xref: /illumos-gate/usr/src/uts/common/dtrace/dtrace.c (revision b2519362c825a494fb6e93549e2e32a425011563)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2016, Joyent, Inc. All rights reserved.
25  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * DTrace - Dynamic Tracing for Solaris
30  *
31  * This is the implementation of the Solaris Dynamic Tracing framework
32  * (DTrace).  The user-visible interface to DTrace is described at length in
33  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
34  * library, the in-kernel DTrace framework, and the DTrace providers are
35  * described in the block comments in the <sys/dtrace.h> header file.  The
36  * internal architecture of DTrace is described in the block comments in the
37  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
38  * implementation very much assume mastery of all of these sources; if one has
39  * an unanswered question about the implementation, one should consult them
40  * first.
41  *
42  * The functions here are ordered roughly as follows:
43  *
44  *   - Probe context functions
45  *   - Probe hashing functions
46  *   - Non-probe context utility functions
47  *   - Matching functions
48  *   - Provider-to-Framework API functions
49  *   - Probe management functions
50  *   - DIF object functions
51  *   - Format functions
52  *   - Predicate functions
53  *   - ECB functions
54  *   - Buffer functions
55  *   - Enabling functions
56  *   - DOF functions
57  *   - Anonymous enabling functions
58  *   - Consumer state functions
59  *   - Helper functions
60  *   - Hook functions
61  *   - Driver cookbook functions
62  *
63  * Each group of functions begins with a block comment labelled the "DTrace
64  * [Group] Functions", allowing one to find each block by searching forward
65  * on capital-f functions.
66  */
67 #include <sys/errno.h>
68 #include <sys/stat.h>
69 #include <sys/modctl.h>
70 #include <sys/conf.h>
71 #include <sys/systm.h>
72 #include <sys/ddi.h>
73 #include <sys/sunddi.h>
74 #include <sys/cpuvar.h>
75 #include <sys/kmem.h>
76 #include <sys/strsubr.h>
77 #include <sys/sysmacros.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/atomic.h>
80 #include <sys/cmn_err.h>
81 #include <sys/mutex_impl.h>
82 #include <sys/rwlock_impl.h>
83 #include <sys/ctf_api.h>
84 #include <sys/panic.h>
85 #include <sys/priv_impl.h>
86 #include <sys/policy.h>
87 #include <sys/cred_impl.h>
88 #include <sys/procfs_isa.h>
89 #include <sys/taskq.h>
90 #include <sys/mkdev.h>
91 #include <sys/kdi.h>
92 #include <sys/zone.h>
93 #include <sys/socket.h>
94 #include <netinet/in.h>
95 #include "strtolctype.h"
96 
97 /*
98  * DTrace Tunable Variables
99  *
100  * The following variables may be tuned by adding a line to /etc/system that
101  * includes both the name of the DTrace module ("dtrace") and the name of the
102  * variable.  For example:
103  *
104  *   set dtrace:dtrace_destructive_disallow = 1
105  *
106  * In general, the only variables that one should be tuning this way are those
107  * that affect system-wide DTrace behavior, and for which the default behavior
108  * is undesirable.  Most of these variables are tunable on a per-consumer
109  * basis using DTrace options, and need not be tuned on a system-wide basis.
110  * When tuning these variables, avoid pathological values; while some attempt
111  * is made to verify the integrity of these variables, they are not considered
112  * part of the supported interface to DTrace, and they are therefore not
113  * checked comprehensively.  Further, these variables should not be tuned
114  * dynamically via "mdb -kw" or other means; they should only be tuned via
115  * /etc/system.
116  */
117 int		dtrace_destructive_disallow = 0;
118 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
119 size_t		dtrace_difo_maxsize = (256 * 1024);
120 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
121 size_t		dtrace_statvar_maxsize = (16 * 1024);
122 size_t		dtrace_actions_max = (16 * 1024);
123 size_t		dtrace_retain_max = 1024;
124 dtrace_optval_t	dtrace_helper_actions_max = 1024;
125 dtrace_optval_t	dtrace_helper_providers_max = 32;
126 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
127 size_t		dtrace_strsize_default = 256;
128 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
129 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
130 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
131 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
132 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
134 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
135 dtrace_optval_t	dtrace_nspec_default = 1;
136 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
137 dtrace_optval_t dtrace_stackframes_default = 20;
138 dtrace_optval_t dtrace_ustackframes_default = 20;
139 dtrace_optval_t dtrace_jstackframes_default = 50;
140 dtrace_optval_t dtrace_jstackstrsize_default = 512;
141 int		dtrace_msgdsize_max = 128;
142 hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
143 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
144 int		dtrace_devdepth_max = 32;
145 int		dtrace_err_verbose;
146 hrtime_t	dtrace_deadman_interval = NANOSEC;
147 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
148 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
149 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
150 
151 /*
152  * DTrace External Variables
153  *
154  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
155  * available to DTrace consumers via the backtick (`) syntax.  One of these,
156  * dtrace_zero, is made deliberately so:  it is provided as a source of
157  * well-known, zero-filled memory.  While this variable is not documented,
158  * it is used by some translators as an implementation detail.
159  */
160 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
161 
162 /*
163  * DTrace Internal Variables
164  */
165 static dev_info_t	*dtrace_devi;		/* device info */
166 static vmem_t		*dtrace_arena;		/* probe ID arena */
167 static vmem_t		*dtrace_minor;		/* minor number arena */
168 static taskq_t		*dtrace_taskq;		/* task queue */
169 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
170 static int		dtrace_nprobes;		/* number of probes */
171 static dtrace_provider_t *dtrace_provider;	/* provider list */
172 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
173 static int		dtrace_opens;		/* number of opens */
174 static int		dtrace_helpers;		/* number of helpers */
175 static int		dtrace_getf;		/* number of unpriv getf()s */
176 static void		*dtrace_softstate;	/* softstate pointer */
177 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
178 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
179 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
180 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
181 static int		dtrace_toxranges;	/* number of toxic ranges */
182 static int		dtrace_toxranges_max;	/* size of toxic range array */
183 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
184 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
185 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
186 static kthread_t	*dtrace_panicked;	/* panicking thread */
187 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
188 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
189 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
190 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
191 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
192 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
193 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
194 
195 /*
196  * DTrace Locking
197  * DTrace is protected by three (relatively coarse-grained) locks:
198  *
199  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
200  *     including enabling state, probes, ECBs, consumer state, helper state,
201  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
202  *     probe context is lock-free -- synchronization is handled via the
203  *     dtrace_sync() cross call mechanism.
204  *
205  * (2) dtrace_provider_lock is required when manipulating provider state, or
206  *     when provider state must be held constant.
207  *
208  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
209  *     when meta provider state must be held constant.
210  *
211  * The lock ordering between these three locks is dtrace_meta_lock before
212  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
213  * several places where dtrace_provider_lock is held by the framework as it
214  * calls into the providers -- which then call back into the framework,
215  * grabbing dtrace_lock.)
216  *
217  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
218  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
219  * role as a coarse-grained lock; it is acquired before both of these locks.
220  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
221  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
222  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
223  * acquired _between_ dtrace_provider_lock and dtrace_lock.
224  */
225 static kmutex_t		dtrace_lock;		/* probe state lock */
226 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
227 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
228 
229 /*
230  * DTrace Provider Variables
231  *
232  * These are the variables relating to DTrace as a provider (that is, the
233  * provider of the BEGIN, END, and ERROR probes).
234  */
235 static dtrace_pattr_t	dtrace_provider_attr = {
236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
241 };
242 
243 static void
244 dtrace_nullop(void)
245 {}
246 
247 static int
248 dtrace_enable_nullop(void)
249 {
250 	return (0);
251 }
252 
253 static dtrace_pops_t	dtrace_provider_ops = {
254 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
255 	(void (*)(void *, struct modctl *))dtrace_nullop,
256 	(int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
257 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
258 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
259 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
260 	NULL,
261 	NULL,
262 	NULL,
263 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
264 };
265 
266 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
267 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
268 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
269 
270 /*
271  * DTrace Helper Tracing Variables
272  *
273  * These variables should be set dynamically to enable helper tracing.  The
274  * only variables that should be set are dtrace_helptrace_enable (which should
275  * be set to a non-zero value to allocate helper tracing buffers on the next
276  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
277  * non-zero value to deallocate helper tracing buffers on the next close of
278  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
279  * buffer size may also be set via dtrace_helptrace_bufsize.
280  */
281 int			dtrace_helptrace_enable = 0;
282 int			dtrace_helptrace_disable = 0;
283 int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
284 uint32_t		dtrace_helptrace_nlocals;
285 static dtrace_helptrace_t *dtrace_helptrace_buffer;
286 static uint32_t		dtrace_helptrace_next = 0;
287 static int		dtrace_helptrace_wrapped = 0;
288 
289 /*
290  * DTrace Error Hashing
291  *
292  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
293  * table.  This is very useful for checking coverage of tests that are
294  * expected to induce DIF or DOF processing errors, and may be useful for
295  * debugging problems in the DIF code generator or in DOF generation .  The
296  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
297  */
298 #ifdef DEBUG
299 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
300 static const char *dtrace_errlast;
301 static kthread_t *dtrace_errthread;
302 static kmutex_t dtrace_errlock;
303 #endif
304 
305 /*
306  * DTrace Macros and Constants
307  *
308  * These are various macros that are useful in various spots in the
309  * implementation, along with a few random constants that have no meaning
310  * outside of the implementation.  There is no real structure to this cpp
311  * mishmash -- but is there ever?
312  */
313 #define	DTRACE_HASHSTR(hash, probe)	\
314 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
315 
316 #define	DTRACE_HASHNEXT(hash, probe)	\
317 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
318 
319 #define	DTRACE_HASHPREV(hash, probe)	\
320 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
321 
322 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
323 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
324 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
325 
326 #define	DTRACE_AGGHASHSIZE_SLEW		17
327 
328 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
329 
330 /*
331  * The key for a thread-local variable consists of the lower 61 bits of the
332  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
333  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
334  * equal to a variable identifier.  This is necessary (but not sufficient) to
335  * assure that global associative arrays never collide with thread-local
336  * variables.  To guarantee that they cannot collide, we must also define the
337  * order for keying dynamic variables.  That order is:
338  *
339  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
340  *
341  * Because the variable-key and the tls-key are in orthogonal spaces, there is
342  * no way for a global variable key signature to match a thread-local key
343  * signature.
344  */
345 #define	DTRACE_TLS_THRKEY(where) { \
346 	uint_t intr = 0; \
347 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
348 	for (; actv; actv >>= 1) \
349 		intr++; \
350 	ASSERT(intr < (1 << 3)); \
351 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
352 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
353 }
354 
355 #define	DT_BSWAP_8(x)	((x) & 0xff)
356 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
357 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
358 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
359 
360 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
361 
362 #define	DTRACE_STORE(type, tomax, offset, what) \
363 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
364 
365 #ifndef __x86
366 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
367 	if (addr & (size - 1)) {					\
368 		*flags |= CPU_DTRACE_BADALIGN;				\
369 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
370 		return (0);						\
371 	}
372 #else
373 #define	DTRACE_ALIGNCHECK(addr, size, flags)
374 #endif
375 
376 /*
377  * Test whether a range of memory starting at testaddr of size testsz falls
378  * within the range of memory described by addr, sz.  We take care to avoid
379  * problems with overflow and underflow of the unsigned quantities, and
380  * disallow all negative sizes.  Ranges of size 0 are allowed.
381  */
382 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
383 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
384 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
385 	(testaddr) + (testsz) >= (testaddr))
386 
387 #define	DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz)		\
388 do {									\
389 	if ((remp) != NULL) {						\
390 		*(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr);	\
391 	}								\
392 _NOTE(CONSTCOND) } while (0)
393 
394 
395 /*
396  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
397  * alloc_sz on the righthand side of the comparison in order to avoid overflow
398  * or underflow in the comparison with it.  This is simpler than the INRANGE
399  * check above, because we know that the dtms_scratch_ptr is valid in the
400  * range.  Allocations of size zero are allowed.
401  */
402 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
403 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
404 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
405 
406 #define	DTRACE_LOADFUNC(bits)						\
407 /*CSTYLED*/								\
408 uint##bits##_t								\
409 dtrace_load##bits(uintptr_t addr)					\
410 {									\
411 	size_t size = bits / NBBY;					\
412 	/*CSTYLED*/							\
413 	uint##bits##_t rval;						\
414 	int i;								\
415 	volatile uint16_t *flags = (volatile uint16_t *)		\
416 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
417 									\
418 	DTRACE_ALIGNCHECK(addr, size, flags);				\
419 									\
420 	for (i = 0; i < dtrace_toxranges; i++) {			\
421 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
422 			continue;					\
423 									\
424 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
425 			continue;					\
426 									\
427 		/*							\
428 		 * This address falls within a toxic region; return 0.	\
429 		 */							\
430 		*flags |= CPU_DTRACE_BADADDR;				\
431 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
432 		return (0);						\
433 	}								\
434 									\
435 	*flags |= CPU_DTRACE_NOFAULT;					\
436 	/*CSTYLED*/							\
437 	rval = *((volatile uint##bits##_t *)addr);			\
438 	*flags &= ~CPU_DTRACE_NOFAULT;					\
439 									\
440 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
441 }
442 
443 #ifdef _LP64
444 #define	dtrace_loadptr	dtrace_load64
445 #else
446 #define	dtrace_loadptr	dtrace_load32
447 #endif
448 
449 #define	DTRACE_DYNHASH_FREE	0
450 #define	DTRACE_DYNHASH_SINK	1
451 #define	DTRACE_DYNHASH_VALID	2
452 
453 #define	DTRACE_MATCH_FAIL	-1
454 #define	DTRACE_MATCH_NEXT	0
455 #define	DTRACE_MATCH_DONE	1
456 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
457 #define	DTRACE_STATE_ALIGN	64
458 
459 #define	DTRACE_FLAGS2FLT(flags)						\
460 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
461 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
462 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
463 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
464 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
465 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
466 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
467 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
468 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
469 	DTRACEFLT_UNKNOWN)
470 
471 #define	DTRACEACT_ISSTRING(act)						\
472 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
473 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
474 
475 static size_t dtrace_strlen(const char *, size_t);
476 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
477 static void dtrace_enabling_provide(dtrace_provider_t *);
478 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
479 static void dtrace_enabling_matchall(void);
480 static void dtrace_enabling_reap(void);
481 static dtrace_state_t *dtrace_anon_grab(void);
482 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
483     dtrace_state_t *, uint64_t, uint64_t);
484 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
485 static void dtrace_buffer_drop(dtrace_buffer_t *);
486 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
487 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
488     dtrace_state_t *, dtrace_mstate_t *);
489 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
490     dtrace_optval_t);
491 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
492 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
493 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
494 static void dtrace_getf_barrier(void);
495 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
496     dtrace_mstate_t *, dtrace_vstate_t *);
497 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
498     dtrace_mstate_t *, dtrace_vstate_t *);
499 
500 /*
501  * DTrace Probe Context Functions
502  *
503  * These functions are called from probe context.  Because probe context is
504  * any context in which C may be called, arbitrarily locks may be held,
505  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
506  * As a result, functions called from probe context may only call other DTrace
507  * support functions -- they may not interact at all with the system at large.
508  * (Note that the ASSERT macro is made probe-context safe by redefining it in
509  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
510  * loads are to be performed from probe context, they _must_ be in terms of
511  * the safe dtrace_load*() variants.
512  *
513  * Some functions in this block are not actually called from probe context;
514  * for these functions, there will be a comment above the function reading
515  * "Note:  not called from probe context."
516  */
517 void
518 dtrace_panic(const char *format, ...)
519 {
520 	va_list alist;
521 
522 	va_start(alist, format);
523 	dtrace_vpanic(format, alist);
524 	va_end(alist);
525 }
526 
527 int
528 dtrace_assfail(const char *a, const char *f, int l)
529 {
530 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
531 
532 	/*
533 	 * We just need something here that even the most clever compiler
534 	 * cannot optimize away.
535 	 */
536 	return (a[(uintptr_t)f]);
537 }
538 
539 /*
540  * Atomically increment a specified error counter from probe context.
541  */
542 static void
543 dtrace_error(uint32_t *counter)
544 {
545 	/*
546 	 * Most counters stored to in probe context are per-CPU counters.
547 	 * However, there are some error conditions that are sufficiently
548 	 * arcane that they don't merit per-CPU storage.  If these counters
549 	 * are incremented concurrently on different CPUs, scalability will be
550 	 * adversely affected -- but we don't expect them to be white-hot in a
551 	 * correctly constructed enabling...
552 	 */
553 	uint32_t oval, nval;
554 
555 	do {
556 		oval = *counter;
557 
558 		if ((nval = oval + 1) == 0) {
559 			/*
560 			 * If the counter would wrap, set it to 1 -- assuring
561 			 * that the counter is never zero when we have seen
562 			 * errors.  (The counter must be 32-bits because we
563 			 * aren't guaranteed a 64-bit compare&swap operation.)
564 			 * To save this code both the infamy of being fingered
565 			 * by a priggish news story and the indignity of being
566 			 * the target of a neo-puritan witch trial, we're
567 			 * carefully avoiding any colorful description of the
568 			 * likelihood of this condition -- but suffice it to
569 			 * say that it is only slightly more likely than the
570 			 * overflow of predicate cache IDs, as discussed in
571 			 * dtrace_predicate_create().
572 			 */
573 			nval = 1;
574 		}
575 	} while (dtrace_cas32(counter, oval, nval) != oval);
576 }
577 
578 /*
579  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
580  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
581  */
582 /* BEGIN CSTYLED */
583 DTRACE_LOADFUNC(8)
584 DTRACE_LOADFUNC(16)
585 DTRACE_LOADFUNC(32)
586 DTRACE_LOADFUNC(64)
587 /* END CSTYLED */
588 
589 static int
590 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
591 {
592 	if (dest < mstate->dtms_scratch_base)
593 		return (0);
594 
595 	if (dest + size < dest)
596 		return (0);
597 
598 	if (dest + size > mstate->dtms_scratch_ptr)
599 		return (0);
600 
601 	return (1);
602 }
603 
604 static int
605 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
606     dtrace_statvar_t **svars, int nsvars)
607 {
608 	int i;
609 	size_t maxglobalsize, maxlocalsize;
610 
611 	if (nsvars == 0)
612 		return (0);
613 
614 	maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
615 	maxlocalsize = maxglobalsize * NCPU;
616 
617 	for (i = 0; i < nsvars; i++) {
618 		dtrace_statvar_t *svar = svars[i];
619 		uint8_t scope;
620 		size_t size;
621 
622 		if (svar == NULL || (size = svar->dtsv_size) == 0)
623 			continue;
624 
625 		scope = svar->dtsv_var.dtdv_scope;
626 
627 		/*
628 		 * We verify that our size is valid in the spirit of providing
629 		 * defense in depth:  we want to prevent attackers from using
630 		 * DTrace to escalate an orthogonal kernel heap corruption bug
631 		 * into the ability to store to arbitrary locations in memory.
632 		 */
633 		VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
634 		    (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
635 
636 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
637 		    svar->dtsv_size)) {
638 			DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
639 			    svar->dtsv_size);
640 			return (1);
641 		}
642 	}
643 
644 	return (0);
645 }
646 
647 /*
648  * Check to see if the address is within a memory region to which a store may
649  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
650  * region.  The caller of dtrace_canstore() is responsible for performing any
651  * alignment checks that are needed before stores are actually executed.
652  */
653 static int
654 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
655     dtrace_vstate_t *vstate)
656 {
657 	return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
658 }
659 
660 /*
661  * Implementation of dtrace_canstore which communicates the upper bound of the
662  * allowed memory region.
663  */
664 static int
665 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
666     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
667 {
668 	/*
669 	 * First, check to see if the address is in scratch space...
670 	 */
671 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
672 	    mstate->dtms_scratch_size)) {
673 		DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
674 		    mstate->dtms_scratch_size);
675 		return (1);
676 	}
677 
678 	/*
679 	 * Now check to see if it's a dynamic variable.  This check will pick
680 	 * up both thread-local variables and any global dynamically-allocated
681 	 * variables.
682 	 */
683 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
684 	    vstate->dtvs_dynvars.dtds_size)) {
685 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
686 		uintptr_t base = (uintptr_t)dstate->dtds_base +
687 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
688 		uintptr_t chunkoffs;
689 		dtrace_dynvar_t *dvar;
690 
691 		/*
692 		 * Before we assume that we can store here, we need to make
693 		 * sure that it isn't in our metadata -- storing to our
694 		 * dynamic variable metadata would corrupt our state.  For
695 		 * the range to not include any dynamic variable metadata,
696 		 * it must:
697 		 *
698 		 *	(1) Start above the hash table that is at the base of
699 		 *	the dynamic variable space
700 		 *
701 		 *	(2) Have a starting chunk offset that is beyond the
702 		 *	dtrace_dynvar_t that is at the base of every chunk
703 		 *
704 		 *	(3) Not span a chunk boundary
705 		 *
706 		 *	(4) Not be in the tuple space of a dynamic variable
707 		 *
708 		 */
709 		if (addr < base)
710 			return (0);
711 
712 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
713 
714 		if (chunkoffs < sizeof (dtrace_dynvar_t))
715 			return (0);
716 
717 		if (chunkoffs + sz > dstate->dtds_chunksize)
718 			return (0);
719 
720 		dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
721 
722 		if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
723 			return (0);
724 
725 		if (chunkoffs < sizeof (dtrace_dynvar_t) +
726 		    ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
727 			return (0);
728 
729 		DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
730 		return (1);
731 	}
732 
733 	/*
734 	 * Finally, check the static local and global variables.  These checks
735 	 * take the longest, so we perform them last.
736 	 */
737 	if (dtrace_canstore_statvar(addr, sz, remain,
738 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
739 		return (1);
740 
741 	if (dtrace_canstore_statvar(addr, sz, remain,
742 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
743 		return (1);
744 
745 	return (0);
746 }
747 
748 
749 /*
750  * Convenience routine to check to see if the address is within a memory
751  * region in which a load may be issued given the user's privilege level;
752  * if not, it sets the appropriate error flags and loads 'addr' into the
753  * illegal value slot.
754  *
755  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
756  * appropriate memory access protection.
757  */
758 static int
759 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
760     dtrace_vstate_t *vstate)
761 {
762 	return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
763 }
764 
765 /*
766  * Implementation of dtrace_canload which communicates the upper bound of the
767  * allowed memory region.
768  */
769 static int
770 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
771     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
772 {
773 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
774 	file_t *fp;
775 
776 	/*
777 	 * If we hold the privilege to read from kernel memory, then
778 	 * everything is readable.
779 	 */
780 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
781 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
782 		return (1);
783 	}
784 
785 	/*
786 	 * You can obviously read that which you can store.
787 	 */
788 	if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
789 		return (1);
790 
791 	/*
792 	 * We're allowed to read from our own string table.
793 	 */
794 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
795 	    mstate->dtms_difo->dtdo_strlen)) {
796 		DTRACE_RANGE_REMAIN(remain, addr,
797 		    mstate->dtms_difo->dtdo_strtab,
798 		    mstate->dtms_difo->dtdo_strlen);
799 		return (1);
800 	}
801 
802 	if (vstate->dtvs_state != NULL &&
803 	    dtrace_priv_proc(vstate->dtvs_state, mstate)) {
804 		proc_t *p;
805 
806 		/*
807 		 * When we have privileges to the current process, there are
808 		 * several context-related kernel structures that are safe to
809 		 * read, even absent the privilege to read from kernel memory.
810 		 * These reads are safe because these structures contain only
811 		 * state that (1) we're permitted to read, (2) is harmless or
812 		 * (3) contains pointers to additional kernel state that we're
813 		 * not permitted to read (and as such, do not present an
814 		 * opportunity for privilege escalation).  Finally (and
815 		 * critically), because of the nature of their relation with
816 		 * the current thread context, the memory associated with these
817 		 * structures cannot change over the duration of probe context,
818 		 * and it is therefore impossible for this memory to be
819 		 * deallocated and reallocated as something else while it's
820 		 * being operated upon.
821 		 */
822 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
823 			DTRACE_RANGE_REMAIN(remain, addr, curthread,
824 			    sizeof (kthread_t));
825 			return (1);
826 		}
827 
828 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
829 		    sz, curthread->t_procp, sizeof (proc_t))) {
830 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
831 			    sizeof (proc_t));
832 			return (1);
833 		}
834 
835 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
836 		    curthread->t_cred, sizeof (cred_t))) {
837 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
838 			    sizeof (cred_t));
839 			return (1);
840 		}
841 
842 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
843 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
844 			DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
845 			    sizeof (pid_t));
846 			return (1);
847 		}
848 
849 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
850 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
851 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
852 			    offsetof(cpu_t, cpu_pause_thread));
853 			return (1);
854 		}
855 	}
856 
857 	if ((fp = mstate->dtms_getf) != NULL) {
858 		uintptr_t psz = sizeof (void *);
859 		vnode_t *vp;
860 		vnodeops_t *op;
861 
862 		/*
863 		 * When getf() returns a file_t, the enabling is implicitly
864 		 * granted the (transient) right to read the returned file_t
865 		 * as well as the v_path and v_op->vnop_name of the underlying
866 		 * vnode.  These accesses are allowed after a successful
867 		 * getf() because the members that they refer to cannot change
868 		 * once set -- and the barrier logic in the kernel's closef()
869 		 * path assures that the file_t and its referenced vode_t
870 		 * cannot themselves be stale (that is, it impossible for
871 		 * either dtms_getf itself or its f_vnode member to reference
872 		 * freed memory).
873 		 */
874 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
875 			DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
876 			return (1);
877 		}
878 
879 		if ((vp = fp->f_vnode) != NULL) {
880 			size_t slen;
881 
882 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
883 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
884 				    psz);
885 				return (1);
886 			}
887 
888 			slen = strlen(vp->v_path) + 1;
889 			if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
890 				DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
891 				    slen);
892 				return (1);
893 			}
894 
895 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
896 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
897 				    psz);
898 				return (1);
899 			}
900 
901 			if ((op = vp->v_op) != NULL &&
902 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
903 				DTRACE_RANGE_REMAIN(remain, addr,
904 				    &op->vnop_name, psz);
905 				return (1);
906 			}
907 
908 			if (op != NULL && op->vnop_name != NULL &&
909 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
910 			    (slen = strlen(op->vnop_name) + 1))) {
911 				DTRACE_RANGE_REMAIN(remain, addr,
912 				    op->vnop_name, slen);
913 				return (1);
914 			}
915 		}
916 	}
917 
918 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
919 	*illval = addr;
920 	return (0);
921 }
922 
923 /*
924  * Convenience routine to check to see if a given string is within a memory
925  * region in which a load may be issued given the user's privilege level;
926  * this exists so that we don't need to issue unnecessary dtrace_strlen()
927  * calls in the event that the user has all privileges.
928  */
929 static int
930 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
931     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
932 {
933 	size_t rsize;
934 
935 	/*
936 	 * If we hold the privilege to read from kernel memory, then
937 	 * everything is readable.
938 	 */
939 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
940 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
941 		return (1);
942 	}
943 
944 	/*
945 	 * Even if the caller is uninterested in querying the remaining valid
946 	 * range, it is required to ensure that the access is allowed.
947 	 */
948 	if (remain == NULL) {
949 		remain = &rsize;
950 	}
951 	if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
952 		size_t strsz;
953 		/*
954 		 * Perform the strlen after determining the length of the
955 		 * memory region which is accessible.  This prevents timing
956 		 * information from being used to find NULs in memory which is
957 		 * not accessible to the caller.
958 		 */
959 		strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
960 		    MIN(sz, *remain));
961 		if (strsz <= *remain) {
962 			return (1);
963 		}
964 	}
965 
966 	return (0);
967 }
968 
969 /*
970  * Convenience routine to check to see if a given variable is within a memory
971  * region in which a load may be issued given the user's privilege level.
972  */
973 static int
974 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
975     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
976 {
977 	size_t sz;
978 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
979 
980 	/*
981 	 * Calculate the max size before performing any checks since even
982 	 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
983 	 * return the max length via 'remain'.
984 	 */
985 	if (type->dtdt_kind == DIF_TYPE_STRING) {
986 		dtrace_state_t *state = vstate->dtvs_state;
987 
988 		if (state != NULL) {
989 			sz = state->dts_options[DTRACEOPT_STRSIZE];
990 		} else {
991 			/*
992 			 * In helper context, we have a NULL state; fall back
993 			 * to using the system-wide default for the string size
994 			 * in this case.
995 			 */
996 			sz = dtrace_strsize_default;
997 		}
998 	} else {
999 		sz = type->dtdt_size;
1000 	}
1001 
1002 	/*
1003 	 * If we hold the privilege to read from kernel memory, then
1004 	 * everything is readable.
1005 	 */
1006 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1007 		DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1008 		return (1);
1009 	}
1010 
1011 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1012 		return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1013 		    vstate));
1014 	}
1015 	return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1016 	    vstate));
1017 }
1018 
1019 /*
1020  * Convert a string to a signed integer using safe loads.
1021  *
1022  * NOTE: This function uses various macros from strtolctype.h to manipulate
1023  * digit values, etc -- these have all been checked to ensure they make
1024  * no additional function calls.
1025  */
1026 static int64_t
1027 dtrace_strtoll(char *input, int base, size_t limit)
1028 {
1029 	uintptr_t pos = (uintptr_t)input;
1030 	int64_t val = 0;
1031 	int x;
1032 	boolean_t neg = B_FALSE;
1033 	char c, cc, ccc;
1034 	uintptr_t end = pos + limit;
1035 
1036 	/*
1037 	 * Consume any whitespace preceding digits.
1038 	 */
1039 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1040 		pos++;
1041 
1042 	/*
1043 	 * Handle an explicit sign if one is present.
1044 	 */
1045 	if (c == '-' || c == '+') {
1046 		if (c == '-')
1047 			neg = B_TRUE;
1048 		c = dtrace_load8(++pos);
1049 	}
1050 
1051 	/*
1052 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1053 	 * if present.
1054 	 */
1055 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1056 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1057 		pos += 2;
1058 		c = ccc;
1059 	}
1060 
1061 	/*
1062 	 * Read in contiguous digits until the first non-digit character.
1063 	 */
1064 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1065 	    c = dtrace_load8(++pos))
1066 		val = val * base + x;
1067 
1068 	return (neg ? -val : val);
1069 }
1070 
1071 /*
1072  * Compare two strings using safe loads.
1073  */
1074 static int
1075 dtrace_strncmp(char *s1, char *s2, size_t limit)
1076 {
1077 	uint8_t c1, c2;
1078 	volatile uint16_t *flags;
1079 
1080 	if (s1 == s2 || limit == 0)
1081 		return (0);
1082 
1083 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1084 
1085 	do {
1086 		if (s1 == NULL) {
1087 			c1 = '\0';
1088 		} else {
1089 			c1 = dtrace_load8((uintptr_t)s1++);
1090 		}
1091 
1092 		if (s2 == NULL) {
1093 			c2 = '\0';
1094 		} else {
1095 			c2 = dtrace_load8((uintptr_t)s2++);
1096 		}
1097 
1098 		if (c1 != c2)
1099 			return (c1 - c2);
1100 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1101 
1102 	return (0);
1103 }
1104 
1105 /*
1106  * Compute strlen(s) for a string using safe memory accesses.  The additional
1107  * len parameter is used to specify a maximum length to ensure completion.
1108  */
1109 static size_t
1110 dtrace_strlen(const char *s, size_t lim)
1111 {
1112 	uint_t len;
1113 
1114 	for (len = 0; len != lim; len++) {
1115 		if (dtrace_load8((uintptr_t)s++) == '\0')
1116 			break;
1117 	}
1118 
1119 	return (len);
1120 }
1121 
1122 /*
1123  * Check if an address falls within a toxic region.
1124  */
1125 static int
1126 dtrace_istoxic(uintptr_t kaddr, size_t size)
1127 {
1128 	uintptr_t taddr, tsize;
1129 	int i;
1130 
1131 	for (i = 0; i < dtrace_toxranges; i++) {
1132 		taddr = dtrace_toxrange[i].dtt_base;
1133 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1134 
1135 		if (kaddr - taddr < tsize) {
1136 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1137 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
1138 			return (1);
1139 		}
1140 
1141 		if (taddr - kaddr < size) {
1142 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1143 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
1144 			return (1);
1145 		}
1146 	}
1147 
1148 	return (0);
1149 }
1150 
1151 /*
1152  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1153  * memory specified by the DIF program.  The dst is assumed to be safe memory
1154  * that we can store to directly because it is managed by DTrace.  As with
1155  * standard bcopy, overlapping copies are handled properly.
1156  */
1157 static void
1158 dtrace_bcopy(const void *src, void *dst, size_t len)
1159 {
1160 	if (len != 0) {
1161 		uint8_t *s1 = dst;
1162 		const uint8_t *s2 = src;
1163 
1164 		if (s1 <= s2) {
1165 			do {
1166 				*s1++ = dtrace_load8((uintptr_t)s2++);
1167 			} while (--len != 0);
1168 		} else {
1169 			s2 += len;
1170 			s1 += len;
1171 
1172 			do {
1173 				*--s1 = dtrace_load8((uintptr_t)--s2);
1174 			} while (--len != 0);
1175 		}
1176 	}
1177 }
1178 
1179 /*
1180  * Copy src to dst using safe memory accesses, up to either the specified
1181  * length, or the point that a nul byte is encountered.  The src is assumed to
1182  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1183  * safe memory that we can store to directly because it is managed by DTrace.
1184  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1185  */
1186 static void
1187 dtrace_strcpy(const void *src, void *dst, size_t len)
1188 {
1189 	if (len != 0) {
1190 		uint8_t *s1 = dst, c;
1191 		const uint8_t *s2 = src;
1192 
1193 		do {
1194 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1195 		} while (--len != 0 && c != '\0');
1196 	}
1197 }
1198 
1199 /*
1200  * Copy src to dst, deriving the size and type from the specified (BYREF)
1201  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1202  * program.  The dst is assumed to be DTrace variable memory that is of the
1203  * specified type; we assume that we can store to directly.
1204  */
1205 static void
1206 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1207 {
1208 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1209 
1210 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1211 		dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1212 	} else {
1213 		dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1214 	}
1215 }
1216 
1217 /*
1218  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1219  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1220  * safe memory that we can access directly because it is managed by DTrace.
1221  */
1222 static int
1223 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1224 {
1225 	volatile uint16_t *flags;
1226 
1227 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1228 
1229 	if (s1 == s2)
1230 		return (0);
1231 
1232 	if (s1 == NULL || s2 == NULL)
1233 		return (1);
1234 
1235 	if (s1 != s2 && len != 0) {
1236 		const uint8_t *ps1 = s1;
1237 		const uint8_t *ps2 = s2;
1238 
1239 		do {
1240 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1241 				return (1);
1242 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1243 	}
1244 	return (0);
1245 }
1246 
1247 /*
1248  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1249  * is for safe DTrace-managed memory only.
1250  */
1251 static void
1252 dtrace_bzero(void *dst, size_t len)
1253 {
1254 	uchar_t *cp;
1255 
1256 	for (cp = dst; len != 0; len--)
1257 		*cp++ = 0;
1258 }
1259 
1260 static void
1261 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1262 {
1263 	uint64_t result[2];
1264 
1265 	result[0] = addend1[0] + addend2[0];
1266 	result[1] = addend1[1] + addend2[1] +
1267 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1268 
1269 	sum[0] = result[0];
1270 	sum[1] = result[1];
1271 }
1272 
1273 /*
1274  * Shift the 128-bit value in a by b. If b is positive, shift left.
1275  * If b is negative, shift right.
1276  */
1277 static void
1278 dtrace_shift_128(uint64_t *a, int b)
1279 {
1280 	uint64_t mask;
1281 
1282 	if (b == 0)
1283 		return;
1284 
1285 	if (b < 0) {
1286 		b = -b;
1287 		if (b >= 64) {
1288 			a[0] = a[1] >> (b - 64);
1289 			a[1] = 0;
1290 		} else {
1291 			a[0] >>= b;
1292 			mask = 1LL << (64 - b);
1293 			mask -= 1;
1294 			a[0] |= ((a[1] & mask) << (64 - b));
1295 			a[1] >>= b;
1296 		}
1297 	} else {
1298 		if (b >= 64) {
1299 			a[1] = a[0] << (b - 64);
1300 			a[0] = 0;
1301 		} else {
1302 			a[1] <<= b;
1303 			mask = a[0] >> (64 - b);
1304 			a[1] |= mask;
1305 			a[0] <<= b;
1306 		}
1307 	}
1308 }
1309 
1310 /*
1311  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1312  * use native multiplication on those, and then re-combine into the
1313  * resulting 128-bit value.
1314  *
1315  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1316  *     hi1 * hi2 << 64 +
1317  *     hi1 * lo2 << 32 +
1318  *     hi2 * lo1 << 32 +
1319  *     lo1 * lo2
1320  */
1321 static void
1322 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1323 {
1324 	uint64_t hi1, hi2, lo1, lo2;
1325 	uint64_t tmp[2];
1326 
1327 	hi1 = factor1 >> 32;
1328 	hi2 = factor2 >> 32;
1329 
1330 	lo1 = factor1 & DT_MASK_LO;
1331 	lo2 = factor2 & DT_MASK_LO;
1332 
1333 	product[0] = lo1 * lo2;
1334 	product[1] = hi1 * hi2;
1335 
1336 	tmp[0] = hi1 * lo2;
1337 	tmp[1] = 0;
1338 	dtrace_shift_128(tmp, 32);
1339 	dtrace_add_128(product, tmp, product);
1340 
1341 	tmp[0] = hi2 * lo1;
1342 	tmp[1] = 0;
1343 	dtrace_shift_128(tmp, 32);
1344 	dtrace_add_128(product, tmp, product);
1345 }
1346 
1347 /*
1348  * This privilege check should be used by actions and subroutines to
1349  * verify that the user credentials of the process that enabled the
1350  * invoking ECB match the target credentials
1351  */
1352 static int
1353 dtrace_priv_proc_common_user(dtrace_state_t *state)
1354 {
1355 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1356 
1357 	/*
1358 	 * We should always have a non-NULL state cred here, since if cred
1359 	 * is null (anonymous tracing), we fast-path bypass this routine.
1360 	 */
1361 	ASSERT(s_cr != NULL);
1362 
1363 	if ((cr = CRED()) != NULL &&
1364 	    s_cr->cr_uid == cr->cr_uid &&
1365 	    s_cr->cr_uid == cr->cr_ruid &&
1366 	    s_cr->cr_uid == cr->cr_suid &&
1367 	    s_cr->cr_gid == cr->cr_gid &&
1368 	    s_cr->cr_gid == cr->cr_rgid &&
1369 	    s_cr->cr_gid == cr->cr_sgid)
1370 		return (1);
1371 
1372 	return (0);
1373 }
1374 
1375 /*
1376  * This privilege check should be used by actions and subroutines to
1377  * verify that the zone of the process that enabled the invoking ECB
1378  * matches the target credentials
1379  */
1380 static int
1381 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1382 {
1383 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1384 
1385 	/*
1386 	 * We should always have a non-NULL state cred here, since if cred
1387 	 * is null (anonymous tracing), we fast-path bypass this routine.
1388 	 */
1389 	ASSERT(s_cr != NULL);
1390 
1391 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1392 		return (1);
1393 
1394 	return (0);
1395 }
1396 
1397 /*
1398  * This privilege check should be used by actions and subroutines to
1399  * verify that the process has not setuid or changed credentials.
1400  */
1401 static int
1402 dtrace_priv_proc_common_nocd()
1403 {
1404 	proc_t *proc;
1405 
1406 	if ((proc = ttoproc(curthread)) != NULL &&
1407 	    !(proc->p_flag & SNOCD))
1408 		return (1);
1409 
1410 	return (0);
1411 }
1412 
1413 static int
1414 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1415 {
1416 	int action = state->dts_cred.dcr_action;
1417 
1418 	if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1419 		goto bad;
1420 
1421 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1422 	    dtrace_priv_proc_common_zone(state) == 0)
1423 		goto bad;
1424 
1425 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1426 	    dtrace_priv_proc_common_user(state) == 0)
1427 		goto bad;
1428 
1429 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1430 	    dtrace_priv_proc_common_nocd() == 0)
1431 		goto bad;
1432 
1433 	return (1);
1434 
1435 bad:
1436 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1437 
1438 	return (0);
1439 }
1440 
1441 static int
1442 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1443 {
1444 	if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1445 		if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1446 			return (1);
1447 
1448 		if (dtrace_priv_proc_common_zone(state) &&
1449 		    dtrace_priv_proc_common_user(state) &&
1450 		    dtrace_priv_proc_common_nocd())
1451 			return (1);
1452 	}
1453 
1454 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1455 
1456 	return (0);
1457 }
1458 
1459 static int
1460 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1461 {
1462 	if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1463 	    (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1464 		return (1);
1465 
1466 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1467 
1468 	return (0);
1469 }
1470 
1471 static int
1472 dtrace_priv_kernel(dtrace_state_t *state)
1473 {
1474 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1475 		return (1);
1476 
1477 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1478 
1479 	return (0);
1480 }
1481 
1482 static int
1483 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1484 {
1485 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1486 		return (1);
1487 
1488 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1489 
1490 	return (0);
1491 }
1492 
1493 /*
1494  * Determine if the dte_cond of the specified ECB allows for processing of
1495  * the current probe to continue.  Note that this routine may allow continued
1496  * processing, but with access(es) stripped from the mstate's dtms_access
1497  * field.
1498  */
1499 static int
1500 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1501     dtrace_ecb_t *ecb)
1502 {
1503 	dtrace_probe_t *probe = ecb->dte_probe;
1504 	dtrace_provider_t *prov = probe->dtpr_provider;
1505 	dtrace_pops_t *pops = &prov->dtpv_pops;
1506 	int mode = DTRACE_MODE_NOPRIV_DROP;
1507 
1508 	ASSERT(ecb->dte_cond);
1509 
1510 	if (pops->dtps_mode != NULL) {
1511 		mode = pops->dtps_mode(prov->dtpv_arg,
1512 		    probe->dtpr_id, probe->dtpr_arg);
1513 
1514 		ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1515 		ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1516 		    DTRACE_MODE_NOPRIV_DROP));
1517 	}
1518 
1519 	/*
1520 	 * If the dte_cond bits indicate that this consumer is only allowed to
1521 	 * see user-mode firings of this probe, check that the probe was fired
1522 	 * while in a user context.  If that's not the case, use the policy
1523 	 * specified by the provider to determine if we drop the probe or
1524 	 * merely restrict operation.
1525 	 */
1526 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1527 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1528 
1529 		if (!(mode & DTRACE_MODE_USER)) {
1530 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1531 				return (0);
1532 
1533 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * This is more subtle than it looks. We have to be absolutely certain
1539 	 * that CRED() isn't going to change out from under us so it's only
1540 	 * legit to examine that structure if we're in constrained situations.
1541 	 * Currently, the only times we'll this check is if a non-super-user
1542 	 * has enabled the profile or syscall providers -- providers that
1543 	 * allow visibility of all processes. For the profile case, the check
1544 	 * above will ensure that we're examining a user context.
1545 	 */
1546 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1547 		cred_t *cr;
1548 		cred_t *s_cr = state->dts_cred.dcr_cred;
1549 		proc_t *proc;
1550 
1551 		ASSERT(s_cr != NULL);
1552 
1553 		if ((cr = CRED()) == NULL ||
1554 		    s_cr->cr_uid != cr->cr_uid ||
1555 		    s_cr->cr_uid != cr->cr_ruid ||
1556 		    s_cr->cr_uid != cr->cr_suid ||
1557 		    s_cr->cr_gid != cr->cr_gid ||
1558 		    s_cr->cr_gid != cr->cr_rgid ||
1559 		    s_cr->cr_gid != cr->cr_sgid ||
1560 		    (proc = ttoproc(curthread)) == NULL ||
1561 		    (proc->p_flag & SNOCD)) {
1562 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1563 				return (0);
1564 
1565 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1566 		}
1567 	}
1568 
1569 	/*
1570 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1571 	 * in our zone, check to see if our mode policy is to restrict rather
1572 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1573 	 * and DTRACE_ACCESS_ARGS
1574 	 */
1575 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1576 		cred_t *cr;
1577 		cred_t *s_cr = state->dts_cred.dcr_cred;
1578 
1579 		ASSERT(s_cr != NULL);
1580 
1581 		if ((cr = CRED()) == NULL ||
1582 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1583 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1584 				return (0);
1585 
1586 			mstate->dtms_access &=
1587 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1588 		}
1589 	}
1590 
1591 	/*
1592 	 * By merits of being in this code path at all, we have limited
1593 	 * privileges.  If the provider has indicated that limited privileges
1594 	 * are to denote restricted operation, strip off the ability to access
1595 	 * arguments.
1596 	 */
1597 	if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1598 		mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1599 
1600 	return (1);
1601 }
1602 
1603 /*
1604  * Note:  not called from probe context.  This function is called
1605  * asynchronously (and at a regular interval) from outside of probe context to
1606  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1607  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1608  */
1609 void
1610 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1611 {
1612 	dtrace_dynvar_t *dirty;
1613 	dtrace_dstate_percpu_t *dcpu;
1614 	dtrace_dynvar_t **rinsep;
1615 	int i, j, work = 0;
1616 
1617 	for (i = 0; i < NCPU; i++) {
1618 		dcpu = &dstate->dtds_percpu[i];
1619 		rinsep = &dcpu->dtdsc_rinsing;
1620 
1621 		/*
1622 		 * If the dirty list is NULL, there is no dirty work to do.
1623 		 */
1624 		if (dcpu->dtdsc_dirty == NULL)
1625 			continue;
1626 
1627 		if (dcpu->dtdsc_rinsing != NULL) {
1628 			/*
1629 			 * If the rinsing list is non-NULL, then it is because
1630 			 * this CPU was selected to accept another CPU's
1631 			 * dirty list -- and since that time, dirty buffers
1632 			 * have accumulated.  This is a highly unlikely
1633 			 * condition, but we choose to ignore the dirty
1634 			 * buffers -- they'll be picked up a future cleanse.
1635 			 */
1636 			continue;
1637 		}
1638 
1639 		if (dcpu->dtdsc_clean != NULL) {
1640 			/*
1641 			 * If the clean list is non-NULL, then we're in a
1642 			 * situation where a CPU has done deallocations (we
1643 			 * have a non-NULL dirty list) but no allocations (we
1644 			 * also have a non-NULL clean list).  We can't simply
1645 			 * move the dirty list into the clean list on this
1646 			 * CPU, yet we also don't want to allow this condition
1647 			 * to persist, lest a short clean list prevent a
1648 			 * massive dirty list from being cleaned (which in
1649 			 * turn could lead to otherwise avoidable dynamic
1650 			 * drops).  To deal with this, we look for some CPU
1651 			 * with a NULL clean list, NULL dirty list, and NULL
1652 			 * rinsing list -- and then we borrow this CPU to
1653 			 * rinse our dirty list.
1654 			 */
1655 			for (j = 0; j < NCPU; j++) {
1656 				dtrace_dstate_percpu_t *rinser;
1657 
1658 				rinser = &dstate->dtds_percpu[j];
1659 
1660 				if (rinser->dtdsc_rinsing != NULL)
1661 					continue;
1662 
1663 				if (rinser->dtdsc_dirty != NULL)
1664 					continue;
1665 
1666 				if (rinser->dtdsc_clean != NULL)
1667 					continue;
1668 
1669 				rinsep = &rinser->dtdsc_rinsing;
1670 				break;
1671 			}
1672 
1673 			if (j == NCPU) {
1674 				/*
1675 				 * We were unable to find another CPU that
1676 				 * could accept this dirty list -- we are
1677 				 * therefore unable to clean it now.
1678 				 */
1679 				dtrace_dynvar_failclean++;
1680 				continue;
1681 			}
1682 		}
1683 
1684 		work = 1;
1685 
1686 		/*
1687 		 * Atomically move the dirty list aside.
1688 		 */
1689 		do {
1690 			dirty = dcpu->dtdsc_dirty;
1691 
1692 			/*
1693 			 * Before we zap the dirty list, set the rinsing list.
1694 			 * (This allows for a potential assertion in
1695 			 * dtrace_dynvar():  if a free dynamic variable appears
1696 			 * on a hash chain, either the dirty list or the
1697 			 * rinsing list for some CPU must be non-NULL.)
1698 			 */
1699 			*rinsep = dirty;
1700 			dtrace_membar_producer();
1701 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1702 		    dirty, NULL) != dirty);
1703 	}
1704 
1705 	if (!work) {
1706 		/*
1707 		 * We have no work to do; we can simply return.
1708 		 */
1709 		return;
1710 	}
1711 
1712 	dtrace_sync();
1713 
1714 	for (i = 0; i < NCPU; i++) {
1715 		dcpu = &dstate->dtds_percpu[i];
1716 
1717 		if (dcpu->dtdsc_rinsing == NULL)
1718 			continue;
1719 
1720 		/*
1721 		 * We are now guaranteed that no hash chain contains a pointer
1722 		 * into this dirty list; we can make it clean.
1723 		 */
1724 		ASSERT(dcpu->dtdsc_clean == NULL);
1725 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1726 		dcpu->dtdsc_rinsing = NULL;
1727 	}
1728 
1729 	/*
1730 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1731 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1732 	 * This prevents a race whereby a CPU incorrectly decides that
1733 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1734 	 * after dtrace_dynvar_clean() has completed.
1735 	 */
1736 	dtrace_sync();
1737 
1738 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1739 }
1740 
1741 /*
1742  * Depending on the value of the op parameter, this function looks-up,
1743  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1744  * allocation is requested, this function will return a pointer to a
1745  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1746  * variable can be allocated.  If NULL is returned, the appropriate counter
1747  * will be incremented.
1748  */
1749 dtrace_dynvar_t *
1750 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1751     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1752     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1753 {
1754 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1755 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1756 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1757 	processorid_t me = CPU->cpu_id, cpu = me;
1758 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1759 	size_t bucket, ksize;
1760 	size_t chunksize = dstate->dtds_chunksize;
1761 	uintptr_t kdata, lock, nstate;
1762 	uint_t i;
1763 
1764 	ASSERT(nkeys != 0);
1765 
1766 	/*
1767 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1768 	 * algorithm.  For the by-value portions, we perform the algorithm in
1769 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1770 	 * bit, and seems to have only a minute effect on distribution.  For
1771 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1772 	 * over each referenced byte.  It's painful to do this, but it's much
1773 	 * better than pathological hash distribution.  The efficacy of the
1774 	 * hashing algorithm (and a comparison with other algorithms) may be
1775 	 * found by running the ::dtrace_dynstat MDB dcmd.
1776 	 */
1777 	for (i = 0; i < nkeys; i++) {
1778 		if (key[i].dttk_size == 0) {
1779 			uint64_t val = key[i].dttk_value;
1780 
1781 			hashval += (val >> 48) & 0xffff;
1782 			hashval += (hashval << 10);
1783 			hashval ^= (hashval >> 6);
1784 
1785 			hashval += (val >> 32) & 0xffff;
1786 			hashval += (hashval << 10);
1787 			hashval ^= (hashval >> 6);
1788 
1789 			hashval += (val >> 16) & 0xffff;
1790 			hashval += (hashval << 10);
1791 			hashval ^= (hashval >> 6);
1792 
1793 			hashval += val & 0xffff;
1794 			hashval += (hashval << 10);
1795 			hashval ^= (hashval >> 6);
1796 		} else {
1797 			/*
1798 			 * This is incredibly painful, but it beats the hell
1799 			 * out of the alternative.
1800 			 */
1801 			uint64_t j, size = key[i].dttk_size;
1802 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1803 
1804 			if (!dtrace_canload(base, size, mstate, vstate))
1805 				break;
1806 
1807 			for (j = 0; j < size; j++) {
1808 				hashval += dtrace_load8(base + j);
1809 				hashval += (hashval << 10);
1810 				hashval ^= (hashval >> 6);
1811 			}
1812 		}
1813 	}
1814 
1815 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1816 		return (NULL);
1817 
1818 	hashval += (hashval << 3);
1819 	hashval ^= (hashval >> 11);
1820 	hashval += (hashval << 15);
1821 
1822 	/*
1823 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1824 	 * comes out to be one of our two sentinel hash values.  If this
1825 	 * actually happens, we set the hashval to be a value known to be a
1826 	 * non-sentinel value.
1827 	 */
1828 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1829 		hashval = DTRACE_DYNHASH_VALID;
1830 
1831 	/*
1832 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1833 	 * important here, tricks can be pulled to reduce it.  (However, it's
1834 	 * critical that hash collisions be kept to an absolute minimum;
1835 	 * they're much more painful than a divide.)  It's better to have a
1836 	 * solution that generates few collisions and still keeps things
1837 	 * relatively simple.
1838 	 */
1839 	bucket = hashval % dstate->dtds_hashsize;
1840 
1841 	if (op == DTRACE_DYNVAR_DEALLOC) {
1842 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1843 
1844 		for (;;) {
1845 			while ((lock = *lockp) & 1)
1846 				continue;
1847 
1848 			if (dtrace_casptr((void *)lockp,
1849 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1850 				break;
1851 		}
1852 
1853 		dtrace_membar_producer();
1854 	}
1855 
1856 top:
1857 	prev = NULL;
1858 	lock = hash[bucket].dtdh_lock;
1859 
1860 	dtrace_membar_consumer();
1861 
1862 	start = hash[bucket].dtdh_chain;
1863 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1864 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1865 	    op != DTRACE_DYNVAR_DEALLOC));
1866 
1867 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1868 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1869 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1870 
1871 		if (dvar->dtdv_hashval != hashval) {
1872 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1873 				/*
1874 				 * We've reached the sink, and therefore the
1875 				 * end of the hash chain; we can kick out of
1876 				 * the loop knowing that we have seen a valid
1877 				 * snapshot of state.
1878 				 */
1879 				ASSERT(dvar->dtdv_next == NULL);
1880 				ASSERT(dvar == &dtrace_dynhash_sink);
1881 				break;
1882 			}
1883 
1884 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1885 				/*
1886 				 * We've gone off the rails:  somewhere along
1887 				 * the line, one of the members of this hash
1888 				 * chain was deleted.  Note that we could also
1889 				 * detect this by simply letting this loop run
1890 				 * to completion, as we would eventually hit
1891 				 * the end of the dirty list.  However, we
1892 				 * want to avoid running the length of the
1893 				 * dirty list unnecessarily (it might be quite
1894 				 * long), so we catch this as early as
1895 				 * possible by detecting the hash marker.  In
1896 				 * this case, we simply set dvar to NULL and
1897 				 * break; the conditional after the loop will
1898 				 * send us back to top.
1899 				 */
1900 				dvar = NULL;
1901 				break;
1902 			}
1903 
1904 			goto next;
1905 		}
1906 
1907 		if (dtuple->dtt_nkeys != nkeys)
1908 			goto next;
1909 
1910 		for (i = 0; i < nkeys; i++, dkey++) {
1911 			if (dkey->dttk_size != key[i].dttk_size)
1912 				goto next; /* size or type mismatch */
1913 
1914 			if (dkey->dttk_size != 0) {
1915 				if (dtrace_bcmp(
1916 				    (void *)(uintptr_t)key[i].dttk_value,
1917 				    (void *)(uintptr_t)dkey->dttk_value,
1918 				    dkey->dttk_size))
1919 					goto next;
1920 			} else {
1921 				if (dkey->dttk_value != key[i].dttk_value)
1922 					goto next;
1923 			}
1924 		}
1925 
1926 		if (op != DTRACE_DYNVAR_DEALLOC)
1927 			return (dvar);
1928 
1929 		ASSERT(dvar->dtdv_next == NULL ||
1930 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1931 
1932 		if (prev != NULL) {
1933 			ASSERT(hash[bucket].dtdh_chain != dvar);
1934 			ASSERT(start != dvar);
1935 			ASSERT(prev->dtdv_next == dvar);
1936 			prev->dtdv_next = dvar->dtdv_next;
1937 		} else {
1938 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1939 			    start, dvar->dtdv_next) != start) {
1940 				/*
1941 				 * We have failed to atomically swing the
1942 				 * hash table head pointer, presumably because
1943 				 * of a conflicting allocation on another CPU.
1944 				 * We need to reread the hash chain and try
1945 				 * again.
1946 				 */
1947 				goto top;
1948 			}
1949 		}
1950 
1951 		dtrace_membar_producer();
1952 
1953 		/*
1954 		 * Now set the hash value to indicate that it's free.
1955 		 */
1956 		ASSERT(hash[bucket].dtdh_chain != dvar);
1957 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1958 
1959 		dtrace_membar_producer();
1960 
1961 		/*
1962 		 * Set the next pointer to point at the dirty list, and
1963 		 * atomically swing the dirty pointer to the newly freed dvar.
1964 		 */
1965 		do {
1966 			next = dcpu->dtdsc_dirty;
1967 			dvar->dtdv_next = next;
1968 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1969 
1970 		/*
1971 		 * Finally, unlock this hash bucket.
1972 		 */
1973 		ASSERT(hash[bucket].dtdh_lock == lock);
1974 		ASSERT(lock & 1);
1975 		hash[bucket].dtdh_lock++;
1976 
1977 		return (NULL);
1978 next:
1979 		prev = dvar;
1980 		continue;
1981 	}
1982 
1983 	if (dvar == NULL) {
1984 		/*
1985 		 * If dvar is NULL, it is because we went off the rails:
1986 		 * one of the elements that we traversed in the hash chain
1987 		 * was deleted while we were traversing it.  In this case,
1988 		 * we assert that we aren't doing a dealloc (deallocs lock
1989 		 * the hash bucket to prevent themselves from racing with
1990 		 * one another), and retry the hash chain traversal.
1991 		 */
1992 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1993 		goto top;
1994 	}
1995 
1996 	if (op != DTRACE_DYNVAR_ALLOC) {
1997 		/*
1998 		 * If we are not to allocate a new variable, we want to
1999 		 * return NULL now.  Before we return, check that the value
2000 		 * of the lock word hasn't changed.  If it has, we may have
2001 		 * seen an inconsistent snapshot.
2002 		 */
2003 		if (op == DTRACE_DYNVAR_NOALLOC) {
2004 			if (hash[bucket].dtdh_lock != lock)
2005 				goto top;
2006 		} else {
2007 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2008 			ASSERT(hash[bucket].dtdh_lock == lock);
2009 			ASSERT(lock & 1);
2010 			hash[bucket].dtdh_lock++;
2011 		}
2012 
2013 		return (NULL);
2014 	}
2015 
2016 	/*
2017 	 * We need to allocate a new dynamic variable.  The size we need is the
2018 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2019 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2020 	 * the size of any referred-to data (dsize).  We then round the final
2021 	 * size up to the chunksize for allocation.
2022 	 */
2023 	for (ksize = 0, i = 0; i < nkeys; i++)
2024 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2025 
2026 	/*
2027 	 * This should be pretty much impossible, but could happen if, say,
2028 	 * strange DIF specified the tuple.  Ideally, this should be an
2029 	 * assertion and not an error condition -- but that requires that the
2030 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2031 	 * bullet-proof.  (That is, it must not be able to be fooled by
2032 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2033 	 * solving this would presumably not amount to solving the Halting
2034 	 * Problem -- but it still seems awfully hard.
2035 	 */
2036 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2037 	    ksize + dsize > chunksize) {
2038 		dcpu->dtdsc_drops++;
2039 		return (NULL);
2040 	}
2041 
2042 	nstate = DTRACE_DSTATE_EMPTY;
2043 
2044 	do {
2045 retry:
2046 		free = dcpu->dtdsc_free;
2047 
2048 		if (free == NULL) {
2049 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2050 			void *rval;
2051 
2052 			if (clean == NULL) {
2053 				/*
2054 				 * We're out of dynamic variable space on
2055 				 * this CPU.  Unless we have tried all CPUs,
2056 				 * we'll try to allocate from a different
2057 				 * CPU.
2058 				 */
2059 				switch (dstate->dtds_state) {
2060 				case DTRACE_DSTATE_CLEAN: {
2061 					void *sp = &dstate->dtds_state;
2062 
2063 					if (++cpu >= NCPU)
2064 						cpu = 0;
2065 
2066 					if (dcpu->dtdsc_dirty != NULL &&
2067 					    nstate == DTRACE_DSTATE_EMPTY)
2068 						nstate = DTRACE_DSTATE_DIRTY;
2069 
2070 					if (dcpu->dtdsc_rinsing != NULL)
2071 						nstate = DTRACE_DSTATE_RINSING;
2072 
2073 					dcpu = &dstate->dtds_percpu[cpu];
2074 
2075 					if (cpu != me)
2076 						goto retry;
2077 
2078 					(void) dtrace_cas32(sp,
2079 					    DTRACE_DSTATE_CLEAN, nstate);
2080 
2081 					/*
2082 					 * To increment the correct bean
2083 					 * counter, take another lap.
2084 					 */
2085 					goto retry;
2086 				}
2087 
2088 				case DTRACE_DSTATE_DIRTY:
2089 					dcpu->dtdsc_dirty_drops++;
2090 					break;
2091 
2092 				case DTRACE_DSTATE_RINSING:
2093 					dcpu->dtdsc_rinsing_drops++;
2094 					break;
2095 
2096 				case DTRACE_DSTATE_EMPTY:
2097 					dcpu->dtdsc_drops++;
2098 					break;
2099 				}
2100 
2101 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2102 				return (NULL);
2103 			}
2104 
2105 			/*
2106 			 * The clean list appears to be non-empty.  We want to
2107 			 * move the clean list to the free list; we start by
2108 			 * moving the clean pointer aside.
2109 			 */
2110 			if (dtrace_casptr(&dcpu->dtdsc_clean,
2111 			    clean, NULL) != clean) {
2112 				/*
2113 				 * We are in one of two situations:
2114 				 *
2115 				 *  (a)	The clean list was switched to the
2116 				 *	free list by another CPU.
2117 				 *
2118 				 *  (b)	The clean list was added to by the
2119 				 *	cleansing cyclic.
2120 				 *
2121 				 * In either of these situations, we can
2122 				 * just reattempt the free list allocation.
2123 				 */
2124 				goto retry;
2125 			}
2126 
2127 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2128 
2129 			/*
2130 			 * Now we'll move the clean list to our free list.
2131 			 * It's impossible for this to fail:  the only way
2132 			 * the free list can be updated is through this
2133 			 * code path, and only one CPU can own the clean list.
2134 			 * Thus, it would only be possible for this to fail if
2135 			 * this code were racing with dtrace_dynvar_clean().
2136 			 * (That is, if dtrace_dynvar_clean() updated the clean
2137 			 * list, and we ended up racing to update the free
2138 			 * list.)  This race is prevented by the dtrace_sync()
2139 			 * in dtrace_dynvar_clean() -- which flushes the
2140 			 * owners of the clean lists out before resetting
2141 			 * the clean lists.
2142 			 */
2143 			dcpu = &dstate->dtds_percpu[me];
2144 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2145 			ASSERT(rval == NULL);
2146 			goto retry;
2147 		}
2148 
2149 		dvar = free;
2150 		new_free = dvar->dtdv_next;
2151 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2152 
2153 	/*
2154 	 * We have now allocated a new chunk.  We copy the tuple keys into the
2155 	 * tuple array and copy any referenced key data into the data space
2156 	 * following the tuple array.  As we do this, we relocate dttk_value
2157 	 * in the final tuple to point to the key data address in the chunk.
2158 	 */
2159 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2160 	dvar->dtdv_data = (void *)(kdata + ksize);
2161 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2162 
2163 	for (i = 0; i < nkeys; i++) {
2164 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2165 		size_t kesize = key[i].dttk_size;
2166 
2167 		if (kesize != 0) {
2168 			dtrace_bcopy(
2169 			    (const void *)(uintptr_t)key[i].dttk_value,
2170 			    (void *)kdata, kesize);
2171 			dkey->dttk_value = kdata;
2172 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2173 		} else {
2174 			dkey->dttk_value = key[i].dttk_value;
2175 		}
2176 
2177 		dkey->dttk_size = kesize;
2178 	}
2179 
2180 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2181 	dvar->dtdv_hashval = hashval;
2182 	dvar->dtdv_next = start;
2183 
2184 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2185 		return (dvar);
2186 
2187 	/*
2188 	 * The cas has failed.  Either another CPU is adding an element to
2189 	 * this hash chain, or another CPU is deleting an element from this
2190 	 * hash chain.  The simplest way to deal with both of these cases
2191 	 * (though not necessarily the most efficient) is to free our
2192 	 * allocated block and re-attempt it all.  Note that the free is
2193 	 * to the dirty list and _not_ to the free list.  This is to prevent
2194 	 * races with allocators, above.
2195 	 */
2196 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2197 
2198 	dtrace_membar_producer();
2199 
2200 	do {
2201 		free = dcpu->dtdsc_dirty;
2202 		dvar->dtdv_next = free;
2203 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2204 
2205 	goto top;
2206 }
2207 
2208 /*ARGSUSED*/
2209 static void
2210 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2211 {
2212 	if ((int64_t)nval < (int64_t)*oval)
2213 		*oval = nval;
2214 }
2215 
2216 /*ARGSUSED*/
2217 static void
2218 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2219 {
2220 	if ((int64_t)nval > (int64_t)*oval)
2221 		*oval = nval;
2222 }
2223 
2224 static void
2225 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2226 {
2227 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2228 	int64_t val = (int64_t)nval;
2229 
2230 	if (val < 0) {
2231 		for (i = 0; i < zero; i++) {
2232 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2233 				quanta[i] += incr;
2234 				return;
2235 			}
2236 		}
2237 	} else {
2238 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2239 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2240 				quanta[i - 1] += incr;
2241 				return;
2242 			}
2243 		}
2244 
2245 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2246 		return;
2247 	}
2248 
2249 	ASSERT(0);
2250 }
2251 
2252 static void
2253 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2254 {
2255 	uint64_t arg = *lquanta++;
2256 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2257 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2258 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2259 	int32_t val = (int32_t)nval, level;
2260 
2261 	ASSERT(step != 0);
2262 	ASSERT(levels != 0);
2263 
2264 	if (val < base) {
2265 		/*
2266 		 * This is an underflow.
2267 		 */
2268 		lquanta[0] += incr;
2269 		return;
2270 	}
2271 
2272 	level = (val - base) / step;
2273 
2274 	if (level < levels) {
2275 		lquanta[level + 1] += incr;
2276 		return;
2277 	}
2278 
2279 	/*
2280 	 * This is an overflow.
2281 	 */
2282 	lquanta[levels + 1] += incr;
2283 }
2284 
2285 static int
2286 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2287     uint16_t high, uint16_t nsteps, int64_t value)
2288 {
2289 	int64_t this = 1, last, next;
2290 	int base = 1, order;
2291 
2292 	ASSERT(factor <= nsteps);
2293 	ASSERT(nsteps % factor == 0);
2294 
2295 	for (order = 0; order < low; order++)
2296 		this *= factor;
2297 
2298 	/*
2299 	 * If our value is less than our factor taken to the power of the
2300 	 * low order of magnitude, it goes into the zeroth bucket.
2301 	 */
2302 	if (value < (last = this))
2303 		return (0);
2304 
2305 	for (this *= factor; order <= high; order++) {
2306 		int nbuckets = this > nsteps ? nsteps : this;
2307 
2308 		if ((next = this * factor) < this) {
2309 			/*
2310 			 * We should not generally get log/linear quantizations
2311 			 * with a high magnitude that allows 64-bits to
2312 			 * overflow, but we nonetheless protect against this
2313 			 * by explicitly checking for overflow, and clamping
2314 			 * our value accordingly.
2315 			 */
2316 			value = this - 1;
2317 		}
2318 
2319 		if (value < this) {
2320 			/*
2321 			 * If our value lies within this order of magnitude,
2322 			 * determine its position by taking the offset within
2323 			 * the order of magnitude, dividing by the bucket
2324 			 * width, and adding to our (accumulated) base.
2325 			 */
2326 			return (base + (value - last) / (this / nbuckets));
2327 		}
2328 
2329 		base += nbuckets - (nbuckets / factor);
2330 		last = this;
2331 		this = next;
2332 	}
2333 
2334 	/*
2335 	 * Our value is greater than or equal to our factor taken to the
2336 	 * power of one plus the high magnitude -- return the top bucket.
2337 	 */
2338 	return (base);
2339 }
2340 
2341 static void
2342 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2343 {
2344 	uint64_t arg = *llquanta++;
2345 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2346 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2347 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2348 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2349 
2350 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2351 	    low, high, nsteps, nval)] += incr;
2352 }
2353 
2354 /*ARGSUSED*/
2355 static void
2356 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2357 {
2358 	data[0]++;
2359 	data[1] += nval;
2360 }
2361 
2362 /*ARGSUSED*/
2363 static void
2364 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2365 {
2366 	int64_t snval = (int64_t)nval;
2367 	uint64_t tmp[2];
2368 
2369 	data[0]++;
2370 	data[1] += nval;
2371 
2372 	/*
2373 	 * What we want to say here is:
2374 	 *
2375 	 * data[2] += nval * nval;
2376 	 *
2377 	 * But given that nval is 64-bit, we could easily overflow, so
2378 	 * we do this as 128-bit arithmetic.
2379 	 */
2380 	if (snval < 0)
2381 		snval = -snval;
2382 
2383 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2384 	dtrace_add_128(data + 2, tmp, data + 2);
2385 }
2386 
2387 /*ARGSUSED*/
2388 static void
2389 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2390 {
2391 	*oval = *oval + 1;
2392 }
2393 
2394 /*ARGSUSED*/
2395 static void
2396 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2397 {
2398 	*oval += nval;
2399 }
2400 
2401 /*
2402  * Aggregate given the tuple in the principal data buffer, and the aggregating
2403  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2404  * buffer is specified as the buf parameter.  This routine does not return
2405  * failure; if there is no space in the aggregation buffer, the data will be
2406  * dropped, and a corresponding counter incremented.
2407  */
2408 static void
2409 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2410     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2411 {
2412 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2413 	uint32_t i, ndx, size, fsize;
2414 	uint32_t align = sizeof (uint64_t) - 1;
2415 	dtrace_aggbuffer_t *agb;
2416 	dtrace_aggkey_t *key;
2417 	uint32_t hashval = 0, limit, isstr;
2418 	caddr_t tomax, data, kdata;
2419 	dtrace_actkind_t action;
2420 	dtrace_action_t *act;
2421 	uintptr_t offs;
2422 
2423 	if (buf == NULL)
2424 		return;
2425 
2426 	if (!agg->dtag_hasarg) {
2427 		/*
2428 		 * Currently, only quantize() and lquantize() take additional
2429 		 * arguments, and they have the same semantics:  an increment
2430 		 * value that defaults to 1 when not present.  If additional
2431 		 * aggregating actions take arguments, the setting of the
2432 		 * default argument value will presumably have to become more
2433 		 * sophisticated...
2434 		 */
2435 		arg = 1;
2436 	}
2437 
2438 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2439 	size = rec->dtrd_offset - agg->dtag_base;
2440 	fsize = size + rec->dtrd_size;
2441 
2442 	ASSERT(dbuf->dtb_tomax != NULL);
2443 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2444 
2445 	if ((tomax = buf->dtb_tomax) == NULL) {
2446 		dtrace_buffer_drop(buf);
2447 		return;
2448 	}
2449 
2450 	/*
2451 	 * The metastructure is always at the bottom of the buffer.
2452 	 */
2453 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2454 	    sizeof (dtrace_aggbuffer_t));
2455 
2456 	if (buf->dtb_offset == 0) {
2457 		/*
2458 		 * We just kludge up approximately 1/8th of the size to be
2459 		 * buckets.  If this guess ends up being routinely
2460 		 * off-the-mark, we may need to dynamically readjust this
2461 		 * based on past performance.
2462 		 */
2463 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2464 
2465 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2466 		    (uintptr_t)tomax || hashsize == 0) {
2467 			/*
2468 			 * We've been given a ludicrously small buffer;
2469 			 * increment our drop count and leave.
2470 			 */
2471 			dtrace_buffer_drop(buf);
2472 			return;
2473 		}
2474 
2475 		/*
2476 		 * And now, a pathetic attempt to try to get a an odd (or
2477 		 * perchance, a prime) hash size for better hash distribution.
2478 		 */
2479 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2480 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2481 
2482 		agb->dtagb_hashsize = hashsize;
2483 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2484 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2485 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2486 
2487 		for (i = 0; i < agb->dtagb_hashsize; i++)
2488 			agb->dtagb_hash[i] = NULL;
2489 	}
2490 
2491 	ASSERT(agg->dtag_first != NULL);
2492 	ASSERT(agg->dtag_first->dta_intuple);
2493 
2494 	/*
2495 	 * Calculate the hash value based on the key.  Note that we _don't_
2496 	 * include the aggid in the hashing (but we will store it as part of
2497 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2498 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2499 	 * gets good distribution in practice.  The efficacy of the hashing
2500 	 * algorithm (and a comparison with other algorithms) may be found by
2501 	 * running the ::dtrace_aggstat MDB dcmd.
2502 	 */
2503 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2504 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2505 		limit = i + act->dta_rec.dtrd_size;
2506 		ASSERT(limit <= size);
2507 		isstr = DTRACEACT_ISSTRING(act);
2508 
2509 		for (; i < limit; i++) {
2510 			hashval += data[i];
2511 			hashval += (hashval << 10);
2512 			hashval ^= (hashval >> 6);
2513 
2514 			if (isstr && data[i] == '\0')
2515 				break;
2516 		}
2517 	}
2518 
2519 	hashval += (hashval << 3);
2520 	hashval ^= (hashval >> 11);
2521 	hashval += (hashval << 15);
2522 
2523 	/*
2524 	 * Yes, the divide here is expensive -- but it's generally the least
2525 	 * of the performance issues given the amount of data that we iterate
2526 	 * over to compute hash values, compare data, etc.
2527 	 */
2528 	ndx = hashval % agb->dtagb_hashsize;
2529 
2530 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2531 		ASSERT((caddr_t)key >= tomax);
2532 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2533 
2534 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2535 			continue;
2536 
2537 		kdata = key->dtak_data;
2538 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2539 
2540 		for (act = agg->dtag_first; act->dta_intuple;
2541 		    act = act->dta_next) {
2542 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2543 			limit = i + act->dta_rec.dtrd_size;
2544 			ASSERT(limit <= size);
2545 			isstr = DTRACEACT_ISSTRING(act);
2546 
2547 			for (; i < limit; i++) {
2548 				if (kdata[i] != data[i])
2549 					goto next;
2550 
2551 				if (isstr && data[i] == '\0')
2552 					break;
2553 			}
2554 		}
2555 
2556 		if (action != key->dtak_action) {
2557 			/*
2558 			 * We are aggregating on the same value in the same
2559 			 * aggregation with two different aggregating actions.
2560 			 * (This should have been picked up in the compiler,
2561 			 * so we may be dealing with errant or devious DIF.)
2562 			 * This is an error condition; we indicate as much,
2563 			 * and return.
2564 			 */
2565 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2566 			return;
2567 		}
2568 
2569 		/*
2570 		 * This is a hit:  we need to apply the aggregator to
2571 		 * the value at this key.
2572 		 */
2573 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2574 		return;
2575 next:
2576 		continue;
2577 	}
2578 
2579 	/*
2580 	 * We didn't find it.  We need to allocate some zero-filled space,
2581 	 * link it into the hash table appropriately, and apply the aggregator
2582 	 * to the (zero-filled) value.
2583 	 */
2584 	offs = buf->dtb_offset;
2585 	while (offs & (align - 1))
2586 		offs += sizeof (uint32_t);
2587 
2588 	/*
2589 	 * If we don't have enough room to both allocate a new key _and_
2590 	 * its associated data, increment the drop count and return.
2591 	 */
2592 	if ((uintptr_t)tomax + offs + fsize >
2593 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2594 		dtrace_buffer_drop(buf);
2595 		return;
2596 	}
2597 
2598 	/*CONSTCOND*/
2599 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2600 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2601 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2602 
2603 	key->dtak_data = kdata = tomax + offs;
2604 	buf->dtb_offset = offs + fsize;
2605 
2606 	/*
2607 	 * Now copy the data across.
2608 	 */
2609 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2610 
2611 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2612 		kdata[i] = data[i];
2613 
2614 	/*
2615 	 * Because strings are not zeroed out by default, we need to iterate
2616 	 * looking for actions that store strings, and we need to explicitly
2617 	 * pad these strings out with zeroes.
2618 	 */
2619 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2620 		int nul;
2621 
2622 		if (!DTRACEACT_ISSTRING(act))
2623 			continue;
2624 
2625 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2626 		limit = i + act->dta_rec.dtrd_size;
2627 		ASSERT(limit <= size);
2628 
2629 		for (nul = 0; i < limit; i++) {
2630 			if (nul) {
2631 				kdata[i] = '\0';
2632 				continue;
2633 			}
2634 
2635 			if (data[i] != '\0')
2636 				continue;
2637 
2638 			nul = 1;
2639 		}
2640 	}
2641 
2642 	for (i = size; i < fsize; i++)
2643 		kdata[i] = 0;
2644 
2645 	key->dtak_hashval = hashval;
2646 	key->dtak_size = size;
2647 	key->dtak_action = action;
2648 	key->dtak_next = agb->dtagb_hash[ndx];
2649 	agb->dtagb_hash[ndx] = key;
2650 
2651 	/*
2652 	 * Finally, apply the aggregator.
2653 	 */
2654 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2655 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2656 }
2657 
2658 /*
2659  * Given consumer state, this routine finds a speculation in the INACTIVE
2660  * state and transitions it into the ACTIVE state.  If there is no speculation
2661  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2662  * incremented -- it is up to the caller to take appropriate action.
2663  */
2664 static int
2665 dtrace_speculation(dtrace_state_t *state)
2666 {
2667 	int i = 0;
2668 	dtrace_speculation_state_t current;
2669 	uint32_t *stat = &state->dts_speculations_unavail, count;
2670 
2671 	while (i < state->dts_nspeculations) {
2672 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2673 
2674 		current = spec->dtsp_state;
2675 
2676 		if (current != DTRACESPEC_INACTIVE) {
2677 			if (current == DTRACESPEC_COMMITTINGMANY ||
2678 			    current == DTRACESPEC_COMMITTING ||
2679 			    current == DTRACESPEC_DISCARDING)
2680 				stat = &state->dts_speculations_busy;
2681 			i++;
2682 			continue;
2683 		}
2684 
2685 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2686 		    current, DTRACESPEC_ACTIVE) == current)
2687 			return (i + 1);
2688 	}
2689 
2690 	/*
2691 	 * We couldn't find a speculation.  If we found as much as a single
2692 	 * busy speculation buffer, we'll attribute this failure as "busy"
2693 	 * instead of "unavail".
2694 	 */
2695 	do {
2696 		count = *stat;
2697 	} while (dtrace_cas32(stat, count, count + 1) != count);
2698 
2699 	return (0);
2700 }
2701 
2702 /*
2703  * This routine commits an active speculation.  If the specified speculation
2704  * is not in a valid state to perform a commit(), this routine will silently do
2705  * nothing.  The state of the specified speculation is transitioned according
2706  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2707  */
2708 static void
2709 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2710     dtrace_specid_t which)
2711 {
2712 	dtrace_speculation_t *spec;
2713 	dtrace_buffer_t *src, *dest;
2714 	uintptr_t daddr, saddr, dlimit, slimit;
2715 	dtrace_speculation_state_t current, new;
2716 	intptr_t offs;
2717 	uint64_t timestamp;
2718 
2719 	if (which == 0)
2720 		return;
2721 
2722 	if (which > state->dts_nspeculations) {
2723 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2724 		return;
2725 	}
2726 
2727 	spec = &state->dts_speculations[which - 1];
2728 	src = &spec->dtsp_buffer[cpu];
2729 	dest = &state->dts_buffer[cpu];
2730 
2731 	do {
2732 		current = spec->dtsp_state;
2733 
2734 		if (current == DTRACESPEC_COMMITTINGMANY)
2735 			break;
2736 
2737 		switch (current) {
2738 		case DTRACESPEC_INACTIVE:
2739 		case DTRACESPEC_DISCARDING:
2740 			return;
2741 
2742 		case DTRACESPEC_COMMITTING:
2743 			/*
2744 			 * This is only possible if we are (a) commit()'ing
2745 			 * without having done a prior speculate() on this CPU
2746 			 * and (b) racing with another commit() on a different
2747 			 * CPU.  There's nothing to do -- we just assert that
2748 			 * our offset is 0.
2749 			 */
2750 			ASSERT(src->dtb_offset == 0);
2751 			return;
2752 
2753 		case DTRACESPEC_ACTIVE:
2754 			new = DTRACESPEC_COMMITTING;
2755 			break;
2756 
2757 		case DTRACESPEC_ACTIVEONE:
2758 			/*
2759 			 * This speculation is active on one CPU.  If our
2760 			 * buffer offset is non-zero, we know that the one CPU
2761 			 * must be us.  Otherwise, we are committing on a
2762 			 * different CPU from the speculate(), and we must
2763 			 * rely on being asynchronously cleaned.
2764 			 */
2765 			if (src->dtb_offset != 0) {
2766 				new = DTRACESPEC_COMMITTING;
2767 				break;
2768 			}
2769 			/*FALLTHROUGH*/
2770 
2771 		case DTRACESPEC_ACTIVEMANY:
2772 			new = DTRACESPEC_COMMITTINGMANY;
2773 			break;
2774 
2775 		default:
2776 			ASSERT(0);
2777 		}
2778 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2779 	    current, new) != current);
2780 
2781 	/*
2782 	 * We have set the state to indicate that we are committing this
2783 	 * speculation.  Now reserve the necessary space in the destination
2784 	 * buffer.
2785 	 */
2786 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2787 	    sizeof (uint64_t), state, NULL)) < 0) {
2788 		dtrace_buffer_drop(dest);
2789 		goto out;
2790 	}
2791 
2792 	/*
2793 	 * We have sufficient space to copy the speculative buffer into the
2794 	 * primary buffer.  First, modify the speculative buffer, filling
2795 	 * in the timestamp of all entries with the current time.  The data
2796 	 * must have the commit() time rather than the time it was traced,
2797 	 * so that all entries in the primary buffer are in timestamp order.
2798 	 */
2799 	timestamp = dtrace_gethrtime();
2800 	saddr = (uintptr_t)src->dtb_tomax;
2801 	slimit = saddr + src->dtb_offset;
2802 	while (saddr < slimit) {
2803 		size_t size;
2804 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2805 
2806 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2807 			saddr += sizeof (dtrace_epid_t);
2808 			continue;
2809 		}
2810 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2811 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2812 
2813 		ASSERT3U(saddr + size, <=, slimit);
2814 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2815 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2816 
2817 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2818 
2819 		saddr += size;
2820 	}
2821 
2822 	/*
2823 	 * Copy the buffer across.  (Note that this is a
2824 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2825 	 * a serious performance issue, a high-performance DTrace-specific
2826 	 * bcopy() should obviously be invented.)
2827 	 */
2828 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2829 	dlimit = daddr + src->dtb_offset;
2830 	saddr = (uintptr_t)src->dtb_tomax;
2831 
2832 	/*
2833 	 * First, the aligned portion.
2834 	 */
2835 	while (dlimit - daddr >= sizeof (uint64_t)) {
2836 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2837 
2838 		daddr += sizeof (uint64_t);
2839 		saddr += sizeof (uint64_t);
2840 	}
2841 
2842 	/*
2843 	 * Now any left-over bit...
2844 	 */
2845 	while (dlimit - daddr)
2846 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2847 
2848 	/*
2849 	 * Finally, commit the reserved space in the destination buffer.
2850 	 */
2851 	dest->dtb_offset = offs + src->dtb_offset;
2852 
2853 out:
2854 	/*
2855 	 * If we're lucky enough to be the only active CPU on this speculation
2856 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2857 	 */
2858 	if (current == DTRACESPEC_ACTIVE ||
2859 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2860 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2861 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2862 
2863 		ASSERT(rval == DTRACESPEC_COMMITTING);
2864 	}
2865 
2866 	src->dtb_offset = 0;
2867 	src->dtb_xamot_drops += src->dtb_drops;
2868 	src->dtb_drops = 0;
2869 }
2870 
2871 /*
2872  * This routine discards an active speculation.  If the specified speculation
2873  * is not in a valid state to perform a discard(), this routine will silently
2874  * do nothing.  The state of the specified speculation is transitioned
2875  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2876  */
2877 static void
2878 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2879     dtrace_specid_t which)
2880 {
2881 	dtrace_speculation_t *spec;
2882 	dtrace_speculation_state_t current, new;
2883 	dtrace_buffer_t *buf;
2884 
2885 	if (which == 0)
2886 		return;
2887 
2888 	if (which > state->dts_nspeculations) {
2889 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2890 		return;
2891 	}
2892 
2893 	spec = &state->dts_speculations[which - 1];
2894 	buf = &spec->dtsp_buffer[cpu];
2895 
2896 	do {
2897 		current = spec->dtsp_state;
2898 
2899 		switch (current) {
2900 		case DTRACESPEC_INACTIVE:
2901 		case DTRACESPEC_COMMITTINGMANY:
2902 		case DTRACESPEC_COMMITTING:
2903 		case DTRACESPEC_DISCARDING:
2904 			return;
2905 
2906 		case DTRACESPEC_ACTIVE:
2907 		case DTRACESPEC_ACTIVEMANY:
2908 			new = DTRACESPEC_DISCARDING;
2909 			break;
2910 
2911 		case DTRACESPEC_ACTIVEONE:
2912 			if (buf->dtb_offset != 0) {
2913 				new = DTRACESPEC_INACTIVE;
2914 			} else {
2915 				new = DTRACESPEC_DISCARDING;
2916 			}
2917 			break;
2918 
2919 		default:
2920 			ASSERT(0);
2921 		}
2922 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2923 	    current, new) != current);
2924 
2925 	buf->dtb_offset = 0;
2926 	buf->dtb_drops = 0;
2927 }
2928 
2929 /*
2930  * Note:  not called from probe context.  This function is called
2931  * asynchronously from cross call context to clean any speculations that are
2932  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2933  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2934  * speculation.
2935  */
2936 static void
2937 dtrace_speculation_clean_here(dtrace_state_t *state)
2938 {
2939 	dtrace_icookie_t cookie;
2940 	processorid_t cpu = CPU->cpu_id;
2941 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2942 	dtrace_specid_t i;
2943 
2944 	cookie = dtrace_interrupt_disable();
2945 
2946 	if (dest->dtb_tomax == NULL) {
2947 		dtrace_interrupt_enable(cookie);
2948 		return;
2949 	}
2950 
2951 	for (i = 0; i < state->dts_nspeculations; i++) {
2952 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2953 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2954 
2955 		if (src->dtb_tomax == NULL)
2956 			continue;
2957 
2958 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2959 			src->dtb_offset = 0;
2960 			continue;
2961 		}
2962 
2963 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2964 			continue;
2965 
2966 		if (src->dtb_offset == 0)
2967 			continue;
2968 
2969 		dtrace_speculation_commit(state, cpu, i + 1);
2970 	}
2971 
2972 	dtrace_interrupt_enable(cookie);
2973 }
2974 
2975 /*
2976  * Note:  not called from probe context.  This function is called
2977  * asynchronously (and at a regular interval) to clean any speculations that
2978  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2979  * is work to be done, it cross calls all CPUs to perform that work;
2980  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2981  * INACTIVE state until they have been cleaned by all CPUs.
2982  */
2983 static void
2984 dtrace_speculation_clean(dtrace_state_t *state)
2985 {
2986 	int work = 0, rv;
2987 	dtrace_specid_t i;
2988 
2989 	for (i = 0; i < state->dts_nspeculations; i++) {
2990 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2991 
2992 		ASSERT(!spec->dtsp_cleaning);
2993 
2994 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2995 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2996 			continue;
2997 
2998 		work++;
2999 		spec->dtsp_cleaning = 1;
3000 	}
3001 
3002 	if (!work)
3003 		return;
3004 
3005 	dtrace_xcall(DTRACE_CPUALL,
3006 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3007 
3008 	/*
3009 	 * We now know that all CPUs have committed or discarded their
3010 	 * speculation buffers, as appropriate.  We can now set the state
3011 	 * to inactive.
3012 	 */
3013 	for (i = 0; i < state->dts_nspeculations; i++) {
3014 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3015 		dtrace_speculation_state_t current, new;
3016 
3017 		if (!spec->dtsp_cleaning)
3018 			continue;
3019 
3020 		current = spec->dtsp_state;
3021 		ASSERT(current == DTRACESPEC_DISCARDING ||
3022 		    current == DTRACESPEC_COMMITTINGMANY);
3023 
3024 		new = DTRACESPEC_INACTIVE;
3025 
3026 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3027 		ASSERT(rv == current);
3028 		spec->dtsp_cleaning = 0;
3029 	}
3030 }
3031 
3032 /*
3033  * Called as part of a speculate() to get the speculative buffer associated
3034  * with a given speculation.  Returns NULL if the specified speculation is not
3035  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3036  * the active CPU is not the specified CPU -- the speculation will be
3037  * atomically transitioned into the ACTIVEMANY state.
3038  */
3039 static dtrace_buffer_t *
3040 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3041     dtrace_specid_t which)
3042 {
3043 	dtrace_speculation_t *spec;
3044 	dtrace_speculation_state_t current, new;
3045 	dtrace_buffer_t *buf;
3046 
3047 	if (which == 0)
3048 		return (NULL);
3049 
3050 	if (which > state->dts_nspeculations) {
3051 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3052 		return (NULL);
3053 	}
3054 
3055 	spec = &state->dts_speculations[which - 1];
3056 	buf = &spec->dtsp_buffer[cpuid];
3057 
3058 	do {
3059 		current = spec->dtsp_state;
3060 
3061 		switch (current) {
3062 		case DTRACESPEC_INACTIVE:
3063 		case DTRACESPEC_COMMITTINGMANY:
3064 		case DTRACESPEC_DISCARDING:
3065 			return (NULL);
3066 
3067 		case DTRACESPEC_COMMITTING:
3068 			ASSERT(buf->dtb_offset == 0);
3069 			return (NULL);
3070 
3071 		case DTRACESPEC_ACTIVEONE:
3072 			/*
3073 			 * This speculation is currently active on one CPU.
3074 			 * Check the offset in the buffer; if it's non-zero,
3075 			 * that CPU must be us (and we leave the state alone).
3076 			 * If it's zero, assume that we're starting on a new
3077 			 * CPU -- and change the state to indicate that the
3078 			 * speculation is active on more than one CPU.
3079 			 */
3080 			if (buf->dtb_offset != 0)
3081 				return (buf);
3082 
3083 			new = DTRACESPEC_ACTIVEMANY;
3084 			break;
3085 
3086 		case DTRACESPEC_ACTIVEMANY:
3087 			return (buf);
3088 
3089 		case DTRACESPEC_ACTIVE:
3090 			new = DTRACESPEC_ACTIVEONE;
3091 			break;
3092 
3093 		default:
3094 			ASSERT(0);
3095 		}
3096 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3097 	    current, new) != current);
3098 
3099 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3100 	return (buf);
3101 }
3102 
3103 /*
3104  * Return a string.  In the event that the user lacks the privilege to access
3105  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3106  * don't fail access checking.
3107  *
3108  * dtrace_dif_variable() uses this routine as a helper for various
3109  * builtin values such as 'execname' and 'probefunc.'
3110  */
3111 uintptr_t
3112 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3113     dtrace_mstate_t *mstate)
3114 {
3115 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3116 	uintptr_t ret;
3117 	size_t strsz;
3118 
3119 	/*
3120 	 * The easy case: this probe is allowed to read all of memory, so
3121 	 * we can just return this as a vanilla pointer.
3122 	 */
3123 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3124 		return (addr);
3125 
3126 	/*
3127 	 * This is the tougher case: we copy the string in question from
3128 	 * kernel memory into scratch memory and return it that way: this
3129 	 * ensures that we won't trip up when access checking tests the
3130 	 * BYREF return value.
3131 	 */
3132 	strsz = dtrace_strlen((char *)addr, size) + 1;
3133 
3134 	if (mstate->dtms_scratch_ptr + strsz >
3135 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3136 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3137 		return (NULL);
3138 	}
3139 
3140 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3141 	    strsz);
3142 	ret = mstate->dtms_scratch_ptr;
3143 	mstate->dtms_scratch_ptr += strsz;
3144 	return (ret);
3145 }
3146 
3147 /*
3148  * This function implements the DIF emulator's variable lookups.  The emulator
3149  * passes a reserved variable identifier and optional built-in array index.
3150  */
3151 static uint64_t
3152 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3153     uint64_t ndx)
3154 {
3155 	/*
3156 	 * If we're accessing one of the uncached arguments, we'll turn this
3157 	 * into a reference in the args array.
3158 	 */
3159 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3160 		ndx = v - DIF_VAR_ARG0;
3161 		v = DIF_VAR_ARGS;
3162 	}
3163 
3164 	switch (v) {
3165 	case DIF_VAR_ARGS:
3166 		if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
3167 			cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
3168 			    CPU_DTRACE_KPRIV;
3169 			return (0);
3170 		}
3171 
3172 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3173 		if (ndx >= sizeof (mstate->dtms_arg) /
3174 		    sizeof (mstate->dtms_arg[0])) {
3175 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3176 			dtrace_provider_t *pv;
3177 			uint64_t val;
3178 
3179 			pv = mstate->dtms_probe->dtpr_provider;
3180 			if (pv->dtpv_pops.dtps_getargval != NULL)
3181 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3182 				    mstate->dtms_probe->dtpr_id,
3183 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3184 			else
3185 				val = dtrace_getarg(ndx, aframes);
3186 
3187 			/*
3188 			 * This is regrettably required to keep the compiler
3189 			 * from tail-optimizing the call to dtrace_getarg().
3190 			 * The condition always evaluates to true, but the
3191 			 * compiler has no way of figuring that out a priori.
3192 			 * (None of this would be necessary if the compiler
3193 			 * could be relied upon to _always_ tail-optimize
3194 			 * the call to dtrace_getarg() -- but it can't.)
3195 			 */
3196 			if (mstate->dtms_probe != NULL)
3197 				return (val);
3198 
3199 			ASSERT(0);
3200 		}
3201 
3202 		return (mstate->dtms_arg[ndx]);
3203 
3204 	case DIF_VAR_UREGS: {
3205 		klwp_t *lwp;
3206 
3207 		if (!dtrace_priv_proc(state, mstate))
3208 			return (0);
3209 
3210 		if ((lwp = curthread->t_lwp) == NULL) {
3211 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3212 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3213 			return (0);
3214 		}
3215 
3216 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3217 	}
3218 
3219 	case DIF_VAR_VMREGS: {
3220 		uint64_t rval;
3221 
3222 		if (!dtrace_priv_kernel(state))
3223 			return (0);
3224 
3225 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3226 
3227 		rval = dtrace_getvmreg(ndx,
3228 		    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3229 
3230 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3231 
3232 		return (rval);
3233 	}
3234 
3235 	case DIF_VAR_CURTHREAD:
3236 		if (!dtrace_priv_proc(state, mstate))
3237 			return (0);
3238 		return ((uint64_t)(uintptr_t)curthread);
3239 
3240 	case DIF_VAR_TIMESTAMP:
3241 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3242 			mstate->dtms_timestamp = dtrace_gethrtime();
3243 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3244 		}
3245 		return (mstate->dtms_timestamp);
3246 
3247 	case DIF_VAR_VTIMESTAMP:
3248 		ASSERT(dtrace_vtime_references != 0);
3249 		return (curthread->t_dtrace_vtime);
3250 
3251 	case DIF_VAR_WALLTIMESTAMP:
3252 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3253 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3254 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3255 		}
3256 		return (mstate->dtms_walltimestamp);
3257 
3258 	case DIF_VAR_IPL:
3259 		if (!dtrace_priv_kernel(state))
3260 			return (0);
3261 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3262 			mstate->dtms_ipl = dtrace_getipl();
3263 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3264 		}
3265 		return (mstate->dtms_ipl);
3266 
3267 	case DIF_VAR_EPID:
3268 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3269 		return (mstate->dtms_epid);
3270 
3271 	case DIF_VAR_ID:
3272 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3273 		return (mstate->dtms_probe->dtpr_id);
3274 
3275 	case DIF_VAR_STACKDEPTH:
3276 		if (!dtrace_priv_kernel(state))
3277 			return (0);
3278 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3279 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3280 
3281 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3282 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3283 		}
3284 		return (mstate->dtms_stackdepth);
3285 
3286 	case DIF_VAR_USTACKDEPTH:
3287 		if (!dtrace_priv_proc(state, mstate))
3288 			return (0);
3289 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3290 			/*
3291 			 * See comment in DIF_VAR_PID.
3292 			 */
3293 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3294 			    CPU_ON_INTR(CPU)) {
3295 				mstate->dtms_ustackdepth = 0;
3296 			} else {
3297 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3298 				mstate->dtms_ustackdepth =
3299 				    dtrace_getustackdepth();
3300 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3301 			}
3302 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3303 		}
3304 		return (mstate->dtms_ustackdepth);
3305 
3306 	case DIF_VAR_CALLER:
3307 		if (!dtrace_priv_kernel(state))
3308 			return (0);
3309 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3310 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3311 
3312 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3313 				/*
3314 				 * If this is an unanchored probe, we are
3315 				 * required to go through the slow path:
3316 				 * dtrace_caller() only guarantees correct
3317 				 * results for anchored probes.
3318 				 */
3319 				pc_t caller[2];
3320 
3321 				dtrace_getpcstack(caller, 2, aframes,
3322 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3323 				mstate->dtms_caller = caller[1];
3324 			} else if ((mstate->dtms_caller =
3325 			    dtrace_caller(aframes)) == -1) {
3326 				/*
3327 				 * We have failed to do this the quick way;
3328 				 * we must resort to the slower approach of
3329 				 * calling dtrace_getpcstack().
3330 				 */
3331 				pc_t caller;
3332 
3333 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3334 				mstate->dtms_caller = caller;
3335 			}
3336 
3337 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3338 		}
3339 		return (mstate->dtms_caller);
3340 
3341 	case DIF_VAR_UCALLER:
3342 		if (!dtrace_priv_proc(state, mstate))
3343 			return (0);
3344 
3345 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3346 			uint64_t ustack[3];
3347 
3348 			/*
3349 			 * dtrace_getupcstack() fills in the first uint64_t
3350 			 * with the current PID.  The second uint64_t will
3351 			 * be the program counter at user-level.  The third
3352 			 * uint64_t will contain the caller, which is what
3353 			 * we're after.
3354 			 */
3355 			ustack[2] = NULL;
3356 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3357 			dtrace_getupcstack(ustack, 3);
3358 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3359 			mstate->dtms_ucaller = ustack[2];
3360 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3361 		}
3362 
3363 		return (mstate->dtms_ucaller);
3364 
3365 	case DIF_VAR_PROBEPROV:
3366 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3367 		return (dtrace_dif_varstr(
3368 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3369 		    state, mstate));
3370 
3371 	case DIF_VAR_PROBEMOD:
3372 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3373 		return (dtrace_dif_varstr(
3374 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3375 		    state, mstate));
3376 
3377 	case DIF_VAR_PROBEFUNC:
3378 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3379 		return (dtrace_dif_varstr(
3380 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3381 		    state, mstate));
3382 
3383 	case DIF_VAR_PROBENAME:
3384 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3385 		return (dtrace_dif_varstr(
3386 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3387 		    state, mstate));
3388 
3389 	case DIF_VAR_PID:
3390 		if (!dtrace_priv_proc(state, mstate))
3391 			return (0);
3392 
3393 		/*
3394 		 * Note that we are assuming that an unanchored probe is
3395 		 * always due to a high-level interrupt.  (And we're assuming
3396 		 * that there is only a single high level interrupt.)
3397 		 */
3398 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3399 			return (pid0.pid_id);
3400 
3401 		/*
3402 		 * It is always safe to dereference one's own t_procp pointer:
3403 		 * it always points to a valid, allocated proc structure.
3404 		 * Further, it is always safe to dereference the p_pidp member
3405 		 * of one's own proc structure.  (These are truisms becuase
3406 		 * threads and processes don't clean up their own state --
3407 		 * they leave that task to whomever reaps them.)
3408 		 */
3409 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3410 
3411 	case DIF_VAR_PPID:
3412 		if (!dtrace_priv_proc(state, mstate))
3413 			return (0);
3414 
3415 		/*
3416 		 * See comment in DIF_VAR_PID.
3417 		 */
3418 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3419 			return (pid0.pid_id);
3420 
3421 		/*
3422 		 * It is always safe to dereference one's own t_procp pointer:
3423 		 * it always points to a valid, allocated proc structure.
3424 		 * (This is true because threads don't clean up their own
3425 		 * state -- they leave that task to whomever reaps them.)
3426 		 */
3427 		return ((uint64_t)curthread->t_procp->p_ppid);
3428 
3429 	case DIF_VAR_TID:
3430 		/*
3431 		 * See comment in DIF_VAR_PID.
3432 		 */
3433 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3434 			return (0);
3435 
3436 		return ((uint64_t)curthread->t_tid);
3437 
3438 	case DIF_VAR_EXECNAME:
3439 		if (!dtrace_priv_proc(state, mstate))
3440 			return (0);
3441 
3442 		/*
3443 		 * See comment in DIF_VAR_PID.
3444 		 */
3445 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3446 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3447 
3448 		/*
3449 		 * It is always safe to dereference one's own t_procp pointer:
3450 		 * it always points to a valid, allocated proc structure.
3451 		 * (This is true because threads don't clean up their own
3452 		 * state -- they leave that task to whomever reaps them.)
3453 		 */
3454 		return (dtrace_dif_varstr(
3455 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3456 		    state, mstate));
3457 
3458 	case DIF_VAR_ZONENAME:
3459 		if (!dtrace_priv_proc(state, mstate))
3460 			return (0);
3461 
3462 		/*
3463 		 * See comment in DIF_VAR_PID.
3464 		 */
3465 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3466 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3467 
3468 		/*
3469 		 * It is always safe to dereference one's own t_procp pointer:
3470 		 * it always points to a valid, allocated proc structure.
3471 		 * (This is true because threads don't clean up their own
3472 		 * state -- they leave that task to whomever reaps them.)
3473 		 */
3474 		return (dtrace_dif_varstr(
3475 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3476 		    state, mstate));
3477 
3478 	case DIF_VAR_UID:
3479 		if (!dtrace_priv_proc(state, mstate))
3480 			return (0);
3481 
3482 		/*
3483 		 * See comment in DIF_VAR_PID.
3484 		 */
3485 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3486 			return ((uint64_t)p0.p_cred->cr_uid);
3487 
3488 		/*
3489 		 * It is always safe to dereference one's own t_procp pointer:
3490 		 * it always points to a valid, allocated proc structure.
3491 		 * (This is true because threads don't clean up their own
3492 		 * state -- they leave that task to whomever reaps them.)
3493 		 *
3494 		 * Additionally, it is safe to dereference one's own process
3495 		 * credential, since this is never NULL after process birth.
3496 		 */
3497 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3498 
3499 	case DIF_VAR_GID:
3500 		if (!dtrace_priv_proc(state, mstate))
3501 			return (0);
3502 
3503 		/*
3504 		 * See comment in DIF_VAR_PID.
3505 		 */
3506 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3507 			return ((uint64_t)p0.p_cred->cr_gid);
3508 
3509 		/*
3510 		 * It is always safe to dereference one's own t_procp pointer:
3511 		 * it always points to a valid, allocated proc structure.
3512 		 * (This is true because threads don't clean up their own
3513 		 * state -- they leave that task to whomever reaps them.)
3514 		 *
3515 		 * Additionally, it is safe to dereference one's own process
3516 		 * credential, since this is never NULL after process birth.
3517 		 */
3518 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3519 
3520 	case DIF_VAR_ERRNO: {
3521 		klwp_t *lwp;
3522 		if (!dtrace_priv_proc(state, mstate))
3523 			return (0);
3524 
3525 		/*
3526 		 * See comment in DIF_VAR_PID.
3527 		 */
3528 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3529 			return (0);
3530 
3531 		/*
3532 		 * It is always safe to dereference one's own t_lwp pointer in
3533 		 * the event that this pointer is non-NULL.  (This is true
3534 		 * because threads and lwps don't clean up their own state --
3535 		 * they leave that task to whomever reaps them.)
3536 		 */
3537 		if ((lwp = curthread->t_lwp) == NULL)
3538 			return (0);
3539 
3540 		return ((uint64_t)lwp->lwp_errno);
3541 	}
3542 	default:
3543 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3544 		return (0);
3545 	}
3546 }
3547 
3548 
3549 typedef enum dtrace_json_state {
3550 	DTRACE_JSON_REST = 1,
3551 	DTRACE_JSON_OBJECT,
3552 	DTRACE_JSON_STRING,
3553 	DTRACE_JSON_STRING_ESCAPE,
3554 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3555 	DTRACE_JSON_COLON,
3556 	DTRACE_JSON_COMMA,
3557 	DTRACE_JSON_VALUE,
3558 	DTRACE_JSON_IDENTIFIER,
3559 	DTRACE_JSON_NUMBER,
3560 	DTRACE_JSON_NUMBER_FRAC,
3561 	DTRACE_JSON_NUMBER_EXP,
3562 	DTRACE_JSON_COLLECT_OBJECT
3563 } dtrace_json_state_t;
3564 
3565 /*
3566  * This function possesses just enough knowledge about JSON to extract a single
3567  * value from a JSON string and store it in the scratch buffer.  It is able
3568  * to extract nested object values, and members of arrays by index.
3569  *
3570  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3571  * be looked up as we descend into the object tree.  e.g.
3572  *
3573  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3574  *       with nelems = 5.
3575  *
3576  * The run time of this function must be bounded above by strsize to limit the
3577  * amount of work done in probe context.  As such, it is implemented as a
3578  * simple state machine, reading one character at a time using safe loads
3579  * until we find the requested element, hit a parsing error or run off the
3580  * end of the object or string.
3581  *
3582  * As there is no way for a subroutine to return an error without interrupting
3583  * clause execution, we simply return NULL in the event of a missing key or any
3584  * other error condition.  Each NULL return in this function is commented with
3585  * the error condition it represents -- parsing or otherwise.
3586  *
3587  * The set of states for the state machine closely matches the JSON
3588  * specification (http://json.org/).  Briefly:
3589  *
3590  *   DTRACE_JSON_REST:
3591  *     Skip whitespace until we find either a top-level Object, moving
3592  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3593  *
3594  *   DTRACE_JSON_OBJECT:
3595  *     Locate the next key String in an Object.  Sets a flag to denote
3596  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3597  *
3598  *   DTRACE_JSON_COLON:
3599  *     Skip whitespace until we find the colon that separates key Strings
3600  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3601  *
3602  *   DTRACE_JSON_VALUE:
3603  *     Detects the type of the next value (String, Number, Identifier, Object
3604  *     or Array) and routes to the states that process that type.  Here we also
3605  *     deal with the element selector list if we are requested to traverse down
3606  *     into the object tree.
3607  *
3608  *   DTRACE_JSON_COMMA:
3609  *     Skip whitespace until we find the comma that separates key-value pairs
3610  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3611  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3612  *     states return to this state at the end of their value, unless otherwise
3613  *     noted.
3614  *
3615  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3616  *     Processes a Number literal from the JSON, including any exponent
3617  *     component that may be present.  Numbers are returned as strings, which
3618  *     may be passed to strtoll() if an integer is required.
3619  *
3620  *   DTRACE_JSON_IDENTIFIER:
3621  *     Processes a "true", "false" or "null" literal in the JSON.
3622  *
3623  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3624  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3625  *     Processes a String literal from the JSON, whether the String denotes
3626  *     a key, a value or part of a larger Object.  Handles all escape sequences
3627  *     present in the specification, including four-digit unicode characters,
3628  *     but merely includes the escape sequence without converting it to the
3629  *     actual escaped character.  If the String is flagged as a key, we
3630  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3631  *
3632  *   DTRACE_JSON_COLLECT_OBJECT:
3633  *     This state collects an entire Object (or Array), correctly handling
3634  *     embedded strings.  If the full element selector list matches this nested
3635  *     object, we return the Object in full as a string.  If not, we use this
3636  *     state to skip to the next value at this level and continue processing.
3637  *
3638  * NOTE: This function uses various macros from strtolctype.h to manipulate
3639  * digit values, etc -- these have all been checked to ensure they make
3640  * no additional function calls.
3641  */
3642 static char *
3643 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3644     char *dest)
3645 {
3646 	dtrace_json_state_t state = DTRACE_JSON_REST;
3647 	int64_t array_elem = INT64_MIN;
3648 	int64_t array_pos = 0;
3649 	uint8_t escape_unicount = 0;
3650 	boolean_t string_is_key = B_FALSE;
3651 	boolean_t collect_object = B_FALSE;
3652 	boolean_t found_key = B_FALSE;
3653 	boolean_t in_array = B_FALSE;
3654 	uint32_t braces = 0, brackets = 0;
3655 	char *elem = elemlist;
3656 	char *dd = dest;
3657 	uintptr_t cur;
3658 
3659 	for (cur = json; cur < json + size; cur++) {
3660 		char cc = dtrace_load8(cur);
3661 		if (cc == '\0')
3662 			return (NULL);
3663 
3664 		switch (state) {
3665 		case DTRACE_JSON_REST:
3666 			if (isspace(cc))
3667 				break;
3668 
3669 			if (cc == '{') {
3670 				state = DTRACE_JSON_OBJECT;
3671 				break;
3672 			}
3673 
3674 			if (cc == '[') {
3675 				in_array = B_TRUE;
3676 				array_pos = 0;
3677 				array_elem = dtrace_strtoll(elem, 10, size);
3678 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3679 				state = DTRACE_JSON_VALUE;
3680 				break;
3681 			}
3682 
3683 			/*
3684 			 * ERROR: expected to find a top-level object or array.
3685 			 */
3686 			return (NULL);
3687 		case DTRACE_JSON_OBJECT:
3688 			if (isspace(cc))
3689 				break;
3690 
3691 			if (cc == '"') {
3692 				state = DTRACE_JSON_STRING;
3693 				string_is_key = B_TRUE;
3694 				break;
3695 			}
3696 
3697 			/*
3698 			 * ERROR: either the object did not start with a key
3699 			 * string, or we've run off the end of the object
3700 			 * without finding the requested key.
3701 			 */
3702 			return (NULL);
3703 		case DTRACE_JSON_STRING:
3704 			if (cc == '\\') {
3705 				*dd++ = '\\';
3706 				state = DTRACE_JSON_STRING_ESCAPE;
3707 				break;
3708 			}
3709 
3710 			if (cc == '"') {
3711 				if (collect_object) {
3712 					/*
3713 					 * We don't reset the dest here, as
3714 					 * the string is part of a larger
3715 					 * object being collected.
3716 					 */
3717 					*dd++ = cc;
3718 					collect_object = B_FALSE;
3719 					state = DTRACE_JSON_COLLECT_OBJECT;
3720 					break;
3721 				}
3722 				*dd = '\0';
3723 				dd = dest; /* reset string buffer */
3724 				if (string_is_key) {
3725 					if (dtrace_strncmp(dest, elem,
3726 					    size) == 0)
3727 						found_key = B_TRUE;
3728 				} else if (found_key) {
3729 					if (nelems > 1) {
3730 						/*
3731 						 * We expected an object, not
3732 						 * this string.
3733 						 */
3734 						return (NULL);
3735 					}
3736 					return (dest);
3737 				}
3738 				state = string_is_key ? DTRACE_JSON_COLON :
3739 				    DTRACE_JSON_COMMA;
3740 				string_is_key = B_FALSE;
3741 				break;
3742 			}
3743 
3744 			*dd++ = cc;
3745 			break;
3746 		case DTRACE_JSON_STRING_ESCAPE:
3747 			*dd++ = cc;
3748 			if (cc == 'u') {
3749 				escape_unicount = 0;
3750 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3751 			} else {
3752 				state = DTRACE_JSON_STRING;
3753 			}
3754 			break;
3755 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3756 			if (!isxdigit(cc)) {
3757 				/*
3758 				 * ERROR: invalid unicode escape, expected
3759 				 * four valid hexidecimal digits.
3760 				 */
3761 				return (NULL);
3762 			}
3763 
3764 			*dd++ = cc;
3765 			if (++escape_unicount == 4)
3766 				state = DTRACE_JSON_STRING;
3767 			break;
3768 		case DTRACE_JSON_COLON:
3769 			if (isspace(cc))
3770 				break;
3771 
3772 			if (cc == ':') {
3773 				state = DTRACE_JSON_VALUE;
3774 				break;
3775 			}
3776 
3777 			/*
3778 			 * ERROR: expected a colon.
3779 			 */
3780 			return (NULL);
3781 		case DTRACE_JSON_COMMA:
3782 			if (isspace(cc))
3783 				break;
3784 
3785 			if (cc == ',') {
3786 				if (in_array) {
3787 					state = DTRACE_JSON_VALUE;
3788 					if (++array_pos == array_elem)
3789 						found_key = B_TRUE;
3790 				} else {
3791 					state = DTRACE_JSON_OBJECT;
3792 				}
3793 				break;
3794 			}
3795 
3796 			/*
3797 			 * ERROR: either we hit an unexpected character, or
3798 			 * we reached the end of the object or array without
3799 			 * finding the requested key.
3800 			 */
3801 			return (NULL);
3802 		case DTRACE_JSON_IDENTIFIER:
3803 			if (islower(cc)) {
3804 				*dd++ = cc;
3805 				break;
3806 			}
3807 
3808 			*dd = '\0';
3809 			dd = dest; /* reset string buffer */
3810 
3811 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
3812 			    dtrace_strncmp(dest, "false", 6) == 0 ||
3813 			    dtrace_strncmp(dest, "null", 5) == 0) {
3814 				if (found_key) {
3815 					if (nelems > 1) {
3816 						/*
3817 						 * ERROR: We expected an object,
3818 						 * not this identifier.
3819 						 */
3820 						return (NULL);
3821 					}
3822 					return (dest);
3823 				} else {
3824 					cur--;
3825 					state = DTRACE_JSON_COMMA;
3826 					break;
3827 				}
3828 			}
3829 
3830 			/*
3831 			 * ERROR: we did not recognise the identifier as one
3832 			 * of those in the JSON specification.
3833 			 */
3834 			return (NULL);
3835 		case DTRACE_JSON_NUMBER:
3836 			if (cc == '.') {
3837 				*dd++ = cc;
3838 				state = DTRACE_JSON_NUMBER_FRAC;
3839 				break;
3840 			}
3841 
3842 			if (cc == 'x' || cc == 'X') {
3843 				/*
3844 				 * ERROR: specification explicitly excludes
3845 				 * hexidecimal or octal numbers.
3846 				 */
3847 				return (NULL);
3848 			}
3849 
3850 			/* FALLTHRU */
3851 		case DTRACE_JSON_NUMBER_FRAC:
3852 			if (cc == 'e' || cc == 'E') {
3853 				*dd++ = cc;
3854 				state = DTRACE_JSON_NUMBER_EXP;
3855 				break;
3856 			}
3857 
3858 			if (cc == '+' || cc == '-') {
3859 				/*
3860 				 * ERROR: expect sign as part of exponent only.
3861 				 */
3862 				return (NULL);
3863 			}
3864 			/* FALLTHRU */
3865 		case DTRACE_JSON_NUMBER_EXP:
3866 			if (isdigit(cc) || cc == '+' || cc == '-') {
3867 				*dd++ = cc;
3868 				break;
3869 			}
3870 
3871 			*dd = '\0';
3872 			dd = dest; /* reset string buffer */
3873 			if (found_key) {
3874 				if (nelems > 1) {
3875 					/*
3876 					 * ERROR: We expected an object, not
3877 					 * this number.
3878 					 */
3879 					return (NULL);
3880 				}
3881 				return (dest);
3882 			}
3883 
3884 			cur--;
3885 			state = DTRACE_JSON_COMMA;
3886 			break;
3887 		case DTRACE_JSON_VALUE:
3888 			if (isspace(cc))
3889 				break;
3890 
3891 			if (cc == '{' || cc == '[') {
3892 				if (nelems > 1 && found_key) {
3893 					in_array = cc == '[' ? B_TRUE : B_FALSE;
3894 					/*
3895 					 * If our element selector directs us
3896 					 * to descend into this nested object,
3897 					 * then move to the next selector
3898 					 * element in the list and restart the
3899 					 * state machine.
3900 					 */
3901 					while (*elem != '\0')
3902 						elem++;
3903 					elem++; /* skip the inter-element NUL */
3904 					nelems--;
3905 					dd = dest;
3906 					if (in_array) {
3907 						state = DTRACE_JSON_VALUE;
3908 						array_pos = 0;
3909 						array_elem = dtrace_strtoll(
3910 						    elem, 10, size);
3911 						found_key = array_elem == 0 ?
3912 						    B_TRUE : B_FALSE;
3913 					} else {
3914 						found_key = B_FALSE;
3915 						state = DTRACE_JSON_OBJECT;
3916 					}
3917 					break;
3918 				}
3919 
3920 				/*
3921 				 * Otherwise, we wish to either skip this
3922 				 * nested object or return it in full.
3923 				 */
3924 				if (cc == '[')
3925 					brackets = 1;
3926 				else
3927 					braces = 1;
3928 				*dd++ = cc;
3929 				state = DTRACE_JSON_COLLECT_OBJECT;
3930 				break;
3931 			}
3932 
3933 			if (cc == '"') {
3934 				state = DTRACE_JSON_STRING;
3935 				break;
3936 			}
3937 
3938 			if (islower(cc)) {
3939 				/*
3940 				 * Here we deal with true, false and null.
3941 				 */
3942 				*dd++ = cc;
3943 				state = DTRACE_JSON_IDENTIFIER;
3944 				break;
3945 			}
3946 
3947 			if (cc == '-' || isdigit(cc)) {
3948 				*dd++ = cc;
3949 				state = DTRACE_JSON_NUMBER;
3950 				break;
3951 			}
3952 
3953 			/*
3954 			 * ERROR: unexpected character at start of value.
3955 			 */
3956 			return (NULL);
3957 		case DTRACE_JSON_COLLECT_OBJECT:
3958 			if (cc == '\0')
3959 				/*
3960 				 * ERROR: unexpected end of input.
3961 				 */
3962 				return (NULL);
3963 
3964 			*dd++ = cc;
3965 			if (cc == '"') {
3966 				collect_object = B_TRUE;
3967 				state = DTRACE_JSON_STRING;
3968 				break;
3969 			}
3970 
3971 			if (cc == ']') {
3972 				if (brackets-- == 0) {
3973 					/*
3974 					 * ERROR: unbalanced brackets.
3975 					 */
3976 					return (NULL);
3977 				}
3978 			} else if (cc == '}') {
3979 				if (braces-- == 0) {
3980 					/*
3981 					 * ERROR: unbalanced braces.
3982 					 */
3983 					return (NULL);
3984 				}
3985 			} else if (cc == '{') {
3986 				braces++;
3987 			} else if (cc == '[') {
3988 				brackets++;
3989 			}
3990 
3991 			if (brackets == 0 && braces == 0) {
3992 				if (found_key) {
3993 					*dd = '\0';
3994 					return (dest);
3995 				}
3996 				dd = dest; /* reset string buffer */
3997 				state = DTRACE_JSON_COMMA;
3998 			}
3999 			break;
4000 		}
4001 	}
4002 	return (NULL);
4003 }
4004 
4005 /*
4006  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4007  * Notice that we don't bother validating the proper number of arguments or
4008  * their types in the tuple stack.  This isn't needed because all argument
4009  * interpretation is safe because of our load safety -- the worst that can
4010  * happen is that a bogus program can obtain bogus results.
4011  */
4012 static void
4013 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4014     dtrace_key_t *tupregs, int nargs,
4015     dtrace_mstate_t *mstate, dtrace_state_t *state)
4016 {
4017 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4018 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4019 	dtrace_vstate_t *vstate = &state->dts_vstate;
4020 
4021 	union {
4022 		mutex_impl_t mi;
4023 		uint64_t mx;
4024 	} m;
4025 
4026 	union {
4027 		krwlock_t ri;
4028 		uintptr_t rw;
4029 	} r;
4030 
4031 	switch (subr) {
4032 	case DIF_SUBR_RAND:
4033 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4034 		break;
4035 
4036 	case DIF_SUBR_MUTEX_OWNED:
4037 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4038 		    mstate, vstate)) {
4039 			regs[rd] = NULL;
4040 			break;
4041 		}
4042 
4043 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4044 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4045 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4046 		else
4047 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4048 		break;
4049 
4050 	case DIF_SUBR_MUTEX_OWNER:
4051 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4052 		    mstate, vstate)) {
4053 			regs[rd] = NULL;
4054 			break;
4055 		}
4056 
4057 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4058 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4059 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4060 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4061 		else
4062 			regs[rd] = 0;
4063 		break;
4064 
4065 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4066 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4067 		    mstate, vstate)) {
4068 			regs[rd] = NULL;
4069 			break;
4070 		}
4071 
4072 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4073 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4074 		break;
4075 
4076 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4077 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4078 		    mstate, vstate)) {
4079 			regs[rd] = NULL;
4080 			break;
4081 		}
4082 
4083 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4084 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4085 		break;
4086 
4087 	case DIF_SUBR_RW_READ_HELD: {
4088 		uintptr_t tmp;
4089 
4090 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4091 		    mstate, vstate)) {
4092 			regs[rd] = NULL;
4093 			break;
4094 		}
4095 
4096 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4097 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4098 		break;
4099 	}
4100 
4101 	case DIF_SUBR_RW_WRITE_HELD:
4102 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4103 		    mstate, vstate)) {
4104 			regs[rd] = NULL;
4105 			break;
4106 		}
4107 
4108 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4109 		regs[rd] = _RW_WRITE_HELD(&r.ri);
4110 		break;
4111 
4112 	case DIF_SUBR_RW_ISWRITER:
4113 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4114 		    mstate, vstate)) {
4115 			regs[rd] = NULL;
4116 			break;
4117 		}
4118 
4119 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4120 		regs[rd] = _RW_ISWRITER(&r.ri);
4121 		break;
4122 
4123 	case DIF_SUBR_BCOPY: {
4124 		/*
4125 		 * We need to be sure that the destination is in the scratch
4126 		 * region -- no other region is allowed.
4127 		 */
4128 		uintptr_t src = tupregs[0].dttk_value;
4129 		uintptr_t dest = tupregs[1].dttk_value;
4130 		size_t size = tupregs[2].dttk_value;
4131 
4132 		if (!dtrace_inscratch(dest, size, mstate)) {
4133 			*flags |= CPU_DTRACE_BADADDR;
4134 			*illval = regs[rd];
4135 			break;
4136 		}
4137 
4138 		if (!dtrace_canload(src, size, mstate, vstate)) {
4139 			regs[rd] = NULL;
4140 			break;
4141 		}
4142 
4143 		dtrace_bcopy((void *)src, (void *)dest, size);
4144 		break;
4145 	}
4146 
4147 	case DIF_SUBR_ALLOCA:
4148 	case DIF_SUBR_COPYIN: {
4149 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4150 		uint64_t size =
4151 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4152 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4153 
4154 		/*
4155 		 * This action doesn't require any credential checks since
4156 		 * probes will not activate in user contexts to which the
4157 		 * enabling user does not have permissions.
4158 		 */
4159 
4160 		/*
4161 		 * Rounding up the user allocation size could have overflowed
4162 		 * a large, bogus allocation (like -1ULL) to 0.
4163 		 */
4164 		if (scratch_size < size ||
4165 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4166 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4167 			regs[rd] = NULL;
4168 			break;
4169 		}
4170 
4171 		if (subr == DIF_SUBR_COPYIN) {
4172 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4173 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4174 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4175 		}
4176 
4177 		mstate->dtms_scratch_ptr += scratch_size;
4178 		regs[rd] = dest;
4179 		break;
4180 	}
4181 
4182 	case DIF_SUBR_COPYINTO: {
4183 		uint64_t size = tupregs[1].dttk_value;
4184 		uintptr_t dest = tupregs[2].dttk_value;
4185 
4186 		/*
4187 		 * This action doesn't require any credential checks since
4188 		 * probes will not activate in user contexts to which the
4189 		 * enabling user does not have permissions.
4190 		 */
4191 		if (!dtrace_inscratch(dest, size, mstate)) {
4192 			*flags |= CPU_DTRACE_BADADDR;
4193 			*illval = regs[rd];
4194 			break;
4195 		}
4196 
4197 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4198 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4199 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4200 		break;
4201 	}
4202 
4203 	case DIF_SUBR_COPYINSTR: {
4204 		uintptr_t dest = mstate->dtms_scratch_ptr;
4205 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4206 
4207 		if (nargs > 1 && tupregs[1].dttk_value < size)
4208 			size = tupregs[1].dttk_value + 1;
4209 
4210 		/*
4211 		 * This action doesn't require any credential checks since
4212 		 * probes will not activate in user contexts to which the
4213 		 * enabling user does not have permissions.
4214 		 */
4215 		if (!DTRACE_INSCRATCH(mstate, size)) {
4216 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4217 			regs[rd] = NULL;
4218 			break;
4219 		}
4220 
4221 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4222 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4223 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4224 
4225 		((char *)dest)[size - 1] = '\0';
4226 		mstate->dtms_scratch_ptr += size;
4227 		regs[rd] = dest;
4228 		break;
4229 	}
4230 
4231 	case DIF_SUBR_MSGSIZE:
4232 	case DIF_SUBR_MSGDSIZE: {
4233 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4234 		uintptr_t wptr, rptr;
4235 		size_t count = 0;
4236 		int cont = 0;
4237 
4238 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4239 
4240 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4241 			    vstate)) {
4242 				regs[rd] = NULL;
4243 				break;
4244 			}
4245 
4246 			wptr = dtrace_loadptr(baddr +
4247 			    offsetof(mblk_t, b_wptr));
4248 
4249 			rptr = dtrace_loadptr(baddr +
4250 			    offsetof(mblk_t, b_rptr));
4251 
4252 			if (wptr < rptr) {
4253 				*flags |= CPU_DTRACE_BADADDR;
4254 				*illval = tupregs[0].dttk_value;
4255 				break;
4256 			}
4257 
4258 			daddr = dtrace_loadptr(baddr +
4259 			    offsetof(mblk_t, b_datap));
4260 
4261 			baddr = dtrace_loadptr(baddr +
4262 			    offsetof(mblk_t, b_cont));
4263 
4264 			/*
4265 			 * We want to prevent against denial-of-service here,
4266 			 * so we're only going to search the list for
4267 			 * dtrace_msgdsize_max mblks.
4268 			 */
4269 			if (cont++ > dtrace_msgdsize_max) {
4270 				*flags |= CPU_DTRACE_ILLOP;
4271 				break;
4272 			}
4273 
4274 			if (subr == DIF_SUBR_MSGDSIZE) {
4275 				if (dtrace_load8(daddr +
4276 				    offsetof(dblk_t, db_type)) != M_DATA)
4277 					continue;
4278 			}
4279 
4280 			count += wptr - rptr;
4281 		}
4282 
4283 		if (!(*flags & CPU_DTRACE_FAULT))
4284 			regs[rd] = count;
4285 
4286 		break;
4287 	}
4288 
4289 	case DIF_SUBR_PROGENYOF: {
4290 		pid_t pid = tupregs[0].dttk_value;
4291 		proc_t *p;
4292 		int rval = 0;
4293 
4294 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4295 
4296 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4297 			if (p->p_pidp->pid_id == pid) {
4298 				rval = 1;
4299 				break;
4300 			}
4301 		}
4302 
4303 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4304 
4305 		regs[rd] = rval;
4306 		break;
4307 	}
4308 
4309 	case DIF_SUBR_SPECULATION:
4310 		regs[rd] = dtrace_speculation(state);
4311 		break;
4312 
4313 	case DIF_SUBR_COPYOUT: {
4314 		uintptr_t kaddr = tupregs[0].dttk_value;
4315 		uintptr_t uaddr = tupregs[1].dttk_value;
4316 		uint64_t size = tupregs[2].dttk_value;
4317 
4318 		if (!dtrace_destructive_disallow &&
4319 		    dtrace_priv_proc_control(state, mstate) &&
4320 		    !dtrace_istoxic(kaddr, size) &&
4321 		    dtrace_canload(kaddr, size, mstate, vstate)) {
4322 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4323 			dtrace_copyout(kaddr, uaddr, size, flags);
4324 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4325 		}
4326 		break;
4327 	}
4328 
4329 	case DIF_SUBR_COPYOUTSTR: {
4330 		uintptr_t kaddr = tupregs[0].dttk_value;
4331 		uintptr_t uaddr = tupregs[1].dttk_value;
4332 		uint64_t size = tupregs[2].dttk_value;
4333 		size_t lim;
4334 
4335 		if (!dtrace_destructive_disallow &&
4336 		    dtrace_priv_proc_control(state, mstate) &&
4337 		    !dtrace_istoxic(kaddr, size) &&
4338 		    dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4339 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4340 			dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4341 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4342 		}
4343 		break;
4344 	}
4345 
4346 	case DIF_SUBR_STRLEN: {
4347 		size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4348 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4349 		size_t lim;
4350 
4351 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4352 			regs[rd] = NULL;
4353 			break;
4354 		}
4355 		regs[rd] = dtrace_strlen((char *)addr, lim);
4356 
4357 		break;
4358 	}
4359 
4360 	case DIF_SUBR_STRCHR:
4361 	case DIF_SUBR_STRRCHR: {
4362 		/*
4363 		 * We're going to iterate over the string looking for the
4364 		 * specified character.  We will iterate until we have reached
4365 		 * the string length or we have found the character.  If this
4366 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4367 		 * of the specified character instead of the first.
4368 		 */
4369 		uintptr_t addr = tupregs[0].dttk_value;
4370 		uintptr_t addr_limit;
4371 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4372 		size_t lim;
4373 		char c, target = (char)tupregs[1].dttk_value;
4374 
4375 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4376 			regs[rd] = NULL;
4377 			break;
4378 		}
4379 		addr_limit = addr + lim;
4380 
4381 		for (regs[rd] = NULL; addr < addr_limit; addr++) {
4382 			if ((c = dtrace_load8(addr)) == target) {
4383 				regs[rd] = addr;
4384 
4385 				if (subr == DIF_SUBR_STRCHR)
4386 					break;
4387 			}
4388 			if (c == '\0')
4389 				break;
4390 		}
4391 
4392 		break;
4393 	}
4394 
4395 	case DIF_SUBR_STRSTR:
4396 	case DIF_SUBR_INDEX:
4397 	case DIF_SUBR_RINDEX: {
4398 		/*
4399 		 * We're going to iterate over the string looking for the
4400 		 * specified string.  We will iterate until we have reached
4401 		 * the string length or we have found the string.  (Yes, this
4402 		 * is done in the most naive way possible -- but considering
4403 		 * that the string we're searching for is likely to be
4404 		 * relatively short, the complexity of Rabin-Karp or similar
4405 		 * hardly seems merited.)
4406 		 */
4407 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4408 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4409 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4410 		size_t len = dtrace_strlen(addr, size);
4411 		size_t sublen = dtrace_strlen(substr, size);
4412 		char *limit = addr + len, *orig = addr;
4413 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4414 		int inc = 1;
4415 
4416 		regs[rd] = notfound;
4417 
4418 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4419 			regs[rd] = NULL;
4420 			break;
4421 		}
4422 
4423 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4424 		    vstate)) {
4425 			regs[rd] = NULL;
4426 			break;
4427 		}
4428 
4429 		/*
4430 		 * strstr() and index()/rindex() have similar semantics if
4431 		 * both strings are the empty string: strstr() returns a
4432 		 * pointer to the (empty) string, and index() and rindex()
4433 		 * both return index 0 (regardless of any position argument).
4434 		 */
4435 		if (sublen == 0 && len == 0) {
4436 			if (subr == DIF_SUBR_STRSTR)
4437 				regs[rd] = (uintptr_t)addr;
4438 			else
4439 				regs[rd] = 0;
4440 			break;
4441 		}
4442 
4443 		if (subr != DIF_SUBR_STRSTR) {
4444 			if (subr == DIF_SUBR_RINDEX) {
4445 				limit = orig - 1;
4446 				addr += len;
4447 				inc = -1;
4448 			}
4449 
4450 			/*
4451 			 * Both index() and rindex() take an optional position
4452 			 * argument that denotes the starting position.
4453 			 */
4454 			if (nargs == 3) {
4455 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4456 
4457 				/*
4458 				 * If the position argument to index() is
4459 				 * negative, Perl implicitly clamps it at
4460 				 * zero.  This semantic is a little surprising
4461 				 * given the special meaning of negative
4462 				 * positions to similar Perl functions like
4463 				 * substr(), but it appears to reflect a
4464 				 * notion that index() can start from a
4465 				 * negative index and increment its way up to
4466 				 * the string.  Given this notion, Perl's
4467 				 * rindex() is at least self-consistent in
4468 				 * that it implicitly clamps positions greater
4469 				 * than the string length to be the string
4470 				 * length.  Where Perl completely loses
4471 				 * coherence, however, is when the specified
4472 				 * substring is the empty string ("").  In
4473 				 * this case, even if the position is
4474 				 * negative, rindex() returns 0 -- and even if
4475 				 * the position is greater than the length,
4476 				 * index() returns the string length.  These
4477 				 * semantics violate the notion that index()
4478 				 * should never return a value less than the
4479 				 * specified position and that rindex() should
4480 				 * never return a value greater than the
4481 				 * specified position.  (One assumes that
4482 				 * these semantics are artifacts of Perl's
4483 				 * implementation and not the results of
4484 				 * deliberate design -- it beggars belief that
4485 				 * even Larry Wall could desire such oddness.)
4486 				 * While in the abstract one would wish for
4487 				 * consistent position semantics across
4488 				 * substr(), index() and rindex() -- or at the
4489 				 * very least self-consistent position
4490 				 * semantics for index() and rindex() -- we
4491 				 * instead opt to keep with the extant Perl
4492 				 * semantics, in all their broken glory.  (Do
4493 				 * we have more desire to maintain Perl's
4494 				 * semantics than Perl does?  Probably.)
4495 				 */
4496 				if (subr == DIF_SUBR_RINDEX) {
4497 					if (pos < 0) {
4498 						if (sublen == 0)
4499 							regs[rd] = 0;
4500 						break;
4501 					}
4502 
4503 					if (pos > len)
4504 						pos = len;
4505 				} else {
4506 					if (pos < 0)
4507 						pos = 0;
4508 
4509 					if (pos >= len) {
4510 						if (sublen == 0)
4511 							regs[rd] = len;
4512 						break;
4513 					}
4514 				}
4515 
4516 				addr = orig + pos;
4517 			}
4518 		}
4519 
4520 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4521 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4522 				if (subr != DIF_SUBR_STRSTR) {
4523 					/*
4524 					 * As D index() and rindex() are
4525 					 * modeled on Perl (and not on awk),
4526 					 * we return a zero-based (and not a
4527 					 * one-based) index.  (For you Perl
4528 					 * weenies: no, we're not going to add
4529 					 * $[ -- and shouldn't you be at a con
4530 					 * or something?)
4531 					 */
4532 					regs[rd] = (uintptr_t)(addr - orig);
4533 					break;
4534 				}
4535 
4536 				ASSERT(subr == DIF_SUBR_STRSTR);
4537 				regs[rd] = (uintptr_t)addr;
4538 				break;
4539 			}
4540 		}
4541 
4542 		break;
4543 	}
4544 
4545 	case DIF_SUBR_STRTOK: {
4546 		uintptr_t addr = tupregs[0].dttk_value;
4547 		uintptr_t tokaddr = tupregs[1].dttk_value;
4548 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4549 		uintptr_t limit, toklimit;
4550 		size_t clim;
4551 		uint8_t c, tokmap[32];	 /* 256 / 8 */
4552 		char *dest = (char *)mstate->dtms_scratch_ptr;
4553 		int i;
4554 
4555 		/*
4556 		 * Check both the token buffer and (later) the input buffer,
4557 		 * since both could be non-scratch addresses.
4558 		 */
4559 		if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4560 			regs[rd] = NULL;
4561 			break;
4562 		}
4563 		toklimit = tokaddr + clim;
4564 
4565 		if (!DTRACE_INSCRATCH(mstate, size)) {
4566 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4567 			regs[rd] = NULL;
4568 			break;
4569 		}
4570 
4571 		if (addr == NULL) {
4572 			/*
4573 			 * If the address specified is NULL, we use our saved
4574 			 * strtok pointer from the mstate.  Note that this
4575 			 * means that the saved strtok pointer is _only_
4576 			 * valid within multiple enablings of the same probe --
4577 			 * it behaves like an implicit clause-local variable.
4578 			 */
4579 			addr = mstate->dtms_strtok;
4580 			limit = mstate->dtms_strtok_limit;
4581 		} else {
4582 			/*
4583 			 * If the user-specified address is non-NULL we must
4584 			 * access check it.  This is the only time we have
4585 			 * a chance to do so, since this address may reside
4586 			 * in the string table of this clause-- future calls
4587 			 * (when we fetch addr from mstate->dtms_strtok)
4588 			 * would fail this access check.
4589 			 */
4590 			if (!dtrace_strcanload(addr, size, &clim, mstate,
4591 			    vstate)) {
4592 				regs[rd] = NULL;
4593 				break;
4594 			}
4595 			limit = addr + clim;
4596 		}
4597 
4598 		/*
4599 		 * First, zero the token map, and then process the token
4600 		 * string -- setting a bit in the map for every character
4601 		 * found in the token string.
4602 		 */
4603 		for (i = 0; i < sizeof (tokmap); i++)
4604 			tokmap[i] = 0;
4605 
4606 		for (; tokaddr < toklimit; tokaddr++) {
4607 			if ((c = dtrace_load8(tokaddr)) == '\0')
4608 				break;
4609 
4610 			ASSERT((c >> 3) < sizeof (tokmap));
4611 			tokmap[c >> 3] |= (1 << (c & 0x7));
4612 		}
4613 
4614 		for (; addr < limit; addr++) {
4615 			/*
4616 			 * We're looking for a character that is _not_
4617 			 * contained in the token string.
4618 			 */
4619 			if ((c = dtrace_load8(addr)) == '\0')
4620 				break;
4621 
4622 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4623 				break;
4624 		}
4625 
4626 		if (c == '\0') {
4627 			/*
4628 			 * We reached the end of the string without finding
4629 			 * any character that was not in the token string.
4630 			 * We return NULL in this case, and we set the saved
4631 			 * address to NULL as well.
4632 			 */
4633 			regs[rd] = NULL;
4634 			mstate->dtms_strtok = NULL;
4635 			mstate->dtms_strtok_limit = NULL;
4636 			break;
4637 		}
4638 
4639 		/*
4640 		 * From here on, we're copying into the destination string.
4641 		 */
4642 		for (i = 0; addr < limit && i < size - 1; addr++) {
4643 			if ((c = dtrace_load8(addr)) == '\0')
4644 				break;
4645 
4646 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4647 				break;
4648 
4649 			ASSERT(i < size);
4650 			dest[i++] = c;
4651 		}
4652 
4653 		ASSERT(i < size);
4654 		dest[i] = '\0';
4655 		regs[rd] = (uintptr_t)dest;
4656 		mstate->dtms_scratch_ptr += size;
4657 		mstate->dtms_strtok = addr;
4658 		mstate->dtms_strtok_limit = limit;
4659 		break;
4660 	}
4661 
4662 	case DIF_SUBR_SUBSTR: {
4663 		uintptr_t s = tupregs[0].dttk_value;
4664 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4665 		char *d = (char *)mstate->dtms_scratch_ptr;
4666 		int64_t index = (int64_t)tupregs[1].dttk_value;
4667 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4668 		size_t len = dtrace_strlen((char *)s, size);
4669 		int64_t i;
4670 
4671 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4672 			regs[rd] = NULL;
4673 			break;
4674 		}
4675 
4676 		if (!DTRACE_INSCRATCH(mstate, size)) {
4677 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4678 			regs[rd] = NULL;
4679 			break;
4680 		}
4681 
4682 		if (nargs <= 2)
4683 			remaining = (int64_t)size;
4684 
4685 		if (index < 0) {
4686 			index += len;
4687 
4688 			if (index < 0 && index + remaining > 0) {
4689 				remaining += index;
4690 				index = 0;
4691 			}
4692 		}
4693 
4694 		if (index >= len || index < 0) {
4695 			remaining = 0;
4696 		} else if (remaining < 0) {
4697 			remaining += len - index;
4698 		} else if (index + remaining > size) {
4699 			remaining = size - index;
4700 		}
4701 
4702 		for (i = 0; i < remaining; i++) {
4703 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4704 				break;
4705 		}
4706 
4707 		d[i] = '\0';
4708 
4709 		mstate->dtms_scratch_ptr += size;
4710 		regs[rd] = (uintptr_t)d;
4711 		break;
4712 	}
4713 
4714 	case DIF_SUBR_JSON: {
4715 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4716 		uintptr_t json = tupregs[0].dttk_value;
4717 		size_t jsonlen = dtrace_strlen((char *)json, size);
4718 		uintptr_t elem = tupregs[1].dttk_value;
4719 		size_t elemlen = dtrace_strlen((char *)elem, size);
4720 
4721 		char *dest = (char *)mstate->dtms_scratch_ptr;
4722 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4723 		char *ee = elemlist;
4724 		int nelems = 1;
4725 		uintptr_t cur;
4726 
4727 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4728 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4729 			regs[rd] = NULL;
4730 			break;
4731 		}
4732 
4733 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4734 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4735 			regs[rd] = NULL;
4736 			break;
4737 		}
4738 
4739 		/*
4740 		 * Read the element selector and split it up into a packed list
4741 		 * of strings.
4742 		 */
4743 		for (cur = elem; cur < elem + elemlen; cur++) {
4744 			char cc = dtrace_load8(cur);
4745 
4746 			if (cur == elem && cc == '[') {
4747 				/*
4748 				 * If the first element selector key is
4749 				 * actually an array index then ignore the
4750 				 * bracket.
4751 				 */
4752 				continue;
4753 			}
4754 
4755 			if (cc == ']')
4756 				continue;
4757 
4758 			if (cc == '.' || cc == '[') {
4759 				nelems++;
4760 				cc = '\0';
4761 			}
4762 
4763 			*ee++ = cc;
4764 		}
4765 		*ee++ = '\0';
4766 
4767 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4768 		    nelems, dest)) != NULL)
4769 			mstate->dtms_scratch_ptr += jsonlen + 1;
4770 		break;
4771 	}
4772 
4773 	case DIF_SUBR_TOUPPER:
4774 	case DIF_SUBR_TOLOWER: {
4775 		uintptr_t s = tupregs[0].dttk_value;
4776 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4777 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4778 		size_t len = dtrace_strlen((char *)s, size);
4779 		char lower, upper, convert;
4780 		int64_t i;
4781 
4782 		if (subr == DIF_SUBR_TOUPPER) {
4783 			lower = 'a';
4784 			upper = 'z';
4785 			convert = 'A';
4786 		} else {
4787 			lower = 'A';
4788 			upper = 'Z';
4789 			convert = 'a';
4790 		}
4791 
4792 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4793 			regs[rd] = NULL;
4794 			break;
4795 		}
4796 
4797 		if (!DTRACE_INSCRATCH(mstate, size)) {
4798 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4799 			regs[rd] = NULL;
4800 			break;
4801 		}
4802 
4803 		for (i = 0; i < size - 1; i++) {
4804 			if ((c = dtrace_load8(s + i)) == '\0')
4805 				break;
4806 
4807 			if (c >= lower && c <= upper)
4808 				c = convert + (c - lower);
4809 
4810 			dest[i] = c;
4811 		}
4812 
4813 		ASSERT(i < size);
4814 		dest[i] = '\0';
4815 		regs[rd] = (uintptr_t)dest;
4816 		mstate->dtms_scratch_ptr += size;
4817 		break;
4818 	}
4819 
4820 case DIF_SUBR_GETMAJOR:
4821 #ifdef _LP64
4822 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4823 #else
4824 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4825 #endif
4826 		break;
4827 
4828 	case DIF_SUBR_GETMINOR:
4829 #ifdef _LP64
4830 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4831 #else
4832 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4833 #endif
4834 		break;
4835 
4836 	case DIF_SUBR_DDI_PATHNAME: {
4837 		/*
4838 		 * This one is a galactic mess.  We are going to roughly
4839 		 * emulate ddi_pathname(), but it's made more complicated
4840 		 * by the fact that we (a) want to include the minor name and
4841 		 * (b) must proceed iteratively instead of recursively.
4842 		 */
4843 		uintptr_t dest = mstate->dtms_scratch_ptr;
4844 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4845 		char *start = (char *)dest, *end = start + size - 1;
4846 		uintptr_t daddr = tupregs[0].dttk_value;
4847 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4848 		char *s;
4849 		int i, len, depth = 0;
4850 
4851 		/*
4852 		 * Due to all the pointer jumping we do and context we must
4853 		 * rely upon, we just mandate that the user must have kernel
4854 		 * read privileges to use this routine.
4855 		 */
4856 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4857 			*flags |= CPU_DTRACE_KPRIV;
4858 			*illval = daddr;
4859 			regs[rd] = NULL;
4860 		}
4861 
4862 		if (!DTRACE_INSCRATCH(mstate, size)) {
4863 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4864 			regs[rd] = NULL;
4865 			break;
4866 		}
4867 
4868 		*end = '\0';
4869 
4870 		/*
4871 		 * We want to have a name for the minor.  In order to do this,
4872 		 * we need to walk the minor list from the devinfo.  We want
4873 		 * to be sure that we don't infinitely walk a circular list,
4874 		 * so we check for circularity by sending a scout pointer
4875 		 * ahead two elements for every element that we iterate over;
4876 		 * if the list is circular, these will ultimately point to the
4877 		 * same element.  You may recognize this little trick as the
4878 		 * answer to a stupid interview question -- one that always
4879 		 * seems to be asked by those who had to have it laboriously
4880 		 * explained to them, and who can't even concisely describe
4881 		 * the conditions under which one would be forced to resort to
4882 		 * this technique.  Needless to say, those conditions are
4883 		 * found here -- and probably only here.  Is this the only use
4884 		 * of this infamous trick in shipping, production code?  If it
4885 		 * isn't, it probably should be...
4886 		 */
4887 		if (minor != -1) {
4888 			uintptr_t maddr = dtrace_loadptr(daddr +
4889 			    offsetof(struct dev_info, devi_minor));
4890 
4891 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4892 			uintptr_t name = offsetof(struct ddi_minor_data,
4893 			    d_minor) + offsetof(struct ddi_minor, name);
4894 			uintptr_t dev = offsetof(struct ddi_minor_data,
4895 			    d_minor) + offsetof(struct ddi_minor, dev);
4896 			uintptr_t scout;
4897 
4898 			if (maddr != NULL)
4899 				scout = dtrace_loadptr(maddr + next);
4900 
4901 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4902 				uint64_t m;
4903 #ifdef _LP64
4904 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4905 #else
4906 				m = dtrace_load32(maddr + dev) & MAXMIN;
4907 #endif
4908 				if (m != minor) {
4909 					maddr = dtrace_loadptr(maddr + next);
4910 
4911 					if (scout == NULL)
4912 						continue;
4913 
4914 					scout = dtrace_loadptr(scout + next);
4915 
4916 					if (scout == NULL)
4917 						continue;
4918 
4919 					scout = dtrace_loadptr(scout + next);
4920 
4921 					if (scout == NULL)
4922 						continue;
4923 
4924 					if (scout == maddr) {
4925 						*flags |= CPU_DTRACE_ILLOP;
4926 						break;
4927 					}
4928 
4929 					continue;
4930 				}
4931 
4932 				/*
4933 				 * We have the minor data.  Now we need to
4934 				 * copy the minor's name into the end of the
4935 				 * pathname.
4936 				 */
4937 				s = (char *)dtrace_loadptr(maddr + name);
4938 				len = dtrace_strlen(s, size);
4939 
4940 				if (*flags & CPU_DTRACE_FAULT)
4941 					break;
4942 
4943 				if (len != 0) {
4944 					if ((end -= (len + 1)) < start)
4945 						break;
4946 
4947 					*end = ':';
4948 				}
4949 
4950 				for (i = 1; i <= len; i++)
4951 					end[i] = dtrace_load8((uintptr_t)s++);
4952 				break;
4953 			}
4954 		}
4955 
4956 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4957 			ddi_node_state_t devi_state;
4958 
4959 			devi_state = dtrace_load32(daddr +
4960 			    offsetof(struct dev_info, devi_node_state));
4961 
4962 			if (*flags & CPU_DTRACE_FAULT)
4963 				break;
4964 
4965 			if (devi_state >= DS_INITIALIZED) {
4966 				s = (char *)dtrace_loadptr(daddr +
4967 				    offsetof(struct dev_info, devi_addr));
4968 				len = dtrace_strlen(s, size);
4969 
4970 				if (*flags & CPU_DTRACE_FAULT)
4971 					break;
4972 
4973 				if (len != 0) {
4974 					if ((end -= (len + 1)) < start)
4975 						break;
4976 
4977 					*end = '@';
4978 				}
4979 
4980 				for (i = 1; i <= len; i++)
4981 					end[i] = dtrace_load8((uintptr_t)s++);
4982 			}
4983 
4984 			/*
4985 			 * Now for the node name...
4986 			 */
4987 			s = (char *)dtrace_loadptr(daddr +
4988 			    offsetof(struct dev_info, devi_node_name));
4989 
4990 			daddr = dtrace_loadptr(daddr +
4991 			    offsetof(struct dev_info, devi_parent));
4992 
4993 			/*
4994 			 * If our parent is NULL (that is, if we're the root
4995 			 * node), we're going to use the special path
4996 			 * "devices".
4997 			 */
4998 			if (daddr == NULL)
4999 				s = "devices";
5000 
5001 			len = dtrace_strlen(s, size);
5002 			if (*flags & CPU_DTRACE_FAULT)
5003 				break;
5004 
5005 			if ((end -= (len + 1)) < start)
5006 				break;
5007 
5008 			for (i = 1; i <= len; i++)
5009 				end[i] = dtrace_load8((uintptr_t)s++);
5010 			*end = '/';
5011 
5012 			if (depth++ > dtrace_devdepth_max) {
5013 				*flags |= CPU_DTRACE_ILLOP;
5014 				break;
5015 			}
5016 		}
5017 
5018 		if (end < start)
5019 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5020 
5021 		if (daddr == NULL) {
5022 			regs[rd] = (uintptr_t)end;
5023 			mstate->dtms_scratch_ptr += size;
5024 		}
5025 
5026 		break;
5027 	}
5028 
5029 	case DIF_SUBR_STRJOIN: {
5030 		char *d = (char *)mstate->dtms_scratch_ptr;
5031 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5032 		uintptr_t s1 = tupregs[0].dttk_value;
5033 		uintptr_t s2 = tupregs[1].dttk_value;
5034 		int i = 0, j = 0;
5035 		size_t lim1, lim2;
5036 		char c;
5037 
5038 		if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5039 		    !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5040 			regs[rd] = NULL;
5041 			break;
5042 		}
5043 
5044 		if (!DTRACE_INSCRATCH(mstate, size)) {
5045 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5046 			regs[rd] = NULL;
5047 			break;
5048 		}
5049 
5050 		for (;;) {
5051 			if (i >= size) {
5052 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5053 				regs[rd] = NULL;
5054 				break;
5055 			}
5056 			c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5057 			if ((d[i++] = c) == '\0') {
5058 				i--;
5059 				break;
5060 			}
5061 		}
5062 
5063 		for (;;) {
5064 			if (i >= size) {
5065 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5066 				regs[rd] = NULL;
5067 				break;
5068 			}
5069 
5070 			c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5071 			if ((d[i++] = c) == '\0')
5072 				break;
5073 		}
5074 
5075 		if (i < size) {
5076 			mstate->dtms_scratch_ptr += i;
5077 			regs[rd] = (uintptr_t)d;
5078 		}
5079 
5080 		break;
5081 	}
5082 
5083 	case DIF_SUBR_STRTOLL: {
5084 		uintptr_t s = tupregs[0].dttk_value;
5085 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5086 		size_t lim;
5087 		int base = 10;
5088 
5089 		if (nargs > 1) {
5090 			if ((base = tupregs[1].dttk_value) <= 1 ||
5091 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5092 				*flags |= CPU_DTRACE_ILLOP;
5093 				break;
5094 			}
5095 		}
5096 
5097 		if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5098 			regs[rd] = INT64_MIN;
5099 			break;
5100 		}
5101 
5102 		regs[rd] = dtrace_strtoll((char *)s, base, lim);
5103 		break;
5104 	}
5105 
5106 	case DIF_SUBR_LLTOSTR: {
5107 		int64_t i = (int64_t)tupregs[0].dttk_value;
5108 		uint64_t val, digit;
5109 		uint64_t size = 65;	/* enough room for 2^64 in binary */
5110 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5111 		int base = 10;
5112 
5113 		if (nargs > 1) {
5114 			if ((base = tupregs[1].dttk_value) <= 1 ||
5115 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5116 				*flags |= CPU_DTRACE_ILLOP;
5117 				break;
5118 			}
5119 		}
5120 
5121 		val = (base == 10 && i < 0) ? i * -1 : i;
5122 
5123 		if (!DTRACE_INSCRATCH(mstate, size)) {
5124 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5125 			regs[rd] = NULL;
5126 			break;
5127 		}
5128 
5129 		for (*end-- = '\0'; val; val /= base) {
5130 			if ((digit = val % base) <= '9' - '0') {
5131 				*end-- = '0' + digit;
5132 			} else {
5133 				*end-- = 'a' + (digit - ('9' - '0') - 1);
5134 			}
5135 		}
5136 
5137 		if (i == 0 && base == 16)
5138 			*end-- = '0';
5139 
5140 		if (base == 16)
5141 			*end-- = 'x';
5142 
5143 		if (i == 0 || base == 8 || base == 16)
5144 			*end-- = '0';
5145 
5146 		if (i < 0 && base == 10)
5147 			*end-- = '-';
5148 
5149 		regs[rd] = (uintptr_t)end + 1;
5150 		mstate->dtms_scratch_ptr += size;
5151 		break;
5152 	}
5153 
5154 	case DIF_SUBR_HTONS:
5155 	case DIF_SUBR_NTOHS:
5156 #ifdef _BIG_ENDIAN
5157 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5158 #else
5159 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5160 #endif
5161 		break;
5162 
5163 
5164 	case DIF_SUBR_HTONL:
5165 	case DIF_SUBR_NTOHL:
5166 #ifdef _BIG_ENDIAN
5167 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5168 #else
5169 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5170 #endif
5171 		break;
5172 
5173 
5174 	case DIF_SUBR_HTONLL:
5175 	case DIF_SUBR_NTOHLL:
5176 #ifdef _BIG_ENDIAN
5177 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5178 #else
5179 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5180 #endif
5181 		break;
5182 
5183 
5184 	case DIF_SUBR_DIRNAME:
5185 	case DIF_SUBR_BASENAME: {
5186 		char *dest = (char *)mstate->dtms_scratch_ptr;
5187 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5188 		uintptr_t src = tupregs[0].dttk_value;
5189 		int i, j, len = dtrace_strlen((char *)src, size);
5190 		int lastbase = -1, firstbase = -1, lastdir = -1;
5191 		int start, end;
5192 
5193 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5194 			regs[rd] = NULL;
5195 			break;
5196 		}
5197 
5198 		if (!DTRACE_INSCRATCH(mstate, size)) {
5199 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5200 			regs[rd] = NULL;
5201 			break;
5202 		}
5203 
5204 		/*
5205 		 * The basename and dirname for a zero-length string is
5206 		 * defined to be "."
5207 		 */
5208 		if (len == 0) {
5209 			len = 1;
5210 			src = (uintptr_t)".";
5211 		}
5212 
5213 		/*
5214 		 * Start from the back of the string, moving back toward the
5215 		 * front until we see a character that isn't a slash.  That
5216 		 * character is the last character in the basename.
5217 		 */
5218 		for (i = len - 1; i >= 0; i--) {
5219 			if (dtrace_load8(src + i) != '/')
5220 				break;
5221 		}
5222 
5223 		if (i >= 0)
5224 			lastbase = i;
5225 
5226 		/*
5227 		 * Starting from the last character in the basename, move
5228 		 * towards the front until we find a slash.  The character
5229 		 * that we processed immediately before that is the first
5230 		 * character in the basename.
5231 		 */
5232 		for (; i >= 0; i--) {
5233 			if (dtrace_load8(src + i) == '/')
5234 				break;
5235 		}
5236 
5237 		if (i >= 0)
5238 			firstbase = i + 1;
5239 
5240 		/*
5241 		 * Now keep going until we find a non-slash character.  That
5242 		 * character is the last character in the dirname.
5243 		 */
5244 		for (; i >= 0; i--) {
5245 			if (dtrace_load8(src + i) != '/')
5246 				break;
5247 		}
5248 
5249 		if (i >= 0)
5250 			lastdir = i;
5251 
5252 		ASSERT(!(lastbase == -1 && firstbase != -1));
5253 		ASSERT(!(firstbase == -1 && lastdir != -1));
5254 
5255 		if (lastbase == -1) {
5256 			/*
5257 			 * We didn't find a non-slash character.  We know that
5258 			 * the length is non-zero, so the whole string must be
5259 			 * slashes.  In either the dirname or the basename
5260 			 * case, we return '/'.
5261 			 */
5262 			ASSERT(firstbase == -1);
5263 			firstbase = lastbase = lastdir = 0;
5264 		}
5265 
5266 		if (firstbase == -1) {
5267 			/*
5268 			 * The entire string consists only of a basename
5269 			 * component.  If we're looking for dirname, we need
5270 			 * to change our string to be just "."; if we're
5271 			 * looking for a basename, we'll just set the first
5272 			 * character of the basename to be 0.
5273 			 */
5274 			if (subr == DIF_SUBR_DIRNAME) {
5275 				ASSERT(lastdir == -1);
5276 				src = (uintptr_t)".";
5277 				lastdir = 0;
5278 			} else {
5279 				firstbase = 0;
5280 			}
5281 		}
5282 
5283 		if (subr == DIF_SUBR_DIRNAME) {
5284 			if (lastdir == -1) {
5285 				/*
5286 				 * We know that we have a slash in the name --
5287 				 * or lastdir would be set to 0, above.  And
5288 				 * because lastdir is -1, we know that this
5289 				 * slash must be the first character.  (That
5290 				 * is, the full string must be of the form
5291 				 * "/basename".)  In this case, the last
5292 				 * character of the directory name is 0.
5293 				 */
5294 				lastdir = 0;
5295 			}
5296 
5297 			start = 0;
5298 			end = lastdir;
5299 		} else {
5300 			ASSERT(subr == DIF_SUBR_BASENAME);
5301 			ASSERT(firstbase != -1 && lastbase != -1);
5302 			start = firstbase;
5303 			end = lastbase;
5304 		}
5305 
5306 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5307 			dest[j] = dtrace_load8(src + i);
5308 
5309 		dest[j] = '\0';
5310 		regs[rd] = (uintptr_t)dest;
5311 		mstate->dtms_scratch_ptr += size;
5312 		break;
5313 	}
5314 
5315 	case DIF_SUBR_GETF: {
5316 		uintptr_t fd = tupregs[0].dttk_value;
5317 		uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
5318 		file_t *fp;
5319 
5320 		if (!dtrace_priv_proc(state, mstate)) {
5321 			regs[rd] = NULL;
5322 			break;
5323 		}
5324 
5325 		/*
5326 		 * This is safe because fi_nfiles only increases, and the
5327 		 * fi_list array is not freed when the array size doubles.
5328 		 * (See the comment in flist_grow() for details on the
5329 		 * management of the u_finfo structure.)
5330 		 */
5331 		fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
5332 
5333 		mstate->dtms_getf = fp;
5334 		regs[rd] = (uintptr_t)fp;
5335 		break;
5336 	}
5337 
5338 	case DIF_SUBR_CLEANPATH: {
5339 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5340 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5341 		uintptr_t src = tupregs[0].dttk_value;
5342 		size_t lim;
5343 		int i = 0, j = 0;
5344 		zone_t *z;
5345 
5346 		if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5347 			regs[rd] = NULL;
5348 			break;
5349 		}
5350 
5351 		if (!DTRACE_INSCRATCH(mstate, size)) {
5352 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5353 			regs[rd] = NULL;
5354 			break;
5355 		}
5356 
5357 		/*
5358 		 * Move forward, loading each character.
5359 		 */
5360 		do {
5361 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5362 next:
5363 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5364 				break;
5365 
5366 			if (c != '/') {
5367 				dest[j++] = c;
5368 				continue;
5369 			}
5370 
5371 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5372 
5373 			if (c == '/') {
5374 				/*
5375 				 * We have two slashes -- we can just advance
5376 				 * to the next character.
5377 				 */
5378 				goto next;
5379 			}
5380 
5381 			if (c != '.') {
5382 				/*
5383 				 * This is not "." and it's not ".." -- we can
5384 				 * just store the "/" and this character and
5385 				 * drive on.
5386 				 */
5387 				dest[j++] = '/';
5388 				dest[j++] = c;
5389 				continue;
5390 			}
5391 
5392 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5393 
5394 			if (c == '/') {
5395 				/*
5396 				 * This is a "/./" component.  We're not going
5397 				 * to store anything in the destination buffer;
5398 				 * we're just going to go to the next component.
5399 				 */
5400 				goto next;
5401 			}
5402 
5403 			if (c != '.') {
5404 				/*
5405 				 * This is not ".." -- we can just store the
5406 				 * "/." and this character and continue
5407 				 * processing.
5408 				 */
5409 				dest[j++] = '/';
5410 				dest[j++] = '.';
5411 				dest[j++] = c;
5412 				continue;
5413 			}
5414 
5415 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5416 
5417 			if (c != '/' && c != '\0') {
5418 				/*
5419 				 * This is not ".." -- it's "..[mumble]".
5420 				 * We'll store the "/.." and this character
5421 				 * and continue processing.
5422 				 */
5423 				dest[j++] = '/';
5424 				dest[j++] = '.';
5425 				dest[j++] = '.';
5426 				dest[j++] = c;
5427 				continue;
5428 			}
5429 
5430 			/*
5431 			 * This is "/../" or "/..\0".  We need to back up
5432 			 * our destination pointer until we find a "/".
5433 			 */
5434 			i--;
5435 			while (j != 0 && dest[--j] != '/')
5436 				continue;
5437 
5438 			if (c == '\0')
5439 				dest[++j] = '/';
5440 		} while (c != '\0');
5441 
5442 		dest[j] = '\0';
5443 
5444 		if (mstate->dtms_getf != NULL &&
5445 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5446 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5447 			/*
5448 			 * If we've done a getf() as a part of this ECB and we
5449 			 * don't have kernel access (and we're not in the global
5450 			 * zone), check if the path we cleaned up begins with
5451 			 * the zone's root path, and trim it off if so.  Note
5452 			 * that this is an output cleanliness issue, not a
5453 			 * security issue: knowing one's zone root path does
5454 			 * not enable privilege escalation.
5455 			 */
5456 			if (strstr(dest, z->zone_rootpath) == dest)
5457 				dest += strlen(z->zone_rootpath) - 1;
5458 		}
5459 
5460 		regs[rd] = (uintptr_t)dest;
5461 		mstate->dtms_scratch_ptr += size;
5462 		break;
5463 	}
5464 
5465 	case DIF_SUBR_INET_NTOA:
5466 	case DIF_SUBR_INET_NTOA6:
5467 	case DIF_SUBR_INET_NTOP: {
5468 		size_t size;
5469 		int af, argi, i;
5470 		char *base, *end;
5471 
5472 		if (subr == DIF_SUBR_INET_NTOP) {
5473 			af = (int)tupregs[0].dttk_value;
5474 			argi = 1;
5475 		} else {
5476 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5477 			argi = 0;
5478 		}
5479 
5480 		if (af == AF_INET) {
5481 			ipaddr_t ip4;
5482 			uint8_t *ptr8, val;
5483 
5484 			if (!dtrace_canload(tupregs[argi].dttk_value,
5485 			    sizeof (ipaddr_t), mstate, vstate)) {
5486 				regs[rd] = NULL;
5487 				break;
5488 			}
5489 
5490 			/*
5491 			 * Safely load the IPv4 address.
5492 			 */
5493 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5494 
5495 			/*
5496 			 * Check an IPv4 string will fit in scratch.
5497 			 */
5498 			size = INET_ADDRSTRLEN;
5499 			if (!DTRACE_INSCRATCH(mstate, size)) {
5500 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5501 				regs[rd] = NULL;
5502 				break;
5503 			}
5504 			base = (char *)mstate->dtms_scratch_ptr;
5505 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5506 
5507 			/*
5508 			 * Stringify as a dotted decimal quad.
5509 			 */
5510 			*end-- = '\0';
5511 			ptr8 = (uint8_t *)&ip4;
5512 			for (i = 3; i >= 0; i--) {
5513 				val = ptr8[i];
5514 
5515 				if (val == 0) {
5516 					*end-- = '0';
5517 				} else {
5518 					for (; val; val /= 10) {
5519 						*end-- = '0' + (val % 10);
5520 					}
5521 				}
5522 
5523 				if (i > 0)
5524 					*end-- = '.';
5525 			}
5526 			ASSERT(end + 1 >= base);
5527 
5528 		} else if (af == AF_INET6) {
5529 			struct in6_addr ip6;
5530 			int firstzero, tryzero, numzero, v6end;
5531 			uint16_t val;
5532 			const char digits[] = "0123456789abcdef";
5533 
5534 			/*
5535 			 * Stringify using RFC 1884 convention 2 - 16 bit
5536 			 * hexadecimal values with a zero-run compression.
5537 			 * Lower case hexadecimal digits are used.
5538 			 * 	eg, fe80::214:4fff:fe0b:76c8.
5539 			 * The IPv4 embedded form is returned for inet_ntop,
5540 			 * just the IPv4 string is returned for inet_ntoa6.
5541 			 */
5542 
5543 			if (!dtrace_canload(tupregs[argi].dttk_value,
5544 			    sizeof (struct in6_addr), mstate, vstate)) {
5545 				regs[rd] = NULL;
5546 				break;
5547 			}
5548 
5549 			/*
5550 			 * Safely load the IPv6 address.
5551 			 */
5552 			dtrace_bcopy(
5553 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5554 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5555 
5556 			/*
5557 			 * Check an IPv6 string will fit in scratch.
5558 			 */
5559 			size = INET6_ADDRSTRLEN;
5560 			if (!DTRACE_INSCRATCH(mstate, size)) {
5561 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5562 				regs[rd] = NULL;
5563 				break;
5564 			}
5565 			base = (char *)mstate->dtms_scratch_ptr;
5566 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5567 			*end-- = '\0';
5568 
5569 			/*
5570 			 * Find the longest run of 16 bit zero values
5571 			 * for the single allowed zero compression - "::".
5572 			 */
5573 			firstzero = -1;
5574 			tryzero = -1;
5575 			numzero = 1;
5576 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5577 				if (ip6._S6_un._S6_u8[i] == 0 &&
5578 				    tryzero == -1 && i % 2 == 0) {
5579 					tryzero = i;
5580 					continue;
5581 				}
5582 
5583 				if (tryzero != -1 &&
5584 				    (ip6._S6_un._S6_u8[i] != 0 ||
5585 				    i == sizeof (struct in6_addr) - 1)) {
5586 
5587 					if (i - tryzero <= numzero) {
5588 						tryzero = -1;
5589 						continue;
5590 					}
5591 
5592 					firstzero = tryzero;
5593 					numzero = i - i % 2 - tryzero;
5594 					tryzero = -1;
5595 
5596 					if (ip6._S6_un._S6_u8[i] == 0 &&
5597 					    i == sizeof (struct in6_addr) - 1)
5598 						numzero += 2;
5599 				}
5600 			}
5601 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5602 
5603 			/*
5604 			 * Check for an IPv4 embedded address.
5605 			 */
5606 			v6end = sizeof (struct in6_addr) - 2;
5607 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5608 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5609 				for (i = sizeof (struct in6_addr) - 1;
5610 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5611 					ASSERT(end >= base);
5612 
5613 					val = ip6._S6_un._S6_u8[i];
5614 
5615 					if (val == 0) {
5616 						*end-- = '0';
5617 					} else {
5618 						for (; val; val /= 10) {
5619 							*end-- = '0' + val % 10;
5620 						}
5621 					}
5622 
5623 					if (i > DTRACE_V4MAPPED_OFFSET)
5624 						*end-- = '.';
5625 				}
5626 
5627 				if (subr == DIF_SUBR_INET_NTOA6)
5628 					goto inetout;
5629 
5630 				/*
5631 				 * Set v6end to skip the IPv4 address that
5632 				 * we have already stringified.
5633 				 */
5634 				v6end = 10;
5635 			}
5636 
5637 			/*
5638 			 * Build the IPv6 string by working through the
5639 			 * address in reverse.
5640 			 */
5641 			for (i = v6end; i >= 0; i -= 2) {
5642 				ASSERT(end >= base);
5643 
5644 				if (i == firstzero + numzero - 2) {
5645 					*end-- = ':';
5646 					*end-- = ':';
5647 					i -= numzero - 2;
5648 					continue;
5649 				}
5650 
5651 				if (i < 14 && i != firstzero - 2)
5652 					*end-- = ':';
5653 
5654 				val = (ip6._S6_un._S6_u8[i] << 8) +
5655 				    ip6._S6_un._S6_u8[i + 1];
5656 
5657 				if (val == 0) {
5658 					*end-- = '0';
5659 				} else {
5660 					for (; val; val /= 16) {
5661 						*end-- = digits[val % 16];
5662 					}
5663 				}
5664 			}
5665 			ASSERT(end + 1 >= base);
5666 
5667 		} else {
5668 			/*
5669 			 * The user didn't use AH_INET or AH_INET6.
5670 			 */
5671 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5672 			regs[rd] = NULL;
5673 			break;
5674 		}
5675 
5676 inetout:	regs[rd] = (uintptr_t)end + 1;
5677 		mstate->dtms_scratch_ptr += size;
5678 		break;
5679 	}
5680 
5681 	}
5682 }
5683 
5684 /*
5685  * Emulate the execution of DTrace IR instructions specified by the given
5686  * DIF object.  This function is deliberately void of assertions as all of
5687  * the necessary checks are handled by a call to dtrace_difo_validate().
5688  */
5689 static uint64_t
5690 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5691     dtrace_vstate_t *vstate, dtrace_state_t *state)
5692 {
5693 	const dif_instr_t *text = difo->dtdo_buf;
5694 	const uint_t textlen = difo->dtdo_len;
5695 	const char *strtab = difo->dtdo_strtab;
5696 	const uint64_t *inttab = difo->dtdo_inttab;
5697 
5698 	uint64_t rval = 0;
5699 	dtrace_statvar_t *svar;
5700 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5701 	dtrace_difv_t *v;
5702 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5703 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
5704 
5705 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5706 	uint64_t regs[DIF_DIR_NREGS];
5707 	uint64_t *tmp;
5708 
5709 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5710 	int64_t cc_r;
5711 	uint_t pc = 0, id, opc;
5712 	uint8_t ttop = 0;
5713 	dif_instr_t instr;
5714 	uint_t r1, r2, rd;
5715 
5716 	/*
5717 	 * We stash the current DIF object into the machine state: we need it
5718 	 * for subsequent access checking.
5719 	 */
5720 	mstate->dtms_difo = difo;
5721 
5722 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
5723 
5724 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5725 		opc = pc;
5726 
5727 		instr = text[pc++];
5728 		r1 = DIF_INSTR_R1(instr);
5729 		r2 = DIF_INSTR_R2(instr);
5730 		rd = DIF_INSTR_RD(instr);
5731 
5732 		switch (DIF_INSTR_OP(instr)) {
5733 		case DIF_OP_OR:
5734 			regs[rd] = regs[r1] | regs[r2];
5735 			break;
5736 		case DIF_OP_XOR:
5737 			regs[rd] = regs[r1] ^ regs[r2];
5738 			break;
5739 		case DIF_OP_AND:
5740 			regs[rd] = regs[r1] & regs[r2];
5741 			break;
5742 		case DIF_OP_SLL:
5743 			regs[rd] = regs[r1] << regs[r2];
5744 			break;
5745 		case DIF_OP_SRL:
5746 			regs[rd] = regs[r1] >> regs[r2];
5747 			break;
5748 		case DIF_OP_SUB:
5749 			regs[rd] = regs[r1] - regs[r2];
5750 			break;
5751 		case DIF_OP_ADD:
5752 			regs[rd] = regs[r1] + regs[r2];
5753 			break;
5754 		case DIF_OP_MUL:
5755 			regs[rd] = regs[r1] * regs[r2];
5756 			break;
5757 		case DIF_OP_SDIV:
5758 			if (regs[r2] == 0) {
5759 				regs[rd] = 0;
5760 				*flags |= CPU_DTRACE_DIVZERO;
5761 			} else {
5762 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5763 				regs[rd] = (int64_t)regs[r1] /
5764 				    (int64_t)regs[r2];
5765 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5766 			}
5767 			break;
5768 
5769 		case DIF_OP_UDIV:
5770 			if (regs[r2] == 0) {
5771 				regs[rd] = 0;
5772 				*flags |= CPU_DTRACE_DIVZERO;
5773 			} else {
5774 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5775 				regs[rd] = regs[r1] / regs[r2];
5776 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5777 			}
5778 			break;
5779 
5780 		case DIF_OP_SREM:
5781 			if (regs[r2] == 0) {
5782 				regs[rd] = 0;
5783 				*flags |= CPU_DTRACE_DIVZERO;
5784 			} else {
5785 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5786 				regs[rd] = (int64_t)regs[r1] %
5787 				    (int64_t)regs[r2];
5788 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5789 			}
5790 			break;
5791 
5792 		case DIF_OP_UREM:
5793 			if (regs[r2] == 0) {
5794 				regs[rd] = 0;
5795 				*flags |= CPU_DTRACE_DIVZERO;
5796 			} else {
5797 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5798 				regs[rd] = regs[r1] % regs[r2];
5799 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5800 			}
5801 			break;
5802 
5803 		case DIF_OP_NOT:
5804 			regs[rd] = ~regs[r1];
5805 			break;
5806 		case DIF_OP_MOV:
5807 			regs[rd] = regs[r1];
5808 			break;
5809 		case DIF_OP_CMP:
5810 			cc_r = regs[r1] - regs[r2];
5811 			cc_n = cc_r < 0;
5812 			cc_z = cc_r == 0;
5813 			cc_v = 0;
5814 			cc_c = regs[r1] < regs[r2];
5815 			break;
5816 		case DIF_OP_TST:
5817 			cc_n = cc_v = cc_c = 0;
5818 			cc_z = regs[r1] == 0;
5819 			break;
5820 		case DIF_OP_BA:
5821 			pc = DIF_INSTR_LABEL(instr);
5822 			break;
5823 		case DIF_OP_BE:
5824 			if (cc_z)
5825 				pc = DIF_INSTR_LABEL(instr);
5826 			break;
5827 		case DIF_OP_BNE:
5828 			if (cc_z == 0)
5829 				pc = DIF_INSTR_LABEL(instr);
5830 			break;
5831 		case DIF_OP_BG:
5832 			if ((cc_z | (cc_n ^ cc_v)) == 0)
5833 				pc = DIF_INSTR_LABEL(instr);
5834 			break;
5835 		case DIF_OP_BGU:
5836 			if ((cc_c | cc_z) == 0)
5837 				pc = DIF_INSTR_LABEL(instr);
5838 			break;
5839 		case DIF_OP_BGE:
5840 			if ((cc_n ^ cc_v) == 0)
5841 				pc = DIF_INSTR_LABEL(instr);
5842 			break;
5843 		case DIF_OP_BGEU:
5844 			if (cc_c == 0)
5845 				pc = DIF_INSTR_LABEL(instr);
5846 			break;
5847 		case DIF_OP_BL:
5848 			if (cc_n ^ cc_v)
5849 				pc = DIF_INSTR_LABEL(instr);
5850 			break;
5851 		case DIF_OP_BLU:
5852 			if (cc_c)
5853 				pc = DIF_INSTR_LABEL(instr);
5854 			break;
5855 		case DIF_OP_BLE:
5856 			if (cc_z | (cc_n ^ cc_v))
5857 				pc = DIF_INSTR_LABEL(instr);
5858 			break;
5859 		case DIF_OP_BLEU:
5860 			if (cc_c | cc_z)
5861 				pc = DIF_INSTR_LABEL(instr);
5862 			break;
5863 		case DIF_OP_RLDSB:
5864 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5865 				break;
5866 			/*FALLTHROUGH*/
5867 		case DIF_OP_LDSB:
5868 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5869 			break;
5870 		case DIF_OP_RLDSH:
5871 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5872 				break;
5873 			/*FALLTHROUGH*/
5874 		case DIF_OP_LDSH:
5875 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5876 			break;
5877 		case DIF_OP_RLDSW:
5878 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5879 				break;
5880 			/*FALLTHROUGH*/
5881 		case DIF_OP_LDSW:
5882 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5883 			break;
5884 		case DIF_OP_RLDUB:
5885 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5886 				break;
5887 			/*FALLTHROUGH*/
5888 		case DIF_OP_LDUB:
5889 			regs[rd] = dtrace_load8(regs[r1]);
5890 			break;
5891 		case DIF_OP_RLDUH:
5892 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5893 				break;
5894 			/*FALLTHROUGH*/
5895 		case DIF_OP_LDUH:
5896 			regs[rd] = dtrace_load16(regs[r1]);
5897 			break;
5898 		case DIF_OP_RLDUW:
5899 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5900 				break;
5901 			/*FALLTHROUGH*/
5902 		case DIF_OP_LDUW:
5903 			regs[rd] = dtrace_load32(regs[r1]);
5904 			break;
5905 		case DIF_OP_RLDX:
5906 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5907 				break;
5908 			/*FALLTHROUGH*/
5909 		case DIF_OP_LDX:
5910 			regs[rd] = dtrace_load64(regs[r1]);
5911 			break;
5912 		case DIF_OP_ULDSB:
5913 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5914 			regs[rd] = (int8_t)
5915 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5916 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5917 			break;
5918 		case DIF_OP_ULDSH:
5919 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5920 			regs[rd] = (int16_t)
5921 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5922 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5923 			break;
5924 		case DIF_OP_ULDSW:
5925 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5926 			regs[rd] = (int32_t)
5927 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5928 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5929 			break;
5930 		case DIF_OP_ULDUB:
5931 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5932 			regs[rd] =
5933 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5934 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5935 			break;
5936 		case DIF_OP_ULDUH:
5937 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5938 			regs[rd] =
5939 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5940 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5941 			break;
5942 		case DIF_OP_ULDUW:
5943 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5944 			regs[rd] =
5945 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5946 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5947 			break;
5948 		case DIF_OP_ULDX:
5949 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5950 			regs[rd] =
5951 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5952 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5953 			break;
5954 		case DIF_OP_RET:
5955 			rval = regs[rd];
5956 			pc = textlen;
5957 			break;
5958 		case DIF_OP_NOP:
5959 			break;
5960 		case DIF_OP_SETX:
5961 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5962 			break;
5963 		case DIF_OP_SETS:
5964 			regs[rd] = (uint64_t)(uintptr_t)
5965 			    (strtab + DIF_INSTR_STRING(instr));
5966 			break;
5967 		case DIF_OP_SCMP: {
5968 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5969 			uintptr_t s1 = regs[r1];
5970 			uintptr_t s2 = regs[r2];
5971 			size_t lim1, lim2;
5972 
5973 			if (s1 != NULL &&
5974 			    !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
5975 				break;
5976 			if (s2 != NULL &&
5977 			    !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
5978 				break;
5979 
5980 			cc_r = dtrace_strncmp((char *)s1, (char *)s2,
5981 			    MIN(lim1, lim2));
5982 
5983 			cc_n = cc_r < 0;
5984 			cc_z = cc_r == 0;
5985 			cc_v = cc_c = 0;
5986 			break;
5987 		}
5988 		case DIF_OP_LDGA:
5989 			regs[rd] = dtrace_dif_variable(mstate, state,
5990 			    r1, regs[r2]);
5991 			break;
5992 		case DIF_OP_LDGS:
5993 			id = DIF_INSTR_VAR(instr);
5994 
5995 			if (id >= DIF_VAR_OTHER_UBASE) {
5996 				uintptr_t a;
5997 
5998 				id -= DIF_VAR_OTHER_UBASE;
5999 				svar = vstate->dtvs_globals[id];
6000 				ASSERT(svar != NULL);
6001 				v = &svar->dtsv_var;
6002 
6003 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6004 					regs[rd] = svar->dtsv_data;
6005 					break;
6006 				}
6007 
6008 				a = (uintptr_t)svar->dtsv_data;
6009 
6010 				if (*(uint8_t *)a == UINT8_MAX) {
6011 					/*
6012 					 * If the 0th byte is set to UINT8_MAX
6013 					 * then this is to be treated as a
6014 					 * reference to a NULL variable.
6015 					 */
6016 					regs[rd] = NULL;
6017 				} else {
6018 					regs[rd] = a + sizeof (uint64_t);
6019 				}
6020 
6021 				break;
6022 			}
6023 
6024 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6025 			break;
6026 
6027 		case DIF_OP_STGS:
6028 			id = DIF_INSTR_VAR(instr);
6029 
6030 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6031 			id -= DIF_VAR_OTHER_UBASE;
6032 
6033 			VERIFY(id < vstate->dtvs_nglobals);
6034 			svar = vstate->dtvs_globals[id];
6035 			ASSERT(svar != NULL);
6036 			v = &svar->dtsv_var;
6037 
6038 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6039 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6040 				size_t lim;
6041 
6042 				ASSERT(a != NULL);
6043 				ASSERT(svar->dtsv_size != 0);
6044 
6045 				if (regs[rd] == NULL) {
6046 					*(uint8_t *)a = UINT8_MAX;
6047 					break;
6048 				} else {
6049 					*(uint8_t *)a = 0;
6050 					a += sizeof (uint64_t);
6051 				}
6052 				if (!dtrace_vcanload(
6053 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6054 				    &lim, mstate, vstate))
6055 					break;
6056 
6057 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6058 				    (void *)a, &v->dtdv_type, lim);
6059 				break;
6060 			}
6061 
6062 			svar->dtsv_data = regs[rd];
6063 			break;
6064 
6065 		case DIF_OP_LDTA:
6066 			/*
6067 			 * There are no DTrace built-in thread-local arrays at
6068 			 * present.  This opcode is saved for future work.
6069 			 */
6070 			*flags |= CPU_DTRACE_ILLOP;
6071 			regs[rd] = 0;
6072 			break;
6073 
6074 		case DIF_OP_LDLS:
6075 			id = DIF_INSTR_VAR(instr);
6076 
6077 			if (id < DIF_VAR_OTHER_UBASE) {
6078 				/*
6079 				 * For now, this has no meaning.
6080 				 */
6081 				regs[rd] = 0;
6082 				break;
6083 			}
6084 
6085 			id -= DIF_VAR_OTHER_UBASE;
6086 
6087 			ASSERT(id < vstate->dtvs_nlocals);
6088 			ASSERT(vstate->dtvs_locals != NULL);
6089 
6090 			svar = vstate->dtvs_locals[id];
6091 			ASSERT(svar != NULL);
6092 			v = &svar->dtsv_var;
6093 
6094 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6095 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6096 				size_t sz = v->dtdv_type.dtdt_size;
6097 
6098 				sz += sizeof (uint64_t);
6099 				ASSERT(svar->dtsv_size == NCPU * sz);
6100 				a += CPU->cpu_id * sz;
6101 
6102 				if (*(uint8_t *)a == UINT8_MAX) {
6103 					/*
6104 					 * If the 0th byte is set to UINT8_MAX
6105 					 * then this is to be treated as a
6106 					 * reference to a NULL variable.
6107 					 */
6108 					regs[rd] = NULL;
6109 				} else {
6110 					regs[rd] = a + sizeof (uint64_t);
6111 				}
6112 
6113 				break;
6114 			}
6115 
6116 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6117 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6118 			regs[rd] = tmp[CPU->cpu_id];
6119 			break;
6120 
6121 		case DIF_OP_STLS:
6122 			id = DIF_INSTR_VAR(instr);
6123 
6124 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6125 			id -= DIF_VAR_OTHER_UBASE;
6126 			VERIFY(id < vstate->dtvs_nlocals);
6127 
6128 			ASSERT(vstate->dtvs_locals != NULL);
6129 			svar = vstate->dtvs_locals[id];
6130 			ASSERT(svar != NULL);
6131 			v = &svar->dtsv_var;
6132 
6133 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6134 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6135 				size_t sz = v->dtdv_type.dtdt_size;
6136 				size_t lim;
6137 
6138 				sz += sizeof (uint64_t);
6139 				ASSERT(svar->dtsv_size == NCPU * sz);
6140 				a += CPU->cpu_id * sz;
6141 
6142 				if (regs[rd] == NULL) {
6143 					*(uint8_t *)a = UINT8_MAX;
6144 					break;
6145 				} else {
6146 					*(uint8_t *)a = 0;
6147 					a += sizeof (uint64_t);
6148 				}
6149 
6150 				if (!dtrace_vcanload(
6151 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6152 				    &lim, mstate, vstate))
6153 					break;
6154 
6155 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6156 				    (void *)a, &v->dtdv_type, lim);
6157 				break;
6158 			}
6159 
6160 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6161 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6162 			tmp[CPU->cpu_id] = regs[rd];
6163 			break;
6164 
6165 		case DIF_OP_LDTS: {
6166 			dtrace_dynvar_t *dvar;
6167 			dtrace_key_t *key;
6168 
6169 			id = DIF_INSTR_VAR(instr);
6170 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6171 			id -= DIF_VAR_OTHER_UBASE;
6172 			v = &vstate->dtvs_tlocals[id];
6173 
6174 			key = &tupregs[DIF_DTR_NREGS];
6175 			key[0].dttk_value = (uint64_t)id;
6176 			key[0].dttk_size = 0;
6177 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6178 			key[1].dttk_size = 0;
6179 
6180 			dvar = dtrace_dynvar(dstate, 2, key,
6181 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6182 			    mstate, vstate);
6183 
6184 			if (dvar == NULL) {
6185 				regs[rd] = 0;
6186 				break;
6187 			}
6188 
6189 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6190 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6191 			} else {
6192 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6193 			}
6194 
6195 			break;
6196 		}
6197 
6198 		case DIF_OP_STTS: {
6199 			dtrace_dynvar_t *dvar;
6200 			dtrace_key_t *key;
6201 
6202 			id = DIF_INSTR_VAR(instr);
6203 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6204 			id -= DIF_VAR_OTHER_UBASE;
6205 			VERIFY(id < vstate->dtvs_ntlocals);
6206 
6207 			key = &tupregs[DIF_DTR_NREGS];
6208 			key[0].dttk_value = (uint64_t)id;
6209 			key[0].dttk_size = 0;
6210 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6211 			key[1].dttk_size = 0;
6212 			v = &vstate->dtvs_tlocals[id];
6213 
6214 			dvar = dtrace_dynvar(dstate, 2, key,
6215 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6216 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6217 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6218 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6219 
6220 			/*
6221 			 * Given that we're storing to thread-local data,
6222 			 * we need to flush our predicate cache.
6223 			 */
6224 			curthread->t_predcache = NULL;
6225 
6226 			if (dvar == NULL)
6227 				break;
6228 
6229 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6230 				size_t lim;
6231 
6232 				if (!dtrace_vcanload(
6233 				    (void *)(uintptr_t)regs[rd],
6234 				    &v->dtdv_type, &lim, mstate, vstate))
6235 					break;
6236 
6237 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6238 				    dvar->dtdv_data, &v->dtdv_type, lim);
6239 			} else {
6240 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6241 			}
6242 
6243 			break;
6244 		}
6245 
6246 		case DIF_OP_SRA:
6247 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6248 			break;
6249 
6250 		case DIF_OP_CALL:
6251 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6252 			    regs, tupregs, ttop, mstate, state);
6253 			break;
6254 
6255 		case DIF_OP_PUSHTR:
6256 			if (ttop == DIF_DTR_NREGS) {
6257 				*flags |= CPU_DTRACE_TUPOFLOW;
6258 				break;
6259 			}
6260 
6261 			if (r1 == DIF_TYPE_STRING) {
6262 				/*
6263 				 * If this is a string type and the size is 0,
6264 				 * we'll use the system-wide default string
6265 				 * size.  Note that we are _not_ looking at
6266 				 * the value of the DTRACEOPT_STRSIZE option;
6267 				 * had this been set, we would expect to have
6268 				 * a non-zero size value in the "pushtr".
6269 				 */
6270 				tupregs[ttop].dttk_size =
6271 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6272 				    regs[r2] ? regs[r2] :
6273 				    dtrace_strsize_default) + 1;
6274 			} else {
6275 				if (regs[r2] > LONG_MAX) {
6276 					*flags |= CPU_DTRACE_ILLOP;
6277 					break;
6278 				}
6279 
6280 				tupregs[ttop].dttk_size = regs[r2];
6281 			}
6282 
6283 			tupregs[ttop++].dttk_value = regs[rd];
6284 			break;
6285 
6286 		case DIF_OP_PUSHTV:
6287 			if (ttop == DIF_DTR_NREGS) {
6288 				*flags |= CPU_DTRACE_TUPOFLOW;
6289 				break;
6290 			}
6291 
6292 			tupregs[ttop].dttk_value = regs[rd];
6293 			tupregs[ttop++].dttk_size = 0;
6294 			break;
6295 
6296 		case DIF_OP_POPTS:
6297 			if (ttop != 0)
6298 				ttop--;
6299 			break;
6300 
6301 		case DIF_OP_FLUSHTS:
6302 			ttop = 0;
6303 			break;
6304 
6305 		case DIF_OP_LDGAA:
6306 		case DIF_OP_LDTAA: {
6307 			dtrace_dynvar_t *dvar;
6308 			dtrace_key_t *key = tupregs;
6309 			uint_t nkeys = ttop;
6310 
6311 			id = DIF_INSTR_VAR(instr);
6312 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6313 			id -= DIF_VAR_OTHER_UBASE;
6314 
6315 			key[nkeys].dttk_value = (uint64_t)id;
6316 			key[nkeys++].dttk_size = 0;
6317 
6318 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6319 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6320 				key[nkeys++].dttk_size = 0;
6321 				VERIFY(id < vstate->dtvs_ntlocals);
6322 				v = &vstate->dtvs_tlocals[id];
6323 			} else {
6324 				VERIFY(id < vstate->dtvs_nglobals);
6325 				v = &vstate->dtvs_globals[id]->dtsv_var;
6326 			}
6327 
6328 			dvar = dtrace_dynvar(dstate, nkeys, key,
6329 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6330 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6331 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6332 
6333 			if (dvar == NULL) {
6334 				regs[rd] = 0;
6335 				break;
6336 			}
6337 
6338 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6339 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6340 			} else {
6341 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6342 			}
6343 
6344 			break;
6345 		}
6346 
6347 		case DIF_OP_STGAA:
6348 		case DIF_OP_STTAA: {
6349 			dtrace_dynvar_t *dvar;
6350 			dtrace_key_t *key = tupregs;
6351 			uint_t nkeys = ttop;
6352 
6353 			id = DIF_INSTR_VAR(instr);
6354 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6355 			id -= DIF_VAR_OTHER_UBASE;
6356 
6357 			key[nkeys].dttk_value = (uint64_t)id;
6358 			key[nkeys++].dttk_size = 0;
6359 
6360 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6361 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6362 				key[nkeys++].dttk_size = 0;
6363 				VERIFY(id < vstate->dtvs_ntlocals);
6364 				v = &vstate->dtvs_tlocals[id];
6365 			} else {
6366 				VERIFY(id < vstate->dtvs_nglobals);
6367 				v = &vstate->dtvs_globals[id]->dtsv_var;
6368 			}
6369 
6370 			dvar = dtrace_dynvar(dstate, nkeys, key,
6371 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6372 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6373 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6374 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6375 
6376 			if (dvar == NULL)
6377 				break;
6378 
6379 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6380 				size_t lim;
6381 
6382 				if (!dtrace_vcanload(
6383 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6384 				    &lim, mstate, vstate))
6385 					break;
6386 
6387 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6388 				    dvar->dtdv_data, &v->dtdv_type, lim);
6389 			} else {
6390 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6391 			}
6392 
6393 			break;
6394 		}
6395 
6396 		case DIF_OP_ALLOCS: {
6397 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6398 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6399 
6400 			/*
6401 			 * Rounding up the user allocation size could have
6402 			 * overflowed large, bogus allocations (like -1ULL) to
6403 			 * 0.
6404 			 */
6405 			if (size < regs[r1] ||
6406 			    !DTRACE_INSCRATCH(mstate, size)) {
6407 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6408 				regs[rd] = NULL;
6409 				break;
6410 			}
6411 
6412 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6413 			mstate->dtms_scratch_ptr += size;
6414 			regs[rd] = ptr;
6415 			break;
6416 		}
6417 
6418 		case DIF_OP_COPYS:
6419 			if (!dtrace_canstore(regs[rd], regs[r2],
6420 			    mstate, vstate)) {
6421 				*flags |= CPU_DTRACE_BADADDR;
6422 				*illval = regs[rd];
6423 				break;
6424 			}
6425 
6426 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6427 				break;
6428 
6429 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6430 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6431 			break;
6432 
6433 		case DIF_OP_STB:
6434 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6435 				*flags |= CPU_DTRACE_BADADDR;
6436 				*illval = regs[rd];
6437 				break;
6438 			}
6439 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6440 			break;
6441 
6442 		case DIF_OP_STH:
6443 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6444 				*flags |= CPU_DTRACE_BADADDR;
6445 				*illval = regs[rd];
6446 				break;
6447 			}
6448 			if (regs[rd] & 1) {
6449 				*flags |= CPU_DTRACE_BADALIGN;
6450 				*illval = regs[rd];
6451 				break;
6452 			}
6453 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6454 			break;
6455 
6456 		case DIF_OP_STW:
6457 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6458 				*flags |= CPU_DTRACE_BADADDR;
6459 				*illval = regs[rd];
6460 				break;
6461 			}
6462 			if (regs[rd] & 3) {
6463 				*flags |= CPU_DTRACE_BADALIGN;
6464 				*illval = regs[rd];
6465 				break;
6466 			}
6467 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6468 			break;
6469 
6470 		case DIF_OP_STX:
6471 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6472 				*flags |= CPU_DTRACE_BADADDR;
6473 				*illval = regs[rd];
6474 				break;
6475 			}
6476 			if (regs[rd] & 7) {
6477 				*flags |= CPU_DTRACE_BADALIGN;
6478 				*illval = regs[rd];
6479 				break;
6480 			}
6481 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6482 			break;
6483 		}
6484 	}
6485 
6486 	if (!(*flags & CPU_DTRACE_FAULT))
6487 		return (rval);
6488 
6489 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6490 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6491 
6492 	return (0);
6493 }
6494 
6495 static void
6496 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6497 {
6498 	dtrace_probe_t *probe = ecb->dte_probe;
6499 	dtrace_provider_t *prov = probe->dtpr_provider;
6500 	char c[DTRACE_FULLNAMELEN + 80], *str;
6501 	char *msg = "dtrace: breakpoint action at probe ";
6502 	char *ecbmsg = " (ecb ";
6503 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6504 	uintptr_t val = (uintptr_t)ecb;
6505 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6506 
6507 	if (dtrace_destructive_disallow)
6508 		return;
6509 
6510 	/*
6511 	 * It's impossible to be taking action on the NULL probe.
6512 	 */
6513 	ASSERT(probe != NULL);
6514 
6515 	/*
6516 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6517 	 * print the provider name, module name, function name and name of
6518 	 * the probe, along with the hex address of the ECB with the breakpoint
6519 	 * action -- all of which we must place in the character buffer by
6520 	 * hand.
6521 	 */
6522 	while (*msg != '\0')
6523 		c[i++] = *msg++;
6524 
6525 	for (str = prov->dtpv_name; *str != '\0'; str++)
6526 		c[i++] = *str;
6527 	c[i++] = ':';
6528 
6529 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6530 		c[i++] = *str;
6531 	c[i++] = ':';
6532 
6533 	for (str = probe->dtpr_func; *str != '\0'; str++)
6534 		c[i++] = *str;
6535 	c[i++] = ':';
6536 
6537 	for (str = probe->dtpr_name; *str != '\0'; str++)
6538 		c[i++] = *str;
6539 
6540 	while (*ecbmsg != '\0')
6541 		c[i++] = *ecbmsg++;
6542 
6543 	while (shift >= 0) {
6544 		mask = (uintptr_t)0xf << shift;
6545 
6546 		if (val >= ((uintptr_t)1 << shift))
6547 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6548 		shift -= 4;
6549 	}
6550 
6551 	c[i++] = ')';
6552 	c[i] = '\0';
6553 
6554 	debug_enter(c);
6555 }
6556 
6557 static void
6558 dtrace_action_panic(dtrace_ecb_t *ecb)
6559 {
6560 	dtrace_probe_t *probe = ecb->dte_probe;
6561 
6562 	/*
6563 	 * It's impossible to be taking action on the NULL probe.
6564 	 */
6565 	ASSERT(probe != NULL);
6566 
6567 	if (dtrace_destructive_disallow)
6568 		return;
6569 
6570 	if (dtrace_panicked != NULL)
6571 		return;
6572 
6573 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6574 		return;
6575 
6576 	/*
6577 	 * We won the right to panic.  (We want to be sure that only one
6578 	 * thread calls panic() from dtrace_probe(), and that panic() is
6579 	 * called exactly once.)
6580 	 */
6581 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6582 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6583 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6584 }
6585 
6586 static void
6587 dtrace_action_raise(uint64_t sig)
6588 {
6589 	if (dtrace_destructive_disallow)
6590 		return;
6591 
6592 	if (sig >= NSIG) {
6593 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6594 		return;
6595 	}
6596 
6597 	/*
6598 	 * raise() has a queue depth of 1 -- we ignore all subsequent
6599 	 * invocations of the raise() action.
6600 	 */
6601 	if (curthread->t_dtrace_sig == 0)
6602 		curthread->t_dtrace_sig = (uint8_t)sig;
6603 
6604 	curthread->t_sig_check = 1;
6605 	aston(curthread);
6606 }
6607 
6608 static void
6609 dtrace_action_stop(void)
6610 {
6611 	if (dtrace_destructive_disallow)
6612 		return;
6613 
6614 	if (!curthread->t_dtrace_stop) {
6615 		curthread->t_dtrace_stop = 1;
6616 		curthread->t_sig_check = 1;
6617 		aston(curthread);
6618 	}
6619 }
6620 
6621 static void
6622 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6623 {
6624 	hrtime_t now;
6625 	volatile uint16_t *flags;
6626 	cpu_t *cpu = CPU;
6627 
6628 	if (dtrace_destructive_disallow)
6629 		return;
6630 
6631 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
6632 
6633 	now = dtrace_gethrtime();
6634 
6635 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6636 		/*
6637 		 * We need to advance the mark to the current time.
6638 		 */
6639 		cpu->cpu_dtrace_chillmark = now;
6640 		cpu->cpu_dtrace_chilled = 0;
6641 	}
6642 
6643 	/*
6644 	 * Now check to see if the requested chill time would take us over
6645 	 * the maximum amount of time allowed in the chill interval.  (Or
6646 	 * worse, if the calculation itself induces overflow.)
6647 	 */
6648 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6649 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6650 		*flags |= CPU_DTRACE_ILLOP;
6651 		return;
6652 	}
6653 
6654 	while (dtrace_gethrtime() - now < val)
6655 		continue;
6656 
6657 	/*
6658 	 * Normally, we assure that the value of the variable "timestamp" does
6659 	 * not change within an ECB.  The presence of chill() represents an
6660 	 * exception to this rule, however.
6661 	 */
6662 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6663 	cpu->cpu_dtrace_chilled += val;
6664 }
6665 
6666 static void
6667 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6668     uint64_t *buf, uint64_t arg)
6669 {
6670 	int nframes = DTRACE_USTACK_NFRAMES(arg);
6671 	int strsize = DTRACE_USTACK_STRSIZE(arg);
6672 	uint64_t *pcs = &buf[1], *fps;
6673 	char *str = (char *)&pcs[nframes];
6674 	int size, offs = 0, i, j;
6675 	size_t rem;
6676 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
6677 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6678 	char *sym;
6679 
6680 	/*
6681 	 * Should be taking a faster path if string space has not been
6682 	 * allocated.
6683 	 */
6684 	ASSERT(strsize != 0);
6685 
6686 	/*
6687 	 * We will first allocate some temporary space for the frame pointers.
6688 	 */
6689 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6690 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6691 	    (nframes * sizeof (uint64_t));
6692 
6693 	if (!DTRACE_INSCRATCH(mstate, size)) {
6694 		/*
6695 		 * Not enough room for our frame pointers -- need to indicate
6696 		 * that we ran out of scratch space.
6697 		 */
6698 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6699 		return;
6700 	}
6701 
6702 	mstate->dtms_scratch_ptr += size;
6703 	saved = mstate->dtms_scratch_ptr;
6704 
6705 	/*
6706 	 * Now get a stack with both program counters and frame pointers.
6707 	 */
6708 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6709 	dtrace_getufpstack(buf, fps, nframes + 1);
6710 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6711 
6712 	/*
6713 	 * If that faulted, we're cooked.
6714 	 */
6715 	if (*flags & CPU_DTRACE_FAULT)
6716 		goto out;
6717 
6718 	/*
6719 	 * Now we want to walk up the stack, calling the USTACK helper.  For
6720 	 * each iteration, we restore the scratch pointer.
6721 	 */
6722 	for (i = 0; i < nframes; i++) {
6723 		mstate->dtms_scratch_ptr = saved;
6724 
6725 		if (offs >= strsize)
6726 			break;
6727 
6728 		sym = (char *)(uintptr_t)dtrace_helper(
6729 		    DTRACE_HELPER_ACTION_USTACK,
6730 		    mstate, state, pcs[i], fps[i]);
6731 
6732 		/*
6733 		 * If we faulted while running the helper, we're going to
6734 		 * clear the fault and null out the corresponding string.
6735 		 */
6736 		if (*flags & CPU_DTRACE_FAULT) {
6737 			*flags &= ~CPU_DTRACE_FAULT;
6738 			str[offs++] = '\0';
6739 			continue;
6740 		}
6741 
6742 		if (sym == NULL) {
6743 			str[offs++] = '\0';
6744 			continue;
6745 		}
6746 
6747 		if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
6748 		    &(state->dts_vstate))) {
6749 			str[offs++] = '\0';
6750 			continue;
6751 		}
6752 
6753 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6754 
6755 		/*
6756 		 * Now copy in the string that the helper returned to us.
6757 		 */
6758 		for (j = 0; offs + j < strsize && j < rem; j++) {
6759 			if ((str[offs + j] = sym[j]) == '\0')
6760 				break;
6761 		}
6762 
6763 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6764 
6765 		offs += j + 1;
6766 	}
6767 
6768 	if (offs >= strsize) {
6769 		/*
6770 		 * If we didn't have room for all of the strings, we don't
6771 		 * abort processing -- this needn't be a fatal error -- but we
6772 		 * still want to increment a counter (dts_stkstroverflows) to
6773 		 * allow this condition to be warned about.  (If this is from
6774 		 * a jstack() action, it is easily tuned via jstackstrsize.)
6775 		 */
6776 		dtrace_error(&state->dts_stkstroverflows);
6777 	}
6778 
6779 	while (offs < strsize)
6780 		str[offs++] = '\0';
6781 
6782 out:
6783 	mstate->dtms_scratch_ptr = old;
6784 }
6785 
6786 static void
6787 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6788     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6789 {
6790 	volatile uint16_t *flags;
6791 	uint64_t val = *valp;
6792 	size_t valoffs = *valoffsp;
6793 
6794 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6795 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6796 
6797 	/*
6798 	 * If this is a string, we're going to only load until we find the zero
6799 	 * byte -- after which we'll store zero bytes.
6800 	 */
6801 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6802 		char c = '\0' + 1;
6803 		size_t s;
6804 
6805 		for (s = 0; s < size; s++) {
6806 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
6807 				c = dtrace_load8(val++);
6808 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6809 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6810 				c = dtrace_fuword8((void *)(uintptr_t)val++);
6811 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6812 				if (*flags & CPU_DTRACE_FAULT)
6813 					break;
6814 			}
6815 
6816 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6817 
6818 			if (c == '\0' && intuple)
6819 				break;
6820 		}
6821 	} else {
6822 		uint8_t c;
6823 		while (valoffs < end) {
6824 			if (dtkind == DIF_TF_BYREF) {
6825 				c = dtrace_load8(val++);
6826 			} else if (dtkind == DIF_TF_BYUREF) {
6827 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6828 				c = dtrace_fuword8((void *)(uintptr_t)val++);
6829 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6830 				if (*flags & CPU_DTRACE_FAULT)
6831 					break;
6832 			}
6833 
6834 			DTRACE_STORE(uint8_t, tomax,
6835 			    valoffs++, c);
6836 		}
6837 	}
6838 
6839 	*valp = val;
6840 	*valoffsp = valoffs;
6841 }
6842 
6843 /*
6844  * If you're looking for the epicenter of DTrace, you just found it.  This
6845  * is the function called by the provider to fire a probe -- from which all
6846  * subsequent probe-context DTrace activity emanates.
6847  */
6848 void
6849 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6850     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6851 {
6852 	processorid_t cpuid;
6853 	dtrace_icookie_t cookie;
6854 	dtrace_probe_t *probe;
6855 	dtrace_mstate_t mstate;
6856 	dtrace_ecb_t *ecb;
6857 	dtrace_action_t *act;
6858 	intptr_t offs;
6859 	size_t size;
6860 	int vtime, onintr;
6861 	volatile uint16_t *flags;
6862 	hrtime_t now, end;
6863 
6864 	/*
6865 	 * Kick out immediately if this CPU is still being born (in which case
6866 	 * curthread will be set to -1) or the current thread can't allow
6867 	 * probes in its current context.
6868 	 */
6869 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6870 		return;
6871 
6872 	cookie = dtrace_interrupt_disable();
6873 	probe = dtrace_probes[id - 1];
6874 	cpuid = CPU->cpu_id;
6875 	onintr = CPU_ON_INTR(CPU);
6876 
6877 	CPU->cpu_dtrace_probes++;
6878 
6879 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6880 	    probe->dtpr_predcache == curthread->t_predcache) {
6881 		/*
6882 		 * We have hit in the predicate cache; we know that
6883 		 * this predicate would evaluate to be false.
6884 		 */
6885 		dtrace_interrupt_enable(cookie);
6886 		return;
6887 	}
6888 
6889 	if (panic_quiesce) {
6890 		/*
6891 		 * We don't trace anything if we're panicking.
6892 		 */
6893 		dtrace_interrupt_enable(cookie);
6894 		return;
6895 	}
6896 
6897 	now = mstate.dtms_timestamp = dtrace_gethrtime();
6898 	mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6899 	vtime = dtrace_vtime_references != 0;
6900 
6901 	if (vtime && curthread->t_dtrace_start)
6902 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6903 
6904 	mstate.dtms_difo = NULL;
6905 	mstate.dtms_probe = probe;
6906 	mstate.dtms_strtok = NULL;
6907 	mstate.dtms_arg[0] = arg0;
6908 	mstate.dtms_arg[1] = arg1;
6909 	mstate.dtms_arg[2] = arg2;
6910 	mstate.dtms_arg[3] = arg3;
6911 	mstate.dtms_arg[4] = arg4;
6912 
6913 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6914 
6915 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6916 		dtrace_predicate_t *pred = ecb->dte_predicate;
6917 		dtrace_state_t *state = ecb->dte_state;
6918 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6919 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6920 		dtrace_vstate_t *vstate = &state->dts_vstate;
6921 		dtrace_provider_t *prov = probe->dtpr_provider;
6922 		uint64_t tracememsize = 0;
6923 		int committed = 0;
6924 		caddr_t tomax;
6925 
6926 		/*
6927 		 * A little subtlety with the following (seemingly innocuous)
6928 		 * declaration of the automatic 'val':  by looking at the
6929 		 * code, you might think that it could be declared in the
6930 		 * action processing loop, below.  (That is, it's only used in
6931 		 * the action processing loop.)  However, it must be declared
6932 		 * out of that scope because in the case of DIF expression
6933 		 * arguments to aggregating actions, one iteration of the
6934 		 * action loop will use the last iteration's value.
6935 		 */
6936 #ifdef lint
6937 		uint64_t val = 0;
6938 #else
6939 		uint64_t val;
6940 #endif
6941 
6942 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6943 		mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6944 		mstate.dtms_getf = NULL;
6945 
6946 		*flags &= ~CPU_DTRACE_ERROR;
6947 
6948 		if (prov == dtrace_provider) {
6949 			/*
6950 			 * If dtrace itself is the provider of this probe,
6951 			 * we're only going to continue processing the ECB if
6952 			 * arg0 (the dtrace_state_t) is equal to the ECB's
6953 			 * creating state.  (This prevents disjoint consumers
6954 			 * from seeing one another's metaprobes.)
6955 			 */
6956 			if (arg0 != (uint64_t)(uintptr_t)state)
6957 				continue;
6958 		}
6959 
6960 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6961 			/*
6962 			 * We're not currently active.  If our provider isn't
6963 			 * the dtrace pseudo provider, we're not interested.
6964 			 */
6965 			if (prov != dtrace_provider)
6966 				continue;
6967 
6968 			/*
6969 			 * Now we must further check if we are in the BEGIN
6970 			 * probe.  If we are, we will only continue processing
6971 			 * if we're still in WARMUP -- if one BEGIN enabling
6972 			 * has invoked the exit() action, we don't want to
6973 			 * evaluate subsequent BEGIN enablings.
6974 			 */
6975 			if (probe->dtpr_id == dtrace_probeid_begin &&
6976 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6977 				ASSERT(state->dts_activity ==
6978 				    DTRACE_ACTIVITY_DRAINING);
6979 				continue;
6980 			}
6981 		}
6982 
6983 		if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6984 			continue;
6985 
6986 		if (now - state->dts_alive > dtrace_deadman_timeout) {
6987 			/*
6988 			 * We seem to be dead.  Unless we (a) have kernel
6989 			 * destructive permissions (b) have explicitly enabled
6990 			 * destructive actions and (c) destructive actions have
6991 			 * not been disabled, we're going to transition into
6992 			 * the KILLED state, from which no further processing
6993 			 * on this state will be performed.
6994 			 */
6995 			if (!dtrace_priv_kernel_destructive(state) ||
6996 			    !state->dts_cred.dcr_destructive ||
6997 			    dtrace_destructive_disallow) {
6998 				void *activity = &state->dts_activity;
6999 				dtrace_activity_t current;
7000 
7001 				do {
7002 					current = state->dts_activity;
7003 				} while (dtrace_cas32(activity, current,
7004 				    DTRACE_ACTIVITY_KILLED) != current);
7005 
7006 				continue;
7007 			}
7008 		}
7009 
7010 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7011 		    ecb->dte_alignment, state, &mstate)) < 0)
7012 			continue;
7013 
7014 		tomax = buf->dtb_tomax;
7015 		ASSERT(tomax != NULL);
7016 
7017 		if (ecb->dte_size != 0) {
7018 			dtrace_rechdr_t dtrh;
7019 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7020 				mstate.dtms_timestamp = dtrace_gethrtime();
7021 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7022 			}
7023 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7024 			dtrh.dtrh_epid = ecb->dte_epid;
7025 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7026 			    mstate.dtms_timestamp);
7027 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7028 		}
7029 
7030 		mstate.dtms_epid = ecb->dte_epid;
7031 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7032 
7033 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7034 			mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
7035 
7036 		if (pred != NULL) {
7037 			dtrace_difo_t *dp = pred->dtp_difo;
7038 			int rval;
7039 
7040 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7041 
7042 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7043 				dtrace_cacheid_t cid = probe->dtpr_predcache;
7044 
7045 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7046 					/*
7047 					 * Update the predicate cache...
7048 					 */
7049 					ASSERT(cid == pred->dtp_cacheid);
7050 					curthread->t_predcache = cid;
7051 				}
7052 
7053 				continue;
7054 			}
7055 		}
7056 
7057 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7058 		    act != NULL; act = act->dta_next) {
7059 			size_t valoffs;
7060 			dtrace_difo_t *dp;
7061 			dtrace_recdesc_t *rec = &act->dta_rec;
7062 
7063 			size = rec->dtrd_size;
7064 			valoffs = offs + rec->dtrd_offset;
7065 
7066 			if (DTRACEACT_ISAGG(act->dta_kind)) {
7067 				uint64_t v = 0xbad;
7068 				dtrace_aggregation_t *agg;
7069 
7070 				agg = (dtrace_aggregation_t *)act;
7071 
7072 				if ((dp = act->dta_difo) != NULL)
7073 					v = dtrace_dif_emulate(dp,
7074 					    &mstate, vstate, state);
7075 
7076 				if (*flags & CPU_DTRACE_ERROR)
7077 					continue;
7078 
7079 				/*
7080 				 * Note that we always pass the expression
7081 				 * value from the previous iteration of the
7082 				 * action loop.  This value will only be used
7083 				 * if there is an expression argument to the
7084 				 * aggregating action, denoted by the
7085 				 * dtag_hasarg field.
7086 				 */
7087 				dtrace_aggregate(agg, buf,
7088 				    offs, aggbuf, v, val);
7089 				continue;
7090 			}
7091 
7092 			switch (act->dta_kind) {
7093 			case DTRACEACT_STOP:
7094 				if (dtrace_priv_proc_destructive(state,
7095 				    &mstate))
7096 					dtrace_action_stop();
7097 				continue;
7098 
7099 			case DTRACEACT_BREAKPOINT:
7100 				if (dtrace_priv_kernel_destructive(state))
7101 					dtrace_action_breakpoint(ecb);
7102 				continue;
7103 
7104 			case DTRACEACT_PANIC:
7105 				if (dtrace_priv_kernel_destructive(state))
7106 					dtrace_action_panic(ecb);
7107 				continue;
7108 
7109 			case DTRACEACT_STACK:
7110 				if (!dtrace_priv_kernel(state))
7111 					continue;
7112 
7113 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7114 				    size / sizeof (pc_t), probe->dtpr_aframes,
7115 				    DTRACE_ANCHORED(probe) ? NULL :
7116 				    (uint32_t *)arg0);
7117 
7118 				continue;
7119 
7120 			case DTRACEACT_JSTACK:
7121 			case DTRACEACT_USTACK:
7122 				if (!dtrace_priv_proc(state, &mstate))
7123 					continue;
7124 
7125 				/*
7126 				 * See comment in DIF_VAR_PID.
7127 				 */
7128 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7129 				    CPU_ON_INTR(CPU)) {
7130 					int depth = DTRACE_USTACK_NFRAMES(
7131 					    rec->dtrd_arg) + 1;
7132 
7133 					dtrace_bzero((void *)(tomax + valoffs),
7134 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7135 					    + depth * sizeof (uint64_t));
7136 
7137 					continue;
7138 				}
7139 
7140 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7141 				    curproc->p_dtrace_helpers != NULL) {
7142 					/*
7143 					 * This is the slow path -- we have
7144 					 * allocated string space, and we're
7145 					 * getting the stack of a process that
7146 					 * has helpers.  Call into a separate
7147 					 * routine to perform this processing.
7148 					 */
7149 					dtrace_action_ustack(&mstate, state,
7150 					    (uint64_t *)(tomax + valoffs),
7151 					    rec->dtrd_arg);
7152 					continue;
7153 				}
7154 
7155 				/*
7156 				 * Clear the string space, since there's no
7157 				 * helper to do it for us.
7158 				 */
7159 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
7160 					int depth = DTRACE_USTACK_NFRAMES(
7161 					    rec->dtrd_arg);
7162 					size_t strsize = DTRACE_USTACK_STRSIZE(
7163 					    rec->dtrd_arg);
7164 					uint64_t *buf = (uint64_t *)(tomax +
7165 					    valoffs);
7166 					void *strspace = &buf[depth + 1];
7167 
7168 					dtrace_bzero(strspace,
7169 					    MIN(depth, strsize));
7170 				}
7171 
7172 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7173 				dtrace_getupcstack((uint64_t *)
7174 				    (tomax + valoffs),
7175 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7176 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7177 				continue;
7178 
7179 			default:
7180 				break;
7181 			}
7182 
7183 			dp = act->dta_difo;
7184 			ASSERT(dp != NULL);
7185 
7186 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7187 
7188 			if (*flags & CPU_DTRACE_ERROR)
7189 				continue;
7190 
7191 			switch (act->dta_kind) {
7192 			case DTRACEACT_SPECULATE: {
7193 				dtrace_rechdr_t *dtrh;
7194 
7195 				ASSERT(buf == &state->dts_buffer[cpuid]);
7196 				buf = dtrace_speculation_buffer(state,
7197 				    cpuid, val);
7198 
7199 				if (buf == NULL) {
7200 					*flags |= CPU_DTRACE_DROP;
7201 					continue;
7202 				}
7203 
7204 				offs = dtrace_buffer_reserve(buf,
7205 				    ecb->dte_needed, ecb->dte_alignment,
7206 				    state, NULL);
7207 
7208 				if (offs < 0) {
7209 					*flags |= CPU_DTRACE_DROP;
7210 					continue;
7211 				}
7212 
7213 				tomax = buf->dtb_tomax;
7214 				ASSERT(tomax != NULL);
7215 
7216 				if (ecb->dte_size == 0)
7217 					continue;
7218 
7219 				ASSERT3U(ecb->dte_size, >=,
7220 				    sizeof (dtrace_rechdr_t));
7221 				dtrh = ((void *)(tomax + offs));
7222 				dtrh->dtrh_epid = ecb->dte_epid;
7223 				/*
7224 				 * When the speculation is committed, all of
7225 				 * the records in the speculative buffer will
7226 				 * have their timestamps set to the commit
7227 				 * time.  Until then, it is set to a sentinel
7228 				 * value, for debugability.
7229 				 */
7230 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7231 				continue;
7232 			}
7233 
7234 			case DTRACEACT_CHILL:
7235 				if (dtrace_priv_kernel_destructive(state))
7236 					dtrace_action_chill(&mstate, val);
7237 				continue;
7238 
7239 			case DTRACEACT_RAISE:
7240 				if (dtrace_priv_proc_destructive(state,
7241 				    &mstate))
7242 					dtrace_action_raise(val);
7243 				continue;
7244 
7245 			case DTRACEACT_COMMIT:
7246 				ASSERT(!committed);
7247 
7248 				/*
7249 				 * We need to commit our buffer state.
7250 				 */
7251 				if (ecb->dte_size)
7252 					buf->dtb_offset = offs + ecb->dte_size;
7253 				buf = &state->dts_buffer[cpuid];
7254 				dtrace_speculation_commit(state, cpuid, val);
7255 				committed = 1;
7256 				continue;
7257 
7258 			case DTRACEACT_DISCARD:
7259 				dtrace_speculation_discard(state, cpuid, val);
7260 				continue;
7261 
7262 			case DTRACEACT_DIFEXPR:
7263 			case DTRACEACT_LIBACT:
7264 			case DTRACEACT_PRINTF:
7265 			case DTRACEACT_PRINTA:
7266 			case DTRACEACT_SYSTEM:
7267 			case DTRACEACT_FREOPEN:
7268 			case DTRACEACT_TRACEMEM:
7269 				break;
7270 
7271 			case DTRACEACT_TRACEMEM_DYNSIZE:
7272 				tracememsize = val;
7273 				break;
7274 
7275 			case DTRACEACT_SYM:
7276 			case DTRACEACT_MOD:
7277 				if (!dtrace_priv_kernel(state))
7278 					continue;
7279 				break;
7280 
7281 			case DTRACEACT_USYM:
7282 			case DTRACEACT_UMOD:
7283 			case DTRACEACT_UADDR: {
7284 				struct pid *pid = curthread->t_procp->p_pidp;
7285 
7286 				if (!dtrace_priv_proc(state, &mstate))
7287 					continue;
7288 
7289 				DTRACE_STORE(uint64_t, tomax,
7290 				    valoffs, (uint64_t)pid->pid_id);
7291 				DTRACE_STORE(uint64_t, tomax,
7292 				    valoffs + sizeof (uint64_t), val);
7293 
7294 				continue;
7295 			}
7296 
7297 			case DTRACEACT_EXIT: {
7298 				/*
7299 				 * For the exit action, we are going to attempt
7300 				 * to atomically set our activity to be
7301 				 * draining.  If this fails (either because
7302 				 * another CPU has beat us to the exit action,
7303 				 * or because our current activity is something
7304 				 * other than ACTIVE or WARMUP), we will
7305 				 * continue.  This assures that the exit action
7306 				 * can be successfully recorded at most once
7307 				 * when we're in the ACTIVE state.  If we're
7308 				 * encountering the exit() action while in
7309 				 * COOLDOWN, however, we want to honor the new
7310 				 * status code.  (We know that we're the only
7311 				 * thread in COOLDOWN, so there is no race.)
7312 				 */
7313 				void *activity = &state->dts_activity;
7314 				dtrace_activity_t current = state->dts_activity;
7315 
7316 				if (current == DTRACE_ACTIVITY_COOLDOWN)
7317 					break;
7318 
7319 				if (current != DTRACE_ACTIVITY_WARMUP)
7320 					current = DTRACE_ACTIVITY_ACTIVE;
7321 
7322 				if (dtrace_cas32(activity, current,
7323 				    DTRACE_ACTIVITY_DRAINING) != current) {
7324 					*flags |= CPU_DTRACE_DROP;
7325 					continue;
7326 				}
7327 
7328 				break;
7329 			}
7330 
7331 			default:
7332 				ASSERT(0);
7333 			}
7334 
7335 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7336 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7337 				uintptr_t end = valoffs + size;
7338 
7339 				if (tracememsize != 0 &&
7340 				    valoffs + tracememsize < end) {
7341 					end = valoffs + tracememsize;
7342 					tracememsize = 0;
7343 				}
7344 
7345 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7346 				    !dtrace_vcanload((void *)(uintptr_t)val,
7347 				    &dp->dtdo_rtype, NULL, &mstate, vstate))
7348 					continue;
7349 
7350 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7351 				    &val, end, act->dta_intuple,
7352 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7353 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7354 				continue;
7355 			}
7356 
7357 			switch (size) {
7358 			case 0:
7359 				break;
7360 
7361 			case sizeof (uint8_t):
7362 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7363 				break;
7364 			case sizeof (uint16_t):
7365 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7366 				break;
7367 			case sizeof (uint32_t):
7368 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7369 				break;
7370 			case sizeof (uint64_t):
7371 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7372 				break;
7373 			default:
7374 				/*
7375 				 * Any other size should have been returned by
7376 				 * reference, not by value.
7377 				 */
7378 				ASSERT(0);
7379 				break;
7380 			}
7381 		}
7382 
7383 		if (*flags & CPU_DTRACE_DROP)
7384 			continue;
7385 
7386 		if (*flags & CPU_DTRACE_FAULT) {
7387 			int ndx;
7388 			dtrace_action_t *err;
7389 
7390 			buf->dtb_errors++;
7391 
7392 			if (probe->dtpr_id == dtrace_probeid_error) {
7393 				/*
7394 				 * There's nothing we can do -- we had an
7395 				 * error on the error probe.  We bump an
7396 				 * error counter to at least indicate that
7397 				 * this condition happened.
7398 				 */
7399 				dtrace_error(&state->dts_dblerrors);
7400 				continue;
7401 			}
7402 
7403 			if (vtime) {
7404 				/*
7405 				 * Before recursing on dtrace_probe(), we
7406 				 * need to explicitly clear out our start
7407 				 * time to prevent it from being accumulated
7408 				 * into t_dtrace_vtime.
7409 				 */
7410 				curthread->t_dtrace_start = 0;
7411 			}
7412 
7413 			/*
7414 			 * Iterate over the actions to figure out which action
7415 			 * we were processing when we experienced the error.
7416 			 * Note that act points _past_ the faulting action; if
7417 			 * act is ecb->dte_action, the fault was in the
7418 			 * predicate, if it's ecb->dte_action->dta_next it's
7419 			 * in action #1, and so on.
7420 			 */
7421 			for (err = ecb->dte_action, ndx = 0;
7422 			    err != act; err = err->dta_next, ndx++)
7423 				continue;
7424 
7425 			dtrace_probe_error(state, ecb->dte_epid, ndx,
7426 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7427 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7428 			    cpu_core[cpuid].cpuc_dtrace_illval);
7429 
7430 			continue;
7431 		}
7432 
7433 		if (!committed)
7434 			buf->dtb_offset = offs + ecb->dte_size;
7435 	}
7436 
7437 	end = dtrace_gethrtime();
7438 	if (vtime)
7439 		curthread->t_dtrace_start = end;
7440 
7441 	CPU->cpu_dtrace_nsec += end - now;
7442 
7443 	dtrace_interrupt_enable(cookie);
7444 }
7445 
7446 /*
7447  * DTrace Probe Hashing Functions
7448  *
7449  * The functions in this section (and indeed, the functions in remaining
7450  * sections) are not _called_ from probe context.  (Any exceptions to this are
7451  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7452  * DTrace framework to look-up probes in, add probes to and remove probes from
7453  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7454  * probe tuple -- allowing for fast lookups, regardless of what was
7455  * specified.)
7456  */
7457 static uint_t
7458 dtrace_hash_str(char *p)
7459 {
7460 	unsigned int g;
7461 	uint_t hval = 0;
7462 
7463 	while (*p) {
7464 		hval = (hval << 4) + *p++;
7465 		if ((g = (hval & 0xf0000000)) != 0)
7466 			hval ^= g >> 24;
7467 		hval &= ~g;
7468 	}
7469 	return (hval);
7470 }
7471 
7472 static dtrace_hash_t *
7473 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7474 {
7475 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7476 
7477 	hash->dth_stroffs = stroffs;
7478 	hash->dth_nextoffs = nextoffs;
7479 	hash->dth_prevoffs = prevoffs;
7480 
7481 	hash->dth_size = 1;
7482 	hash->dth_mask = hash->dth_size - 1;
7483 
7484 	hash->dth_tab = kmem_zalloc(hash->dth_size *
7485 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7486 
7487 	return (hash);
7488 }
7489 
7490 static void
7491 dtrace_hash_destroy(dtrace_hash_t *hash)
7492 {
7493 #ifdef DEBUG
7494 	int i;
7495 
7496 	for (i = 0; i < hash->dth_size; i++)
7497 		ASSERT(hash->dth_tab[i] == NULL);
7498 #endif
7499 
7500 	kmem_free(hash->dth_tab,
7501 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7502 	kmem_free(hash, sizeof (dtrace_hash_t));
7503 }
7504 
7505 static void
7506 dtrace_hash_resize(dtrace_hash_t *hash)
7507 {
7508 	int size = hash->dth_size, i, ndx;
7509 	int new_size = hash->dth_size << 1;
7510 	int new_mask = new_size - 1;
7511 	dtrace_hashbucket_t **new_tab, *bucket, *next;
7512 
7513 	ASSERT((new_size & new_mask) == 0);
7514 
7515 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7516 
7517 	for (i = 0; i < size; i++) {
7518 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7519 			dtrace_probe_t *probe = bucket->dthb_chain;
7520 
7521 			ASSERT(probe != NULL);
7522 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7523 
7524 			next = bucket->dthb_next;
7525 			bucket->dthb_next = new_tab[ndx];
7526 			new_tab[ndx] = bucket;
7527 		}
7528 	}
7529 
7530 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7531 	hash->dth_tab = new_tab;
7532 	hash->dth_size = new_size;
7533 	hash->dth_mask = new_mask;
7534 }
7535 
7536 static void
7537 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7538 {
7539 	int hashval = DTRACE_HASHSTR(hash, new);
7540 	int ndx = hashval & hash->dth_mask;
7541 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7542 	dtrace_probe_t **nextp, **prevp;
7543 
7544 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7545 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7546 			goto add;
7547 	}
7548 
7549 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7550 		dtrace_hash_resize(hash);
7551 		dtrace_hash_add(hash, new);
7552 		return;
7553 	}
7554 
7555 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7556 	bucket->dthb_next = hash->dth_tab[ndx];
7557 	hash->dth_tab[ndx] = bucket;
7558 	hash->dth_nbuckets++;
7559 
7560 add:
7561 	nextp = DTRACE_HASHNEXT(hash, new);
7562 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7563 	*nextp = bucket->dthb_chain;
7564 
7565 	if (bucket->dthb_chain != NULL) {
7566 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7567 		ASSERT(*prevp == NULL);
7568 		*prevp = new;
7569 	}
7570 
7571 	bucket->dthb_chain = new;
7572 	bucket->dthb_len++;
7573 }
7574 
7575 static dtrace_probe_t *
7576 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7577 {
7578 	int hashval = DTRACE_HASHSTR(hash, template);
7579 	int ndx = hashval & hash->dth_mask;
7580 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7581 
7582 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7583 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7584 			return (bucket->dthb_chain);
7585 	}
7586 
7587 	return (NULL);
7588 }
7589 
7590 static int
7591 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7592 {
7593 	int hashval = DTRACE_HASHSTR(hash, template);
7594 	int ndx = hashval & hash->dth_mask;
7595 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7596 
7597 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7598 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7599 			return (bucket->dthb_len);
7600 	}
7601 
7602 	return (NULL);
7603 }
7604 
7605 static void
7606 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7607 {
7608 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7609 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7610 
7611 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7612 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7613 
7614 	/*
7615 	 * Find the bucket that we're removing this probe from.
7616 	 */
7617 	for (; bucket != NULL; bucket = bucket->dthb_next) {
7618 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7619 			break;
7620 	}
7621 
7622 	ASSERT(bucket != NULL);
7623 
7624 	if (*prevp == NULL) {
7625 		if (*nextp == NULL) {
7626 			/*
7627 			 * The removed probe was the only probe on this
7628 			 * bucket; we need to remove the bucket.
7629 			 */
7630 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7631 
7632 			ASSERT(bucket->dthb_chain == probe);
7633 			ASSERT(b != NULL);
7634 
7635 			if (b == bucket) {
7636 				hash->dth_tab[ndx] = bucket->dthb_next;
7637 			} else {
7638 				while (b->dthb_next != bucket)
7639 					b = b->dthb_next;
7640 				b->dthb_next = bucket->dthb_next;
7641 			}
7642 
7643 			ASSERT(hash->dth_nbuckets > 0);
7644 			hash->dth_nbuckets--;
7645 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7646 			return;
7647 		}
7648 
7649 		bucket->dthb_chain = *nextp;
7650 	} else {
7651 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7652 	}
7653 
7654 	if (*nextp != NULL)
7655 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7656 }
7657 
7658 /*
7659  * DTrace Utility Functions
7660  *
7661  * These are random utility functions that are _not_ called from probe context.
7662  */
7663 static int
7664 dtrace_badattr(const dtrace_attribute_t *a)
7665 {
7666 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7667 	    a->dtat_data > DTRACE_STABILITY_MAX ||
7668 	    a->dtat_class > DTRACE_CLASS_MAX);
7669 }
7670 
7671 /*
7672  * Return a duplicate copy of a string.  If the specified string is NULL,
7673  * this function returns a zero-length string.
7674  */
7675 static char *
7676 dtrace_strdup(const char *str)
7677 {
7678 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7679 
7680 	if (str != NULL)
7681 		(void) strcpy(new, str);
7682 
7683 	return (new);
7684 }
7685 
7686 #define	DTRACE_ISALPHA(c)	\
7687 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7688 
7689 static int
7690 dtrace_badname(const char *s)
7691 {
7692 	char c;
7693 
7694 	if (s == NULL || (c = *s++) == '\0')
7695 		return (0);
7696 
7697 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7698 		return (1);
7699 
7700 	while ((c = *s++) != '\0') {
7701 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7702 		    c != '-' && c != '_' && c != '.' && c != '`')
7703 			return (1);
7704 	}
7705 
7706 	return (0);
7707 }
7708 
7709 static void
7710 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7711 {
7712 	uint32_t priv;
7713 
7714 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7715 		/*
7716 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7717 		 */
7718 		priv = DTRACE_PRIV_ALL;
7719 	} else {
7720 		*uidp = crgetuid(cr);
7721 		*zoneidp = crgetzoneid(cr);
7722 
7723 		priv = 0;
7724 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7725 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7726 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7727 			priv |= DTRACE_PRIV_USER;
7728 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7729 			priv |= DTRACE_PRIV_PROC;
7730 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7731 			priv |= DTRACE_PRIV_OWNER;
7732 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7733 			priv |= DTRACE_PRIV_ZONEOWNER;
7734 	}
7735 
7736 	*privp = priv;
7737 }
7738 
7739 #ifdef DTRACE_ERRDEBUG
7740 static void
7741 dtrace_errdebug(const char *str)
7742 {
7743 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7744 	int occupied = 0;
7745 
7746 	mutex_enter(&dtrace_errlock);
7747 	dtrace_errlast = str;
7748 	dtrace_errthread = curthread;
7749 
7750 	while (occupied++ < DTRACE_ERRHASHSZ) {
7751 		if (dtrace_errhash[hval].dter_msg == str) {
7752 			dtrace_errhash[hval].dter_count++;
7753 			goto out;
7754 		}
7755 
7756 		if (dtrace_errhash[hval].dter_msg != NULL) {
7757 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7758 			continue;
7759 		}
7760 
7761 		dtrace_errhash[hval].dter_msg = str;
7762 		dtrace_errhash[hval].dter_count = 1;
7763 		goto out;
7764 	}
7765 
7766 	panic("dtrace: undersized error hash");
7767 out:
7768 	mutex_exit(&dtrace_errlock);
7769 }
7770 #endif
7771 
7772 /*
7773  * DTrace Matching Functions
7774  *
7775  * These functions are used to match groups of probes, given some elements of
7776  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7777  */
7778 static int
7779 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7780     zoneid_t zoneid)
7781 {
7782 	if (priv != DTRACE_PRIV_ALL) {
7783 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7784 		uint32_t match = priv & ppriv;
7785 
7786 		/*
7787 		 * No PRIV_DTRACE_* privileges...
7788 		 */
7789 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7790 		    DTRACE_PRIV_KERNEL)) == 0)
7791 			return (0);
7792 
7793 		/*
7794 		 * No matching bits, but there were bits to match...
7795 		 */
7796 		if (match == 0 && ppriv != 0)
7797 			return (0);
7798 
7799 		/*
7800 		 * Need to have permissions to the process, but don't...
7801 		 */
7802 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7803 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7804 			return (0);
7805 		}
7806 
7807 		/*
7808 		 * Need to be in the same zone unless we possess the
7809 		 * privilege to examine all zones.
7810 		 */
7811 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7812 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7813 			return (0);
7814 		}
7815 	}
7816 
7817 	return (1);
7818 }
7819 
7820 /*
7821  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7822  * consists of input pattern strings and an ops-vector to evaluate them.
7823  * This function returns >0 for match, 0 for no match, and <0 for error.
7824  */
7825 static int
7826 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7827     uint32_t priv, uid_t uid, zoneid_t zoneid)
7828 {
7829 	dtrace_provider_t *pvp = prp->dtpr_provider;
7830 	int rv;
7831 
7832 	if (pvp->dtpv_defunct)
7833 		return (0);
7834 
7835 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7836 		return (rv);
7837 
7838 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7839 		return (rv);
7840 
7841 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7842 		return (rv);
7843 
7844 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7845 		return (rv);
7846 
7847 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7848 		return (0);
7849 
7850 	return (rv);
7851 }
7852 
7853 /*
7854  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7855  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7856  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7857  * In addition, all of the recursion cases except for '*' matching have been
7858  * unwound.  For '*', we still implement recursive evaluation, but a depth
7859  * counter is maintained and matching is aborted if we recurse too deep.
7860  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7861  */
7862 static int
7863 dtrace_match_glob(const char *s, const char *p, int depth)
7864 {
7865 	const char *olds;
7866 	char s1, c;
7867 	int gs;
7868 
7869 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7870 		return (-1);
7871 
7872 	if (s == NULL)
7873 		s = ""; /* treat NULL as empty string */
7874 
7875 top:
7876 	olds = s;
7877 	s1 = *s++;
7878 
7879 	if (p == NULL)
7880 		return (0);
7881 
7882 	if ((c = *p++) == '\0')
7883 		return (s1 == '\0');
7884 
7885 	switch (c) {
7886 	case '[': {
7887 		int ok = 0, notflag = 0;
7888 		char lc = '\0';
7889 
7890 		if (s1 == '\0')
7891 			return (0);
7892 
7893 		if (*p == '!') {
7894 			notflag = 1;
7895 			p++;
7896 		}
7897 
7898 		if ((c = *p++) == '\0')
7899 			return (0);
7900 
7901 		do {
7902 			if (c == '-' && lc != '\0' && *p != ']') {
7903 				if ((c = *p++) == '\0')
7904 					return (0);
7905 				if (c == '\\' && (c = *p++) == '\0')
7906 					return (0);
7907 
7908 				if (notflag) {
7909 					if (s1 < lc || s1 > c)
7910 						ok++;
7911 					else
7912 						return (0);
7913 				} else if (lc <= s1 && s1 <= c)
7914 					ok++;
7915 
7916 			} else if (c == '\\' && (c = *p++) == '\0')
7917 				return (0);
7918 
7919 			lc = c; /* save left-hand 'c' for next iteration */
7920 
7921 			if (notflag) {
7922 				if (s1 != c)
7923 					ok++;
7924 				else
7925 					return (0);
7926 			} else if (s1 == c)
7927 				ok++;
7928 
7929 			if ((c = *p++) == '\0')
7930 				return (0);
7931 
7932 		} while (c != ']');
7933 
7934 		if (ok)
7935 			goto top;
7936 
7937 		return (0);
7938 	}
7939 
7940 	case '\\':
7941 		if ((c = *p++) == '\0')
7942 			return (0);
7943 		/*FALLTHRU*/
7944 
7945 	default:
7946 		if (c != s1)
7947 			return (0);
7948 		/*FALLTHRU*/
7949 
7950 	case '?':
7951 		if (s1 != '\0')
7952 			goto top;
7953 		return (0);
7954 
7955 	case '*':
7956 		while (*p == '*')
7957 			p++; /* consecutive *'s are identical to a single one */
7958 
7959 		if (*p == '\0')
7960 			return (1);
7961 
7962 		for (s = olds; *s != '\0'; s++) {
7963 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7964 				return (gs);
7965 		}
7966 
7967 		return (0);
7968 	}
7969 }
7970 
7971 /*ARGSUSED*/
7972 static int
7973 dtrace_match_string(const char *s, const char *p, int depth)
7974 {
7975 	return (s != NULL && strcmp(s, p) == 0);
7976 }
7977 
7978 /*ARGSUSED*/
7979 static int
7980 dtrace_match_nul(const char *s, const char *p, int depth)
7981 {
7982 	return (1); /* always match the empty pattern */
7983 }
7984 
7985 /*ARGSUSED*/
7986 static int
7987 dtrace_match_nonzero(const char *s, const char *p, int depth)
7988 {
7989 	return (s != NULL && s[0] != '\0');
7990 }
7991 
7992 static int
7993 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7994     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7995 {
7996 	dtrace_probe_t template, *probe;
7997 	dtrace_hash_t *hash = NULL;
7998 	int len, rc, best = INT_MAX, nmatched = 0;
7999 	dtrace_id_t i;
8000 
8001 	ASSERT(MUTEX_HELD(&dtrace_lock));
8002 
8003 	/*
8004 	 * If the probe ID is specified in the key, just lookup by ID and
8005 	 * invoke the match callback once if a matching probe is found.
8006 	 */
8007 	if (pkp->dtpk_id != DTRACE_IDNONE) {
8008 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8009 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8010 			if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
8011 				return (DTRACE_MATCH_FAIL);
8012 			nmatched++;
8013 		}
8014 		return (nmatched);
8015 	}
8016 
8017 	template.dtpr_mod = (char *)pkp->dtpk_mod;
8018 	template.dtpr_func = (char *)pkp->dtpk_func;
8019 	template.dtpr_name = (char *)pkp->dtpk_name;
8020 
8021 	/*
8022 	 * We want to find the most distinct of the module name, function
8023 	 * name, and name.  So for each one that is not a glob pattern or
8024 	 * empty string, we perform a lookup in the corresponding hash and
8025 	 * use the hash table with the fewest collisions to do our search.
8026 	 */
8027 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8028 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8029 		best = len;
8030 		hash = dtrace_bymod;
8031 	}
8032 
8033 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8034 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8035 		best = len;
8036 		hash = dtrace_byfunc;
8037 	}
8038 
8039 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8040 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8041 		best = len;
8042 		hash = dtrace_byname;
8043 	}
8044 
8045 	/*
8046 	 * If we did not select a hash table, iterate over every probe and
8047 	 * invoke our callback for each one that matches our input probe key.
8048 	 */
8049 	if (hash == NULL) {
8050 		for (i = 0; i < dtrace_nprobes; i++) {
8051 			if ((probe = dtrace_probes[i]) == NULL ||
8052 			    dtrace_match_probe(probe, pkp, priv, uid,
8053 			    zoneid) <= 0)
8054 				continue;
8055 
8056 			nmatched++;
8057 
8058 			if ((rc = (*matched)(probe, arg)) !=
8059 			    DTRACE_MATCH_NEXT) {
8060 				if (rc == DTRACE_MATCH_FAIL)
8061 					return (DTRACE_MATCH_FAIL);
8062 				break;
8063 			}
8064 		}
8065 
8066 		return (nmatched);
8067 	}
8068 
8069 	/*
8070 	 * If we selected a hash table, iterate over each probe of the same key
8071 	 * name and invoke the callback for every probe that matches the other
8072 	 * attributes of our input probe key.
8073 	 */
8074 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8075 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8076 
8077 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8078 			continue;
8079 
8080 		nmatched++;
8081 
8082 		if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
8083 			if (rc == DTRACE_MATCH_FAIL)
8084 				return (DTRACE_MATCH_FAIL);
8085 			break;
8086 		}
8087 	}
8088 
8089 	return (nmatched);
8090 }
8091 
8092 /*
8093  * Return the function pointer dtrace_probecmp() should use to compare the
8094  * specified pattern with a string.  For NULL or empty patterns, we select
8095  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8096  * For non-empty non-glob strings, we use dtrace_match_string().
8097  */
8098 static dtrace_probekey_f *
8099 dtrace_probekey_func(const char *p)
8100 {
8101 	char c;
8102 
8103 	if (p == NULL || *p == '\0')
8104 		return (&dtrace_match_nul);
8105 
8106 	while ((c = *p++) != '\0') {
8107 		if (c == '[' || c == '?' || c == '*' || c == '\\')
8108 			return (&dtrace_match_glob);
8109 	}
8110 
8111 	return (&dtrace_match_string);
8112 }
8113 
8114 /*
8115  * Build a probe comparison key for use with dtrace_match_probe() from the
8116  * given probe description.  By convention, a null key only matches anchored
8117  * probes: if each field is the empty string, reset dtpk_fmatch to
8118  * dtrace_match_nonzero().
8119  */
8120 static void
8121 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8122 {
8123 	pkp->dtpk_prov = pdp->dtpd_provider;
8124 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8125 
8126 	pkp->dtpk_mod = pdp->dtpd_mod;
8127 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8128 
8129 	pkp->dtpk_func = pdp->dtpd_func;
8130 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8131 
8132 	pkp->dtpk_name = pdp->dtpd_name;
8133 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8134 
8135 	pkp->dtpk_id = pdp->dtpd_id;
8136 
8137 	if (pkp->dtpk_id == DTRACE_IDNONE &&
8138 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8139 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8140 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8141 	    pkp->dtpk_nmatch == &dtrace_match_nul)
8142 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8143 }
8144 
8145 /*
8146  * DTrace Provider-to-Framework API Functions
8147  *
8148  * These functions implement much of the Provider-to-Framework API, as
8149  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8150  * the functions in the API for probe management (found below), and
8151  * dtrace_probe() itself (found above).
8152  */
8153 
8154 /*
8155  * Register the calling provider with the DTrace framework.  This should
8156  * generally be called by DTrace providers in their attach(9E) entry point.
8157  */
8158 int
8159 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8160     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8161 {
8162 	dtrace_provider_t *provider;
8163 
8164 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8165 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8166 		    "arguments", name ? name : "<NULL>");
8167 		return (EINVAL);
8168 	}
8169 
8170 	if (name[0] == '\0' || dtrace_badname(name)) {
8171 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8172 		    "provider name", name);
8173 		return (EINVAL);
8174 	}
8175 
8176 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8177 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8178 	    pops->dtps_destroy == NULL ||
8179 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8180 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8181 		    "provider ops", name);
8182 		return (EINVAL);
8183 	}
8184 
8185 	if (dtrace_badattr(&pap->dtpa_provider) ||
8186 	    dtrace_badattr(&pap->dtpa_mod) ||
8187 	    dtrace_badattr(&pap->dtpa_func) ||
8188 	    dtrace_badattr(&pap->dtpa_name) ||
8189 	    dtrace_badattr(&pap->dtpa_args)) {
8190 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8191 		    "provider attributes", name);
8192 		return (EINVAL);
8193 	}
8194 
8195 	if (priv & ~DTRACE_PRIV_ALL) {
8196 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8197 		    "privilege attributes", name);
8198 		return (EINVAL);
8199 	}
8200 
8201 	if ((priv & DTRACE_PRIV_KERNEL) &&
8202 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8203 	    pops->dtps_mode == NULL) {
8204 		cmn_err(CE_WARN, "failed to register provider '%s': need "
8205 		    "dtps_mode() op for given privilege attributes", name);
8206 		return (EINVAL);
8207 	}
8208 
8209 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8210 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8211 	(void) strcpy(provider->dtpv_name, name);
8212 
8213 	provider->dtpv_attr = *pap;
8214 	provider->dtpv_priv.dtpp_flags = priv;
8215 	if (cr != NULL) {
8216 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8217 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8218 	}
8219 	provider->dtpv_pops = *pops;
8220 
8221 	if (pops->dtps_provide == NULL) {
8222 		ASSERT(pops->dtps_provide_module != NULL);
8223 		provider->dtpv_pops.dtps_provide =
8224 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
8225 	}
8226 
8227 	if (pops->dtps_provide_module == NULL) {
8228 		ASSERT(pops->dtps_provide != NULL);
8229 		provider->dtpv_pops.dtps_provide_module =
8230 		    (void (*)(void *, struct modctl *))dtrace_nullop;
8231 	}
8232 
8233 	if (pops->dtps_suspend == NULL) {
8234 		ASSERT(pops->dtps_resume == NULL);
8235 		provider->dtpv_pops.dtps_suspend =
8236 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8237 		provider->dtpv_pops.dtps_resume =
8238 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8239 	}
8240 
8241 	provider->dtpv_arg = arg;
8242 	*idp = (dtrace_provider_id_t)provider;
8243 
8244 	if (pops == &dtrace_provider_ops) {
8245 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8246 		ASSERT(MUTEX_HELD(&dtrace_lock));
8247 		ASSERT(dtrace_anon.dta_enabling == NULL);
8248 
8249 		/*
8250 		 * We make sure that the DTrace provider is at the head of
8251 		 * the provider chain.
8252 		 */
8253 		provider->dtpv_next = dtrace_provider;
8254 		dtrace_provider = provider;
8255 		return (0);
8256 	}
8257 
8258 	mutex_enter(&dtrace_provider_lock);
8259 	mutex_enter(&dtrace_lock);
8260 
8261 	/*
8262 	 * If there is at least one provider registered, we'll add this
8263 	 * provider after the first provider.
8264 	 */
8265 	if (dtrace_provider != NULL) {
8266 		provider->dtpv_next = dtrace_provider->dtpv_next;
8267 		dtrace_provider->dtpv_next = provider;
8268 	} else {
8269 		dtrace_provider = provider;
8270 	}
8271 
8272 	if (dtrace_retained != NULL) {
8273 		dtrace_enabling_provide(provider);
8274 
8275 		/*
8276 		 * Now we need to call dtrace_enabling_matchall() -- which
8277 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8278 		 * to drop all of our locks before calling into it...
8279 		 */
8280 		mutex_exit(&dtrace_lock);
8281 		mutex_exit(&dtrace_provider_lock);
8282 		dtrace_enabling_matchall();
8283 
8284 		return (0);
8285 	}
8286 
8287 	mutex_exit(&dtrace_lock);
8288 	mutex_exit(&dtrace_provider_lock);
8289 
8290 	return (0);
8291 }
8292 
8293 /*
8294  * Unregister the specified provider from the DTrace framework.  This should
8295  * generally be called by DTrace providers in their detach(9E) entry point.
8296  */
8297 int
8298 dtrace_unregister(dtrace_provider_id_t id)
8299 {
8300 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8301 	dtrace_provider_t *prev = NULL;
8302 	int i, self = 0, noreap = 0;
8303 	dtrace_probe_t *probe, *first = NULL;
8304 
8305 	if (old->dtpv_pops.dtps_enable ==
8306 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
8307 		/*
8308 		 * If DTrace itself is the provider, we're called with locks
8309 		 * already held.
8310 		 */
8311 		ASSERT(old == dtrace_provider);
8312 		ASSERT(dtrace_devi != NULL);
8313 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8314 		ASSERT(MUTEX_HELD(&dtrace_lock));
8315 		self = 1;
8316 
8317 		if (dtrace_provider->dtpv_next != NULL) {
8318 			/*
8319 			 * There's another provider here; return failure.
8320 			 */
8321 			return (EBUSY);
8322 		}
8323 	} else {
8324 		mutex_enter(&dtrace_provider_lock);
8325 		mutex_enter(&mod_lock);
8326 		mutex_enter(&dtrace_lock);
8327 	}
8328 
8329 	/*
8330 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8331 	 * probes, we refuse to let providers slither away, unless this
8332 	 * provider has already been explicitly invalidated.
8333 	 */
8334 	if (!old->dtpv_defunct &&
8335 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8336 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8337 		if (!self) {
8338 			mutex_exit(&dtrace_lock);
8339 			mutex_exit(&mod_lock);
8340 			mutex_exit(&dtrace_provider_lock);
8341 		}
8342 		return (EBUSY);
8343 	}
8344 
8345 	/*
8346 	 * Attempt to destroy the probes associated with this provider.
8347 	 */
8348 	for (i = 0; i < dtrace_nprobes; i++) {
8349 		if ((probe = dtrace_probes[i]) == NULL)
8350 			continue;
8351 
8352 		if (probe->dtpr_provider != old)
8353 			continue;
8354 
8355 		if (probe->dtpr_ecb == NULL)
8356 			continue;
8357 
8358 		/*
8359 		 * If we are trying to unregister a defunct provider, and the
8360 		 * provider was made defunct within the interval dictated by
8361 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8362 		 * attempt to reap our enablings.  To denote that the provider
8363 		 * should reattempt to unregister itself at some point in the
8364 		 * future, we will return a differentiable error code (EAGAIN
8365 		 * instead of EBUSY) in this case.
8366 		 */
8367 		if (dtrace_gethrtime() - old->dtpv_defunct >
8368 		    dtrace_unregister_defunct_reap)
8369 			noreap = 1;
8370 
8371 		if (!self) {
8372 			mutex_exit(&dtrace_lock);
8373 			mutex_exit(&mod_lock);
8374 			mutex_exit(&dtrace_provider_lock);
8375 		}
8376 
8377 		if (noreap)
8378 			return (EBUSY);
8379 
8380 		(void) taskq_dispatch(dtrace_taskq,
8381 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8382 
8383 		return (EAGAIN);
8384 	}
8385 
8386 	/*
8387 	 * All of the probes for this provider are disabled; we can safely
8388 	 * remove all of them from their hash chains and from the probe array.
8389 	 */
8390 	for (i = 0; i < dtrace_nprobes; i++) {
8391 		if ((probe = dtrace_probes[i]) == NULL)
8392 			continue;
8393 
8394 		if (probe->dtpr_provider != old)
8395 			continue;
8396 
8397 		dtrace_probes[i] = NULL;
8398 
8399 		dtrace_hash_remove(dtrace_bymod, probe);
8400 		dtrace_hash_remove(dtrace_byfunc, probe);
8401 		dtrace_hash_remove(dtrace_byname, probe);
8402 
8403 		if (first == NULL) {
8404 			first = probe;
8405 			probe->dtpr_nextmod = NULL;
8406 		} else {
8407 			probe->dtpr_nextmod = first;
8408 			first = probe;
8409 		}
8410 	}
8411 
8412 	/*
8413 	 * The provider's probes have been removed from the hash chains and
8414 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8415 	 * everyone has cleared out from any probe array processing.
8416 	 */
8417 	dtrace_sync();
8418 
8419 	for (probe = first; probe != NULL; probe = first) {
8420 		first = probe->dtpr_nextmod;
8421 
8422 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8423 		    probe->dtpr_arg);
8424 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8425 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8426 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8427 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8428 		kmem_free(probe, sizeof (dtrace_probe_t));
8429 	}
8430 
8431 	if ((prev = dtrace_provider) == old) {
8432 		ASSERT(self || dtrace_devi == NULL);
8433 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8434 		dtrace_provider = old->dtpv_next;
8435 	} else {
8436 		while (prev != NULL && prev->dtpv_next != old)
8437 			prev = prev->dtpv_next;
8438 
8439 		if (prev == NULL) {
8440 			panic("attempt to unregister non-existent "
8441 			    "dtrace provider %p\n", (void *)id);
8442 		}
8443 
8444 		prev->dtpv_next = old->dtpv_next;
8445 	}
8446 
8447 	if (!self) {
8448 		mutex_exit(&dtrace_lock);
8449 		mutex_exit(&mod_lock);
8450 		mutex_exit(&dtrace_provider_lock);
8451 	}
8452 
8453 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8454 	kmem_free(old, sizeof (dtrace_provider_t));
8455 
8456 	return (0);
8457 }
8458 
8459 /*
8460  * Invalidate the specified provider.  All subsequent probe lookups for the
8461  * specified provider will fail, but its probes will not be removed.
8462  */
8463 void
8464 dtrace_invalidate(dtrace_provider_id_t id)
8465 {
8466 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8467 
8468 	ASSERT(pvp->dtpv_pops.dtps_enable !=
8469 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8470 
8471 	mutex_enter(&dtrace_provider_lock);
8472 	mutex_enter(&dtrace_lock);
8473 
8474 	pvp->dtpv_defunct = dtrace_gethrtime();
8475 
8476 	mutex_exit(&dtrace_lock);
8477 	mutex_exit(&dtrace_provider_lock);
8478 }
8479 
8480 /*
8481  * Indicate whether or not DTrace has attached.
8482  */
8483 int
8484 dtrace_attached(void)
8485 {
8486 	/*
8487 	 * dtrace_provider will be non-NULL iff the DTrace driver has
8488 	 * attached.  (It's non-NULL because DTrace is always itself a
8489 	 * provider.)
8490 	 */
8491 	return (dtrace_provider != NULL);
8492 }
8493 
8494 /*
8495  * Remove all the unenabled probes for the given provider.  This function is
8496  * not unlike dtrace_unregister(), except that it doesn't remove the provider
8497  * -- just as many of its associated probes as it can.
8498  */
8499 int
8500 dtrace_condense(dtrace_provider_id_t id)
8501 {
8502 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8503 	int i;
8504 	dtrace_probe_t *probe;
8505 
8506 	/*
8507 	 * Make sure this isn't the dtrace provider itself.
8508 	 */
8509 	ASSERT(prov->dtpv_pops.dtps_enable !=
8510 	    (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8511 
8512 	mutex_enter(&dtrace_provider_lock);
8513 	mutex_enter(&dtrace_lock);
8514 
8515 	/*
8516 	 * Attempt to destroy the probes associated with this provider.
8517 	 */
8518 	for (i = 0; i < dtrace_nprobes; i++) {
8519 		if ((probe = dtrace_probes[i]) == NULL)
8520 			continue;
8521 
8522 		if (probe->dtpr_provider != prov)
8523 			continue;
8524 
8525 		if (probe->dtpr_ecb != NULL)
8526 			continue;
8527 
8528 		dtrace_probes[i] = NULL;
8529 
8530 		dtrace_hash_remove(dtrace_bymod, probe);
8531 		dtrace_hash_remove(dtrace_byfunc, probe);
8532 		dtrace_hash_remove(dtrace_byname, probe);
8533 
8534 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8535 		    probe->dtpr_arg);
8536 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8537 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8538 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8539 		kmem_free(probe, sizeof (dtrace_probe_t));
8540 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8541 	}
8542 
8543 	mutex_exit(&dtrace_lock);
8544 	mutex_exit(&dtrace_provider_lock);
8545 
8546 	return (0);
8547 }
8548 
8549 /*
8550  * DTrace Probe Management Functions
8551  *
8552  * The functions in this section perform the DTrace probe management,
8553  * including functions to create probes, look-up probes, and call into the
8554  * providers to request that probes be provided.  Some of these functions are
8555  * in the Provider-to-Framework API; these functions can be identified by the
8556  * fact that they are not declared "static".
8557  */
8558 
8559 /*
8560  * Create a probe with the specified module name, function name, and name.
8561  */
8562 dtrace_id_t
8563 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8564     const char *func, const char *name, int aframes, void *arg)
8565 {
8566 	dtrace_probe_t *probe, **probes;
8567 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8568 	dtrace_id_t id;
8569 
8570 	if (provider == dtrace_provider) {
8571 		ASSERT(MUTEX_HELD(&dtrace_lock));
8572 	} else {
8573 		mutex_enter(&dtrace_lock);
8574 	}
8575 
8576 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8577 	    VM_BESTFIT | VM_SLEEP);
8578 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8579 
8580 	probe->dtpr_id = id;
8581 	probe->dtpr_gen = dtrace_probegen++;
8582 	probe->dtpr_mod = dtrace_strdup(mod);
8583 	probe->dtpr_func = dtrace_strdup(func);
8584 	probe->dtpr_name = dtrace_strdup(name);
8585 	probe->dtpr_arg = arg;
8586 	probe->dtpr_aframes = aframes;
8587 	probe->dtpr_provider = provider;
8588 
8589 	dtrace_hash_add(dtrace_bymod, probe);
8590 	dtrace_hash_add(dtrace_byfunc, probe);
8591 	dtrace_hash_add(dtrace_byname, probe);
8592 
8593 	if (id - 1 >= dtrace_nprobes) {
8594 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8595 		size_t nsize = osize << 1;
8596 
8597 		if (nsize == 0) {
8598 			ASSERT(osize == 0);
8599 			ASSERT(dtrace_probes == NULL);
8600 			nsize = sizeof (dtrace_probe_t *);
8601 		}
8602 
8603 		probes = kmem_zalloc(nsize, KM_SLEEP);
8604 
8605 		if (dtrace_probes == NULL) {
8606 			ASSERT(osize == 0);
8607 			dtrace_probes = probes;
8608 			dtrace_nprobes = 1;
8609 		} else {
8610 			dtrace_probe_t **oprobes = dtrace_probes;
8611 
8612 			bcopy(oprobes, probes, osize);
8613 			dtrace_membar_producer();
8614 			dtrace_probes = probes;
8615 
8616 			dtrace_sync();
8617 
8618 			/*
8619 			 * All CPUs are now seeing the new probes array; we can
8620 			 * safely free the old array.
8621 			 */
8622 			kmem_free(oprobes, osize);
8623 			dtrace_nprobes <<= 1;
8624 		}
8625 
8626 		ASSERT(id - 1 < dtrace_nprobes);
8627 	}
8628 
8629 	ASSERT(dtrace_probes[id - 1] == NULL);
8630 	dtrace_probes[id - 1] = probe;
8631 
8632 	if (provider != dtrace_provider)
8633 		mutex_exit(&dtrace_lock);
8634 
8635 	return (id);
8636 }
8637 
8638 static dtrace_probe_t *
8639 dtrace_probe_lookup_id(dtrace_id_t id)
8640 {
8641 	ASSERT(MUTEX_HELD(&dtrace_lock));
8642 
8643 	if (id == 0 || id > dtrace_nprobes)
8644 		return (NULL);
8645 
8646 	return (dtrace_probes[id - 1]);
8647 }
8648 
8649 static int
8650 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8651 {
8652 	*((dtrace_id_t *)arg) = probe->dtpr_id;
8653 
8654 	return (DTRACE_MATCH_DONE);
8655 }
8656 
8657 /*
8658  * Look up a probe based on provider and one or more of module name, function
8659  * name and probe name.
8660  */
8661 dtrace_id_t
8662 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
8663     const char *func, const char *name)
8664 {
8665 	dtrace_probekey_t pkey;
8666 	dtrace_id_t id;
8667 	int match;
8668 
8669 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8670 	pkey.dtpk_pmatch = &dtrace_match_string;
8671 	pkey.dtpk_mod = mod;
8672 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8673 	pkey.dtpk_func = func;
8674 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8675 	pkey.dtpk_name = name;
8676 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8677 	pkey.dtpk_id = DTRACE_IDNONE;
8678 
8679 	mutex_enter(&dtrace_lock);
8680 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8681 	    dtrace_probe_lookup_match, &id);
8682 	mutex_exit(&dtrace_lock);
8683 
8684 	ASSERT(match == 1 || match == 0);
8685 	return (match ? id : 0);
8686 }
8687 
8688 /*
8689  * Returns the probe argument associated with the specified probe.
8690  */
8691 void *
8692 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8693 {
8694 	dtrace_probe_t *probe;
8695 	void *rval = NULL;
8696 
8697 	mutex_enter(&dtrace_lock);
8698 
8699 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8700 	    probe->dtpr_provider == (dtrace_provider_t *)id)
8701 		rval = probe->dtpr_arg;
8702 
8703 	mutex_exit(&dtrace_lock);
8704 
8705 	return (rval);
8706 }
8707 
8708 /*
8709  * Copy a probe into a probe description.
8710  */
8711 static void
8712 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8713 {
8714 	bzero(pdp, sizeof (dtrace_probedesc_t));
8715 	pdp->dtpd_id = prp->dtpr_id;
8716 
8717 	(void) strncpy(pdp->dtpd_provider,
8718 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8719 
8720 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8721 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8722 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8723 }
8724 
8725 /*
8726  * Called to indicate that a probe -- or probes -- should be provided by a
8727  * specfied provider.  If the specified description is NULL, the provider will
8728  * be told to provide all of its probes.  (This is done whenever a new
8729  * consumer comes along, or whenever a retained enabling is to be matched.) If
8730  * the specified description is non-NULL, the provider is given the
8731  * opportunity to dynamically provide the specified probe, allowing providers
8732  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8733  * probes.)  If the provider is NULL, the operations will be applied to all
8734  * providers; if the provider is non-NULL the operations will only be applied
8735  * to the specified provider.  The dtrace_provider_lock must be held, and the
8736  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8737  * will need to grab the dtrace_lock when it reenters the framework through
8738  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8739  */
8740 static void
8741 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8742 {
8743 	struct modctl *ctl;
8744 	int all = 0;
8745 
8746 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8747 
8748 	if (prv == NULL) {
8749 		all = 1;
8750 		prv = dtrace_provider;
8751 	}
8752 
8753 	do {
8754 		/*
8755 		 * First, call the blanket provide operation.
8756 		 */
8757 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8758 
8759 		/*
8760 		 * Now call the per-module provide operation.  We will grab
8761 		 * mod_lock to prevent the list from being modified.  Note
8762 		 * that this also prevents the mod_busy bits from changing.
8763 		 * (mod_busy can only be changed with mod_lock held.)
8764 		 */
8765 		mutex_enter(&mod_lock);
8766 
8767 		ctl = &modules;
8768 		do {
8769 			if (ctl->mod_busy || ctl->mod_mp == NULL)
8770 				continue;
8771 
8772 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8773 
8774 		} while ((ctl = ctl->mod_next) != &modules);
8775 
8776 		mutex_exit(&mod_lock);
8777 	} while (all && (prv = prv->dtpv_next) != NULL);
8778 }
8779 
8780 /*
8781  * Iterate over each probe, and call the Framework-to-Provider API function
8782  * denoted by offs.
8783  */
8784 static void
8785 dtrace_probe_foreach(uintptr_t offs)
8786 {
8787 	dtrace_provider_t *prov;
8788 	void (*func)(void *, dtrace_id_t, void *);
8789 	dtrace_probe_t *probe;
8790 	dtrace_icookie_t cookie;
8791 	int i;
8792 
8793 	/*
8794 	 * We disable interrupts to walk through the probe array.  This is
8795 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8796 	 * won't see stale data.
8797 	 */
8798 	cookie = dtrace_interrupt_disable();
8799 
8800 	for (i = 0; i < dtrace_nprobes; i++) {
8801 		if ((probe = dtrace_probes[i]) == NULL)
8802 			continue;
8803 
8804 		if (probe->dtpr_ecb == NULL) {
8805 			/*
8806 			 * This probe isn't enabled -- don't call the function.
8807 			 */
8808 			continue;
8809 		}
8810 
8811 		prov = probe->dtpr_provider;
8812 		func = *((void(**)(void *, dtrace_id_t, void *))
8813 		    ((uintptr_t)&prov->dtpv_pops + offs));
8814 
8815 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8816 	}
8817 
8818 	dtrace_interrupt_enable(cookie);
8819 }
8820 
8821 static int
8822 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8823 {
8824 	dtrace_probekey_t pkey;
8825 	uint32_t priv;
8826 	uid_t uid;
8827 	zoneid_t zoneid;
8828 
8829 	ASSERT(MUTEX_HELD(&dtrace_lock));
8830 	dtrace_ecb_create_cache = NULL;
8831 
8832 	if (desc == NULL) {
8833 		/*
8834 		 * If we're passed a NULL description, we're being asked to
8835 		 * create an ECB with a NULL probe.
8836 		 */
8837 		(void) dtrace_ecb_create_enable(NULL, enab);
8838 		return (0);
8839 	}
8840 
8841 	dtrace_probekey(desc, &pkey);
8842 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8843 	    &priv, &uid, &zoneid);
8844 
8845 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8846 	    enab));
8847 }
8848 
8849 /*
8850  * DTrace Helper Provider Functions
8851  */
8852 static void
8853 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8854 {
8855 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8856 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8857 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8858 }
8859 
8860 static void
8861 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8862     const dof_provider_t *dofprov, char *strtab)
8863 {
8864 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8865 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8866 	    dofprov->dofpv_provattr);
8867 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8868 	    dofprov->dofpv_modattr);
8869 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8870 	    dofprov->dofpv_funcattr);
8871 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8872 	    dofprov->dofpv_nameattr);
8873 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8874 	    dofprov->dofpv_argsattr);
8875 }
8876 
8877 static void
8878 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8879 {
8880 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8881 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8882 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8883 	dof_provider_t *provider;
8884 	dof_probe_t *probe;
8885 	uint32_t *off, *enoff;
8886 	uint8_t *arg;
8887 	char *strtab;
8888 	uint_t i, nprobes;
8889 	dtrace_helper_provdesc_t dhpv;
8890 	dtrace_helper_probedesc_t dhpb;
8891 	dtrace_meta_t *meta = dtrace_meta_pid;
8892 	dtrace_mops_t *mops = &meta->dtm_mops;
8893 	void *parg;
8894 
8895 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8896 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8897 	    provider->dofpv_strtab * dof->dofh_secsize);
8898 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8899 	    provider->dofpv_probes * dof->dofh_secsize);
8900 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8901 	    provider->dofpv_prargs * dof->dofh_secsize);
8902 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8903 	    provider->dofpv_proffs * dof->dofh_secsize);
8904 
8905 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8906 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8907 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8908 	enoff = NULL;
8909 
8910 	/*
8911 	 * See dtrace_helper_provider_validate().
8912 	 */
8913 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8914 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8915 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8916 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8917 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8918 	}
8919 
8920 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8921 
8922 	/*
8923 	 * Create the provider.
8924 	 */
8925 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8926 
8927 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8928 		return;
8929 
8930 	meta->dtm_count++;
8931 
8932 	/*
8933 	 * Create the probes.
8934 	 */
8935 	for (i = 0; i < nprobes; i++) {
8936 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8937 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8938 
8939 		dhpb.dthpb_mod = dhp->dofhp_mod;
8940 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8941 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8942 		dhpb.dthpb_base = probe->dofpr_addr;
8943 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8944 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8945 		if (enoff != NULL) {
8946 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8947 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8948 		} else {
8949 			dhpb.dthpb_enoffs = NULL;
8950 			dhpb.dthpb_nenoffs = 0;
8951 		}
8952 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8953 		dhpb.dthpb_nargc = probe->dofpr_nargc;
8954 		dhpb.dthpb_xargc = probe->dofpr_xargc;
8955 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8956 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8957 
8958 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8959 	}
8960 }
8961 
8962 static void
8963 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8964 {
8965 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8966 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8967 	int i;
8968 
8969 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8970 
8971 	for (i = 0; i < dof->dofh_secnum; i++) {
8972 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8973 		    dof->dofh_secoff + i * dof->dofh_secsize);
8974 
8975 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8976 			continue;
8977 
8978 		dtrace_helper_provide_one(dhp, sec, pid);
8979 	}
8980 
8981 	/*
8982 	 * We may have just created probes, so we must now rematch against
8983 	 * any retained enablings.  Note that this call will acquire both
8984 	 * cpu_lock and dtrace_lock; the fact that we are holding
8985 	 * dtrace_meta_lock now is what defines the ordering with respect to
8986 	 * these three locks.
8987 	 */
8988 	dtrace_enabling_matchall();
8989 }
8990 
8991 static void
8992 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8993 {
8994 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8995 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8996 	dof_sec_t *str_sec;
8997 	dof_provider_t *provider;
8998 	char *strtab;
8999 	dtrace_helper_provdesc_t dhpv;
9000 	dtrace_meta_t *meta = dtrace_meta_pid;
9001 	dtrace_mops_t *mops = &meta->dtm_mops;
9002 
9003 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9004 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9005 	    provider->dofpv_strtab * dof->dofh_secsize);
9006 
9007 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9008 
9009 	/*
9010 	 * Create the provider.
9011 	 */
9012 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9013 
9014 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9015 
9016 	meta->dtm_count--;
9017 }
9018 
9019 static void
9020 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9021 {
9022 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9023 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9024 	int i;
9025 
9026 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9027 
9028 	for (i = 0; i < dof->dofh_secnum; i++) {
9029 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9030 		    dof->dofh_secoff + i * dof->dofh_secsize);
9031 
9032 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9033 			continue;
9034 
9035 		dtrace_helper_provider_remove_one(dhp, sec, pid);
9036 	}
9037 }
9038 
9039 /*
9040  * DTrace Meta Provider-to-Framework API Functions
9041  *
9042  * These functions implement the Meta Provider-to-Framework API, as described
9043  * in <sys/dtrace.h>.
9044  */
9045 int
9046 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9047     dtrace_meta_provider_id_t *idp)
9048 {
9049 	dtrace_meta_t *meta;
9050 	dtrace_helpers_t *help, *next;
9051 	int i;
9052 
9053 	*idp = DTRACE_METAPROVNONE;
9054 
9055 	/*
9056 	 * We strictly don't need the name, but we hold onto it for
9057 	 * debuggability. All hail error queues!
9058 	 */
9059 	if (name == NULL) {
9060 		cmn_err(CE_WARN, "failed to register meta-provider: "
9061 		    "invalid name");
9062 		return (EINVAL);
9063 	}
9064 
9065 	if (mops == NULL ||
9066 	    mops->dtms_create_probe == NULL ||
9067 	    mops->dtms_provide_pid == NULL ||
9068 	    mops->dtms_remove_pid == NULL) {
9069 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9070 		    "invalid ops", name);
9071 		return (EINVAL);
9072 	}
9073 
9074 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9075 	meta->dtm_mops = *mops;
9076 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9077 	(void) strcpy(meta->dtm_name, name);
9078 	meta->dtm_arg = arg;
9079 
9080 	mutex_enter(&dtrace_meta_lock);
9081 	mutex_enter(&dtrace_lock);
9082 
9083 	if (dtrace_meta_pid != NULL) {
9084 		mutex_exit(&dtrace_lock);
9085 		mutex_exit(&dtrace_meta_lock);
9086 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9087 		    "user-land meta-provider exists", name);
9088 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9089 		kmem_free(meta, sizeof (dtrace_meta_t));
9090 		return (EINVAL);
9091 	}
9092 
9093 	dtrace_meta_pid = meta;
9094 	*idp = (dtrace_meta_provider_id_t)meta;
9095 
9096 	/*
9097 	 * If there are providers and probes ready to go, pass them
9098 	 * off to the new meta provider now.
9099 	 */
9100 
9101 	help = dtrace_deferred_pid;
9102 	dtrace_deferred_pid = NULL;
9103 
9104 	mutex_exit(&dtrace_lock);
9105 
9106 	while (help != NULL) {
9107 		for (i = 0; i < help->dthps_nprovs; i++) {
9108 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9109 			    help->dthps_pid);
9110 		}
9111 
9112 		next = help->dthps_next;
9113 		help->dthps_next = NULL;
9114 		help->dthps_prev = NULL;
9115 		help->dthps_deferred = 0;
9116 		help = next;
9117 	}
9118 
9119 	mutex_exit(&dtrace_meta_lock);
9120 
9121 	return (0);
9122 }
9123 
9124 int
9125 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9126 {
9127 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9128 
9129 	mutex_enter(&dtrace_meta_lock);
9130 	mutex_enter(&dtrace_lock);
9131 
9132 	if (old == dtrace_meta_pid) {
9133 		pp = &dtrace_meta_pid;
9134 	} else {
9135 		panic("attempt to unregister non-existent "
9136 		    "dtrace meta-provider %p\n", (void *)old);
9137 	}
9138 
9139 	if (old->dtm_count != 0) {
9140 		mutex_exit(&dtrace_lock);
9141 		mutex_exit(&dtrace_meta_lock);
9142 		return (EBUSY);
9143 	}
9144 
9145 	*pp = NULL;
9146 
9147 	mutex_exit(&dtrace_lock);
9148 	mutex_exit(&dtrace_meta_lock);
9149 
9150 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9151 	kmem_free(old, sizeof (dtrace_meta_t));
9152 
9153 	return (0);
9154 }
9155 
9156 
9157 /*
9158  * DTrace DIF Object Functions
9159  */
9160 static int
9161 dtrace_difo_err(uint_t pc, const char *format, ...)
9162 {
9163 	if (dtrace_err_verbose) {
9164 		va_list alist;
9165 
9166 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9167 		va_start(alist, format);
9168 		(void) vuprintf(format, alist);
9169 		va_end(alist);
9170 	}
9171 
9172 #ifdef DTRACE_ERRDEBUG
9173 	dtrace_errdebug(format);
9174 #endif
9175 	return (1);
9176 }
9177 
9178 /*
9179  * Validate a DTrace DIF object by checking the IR instructions.  The following
9180  * rules are currently enforced by dtrace_difo_validate():
9181  *
9182  * 1. Each instruction must have a valid opcode
9183  * 2. Each register, string, variable, or subroutine reference must be valid
9184  * 3. No instruction can modify register %r0 (must be zero)
9185  * 4. All instruction reserved bits must be set to zero
9186  * 5. The last instruction must be a "ret" instruction
9187  * 6. All branch targets must reference a valid instruction _after_ the branch
9188  */
9189 static int
9190 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9191     cred_t *cr)
9192 {
9193 	int err = 0, i;
9194 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9195 	int kcheckload;
9196 	uint_t pc;
9197 	int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9198 
9199 	kcheckload = cr == NULL ||
9200 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9201 
9202 	dp->dtdo_destructive = 0;
9203 
9204 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9205 		dif_instr_t instr = dp->dtdo_buf[pc];
9206 
9207 		uint_t r1 = DIF_INSTR_R1(instr);
9208 		uint_t r2 = DIF_INSTR_R2(instr);
9209 		uint_t rd = DIF_INSTR_RD(instr);
9210 		uint_t rs = DIF_INSTR_RS(instr);
9211 		uint_t label = DIF_INSTR_LABEL(instr);
9212 		uint_t v = DIF_INSTR_VAR(instr);
9213 		uint_t subr = DIF_INSTR_SUBR(instr);
9214 		uint_t type = DIF_INSTR_TYPE(instr);
9215 		uint_t op = DIF_INSTR_OP(instr);
9216 
9217 		switch (op) {
9218 		case DIF_OP_OR:
9219 		case DIF_OP_XOR:
9220 		case DIF_OP_AND:
9221 		case DIF_OP_SLL:
9222 		case DIF_OP_SRL:
9223 		case DIF_OP_SRA:
9224 		case DIF_OP_SUB:
9225 		case DIF_OP_ADD:
9226 		case DIF_OP_MUL:
9227 		case DIF_OP_SDIV:
9228 		case DIF_OP_UDIV:
9229 		case DIF_OP_SREM:
9230 		case DIF_OP_UREM:
9231 		case DIF_OP_COPYS:
9232 			if (r1 >= nregs)
9233 				err += efunc(pc, "invalid register %u\n", r1);
9234 			if (r2 >= nregs)
9235 				err += efunc(pc, "invalid register %u\n", r2);
9236 			if (rd >= nregs)
9237 				err += efunc(pc, "invalid register %u\n", rd);
9238 			if (rd == 0)
9239 				err += efunc(pc, "cannot write to %r0\n");
9240 			break;
9241 		case DIF_OP_NOT:
9242 		case DIF_OP_MOV:
9243 		case DIF_OP_ALLOCS:
9244 			if (r1 >= nregs)
9245 				err += efunc(pc, "invalid register %u\n", r1);
9246 			if (r2 != 0)
9247 				err += efunc(pc, "non-zero reserved bits\n");
9248 			if (rd >= nregs)
9249 				err += efunc(pc, "invalid register %u\n", rd);
9250 			if (rd == 0)
9251 				err += efunc(pc, "cannot write to %r0\n");
9252 			break;
9253 		case DIF_OP_LDSB:
9254 		case DIF_OP_LDSH:
9255 		case DIF_OP_LDSW:
9256 		case DIF_OP_LDUB:
9257 		case DIF_OP_LDUH:
9258 		case DIF_OP_LDUW:
9259 		case DIF_OP_LDX:
9260 			if (r1 >= nregs)
9261 				err += efunc(pc, "invalid register %u\n", r1);
9262 			if (r2 != 0)
9263 				err += efunc(pc, "non-zero reserved bits\n");
9264 			if (rd >= nregs)
9265 				err += efunc(pc, "invalid register %u\n", rd);
9266 			if (rd == 0)
9267 				err += efunc(pc, "cannot write to %r0\n");
9268 			if (kcheckload)
9269 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9270 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9271 			break;
9272 		case DIF_OP_RLDSB:
9273 		case DIF_OP_RLDSH:
9274 		case DIF_OP_RLDSW:
9275 		case DIF_OP_RLDUB:
9276 		case DIF_OP_RLDUH:
9277 		case DIF_OP_RLDUW:
9278 		case DIF_OP_RLDX:
9279 			if (r1 >= nregs)
9280 				err += efunc(pc, "invalid register %u\n", r1);
9281 			if (r2 != 0)
9282 				err += efunc(pc, "non-zero reserved bits\n");
9283 			if (rd >= nregs)
9284 				err += efunc(pc, "invalid register %u\n", rd);
9285 			if (rd == 0)
9286 				err += efunc(pc, "cannot write to %r0\n");
9287 			break;
9288 		case DIF_OP_ULDSB:
9289 		case DIF_OP_ULDSH:
9290 		case DIF_OP_ULDSW:
9291 		case DIF_OP_ULDUB:
9292 		case DIF_OP_ULDUH:
9293 		case DIF_OP_ULDUW:
9294 		case DIF_OP_ULDX:
9295 			if (r1 >= nregs)
9296 				err += efunc(pc, "invalid register %u\n", r1);
9297 			if (r2 != 0)
9298 				err += efunc(pc, "non-zero reserved bits\n");
9299 			if (rd >= nregs)
9300 				err += efunc(pc, "invalid register %u\n", rd);
9301 			if (rd == 0)
9302 				err += efunc(pc, "cannot write to %r0\n");
9303 			break;
9304 		case DIF_OP_STB:
9305 		case DIF_OP_STH:
9306 		case DIF_OP_STW:
9307 		case DIF_OP_STX:
9308 			if (r1 >= nregs)
9309 				err += efunc(pc, "invalid register %u\n", r1);
9310 			if (r2 != 0)
9311 				err += efunc(pc, "non-zero reserved bits\n");
9312 			if (rd >= nregs)
9313 				err += efunc(pc, "invalid register %u\n", rd);
9314 			if (rd == 0)
9315 				err += efunc(pc, "cannot write to 0 address\n");
9316 			break;
9317 		case DIF_OP_CMP:
9318 		case DIF_OP_SCMP:
9319 			if (r1 >= nregs)
9320 				err += efunc(pc, "invalid register %u\n", r1);
9321 			if (r2 >= nregs)
9322 				err += efunc(pc, "invalid register %u\n", r2);
9323 			if (rd != 0)
9324 				err += efunc(pc, "non-zero reserved bits\n");
9325 			break;
9326 		case DIF_OP_TST:
9327 			if (r1 >= nregs)
9328 				err += efunc(pc, "invalid register %u\n", r1);
9329 			if (r2 != 0 || rd != 0)
9330 				err += efunc(pc, "non-zero reserved bits\n");
9331 			break;
9332 		case DIF_OP_BA:
9333 		case DIF_OP_BE:
9334 		case DIF_OP_BNE:
9335 		case DIF_OP_BG:
9336 		case DIF_OP_BGU:
9337 		case DIF_OP_BGE:
9338 		case DIF_OP_BGEU:
9339 		case DIF_OP_BL:
9340 		case DIF_OP_BLU:
9341 		case DIF_OP_BLE:
9342 		case DIF_OP_BLEU:
9343 			if (label >= dp->dtdo_len) {
9344 				err += efunc(pc, "invalid branch target %u\n",
9345 				    label);
9346 			}
9347 			if (label <= pc) {
9348 				err += efunc(pc, "backward branch to %u\n",
9349 				    label);
9350 			}
9351 			break;
9352 		case DIF_OP_RET:
9353 			if (r1 != 0 || r2 != 0)
9354 				err += efunc(pc, "non-zero reserved bits\n");
9355 			if (rd >= nregs)
9356 				err += efunc(pc, "invalid register %u\n", rd);
9357 			break;
9358 		case DIF_OP_NOP:
9359 		case DIF_OP_POPTS:
9360 		case DIF_OP_FLUSHTS:
9361 			if (r1 != 0 || r2 != 0 || rd != 0)
9362 				err += efunc(pc, "non-zero reserved bits\n");
9363 			break;
9364 		case DIF_OP_SETX:
9365 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9366 				err += efunc(pc, "invalid integer ref %u\n",
9367 				    DIF_INSTR_INTEGER(instr));
9368 			}
9369 			if (rd >= nregs)
9370 				err += efunc(pc, "invalid register %u\n", rd);
9371 			if (rd == 0)
9372 				err += efunc(pc, "cannot write to %r0\n");
9373 			break;
9374 		case DIF_OP_SETS:
9375 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9376 				err += efunc(pc, "invalid string ref %u\n",
9377 				    DIF_INSTR_STRING(instr));
9378 			}
9379 			if (rd >= nregs)
9380 				err += efunc(pc, "invalid register %u\n", rd);
9381 			if (rd == 0)
9382 				err += efunc(pc, "cannot write to %r0\n");
9383 			break;
9384 		case DIF_OP_LDGA:
9385 		case DIF_OP_LDTA:
9386 			if (r1 > DIF_VAR_ARRAY_MAX)
9387 				err += efunc(pc, "invalid array %u\n", r1);
9388 			if (r2 >= nregs)
9389 				err += efunc(pc, "invalid register %u\n", r2);
9390 			if (rd >= nregs)
9391 				err += efunc(pc, "invalid register %u\n", rd);
9392 			if (rd == 0)
9393 				err += efunc(pc, "cannot write to %r0\n");
9394 			break;
9395 		case DIF_OP_LDGS:
9396 		case DIF_OP_LDTS:
9397 		case DIF_OP_LDLS:
9398 		case DIF_OP_LDGAA:
9399 		case DIF_OP_LDTAA:
9400 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9401 				err += efunc(pc, "invalid variable %u\n", v);
9402 			if (rd >= nregs)
9403 				err += efunc(pc, "invalid register %u\n", rd);
9404 			if (rd == 0)
9405 				err += efunc(pc, "cannot write to %r0\n");
9406 			break;
9407 		case DIF_OP_STGS:
9408 		case DIF_OP_STTS:
9409 		case DIF_OP_STLS:
9410 		case DIF_OP_STGAA:
9411 		case DIF_OP_STTAA:
9412 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9413 				err += efunc(pc, "invalid variable %u\n", v);
9414 			if (rs >= nregs)
9415 				err += efunc(pc, "invalid register %u\n", rd);
9416 			break;
9417 		case DIF_OP_CALL:
9418 			if (subr > DIF_SUBR_MAX)
9419 				err += efunc(pc, "invalid subr %u\n", subr);
9420 			if (rd >= nregs)
9421 				err += efunc(pc, "invalid register %u\n", rd);
9422 			if (rd == 0)
9423 				err += efunc(pc, "cannot write to %r0\n");
9424 
9425 			if (subr == DIF_SUBR_COPYOUT ||
9426 			    subr == DIF_SUBR_COPYOUTSTR) {
9427 				dp->dtdo_destructive = 1;
9428 			}
9429 
9430 			if (subr == DIF_SUBR_GETF) {
9431 				/*
9432 				 * If we have a getf() we need to record that
9433 				 * in our state.  Note that our state can be
9434 				 * NULL if this is a helper -- but in that
9435 				 * case, the call to getf() is itself illegal,
9436 				 * and will be caught (slightly later) when
9437 				 * the helper is validated.
9438 				 */
9439 				if (vstate->dtvs_state != NULL)
9440 					vstate->dtvs_state->dts_getf++;
9441 			}
9442 
9443 			break;
9444 		case DIF_OP_PUSHTR:
9445 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9446 				err += efunc(pc, "invalid ref type %u\n", type);
9447 			if (r2 >= nregs)
9448 				err += efunc(pc, "invalid register %u\n", r2);
9449 			if (rs >= nregs)
9450 				err += efunc(pc, "invalid register %u\n", rs);
9451 			break;
9452 		case DIF_OP_PUSHTV:
9453 			if (type != DIF_TYPE_CTF)
9454 				err += efunc(pc, "invalid val type %u\n", type);
9455 			if (r2 >= nregs)
9456 				err += efunc(pc, "invalid register %u\n", r2);
9457 			if (rs >= nregs)
9458 				err += efunc(pc, "invalid register %u\n", rs);
9459 			break;
9460 		default:
9461 			err += efunc(pc, "invalid opcode %u\n",
9462 			    DIF_INSTR_OP(instr));
9463 		}
9464 	}
9465 
9466 	if (dp->dtdo_len != 0 &&
9467 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9468 		err += efunc(dp->dtdo_len - 1,
9469 		    "expected 'ret' as last DIF instruction\n");
9470 	}
9471 
9472 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9473 		/*
9474 		 * If we're not returning by reference, the size must be either
9475 		 * 0 or the size of one of the base types.
9476 		 */
9477 		switch (dp->dtdo_rtype.dtdt_size) {
9478 		case 0:
9479 		case sizeof (uint8_t):
9480 		case sizeof (uint16_t):
9481 		case sizeof (uint32_t):
9482 		case sizeof (uint64_t):
9483 			break;
9484 
9485 		default:
9486 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9487 		}
9488 	}
9489 
9490 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9491 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9492 		dtrace_diftype_t *vt, *et;
9493 		uint_t id, ndx;
9494 
9495 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9496 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
9497 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9498 			err += efunc(i, "unrecognized variable scope %d\n",
9499 			    v->dtdv_scope);
9500 			break;
9501 		}
9502 
9503 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9504 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
9505 			err += efunc(i, "unrecognized variable type %d\n",
9506 			    v->dtdv_kind);
9507 			break;
9508 		}
9509 
9510 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9511 			err += efunc(i, "%d exceeds variable id limit\n", id);
9512 			break;
9513 		}
9514 
9515 		if (id < DIF_VAR_OTHER_UBASE)
9516 			continue;
9517 
9518 		/*
9519 		 * For user-defined variables, we need to check that this
9520 		 * definition is identical to any previous definition that we
9521 		 * encountered.
9522 		 */
9523 		ndx = id - DIF_VAR_OTHER_UBASE;
9524 
9525 		switch (v->dtdv_scope) {
9526 		case DIFV_SCOPE_GLOBAL:
9527 			if (maxglobal == -1 || ndx > maxglobal)
9528 				maxglobal = ndx;
9529 
9530 			if (ndx < vstate->dtvs_nglobals) {
9531 				dtrace_statvar_t *svar;
9532 
9533 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9534 					existing = &svar->dtsv_var;
9535 			}
9536 
9537 			break;
9538 
9539 		case DIFV_SCOPE_THREAD:
9540 			if (maxtlocal == -1 || ndx > maxtlocal)
9541 				maxtlocal = ndx;
9542 
9543 			if (ndx < vstate->dtvs_ntlocals)
9544 				existing = &vstate->dtvs_tlocals[ndx];
9545 			break;
9546 
9547 		case DIFV_SCOPE_LOCAL:
9548 			if (maxlocal == -1 || ndx > maxlocal)
9549 				maxlocal = ndx;
9550 
9551 			if (ndx < vstate->dtvs_nlocals) {
9552 				dtrace_statvar_t *svar;
9553 
9554 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9555 					existing = &svar->dtsv_var;
9556 			}
9557 
9558 			break;
9559 		}
9560 
9561 		vt = &v->dtdv_type;
9562 
9563 		if (vt->dtdt_flags & DIF_TF_BYREF) {
9564 			if (vt->dtdt_size == 0) {
9565 				err += efunc(i, "zero-sized variable\n");
9566 				break;
9567 			}
9568 
9569 			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
9570 			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
9571 			    vt->dtdt_size > dtrace_statvar_maxsize) {
9572 				err += efunc(i, "oversized by-ref static\n");
9573 				break;
9574 			}
9575 		}
9576 
9577 		if (existing == NULL || existing->dtdv_id == 0)
9578 			continue;
9579 
9580 		ASSERT(existing->dtdv_id == v->dtdv_id);
9581 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
9582 
9583 		if (existing->dtdv_kind != v->dtdv_kind)
9584 			err += efunc(i, "%d changed variable kind\n", id);
9585 
9586 		et = &existing->dtdv_type;
9587 
9588 		if (vt->dtdt_flags != et->dtdt_flags) {
9589 			err += efunc(i, "%d changed variable type flags\n", id);
9590 			break;
9591 		}
9592 
9593 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9594 			err += efunc(i, "%d changed variable type size\n", id);
9595 			break;
9596 		}
9597 	}
9598 
9599 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9600 		dif_instr_t instr = dp->dtdo_buf[pc];
9601 
9602 		uint_t v = DIF_INSTR_VAR(instr);
9603 		uint_t op = DIF_INSTR_OP(instr);
9604 
9605 		switch (op) {
9606 		case DIF_OP_LDGS:
9607 		case DIF_OP_LDGAA:
9608 		case DIF_OP_STGS:
9609 		case DIF_OP_STGAA:
9610 			if (v > DIF_VAR_OTHER_UBASE + maxglobal)
9611 				err += efunc(pc, "invalid variable %u\n", v);
9612 			break;
9613 		case DIF_OP_LDTS:
9614 		case DIF_OP_LDTAA:
9615 		case DIF_OP_STTS:
9616 		case DIF_OP_STTAA:
9617 			if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
9618 				err += efunc(pc, "invalid variable %u\n", v);
9619 			break;
9620 		case DIF_OP_LDLS:
9621 		case DIF_OP_STLS:
9622 			if (v > DIF_VAR_OTHER_UBASE + maxlocal)
9623 				err += efunc(pc, "invalid variable %u\n", v);
9624 			break;
9625 		default:
9626 			break;
9627 		}
9628 	}
9629 
9630 	return (err);
9631 }
9632 
9633 /*
9634  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
9635  * are much more constrained than normal DIFOs.  Specifically, they may
9636  * not:
9637  *
9638  * 1. Make calls to subroutines other than copyin(), copyinstr() or
9639  *    miscellaneous string routines
9640  * 2. Access DTrace variables other than the args[] array, and the
9641  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9642  * 3. Have thread-local variables.
9643  * 4. Have dynamic variables.
9644  */
9645 static int
9646 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9647 {
9648 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9649 	int err = 0;
9650 	uint_t pc;
9651 
9652 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9653 		dif_instr_t instr = dp->dtdo_buf[pc];
9654 
9655 		uint_t v = DIF_INSTR_VAR(instr);
9656 		uint_t subr = DIF_INSTR_SUBR(instr);
9657 		uint_t op = DIF_INSTR_OP(instr);
9658 
9659 		switch (op) {
9660 		case DIF_OP_OR:
9661 		case DIF_OP_XOR:
9662 		case DIF_OP_AND:
9663 		case DIF_OP_SLL:
9664 		case DIF_OP_SRL:
9665 		case DIF_OP_SRA:
9666 		case DIF_OP_SUB:
9667 		case DIF_OP_ADD:
9668 		case DIF_OP_MUL:
9669 		case DIF_OP_SDIV:
9670 		case DIF_OP_UDIV:
9671 		case DIF_OP_SREM:
9672 		case DIF_OP_UREM:
9673 		case DIF_OP_COPYS:
9674 		case DIF_OP_NOT:
9675 		case DIF_OP_MOV:
9676 		case DIF_OP_RLDSB:
9677 		case DIF_OP_RLDSH:
9678 		case DIF_OP_RLDSW:
9679 		case DIF_OP_RLDUB:
9680 		case DIF_OP_RLDUH:
9681 		case DIF_OP_RLDUW:
9682 		case DIF_OP_RLDX:
9683 		case DIF_OP_ULDSB:
9684 		case DIF_OP_ULDSH:
9685 		case DIF_OP_ULDSW:
9686 		case DIF_OP_ULDUB:
9687 		case DIF_OP_ULDUH:
9688 		case DIF_OP_ULDUW:
9689 		case DIF_OP_ULDX:
9690 		case DIF_OP_STB:
9691 		case DIF_OP_STH:
9692 		case DIF_OP_STW:
9693 		case DIF_OP_STX:
9694 		case DIF_OP_ALLOCS:
9695 		case DIF_OP_CMP:
9696 		case DIF_OP_SCMP:
9697 		case DIF_OP_TST:
9698 		case DIF_OP_BA:
9699 		case DIF_OP_BE:
9700 		case DIF_OP_BNE:
9701 		case DIF_OP_BG:
9702 		case DIF_OP_BGU:
9703 		case DIF_OP_BGE:
9704 		case DIF_OP_BGEU:
9705 		case DIF_OP_BL:
9706 		case DIF_OP_BLU:
9707 		case DIF_OP_BLE:
9708 		case DIF_OP_BLEU:
9709 		case DIF_OP_RET:
9710 		case DIF_OP_NOP:
9711 		case DIF_OP_POPTS:
9712 		case DIF_OP_FLUSHTS:
9713 		case DIF_OP_SETX:
9714 		case DIF_OP_SETS:
9715 		case DIF_OP_LDGA:
9716 		case DIF_OP_LDLS:
9717 		case DIF_OP_STGS:
9718 		case DIF_OP_STLS:
9719 		case DIF_OP_PUSHTR:
9720 		case DIF_OP_PUSHTV:
9721 			break;
9722 
9723 		case DIF_OP_LDGS:
9724 			if (v >= DIF_VAR_OTHER_UBASE)
9725 				break;
9726 
9727 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9728 				break;
9729 
9730 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9731 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9732 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9733 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
9734 				break;
9735 
9736 			err += efunc(pc, "illegal variable %u\n", v);
9737 			break;
9738 
9739 		case DIF_OP_LDTA:
9740 		case DIF_OP_LDTS:
9741 		case DIF_OP_LDGAA:
9742 		case DIF_OP_LDTAA:
9743 			err += efunc(pc, "illegal dynamic variable load\n");
9744 			break;
9745 
9746 		case DIF_OP_STTS:
9747 		case DIF_OP_STGAA:
9748 		case DIF_OP_STTAA:
9749 			err += efunc(pc, "illegal dynamic variable store\n");
9750 			break;
9751 
9752 		case DIF_OP_CALL:
9753 			if (subr == DIF_SUBR_ALLOCA ||
9754 			    subr == DIF_SUBR_BCOPY ||
9755 			    subr == DIF_SUBR_COPYIN ||
9756 			    subr == DIF_SUBR_COPYINTO ||
9757 			    subr == DIF_SUBR_COPYINSTR ||
9758 			    subr == DIF_SUBR_INDEX ||
9759 			    subr == DIF_SUBR_INET_NTOA ||
9760 			    subr == DIF_SUBR_INET_NTOA6 ||
9761 			    subr == DIF_SUBR_INET_NTOP ||
9762 			    subr == DIF_SUBR_JSON ||
9763 			    subr == DIF_SUBR_LLTOSTR ||
9764 			    subr == DIF_SUBR_STRTOLL ||
9765 			    subr == DIF_SUBR_RINDEX ||
9766 			    subr == DIF_SUBR_STRCHR ||
9767 			    subr == DIF_SUBR_STRJOIN ||
9768 			    subr == DIF_SUBR_STRRCHR ||
9769 			    subr == DIF_SUBR_STRSTR ||
9770 			    subr == DIF_SUBR_HTONS ||
9771 			    subr == DIF_SUBR_HTONL ||
9772 			    subr == DIF_SUBR_HTONLL ||
9773 			    subr == DIF_SUBR_NTOHS ||
9774 			    subr == DIF_SUBR_NTOHL ||
9775 			    subr == DIF_SUBR_NTOHLL)
9776 				break;
9777 
9778 			err += efunc(pc, "invalid subr %u\n", subr);
9779 			break;
9780 
9781 		default:
9782 			err += efunc(pc, "invalid opcode %u\n",
9783 			    DIF_INSTR_OP(instr));
9784 		}
9785 	}
9786 
9787 	return (err);
9788 }
9789 
9790 /*
9791  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9792  * basis; 0 if not.
9793  */
9794 static int
9795 dtrace_difo_cacheable(dtrace_difo_t *dp)
9796 {
9797 	int i;
9798 
9799 	if (dp == NULL)
9800 		return (0);
9801 
9802 	for (i = 0; i < dp->dtdo_varlen; i++) {
9803 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9804 
9805 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9806 			continue;
9807 
9808 		switch (v->dtdv_id) {
9809 		case DIF_VAR_CURTHREAD:
9810 		case DIF_VAR_PID:
9811 		case DIF_VAR_TID:
9812 		case DIF_VAR_EXECNAME:
9813 		case DIF_VAR_ZONENAME:
9814 			break;
9815 
9816 		default:
9817 			return (0);
9818 		}
9819 	}
9820 
9821 	/*
9822 	 * This DIF object may be cacheable.  Now we need to look for any
9823 	 * array loading instructions, any memory loading instructions, or
9824 	 * any stores to thread-local variables.
9825 	 */
9826 	for (i = 0; i < dp->dtdo_len; i++) {
9827 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9828 
9829 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9830 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9831 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9832 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9833 			return (0);
9834 	}
9835 
9836 	return (1);
9837 }
9838 
9839 static void
9840 dtrace_difo_hold(dtrace_difo_t *dp)
9841 {
9842 	int i;
9843 
9844 	ASSERT(MUTEX_HELD(&dtrace_lock));
9845 
9846 	dp->dtdo_refcnt++;
9847 	ASSERT(dp->dtdo_refcnt != 0);
9848 
9849 	/*
9850 	 * We need to check this DIF object for references to the variable
9851 	 * DIF_VAR_VTIMESTAMP.
9852 	 */
9853 	for (i = 0; i < dp->dtdo_varlen; i++) {
9854 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9855 
9856 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9857 			continue;
9858 
9859 		if (dtrace_vtime_references++ == 0)
9860 			dtrace_vtime_enable();
9861 	}
9862 }
9863 
9864 /*
9865  * This routine calculates the dynamic variable chunksize for a given DIF
9866  * object.  The calculation is not fool-proof, and can probably be tricked by
9867  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9868  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9869  * if a dynamic variable size exceeds the chunksize.
9870  */
9871 static void
9872 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9873 {
9874 	uint64_t sval;
9875 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9876 	const dif_instr_t *text = dp->dtdo_buf;
9877 	uint_t pc, srd = 0;
9878 	uint_t ttop = 0;
9879 	size_t size, ksize;
9880 	uint_t id, i;
9881 
9882 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9883 		dif_instr_t instr = text[pc];
9884 		uint_t op = DIF_INSTR_OP(instr);
9885 		uint_t rd = DIF_INSTR_RD(instr);
9886 		uint_t r1 = DIF_INSTR_R1(instr);
9887 		uint_t nkeys = 0;
9888 		uchar_t scope;
9889 
9890 		dtrace_key_t *key = tupregs;
9891 
9892 		switch (op) {
9893 		case DIF_OP_SETX:
9894 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9895 			srd = rd;
9896 			continue;
9897 
9898 		case DIF_OP_STTS:
9899 			key = &tupregs[DIF_DTR_NREGS];
9900 			key[0].dttk_size = 0;
9901 			key[1].dttk_size = 0;
9902 			nkeys = 2;
9903 			scope = DIFV_SCOPE_THREAD;
9904 			break;
9905 
9906 		case DIF_OP_STGAA:
9907 		case DIF_OP_STTAA:
9908 			nkeys = ttop;
9909 
9910 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9911 				key[nkeys++].dttk_size = 0;
9912 
9913 			key[nkeys++].dttk_size = 0;
9914 
9915 			if (op == DIF_OP_STTAA) {
9916 				scope = DIFV_SCOPE_THREAD;
9917 			} else {
9918 				scope = DIFV_SCOPE_GLOBAL;
9919 			}
9920 
9921 			break;
9922 
9923 		case DIF_OP_PUSHTR:
9924 			if (ttop == DIF_DTR_NREGS)
9925 				return;
9926 
9927 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9928 				/*
9929 				 * If the register for the size of the "pushtr"
9930 				 * is %r0 (or the value is 0) and the type is
9931 				 * a string, we'll use the system-wide default
9932 				 * string size.
9933 				 */
9934 				tupregs[ttop++].dttk_size =
9935 				    dtrace_strsize_default;
9936 			} else {
9937 				if (srd == 0)
9938 					return;
9939 
9940 				if (sval > LONG_MAX)
9941 					return;
9942 
9943 				tupregs[ttop++].dttk_size = sval;
9944 			}
9945 
9946 			break;
9947 
9948 		case DIF_OP_PUSHTV:
9949 			if (ttop == DIF_DTR_NREGS)
9950 				return;
9951 
9952 			tupregs[ttop++].dttk_size = 0;
9953 			break;
9954 
9955 		case DIF_OP_FLUSHTS:
9956 			ttop = 0;
9957 			break;
9958 
9959 		case DIF_OP_POPTS:
9960 			if (ttop != 0)
9961 				ttop--;
9962 			break;
9963 		}
9964 
9965 		sval = 0;
9966 		srd = 0;
9967 
9968 		if (nkeys == 0)
9969 			continue;
9970 
9971 		/*
9972 		 * We have a dynamic variable allocation; calculate its size.
9973 		 */
9974 		for (ksize = 0, i = 0; i < nkeys; i++)
9975 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9976 
9977 		size = sizeof (dtrace_dynvar_t);
9978 		size += sizeof (dtrace_key_t) * (nkeys - 1);
9979 		size += ksize;
9980 
9981 		/*
9982 		 * Now we need to determine the size of the stored data.
9983 		 */
9984 		id = DIF_INSTR_VAR(instr);
9985 
9986 		for (i = 0; i < dp->dtdo_varlen; i++) {
9987 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9988 
9989 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9990 				size += v->dtdv_type.dtdt_size;
9991 				break;
9992 			}
9993 		}
9994 
9995 		if (i == dp->dtdo_varlen)
9996 			return;
9997 
9998 		/*
9999 		 * We have the size.  If this is larger than the chunk size
10000 		 * for our dynamic variable state, reset the chunk size.
10001 		 */
10002 		size = P2ROUNDUP(size, sizeof (uint64_t));
10003 
10004 		/*
10005 		 * Before setting the chunk size, check that we're not going
10006 		 * to set it to a negative value...
10007 		 */
10008 		if (size > LONG_MAX)
10009 			return;
10010 
10011 		/*
10012 		 * ...and make certain that we didn't badly overflow.
10013 		 */
10014 		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10015 			return;
10016 
10017 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10018 			vstate->dtvs_dynvars.dtds_chunksize = size;
10019 	}
10020 }
10021 
10022 static void
10023 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10024 {
10025 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10026 	uint_t id;
10027 
10028 	ASSERT(MUTEX_HELD(&dtrace_lock));
10029 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10030 
10031 	for (i = 0; i < dp->dtdo_varlen; i++) {
10032 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10033 		dtrace_statvar_t *svar, ***svarp;
10034 		size_t dsize = 0;
10035 		uint8_t scope = v->dtdv_scope;
10036 		int *np;
10037 
10038 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10039 			continue;
10040 
10041 		id -= DIF_VAR_OTHER_UBASE;
10042 
10043 		switch (scope) {
10044 		case DIFV_SCOPE_THREAD:
10045 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10046 				dtrace_difv_t *tlocals;
10047 
10048 				if ((ntlocals = (otlocals << 1)) == 0)
10049 					ntlocals = 1;
10050 
10051 				osz = otlocals * sizeof (dtrace_difv_t);
10052 				nsz = ntlocals * sizeof (dtrace_difv_t);
10053 
10054 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10055 
10056 				if (osz != 0) {
10057 					bcopy(vstate->dtvs_tlocals,
10058 					    tlocals, osz);
10059 					kmem_free(vstate->dtvs_tlocals, osz);
10060 				}
10061 
10062 				vstate->dtvs_tlocals = tlocals;
10063 				vstate->dtvs_ntlocals = ntlocals;
10064 			}
10065 
10066 			vstate->dtvs_tlocals[id] = *v;
10067 			continue;
10068 
10069 		case DIFV_SCOPE_LOCAL:
10070 			np = &vstate->dtvs_nlocals;
10071 			svarp = &vstate->dtvs_locals;
10072 
10073 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10074 				dsize = NCPU * (v->dtdv_type.dtdt_size +
10075 				    sizeof (uint64_t));
10076 			else
10077 				dsize = NCPU * sizeof (uint64_t);
10078 
10079 			break;
10080 
10081 		case DIFV_SCOPE_GLOBAL:
10082 			np = &vstate->dtvs_nglobals;
10083 			svarp = &vstate->dtvs_globals;
10084 
10085 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10086 				dsize = v->dtdv_type.dtdt_size +
10087 				    sizeof (uint64_t);
10088 
10089 			break;
10090 
10091 		default:
10092 			ASSERT(0);
10093 		}
10094 
10095 		while (id >= (oldsvars = *np)) {
10096 			dtrace_statvar_t **statics;
10097 			int newsvars, oldsize, newsize;
10098 
10099 			if ((newsvars = (oldsvars << 1)) == 0)
10100 				newsvars = 1;
10101 
10102 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10103 			newsize = newsvars * sizeof (dtrace_statvar_t *);
10104 
10105 			statics = kmem_zalloc(newsize, KM_SLEEP);
10106 
10107 			if (oldsize != 0) {
10108 				bcopy(*svarp, statics, oldsize);
10109 				kmem_free(*svarp, oldsize);
10110 			}
10111 
10112 			*svarp = statics;
10113 			*np = newsvars;
10114 		}
10115 
10116 		if ((svar = (*svarp)[id]) == NULL) {
10117 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10118 			svar->dtsv_var = *v;
10119 
10120 			if ((svar->dtsv_size = dsize) != 0) {
10121 				svar->dtsv_data = (uint64_t)(uintptr_t)
10122 				    kmem_zalloc(dsize, KM_SLEEP);
10123 			}
10124 
10125 			(*svarp)[id] = svar;
10126 		}
10127 
10128 		svar->dtsv_refcnt++;
10129 	}
10130 
10131 	dtrace_difo_chunksize(dp, vstate);
10132 	dtrace_difo_hold(dp);
10133 }
10134 
10135 static dtrace_difo_t *
10136 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10137 {
10138 	dtrace_difo_t *new;
10139 	size_t sz;
10140 
10141 	ASSERT(dp->dtdo_buf != NULL);
10142 	ASSERT(dp->dtdo_refcnt != 0);
10143 
10144 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10145 
10146 	ASSERT(dp->dtdo_buf != NULL);
10147 	sz = dp->dtdo_len * sizeof (dif_instr_t);
10148 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10149 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10150 	new->dtdo_len = dp->dtdo_len;
10151 
10152 	if (dp->dtdo_strtab != NULL) {
10153 		ASSERT(dp->dtdo_strlen != 0);
10154 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10155 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10156 		new->dtdo_strlen = dp->dtdo_strlen;
10157 	}
10158 
10159 	if (dp->dtdo_inttab != NULL) {
10160 		ASSERT(dp->dtdo_intlen != 0);
10161 		sz = dp->dtdo_intlen * sizeof (uint64_t);
10162 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10163 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10164 		new->dtdo_intlen = dp->dtdo_intlen;
10165 	}
10166 
10167 	if (dp->dtdo_vartab != NULL) {
10168 		ASSERT(dp->dtdo_varlen != 0);
10169 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10170 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10171 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10172 		new->dtdo_varlen = dp->dtdo_varlen;
10173 	}
10174 
10175 	dtrace_difo_init(new, vstate);
10176 	return (new);
10177 }
10178 
10179 static void
10180 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10181 {
10182 	int i;
10183 
10184 	ASSERT(dp->dtdo_refcnt == 0);
10185 
10186 	for (i = 0; i < dp->dtdo_varlen; i++) {
10187 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10188 		dtrace_statvar_t *svar, **svarp;
10189 		uint_t id;
10190 		uint8_t scope = v->dtdv_scope;
10191 		int *np;
10192 
10193 		switch (scope) {
10194 		case DIFV_SCOPE_THREAD:
10195 			continue;
10196 
10197 		case DIFV_SCOPE_LOCAL:
10198 			np = &vstate->dtvs_nlocals;
10199 			svarp = vstate->dtvs_locals;
10200 			break;
10201 
10202 		case DIFV_SCOPE_GLOBAL:
10203 			np = &vstate->dtvs_nglobals;
10204 			svarp = vstate->dtvs_globals;
10205 			break;
10206 
10207 		default:
10208 			ASSERT(0);
10209 		}
10210 
10211 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10212 			continue;
10213 
10214 		id -= DIF_VAR_OTHER_UBASE;
10215 		ASSERT(id < *np);
10216 
10217 		svar = svarp[id];
10218 		ASSERT(svar != NULL);
10219 		ASSERT(svar->dtsv_refcnt > 0);
10220 
10221 		if (--svar->dtsv_refcnt > 0)
10222 			continue;
10223 
10224 		if (svar->dtsv_size != 0) {
10225 			ASSERT(svar->dtsv_data != NULL);
10226 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10227 			    svar->dtsv_size);
10228 		}
10229 
10230 		kmem_free(svar, sizeof (dtrace_statvar_t));
10231 		svarp[id] = NULL;
10232 	}
10233 
10234 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10235 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10236 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10237 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10238 
10239 	kmem_free(dp, sizeof (dtrace_difo_t));
10240 }
10241 
10242 static void
10243 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10244 {
10245 	int i;
10246 
10247 	ASSERT(MUTEX_HELD(&dtrace_lock));
10248 	ASSERT(dp->dtdo_refcnt != 0);
10249 
10250 	for (i = 0; i < dp->dtdo_varlen; i++) {
10251 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10252 
10253 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10254 			continue;
10255 
10256 		ASSERT(dtrace_vtime_references > 0);
10257 		if (--dtrace_vtime_references == 0)
10258 			dtrace_vtime_disable();
10259 	}
10260 
10261 	if (--dp->dtdo_refcnt == 0)
10262 		dtrace_difo_destroy(dp, vstate);
10263 }
10264 
10265 /*
10266  * DTrace Format Functions
10267  */
10268 static uint16_t
10269 dtrace_format_add(dtrace_state_t *state, char *str)
10270 {
10271 	char *fmt, **new;
10272 	uint16_t ndx, len = strlen(str) + 1;
10273 
10274 	fmt = kmem_zalloc(len, KM_SLEEP);
10275 	bcopy(str, fmt, len);
10276 
10277 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10278 		if (state->dts_formats[ndx] == NULL) {
10279 			state->dts_formats[ndx] = fmt;
10280 			return (ndx + 1);
10281 		}
10282 	}
10283 
10284 	if (state->dts_nformats == USHRT_MAX) {
10285 		/*
10286 		 * This is only likely if a denial-of-service attack is being
10287 		 * attempted.  As such, it's okay to fail silently here.
10288 		 */
10289 		kmem_free(fmt, len);
10290 		return (0);
10291 	}
10292 
10293 	/*
10294 	 * For simplicity, we always resize the formats array to be exactly the
10295 	 * number of formats.
10296 	 */
10297 	ndx = state->dts_nformats++;
10298 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10299 
10300 	if (state->dts_formats != NULL) {
10301 		ASSERT(ndx != 0);
10302 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10303 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10304 	}
10305 
10306 	state->dts_formats = new;
10307 	state->dts_formats[ndx] = fmt;
10308 
10309 	return (ndx + 1);
10310 }
10311 
10312 static void
10313 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10314 {
10315 	char *fmt;
10316 
10317 	ASSERT(state->dts_formats != NULL);
10318 	ASSERT(format <= state->dts_nformats);
10319 	ASSERT(state->dts_formats[format - 1] != NULL);
10320 
10321 	fmt = state->dts_formats[format - 1];
10322 	kmem_free(fmt, strlen(fmt) + 1);
10323 	state->dts_formats[format - 1] = NULL;
10324 }
10325 
10326 static void
10327 dtrace_format_destroy(dtrace_state_t *state)
10328 {
10329 	int i;
10330 
10331 	if (state->dts_nformats == 0) {
10332 		ASSERT(state->dts_formats == NULL);
10333 		return;
10334 	}
10335 
10336 	ASSERT(state->dts_formats != NULL);
10337 
10338 	for (i = 0; i < state->dts_nformats; i++) {
10339 		char *fmt = state->dts_formats[i];
10340 
10341 		if (fmt == NULL)
10342 			continue;
10343 
10344 		kmem_free(fmt, strlen(fmt) + 1);
10345 	}
10346 
10347 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10348 	state->dts_nformats = 0;
10349 	state->dts_formats = NULL;
10350 }
10351 
10352 /*
10353  * DTrace Predicate Functions
10354  */
10355 static dtrace_predicate_t *
10356 dtrace_predicate_create(dtrace_difo_t *dp)
10357 {
10358 	dtrace_predicate_t *pred;
10359 
10360 	ASSERT(MUTEX_HELD(&dtrace_lock));
10361 	ASSERT(dp->dtdo_refcnt != 0);
10362 
10363 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10364 	pred->dtp_difo = dp;
10365 	pred->dtp_refcnt = 1;
10366 
10367 	if (!dtrace_difo_cacheable(dp))
10368 		return (pred);
10369 
10370 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10371 		/*
10372 		 * This is only theoretically possible -- we have had 2^32
10373 		 * cacheable predicates on this machine.  We cannot allow any
10374 		 * more predicates to become cacheable:  as unlikely as it is,
10375 		 * there may be a thread caching a (now stale) predicate cache
10376 		 * ID. (N.B.: the temptation is being successfully resisted to
10377 		 * have this cmn_err() "Holy shit -- we executed this code!")
10378 		 */
10379 		return (pred);
10380 	}
10381 
10382 	pred->dtp_cacheid = dtrace_predcache_id++;
10383 
10384 	return (pred);
10385 }
10386 
10387 static void
10388 dtrace_predicate_hold(dtrace_predicate_t *pred)
10389 {
10390 	ASSERT(MUTEX_HELD(&dtrace_lock));
10391 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10392 	ASSERT(pred->dtp_refcnt > 0);
10393 
10394 	pred->dtp_refcnt++;
10395 }
10396 
10397 static void
10398 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10399 {
10400 	dtrace_difo_t *dp = pred->dtp_difo;
10401 
10402 	ASSERT(MUTEX_HELD(&dtrace_lock));
10403 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10404 	ASSERT(pred->dtp_refcnt > 0);
10405 
10406 	if (--pred->dtp_refcnt == 0) {
10407 		dtrace_difo_release(pred->dtp_difo, vstate);
10408 		kmem_free(pred, sizeof (dtrace_predicate_t));
10409 	}
10410 }
10411 
10412 /*
10413  * DTrace Action Description Functions
10414  */
10415 static dtrace_actdesc_t *
10416 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10417     uint64_t uarg, uint64_t arg)
10418 {
10419 	dtrace_actdesc_t *act;
10420 
10421 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10422 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10423 
10424 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10425 	act->dtad_kind = kind;
10426 	act->dtad_ntuple = ntuple;
10427 	act->dtad_uarg = uarg;
10428 	act->dtad_arg = arg;
10429 	act->dtad_refcnt = 1;
10430 
10431 	return (act);
10432 }
10433 
10434 static void
10435 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10436 {
10437 	ASSERT(act->dtad_refcnt >= 1);
10438 	act->dtad_refcnt++;
10439 }
10440 
10441 static void
10442 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10443 {
10444 	dtrace_actkind_t kind = act->dtad_kind;
10445 	dtrace_difo_t *dp;
10446 
10447 	ASSERT(act->dtad_refcnt >= 1);
10448 
10449 	if (--act->dtad_refcnt != 0)
10450 		return;
10451 
10452 	if ((dp = act->dtad_difo) != NULL)
10453 		dtrace_difo_release(dp, vstate);
10454 
10455 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10456 		char *str = (char *)(uintptr_t)act->dtad_arg;
10457 
10458 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10459 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10460 
10461 		if (str != NULL)
10462 			kmem_free(str, strlen(str) + 1);
10463 	}
10464 
10465 	kmem_free(act, sizeof (dtrace_actdesc_t));
10466 }
10467 
10468 /*
10469  * DTrace ECB Functions
10470  */
10471 static dtrace_ecb_t *
10472 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10473 {
10474 	dtrace_ecb_t *ecb;
10475 	dtrace_epid_t epid;
10476 
10477 	ASSERT(MUTEX_HELD(&dtrace_lock));
10478 
10479 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10480 	ecb->dte_predicate = NULL;
10481 	ecb->dte_probe = probe;
10482 
10483 	/*
10484 	 * The default size is the size of the default action: recording
10485 	 * the header.
10486 	 */
10487 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10488 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10489 
10490 	epid = state->dts_epid++;
10491 
10492 	if (epid - 1 >= state->dts_necbs) {
10493 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10494 		int necbs = state->dts_necbs << 1;
10495 
10496 		ASSERT(epid == state->dts_necbs + 1);
10497 
10498 		if (necbs == 0) {
10499 			ASSERT(oecbs == NULL);
10500 			necbs = 1;
10501 		}
10502 
10503 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10504 
10505 		if (oecbs != NULL)
10506 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10507 
10508 		dtrace_membar_producer();
10509 		state->dts_ecbs = ecbs;
10510 
10511 		if (oecbs != NULL) {
10512 			/*
10513 			 * If this state is active, we must dtrace_sync()
10514 			 * before we can free the old dts_ecbs array:  we're
10515 			 * coming in hot, and there may be active ring
10516 			 * buffer processing (which indexes into the dts_ecbs
10517 			 * array) on another CPU.
10518 			 */
10519 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10520 				dtrace_sync();
10521 
10522 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10523 		}
10524 
10525 		dtrace_membar_producer();
10526 		state->dts_necbs = necbs;
10527 	}
10528 
10529 	ecb->dte_state = state;
10530 
10531 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
10532 	dtrace_membar_producer();
10533 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10534 
10535 	return (ecb);
10536 }
10537 
10538 static int
10539 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10540 {
10541 	dtrace_probe_t *probe = ecb->dte_probe;
10542 
10543 	ASSERT(MUTEX_HELD(&cpu_lock));
10544 	ASSERT(MUTEX_HELD(&dtrace_lock));
10545 	ASSERT(ecb->dte_next == NULL);
10546 
10547 	if (probe == NULL) {
10548 		/*
10549 		 * This is the NULL probe -- there's nothing to do.
10550 		 */
10551 		return (0);
10552 	}
10553 
10554 	if (probe->dtpr_ecb == NULL) {
10555 		dtrace_provider_t *prov = probe->dtpr_provider;
10556 
10557 		/*
10558 		 * We're the first ECB on this probe.
10559 		 */
10560 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10561 
10562 		if (ecb->dte_predicate != NULL)
10563 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10564 
10565 		return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10566 		    probe->dtpr_id, probe->dtpr_arg));
10567 	} else {
10568 		/*
10569 		 * This probe is already active.  Swing the last pointer to
10570 		 * point to the new ECB, and issue a dtrace_sync() to assure
10571 		 * that all CPUs have seen the change.
10572 		 */
10573 		ASSERT(probe->dtpr_ecb_last != NULL);
10574 		probe->dtpr_ecb_last->dte_next = ecb;
10575 		probe->dtpr_ecb_last = ecb;
10576 		probe->dtpr_predcache = 0;
10577 
10578 		dtrace_sync();
10579 		return (0);
10580 	}
10581 }
10582 
10583 static int
10584 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10585 {
10586 	dtrace_action_t *act;
10587 	uint32_t curneeded = UINT32_MAX;
10588 	uint32_t aggbase = UINT32_MAX;
10589 
10590 	/*
10591 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
10592 	 * we always record it first.)
10593 	 */
10594 	ecb->dte_size = sizeof (dtrace_rechdr_t);
10595 	ecb->dte_alignment = sizeof (dtrace_epid_t);
10596 
10597 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10598 		dtrace_recdesc_t *rec = &act->dta_rec;
10599 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10600 
10601 		ecb->dte_alignment = MAX(ecb->dte_alignment,
10602 		    rec->dtrd_alignment);
10603 
10604 		if (DTRACEACT_ISAGG(act->dta_kind)) {
10605 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10606 
10607 			ASSERT(rec->dtrd_size != 0);
10608 			ASSERT(agg->dtag_first != NULL);
10609 			ASSERT(act->dta_prev->dta_intuple);
10610 			ASSERT(aggbase != UINT32_MAX);
10611 			ASSERT(curneeded != UINT32_MAX);
10612 
10613 			agg->dtag_base = aggbase;
10614 
10615 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10616 			rec->dtrd_offset = curneeded;
10617 			if (curneeded + rec->dtrd_size < curneeded)
10618 				return (EINVAL);
10619 			curneeded += rec->dtrd_size;
10620 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10621 
10622 			aggbase = UINT32_MAX;
10623 			curneeded = UINT32_MAX;
10624 		} else if (act->dta_intuple) {
10625 			if (curneeded == UINT32_MAX) {
10626 				/*
10627 				 * This is the first record in a tuple.  Align
10628 				 * curneeded to be at offset 4 in an 8-byte
10629 				 * aligned block.
10630 				 */
10631 				ASSERT(act->dta_prev == NULL ||
10632 				    !act->dta_prev->dta_intuple);
10633 				ASSERT3U(aggbase, ==, UINT32_MAX);
10634 				curneeded = P2PHASEUP(ecb->dte_size,
10635 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
10636 
10637 				aggbase = curneeded - sizeof (dtrace_aggid_t);
10638 				ASSERT(IS_P2ALIGNED(aggbase,
10639 				    sizeof (uint64_t)));
10640 			}
10641 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10642 			rec->dtrd_offset = curneeded;
10643 			if (curneeded + rec->dtrd_size < curneeded)
10644 				return (EINVAL);
10645 			curneeded += rec->dtrd_size;
10646 		} else {
10647 			/* tuples must be followed by an aggregation */
10648 			ASSERT(act->dta_prev == NULL ||
10649 			    !act->dta_prev->dta_intuple);
10650 
10651 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10652 			    rec->dtrd_alignment);
10653 			rec->dtrd_offset = ecb->dte_size;
10654 			if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
10655 				return (EINVAL);
10656 			ecb->dte_size += rec->dtrd_size;
10657 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10658 		}
10659 	}
10660 
10661 	if ((act = ecb->dte_action) != NULL &&
10662 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10663 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10664 		/*
10665 		 * If the size is still sizeof (dtrace_rechdr_t), then all
10666 		 * actions store no data; set the size to 0.
10667 		 */
10668 		ecb->dte_size = 0;
10669 	}
10670 
10671 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10672 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10673 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10674 	    ecb->dte_needed);
10675 	return (0);
10676 }
10677 
10678 static dtrace_action_t *
10679 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10680 {
10681 	dtrace_aggregation_t *agg;
10682 	size_t size = sizeof (uint64_t);
10683 	int ntuple = desc->dtad_ntuple;
10684 	dtrace_action_t *act;
10685 	dtrace_recdesc_t *frec;
10686 	dtrace_aggid_t aggid;
10687 	dtrace_state_t *state = ecb->dte_state;
10688 
10689 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10690 	agg->dtag_ecb = ecb;
10691 
10692 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10693 
10694 	switch (desc->dtad_kind) {
10695 	case DTRACEAGG_MIN:
10696 		agg->dtag_initial = INT64_MAX;
10697 		agg->dtag_aggregate = dtrace_aggregate_min;
10698 		break;
10699 
10700 	case DTRACEAGG_MAX:
10701 		agg->dtag_initial = INT64_MIN;
10702 		agg->dtag_aggregate = dtrace_aggregate_max;
10703 		break;
10704 
10705 	case DTRACEAGG_COUNT:
10706 		agg->dtag_aggregate = dtrace_aggregate_count;
10707 		break;
10708 
10709 	case DTRACEAGG_QUANTIZE:
10710 		agg->dtag_aggregate = dtrace_aggregate_quantize;
10711 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10712 		    sizeof (uint64_t);
10713 		break;
10714 
10715 	case DTRACEAGG_LQUANTIZE: {
10716 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10717 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10718 
10719 		agg->dtag_initial = desc->dtad_arg;
10720 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
10721 
10722 		if (step == 0 || levels == 0)
10723 			goto err;
10724 
10725 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10726 		break;
10727 	}
10728 
10729 	case DTRACEAGG_LLQUANTIZE: {
10730 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10731 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10732 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10733 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10734 		int64_t v;
10735 
10736 		agg->dtag_initial = desc->dtad_arg;
10737 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10738 
10739 		if (factor < 2 || low >= high || nsteps < factor)
10740 			goto err;
10741 
10742 		/*
10743 		 * Now check that the number of steps evenly divides a power
10744 		 * of the factor.  (This assures both integer bucket size and
10745 		 * linearity within each magnitude.)
10746 		 */
10747 		for (v = factor; v < nsteps; v *= factor)
10748 			continue;
10749 
10750 		if ((v % nsteps) || (nsteps % factor))
10751 			goto err;
10752 
10753 		size = (dtrace_aggregate_llquantize_bucket(factor,
10754 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10755 		break;
10756 	}
10757 
10758 	case DTRACEAGG_AVG:
10759 		agg->dtag_aggregate = dtrace_aggregate_avg;
10760 		size = sizeof (uint64_t) * 2;
10761 		break;
10762 
10763 	case DTRACEAGG_STDDEV:
10764 		agg->dtag_aggregate = dtrace_aggregate_stddev;
10765 		size = sizeof (uint64_t) * 4;
10766 		break;
10767 
10768 	case DTRACEAGG_SUM:
10769 		agg->dtag_aggregate = dtrace_aggregate_sum;
10770 		break;
10771 
10772 	default:
10773 		goto err;
10774 	}
10775 
10776 	agg->dtag_action.dta_rec.dtrd_size = size;
10777 
10778 	if (ntuple == 0)
10779 		goto err;
10780 
10781 	/*
10782 	 * We must make sure that we have enough actions for the n-tuple.
10783 	 */
10784 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10785 		if (DTRACEACT_ISAGG(act->dta_kind))
10786 			break;
10787 
10788 		if (--ntuple == 0) {
10789 			/*
10790 			 * This is the action with which our n-tuple begins.
10791 			 */
10792 			agg->dtag_first = act;
10793 			goto success;
10794 		}
10795 	}
10796 
10797 	/*
10798 	 * This n-tuple is short by ntuple elements.  Return failure.
10799 	 */
10800 	ASSERT(ntuple != 0);
10801 err:
10802 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10803 	return (NULL);
10804 
10805 success:
10806 	/*
10807 	 * If the last action in the tuple has a size of zero, it's actually
10808 	 * an expression argument for the aggregating action.
10809 	 */
10810 	ASSERT(ecb->dte_action_last != NULL);
10811 	act = ecb->dte_action_last;
10812 
10813 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10814 		ASSERT(act->dta_difo != NULL);
10815 
10816 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10817 			agg->dtag_hasarg = 1;
10818 	}
10819 
10820 	/*
10821 	 * We need to allocate an id for this aggregation.
10822 	 */
10823 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10824 	    VM_BESTFIT | VM_SLEEP);
10825 
10826 	if (aggid - 1 >= state->dts_naggregations) {
10827 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10828 		dtrace_aggregation_t **aggs;
10829 		int naggs = state->dts_naggregations << 1;
10830 		int onaggs = state->dts_naggregations;
10831 
10832 		ASSERT(aggid == state->dts_naggregations + 1);
10833 
10834 		if (naggs == 0) {
10835 			ASSERT(oaggs == NULL);
10836 			naggs = 1;
10837 		}
10838 
10839 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10840 
10841 		if (oaggs != NULL) {
10842 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10843 			kmem_free(oaggs, onaggs * sizeof (*aggs));
10844 		}
10845 
10846 		state->dts_aggregations = aggs;
10847 		state->dts_naggregations = naggs;
10848 	}
10849 
10850 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10851 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10852 
10853 	frec = &agg->dtag_first->dta_rec;
10854 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10855 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10856 
10857 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10858 		ASSERT(!act->dta_intuple);
10859 		act->dta_intuple = 1;
10860 	}
10861 
10862 	return (&agg->dtag_action);
10863 }
10864 
10865 static void
10866 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10867 {
10868 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10869 	dtrace_state_t *state = ecb->dte_state;
10870 	dtrace_aggid_t aggid = agg->dtag_id;
10871 
10872 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10873 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10874 
10875 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10876 	state->dts_aggregations[aggid - 1] = NULL;
10877 
10878 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10879 }
10880 
10881 static int
10882 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10883 {
10884 	dtrace_action_t *action, *last;
10885 	dtrace_difo_t *dp = desc->dtad_difo;
10886 	uint32_t size = 0, align = sizeof (uint8_t), mask;
10887 	uint16_t format = 0;
10888 	dtrace_recdesc_t *rec;
10889 	dtrace_state_t *state = ecb->dte_state;
10890 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
10891 	uint64_t arg = desc->dtad_arg;
10892 
10893 	ASSERT(MUTEX_HELD(&dtrace_lock));
10894 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10895 
10896 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10897 		/*
10898 		 * If this is an aggregating action, there must be neither
10899 		 * a speculate nor a commit on the action chain.
10900 		 */
10901 		dtrace_action_t *act;
10902 
10903 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10904 			if (act->dta_kind == DTRACEACT_COMMIT)
10905 				return (EINVAL);
10906 
10907 			if (act->dta_kind == DTRACEACT_SPECULATE)
10908 				return (EINVAL);
10909 		}
10910 
10911 		action = dtrace_ecb_aggregation_create(ecb, desc);
10912 
10913 		if (action == NULL)
10914 			return (EINVAL);
10915 	} else {
10916 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10917 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10918 		    dp != NULL && dp->dtdo_destructive)) {
10919 			state->dts_destructive = 1;
10920 		}
10921 
10922 		switch (desc->dtad_kind) {
10923 		case DTRACEACT_PRINTF:
10924 		case DTRACEACT_PRINTA:
10925 		case DTRACEACT_SYSTEM:
10926 		case DTRACEACT_FREOPEN:
10927 		case DTRACEACT_DIFEXPR:
10928 			/*
10929 			 * We know that our arg is a string -- turn it into a
10930 			 * format.
10931 			 */
10932 			if (arg == NULL) {
10933 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10934 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10935 				format = 0;
10936 			} else {
10937 				ASSERT(arg != NULL);
10938 				ASSERT(arg > KERNELBASE);
10939 				format = dtrace_format_add(state,
10940 				    (char *)(uintptr_t)arg);
10941 			}
10942 
10943 			/*FALLTHROUGH*/
10944 		case DTRACEACT_LIBACT:
10945 		case DTRACEACT_TRACEMEM:
10946 		case DTRACEACT_TRACEMEM_DYNSIZE:
10947 			if (dp == NULL)
10948 				return (EINVAL);
10949 
10950 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10951 				break;
10952 
10953 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10954 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10955 					return (EINVAL);
10956 
10957 				size = opt[DTRACEOPT_STRSIZE];
10958 			}
10959 
10960 			break;
10961 
10962 		case DTRACEACT_STACK:
10963 			if ((nframes = arg) == 0) {
10964 				nframes = opt[DTRACEOPT_STACKFRAMES];
10965 				ASSERT(nframes > 0);
10966 				arg = nframes;
10967 			}
10968 
10969 			size = nframes * sizeof (pc_t);
10970 			break;
10971 
10972 		case DTRACEACT_JSTACK:
10973 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10974 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10975 
10976 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10977 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10978 
10979 			arg = DTRACE_USTACK_ARG(nframes, strsize);
10980 
10981 			/*FALLTHROUGH*/
10982 		case DTRACEACT_USTACK:
10983 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10984 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10985 				strsize = DTRACE_USTACK_STRSIZE(arg);
10986 				nframes = opt[DTRACEOPT_USTACKFRAMES];
10987 				ASSERT(nframes > 0);
10988 				arg = DTRACE_USTACK_ARG(nframes, strsize);
10989 			}
10990 
10991 			/*
10992 			 * Save a slot for the pid.
10993 			 */
10994 			size = (nframes + 1) * sizeof (uint64_t);
10995 			size += DTRACE_USTACK_STRSIZE(arg);
10996 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10997 
10998 			break;
10999 
11000 		case DTRACEACT_SYM:
11001 		case DTRACEACT_MOD:
11002 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11003 			    sizeof (uint64_t)) ||
11004 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11005 				return (EINVAL);
11006 			break;
11007 
11008 		case DTRACEACT_USYM:
11009 		case DTRACEACT_UMOD:
11010 		case DTRACEACT_UADDR:
11011 			if (dp == NULL ||
11012 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11013 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11014 				return (EINVAL);
11015 
11016 			/*
11017 			 * We have a slot for the pid, plus a slot for the
11018 			 * argument.  To keep things simple (aligned with
11019 			 * bitness-neutral sizing), we store each as a 64-bit
11020 			 * quantity.
11021 			 */
11022 			size = 2 * sizeof (uint64_t);
11023 			break;
11024 
11025 		case DTRACEACT_STOP:
11026 		case DTRACEACT_BREAKPOINT:
11027 		case DTRACEACT_PANIC:
11028 			break;
11029 
11030 		case DTRACEACT_CHILL:
11031 		case DTRACEACT_DISCARD:
11032 		case DTRACEACT_RAISE:
11033 			if (dp == NULL)
11034 				return (EINVAL);
11035 			break;
11036 
11037 		case DTRACEACT_EXIT:
11038 			if (dp == NULL ||
11039 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11040 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11041 				return (EINVAL);
11042 			break;
11043 
11044 		case DTRACEACT_SPECULATE:
11045 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11046 				return (EINVAL);
11047 
11048 			if (dp == NULL)
11049 				return (EINVAL);
11050 
11051 			state->dts_speculates = 1;
11052 			break;
11053 
11054 		case DTRACEACT_COMMIT: {
11055 			dtrace_action_t *act = ecb->dte_action;
11056 
11057 			for (; act != NULL; act = act->dta_next) {
11058 				if (act->dta_kind == DTRACEACT_COMMIT)
11059 					return (EINVAL);
11060 			}
11061 
11062 			if (dp == NULL)
11063 				return (EINVAL);
11064 			break;
11065 		}
11066 
11067 		default:
11068 			return (EINVAL);
11069 		}
11070 
11071 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11072 			/*
11073 			 * If this is a data-storing action or a speculate,
11074 			 * we must be sure that there isn't a commit on the
11075 			 * action chain.
11076 			 */
11077 			dtrace_action_t *act = ecb->dte_action;
11078 
11079 			for (; act != NULL; act = act->dta_next) {
11080 				if (act->dta_kind == DTRACEACT_COMMIT)
11081 					return (EINVAL);
11082 			}
11083 		}
11084 
11085 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11086 		action->dta_rec.dtrd_size = size;
11087 	}
11088 
11089 	action->dta_refcnt = 1;
11090 	rec = &action->dta_rec;
11091 	size = rec->dtrd_size;
11092 
11093 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11094 		if (!(size & mask)) {
11095 			align = mask + 1;
11096 			break;
11097 		}
11098 	}
11099 
11100 	action->dta_kind = desc->dtad_kind;
11101 
11102 	if ((action->dta_difo = dp) != NULL)
11103 		dtrace_difo_hold(dp);
11104 
11105 	rec->dtrd_action = action->dta_kind;
11106 	rec->dtrd_arg = arg;
11107 	rec->dtrd_uarg = desc->dtad_uarg;
11108 	rec->dtrd_alignment = (uint16_t)align;
11109 	rec->dtrd_format = format;
11110 
11111 	if ((last = ecb->dte_action_last) != NULL) {
11112 		ASSERT(ecb->dte_action != NULL);
11113 		action->dta_prev = last;
11114 		last->dta_next = action;
11115 	} else {
11116 		ASSERT(ecb->dte_action == NULL);
11117 		ecb->dte_action = action;
11118 	}
11119 
11120 	ecb->dte_action_last = action;
11121 
11122 	return (0);
11123 }
11124 
11125 static void
11126 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11127 {
11128 	dtrace_action_t *act = ecb->dte_action, *next;
11129 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11130 	dtrace_difo_t *dp;
11131 	uint16_t format;
11132 
11133 	if (act != NULL && act->dta_refcnt > 1) {
11134 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11135 		act->dta_refcnt--;
11136 	} else {
11137 		for (; act != NULL; act = next) {
11138 			next = act->dta_next;
11139 			ASSERT(next != NULL || act == ecb->dte_action_last);
11140 			ASSERT(act->dta_refcnt == 1);
11141 
11142 			if ((format = act->dta_rec.dtrd_format) != 0)
11143 				dtrace_format_remove(ecb->dte_state, format);
11144 
11145 			if ((dp = act->dta_difo) != NULL)
11146 				dtrace_difo_release(dp, vstate);
11147 
11148 			if (DTRACEACT_ISAGG(act->dta_kind)) {
11149 				dtrace_ecb_aggregation_destroy(ecb, act);
11150 			} else {
11151 				kmem_free(act, sizeof (dtrace_action_t));
11152 			}
11153 		}
11154 	}
11155 
11156 	ecb->dte_action = NULL;
11157 	ecb->dte_action_last = NULL;
11158 	ecb->dte_size = 0;
11159 }
11160 
11161 static void
11162 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11163 {
11164 	/*
11165 	 * We disable the ECB by removing it from its probe.
11166 	 */
11167 	dtrace_ecb_t *pecb, *prev = NULL;
11168 	dtrace_probe_t *probe = ecb->dte_probe;
11169 
11170 	ASSERT(MUTEX_HELD(&dtrace_lock));
11171 
11172 	if (probe == NULL) {
11173 		/*
11174 		 * This is the NULL probe; there is nothing to disable.
11175 		 */
11176 		return;
11177 	}
11178 
11179 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11180 		if (pecb == ecb)
11181 			break;
11182 		prev = pecb;
11183 	}
11184 
11185 	ASSERT(pecb != NULL);
11186 
11187 	if (prev == NULL) {
11188 		probe->dtpr_ecb = ecb->dte_next;
11189 	} else {
11190 		prev->dte_next = ecb->dte_next;
11191 	}
11192 
11193 	if (ecb == probe->dtpr_ecb_last) {
11194 		ASSERT(ecb->dte_next == NULL);
11195 		probe->dtpr_ecb_last = prev;
11196 	}
11197 
11198 	/*
11199 	 * The ECB has been disconnected from the probe; now sync to assure
11200 	 * that all CPUs have seen the change before returning.
11201 	 */
11202 	dtrace_sync();
11203 
11204 	if (probe->dtpr_ecb == NULL) {
11205 		/*
11206 		 * That was the last ECB on the probe; clear the predicate
11207 		 * cache ID for the probe, disable it and sync one more time
11208 		 * to assure that we'll never hit it again.
11209 		 */
11210 		dtrace_provider_t *prov = probe->dtpr_provider;
11211 
11212 		ASSERT(ecb->dte_next == NULL);
11213 		ASSERT(probe->dtpr_ecb_last == NULL);
11214 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11215 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11216 		    probe->dtpr_id, probe->dtpr_arg);
11217 		dtrace_sync();
11218 	} else {
11219 		/*
11220 		 * There is at least one ECB remaining on the probe.  If there
11221 		 * is _exactly_ one, set the probe's predicate cache ID to be
11222 		 * the predicate cache ID of the remaining ECB.
11223 		 */
11224 		ASSERT(probe->dtpr_ecb_last != NULL);
11225 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11226 
11227 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11228 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11229 
11230 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11231 
11232 			if (p != NULL)
11233 				probe->dtpr_predcache = p->dtp_cacheid;
11234 		}
11235 
11236 		ecb->dte_next = NULL;
11237 	}
11238 }
11239 
11240 static void
11241 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11242 {
11243 	dtrace_state_t *state = ecb->dte_state;
11244 	dtrace_vstate_t *vstate = &state->dts_vstate;
11245 	dtrace_predicate_t *pred;
11246 	dtrace_epid_t epid = ecb->dte_epid;
11247 
11248 	ASSERT(MUTEX_HELD(&dtrace_lock));
11249 	ASSERT(ecb->dte_next == NULL);
11250 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11251 
11252 	if ((pred = ecb->dte_predicate) != NULL)
11253 		dtrace_predicate_release(pred, vstate);
11254 
11255 	dtrace_ecb_action_remove(ecb);
11256 
11257 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11258 	state->dts_ecbs[epid - 1] = NULL;
11259 
11260 	kmem_free(ecb, sizeof (dtrace_ecb_t));
11261 }
11262 
11263 static dtrace_ecb_t *
11264 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11265     dtrace_enabling_t *enab)
11266 {
11267 	dtrace_ecb_t *ecb;
11268 	dtrace_predicate_t *pred;
11269 	dtrace_actdesc_t *act;
11270 	dtrace_provider_t *prov;
11271 	dtrace_ecbdesc_t *desc = enab->dten_current;
11272 
11273 	ASSERT(MUTEX_HELD(&dtrace_lock));
11274 	ASSERT(state != NULL);
11275 
11276 	ecb = dtrace_ecb_add(state, probe);
11277 	ecb->dte_uarg = desc->dted_uarg;
11278 
11279 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11280 		dtrace_predicate_hold(pred);
11281 		ecb->dte_predicate = pred;
11282 	}
11283 
11284 	if (probe != NULL) {
11285 		/*
11286 		 * If the provider shows more leg than the consumer is old
11287 		 * enough to see, we need to enable the appropriate implicit
11288 		 * predicate bits to prevent the ecb from activating at
11289 		 * revealing times.
11290 		 *
11291 		 * Providers specifying DTRACE_PRIV_USER at register time
11292 		 * are stating that they need the /proc-style privilege
11293 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11294 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11295 		 */
11296 		prov = probe->dtpr_provider;
11297 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11298 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11299 			ecb->dte_cond |= DTRACE_COND_OWNER;
11300 
11301 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11302 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11303 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11304 
11305 		/*
11306 		 * If the provider shows us kernel innards and the user
11307 		 * is lacking sufficient privilege, enable the
11308 		 * DTRACE_COND_USERMODE implicit predicate.
11309 		 */
11310 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11311 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11312 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11313 	}
11314 
11315 	if (dtrace_ecb_create_cache != NULL) {
11316 		/*
11317 		 * If we have a cached ecb, we'll use its action list instead
11318 		 * of creating our own (saving both time and space).
11319 		 */
11320 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11321 		dtrace_action_t *act = cached->dte_action;
11322 
11323 		if (act != NULL) {
11324 			ASSERT(act->dta_refcnt > 0);
11325 			act->dta_refcnt++;
11326 			ecb->dte_action = act;
11327 			ecb->dte_action_last = cached->dte_action_last;
11328 			ecb->dte_needed = cached->dte_needed;
11329 			ecb->dte_size = cached->dte_size;
11330 			ecb->dte_alignment = cached->dte_alignment;
11331 		}
11332 
11333 		return (ecb);
11334 	}
11335 
11336 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11337 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11338 			dtrace_ecb_destroy(ecb);
11339 			return (NULL);
11340 		}
11341 	}
11342 
11343 	if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11344 		dtrace_ecb_destroy(ecb);
11345 		return (NULL);
11346 	}
11347 
11348 	return (dtrace_ecb_create_cache = ecb);
11349 }
11350 
11351 static int
11352 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11353 {
11354 	dtrace_ecb_t *ecb;
11355 	dtrace_enabling_t *enab = arg;
11356 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11357 
11358 	ASSERT(state != NULL);
11359 
11360 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11361 		/*
11362 		 * This probe was created in a generation for which this
11363 		 * enabling has previously created ECBs; we don't want to
11364 		 * enable it again, so just kick out.
11365 		 */
11366 		return (DTRACE_MATCH_NEXT);
11367 	}
11368 
11369 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11370 		return (DTRACE_MATCH_DONE);
11371 
11372 	if (dtrace_ecb_enable(ecb) < 0)
11373 		return (DTRACE_MATCH_FAIL);
11374 
11375 	return (DTRACE_MATCH_NEXT);
11376 }
11377 
11378 static dtrace_ecb_t *
11379 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11380 {
11381 	dtrace_ecb_t *ecb;
11382 
11383 	ASSERT(MUTEX_HELD(&dtrace_lock));
11384 
11385 	if (id == 0 || id > state->dts_necbs)
11386 		return (NULL);
11387 
11388 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11389 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11390 
11391 	return (state->dts_ecbs[id - 1]);
11392 }
11393 
11394 static dtrace_aggregation_t *
11395 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11396 {
11397 	dtrace_aggregation_t *agg;
11398 
11399 	ASSERT(MUTEX_HELD(&dtrace_lock));
11400 
11401 	if (id == 0 || id > state->dts_naggregations)
11402 		return (NULL);
11403 
11404 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11405 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11406 	    agg->dtag_id == id);
11407 
11408 	return (state->dts_aggregations[id - 1]);
11409 }
11410 
11411 /*
11412  * DTrace Buffer Functions
11413  *
11414  * The following functions manipulate DTrace buffers.  Most of these functions
11415  * are called in the context of establishing or processing consumer state;
11416  * exceptions are explicitly noted.
11417  */
11418 
11419 /*
11420  * Note:  called from cross call context.  This function switches the two
11421  * buffers on a given CPU.  The atomicity of this operation is assured by
11422  * disabling interrupts while the actual switch takes place; the disabling of
11423  * interrupts serializes the execution with any execution of dtrace_probe() on
11424  * the same CPU.
11425  */
11426 static void
11427 dtrace_buffer_switch(dtrace_buffer_t *buf)
11428 {
11429 	caddr_t tomax = buf->dtb_tomax;
11430 	caddr_t xamot = buf->dtb_xamot;
11431 	dtrace_icookie_t cookie;
11432 	hrtime_t now;
11433 
11434 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11435 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11436 
11437 	cookie = dtrace_interrupt_disable();
11438 	now = dtrace_gethrtime();
11439 	buf->dtb_tomax = xamot;
11440 	buf->dtb_xamot = tomax;
11441 	buf->dtb_xamot_drops = buf->dtb_drops;
11442 	buf->dtb_xamot_offset = buf->dtb_offset;
11443 	buf->dtb_xamot_errors = buf->dtb_errors;
11444 	buf->dtb_xamot_flags = buf->dtb_flags;
11445 	buf->dtb_offset = 0;
11446 	buf->dtb_drops = 0;
11447 	buf->dtb_errors = 0;
11448 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11449 	buf->dtb_interval = now - buf->dtb_switched;
11450 	buf->dtb_switched = now;
11451 	dtrace_interrupt_enable(cookie);
11452 }
11453 
11454 /*
11455  * Note:  called from cross call context.  This function activates a buffer
11456  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11457  * is guaranteed by the disabling of interrupts.
11458  */
11459 static void
11460 dtrace_buffer_activate(dtrace_state_t *state)
11461 {
11462 	dtrace_buffer_t *buf;
11463 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11464 
11465 	buf = &state->dts_buffer[CPU->cpu_id];
11466 
11467 	if (buf->dtb_tomax != NULL) {
11468 		/*
11469 		 * We might like to assert that the buffer is marked inactive,
11470 		 * but this isn't necessarily true:  the buffer for the CPU
11471 		 * that processes the BEGIN probe has its buffer activated
11472 		 * manually.  In this case, we take the (harmless) action
11473 		 * re-clearing the bit INACTIVE bit.
11474 		 */
11475 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11476 	}
11477 
11478 	dtrace_interrupt_enable(cookie);
11479 }
11480 
11481 static int
11482 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11483     processorid_t cpu, int *factor)
11484 {
11485 	cpu_t *cp;
11486 	dtrace_buffer_t *buf;
11487 	int allocated = 0, desired = 0;
11488 
11489 	ASSERT(MUTEX_HELD(&cpu_lock));
11490 	ASSERT(MUTEX_HELD(&dtrace_lock));
11491 
11492 	*factor = 1;
11493 
11494 	if (size > dtrace_nonroot_maxsize &&
11495 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11496 		return (EFBIG);
11497 
11498 	cp = cpu_list;
11499 
11500 	do {
11501 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11502 			continue;
11503 
11504 		buf = &bufs[cp->cpu_id];
11505 
11506 		/*
11507 		 * If there is already a buffer allocated for this CPU, it
11508 		 * is only possible that this is a DR event.  In this case,
11509 		 * the buffer size must match our specified size.
11510 		 */
11511 		if (buf->dtb_tomax != NULL) {
11512 			ASSERT(buf->dtb_size == size);
11513 			continue;
11514 		}
11515 
11516 		ASSERT(buf->dtb_xamot == NULL);
11517 
11518 		if ((buf->dtb_tomax = kmem_zalloc(size,
11519 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11520 			goto err;
11521 
11522 		buf->dtb_size = size;
11523 		buf->dtb_flags = flags;
11524 		buf->dtb_offset = 0;
11525 		buf->dtb_drops = 0;
11526 
11527 		if (flags & DTRACEBUF_NOSWITCH)
11528 			continue;
11529 
11530 		if ((buf->dtb_xamot = kmem_zalloc(size,
11531 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11532 			goto err;
11533 	} while ((cp = cp->cpu_next) != cpu_list);
11534 
11535 	return (0);
11536 
11537 err:
11538 	cp = cpu_list;
11539 
11540 	do {
11541 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11542 			continue;
11543 
11544 		buf = &bufs[cp->cpu_id];
11545 		desired += 2;
11546 
11547 		if (buf->dtb_xamot != NULL) {
11548 			ASSERT(buf->dtb_tomax != NULL);
11549 			ASSERT(buf->dtb_size == size);
11550 			kmem_free(buf->dtb_xamot, size);
11551 			allocated++;
11552 		}
11553 
11554 		if (buf->dtb_tomax != NULL) {
11555 			ASSERT(buf->dtb_size == size);
11556 			kmem_free(buf->dtb_tomax, size);
11557 			allocated++;
11558 		}
11559 
11560 		buf->dtb_tomax = NULL;
11561 		buf->dtb_xamot = NULL;
11562 		buf->dtb_size = 0;
11563 	} while ((cp = cp->cpu_next) != cpu_list);
11564 
11565 	*factor = desired / (allocated > 0 ? allocated : 1);
11566 
11567 	return (ENOMEM);
11568 }
11569 
11570 /*
11571  * Note:  called from probe context.  This function just increments the drop
11572  * count on a buffer.  It has been made a function to allow for the
11573  * possibility of understanding the source of mysterious drop counts.  (A
11574  * problem for which one may be particularly disappointed that DTrace cannot
11575  * be used to understand DTrace.)
11576  */
11577 static void
11578 dtrace_buffer_drop(dtrace_buffer_t *buf)
11579 {
11580 	buf->dtb_drops++;
11581 }
11582 
11583 /*
11584  * Note:  called from probe context.  This function is called to reserve space
11585  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
11586  * mstate.  Returns the new offset in the buffer, or a negative value if an
11587  * error has occurred.
11588  */
11589 static intptr_t
11590 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11591     dtrace_state_t *state, dtrace_mstate_t *mstate)
11592 {
11593 	intptr_t offs = buf->dtb_offset, soffs;
11594 	intptr_t woffs;
11595 	caddr_t tomax;
11596 	size_t total;
11597 
11598 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11599 		return (-1);
11600 
11601 	if ((tomax = buf->dtb_tomax) == NULL) {
11602 		dtrace_buffer_drop(buf);
11603 		return (-1);
11604 	}
11605 
11606 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11607 		while (offs & (align - 1)) {
11608 			/*
11609 			 * Assert that our alignment is off by a number which
11610 			 * is itself sizeof (uint32_t) aligned.
11611 			 */
11612 			ASSERT(!((align - (offs & (align - 1))) &
11613 			    (sizeof (uint32_t) - 1)));
11614 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11615 			offs += sizeof (uint32_t);
11616 		}
11617 
11618 		if ((soffs = offs + needed) > buf->dtb_size) {
11619 			dtrace_buffer_drop(buf);
11620 			return (-1);
11621 		}
11622 
11623 		if (mstate == NULL)
11624 			return (offs);
11625 
11626 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11627 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
11628 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11629 
11630 		return (offs);
11631 	}
11632 
11633 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11634 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11635 		    (buf->dtb_flags & DTRACEBUF_FULL))
11636 			return (-1);
11637 		goto out;
11638 	}
11639 
11640 	total = needed + (offs & (align - 1));
11641 
11642 	/*
11643 	 * For a ring buffer, life is quite a bit more complicated.  Before
11644 	 * we can store any padding, we need to adjust our wrapping offset.
11645 	 * (If we've never before wrapped or we're not about to, no adjustment
11646 	 * is required.)
11647 	 */
11648 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11649 	    offs + total > buf->dtb_size) {
11650 		woffs = buf->dtb_xamot_offset;
11651 
11652 		if (offs + total > buf->dtb_size) {
11653 			/*
11654 			 * We can't fit in the end of the buffer.  First, a
11655 			 * sanity check that we can fit in the buffer at all.
11656 			 */
11657 			if (total > buf->dtb_size) {
11658 				dtrace_buffer_drop(buf);
11659 				return (-1);
11660 			}
11661 
11662 			/*
11663 			 * We're going to be storing at the top of the buffer,
11664 			 * so now we need to deal with the wrapped offset.  We
11665 			 * only reset our wrapped offset to 0 if it is
11666 			 * currently greater than the current offset.  If it
11667 			 * is less than the current offset, it is because a
11668 			 * previous allocation induced a wrap -- but the
11669 			 * allocation didn't subsequently take the space due
11670 			 * to an error or false predicate evaluation.  In this
11671 			 * case, we'll just leave the wrapped offset alone: if
11672 			 * the wrapped offset hasn't been advanced far enough
11673 			 * for this allocation, it will be adjusted in the
11674 			 * lower loop.
11675 			 */
11676 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11677 				if (woffs >= offs)
11678 					woffs = 0;
11679 			} else {
11680 				woffs = 0;
11681 			}
11682 
11683 			/*
11684 			 * Now we know that we're going to be storing to the
11685 			 * top of the buffer and that there is room for us
11686 			 * there.  We need to clear the buffer from the current
11687 			 * offset to the end (there may be old gunk there).
11688 			 */
11689 			while (offs < buf->dtb_size)
11690 				tomax[offs++] = 0;
11691 
11692 			/*
11693 			 * We need to set our offset to zero.  And because we
11694 			 * are wrapping, we need to set the bit indicating as
11695 			 * much.  We can also adjust our needed space back
11696 			 * down to the space required by the ECB -- we know
11697 			 * that the top of the buffer is aligned.
11698 			 */
11699 			offs = 0;
11700 			total = needed;
11701 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11702 		} else {
11703 			/*
11704 			 * There is room for us in the buffer, so we simply
11705 			 * need to check the wrapped offset.
11706 			 */
11707 			if (woffs < offs) {
11708 				/*
11709 				 * The wrapped offset is less than the offset.
11710 				 * This can happen if we allocated buffer space
11711 				 * that induced a wrap, but then we didn't
11712 				 * subsequently take the space due to an error
11713 				 * or false predicate evaluation.  This is
11714 				 * okay; we know that _this_ allocation isn't
11715 				 * going to induce a wrap.  We still can't
11716 				 * reset the wrapped offset to be zero,
11717 				 * however: the space may have been trashed in
11718 				 * the previous failed probe attempt.  But at
11719 				 * least the wrapped offset doesn't need to
11720 				 * be adjusted at all...
11721 				 */
11722 				goto out;
11723 			}
11724 		}
11725 
11726 		while (offs + total > woffs) {
11727 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11728 			size_t size;
11729 
11730 			if (epid == DTRACE_EPIDNONE) {
11731 				size = sizeof (uint32_t);
11732 			} else {
11733 				ASSERT3U(epid, <=, state->dts_necbs);
11734 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11735 
11736 				size = state->dts_ecbs[epid - 1]->dte_size;
11737 			}
11738 
11739 			ASSERT(woffs + size <= buf->dtb_size);
11740 			ASSERT(size != 0);
11741 
11742 			if (woffs + size == buf->dtb_size) {
11743 				/*
11744 				 * We've reached the end of the buffer; we want
11745 				 * to set the wrapped offset to 0 and break
11746 				 * out.  However, if the offs is 0, then we're
11747 				 * in a strange edge-condition:  the amount of
11748 				 * space that we want to reserve plus the size
11749 				 * of the record that we're overwriting is
11750 				 * greater than the size of the buffer.  This
11751 				 * is problematic because if we reserve the
11752 				 * space but subsequently don't consume it (due
11753 				 * to a failed predicate or error) the wrapped
11754 				 * offset will be 0 -- yet the EPID at offset 0
11755 				 * will not be committed.  This situation is
11756 				 * relatively easy to deal with:  if we're in
11757 				 * this case, the buffer is indistinguishable
11758 				 * from one that hasn't wrapped; we need only
11759 				 * finish the job by clearing the wrapped bit,
11760 				 * explicitly setting the offset to be 0, and
11761 				 * zero'ing out the old data in the buffer.
11762 				 */
11763 				if (offs == 0) {
11764 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11765 					buf->dtb_offset = 0;
11766 					woffs = total;
11767 
11768 					while (woffs < buf->dtb_size)
11769 						tomax[woffs++] = 0;
11770 				}
11771 
11772 				woffs = 0;
11773 				break;
11774 			}
11775 
11776 			woffs += size;
11777 		}
11778 
11779 		/*
11780 		 * We have a wrapped offset.  It may be that the wrapped offset
11781 		 * has become zero -- that's okay.
11782 		 */
11783 		buf->dtb_xamot_offset = woffs;
11784 	}
11785 
11786 out:
11787 	/*
11788 	 * Now we can plow the buffer with any necessary padding.
11789 	 */
11790 	while (offs & (align - 1)) {
11791 		/*
11792 		 * Assert that our alignment is off by a number which
11793 		 * is itself sizeof (uint32_t) aligned.
11794 		 */
11795 		ASSERT(!((align - (offs & (align - 1))) &
11796 		    (sizeof (uint32_t) - 1)));
11797 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11798 		offs += sizeof (uint32_t);
11799 	}
11800 
11801 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11802 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11803 			buf->dtb_flags |= DTRACEBUF_FULL;
11804 			return (-1);
11805 		}
11806 	}
11807 
11808 	if (mstate == NULL)
11809 		return (offs);
11810 
11811 	/*
11812 	 * For ring buffers and fill buffers, the scratch space is always
11813 	 * the inactive buffer.
11814 	 */
11815 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11816 	mstate->dtms_scratch_size = buf->dtb_size;
11817 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11818 
11819 	return (offs);
11820 }
11821 
11822 static void
11823 dtrace_buffer_polish(dtrace_buffer_t *buf)
11824 {
11825 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11826 	ASSERT(MUTEX_HELD(&dtrace_lock));
11827 
11828 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11829 		return;
11830 
11831 	/*
11832 	 * We need to polish the ring buffer.  There are three cases:
11833 	 *
11834 	 * - The first (and presumably most common) is that there is no gap
11835 	 *   between the buffer offset and the wrapped offset.  In this case,
11836 	 *   there is nothing in the buffer that isn't valid data; we can
11837 	 *   mark the buffer as polished and return.
11838 	 *
11839 	 * - The second (less common than the first but still more common
11840 	 *   than the third) is that there is a gap between the buffer offset
11841 	 *   and the wrapped offset, and the wrapped offset is larger than the
11842 	 *   buffer offset.  This can happen because of an alignment issue, or
11843 	 *   can happen because of a call to dtrace_buffer_reserve() that
11844 	 *   didn't subsequently consume the buffer space.  In this case,
11845 	 *   we need to zero the data from the buffer offset to the wrapped
11846 	 *   offset.
11847 	 *
11848 	 * - The third (and least common) is that there is a gap between the
11849 	 *   buffer offset and the wrapped offset, but the wrapped offset is
11850 	 *   _less_ than the buffer offset.  This can only happen because a
11851 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11852 	 *   was not subsequently consumed.  In this case, we need to zero the
11853 	 *   space from the offset to the end of the buffer _and_ from the
11854 	 *   top of the buffer to the wrapped offset.
11855 	 */
11856 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11857 		bzero(buf->dtb_tomax + buf->dtb_offset,
11858 		    buf->dtb_xamot_offset - buf->dtb_offset);
11859 	}
11860 
11861 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11862 		bzero(buf->dtb_tomax + buf->dtb_offset,
11863 		    buf->dtb_size - buf->dtb_offset);
11864 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11865 	}
11866 }
11867 
11868 /*
11869  * This routine determines if data generated at the specified time has likely
11870  * been entirely consumed at user-level.  This routine is called to determine
11871  * if an ECB on a defunct probe (but for an active enabling) can be safely
11872  * disabled and destroyed.
11873  */
11874 static int
11875 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11876 {
11877 	int i;
11878 
11879 	for (i = 0; i < NCPU; i++) {
11880 		dtrace_buffer_t *buf = &bufs[i];
11881 
11882 		if (buf->dtb_size == 0)
11883 			continue;
11884 
11885 		if (buf->dtb_flags & DTRACEBUF_RING)
11886 			return (0);
11887 
11888 		if (!buf->dtb_switched && buf->dtb_offset != 0)
11889 			return (0);
11890 
11891 		if (buf->dtb_switched - buf->dtb_interval < when)
11892 			return (0);
11893 	}
11894 
11895 	return (1);
11896 }
11897 
11898 static void
11899 dtrace_buffer_free(dtrace_buffer_t *bufs)
11900 {
11901 	int i;
11902 
11903 	for (i = 0; i < NCPU; i++) {
11904 		dtrace_buffer_t *buf = &bufs[i];
11905 
11906 		if (buf->dtb_tomax == NULL) {
11907 			ASSERT(buf->dtb_xamot == NULL);
11908 			ASSERT(buf->dtb_size == 0);
11909 			continue;
11910 		}
11911 
11912 		if (buf->dtb_xamot != NULL) {
11913 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11914 			kmem_free(buf->dtb_xamot, buf->dtb_size);
11915 		}
11916 
11917 		kmem_free(buf->dtb_tomax, buf->dtb_size);
11918 		buf->dtb_size = 0;
11919 		buf->dtb_tomax = NULL;
11920 		buf->dtb_xamot = NULL;
11921 	}
11922 }
11923 
11924 /*
11925  * DTrace Enabling Functions
11926  */
11927 static dtrace_enabling_t *
11928 dtrace_enabling_create(dtrace_vstate_t *vstate)
11929 {
11930 	dtrace_enabling_t *enab;
11931 
11932 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11933 	enab->dten_vstate = vstate;
11934 
11935 	return (enab);
11936 }
11937 
11938 static void
11939 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11940 {
11941 	dtrace_ecbdesc_t **ndesc;
11942 	size_t osize, nsize;
11943 
11944 	/*
11945 	 * We can't add to enablings after we've enabled them, or after we've
11946 	 * retained them.
11947 	 */
11948 	ASSERT(enab->dten_probegen == 0);
11949 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11950 
11951 	if (enab->dten_ndesc < enab->dten_maxdesc) {
11952 		enab->dten_desc[enab->dten_ndesc++] = ecb;
11953 		return;
11954 	}
11955 
11956 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11957 
11958 	if (enab->dten_maxdesc == 0) {
11959 		enab->dten_maxdesc = 1;
11960 	} else {
11961 		enab->dten_maxdesc <<= 1;
11962 	}
11963 
11964 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11965 
11966 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11967 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11968 	bcopy(enab->dten_desc, ndesc, osize);
11969 	kmem_free(enab->dten_desc, osize);
11970 
11971 	enab->dten_desc = ndesc;
11972 	enab->dten_desc[enab->dten_ndesc++] = ecb;
11973 }
11974 
11975 static void
11976 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11977     dtrace_probedesc_t *pd)
11978 {
11979 	dtrace_ecbdesc_t *new;
11980 	dtrace_predicate_t *pred;
11981 	dtrace_actdesc_t *act;
11982 
11983 	/*
11984 	 * We're going to create a new ECB description that matches the
11985 	 * specified ECB in every way, but has the specified probe description.
11986 	 */
11987 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11988 
11989 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11990 		dtrace_predicate_hold(pred);
11991 
11992 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11993 		dtrace_actdesc_hold(act);
11994 
11995 	new->dted_action = ecb->dted_action;
11996 	new->dted_pred = ecb->dted_pred;
11997 	new->dted_probe = *pd;
11998 	new->dted_uarg = ecb->dted_uarg;
11999 
12000 	dtrace_enabling_add(enab, new);
12001 }
12002 
12003 static void
12004 dtrace_enabling_dump(dtrace_enabling_t *enab)
12005 {
12006 	int i;
12007 
12008 	for (i = 0; i < enab->dten_ndesc; i++) {
12009 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12010 
12011 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12012 		    desc->dtpd_provider, desc->dtpd_mod,
12013 		    desc->dtpd_func, desc->dtpd_name);
12014 	}
12015 }
12016 
12017 static void
12018 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12019 {
12020 	int i;
12021 	dtrace_ecbdesc_t *ep;
12022 	dtrace_vstate_t *vstate = enab->dten_vstate;
12023 
12024 	ASSERT(MUTEX_HELD(&dtrace_lock));
12025 
12026 	for (i = 0; i < enab->dten_ndesc; i++) {
12027 		dtrace_actdesc_t *act, *next;
12028 		dtrace_predicate_t *pred;
12029 
12030 		ep = enab->dten_desc[i];
12031 
12032 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12033 			dtrace_predicate_release(pred, vstate);
12034 
12035 		for (act = ep->dted_action; act != NULL; act = next) {
12036 			next = act->dtad_next;
12037 			dtrace_actdesc_release(act, vstate);
12038 		}
12039 
12040 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12041 	}
12042 
12043 	kmem_free(enab->dten_desc,
12044 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12045 
12046 	/*
12047 	 * If this was a retained enabling, decrement the dts_nretained count
12048 	 * and take it off of the dtrace_retained list.
12049 	 */
12050 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12051 	    dtrace_retained == enab) {
12052 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12053 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12054 		enab->dten_vstate->dtvs_state->dts_nretained--;
12055 		dtrace_retained_gen++;
12056 	}
12057 
12058 	if (enab->dten_prev == NULL) {
12059 		if (dtrace_retained == enab) {
12060 			dtrace_retained = enab->dten_next;
12061 
12062 			if (dtrace_retained != NULL)
12063 				dtrace_retained->dten_prev = NULL;
12064 		}
12065 	} else {
12066 		ASSERT(enab != dtrace_retained);
12067 		ASSERT(dtrace_retained != NULL);
12068 		enab->dten_prev->dten_next = enab->dten_next;
12069 	}
12070 
12071 	if (enab->dten_next != NULL) {
12072 		ASSERT(dtrace_retained != NULL);
12073 		enab->dten_next->dten_prev = enab->dten_prev;
12074 	}
12075 
12076 	kmem_free(enab, sizeof (dtrace_enabling_t));
12077 }
12078 
12079 static int
12080 dtrace_enabling_retain(dtrace_enabling_t *enab)
12081 {
12082 	dtrace_state_t *state;
12083 
12084 	ASSERT(MUTEX_HELD(&dtrace_lock));
12085 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12086 	ASSERT(enab->dten_vstate != NULL);
12087 
12088 	state = enab->dten_vstate->dtvs_state;
12089 	ASSERT(state != NULL);
12090 
12091 	/*
12092 	 * We only allow each state to retain dtrace_retain_max enablings.
12093 	 */
12094 	if (state->dts_nretained >= dtrace_retain_max)
12095 		return (ENOSPC);
12096 
12097 	state->dts_nretained++;
12098 	dtrace_retained_gen++;
12099 
12100 	if (dtrace_retained == NULL) {
12101 		dtrace_retained = enab;
12102 		return (0);
12103 	}
12104 
12105 	enab->dten_next = dtrace_retained;
12106 	dtrace_retained->dten_prev = enab;
12107 	dtrace_retained = enab;
12108 
12109 	return (0);
12110 }
12111 
12112 static int
12113 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12114     dtrace_probedesc_t *create)
12115 {
12116 	dtrace_enabling_t *new, *enab;
12117 	int found = 0, err = ENOENT;
12118 
12119 	ASSERT(MUTEX_HELD(&dtrace_lock));
12120 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12121 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12122 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12123 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12124 
12125 	new = dtrace_enabling_create(&state->dts_vstate);
12126 
12127 	/*
12128 	 * Iterate over all retained enablings, looking for enablings that
12129 	 * match the specified state.
12130 	 */
12131 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12132 		int i;
12133 
12134 		/*
12135 		 * dtvs_state can only be NULL for helper enablings -- and
12136 		 * helper enablings can't be retained.
12137 		 */
12138 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12139 
12140 		if (enab->dten_vstate->dtvs_state != state)
12141 			continue;
12142 
12143 		/*
12144 		 * Now iterate over each probe description; we're looking for
12145 		 * an exact match to the specified probe description.
12146 		 */
12147 		for (i = 0; i < enab->dten_ndesc; i++) {
12148 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12149 			dtrace_probedesc_t *pd = &ep->dted_probe;
12150 
12151 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12152 				continue;
12153 
12154 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12155 				continue;
12156 
12157 			if (strcmp(pd->dtpd_func, match->dtpd_func))
12158 				continue;
12159 
12160 			if (strcmp(pd->dtpd_name, match->dtpd_name))
12161 				continue;
12162 
12163 			/*
12164 			 * We have a winning probe!  Add it to our growing
12165 			 * enabling.
12166 			 */
12167 			found = 1;
12168 			dtrace_enabling_addlike(new, ep, create);
12169 		}
12170 	}
12171 
12172 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12173 		dtrace_enabling_destroy(new);
12174 		return (err);
12175 	}
12176 
12177 	return (0);
12178 }
12179 
12180 static void
12181 dtrace_enabling_retract(dtrace_state_t *state)
12182 {
12183 	dtrace_enabling_t *enab, *next;
12184 
12185 	ASSERT(MUTEX_HELD(&dtrace_lock));
12186 
12187 	/*
12188 	 * Iterate over all retained enablings, destroy the enablings retained
12189 	 * for the specified state.
12190 	 */
12191 	for (enab = dtrace_retained; enab != NULL; enab = next) {
12192 		next = enab->dten_next;
12193 
12194 		/*
12195 		 * dtvs_state can only be NULL for helper enablings -- and
12196 		 * helper enablings can't be retained.
12197 		 */
12198 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12199 
12200 		if (enab->dten_vstate->dtvs_state == state) {
12201 			ASSERT(state->dts_nretained > 0);
12202 			dtrace_enabling_destroy(enab);
12203 		}
12204 	}
12205 
12206 	ASSERT(state->dts_nretained == 0);
12207 }
12208 
12209 static int
12210 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12211 {
12212 	int i = 0;
12213 	int total_matched = 0, matched = 0;
12214 
12215 	ASSERT(MUTEX_HELD(&cpu_lock));
12216 	ASSERT(MUTEX_HELD(&dtrace_lock));
12217 
12218 	for (i = 0; i < enab->dten_ndesc; i++) {
12219 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12220 
12221 		enab->dten_current = ep;
12222 		enab->dten_error = 0;
12223 
12224 		/*
12225 		 * If a provider failed to enable a probe then get out and
12226 		 * let the consumer know we failed.
12227 		 */
12228 		if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
12229 			return (EBUSY);
12230 
12231 		total_matched += matched;
12232 
12233 		if (enab->dten_error != 0) {
12234 			/*
12235 			 * If we get an error half-way through enabling the
12236 			 * probes, we kick out -- perhaps with some number of
12237 			 * them enabled.  Leaving enabled probes enabled may
12238 			 * be slightly confusing for user-level, but we expect
12239 			 * that no one will attempt to actually drive on in
12240 			 * the face of such errors.  If this is an anonymous
12241 			 * enabling (indicated with a NULL nmatched pointer),
12242 			 * we cmn_err() a message.  We aren't expecting to
12243 			 * get such an error -- such as it can exist at all,
12244 			 * it would be a result of corrupted DOF in the driver
12245 			 * properties.
12246 			 */
12247 			if (nmatched == NULL) {
12248 				cmn_err(CE_WARN, "dtrace_enabling_match() "
12249 				    "error on %p: %d", (void *)ep,
12250 				    enab->dten_error);
12251 			}
12252 
12253 			return (enab->dten_error);
12254 		}
12255 	}
12256 
12257 	enab->dten_probegen = dtrace_probegen;
12258 	if (nmatched != NULL)
12259 		*nmatched = total_matched;
12260 
12261 	return (0);
12262 }
12263 
12264 static void
12265 dtrace_enabling_matchall(void)
12266 {
12267 	dtrace_enabling_t *enab;
12268 
12269 	mutex_enter(&cpu_lock);
12270 	mutex_enter(&dtrace_lock);
12271 
12272 	/*
12273 	 * Iterate over all retained enablings to see if any probes match
12274 	 * against them.  We only perform this operation on enablings for which
12275 	 * we have sufficient permissions by virtue of being in the global zone
12276 	 * or in the same zone as the DTrace client.  Because we can be called
12277 	 * after dtrace_detach() has been called, we cannot assert that there
12278 	 * are retained enablings.  We can safely load from dtrace_retained,
12279 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12280 	 * block pending our completion.
12281 	 */
12282 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12283 		dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
12284 		cred_t *cr = dcr->dcr_cred;
12285 		zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
12286 
12287 		if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
12288 		    (zone == GLOBAL_ZONEID || getzoneid() == zone)))
12289 			(void) dtrace_enabling_match(enab, NULL);
12290 	}
12291 
12292 	mutex_exit(&dtrace_lock);
12293 	mutex_exit(&cpu_lock);
12294 }
12295 
12296 /*
12297  * If an enabling is to be enabled without having matched probes (that is, if
12298  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12299  * enabling must be _primed_ by creating an ECB for every ECB description.
12300  * This must be done to assure that we know the number of speculations, the
12301  * number of aggregations, the minimum buffer size needed, etc. before we
12302  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12303  * enabling any probes, we create ECBs for every ECB decription, but with a
12304  * NULL probe -- which is exactly what this function does.
12305  */
12306 static void
12307 dtrace_enabling_prime(dtrace_state_t *state)
12308 {
12309 	dtrace_enabling_t *enab;
12310 	int i;
12311 
12312 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12313 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12314 
12315 		if (enab->dten_vstate->dtvs_state != state)
12316 			continue;
12317 
12318 		/*
12319 		 * We don't want to prime an enabling more than once, lest
12320 		 * we allow a malicious user to induce resource exhaustion.
12321 		 * (The ECBs that result from priming an enabling aren't
12322 		 * leaked -- but they also aren't deallocated until the
12323 		 * consumer state is destroyed.)
12324 		 */
12325 		if (enab->dten_primed)
12326 			continue;
12327 
12328 		for (i = 0; i < enab->dten_ndesc; i++) {
12329 			enab->dten_current = enab->dten_desc[i];
12330 			(void) dtrace_probe_enable(NULL, enab);
12331 		}
12332 
12333 		enab->dten_primed = 1;
12334 	}
12335 }
12336 
12337 /*
12338  * Called to indicate that probes should be provided due to retained
12339  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12340  * must take an initial lap through the enabling calling the dtps_provide()
12341  * entry point explicitly to allow for autocreated probes.
12342  */
12343 static void
12344 dtrace_enabling_provide(dtrace_provider_t *prv)
12345 {
12346 	int i, all = 0;
12347 	dtrace_probedesc_t desc;
12348 	dtrace_genid_t gen;
12349 
12350 	ASSERT(MUTEX_HELD(&dtrace_lock));
12351 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12352 
12353 	if (prv == NULL) {
12354 		all = 1;
12355 		prv = dtrace_provider;
12356 	}
12357 
12358 	do {
12359 		dtrace_enabling_t *enab;
12360 		void *parg = prv->dtpv_arg;
12361 
12362 retry:
12363 		gen = dtrace_retained_gen;
12364 		for (enab = dtrace_retained; enab != NULL;
12365 		    enab = enab->dten_next) {
12366 			for (i = 0; i < enab->dten_ndesc; i++) {
12367 				desc = enab->dten_desc[i]->dted_probe;
12368 				mutex_exit(&dtrace_lock);
12369 				prv->dtpv_pops.dtps_provide(parg, &desc);
12370 				mutex_enter(&dtrace_lock);
12371 				/*
12372 				 * Process the retained enablings again if
12373 				 * they have changed while we weren't holding
12374 				 * dtrace_lock.
12375 				 */
12376 				if (gen != dtrace_retained_gen)
12377 					goto retry;
12378 			}
12379 		}
12380 	} while (all && (prv = prv->dtpv_next) != NULL);
12381 
12382 	mutex_exit(&dtrace_lock);
12383 	dtrace_probe_provide(NULL, all ? NULL : prv);
12384 	mutex_enter(&dtrace_lock);
12385 }
12386 
12387 /*
12388  * Called to reap ECBs that are attached to probes from defunct providers.
12389  */
12390 static void
12391 dtrace_enabling_reap(void)
12392 {
12393 	dtrace_provider_t *prov;
12394 	dtrace_probe_t *probe;
12395 	dtrace_ecb_t *ecb;
12396 	hrtime_t when;
12397 	int i;
12398 
12399 	mutex_enter(&cpu_lock);
12400 	mutex_enter(&dtrace_lock);
12401 
12402 	for (i = 0; i < dtrace_nprobes; i++) {
12403 		if ((probe = dtrace_probes[i]) == NULL)
12404 			continue;
12405 
12406 		if (probe->dtpr_ecb == NULL)
12407 			continue;
12408 
12409 		prov = probe->dtpr_provider;
12410 
12411 		if ((when = prov->dtpv_defunct) == 0)
12412 			continue;
12413 
12414 		/*
12415 		 * We have ECBs on a defunct provider:  we want to reap these
12416 		 * ECBs to allow the provider to unregister.  The destruction
12417 		 * of these ECBs must be done carefully:  if we destroy the ECB
12418 		 * and the consumer later wishes to consume an EPID that
12419 		 * corresponds to the destroyed ECB (and if the EPID metadata
12420 		 * has not been previously consumed), the consumer will abort
12421 		 * processing on the unknown EPID.  To reduce (but not, sadly,
12422 		 * eliminate) the possibility of this, we will only destroy an
12423 		 * ECB for a defunct provider if, for the state that
12424 		 * corresponds to the ECB:
12425 		 *
12426 		 *  (a)	There is no speculative tracing (which can effectively
12427 		 *	cache an EPID for an arbitrary amount of time).
12428 		 *
12429 		 *  (b)	The principal buffers have been switched twice since the
12430 		 *	provider became defunct.
12431 		 *
12432 		 *  (c)	The aggregation buffers are of zero size or have been
12433 		 *	switched twice since the provider became defunct.
12434 		 *
12435 		 * We use dts_speculates to determine (a) and call a function
12436 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
12437 		 * that as soon as we've been unable to destroy one of the ECBs
12438 		 * associated with the probe, we quit trying -- reaping is only
12439 		 * fruitful in as much as we can destroy all ECBs associated
12440 		 * with the defunct provider's probes.
12441 		 */
12442 		while ((ecb = probe->dtpr_ecb) != NULL) {
12443 			dtrace_state_t *state = ecb->dte_state;
12444 			dtrace_buffer_t *buf = state->dts_buffer;
12445 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12446 
12447 			if (state->dts_speculates)
12448 				break;
12449 
12450 			if (!dtrace_buffer_consumed(buf, when))
12451 				break;
12452 
12453 			if (!dtrace_buffer_consumed(aggbuf, when))
12454 				break;
12455 
12456 			dtrace_ecb_disable(ecb);
12457 			ASSERT(probe->dtpr_ecb != ecb);
12458 			dtrace_ecb_destroy(ecb);
12459 		}
12460 	}
12461 
12462 	mutex_exit(&dtrace_lock);
12463 	mutex_exit(&cpu_lock);
12464 }
12465 
12466 /*
12467  * DTrace DOF Functions
12468  */
12469 /*ARGSUSED*/
12470 static void
12471 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12472 {
12473 	if (dtrace_err_verbose)
12474 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
12475 
12476 #ifdef DTRACE_ERRDEBUG
12477 	dtrace_errdebug(str);
12478 #endif
12479 }
12480 
12481 /*
12482  * Create DOF out of a currently enabled state.  Right now, we only create
12483  * DOF containing the run-time options -- but this could be expanded to create
12484  * complete DOF representing the enabled state.
12485  */
12486 static dof_hdr_t *
12487 dtrace_dof_create(dtrace_state_t *state)
12488 {
12489 	dof_hdr_t *dof;
12490 	dof_sec_t *sec;
12491 	dof_optdesc_t *opt;
12492 	int i, len = sizeof (dof_hdr_t) +
12493 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12494 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12495 
12496 	ASSERT(MUTEX_HELD(&dtrace_lock));
12497 
12498 	dof = kmem_zalloc(len, KM_SLEEP);
12499 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12500 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12501 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12502 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12503 
12504 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12505 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12506 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12507 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12508 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12509 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12510 
12511 	dof->dofh_flags = 0;
12512 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
12513 	dof->dofh_secsize = sizeof (dof_sec_t);
12514 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
12515 	dof->dofh_secoff = sizeof (dof_hdr_t);
12516 	dof->dofh_loadsz = len;
12517 	dof->dofh_filesz = len;
12518 	dof->dofh_pad = 0;
12519 
12520 	/*
12521 	 * Fill in the option section header...
12522 	 */
12523 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12524 	sec->dofs_type = DOF_SECT_OPTDESC;
12525 	sec->dofs_align = sizeof (uint64_t);
12526 	sec->dofs_flags = DOF_SECF_LOAD;
12527 	sec->dofs_entsize = sizeof (dof_optdesc_t);
12528 
12529 	opt = (dof_optdesc_t *)((uintptr_t)sec +
12530 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12531 
12532 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12533 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12534 
12535 	for (i = 0; i < DTRACEOPT_MAX; i++) {
12536 		opt[i].dofo_option = i;
12537 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
12538 		opt[i].dofo_value = state->dts_options[i];
12539 	}
12540 
12541 	return (dof);
12542 }
12543 
12544 static dof_hdr_t *
12545 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12546 {
12547 	dof_hdr_t hdr, *dof;
12548 
12549 	ASSERT(!MUTEX_HELD(&dtrace_lock));
12550 
12551 	/*
12552 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
12553 	 */
12554 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12555 		dtrace_dof_error(NULL, "failed to copyin DOF header");
12556 		*errp = EFAULT;
12557 		return (NULL);
12558 	}
12559 
12560 	/*
12561 	 * Now we'll allocate the entire DOF and copy it in -- provided
12562 	 * that the length isn't outrageous.
12563 	 */
12564 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12565 		dtrace_dof_error(&hdr, "load size exceeds maximum");
12566 		*errp = E2BIG;
12567 		return (NULL);
12568 	}
12569 
12570 	if (hdr.dofh_loadsz < sizeof (hdr)) {
12571 		dtrace_dof_error(&hdr, "invalid load size");
12572 		*errp = EINVAL;
12573 		return (NULL);
12574 	}
12575 
12576 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12577 
12578 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12579 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
12580 		kmem_free(dof, hdr.dofh_loadsz);
12581 		*errp = EFAULT;
12582 		return (NULL);
12583 	}
12584 
12585 	return (dof);
12586 }
12587 
12588 static dof_hdr_t *
12589 dtrace_dof_property(const char *name)
12590 {
12591 	uchar_t *buf;
12592 	uint64_t loadsz;
12593 	unsigned int len, i;
12594 	dof_hdr_t *dof;
12595 
12596 	/*
12597 	 * Unfortunately, array of values in .conf files are always (and
12598 	 * only) interpreted to be integer arrays.  We must read our DOF
12599 	 * as an integer array, and then squeeze it into a byte array.
12600 	 */
12601 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12602 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12603 		return (NULL);
12604 
12605 	for (i = 0; i < len; i++)
12606 		buf[i] = (uchar_t)(((int *)buf)[i]);
12607 
12608 	if (len < sizeof (dof_hdr_t)) {
12609 		ddi_prop_free(buf);
12610 		dtrace_dof_error(NULL, "truncated header");
12611 		return (NULL);
12612 	}
12613 
12614 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12615 		ddi_prop_free(buf);
12616 		dtrace_dof_error(NULL, "truncated DOF");
12617 		return (NULL);
12618 	}
12619 
12620 	if (loadsz >= dtrace_dof_maxsize) {
12621 		ddi_prop_free(buf);
12622 		dtrace_dof_error(NULL, "oversized DOF");
12623 		return (NULL);
12624 	}
12625 
12626 	dof = kmem_alloc(loadsz, KM_SLEEP);
12627 	bcopy(buf, dof, loadsz);
12628 	ddi_prop_free(buf);
12629 
12630 	return (dof);
12631 }
12632 
12633 static void
12634 dtrace_dof_destroy(dof_hdr_t *dof)
12635 {
12636 	kmem_free(dof, dof->dofh_loadsz);
12637 }
12638 
12639 /*
12640  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12641  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12642  * a type other than DOF_SECT_NONE is specified, the header is checked against
12643  * this type and NULL is returned if the types do not match.
12644  */
12645 static dof_sec_t *
12646 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12647 {
12648 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12649 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12650 
12651 	if (i >= dof->dofh_secnum) {
12652 		dtrace_dof_error(dof, "referenced section index is invalid");
12653 		return (NULL);
12654 	}
12655 
12656 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12657 		dtrace_dof_error(dof, "referenced section is not loadable");
12658 		return (NULL);
12659 	}
12660 
12661 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12662 		dtrace_dof_error(dof, "referenced section is the wrong type");
12663 		return (NULL);
12664 	}
12665 
12666 	return (sec);
12667 }
12668 
12669 static dtrace_probedesc_t *
12670 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12671 {
12672 	dof_probedesc_t *probe;
12673 	dof_sec_t *strtab;
12674 	uintptr_t daddr = (uintptr_t)dof;
12675 	uintptr_t str;
12676 	size_t size;
12677 
12678 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12679 		dtrace_dof_error(dof, "invalid probe section");
12680 		return (NULL);
12681 	}
12682 
12683 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12684 		dtrace_dof_error(dof, "bad alignment in probe description");
12685 		return (NULL);
12686 	}
12687 
12688 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12689 		dtrace_dof_error(dof, "truncated probe description");
12690 		return (NULL);
12691 	}
12692 
12693 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12694 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12695 
12696 	if (strtab == NULL)
12697 		return (NULL);
12698 
12699 	str = daddr + strtab->dofs_offset;
12700 	size = strtab->dofs_size;
12701 
12702 	if (probe->dofp_provider >= strtab->dofs_size) {
12703 		dtrace_dof_error(dof, "corrupt probe provider");
12704 		return (NULL);
12705 	}
12706 
12707 	(void) strncpy(desc->dtpd_provider,
12708 	    (char *)(str + probe->dofp_provider),
12709 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12710 
12711 	if (probe->dofp_mod >= strtab->dofs_size) {
12712 		dtrace_dof_error(dof, "corrupt probe module");
12713 		return (NULL);
12714 	}
12715 
12716 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12717 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12718 
12719 	if (probe->dofp_func >= strtab->dofs_size) {
12720 		dtrace_dof_error(dof, "corrupt probe function");
12721 		return (NULL);
12722 	}
12723 
12724 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12725 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12726 
12727 	if (probe->dofp_name >= strtab->dofs_size) {
12728 		dtrace_dof_error(dof, "corrupt probe name");
12729 		return (NULL);
12730 	}
12731 
12732 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12733 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12734 
12735 	return (desc);
12736 }
12737 
12738 static dtrace_difo_t *
12739 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12740     cred_t *cr)
12741 {
12742 	dtrace_difo_t *dp;
12743 	size_t ttl = 0;
12744 	dof_difohdr_t *dofd;
12745 	uintptr_t daddr = (uintptr_t)dof;
12746 	size_t max = dtrace_difo_maxsize;
12747 	int i, l, n;
12748 
12749 	static const struct {
12750 		int section;
12751 		int bufoffs;
12752 		int lenoffs;
12753 		int entsize;
12754 		int align;
12755 		const char *msg;
12756 	} difo[] = {
12757 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12758 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12759 		sizeof (dif_instr_t), "multiple DIF sections" },
12760 
12761 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12762 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12763 		sizeof (uint64_t), "multiple integer tables" },
12764 
12765 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12766 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12767 		sizeof (char), "multiple string tables" },
12768 
12769 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12770 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12771 		sizeof (uint_t), "multiple variable tables" },
12772 
12773 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
12774 	};
12775 
12776 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12777 		dtrace_dof_error(dof, "invalid DIFO header section");
12778 		return (NULL);
12779 	}
12780 
12781 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12782 		dtrace_dof_error(dof, "bad alignment in DIFO header");
12783 		return (NULL);
12784 	}
12785 
12786 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12787 	    sec->dofs_size % sizeof (dof_secidx_t)) {
12788 		dtrace_dof_error(dof, "bad size in DIFO header");
12789 		return (NULL);
12790 	}
12791 
12792 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12793 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12794 
12795 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12796 	dp->dtdo_rtype = dofd->dofd_rtype;
12797 
12798 	for (l = 0; l < n; l++) {
12799 		dof_sec_t *subsec;
12800 		void **bufp;
12801 		uint32_t *lenp;
12802 
12803 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12804 		    dofd->dofd_links[l])) == NULL)
12805 			goto err; /* invalid section link */
12806 
12807 		if (ttl + subsec->dofs_size > max) {
12808 			dtrace_dof_error(dof, "exceeds maximum size");
12809 			goto err;
12810 		}
12811 
12812 		ttl += subsec->dofs_size;
12813 
12814 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12815 			if (subsec->dofs_type != difo[i].section)
12816 				continue;
12817 
12818 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12819 				dtrace_dof_error(dof, "section not loaded");
12820 				goto err;
12821 			}
12822 
12823 			if (subsec->dofs_align != difo[i].align) {
12824 				dtrace_dof_error(dof, "bad alignment");
12825 				goto err;
12826 			}
12827 
12828 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12829 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12830 
12831 			if (*bufp != NULL) {
12832 				dtrace_dof_error(dof, difo[i].msg);
12833 				goto err;
12834 			}
12835 
12836 			if (difo[i].entsize != subsec->dofs_entsize) {
12837 				dtrace_dof_error(dof, "entry size mismatch");
12838 				goto err;
12839 			}
12840 
12841 			if (subsec->dofs_entsize != 0 &&
12842 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12843 				dtrace_dof_error(dof, "corrupt entry size");
12844 				goto err;
12845 			}
12846 
12847 			*lenp = subsec->dofs_size;
12848 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12849 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12850 			    *bufp, subsec->dofs_size);
12851 
12852 			if (subsec->dofs_entsize != 0)
12853 				*lenp /= subsec->dofs_entsize;
12854 
12855 			break;
12856 		}
12857 
12858 		/*
12859 		 * If we encounter a loadable DIFO sub-section that is not
12860 		 * known to us, assume this is a broken program and fail.
12861 		 */
12862 		if (difo[i].section == DOF_SECT_NONE &&
12863 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12864 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12865 			goto err;
12866 		}
12867 	}
12868 
12869 	if (dp->dtdo_buf == NULL) {
12870 		/*
12871 		 * We can't have a DIF object without DIF text.
12872 		 */
12873 		dtrace_dof_error(dof, "missing DIF text");
12874 		goto err;
12875 	}
12876 
12877 	/*
12878 	 * Before we validate the DIF object, run through the variable table
12879 	 * looking for the strings -- if any of their size are under, we'll set
12880 	 * their size to be the system-wide default string size.  Note that
12881 	 * this should _not_ happen if the "strsize" option has been set --
12882 	 * in this case, the compiler should have set the size to reflect the
12883 	 * setting of the option.
12884 	 */
12885 	for (i = 0; i < dp->dtdo_varlen; i++) {
12886 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12887 		dtrace_diftype_t *t = &v->dtdv_type;
12888 
12889 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12890 			continue;
12891 
12892 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12893 			t->dtdt_size = dtrace_strsize_default;
12894 	}
12895 
12896 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12897 		goto err;
12898 
12899 	dtrace_difo_init(dp, vstate);
12900 	return (dp);
12901 
12902 err:
12903 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12904 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12905 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12906 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12907 
12908 	kmem_free(dp, sizeof (dtrace_difo_t));
12909 	return (NULL);
12910 }
12911 
12912 static dtrace_predicate_t *
12913 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12914     cred_t *cr)
12915 {
12916 	dtrace_difo_t *dp;
12917 
12918 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12919 		return (NULL);
12920 
12921 	return (dtrace_predicate_create(dp));
12922 }
12923 
12924 static dtrace_actdesc_t *
12925 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12926     cred_t *cr)
12927 {
12928 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12929 	dof_actdesc_t *desc;
12930 	dof_sec_t *difosec;
12931 	size_t offs;
12932 	uintptr_t daddr = (uintptr_t)dof;
12933 	uint64_t arg;
12934 	dtrace_actkind_t kind;
12935 
12936 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12937 		dtrace_dof_error(dof, "invalid action section");
12938 		return (NULL);
12939 	}
12940 
12941 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12942 		dtrace_dof_error(dof, "truncated action description");
12943 		return (NULL);
12944 	}
12945 
12946 	if (sec->dofs_align != sizeof (uint64_t)) {
12947 		dtrace_dof_error(dof, "bad alignment in action description");
12948 		return (NULL);
12949 	}
12950 
12951 	if (sec->dofs_size < sec->dofs_entsize) {
12952 		dtrace_dof_error(dof, "section entry size exceeds total size");
12953 		return (NULL);
12954 	}
12955 
12956 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12957 		dtrace_dof_error(dof, "bad entry size in action description");
12958 		return (NULL);
12959 	}
12960 
12961 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12962 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12963 		return (NULL);
12964 	}
12965 
12966 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12967 		desc = (dof_actdesc_t *)(daddr +
12968 		    (uintptr_t)sec->dofs_offset + offs);
12969 		kind = (dtrace_actkind_t)desc->dofa_kind;
12970 
12971 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12972 		    (kind != DTRACEACT_PRINTA ||
12973 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12974 		    (kind == DTRACEACT_DIFEXPR &&
12975 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12976 			dof_sec_t *strtab;
12977 			char *str, *fmt;
12978 			uint64_t i;
12979 
12980 			/*
12981 			 * The argument to these actions is an index into the
12982 			 * DOF string table.  For printf()-like actions, this
12983 			 * is the format string.  For print(), this is the
12984 			 * CTF type of the expression result.
12985 			 */
12986 			if ((strtab = dtrace_dof_sect(dof,
12987 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12988 				goto err;
12989 
12990 			str = (char *)((uintptr_t)dof +
12991 			    (uintptr_t)strtab->dofs_offset);
12992 
12993 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12994 				if (str[i] == '\0')
12995 					break;
12996 			}
12997 
12998 			if (i >= strtab->dofs_size) {
12999 				dtrace_dof_error(dof, "bogus format string");
13000 				goto err;
13001 			}
13002 
13003 			if (i == desc->dofa_arg) {
13004 				dtrace_dof_error(dof, "empty format string");
13005 				goto err;
13006 			}
13007 
13008 			i -= desc->dofa_arg;
13009 			fmt = kmem_alloc(i + 1, KM_SLEEP);
13010 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13011 			arg = (uint64_t)(uintptr_t)fmt;
13012 		} else {
13013 			if (kind == DTRACEACT_PRINTA) {
13014 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13015 				arg = 0;
13016 			} else {
13017 				arg = desc->dofa_arg;
13018 			}
13019 		}
13020 
13021 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13022 		    desc->dofa_uarg, arg);
13023 
13024 		if (last != NULL) {
13025 			last->dtad_next = act;
13026 		} else {
13027 			first = act;
13028 		}
13029 
13030 		last = act;
13031 
13032 		if (desc->dofa_difo == DOF_SECIDX_NONE)
13033 			continue;
13034 
13035 		if ((difosec = dtrace_dof_sect(dof,
13036 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13037 			goto err;
13038 
13039 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13040 
13041 		if (act->dtad_difo == NULL)
13042 			goto err;
13043 	}
13044 
13045 	ASSERT(first != NULL);
13046 	return (first);
13047 
13048 err:
13049 	for (act = first; act != NULL; act = next) {
13050 		next = act->dtad_next;
13051 		dtrace_actdesc_release(act, vstate);
13052 	}
13053 
13054 	return (NULL);
13055 }
13056 
13057 static dtrace_ecbdesc_t *
13058 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13059     cred_t *cr)
13060 {
13061 	dtrace_ecbdesc_t *ep;
13062 	dof_ecbdesc_t *ecb;
13063 	dtrace_probedesc_t *desc;
13064 	dtrace_predicate_t *pred = NULL;
13065 
13066 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13067 		dtrace_dof_error(dof, "truncated ECB description");
13068 		return (NULL);
13069 	}
13070 
13071 	if (sec->dofs_align != sizeof (uint64_t)) {
13072 		dtrace_dof_error(dof, "bad alignment in ECB description");
13073 		return (NULL);
13074 	}
13075 
13076 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13077 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13078 
13079 	if (sec == NULL)
13080 		return (NULL);
13081 
13082 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13083 	ep->dted_uarg = ecb->dofe_uarg;
13084 	desc = &ep->dted_probe;
13085 
13086 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13087 		goto err;
13088 
13089 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13090 		if ((sec = dtrace_dof_sect(dof,
13091 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13092 			goto err;
13093 
13094 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13095 			goto err;
13096 
13097 		ep->dted_pred.dtpdd_predicate = pred;
13098 	}
13099 
13100 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13101 		if ((sec = dtrace_dof_sect(dof,
13102 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13103 			goto err;
13104 
13105 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13106 
13107 		if (ep->dted_action == NULL)
13108 			goto err;
13109 	}
13110 
13111 	return (ep);
13112 
13113 err:
13114 	if (pred != NULL)
13115 		dtrace_predicate_release(pred, vstate);
13116 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13117 	return (NULL);
13118 }
13119 
13120 /*
13121  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13122  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13123  * site of any user SETX relocations to account for load object base address.
13124  * In the future, if we need other relocations, this function can be extended.
13125  */
13126 static int
13127 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13128 {
13129 	uintptr_t daddr = (uintptr_t)dof;
13130 	dof_relohdr_t *dofr =
13131 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13132 	dof_sec_t *ss, *rs, *ts;
13133 	dof_relodesc_t *r;
13134 	uint_t i, n;
13135 
13136 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13137 	    sec->dofs_align != sizeof (dof_secidx_t)) {
13138 		dtrace_dof_error(dof, "invalid relocation header");
13139 		return (-1);
13140 	}
13141 
13142 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13143 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13144 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13145 
13146 	if (ss == NULL || rs == NULL || ts == NULL)
13147 		return (-1); /* dtrace_dof_error() has been called already */
13148 
13149 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13150 	    rs->dofs_align != sizeof (uint64_t)) {
13151 		dtrace_dof_error(dof, "invalid relocation section");
13152 		return (-1);
13153 	}
13154 
13155 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13156 	n = rs->dofs_size / rs->dofs_entsize;
13157 
13158 	for (i = 0; i < n; i++) {
13159 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13160 
13161 		switch (r->dofr_type) {
13162 		case DOF_RELO_NONE:
13163 			break;
13164 		case DOF_RELO_SETX:
13165 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13166 			    sizeof (uint64_t) > ts->dofs_size) {
13167 				dtrace_dof_error(dof, "bad relocation offset");
13168 				return (-1);
13169 			}
13170 
13171 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13172 				dtrace_dof_error(dof, "misaligned setx relo");
13173 				return (-1);
13174 			}
13175 
13176 			*(uint64_t *)taddr += ubase;
13177 			break;
13178 		default:
13179 			dtrace_dof_error(dof, "invalid relocation type");
13180 			return (-1);
13181 		}
13182 
13183 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13184 	}
13185 
13186 	return (0);
13187 }
13188 
13189 /*
13190  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13191  * header:  it should be at the front of a memory region that is at least
13192  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13193  * size.  It need not be validated in any other way.
13194  */
13195 static int
13196 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13197     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13198 {
13199 	uint64_t len = dof->dofh_loadsz, seclen;
13200 	uintptr_t daddr = (uintptr_t)dof;
13201 	dtrace_ecbdesc_t *ep;
13202 	dtrace_enabling_t *enab;
13203 	uint_t i;
13204 
13205 	ASSERT(MUTEX_HELD(&dtrace_lock));
13206 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13207 
13208 	/*
13209 	 * Check the DOF header identification bytes.  In addition to checking
13210 	 * valid settings, we also verify that unused bits/bytes are zeroed so
13211 	 * we can use them later without fear of regressing existing binaries.
13212 	 */
13213 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13214 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13215 		dtrace_dof_error(dof, "DOF magic string mismatch");
13216 		return (-1);
13217 	}
13218 
13219 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13220 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13221 		dtrace_dof_error(dof, "DOF has invalid data model");
13222 		return (-1);
13223 	}
13224 
13225 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13226 		dtrace_dof_error(dof, "DOF encoding mismatch");
13227 		return (-1);
13228 	}
13229 
13230 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13231 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13232 		dtrace_dof_error(dof, "DOF version mismatch");
13233 		return (-1);
13234 	}
13235 
13236 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13237 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13238 		return (-1);
13239 	}
13240 
13241 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13242 		dtrace_dof_error(dof, "DOF uses too many integer registers");
13243 		return (-1);
13244 	}
13245 
13246 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13247 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
13248 		return (-1);
13249 	}
13250 
13251 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13252 		if (dof->dofh_ident[i] != 0) {
13253 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
13254 			return (-1);
13255 		}
13256 	}
13257 
13258 	if (dof->dofh_flags & ~DOF_FL_VALID) {
13259 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
13260 		return (-1);
13261 	}
13262 
13263 	if (dof->dofh_secsize == 0) {
13264 		dtrace_dof_error(dof, "zero section header size");
13265 		return (-1);
13266 	}
13267 
13268 	/*
13269 	 * Check that the section headers don't exceed the amount of DOF
13270 	 * data.  Note that we cast the section size and number of sections
13271 	 * to uint64_t's to prevent possible overflow in the multiplication.
13272 	 */
13273 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13274 
13275 	if (dof->dofh_secoff > len || seclen > len ||
13276 	    dof->dofh_secoff + seclen > len) {
13277 		dtrace_dof_error(dof, "truncated section headers");
13278 		return (-1);
13279 	}
13280 
13281 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13282 		dtrace_dof_error(dof, "misaligned section headers");
13283 		return (-1);
13284 	}
13285 
13286 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13287 		dtrace_dof_error(dof, "misaligned section size");
13288 		return (-1);
13289 	}
13290 
13291 	/*
13292 	 * Take an initial pass through the section headers to be sure that
13293 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
13294 	 * set, do not permit sections relating to providers, probes, or args.
13295 	 */
13296 	for (i = 0; i < dof->dofh_secnum; i++) {
13297 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13298 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13299 
13300 		if (noprobes) {
13301 			switch (sec->dofs_type) {
13302 			case DOF_SECT_PROVIDER:
13303 			case DOF_SECT_PROBES:
13304 			case DOF_SECT_PRARGS:
13305 			case DOF_SECT_PROFFS:
13306 				dtrace_dof_error(dof, "illegal sections "
13307 				    "for enabling");
13308 				return (-1);
13309 			}
13310 		}
13311 
13312 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13313 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
13314 			dtrace_dof_error(dof, "loadable section with load "
13315 			    "flag unset");
13316 			return (-1);
13317 		}
13318 
13319 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13320 			continue; /* just ignore non-loadable sections */
13321 
13322 		if (!ISP2(sec->dofs_align)) {
13323 			dtrace_dof_error(dof, "bad section alignment");
13324 			return (-1);
13325 		}
13326 
13327 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
13328 			dtrace_dof_error(dof, "misaligned section");
13329 			return (-1);
13330 		}
13331 
13332 		if (sec->dofs_offset > len || sec->dofs_size > len ||
13333 		    sec->dofs_offset + sec->dofs_size > len) {
13334 			dtrace_dof_error(dof, "corrupt section header");
13335 			return (-1);
13336 		}
13337 
13338 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13339 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13340 			dtrace_dof_error(dof, "non-terminating string table");
13341 			return (-1);
13342 		}
13343 	}
13344 
13345 	/*
13346 	 * Take a second pass through the sections and locate and perform any
13347 	 * relocations that are present.  We do this after the first pass to
13348 	 * be sure that all sections have had their headers validated.
13349 	 */
13350 	for (i = 0; i < dof->dofh_secnum; i++) {
13351 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13352 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13353 
13354 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
13355 			continue; /* skip sections that are not loadable */
13356 
13357 		switch (sec->dofs_type) {
13358 		case DOF_SECT_URELHDR:
13359 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13360 				return (-1);
13361 			break;
13362 		}
13363 	}
13364 
13365 	if ((enab = *enabp) == NULL)
13366 		enab = *enabp = dtrace_enabling_create(vstate);
13367 
13368 	for (i = 0; i < dof->dofh_secnum; i++) {
13369 		dof_sec_t *sec = (dof_sec_t *)(daddr +
13370 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13371 
13372 		if (sec->dofs_type != DOF_SECT_ECBDESC)
13373 			continue;
13374 
13375 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13376 			dtrace_enabling_destroy(enab);
13377 			*enabp = NULL;
13378 			return (-1);
13379 		}
13380 
13381 		dtrace_enabling_add(enab, ep);
13382 	}
13383 
13384 	return (0);
13385 }
13386 
13387 /*
13388  * Process DOF for any options.  This routine assumes that the DOF has been
13389  * at least processed by dtrace_dof_slurp().
13390  */
13391 static int
13392 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13393 {
13394 	int i, rval;
13395 	uint32_t entsize;
13396 	size_t offs;
13397 	dof_optdesc_t *desc;
13398 
13399 	for (i = 0; i < dof->dofh_secnum; i++) {
13400 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13401 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13402 
13403 		if (sec->dofs_type != DOF_SECT_OPTDESC)
13404 			continue;
13405 
13406 		if (sec->dofs_align != sizeof (uint64_t)) {
13407 			dtrace_dof_error(dof, "bad alignment in "
13408 			    "option description");
13409 			return (EINVAL);
13410 		}
13411 
13412 		if ((entsize = sec->dofs_entsize) == 0) {
13413 			dtrace_dof_error(dof, "zeroed option entry size");
13414 			return (EINVAL);
13415 		}
13416 
13417 		if (entsize < sizeof (dof_optdesc_t)) {
13418 			dtrace_dof_error(dof, "bad option entry size");
13419 			return (EINVAL);
13420 		}
13421 
13422 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13423 			desc = (dof_optdesc_t *)((uintptr_t)dof +
13424 			    (uintptr_t)sec->dofs_offset + offs);
13425 
13426 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13427 				dtrace_dof_error(dof, "non-zero option string");
13428 				return (EINVAL);
13429 			}
13430 
13431 			if (desc->dofo_value == DTRACEOPT_UNSET) {
13432 				dtrace_dof_error(dof, "unset option");
13433 				return (EINVAL);
13434 			}
13435 
13436 			if ((rval = dtrace_state_option(state,
13437 			    desc->dofo_option, desc->dofo_value)) != 0) {
13438 				dtrace_dof_error(dof, "rejected option");
13439 				return (rval);
13440 			}
13441 		}
13442 	}
13443 
13444 	return (0);
13445 }
13446 
13447 /*
13448  * DTrace Consumer State Functions
13449  */
13450 int
13451 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13452 {
13453 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13454 	void *base;
13455 	uintptr_t limit;
13456 	dtrace_dynvar_t *dvar, *next, *start;
13457 	int i;
13458 
13459 	ASSERT(MUTEX_HELD(&dtrace_lock));
13460 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13461 
13462 	bzero(dstate, sizeof (dtrace_dstate_t));
13463 
13464 	if ((dstate->dtds_chunksize = chunksize) == 0)
13465 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13466 
13467 	VERIFY(dstate->dtds_chunksize < LONG_MAX);
13468 
13469 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13470 		size = min;
13471 
13472 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13473 		return (ENOMEM);
13474 
13475 	dstate->dtds_size = size;
13476 	dstate->dtds_base = base;
13477 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13478 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13479 
13480 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13481 
13482 	if (hashsize != 1 && (hashsize & 1))
13483 		hashsize--;
13484 
13485 	dstate->dtds_hashsize = hashsize;
13486 	dstate->dtds_hash = dstate->dtds_base;
13487 
13488 	/*
13489 	 * Set all of our hash buckets to point to the single sink, and (if
13490 	 * it hasn't already been set), set the sink's hash value to be the
13491 	 * sink sentinel value.  The sink is needed for dynamic variable
13492 	 * lookups to know that they have iterated over an entire, valid hash
13493 	 * chain.
13494 	 */
13495 	for (i = 0; i < hashsize; i++)
13496 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13497 
13498 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13499 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13500 
13501 	/*
13502 	 * Determine number of active CPUs.  Divide free list evenly among
13503 	 * active CPUs.
13504 	 */
13505 	start = (dtrace_dynvar_t *)
13506 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13507 	limit = (uintptr_t)base + size;
13508 
13509 	VERIFY((uintptr_t)start < limit);
13510 	VERIFY((uintptr_t)start >= (uintptr_t)base);
13511 
13512 	maxper = (limit - (uintptr_t)start) / NCPU;
13513 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13514 
13515 	for (i = 0; i < NCPU; i++) {
13516 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13517 
13518 		/*
13519 		 * If we don't even have enough chunks to make it once through
13520 		 * NCPUs, we're just going to allocate everything to the first
13521 		 * CPU.  And if we're on the last CPU, we're going to allocate
13522 		 * whatever is left over.  In either case, we set the limit to
13523 		 * be the limit of the dynamic variable space.
13524 		 */
13525 		if (maxper == 0 || i == NCPU - 1) {
13526 			limit = (uintptr_t)base + size;
13527 			start = NULL;
13528 		} else {
13529 			limit = (uintptr_t)start + maxper;
13530 			start = (dtrace_dynvar_t *)limit;
13531 		}
13532 
13533 		VERIFY(limit <= (uintptr_t)base + size);
13534 
13535 		for (;;) {
13536 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13537 			    dstate->dtds_chunksize);
13538 
13539 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13540 				break;
13541 
13542 			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
13543 			    (uintptr_t)dvar <= (uintptr_t)base + size);
13544 			dvar->dtdv_next = next;
13545 			dvar = next;
13546 		}
13547 
13548 		if (maxper == 0)
13549 			break;
13550 	}
13551 
13552 	return (0);
13553 }
13554 
13555 void
13556 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13557 {
13558 	ASSERT(MUTEX_HELD(&cpu_lock));
13559 
13560 	if (dstate->dtds_base == NULL)
13561 		return;
13562 
13563 	kmem_free(dstate->dtds_base, dstate->dtds_size);
13564 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13565 }
13566 
13567 static void
13568 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13569 {
13570 	/*
13571 	 * Logical XOR, where are you?
13572 	 */
13573 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13574 
13575 	if (vstate->dtvs_nglobals > 0) {
13576 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13577 		    sizeof (dtrace_statvar_t *));
13578 	}
13579 
13580 	if (vstate->dtvs_ntlocals > 0) {
13581 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13582 		    sizeof (dtrace_difv_t));
13583 	}
13584 
13585 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13586 
13587 	if (vstate->dtvs_nlocals > 0) {
13588 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13589 		    sizeof (dtrace_statvar_t *));
13590 	}
13591 }
13592 
13593 static void
13594 dtrace_state_clean(dtrace_state_t *state)
13595 {
13596 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13597 		return;
13598 
13599 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13600 	dtrace_speculation_clean(state);
13601 }
13602 
13603 static void
13604 dtrace_state_deadman(dtrace_state_t *state)
13605 {
13606 	hrtime_t now;
13607 
13608 	dtrace_sync();
13609 
13610 	now = dtrace_gethrtime();
13611 
13612 	if (state != dtrace_anon.dta_state &&
13613 	    now - state->dts_laststatus >= dtrace_deadman_user)
13614 		return;
13615 
13616 	/*
13617 	 * We must be sure that dts_alive never appears to be less than the
13618 	 * value upon entry to dtrace_state_deadman(), and because we lack a
13619 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13620 	 * store INT64_MAX to it, followed by a memory barrier, followed by
13621 	 * the new value.  This assures that dts_alive never appears to be
13622 	 * less than its true value, regardless of the order in which the
13623 	 * stores to the underlying storage are issued.
13624 	 */
13625 	state->dts_alive = INT64_MAX;
13626 	dtrace_membar_producer();
13627 	state->dts_alive = now;
13628 }
13629 
13630 dtrace_state_t *
13631 dtrace_state_create(dev_t *devp, cred_t *cr)
13632 {
13633 	minor_t minor;
13634 	major_t major;
13635 	char c[30];
13636 	dtrace_state_t *state;
13637 	dtrace_optval_t *opt;
13638 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13639 
13640 	ASSERT(MUTEX_HELD(&dtrace_lock));
13641 	ASSERT(MUTEX_HELD(&cpu_lock));
13642 
13643 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13644 	    VM_BESTFIT | VM_SLEEP);
13645 
13646 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13647 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13648 		return (NULL);
13649 	}
13650 
13651 	state = ddi_get_soft_state(dtrace_softstate, minor);
13652 	state->dts_epid = DTRACE_EPIDNONE + 1;
13653 
13654 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
13655 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13656 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13657 
13658 	if (devp != NULL) {
13659 		major = getemajor(*devp);
13660 	} else {
13661 		major = ddi_driver_major(dtrace_devi);
13662 	}
13663 
13664 	state->dts_dev = makedevice(major, minor);
13665 
13666 	if (devp != NULL)
13667 		*devp = state->dts_dev;
13668 
13669 	/*
13670 	 * We allocate NCPU buffers.  On the one hand, this can be quite
13671 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13672 	 * other hand, it saves an additional memory reference in the probe
13673 	 * path.
13674 	 */
13675 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13676 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13677 	state->dts_cleaner = CYCLIC_NONE;
13678 	state->dts_deadman = CYCLIC_NONE;
13679 	state->dts_vstate.dtvs_state = state;
13680 
13681 	for (i = 0; i < DTRACEOPT_MAX; i++)
13682 		state->dts_options[i] = DTRACEOPT_UNSET;
13683 
13684 	/*
13685 	 * Set the default options.
13686 	 */
13687 	opt = state->dts_options;
13688 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13689 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13690 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13691 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13692 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13693 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13694 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13695 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13696 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13697 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13698 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13699 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13700 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13701 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13702 
13703 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13704 
13705 	/*
13706 	 * Depending on the user credentials, we set flag bits which alter probe
13707 	 * visibility or the amount of destructiveness allowed.  In the case of
13708 	 * actual anonymous tracing, or the possession of all privileges, all of
13709 	 * the normal checks are bypassed.
13710 	 */
13711 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13712 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13713 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13714 	} else {
13715 		/*
13716 		 * Set up the credentials for this instantiation.  We take a
13717 		 * hold on the credential to prevent it from disappearing on
13718 		 * us; this in turn prevents the zone_t referenced by this
13719 		 * credential from disappearing.  This means that we can
13720 		 * examine the credential and the zone from probe context.
13721 		 */
13722 		crhold(cr);
13723 		state->dts_cred.dcr_cred = cr;
13724 
13725 		/*
13726 		 * CRA_PROC means "we have *some* privilege for dtrace" and
13727 		 * unlocks the use of variables like pid, zonename, etc.
13728 		 */
13729 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13730 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13731 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13732 		}
13733 
13734 		/*
13735 		 * dtrace_user allows use of syscall and profile providers.
13736 		 * If the user also has proc_owner and/or proc_zone, we
13737 		 * extend the scope to include additional visibility and
13738 		 * destructive power.
13739 		 */
13740 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13741 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13742 				state->dts_cred.dcr_visible |=
13743 				    DTRACE_CRV_ALLPROC;
13744 
13745 				state->dts_cred.dcr_action |=
13746 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13747 			}
13748 
13749 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13750 				state->dts_cred.dcr_visible |=
13751 				    DTRACE_CRV_ALLZONE;
13752 
13753 				state->dts_cred.dcr_action |=
13754 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13755 			}
13756 
13757 			/*
13758 			 * If we have all privs in whatever zone this is,
13759 			 * we can do destructive things to processes which
13760 			 * have altered credentials.
13761 			 */
13762 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13763 			    cr->cr_zone->zone_privset)) {
13764 				state->dts_cred.dcr_action |=
13765 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13766 			}
13767 		}
13768 
13769 		/*
13770 		 * Holding the dtrace_kernel privilege also implies that
13771 		 * the user has the dtrace_user privilege from a visibility
13772 		 * perspective.  But without further privileges, some
13773 		 * destructive actions are not available.
13774 		 */
13775 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13776 			/*
13777 			 * Make all probes in all zones visible.  However,
13778 			 * this doesn't mean that all actions become available
13779 			 * to all zones.
13780 			 */
13781 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13782 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13783 
13784 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13785 			    DTRACE_CRA_PROC;
13786 			/*
13787 			 * Holding proc_owner means that destructive actions
13788 			 * for *this* zone are allowed.
13789 			 */
13790 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13791 				state->dts_cred.dcr_action |=
13792 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13793 
13794 			/*
13795 			 * Holding proc_zone means that destructive actions
13796 			 * for this user/group ID in all zones is allowed.
13797 			 */
13798 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13799 				state->dts_cred.dcr_action |=
13800 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13801 
13802 			/*
13803 			 * If we have all privs in whatever zone this is,
13804 			 * we can do destructive things to processes which
13805 			 * have altered credentials.
13806 			 */
13807 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13808 			    cr->cr_zone->zone_privset)) {
13809 				state->dts_cred.dcr_action |=
13810 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13811 			}
13812 		}
13813 
13814 		/*
13815 		 * Holding the dtrace_proc privilege gives control over fasttrap
13816 		 * and pid providers.  We need to grant wider destructive
13817 		 * privileges in the event that the user has proc_owner and/or
13818 		 * proc_zone.
13819 		 */
13820 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13821 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13822 				state->dts_cred.dcr_action |=
13823 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13824 
13825 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13826 				state->dts_cred.dcr_action |=
13827 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13828 		}
13829 	}
13830 
13831 	return (state);
13832 }
13833 
13834 static int
13835 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13836 {
13837 	dtrace_optval_t *opt = state->dts_options, size;
13838 	processorid_t cpu;
13839 	int flags = 0, rval, factor, divisor = 1;
13840 
13841 	ASSERT(MUTEX_HELD(&dtrace_lock));
13842 	ASSERT(MUTEX_HELD(&cpu_lock));
13843 	ASSERT(which < DTRACEOPT_MAX);
13844 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13845 	    (state == dtrace_anon.dta_state &&
13846 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13847 
13848 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13849 		return (0);
13850 
13851 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13852 		cpu = opt[DTRACEOPT_CPU];
13853 
13854 	if (which == DTRACEOPT_SPECSIZE)
13855 		flags |= DTRACEBUF_NOSWITCH;
13856 
13857 	if (which == DTRACEOPT_BUFSIZE) {
13858 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13859 			flags |= DTRACEBUF_RING;
13860 
13861 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13862 			flags |= DTRACEBUF_FILL;
13863 
13864 		if (state != dtrace_anon.dta_state ||
13865 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13866 			flags |= DTRACEBUF_INACTIVE;
13867 	}
13868 
13869 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13870 		/*
13871 		 * The size must be 8-byte aligned.  If the size is not 8-byte
13872 		 * aligned, drop it down by the difference.
13873 		 */
13874 		if (size & (sizeof (uint64_t) - 1))
13875 			size -= size & (sizeof (uint64_t) - 1);
13876 
13877 		if (size < state->dts_reserve) {
13878 			/*
13879 			 * Buffers always must be large enough to accommodate
13880 			 * their prereserved space.  We return E2BIG instead
13881 			 * of ENOMEM in this case to allow for user-level
13882 			 * software to differentiate the cases.
13883 			 */
13884 			return (E2BIG);
13885 		}
13886 
13887 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13888 
13889 		if (rval != ENOMEM) {
13890 			opt[which] = size;
13891 			return (rval);
13892 		}
13893 
13894 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13895 			return (rval);
13896 
13897 		for (divisor = 2; divisor < factor; divisor <<= 1)
13898 			continue;
13899 	}
13900 
13901 	return (ENOMEM);
13902 }
13903 
13904 static int
13905 dtrace_state_buffers(dtrace_state_t *state)
13906 {
13907 	dtrace_speculation_t *spec = state->dts_speculations;
13908 	int rval, i;
13909 
13910 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13911 	    DTRACEOPT_BUFSIZE)) != 0)
13912 		return (rval);
13913 
13914 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13915 	    DTRACEOPT_AGGSIZE)) != 0)
13916 		return (rval);
13917 
13918 	for (i = 0; i < state->dts_nspeculations; i++) {
13919 		if ((rval = dtrace_state_buffer(state,
13920 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13921 			return (rval);
13922 	}
13923 
13924 	return (0);
13925 }
13926 
13927 static void
13928 dtrace_state_prereserve(dtrace_state_t *state)
13929 {
13930 	dtrace_ecb_t *ecb;
13931 	dtrace_probe_t *probe;
13932 
13933 	state->dts_reserve = 0;
13934 
13935 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13936 		return;
13937 
13938 	/*
13939 	 * If our buffer policy is a "fill" buffer policy, we need to set the
13940 	 * prereserved space to be the space required by the END probes.
13941 	 */
13942 	probe = dtrace_probes[dtrace_probeid_end - 1];
13943 	ASSERT(probe != NULL);
13944 
13945 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13946 		if (ecb->dte_state != state)
13947 			continue;
13948 
13949 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13950 	}
13951 }
13952 
13953 static int
13954 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13955 {
13956 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13957 	dtrace_speculation_t *spec;
13958 	dtrace_buffer_t *buf;
13959 	cyc_handler_t hdlr;
13960 	cyc_time_t when;
13961 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13962 	dtrace_icookie_t cookie;
13963 
13964 	mutex_enter(&cpu_lock);
13965 	mutex_enter(&dtrace_lock);
13966 
13967 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13968 		rval = EBUSY;
13969 		goto out;
13970 	}
13971 
13972 	/*
13973 	 * Before we can perform any checks, we must prime all of the
13974 	 * retained enablings that correspond to this state.
13975 	 */
13976 	dtrace_enabling_prime(state);
13977 
13978 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13979 		rval = EACCES;
13980 		goto out;
13981 	}
13982 
13983 	dtrace_state_prereserve(state);
13984 
13985 	/*
13986 	 * Now we want to do is try to allocate our speculations.
13987 	 * We do not automatically resize the number of speculations; if
13988 	 * this fails, we will fail the operation.
13989 	 */
13990 	nspec = opt[DTRACEOPT_NSPEC];
13991 	ASSERT(nspec != DTRACEOPT_UNSET);
13992 
13993 	if (nspec > INT_MAX) {
13994 		rval = ENOMEM;
13995 		goto out;
13996 	}
13997 
13998 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13999 	    KM_NOSLEEP | KM_NORMALPRI);
14000 
14001 	if (spec == NULL) {
14002 		rval = ENOMEM;
14003 		goto out;
14004 	}
14005 
14006 	state->dts_speculations = spec;
14007 	state->dts_nspeculations = (int)nspec;
14008 
14009 	for (i = 0; i < nspec; i++) {
14010 		if ((buf = kmem_zalloc(bufsize,
14011 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14012 			rval = ENOMEM;
14013 			goto err;
14014 		}
14015 
14016 		spec[i].dtsp_buffer = buf;
14017 	}
14018 
14019 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14020 		if (dtrace_anon.dta_state == NULL) {
14021 			rval = ENOENT;
14022 			goto out;
14023 		}
14024 
14025 		if (state->dts_necbs != 0) {
14026 			rval = EALREADY;
14027 			goto out;
14028 		}
14029 
14030 		state->dts_anon = dtrace_anon_grab();
14031 		ASSERT(state->dts_anon != NULL);
14032 		state = state->dts_anon;
14033 
14034 		/*
14035 		 * We want "grabanon" to be set in the grabbed state, so we'll
14036 		 * copy that option value from the grabbing state into the
14037 		 * grabbed state.
14038 		 */
14039 		state->dts_options[DTRACEOPT_GRABANON] =
14040 		    opt[DTRACEOPT_GRABANON];
14041 
14042 		*cpu = dtrace_anon.dta_beganon;
14043 
14044 		/*
14045 		 * If the anonymous state is active (as it almost certainly
14046 		 * is if the anonymous enabling ultimately matched anything),
14047 		 * we don't allow any further option processing -- but we
14048 		 * don't return failure.
14049 		 */
14050 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14051 			goto out;
14052 	}
14053 
14054 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14055 	    opt[DTRACEOPT_AGGSIZE] != 0) {
14056 		if (state->dts_aggregations == NULL) {
14057 			/*
14058 			 * We're not going to create an aggregation buffer
14059 			 * because we don't have any ECBs that contain
14060 			 * aggregations -- set this option to 0.
14061 			 */
14062 			opt[DTRACEOPT_AGGSIZE] = 0;
14063 		} else {
14064 			/*
14065 			 * If we have an aggregation buffer, we must also have
14066 			 * a buffer to use as scratch.
14067 			 */
14068 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14069 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14070 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14071 			}
14072 		}
14073 	}
14074 
14075 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14076 	    opt[DTRACEOPT_SPECSIZE] != 0) {
14077 		if (!state->dts_speculates) {
14078 			/*
14079 			 * We're not going to create speculation buffers
14080 			 * because we don't have any ECBs that actually
14081 			 * speculate -- set the speculation size to 0.
14082 			 */
14083 			opt[DTRACEOPT_SPECSIZE] = 0;
14084 		}
14085 	}
14086 
14087 	/*
14088 	 * The bare minimum size for any buffer that we're actually going to
14089 	 * do anything to is sizeof (uint64_t).
14090 	 */
14091 	sz = sizeof (uint64_t);
14092 
14093 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14094 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14095 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14096 		/*
14097 		 * A buffer size has been explicitly set to 0 (or to a size
14098 		 * that will be adjusted to 0) and we need the space -- we
14099 		 * need to return failure.  We return ENOSPC to differentiate
14100 		 * it from failing to allocate a buffer due to failure to meet
14101 		 * the reserve (for which we return E2BIG).
14102 		 */
14103 		rval = ENOSPC;
14104 		goto out;
14105 	}
14106 
14107 	if ((rval = dtrace_state_buffers(state)) != 0)
14108 		goto err;
14109 
14110 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14111 		sz = dtrace_dstate_defsize;
14112 
14113 	do {
14114 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14115 
14116 		if (rval == 0)
14117 			break;
14118 
14119 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14120 			goto err;
14121 	} while (sz >>= 1);
14122 
14123 	opt[DTRACEOPT_DYNVARSIZE] = sz;
14124 
14125 	if (rval != 0)
14126 		goto err;
14127 
14128 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14129 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14130 
14131 	if (opt[DTRACEOPT_CLEANRATE] == 0)
14132 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14133 
14134 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14135 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14136 
14137 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14138 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14139 
14140 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14141 	hdlr.cyh_arg = state;
14142 	hdlr.cyh_level = CY_LOW_LEVEL;
14143 
14144 	when.cyt_when = 0;
14145 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14146 
14147 	state->dts_cleaner = cyclic_add(&hdlr, &when);
14148 
14149 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14150 	hdlr.cyh_arg = state;
14151 	hdlr.cyh_level = CY_LOW_LEVEL;
14152 
14153 	when.cyt_when = 0;
14154 	when.cyt_interval = dtrace_deadman_interval;
14155 
14156 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14157 	state->dts_deadman = cyclic_add(&hdlr, &when);
14158 
14159 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14160 
14161 	if (state->dts_getf != 0 &&
14162 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14163 		/*
14164 		 * We don't have kernel privs but we have at least one call
14165 		 * to getf(); we need to bump our zone's count, and (if
14166 		 * this is the first enabling to have an unprivileged call
14167 		 * to getf()) we need to hook into closef().
14168 		 */
14169 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14170 
14171 		if (dtrace_getf++ == 0) {
14172 			ASSERT(dtrace_closef == NULL);
14173 			dtrace_closef = dtrace_getf_barrier;
14174 		}
14175 	}
14176 
14177 	/*
14178 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
14179 	 * interrupts here both to record the CPU on which we fired the BEGIN
14180 	 * probe (the data from this CPU will be processed first at user
14181 	 * level) and to manually activate the buffer for this CPU.
14182 	 */
14183 	cookie = dtrace_interrupt_disable();
14184 	*cpu = CPU->cpu_id;
14185 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14186 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14187 
14188 	dtrace_probe(dtrace_probeid_begin,
14189 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14190 	dtrace_interrupt_enable(cookie);
14191 	/*
14192 	 * We may have had an exit action from a BEGIN probe; only change our
14193 	 * state to ACTIVE if we're still in WARMUP.
14194 	 */
14195 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14196 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14197 
14198 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14199 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14200 
14201 	/*
14202 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14203 	 * want each CPU to transition its principal buffer out of the
14204 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
14205 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14206 	 * atomically transition from processing none of a state's ECBs to
14207 	 * processing all of them.
14208 	 */
14209 	dtrace_xcall(DTRACE_CPUALL,
14210 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
14211 	goto out;
14212 
14213 err:
14214 	dtrace_buffer_free(state->dts_buffer);
14215 	dtrace_buffer_free(state->dts_aggbuffer);
14216 
14217 	if ((nspec = state->dts_nspeculations) == 0) {
14218 		ASSERT(state->dts_speculations == NULL);
14219 		goto out;
14220 	}
14221 
14222 	spec = state->dts_speculations;
14223 	ASSERT(spec != NULL);
14224 
14225 	for (i = 0; i < state->dts_nspeculations; i++) {
14226 		if ((buf = spec[i].dtsp_buffer) == NULL)
14227 			break;
14228 
14229 		dtrace_buffer_free(buf);
14230 		kmem_free(buf, bufsize);
14231 	}
14232 
14233 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14234 	state->dts_nspeculations = 0;
14235 	state->dts_speculations = NULL;
14236 
14237 out:
14238 	mutex_exit(&dtrace_lock);
14239 	mutex_exit(&cpu_lock);
14240 
14241 	return (rval);
14242 }
14243 
14244 static int
14245 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14246 {
14247 	dtrace_icookie_t cookie;
14248 
14249 	ASSERT(MUTEX_HELD(&dtrace_lock));
14250 
14251 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14252 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14253 		return (EINVAL);
14254 
14255 	/*
14256 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14257 	 * to be sure that every CPU has seen it.  See below for the details
14258 	 * on why this is done.
14259 	 */
14260 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14261 	dtrace_sync();
14262 
14263 	/*
14264 	 * By this point, it is impossible for any CPU to be still processing
14265 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
14266 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14267 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
14268 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14269 	 * iff we're in the END probe.
14270 	 */
14271 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14272 	dtrace_sync();
14273 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14274 
14275 	/*
14276 	 * Finally, we can release the reserve and call the END probe.  We
14277 	 * disable interrupts across calling the END probe to allow us to
14278 	 * return the CPU on which we actually called the END probe.  This
14279 	 * allows user-land to be sure that this CPU's principal buffer is
14280 	 * processed last.
14281 	 */
14282 	state->dts_reserve = 0;
14283 
14284 	cookie = dtrace_interrupt_disable();
14285 	*cpu = CPU->cpu_id;
14286 	dtrace_probe(dtrace_probeid_end,
14287 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14288 	dtrace_interrupt_enable(cookie);
14289 
14290 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14291 	dtrace_sync();
14292 
14293 	if (state->dts_getf != 0 &&
14294 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14295 		/*
14296 		 * We don't have kernel privs but we have at least one call
14297 		 * to getf(); we need to lower our zone's count, and (if
14298 		 * this is the last enabling to have an unprivileged call
14299 		 * to getf()) we need to clear the closef() hook.
14300 		 */
14301 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14302 		ASSERT(dtrace_closef == dtrace_getf_barrier);
14303 		ASSERT(dtrace_getf > 0);
14304 
14305 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14306 
14307 		if (--dtrace_getf == 0)
14308 			dtrace_closef = NULL;
14309 	}
14310 
14311 	return (0);
14312 }
14313 
14314 static int
14315 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14316     dtrace_optval_t val)
14317 {
14318 	ASSERT(MUTEX_HELD(&dtrace_lock));
14319 
14320 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14321 		return (EBUSY);
14322 
14323 	if (option >= DTRACEOPT_MAX)
14324 		return (EINVAL);
14325 
14326 	if (option != DTRACEOPT_CPU && val < 0)
14327 		return (EINVAL);
14328 
14329 	switch (option) {
14330 	case DTRACEOPT_DESTRUCTIVE:
14331 		if (dtrace_destructive_disallow)
14332 			return (EACCES);
14333 
14334 		state->dts_cred.dcr_destructive = 1;
14335 		break;
14336 
14337 	case DTRACEOPT_BUFSIZE:
14338 	case DTRACEOPT_DYNVARSIZE:
14339 	case DTRACEOPT_AGGSIZE:
14340 	case DTRACEOPT_SPECSIZE:
14341 	case DTRACEOPT_STRSIZE:
14342 		if (val < 0)
14343 			return (EINVAL);
14344 
14345 		if (val >= LONG_MAX) {
14346 			/*
14347 			 * If this is an otherwise negative value, set it to
14348 			 * the highest multiple of 128m less than LONG_MAX.
14349 			 * Technically, we're adjusting the size without
14350 			 * regard to the buffer resizing policy, but in fact,
14351 			 * this has no effect -- if we set the buffer size to
14352 			 * ~LONG_MAX and the buffer policy is ultimately set to
14353 			 * be "manual", the buffer allocation is guaranteed to
14354 			 * fail, if only because the allocation requires two
14355 			 * buffers.  (We set the the size to the highest
14356 			 * multiple of 128m because it ensures that the size
14357 			 * will remain a multiple of a megabyte when
14358 			 * repeatedly halved -- all the way down to 15m.)
14359 			 */
14360 			val = LONG_MAX - (1 << 27) + 1;
14361 		}
14362 	}
14363 
14364 	state->dts_options[option] = val;
14365 
14366 	return (0);
14367 }
14368 
14369 static void
14370 dtrace_state_destroy(dtrace_state_t *state)
14371 {
14372 	dtrace_ecb_t *ecb;
14373 	dtrace_vstate_t *vstate = &state->dts_vstate;
14374 	minor_t minor = getminor(state->dts_dev);
14375 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14376 	dtrace_speculation_t *spec = state->dts_speculations;
14377 	int nspec = state->dts_nspeculations;
14378 	uint32_t match;
14379 
14380 	ASSERT(MUTEX_HELD(&dtrace_lock));
14381 	ASSERT(MUTEX_HELD(&cpu_lock));
14382 
14383 	/*
14384 	 * First, retract any retained enablings for this state.
14385 	 */
14386 	dtrace_enabling_retract(state);
14387 	ASSERT(state->dts_nretained == 0);
14388 
14389 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14390 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14391 		/*
14392 		 * We have managed to come into dtrace_state_destroy() on a
14393 		 * hot enabling -- almost certainly because of a disorderly
14394 		 * shutdown of a consumer.  (That is, a consumer that is
14395 		 * exiting without having called dtrace_stop().) In this case,
14396 		 * we're going to set our activity to be KILLED, and then
14397 		 * issue a sync to be sure that everyone is out of probe
14398 		 * context before we start blowing away ECBs.
14399 		 */
14400 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
14401 		dtrace_sync();
14402 	}
14403 
14404 	/*
14405 	 * Release the credential hold we took in dtrace_state_create().
14406 	 */
14407 	if (state->dts_cred.dcr_cred != NULL)
14408 		crfree(state->dts_cred.dcr_cred);
14409 
14410 	/*
14411 	 * Now we can safely disable and destroy any enabled probes.  Because
14412 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14413 	 * (especially if they're all enabled), we take two passes through the
14414 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14415 	 * in the second we disable whatever is left over.
14416 	 */
14417 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14418 		for (i = 0; i < state->dts_necbs; i++) {
14419 			if ((ecb = state->dts_ecbs[i]) == NULL)
14420 				continue;
14421 
14422 			if (match && ecb->dte_probe != NULL) {
14423 				dtrace_probe_t *probe = ecb->dte_probe;
14424 				dtrace_provider_t *prov = probe->dtpr_provider;
14425 
14426 				if (!(prov->dtpv_priv.dtpp_flags & match))
14427 					continue;
14428 			}
14429 
14430 			dtrace_ecb_disable(ecb);
14431 			dtrace_ecb_destroy(ecb);
14432 		}
14433 
14434 		if (!match)
14435 			break;
14436 	}
14437 
14438 	/*
14439 	 * Before we free the buffers, perform one more sync to assure that
14440 	 * every CPU is out of probe context.
14441 	 */
14442 	dtrace_sync();
14443 
14444 	dtrace_buffer_free(state->dts_buffer);
14445 	dtrace_buffer_free(state->dts_aggbuffer);
14446 
14447 	for (i = 0; i < nspec; i++)
14448 		dtrace_buffer_free(spec[i].dtsp_buffer);
14449 
14450 	if (state->dts_cleaner != CYCLIC_NONE)
14451 		cyclic_remove(state->dts_cleaner);
14452 
14453 	if (state->dts_deadman != CYCLIC_NONE)
14454 		cyclic_remove(state->dts_deadman);
14455 
14456 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
14457 	dtrace_vstate_fini(vstate);
14458 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14459 
14460 	if (state->dts_aggregations != NULL) {
14461 #ifdef DEBUG
14462 		for (i = 0; i < state->dts_naggregations; i++)
14463 			ASSERT(state->dts_aggregations[i] == NULL);
14464 #endif
14465 		ASSERT(state->dts_naggregations > 0);
14466 		kmem_free(state->dts_aggregations,
14467 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14468 	}
14469 
14470 	kmem_free(state->dts_buffer, bufsize);
14471 	kmem_free(state->dts_aggbuffer, bufsize);
14472 
14473 	for (i = 0; i < nspec; i++)
14474 		kmem_free(spec[i].dtsp_buffer, bufsize);
14475 
14476 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14477 
14478 	dtrace_format_destroy(state);
14479 
14480 	vmem_destroy(state->dts_aggid_arena);
14481 	ddi_soft_state_free(dtrace_softstate, minor);
14482 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14483 }
14484 
14485 /*
14486  * DTrace Anonymous Enabling Functions
14487  */
14488 static dtrace_state_t *
14489 dtrace_anon_grab(void)
14490 {
14491 	dtrace_state_t *state;
14492 
14493 	ASSERT(MUTEX_HELD(&dtrace_lock));
14494 
14495 	if ((state = dtrace_anon.dta_state) == NULL) {
14496 		ASSERT(dtrace_anon.dta_enabling == NULL);
14497 		return (NULL);
14498 	}
14499 
14500 	ASSERT(dtrace_anon.dta_enabling != NULL);
14501 	ASSERT(dtrace_retained != NULL);
14502 
14503 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14504 	dtrace_anon.dta_enabling = NULL;
14505 	dtrace_anon.dta_state = NULL;
14506 
14507 	return (state);
14508 }
14509 
14510 static void
14511 dtrace_anon_property(void)
14512 {
14513 	int i, rv;
14514 	dtrace_state_t *state;
14515 	dof_hdr_t *dof;
14516 	char c[32];		/* enough for "dof-data-" + digits */
14517 
14518 	ASSERT(MUTEX_HELD(&dtrace_lock));
14519 	ASSERT(MUTEX_HELD(&cpu_lock));
14520 
14521 	for (i = 0; ; i++) {
14522 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
14523 
14524 		dtrace_err_verbose = 1;
14525 
14526 		if ((dof = dtrace_dof_property(c)) == NULL) {
14527 			dtrace_err_verbose = 0;
14528 			break;
14529 		}
14530 
14531 		/*
14532 		 * We want to create anonymous state, so we need to transition
14533 		 * the kernel debugger to indicate that DTrace is active.  If
14534 		 * this fails (e.g. because the debugger has modified text in
14535 		 * some way), we won't continue with the processing.
14536 		 */
14537 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14538 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14539 			    "enabling ignored.");
14540 			dtrace_dof_destroy(dof);
14541 			break;
14542 		}
14543 
14544 		/*
14545 		 * If we haven't allocated an anonymous state, we'll do so now.
14546 		 */
14547 		if ((state = dtrace_anon.dta_state) == NULL) {
14548 			state = dtrace_state_create(NULL, NULL);
14549 			dtrace_anon.dta_state = state;
14550 
14551 			if (state == NULL) {
14552 				/*
14553 				 * This basically shouldn't happen:  the only
14554 				 * failure mode from dtrace_state_create() is a
14555 				 * failure of ddi_soft_state_zalloc() that
14556 				 * itself should never happen.  Still, the
14557 				 * interface allows for a failure mode, and
14558 				 * we want to fail as gracefully as possible:
14559 				 * we'll emit an error message and cease
14560 				 * processing anonymous state in this case.
14561 				 */
14562 				cmn_err(CE_WARN, "failed to create "
14563 				    "anonymous state");
14564 				dtrace_dof_destroy(dof);
14565 				break;
14566 			}
14567 		}
14568 
14569 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14570 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
14571 
14572 		if (rv == 0)
14573 			rv = dtrace_dof_options(dof, state);
14574 
14575 		dtrace_err_verbose = 0;
14576 		dtrace_dof_destroy(dof);
14577 
14578 		if (rv != 0) {
14579 			/*
14580 			 * This is malformed DOF; chuck any anonymous state
14581 			 * that we created.
14582 			 */
14583 			ASSERT(dtrace_anon.dta_enabling == NULL);
14584 			dtrace_state_destroy(state);
14585 			dtrace_anon.dta_state = NULL;
14586 			break;
14587 		}
14588 
14589 		ASSERT(dtrace_anon.dta_enabling != NULL);
14590 	}
14591 
14592 	if (dtrace_anon.dta_enabling != NULL) {
14593 		int rval;
14594 
14595 		/*
14596 		 * dtrace_enabling_retain() can only fail because we are
14597 		 * trying to retain more enablings than are allowed -- but
14598 		 * we only have one anonymous enabling, and we are guaranteed
14599 		 * to be allowed at least one retained enabling; we assert
14600 		 * that dtrace_enabling_retain() returns success.
14601 		 */
14602 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14603 		ASSERT(rval == 0);
14604 
14605 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
14606 	}
14607 }
14608 
14609 /*
14610  * DTrace Helper Functions
14611  */
14612 static void
14613 dtrace_helper_trace(dtrace_helper_action_t *helper,
14614     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14615 {
14616 	uint32_t size, next, nnext, i;
14617 	dtrace_helptrace_t *ent, *buffer;
14618 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14619 
14620 	if ((buffer = dtrace_helptrace_buffer) == NULL)
14621 		return;
14622 
14623 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14624 
14625 	/*
14626 	 * What would a tracing framework be without its own tracing
14627 	 * framework?  (Well, a hell of a lot simpler, for starters...)
14628 	 */
14629 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14630 	    sizeof (uint64_t) - sizeof (uint64_t);
14631 
14632 	/*
14633 	 * Iterate until we can allocate a slot in the trace buffer.
14634 	 */
14635 	do {
14636 		next = dtrace_helptrace_next;
14637 
14638 		if (next + size < dtrace_helptrace_bufsize) {
14639 			nnext = next + size;
14640 		} else {
14641 			nnext = size;
14642 		}
14643 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14644 
14645 	/*
14646 	 * We have our slot; fill it in.
14647 	 */
14648 	if (nnext == size) {
14649 		dtrace_helptrace_wrapped++;
14650 		next = 0;
14651 	}
14652 
14653 	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
14654 	ent->dtht_helper = helper;
14655 	ent->dtht_where = where;
14656 	ent->dtht_nlocals = vstate->dtvs_nlocals;
14657 
14658 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14659 	    mstate->dtms_fltoffs : -1;
14660 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14661 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
14662 
14663 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14664 		dtrace_statvar_t *svar;
14665 
14666 		if ((svar = vstate->dtvs_locals[i]) == NULL)
14667 			continue;
14668 
14669 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14670 		ent->dtht_locals[i] =
14671 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14672 	}
14673 }
14674 
14675 static uint64_t
14676 dtrace_helper(int which, dtrace_mstate_t *mstate,
14677     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14678 {
14679 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14680 	uint64_t sarg0 = mstate->dtms_arg[0];
14681 	uint64_t sarg1 = mstate->dtms_arg[1];
14682 	uint64_t rval;
14683 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14684 	dtrace_helper_action_t *helper;
14685 	dtrace_vstate_t *vstate;
14686 	dtrace_difo_t *pred;
14687 	int i, trace = dtrace_helptrace_buffer != NULL;
14688 
14689 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14690 
14691 	if (helpers == NULL)
14692 		return (0);
14693 
14694 	if ((helper = helpers->dthps_actions[which]) == NULL)
14695 		return (0);
14696 
14697 	vstate = &helpers->dthps_vstate;
14698 	mstate->dtms_arg[0] = arg0;
14699 	mstate->dtms_arg[1] = arg1;
14700 
14701 	/*
14702 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14703 	 * we'll call the corresponding actions.  Note that the below calls
14704 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14705 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14706 	 * the stored DIF offset with its own (which is the desired behavior).
14707 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14708 	 * from machine state; this is okay, too.
14709 	 */
14710 	for (; helper != NULL; helper = helper->dtha_next) {
14711 		if ((pred = helper->dtha_predicate) != NULL) {
14712 			if (trace)
14713 				dtrace_helper_trace(helper, mstate, vstate, 0);
14714 
14715 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14716 				goto next;
14717 
14718 			if (*flags & CPU_DTRACE_FAULT)
14719 				goto err;
14720 		}
14721 
14722 		for (i = 0; i < helper->dtha_nactions; i++) {
14723 			if (trace)
14724 				dtrace_helper_trace(helper,
14725 				    mstate, vstate, i + 1);
14726 
14727 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14728 			    mstate, vstate, state);
14729 
14730 			if (*flags & CPU_DTRACE_FAULT)
14731 				goto err;
14732 		}
14733 
14734 next:
14735 		if (trace)
14736 			dtrace_helper_trace(helper, mstate, vstate,
14737 			    DTRACE_HELPTRACE_NEXT);
14738 	}
14739 
14740 	if (trace)
14741 		dtrace_helper_trace(helper, mstate, vstate,
14742 		    DTRACE_HELPTRACE_DONE);
14743 
14744 	/*
14745 	 * Restore the arg0 that we saved upon entry.
14746 	 */
14747 	mstate->dtms_arg[0] = sarg0;
14748 	mstate->dtms_arg[1] = sarg1;
14749 
14750 	return (rval);
14751 
14752 err:
14753 	if (trace)
14754 		dtrace_helper_trace(helper, mstate, vstate,
14755 		    DTRACE_HELPTRACE_ERR);
14756 
14757 	/*
14758 	 * Restore the arg0 that we saved upon entry.
14759 	 */
14760 	mstate->dtms_arg[0] = sarg0;
14761 	mstate->dtms_arg[1] = sarg1;
14762 
14763 	return (NULL);
14764 }
14765 
14766 static void
14767 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14768     dtrace_vstate_t *vstate)
14769 {
14770 	int i;
14771 
14772 	if (helper->dtha_predicate != NULL)
14773 		dtrace_difo_release(helper->dtha_predicate, vstate);
14774 
14775 	for (i = 0; i < helper->dtha_nactions; i++) {
14776 		ASSERT(helper->dtha_actions[i] != NULL);
14777 		dtrace_difo_release(helper->dtha_actions[i], vstate);
14778 	}
14779 
14780 	kmem_free(helper->dtha_actions,
14781 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14782 	kmem_free(helper, sizeof (dtrace_helper_action_t));
14783 }
14784 
14785 static int
14786 dtrace_helper_destroygen(int gen)
14787 {
14788 	proc_t *p = curproc;
14789 	dtrace_helpers_t *help = p->p_dtrace_helpers;
14790 	dtrace_vstate_t *vstate;
14791 	int i;
14792 
14793 	ASSERT(MUTEX_HELD(&dtrace_lock));
14794 
14795 	if (help == NULL || gen > help->dthps_generation)
14796 		return (EINVAL);
14797 
14798 	vstate = &help->dthps_vstate;
14799 
14800 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14801 		dtrace_helper_action_t *last = NULL, *h, *next;
14802 
14803 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14804 			next = h->dtha_next;
14805 
14806 			if (h->dtha_generation == gen) {
14807 				if (last != NULL) {
14808 					last->dtha_next = next;
14809 				} else {
14810 					help->dthps_actions[i] = next;
14811 				}
14812 
14813 				dtrace_helper_action_destroy(h, vstate);
14814 			} else {
14815 				last = h;
14816 			}
14817 		}
14818 	}
14819 
14820 	/*
14821 	 * Interate until we've cleared out all helper providers with the
14822 	 * given generation number.
14823 	 */
14824 	for (;;) {
14825 		dtrace_helper_provider_t *prov;
14826 
14827 		/*
14828 		 * Look for a helper provider with the right generation. We
14829 		 * have to start back at the beginning of the list each time
14830 		 * because we drop dtrace_lock. It's unlikely that we'll make
14831 		 * more than two passes.
14832 		 */
14833 		for (i = 0; i < help->dthps_nprovs; i++) {
14834 			prov = help->dthps_provs[i];
14835 
14836 			if (prov->dthp_generation == gen)
14837 				break;
14838 		}
14839 
14840 		/*
14841 		 * If there were no matches, we're done.
14842 		 */
14843 		if (i == help->dthps_nprovs)
14844 			break;
14845 
14846 		/*
14847 		 * Move the last helper provider into this slot.
14848 		 */
14849 		help->dthps_nprovs--;
14850 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14851 		help->dthps_provs[help->dthps_nprovs] = NULL;
14852 
14853 		mutex_exit(&dtrace_lock);
14854 
14855 		/*
14856 		 * If we have a meta provider, remove this helper provider.
14857 		 */
14858 		mutex_enter(&dtrace_meta_lock);
14859 		if (dtrace_meta_pid != NULL) {
14860 			ASSERT(dtrace_deferred_pid == NULL);
14861 			dtrace_helper_provider_remove(&prov->dthp_prov,
14862 			    p->p_pid);
14863 		}
14864 		mutex_exit(&dtrace_meta_lock);
14865 
14866 		dtrace_helper_provider_destroy(prov);
14867 
14868 		mutex_enter(&dtrace_lock);
14869 	}
14870 
14871 	return (0);
14872 }
14873 
14874 static int
14875 dtrace_helper_validate(dtrace_helper_action_t *helper)
14876 {
14877 	int err = 0, i;
14878 	dtrace_difo_t *dp;
14879 
14880 	if ((dp = helper->dtha_predicate) != NULL)
14881 		err += dtrace_difo_validate_helper(dp);
14882 
14883 	for (i = 0; i < helper->dtha_nactions; i++)
14884 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14885 
14886 	return (err == 0);
14887 }
14888 
14889 static int
14890 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14891 {
14892 	dtrace_helpers_t *help;
14893 	dtrace_helper_action_t *helper, *last;
14894 	dtrace_actdesc_t *act;
14895 	dtrace_vstate_t *vstate;
14896 	dtrace_predicate_t *pred;
14897 	int count = 0, nactions = 0, i;
14898 
14899 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14900 		return (EINVAL);
14901 
14902 	help = curproc->p_dtrace_helpers;
14903 	last = help->dthps_actions[which];
14904 	vstate = &help->dthps_vstate;
14905 
14906 	for (count = 0; last != NULL; last = last->dtha_next) {
14907 		count++;
14908 		if (last->dtha_next == NULL)
14909 			break;
14910 	}
14911 
14912 	/*
14913 	 * If we already have dtrace_helper_actions_max helper actions for this
14914 	 * helper action type, we'll refuse to add a new one.
14915 	 */
14916 	if (count >= dtrace_helper_actions_max)
14917 		return (ENOSPC);
14918 
14919 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14920 	helper->dtha_generation = help->dthps_generation;
14921 
14922 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14923 		ASSERT(pred->dtp_difo != NULL);
14924 		dtrace_difo_hold(pred->dtp_difo);
14925 		helper->dtha_predicate = pred->dtp_difo;
14926 	}
14927 
14928 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14929 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14930 			goto err;
14931 
14932 		if (act->dtad_difo == NULL)
14933 			goto err;
14934 
14935 		nactions++;
14936 	}
14937 
14938 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14939 	    (helper->dtha_nactions = nactions), KM_SLEEP);
14940 
14941 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14942 		dtrace_difo_hold(act->dtad_difo);
14943 		helper->dtha_actions[i++] = act->dtad_difo;
14944 	}
14945 
14946 	if (!dtrace_helper_validate(helper))
14947 		goto err;
14948 
14949 	if (last == NULL) {
14950 		help->dthps_actions[which] = helper;
14951 	} else {
14952 		last->dtha_next = helper;
14953 	}
14954 
14955 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14956 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14957 		dtrace_helptrace_next = 0;
14958 	}
14959 
14960 	return (0);
14961 err:
14962 	dtrace_helper_action_destroy(helper, vstate);
14963 	return (EINVAL);
14964 }
14965 
14966 static void
14967 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14968     dof_helper_t *dofhp)
14969 {
14970 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14971 
14972 	mutex_enter(&dtrace_meta_lock);
14973 	mutex_enter(&dtrace_lock);
14974 
14975 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14976 		/*
14977 		 * If the dtrace module is loaded but not attached, or if
14978 		 * there aren't isn't a meta provider registered to deal with
14979 		 * these provider descriptions, we need to postpone creating
14980 		 * the actual providers until later.
14981 		 */
14982 
14983 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14984 		    dtrace_deferred_pid != help) {
14985 			help->dthps_deferred = 1;
14986 			help->dthps_pid = p->p_pid;
14987 			help->dthps_next = dtrace_deferred_pid;
14988 			help->dthps_prev = NULL;
14989 			if (dtrace_deferred_pid != NULL)
14990 				dtrace_deferred_pid->dthps_prev = help;
14991 			dtrace_deferred_pid = help;
14992 		}
14993 
14994 		mutex_exit(&dtrace_lock);
14995 
14996 	} else if (dofhp != NULL) {
14997 		/*
14998 		 * If the dtrace module is loaded and we have a particular
14999 		 * helper provider description, pass that off to the
15000 		 * meta provider.
15001 		 */
15002 
15003 		mutex_exit(&dtrace_lock);
15004 
15005 		dtrace_helper_provide(dofhp, p->p_pid);
15006 
15007 	} else {
15008 		/*
15009 		 * Otherwise, just pass all the helper provider descriptions
15010 		 * off to the meta provider.
15011 		 */
15012 
15013 		int i;
15014 		mutex_exit(&dtrace_lock);
15015 
15016 		for (i = 0; i < help->dthps_nprovs; i++) {
15017 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15018 			    p->p_pid);
15019 		}
15020 	}
15021 
15022 	mutex_exit(&dtrace_meta_lock);
15023 }
15024 
15025 static int
15026 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
15027 {
15028 	dtrace_helpers_t *help;
15029 	dtrace_helper_provider_t *hprov, **tmp_provs;
15030 	uint_t tmp_maxprovs, i;
15031 
15032 	ASSERT(MUTEX_HELD(&dtrace_lock));
15033 
15034 	help = curproc->p_dtrace_helpers;
15035 	ASSERT(help != NULL);
15036 
15037 	/*
15038 	 * If we already have dtrace_helper_providers_max helper providers,
15039 	 * we're refuse to add a new one.
15040 	 */
15041 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
15042 		return (ENOSPC);
15043 
15044 	/*
15045 	 * Check to make sure this isn't a duplicate.
15046 	 */
15047 	for (i = 0; i < help->dthps_nprovs; i++) {
15048 		if (dofhp->dofhp_addr ==
15049 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
15050 			return (EALREADY);
15051 	}
15052 
15053 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15054 	hprov->dthp_prov = *dofhp;
15055 	hprov->dthp_ref = 1;
15056 	hprov->dthp_generation = gen;
15057 
15058 	/*
15059 	 * Allocate a bigger table for helper providers if it's already full.
15060 	 */
15061 	if (help->dthps_maxprovs == help->dthps_nprovs) {
15062 		tmp_maxprovs = help->dthps_maxprovs;
15063 		tmp_provs = help->dthps_provs;
15064 
15065 		if (help->dthps_maxprovs == 0)
15066 			help->dthps_maxprovs = 2;
15067 		else
15068 			help->dthps_maxprovs *= 2;
15069 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
15070 			help->dthps_maxprovs = dtrace_helper_providers_max;
15071 
15072 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15073 
15074 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15075 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15076 
15077 		if (tmp_provs != NULL) {
15078 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15079 			    sizeof (dtrace_helper_provider_t *));
15080 			kmem_free(tmp_provs, tmp_maxprovs *
15081 			    sizeof (dtrace_helper_provider_t *));
15082 		}
15083 	}
15084 
15085 	help->dthps_provs[help->dthps_nprovs] = hprov;
15086 	help->dthps_nprovs++;
15087 
15088 	return (0);
15089 }
15090 
15091 static void
15092 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15093 {
15094 	mutex_enter(&dtrace_lock);
15095 
15096 	if (--hprov->dthp_ref == 0) {
15097 		dof_hdr_t *dof;
15098 		mutex_exit(&dtrace_lock);
15099 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15100 		dtrace_dof_destroy(dof);
15101 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15102 	} else {
15103 		mutex_exit(&dtrace_lock);
15104 	}
15105 }
15106 
15107 static int
15108 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15109 {
15110 	uintptr_t daddr = (uintptr_t)dof;
15111 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15112 	dof_provider_t *provider;
15113 	dof_probe_t *probe;
15114 	uint8_t *arg;
15115 	char *strtab, *typestr;
15116 	dof_stridx_t typeidx;
15117 	size_t typesz;
15118 	uint_t nprobes, j, k;
15119 
15120 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15121 
15122 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15123 		dtrace_dof_error(dof, "misaligned section offset");
15124 		return (-1);
15125 	}
15126 
15127 	/*
15128 	 * The section needs to be large enough to contain the DOF provider
15129 	 * structure appropriate for the given version.
15130 	 */
15131 	if (sec->dofs_size <
15132 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15133 	    offsetof(dof_provider_t, dofpv_prenoffs) :
15134 	    sizeof (dof_provider_t))) {
15135 		dtrace_dof_error(dof, "provider section too small");
15136 		return (-1);
15137 	}
15138 
15139 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15140 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15141 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15142 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15143 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15144 
15145 	if (str_sec == NULL || prb_sec == NULL ||
15146 	    arg_sec == NULL || off_sec == NULL)
15147 		return (-1);
15148 
15149 	enoff_sec = NULL;
15150 
15151 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15152 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
15153 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15154 	    provider->dofpv_prenoffs)) == NULL)
15155 		return (-1);
15156 
15157 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15158 
15159 	if (provider->dofpv_name >= str_sec->dofs_size ||
15160 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15161 		dtrace_dof_error(dof, "invalid provider name");
15162 		return (-1);
15163 	}
15164 
15165 	if (prb_sec->dofs_entsize == 0 ||
15166 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
15167 		dtrace_dof_error(dof, "invalid entry size");
15168 		return (-1);
15169 	}
15170 
15171 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15172 		dtrace_dof_error(dof, "misaligned entry size");
15173 		return (-1);
15174 	}
15175 
15176 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15177 		dtrace_dof_error(dof, "invalid entry size");
15178 		return (-1);
15179 	}
15180 
15181 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15182 		dtrace_dof_error(dof, "misaligned section offset");
15183 		return (-1);
15184 	}
15185 
15186 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15187 		dtrace_dof_error(dof, "invalid entry size");
15188 		return (-1);
15189 	}
15190 
15191 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15192 
15193 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15194 
15195 	/*
15196 	 * Take a pass through the probes to check for errors.
15197 	 */
15198 	for (j = 0; j < nprobes; j++) {
15199 		probe = (dof_probe_t *)(uintptr_t)(daddr +
15200 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15201 
15202 		if (probe->dofpr_func >= str_sec->dofs_size) {
15203 			dtrace_dof_error(dof, "invalid function name");
15204 			return (-1);
15205 		}
15206 
15207 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15208 			dtrace_dof_error(dof, "function name too long");
15209 			return (-1);
15210 		}
15211 
15212 		if (probe->dofpr_name >= str_sec->dofs_size ||
15213 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15214 			dtrace_dof_error(dof, "invalid probe name");
15215 			return (-1);
15216 		}
15217 
15218 		/*
15219 		 * The offset count must not wrap the index, and the offsets
15220 		 * must also not overflow the section's data.
15221 		 */
15222 		if (probe->dofpr_offidx + probe->dofpr_noffs <
15223 		    probe->dofpr_offidx ||
15224 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
15225 		    off_sec->dofs_entsize > off_sec->dofs_size) {
15226 			dtrace_dof_error(dof, "invalid probe offset");
15227 			return (-1);
15228 		}
15229 
15230 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15231 			/*
15232 			 * If there's no is-enabled offset section, make sure
15233 			 * there aren't any is-enabled offsets. Otherwise
15234 			 * perform the same checks as for probe offsets
15235 			 * (immediately above).
15236 			 */
15237 			if (enoff_sec == NULL) {
15238 				if (probe->dofpr_enoffidx != 0 ||
15239 				    probe->dofpr_nenoffs != 0) {
15240 					dtrace_dof_error(dof, "is-enabled "
15241 					    "offsets with null section");
15242 					return (-1);
15243 				}
15244 			} else if (probe->dofpr_enoffidx +
15245 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15246 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15247 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15248 				dtrace_dof_error(dof, "invalid is-enabled "
15249 				    "offset");
15250 				return (-1);
15251 			}
15252 
15253 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15254 				dtrace_dof_error(dof, "zero probe and "
15255 				    "is-enabled offsets");
15256 				return (-1);
15257 			}
15258 		} else if (probe->dofpr_noffs == 0) {
15259 			dtrace_dof_error(dof, "zero probe offsets");
15260 			return (-1);
15261 		}
15262 
15263 		if (probe->dofpr_argidx + probe->dofpr_xargc <
15264 		    probe->dofpr_argidx ||
15265 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
15266 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
15267 			dtrace_dof_error(dof, "invalid args");
15268 			return (-1);
15269 		}
15270 
15271 		typeidx = probe->dofpr_nargv;
15272 		typestr = strtab + probe->dofpr_nargv;
15273 		for (k = 0; k < probe->dofpr_nargc; k++) {
15274 			if (typeidx >= str_sec->dofs_size) {
15275 				dtrace_dof_error(dof, "bad "
15276 				    "native argument type");
15277 				return (-1);
15278 			}
15279 
15280 			typesz = strlen(typestr) + 1;
15281 			if (typesz > DTRACE_ARGTYPELEN) {
15282 				dtrace_dof_error(dof, "native "
15283 				    "argument type too long");
15284 				return (-1);
15285 			}
15286 			typeidx += typesz;
15287 			typestr += typesz;
15288 		}
15289 
15290 		typeidx = probe->dofpr_xargv;
15291 		typestr = strtab + probe->dofpr_xargv;
15292 		for (k = 0; k < probe->dofpr_xargc; k++) {
15293 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15294 				dtrace_dof_error(dof, "bad "
15295 				    "native argument index");
15296 				return (-1);
15297 			}
15298 
15299 			if (typeidx >= str_sec->dofs_size) {
15300 				dtrace_dof_error(dof, "bad "
15301 				    "translated argument type");
15302 				return (-1);
15303 			}
15304 
15305 			typesz = strlen(typestr) + 1;
15306 			if (typesz > DTRACE_ARGTYPELEN) {
15307 				dtrace_dof_error(dof, "translated argument "
15308 				    "type too long");
15309 				return (-1);
15310 			}
15311 
15312 			typeidx += typesz;
15313 			typestr += typesz;
15314 		}
15315 	}
15316 
15317 	return (0);
15318 }
15319 
15320 static int
15321 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15322 {
15323 	dtrace_helpers_t *help;
15324 	dtrace_vstate_t *vstate;
15325 	dtrace_enabling_t *enab = NULL;
15326 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15327 	uintptr_t daddr = (uintptr_t)dof;
15328 
15329 	ASSERT(MUTEX_HELD(&dtrace_lock));
15330 
15331 	if ((help = curproc->p_dtrace_helpers) == NULL)
15332 		help = dtrace_helpers_create(curproc);
15333 
15334 	vstate = &help->dthps_vstate;
15335 
15336 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15337 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15338 		dtrace_dof_destroy(dof);
15339 		return (rv);
15340 	}
15341 
15342 	/*
15343 	 * Look for helper providers and validate their descriptions.
15344 	 */
15345 	if (dhp != NULL) {
15346 		for (i = 0; i < dof->dofh_secnum; i++) {
15347 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15348 			    dof->dofh_secoff + i * dof->dofh_secsize);
15349 
15350 			if (sec->dofs_type != DOF_SECT_PROVIDER)
15351 				continue;
15352 
15353 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
15354 				dtrace_enabling_destroy(enab);
15355 				dtrace_dof_destroy(dof);
15356 				return (-1);
15357 			}
15358 
15359 			nprovs++;
15360 		}
15361 	}
15362 
15363 	/*
15364 	 * Now we need to walk through the ECB descriptions in the enabling.
15365 	 */
15366 	for (i = 0; i < enab->dten_ndesc; i++) {
15367 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15368 		dtrace_probedesc_t *desc = &ep->dted_probe;
15369 
15370 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15371 			continue;
15372 
15373 		if (strcmp(desc->dtpd_mod, "helper") != 0)
15374 			continue;
15375 
15376 		if (strcmp(desc->dtpd_func, "ustack") != 0)
15377 			continue;
15378 
15379 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15380 		    ep)) != 0) {
15381 			/*
15382 			 * Adding this helper action failed -- we are now going
15383 			 * to rip out the entire generation and return failure.
15384 			 */
15385 			(void) dtrace_helper_destroygen(help->dthps_generation);
15386 			dtrace_enabling_destroy(enab);
15387 			dtrace_dof_destroy(dof);
15388 			return (-1);
15389 		}
15390 
15391 		nhelpers++;
15392 	}
15393 
15394 	if (nhelpers < enab->dten_ndesc)
15395 		dtrace_dof_error(dof, "unmatched helpers");
15396 
15397 	gen = help->dthps_generation++;
15398 	dtrace_enabling_destroy(enab);
15399 
15400 	if (dhp != NULL && nprovs > 0) {
15401 		/*
15402 		 * Now that this is in-kernel, we change the sense of the
15403 		 * members:  dofhp_dof denotes the in-kernel copy of the DOF
15404 		 * and dofhp_addr denotes the address at user-level.
15405 		 */
15406 		dhp->dofhp_addr = dhp->dofhp_dof;
15407 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15408 
15409 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
15410 			mutex_exit(&dtrace_lock);
15411 			dtrace_helper_provider_register(curproc, help, dhp);
15412 			mutex_enter(&dtrace_lock);
15413 
15414 			destroy = 0;
15415 		}
15416 	}
15417 
15418 	if (destroy)
15419 		dtrace_dof_destroy(dof);
15420 
15421 	return (gen);
15422 }
15423 
15424 static dtrace_helpers_t *
15425 dtrace_helpers_create(proc_t *p)
15426 {
15427 	dtrace_helpers_t *help;
15428 
15429 	ASSERT(MUTEX_HELD(&dtrace_lock));
15430 	ASSERT(p->p_dtrace_helpers == NULL);
15431 
15432 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15433 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15434 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15435 
15436 	p->p_dtrace_helpers = help;
15437 	dtrace_helpers++;
15438 
15439 	return (help);
15440 }
15441 
15442 static void
15443 dtrace_helpers_destroy(proc_t *p)
15444 {
15445 	dtrace_helpers_t *help;
15446 	dtrace_vstate_t *vstate;
15447 	int i;
15448 
15449 	mutex_enter(&dtrace_lock);
15450 
15451 	ASSERT(p->p_dtrace_helpers != NULL);
15452 	ASSERT(dtrace_helpers > 0);
15453 
15454 	help = p->p_dtrace_helpers;
15455 	vstate = &help->dthps_vstate;
15456 
15457 	/*
15458 	 * We're now going to lose the help from this process.
15459 	 */
15460 	p->p_dtrace_helpers = NULL;
15461 	if (p == curproc) {
15462 		dtrace_sync();
15463 	} else {
15464 		/*
15465 		 * It is sometimes necessary to clean up dtrace helpers from a
15466 		 * an incomplete child process as part of a failed fork
15467 		 * operation.  In such situations, a dtrace_sync() call should
15468 		 * be unnecessary as the process should be devoid of threads,
15469 		 * much less any in probe context.
15470 		 */
15471 		VERIFY(p->p_stat == SIDL);
15472 	}
15473 
15474 	/*
15475 	 * Destroy the helper actions.
15476 	 */
15477 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15478 		dtrace_helper_action_t *h, *next;
15479 
15480 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15481 			next = h->dtha_next;
15482 			dtrace_helper_action_destroy(h, vstate);
15483 			h = next;
15484 		}
15485 	}
15486 
15487 	mutex_exit(&dtrace_lock);
15488 
15489 	/*
15490 	 * Destroy the helper providers.
15491 	 */
15492 	if (help->dthps_maxprovs > 0) {
15493 		mutex_enter(&dtrace_meta_lock);
15494 		if (dtrace_meta_pid != NULL) {
15495 			ASSERT(dtrace_deferred_pid == NULL);
15496 
15497 			for (i = 0; i < help->dthps_nprovs; i++) {
15498 				dtrace_helper_provider_remove(
15499 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
15500 			}
15501 		} else {
15502 			mutex_enter(&dtrace_lock);
15503 			ASSERT(help->dthps_deferred == 0 ||
15504 			    help->dthps_next != NULL ||
15505 			    help->dthps_prev != NULL ||
15506 			    help == dtrace_deferred_pid);
15507 
15508 			/*
15509 			 * Remove the helper from the deferred list.
15510 			 */
15511 			if (help->dthps_next != NULL)
15512 				help->dthps_next->dthps_prev = help->dthps_prev;
15513 			if (help->dthps_prev != NULL)
15514 				help->dthps_prev->dthps_next = help->dthps_next;
15515 			if (dtrace_deferred_pid == help) {
15516 				dtrace_deferred_pid = help->dthps_next;
15517 				ASSERT(help->dthps_prev == NULL);
15518 			}
15519 
15520 			mutex_exit(&dtrace_lock);
15521 		}
15522 
15523 		mutex_exit(&dtrace_meta_lock);
15524 
15525 		for (i = 0; i < help->dthps_nprovs; i++) {
15526 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
15527 		}
15528 
15529 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
15530 		    sizeof (dtrace_helper_provider_t *));
15531 	}
15532 
15533 	mutex_enter(&dtrace_lock);
15534 
15535 	dtrace_vstate_fini(&help->dthps_vstate);
15536 	kmem_free(help->dthps_actions,
15537 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15538 	kmem_free(help, sizeof (dtrace_helpers_t));
15539 
15540 	--dtrace_helpers;
15541 	mutex_exit(&dtrace_lock);
15542 }
15543 
15544 static void
15545 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15546 {
15547 	dtrace_helpers_t *help, *newhelp;
15548 	dtrace_helper_action_t *helper, *new, *last;
15549 	dtrace_difo_t *dp;
15550 	dtrace_vstate_t *vstate;
15551 	int i, j, sz, hasprovs = 0;
15552 
15553 	mutex_enter(&dtrace_lock);
15554 	ASSERT(from->p_dtrace_helpers != NULL);
15555 	ASSERT(dtrace_helpers > 0);
15556 
15557 	help = from->p_dtrace_helpers;
15558 	newhelp = dtrace_helpers_create(to);
15559 	ASSERT(to->p_dtrace_helpers != NULL);
15560 
15561 	newhelp->dthps_generation = help->dthps_generation;
15562 	vstate = &newhelp->dthps_vstate;
15563 
15564 	/*
15565 	 * Duplicate the helper actions.
15566 	 */
15567 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15568 		if ((helper = help->dthps_actions[i]) == NULL)
15569 			continue;
15570 
15571 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15572 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15573 			    KM_SLEEP);
15574 			new->dtha_generation = helper->dtha_generation;
15575 
15576 			if ((dp = helper->dtha_predicate) != NULL) {
15577 				dp = dtrace_difo_duplicate(dp, vstate);
15578 				new->dtha_predicate = dp;
15579 			}
15580 
15581 			new->dtha_nactions = helper->dtha_nactions;
15582 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15583 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15584 
15585 			for (j = 0; j < new->dtha_nactions; j++) {
15586 				dtrace_difo_t *dp = helper->dtha_actions[j];
15587 
15588 				ASSERT(dp != NULL);
15589 				dp = dtrace_difo_duplicate(dp, vstate);
15590 				new->dtha_actions[j] = dp;
15591 			}
15592 
15593 			if (last != NULL) {
15594 				last->dtha_next = new;
15595 			} else {
15596 				newhelp->dthps_actions[i] = new;
15597 			}
15598 
15599 			last = new;
15600 		}
15601 	}
15602 
15603 	/*
15604 	 * Duplicate the helper providers and register them with the
15605 	 * DTrace framework.
15606 	 */
15607 	if (help->dthps_nprovs > 0) {
15608 		newhelp->dthps_nprovs = help->dthps_nprovs;
15609 		newhelp->dthps_maxprovs = help->dthps_nprovs;
15610 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15611 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15612 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
15613 			newhelp->dthps_provs[i] = help->dthps_provs[i];
15614 			newhelp->dthps_provs[i]->dthp_ref++;
15615 		}
15616 
15617 		hasprovs = 1;
15618 	}
15619 
15620 	mutex_exit(&dtrace_lock);
15621 
15622 	if (hasprovs)
15623 		dtrace_helper_provider_register(to, newhelp, NULL);
15624 }
15625 
15626 /*
15627  * DTrace Hook Functions
15628  */
15629 static void
15630 dtrace_module_loaded(struct modctl *ctl)
15631 {
15632 	dtrace_provider_t *prv;
15633 
15634 	mutex_enter(&dtrace_provider_lock);
15635 	mutex_enter(&mod_lock);
15636 
15637 	ASSERT(ctl->mod_busy);
15638 
15639 	/*
15640 	 * We're going to call each providers per-module provide operation
15641 	 * specifying only this module.
15642 	 */
15643 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15644 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15645 
15646 	mutex_exit(&mod_lock);
15647 	mutex_exit(&dtrace_provider_lock);
15648 
15649 	/*
15650 	 * If we have any retained enablings, we need to match against them.
15651 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15652 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15653 	 * module.  (In particular, this happens when loading scheduling
15654 	 * classes.)  So if we have any retained enablings, we need to dispatch
15655 	 * our task queue to do the match for us.
15656 	 */
15657 	mutex_enter(&dtrace_lock);
15658 
15659 	if (dtrace_retained == NULL) {
15660 		mutex_exit(&dtrace_lock);
15661 		return;
15662 	}
15663 
15664 	(void) taskq_dispatch(dtrace_taskq,
15665 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15666 
15667 	mutex_exit(&dtrace_lock);
15668 
15669 	/*
15670 	 * And now, for a little heuristic sleaze:  in general, we want to
15671 	 * match modules as soon as they load.  However, we cannot guarantee
15672 	 * this, because it would lead us to the lock ordering violation
15673 	 * outlined above.  The common case, of course, is that cpu_lock is
15674 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15675 	 * long enough for the task queue to do its work.  If it's not, it's
15676 	 * not a serious problem -- it just means that the module that we
15677 	 * just loaded may not be immediately instrumentable.
15678 	 */
15679 	delay(1);
15680 }
15681 
15682 static void
15683 dtrace_module_unloaded(struct modctl *ctl)
15684 {
15685 	dtrace_probe_t template, *probe, *first, *next;
15686 	dtrace_provider_t *prov;
15687 
15688 	template.dtpr_mod = ctl->mod_modname;
15689 
15690 	mutex_enter(&dtrace_provider_lock);
15691 	mutex_enter(&mod_lock);
15692 	mutex_enter(&dtrace_lock);
15693 
15694 	if (dtrace_bymod == NULL) {
15695 		/*
15696 		 * The DTrace module is loaded (obviously) but not attached;
15697 		 * we don't have any work to do.
15698 		 */
15699 		mutex_exit(&dtrace_provider_lock);
15700 		mutex_exit(&mod_lock);
15701 		mutex_exit(&dtrace_lock);
15702 		return;
15703 	}
15704 
15705 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15706 	    probe != NULL; probe = probe->dtpr_nextmod) {
15707 		if (probe->dtpr_ecb != NULL) {
15708 			mutex_exit(&dtrace_provider_lock);
15709 			mutex_exit(&mod_lock);
15710 			mutex_exit(&dtrace_lock);
15711 
15712 			/*
15713 			 * This shouldn't _actually_ be possible -- we're
15714 			 * unloading a module that has an enabled probe in it.
15715 			 * (It's normally up to the provider to make sure that
15716 			 * this can't happen.)  However, because dtps_enable()
15717 			 * doesn't have a failure mode, there can be an
15718 			 * enable/unload race.  Upshot:  we don't want to
15719 			 * assert, but we're not going to disable the
15720 			 * probe, either.
15721 			 */
15722 			if (dtrace_err_verbose) {
15723 				cmn_err(CE_WARN, "unloaded module '%s' had "
15724 				    "enabled probes", ctl->mod_modname);
15725 			}
15726 
15727 			return;
15728 		}
15729 	}
15730 
15731 	probe = first;
15732 
15733 	for (first = NULL; probe != NULL; probe = next) {
15734 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15735 
15736 		dtrace_probes[probe->dtpr_id - 1] = NULL;
15737 
15738 		next = probe->dtpr_nextmod;
15739 		dtrace_hash_remove(dtrace_bymod, probe);
15740 		dtrace_hash_remove(dtrace_byfunc, probe);
15741 		dtrace_hash_remove(dtrace_byname, probe);
15742 
15743 		if (first == NULL) {
15744 			first = probe;
15745 			probe->dtpr_nextmod = NULL;
15746 		} else {
15747 			probe->dtpr_nextmod = first;
15748 			first = probe;
15749 		}
15750 	}
15751 
15752 	/*
15753 	 * We've removed all of the module's probes from the hash chains and
15754 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15755 	 * everyone has cleared out from any probe array processing.
15756 	 */
15757 	dtrace_sync();
15758 
15759 	for (probe = first; probe != NULL; probe = first) {
15760 		first = probe->dtpr_nextmod;
15761 		prov = probe->dtpr_provider;
15762 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15763 		    probe->dtpr_arg);
15764 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15765 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15766 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15767 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15768 		kmem_free(probe, sizeof (dtrace_probe_t));
15769 	}
15770 
15771 	mutex_exit(&dtrace_lock);
15772 	mutex_exit(&mod_lock);
15773 	mutex_exit(&dtrace_provider_lock);
15774 }
15775 
15776 void
15777 dtrace_suspend(void)
15778 {
15779 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15780 }
15781 
15782 void
15783 dtrace_resume(void)
15784 {
15785 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15786 }
15787 
15788 static int
15789 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15790 {
15791 	ASSERT(MUTEX_HELD(&cpu_lock));
15792 	mutex_enter(&dtrace_lock);
15793 
15794 	switch (what) {
15795 	case CPU_CONFIG: {
15796 		dtrace_state_t *state;
15797 		dtrace_optval_t *opt, rs, c;
15798 
15799 		/*
15800 		 * For now, we only allocate a new buffer for anonymous state.
15801 		 */
15802 		if ((state = dtrace_anon.dta_state) == NULL)
15803 			break;
15804 
15805 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15806 			break;
15807 
15808 		opt = state->dts_options;
15809 		c = opt[DTRACEOPT_CPU];
15810 
15811 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15812 			break;
15813 
15814 		/*
15815 		 * Regardless of what the actual policy is, we're going to
15816 		 * temporarily set our resize policy to be manual.  We're
15817 		 * also going to temporarily set our CPU option to denote
15818 		 * the newly configured CPU.
15819 		 */
15820 		rs = opt[DTRACEOPT_BUFRESIZE];
15821 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15822 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15823 
15824 		(void) dtrace_state_buffers(state);
15825 
15826 		opt[DTRACEOPT_BUFRESIZE] = rs;
15827 		opt[DTRACEOPT_CPU] = c;
15828 
15829 		break;
15830 	}
15831 
15832 	case CPU_UNCONFIG:
15833 		/*
15834 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15835 		 * buffer will be freed when the consumer exits.)
15836 		 */
15837 		break;
15838 
15839 	default:
15840 		break;
15841 	}
15842 
15843 	mutex_exit(&dtrace_lock);
15844 	return (0);
15845 }
15846 
15847 static void
15848 dtrace_cpu_setup_initial(processorid_t cpu)
15849 {
15850 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15851 }
15852 
15853 static void
15854 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15855 {
15856 	if (dtrace_toxranges >= dtrace_toxranges_max) {
15857 		int osize, nsize;
15858 		dtrace_toxrange_t *range;
15859 
15860 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15861 
15862 		if (osize == 0) {
15863 			ASSERT(dtrace_toxrange == NULL);
15864 			ASSERT(dtrace_toxranges_max == 0);
15865 			dtrace_toxranges_max = 1;
15866 		} else {
15867 			dtrace_toxranges_max <<= 1;
15868 		}
15869 
15870 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15871 		range = kmem_zalloc(nsize, KM_SLEEP);
15872 
15873 		if (dtrace_toxrange != NULL) {
15874 			ASSERT(osize != 0);
15875 			bcopy(dtrace_toxrange, range, osize);
15876 			kmem_free(dtrace_toxrange, osize);
15877 		}
15878 
15879 		dtrace_toxrange = range;
15880 	}
15881 
15882 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
15883 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
15884 
15885 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15886 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15887 	dtrace_toxranges++;
15888 }
15889 
15890 static void
15891 dtrace_getf_barrier()
15892 {
15893 	/*
15894 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15895 	 * that contain calls to getf(), this routine will be called on every
15896 	 * closef() before either the underlying vnode is released or the
15897 	 * file_t itself is freed.  By the time we are here, it is essential
15898 	 * that the file_t can no longer be accessed from a call to getf()
15899 	 * in probe context -- that assures that a dtrace_sync() can be used
15900 	 * to clear out any enablings referring to the old structures.
15901 	 */
15902 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
15903 	    kcred->cr_zone->zone_dtrace_getf != 0)
15904 		dtrace_sync();
15905 }
15906 
15907 /*
15908  * DTrace Driver Cookbook Functions
15909  */
15910 /*ARGSUSED*/
15911 static int
15912 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15913 {
15914 	dtrace_provider_id_t id;
15915 	dtrace_state_t *state = NULL;
15916 	dtrace_enabling_t *enab;
15917 
15918 	mutex_enter(&cpu_lock);
15919 	mutex_enter(&dtrace_provider_lock);
15920 	mutex_enter(&dtrace_lock);
15921 
15922 	if (ddi_soft_state_init(&dtrace_softstate,
15923 	    sizeof (dtrace_state_t), 0) != 0) {
15924 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15925 		mutex_exit(&cpu_lock);
15926 		mutex_exit(&dtrace_provider_lock);
15927 		mutex_exit(&dtrace_lock);
15928 		return (DDI_FAILURE);
15929 	}
15930 
15931 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15932 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15933 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15934 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15935 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15936 		ddi_remove_minor_node(devi, NULL);
15937 		ddi_soft_state_fini(&dtrace_softstate);
15938 		mutex_exit(&cpu_lock);
15939 		mutex_exit(&dtrace_provider_lock);
15940 		mutex_exit(&dtrace_lock);
15941 		return (DDI_FAILURE);
15942 	}
15943 
15944 	ddi_report_dev(devi);
15945 	dtrace_devi = devi;
15946 
15947 	dtrace_modload = dtrace_module_loaded;
15948 	dtrace_modunload = dtrace_module_unloaded;
15949 	dtrace_cpu_init = dtrace_cpu_setup_initial;
15950 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15951 	dtrace_helpers_fork = dtrace_helpers_duplicate;
15952 	dtrace_cpustart_init = dtrace_suspend;
15953 	dtrace_cpustart_fini = dtrace_resume;
15954 	dtrace_debugger_init = dtrace_suspend;
15955 	dtrace_debugger_fini = dtrace_resume;
15956 
15957 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15958 
15959 	ASSERT(MUTEX_HELD(&cpu_lock));
15960 
15961 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15962 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15963 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15964 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15965 	    VM_SLEEP | VMC_IDENTIFIER);
15966 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15967 	    1, INT_MAX, 0);
15968 
15969 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15970 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15971 	    NULL, NULL, NULL, NULL, NULL, 0);
15972 
15973 	ASSERT(MUTEX_HELD(&cpu_lock));
15974 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15975 	    offsetof(dtrace_probe_t, dtpr_nextmod),
15976 	    offsetof(dtrace_probe_t, dtpr_prevmod));
15977 
15978 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15979 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15980 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15981 
15982 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15983 	    offsetof(dtrace_probe_t, dtpr_nextname),
15984 	    offsetof(dtrace_probe_t, dtpr_prevname));
15985 
15986 	if (dtrace_retain_max < 1) {
15987 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15988 		    "setting to 1", dtrace_retain_max);
15989 		dtrace_retain_max = 1;
15990 	}
15991 
15992 	/*
15993 	 * Now discover our toxic ranges.
15994 	 */
15995 	dtrace_toxic_ranges(dtrace_toxrange_add);
15996 
15997 	/*
15998 	 * Before we register ourselves as a provider to our own framework,
15999 	 * we would like to assert that dtrace_provider is NULL -- but that's
16000 	 * not true if we were loaded as a dependency of a DTrace provider.
16001 	 * Once we've registered, we can assert that dtrace_provider is our
16002 	 * pseudo provider.
16003 	 */
16004 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
16005 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
16006 
16007 	ASSERT(dtrace_provider != NULL);
16008 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
16009 
16010 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16011 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16012 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16013 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
16014 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16015 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16016 
16017 	dtrace_anon_property();
16018 	mutex_exit(&cpu_lock);
16019 
16020 	/*
16021 	 * If there are already providers, we must ask them to provide their
16022 	 * probes, and then match any anonymous enabling against them.  Note
16023 	 * that there should be no other retained enablings at this time:
16024 	 * the only retained enablings at this time should be the anonymous
16025 	 * enabling.
16026 	 */
16027 	if (dtrace_anon.dta_enabling != NULL) {
16028 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16029 
16030 		dtrace_enabling_provide(NULL);
16031 		state = dtrace_anon.dta_state;
16032 
16033 		/*
16034 		 * We couldn't hold cpu_lock across the above call to
16035 		 * dtrace_enabling_provide(), but we must hold it to actually
16036 		 * enable the probes.  We have to drop all of our locks, pick
16037 		 * up cpu_lock, and regain our locks before matching the
16038 		 * retained anonymous enabling.
16039 		 */
16040 		mutex_exit(&dtrace_lock);
16041 		mutex_exit(&dtrace_provider_lock);
16042 
16043 		mutex_enter(&cpu_lock);
16044 		mutex_enter(&dtrace_provider_lock);
16045 		mutex_enter(&dtrace_lock);
16046 
16047 		if ((enab = dtrace_anon.dta_enabling) != NULL)
16048 			(void) dtrace_enabling_match(enab, NULL);
16049 
16050 		mutex_exit(&cpu_lock);
16051 	}
16052 
16053 	mutex_exit(&dtrace_lock);
16054 	mutex_exit(&dtrace_provider_lock);
16055 
16056 	if (state != NULL) {
16057 		/*
16058 		 * If we created any anonymous state, set it going now.
16059 		 */
16060 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16061 	}
16062 
16063 	return (DDI_SUCCESS);
16064 }
16065 
16066 /*ARGSUSED*/
16067 static int
16068 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16069 {
16070 	dtrace_state_t *state;
16071 	uint32_t priv;
16072 	uid_t uid;
16073 	zoneid_t zoneid;
16074 
16075 	if (getminor(*devp) == DTRACEMNRN_HELPER)
16076 		return (0);
16077 
16078 	/*
16079 	 * If this wasn't an open with the "helper" minor, then it must be
16080 	 * the "dtrace" minor.
16081 	 */
16082 	if (getminor(*devp) != DTRACEMNRN_DTRACE)
16083 		return (ENXIO);
16084 
16085 	/*
16086 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
16087 	 * caller lacks sufficient permission to do anything with DTrace.
16088 	 */
16089 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16090 	if (priv == DTRACE_PRIV_NONE)
16091 		return (EACCES);
16092 
16093 	/*
16094 	 * Ask all providers to provide all their probes.
16095 	 */
16096 	mutex_enter(&dtrace_provider_lock);
16097 	dtrace_probe_provide(NULL, NULL);
16098 	mutex_exit(&dtrace_provider_lock);
16099 
16100 	mutex_enter(&cpu_lock);
16101 	mutex_enter(&dtrace_lock);
16102 	dtrace_opens++;
16103 	dtrace_membar_producer();
16104 
16105 	/*
16106 	 * If the kernel debugger is active (that is, if the kernel debugger
16107 	 * modified text in some way), we won't allow the open.
16108 	 */
16109 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16110 		dtrace_opens--;
16111 		mutex_exit(&cpu_lock);
16112 		mutex_exit(&dtrace_lock);
16113 		return (EBUSY);
16114 	}
16115 
16116 	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
16117 		/*
16118 		 * If DTrace helper tracing is enabled, we need to allocate the
16119 		 * trace buffer and initialize the values.
16120 		 */
16121 		dtrace_helptrace_buffer =
16122 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16123 		dtrace_helptrace_next = 0;
16124 		dtrace_helptrace_wrapped = 0;
16125 		dtrace_helptrace_enable = 0;
16126 	}
16127 
16128 	state = dtrace_state_create(devp, cred_p);
16129 	mutex_exit(&cpu_lock);
16130 
16131 	if (state == NULL) {
16132 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16133 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16134 		mutex_exit(&dtrace_lock);
16135 		return (EAGAIN);
16136 	}
16137 
16138 	mutex_exit(&dtrace_lock);
16139 
16140 	return (0);
16141 }
16142 
16143 /*ARGSUSED*/
16144 static int
16145 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16146 {
16147 	minor_t minor = getminor(dev);
16148 	dtrace_state_t *state;
16149 	dtrace_helptrace_t *buf = NULL;
16150 
16151 	if (minor == DTRACEMNRN_HELPER)
16152 		return (0);
16153 
16154 	state = ddi_get_soft_state(dtrace_softstate, minor);
16155 
16156 	mutex_enter(&cpu_lock);
16157 	mutex_enter(&dtrace_lock);
16158 
16159 	if (state->dts_anon) {
16160 		/*
16161 		 * There is anonymous state. Destroy that first.
16162 		 */
16163 		ASSERT(dtrace_anon.dta_state == NULL);
16164 		dtrace_state_destroy(state->dts_anon);
16165 	}
16166 
16167 	if (dtrace_helptrace_disable) {
16168 		/*
16169 		 * If we have been told to disable helper tracing, set the
16170 		 * buffer to NULL before calling into dtrace_state_destroy();
16171 		 * we take advantage of its dtrace_sync() to know that no
16172 		 * CPU is in probe context with enabled helper tracing
16173 		 * after it returns.
16174 		 */
16175 		buf = dtrace_helptrace_buffer;
16176 		dtrace_helptrace_buffer = NULL;
16177 	}
16178 
16179 	dtrace_state_destroy(state);
16180 	ASSERT(dtrace_opens > 0);
16181 
16182 	/*
16183 	 * Only relinquish control of the kernel debugger interface when there
16184 	 * are no consumers and no anonymous enablings.
16185 	 */
16186 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16187 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16188 
16189 	if (buf != NULL) {
16190 		kmem_free(buf, dtrace_helptrace_bufsize);
16191 		dtrace_helptrace_disable = 0;
16192 	}
16193 
16194 	mutex_exit(&dtrace_lock);
16195 	mutex_exit(&cpu_lock);
16196 
16197 	return (0);
16198 }
16199 
16200 /*ARGSUSED*/
16201 static int
16202 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16203 {
16204 	int rval;
16205 	dof_helper_t help, *dhp = NULL;
16206 
16207 	switch (cmd) {
16208 	case DTRACEHIOC_ADDDOF:
16209 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16210 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
16211 			return (EFAULT);
16212 		}
16213 
16214 		dhp = &help;
16215 		arg = (intptr_t)help.dofhp_dof;
16216 		/*FALLTHROUGH*/
16217 
16218 	case DTRACEHIOC_ADD: {
16219 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
16220 
16221 		if (dof == NULL)
16222 			return (rval);
16223 
16224 		mutex_enter(&dtrace_lock);
16225 
16226 		/*
16227 		 * dtrace_helper_slurp() takes responsibility for the dof --
16228 		 * it may free it now or it may save it and free it later.
16229 		 */
16230 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
16231 			*rv = rval;
16232 			rval = 0;
16233 		} else {
16234 			rval = EINVAL;
16235 		}
16236 
16237 		mutex_exit(&dtrace_lock);
16238 		return (rval);
16239 	}
16240 
16241 	case DTRACEHIOC_REMOVE: {
16242 		mutex_enter(&dtrace_lock);
16243 		rval = dtrace_helper_destroygen(arg);
16244 		mutex_exit(&dtrace_lock);
16245 
16246 		return (rval);
16247 	}
16248 
16249 	default:
16250 		break;
16251 	}
16252 
16253 	return (ENOTTY);
16254 }
16255 
16256 /*ARGSUSED*/
16257 static int
16258 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
16259 {
16260 	minor_t minor = getminor(dev);
16261 	dtrace_state_t *state;
16262 	int rval;
16263 
16264 	if (minor == DTRACEMNRN_HELPER)
16265 		return (dtrace_ioctl_helper(cmd, arg, rv));
16266 
16267 	state = ddi_get_soft_state(dtrace_softstate, minor);
16268 
16269 	if (state->dts_anon) {
16270 		ASSERT(dtrace_anon.dta_state == NULL);
16271 		state = state->dts_anon;
16272 	}
16273 
16274 	switch (cmd) {
16275 	case DTRACEIOC_PROVIDER: {
16276 		dtrace_providerdesc_t pvd;
16277 		dtrace_provider_t *pvp;
16278 
16279 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
16280 			return (EFAULT);
16281 
16282 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
16283 		mutex_enter(&dtrace_provider_lock);
16284 
16285 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
16286 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
16287 				break;
16288 		}
16289 
16290 		mutex_exit(&dtrace_provider_lock);
16291 
16292 		if (pvp == NULL)
16293 			return (ESRCH);
16294 
16295 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
16296 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
16297 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
16298 			return (EFAULT);
16299 
16300 		return (0);
16301 	}
16302 
16303 	case DTRACEIOC_EPROBE: {
16304 		dtrace_eprobedesc_t epdesc;
16305 		dtrace_ecb_t *ecb;
16306 		dtrace_action_t *act;
16307 		void *buf;
16308 		size_t size;
16309 		uintptr_t dest;
16310 		int nrecs;
16311 
16312 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16313 			return (EFAULT);
16314 
16315 		mutex_enter(&dtrace_lock);
16316 
16317 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16318 			mutex_exit(&dtrace_lock);
16319 			return (EINVAL);
16320 		}
16321 
16322 		if (ecb->dte_probe == NULL) {
16323 			mutex_exit(&dtrace_lock);
16324 			return (EINVAL);
16325 		}
16326 
16327 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16328 		epdesc.dtepd_uarg = ecb->dte_uarg;
16329 		epdesc.dtepd_size = ecb->dte_size;
16330 
16331 		nrecs = epdesc.dtepd_nrecs;
16332 		epdesc.dtepd_nrecs = 0;
16333 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16334 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16335 				continue;
16336 
16337 			epdesc.dtepd_nrecs++;
16338 		}
16339 
16340 		/*
16341 		 * Now that we have the size, we need to allocate a temporary
16342 		 * buffer in which to store the complete description.  We need
16343 		 * the temporary buffer to be able to drop dtrace_lock()
16344 		 * across the copyout(), below.
16345 		 */
16346 		size = sizeof (dtrace_eprobedesc_t) +
16347 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16348 
16349 		buf = kmem_alloc(size, KM_SLEEP);
16350 		dest = (uintptr_t)buf;
16351 
16352 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16353 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16354 
16355 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16356 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16357 				continue;
16358 
16359 			if (nrecs-- == 0)
16360 				break;
16361 
16362 			bcopy(&act->dta_rec, (void *)dest,
16363 			    sizeof (dtrace_recdesc_t));
16364 			dest += sizeof (dtrace_recdesc_t);
16365 		}
16366 
16367 		mutex_exit(&dtrace_lock);
16368 
16369 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16370 			kmem_free(buf, size);
16371 			return (EFAULT);
16372 		}
16373 
16374 		kmem_free(buf, size);
16375 		return (0);
16376 	}
16377 
16378 	case DTRACEIOC_AGGDESC: {
16379 		dtrace_aggdesc_t aggdesc;
16380 		dtrace_action_t *act;
16381 		dtrace_aggregation_t *agg;
16382 		int nrecs;
16383 		uint32_t offs;
16384 		dtrace_recdesc_t *lrec;
16385 		void *buf;
16386 		size_t size;
16387 		uintptr_t dest;
16388 
16389 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16390 			return (EFAULT);
16391 
16392 		mutex_enter(&dtrace_lock);
16393 
16394 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16395 			mutex_exit(&dtrace_lock);
16396 			return (EINVAL);
16397 		}
16398 
16399 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16400 
16401 		nrecs = aggdesc.dtagd_nrecs;
16402 		aggdesc.dtagd_nrecs = 0;
16403 
16404 		offs = agg->dtag_base;
16405 		lrec = &agg->dtag_action.dta_rec;
16406 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16407 
16408 		for (act = agg->dtag_first; ; act = act->dta_next) {
16409 			ASSERT(act->dta_intuple ||
16410 			    DTRACEACT_ISAGG(act->dta_kind));
16411 
16412 			/*
16413 			 * If this action has a record size of zero, it
16414 			 * denotes an argument to the aggregating action.
16415 			 * Because the presence of this record doesn't (or
16416 			 * shouldn't) affect the way the data is interpreted,
16417 			 * we don't copy it out to save user-level the
16418 			 * confusion of dealing with a zero-length record.
16419 			 */
16420 			if (act->dta_rec.dtrd_size == 0) {
16421 				ASSERT(agg->dtag_hasarg);
16422 				continue;
16423 			}
16424 
16425 			aggdesc.dtagd_nrecs++;
16426 
16427 			if (act == &agg->dtag_action)
16428 				break;
16429 		}
16430 
16431 		/*
16432 		 * Now that we have the size, we need to allocate a temporary
16433 		 * buffer in which to store the complete description.  We need
16434 		 * the temporary buffer to be able to drop dtrace_lock()
16435 		 * across the copyout(), below.
16436 		 */
16437 		size = sizeof (dtrace_aggdesc_t) +
16438 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16439 
16440 		buf = kmem_alloc(size, KM_SLEEP);
16441 		dest = (uintptr_t)buf;
16442 
16443 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16444 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16445 
16446 		for (act = agg->dtag_first; ; act = act->dta_next) {
16447 			dtrace_recdesc_t rec = act->dta_rec;
16448 
16449 			/*
16450 			 * See the comment in the above loop for why we pass
16451 			 * over zero-length records.
16452 			 */
16453 			if (rec.dtrd_size == 0) {
16454 				ASSERT(agg->dtag_hasarg);
16455 				continue;
16456 			}
16457 
16458 			if (nrecs-- == 0)
16459 				break;
16460 
16461 			rec.dtrd_offset -= offs;
16462 			bcopy(&rec, (void *)dest, sizeof (rec));
16463 			dest += sizeof (dtrace_recdesc_t);
16464 
16465 			if (act == &agg->dtag_action)
16466 				break;
16467 		}
16468 
16469 		mutex_exit(&dtrace_lock);
16470 
16471 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16472 			kmem_free(buf, size);
16473 			return (EFAULT);
16474 		}
16475 
16476 		kmem_free(buf, size);
16477 		return (0);
16478 	}
16479 
16480 	case DTRACEIOC_ENABLE: {
16481 		dof_hdr_t *dof;
16482 		dtrace_enabling_t *enab = NULL;
16483 		dtrace_vstate_t *vstate;
16484 		int err = 0;
16485 
16486 		*rv = 0;
16487 
16488 		/*
16489 		 * If a NULL argument has been passed, we take this as our
16490 		 * cue to reevaluate our enablings.
16491 		 */
16492 		if (arg == NULL) {
16493 			dtrace_enabling_matchall();
16494 
16495 			return (0);
16496 		}
16497 
16498 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16499 			return (rval);
16500 
16501 		mutex_enter(&cpu_lock);
16502 		mutex_enter(&dtrace_lock);
16503 		vstate = &state->dts_vstate;
16504 
16505 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16506 			mutex_exit(&dtrace_lock);
16507 			mutex_exit(&cpu_lock);
16508 			dtrace_dof_destroy(dof);
16509 			return (EBUSY);
16510 		}
16511 
16512 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16513 			mutex_exit(&dtrace_lock);
16514 			mutex_exit(&cpu_lock);
16515 			dtrace_dof_destroy(dof);
16516 			return (EINVAL);
16517 		}
16518 
16519 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
16520 			dtrace_enabling_destroy(enab);
16521 			mutex_exit(&dtrace_lock);
16522 			mutex_exit(&cpu_lock);
16523 			dtrace_dof_destroy(dof);
16524 			return (rval);
16525 		}
16526 
16527 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16528 			err = dtrace_enabling_retain(enab);
16529 		} else {
16530 			dtrace_enabling_destroy(enab);
16531 		}
16532 
16533 		mutex_exit(&cpu_lock);
16534 		mutex_exit(&dtrace_lock);
16535 		dtrace_dof_destroy(dof);
16536 
16537 		return (err);
16538 	}
16539 
16540 	case DTRACEIOC_REPLICATE: {
16541 		dtrace_repldesc_t desc;
16542 		dtrace_probedesc_t *match = &desc.dtrpd_match;
16543 		dtrace_probedesc_t *create = &desc.dtrpd_create;
16544 		int err;
16545 
16546 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16547 			return (EFAULT);
16548 
16549 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16550 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16551 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16552 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16553 
16554 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16555 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16556 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16557 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16558 
16559 		mutex_enter(&dtrace_lock);
16560 		err = dtrace_enabling_replicate(state, match, create);
16561 		mutex_exit(&dtrace_lock);
16562 
16563 		return (err);
16564 	}
16565 
16566 	case DTRACEIOC_PROBEMATCH:
16567 	case DTRACEIOC_PROBES: {
16568 		dtrace_probe_t *probe = NULL;
16569 		dtrace_probedesc_t desc;
16570 		dtrace_probekey_t pkey;
16571 		dtrace_id_t i;
16572 		int m = 0;
16573 		uint32_t priv;
16574 		uid_t uid;
16575 		zoneid_t zoneid;
16576 
16577 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16578 			return (EFAULT);
16579 
16580 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16581 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16582 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16583 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16584 
16585 		/*
16586 		 * Before we attempt to match this probe, we want to give
16587 		 * all providers the opportunity to provide it.
16588 		 */
16589 		if (desc.dtpd_id == DTRACE_IDNONE) {
16590 			mutex_enter(&dtrace_provider_lock);
16591 			dtrace_probe_provide(&desc, NULL);
16592 			mutex_exit(&dtrace_provider_lock);
16593 			desc.dtpd_id++;
16594 		}
16595 
16596 		if (cmd == DTRACEIOC_PROBEMATCH)  {
16597 			dtrace_probekey(&desc, &pkey);
16598 			pkey.dtpk_id = DTRACE_IDNONE;
16599 		}
16600 
16601 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16602 
16603 		mutex_enter(&dtrace_lock);
16604 
16605 		if (cmd == DTRACEIOC_PROBEMATCH) {
16606 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16607 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16608 				    (m = dtrace_match_probe(probe, &pkey,
16609 				    priv, uid, zoneid)) != 0)
16610 					break;
16611 			}
16612 
16613 			if (m < 0) {
16614 				mutex_exit(&dtrace_lock);
16615 				return (EINVAL);
16616 			}
16617 
16618 		} else {
16619 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16620 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16621 				    dtrace_match_priv(probe, priv, uid, zoneid))
16622 					break;
16623 			}
16624 		}
16625 
16626 		if (probe == NULL) {
16627 			mutex_exit(&dtrace_lock);
16628 			return (ESRCH);
16629 		}
16630 
16631 		dtrace_probe_description(probe, &desc);
16632 		mutex_exit(&dtrace_lock);
16633 
16634 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16635 			return (EFAULT);
16636 
16637 		return (0);
16638 	}
16639 
16640 	case DTRACEIOC_PROBEARG: {
16641 		dtrace_argdesc_t desc;
16642 		dtrace_probe_t *probe;
16643 		dtrace_provider_t *prov;
16644 
16645 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16646 			return (EFAULT);
16647 
16648 		if (desc.dtargd_id == DTRACE_IDNONE)
16649 			return (EINVAL);
16650 
16651 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16652 			return (EINVAL);
16653 
16654 		mutex_enter(&dtrace_provider_lock);
16655 		mutex_enter(&mod_lock);
16656 		mutex_enter(&dtrace_lock);
16657 
16658 		if (desc.dtargd_id > dtrace_nprobes) {
16659 			mutex_exit(&dtrace_lock);
16660 			mutex_exit(&mod_lock);
16661 			mutex_exit(&dtrace_provider_lock);
16662 			return (EINVAL);
16663 		}
16664 
16665 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16666 			mutex_exit(&dtrace_lock);
16667 			mutex_exit(&mod_lock);
16668 			mutex_exit(&dtrace_provider_lock);
16669 			return (EINVAL);
16670 		}
16671 
16672 		mutex_exit(&dtrace_lock);
16673 
16674 		prov = probe->dtpr_provider;
16675 
16676 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16677 			/*
16678 			 * There isn't any typed information for this probe.
16679 			 * Set the argument number to DTRACE_ARGNONE.
16680 			 */
16681 			desc.dtargd_ndx = DTRACE_ARGNONE;
16682 		} else {
16683 			desc.dtargd_native[0] = '\0';
16684 			desc.dtargd_xlate[0] = '\0';
16685 			desc.dtargd_mapping = desc.dtargd_ndx;
16686 
16687 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16688 			    probe->dtpr_id, probe->dtpr_arg, &desc);
16689 		}
16690 
16691 		mutex_exit(&mod_lock);
16692 		mutex_exit(&dtrace_provider_lock);
16693 
16694 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16695 			return (EFAULT);
16696 
16697 		return (0);
16698 	}
16699 
16700 	case DTRACEIOC_GO: {
16701 		processorid_t cpuid;
16702 		rval = dtrace_state_go(state, &cpuid);
16703 
16704 		if (rval != 0)
16705 			return (rval);
16706 
16707 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16708 			return (EFAULT);
16709 
16710 		return (0);
16711 	}
16712 
16713 	case DTRACEIOC_STOP: {
16714 		processorid_t cpuid;
16715 
16716 		mutex_enter(&dtrace_lock);
16717 		rval = dtrace_state_stop(state, &cpuid);
16718 		mutex_exit(&dtrace_lock);
16719 
16720 		if (rval != 0)
16721 			return (rval);
16722 
16723 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16724 			return (EFAULT);
16725 
16726 		return (0);
16727 	}
16728 
16729 	case DTRACEIOC_DOFGET: {
16730 		dof_hdr_t hdr, *dof;
16731 		uint64_t len;
16732 
16733 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16734 			return (EFAULT);
16735 
16736 		mutex_enter(&dtrace_lock);
16737 		dof = dtrace_dof_create(state);
16738 		mutex_exit(&dtrace_lock);
16739 
16740 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16741 		rval = copyout(dof, (void *)arg, len);
16742 		dtrace_dof_destroy(dof);
16743 
16744 		return (rval == 0 ? 0 : EFAULT);
16745 	}
16746 
16747 	case DTRACEIOC_AGGSNAP:
16748 	case DTRACEIOC_BUFSNAP: {
16749 		dtrace_bufdesc_t desc;
16750 		caddr_t cached;
16751 		dtrace_buffer_t *buf;
16752 
16753 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16754 			return (EFAULT);
16755 
16756 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16757 			return (EINVAL);
16758 
16759 		mutex_enter(&dtrace_lock);
16760 
16761 		if (cmd == DTRACEIOC_BUFSNAP) {
16762 			buf = &state->dts_buffer[desc.dtbd_cpu];
16763 		} else {
16764 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16765 		}
16766 
16767 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16768 			size_t sz = buf->dtb_offset;
16769 
16770 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16771 				mutex_exit(&dtrace_lock);
16772 				return (EBUSY);
16773 			}
16774 
16775 			/*
16776 			 * If this buffer has already been consumed, we're
16777 			 * going to indicate that there's nothing left here
16778 			 * to consume.
16779 			 */
16780 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16781 				mutex_exit(&dtrace_lock);
16782 
16783 				desc.dtbd_size = 0;
16784 				desc.dtbd_drops = 0;
16785 				desc.dtbd_errors = 0;
16786 				desc.dtbd_oldest = 0;
16787 				sz = sizeof (desc);
16788 
16789 				if (copyout(&desc, (void *)arg, sz) != 0)
16790 					return (EFAULT);
16791 
16792 				return (0);
16793 			}
16794 
16795 			/*
16796 			 * If this is a ring buffer that has wrapped, we want
16797 			 * to copy the whole thing out.
16798 			 */
16799 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16800 				dtrace_buffer_polish(buf);
16801 				sz = buf->dtb_size;
16802 			}
16803 
16804 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16805 				mutex_exit(&dtrace_lock);
16806 				return (EFAULT);
16807 			}
16808 
16809 			desc.dtbd_size = sz;
16810 			desc.dtbd_drops = buf->dtb_drops;
16811 			desc.dtbd_errors = buf->dtb_errors;
16812 			desc.dtbd_oldest = buf->dtb_xamot_offset;
16813 			desc.dtbd_timestamp = dtrace_gethrtime();
16814 
16815 			mutex_exit(&dtrace_lock);
16816 
16817 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16818 				return (EFAULT);
16819 
16820 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16821 
16822 			return (0);
16823 		}
16824 
16825 		if (buf->dtb_tomax == NULL) {
16826 			ASSERT(buf->dtb_xamot == NULL);
16827 			mutex_exit(&dtrace_lock);
16828 			return (ENOENT);
16829 		}
16830 
16831 		cached = buf->dtb_tomax;
16832 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16833 
16834 		dtrace_xcall(desc.dtbd_cpu,
16835 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16836 
16837 		state->dts_errors += buf->dtb_xamot_errors;
16838 
16839 		/*
16840 		 * If the buffers did not actually switch, then the cross call
16841 		 * did not take place -- presumably because the given CPU is
16842 		 * not in the ready set.  If this is the case, we'll return
16843 		 * ENOENT.
16844 		 */
16845 		if (buf->dtb_tomax == cached) {
16846 			ASSERT(buf->dtb_xamot != cached);
16847 			mutex_exit(&dtrace_lock);
16848 			return (ENOENT);
16849 		}
16850 
16851 		ASSERT(cached == buf->dtb_xamot);
16852 
16853 		/*
16854 		 * We have our snapshot; now copy it out.
16855 		 */
16856 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16857 		    buf->dtb_xamot_offset) != 0) {
16858 			mutex_exit(&dtrace_lock);
16859 			return (EFAULT);
16860 		}
16861 
16862 		desc.dtbd_size = buf->dtb_xamot_offset;
16863 		desc.dtbd_drops = buf->dtb_xamot_drops;
16864 		desc.dtbd_errors = buf->dtb_xamot_errors;
16865 		desc.dtbd_oldest = 0;
16866 		desc.dtbd_timestamp = buf->dtb_switched;
16867 
16868 		mutex_exit(&dtrace_lock);
16869 
16870 		/*
16871 		 * Finally, copy out the buffer description.
16872 		 */
16873 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16874 			return (EFAULT);
16875 
16876 		return (0);
16877 	}
16878 
16879 	case DTRACEIOC_CONF: {
16880 		dtrace_conf_t conf;
16881 
16882 		bzero(&conf, sizeof (conf));
16883 		conf.dtc_difversion = DIF_VERSION;
16884 		conf.dtc_difintregs = DIF_DIR_NREGS;
16885 		conf.dtc_diftupregs = DIF_DTR_NREGS;
16886 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16887 
16888 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16889 			return (EFAULT);
16890 
16891 		return (0);
16892 	}
16893 
16894 	case DTRACEIOC_STATUS: {
16895 		dtrace_status_t stat;
16896 		dtrace_dstate_t *dstate;
16897 		int i, j;
16898 		uint64_t nerrs;
16899 
16900 		/*
16901 		 * See the comment in dtrace_state_deadman() for the reason
16902 		 * for setting dts_laststatus to INT64_MAX before setting
16903 		 * it to the correct value.
16904 		 */
16905 		state->dts_laststatus = INT64_MAX;
16906 		dtrace_membar_producer();
16907 		state->dts_laststatus = dtrace_gethrtime();
16908 
16909 		bzero(&stat, sizeof (stat));
16910 
16911 		mutex_enter(&dtrace_lock);
16912 
16913 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16914 			mutex_exit(&dtrace_lock);
16915 			return (ENOENT);
16916 		}
16917 
16918 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16919 			stat.dtst_exiting = 1;
16920 
16921 		nerrs = state->dts_errors;
16922 		dstate = &state->dts_vstate.dtvs_dynvars;
16923 
16924 		for (i = 0; i < NCPU; i++) {
16925 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16926 
16927 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16928 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16929 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16930 
16931 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16932 				stat.dtst_filled++;
16933 
16934 			nerrs += state->dts_buffer[i].dtb_errors;
16935 
16936 			for (j = 0; j < state->dts_nspeculations; j++) {
16937 				dtrace_speculation_t *spec;
16938 				dtrace_buffer_t *buf;
16939 
16940 				spec = &state->dts_speculations[j];
16941 				buf = &spec->dtsp_buffer[i];
16942 				stat.dtst_specdrops += buf->dtb_xamot_drops;
16943 			}
16944 		}
16945 
16946 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16947 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16948 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16949 		stat.dtst_dblerrors = state->dts_dblerrors;
16950 		stat.dtst_killed =
16951 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16952 		stat.dtst_errors = nerrs;
16953 
16954 		mutex_exit(&dtrace_lock);
16955 
16956 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16957 			return (EFAULT);
16958 
16959 		return (0);
16960 	}
16961 
16962 	case DTRACEIOC_FORMAT: {
16963 		dtrace_fmtdesc_t fmt;
16964 		char *str;
16965 		int len;
16966 
16967 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16968 			return (EFAULT);
16969 
16970 		mutex_enter(&dtrace_lock);
16971 
16972 		if (fmt.dtfd_format == 0 ||
16973 		    fmt.dtfd_format > state->dts_nformats) {
16974 			mutex_exit(&dtrace_lock);
16975 			return (EINVAL);
16976 		}
16977 
16978 		/*
16979 		 * Format strings are allocated contiguously and they are
16980 		 * never freed; if a format index is less than the number
16981 		 * of formats, we can assert that the format map is non-NULL
16982 		 * and that the format for the specified index is non-NULL.
16983 		 */
16984 		ASSERT(state->dts_formats != NULL);
16985 		str = state->dts_formats[fmt.dtfd_format - 1];
16986 		ASSERT(str != NULL);
16987 
16988 		len = strlen(str) + 1;
16989 
16990 		if (len > fmt.dtfd_length) {
16991 			fmt.dtfd_length = len;
16992 
16993 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16994 				mutex_exit(&dtrace_lock);
16995 				return (EINVAL);
16996 			}
16997 		} else {
16998 			if (copyout(str, fmt.dtfd_string, len) != 0) {
16999 				mutex_exit(&dtrace_lock);
17000 				return (EINVAL);
17001 			}
17002 		}
17003 
17004 		mutex_exit(&dtrace_lock);
17005 		return (0);
17006 	}
17007 
17008 	default:
17009 		break;
17010 	}
17011 
17012 	return (ENOTTY);
17013 }
17014 
17015 /*ARGSUSED*/
17016 static int
17017 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17018 {
17019 	dtrace_state_t *state;
17020 
17021 	switch (cmd) {
17022 	case DDI_DETACH:
17023 		break;
17024 
17025 	case DDI_SUSPEND:
17026 		return (DDI_SUCCESS);
17027 
17028 	default:
17029 		return (DDI_FAILURE);
17030 	}
17031 
17032 	mutex_enter(&cpu_lock);
17033 	mutex_enter(&dtrace_provider_lock);
17034 	mutex_enter(&dtrace_lock);
17035 
17036 	ASSERT(dtrace_opens == 0);
17037 
17038 	if (dtrace_helpers > 0) {
17039 		mutex_exit(&dtrace_provider_lock);
17040 		mutex_exit(&dtrace_lock);
17041 		mutex_exit(&cpu_lock);
17042 		return (DDI_FAILURE);
17043 	}
17044 
17045 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17046 		mutex_exit(&dtrace_provider_lock);
17047 		mutex_exit(&dtrace_lock);
17048 		mutex_exit(&cpu_lock);
17049 		return (DDI_FAILURE);
17050 	}
17051 
17052 	dtrace_provider = NULL;
17053 
17054 	if ((state = dtrace_anon_grab()) != NULL) {
17055 		/*
17056 		 * If there were ECBs on this state, the provider should
17057 		 * have not been allowed to detach; assert that there is
17058 		 * none.
17059 		 */
17060 		ASSERT(state->dts_necbs == 0);
17061 		dtrace_state_destroy(state);
17062 
17063 		/*
17064 		 * If we're being detached with anonymous state, we need to
17065 		 * indicate to the kernel debugger that DTrace is now inactive.
17066 		 */
17067 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17068 	}
17069 
17070 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17071 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17072 	dtrace_cpu_init = NULL;
17073 	dtrace_helpers_cleanup = NULL;
17074 	dtrace_helpers_fork = NULL;
17075 	dtrace_cpustart_init = NULL;
17076 	dtrace_cpustart_fini = NULL;
17077 	dtrace_debugger_init = NULL;
17078 	dtrace_debugger_fini = NULL;
17079 	dtrace_modload = NULL;
17080 	dtrace_modunload = NULL;
17081 
17082 	ASSERT(dtrace_getf == 0);
17083 	ASSERT(dtrace_closef == NULL);
17084 
17085 	mutex_exit(&cpu_lock);
17086 
17087 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17088 	dtrace_probes = NULL;
17089 	dtrace_nprobes = 0;
17090 
17091 	dtrace_hash_destroy(dtrace_bymod);
17092 	dtrace_hash_destroy(dtrace_byfunc);
17093 	dtrace_hash_destroy(dtrace_byname);
17094 	dtrace_bymod = NULL;
17095 	dtrace_byfunc = NULL;
17096 	dtrace_byname = NULL;
17097 
17098 	kmem_cache_destroy(dtrace_state_cache);
17099 	vmem_destroy(dtrace_minor);
17100 	vmem_destroy(dtrace_arena);
17101 
17102 	if (dtrace_toxrange != NULL) {
17103 		kmem_free(dtrace_toxrange,
17104 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17105 		dtrace_toxrange = NULL;
17106 		dtrace_toxranges = 0;
17107 		dtrace_toxranges_max = 0;
17108 	}
17109 
17110 	ddi_remove_minor_node(dtrace_devi, NULL);
17111 	dtrace_devi = NULL;
17112 
17113 	ddi_soft_state_fini(&dtrace_softstate);
17114 
17115 	ASSERT(dtrace_vtime_references == 0);
17116 	ASSERT(dtrace_opens == 0);
17117 	ASSERT(dtrace_retained == NULL);
17118 
17119 	mutex_exit(&dtrace_lock);
17120 	mutex_exit(&dtrace_provider_lock);
17121 
17122 	/*
17123 	 * We don't destroy the task queue until after we have dropped our
17124 	 * locks (taskq_destroy() may block on running tasks).  To prevent
17125 	 * attempting to do work after we have effectively detached but before
17126 	 * the task queue has been destroyed, all tasks dispatched via the
17127 	 * task queue must check that DTrace is still attached before
17128 	 * performing any operation.
17129 	 */
17130 	taskq_destroy(dtrace_taskq);
17131 	dtrace_taskq = NULL;
17132 
17133 	return (DDI_SUCCESS);
17134 }
17135 
17136 /*ARGSUSED*/
17137 static int
17138 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17139 {
17140 	int error;
17141 
17142 	switch (infocmd) {
17143 	case DDI_INFO_DEVT2DEVINFO:
17144 		*result = (void *)dtrace_devi;
17145 		error = DDI_SUCCESS;
17146 		break;
17147 	case DDI_INFO_DEVT2INSTANCE:
17148 		*result = (void *)0;
17149 		error = DDI_SUCCESS;
17150 		break;
17151 	default:
17152 		error = DDI_FAILURE;
17153 	}
17154 	return (error);
17155 }
17156 
17157 static struct cb_ops dtrace_cb_ops = {
17158 	dtrace_open,		/* open */
17159 	dtrace_close,		/* close */
17160 	nulldev,		/* strategy */
17161 	nulldev,		/* print */
17162 	nodev,			/* dump */
17163 	nodev,			/* read */
17164 	nodev,			/* write */
17165 	dtrace_ioctl,		/* ioctl */
17166 	nodev,			/* devmap */
17167 	nodev,			/* mmap */
17168 	nodev,			/* segmap */
17169 	nochpoll,		/* poll */
17170 	ddi_prop_op,		/* cb_prop_op */
17171 	0,			/* streamtab  */
17172 	D_NEW | D_MP		/* Driver compatibility flag */
17173 };
17174 
17175 static struct dev_ops dtrace_ops = {
17176 	DEVO_REV,		/* devo_rev */
17177 	0,			/* refcnt */
17178 	dtrace_info,		/* get_dev_info */
17179 	nulldev,		/* identify */
17180 	nulldev,		/* probe */
17181 	dtrace_attach,		/* attach */
17182 	dtrace_detach,		/* detach */
17183 	nodev,			/* reset */
17184 	&dtrace_cb_ops,		/* driver operations */
17185 	NULL,			/* bus operations */
17186 	nodev,			/* dev power */
17187 	ddi_quiesce_not_needed,		/* quiesce */
17188 };
17189 
17190 static struct modldrv modldrv = {
17191 	&mod_driverops,		/* module type (this is a pseudo driver) */
17192 	"Dynamic Tracing",	/* name of module */
17193 	&dtrace_ops,		/* driver ops */
17194 };
17195 
17196 static struct modlinkage modlinkage = {
17197 	MODREV_1,
17198 	(void *)&modldrv,
17199 	NULL
17200 };
17201 
17202 int
17203 _init(void)
17204 {
17205 	return (mod_install(&modlinkage));
17206 }
17207 
17208 int
17209 _info(struct modinfo *modinfop)
17210 {
17211 	return (mod_info(&modlinkage, modinfop));
17212 }
17213 
17214 int
17215 _fini(void)
17216 {
17217 	return (mod_remove(&modlinkage));
17218 }
17219