ndx] = bucket; 6185 } 6186 } 6187 6188 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6189 hash->dth_tab = new_tab; 6190 hash->dth_size = new_size; 6191 hash->dth_mask = new_mask; 6192 } 6193 6194 static void 6195 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6196 { 6197 int hashval = DTRACE_HASHSTR(hash, new); 6198 int ndx = hashval & hash->dth_mask; 6199 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6200 dtrace_probe_t **nextp, **prevp; 6201 6202 for (; bucket != NULL; bucket = bucket->dthb_next) { 6203 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6204 goto add; 6205 } 6206 6207 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6208 dtrace_hash_resize(hash); 6209 dtrace_hash_add(hash, new); 6210 return; 6211 } 6212 6213 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6214 bucket->dthb_next = hash->dth_tab[ndx]; 6215 hash->dth_tab[ndx] = bucket; 6216 hash->dth_nbuckets++; 6217 6218 add: 6219 nextp = DTRACE_HASHNEXT(hash, new); 6220 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6221 *nextp = bucket->dthb_chain; 6222 6223 if (bucket->dthb_chain != NULL) { 6224 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6225 ASSERT(*prevp == NULL); 6226 *prevp = new; 6227 } 6228 6229 bucket->dthb_chain = new; 6230 bucket->dthb_len++; 6231 } 6232 6233 static dtrace_probe_t * 6234 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6235 { 6236 int hashval = DTRACE_HASHSTR(hash, template); 6237 int ndx = hashval & hash->dth_mask; 6238 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6239 6240 for (; bucket != NULL; bucket = bucket->dthb_next) { 6241 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6242 return (bucket->dthb_chain); 6243 } 6244 6245 return (NULL); 6246 } 6247 6248 static int 6249 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6250 { 6251 int hashval = DTRACE_HASHSTR(hash, template); 6252 int ndx = hashval & hash->dth_mask; 6253 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6254 6255 for (; bucket != NULL; bucket = bucket->dthb_next) { 6256 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6257 return (bucket->dthb_len); 6258 } 6259 6260 return (NULL); 6261 } 6262 6263 static void 6264 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6265 { 6266 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6267 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6268 6269 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6270 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6271 6272 /* 6273 * Find the bucket that we're removing this probe from. 6274 */ 6275 for (; bucket != NULL; bucket = bucket->dthb_next) { 6276 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6277 break; 6278 } 6279 6280 ASSERT(bucket != NULL); 6281 6282 if (*prevp == NULL) { 6283 if (*nextp == NULL) { 6284 /* 6285 * The removed probe was the only probe on this 6286 * bucket; we need to remove the bucket. 6287 */ 6288 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6289 6290 ASSERT(bucket->dthb_chain == probe); 6291 ASSERT(b != NULL); 6292 6293 if (b == bucket) { 6294 hash->dth_tab[ndx] = bucket->dthb_next; 6295 } else { 6296 while (b->dthb_next != bucket) 6297 b = b->dthb_next; 6298 b->dthb_next = bucket->dthb_next; 6299 } 6300 6301 ASSERT(hash->dth_nbuckets > 0); 6302 hash->dth_nbuckets--; 6303 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6304 return; 6305 } 6306 6307 bucket->dthb_chain = *nextp; 6308 } else { 6309 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6310 } 6311 6312 if (*nextp != NULL) 6313 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6314 } 6315 6316 /* 6317 * DTrace Utility Functions 6318 * 6319 * These are random utility functions that are _not_ called from probe context. 6320 */ 6321 static int 6322 dtrace_badattr(const dtrace_attribute_t *a) 6323 { 6324 return (a->dtat_name > DTRACE_STABILITY_MAX || 6325 a->dtat_data > DTRACE_STABILITY_MAX || 6326 a->dtat_class > DTRACE_CLASS_MAX); 6327 } 6328 6329 /* 6330 * Return a duplicate copy of a string. If the specified string is NULL, 6331 * this function returns a zero-length string. 6332 */ 6333 static char * 6334 dtrace_strdup(const char *str) 6335 { 6336 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6337 6338 if (str != NULL) 6339 (void) strcpy(new, str); 6340 6341 return (new); 6342 } 6343 6344 #define DTRACE_ISALPHA(c) \ 6345 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6346 6347 static int 6348 dtrace_badname(const char *s) 6349 { 6350 char c; 6351 6352 if (s == NULL || (c = *s++) == '\0') 6353 return (0); 6354 6355 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6356 return (1); 6357 6358 while ((c = *s++) != '\0') { 6359 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6360 c != '-' && c != '_' && c != '.' && c != '`') 6361 return (1); 6362 } 6363 6364 return (0); 6365 } 6366 6367 static void 6368 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6369 { 6370 uint32_t priv; 6371 6372 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6373 /* 6374 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6375 */ 6376 priv = DTRACE_PRIV_ALL; 6377 } else { 6378 *uidp = crgetuid(cr); 6379 *zoneidp = crgetzoneid(cr); 6380 6381 priv = 0; 6382 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6383 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6384 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6385 priv |= DTRACE_PRIV_USER; 6386 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6387 priv |= DTRACE_PRIV_PROC; 6388 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6389 priv |= DTRACE_PRIV_OWNER; 6390 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6391 priv |= DTRACE_PRIV_ZONEOWNER; 6392 } 6393 6394 *privp = priv; 6395 } 6396 6397 #ifdef DTRACE_ERRDEBUG 6398 static void 6399 dtrace_errdebug(const char *str) 6400 { 6401 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6402 int occupied = 0; 6403 6404 mutex_enter(&dtrace_errlock); 6405 dtrace_errlast = str; 6406 dtrace_errthread = curthread; 6407 6408 while (occupied++ < DTRACE_ERRHASHSZ) { 6409 if (dtrace_errhash[hval].dter_msg == str) { 6410 dtrace_errhash[hval].dter_count++; 6411 goto out; 6412 } 6413 6414 if (dtrace_errhash[hval].dter_msg != NULL) { 6415 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6416 continue; 6417 } 6418 6419 dtrace_errhash[hval].dter_msg = str; 6420 dtrace_errhash[hval].dter_count = 1; 6421 goto out; 6422 } 6423 6424 panic("dtrace: undersized error hash"); 6425 out: 6426 mutex_exit(&dtrace_errlock); 6427 } 6428 #endif 6429 6430 /* 6431 * DTrace Matching Functions 6432 * 6433 * These functions are used to match groups of probes, given some elements of 6434 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6435 */ 6436 static int 6437 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6438 zoneid_t zoneid) 6439 { 6440 if (priv != DTRACE_PRIV_ALL) { 6441 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6442 uint32_t match = priv & ppriv; 6443 6444 /* 6445 * No PRIV_DTRACE_* privileges... 6446 */ 6447 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6448 DTRACE_PRIV_KERNEL)) == 0) 6449 return (0); 6450 6451 /* 6452 * No matching bits, but there were bits to match... 6453 */ 6454 if (match == 0 && ppriv != 0) 6455 return (0); 6456 6457 /* 6458 * Need to have permissions to the process, but don't... 6459 */ 6460 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6461 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6462 return (0); 6463 } 6464 6465 /* 6466 * Need to be in the same zone unless we possess the 6467 * privilege to examine all zones. 6468 */ 6469 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6470 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6471 return (0); 6472 } 6473 } 6474 6475 return (1); 6476 } 6477 6478 /* 6479 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6480 * consists of input pattern strings and an ops-vector to evaluate them. 6481 * This function returns >0 for match, 0 for no match, and <0 for error. 6482 */ 6483 static int 6484 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6485 uint32_t priv, uid_t uid, zoneid_t zoneid) 6486 { 6487 dtrace_provider_t *pvp = prp->dtpr_provider; 6488 int rv; 6489 6490 if (pvp->dtpv_defunct) 6491 return (0); 6492 6493 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6494 return (rv); 6495 6496 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6497 return (rv); 6498 6499 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6500 return (rv); 6501 6502 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6503 return (rv); 6504 6505 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6506 return (0); 6507 6508 return (rv); 6509 } 6510 6511 /* 6512 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6513 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6514 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6515 * In addition, all of the recursion cases except for '*' matching have been 6516 * unwound. For '*', we still implement recursive evaluation, but a depth 6517 * counter is maintained and matching is aborted if we recurse too deep. 6518 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6519 */ 6520 static int 6521 dtrace_match_glob(const char *s, const char *p, int depth) 6522 { 6523 const char *olds; 6524 char s1, c; 6525 int gs; 6526 6527 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6528 return (-1); 6529 6530 if (s == NULL) 6531 s = ""; /* treat NULL as empty string */ 6532 6533 top: 6534 olds = s; 6535 s1 = *s++; 6536 6537 if (p == NULL) 6538 return (0); 6539 6540 if ((c = *p++) == '\0') 6541 return (s1 == '\0'); 6542 6543 switch (c) { 6544 case '[': { 6545 int ok = 0, notflag = 0; 6546 char lc = '\0'; 6547 6548 if (s1 == '\0') 6549 return (0); 6550 6551 if (*p == '!') { 6552 notflag = 1; 6553 p++; 6554 } 6555 6556 if ((c = *p++) == '\0') 6557 return (0); 6558 6559 do { 6560 if (c == '-' && lc != '\0' && *p != ']') { 6561 if ((c = *p++) == '\0') 6562 return (0); 6563 if (c == '\\' && (c = *p++) == '\0') 6564 return (0); 6565 6566 if (notflag) { 6567 if (s1 < lc || s1 > c) 6568 ok++; 6569 else 6570 return (0); 6571 } else if (lc <= s1 && s1 <= c) 6572 ok++; 6573 6574 } else if (c == '\\' && (c = *p++) == '\0') 6575 return (0); 6576 6577 lc = c; /* save left-hand 'c' for next iteration */ 6578 6579 if (notflag) { 6580 if (s1 != c) 6581 ok++; 6582 else 6583 return (0); 6584 } else if (s1 == c) 6585 ok++; 6586 6587 if ((c = *p++) == '\0') 6588 return (0); 6589 6590 } while (c != ']'); 6591 6592 if (ok) 6593 goto top; 6594 6595 return (0); 6596 } 6597 6598 case '\\': 6599 if ((c = *p++) == '\0') 6600 return (0); 6601 /*FALLTHRU*/ 6602 6603 default: 6604 if (c != s1) 6605 return (0); 6606 /*FALLTHRU*/ 6607 6608 case '?': 6609 if (s1 != '\0') 6610 goto top; 6611 return (0); 6612 6613 case '*': 6614 while (*p == '*') 6615 p++; /* consecutive *'s are identical to a single one */ 6616 6617 if (*p == '\0') 6618 return (1); 6619 6620 for (s = olds; *s != '\0'; s++) { 6621 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6622 return (gs); 6623 } 6624 6625 return (0); 6626 } 6627 } 6628 6629 /*ARGSUSED*/ 6630 static int 6631 dtrace_match_string(const char *s, const char *p, int depth) 6632 { 6633 return (s != NULL && strcmp(s, p) == 0); 6634 } 6635 6636 /*ARGSUSED*/ 6637 static int 6638 dtrace_match_nul(const char *s, const char *p, int depth) 6639 { 6640 return (1); /* always match the empty pattern */ 6641 } 6642 6643 /*ARGSUSED*/ 6644 static int 6645 dtrace_match_nonzero(const char *s, const char *p, int depth) 6646 { 6647 return (s != NULL && s[0] != '\0'); 6648 } 6649 6650 static int 6651 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6652 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6653 { 6654 dtrace_probe_t template, *probe; 6655 dtrace_hash_t *hash = NULL; 6656 int len, best = INT_MAX, nmatched = 0; 6657 dtrace_id_t i; 6658 6659 ASSERT(MUTEX_HELD(&dtrace_lock)); 6660 6661 /* 6662 * If the probe ID is specified in the key, just lookup by ID and 6663 * invoke the match callback once if a matching probe is found. 6664 */ 6665 if (pkp->dtpk_id != DTRACE_IDNONE) { 6666 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6667 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6668 (void) (*matched)(probe, arg); 6669 nmatched++; 6670 } 6671 return (nmatched); 6672 } 6673 6674 template.dtpr_mod = (char *)pkp->dtpk_mod; 6675 template.dtpr_func = (char *)pkp->dtpk_func; 6676 template.dtpr_name = (char *)pkp->dtpk_name; 6677 6678 /* 6679 * We want to find the most distinct of the module name, function 6680 * name, and name. So for each one that is not a glob pattern or 6681 * empty string, we perform a lookup in the corresponding hash and 6682 * use the hash table with the fewest collisions to do our search. 6683 */ 6684 if (pkp->dtpk_mmatch == &dtrace_match_string && 6685 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6686 best = len; 6687 hash = dtrace_bymod; 6688 } 6689 6690 if (pkp->dtpk_fmatch == &dtrace_match_string && 6691 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6692 best = len; 6693 hash = dtrace_byfunc; 6694 } 6695 6696 if (pkp->dtpk_nmatch == &dtrace_match_string && 6697 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 6698 best = len; 6699 hash = dtrace_byname; 6700 } 6701 6702 /* 6703 * If we did not select a hash table, iterate over every probe and 6704 * invoke our callback for each one that matches our input probe key. 6705 */ 6706 if (hash == NULL) { 6707 for (i = 0; i < dtrace_nprobes; i++) { 6708 if ((probe = dtrace_probes[i]) == NULL || 6709 dtrace_match_probe(probe, pkp, priv, uid, 6710 zoneid) <= 0) 6711 continue; 6712 6713 nmatched++; 6714 6715 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6716 break; 6717 } 6718 6719 return (nmatched); 6720 } 6721 6722 /* 6723 * If we selected a hash table, iterate over each probe of the same key 6724 * name and invoke the callback for every probe that matches the other 6725 * attributes of our input probe key. 6726 */ 6727 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 6728 probe = *(DTRACE_HASHNEXT(hash, probe))) { 6729 6730 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 6731 continue; 6732 6733 nmatched++; 6734 6735 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT) 6736 break; 6737 } 6738 6739 return (nmatched); 6740 } 6741 6742 /* 6743 * Return the function pointer dtrace_probecmp() should use to compare the 6744 * specified pattern with a string. For NULL or empty patterns, we select 6745 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 6746 * For non-empty non-glob strings, we use dtrace_match_string(). 6747 */ 6748 static dtrace_probekey_f * 6749 dtrace_probekey_func(const char *p) 6750 { 6751 char c; 6752 6753 if (p == NULL || *p == '\0') 6754 return (&dtrace_match_nul); 6755 6756 while ((c = *p++) != '\0') { 6757 if (c == '[' || c == '?' || c == '*' || c == '\\') 6758 return (&dtrace_match_glob); 6759 } 6760 6761 return (&dtrace_match_string); 6762 } 6763 6764 /* 6765 * Build a probe comparison key for use with dtrace_match_probe() from the 6766 * given probe description. By convention, a null key only matches anchored 6767 * probes: if each field is the empty string, reset dtpk_fmatch to 6768 * dtrace_match_nonzero(). 6769 */ 6770 static void 6771 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 6772 { 6773 pkp->dtpk_prov = pdp->dtpd_provider; 6774 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 6775 6776 pkp->dtpk_mod = pdp->dtpd_mod; 6777 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 6778 6779 pkp->dtpk_func = pdp->dtpd_func; 6780 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 6781 6782 pkp->dtpk_name = pdp->dtpd_name; 6783 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 6784 6785 pkp->dtpk_id = pdp->dtpd_id; 6786 6787 if (pkp->dtpk_id == DTRACE_IDNONE && 6788 pkp->dtpk_pmatch == &dtrace_match_nul && 6789 pkp->dtpk_mmatch == &dtrace_match_nul && 6790 pkp->dtpk_fmatch == &dtrace_match_nul && 6791 pkp->dtpk_nmatch == &dtrace_match_nul) 6792 pkp->dtpk_fmatch = &dtrace_match_nonzero; 6793 } 6794 6795 /* 6796 * DTrace Provider-to-Framework API Functions 6797 * 6798 * These functions implement much of the Provider-to-Framework API, as 6799 * described in <sys/dtrace.h>. The parts of the API not in this section are 6800 * the functions in the API for probe management (found below), and 6801 * dtrace_probe() itself (found above). 6802 */ 6803 6804 /* 6805 * Register the calling provider with the DTrace framework. This should 6806 * generally be called by DTrace providers in their attach(9E) entry point. 6807 */ 6808 int 6809 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 6810 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 6811 { 6812 dtrace_provider_t *provider; 6813 6814 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 6815 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6816 "arguments", name ? name : "<NULL>"); 6817 return (EINVAL); 6818 } 6819 6820 if (name[0] == '\0' || dtrace_badname(name)) { 6821 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6822 "provider name", name); 6823 return (EINVAL); 6824 } 6825 6826 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 6827 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 6828 pops->dtps_destroy == NULL || 6829 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 6830 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6831 "provider ops", name); 6832 return (EINVAL); 6833 } 6834 6835 if (dtrace_badattr(&pap->dtpa_provider) || 6836 dtrace_badattr(&pap->dtpa_mod) || 6837 dtrace_badattr(&pap->dtpa_func) || 6838 dtrace_badattr(&pap->dtpa_name) || 6839 dtrace_badattr(&pap->dtpa_args)) { 6840 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6841 "provider attributes", name); 6842 return (EINVAL); 6843 } 6844 6845 if (priv & ~DTRACE_PRIV_ALL) { 6846 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 6847 "privilege attributes", name); 6848 return (EINVAL); 6849 } 6850 6851 if ((priv & DTRACE_PRIV_KERNEL) && 6852 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 6853 pops->dtps_usermode == NULL) { 6854 cmn_err(CE_WARN, "failed to register provider '%s': need " 6855 "dtps_usermode() op for given privilege attributes", name); 6856 return (EINVAL); 6857 } 6858 6859 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 6860 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 6861 (void) strcpy(provider->dtpv_name, name); 6862 6863 provider->dtpv_attr = *pap; 6864 provider->dtpv_priv.dtpp_flags = priv; 6865 if (cr != NULL) { 6866 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 6867 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 6868 } 6869 provider->dtpv_pops = *pops; 6870 6871 if (pops->dtps_provide == NULL) { 6872 ASSERT(pops->dtps_provide_module != NULL); 6873 provider->dtpv_pops.dtps_provide = 6874 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 6875 } 6876 6877 if (pops->dtps_provide_module == NULL) { 6878 ASSERT(pops->dtps_provide != NULL); 6879 provider->dtpv_pops.dtps_provide_module = 6880 (void (*)(void *, struct modctl *))dtrace_nullop; 6881 } 6882 6883 if (pops->dtps_suspend == NULL) { 6884 ASSERT(pops->dtps_resume == NULL); 6885 provider->dtpv_pops.dtps_suspend = 6886 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6887 provider->dtpv_pops.dtps_resume = 6888 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 6889 } 6890 6891 provider->dtpv_arg = arg; 6892 *idp = (dtrace_provider_id_t)provider; 6893 6894 if (pops == &dtrace_provider_ops) { 6895 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6896 ASSERT(MUTEX_HELD(&dtrace_lock)); 6897 ASSERT(dtrace_anon.dta_enabling == NULL); 6898 6899 /* 6900 * We make sure that the DTrace provider is at the head of 6901 * the provider chain. 6902 */ 6903 provider->dtpv_next = dtrace_provider; 6904 dtrace_provider = provider; 6905 return (0); 6906 } 6907 6908 mutex_enter(&dtrace_provider_lock); 6909 mutex_enter(&dtrace_lock); 6910 6911 /* 6912 * If there is at least one provider registered, we'll add this 6913 * provider after the first provider. 6914 */ 6915 if (dtrace_provider != NULL) { 6916 provider->dtpv_next = dtrace_provider->dtpv_next; 6917 dtrace_provider->dtpv_next = provider; 6918 } else { 6919 dtrace_provider = provider; 6920 } 6921 6922 if (dtrace_retained != NULL) { 6923 dtrace_enabling_provide(provider); 6924 6925 /* 6926 * Now we need to call dtrace_enabling_matchall() -- which 6927 * will acquire cpu_lock and dtrace_lock. We therefore need 6928 * to drop all of our locks before calling into it... 6929 */ 6930 mutex_exit(&dtrace_lock); 6931 mutex_exit(&dtrace_provider_lock); 6932 dtrace_enabling_matchall(); 6933 6934 return (0); 6935 } 6936 6937 mutex_exit(&dtrace_lock); 6938 mutex_exit(&dtrace_provider_lock); 6939 6940 return (0); 6941 } 6942 6943 /* 6944 * Unregister the specified provider from the DTrace framework. This should 6945 * generally be called by DTrace providers in their detach(9E) entry point. 6946 */ 6947 int 6948 dtrace_unregister(dtrace_provider_id_t id) 6949 { 6950 dtrace_provider_t *old = (dtrace_provider_t *)id; 6951 dtrace_provider_t *prev = NULL; 6952 int i, self = 0; 6953 dtrace_probe_t *probe, *first = NULL; 6954 6955 if (old->dtpv_pops.dtps_enable == 6956 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) { 6957 /* 6958 * If DTrace itself is the provider, we're called with locks 6959 * already held. 6960 */ 6961 ASSERT(old == dtrace_provider); 6962 ASSERT(dtrace_devi != NULL); 6963 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 6964 ASSERT(MUTEX_HELD(&dtrace_lock)); 6965 self = 1; 6966 6967 if (dtrace_provider->dtpv_next != NULL) { 6968 /* 6969 * There's another provider here; return failure. 6970 */ 6971 return (EBUSY); 6972 } 6973 } else { 6974 mutex_enter(&dtrace_provider_lock); 6975 mutex_enter(&mod_lock); 6976 mutex_enter(&dtrace_lock); 6977 } 6978 6979 /* 6980 * If anyone has /dev/dtrace open, or if there are anonymous enabled 6981 * probes, we refuse to let providers slither away, unless this 6982 * provider has already been explicitly invalidated. 6983 */ 6984 if (!old->dtpv_defunct && 6985 (dtrace_opens || (dtrace_anon.dta_state != NULL && 6986 dtrace_anon.dta_state->dts_necbs > 0))) { 6987 if (!self) { 6988 mutex_exit(&dtrace_lock); 6989 mutex_exit(&mod_lock); 6990 mutex_exit(&dtrace_provider_lock); 6991 } 6992 return (EBUSY); 6993 } 6994 6995 /* 6996 * Attempt to destroy the probes associated with this provider. 6997 */ 6998 for (i = 0; i < dtrace_nprobes; i++) { 6999 if ((probe = dtrace_probes[i]) == NULL) 7000 continue; 7001 7002 if (probe->dtpr_provider != old) 7003 continue; 7004 7005 if (probe->dtpr_ecb == NULL) 7006 continue; 7007 7008 /* 7009 * We have at least one ECB; we can't remove this provider. 7010 */ 7011 if (!self) { 7012 mutex_exit(&dtrace_lock); 7013 mutex_exit(&mod_lock); 7014 mutex_exit(&dtrace_provider_lock); 7015 } 7016 return (EBUSY); 7017 } 7018 7019 /* 7020 * All of the probes for this provider are disabled; we can safely 7021 * remove all of them from their hash chains and from the probe array. 7022 */ 7023 for (i = 0; i < dtrace_nprobes; i++) { 7024 if ((probe = dtrace_probes[i]) == NULL) 7025 continue; 7026 7027 if (probe->dtpr_provider != old) 7028 continue; 7029 7030 dtrace_probes[i] = NULL; 7031 7032 dtrace_hash_remove(dtrace_bymod, probe); 7033 dtrace_hash_remove(dtrace_byfunc, probe); 7034 dtrace_hash_remove(dtrace_byname, probe); 7035 7036 if (first == NULL) { 7037 first = probe; 7038 probe->dtpr_nextmod = NULL; 7039 } else { 7040 probe->dtpr_nextmod = first; 7041 first = probe; 7042 } 7043 } 7044 7045 /* 7046 * The provider's probes have been removed from the hash chains and 7047 * from the probe array. Now issue a dtrace_sync() to be sure that 7048 * everyone has cleared out from any probe array processing. 7049 */ 7050 dtrace_sync(); 7051 7052 for (probe = first; probe != NULL; probe = first) { 7053 first = probe->dtpr_nextmod; 7054 7055 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 7056 probe->dtpr_arg); 7057 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7058 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7059 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7060 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 7061 kmem_free(probe, sizeof (dtrace_probe_t)); 7062 } 7063 7064 if ((prev = dtrace_provider) == old) { 7065 ASSERT(self || dtrace_devi == NULL); 7066 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 7067 dtrace_provider = old->dtpv_next; 7068 } else { 7069 while (prev != NULL && prev->dtpv_next != old) 7070 prev = prev->dtpv_next; 7071 7072 if (prev == NULL) { 7073 panic("attempt to unregister non-existent " 7074 "dtrace provider %p\n", (void *)id); 7075 } 7076 7077 prev->dtpv_next = old->dtpv_next; 7078 } 7079 7080 if (!self) { 7081 mutex_exit(&dtrace_lock); 7082 mutex_exit(&mod_lock); 7083 mutex_exit(&dtrace_provider_lock); 7084 } 7085 7086 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 7087 kmem_free(old, sizeof (dtrace_provider_t)); 7088 7089 return (0); 7090 } 7091 7092 /* 7093 * Invalidate the specified provider. All subsequent probe lookups for the 7094 * specified provider will fail, but its probes will not be removed. 7095 */ 7096 void 7097 dtrace_invalidate(dtrace_provider_id_t id) 7098 { 7099 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7100 7101 ASSERT(pvp->dtpv_pops.dtps_enable != 7102 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 7103 7104 mutex_enter(&dtrace_provider_lock); 7105 mutex_enter(&dtrace_lock); 7106 7107 pvp->dtpv_defunct = 1; 7108 7109 mutex_exit(&dtrace_lock); 7110 mutex_exit(&dtrace_provider_lock); 7111 } 7112 7113 /* 7114 * Indicate whether or not DTrace has attached. 7115 */ 7116 int 7117 dtrace_attached(void) 7118 { 7119 /* 7120 * dtrace_provider will be non-NULL iff the DTrace driver has 7121 * attached. (It's non-NULL because DTrace is always itself a 7122 * provider.) 7123 */ 7124 return (dtrace_provider != NULL); 7125 } 7126 7127 /* 7128 * Remove all the unenabled probes for the given provider. This function is 7129 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7130 * -- just as many of its associated probes as it can. 7131 */ 7132 int 7133 dtrace_condense(dtrace_provider_id_t id) 7134 { 7135 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7136 int i; 7137 dtrace_probe_t *probe; 7138 7139 /* 7140 * Make sure this isn't the dtrace provider itself. 7141 */ 7142 ASSERT(prov->dtpv_pops.dtps_enable != 7143 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop); 7144 7145 mutex_enter(&dtrace_provider_lock); 7146 mutex_enter(&dtrace_lock); 7147 7148 /* 7149 * Attempt to destroy the probes associated with this provider. 7150 */ 7151 for (i = 0; i < dtrace_nprobes; i++) { 7152 if ((probe = dtrace_probes[i]) == NULL) 7153 continue; 7154 7155 if (probe->dtpr_provider != prov) 7156 continue; 7157 7158 if (probe->dtpr_ecb != NULL) 7159 continue; 7160 7161 dtrace_probes[i] = NULL; 7162 7163 dtrace_hash_remove(dtrace_bymod, probe); 7164 dtrace_hash_remove(dtrace_byfunc, probe); 7165 dtrace_hash_remove(dtrace_byname, probe); 7166 7167 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7168 probe->dtpr_arg); 7169 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7170 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7171 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7172 kmem_free(probe, sizeof (dtrace_probe_t)); 7173 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7174 } 7175 7176 mutex_exit(&dtrace_lock); 7177 mutex_exit(&dtrace_provider_lock); 7178 7179 return (0); 7180 } 7181 7182 /* 7183 * DTrace Probe Management Functions 7184 * 7185 * The functions in this section perform the DTrace probe management, 7186 * including functions to create probes, look-up probes, and call into the 7187 * providers to request that probes be provided. Some of these functions are 7188 * in the Provider-to-Framework API; these functions can be identified by the 7189 * fact that they are not declared "static". 7190 */ 7191 7192 /* 7193 * Create a probe with the specified module name, function name, and name. 7194 */ 7195 dtrace_id_t 7196 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7197 const char *func, const char *name, int aframes, void *arg) 7198 { 7199 dtrace_probe_t *probe, **probes; 7200 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7201 dtrace_id_t id; 7202 7203 if (provider == dtrace_provider) { 7204 ASSERT(MUTEX_HELD(&dtrace_lock)); 7205 } else { 7206 mutex_enter(&dtrace_lock); 7207 } 7208 7209 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7210 VM_BESTFIT | VM_SLEEP); 7211 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7212 7213 probe->dtpr_id = id; 7214 probe->dtpr_gen = dtrace_probegen++; 7215 probe->dtpr_mod = dtrace_strdup(mod); 7216 probe->dtpr_func = dtrace_strdup(func); 7217 probe->dtpr_name = dtrace_strdup(name); 7218 probe->dtpr_arg = arg; 7219 probe->dtpr_aframes = aframes; 7220 probe->dtpr_provider = provider; 7221 7222 dtrace_hash_add(dtrace_bymod, probe); 7223 dtrace_hash_add(dtrace_byfunc, probe); 7224 dtrace_hash_add(dtrace_byname, probe); 7225 7226 if (id - 1 >= dtrace_nprobes) { 7227 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7228 size_t nsize = osize << 1; 7229 7230 if (nsize == 0) { 7231 ASSERT(osize == 0); 7232 ASSERT(dtrace_probes == NULL); 7233 nsize = sizeof (dtrace_probe_t *); 7234 } 7235 7236 probes = kmem_zalloc(nsize, KM_SLEEP); 7237 7238 if (dtrace_probes == NULL) { 7239 ASSERT(osize == 0); 7240 dtrace_probes = probes; 7241 dtrace_nprobes = 1; 7242 } else { 7243 dtrace_probe_t **oprobes = dtrace_probes; 7244 7245 bcopy(oprobes, probes, osize); 7246 dtrace_membar_producer(); 7247 dtrace_probes = probes; 7248 7249 dtrace_sync(); 7250 7251 /* 7252 * All CPUs are now seeing the new probes array; we can 7253 * safely free the old array. 7254 */ 7255 kmem_free(oprobes, osize); 7256 dtrace_nprobes <<= 1; 7257 } 7258 7259 ASSERT(id - 1 < dtrace_nprobes); 7260 } 7261 7262 ASSERT(dtrace_probes[id - 1] == NULL); 7263 dtrace_probes[id - 1] = probe; 7264 7265 if (provider != dtrace_provider) 7266 mutex_exit(&dtrace_lock); 7267 7268 return (id); 7269 } 7270 7271 static dtrace_probe_t * 7272 dtrace_probe_lookup_id(dtrace_id_t id) 7273 { 7274 ASSERT(MUTEX_HELD(&dtrace_lock)); 7275 7276 if (id == 0 || id > dtrace_nprobes) 7277 return (NULL); 7278 7279 return (dtrace_probes[id - 1]); 7280 } 7281 7282 static int 7283 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7284 { 7285 *((dtrace_id_t *)arg) = probe->dtpr_id; 7286 7287 return (DTRACE_MATCH_DONE); 7288 } 7289 7290 /* 7291 * Look up a probe based on provider and one or more of module name, function 7292 * name and probe name. 7293 */ 7294 dtrace_id_t 7295 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7296 const char *func, const char *name) 7297 { 7298 dtrace_probekey_t pkey; 7299 dtrace_id_t id; 7300 int match; 7301 7302 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7303 pkey.dtpk_pmatch = &dtrace_match_string; 7304 pkey.dtpk_mod = mod; 7305 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7306 pkey.dtpk_func = func; 7307 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7308 pkey.dtpk_name = name; 7309 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7310 pkey.dtpk_id = DTRACE_IDNONE; 7311 7312 mutex_enter(&dtrace_lock); 7313 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7314 dtrace_probe_lookup_match, &id); 7315 mutex_exit(&dtrace_lock); 7316 7317 ASSERT(match == 1 || match == 0); 7318 return (match ? id : 0); 7319 } 7320 7321 /* 7322 * Returns the probe argument associated with the specified probe. 7323 */ 7324 void * 7325 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7326 { 7327 dtrace_probe_t *probe; 7328 void *rval = NULL; 7329 7330 mutex_enter(&dtrace_lock); 7331 7332 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7333 probe->dtpr_provider == (dtrace_provider_t *)id) 7334 rval = probe->dtpr_arg; 7335 7336 mutex_exit(&dtrace_lock); 7337 7338 return (rval); 7339 } 7340 7341 /* 7342 * Copy a probe into a probe description. 7343 */ 7344 static void 7345 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7346 { 7347 bzero(pdp, sizeof (dtrace_probedesc_t)); 7348 pdp->dtpd_id = prp->dtpr_id; 7349 7350 (void) strncpy(pdp->dtpd_provider, 7351 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7352 7353 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7354 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7355 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7356 } 7357 7358 /* 7359 * Called to indicate that a probe -- or probes -- should be provided by a 7360 * specfied provider. If the specified description is NULL, the provider will 7361 * be told to provide all of its probes. (This is done whenever a new 7362 * consumer comes along, or whenever a retained enabling is to be matched.) If 7363 * the specified description is non-NULL, the provider is given the 7364 * opportunity to dynamically provide the specified probe, allowing providers 7365 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7366 * probes.) If the provider is NULL, the operations will be applied to all 7367 * providers; if the provider is non-NULL the operations will only be applied 7368 * to the specified provider. The dtrace_provider_lock must be held, and the 7369 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7370 * will need to grab the dtrace_lock when it reenters the framework through 7371 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7372 */ 7373 static void 7374 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7375 { 7376 struct modctl *ctl; 7377 int all = 0; 7378 7379 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7380 7381 if (prv == NULL) { 7382 all = 1; 7383 prv = dtrace_provider; 7384 } 7385 7386 do { 7387 /* 7388 * First, call the blanket provide operation. 7389 */ 7390 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7391 7392 /* 7393 * Now call the per-module provide operation. We will grab 7394 * mod_lock to prevent the list from being modified. Note 7395 * that this also prevents the mod_busy bits from changing. 7396 * (mod_busy can only be changed with mod_lock held.) 7397 */ 7398 mutex_enter(&mod_lock); 7399 7400 ctl = &modules; 7401 do { 7402 if (ctl->mod_busy || ctl->mod_mp == NULL) 7403 continue; 7404 7405 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7406 7407 } while ((ctl = ctl->mod_next) != &modules); 7408 7409 mutex_exit(&mod_lock); 7410 } while (all && (prv = prv->dtpv_next) != NULL); 7411 } 7412 7413 /* 7414 * Iterate over each probe, and call the Framework-to-Provider API function 7415 * denoted by offs. 7416 */ 7417 static void 7418 dtrace_probe_foreach(uintptr_t offs) 7419 { 7420 dtrace_provider_t *prov; 7421 void (*func)(void *, dtrace_id_t, void *); 7422 dtrace_probe_t *probe; 7423 dtrace_icookie_t cookie; 7424 int i; 7425 7426 /* 7427 * We disable interrupts to walk through the probe array. This is 7428 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7429 * won't see stale data. 7430 */ 7431 cookie = dtrace_interrupt_disable(); 7432 7433 for (i = 0; i < dtrace_nprobes; i++) { 7434 if ((probe = dtrace_probes[i]) == NULL) 7435 continue; 7436 7437 if (probe->dtpr_ecb == NULL) { 7438 /* 7439 * This probe isn't enabled -- don't call the function. 7440 */ 7441 continue; 7442 } 7443 7444 prov = probe->dtpr_provider; 7445 func = *((void(**)(void *, dtrace_id_t, void *)) 7446 ((uintptr_t)&prov->dtpv_pops + offs)); 7447 7448 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7449 } 7450 7451 dtrace_interrupt_enable(cookie); 7452 } 7453 7454 static int 7455 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7456 { 7457 dtrace_probekey_t pkey; 7458 uint32_t priv; 7459 uid_t uid; 7460 zoneid_t zoneid; 7461 7462 ASSERT(MUTEX_HELD(&dtrace_lock)); 7463 dtrace_ecb_create_cache = NULL; 7464 7465 if (desc == NULL) { 7466 /* 7467 * If we're passed a NULL description, we're being asked to 7468 * create an ECB with a NULL probe. 7469 */ 7470 (void) dtrace_ecb_create_enable(NULL, enab); 7471 return (0); 7472 } 7473 7474 dtrace_probekey(desc, &pkey); 7475 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7476 &priv, &uid, &zoneid); 7477 7478 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7479 enab)); 7480 } 7481 7482 /* 7483 * DTrace Helper Provider Functions 7484 */ 7485 static void 7486 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7487 { 7488 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7489 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7490 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7491 } 7492 7493 static void 7494 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7495 const dof_provider_t *dofprov, char *strtab) 7496 { 7497 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7498 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7499 dofprov->dofpv_provattr); 7500 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7501 dofprov->dofpv_modattr); 7502 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7503 dofprov->dofpv_funcattr); 7504 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7505 dofprov->dofpv_nameattr); 7506 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7507 dofprov->dofpv_argsattr); 7508 } 7509 7510 static void 7511 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7512 { 7513 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7514 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7515 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7516 dof_provider_t *provider; 7517 dof_probe_t *probe; 7518 uint32_t *off, *enoff; 7519 uint8_t *arg; 7520 char *strtab; 7521 uint_t i, nprobes; 7522 dtrace_helper_provdesc_t dhpv; 7523 dtrace_helper_probedesc_t dhpb; 7524 dtrace_meta_t *meta = dtrace_meta_pid; 7525 dtrace_mops_t *mops = &meta->dtm_mops; 7526 void *parg; 7527 7528 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7529 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7530 provider->dofpv_strtab * dof->dofh_secsize); 7531 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7532 provider->dofpv_probes * dof->dofh_secsize); 7533 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7534 provider->dofpv_prargs * dof->dofh_secsize); 7535 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7536 provider->dofpv_proffs * dof->dofh_secsize); 7537 7538 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7539 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7540 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7541 enoff = NULL; 7542 7543 /* 7544 * See dtrace_helper_provider_validate(). 7545 */ 7546 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7547 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7548 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7549 provider->dofpv_prenoffs * dof->dofh_secsize); 7550 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7551 } 7552 7553 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7554 7555 /* 7556 * Create the provider. 7557 */ 7558 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7559 7560 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7561 return; 7562 7563 meta->dtm_count++; 7564 7565 /* 7566 * Create the probes. 7567 */ 7568 for (i = 0; i < nprobes; i++) { 7569 probe = (dof_probe_t *)(uintptr_t)(daddr + 7570 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7571 7572 dhpb.dthpb_mod = dhp->dofhp_mod; 7573 dhpb.dthpb_func = strtab + probe->dofpr_func; 7574 dhpb.dthpb_name = strtab + probe->dofpr_name; 7575 dhpb.dthpb_base = probe->dofpr_addr; 7576 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7577 dhpb.dthpb_noffs = probe->dofpr_noffs; 7578 if (enoff != NULL) { 7579 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7580 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7581 } else { 7582 dhpb.dthpb_enoffs = NULL; 7583 dhpb.dthpb_nenoffs = 0; 7584 } 7585 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7586 dhpb.dthpb_nargc = probe->dofpr_nargc; 7587 dhpb.dthpb_xargc = probe->dofpr_xargc; 7588 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7589 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7590 7591 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7592 } 7593 } 7594 7595 static void 7596 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7597 { 7598 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7599 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7600 int i; 7601 7602 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7603 7604 for (i = 0; i < dof->dofh_secnum; i++) { 7605 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7606 dof->dofh_secoff + i * dof->dofh_secsize); 7607 7608 if (sec->dofs_type != DOF_SECT_PROVIDER) 7609 continue; 7610 7611 dtrace_helper_provide_one(dhp, sec, pid); 7612 } 7613 7614 /* 7615 * We may have just created probes, so we must now rematch against 7616 * any retained enablings. Note that this call will acquire both 7617 * cpu_lock and dtrace_lock; the fact that we are holding 7618 * dtrace_meta_lock now is what defines the ordering with respect to 7619 * these three locks. 7620 */ 7621 dtrace_enabling_matchall(); 7622 } 7623 7624 static void 7625 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7626 { 7627 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7628 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7629 dof_sec_t *str_sec; 7630 dof_provider_t *provider; 7631 char *strtab; 7632 dtrace_helper_provdesc_t dhpv; 7633 dtrace_meta_t *meta = dtrace_meta_pid; 7634 dtrace_mops_t *mops = &meta->dtm_mops; 7635 7636 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7637 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7638 provider->dofpv_strtab * dof->dofh_secsize); 7639 7640 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7641 7642 /* 7643 * Create the provider. 7644 */ 7645 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7646 7647 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7648 7649 meta->dtm_count--; 7650 } 7651 7652 static void 7653 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7654 { 7655 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7656 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7657 int i; 7658 7659 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7660 7661 for (i = 0; i < dof->dofh_secnum; i++) { 7662 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7663 dof->dofh_secoff + i * dof->dofh_secsize); 7664 7665 if (sec->dofs_type != DOF_SECT_PROVIDER) 7666 continue; 7667 7668 dtrace_helper_provider_remove_one(dhp, sec, pid); 7669 } 7670 } 7671 7672 /* 7673 * DTrace Meta Provider-to-Framework API Functions 7674 * 7675 * These functions implement the Meta Provider-to-Framework API, as described 7676 * in <sys/dtrace.h>. 7677 */ 7678 int 7679 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 7680 dtrace_meta_provider_id_t *idp) 7681 { 7682 dtrace_meta_t *meta; 7683 dtrace_helpers_t *help, *next; 7684 int i; 7685 7686 *idp = DTRACE_METAPROVNONE; 7687 7688 /* 7689 * We strictly don't need the name, but we hold onto it for 7690 * debuggability. All hail error queues! 7691 */ 7692 if (name == NULL) { 7693 cmn_err(CE_WARN, "failed to register meta-provider: " 7694 "invalid name"); 7695 return (EINVAL); 7696 } 7697 7698 if (mops == NULL || 7699 mops->dtms_create_probe == NULL || 7700 mops->dtms_provide_pid == NULL || 7701 mops->dtms_remove_pid == NULL) { 7702 cmn_err(CE_WARN, "failed to register meta-register %s: " 7703 "invalid ops", name); 7704 return (EINVAL); 7705 } 7706 7707 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 7708 meta->dtm_mops = *mops; 7709 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7710 (void) strcpy(meta->dtm_name, name); 7711 meta->dtm_arg = arg; 7712 7713 mutex_enter(&dtrace_meta_lock); 7714 mutex_enter(&dtrace_lock); 7715 7716 if (dtrace_meta_pid != NULL) { 7717 mutex_exit(&dtrace_lock); 7718 mutex_exit(&dtrace_meta_lock); 7719 cmn_err(CE_WARN, "failed to register meta-register %s: " 7720 "user-land meta-provider exists", name); 7721 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 7722 kmem_free(meta, sizeof (dtrace_meta_t)); 7723 return (EINVAL); 7724 } 7725 7726 dtrace_meta_pid = meta; 7727 *idp = (dtrace_meta_provider_id_t)meta; 7728 7729 /* 7730 * If there are providers and probes ready to go, pass them 7731 * off to the new meta provider now. 7732 */ 7733 7734 help = dtrace_deferred_pid; 7735 dtrace_deferred_pid = NULL; 7736 7737 mutex_exit(&dtrace_lock); 7738 7739 while (help != NULL) { 7740 for (i = 0; i < help->dthps_nprovs; i++) { 7741 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 7742 help->dthps_pid); 7743 } 7744 7745 next = help->dthps_next; 7746 help->dthps_next = NULL; 7747 help->dthps_prev = NULL; 7748 help->dthps_deferred = 0; 7749 help = next; 7750 } 7751 7752 mutex_exit(&dtrace_meta_lock); 7753 7754 return (0); 7755 } 7756 7757 int 7758 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 7759 { 7760 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 7761 7762 mutex_enter(&dtrace_meta_lock); 7763 mutex_enter(&dtrace_lock); 7764 7765 if (old == dtrace_meta_pid) { 7766 pp = &dtrace_meta_pid; 7767 } else { 7768 panic("attempt to unregister non-existent " 7769 "dtrace meta-provider %p\n", (void *)old); 7770 } 7771 7772 if (old->dtm_count != 0) { 7773 mutex_exit(&dtrace_lock); 7774 mutex_exit(&dtrace_meta_lock); 7775 return (EBUSY); 7776 } 7777 7778 *pp = NULL; 7779 7780 mutex_exit(&dtrace_lock); 7781 mutex_exit(&dtrace_meta_lock); 7782 7783 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 7784 kmem_free(old, sizeof (dtrace_meta_t)); 7785 7786 return (0); 7787 } 7788 7789 7790 /* 7791 * DTrace DIF Object Functions 7792 */ 7793 static int 7794 dtrace_difo_err(uint_t pc, const char *format, ...) 7795 { 7796 if (dtrace_err_verbose) { 7797 va_list alist; 7798 7799 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 7800 va_start(alist, format); 7801 (void) vuprintf(format, alist); 7802 va_end(alist); 7803 } 7804 7805 #ifdef DTRACE_ERRDEBUG 7806 dtrace_errdebug(format); 7807 #endif 7808 return (1); 7809 } 7810 7811 /* 7812 * Validate a DTrace DIF object by checking the IR instructions. The following 7813 * rules are currently enforced by dtrace_difo_validate(): 7814 * 7815 * 1. Each instruction must have a valid opcode 7816 * 2. Each register, string, variable, or subroutine reference must be valid 7817 * 3. No instruction can modify register %r0 (must be zero) 7818 * 4. All instruction reserved bits must be set to zero 7819 * 5. The last instruction must be a "ret" instruction 7820 * 6. All branch targets must reference a valid instruction _after_ the branch 7821 */ 7822 static int 7823 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 7824 cred_t *cr) 7825 { 7826 int err = 0, i; 7827 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 7828 int kcheckload; 7829 uint_t pc; 7830 7831 kcheckload = cr == NULL || 7832 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 7833 7834 dp->dtdo_destructive = 0; 7835 7836 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 7837 dif_instr_t instr = dp->dtdo_buf[pc]; 7838 7839 uint_t r1 = DIF_INSTR_R1(instr); 7840 uint_t r2 = DIF_INSTR_R2(instr); 7841 uint_t rd = DIF_INSTR_RD(instr); 7842 uint_t rs = DIF_INSTR_RS(instr); 7843 uint_t label = DIF_INSTR_LABEL(instr); 7844 uint_t v = DIF_INSTR_VAR(instr); 7845 uint_t subr = DIF_INSTR_SUBR(instr); 7846 uint_t type = DIF_INSTR_TYPE(instr); 7847 uint_t op = DIF_INSTR_OP(instr); 7848 7849 switch (op) { 7850 case DIF_OP_OR: 7851 case DIF_OP_XOR: 7852 case DIF_OP_AND: 7853 case DIF_OP_SLL: 7854 case DIF_OP_SRL: 7855 case DIF_OP_SRA: 7856 case DIF_OP_SUB: 7857 case DIF_OP_ADD: 7858 case DIF_OP_MUL: 7859 case DIF_OP_SDIV: 7860 case DIF_OP_UDIV: 7861 case DIF_OP_SREM: 7862 case DIF_OP_UREM: 7863 case DIF_OP_COPYS: 7864 if (r1 >= nregs) 7865 err += efunc(pc, "invalid register %u\n", r1); 7866 if (r2 >= nregs) 7867 err += efunc(pc, "invalid register %u\n", r2); 7868 if (rd >= nregs) 7869 err += efunc(pc, "invalid register %u\n", rd); 7870 if (rd == 0) 7871 err += efunc(pc, "cannot write to %r0\n"); 7872 break; 7873 case DIF_OP_NOT: 7874 case DIF_OP_MOV: 7875 case DIF_OP_ALLOCS: 7876 if (r1 >= nregs) 7877 err += efunc(pc, "invalid register %u\n", r1); 7878 if (r2 != 0) 7879 err += efunc(pc, "non-zero reserved bits\n"); 7880 if (rd >= nregs) 7881 err += efunc(pc, "invalid register %u\n", rd); 7882 if (rd == 0) 7883 err += efunc(pc, "cannot write to %r0\n"); 7884 break; 7885 case DIF_OP_LDSB: 7886 case DIF_OP_LDSH: 7887 case DIF_OP_LDSW: 7888 case DIF_OP_LDUB: 7889 case DIF_OP_LDUH: 7890 case DIF_OP_LDUW: 7891 case DIF_OP_LDX: 7892 if (r1 >= nregs) 7893 err += efunc(pc, "invalid register %u\n", r1); 7894 if (r2 != 0) 7895 err += efunc(pc, "non-zero reserved bits\n"); 7896 if (rd >= nregs) 7897 err += efunc(pc, "invalid register %u\n", rd); 7898 if (rd == 0) 7899 err += efunc(pc, "cannot write to %r0\n"); 7900 if (kcheckload) 7901 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 7902 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 7903 break; 7904 case DIF_OP_RLDSB: 7905 case DIF_OP_RLDSH: 7906 case DIF_OP_RLDSW: 7907 case DIF_OP_RLDUB: 7908 case DIF_OP_RLDUH: 7909 case DIF_OP_RLDUW: 7910 case DIF_OP_RLDX: 7911 if (r1 >= nregs) 7912 err += efunc(pc, "invalid register %u\n", r1); 7913 if (r2 != 0) 7914 err += efunc(pc, "non-zero reserved bits\n"); 7915 if (rd >= nregs) 7916 err += efunc(pc, "invalid register %u\n", rd); 7917 if (rd == 0) 7918 err += efunc(pc, "cannot write to %r0\n"); 7919 break; 7920 case DIF_OP_ULDSB: 7921 case DIF_OP_ULDSH: 7922 case DIF_OP_ULDSW: 7923 case DIF_OP_ULDUB: 7924 case DIF_OP_ULDUH: 7925 case DIF_OP_ULDUW: 7926 case DIF_OP_ULDX: 7927 if (r1 >= nregs) 7928 err += efunc(pc, "invalid register %u\n", r1); 7929 if (r2 != 0) 7930 err += efunc(pc, "non-zero reserved bits\n"); 7931 if (rd >= nregs) 7932 err += efunc(pc, "invalid register %u\n", rd); 7933 if (rd == 0) 7934 err += efunc(pc, "cannot write to %r0\n"); 7935 break; 7936 case DIF_OP_STB: 7937 case DIF_OP_STH: 7938 case DIF_OP_STW: 7939 case DIF_OP_STX: 7940 if (r1 >= nregs) 7941 err += efunc(pc, "invalid register %u\n", r1); 7942 if (r2 != 0) 7943 err += efunc(pc, "non-zero reserved bits\n"); 7944 if (rd >= nregs) 7945 err += efunc(pc, "invalid register %u\n", rd); 7946 if (rd == 0) 7947 err += efunc(pc, "cannot write to 0 address\n"); 7948 break; 7949 case DIF_OP_CMP: 7950 case DIF_OP_SCMP: 7951 if (r1 >= nregs) 7952 err += efunc(pc, "invalid register %u\n", r1); 7953 if (r2 >= nregs) 7954 err += efunc(pc, "invalid register %u\n", r2); 7955 if (rd != 0) 7956 err += efunc(pc, "non-zero reserved bits\n"); 7957 break; 7958 case DIF_OP_TST: 7959 if (r1 >= nregs) 7960 err += efunc(pc, "invalid register %u\n", r1); 7961 if (r2 != 0 || rd != 0) 7962 err += efunc(pc, "non-zero reserved bits\n"); 7963 break; 7964 case DIF_OP_BA: 7965 case DIF_OP_BE: 7966 case DIF_OP_BNE: 7967 case DIF_OP_BG: 7968 case DIF_OP_BGU: 7969 case DIF_OP_BGE: 7970 case DIF_OP_BGEU: 7971 case DIF_OP_BL: 7972 case DIF_OP_BLU: 7973 case DIF_OP_BLE: 7974 case DIF_OP_BLEU: 7975 if (label >= dp->dtdo_len) { 7976 err += efunc(pc, "invalid branch target %u\n", 7977 label); 7978 } 7979 if (label <= pc) { 7980 err += efunc(pc, "backward branch to %u\n", 7981 label); 7982 } 7983 break; 7984 case DIF_OP_RET: 7985 if (r1 != 0 || r2 != 0) 7986 err += efunc(pc, "non-zero reserved bits\n"); 7987 if (rd >= nregs) 7988 err += efunc(pc, "invalid register %u\n", rd); 7989 break; 7990 case DIF_OP_NOP: 7991 case DIF_OP_POPTS: 7992 case DIF_OP_FLUSHTS: 7993 if (r1 != 0 || r2 != 0 || rd != 0) 7994 err += efunc(pc, "non-zero reserved bits\n"); 7995 break; 7996 case DIF_OP_SETX: 7997 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 7998 err += efunc(pc, "invalid integer ref %u\n", 7999 DIF_INSTR_INTEGER(instr)); 8000 } 8001 if (rd >= nregs) 8002 err += efunc(pc, "invalid register %u\n", rd); 8003 if (rd == 0) 8004 err += efunc(pc, "cannot write to %r0\n"); 8005 break; 8006 case DIF_OP_SETS: 8007 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 8008 err += efunc(pc, "invalid string ref %u\n", 8009 DIF_INSTR_STRING(instr)); 8010 } 8011 if (rd >= nregs) 8012 err += efunc(pc, "invalid register %u\n", rd); 8013 if (rd == 0) 8014 err += efunc(pc, "cannot write to %r0\n"); 8015 break; 8016 case DIF_OP_LDGA: 8017 case DIF_OP_LDTA: 8018 if (r1 > DIF_VAR_ARRAY_MAX) 8019 err += efunc(pc, "invalid array %u\n", r1); 8020 if (r2 >= nregs) 8021 err += efunc(pc, "invalid register %u\n", r2); 8022 if (rd >= nregs) 8023 err += efunc(pc, "invalid register %u\n", rd); 8024 if (rd == 0) 8025 err += efunc(pc, "cannot write to %r0\n"); 8026 break; 8027 case DIF_OP_LDGS: 8028 case DIF_OP_LDTS: 8029 case DIF_OP_LDLS: 8030 case DIF_OP_LDGAA: 8031 case DIF_OP_LDTAA: 8032 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 8033 err += efunc(pc, "invalid variable %u\n", v); 8034 if (rd >= nregs) 8035 err += efunc(pc, "invalid register %u\n", rd); 8036 if (rd == 0) 8037 err += efunc(pc, "cannot write to %r0\n"); 8038 break; 8039 case DIF_OP_STGS: 8040 case DIF_OP_STTS: 8041 case DIF_OP_STLS: 8042 case DIF_OP_STGAA: 8043 case DIF_OP_STTAA: 8044 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 8045 err += efunc(pc, "invalid variable %u\n", v); 8046 if (rs >= nregs) 8047 err += efunc(pc, "invalid register %u\n", rd); 8048 break; 8049 case DIF_OP_CALL: 8050 if (subr > DIF_SUBR_MAX) 8051 err += efunc(pc, "invalid subr %u\n", subr); 8052 if (rd >= nregs) 8053 err += efunc(pc, "invalid register %u\n", rd); 8054 if (rd == 0) 8055 err += efunc(pc, "cannot write to %r0\n"); 8056 8057 if (subr == DIF_SUBR_COPYOUT || 8058 subr == DIF_SUBR_COPYOUTSTR) { 8059 dp->dtdo_destructive = 1; 8060 } 8061 break; 8062 case DIF_OP_PUSHTR: 8063 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 8064 err += efunc(pc, "invalid ref type %u\n", type); 8065 if (r2 >= nregs) 8066 err += efunc(pc, "invalid register %u\n", r2); 8067 if (rs >= nregs) 8068 err += efunc(pc, "invalid register %u\n", rs); 8069 break; 8070 case DIF_OP_PUSHTV: 8071 if (type != DIF_TYPE_CTF) 8072 err += efunc(pc, "invalid val type %u\n", type); 8073 if (r2 >= nregs) 8074 err += efunc(pc, "invalid register %u\n", r2); 8075 if (rs >= nregs) 8076 err += efunc(pc, "invalid register %u\n", rs); 8077 break; 8078 default: 8079 err += efunc(pc, "invalid opcode %u\n", 8080 DIF_INSTR_OP(instr)); 8081 } 8082 } 8083 8084 if (dp->dtdo_len != 0 && 8085 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 8086 err += efunc(dp->dtdo_len - 1, 8087 "expected 'ret' as last DIF instruction\n"); 8088 } 8089 8090 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 8091 /* 8092 * If we're not returning by reference, the size must be either 8093 * 0 or the size of one of the base types. 8094 */ 8095 switch (dp->dtdo_rtype.dtdt_size) { 8096 case 0: 8097 case sizeof (uint8_t): 8098 case sizeof (uint16_t): 8099 case sizeof (uint32_t): 8100 case sizeof (uint64_t): 8101 break; 8102 8103 default: 8104 err += efunc(dp->dtdo_len - 1, "bad return size"); 8105 } 8106 } 8107 8108 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 8109 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 8110 dtrace_diftype_t *vt, *et; 8111 uint_t id, ndx; 8112 8113 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8114 v->dtdv_scope != DIFV_SCOPE_THREAD && 8115 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8116 err += efunc(i, "unrecognized variable scope %d\n", 8117 v->dtdv_scope); 8118 break; 8119 } 8120 8121 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8122 v->dtdv_kind != DIFV_KIND_SCALAR) { 8123 err += efunc(i, "unrecognized variable type %d\n", 8124 v->dtdv_kind); 8125 break; 8126 } 8127 8128 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8129 err += efunc(i, "%d exceeds variable id limit\n", id); 8130 break; 8131 } 8132 8133 if (id < DIF_VAR_OTHER_UBASE) 8134 continue; 8135 8136 /* 8137 * For user-defined variables, we need to check that this 8138 * definition is identical to any previous definition that we 8139 * encountered. 8140 */ 8141 ndx = id - DIF_VAR_OTHER_UBASE; 8142 8143 switch (v->dtdv_scope) { 8144 case DIFV_SCOPE_GLOBAL: 8145 if (ndx < vstate->dtvs_nglobals) { 8146 dtrace_statvar_t *svar; 8147 8148 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8149 existing = &svar->dtsv_var; 8150 } 8151 8152 break; 8153 8154 case DIFV_SCOPE_THREAD: 8155 if (ndx < vstate->dtvs_ntlocals) 8156 existing = &vstate->dtvs_tlocals[ndx]; 8157 break; 8158 8159 case DIFV_SCOPE_LOCAL: 8160 if (ndx < vstate->dtvs_nlocals) { 8161 dtrace_statvar_t *svar; 8162 8163 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8164 existing = &svar->dtsv_var; 8165 } 8166 8167 break; 8168 } 8169 8170 vt = &v->dtdv_type; 8171 8172 if (vt->dtdt_flags & DIF_TF_BYREF) { 8173 if (vt->dtdt_size == 0) { 8174 err += efunc(i, "zero-sized variable\n"); 8175 break; 8176 } 8177 8178 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8179 vt->dtdt_size > dtrace_global_maxsize) { 8180 err += efunc(i, "oversized by-ref global\n"); 8181 break; 8182 } 8183 } 8184 8185 if (existing == NULL || existing->dtdv_id == 0) 8186 continue; 8187 8188 ASSERT(existing->dtdv_id == v->dtdv_id); 8189 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8190 8191 if (existing->dtdv_kind != v->dtdv_kind) 8192 err += efunc(i, "%d changed variable kind\n", id); 8193 8194 et = &existing->dtdv_type; 8195 8196 if (vt->dtdt_flags != et->dtdt_flags) { 8197 err += efunc(i, "%d changed variable type flags\n", id); 8198 break; 8199 } 8200 8201 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8202 err += efunc(i, "%d changed variable type size\n", id); 8203 break; 8204 } 8205 } 8206 8207 return (err); 8208 } 8209 8210 /* 8211 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8212 * are much more constrained than normal DIFOs. Specifically, they may 8213 * not: 8214 * 8215 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8216 * miscellaneous string routines 8217 * 2. Access DTrace variables other than the args[] array, and the 8218 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8219 * 3. Have thread-local variables. 8220 * 4. Have dynamic variables. 8221 */ 8222 static int 8223 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8224 { 8225 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8226 int err = 0; 8227 uint_t pc; 8228 8229 for (pc = 0; pc < dp->dtdo_len; pc++) { 8230 dif_instr_t instr = dp->dtdo_buf[pc]; 8231 8232 uint_t v = DIF_INSTR_VAR(instr); 8233 uint_t subr = DIF_INSTR_SUBR(instr); 8234 uint_t op = DIF_INSTR_OP(instr); 8235 8236 switch (op) { 8237 case DIF_OP_OR: 8238 case DIF_OP_XOR: 8239 case DIF_OP_AND: 8240 case DIF_OP_SLL: 8241 case DIF_OP_SRL: 8242 case DIF_OP_SRA: 8243 case DIF_OP_SUB: 8244 case DIF_OP_ADD: 8245 case DIF_OP_MUL: 8246 case DIF_OP_SDIV: 8247 case DIF_OP_UDIV: 8248 case DIF_OP_SREM: 8249 case DIF_OP_UREM: 8250 case DIF_OP_COPYS: 8251 case DIF_OP_NOT: 8252 case DIF_OP_MOV: 8253 case DIF_OP_RLDSB: 8254 case DIF_OP_RLDSH: 8255 case DIF_OP_RLDSW: 8256 case DIF_OP_RLDUB: 8257 case DIF_OP_RLDUH: 8258 case DIF_OP_RLDUW: 8259 case DIF_OP_RLDX: 8260 case DIF_OP_ULDSB: 8261 case DIF_OP_ULDSH: 8262 case DIF_OP_ULDSW: 8263 case DIF_OP_ULDUB: 8264 case DIF_OP_ULDUH: 8265 case DIF_OP_ULDUW: 8266 case DIF_OP_ULDX: 8267 case DIF_OP_STB: 8268 case DIF_OP_STH: 8269 case DIF_OP_STW: 8270 case DIF_OP_STX: 8271 case DIF_OP_ALLOCS: 8272 case DIF_OP_CMP: 8273 case DIF_OP_SCMP: 8274 case DIF_OP_TST: 8275 case DIF_OP_BA: 8276 case DIF_OP_BE: 8277 case DIF_OP_BNE: 8278 case DIF_OP_BG: 8279 case DIF_OP_BGU: 8280 case DIF_OP_BGE: 8281 case DIF_OP_BGEU: 8282 case DIF_OP_BL: 8283 case DIF_OP_BLU: 8284 case DIF_OP_BLE: 8285 case DIF_OP_BLEU: 8286 case DIF_OP_RET: 8287 case DIF_OP_NOP: 8288 case DIF_OP_POPTS: 8289 case DIF_OP_FLUSHTS: 8290 case DIF_OP_SETX: 8291 case DIF_OP_SETS: 8292 case DIF_OP_LDGA: 8293 case DIF_OP_LDLS: 8294 case DIF_OP_STGS: 8295 case DIF_OP_STLS: 8296 case DIF_OP_PUSHTR: 8297 case DIF_OP_PUSHTV: 8298 break; 8299 8300 case DIF_OP_LDGS: 8301 if (v >= DIF_VAR_OTHER_UBASE) 8302 break; 8303 8304 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8305 break; 8306 8307 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8308 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8309 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8310 v == DIF_VAR_UID || v == DIF_VAR_GID) 8311 break; 8312 8313 err += efunc(pc, "illegal variable %u\n", v); 8314 break; 8315 8316 case DIF_OP_LDTA: 8317 case DIF_OP_LDTS: 8318 case DIF_OP_LDGAA: 8319 case DIF_OP_LDTAA: 8320 err += efunc(pc, "illegal dynamic variable load\n"); 8321 break; 8322 8323 case DIF_OP_STTS: 8324 case DIF_OP_STGAA: 8325 case DIF_OP_STTAA: 8326 err += efunc(pc, "illegal dynamic variable store\n"); 8327 break; 8328 8329 case DIF_OP_CALL: 8330 if (subr == DIF_SUBR_ALLOCA || 8331 subr == DIF_SUBR_BCOPY || 8332 subr == DIF_SUBR_COPYIN || 8333 subr == DIF_SUBR_COPYINTO || 8334 subr == DIF_SUBR_COPYINSTR || 8335 subr == DIF_SUBR_INDEX || 8336 subr == DIF_SUBR_INET_NTOA || 8337 subr == DIF_SUBR_INET_NTOA6 || 8338 subr == DIF_SUBR_INET_NTOP || 8339 subr == DIF_SUBR_LLTOSTR || 8340 subr == DIF_SUBR_RINDEX || 8341 subr == DIF_SUBR_STRCHR || 8342 subr == DIF_SUBR_STRJOIN || 8343 subr == DIF_SUBR_STRRCHR || 8344 subr == DIF_SUBR_STRSTR || 8345 subr == DIF_SUBR_HTONS || 8346 subr == DIF_SUBR_HTONL || 8347 subr == DIF_SUBR_HTONLL || 8348 subr == DIF_SUBR_NTOHS || 8349 subr == DIF_SUBR_NTOHL || 8350 subr == DIF_SUBR_NTOHLL) 8351 break; 8352 8353 err += efunc(pc, "invalid subr %u\n", subr); 8354 break; 8355 8356 default: 8357 err += efunc(pc, "invalid opcode %u\n", 8358 DIF_INSTR_OP(instr)); 8359 } 8360 } 8361 8362 return (err); 8363 } 8364 8365 /* 8366 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8367 * basis; 0 if not. 8368 */ 8369 static int 8370 dtrace_difo_cacheable(dtrace_difo_t *dp) 8371 { 8372 int i; 8373 8374 if (dp == NULL) 8375 return (0); 8376 8377 for (i = 0; i < dp->dtdo_varlen; i++) { 8378 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8379 8380 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8381 continue; 8382 8383 switch (v->dtdv_id) { 8384 case DIF_VAR_CURTHREAD: 8385 case DIF_VAR_PID: 8386 case DIF_VAR_TID: 8387 case DIF_VAR_EXECNAME: 8388 case DIF_VAR_ZONENAME: 8389 break; 8390 8391 default: 8392 return (0); 8393 } 8394 } 8395 8396 /* 8397 * This DIF object may be cacheable. Now we need to look for any 8398 * array loading instructions, any memory loading instructions, or 8399 * any stores to thread-local variables. 8400 */ 8401 for (i = 0; i < dp->dtdo_len; i++) { 8402 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8403 8404 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8405 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8406 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8407 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8408 return (0); 8409 } 8410 8411 return (1); 8412 } 8413 8414 static void 8415 dtrace_difo_hold(dtrace_difo_t *dp) 8416 { 8417 int i; 8418 8419 ASSERT(MUTEX_HELD(&dtrace_lock)); 8420 8421 dp->dtdo_refcnt++; 8422 ASSERT(dp->dtdo_refcnt != 0); 8423 8424 /* 8425 * We need to check this DIF object for references to the variable 8426 * DIF_VAR_VTIMESTAMP. 8427 */ 8428 for (i = 0; i < dp->dtdo_varlen; i++) { 8429 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8430 8431 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8432 continue; 8433 8434 if (dtrace_vtime_references++ == 0) 8435 dtrace_vtime_enable(); 8436 } 8437 } 8438 8439 /* 8440 * This routine calculates the dynamic variable chunksize for a given DIF 8441 * object. The calculation is not fool-proof, and can probably be tricked by 8442 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8443 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8444 * if a dynamic variable size exceeds the chunksize. 8445 */ 8446 static void 8447 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8448 { 8449 uint64_t sval; 8450 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8451 const dif_instr_t *text = dp->dtdo_buf; 8452 uint_t pc, srd = 0; 8453 uint_t ttop = 0; 8454 size_t size, ksize; 8455 uint_t id, i; 8456 8457 for (pc = 0; pc < dp->dtdo_len; pc++) { 8458 dif_instr_t instr = text[pc]; 8459 uint_t op = DIF_INSTR_OP(instr); 8460 uint_t rd = DIF_INSTR_RD(instr); 8461 uint_t r1 = DIF_INSTR_R1(instr); 8462 uint_t nkeys = 0; 8463 uchar_t scope; 8464 8465 dtrace_key_t *key = tupregs; 8466 8467 switch (op) { 8468 case DIF_OP_SETX: 8469 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8470 srd = rd; 8471 continue; 8472 8473 case DIF_OP_STTS: 8474 key = &tupregs[DIF_DTR_NREGS]; 8475 key[0].dttk_size = 0; 8476 key[1].dttk_size = 0; 8477 nkeys = 2; 8478 scope = DIFV_SCOPE_THREAD; 8479 break; 8480 8481 case DIF_OP_STGAA: 8482 case DIF_OP_STTAA: 8483 nkeys = ttop; 8484 8485 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8486 key[nkeys++].dttk_size = 0; 8487 8488 key[nkeys++].dttk_size = 0; 8489 8490 if (op == DIF_OP_STTAA) { 8491 scope = DIFV_SCOPE_THREAD; 8492 } else { 8493 scope = DIFV_SCOPE_GLOBAL; 8494 } 8495 8496 break; 8497 8498 case DIF_OP_PUSHTR: 8499 if (ttop == DIF_DTR_NREGS) 8500 return; 8501 8502 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8503 /* 8504 * If the register for the size of the "pushtr" 8505 * is %r0 (or the value is 0) and the type is 8506 * a string, we'll use the system-wide default 8507 * string size. 8508 */ 8509 tupregs[ttop++].dttk_size = 8510 dtrace_strsize_default; 8511 } else { 8512 if (srd == 0) 8513 return; 8514 8515 tupregs[ttop++].dttk_size = sval; 8516 } 8517 8518 break; 8519 8520 case DIF_OP_PUSHTV: 8521 if (ttop == DIF_DTR_NREGS) 8522 return; 8523 8524 tupregs[ttop++].dttk_size = 0; 8525 break; 8526 8527 case DIF_OP_FLUSHTS: 8528 ttop = 0; 8529 break; 8530 8531 case DIF_OP_POPTS: 8532 if (ttop != 0) 8533 ttop--; 8534 break; 8535 } 8536 8537 sval = 0; 8538 srd = 0; 8539 8540 if (nkeys == 0) 8541 continue; 8542 8543 /* 8544 * We have a dynamic variable allocation; calculate its size. 8545 */ 8546 for (ksize = 0, i = 0; i < nkeys; i++) 8547 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8548 8549 size = sizeof (dtrace_dynvar_t); 8550 size += sizeof (dtrace_key_t) * (nkeys - 1); 8551 size += ksize; 8552 8553 /* 8554 * Now we need to determine the size of the stored data. 8555 */ 8556 id = DIF_INSTR_VAR(instr); 8557 8558 for (i = 0; i < dp->dtdo_varlen; i++) { 8559 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8560 8561 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8562 size += v->dtdv_type.dtdt_size; 8563 break; 8564 } 8565 } 8566 8567 if (i == dp->dtdo_varlen) 8568 return; 8569 8570 /* 8571 * We have the size. If this is larger than the chunk size 8572 * for our dynamic variable state, reset the chunk size. 8573 */ 8574 size = P2ROUNDUP(size, sizeof (uint64_t)); 8575 8576 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8577 vstate->dtvs_dynvars.dtds_chunksize = size; 8578 } 8579 } 8580 8581 static void 8582 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8583 { 8584 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8585 uint_t id; 8586 8587 ASSERT(MUTEX_HELD(&dtrace_lock)); 8588 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8589 8590 for (i = 0; i < dp->dtdo_varlen; i++) { 8591 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8592 dtrace_statvar_t *svar, ***svarp; 8593 size_t dsize = 0; 8594 uint8_t scope = v->dtdv_scope; 8595 int *np; 8596 8597 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8598 continue; 8599 8600 id -= DIF_VAR_OTHER_UBASE; 8601 8602 switch (scope) { 8603 case DIFV_SCOPE_THREAD: 8604 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8605 dtrace_difv_t *tlocals; 8606 8607 if ((ntlocals = (otlocals << 1)) == 0) 8608 ntlocals = 1; 8609 8610 osz = otlocals * sizeof (dtrace_difv_t); 8611 nsz = ntlocals * sizeof (dtrace_difv_t); 8612 8613 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8614 8615 if (osz != 0) { 8616 bcopy(vstate->dtvs_tlocals, 8617 tlocals, osz); 8618 kmem_free(vstate->dtvs_tlocals, osz); 8619 } 8620 8621 vstate->dtvs_tlocals = tlocals; 8622 vstate->dtvs_ntlocals = ntlocals; 8623 } 8624 8625 vstate->dtvs_tlocals[id] = *v; 8626 continue; 8627 8628 case DIFV_SCOPE_LOCAL: 8629 np = &vstate->dtvs_nlocals; 8630 svarp = &vstate->dtvs_locals; 8631 8632 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8633 dsize = NCPU * (v->dtdv_type.dtdt_size + 8634 sizeof (uint64_t)); 8635 else 8636 dsize = NCPU * sizeof (uint64_t); 8637 8638 break; 8639 8640 case DIFV_SCOPE_GLOBAL: 8641 np = &vstate->dtvs_nglobals; 8642 svarp = &vstate->dtvs_globals; 8643 8644 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8645 dsize = v->dtdv_type.dtdt_size + 8646 sizeof (uint64_t); 8647 8648 break; 8649 8650 default: 8651 ASSERT(0); 8652 } 8653 8654 while (id >= (oldsvars = *np)) { 8655 dtrace_statvar_t **statics; 8656 int newsvars, oldsize, newsize; 8657 8658 if ((newsvars = (oldsvars << 1)) == 0) 8659 newsvars = 1; 8660 8661 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8662 newsize = newsvars * sizeof (dtrace_statvar_t *); 8663 8664 statics = kmem_zalloc(newsize, KM_SLEEP); 8665 8666 if (oldsize != 0) { 8667 bcopy(*svarp, statics, oldsize); 8668 kmem_free(*svarp, oldsize); 8669 } 8670 8671 *svarp = statics; 8672 *np = newsvars; 8673 } 8674 8675 if ((svar = (*svarp)[id]) == NULL) { 8676 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 8677 svar->dtsv_var = *v; 8678 8679 if ((svar->dtsv_size = dsize) != 0) { 8680 svar->dtsv_data = (uint64_t)(uintptr_t) 8681 kmem_zalloc(dsize, KM_SLEEP); 8682 } 8683 8684 (*svarp)[id] = svar; 8685 } 8686 8687 svar->dtsv_refcnt++; 8688 } 8689 8690 dtrace_difo_chunksize(dp, vstate); 8691 dtrace_difo_hold(dp); 8692 } 8693 8694 static dtrace_difo_t * 8695 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8696 { 8697 dtrace_difo_t *new; 8698 size_t sz; 8699 8700 ASSERT(dp->dtdo_buf != NULL); 8701 ASSERT(dp->dtdo_refcnt != 0); 8702 8703 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 8704 8705 ASSERT(dp->dtdo_buf != NULL); 8706 sz = dp->dtdo_len * sizeof (dif_instr_t); 8707 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 8708 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 8709 new->dtdo_len = dp->dtdo_len; 8710 8711 if (dp->dtdo_strtab != NULL) { 8712 ASSERT(dp->dtdo_strlen != 0); 8713 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 8714 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 8715 new->dtdo_strlen = dp->dtdo_strlen; 8716 } 8717 8718 if (dp->dtdo_inttab != NULL) { 8719 ASSERT(dp->dtdo_intlen != 0); 8720 sz = dp->dtdo_intlen * sizeof (uint64_t); 8721 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 8722 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 8723 new->dtdo_intlen = dp->dtdo_intlen; 8724 } 8725 8726 if (dp->dtdo_vartab != NULL) { 8727 ASSERT(dp->dtdo_varlen != 0); 8728 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 8729 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 8730 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 8731 new->dtdo_varlen = dp->dtdo_varlen; 8732 } 8733 8734 dtrace_difo_init(new, vstate); 8735 return (new); 8736 } 8737 8738 static void 8739 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8740 { 8741 int i; 8742 8743 ASSERT(dp->dtdo_refcnt == 0); 8744 8745 for (i = 0; i < dp->dtdo_varlen; i++) { 8746 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8747 dtrace_statvar_t *svar, **svarp; 8748 uint_t id; 8749 uint8_t scope = v->dtdv_scope; 8750 int *np; 8751 8752 switch (scope) { 8753 case DIFV_SCOPE_THREAD: 8754 continue; 8755 8756 case DIFV_SCOPE_LOCAL: 8757 np = &vstate->dtvs_nlocals; 8758 svarp = vstate->dtvs_locals; 8759 break; 8760 8761 case DIFV_SCOPE_GLOBAL: 8762 np = &vstate->dtvs_nglobals; 8763 svarp = vstate->dtvs_globals; 8764 break; 8765 8766 default: 8767 ASSERT(0); 8768 } 8769 8770 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8771 continue; 8772 8773 id -= DIF_VAR_OTHER_UBASE; 8774 ASSERT(id < *np); 8775 8776 svar = svarp[id]; 8777 ASSERT(svar != NULL); 8778 ASSERT(svar->dtsv_refcnt > 0); 8779 8780 if (--svar->dtsv_refcnt > 0) 8781 continue; 8782 8783 if (svar->dtsv_size != 0) { 8784 ASSERT(svar->dtsv_data != NULL); 8785 kmem_free((void *)(uintptr_t)svar->dtsv_data, 8786 svar->dtsv_size); 8787 } 8788 8789 kmem_free(svar, sizeof (dtrace_statvar_t)); 8790 svarp[id] = NULL; 8791 } 8792 8793 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 8794 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 8795 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 8796 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 8797 8798 kmem_free(dp, sizeof (dtrace_difo_t)); 8799 } 8800 8801 static void 8802 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8803 { 8804 int i; 8805 8806 ASSERT(MUTEX_HELD(&dtrace_lock)); 8807 ASSERT(dp->dtdo_refcnt != 0); 8808 8809 for (i = 0; i < dp->dtdo_varlen; i++) { 8810 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8811 8812 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8813 continue; 8814 8815 ASSERT(dtrace_vtime_references > 0); 8816 if (--dtrace_vtime_references == 0) 8817 dtrace_vtime_disable(); 8818 } 8819 8820 if (--dp->dtdo_refcnt == 0) 8821 dtrace_difo_destroy(dp, vstate); 8822 } 8823 8824 /* 8825 * DTrace Format Functions 8826 */ 8827 static uint16_t 8828 dtrace_format_add(dtrace_state_t *state, char *str) 8829 { 8830 char *fmt, **new; 8831 uint16_t ndx, len = strlen(str) + 1; 8832 8833 fmt = kmem_zalloc(len, KM_SLEEP); 8834 bcopy(str, fmt, len); 8835 8836 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 8837 if (state->dts_formats[ndx] == NULL) { 8838 state->dts_formats[ndx] = fmt; 8839 return (ndx + 1); 8840 } 8841 } 8842 8843 if (state->dts_nformats == USHRT_MAX) { 8844 /* 8845 * This is only likely if a denial-of-service attack is being 8846 * attempted. As such, it's okay to fail silently here. 8847 */ 8848 kmem_free(fmt, len); 8849 return (0); 8850 } 8851 8852 /* 8853 * For simplicity, we always resize the formats array to be exactly the 8854 * number of formats. 8855 */ 8856 ndx = state->dts_nformats++; 8857 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 8858 8859 if (state->dts_formats != NULL) { 8860 ASSERT(ndx != 0); 8861 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 8862 kmem_free(state->dts_formats, ndx * sizeof (char *)); 8863 } 8864 8865 state->dts_formats = new; 8866 state->dts_formats[ndx] = fmt; 8867 8868 return (ndx + 1); 8869 } 8870 8871 static void 8872 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 8873 { 8874 char *fmt; 8875 8876 ASSERT(state->dts_formats != NULL); 8877 ASSERT(format <= state->dts_nformats); 8878 ASSERT(state->dts_formats[format - 1] != NULL); 8879 8880 fmt = state->dts_formats[format - 1]; 8881 kmem_free(fmt, strlen(fmt) + 1); 8882 state->dts_formats[format - 1] = NULL; 8883 } 8884 8885 static void 8886 dtrace_format_destroy(dtrace_state_t *state) 8887 { 8888 int i; 8889 8890 if (state->dts_nformats == 0) { 8891 ASSERT(state->dts_formats == NULL); 8892 return; 8893 } 8894 8895 ASSERT(state->dts_formats != NULL); 8896 8897 for (i = 0; i < state->dts_nformats; i++) { 8898 char *fmt = state->dts_formats[i]; 8899 8900 if (fmt == NULL) 8901 continue; 8902 8903 kmem_free(fmt, strlen(fmt) + 1); 8904 } 8905 8906 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 8907 state->dts_nformats = 0; 8908 state->dts_formats = NULL; 8909 } 8910 8911 /* 8912 * DTrace Predicate Functions 8913 */ 8914 static dtrace_predicate_t * 8915 dtrace_predicate_create(dtrace_difo_t *dp) 8916 { 8917 dtrace_predicate_t *pred; 8918 8919 ASSERT(MUTEX_HELD(&dtrace_lock)); 8920 ASSERT(dp->dtdo_refcnt != 0); 8921 8922 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 8923 pred->dtp_difo = dp; 8924 pred->dtp_refcnt = 1; 8925 8926 if (!dtrace_difo_cacheable(dp)) 8927 return (pred); 8928 8929 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 8930 /* 8931 * This is only theoretically possible -- we have had 2^32 8932 * cacheable predicates on this machine. We cannot allow any 8933 * more predicates to become cacheable: as unlikely as it is, 8934 * there may be a thread caching a (now stale) predicate cache 8935 * ID. (N.B.: the temptation is being successfully resisted to 8936 * have this cmn_err() "Holy shit -- we executed this code!") 8937 */ 8938 return (pred); 8939 } 8940 8941 pred->dtp_cacheid = dtrace_predcache_id++; 8942 8943 return (pred); 8944 } 8945 8946 static void 8947 dtrace_predicate_hold(dtrace_predicate_t *pred) 8948 { 8949 ASSERT(MUTEX_HELD(&dtrace_lock)); 8950 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 8951 ASSERT(pred->dtp_refcnt > 0); 8952 8953 pred->dtp_refcnt++; 8954 } 8955 8956 static void 8957 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 8958 { 8959 dtrace_difo_t *dp = pred->dtp_difo; 8960 8961 ASSERT(MUTEX_HELD(&dtrace_lock)); 8962 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 8963 ASSERT(pred->dtp_refcnt > 0); 8964 8965 if (--pred->dtp_refcnt == 0) { 8966 dtrace_difo_release(pred->dtp_difo, vstate); 8967 kmem_free(pred, sizeof (dtrace_predicate_t)); 8968 } 8969 } 8970 8971 /* 8972 * DTrace Action Description Functions 8973 */ 8974 static dtrace_actdesc_t * 8975 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 8976 uint64_t uarg, uint64_t arg) 8977 { 8978 dtrace_actdesc_t *act; 8979 8980 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 8981 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 8982 8983 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 8984 act->dtad_kind = kind; 8985 act->dtad_ntuple = ntuple; 8986 act->dtad_uarg = uarg; 8987 act->dtad_arg = arg; 8988 act->dtad_refcnt = 1; 8989 8990 return (act); 8991 } 8992 8993 static void 8994 dtrace_actdesc_hold(dtrace_actdesc_t *act) 8995 { 8996 ASSERT(act->dtad_refcnt >= 1); 8997 act->dtad_refcnt++; 8998 } 8999 9000 static void 9001 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 9002 { 9003 dtrace_actkind_t kind = act->dtad_kind; 9004 dtrace_difo_t *dp; 9005 9006 ASSERT(act->dtad_refcnt >= 1); 9007 9008 if (--act->dtad_refcnt != 0) 9009 return; 9010 9011 if ((dp = act->dtad_difo) != NULL) 9012 dtrace_difo_release(dp, vstate); 9013 9014 if (DTRACEACT_ISPRINTFLIKE(kind)) { 9015 char *str = (char *)(uintptr_t)act->dtad_arg; 9016 9017 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 9018 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 9019 9020 if (str != NULL) 9021 kmem_free(str, strlen(str) + 1); 9022 } 9023 9024 kmem_free(act, sizeof (dtrace_actdesc_t)); 9025 } 9026 9027 /* 9028 * DTrace ECB Functions 9029 */ 9030 static dtrace_ecb_t * 9031 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 9032 { 9033 dtrace_ecb_t *ecb; 9034 dtrace_epid_t epid; 9035 9036 ASSERT(MUTEX_HELD(&dtrace_lock)); 9037 9038 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 9039 ecb->dte_predicate = NULL; 9040 ecb->dte_probe = probe; 9041 9042 /* 9043 * The default size is the size of the default action: recording 9044 * the epid. 9045 */ 9046 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9047 ecb->dte_alignment = sizeof (dtrace_epid_t); 9048 9049 epid = state->dts_epid++; 9050 9051 if (epid - 1 >= state->dts_necbs) { 9052 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 9053 int necbs = state->dts_necbs << 1; 9054 9055 ASSERT(epid == state->dts_necbs + 1); 9056 9057 if (necbs == 0) { 9058 ASSERT(oecbs == NULL); 9059 necbs = 1; 9060 } 9061 9062 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 9063 9064 if (oecbs != NULL) 9065 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 9066 9067 dtrace_membar_producer(); 9068 state->dts_ecbs = ecbs; 9069 9070 if (oecbs != NULL) { 9071 /* 9072 * If this state is active, we must dtrace_sync() 9073 * before we can free the old dts_ecbs array: we're 9074 * coming in hot, and there may be active ring 9075 * buffer processing (which indexes into the dts_ecbs 9076 * array) on another CPU. 9077 */ 9078 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 9079 dtrace_sync(); 9080 9081 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 9082 } 9083 9084 dtrace_membar_producer(); 9085 state->dts_necbs = necbs; 9086 } 9087 9088 ecb->dte_state = state; 9089 9090 ASSERT(state->dts_ecbs[epid - 1] == NULL); 9091 dtrace_membar_producer(); 9092 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 9093 9094 return (ecb); 9095 } 9096 9097 static void 9098 dtrace_ecb_enable(dtrace_ecb_t *ecb) 9099 { 9100 dtrace_probe_t *probe = ecb->dte_probe; 9101 9102 ASSERT(MUTEX_HELD(&cpu_lock)); 9103 ASSERT(MUTEX_HELD(&dtrace_lock)); 9104 ASSERT(ecb->dte_next == NULL); 9105 9106 if (probe == NULL) { 9107 /* 9108 * This is the NULL probe -- there's nothing to do. 9109 */ 9110 return; 9111 } 9112 9113 if (probe->dtpr_ecb == NULL) { 9114 dtrace_provider_t *prov = probe->dtpr_provider; 9115 9116 /* 9117 * We're the first ECB on this probe. 9118 */ 9119 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9120 9121 if (ecb->dte_predicate != NULL) 9122 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9123 9124 prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9125 probe->dtpr_id, probe->dtpr_arg); 9126 } else { 9127 /* 9128 * This probe is already active. Swing the last pointer to 9129 * point to the new ECB, and issue a dtrace_sync() to assure 9130 * that all CPUs have seen the change. 9131 */ 9132 ASSERT(probe->dtpr_ecb_last != NULL); 9133 probe->dtpr_ecb_last->dte_next = ecb; 9134 probe->dtpr_ecb_last = ecb; 9135 probe->dtpr_predcache = 0; 9136 9137 dtrace_sync(); 9138 } 9139 } 9140 9141 static void 9142 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9143 { 9144 uint32_t maxalign = sizeof (dtrace_epid_t); 9145 uint32_t align = sizeof (uint8_t), offs, diff; 9146 dtrace_action_t *act; 9147 int wastuple = 0; 9148 uint32_t aggbase = UINT32_MAX; 9149 dtrace_state_t *state = ecb->dte_state; 9150 9151 /* 9152 * If we record anything, we always record the epid. (And we always 9153 * record it first.) 9154 */ 9155 offs = sizeof (dtrace_epid_t); 9156 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9157 9158 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9159 dtrace_recdesc_t *rec = &act->dta_rec; 9160 9161 if ((align = rec->dtrd_alignment) > maxalign) 9162 maxalign = align; 9163 9164 if (!wastuple && act->dta_intuple) { 9165 /* 9166 * This is the first record in a tuple. Align the 9167 * offset to be at offset 4 in an 8-byte aligned 9168 * block. 9169 */ 9170 diff = offs + sizeof (dtrace_aggid_t); 9171 9172 if (diff = (diff & (sizeof (uint64_t) - 1))) 9173 offs += sizeof (uint64_t) - diff; 9174 9175 aggbase = offs - sizeof (dtrace_aggid_t); 9176 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9177 } 9178 9179 /*LINTED*/ 9180 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9181 /* 9182 * The current offset is not properly aligned; align it. 9183 */ 9184 offs += align - diff; 9185 } 9186 9187 rec->dtrd_offset = offs; 9188 9189 if (offs + rec->dtrd_size > ecb->dte_needed) { 9190 ecb->dte_needed = offs + rec->dtrd_size; 9191 9192 if (ecb->dte_needed > state->dts_needed) 9193 state->dts_needed = ecb->dte_needed; 9194 } 9195 9196 if (DTRACEACT_ISAGG(act->dta_kind)) { 9197 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9198 dtrace_action_t *first = agg->dtag_first, *prev; 9199 9200 ASSERT(rec->dtrd_size != 0 && first != NULL); 9201 ASSERT(wastuple); 9202 ASSERT(aggbase != UINT32_MAX); 9203 9204 agg->dtag_base = aggbase; 9205 9206 while ((prev = first->dta_prev) != NULL && 9207 DTRACEACT_ISAGG(prev->dta_kind)) { 9208 agg = (dtrace_aggregation_t *)prev; 9209 first = agg->dtag_first; 9210 } 9211 9212 if (prev != NULL) { 9213 offs = prev->dta_rec.dtrd_offset + 9214 prev->dta_rec.dtrd_size; 9215 } else { 9216 offs = sizeof (dtrace_epid_t); 9217 } 9218 wastuple = 0; 9219 } else { 9220 if (!act->dta_intuple) 9221 ecb->dte_size = offs + rec->dtrd_size; 9222 9223 offs += rec->dtrd_size; 9224 } 9225 9226 wastuple = act->dta_intuple; 9227 } 9228 9229 if ((act = ecb->dte_action) != NULL && 9230 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9231 ecb->dte_size == sizeof (dtrace_epid_t)) { 9232 /* 9233 * If the size is still sizeof (dtrace_epid_t), then all 9234 * actions store no data; set the size to 0. 9235 */ 9236 ecb->dte_alignment = maxalign; 9237 ecb->dte_size = 0; 9238 9239 /* 9240 * If the needed space is still sizeof (dtrace_epid_t), then 9241 * all actions need no additional space; set the needed 9242 * size to 0. 9243 */ 9244 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9245 ecb->dte_needed = 0; 9246 9247 return; 9248 } 9249 9250 /* 9251 * Set our alignment, and make sure that the dte_size and dte_needed 9252 * are aligned to the size of an EPID. 9253 */ 9254 ecb->dte_alignment = maxalign; 9255 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9256 ~(sizeof (dtrace_epid_t) - 1); 9257 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9258 ~(sizeof (dtrace_epid_t) - 1); 9259 ASSERT(ecb->dte_size <= ecb->dte_needed); 9260 } 9261 9262 static dtrace_action_t * 9263 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9264 { 9265 dtrace_aggregation_t *agg; 9266 size_t size = sizeof (uint64_t); 9267 int ntuple = desc->dtad_ntuple; 9268 dtrace_action_t *act; 9269 dtrace_recdesc_t *frec; 9270 dtrace_aggid_t aggid; 9271 dtrace_state_t *state = ecb->dte_state; 9272 9273 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9274 agg->dtag_ecb = ecb; 9275 9276 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9277 9278 switch (desc->dtad_kind) { 9279 case DTRACEAGG_MIN: 9280 agg->dtag_initial = INT64_MAX; 9281 agg->dtag_aggregate = dtrace_aggregate_min; 9282 break; 9283 9284 case DTRACEAGG_MAX: 9285 agg->dtag_initial = INT64_MIN; 9286 agg->dtag_aggregate = dtrace_aggregate_max; 9287 break; 9288 9289 case DTRACEAGG_COUNT: 9290 agg->dtag_aggregate = dtrace_aggregate_count; 9291 break; 9292 9293 case DTRACEAGG_QUANTIZE: 9294 agg->dtag_aggregate = dtrace_aggregate_quantize; 9295 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9296 sizeof (uint64_t); 9297 break; 9298 9299 case DTRACEAGG_LQUANTIZE: { 9300 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9301 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9302 9303 agg->dtag_initial = desc->dtad_arg; 9304 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9305 9306 if (step == 0 || levels == 0) 9307 goto err; 9308 9309 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9310 break; 9311 } 9312 9313 case DTRACEAGG_AVG: 9314 agg->dtag_aggregate = dtrace_aggregate_avg; 9315 size = sizeof (uint64_t) * 2; 9316 break; 9317 9318 case DTRACEAGG_STDDEV: 9319 agg->dtag_aggregate = dtrace_aggregate_stddev; 9320 size = sizeof (uint64_t) * 4; 9321 break; 9322 9323 case DTRACEAGG_SUM: 9324 agg->dtag_aggregate = dtrace_aggregate_sum; 9325 break; 9326 9327 default: 9328 goto err; 9329 } 9330 9331 agg->dtag_action.dta_rec.dtrd_size = size; 9332 9333 if (ntuple == 0) 9334 goto err; 9335 9336 /* 9337 * We must make sure that we have enough actions for the n-tuple. 9338 */ 9339 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9340 if (DTRACEACT_ISAGG(act->dta_kind)) 9341 break; 9342 9343 if (--ntuple == 0) { 9344 /* 9345 * This is the action with which our n-tuple begins. 9346 */ 9347 agg->dtag_first = act; 9348 goto success; 9349 } 9350 } 9351 9352 /* 9353 * This n-tuple is short by ntuple elements. Return failure. 9354 */ 9355 ASSERT(ntuple != 0); 9356 err: 9357 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9358 return (NULL); 9359 9360 success: 9361 /* 9362 * If the last action in the tuple has a size of zero, it's actually 9363 * an expression argument for the aggregating action. 9364 */ 9365 ASSERT(ecb->dte_action_last != NULL); 9366 act = ecb->dte_action_last; 9367 9368 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9369 ASSERT(act->dta_difo != NULL); 9370 9371 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9372 agg->dtag_hasarg = 1; 9373 } 9374 9375 /* 9376 * We need to allocate an id for this aggregation. 9377 */ 9378 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9379 VM_BESTFIT | VM_SLEEP); 9380 9381 if (aggid - 1 >= state->dts_naggregations) { 9382 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9383 dtrace_aggregation_t **aggs; 9384 int naggs = state->dts_naggregations << 1; 9385 int onaggs = state->dts_naggregations; 9386 9387 ASSERT(aggid == state->dts_naggregations + 1); 9388 9389 if (naggs == 0) { 9390 ASSERT(oaggs == NULL); 9391 naggs = 1; 9392 } 9393 9394 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9395 9396 if (oaggs != NULL) { 9397 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9398 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9399 } 9400 9401 state->dts_aggregations = aggs; 9402 state->dts_naggregations = naggs; 9403 } 9404 9405 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9406 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9407 9408 frec = &agg->dtag_first->dta_rec; 9409 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9410 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9411 9412 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9413 ASSERT(!act->dta_intuple); 9414 act->dta_intuple = 1; 9415 } 9416 9417 return (&agg->dtag_action); 9418 } 9419 9420 static void 9421 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9422 { 9423 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9424 dtrace_state_t *state = ecb->dte_state; 9425 dtrace_aggid_t aggid = agg->dtag_id; 9426 9427 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9428 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9429 9430 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9431 state->dts_aggregations[aggid - 1] = NULL; 9432 9433 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9434 } 9435 9436 static int 9437 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9438 { 9439 dtrace_action_t *action, *last; 9440 dtrace_difo_t *dp = desc->dtad_difo; 9441 uint32_t size = 0, align = sizeof (uint8_t), mask; 9442 uint16_t format = 0; 9443 dtrace_recdesc_t *rec; 9444 dtrace_state_t *state = ecb->dte_state; 9445 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9446 uint64_t arg = desc->dtad_arg; 9447 9448 ASSERT(MUTEX_HELD(&dtrace_lock)); 9449 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9450 9451 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9452 /* 9453 * If this is an aggregating action, there must be neither 9454 * a speculate nor a commit on the action chain. 9455 */ 9456 dtrace_action_t *act; 9457 9458 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9459 if (act->dta_kind == DTRACEACT_COMMIT) 9460 return (EINVAL); 9461 9462 if (act->dta_kind == DTRACEACT_SPECULATE) 9463 return (EINVAL); 9464 } 9465 9466 action = dtrace_ecb_aggregation_create(ecb, desc); 9467 9468 if (action == NULL) 9469 return (EINVAL); 9470 } else { 9471 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9472 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9473 dp != NULL && dp->dtdo_destructive)) { 9474 state->dts_destructive = 1; 9475 } 9476 9477 switch (desc->dtad_kind) { 9478 case DTRACEACT_PRINTF: 9479 case DTRACEACT_PRINTA: 9480 case DTRACEACT_SYSTEM: 9481 case DTRACEACT_FREOPEN: 9482 /* 9483 * We know that our arg is a string -- turn it into a 9484 * format. 9485 */ 9486 if (arg == NULL) { 9487 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA); 9488 format = 0; 9489 } else { 9490 ASSERT(arg != NULL); 9491 ASSERT(arg > KERNELBASE); 9492 format = dtrace_format_add(state, 9493 (char *)(uintptr_t)arg); 9494 } 9495 9496 /*FALLTHROUGH*/ 9497 case DTRACEACT_LIBACT: 9498 case DTRACEACT_DIFEXPR: 9499 if (dp == NULL) 9500 return (EINVAL); 9501 9502 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9503 break; 9504 9505 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9506 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9507 return (EINVAL); 9508 9509 size = opt[DTRACEOPT_STRSIZE]; 9510 } 9511 9512 break; 9513 9514 case DTRACEACT_STACK: 9515 if ((nframes = arg) == 0) { 9516 nframes = opt[DTRACEOPT_STACKFRAMES]; 9517 ASSERT(nframes > 0); 9518 arg = nframes; 9519 } 9520 9521 size = nframes * sizeof (pc_t); 9522 break; 9523 9524 case DTRACEACT_JSTACK: 9525 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9526 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9527 9528 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9529 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9530 9531 arg = DTRACE_USTACK_ARG(nframes, strsize); 9532 9533 /*FALLTHROUGH*/ 9534 case DTRACEACT_USTACK: 9535 if (desc->dtad_kind != DTRACEACT_JSTACK && 9536 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9537 strsize = DTRACE_USTACK_STRSIZE(arg); 9538 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9539 ASSERT(nframes > 0); 9540 arg = DTRACE_USTACK_ARG(nframes, strsize); 9541 } 9542 9543 /* 9544 * Save a slot for the pid. 9545 */ 9546 size = (nframes + 1) * sizeof (uint64_t); 9547 size += DTRACE_USTACK_STRSIZE(arg); 9548 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9549 9550 break; 9551 9552 case DTRACEACT_SYM: 9553 case DTRACEACT_MOD: 9554 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9555 sizeof (uint64_t)) || 9556 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9557 return (EINVAL); 9558 break; 9559 9560 case DTRACEACT_USYM: 9561 case DTRACEACT_UMOD: 9562 case DTRACEACT_UADDR: 9563 if (dp == NULL || 9564 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9565 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9566 return (EINVAL); 9567 9568 /* 9569 * We have a slot for the pid, plus a slot for the 9570 * argument. To keep things simple (aligned with 9571 * bitness-neutral sizing), we store each as a 64-bit 9572 * quantity. 9573 */ 9574 size = 2 * sizeof (uint64_t); 9575 break; 9576 9577 case DTRACEACT_STOP: 9578 case DTRACEACT_BREAKPOINT: 9579 case DTRACEACT_PANIC: 9580 break; 9581 9582 case DTRACEACT_CHILL: 9583 case DTRACEACT_DISCARD: 9584 case DTRACEACT_RAISE: 9585 if (dp == NULL) 9586 return (EINVAL); 9587 break; 9588 9589 case DTRACEACT_EXIT: 9590 if (dp == NULL || 9591 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9592 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9593 return (EINVAL); 9594 break; 9595 9596 case DTRACEACT_SPECULATE: 9597 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9598 return (EINVAL); 9599 9600 if (dp == NULL) 9601 return (EINVAL); 9602 9603 state->dts_speculates = 1; 9604 break; 9605 9606 case DTRACEACT_COMMIT: { 9607 dtrace_action_t *act = ecb->dte_action; 9608 9609 for (; act != NULL; act = act->dta_next) { 9610 if (act->dta_kind == DTRACEACT_COMMIT) 9611 return (EINVAL); 9612 } 9613 9614 if (dp == NULL) 9615 return (EINVAL); 9616 break; 9617 } 9618 9619 default: 9620 return (EINVAL); 9621 } 9622 9623 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9624 /* 9625 * If this is a data-storing action or a speculate, 9626 * we must be sure that there isn't a commit on the 9627 * action chain. 9628 */ 9629 dtrace_action_t *act = ecb->dte_action; 9630 9631 for (; act != NULL; act = act->dta_next) { 9632 if (act->dta_kind == DTRACEACT_COMMIT) 9633 return (EINVAL); 9634 } 9635 } 9636 9637 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9638 action->dta_rec.dtrd_size = size; 9639 } 9640 9641 action->dta_refcnt = 1; 9642 rec = &action->dta_rec; 9643 size = rec->dtrd_size; 9644 9645 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 9646 if (!(size & mask)) { 9647 align = mask + 1; 9648 break; 9649 } 9650 } 9651 9652 action->dta_kind = desc->dtad_kind; 9653 9654 if ((action->dta_difo = dp) != NULL) 9655 dtrace_difo_hold(dp); 9656 9657 rec->dtrd_action = action->dta_kind; 9658 rec->dtrd_arg = arg; 9659 rec->dtrd_uarg = desc->dtad_uarg; 9660 rec->dtrd_alignment = (uint16_t)align; 9661 rec->dtrd_format = format; 9662 9663 if ((last = ecb->dte_action_last) != NULL) { 9664 ASSERT(ecb->dte_action != NULL); 9665 action->dta_prev = last; 9666 last->dta_next = action; 9667 } else { 9668 ASSERT(ecb->dte_action == NULL); 9669 ecb->dte_action = action; 9670 } 9671 9672 ecb->dte_action_last = action; 9673 9674 return (0); 9675 } 9676 9677 static void 9678 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 9679 { 9680 dtrace_action_t *act = ecb->dte_action, *next; 9681 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 9682 dtrace_difo_t *dp; 9683 uint16_t format; 9684 9685 if (act != NULL && act->dta_refcnt > 1) { 9686 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 9687 act->dta_refcnt--; 9688 } else { 9689 for (; act != NULL; act = next) { 9690 next = act->dta_next; 9691 ASSERT(next != NULL || act == ecb->dte_action_last); 9692 ASSERT(act->dta_refcnt == 1); 9693 9694 if ((format = act->dta_rec.dtrd_format) != 0) 9695 dtrace_format_remove(ecb->dte_state, format); 9696 9697 if ((dp = act->dta_difo) != NULL) 9698 dtrace_difo_release(dp, vstate); 9699 9700 if (DTRACEACT_ISAGG(act->dta_kind)) { 9701 dtrace_ecb_aggregation_destroy(ecb, act); 9702 } else { 9703 kmem_free(act, sizeof (dtrace_action_t)); 9704 } 9705 } 9706 } 9707 9708 ecb->dte_action = NULL; 9709 ecb->dte_action_last = NULL; 9710 ecb->dte_size = sizeof (dtrace_epid_t); 9711 } 9712 9713 static void 9714 dtrace_ecb_disable(dtrace_ecb_t *ecb) 9715 { 9716 /* 9717 * We disable the ECB by removing it from its probe. 9718 */ 9719 dtrace_ecb_t *pecb, *prev = NULL; 9720 dtrace_probe_t *probe = ecb->dte_probe; 9721 9722 ASSERT(MUTEX_HELD(&dtrace_lock)); 9723 9724 if (probe == NULL) { 9725 /* 9726 * This is the NULL probe; there is nothing to disable. 9727 */ 9728 return; 9729 } 9730 9731 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 9732 if (pecb == ecb) 9733 break; 9734 prev = pecb; 9735 } 9736 9737 ASSERT(pecb != NULL); 9738 9739 if (prev == NULL) { 9740 probe->dtpr_ecb = ecb->dte_next; 9741 } else { 9742 prev->dte_next = ecb->dte_next; 9743 } 9744 9745 if (ecb == probe->dtpr_ecb_last) { 9746 ASSERT(ecb->dte_next == NULL); 9747 probe->dtpr_ecb_last = prev; 9748 } 9749 9750 /* 9751 * The ECB has been disconnected from the probe; now sync to assure 9752 * that all CPUs have seen the change before returning. 9753 */ 9754 dtrace_sync(); 9755 9756 if (probe->dtpr_ecb == NULL) { 9757 /* 9758 * That was the last ECB on the probe; clear the predicate 9759 * cache ID for the probe, disable it and sync one more time 9760 * to assure that we'll never hit it again. 9761 */ 9762 dtrace_provider_t *prov = probe->dtpr_provider; 9763 9764 ASSERT(ecb->dte_next == NULL); 9765 ASSERT(probe->dtpr_ecb_last == NULL); 9766 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 9767 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 9768 probe->dtpr_id, probe->dtpr_arg); 9769 dtrace_sync(); 9770 } else { 9771 /* 9772 * There is at least one ECB remaining on the probe. If there 9773 * is _exactly_ one, set the probe's predicate cache ID to be 9774 * the predicate cache ID of the remaining ECB. 9775 */ 9776 ASSERT(probe->dtpr_ecb_last != NULL); 9777 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 9778 9779 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 9780 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 9781 9782 ASSERT(probe->dtpr_ecb->dte_next == NULL); 9783 9784 if (p != NULL) 9785 probe->dtpr_predcache = p->dtp_cacheid; 9786 } 9787 9788 ecb->dte_next = NULL; 9789 } 9790 } 9791 9792 static void 9793 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 9794 { 9795 dtrace_state_t *state = ecb->dte_state; 9796 dtrace_vstate_t *vstate = &state->dts_vstate; 9797 dtrace_predicate_t *pred; 9798 dtrace_epid_t epid = ecb->dte_epid; 9799 9800 ASSERT(MUTEX_HELD(&dtrace_lock)); 9801 ASSERT(ecb->dte_next == NULL); 9802 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 9803 9804 if ((pred = ecb->dte_predicate) != NULL) 9805 dtrace_predicate_release(pred, vstate); 9806 9807 dtrace_ecb_action_remove(ecb); 9808 9809 ASSERT(state->dts_ecbs[epid - 1] == ecb); 9810 state->dts_ecbs[epid - 1] = NULL; 9811 9812 kmem_free(ecb, sizeof (dtrace_ecb_t)); 9813 } 9814 9815 static dtrace_ecb_t * 9816 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 9817 dtrace_enabling_t *enab) 9818 { 9819 dtrace_ecb_t *ecb; 9820 dtrace_predicate_t *pred; 9821 dtrace_actdesc_t *act; 9822 dtrace_provider_t *prov; 9823 dtrace_ecbdesc_t *desc = enab->dten_current; 9824 9825 ASSERT(MUTEX_HELD(&dtrace_lock)); 9826 ASSERT(state != NULL); 9827 9828 ecb = dtrace_ecb_add(state, probe); 9829 ecb->dte_uarg = desc->dted_uarg; 9830 9831 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 9832 dtrace_predicate_hold(pred); 9833 ecb->dte_predicate = pred; 9834 } 9835 9836 if (probe != NULL) { 9837 /* 9838 * If the provider shows more leg than the consumer is old 9839 * enough to see, we need to enable the appropriate implicit 9840 * predicate bits to prevent the ecb from activating at 9841 * revealing times. 9842 * 9843 * Providers specifying DTRACE_PRIV_USER at register time 9844 * are stating that they need the /proc-style privilege 9845 * model to be enforced, and this is what DTRACE_COND_OWNER 9846 * and DTRACE_COND_ZONEOWNER will then do at probe time. 9847 */ 9848 prov = probe->dtpr_provider; 9849 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 9850 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9851 ecb->dte_cond |= DTRACE_COND_OWNER; 9852 9853 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 9854 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 9855 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 9856 9857 /* 9858 * If the provider shows us kernel innards and the user 9859 * is lacking sufficient privilege, enable the 9860 * DTRACE_COND_USERMODE implicit predicate. 9861 */ 9862 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 9863 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 9864 ecb->dte_cond |= DTRACE_COND_USERMODE; 9865 } 9866 9867 if (dtrace_ecb_create_cache != NULL) { 9868 /* 9869 * If we have a cached ecb, we'll use its action list instead 9870 * of creating our own (saving both time and space). 9871 */ 9872 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 9873 dtrace_action_t *act = cached->dte_action; 9874 9875 if (act != NULL) { 9876 ASSERT(act->dta_refcnt > 0); 9877 act->dta_refcnt++; 9878 ecb->dte_action = act; 9879 ecb->dte_action_last = cached->dte_action_last; 9880 ecb->dte_needed = cached->dte_needed; 9881 ecb->dte_size = cached->dte_size; 9882 ecb->dte_alignment = cached->dte_alignment; 9883 } 9884 9885 return (ecb); 9886 } 9887 9888 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 9889 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 9890 dtrace_ecb_destroy(ecb); 9891 return (NULL); 9892 } 9893 } 9894 9895 dtrace_ecb_resize(ecb); 9896 9897 return (dtrace_ecb_create_cache = ecb); 9898 } 9899 9900 static int 9901 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 9902 { 9903 dtrace_ecb_t *ecb; 9904 dtrace_enabling_t *enab = arg; 9905 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 9906 9907 ASSERT(state != NULL); 9908 9909 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 9910 /* 9911 * This probe was created in a generation for which this 9912 * enabling has previously created ECBs; we don't want to 9913 * enable it again, so just kick out. 9914 */ 9915 return (DTRACE_MATCH_NEXT); 9916 } 9917 9918 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 9919 return (DTRACE_MATCH_DONE); 9920 9921 dtrace_ecb_enable(ecb); 9922 return (DTRACE_MATCH_NEXT); 9923 } 9924 9925 static dtrace_ecb_t * 9926 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 9927 { 9928 dtrace_ecb_t *ecb; 9929 9930 ASSERT(MUTEX_HELD(&dtrace_lock)); 9931 9932 if (id == 0 || id > state->dts_necbs) 9933 return (NULL); 9934 9935 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 9936 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 9937 9938 return (state->dts_ecbs[id - 1]); 9939 } 9940 9941 static dtrace_aggregation_t * 9942 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 9943 { 9944 dtrace_aggregation_t *agg; 9945 9946 ASSERT(MUTEX_HELD(&dtrace_lock)); 9947 9948 if (id == 0 || id > state->dts_naggregations) 9949 return (NULL); 9950 9951 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 9952 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 9953 agg->dtag_id == id); 9954 9955 return (state->dts_aggregations[id - 1]); 9956 } 9957 9958 /* 9959 * DTrace Buffer Functions 9960 * 9961 * The following functions manipulate DTrace buffers. Most of these functions 9962 * are called in the context of establishing or processing consumer state; 9963 * exceptions are explicitly noted. 9964 */ 9965 9966 /* 9967 * Note: called from cross call context. This function switches the two 9968 * buffers on a given CPU. The atomicity of this operation is assured by 9969 * disabling interrupts while the actual switch takes place; the disabling of 9970 * interrupts serializes the execution with any execution of dtrace_probe() on 9971 * the same CPU. 9972 */ 9973 static void 9974 dtrace_buffer_switch(dtrace_buffer_t *buf) 9975 { 9976 caddr_t tomax = buf->dtb_tomax; 9977 caddr_t xamot = buf->dtb_xamot; 9978 dtrace_icookie_t cookie; 9979 9980 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 9981 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 9982 9983 cookie = dtrace_interrupt_disable(); 9984 buf->dtb_tomax = xamot; 9985 buf->dtb_xamot = tomax; 9986 buf->dtb_xamot_drops = buf->dtb_drops; 9987 buf->dtb_xamot_offset = buf->dtb_offset; 9988 buf->dtb_xamot_errors = buf->dtb_errors; 9989 buf->dtb_xamot_flags = buf->dtb_flags; 9990 buf->dtb_offset = 0; 9991 buf->dtb_drops = 0; 9992 buf->dtb_errors = 0; 9993 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 9994 dtrace_interrupt_enable(cookie); 9995 } 9996 9997 /* 9998 * Note: called from cross call context. This function activates a buffer 9999 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 10000 * is guaranteed by the disabling of interrupts. 10001 */ 10002 static void 10003 dtrace_buffer_activate(dtrace_state_t *state) 10004 { 10005 dtrace_buffer_t *buf; 10006 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 10007 10008 buf = &state->dts_buffer[CPU->cpu_id]; 10009 10010 if (buf->dtb_tomax != NULL) { 10011 /* 10012 * We might like to assert that the buffer is marked inactive, 10013 * but this isn't necessarily true: the buffer for the CPU 10014 * that processes the BEGIN probe has its buffer activated 10015 * manually. In this case, we take the (harmless) action 10016 * re-clearing the bit INACTIVE bit. 10017 */ 10018 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 10019 } 10020 10021 dtrace_interrupt_enable(cookie); 10022 } 10023 10024 static int 10025 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 10026 processorid_t cpu) 10027 { 10028 cpu_t *cp; 10029 dtrace_buffer_t *buf; 10030 10031 ASSERT(MUTEX_HELD(&cpu_lock)); 10032 ASSERT(MUTEX_HELD(&dtrace_lock)); 10033 10034 if (size > dtrace_nonroot_maxsize && 10035 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 10036 return (EFBIG); 10037 10038 cp = cpu_list; 10039 10040 do { 10041 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10042 continue; 10043 10044 buf = &bufs[cp->cpu_id]; 10045 10046 /* 10047 * If there is already a buffer allocated for this CPU, it 10048 * is only possible that this is a DR event. In this case, 10049 * the buffer size must match our specified size. 10050 */ 10051 if (buf->dtb_tomax != NULL) { 10052 ASSERT(buf->dtb_size == size); 10053 continue; 10054 } 10055 10056 ASSERT(buf->dtb_xamot == NULL); 10057 10058 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10059 goto err; 10060 10061 buf->dtb_size = size; 10062 buf->dtb_flags = flags; 10063 buf->dtb_offset = 0; 10064 buf->dtb_drops = 0; 10065 10066 if (flags & DTRACEBUF_NOSWITCH) 10067 continue; 10068 10069 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 10070 goto err; 10071 } while ((cp = cp->cpu_next) != cpu_list); 10072 10073 return (0); 10074 10075 err: 10076 cp = cpu_list; 10077 10078 do { 10079 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10080 continue; 10081 10082 buf = &bufs[cp->cpu_id]; 10083 10084 if (buf->dtb_xamot != NULL) { 10085 ASSERT(buf->dtb_tomax != NULL); 10086 ASSERT(buf->dtb_size == size); 10087 kmem_free(buf->dtb_xamot, size); 10088 } 10089 10090 if (buf->dtb_tomax != NULL) { 10091 ASSERT(buf->dtb_size == size); 10092 kmem_free(buf->dtb_tomax, size); 10093 } 10094 10095 buf->dtb_tomax = NULL; 10096 buf->dtb_xamot = NULL; 10097 buf->dtb_size = 0; 10098 } while ((cp = cp->cpu_next) != cpu_list); 10099 10100 return (ENOMEM); 10101 } 10102 10103 /* 10104 * Note: called from probe context. This function just increments the drop 10105 * count on a buffer. It has been made a function to allow for the 10106 * possibility of understanding the source of mysterious drop counts. (A 10107 * problem for which one may be particularly disappointed that DTrace cannot 10108 * be used to understand DTrace.) 10109 */ 10110 static void 10111 dtrace_buffer_drop(dtrace_buffer_t *buf) 10112 { 10113 buf->dtb_drops++; 10114 } 10115 10116 /* 10117 * Note: called from probe context. This function is called to reserve space 10118 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 10119 * mstate. Returns the new offset in the buffer, or a negative value if an 10120 * error has occurred. 10121 */ 10122 static intptr_t 10123 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10124 dtrace_state_t *state, dtrace_mstate_t *mstate) 10125 { 10126 intptr_t offs = buf->dtb_offset, soffs; 10127 intptr_t woffs; 10128 caddr_t tomax; 10129 size_t total; 10130 10131 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10132 return (-1); 10133 10134 if ((tomax = buf->dtb_tomax) == NULL) { 10135 dtrace_buffer_drop(buf); 10136 return (-1); 10137 } 10138 10139 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10140 while (offs & (align - 1)) { 10141 /* 10142 * Assert that our alignment is off by a number which 10143 * is itself sizeof (uint32_t) aligned. 10144 */ 10145 ASSERT(!((align - (offs & (align - 1))) & 10146 (sizeof (uint32_t) - 1))); 10147 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10148 offs += sizeof (uint32_t); 10149 } 10150 10151 if ((soffs = offs + needed) > buf->dtb_size) { 10152 dtrace_buffer_drop(buf); 10153 return (-1); 10154 } 10155 10156 if (mstate == NULL) 10157 return (offs); 10158 10159 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10160 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10161 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10162 10163 return (offs); 10164 } 10165 10166 if (buf->dtb_flags & DTRACEBUF_FILL) { 10167 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10168 (buf->dtb_flags & DTRACEBUF_FULL)) 10169 return (-1); 10170 goto out; 10171 } 10172 10173 total = needed + (offs & (align - 1)); 10174 10175 /* 10176 * For a ring buffer, life is quite a bit more complicated. Before 10177 * we can store any padding, we need to adjust our wrapping offset. 10178 * (If we've never before wrapped or we're not about to, no adjustment 10179 * is required.) 10180 */ 10181 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10182 offs + total > buf->dtb_size) { 10183 woffs = buf->dtb_xamot_offset; 10184 10185 if (offs + total > buf->dtb_size) { 10186 /* 10187 * We can't fit in the end of the buffer. First, a 10188 * sanity check that we can fit in the buffer at all. 10189 */ 10190 if (total > buf->dtb_size) { 10191 dtrace_buffer_drop(buf); 10192 return (-1); 10193 } 10194 10195 /* 10196 * We're going to be storing at the top of the buffer, 10197 * so now we need to deal with the wrapped offset. We 10198 * only reset our wrapped offset to 0 if it is 10199 * currently greater than the current offset. If it 10200 * is less than the current offset, it is because a 10201 * previous allocation induced a wrap -- but the 10202 * allocation didn't subsequently take the space due 10203 * to an error or false predicate evaluation. In this 10204 * case, we'll just leave the wrapped offset alone: if 10205 * the wrapped offset hasn't been advanced far enough 10206 * for this allocation, it will be adjusted in the 10207 * lower loop. 10208 */ 10209 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10210 if (woffs >= offs) 10211 woffs = 0; 10212 } else { 10213 woffs = 0; 10214 } 10215 10216 /* 10217 * Now we know that we're going to be storing to the 10218 * top of the buffer and that there is room for us 10219 * there. We need to clear the buffer from the current 10220 * offset to the end (there may be old gunk there). 10221 */ 10222 while (offs < buf->dtb_size) 10223 tomax[offs++] = 0; 10224 10225 /* 10226 * We need to set our offset to zero. And because we 10227 * are wrapping, we need to set the bit indicating as 10228 * much. We can also adjust our needed space back 10229 * down to the space required by the ECB -- we know 10230 * that the top of the buffer is aligned. 10231 */ 10232 offs = 0; 10233 total = needed; 10234 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10235 } else { 10236 /* 10237 * There is room for us in the buffer, so we simply 10238 * need to check the wrapped offset. 10239 */ 10240 if (woffs < offs) { 10241 /* 10242 * The wrapped offset is less than the offset. 10243 * This can happen if we allocated buffer space 10244 * that induced a wrap, but then we didn't 10245 * subsequently take the space due to an error 10246 * or false predicate evaluation. This is 10247 * okay; we know that _this_ allocation isn't 10248 * going to induce a wrap. We still can't 10249 * reset the wrapped offset to be zero, 10250 * however: the space may have been trashed in 10251 * the previous failed probe attempt. But at 10252 * least the wrapped offset doesn't need to 10253 * be adjusted at all... 10254 */ 10255 goto out; 10256 } 10257 } 10258 10259 while (offs + total > woffs) { 10260 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10261 size_t size; 10262 10263 if (epid == DTRACE_EPIDNONE) { 10264 size = sizeof (uint32_t); 10265 } else { 10266 ASSERT(epid <= state->dts_necbs); 10267 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10268 10269 size = state->dts_ecbs[epid - 1]->dte_size; 10270 } 10271 10272 ASSERT(woffs + size <= buf->dtb_size); 10273 ASSERT(size != 0); 10274 10275 if (woffs + size == buf->dtb_size) { 10276 /* 10277 * We've reached the end of the buffer; we want 10278 * to set the wrapped offset to 0 and break 10279 * out. However, if the offs is 0, then we're 10280 * in a strange edge-condition: the amount of 10281 * space that we want to reserve plus the size 10282 * of the record that we're overwriting is 10283 * greater than the size of the buffer. This 10284 * is problematic because if we reserve the 10285 * space but subsequently don't consume it (due 10286 * to a failed predicate or error) the wrapped 10287 * offset will be 0 -- yet the EPID at offset 0 10288 * will not be committed. This situation is 10289 * relatively easy to deal with: if we're in 10290 * this case, the buffer is indistinguishable 10291 * from one that hasn't wrapped; we need only 10292 * finish the job by clearing the wrapped bit, 10293 * explicitly setting the offset to be 0, and 10294 * zero'ing out the old data in the buffer. 10295 */ 10296 if (offs == 0) { 10297 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10298 buf->dtb_offset = 0; 10299 woffs = total; 10300 10301 while (woffs < buf->dtb_size) 10302 tomax[woffs++] = 0; 10303 } 10304 10305 woffs = 0; 10306 break; 10307 } 10308 10309 woffs += size; 10310 } 10311 10312 /* 10313 * We have a wrapped offset. It may be that the wrapped offset 10314 * has become zero -- that's okay. 10315 */ 10316 buf->dtb_xamot_offset = woffs; 10317 } 10318 10319 out: 10320 /* 10321 * Now we can plow the buffer with any necessary padding. 10322 */ 10323 while (offs & (align - 1)) { 10324 /* 10325 * Assert that our alignment is off by a number which 10326 * is itself sizeof (uint32_t) aligned. 10327 */ 10328 ASSERT(!((align - (offs & (align - 1))) & 10329 (sizeof (uint32_t) - 1))); 10330 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10331 offs += sizeof (uint32_t); 10332 } 10333 10334 if (buf->dtb_flags & DTRACEBUF_FILL) { 10335 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10336 buf->dtb_flags |= DTRACEBUF_FULL; 10337 return (-1); 10338 } 10339 } 10340 10341 if (mstate == NULL) 10342 return (offs); 10343 10344 /* 10345 * For ring buffers and fill buffers, the scratch space is always 10346 * the inactive buffer. 10347 */ 10348 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10349 mstate->dtms_scratch_size = buf->dtb_size; 10350 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10351 10352 return (offs); 10353 } 10354 10355 static void 10356 dtrace_buffer_polish(dtrace_buffer_t *buf) 10357 { 10358 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10359 ASSERT(MUTEX_HELD(&dtrace_lock)); 10360 10361 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10362 return; 10363 10364 /* 10365 * We need to polish the ring buffer. There are three cases: 10366 * 10367 * - The first (and presumably most common) is that there is no gap 10368 * between the buffer offset and the wrapped offset. In this case, 10369 * there is nothing in the buffer that isn't valid data; we can 10370 * mark the buffer as polished and return. 10371 * 10372 * - The second (less common than the first but still more common 10373 * than the third) is that there is a gap between the buffer offset 10374 * and the wrapped offset, and the wrapped offset is larger than the 10375 * buffer offset. This can happen because of an alignment issue, or 10376 * can happen because of a call to dtrace_buffer_reserve() that 10377 * didn't subsequently consume the buffer space. In this case, 10378 * we need to zero the data from the buffer offset to the wrapped 10379 * offset. 10380 * 10381 * - The third (and least common) is that there is a gap between the 10382 * buffer offset and the wrapped offset, but the wrapped offset is 10383 * _less_ than the buffer offset. This can only happen because a 10384 * call to dtrace_buffer_reserve() induced a wrap, but the space 10385 * was not subsequently consumed. In this case, we need to zero the 10386 * space from the offset to the end of the buffer _and_ from the 10387 * top of the buffer to the wrapped offset. 10388 */ 10389 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10390 bzero(buf->dtb_tomax + buf->dtb_offset, 10391 buf->dtb_xamot_offset - buf->dtb_offset); 10392 } 10393 10394 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10395 bzero(buf->dtb_tomax + buf->dtb_offset, 10396 buf->dtb_size - buf->dtb_offset); 10397 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10398 } 10399 } 10400 10401 static void 10402 dtrace_buffer_free(dtrace_buffer_t *bufs) 10403 { 10404 int i; 10405 10406 for (i = 0; i < NCPU; i++) { 10407 dtrace_buffer_t *buf = &bufs[i]; 10408 10409 if (buf->dtb_tomax == NULL) { 10410 ASSERT(buf->dtb_xamot == NULL); 10411 ASSERT(buf->dtb_size == 0); 10412 continue; 10413 } 10414 10415 if (buf->dtb_xamot != NULL) { 10416 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10417 kmem_free(buf->dtb_xamot, buf->dtb_size); 10418 } 10419 10420 kmem_free(buf->dtb_tomax, buf->dtb_size); 10421 buf->dtb_size = 0; 10422 buf->dtb_tomax = NULL; 10423 buf->dtb_xamot = NULL; 10424 } 10425 } 10426 10427 /* 10428 * DTrace Enabling Functions 10429 */ 10430 static dtrace_enabling_t * 10431 dtrace_enabling_create(dtrace_vstate_t *vstate) 10432 { 10433 dtrace_enabling_t *enab; 10434 10435 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10436 enab->dten_vstate = vstate; 10437 10438 return (enab); 10439 } 10440 10441 static void 10442 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10443 { 10444 dtrace_ecbdesc_t **ndesc; 10445 size_t osize, nsize; 10446 10447 /* 10448 * We can't add to enablings after we've enabled them, or after we've 10449 * retained them. 10450 */ 10451 ASSERT(enab->dten_probegen == 0); 10452 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10453 10454 if (enab->dten_ndesc < enab->dten_maxdesc) { 10455 enab->dten_desc[enab->dten_ndesc++] = ecb; 10456 return; 10457 } 10458 10459 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10460 10461 if (enab->dten_maxdesc == 0) { 10462 enab->dten_maxdesc = 1; 10463 } else { 10464 enab->dten_maxdesc <<= 1; 10465 } 10466 10467 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10468 10469 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10470 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10471 bcopy(enab->dten_desc, ndesc, osize); 10472 kmem_free(enab->dten_desc, osize); 10473 10474 enab->dten_desc = ndesc; 10475 enab->dten_desc[enab->dten_ndesc++] = ecb; 10476 } 10477 10478 static void 10479 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10480 dtrace_probedesc_t *pd) 10481 { 10482 dtrace_ecbdesc_t *new; 10483 dtrace_predicate_t *pred; 10484 dtrace_actdesc_t *act; 10485 10486 /* 10487 * We're going to create a new ECB description that matches the 10488 * specified ECB in every way, but has the specified probe description. 10489 */ 10490 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10491 10492 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10493 dtrace_predicate_hold(pred); 10494 10495 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10496 dtrace_actdesc_hold(act); 10497 10498 new->dted_action = ecb->dted_action; 10499 new->dted_pred = ecb->dted_pred; 10500 new->dted_probe = *pd; 10501 new->dted_uarg = ecb->dted_uarg; 10502 10503 dtrace_enabling_add(enab, new); 10504 } 10505 10506 static void 10507 dtrace_enabling_dump(dtrace_enabling_t *enab) 10508 { 10509 int i; 10510 10511 for (i = 0; i < enab->dten_ndesc; i++) { 10512 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10513 10514 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10515 desc->dtpd_provider, desc->dtpd_mod, 10516 desc->dtpd_func, desc->dtpd_name); 10517 } 10518 } 10519 10520 static void 10521 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10522 { 10523 int i; 10524 dtrace_ecbdesc_t *ep; 10525 dtrace_vstate_t *vstate = enab->dten_vstate; 10526 10527 ASSERT(MUTEX_HELD(&dtrace_lock)); 10528 10529 for (i = 0; i < enab->dten_ndesc; i++) { 10530 dtrace_actdesc_t *act, *next; 10531 dtrace_predicate_t *pred; 10532 10533 ep = enab->dten_desc[i]; 10534 10535 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10536 dtrace_predicate_release(pred, vstate); 10537 10538 for (act = ep->dted_action; act != NULL; act = next) { 10539 next = act->dtad_next; 10540 dtrace_actdesc_release(act, vstate); 10541 } 10542 10543 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10544 } 10545 10546 kmem_free(enab->dten_desc, 10547 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10548 10549 /* 10550 * If this was a retained enabling, decrement the dts_nretained count 10551 * and take it off of the dtrace_retained list. 10552 */ 10553 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10554 dtrace_retained == enab) { 10555 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10556 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10557 enab->dten_vstate->dtvs_state->dts_nretained--; 10558 } 10559 10560 if (enab->dten_prev == NULL) { 10561 if (dtrace_retained == enab) { 10562 dtrace_retained = enab->dten_next; 10563 10564 if (dtrace_retained != NULL) 10565 dtrace_retained->dten_prev = NULL; 10566 } 10567 } else { 10568 ASSERT(enab != dtrace_retained); 10569 ASSERT(dtrace_retained != NULL); 10570 enab->dten_prev->dten_next = enab->dten_next; 10571 } 10572 10573 if (enab->dten_next != NULL) { 10574 ASSERT(dtrace_retained != NULL); 10575 enab->dten_next->dten_prev = enab->dten_prev; 10576 } 10577 10578 kmem_free(enab, sizeof (dtrace_enabling_t)); 10579 } 10580 10581 static int 10582 dtrace_enabling_retain(dtrace_enabling_t *enab) 10583 { 10584 dtrace_state_t *state; 10585 10586 ASSERT(MUTEX_HELD(&dtrace_lock)); 10587 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10588 ASSERT(enab->dten_vstate != NULL); 10589 10590 state = enab->dten_vstate->dtvs_state; 10591 ASSERT(state != NULL); 10592 10593 /* 10594 * We only allow each state to retain dtrace_retain_max enablings. 10595 */ 10596 if (state->dts_nretained >= dtrace_retain_max) 10597 return (ENOSPC); 10598 10599 state->dts_nretained++; 10600 10601 if (dtrace_retained == NULL) { 10602 dtrace_retained = enab; 10603 return (0); 10604 } 10605 10606 enab->dten_next = dtrace_retained; 10607 dtrace_retained->dten_prev = enab; 10608 dtrace_retained = enab; 10609 10610 return (0); 10611 } 10612 10613 static int 10614 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 10615 dtrace_probedesc_t *create) 10616 { 10617 dtrace_enabling_t *new, *enab; 10618 int found = 0, err = ENOENT; 10619 10620 ASSERT(MUTEX_HELD(&dtrace_lock)); 10621 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 10622 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 10623 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 10624 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 10625 10626 new = dtrace_enabling_create(&state->dts_vstate); 10627 10628 /* 10629 * Iterate over all retained enablings, looking for enablings that 10630 * match the specified state. 10631 */ 10632 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10633 int i; 10634 10635 /* 10636 * dtvs_state can only be NULL for helper enablings -- and 10637 * helper enablings can't be retained. 10638 */ 10639 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10640 10641 if (enab->dten_vstate->dtvs_state != state) 10642 continue; 10643 10644 /* 10645 * Now iterate over each probe description; we're looking for 10646 * an exact match to the specified probe description. 10647 */ 10648 for (i = 0; i < enab->dten_ndesc; i++) { 10649 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10650 dtrace_probedesc_t *pd = &ep->dted_probe; 10651 10652 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 10653 continue; 10654 10655 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 10656 continue; 10657 10658 if (strcmp(pd->dtpd_func, match->dtpd_func)) 10659 continue; 10660 10661 if (strcmp(pd->dtpd_name, match->dtpd_name)) 10662 continue; 10663 10664 /* 10665 * We have a winning probe! Add it to our growing 10666 * enabling. 10667 */ 10668 found = 1; 10669 dtrace_enabling_addlike(new, ep, create); 10670 } 10671 } 10672 10673 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 10674 dtrace_enabling_destroy(new); 10675 return (err); 10676 } 10677 10678 return (0); 10679 } 10680 10681 static void 10682 dtrace_enabling_retract(dtrace_state_t *state) 10683 { 10684 dtrace_enabling_t *enab, *next; 10685 10686 ASSERT(MUTEX_HELD(&dtrace_lock)); 10687 10688 /* 10689 * Iterate over all retained enablings, destroy the enablings retained 10690 * for the specified state. 10691 */ 10692 for (enab = dtrace_retained; enab != NULL; enab = next) { 10693 next = enab->dten_next; 10694 10695 /* 10696 * dtvs_state can only be NULL for helper enablings -- and 10697 * helper enablings can't be retained. 10698 */ 10699 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10700 10701 if (enab->dten_vstate->dtvs_state == state) { 10702 ASSERT(state->dts_nretained > 0); 10703 dtrace_enabling_destroy(enab); 10704 } 10705 } 10706 10707 ASSERT(state->dts_nretained == 0); 10708 } 10709 10710 static int 10711 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 10712 { 10713 int i = 0; 10714 int matched = 0; 10715 10716 ASSERT(MUTEX_HELD(&cpu_lock)); 10717 ASSERT(MUTEX_HELD(&dtrace_lock)); 10718 10719 for (i = 0; i < enab->dten_ndesc; i++) { 10720 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 10721 10722 enab->dten_current = ep; 10723 enab->dten_error = 0; 10724 10725 matched += dtrace_probe_enable(&ep->dted_probe, enab); 10726 10727 if (enab->dten_error != 0) { 10728 /* 10729 * If we get an error half-way through enabling the 10730 * probes, we kick out -- perhaps with some number of 10731 * them enabled. Leaving enabled probes enabled may 10732 * be slightly confusing for user-level, but we expect 10733 * that no one will attempt to actually drive on in 10734 * the face of such errors. If this is an anonymous 10735 * enabling (indicated with a NULL nmatched pointer), 10736 * we cmn_err() a message. We aren't expecting to 10737 * get such an error -- such as it can exist at all, 10738 * it would be a result of corrupted DOF in the driver 10739 * properties. 10740 */ 10741 if (nmatched == NULL) { 10742 cmn_err(CE_WARN, "dtrace_enabling_match() " 10743 "error on %p: %d", (void *)ep, 10744 enab->dten_error); 10745 } 10746 10747 return (enab->dten_error); 10748 } 10749 } 10750 10751 enab->dten_probegen = dtrace_probegen; 10752 if (nmatched != NULL) 10753 *nmatched = matched; 10754 10755 return (0); 10756 } 10757 10758 static void 10759 dtrace_enabling_matchall(void) 10760 { 10761 dtrace_enabling_t *enab; 10762 10763 mutex_enter(&cpu_lock); 10764 mutex_enter(&dtrace_lock); 10765 10766 /* 10767 * Because we can be called after dtrace_detach() has been called, we 10768 * cannot assert that there are retained enablings. We can safely 10769 * load from dtrace_retained, however: the taskq_destroy() at the 10770 * end of dtrace_detach() will block pending our completion. 10771 */ 10772 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) 10773 (void) dtrace_enabling_match(enab, NULL); 10774 10775 mutex_exit(&dtrace_lock); 10776 mutex_exit(&cpu_lock); 10777 } 10778 10779 static int 10780 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched) 10781 { 10782 dtrace_enabling_t *enab; 10783 int matched, total = 0, err; 10784 10785 ASSERT(MUTEX_HELD(&cpu_lock)); 10786 ASSERT(MUTEX_HELD(&dtrace_lock)); 10787 10788 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10789 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10790 10791 if (enab->dten_vstate->dtvs_state != state) 10792 continue; 10793 10794 if ((err = dtrace_enabling_match(enab, &matched)) != 0) 10795 return (err); 10796 10797 total += matched; 10798 } 10799 10800 if (nmatched != NULL) 10801 *nmatched = total; 10802 10803 return (0); 10804 } 10805 10806 /* 10807 * If an enabling is to be enabled without having matched probes (that is, if 10808 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 10809 * enabling must be _primed_ by creating an ECB for every ECB description. 10810 * This must be done to assure that we know the number of speculations, the 10811 * number of aggregations, the minimum buffer size needed, etc. before we 10812 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 10813 * enabling any probes, we create ECBs for every ECB decription, but with a 10814 * NULL probe -- which is exactly what this function does. 10815 */ 10816 static void 10817 dtrace_enabling_prime(dtrace_state_t *state) 10818 { 10819 dtrace_enabling_t *enab; 10820 int i; 10821 10822 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 10823 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10824 10825 if (enab->dten_vstate->dtvs_state != state) 10826 continue; 10827 10828 /* 10829 * We don't want to prime an enabling more than once, lest 10830 * we allow a malicious user to induce resource exhaustion. 10831 * (The ECBs that result from priming an enabling aren't 10832 * leaked -- but they also aren't deallocated until the 10833 * consumer state is destroyed.) 10834 */ 10835 if (enab->dten_primed) 10836 continue; 10837 10838 for (i = 0; i < enab->dten_ndesc; i++) { 10839 enab->dten_current = enab->dten_desc[i]; 10840 (void) dtrace_probe_enable(NULL, enab); 10841 } 10842 10843 enab->dten_primed = 1; 10844 } 10845 } 10846 10847 /* 10848 * Called to indicate that probes should be provided due to retained 10849 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 10850 * must take an initial lap through the enabling calling the dtps_provide() 10851 * entry point explicitly to allow for autocreated probes. 10852 */ 10853 static void 10854 dtrace_enabling_provide(dtrace_provider_t *prv) 10855 { 10856 int i, all = 0; 10857 dtrace_probedesc_t desc; 10858 10859 ASSERT(MUTEX_HELD(&dtrace_lock)); 10860 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 10861 10862 if (prv == NULL) { 10863 all = 1; 10864 prv = dtrace_provider; 10865 } 10866 10867 do { 10868 dtrace_enabling_t *enab = dtrace_retained; 10869 void *parg = prv->dtpv_arg; 10870 10871 for (; enab != NULL; enab = enab->dten_next) { 10872 for (i = 0; i < enab->dten_ndesc; i++) { 10873 desc = enab->dten_desc[i]->dted_probe; 10874 mutex_exit(&dtrace_lock); 10875 prv->dtpv_pops.dtps_provide(parg, &desc); 10876 mutex_enter(&dtrace_lock); 10877 } 10878 } 10879 } while (all && (prv = prv->dtpv_next) != NULL); 10880 10881 mutex_exit(&dtrace_lock); 10882 dtrace_probe_provide(NULL, all ? NULL : prv); 10883 mutex_enter(&dtrace_lock); 10884 } 10885 10886 /* 10887 * DTrace DOF Functions 10888 */ 10889 /*ARGSUSED*/ 10890 static void 10891 dtrace_dof_error(dof_hdr_t *dof, const char *str) 10892 { 10893 if (dtrace_err_verbose) 10894 cmn_err(CE_WARN, "failed to process DOF: %s", str); 10895 10896 #ifdef DTRACE_ERRDEBUG 10897 dtrace_errdebug(str); 10898 #endif 10899 } 10900 10901 /* 10902 * Create DOF out of a currently enabled state. Right now, we only create 10903 * DOF containing the run-time options -- but this could be expanded to create 10904 * complete DOF representing the enabled state. 10905 */ 10906 static dof_hdr_t * 10907 dtrace_dof_create(dtrace_state_t *state) 10908 { 10909 dof_hdr_t *dof; 10910 dof_sec_t *sec; 10911 dof_optdesc_t *opt; 10912 int i, len = sizeof (dof_hdr_t) + 10913 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 10914 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10915 10916 ASSERT(MUTEX_HELD(&dtrace_lock)); 10917 10918 dof = kmem_zalloc(len, KM_SLEEP); 10919 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 10920 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 10921 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 10922 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 10923 10924 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 10925 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 10926 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 10927 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 10928 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 10929 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 10930 10931 dof->dofh_flags = 0; 10932 dof->dofh_hdrsize = sizeof (dof_hdr_t); 10933 dof->dofh_secsize = sizeof (dof_sec_t); 10934 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 10935 dof->dofh_secoff = sizeof (dof_hdr_t); 10936 dof->dofh_loadsz = len; 10937 dof->dofh_filesz = len; 10938 dof->dofh_pad = 0; 10939 10940 /* 10941 * Fill in the option section header... 10942 */ 10943 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 10944 sec->dofs_type = DOF_SECT_OPTDESC; 10945 sec->dofs_align = sizeof (uint64_t); 10946 sec->dofs_flags = DOF_SECF_LOAD; 10947 sec->dofs_entsize = sizeof (dof_optdesc_t); 10948 10949 opt = (dof_optdesc_t *)((uintptr_t)sec + 10950 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 10951 10952 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 10953 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 10954 10955 for (i = 0; i < DTRACEOPT_MAX; i++) { 10956 opt[i].dofo_option = i; 10957 opt[i].dofo_strtab = DOF_SECIDX_NONE; 10958 opt[i].dofo_value = state->dts_options[i]; 10959 } 10960 10961 return (dof); 10962 } 10963 10964 static dof_hdr_t * 10965 dtrace_dof_copyin(uintptr_t uarg, int *errp) 10966 { 10967 dof_hdr_t hdr, *dof; 10968 10969 ASSERT(!MUTEX_HELD(&dtrace_lock)); 10970 10971 /* 10972 * First, we're going to copyin() the sizeof (dof_hdr_t). 10973 */ 10974 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 10975 dtrace_dof_error(NULL, "failed to copyin DOF header"); 10976 *errp = EFAULT; 10977 return (NULL); 10978 } 10979 10980 /* 10981 * Now we'll allocate the entire DOF and copy it in -- provided 10982 * that the length isn't outrageous. 10983 */ 10984 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 10985 dtrace_dof_error(&hdr, "load size exceeds maximum"); 10986 *errp = E2BIG; 10987 return (NULL); 10988 } 10989 10990 if (hdr.dofh_loadsz < sizeof (hdr)) { 10991 dtrace_dof_error(&hdr, "invalid load size"); 10992 *errp = EINVAL; 10993 return (NULL); 10994 } 10995 10996 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 10997 10998 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) { 10999 kmem_free(dof, hdr.dofh_loadsz); 11000 *errp = EFAULT; 11001 return (NULL); 11002 } 11003 11004 return (dof); 11005 } 11006 11007 static dof_hdr_t * 11008 dtrace_dof_property(const char *name) 11009 { 11010 uchar_t *buf; 11011 uint64_t loadsz; 11012 unsigned int len, i; 11013 dof_hdr_t *dof; 11014 11015 /* 11016 * Unfortunately, array of values in .conf files are always (and 11017 * only) interpreted to be integer arrays. We must read our DOF 11018 * as an integer array, and then squeeze it into a byte array. 11019 */ 11020 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 11021 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 11022 return (NULL); 11023 11024 for (i = 0; i < len; i++) 11025 buf[i] = (uchar_t)(((int *)buf)[i]); 11026 11027 if (len < sizeof (dof_hdr_t)) { 11028 ddi_prop_free(buf); 11029 dtrace_dof_error(NULL, "truncated header"); 11030 return (NULL); 11031 } 11032 11033 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 11034 ddi_prop_free(buf); 11035 dtrace_dof_error(NULL, "truncated DOF"); 11036 return (NULL); 11037 } 11038 11039 if (loadsz >= dtrace_dof_maxsize) { 11040 ddi_prop_free(buf); 11041 dtrace_dof_error(NULL, "oversized DOF"); 11042 return (NULL); 11043 } 11044 11045 dof = kmem_alloc(loadsz, KM_SLEEP); 11046 bcopy(buf, dof, loadsz); 11047 ddi_prop_free(buf); 11048 11049 return (dof); 11050 } 11051 11052 static void 11053 dtrace_dof_destroy(dof_hdr_t *dof) 11054 { 11055 kmem_free(dof, dof->dofh_loadsz); 11056 } 11057 11058 /* 11059 * Return the dof_sec_t pointer corresponding to a given section index. If the 11060 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 11061 * a type other than DOF_SECT_NONE is specified, the header is checked against 11062 * this type and NULL is returned if the types do not match. 11063 */ 11064 static dof_sec_t * 11065 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 11066 { 11067 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 11068 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 11069 11070 if (i >= dof->dofh_secnum) { 11071 dtrace_dof_error(dof, "referenced section index is invalid"); 11072 return (NULL); 11073 } 11074 11075 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 11076 dtrace_dof_error(dof, "referenced section is not loadable"); 11077 return (NULL); 11078 } 11079 11080 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 11081 dtrace_dof_error(dof, "referenced section is the wrong type"); 11082 return (NULL); 11083 } 11084 11085 return (sec); 11086 } 11087 11088 static dtrace_probedesc_t * 11089 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 11090 { 11091 dof_probedesc_t *probe; 11092 dof_sec_t *strtab; 11093 uintptr_t daddr = (uintptr_t)dof; 11094 uintptr_t str; 11095 size_t size; 11096 11097 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 11098 dtrace_dof_error(dof, "invalid probe section"); 11099 return (NULL); 11100 } 11101 11102 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11103 dtrace_dof_error(dof, "bad alignment in probe description"); 11104 return (NULL); 11105 } 11106 11107 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 11108 dtrace_dof_error(dof, "truncated probe description"); 11109 return (NULL); 11110 } 11111 11112 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 11113 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 11114 11115 if (strtab == NULL) 11116 return (NULL); 11117 11118 str = daddr + strtab->dofs_offset; 11119 size = strtab->dofs_size; 11120 11121 if (probe->dofp_provider >= strtab->dofs_size) { 11122 dtrace_dof_error(dof, "corrupt probe provider"); 11123 return (NULL); 11124 } 11125 11126 (void) strncpy(desc->dtpd_provider, 11127 (char *)(str + probe->dofp_provider), 11128 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11129 11130 if (probe->dofp_mod >= strtab->dofs_size) { 11131 dtrace_dof_error(dof, "corrupt probe module"); 11132 return (NULL); 11133 } 11134 11135 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11136 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11137 11138 if (probe->dofp_func >= strtab->dofs_size) { 11139 dtrace_dof_error(dof, "corrupt probe function"); 11140 return (NULL); 11141 } 11142 11143 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11144 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11145 11146 if (probe->dofp_name >= strtab->dofs_size) { 11147 dtrace_dof_error(dof, "corrupt probe name"); 11148 return (NULL); 11149 } 11150 11151 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11152 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11153 11154 return (desc); 11155 } 11156 11157 static dtrace_difo_t * 11158 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11159 cred_t *cr) 11160 { 11161 dtrace_difo_t *dp; 11162 size_t ttl = 0; 11163 dof_difohdr_t *dofd; 11164 uintptr_t daddr = (uintptr_t)dof; 11165 size_t max = dtrace_difo_maxsize; 11166 int i, l, n; 11167 11168 static const struct { 11169 int section; 11170 int bufoffs; 11171 int lenoffs; 11172 int entsize; 11173 int align; 11174 const char *msg; 11175 } difo[] = { 11176 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11177 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11178 sizeof (dif_instr_t), "multiple DIF sections" }, 11179 11180 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11181 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11182 sizeof (uint64_t), "multiple integer tables" }, 11183 11184 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11185 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11186 sizeof (char), "multiple string tables" }, 11187 11188 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11189 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11190 sizeof (uint_t), "multiple variable tables" }, 11191 11192 { DOF_SECT_NONE, 0, 0, 0, NULL } 11193 }; 11194 11195 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11196 dtrace_dof_error(dof, "invalid DIFO header section"); 11197 return (NULL); 11198 } 11199 11200 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11201 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11202 return (NULL); 11203 } 11204 11205 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11206 sec->dofs_size % sizeof (dof_secidx_t)) { 11207 dtrace_dof_error(dof, "bad size in DIFO header"); 11208 return (NULL); 11209 } 11210 11211 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11212 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11213 11214 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11215 dp->dtdo_rtype = dofd->dofd_rtype; 11216 11217 for (l = 0; l < n; l++) { 11218 dof_sec_t *subsec; 11219 void **bufp; 11220 uint32_t *lenp; 11221 11222 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11223 dofd->dofd_links[l])) == NULL) 11224 goto err; /* invalid section link */ 11225 11226 if (ttl + subsec->dofs_size > max) { 11227 dtrace_dof_error(dof, "exceeds maximum size"); 11228 goto err; 11229 } 11230 11231 ttl += subsec->dofs_size; 11232 11233 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11234 if (subsec->dofs_type != difo[i].section) 11235 continue; 11236 11237 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11238 dtrace_dof_error(dof, "section not loaded"); 11239 goto err; 11240 } 11241 11242 if (subsec->dofs_align != difo[i].align) { 11243 dtrace_dof_error(dof, "bad alignment"); 11244 goto err; 11245 } 11246 11247 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11248 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11249 11250 if (*bufp != NULL) { 11251 dtrace_dof_error(dof, difo[i].msg); 11252 goto err; 11253 } 11254 11255 if (difo[i].entsize != subsec->dofs_entsize) { 11256 dtrace_dof_error(dof, "entry size mismatch"); 11257 goto err; 11258 } 11259 11260 if (subsec->dofs_entsize != 0 && 11261 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11262 dtrace_dof_error(dof, "corrupt entry size"); 11263 goto err; 11264 } 11265 11266 *lenp = subsec->dofs_size; 11267 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11268 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11269 *bufp, subsec->dofs_size); 11270 11271 if (subsec->dofs_entsize != 0) 11272 *lenp /= subsec->dofs_entsize; 11273 11274 break; 11275 } 11276 11277 /* 11278 * If we encounter a loadable DIFO sub-section that is not 11279 * known to us, assume this is a broken program and fail. 11280 */ 11281 if (difo[i].section == DOF_SECT_NONE && 11282 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11283 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11284 goto err; 11285 } 11286 } 11287 11288 if (dp->dtdo_buf == NULL) { 11289 /* 11290 * We can't have a DIF object without DIF text. 11291 */ 11292 dtrace_dof_error(dof, "missing DIF text"); 11293 goto err; 11294 } 11295 11296 /* 11297 * Before we validate the DIF object, run through the variable table 11298 * looking for the strings -- if any of their size are under, we'll set 11299 * their size to be the system-wide default string size. Note that 11300 * this should _not_ happen if the "strsize" option has been set -- 11301 * in this case, the compiler should have set the size to reflect the 11302 * setting of the option. 11303 */ 11304 for (i = 0; i < dp->dtdo_varlen; i++) { 11305 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11306 dtrace_diftype_t *t = &v->dtdv_type; 11307 11308 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11309 continue; 11310 11311 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11312 t->dtdt_size = dtrace_strsize_default; 11313 } 11314 11315 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11316 goto err; 11317 11318 dtrace_difo_init(dp, vstate); 11319 return (dp); 11320 11321 err: 11322 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11323 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11324 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11325 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11326 11327 kmem_free(dp, sizeof (dtrace_difo_t)); 11328 return (NULL); 11329 } 11330 11331 static dtrace_predicate_t * 11332 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11333 cred_t *cr) 11334 { 11335 dtrace_difo_t *dp; 11336 11337 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11338 return (NULL); 11339 11340 return (dtrace_predicate_create(dp)); 11341 } 11342 11343 static dtrace_actdesc_t * 11344 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11345 cred_t *cr) 11346 { 11347 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11348 dof_actdesc_t *desc; 11349 dof_sec_t *difosec; 11350 size_t offs; 11351 uintptr_t daddr = (uintptr_t)dof; 11352 uint64_t arg; 11353 dtrace_actkind_t kind; 11354 11355 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11356 dtrace_dof_error(dof, "invalid action section"); 11357 return (NULL); 11358 } 11359 11360 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11361 dtrace_dof_error(dof, "truncated action description"); 11362 return (NULL); 11363 } 11364 11365 if (sec->dofs_align != sizeof (uint64_t)) { 11366 dtrace_dof_error(dof, "bad alignment in action description"); 11367 return (NULL); 11368 } 11369 11370 if (sec->dofs_size < sec->dofs_entsize) { 11371 dtrace_dof_error(dof, "section entry size exceeds total size"); 11372 return (NULL); 11373 } 11374 11375 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11376 dtrace_dof_error(dof, "bad entry size in action description"); 11377 return (NULL); 11378 } 11379 11380 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11381 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11382 return (NULL); 11383 } 11384 11385 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11386 desc = (dof_actdesc_t *)(daddr + 11387 (uintptr_t)sec->dofs_offset + offs); 11388 kind = (dtrace_actkind_t)desc->dofa_kind; 11389 11390 if (DTRACEACT_ISPRINTFLIKE(kind) && 11391 (kind != DTRACEACT_PRINTA || 11392 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11393 dof_sec_t *strtab; 11394 char *str, *fmt; 11395 uint64_t i; 11396 11397 /* 11398 * printf()-like actions must have a format string. 11399 */ 11400 if ((strtab = dtrace_dof_sect(dof, 11401 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11402 goto err; 11403 11404 str = (char *)((uintptr_t)dof + 11405 (uintptr_t)strtab->dofs_offset); 11406 11407 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11408 if (str[i] == '\0') 11409 break; 11410 } 11411 11412 if (i >= strtab->dofs_size) { 11413 dtrace_dof_error(dof, "bogus format string"); 11414 goto err; 11415 } 11416 11417 if (i == desc->dofa_arg) { 11418 dtrace_dof_error(dof, "empty format string"); 11419 goto err; 11420 } 11421 11422 i -= desc->dofa_arg; 11423 fmt = kmem_alloc(i + 1, KM_SLEEP); 11424 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11425 arg = (uint64_t)(uintptr_t)fmt; 11426 } else { 11427 if (kind == DTRACEACT_PRINTA) { 11428 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11429 arg = 0; 11430 } else { 11431 arg = desc->dofa_arg; 11432 } 11433 } 11434 11435 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11436 desc->dofa_uarg, arg); 11437 11438 if (last != NULL) { 11439 last->dtad_next = act; 11440 } else { 11441 first = act; 11442 } 11443 11444 last = act; 11445 11446 if (desc->dofa_difo == DOF_SECIDX_NONE) 11447 continue; 11448 11449 if ((difosec = dtrace_dof_sect(dof, 11450 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11451 goto err; 11452 11453 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11454 11455 if (act->dtad_difo == NULL) 11456 goto err; 11457 } 11458 11459 ASSERT(first != NULL); 11460 return (first); 11461 11462 err: 11463 for (act = first; act != NULL; act = next) { 11464 next = act->dtad_next; 11465 dtrace_actdesc_release(act, vstate); 11466 } 11467 11468 return (NULL); 11469 } 11470 11471 static dtrace_ecbdesc_t * 11472 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11473 cred_t *cr) 11474 { 11475 dtrace_ecbdesc_t *ep; 11476 dof_ecbdesc_t *ecb; 11477 dtrace_probedesc_t *desc; 11478 dtrace_predicate_t *pred = NULL; 11479 11480 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11481 dtrace_dof_error(dof, "truncated ECB description"); 11482 return (NULL); 11483 } 11484 11485 if (sec->dofs_align != sizeof (uint64_t)) { 11486 dtrace_dof_error(dof, "bad alignment in ECB description"); 11487 return (NULL); 11488 } 11489 11490 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11491 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11492 11493 if (sec == NULL) 11494 return (NULL); 11495 11496 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11497 ep->dted_uarg = ecb->dofe_uarg; 11498 desc = &ep->dted_probe; 11499 11500 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11501 goto err; 11502 11503 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11504 if ((sec = dtrace_dof_sect(dof, 11505 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 11506 goto err; 11507 11508 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 11509 goto err; 11510 11511 ep->dted_pred.dtpdd_predicate = pred; 11512 } 11513 11514 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 11515 if ((sec = dtrace_dof_sect(dof, 11516 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 11517 goto err; 11518 11519 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 11520 11521 if (ep->dted_action == NULL) 11522 goto err; 11523 } 11524 11525 return (ep); 11526 11527 err: 11528 if (pred != NULL) 11529 dtrace_predicate_release(pred, vstate); 11530 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11531 return (NULL); 11532 } 11533 11534 /* 11535 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 11536 * specified DOF. At present, this amounts to simply adding 'ubase' to the 11537 * site of any user SETX relocations to account for load object base address. 11538 * In the future, if we need other relocations, this function can be extended. 11539 */ 11540 static int 11541 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 11542 { 11543 uintptr_t daddr = (uintptr_t)dof; 11544 dof_relohdr_t *dofr = 11545 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11546 dof_sec_t *ss, *rs, *ts; 11547 dof_relodesc_t *r; 11548 uint_t i, n; 11549 11550 if (sec->dofs_size < sizeof (dof_relohdr_t) || 11551 sec->dofs_align != sizeof (dof_secidx_t)) { 11552 dtrace_dof_error(dof, "invalid relocation header"); 11553 return (-1); 11554 } 11555 11556 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 11557 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 11558 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 11559 11560 if (ss == NULL || rs == NULL || ts == NULL) 11561 return (-1); /* dtrace_dof_error() has been called already */ 11562 11563 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 11564 rs->dofs_align != sizeof (uint64_t)) { 11565 dtrace_dof_error(dof, "invalid relocation section"); 11566 return (-1); 11567 } 11568 11569 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 11570 n = rs->dofs_size / rs->dofs_entsize; 11571 11572 for (i = 0; i < n; i++) { 11573 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 11574 11575 switch (r->dofr_type) { 11576 case DOF_RELO_NONE: 11577 break; 11578 case DOF_RELO_SETX: 11579 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 11580 sizeof (uint64_t) > ts->dofs_size) { 11581 dtrace_dof_error(dof, "bad relocation offset"); 11582 return (-1); 11583 } 11584 11585 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 11586 dtrace_dof_error(dof, "misaligned setx relo"); 11587 return (-1); 11588 } 11589 11590 *(uint64_t *)taddr += ubase; 11591 break; 11592 default: 11593 dtrace_dof_error(dof, "invalid relocation type"); 11594 return (-1); 11595 } 11596 11597 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 11598 } 11599 11600 return (0); 11601 } 11602 11603 /* 11604 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 11605 * header: it should be at the front of a memory region that is at least 11606 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 11607 * size. It need not be validated in any other way. 11608 */ 11609 static int 11610 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 11611 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 11612 { 11613 uint64_t len = dof->dofh_loadsz, seclen; 11614 uintptr_t daddr = (uintptr_t)dof; 11615 dtrace_ecbdesc_t *ep; 11616 dtrace_enabling_t *enab; 11617 uint_t i; 11618 11619 ASSERT(MUTEX_HELD(&dtrace_lock)); 11620 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 11621 11622 /* 11623 * Check the DOF header identification bytes. In addition to checking 11624 * valid settings, we also verify that unused bits/bytes are zeroed so 11625 * we can use them later without fear of regressing existing binaries. 11626 */ 11627 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 11628 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 11629 dtrace_dof_error(dof, "DOF magic string mismatch"); 11630 return (-1); 11631 } 11632 11633 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 11634 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 11635 dtrace_dof_error(dof, "DOF has invalid data model"); 11636 return (-1); 11637 } 11638 11639 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 11640 dtrace_dof_error(dof, "DOF encoding mismatch"); 11641 return (-1); 11642 } 11643 11644 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 11645 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 11646 dtrace_dof_error(dof, "DOF version mismatch"); 11647 return (-1); 11648 } 11649 11650 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 11651 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 11652 return (-1); 11653 } 11654 11655 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 11656 dtrace_dof_error(dof, "DOF uses too many integer registers"); 11657 return (-1); 11658 } 11659 11660 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 11661 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 11662 return (-1); 11663 } 11664 11665 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 11666 if (dof->dofh_ident[i] != 0) { 11667 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 11668 return (-1); 11669 } 11670 } 11671 11672 if (dof->dofh_flags & ~DOF_FL_VALID) { 11673 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 11674 return (-1); 11675 } 11676 11677 if (dof->dofh_secsize == 0) { 11678 dtrace_dof_error(dof, "zero section header size"); 11679 return (-1); 11680 } 11681 11682 /* 11683 * Check that the section headers don't exceed the amount of DOF 11684 * data. Note that we cast the section size and number of sections 11685 * to uint64_t's to prevent possible overflow in the multiplication. 11686 */ 11687 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 11688 11689 if (dof->dofh_secoff > len || seclen > len || 11690 dof->dofh_secoff + seclen > len) { 11691 dtrace_dof_error(dof, "truncated section headers"); 11692 return (-1); 11693 } 11694 11695 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 11696 dtrace_dof_error(dof, "misaligned section headers"); 11697 return (-1); 11698 } 11699 11700 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 11701 dtrace_dof_error(dof, "misaligned section size"); 11702 return (-1); 11703 } 11704 11705 /* 11706 * Take an initial pass through the section headers to be sure that 11707 * the headers don't have stray offsets. If the 'noprobes' flag is 11708 * set, do not permit sections relating to providers, probes, or args. 11709 */ 11710 for (i = 0; i < dof->dofh_secnum; i++) { 11711 dof_sec_t *sec = (dof_sec_t *)(daddr + 11712 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11713 11714 if (noprobes) { 11715 switch (sec->dofs_type) { 11716 case DOF_SECT_PROVIDER: 11717 case DOF_SECT_PROBES: 11718 case DOF_SECT_PRARGS: 11719 case DOF_SECT_PROFFS: 11720 dtrace_dof_error(dof, "illegal sections " 11721 "for enabling"); 11722 return (-1); 11723 } 11724 } 11725 11726 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11727 continue; /* just ignore non-loadable sections */ 11728 11729 if (sec->dofs_align & (sec->dofs_align - 1)) { 11730 dtrace_dof_error(dof, "bad section alignment"); 11731 return (-1); 11732 } 11733 11734 if (sec->dofs_offset & (sec->dofs_align - 1)) { 11735 dtrace_dof_error(dof, "misaligned section"); 11736 return (-1); 11737 } 11738 11739 if (sec->dofs_offset > len || sec->dofs_size > len || 11740 sec->dofs_offset + sec->dofs_size > len) { 11741 dtrace_dof_error(dof, "corrupt section header"); 11742 return (-1); 11743 } 11744 11745 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 11746 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 11747 dtrace_dof_error(dof, "non-terminating string table"); 11748 return (-1); 11749 } 11750 } 11751 11752 /* 11753 * Take a second pass through the sections and locate and perform any 11754 * relocations that are present. We do this after the first pass to 11755 * be sure that all sections have had their headers validated. 11756 */ 11757 for (i = 0; i < dof->dofh_secnum; i++) { 11758 dof_sec_t *sec = (dof_sec_t *)(daddr + 11759 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11760 11761 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 11762 continue; /* skip sections that are not loadable */ 11763 11764 switch (sec->dofs_type) { 11765 case DOF_SECT_URELHDR: 11766 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 11767 return (-1); 11768 break; 11769 } 11770 } 11771 11772 if ((enab = *enabp) == NULL) 11773 enab = *enabp = dtrace_enabling_create(vstate); 11774 11775 for (i = 0; i < dof->dofh_secnum; i++) { 11776 dof_sec_t *sec = (dof_sec_t *)(daddr + 11777 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11778 11779 if (sec->dofs_type != DOF_SECT_ECBDESC) 11780 continue; 11781 11782 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 11783 dtrace_enabling_destroy(enab); 11784 *enabp = NULL; 11785 return (-1); 11786 } 11787 11788 dtrace_enabling_add(enab, ep); 11789 } 11790 11791 return (0); 11792 } 11793 11794 /* 11795 * Process DOF for any options. This routine assumes that the DOF has been 11796 * at least processed by dtrace_dof_slurp(). 11797 */ 11798 static int 11799 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 11800 { 11801 int i, rval; 11802 uint32_t entsize; 11803 size_t offs; 11804 dof_optdesc_t *desc; 11805 11806 for (i = 0; i < dof->dofh_secnum; i++) { 11807 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 11808 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 11809 11810 if (sec->dofs_type != DOF_SECT_OPTDESC) 11811 continue; 11812 11813 if (sec->dofs_align != sizeof (uint64_t)) { 11814 dtrace_dof_error(dof, "bad alignment in " 11815 "option description"); 11816 return (EINVAL); 11817 } 11818 11819 if ((entsize = sec->dofs_entsize) == 0) { 11820 dtrace_dof_error(dof, "zeroed option entry size"); 11821 return (EINVAL); 11822 } 11823 11824 if (entsize < sizeof (dof_optdesc_t)) { 11825 dtrace_dof_error(dof, "bad option entry size"); 11826 return (EINVAL); 11827 } 11828 11829 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 11830 desc = (dof_optdesc_t *)((uintptr_t)dof + 11831 (uintptr_t)sec->dofs_offset + offs); 11832 11833 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 11834 dtrace_dof_error(dof, "non-zero option string"); 11835 return (EINVAL); 11836 } 11837 11838 if (desc->dofo_value == DTRACEOPT_UNSET) { 11839 dtrace_dof_error(dof, "unset option"); 11840 return (EINVAL); 11841 } 11842 11843 if ((rval = dtrace_state_option(state, 11844 desc->dofo_option, desc->dofo_value)) != 0) { 11845 dtrace_dof_error(dof, "rejected option"); 11846 return (rval); 11847 } 11848 } 11849 } 11850 11851 return (0); 11852 } 11853 11854 /* 11855 * DTrace Consumer State Functions 11856 */ 11857 int 11858 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 11859 { 11860 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 11861 void *base; 11862 uintptr_t limit; 11863 dtrace_dynvar_t *dvar, *next, *start; 11864 int i; 11865 11866 ASSERT(MUTEX_HELD(&dtrace_lock)); 11867 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 11868 11869 bzero(dstate, sizeof (dtrace_dstate_t)); 11870 11871 if ((dstate->dtds_chunksize = chunksize) == 0) 11872 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 11873 11874 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 11875 size = min; 11876 11877 if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) 11878 return (ENOMEM); 11879 11880 dstate->dtds_size = size; 11881 dstate->dtds_base = base; 11882 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 11883 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 11884 11885 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 11886 11887 if (hashsize != 1 && (hashsize & 1)) 11888 hashsize--; 11889 11890 dstate->dtds_hashsize = hashsize; 11891 dstate->dtds_hash = dstate->dtds_base; 11892 11893 /* 11894 * Set all of our hash buckets to point to the single sink, and (if 11895 * it hasn't already been set), set the sink's hash value to be the 11896 * sink sentinel value. The sink is needed for dynamic variable 11897 * lookups to know that they have iterated over an entire, valid hash 11898 * chain. 11899 */ 11900 for (i = 0; i < hashsize; i++) 11901 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 11902 11903 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 11904 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 11905 11906 /* 11907 * Determine number of active CPUs. Divide free list evenly among 11908 * active CPUs. 11909 */ 11910 start = (dtrace_dynvar_t *) 11911 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 11912 limit = (uintptr_t)base + size; 11913 11914 maxper = (limit - (uintptr_t)start) / NCPU; 11915 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 11916 11917 for (i = 0; i < NCPU; i++) { 11918 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 11919 11920 /* 11921 * If we don't even have enough chunks to make it once through 11922 * NCPUs, we're just going to allocate everything to the first 11923 * CPU. And if we're on the last CPU, we're going to allocate 11924 * whatever is left over. In either case, we set the limit to 11925 * be the limit of the dynamic variable space. 11926 */ 11927 if (maxper == 0 || i == NCPU - 1) { 11928 limit = (uintptr_t)base + size; 11929 start = NULL; 11930 } else { 11931 limit = (uintptr_t)start + maxper; 11932 start = (dtrace_dynvar_t *)limit; 11933 } 11934 11935 ASSERT(limit <= (uintptr_t)base + size); 11936 11937 for (;;) { 11938 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 11939 dstate->dtds_chunksize); 11940 11941 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 11942 break; 11943 11944 dvar->dtdv_next = next; 11945 dvar = next; 11946 } 11947 11948 if (maxper == 0) 11949 break; 11950 } 11951 11952 return (0); 11953 } 11954 11955 void 11956 dtrace_dstate_fini(dtrace_dstate_t *dstate) 11957 { 11958 ASSERT(MUTEX_HELD(&cpu_lock)); 11959 11960 if (dstate->dtds_base == NULL) 11961 return; 11962 11963 kmem_free(dstate->dtds_base, dstate->dtds_size); 11964 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 11965 } 11966 11967 static void 11968 dtrace_vstate_fini(dtrace_vstate_t *vstate) 11969 { 11970 /* 11971 * Logical XOR, where are you? 11972 */ 11973 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 11974 11975 if (vstate->dtvs_nglobals > 0) { 11976 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 11977 sizeof (dtrace_statvar_t *)); 11978 } 11979 11980 if (vstate->dtvs_ntlocals > 0) { 11981 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 11982 sizeof (dtrace_difv_t)); 11983 } 11984 11985 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 11986 11987 if (vstate->dtvs_nlocals > 0) { 11988 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 11989 sizeof (dtrace_statvar_t *)); 11990 } 11991 } 11992 11993 static void 11994 dtrace_state_clean(dtrace_state_t *state) 11995 { 11996 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 11997 return; 11998 11999 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 12000 dtrace_speculation_clean(state); 12001 } 12002 12003 static void 12004 dtrace_state_deadman(dtrace_state_t *state) 12005 { 12006 hrtime_t now; 12007 12008 dtrace_sync(); 12009 12010 now = dtrace_gethrtime(); 12011 12012 if (state != dtrace_anon.dta_state && 12013 now - state->dts_laststatus >= dtrace_deadman_user) 12014 return; 12015 12016 /* 12017 * We must be sure that dts_alive never appears to be less than the 12018 * value upon entry to dtrace_state_deadman(), and because we lack a 12019 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12020 * store INT64_MAX to it, followed by a memory barrier, followed by 12021 * the new value. This assures that dts_alive never appears to be 12022 * less than its true value, regardless of the order in which the 12023 * stores to the underlying storage are issued. 12024 */ 12025 state->dts_alive = INT64_MAX; 12026 dtrace_membar_producer(); 12027 state->dts_alive = now; 12028 } 12029 12030 dtrace_state_t * 12031 dtrace_state_create(dev_t *devp, cred_t *cr) 12032 { 12033 minor_t minor; 12034 major_t major; 12035 char c[30]; 12036 dtrace_state_t *state; 12037 dtrace_optval_t *opt; 12038 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 12039 12040 ASSERT(MUTEX_HELD(&dtrace_lock)); 12041 ASSERT(MUTEX_HELD(&cpu_lock)); 12042 12043 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 12044 VM_BESTFIT | VM_SLEEP); 12045 12046 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 12047 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12048 return (NULL); 12049 } 12050 12051 state = ddi_get_soft_state(dtrace_softstate, minor); 12052 state->dts_epid = DTRACE_EPIDNONE + 1; 12053 12054 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 12055 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 12056 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 12057 12058 if (devp != NULL) { 12059 major = getemajor(*devp); 12060 } else { 12061 major = ddi_driver_major(dtrace_devi); 12062 } 12063 12064 state->dts_dev = makedevice(major, minor); 12065 12066 if (devp != NULL) 12067 *devp = state->dts_dev; 12068 12069 /* 12070 * We allocate NCPU buffers. On the one hand, this can be quite 12071 * a bit of memory per instance (nearly 36K on a Starcat). On the 12072 * other hand, it saves an additional memory reference in the probe 12073 * path. 12074 */ 12075 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 12076 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 12077 state->dts_cleaner = CYCLIC_NONE; 12078 state->dts_deadman = CYCLIC_NONE; 12079 state->dts_vstate.dtvs_state = state; 12080 12081 for (i = 0; i < DTRACEOPT_MAX; i++) 12082 state->dts_options[i] = DTRACEOPT_UNSET; 12083 12084 /* 12085 * Set the default options. 12086 */ 12087 opt = state->dts_options; 12088 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 12089 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 12090 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 12091 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 12092 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 12093 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 12094 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 12095 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 12096 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 12097 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 12098 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 12099 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 12100 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 12101 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 12102 12103 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 12104 12105 /* 12106 * Depending on the user credentials, we set flag bits which alter probe 12107 * visibility or the amount of destructiveness allowed. In the case of 12108 * actual anonymous tracing, or the possession of all privileges, all of 12109 * the normal checks are bypassed. 12110 */ 12111 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 12112 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 12113 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 12114 } else { 12115 /* 12116 * Set up the credentials for this instantiation. We take a 12117 * hold on the credential to prevent it from disappearing on 12118 * us; this in turn prevents the zone_t referenced by this 12119 * credential from disappearing. This means that we can 12120 * examine the credential and the zone from probe context. 12121 */ 12122 crhold(cr); 12123 state->dts_cred.dcr_cred = cr; 12124 12125 /* 12126 * CRA_PROC means "we have *some* privilege for dtrace" and 12127 * unlocks the use of variables like pid, zonename, etc. 12128 */ 12129 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12130 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12131 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12132 } 12133 12134 /* 12135 * dtrace_user allows use of syscall and profile providers. 12136 * If the user also has proc_owner and/or proc_zone, we 12137 * extend the scope to include additional visibility and 12138 * destructive power. 12139 */ 12140 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12141 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12142 state->dts_cred.dcr_visible |= 12143 DTRACE_CRV_ALLPROC; 12144 12145 state->dts_cred.dcr_action |= 12146 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12147 } 12148 12149 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12150 state->dts_cred.dcr_visible |= 12151 DTRACE_CRV_ALLZONE; 12152 12153 state->dts_cred.dcr_action |= 12154 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12155 } 12156 12157 /* 12158 * If we have all privs in whatever zone this is, 12159 * we can do destructive things to processes which 12160 * have altered credentials. 12161 */ 12162 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12163 cr->cr_zone->zone_privset)) { 12164 state->dts_cred.dcr_action |= 12165 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12166 } 12167 } 12168 12169 /* 12170 * Holding the dtrace_kernel privilege also implies that 12171 * the user has the dtrace_user privilege from a visibility 12172 * perspective. But without further privileges, some 12173 * destructive actions are not available. 12174 */ 12175 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12176 /* 12177 * Make all probes in all zones visible. However, 12178 * this doesn't mean that all actions become available 12179 * to all zones. 12180 */ 12181 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12182 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12183 12184 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12185 DTRACE_CRA_PROC; 12186 /* 12187 * Holding proc_owner means that destructive actions 12188 * for *this* zone are allowed. 12189 */ 12190 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12191 state->dts_cred.dcr_action |= 12192 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12193 12194 /* 12195 * Holding proc_zone means that destructive actions 12196 * for this user/group ID in all zones is allowed. 12197 */ 12198 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12199 state->dts_cred.dcr_action |= 12200 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12201 12202 /* 12203 * If we have all privs in whatever zone this is, 12204 * we can do destructive things to processes which 12205 * have altered credentials. 12206 */ 12207 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12208 cr->cr_zone->zone_privset)) { 12209 state->dts_cred.dcr_action |= 12210 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12211 } 12212 } 12213 12214 /* 12215 * Holding the dtrace_proc privilege gives control over fasttrap 12216 * and pid providers. We need to grant wider destructive 12217 * privileges in the event that the user has proc_owner and/or 12218 * proc_zone. 12219 */ 12220 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12221 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12222 state->dts_cred.dcr_action |= 12223 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12224 12225 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12226 state->dts_cred.dcr_action |= 12227 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12228 } 12229 } 12230 12231 return (state); 12232 } 12233 12234 static int 12235 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12236 { 12237 dtrace_optval_t *opt = state->dts_options, size; 12238 processorid_t cpu; 12239 int flags = 0, rval; 12240 12241 ASSERT(MUTEX_HELD(&dtrace_lock)); 12242 ASSERT(MUTEX_HELD(&cpu_lock)); 12243 ASSERT(which < DTRACEOPT_MAX); 12244 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12245 (state == dtrace_anon.dta_state && 12246 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12247 12248 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12249 return (0); 12250 12251 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12252 cpu = opt[DTRACEOPT_CPU]; 12253 12254 if (which == DTRACEOPT_SPECSIZE) 12255 flags |= DTRACEBUF_NOSWITCH; 12256 12257 if (which == DTRACEOPT_BUFSIZE) { 12258 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12259 flags |= DTRACEBUF_RING; 12260 12261 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12262 flags |= DTRACEBUF_FILL; 12263 12264 if (state != dtrace_anon.dta_state || 12265 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12266 flags |= DTRACEBUF_INACTIVE; 12267 } 12268 12269 for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) { 12270 /* 12271 * The size must be 8-byte aligned. If the size is not 8-byte 12272 * aligned, drop it down by the difference. 12273 */ 12274 if (size & (sizeof (uint64_t) - 1)) 12275 size -= size & (sizeof (uint64_t) - 1); 12276 12277 if (size < state->dts_reserve) { 12278 /* 12279 * Buffers always must be large enough to accommodate 12280 * their prereserved space. We return E2BIG instead 12281 * of ENOMEM in this case to allow for user-level 12282 * software to differentiate the cases. 12283 */ 12284 return (E2BIG); 12285 } 12286 12287 rval = dtrace_buffer_alloc(buf, size, flags, cpu); 12288 12289 if (rval != ENOMEM) { 12290 opt[which] = size; 12291 return (rval); 12292 } 12293 12294 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12295 return (rval); 12296 } 12297 12298 return (ENOMEM); 12299 } 12300 12301 static int 12302 dtrace_state_buffers(dtrace_state_t *state) 12303 { 12304 dtrace_speculation_t *spec = state->dts_speculations; 12305 int rval, i; 12306 12307 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12308 DTRACEOPT_BUFSIZE)) != 0) 12309 return (rval); 12310 12311 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12312 DTRACEOPT_AGGSIZE)) != 0) 12313 return (rval); 12314 12315 for (i = 0; i < state->dts_nspeculations; i++) { 12316 if ((rval = dtrace_state_buffer(state, 12317 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12318 return (rval); 12319 } 12320 12321 return (0); 12322 } 12323 12324 static void 12325 dtrace_state_prereserve(dtrace_state_t *state) 12326 { 12327 dtrace_ecb_t *ecb; 12328 dtrace_probe_t *probe; 12329 12330 state->dts_reserve = 0; 12331 12332 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12333 return; 12334 12335 /* 12336 * If our buffer policy is a "fill" buffer policy, we need to set the 12337 * prereserved space to be the space required by the END probes. 12338 */ 12339 probe = dtrace_probes[dtrace_probeid_end - 1]; 12340 ASSERT(probe != NULL); 12341 12342 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12343 if (ecb->dte_state != state) 12344 continue; 12345 12346 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12347 } 12348 } 12349 12350 static int 12351 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12352 { 12353 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12354 dtrace_speculation_t *spec; 12355 dtrace_buffer_t *buf; 12356 cyc_handler_t hdlr; 12357 cyc_time_t when; 12358 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12359 dtrace_icookie_t cookie; 12360 12361 mutex_enter(&cpu_lock); 12362 mutex_enter(&dtrace_lock); 12363 12364 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12365 rval = EBUSY; 12366 goto out; 12367 } 12368 12369 /* 12370 * Before we can perform any checks, we must prime all of the 12371 * retained enablings that correspond to this state. 12372 */ 12373 dtrace_enabling_prime(state); 12374 12375 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12376 rval = EACCES; 12377 goto out; 12378 } 12379 12380 dtrace_state_prereserve(state); 12381 12382 /* 12383 * Now we want to do is try to allocate our speculations. 12384 * We do not automatically resize the number of speculations; if 12385 * this fails, we will fail the operation. 12386 */ 12387 nspec = opt[DTRACEOPT_NSPEC]; 12388 ASSERT(nspec != DTRACEOPT_UNSET); 12389 12390 if (nspec > INT_MAX) { 12391 rval = ENOMEM; 12392 goto out; 12393 } 12394 12395 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); 12396 12397 if (spec == NULL) { 12398 rval = ENOMEM; 12399 goto out; 12400 } 12401 12402 state->dts_speculations = spec; 12403 state->dts_nspeculations = (int)nspec; 12404 12405 for (i = 0; i < nspec; i++) { 12406 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { 12407 rval = ENOMEM; 12408 goto err; 12409 } 12410 12411 spec[i].dtsp_buffer = buf; 12412 } 12413 12414 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12415 if (dtrace_anon.dta_state == NULL) { 12416 rval = ENOENT; 12417 goto out; 12418 } 12419 12420 if (state->dts_necbs != 0) { 12421 rval = EALREADY; 12422 goto out; 12423 } 12424 12425 state->dts_anon = dtrace_anon_grab(); 12426 ASSERT(state->dts_anon != NULL); 12427 state = state->dts_anon; 12428 12429 /* 12430 * We want "grabanon" to be set in the grabbed state, so we'll 12431 * copy that option value from the grabbing state into the 12432 * grabbed state. 12433 */ 12434 state->dts_options[DTRACEOPT_GRABANON] = 12435 opt[DTRACEOPT_GRABANON]; 12436 12437 *cpu = dtrace_anon.dta_beganon; 12438 12439 /* 12440 * If the anonymous state is active (as it almost certainly 12441 * is if the anonymous enabling ultimately matched anything), 12442 * we don't allow any further option processing -- but we 12443 * don't return failure. 12444 */ 12445 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12446 goto out; 12447 } 12448 12449 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12450 opt[DTRACEOPT_AGGSIZE] != 0) { 12451 if (state->dts_aggregations == NULL) { 12452 /* 12453 * We're not going to create an aggregation buffer 12454 * because we don't have any ECBs that contain 12455 * aggregations -- set this option to 0. 12456 */ 12457 opt[DTRACEOPT_AGGSIZE] = 0; 12458 } else { 12459 /* 12460 * If we have an aggregation buffer, we must also have 12461 * a buffer to use as scratch. 12462 */ 12463 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12464 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12465 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12466 } 12467 } 12468 } 12469 12470 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12471 opt[DTRACEOPT_SPECSIZE] != 0) { 12472 if (!state->dts_speculates) { 12473 /* 12474 * We're not going to create speculation buffers 12475 * because we don't have any ECBs that actually 12476 * speculate -- set the speculation size to 0. 12477 */ 12478 opt[DTRACEOPT_SPECSIZE] = 0; 12479 } 12480 } 12481 12482 /* 12483 * The bare minimum size for any buffer that we're actually going to 12484 * do anything to is sizeof (uint64_t). 12485 */ 12486 sz = sizeof (uint64_t); 12487 12488 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12489 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12490 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12491 /* 12492 * A buffer size has been explicitly set to 0 (or to a size 12493 * that will be adjusted to 0) and we need the space -- we 12494 * need to return failure. We return ENOSPC to differentiate 12495 * it from failing to allocate a buffer due to failure to meet 12496 * the reserve (for which we return E2BIG). 12497 */ 12498 rval = ENOSPC; 12499 goto out; 12500 } 12501 12502 if ((rval = dtrace_state_buffers(state)) != 0) 12503 goto err; 12504 12505 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 12506 sz = dtrace_dstate_defsize; 12507 12508 do { 12509 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 12510 12511 if (rval == 0) 12512 break; 12513 12514 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12515 goto err; 12516 } while (sz >>= 1); 12517 12518 opt[DTRACEOPT_DYNVARSIZE] = sz; 12519 12520 if (rval != 0) 12521 goto err; 12522 12523 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 12524 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 12525 12526 if (opt[DTRACEOPT_CLEANRATE] == 0) 12527 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12528 12529 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 12530 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 12531 12532 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 12533 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 12534 12535 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 12536 hdlr.cyh_arg = state; 12537 hdlr.cyh_level = CY_LOW_LEVEL; 12538 12539 when.cyt_when = 0; 12540 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 12541 12542 state->dts_cleaner = cyclic_add(&hdlr, &when); 12543 12544 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 12545 hdlr.cyh_arg = state; 12546 hdlr.cyh_level = CY_LOW_LEVEL; 12547 12548 when.cyt_when = 0; 12549 when.cyt_interval = dtrace_deadman_interval; 12550 12551 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 12552 state->dts_deadman = cyclic_add(&hdlr, &when); 12553 12554 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 12555 12556 /* 12557 * Now it's time to actually fire the BEGIN probe. We need to disable 12558 * interrupts here both to record the CPU on which we fired the BEGIN 12559 * probe (the data from this CPU will be processed first at user 12560 * level) and to manually activate the buffer for this CPU. 12561 */ 12562 cookie = dtrace_interrupt_disable(); 12563 *cpu = CPU->cpu_id; 12564 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 12565 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 12566 12567 dtrace_probe(dtrace_probeid_begin, 12568 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12569 dtrace_interrupt_enable(cookie); 12570 /* 12571 * We may have had an exit action from a BEGIN probe; only change our 12572 * state to ACTIVE if we're still in WARMUP. 12573 */ 12574 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 12575 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 12576 12577 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 12578 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 12579 12580 /* 12581 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 12582 * want each CPU to transition its principal buffer out of the 12583 * INACTIVE state. Doing this assures that no CPU will suddenly begin 12584 * processing an ECB halfway down a probe's ECB chain; all CPUs will 12585 * atomically transition from processing none of a state's ECBs to 12586 * processing all of them. 12587 */ 12588 dtrace_xcall(DTRACE_CPUALL, 12589 (dtrace_xcall_t)dtrace_buffer_activate, state); 12590 goto out; 12591 12592 err: 12593 dtrace_buffer_free(state->dts_buffer); 12594 dtrace_buffer_free(state->dts_aggbuffer); 12595 12596 if ((nspec = state->dts_nspeculations) == 0) { 12597 ASSERT(state->dts_speculations == NULL); 12598 goto out; 12599 } 12600 12601 spec = state->dts_speculations; 12602 ASSERT(spec != NULL); 12603 12604 for (i = 0; i < state->dts_nspeculations; i++) { 12605 if ((buf = spec[i].dtsp_buffer) == NULL) 12606 break; 12607 12608 dtrace_buffer_free(buf); 12609 kmem_free(buf, bufsize); 12610 } 12611 12612 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12613 state->dts_nspeculations = 0; 12614 state->dts_speculations = NULL; 12615 12616 out: 12617 mutex_exit(&dtrace_lock); 12618 mutex_exit(&cpu_lock); 12619 12620 return (rval); 12621 } 12622 12623 static int 12624 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 12625 { 12626 dtrace_icookie_t cookie; 12627 12628 ASSERT(MUTEX_HELD(&dtrace_lock)); 12629 12630 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 12631 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 12632 return (EINVAL); 12633 12634 /* 12635 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 12636 * to be sure that every CPU has seen it. See below for the details 12637 * on why this is done. 12638 */ 12639 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 12640 dtrace_sync(); 12641 12642 /* 12643 * By this point, it is impossible for any CPU to be still processing 12644 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 12645 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 12646 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 12647 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 12648 * iff we're in the END probe. 12649 */ 12650 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 12651 dtrace_sync(); 12652 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 12653 12654 /* 12655 * Finally, we can release the reserve and call the END probe. We 12656 * disable interrupts across calling the END probe to allow us to 12657 * return the CPU on which we actually called the END probe. This 12658 * allows user-land to be sure that this CPU's principal buffer is 12659 * processed last. 12660 */ 12661 state->dts_reserve = 0; 12662 12663 cookie = dtrace_interrupt_disable(); 12664 *cpu = CPU->cpu_id; 12665 dtrace_probe(dtrace_probeid_end, 12666 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 12667 dtrace_interrupt_enable(cookie); 12668 12669 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 12670 dtrace_sync(); 12671 12672 return (0); 12673 } 12674 12675 static int 12676 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 12677 dtrace_optval_t val) 12678 { 12679 ASSERT(MUTEX_HELD(&dtrace_lock)); 12680 12681 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12682 return (EBUSY); 12683 12684 if (option >= DTRACEOPT_MAX) 12685 return (EINVAL); 12686 12687 if (option != DTRACEOPT_CPU && val < 0) 12688 return (EINVAL); 12689 12690 switch (option) { 12691 case DTRACEOPT_DESTRUCTIVE: 12692 if (dtrace_destructive_disallow) 12693 return (EACCES); 12694 12695 state->dts_cred.dcr_destructive = 1; 12696 break; 12697 12698 case DTRACEOPT_BUFSIZE: 12699 case DTRACEOPT_DYNVARSIZE: 12700 case DTRACEOPT_AGGSIZE: 12701 case DTRACEOPT_SPECSIZE: 12702 case DTRACEOPT_STRSIZE: 12703 if (val < 0) 12704 return (EINVAL); 12705 12706 if (val >= LONG_MAX) { 12707 /* 12708 * If this is an otherwise negative value, set it to 12709 * the highest multiple of 128m less than LONG_MAX. 12710 * Technically, we're adjusting the size without 12711 * regard to the buffer resizing policy, but in fact, 12712 * this has no effect -- if we set the buffer size to 12713 * ~LONG_MAX and the buffer policy is ultimately set to 12714 * be "manual", the buffer allocation is guaranteed to 12715 * fail, if only because the allocation requires two 12716 * buffers. (We set the the size to the highest 12717 * multiple of 128m because it ensures that the size 12718 * will remain a multiple of a megabyte when 12719 * repeatedly halved -- all the way down to 15m.) 12720 */ 12721 val = LONG_MAX - (1 << 27) + 1; 12722 } 12723 } 12724 12725 state->dts_options[option] = val; 12726 12727 return (0); 12728 } 12729 12730 static void 12731 dtrace_state_destroy(dtrace_state_t *state) 12732 { 12733 dtrace_ecb_t *ecb; 12734 dtrace_vstate_t *vstate = &state->dts_vstate; 12735 minor_t minor = getminor(state->dts_dev); 12736 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12737 dtrace_speculation_t *spec = state->dts_speculations; 12738 int nspec = state->dts_nspeculations; 12739 uint32_t match; 12740 12741 ASSERT(MUTEX_HELD(&dtrace_lock)); 12742 ASSERT(MUTEX_HELD(&cpu_lock)); 12743 12744 /* 12745 * First, retract any retained enablings for this state. 12746 */ 12747 dtrace_enabling_retract(state); 12748 ASSERT(state->dts_nretained == 0); 12749 12750 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 12751 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 12752 /* 12753 * We have managed to come into dtrace_state_destroy() on a 12754 * hot enabling -- almost certainly because of a disorderly 12755 * shutdown of a consumer. (That is, a consumer that is 12756 * exiting without having called dtrace_stop().) In this case, 12757 * we're going to set our activity to be KILLED, and then 12758 * issue a sync to be sure that everyone is out of probe 12759 * context before we start blowing away ECBs. 12760 */ 12761 state->dts_activity = DTRACE_ACTIVITY_KILLED; 12762 dtrace_sync(); 12763 } 12764 12765 /* 12766 * Release the credential hold we took in dtrace_state_create(). 12767 */ 12768 if (state->dts_cred.dcr_cred != NULL) 12769 crfree(state->dts_cred.dcr_cred); 12770 12771 /* 12772 * Now we can safely disable and destroy any enabled probes. Because 12773 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 12774 * (especially if they're all enabled), we take two passes through the 12775 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 12776 * in the second we disable whatever is left over. 12777 */ 12778 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 12779 for (i = 0; i < state->dts_necbs; i++) { 12780 if ((ecb = state->dts_ecbs[i]) == NULL) 12781 continue; 12782 12783 if (match && ecb->dte_probe != NULL) { 12784 dtrace_probe_t *probe = ecb->dte_probe; 12785 dtrace_provider_t *prov = probe->dtpr_provider; 12786 12787 if (!(prov->dtpv_priv.dtpp_flags & match)) 12788 continue; 12789 } 12790 12791 dtrace_ecb_disable(ecb); 12792 dtrace_ecb_destroy(ecb); 12793 } 12794 12795 if (!match) 12796 break; 12797 } 12798 12799 /* 12800 * Before we free the buffers, perform one more sync to assure that 12801 * every CPU is out of probe context. 12802 */ 12803 dtrace_sync(); 12804 12805 dtrace_buffer_free(state->dts_buffer); 12806 dtrace_buffer_free(state->dts_aggbuffer); 12807 12808 for (i = 0; i < nspec; i++) 12809 dtrace_buffer_free(spec[i].dtsp_buffer); 12810 12811 if (state->dts_cleaner != CYCLIC_NONE) 12812 cyclic_remove(state->dts_cleaner); 12813 12814 if (state->dts_deadman != CYCLIC_NONE) 12815 cyclic_remove(state->dts_deadman); 12816 12817 dtrace_dstate_fini(&vstate->dtvs_dynvars); 12818 dtrace_vstate_fini(vstate); 12819 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 12820 12821 if (state->dts_aggregations != NULL) { 12822 #ifdef DEBUG 12823 for (i = 0; i < state->dts_naggregations; i++) 12824 ASSERT(state->dts_aggregations[i] == NULL); 12825 #endif 12826 ASSERT(state->dts_naggregations > 0); 12827 kmem_free(state->dts_aggregations, 12828 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 12829 } 12830 12831 kmem_free(state->dts_buffer, bufsize); 12832 kmem_free(state->dts_aggbuffer, bufsize); 12833 12834 for (i = 0; i < nspec; i++) 12835 kmem_free(spec[i].dtsp_buffer, bufsize); 12836 12837 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 12838 12839 dtrace_format_destroy(state); 12840 12841 vmem_destroy(state->dts_aggid_arena); 12842 ddi_soft_state_free(dtrace_softstate, minor); 12843 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12844 } 12845 12846 /* 12847 * DTrace Anonymous Enabling Functions 12848 */ 12849 static dtrace_state_t * 12850 dtrace_anon_grab(void) 12851 { 12852 dtrace_state_t *state; 12853 12854 ASSERT(MUTEX_HELD(&dtrace_lock)); 12855 12856 if ((state = dtrace_anon.dta_state) == NULL) { 12857 ASSERT(dtrace_anon.dta_enabling == NULL); 12858 return (NULL); 12859 } 12860 12861 ASSERT(dtrace_anon.dta_enabling != NULL); 12862 ASSERT(dtrace_retained != NULL); 12863 12864 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 12865 dtrace_anon.dta_enabling = NULL; 12866 dtrace_anon.dta_state = NULL; 12867 12868 return (state); 12869 } 12870 12871 static void 12872 dtrace_anon_property(void) 12873 { 12874 int i, rv; 12875 dtrace_state_t *state; 12876 dof_hdr_t *dof; 12877 char c[32]; /* enough for "dof-data-" + digits */ 12878 12879 ASSERT(MUTEX_HELD(&dtrace_lock)); 12880 ASSERT(MUTEX_HELD(&cpu_lock)); 12881 12882 for (i = 0; ; i++) { 12883 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 12884 12885 dtrace_err_verbose = 1; 12886 12887 if ((dof = dtrace_dof_property(c)) == NULL) { 12888 dtrace_err_verbose = 0; 12889 break; 12890 } 12891 12892 /* 12893 * We want to create anonymous state, so we need to transition 12894 * the kernel debugger to indicate that DTrace is active. If 12895 * this fails (e.g. because the debugger has modified text in 12896 * some way), we won't continue with the processing. 12897 */ 12898 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 12899 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 12900 "enabling ignored."); 12901 dtrace_dof_destroy(dof); 12902 break; 12903 } 12904 12905 /* 12906 * If we haven't allocated an anonymous state, we'll do so now. 12907 */ 12908 if ((state = dtrace_anon.dta_state) == NULL) { 12909 state = dtrace_state_create(NULL, NULL); 12910 dtrace_anon.dta_state = state; 12911 12912 if (state == NULL) { 12913 /* 12914 * This basically shouldn't happen: the only 12915 * failure mode from dtrace_state_create() is a 12916 * failure of ddi_soft_state_zalloc() that 12917 * itself should never happen. Still, the 12918 * interface allows for a failure mode, and 12919 * we want to fail as gracefully as possible: 12920 * we'll emit an error message and cease 12921 * processing anonymous state in this case. 12922 */ 12923 cmn_err(CE_WARN, "failed to create " 12924 "anonymous state"); 12925 dtrace_dof_destroy(dof); 12926 break; 12927 } 12928 } 12929 12930 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 12931 &dtrace_anon.dta_enabling, 0, B_TRUE); 12932 12933 if (rv == 0) 12934 rv = dtrace_dof_options(dof, state); 12935 12936 dtrace_err_verbose = 0; 12937 dtrace_dof_destroy(dof); 12938 12939 if (rv != 0) { 12940 /* 12941 * This is malformed DOF; chuck any anonymous state 12942 * that we created. 12943 */ 12944 ASSERT(dtrace_anon.dta_enabling == NULL); 12945 dtrace_state_destroy(state); 12946 dtrace_anon.dta_state = NULL; 12947 break; 12948 } 12949 12950 ASSERT(dtrace_anon.dta_enabling != NULL); 12951 } 12952 12953 if (dtrace_anon.dta_enabling != NULL) { 12954 int rval; 12955 12956 /* 12957 * dtrace_enabling_retain() can only fail because we are 12958 * trying to retain more enablings than are allowed -- but 12959 * we only have one anonymous enabling, and we are guaranteed 12960 * to be allowed at least one retained enabling; we assert 12961 * that dtrace_enabling_retain() returns success. 12962 */ 12963 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 12964 ASSERT(rval == 0); 12965 12966 dtrace_enabling_dump(dtrace_anon.dta_enabling); 12967 } 12968 } 12969 12970 /* 12971 * DTrace Helper Functions 12972 */ 12973 static void 12974 dtrace_helper_trace(dtrace_helper_action_t *helper, 12975 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 12976 { 12977 uint32_t size, next, nnext, i; 12978 dtrace_helptrace_t *ent; 12979 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 12980 12981 if (!dtrace_helptrace_enabled) 12982 return; 12983 12984 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 12985 12986 /* 12987 * What would a tracing framework be without its own tracing 12988 * framework? (Well, a hell of a lot simpler, for starters...) 12989 */ 12990 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 12991 sizeof (uint64_t) - sizeof (uint64_t); 12992 12993 /* 12994 * Iterate until we can allocate a slot in the trace buffer. 12995 */ 12996 do { 12997 next = dtrace_helptrace_next; 12998 12999 if (next + size < dtrace_helptrace_bufsize) { 13000 nnext = next + size; 13001 } else { 13002 nnext = size; 13003 } 13004 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 13005 13006 /* 13007 * We have our slot; fill it in. 13008 */ 13009 if (nnext == size) 13010 next = 0; 13011 13012 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 13013 ent->dtht_helper = helper; 13014 ent->dtht_where = where; 13015 ent->dtht_nlocals = vstate->dtvs_nlocals; 13016 13017 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 13018 mstate->dtms_fltoffs : -1; 13019 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 13020 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 13021 13022 for (i = 0; i < vstate->dtvs_nlocals; i++) { 13023 dtrace_statvar_t *svar; 13024 13025 if ((svar = vstate->dtvs_locals[i]) == NULL) 13026 continue; 13027 13028 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 13029 ent->dtht_locals[i] = 13030 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 13031 } 13032 } 13033 13034 static uint64_t 13035 dtrace_helper(int which, dtrace_mstate_t *mstate, 13036 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 13037 { 13038 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13039 uint64_t sarg0 = mstate->dtms_arg[0]; 13040 uint64_t sarg1 = mstate->dtms_arg[1]; 13041 uint64_t rval; 13042 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 13043 dtrace_helper_action_t *helper; 13044 dtrace_vstate_t *vstate; 13045 dtrace_difo_t *pred; 13046 int i, trace = dtrace_helptrace_enabled; 13047 13048 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 13049 13050 if (helpers == NULL) 13051 return (0); 13052 13053 if ((helper = helpers->dthps_actions[which]) == NULL) 13054 return (0); 13055 13056 vstate = &helpers->dthps_vstate; 13057 mstate->dtms_arg[0] = arg0; 13058 mstate->dtms_arg[1] = arg1; 13059 13060 /* 13061 * Now iterate over each helper. If its predicate evaluates to 'true', 13062 * we'll call the corresponding actions. Note that the below calls 13063 * to dtrace_dif_emulate() may set faults in machine state. This is 13064 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 13065 * the stored DIF offset with its own (which is the desired behavior). 13066 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 13067 * from machine state; this is okay, too. 13068 */ 13069 for (; helper != NULL; helper = helper->dtha_next) { 13070 if ((pred = helper->dtha_predicate) != NULL) { 13071 if (trace) 13072 dtrace_helper_trace(helper, mstate, vstate, 0); 13073 13074 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 13075 goto next; 13076 13077 if (*flags & CPU_DTRACE_FAULT) 13078 goto err; 13079 } 13080 13081 for (i = 0; i < helper->dtha_nactions; i++) { 13082 if (trace) 13083 dtrace_helper_trace(helper, 13084 mstate, vstate, i + 1); 13085 13086 rval = dtrace_dif_emulate(helper->dtha_actions[i], 13087 mstate, vstate, state); 13088 13089 if (*flags & CPU_DTRACE_FAULT) 13090 goto err; 13091 } 13092 13093 next: 13094 if (trace) 13095 dtrace_helper_trace(helper, mstate, vstate, 13096 DTRACE_HELPTRACE_NEXT); 13097 } 13098 13099 if (trace) 13100 dtrace_helper_trace(helper, mstate, vstate, 13101 DTRACE_HELPTRACE_DONE); 13102 13103 /* 13104 * Restore the arg0 that we saved upon entry. 13105 */ 13106 mstate->dtms_arg[0] = sarg0; 13107 mstate->dtms_arg[1] = sarg1; 13108 13109 return (rval); 13110 13111 err: 13112 if (trace) 13113 dtrace_helper_trace(helper, mstate, vstate, 13114 DTRACE_HELPTRACE_ERR); 13115 13116 /* 13117 * Restore the arg0 that we saved upon entry. 13118 */ 13119 mstate->dtms_arg[0] = sarg0; 13120 mstate->dtms_arg[1] = sarg1; 13121 13122 return (NULL); 13123 } 13124 13125 static void 13126 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13127 dtrace_vstate_t *vstate) 13128 { 13129 int i; 13130 13131 if (helper->dtha_predicate != NULL) 13132 dtrace_difo_release(helper->dtha_predicate, vstate); 13133 13134 for (i = 0; i < helper->dtha_nactions; i++) { 13135 ASSERT(helper->dtha_actions[i] != NULL); 13136 dtrace_difo_release(helper->dtha_actions[i], vstate); 13137 } 13138 13139 kmem_free(helper->dtha_actions, 13140 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13141 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13142 } 13143 13144 static int 13145 dtrace_helper_destroygen(int gen) 13146 { 13147 proc_t *p = curproc; 13148 dtrace_helpers_t *help = p->p_dtrace_helpers; 13149 dtrace_vstate_t *vstate; 13150 int i; 13151 13152 ASSERT(MUTEX_HELD(&dtrace_lock)); 13153 13154 if (help == NULL || gen > help->dthps_generation) 13155 return (EINVAL); 13156 13157 vstate = &help->dthps_vstate; 13158 13159 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13160 dtrace_helper_action_t *last = NULL, *h, *next; 13161 13162 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13163 next = h->dtha_next; 13164 13165 if (h->dtha_generation == gen) { 13166 if (last != NULL) { 13167 last->dtha_next = next; 13168 } else { 13169 help->dthps_actions[i] = next; 13170 } 13171 13172 dtrace_helper_action_destroy(h, vstate); 13173 } else { 13174 last = h; 13175 } 13176 } 13177 } 13178 13179 /* 13180 * Interate until we've cleared out all helper providers with the 13181 * given generation number. 13182 */ 13183 for (;;) { 13184 dtrace_helper_provider_t *prov; 13185 13186 /* 13187 * Look for a helper provider with the right generation. We 13188 * have to start back at the beginning of the list each time 13189 * because we drop dtrace_lock. It's unlikely that we'll make 13190 * more than two passes. 13191 */ 13192 for (i = 0; i < help->dthps_nprovs; i++) { 13193 prov = help->dthps_provs[i]; 13194 13195 if (prov->dthp_generation == gen) 13196 break; 13197 } 13198 13199 /* 13200 * If there were no matches, we're done. 13201 */ 13202 if (i == help->dthps_nprovs) 13203 break; 13204 13205 /* 13206 * Move the last helper provider into this slot. 13207 */ 13208 help->dthps_nprovs--; 13209 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13210 help->dthps_provs[help->dthps_nprovs] = NULL; 13211 13212 mutex_exit(&dtrace_lock); 13213 13214 /* 13215 * If we have a meta provider, remove this helper provider. 13216 */ 13217 mutex_enter(&dtrace_meta_lock); 13218 if (dtrace_meta_pid != NULL) { 13219 ASSERT(dtrace_deferred_pid == NULL); 13220 dtrace_helper_provider_remove(&prov->dthp_prov, 13221 p->p_pid); 13222 } 13223 mutex_exit(&dtrace_meta_lock); 13224 13225 dtrace_helper_provider_destroy(prov); 13226 13227 mutex_enter(&dtrace_lock); 13228 } 13229 13230 return (0); 13231 } 13232 13233 static int 13234 dtrace_helper_validate(dtrace_helper_action_t *helper) 13235 { 13236 int err = 0, i; 13237 dtrace_difo_t *dp; 13238 13239 if ((dp = helper->dtha_predicate) != NULL) 13240 err += dtrace_difo_validate_helper(dp); 13241 13242 for (i = 0; i < helper->dtha_nactions; i++) 13243 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13244 13245 return (err == 0); 13246 } 13247 13248 static int 13249 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13250 { 13251 dtrace_helpers_t *help; 13252 dtrace_helper_action_t *helper, *last; 13253 dtrace_actdesc_t *act; 13254 dtrace_vstate_t *vstate; 13255 dtrace_predicate_t *pred; 13256 int count = 0, nactions = 0, i; 13257 13258 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13259 return (EINVAL); 13260 13261 help = curproc->p_dtrace_helpers; 13262 last = help->dthps_actions[which]; 13263 vstate = &help->dthps_vstate; 13264 13265 for (count = 0; last != NULL; last = last->dtha_next) { 13266 count++; 13267 if (last->dtha_next == NULL) 13268 break; 13269 } 13270 13271 /* 13272 * If we already have dtrace_helper_actions_max helper actions for this 13273 * helper action type, we'll refuse to add a new one. 13274 */ 13275 if (count >= dtrace_helper_actions_max) 13276 return (ENOSPC); 13277 13278 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13279 helper->dtha_generation = help->dthps_generation; 13280 13281 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13282 ASSERT(pred->dtp_difo != NULL); 13283 dtrace_difo_hold(pred->dtp_difo); 13284 helper->dtha_predicate = pred->dtp_difo; 13285 } 13286 13287 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13288 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13289 goto err; 13290 13291 if (act->dtad_difo == NULL) 13292 goto err; 13293 13294 nactions++; 13295 } 13296 13297 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13298 (helper->dtha_nactions = nactions), KM_SLEEP); 13299 13300 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13301 dtrace_difo_hold(act->dtad_difo); 13302 helper->dtha_actions[i++] = act->dtad_difo; 13303 } 13304 13305 if (!dtrace_helper_validate(helper)) 13306 goto err; 13307 13308 if (last == NULL) { 13309 help->dthps_actions[which] = helper; 13310 } else { 13311 last->dtha_next = helper; 13312 } 13313 13314 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13315 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13316 dtrace_helptrace_next = 0; 13317 } 13318 13319 return (0); 13320 err: 13321 dtrace_helper_action_destroy(helper, vstate); 13322 return (EINVAL); 13323 } 13324 13325 static void 13326 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13327 dof_helper_t *dofhp) 13328 { 13329 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13330 13331 mutex_enter(&dtrace_meta_lock); 13332 mutex_enter(&dtrace_lock); 13333 13334 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13335 /* 13336 * If the dtrace module is loaded but not attached, or if 13337 * there aren't isn't a meta provider registered to deal with 13338 * these provider descriptions, we need to postpone creating 13339 * the actual providers until later. 13340 */ 13341 13342 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13343 dtrace_deferred_pid != help) { 13344 help->dthps_deferred = 1; 13345 help->dthps_pid = p->p_pid; 13346 help->dthps_next = dtrace_deferred_pid; 13347 help->dthps_prev = NULL; 13348 if (dtrace_deferred_pid != NULL) 13349 dtrace_deferred_pid->dthps_prev = help; 13350 dtrace_deferred_pid = help; 13351 } 13352 13353 mutex_exit(&dtrace_lock); 13354 13355 } else if (dofhp != NULL) { 13356 /* 13357 * If the dtrace module is loaded and we have a particular 13358 * helper provider description, pass that off to the 13359 * meta provider. 13360 */ 13361 13362 mutex_exit(&dtrace_lock); 13363 13364 dtrace_helper_provide(dofhp, p->p_pid); 13365 13366 } else { 13367 /* 13368 * Otherwise, just pass all the helper provider descriptions 13369 * off to the meta provider. 13370 */ 13371 13372 int i; 13373 mutex_exit(&dtrace_lock); 13374 13375 for (i = 0; i < help->dthps_nprovs; i++) { 13376 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13377 p->p_pid); 13378 } 13379 } 13380 13381 mutex_exit(&dtrace_meta_lock); 13382 } 13383 13384 static int 13385 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13386 { 13387 dtrace_helpers_t *help; 13388 dtrace_helper_provider_t *hprov, **tmp_provs; 13389 uint_t tmp_maxprovs, i; 13390 13391 ASSERT(MUTEX_HELD(&dtrace_lock)); 13392 13393 help = curproc->p_dtrace_helpers; 13394 ASSERT(help != NULL); 13395 13396 /* 13397 * If we already have dtrace_helper_providers_max helper providers, 13398 * we're refuse to add a new one. 13399 */ 13400 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13401 return (ENOSPC); 13402 13403 /* 13404 * Check to make sure this isn't a duplicate. 13405 */ 13406 for (i = 0; i < help->dthps_nprovs; i++) { 13407 if (dofhp->dofhp_addr == 13408 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13409 return (EALREADY); 13410 } 13411 13412 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13413 hprov->dthp_prov = *dofhp; 13414 hprov->dthp_ref = 1; 13415 hprov->dthp_generation = gen; 13416 13417 /* 13418 * Allocate a bigger table for helper providers if it's already full. 13419 */ 13420 if (help->dthps_maxprovs == help->dthps_nprovs) { 13421 tmp_maxprovs = help->dthps_maxprovs; 13422 tmp_provs = help->dthps_provs; 13423 13424 if (help->dthps_maxprovs == 0) 13425 help->dthps_maxprovs = 2; 13426 else 13427 help->dthps_maxprovs *= 2; 13428 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13429 help->dthps_maxprovs = dtrace_helper_providers_max; 13430 13431 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13432 13433 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13434 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13435 13436 if (tmp_provs != NULL) { 13437 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13438 sizeof (dtrace_helper_provider_t *)); 13439 kmem_free(tmp_provs, tmp_maxprovs * 13440 sizeof (dtrace_helper_provider_t *)); 13441 } 13442 } 13443 13444 help->dthps_provs[help->dthps_nprovs] = hprov; 13445 help->dthps_nprovs++; 13446 13447 return (0); 13448 } 13449 13450 static void 13451 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13452 { 13453 mutex_enter(&dtrace_lock); 13454 13455 if (--hprov->dthp_ref == 0) { 13456 dof_hdr_t *dof; 13457 mutex_exit(&dtrace_lock); 13458 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13459 dtrace_dof_destroy(dof); 13460 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13461 } else { 13462 mutex_exit(&dtrace_lock); 13463 } 13464 } 13465 13466 static int 13467 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13468 { 13469 uintptr_t daddr = (uintptr_t)dof; 13470 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13471 dof_provider_t *provider; 13472 dof_probe_t *probe; 13473 uint8_t *arg; 13474 char *strtab, *typestr; 13475 dof_stridx_t typeidx; 13476 size_t typesz; 13477 uint_t nprobes, j, k; 13478 13479 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13480 13481 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13482 dtrace_dof_error(dof, "misaligned section offset"); 13483 return (-1); 13484 } 13485 13486 /* 13487 * The section needs to be large enough to contain the DOF provider 13488 * structure appropriate for the given version. 13489 */ 13490 if (sec->dofs_size < 13491 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13492 offsetof(dof_provider_t, dofpv_prenoffs) : 13493 sizeof (dof_provider_t))) { 13494 dtrace_dof_error(dof, "provider section too small"); 13495 return (-1); 13496 } 13497 13498 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 13499 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 13500 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 13501 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 13502 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 13503 13504 if (str_sec == NULL || prb_sec == NULL || 13505 arg_sec == NULL || off_sec == NULL) 13506 return (-1); 13507 13508 enoff_sec = NULL; 13509 13510 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13511 provider->dofpv_prenoffs != DOF_SECT_NONE && 13512 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 13513 provider->dofpv_prenoffs)) == NULL) 13514 return (-1); 13515 13516 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 13517 13518 if (provider->dofpv_name >= str_sec->dofs_size || 13519 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 13520 dtrace_dof_error(dof, "invalid provider name"); 13521 return (-1); 13522 } 13523 13524 if (prb_sec->dofs_entsize == 0 || 13525 prb_sec->dofs_entsize > prb_sec->dofs_size) { 13526 dtrace_dof_error(dof, "invalid entry size"); 13527 return (-1); 13528 } 13529 13530 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 13531 dtrace_dof_error(dof, "misaligned entry size"); 13532 return (-1); 13533 } 13534 13535 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 13536 dtrace_dof_error(dof, "invalid entry size"); 13537 return (-1); 13538 } 13539 13540 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 13541 dtrace_dof_error(dof, "misaligned section offset"); 13542 return (-1); 13543 } 13544 13545 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 13546 dtrace_dof_error(dof, "invalid entry size"); 13547 return (-1); 13548 } 13549 13550 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 13551 13552 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 13553 13554 /* 13555 * Take a pass through the probes to check for errors. 13556 */ 13557 for (j = 0; j < nprobes; j++) { 13558 probe = (dof_probe_t *)(uintptr_t)(daddr + 13559 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 13560 13561 if (probe->dofpr_func >= str_sec->dofs_size) { 13562 dtrace_dof_error(dof, "invalid function name"); 13563 return (-1); 13564 } 13565 13566 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 13567 dtrace_dof_error(dof, "function name too long"); 13568 return (-1); 13569 } 13570 13571 if (probe->dofpr_name >= str_sec->dofs_size || 13572 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 13573 dtrace_dof_error(dof, "invalid probe name"); 13574 return (-1); 13575 } 13576 13577 /* 13578 * The offset count must not wrap the index, and the offsets 13579 * must also not overflow the section's data. 13580 */ 13581 if (probe->dofpr_offidx + probe->dofpr_noffs < 13582 probe->dofpr_offidx || 13583 (probe->dofpr_offidx + probe->dofpr_noffs) * 13584 off_sec->dofs_entsize > off_sec->dofs_size) { 13585 dtrace_dof_error(dof, "invalid probe offset"); 13586 return (-1); 13587 } 13588 13589 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 13590 /* 13591 * If there's no is-enabled offset section, make sure 13592 * there aren't any is-enabled offsets. Otherwise 13593 * perform the same checks as for probe offsets 13594 * (immediately above). 13595 */ 13596 if (enoff_sec == NULL) { 13597 if (probe->dofpr_enoffidx != 0 || 13598 probe->dofpr_nenoffs != 0) { 13599 dtrace_dof_error(dof, "is-enabled " 13600 "offsets with null section"); 13601 return (-1); 13602 } 13603 } else if (probe->dofpr_enoffidx + 13604 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 13605 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 13606 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 13607 dtrace_dof_error(dof, "invalid is-enabled " 13608 "offset"); 13609 return (-1); 13610 } 13611 13612 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 13613 dtrace_dof_error(dof, "zero probe and " 13614 "is-enabled offsets"); 13615 return (-1); 13616 } 13617 } else if (probe->dofpr_noffs == 0) { 13618 dtrace_dof_error(dof, "zero probe offsets"); 13619 return (-1); 13620 } 13621 13622 if (probe->dofpr_argidx + probe->dofpr_xargc < 13623 probe->dofpr_argidx || 13624 (probe->dofpr_argidx + probe->dofpr_xargc) * 13625 arg_sec->dofs_entsize > arg_sec->dofs_size) { 13626 dtrace_dof_error(dof, "invalid args"); 13627 return (-1); 13628 } 13629 13630 typeidx = probe->dofpr_nargv; 13631 typestr = strtab + probe->dofpr_nargv; 13632 for (k = 0; k < probe->dofpr_nargc; k++) { 13633 if (typeidx >= str_sec->dofs_size) { 13634 dtrace_dof_error(dof, "bad " 13635 "native argument type"); 13636 return (-1); 13637 } 13638 13639 typesz = strlen(typestr) + 1; 13640 if (typesz > DTRACE_ARGTYPELEN) { 13641 dtrace_dof_error(dof, "native " 13642 "argument type too long"); 13643 return (-1); 13644 } 13645 typeidx += typesz; 13646 typestr += typesz; 13647 } 13648 13649 typeidx = probe->dofpr_xargv; 13650 typestr = strtab + probe->dofpr_xargv; 13651 for (k = 0; k < probe->dofpr_xargc; k++) { 13652 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 13653 dtrace_dof_error(dof, "bad " 13654 "native argument index"); 13655 return (-1); 13656 } 13657 13658 if (typeidx >= str_sec->dofs_size) { 13659 dtrace_dof_error(dof, "bad " 13660 "translated argument type"); 13661 return (-1); 13662 } 13663 13664 typesz = strlen(typestr) + 1; 13665 if (typesz > DTRACE_ARGTYPELEN) { 13666 dtrace_dof_error(dof, "translated argument " 13667 "type too long"); 13668 return (-1); 13669 } 13670 13671 typeidx += typesz; 13672 typestr += typesz; 13673 } 13674 } 13675 13676 return (0); 13677 } 13678 13679 static int 13680 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 13681 { 13682 dtrace_helpers_t *help; 13683 dtrace_vstate_t *vstate; 13684 dtrace_enabling_t *enab = NULL; 13685 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 13686 uintptr_t daddr = (uintptr_t)dof; 13687 13688 ASSERT(MUTEX_HELD(&dtrace_lock)); 13689 13690 if ((help = curproc->p_dtrace_helpers) == NULL) 13691 help = dtrace_helpers_create(curproc); 13692 13693 vstate = &help->dthps_vstate; 13694 13695 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 13696 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 13697 dtrace_dof_destroy(dof); 13698 return (rv); 13699 } 13700 13701 /* 13702 * Look for helper providers and validate their descriptions. 13703 */ 13704 if (dhp != NULL) { 13705 for (i = 0; i < dof->dofh_secnum; i++) { 13706 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 13707 dof->dofh_secoff + i * dof->dofh_secsize); 13708 13709 if (sec->dofs_type != DOF_SECT_PROVIDER) 13710 continue; 13711 13712 if (dtrace_helper_provider_validate(dof, sec) != 0) { 13713 dtrace_enabling_destroy(enab); 13714 dtrace_dof_destroy(dof); 13715 return (-1); 13716 } 13717 13718 nprovs++; 13719 } 13720 } 13721 13722 /* 13723 * Now we need to walk through the ECB descriptions in the enabling. 13724 */ 13725 for (i = 0; i < enab->dten_ndesc; i++) { 13726 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 13727 dtrace_probedesc_t *desc = &ep->dted_probe; 13728 13729 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 13730 continue; 13731 13732 if (strcmp(desc->dtpd_mod, "helper") != 0) 13733 continue; 13734 13735 if (strcmp(desc->dtpd_func, "ustack") != 0) 13736 continue; 13737 13738 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 13739 ep)) != 0) { 13740 /* 13741 * Adding this helper action failed -- we are now going 13742 * to rip out the entire generation and return failure. 13743 */ 13744 (void) dtrace_helper_destroygen(help->dthps_generation); 13745 dtrace_enabling_destroy(enab); 13746 dtrace_dof_destroy(dof); 13747 return (-1); 13748 } 13749 13750 nhelpers++; 13751 } 13752 13753 if (nhelpers < enab->dten_ndesc) 13754 dtrace_dof_error(dof, "unmatched helpers"); 13755 13756 gen = help->dthps_generation++; 13757 dtrace_enabling_destroy(enab); 13758 13759 if (dhp != NULL && nprovs > 0) { 13760 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 13761 if (dtrace_helper_provider_add(dhp, gen) == 0) { 13762 mutex_exit(&dtrace_lock); 13763 dtrace_helper_provider_register(curproc, help, dhp); 13764 mutex_enter(&dtrace_lock); 13765 13766 destroy = 0; 13767 } 13768 } 13769 13770 if (destroy) 13771 dtrace_dof_destroy(dof); 13772 13773 return (gen); 13774 } 13775 13776 static dtrace_helpers_t * 13777 dtrace_helpers_create(proc_t *p) 13778 { 13779 dtrace_helpers_t *help; 13780 13781 ASSERT(MUTEX_HELD(&dtrace_lock)); 13782 ASSERT(p->p_dtrace_helpers == NULL); 13783 13784 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 13785 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 13786 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 13787 13788 p->p_dtrace_helpers = help; 13789 dtrace_helpers++; 13790 13791 return (help); 13792 } 13793 13794 static void 13795 dtrace_helpers_destroy(void) 13796 { 13797 dtrace_helpers_t *help; 13798 dtrace_vstate_t *vstate; 13799 proc_t *p = curproc; 13800 int i; 13801 13802 mutex_enter(&dtrace_lock); 13803 13804 ASSERT(p->p_dtrace_helpers != NULL); 13805 ASSERT(dtrace_helpers > 0); 13806 13807 help = p->p_dtrace_helpers; 13808 vstate = &help->dthps_vstate; 13809 13810 /* 13811 * We're now going to lose the help from this process. 13812 */ 13813 p->p_dtrace_helpers = NULL; 13814 dtrace_sync(); 13815 13816 /* 13817 * Destory the helper actions. 13818 */ 13819 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13820 dtrace_helper_action_t *h, *next; 13821 13822 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13823 next = h->dtha_next; 13824 dtrace_helper_action_destroy(h, vstate); 13825 h = next; 13826 } 13827 } 13828 13829 mutex_exit(&dtrace_lock); 13830 13831 /* 13832 * Destroy the helper providers. 13833 */ 13834 if (help->dthps_maxprovs > 0) { 13835 mutex_enter(&dtrace_meta_lock); 13836 if (dtrace_meta_pid != NULL) { 13837 ASSERT(dtrace_deferred_pid == NULL); 13838 13839 for (i = 0; i < help->dthps_nprovs; i++) { 13840 dtrace_helper_provider_remove( 13841 &help->dthps_provs[i]->dthp_prov, p->p_pid); 13842 } 13843 } else { 13844 mutex_enter(&dtrace_lock); 13845 ASSERT(help->dthps_deferred == 0 || 13846 help->dthps_next != NULL || 13847 help->dthps_prev != NULL || 13848 help == dtrace_deferred_pid); 13849 13850 /* 13851 * Remove the helper from the deferred list. 13852 */ 13853 if (help->dthps_next != NULL) 13854 help->dthps_next->dthps_prev = help->dthps_prev; 13855 if (help->dthps_prev != NULL) 13856 help->dthps_prev->dthps_next = help->dthps_next; 13857 if (dtrace_deferred_pid == help) { 13858 dtrace_deferred_pid = help->dthps_next; 13859 ASSERT(help->dthps_prev == NULL); 13860 } 13861 13862 mutex_exit(&dtrace_lock); 13863 } 13864 13865 mutex_exit(&dtrace_meta_lock); 13866 13867 for (i = 0; i < help->dthps_nprovs; i++) { 13868 dtrace_helper_provider_destroy(help->dthps_provs[i]); 13869 } 13870 13871 kmem_free(help->dthps_provs, help->dthps_maxprovs * 13872 sizeof (dtrace_helper_provider_t *)); 13873 } 13874 13875 mutex_enter(&dtrace_lock); 13876 13877 dtrace_vstate_fini(&help->dthps_vstate); 13878 kmem_free(help->dthps_actions, 13879 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 13880 kmem_free(help, sizeof (dtrace_helpers_t)); 13881 13882 --dtrace_helpers; 13883 mutex_exit(&dtrace_lock); 13884 } 13885 13886 static void 13887 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 13888 { 13889 dtrace_helpers_t *help, *newhelp; 13890 dtrace_helper_action_t *helper, *new, *last; 13891 dtrace_difo_t *dp; 13892 dtrace_vstate_t *vstate; 13893 int i, j, sz, hasprovs = 0; 13894 13895 mutex_enter(&dtrace_lock); 13896 ASSERT(from->p_dtrace_helpers != NULL); 13897 ASSERT(dtrace_helpers > 0); 13898 13899 help = from->p_dtrace_helpers; 13900 newhelp = dtrace_helpers_create(to); 13901 ASSERT(to->p_dtrace_helpers != NULL); 13902 13903 newhelp->dthps_generation = help->dthps_generation; 13904 vstate = &newhelp->dthps_vstate; 13905 13906 /* 13907 * Duplicate the helper actions. 13908 */ 13909 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13910 if ((helper = help->dthps_actions[i]) == NULL) 13911 continue; 13912 13913 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 13914 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 13915 KM_SLEEP); 13916 new->dtha_generation = helper->dtha_generation; 13917 13918 if ((dp = helper->dtha_predicate) != NULL) { 13919 dp = dtrace_difo_duplicate(dp, vstate); 13920 new->dtha_predicate = dp; 13921 } 13922 13923 new->dtha_nactions = helper->dtha_nactions; 13924 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 13925 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 13926 13927 for (j = 0; j < new->dtha_nactions; j++) { 13928 dtrace_difo_t *dp = helper->dtha_actions[j]; 13929 13930 ASSERT(dp != NULL); 13931 dp = dtrace_difo_duplicate(dp, vstate); 13932 new->dtha_actions[j] = dp; 13933 } 13934 13935 if (last != NULL) { 13936 last->dtha_next = new; 13937 } else { 13938 newhelp->dthps_actions[i] = new; 13939 } 13940 13941 last = new; 13942 } 13943 } 13944 13945 /* 13946 * Duplicate the helper providers and register them with the 13947 * DTrace framework. 13948 */ 13949 if (help->dthps_nprovs > 0) { 13950 newhelp->dthps_nprovs = help->dthps_nprovs; 13951 newhelp->dthps_maxprovs = help->dthps_nprovs; 13952 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 13953 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13954 for (i = 0; i < newhelp->dthps_nprovs; i++) { 13955 newhelp->dthps_provs[i] = help->dthps_provs[i]; 13956 newhelp->dthps_provs[i]->dthp_ref++; 13957 } 13958 13959 hasprovs = 1; 13960 } 13961 13962 mutex_exit(&dtrace_lock); 13963 13964 if (hasprovs) 13965 dtrace_helper_provider_register(to, newhelp, NULL); 13966 } 13967 13968 /* 13969 * DTrace Hook Functions 13970 */ 13971 static void 13972 dtrace_module_loaded(struct modctl *ctl) 13973 { 13974 dtrace_provider_t *prv; 13975 13976 mutex_enter(&dtrace_provider_lock); 13977 mutex_enter(&mod_lock); 13978 13979 ASSERT(ctl->mod_busy); 13980 13981 /* 13982 * We're going to call each providers per-module provide operation 13983 * specifying only this module. 13984 */ 13985 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 13986 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 13987 13988 mutex_exit(&mod_lock); 13989 mutex_exit(&dtrace_provider_lock); 13990 13991 /* 13992 * If we have any retained enablings, we need to match against them. 13993 * Enabling probes requires that cpu_lock be held, and we cannot hold 13994 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 13995 * module. (In particular, this happens when loading scheduling 13996 * classes.) So if we have any retained enablings, we need to dispatch 13997 * our task queue to do the match for us. 13998 */ 13999 mutex_enter(&dtrace_lock); 14000 14001 if (dtrace_retained == NULL) { 14002 mutex_exit(&dtrace_lock); 14003 return; 14004 } 14005 14006 (void) taskq_dispatch(dtrace_taskq, 14007 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 14008 14009 mutex_exit(&dtrace_lock); 14010 14011 /* 14012 * And now, for a little heuristic sleaze: in general, we want to 14013 * match modules as soon as they load. However, we cannot guarantee 14014 * this, because it would lead us to the lock ordering violation 14015 * outlined above. The common case, of course, is that cpu_lock is 14016 * _not_ held -- so we delay here for a clock tick, hoping that that's 14017 * long enough for the task queue to do its work. If it's not, it's 14018 * not a serious problem -- it just means that the module that we 14019 * just loaded may not be immediately instrumentable. 14020 */ 14021 delay(1); 14022 } 14023 14024 static void 14025 dtrace_module_unloaded(struct modctl *ctl) 14026 { 14027 dtrace_probe_t template, *probe, *first, *next; 14028 dtrace_provider_t *prov; 14029 14030 template.dtpr_mod = ctl->mod_modname; 14031 14032 mutex_enter(&dtrace_provider_lock); 14033 mutex_enter(&mod_lock); 14034 mutex_enter(&dtrace_lock); 14035 14036 if (dtrace_bymod == NULL) { 14037 /* 14038 * The DTrace module is loaded (obviously) but not attached; 14039 * we don't have any work to do. 14040 */ 14041 mutex_exit(&dtrace_provider_lock); 14042 mutex_exit(&mod_lock); 14043 mutex_exit(&dtrace_lock); 14044 return; 14045 } 14046 14047 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 14048 probe != NULL; probe = probe->dtpr_nextmod) { 14049 if (probe->dtpr_ecb != NULL) { 14050 mutex_exit(&dtrace_provider_lock); 14051 mutex_exit(&mod_lock); 14052 mutex_exit(&dtrace_lock); 14053 14054 /* 14055 * This shouldn't _actually_ be possible -- we're 14056 * unloading a module that has an enabled probe in it. 14057 * (It's normally up to the provider to make sure that 14058 * this can't happen.) However, because dtps_enable() 14059 * doesn't have a failure mode, there can be an 14060 * enable/unload race. Upshot: we don't want to 14061 * assert, but we're not going to disable the 14062 * probe, either. 14063 */ 14064 if (dtrace_err_verbose) { 14065 cmn_err(CE_WARN, "unloaded module '%s' had " 14066 "enabled probes", ctl->mod_modname); 14067 } 14068 14069 return; 14070 } 14071 } 14072 14073 probe = first; 14074 14075 for (first = NULL; probe != NULL; probe = next) { 14076 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 14077 14078 dtrace_probes[probe->dtpr_id - 1] = NULL; 14079 14080 next = probe->dtpr_nextmod; 14081 dtrace_hash_remove(dtrace_bymod, probe); 14082 dtrace_hash_remove(dtrace_byfunc, probe); 14083 dtrace_hash_remove(dtrace_byname, probe); 14084 14085 if (first == NULL) { 14086 first = probe; 14087 probe->dtpr_nextmod = NULL; 14088 } else { 14089 probe->dtpr_nextmod = first; 14090 first = probe; 14091 } 14092 } 14093 14094 /* 14095 * We've removed all of the module's probes from the hash chains and 14096 * from the probe array. Now issue a dtrace_sync() to be sure that 14097 * everyone has cleared out from any probe array processing. 14098 */ 14099 dtrace_sync(); 14100 14101 for (probe = first; probe != NULL; probe = first) { 14102 first = probe->dtpr_nextmod; 14103 prov = probe->dtpr_provider; 14104 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 14105 probe->dtpr_arg); 14106 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 14107 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 14108 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 14109 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 14110 kmem_free(probe, sizeof (dtrace_probe_t)); 14111 } 14112 14113 mutex_exit(&dtrace_lock); 14114 mutex_exit(&mod_lock); 14115 mutex_exit(&dtrace_provider_lock); 14116 } 14117 14118 void 14119 dtrace_suspend(void) 14120 { 14121 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14122 } 14123 14124 void 14125 dtrace_resume(void) 14126 { 14127 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14128 } 14129 14130 static int 14131 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14132 { 14133 ASSERT(MUTEX_HELD(&cpu_lock)); 14134 mutex_enter(&dtrace_lock); 14135 14136 switch (what) { 14137 case CPU_CONFIG: { 14138 dtrace_state_t *state; 14139 dtrace_optval_t *opt, rs, c; 14140 14141 /* 14142 * For now, we only allocate a new buffer for anonymous state. 14143 */ 14144 if ((state = dtrace_anon.dta_state) == NULL) 14145 break; 14146 14147 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14148 break; 14149 14150 opt = state->dts_options; 14151 c = opt[DTRACEOPT_CPU]; 14152 14153 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14154 break; 14155 14156 /* 14157 * Regardless of what the actual policy is, we're going to 14158 * temporarily set our resize policy to be manual. We're 14159 * also going to temporarily set our CPU option to denote 14160 * the newly configured CPU. 14161 */ 14162 rs = opt[DTRACEOPT_BUFRESIZE]; 14163 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14164 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14165 14166 (void) dtrace_state_buffers(state); 14167 14168 opt[DTRACEOPT_BUFRESIZE] = rs; 14169 opt[DTRACEOPT_CPU] = c; 14170 14171 break; 14172 } 14173 14174 case CPU_UNCONFIG: 14175 /* 14176 * We don't free the buffer in the CPU_UNCONFIG case. (The 14177 * buffer will be freed when the consumer exits.) 14178 */ 14179 break; 14180 14181 default: 14182 break; 14183 } 14184 14185 mutex_exit(&dtrace_lock); 14186 return (0); 14187 } 14188 14189 static void 14190 dtrace_cpu_setup_initial(processorid_t cpu) 14191 { 14192 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14193 } 14194 14195 static void 14196 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14197 { 14198 if (dtrace_toxranges >= dtrace_toxranges_max) { 14199 int osize, nsize; 14200 dtrace_toxrange_t *range; 14201 14202 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14203 14204 if (osize == 0) { 14205 ASSERT(dtrace_toxrange == NULL); 14206 ASSERT(dtrace_toxranges_max == 0); 14207 dtrace_toxranges_max = 1; 14208 } else { 14209 dtrace_toxranges_max <<= 1; 14210 } 14211 14212 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14213 range = kmem_zalloc(nsize, KM_SLEEP); 14214 14215 if (dtrace_toxrange != NULL) { 14216 ASSERT(osize != 0); 14217 bcopy(dtrace_toxrange, range, osize); 14218 kmem_free(dtrace_toxrange, osize); 14219 } 14220 14221 dtrace_toxrange = range; 14222 } 14223 14224 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14225 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14226 14227 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14228 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14229 dtrace_toxranges++; 14230 } 14231 14232 /* 14233 * DTrace Driver Cookbook Functions 14234 */ 14235 /*ARGSUSED*/ 14236 static int 14237 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14238 { 14239 dtrace_provider_id_t id; 14240 dtrace_state_t *state = NULL; 14241 dtrace_enabling_t *enab; 14242 14243 mutex_enter(&cpu_lock); 14244 mutex_enter(&dtrace_provider_lock); 14245 mutex_enter(&dtrace_lock); 14246 14247 if (ddi_soft_state_init(&dtrace_softstate, 14248 sizeof (dtrace_state_t), 0) != 0) { 14249 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14250 mutex_exit(&cpu_lock); 14251 mutex_exit(&dtrace_provider_lock); 14252 mutex_exit(&dtrace_lock); 14253 return (DDI_FAILURE); 14254 } 14255 14256 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14257 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14258 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14259 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14260 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14261 ddi_remove_minor_node(devi, NULL); 14262 ddi_soft_state_fini(&dtrace_softstate); 14263 mutex_exit(&cpu_lock); 14264 mutex_exit(&dtrace_provider_lock); 14265 mutex_exit(&dtrace_lock); 14266 return (DDI_FAILURE); 14267 } 14268 14269 ddi_report_dev(devi); 14270 dtrace_devi = devi; 14271 14272 dtrace_modload = dtrace_module_loaded; 14273 dtrace_modunload = dtrace_module_unloaded; 14274 dtrace_cpu_init = dtrace_cpu_setup_initial; 14275 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14276 dtrace_helpers_fork = dtrace_helpers_duplicate; 14277 dtrace_cpustart_init = dtrace_suspend; 14278 dtrace_cpustart_fini = dtrace_resume; 14279 dtrace_debugger_init = dtrace_suspend; 14280 dtrace_debugger_fini = dtrace_resume; 14281 14282 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14283 14284 ASSERT(MUTEX_HELD(&cpu_lock)); 14285 14286 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14287 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14288 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14289 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14290 VM_SLEEP | VMC_IDENTIFIER); 14291 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14292 1, INT_MAX, 0); 14293 14294 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14295 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14296 NULL, NULL, NULL, NULL, NULL, 0); 14297 14298 ASSERT(MUTEX_HELD(&cpu_lock)); 14299 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14300 offsetof(dtrace_probe_t, dtpr_nextmod), 14301 offsetof(dtrace_probe_t, dtpr_prevmod)); 14302 14303 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14304 offsetof(dtrace_probe_t, dtpr_nextfunc), 14305 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14306 14307 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14308 offsetof(dtrace_probe_t, dtpr_nextname), 14309 offsetof(dtrace_probe_t, dtpr_prevname)); 14310 14311 if (dtrace_retain_max < 1) { 14312 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14313 "setting to 1", dtrace_retain_max); 14314 dtrace_retain_max = 1; 14315 } 14316 14317 /* 14318 * Now discover our toxic ranges. 14319 */ 14320 dtrace_toxic_ranges(dtrace_toxrange_add); 14321 14322 /* 14323 * Before we register ourselves as a provider to our own framework, 14324 * we would like to assert that dtrace_provider is NULL -- but that's 14325 * not true if we were loaded as a dependency of a DTrace provider. 14326 * Once we've registered, we can assert that dtrace_provider is our 14327 * pseudo provider. 14328 */ 14329 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14330 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14331 14332 ASSERT(dtrace_provider != NULL); 14333 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14334 14335 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14336 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14337 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14338 dtrace_provider, NULL, NULL, "END", 0, NULL); 14339 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14340 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14341 14342 dtrace_anon_property(); 14343 mutex_exit(&cpu_lock); 14344 14345 /* 14346 * If DTrace helper tracing is enabled, we need to allocate the 14347 * trace buffer and initialize the values. 14348 */ 14349 if (dtrace_helptrace_enabled) { 14350 ASSERT(dtrace_helptrace_buffer == NULL); 14351 dtrace_helptrace_buffer = 14352 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14353 dtrace_helptrace_next = 0; 14354 } 14355 14356 /* 14357 * If there are already providers, we must ask them to provide their 14358 * probes, and then match any anonymous enabling against them. Note 14359 * that there should be no other retained enablings at this time: 14360 * the only retained enablings at this time should be the anonymous 14361 * enabling. 14362 */ 14363 if (dtrace_anon.dta_enabling != NULL) { 14364 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14365 14366 dtrace_enabling_provide(NULL); 14367 state = dtrace_anon.dta_state; 14368 14369 /* 14370 * We couldn't hold cpu_lock across the above call to 14371 * dtrace_enabling_provide(), but we must hold it to actually 14372 * enable the probes. We have to drop all of our locks, pick 14373 * up cpu_lock, and regain our locks before matching the 14374 * retained anonymous enabling. 14375 */ 14376 mutex_exit(&dtrace_lock); 14377 mutex_exit(&dtrace_provider_lock); 14378 14379 mutex_enter(&cpu_lock); 14380 mutex_enter(&dtrace_provider_lock); 14381 mutex_enter(&dtrace_lock); 14382 14383 if ((enab = dtrace_anon.dta_enabling) != NULL) 14384 (void) dtrace_enabling_match(enab, NULL); 14385 14386 mutex_exit(&cpu_lock); 14387 } 14388 14389 mutex_exit(&dtrace_lock); 14390 mutex_exit(&dtrace_provider_lock); 14391 14392 if (state != NULL) { 14393 /* 14394 * If we created any anonymous state, set it going now. 14395 */ 14396 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14397 } 14398 14399 return (DDI_SUCCESS); 14400 } 14401 14402 /*ARGSUSED*/ 14403 static int 14404 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14405 { 14406 dtrace_state_t *state; 14407 uint32_t priv; 14408 uid_t uid; 14409 zoneid_t zoneid; 14410 14411 if (getminor(*devp) == DTRACEMNRN_HELPER) 14412 return (0); 14413 14414 /* 14415 * If this wasn't an open with the "helper" minor, then it must be 14416 * the "dtrace" minor. 14417 */ 14418 ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE); 14419 14420 /* 14421 * If no DTRACE_PRIV_* bits are set in the credential, then the 14422 * caller lacks sufficient permission to do anything with DTrace. 14423 */ 14424 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14425 if (priv == DTRACE_PRIV_NONE) 14426 return (EACCES); 14427 14428 /* 14429 * Ask all providers to provide all their probes. 14430 */ 14431 mutex_enter(&dtrace_provider_lock); 14432 dtrace_probe_provide(NULL, NULL); 14433 mutex_exit(&dtrace_provider_lock); 14434 14435 mutex_enter(&cpu_lock); 14436 mutex_enter(&dtrace_lock); 14437 dtrace_opens++; 14438 dtrace_membar_producer(); 14439 14440 /* 14441 * If the kernel debugger is active (that is, if the kernel debugger 14442 * modified text in some way), we won't allow the open. 14443 */ 14444 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14445 dtrace_opens--; 14446 mutex_exit(&cpu_lock); 14447 mutex_exit(&dtrace_lock); 14448 return (EBUSY); 14449 } 14450 14451 state = dtrace_state_create(devp, cred_p); 14452 mutex_exit(&cpu_lock); 14453 14454 if (state == NULL) { 14455 if (--dtrace_opens == 0) 14456 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14457 mutex_exit(&dtrace_lock); 14458 return (EAGAIN); 14459 } 14460 14461 mutex_exit(&dtrace_lock); 14462 14463 return (0); 14464 } 14465 14466 /*ARGSUSED*/ 14467 static int 14468 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14469 { 14470 minor_t minor = getminor(dev); 14471 dtrace_state_t *state; 14472 14473 if (minor == DTRACEMNRN_HELPER) 14474 return (0); 14475 14476 state = ddi_get_soft_state(dtrace_softstate, minor); 14477 14478 mutex_enter(&cpu_lock); 14479 mutex_enter(&dtrace_lock); 14480 14481 if (state->dts_anon) { 14482 /* 14483 * There is anonymous state. Destroy that first. 14484 */ 14485 ASSERT(dtrace_anon.dta_state == NULL); 14486 dtrace_state_destroy(state->dts_anon); 14487 } 14488 14489 dtrace_state_destroy(state); 14490 ASSERT(dtrace_opens > 0); 14491 if (--dtrace_opens == 0) 14492 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14493 14494 mutex_exit(&dtrace_lock); 14495 mutex_exit(&cpu_lock); 14496 14497 return (0); 14498 } 14499 14500 /*ARGSUSED*/ 14501 static int 14502 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 14503 { 14504 int rval; 14505 dof_helper_t help, *dhp = NULL; 14506 14507 switch (cmd) { 14508 case DTRACEHIOC_ADDDOF: 14509 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 14510 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 14511 return (EFAULT); 14512 } 14513 14514 dhp = &help; 14515 arg = (intptr_t)help.dofhp_dof; 14516 /*FALLTHROUGH*/ 14517 14518 case DTRACEHIOC_ADD: { 14519 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 14520 14521 if (dof == NULL) 14522 return (rval); 14523 14524 mutex_enter(&dtrace_lock); 14525 14526 /* 14527 * dtrace_helper_slurp() takes responsibility for the dof -- 14528 * it may free it now or it may save it and free it later. 14529 */ 14530 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 14531 *rv = rval; 14532 rval = 0; 14533 } else { 14534 rval = EINVAL; 14535 } 14536 14537 mutex_exit(&dtrace_lock); 14538 return (rval); 14539 } 14540 14541 case DTRACEHIOC_REMOVE: { 14542 mutex_enter(&dtrace_lock); 14543 rval = dtrace_helper_destroygen(arg); 14544 mutex_exit(&dtrace_lock); 14545 14546 return (rval); 14547 } 14548 14549 default: 14550 break; 14551 } 14552 14553 return (ENOTTY); 14554 } 14555 14556 /*ARGSUSED*/ 14557 static int 14558 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 14559 { 14560 minor_t minor = getminor(dev); 14561 dtrace_state_t *state; 14562 int rval; 14563 14564 if (minor == DTRACEMNRN_HELPER) 14565 return (dtrace_ioctl_helper(cmd, arg, rv)); 14566 14567 state = ddi_get_soft_state(dtrace_softstate, minor); 14568 14569 if (state->dts_anon) { 14570 ASSERT(dtrace_anon.dta_state == NULL); 14571 state = state->dts_anon; 14572 } 14573 14574 switch (cmd) { 14575 case DTRACEIOC_PROVIDER: { 14576 dtrace_providerdesc_t pvd; 14577 dtrace_provider_t *pvp; 14578 14579 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 14580 return (EFAULT); 14581 14582 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 14583 mutex_enter(&dtrace_provider_lock); 14584 14585 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 14586 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 14587 break; 14588 } 14589 14590 mutex_exit(&dtrace_provider_lock); 14591 14592 if (pvp == NULL) 14593 return (ESRCH); 14594 14595 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 14596 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 14597 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 14598 return (EFAULT); 14599 14600 return (0); 14601 } 14602 14603 case DTRACEIOC_EPROBE: { 14604 dtrace_eprobedesc_t epdesc; 14605 dtrace_ecb_t *ecb; 14606 dtrace_action_t *act; 14607 void *buf; 14608 size_t size; 14609 uintptr_t dest; 14610 int nrecs; 14611 14612 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 14613 return (EFAULT); 14614 14615 mutex_enter(&dtrace_lock); 14616 14617 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 14618 mutex_exit(&dtrace_lock); 14619 return (EINVAL); 14620 } 14621 14622 if (ecb->dte_probe == NULL) { 14623 mutex_exit(&dtrace_lock); 14624 return (EINVAL); 14625 } 14626 14627 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 14628 epdesc.dtepd_uarg = ecb->dte_uarg; 14629 epdesc.dtepd_size = ecb->dte_size; 14630 14631 nrecs = epdesc.dtepd_nrecs; 14632 epdesc.dtepd_nrecs = 0; 14633 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14634 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14635 continue; 14636 14637 epdesc.dtepd_nrecs++; 14638 } 14639 14640 /* 14641 * Now that we have the size, we need to allocate a temporary 14642 * buffer in which to store the complete description. We need 14643 * the temporary buffer to be able to drop dtrace_lock() 14644 * across the copyout(), below. 14645 */ 14646 size = sizeof (dtrace_eprobedesc_t) + 14647 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 14648 14649 buf = kmem_alloc(size, KM_SLEEP); 14650 dest = (uintptr_t)buf; 14651 14652 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 14653 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 14654 14655 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 14656 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 14657 continue; 14658 14659 if (nrecs-- == 0) 14660 break; 14661 14662 bcopy(&act->dta_rec, (void *)dest, 14663 sizeof (dtrace_recdesc_t)); 14664 dest += sizeof (dtrace_recdesc_t); 14665 } 14666 14667 mutex_exit(&dtrace_lock); 14668 14669 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14670 kmem_free(buf, size); 14671 return (EFAULT); 14672 } 14673 14674 kmem_free(buf, size); 14675 return (0); 14676 } 14677 14678 case DTRACEIOC_AGGDESC: { 14679 dtrace_aggdesc_t aggdesc; 14680 dtrace_action_t *act; 14681 dtrace_aggregation_t *agg; 14682 int nrecs; 14683 uint32_t offs; 14684 dtrace_recdesc_t *lrec; 14685 void *buf; 14686 size_t size; 14687 uintptr_t dest; 14688 14689 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 14690 return (EFAULT); 14691 14692 mutex_enter(&dtrace_lock); 14693 14694 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 14695 mutex_exit(&dtrace_lock); 14696 return (EINVAL); 14697 } 14698 14699 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 14700 14701 nrecs = aggdesc.dtagd_nrecs; 14702 aggdesc.dtagd_nrecs = 0; 14703 14704 offs = agg->dtag_base; 14705 lrec = &agg->dtag_action.dta_rec; 14706 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 14707 14708 for (act = agg->dtag_first; ; act = act->dta_next) { 14709 ASSERT(act->dta_intuple || 14710 DTRACEACT_ISAGG(act->dta_kind)); 14711 14712 /* 14713 * If this action has a record size of zero, it 14714 * denotes an argument to the aggregating action. 14715 * Because the presence of this record doesn't (or 14716 * shouldn't) affect the way the data is interpreted, 14717 * we don't copy it out to save user-level the 14718 * confusion of dealing with a zero-length record. 14719 */ 14720 if (act->dta_rec.dtrd_size == 0) { 14721 ASSERT(agg->dtag_hasarg); 14722 continue; 14723 } 14724 14725 aggdesc.dtagd_nrecs++; 14726 14727 if (act == &agg->dtag_action) 14728 break; 14729 } 14730 14731 /* 14732 * Now that we have the size, we need to allocate a temporary 14733 * buffer in which to store the complete description. We need 14734 * the temporary buffer to be able to drop dtrace_lock() 14735 * across the copyout(), below. 14736 */ 14737 size = sizeof (dtrace_aggdesc_t) + 14738 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 14739 14740 buf = kmem_alloc(size, KM_SLEEP); 14741 dest = (uintptr_t)buf; 14742 14743 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 14744 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 14745 14746 for (act = agg->dtag_first; ; act = act->dta_next) { 14747 dtrace_recdesc_t rec = act->dta_rec; 14748 14749 /* 14750 * See the comment in the above loop for why we pass 14751 * over zero-length records. 14752 */ 14753 if (rec.dtrd_size == 0) { 14754 ASSERT(agg->dtag_hasarg); 14755 continue; 14756 } 14757 14758 if (nrecs-- == 0) 14759 break; 14760 14761 rec.dtrd_offset -= offs; 14762 bcopy(&rec, (void *)dest, sizeof (rec)); 14763 dest += sizeof (dtrace_recdesc_t); 14764 14765 if (act == &agg->dtag_action) 14766 break; 14767 } 14768 14769 mutex_exit(&dtrace_lock); 14770 14771 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 14772 kmem_free(buf, size); 14773 return (EFAULT); 14774 } 14775 14776 kmem_free(buf, size); 14777 return (0); 14778 } 14779 14780 case DTRACEIOC_ENABLE: { 14781 dof_hdr_t *dof; 14782 dtrace_enabling_t *enab = NULL; 14783 dtrace_vstate_t *vstate; 14784 int err = 0; 14785 14786 *rv = 0; 14787 14788 /* 14789 * If a NULL argument has been passed, we take this as our 14790 * cue to reevaluate our enablings. 14791 */ 14792 if (arg == NULL) { 14793 mutex_enter(&cpu_lock); 14794 mutex_enter(&dtrace_lock); 14795 err = dtrace_enabling_matchstate(state, rv); 14796 mutex_exit(&dtrace_lock); 14797 mutex_exit(&cpu_lock); 14798 14799 return (err); 14800 } 14801 14802 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 14803 return (rval); 14804 14805 mutex_enter(&cpu_lock); 14806 mutex_enter(&dtrace_lock); 14807 vstate = &state->dts_vstate; 14808 14809 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14810 mutex_exit(&dtrace_lock); 14811 mutex_exit(&cpu_lock); 14812 dtrace_dof_destroy(dof); 14813 return (EBUSY); 14814 } 14815 14816 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 14817 mutex_exit(&dtrace_lock); 14818 mutex_exit(&cpu_lock); 14819 dtrace_dof_destroy(dof); 14820 return (EINVAL); 14821 } 14822 14823 if ((rval = dtrace_dof_options(dof, state)) != 0) { 14824 dtrace_enabling_destroy(enab); 14825 mutex_exit(&dtrace_lock); 14826 mutex_exit(&cpu_lock); 14827 dtrace_dof_destroy(dof); 14828 return (rval); 14829 } 14830 14831 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 14832 err = dtrace_enabling_retain(enab); 14833 } else { 14834 dtrace_enabling_destroy(enab); 14835 } 14836 14837 mutex_exit(&cpu_lock); 14838 mutex_exit(&dtrace_lock); 14839 dtrace_dof_destroy(dof); 14840 14841 return (err); 14842 } 14843 14844 case DTRACEIOC_REPLICATE: { 14845 dtrace_repldesc_t desc; 14846 dtrace_probedesc_t *match = &desc.dtrpd_match; 14847 dtrace_probedesc_t *create = &desc.dtrpd_create; 14848 int err; 14849 14850 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14851 return (EFAULT); 14852 14853 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14854 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14855 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14856 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14857 14858 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14859 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14860 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14861 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14862 14863 mutex_enter(&dtrace_lock); 14864 err = dtrace_enabling_replicate(state, match, create); 14865 mutex_exit(&dtrace_lock); 14866 14867 return (err); 14868 } 14869 14870 case DTRACEIOC_PROBEMATCH: 14871 case DTRACEIOC_PROBES: { 14872 dtrace_probe_t *probe = NULL; 14873 dtrace_probedesc_t desc; 14874 dtrace_probekey_t pkey; 14875 dtrace_id_t i; 14876 int m = 0; 14877 uint32_t priv; 14878 uid_t uid; 14879 zoneid_t zoneid; 14880 14881 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14882 return (EFAULT); 14883 14884 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 14885 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 14886 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 14887 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 14888 14889 /* 14890 * Before we attempt to match this probe, we want to give 14891 * all providers the opportunity to provide it. 14892 */ 14893 if (desc.dtpd_id == DTRACE_IDNONE) { 14894 mutex_enter(&dtrace_provider_lock); 14895 dtrace_probe_provide(&desc, NULL); 14896 mutex_exit(&dtrace_provider_lock); 14897 desc.dtpd_id++; 14898 } 14899 14900 if (cmd == DTRACEIOC_PROBEMATCH) { 14901 dtrace_probekey(&desc, &pkey); 14902 pkey.dtpk_id = DTRACE_IDNONE; 14903 } 14904 14905 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 14906 14907 mutex_enter(&dtrace_lock); 14908 14909 if (cmd == DTRACEIOC_PROBEMATCH) { 14910 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14911 if ((probe = dtrace_probes[i - 1]) != NULL && 14912 (m = dtrace_match_probe(probe, &pkey, 14913 priv, uid, zoneid)) != 0) 14914 break; 14915 } 14916 14917 if (m < 0) { 14918 mutex_exit(&dtrace_lock); 14919 return (EINVAL); 14920 } 14921 14922 } else { 14923 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 14924 if ((probe = dtrace_probes[i - 1]) != NULL && 14925 dtrace_match_priv(probe, priv, uid, zoneid)) 14926 break; 14927 } 14928 } 14929 14930 if (probe == NULL) { 14931 mutex_exit(&dtrace_lock); 14932 return (ESRCH); 14933 } 14934 14935 dtrace_probe_description(probe, &desc); 14936 mutex_exit(&dtrace_lock); 14937 14938 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14939 return (EFAULT); 14940 14941 return (0); 14942 } 14943 14944 case DTRACEIOC_PROBEARG: { 14945 dtrace_argdesc_t desc; 14946 dtrace_probe_t *probe; 14947 dtrace_provider_t *prov; 14948 14949 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 14950 return (EFAULT); 14951 14952 if (desc.dtargd_id == DTRACE_IDNONE) 14953 return (EINVAL); 14954 14955 if (desc.dtargd_ndx == DTRACE_ARGNONE) 14956 return (EINVAL); 14957 14958 mutex_enter(&dtrace_provider_lock); 14959 mutex_enter(&mod_lock); 14960 mutex_enter(&dtrace_lock); 14961 14962 if (desc.dtargd_id > dtrace_nprobes) { 14963 mutex_exit(&dtrace_lock); 14964 mutex_exit(&mod_lock); 14965 mutex_exit(&dtrace_provider_lock); 14966 return (EINVAL); 14967 } 14968 14969 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 14970 mutex_exit(&dtrace_lock); 14971 mutex_exit(&mod_lock); 14972 mutex_exit(&dtrace_provider_lock); 14973 return (EINVAL); 14974 } 14975 14976 mutex_exit(&dtrace_lock); 14977 14978 prov = probe->dtpr_provider; 14979 14980 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 14981 /* 14982 * There isn't any typed information for this probe. 14983 * Set the argument number to DTRACE_ARGNONE. 14984 */ 14985 desc.dtargd_ndx = DTRACE_ARGNONE; 14986 } else { 14987 desc.dtargd_native[0] = '\0'; 14988 desc.dtargd_xlate[0] = '\0'; 14989 desc.dtargd_mapping = desc.dtargd_ndx; 14990 14991 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 14992 probe->dtpr_id, probe->dtpr_arg, &desc); 14993 } 14994 14995 mutex_exit(&mod_lock); 14996 mutex_exit(&dtrace_provider_lock); 14997 14998 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 14999 return (EFAULT); 15000 15001 return (0); 15002 } 15003 15004 case DTRACEIOC_GO: { 15005 processorid_t cpuid; 15006 rval = dtrace_state_go(state, &cpuid); 15007 15008 if (rval != 0) 15009 return (rval); 15010 15011 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15012 return (EFAULT); 15013 15014 return (0); 15015 } 15016 15017 case DTRACEIOC_STOP: { 15018 processorid_t cpuid; 15019 15020 mutex_enter(&dtrace_lock); 15021 rval = dtrace_state_stop(state, &cpuid); 15022 mutex_exit(&dtrace_lock); 15023 15024 if (rval != 0) 15025 return (rval); 15026 15027 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15028 return (EFAULT); 15029 15030 return (0); 15031 } 15032 15033 case DTRACEIOC_DOFGET: { 15034 dof_hdr_t hdr, *dof; 15035 uint64_t len; 15036 15037 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15038 return (EFAULT); 15039 15040 mutex_enter(&dtrace_lock); 15041 dof = dtrace_dof_create(state); 15042 mutex_exit(&dtrace_lock); 15043 15044 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 15045 rval = copyout(dof, (void *)arg, len); 15046 dtrace_dof_destroy(dof); 15047 15048 return (rval == 0 ? 0 : EFAULT); 15049 } 15050 15051 case DTRACEIOC_AGGSNAP: 15052 case DTRACEIOC_BUFSNAP: { 15053 dtrace_bufdesc_t desc; 15054 caddr_t cached; 15055 dtrace_buffer_t *buf; 15056 15057 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15058 return (EFAULT); 15059 15060 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15061 return (EINVAL); 15062 15063 mutex_enter(&dtrace_lock); 15064 15065 if (cmd == DTRACEIOC_BUFSNAP) { 15066 buf = &state->dts_buffer[desc.dtbd_cpu]; 15067 } else { 15068 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 15069 } 15070 15071 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 15072 size_t sz = buf->dtb_offset; 15073 15074 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 15075 mutex_exit(&dtrace_lock); 15076 return (EBUSY); 15077 } 15078 15079 /* 15080 * If this buffer has already been consumed, we're 15081 * going to indicate that there's nothing left here 15082 * to consume. 15083 */ 15084 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 15085 mutex_exit(&dtrace_lock); 15086 15087 desc.dtbd_size = 0; 15088 desc.dtbd_drops = 0; 15089 desc.dtbd_errors = 0; 15090 desc.dtbd_oldest = 0; 15091 sz = sizeof (desc); 15092 15093 if (copyout(&desc, (void *)arg, sz) != 0) 15094 return (EFAULT); 15095 15096 return (0); 15097 } 15098 15099 /* 15100 * If this is a ring buffer that has wrapped, we want 15101 * to copy the whole thing out. 15102 */ 15103 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 15104 dtrace_buffer_polish(buf); 15105 sz = buf->dtb_size; 15106 } 15107 15108 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 15109 mutex_exit(&dtrace_lock); 15110 return (EFAULT); 15111 } 15112 15113 desc.dtbd_size = sz; 15114 desc.dtbd_drops = buf->dtb_drops; 15115 desc.dtbd_errors = buf->dtb_errors; 15116 desc.dtbd_oldest = buf->dtb_xamot_offset; 15117 15118 mutex_exit(&dtrace_lock); 15119 15120 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15121 return (EFAULT); 15122 15123 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15124 15125 return (0); 15126 } 15127 15128 if (buf->dtb_tomax == NULL) { 15129 ASSERT(buf->dtb_xamot == NULL); 15130 mutex_exit(&dtrace_lock); 15131 return (ENOENT); 15132 } 15133 15134 cached = buf->dtb_tomax; 15135 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15136 15137 dtrace_xcall(desc.dtbd_cpu, 15138 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15139 15140 state->dts_errors += buf->dtb_xamot_errors; 15141 15142 /* 15143 * If the buffers did not actually switch, then the cross call 15144 * did not take place -- presumably because the given CPU is 15145 * not in the ready set. If this is the case, we'll return 15146 * ENOENT. 15147 */ 15148 if (buf->dtb_tomax == cached) { 15149 ASSERT(buf->dtb_xamot != cached); 15150 mutex_exit(&dtrace_lock); 15151 return (ENOENT); 15152 } 15153 15154 ASSERT(cached == buf->dtb_xamot); 15155 15156 /* 15157 * We have our snapshot; now copy it out. 15158 */ 15159 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15160 buf->dtb_xamot_offset) != 0) { 15161 mutex_exit(&dtrace_lock); 15162 return (EFAULT); 15163 } 15164 15165 desc.dtbd_size = buf->dtb_xamot_offset; 15166 desc.dtbd_drops = buf->dtb_xamot_drops; 15167 desc.dtbd_errors = buf->dtb_xamot_errors; 15168 desc.dtbd_oldest = 0; 15169 15170 mutex_exit(&dtrace_lock); 15171 15172 /* 15173 * Finally, copy out the buffer description. 15174 */ 15175 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15176 return (EFAULT); 15177 15178 return (0); 15179 } 15180 15181 case DTRACEIOC_CONF: { 15182 dtrace_conf_t conf; 15183 15184 bzero(&conf, sizeof (conf)); 15185 conf.dtc_difversion = DIF_VERSION; 15186 conf.dtc_difintregs = DIF_DIR_NREGS; 15187 conf.dtc_diftupregs = DIF_DTR_NREGS; 15188 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15189 15190 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15191 return (EFAULT); 15192 15193 return (0); 15194 } 15195 15196 case DTRACEIOC_STATUS: { 15197 dtrace_status_t stat; 15198 dtrace_dstate_t *dstate; 15199 int i, j; 15200 uint64_t nerrs; 15201 15202 /* 15203 * See the comment in dtrace_state_deadman() for the reason 15204 * for setting dts_laststatus to INT64_MAX before setting 15205 * it to the correct value. 15206 */ 15207 state->dts_laststatus = INT64_MAX; 15208 dtrace_membar_producer(); 15209 state->dts_laststatus = dtrace_gethrtime(); 15210 15211 bzero(&stat, sizeof (stat)); 15212 15213 mutex_enter(&dtrace_lock); 15214 15215 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15216 mutex_exit(&dtrace_lock); 15217 return (ENOENT); 15218 } 15219 15220 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15221 stat.dtst_exiting = 1; 15222 15223 nerrs = state->dts_errors; 15224 dstate = &state->dts_vstate.dtvs_dynvars; 15225 15226 for (i = 0; i < NCPU; i++) { 15227 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15228 15229 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15230 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15231 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15232 15233 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15234 stat.dtst_filled++; 15235 15236 nerrs += state->dts_buffer[i].dtb_errors; 15237 15238 for (j = 0; j < state->dts_nspeculations; j++) { 15239 dtrace_speculation_t *spec; 15240 dtrace_buffer_t *buf; 15241 15242 spec = &state->dts_speculations[j]; 15243 buf = &spec->dtsp_buffer[i]; 15244 stat.dtst_specdrops += buf->dtb_xamot_drops; 15245 } 15246 } 15247 15248 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15249 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15250 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15251 stat.dtst_dblerrors = state->dts_dblerrors; 15252 stat.dtst_killed = 15253 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15254 stat.dtst_errors = nerrs; 15255 15256 mutex_exit(&dtrace_lock); 15257 15258 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15259 return (EFAULT); 15260 15261 return (0); 15262 } 15263 15264 case DTRACEIOC_FORMAT: { 15265 dtrace_fmtdesc_t fmt; 15266 char *str; 15267 int len; 15268 15269 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15270 return (EFAULT); 15271 15272 mutex_enter(&dtrace_lock); 15273 15274 if (fmt.dtfd_format == 0 || 15275 fmt.dtfd_format > state->dts_nformats) { 15276 mutex_exit(&dtrace_lock); 15277 return (EINVAL); 15278 } 15279 15280 /* 15281 * Format strings are allocated contiguously and they are 15282 * never freed; if a format index is less than the number 15283 * of formats, we can assert that the format map is non-NULL 15284 * and that the format for the specified index is non-NULL. 15285 */ 15286 ASSERT(state->dts_formats != NULL); 15287 str = state->dts_formats[fmt.dtfd_format - 1]; 15288 ASSERT(str != NULL); 15289 15290 len = strlen(str) + 1; 15291 15292 if (len > fmt.dtfd_length) { 15293 fmt.dtfd_length = len; 15294 15295 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15296 mutex_exit(&dtrace_lock); 15297 return (EINVAL); 15298 } 15299 } else { 15300 if (copyout(str, fmt.dtfd_string, len) != 0) { 15301 mutex_exit(&dtrace_lock); 15302 return (EINVAL); 15303 } 15304 } 15305 15306 mutex_exit(&dtrace_lock); 15307 return (0); 15308 } 15309 15310 default: 15311 break; 15312 } 15313 15314 return (ENOTTY); 15315 } 15316 15317 /*ARGSUSED*/ 15318 static int 15319 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15320 { 15321 dtrace_state_t *state; 15322 15323 switch (cmd) { 15324 case DDI_DETACH: 15325 break; 15326 15327 case DDI_SUSPEND: 15328 return (DDI_SUCCESS); 15329 15330 default: 15331 return (DDI_FAILURE); 15332 } 15333 15334 mutex_enter(&cpu_lock); 15335 mutex_enter(&dtrace_provider_lock); 15336 mutex_enter(&dtrace_lock); 15337 15338 ASSERT(dtrace_opens == 0); 15339 15340 if (dtrace_helpers > 0) { 15341 mutex_exit(&dtrace_provider_lock); 15342 mutex_exit(&dtrace_lock); 15343 mutex_exit(&cpu_lock); 15344 return (DDI_FAILURE); 15345 } 15346 15347 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15348 mutex_exit(&dtrace_provider_lock); 15349 mutex_exit(&dtrace_lock); 15350 mutex_exit(&cpu_lock); 15351 return (DDI_FAILURE); 15352 } 15353 15354 dtrace_provider = NULL; 15355 15356 if ((state = dtrace_anon_grab()) != NULL) { 15357 /* 15358 * If there were ECBs on this state, the provider should 15359 * have not been allowed to detach; assert that there is 15360 * none. 15361 */ 15362 ASSERT(state->dts_necbs == 0); 15363 dtrace_state_destroy(state); 15364 15365 /* 15366 * If we're being detached with anonymous state, we need to 15367 * indicate to the kernel debugger that DTrace is now inactive. 15368 */ 15369 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15370 } 15371 15372 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15373 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15374 dtrace_cpu_init = NULL; 15375 dtrace_helpers_cleanup = NULL; 15376 dtrace_helpers_fork = NULL; 15377 dtrace_cpustart_init = NULL; 15378 dtrace_cpustart_fini = NULL; 15379 dtrace_debugger_init = NULL; 15380 dtrace_debugger_fini = NULL; 15381 dtrace_modload = NULL; 15382 dtrace_modunload = NULL; 15383 15384 mutex_exit(&cpu_lock); 15385 15386 if (dtrace_helptrace_enabled) { 15387 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15388 dtrace_helptrace_buffer = NULL; 15389 } 15390 15391 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15392 dtrace_probes = NULL; 15393 dtrace_nprobes = 0; 15394 15395 dtrace_hash_destroy(dtrace_bymod); 15396 dtrace_hash_destroy(dtrace_byfunc); 15397 dtrace_hash_destroy(dtrace_byname); 15398 dtrace_bymod = NULL; 15399 dtrace_byfunc = NULL; 15400 dtrace_byname = NULL; 15401 15402 kmem_cache_destroy(dtrace_state_cache); 15403 vmem_destroy(dtrace_minor); 15404 vmem_destroy(dtrace_arena); 15405 15406 if (dtrace_toxrange != NULL) { 15407 kmem_free(dtrace_toxrange, 15408 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15409 dtrace_toxrange = NULL; 15410 dtrace_toxranges = 0; 15411 dtrace_toxranges_max = 0; 15412 } 15413 15414 ddi_remove_minor_node(dtrace_devi, NULL); 15415 dtrace_devi = NULL; 15416 15417 ddi_soft_state_fini(&dtrace_softstate); 15418 15419 ASSERT(dtrace_vtime_references == 0); 15420 ASSERT(dtrace_opens == 0); 15421 ASSERT(dtrace_retained == NULL); 15422 15423 mutex_exit(&dtrace_lock); 15424 mutex_exit(&dtrace_provider_lock); 15425 15426 /* 15427 * We don't destroy the task queue until after we have dropped our 15428 * locks (taskq_destroy() may block on running tasks). To prevent 15429 * attempting to do work after we have effectively detached but before 15430 * the task queue has been destroyed, all tasks dispatched via the 15431 * task queue must check that DTrace is still attached before 15432 * performing any operation. 15433 */ 15434 taskq_destroy(dtrace_taskq); 15435 dtrace_taskq = NULL; 15436 15437 return (DDI_SUCCESS); 15438 } 15439 15440 /*ARGSUSED*/ 15441 static int 15442 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15443 { 15444 int error; 15445 15446 switch (infocmd) { 15447 case DDI_INFO_DEVT2DEVINFO: 15448 *result = (void *)dtrace_devi; 15449 error = DDI_SUCCESS; 15450 break; 15451 case DDI_INFO_DEVT2INSTANCE: 15452 *result = (void *)0; 15453 error = DDI_SUCCESS; 15454 break; 15455 default: 15456 error = DDI_FAILURE; 15457 } 15458 return (error); 15459 } 15460 15461 static struct cb_ops dtrace_cb_ops = { 15462 dtrace_open, /* open */ 15463 dtrace_close, /* close */ 15464 nulldev, /* strategy */ 15465 nulldev, /* print */ 15466 nodev, /* dump */ 15467 nodev, /* read */ 15468 nodev, /* write */ 15469 dtrace_ioctl, /* ioctl */ 15470 nodev, /* devmap */ 15471 nodev, /* mmap */ 15472 nodev, /* segmap */ 15473 nochpoll, /* poll */ 15474 ddi_prop_op, /* cb_prop_op */ 15475 0, /* streamtab */ 15476 D_NEW | D_MP /* Driver compatibility flag */ 15477 }; 15478 15479 static struct dev_ops dtrace_ops = { 15480 DEVO_REV, /* devo_rev */ 15481 0, /* refcnt */ 15482 dtrace_info, /* get_dev_info */ 15483 nulldev, /* identify */ 15484 nulldev, /* probe */ 15485 dtrace_attach, /* attach */ 15486 dtrace_detach, /* detach */ 15487 nodev, /* reset */ 15488 &dtrace_cb_ops, /* driver operations */ 15489 NULL, /* bus operations */ 15490 nodev /* dev power */ 15491 }; 15492 15493 static struct modldrv modldrv = { 15494 &mod_driverops, /* module type (this is a pseudo driver) */ 15495 "Dynamic Tracing", /* name of module */ 15496 &dtrace_ops, /* driver ops */ 15497 }; 15498 15499 static struct modlinkage modlinkage = { 15500 MODREV_1, 15501 (void *)&modldrv, 15502 NULL 15503 }; 15504 15505 int 15506 _init(void) 15507 { 15508 return (mod_install(&modlinkage)); 15509 } 15510 15511 int 15512 _info(struct modinfo *modinfop) 15513 { 15514 return (mod_info(&modlinkage, modinfop)); 15515 } 15516 15517 int 15518 _fini(void) 15519 { 15520 return (mod_remove(&modlinkage)); 15521 } 15522