1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2016, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 121 size_t dtrace_statvar_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop(void) 245 {} 246 247 static int 248 dtrace_enable_nullop(void) 249 { 250 return (0); 251 } 252 253 static dtrace_pops_t dtrace_provider_ops = { 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 255 (void (*)(void *, struct modctl *))dtrace_nullop, 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 260 NULL, 261 NULL, 262 NULL, 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 264 }; 265 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 269 270 /* 271 * DTrace Helper Tracing Variables 272 * 273 * These variables should be set dynamically to enable helper tracing. The 274 * only variables that should be set are dtrace_helptrace_enable (which should 275 * be set to a non-zero value to allocate helper tracing buffers on the next 276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 277 * non-zero value to deallocate helper tracing buffers on the next close of 278 * /dev/dtrace). When (and only when) helper tracing is disabled, the 279 * buffer size may also be set via dtrace_helptrace_bufsize. 280 */ 281 int dtrace_helptrace_enable = 0; 282 int dtrace_helptrace_disable = 0; 283 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 284 uint32_t dtrace_helptrace_nlocals; 285 static dtrace_helptrace_t *dtrace_helptrace_buffer; 286 static uint32_t dtrace_helptrace_next = 0; 287 static int dtrace_helptrace_wrapped = 0; 288 289 /* 290 * DTrace Error Hashing 291 * 292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 293 * table. This is very useful for checking coverage of tests that are 294 * expected to induce DIF or DOF processing errors, and may be useful for 295 * debugging problems in the DIF code generator or in DOF generation . The 296 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 297 */ 298 #ifdef DEBUG 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 300 static const char *dtrace_errlast; 301 static kthread_t *dtrace_errthread; 302 static kmutex_t dtrace_errlock; 303 #endif 304 305 /* 306 * DTrace Macros and Constants 307 * 308 * These are various macros that are useful in various spots in the 309 * implementation, along with a few random constants that have no meaning 310 * outside of the implementation. There is no real structure to this cpp 311 * mishmash -- but is there ever? 312 */ 313 #define DTRACE_HASHSTR(hash, probe) \ 314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 315 316 #define DTRACE_HASHNEXT(hash, probe) \ 317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 318 319 #define DTRACE_HASHPREV(hash, probe) \ 320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 321 322 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 325 326 #define DTRACE_AGGHASHSIZE_SLEW 17 327 328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 329 330 /* 331 * The key for a thread-local variable consists of the lower 61 bits of the 332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 334 * equal to a variable identifier. This is necessary (but not sufficient) to 335 * assure that global associative arrays never collide with thread-local 336 * variables. To guarantee that they cannot collide, we must also define the 337 * order for keying dynamic variables. That order is: 338 * 339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 340 * 341 * Because the variable-key and the tls-key are in orthogonal spaces, there is 342 * no way for a global variable key signature to match a thread-local key 343 * signature. 344 */ 345 #define DTRACE_TLS_THRKEY(where) { \ 346 uint_t intr = 0; \ 347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 348 for (; actv; actv >>= 1) \ 349 intr++; \ 350 ASSERT(intr < (1 << 3)); \ 351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 353 } 354 355 #define DT_BSWAP_8(x) ((x) & 0xff) 356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 359 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL 361 362 #define DTRACE_STORE(type, tomax, offset, what) \ 363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 364 365 #ifndef __x86 366 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 367 if (addr & (size - 1)) { \ 368 *flags |= CPU_DTRACE_BADALIGN; \ 369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 370 return (0); \ 371 } 372 #else 373 #define DTRACE_ALIGNCHECK(addr, size, flags) 374 #endif 375 376 /* 377 * Test whether a range of memory starting at testaddr of size testsz falls 378 * within the range of memory described by addr, sz. We take care to avoid 379 * problems with overflow and underflow of the unsigned quantities, and 380 * disallow all negative sizes. Ranges of size 0 are allowed. 381 */ 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 385 (testaddr) + (testsz) >= (testaddr)) 386 387 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 388 do { \ 389 if ((remp) != NULL) { \ 390 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 391 } \ 392 _NOTE(CONSTCOND) } while (0) 393 394 395 /* 396 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 397 * alloc_sz on the righthand side of the comparison in order to avoid overflow 398 * or underflow in the comparison with it. This is simpler than the INRANGE 399 * check above, because we know that the dtms_scratch_ptr is valid in the 400 * range. Allocations of size zero are allowed. 401 */ 402 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 403 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 404 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 405 406 #define DTRACE_LOADFUNC(bits) \ 407 /*CSTYLED*/ \ 408 uint##bits##_t \ 409 dtrace_load##bits(uintptr_t addr) \ 410 { \ 411 size_t size = bits / NBBY; \ 412 /*CSTYLED*/ \ 413 uint##bits##_t rval; \ 414 int i; \ 415 volatile uint16_t *flags = (volatile uint16_t *) \ 416 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 417 \ 418 DTRACE_ALIGNCHECK(addr, size, flags); \ 419 \ 420 for (i = 0; i < dtrace_toxranges; i++) { \ 421 if (addr >= dtrace_toxrange[i].dtt_limit) \ 422 continue; \ 423 \ 424 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 425 continue; \ 426 \ 427 /* \ 428 * This address falls within a toxic region; return 0. \ 429 */ \ 430 *flags |= CPU_DTRACE_BADADDR; \ 431 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 432 return (0); \ 433 } \ 434 \ 435 *flags |= CPU_DTRACE_NOFAULT; \ 436 /*CSTYLED*/ \ 437 rval = *((volatile uint##bits##_t *)addr); \ 438 *flags &= ~CPU_DTRACE_NOFAULT; \ 439 \ 440 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 441 } 442 443 #ifdef _LP64 444 #define dtrace_loadptr dtrace_load64 445 #else 446 #define dtrace_loadptr dtrace_load32 447 #endif 448 449 #define DTRACE_DYNHASH_FREE 0 450 #define DTRACE_DYNHASH_SINK 1 451 #define DTRACE_DYNHASH_VALID 2 452 453 #define DTRACE_MATCH_FAIL -1 454 #define DTRACE_MATCH_NEXT 0 455 #define DTRACE_MATCH_DONE 1 456 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 457 #define DTRACE_STATE_ALIGN 64 458 459 #define DTRACE_FLAGS2FLT(flags) \ 460 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 461 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 462 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 463 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 464 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 465 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 466 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 467 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 468 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 469 DTRACEFLT_UNKNOWN) 470 471 #define DTRACEACT_ISSTRING(act) \ 472 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 473 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 474 475 static size_t dtrace_strlen(const char *, size_t); 476 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 477 static void dtrace_enabling_provide(dtrace_provider_t *); 478 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 479 static void dtrace_enabling_matchall(void); 480 static void dtrace_enabling_reap(void); 481 static dtrace_state_t *dtrace_anon_grab(void); 482 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 483 dtrace_state_t *, uint64_t, uint64_t); 484 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 485 static void dtrace_buffer_drop(dtrace_buffer_t *); 486 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 487 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 488 dtrace_state_t *, dtrace_mstate_t *); 489 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 490 dtrace_optval_t); 491 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 492 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 493 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 494 static void dtrace_getf_barrier(void); 495 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 496 dtrace_mstate_t *, dtrace_vstate_t *); 497 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 498 dtrace_mstate_t *, dtrace_vstate_t *); 499 500 /* 501 * DTrace Probe Context Functions 502 * 503 * These functions are called from probe context. Because probe context is 504 * any context in which C may be called, arbitrarily locks may be held, 505 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 506 * As a result, functions called from probe context may only call other DTrace 507 * support functions -- they may not interact at all with the system at large. 508 * (Note that the ASSERT macro is made probe-context safe by redefining it in 509 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 510 * loads are to be performed from probe context, they _must_ be in terms of 511 * the safe dtrace_load*() variants. 512 * 513 * Some functions in this block are not actually called from probe context; 514 * for these functions, there will be a comment above the function reading 515 * "Note: not called from probe context." 516 */ 517 void 518 dtrace_panic(const char *format, ...) 519 { 520 va_list alist; 521 522 va_start(alist, format); 523 dtrace_vpanic(format, alist); 524 va_end(alist); 525 } 526 527 int 528 dtrace_assfail(const char *a, const char *f, int l) 529 { 530 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 531 532 /* 533 * We just need something here that even the most clever compiler 534 * cannot optimize away. 535 */ 536 return (a[(uintptr_t)f]); 537 } 538 539 /* 540 * Atomically increment a specified error counter from probe context. 541 */ 542 static void 543 dtrace_error(uint32_t *counter) 544 { 545 /* 546 * Most counters stored to in probe context are per-CPU counters. 547 * However, there are some error conditions that are sufficiently 548 * arcane that they don't merit per-CPU storage. If these counters 549 * are incremented concurrently on different CPUs, scalability will be 550 * adversely affected -- but we don't expect them to be white-hot in a 551 * correctly constructed enabling... 552 */ 553 uint32_t oval, nval; 554 555 do { 556 oval = *counter; 557 558 if ((nval = oval + 1) == 0) { 559 /* 560 * If the counter would wrap, set it to 1 -- assuring 561 * that the counter is never zero when we have seen 562 * errors. (The counter must be 32-bits because we 563 * aren't guaranteed a 64-bit compare&swap operation.) 564 * To save this code both the infamy of being fingered 565 * by a priggish news story and the indignity of being 566 * the target of a neo-puritan witch trial, we're 567 * carefully avoiding any colorful description of the 568 * likelihood of this condition -- but suffice it to 569 * say that it is only slightly more likely than the 570 * overflow of predicate cache IDs, as discussed in 571 * dtrace_predicate_create(). 572 */ 573 nval = 1; 574 } 575 } while (dtrace_cas32(counter, oval, nval) != oval); 576 } 577 578 /* 579 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 580 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 581 */ 582 /* BEGIN CSTYLED */ 583 DTRACE_LOADFUNC(8) 584 DTRACE_LOADFUNC(16) 585 DTRACE_LOADFUNC(32) 586 DTRACE_LOADFUNC(64) 587 /* END CSTYLED */ 588 589 static int 590 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 591 { 592 if (dest < mstate->dtms_scratch_base) 593 return (0); 594 595 if (dest + size < dest) 596 return (0); 597 598 if (dest + size > mstate->dtms_scratch_ptr) 599 return (0); 600 601 return (1); 602 } 603 604 static int 605 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 606 dtrace_statvar_t **svars, int nsvars) 607 { 608 int i; 609 size_t maxglobalsize, maxlocalsize; 610 611 if (nsvars == 0) 612 return (0); 613 614 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 615 maxlocalsize = maxglobalsize * NCPU; 616 617 for (i = 0; i < nsvars; i++) { 618 dtrace_statvar_t *svar = svars[i]; 619 uint8_t scope; 620 size_t size; 621 622 if (svar == NULL || (size = svar->dtsv_size) == 0) 623 continue; 624 625 scope = svar->dtsv_var.dtdv_scope; 626 627 /* 628 * We verify that our size is valid in the spirit of providing 629 * defense in depth: we want to prevent attackers from using 630 * DTrace to escalate an orthogonal kernel heap corruption bug 631 * into the ability to store to arbitrary locations in memory. 632 */ 633 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 634 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 635 636 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 637 svar->dtsv_size)) { 638 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 639 svar->dtsv_size); 640 return (1); 641 } 642 } 643 644 return (0); 645 } 646 647 /* 648 * Check to see if the address is within a memory region to which a store may 649 * be issued. This includes the DTrace scratch areas, and any DTrace variable 650 * region. The caller of dtrace_canstore() is responsible for performing any 651 * alignment checks that are needed before stores are actually executed. 652 */ 653 static int 654 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 655 dtrace_vstate_t *vstate) 656 { 657 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 658 } 659 660 /* 661 * Implementation of dtrace_canstore which communicates the upper bound of the 662 * allowed memory region. 663 */ 664 static int 665 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 666 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 667 { 668 /* 669 * First, check to see if the address is in scratch space... 670 */ 671 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 672 mstate->dtms_scratch_size)) { 673 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 674 mstate->dtms_scratch_size); 675 return (1); 676 } 677 678 /* 679 * Now check to see if it's a dynamic variable. This check will pick 680 * up both thread-local variables and any global dynamically-allocated 681 * variables. 682 */ 683 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 684 vstate->dtvs_dynvars.dtds_size)) { 685 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 686 uintptr_t base = (uintptr_t)dstate->dtds_base + 687 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 688 uintptr_t chunkoffs; 689 dtrace_dynvar_t *dvar; 690 691 /* 692 * Before we assume that we can store here, we need to make 693 * sure that it isn't in our metadata -- storing to our 694 * dynamic variable metadata would corrupt our state. For 695 * the range to not include any dynamic variable metadata, 696 * it must: 697 * 698 * (1) Start above the hash table that is at the base of 699 * the dynamic variable space 700 * 701 * (2) Have a starting chunk offset that is beyond the 702 * dtrace_dynvar_t that is at the base of every chunk 703 * 704 * (3) Not span a chunk boundary 705 * 706 * (4) Not be in the tuple space of a dynamic variable 707 * 708 */ 709 if (addr < base) 710 return (0); 711 712 chunkoffs = (addr - base) % dstate->dtds_chunksize; 713 714 if (chunkoffs < sizeof (dtrace_dynvar_t)) 715 return (0); 716 717 if (chunkoffs + sz > dstate->dtds_chunksize) 718 return (0); 719 720 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 721 722 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 723 return (0); 724 725 if (chunkoffs < sizeof (dtrace_dynvar_t) + 726 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 727 return (0); 728 729 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 730 return (1); 731 } 732 733 /* 734 * Finally, check the static local and global variables. These checks 735 * take the longest, so we perform them last. 736 */ 737 if (dtrace_canstore_statvar(addr, sz, remain, 738 vstate->dtvs_locals, vstate->dtvs_nlocals)) 739 return (1); 740 741 if (dtrace_canstore_statvar(addr, sz, remain, 742 vstate->dtvs_globals, vstate->dtvs_nglobals)) 743 return (1); 744 745 return (0); 746 } 747 748 749 /* 750 * Convenience routine to check to see if the address is within a memory 751 * region in which a load may be issued given the user's privilege level; 752 * if not, it sets the appropriate error flags and loads 'addr' into the 753 * illegal value slot. 754 * 755 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 756 * appropriate memory access protection. 757 */ 758 static int 759 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 760 dtrace_vstate_t *vstate) 761 { 762 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 763 } 764 765 /* 766 * Implementation of dtrace_canload which communicates the upper bound of the 767 * allowed memory region. 768 */ 769 static int 770 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 771 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 772 { 773 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 774 file_t *fp; 775 776 /* 777 * If we hold the privilege to read from kernel memory, then 778 * everything is readable. 779 */ 780 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 781 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 782 return (1); 783 } 784 785 /* 786 * You can obviously read that which you can store. 787 */ 788 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 789 return (1); 790 791 /* 792 * We're allowed to read from our own string table. 793 */ 794 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 795 mstate->dtms_difo->dtdo_strlen)) { 796 DTRACE_RANGE_REMAIN(remain, addr, 797 mstate->dtms_difo->dtdo_strtab, 798 mstate->dtms_difo->dtdo_strlen); 799 return (1); 800 } 801 802 if (vstate->dtvs_state != NULL && 803 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 804 proc_t *p; 805 806 /* 807 * When we have privileges to the current process, there are 808 * several context-related kernel structures that are safe to 809 * read, even absent the privilege to read from kernel memory. 810 * These reads are safe because these structures contain only 811 * state that (1) we're permitted to read, (2) is harmless or 812 * (3) contains pointers to additional kernel state that we're 813 * not permitted to read (and as such, do not present an 814 * opportunity for privilege escalation). Finally (and 815 * critically), because of the nature of their relation with 816 * the current thread context, the memory associated with these 817 * structures cannot change over the duration of probe context, 818 * and it is therefore impossible for this memory to be 819 * deallocated and reallocated as something else while it's 820 * being operated upon. 821 */ 822 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 823 DTRACE_RANGE_REMAIN(remain, addr, curthread, 824 sizeof (kthread_t)); 825 return (1); 826 } 827 828 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 829 sz, curthread->t_procp, sizeof (proc_t))) { 830 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 831 sizeof (proc_t)); 832 return (1); 833 } 834 835 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 836 curthread->t_cred, sizeof (cred_t))) { 837 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 838 sizeof (cred_t)); 839 return (1); 840 } 841 842 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 843 &(p->p_pidp->pid_id), sizeof (pid_t))) { 844 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 845 sizeof (pid_t)); 846 return (1); 847 } 848 849 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 850 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 851 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 852 offsetof(cpu_t, cpu_pause_thread)); 853 return (1); 854 } 855 } 856 857 if ((fp = mstate->dtms_getf) != NULL) { 858 uintptr_t psz = sizeof (void *); 859 vnode_t *vp; 860 vnodeops_t *op; 861 862 /* 863 * When getf() returns a file_t, the enabling is implicitly 864 * granted the (transient) right to read the returned file_t 865 * as well as the v_path and v_op->vnop_name of the underlying 866 * vnode. These accesses are allowed after a successful 867 * getf() because the members that they refer to cannot change 868 * once set -- and the barrier logic in the kernel's closef() 869 * path assures that the file_t and its referenced vode_t 870 * cannot themselves be stale (that is, it impossible for 871 * either dtms_getf itself or its f_vnode member to reference 872 * freed memory). 873 */ 874 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 875 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 876 return (1); 877 } 878 879 if ((vp = fp->f_vnode) != NULL) { 880 size_t slen; 881 882 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 883 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 884 psz); 885 return (1); 886 } 887 888 slen = strlen(vp->v_path) + 1; 889 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 890 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 891 slen); 892 return (1); 893 } 894 895 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 896 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 897 psz); 898 return (1); 899 } 900 901 if ((op = vp->v_op) != NULL && 902 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 903 DTRACE_RANGE_REMAIN(remain, addr, 904 &op->vnop_name, psz); 905 return (1); 906 } 907 908 if (op != NULL && op->vnop_name != NULL && 909 DTRACE_INRANGE(addr, sz, op->vnop_name, 910 (slen = strlen(op->vnop_name) + 1))) { 911 DTRACE_RANGE_REMAIN(remain, addr, 912 op->vnop_name, slen); 913 return (1); 914 } 915 } 916 } 917 918 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 919 *illval = addr; 920 return (0); 921 } 922 923 /* 924 * Convenience routine to check to see if a given string is within a memory 925 * region in which a load may be issued given the user's privilege level; 926 * this exists so that we don't need to issue unnecessary dtrace_strlen() 927 * calls in the event that the user has all privileges. 928 */ 929 static int 930 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 931 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 932 { 933 size_t rsize; 934 935 /* 936 * If we hold the privilege to read from kernel memory, then 937 * everything is readable. 938 */ 939 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 940 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 941 return (1); 942 } 943 944 /* 945 * Even if the caller is uninterested in querying the remaining valid 946 * range, it is required to ensure that the access is allowed. 947 */ 948 if (remain == NULL) { 949 remain = &rsize; 950 } 951 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 952 size_t strsz; 953 /* 954 * Perform the strlen after determining the length of the 955 * memory region which is accessible. This prevents timing 956 * information from being used to find NULs in memory which is 957 * not accessible to the caller. 958 */ 959 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 960 MIN(sz, *remain)); 961 if (strsz <= *remain) { 962 return (1); 963 } 964 } 965 966 return (0); 967 } 968 969 /* 970 * Convenience routine to check to see if a given variable is within a memory 971 * region in which a load may be issued given the user's privilege level. 972 */ 973 static int 974 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 975 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 976 { 977 size_t sz; 978 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 979 980 /* 981 * Calculate the max size before performing any checks since even 982 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 983 * return the max length via 'remain'. 984 */ 985 if (type->dtdt_kind == DIF_TYPE_STRING) { 986 dtrace_state_t *state = vstate->dtvs_state; 987 988 if (state != NULL) { 989 sz = state->dts_options[DTRACEOPT_STRSIZE]; 990 } else { 991 /* 992 * In helper context, we have a NULL state; fall back 993 * to using the system-wide default for the string size 994 * in this case. 995 */ 996 sz = dtrace_strsize_default; 997 } 998 } else { 999 sz = type->dtdt_size; 1000 } 1001 1002 /* 1003 * If we hold the privilege to read from kernel memory, then 1004 * everything is readable. 1005 */ 1006 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1007 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1008 return (1); 1009 } 1010 1011 if (type->dtdt_kind == DIF_TYPE_STRING) { 1012 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1013 vstate)); 1014 } 1015 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1016 vstate)); 1017 } 1018 1019 /* 1020 * Convert a string to a signed integer using safe loads. 1021 * 1022 * NOTE: This function uses various macros from strtolctype.h to manipulate 1023 * digit values, etc -- these have all been checked to ensure they make 1024 * no additional function calls. 1025 */ 1026 static int64_t 1027 dtrace_strtoll(char *input, int base, size_t limit) 1028 { 1029 uintptr_t pos = (uintptr_t)input; 1030 int64_t val = 0; 1031 int x; 1032 boolean_t neg = B_FALSE; 1033 char c, cc, ccc; 1034 uintptr_t end = pos + limit; 1035 1036 /* 1037 * Consume any whitespace preceding digits. 1038 */ 1039 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1040 pos++; 1041 1042 /* 1043 * Handle an explicit sign if one is present. 1044 */ 1045 if (c == '-' || c == '+') { 1046 if (c == '-') 1047 neg = B_TRUE; 1048 c = dtrace_load8(++pos); 1049 } 1050 1051 /* 1052 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1053 * if present. 1054 */ 1055 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1056 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1057 pos += 2; 1058 c = ccc; 1059 } 1060 1061 /* 1062 * Read in contiguous digits until the first non-digit character. 1063 */ 1064 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1065 c = dtrace_load8(++pos)) 1066 val = val * base + x; 1067 1068 return (neg ? -val : val); 1069 } 1070 1071 /* 1072 * Compare two strings using safe loads. 1073 */ 1074 static int 1075 dtrace_strncmp(char *s1, char *s2, size_t limit) 1076 { 1077 uint8_t c1, c2; 1078 volatile uint16_t *flags; 1079 1080 if (s1 == s2 || limit == 0) 1081 return (0); 1082 1083 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1084 1085 do { 1086 if (s1 == NULL) { 1087 c1 = '\0'; 1088 } else { 1089 c1 = dtrace_load8((uintptr_t)s1++); 1090 } 1091 1092 if (s2 == NULL) { 1093 c2 = '\0'; 1094 } else { 1095 c2 = dtrace_load8((uintptr_t)s2++); 1096 } 1097 1098 if (c1 != c2) 1099 return (c1 - c2); 1100 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1101 1102 return (0); 1103 } 1104 1105 /* 1106 * Compute strlen(s) for a string using safe memory accesses. The additional 1107 * len parameter is used to specify a maximum length to ensure completion. 1108 */ 1109 static size_t 1110 dtrace_strlen(const char *s, size_t lim) 1111 { 1112 uint_t len; 1113 1114 for (len = 0; len != lim; len++) { 1115 if (dtrace_load8((uintptr_t)s++) == '\0') 1116 break; 1117 } 1118 1119 return (len); 1120 } 1121 1122 /* 1123 * Check if an address falls within a toxic region. 1124 */ 1125 static int 1126 dtrace_istoxic(uintptr_t kaddr, size_t size) 1127 { 1128 uintptr_t taddr, tsize; 1129 int i; 1130 1131 for (i = 0; i < dtrace_toxranges; i++) { 1132 taddr = dtrace_toxrange[i].dtt_base; 1133 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1134 1135 if (kaddr - taddr < tsize) { 1136 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1137 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 1138 return (1); 1139 } 1140 1141 if (taddr - kaddr < size) { 1142 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1143 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 1144 return (1); 1145 } 1146 } 1147 1148 return (0); 1149 } 1150 1151 /* 1152 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1153 * memory specified by the DIF program. The dst is assumed to be safe memory 1154 * that we can store to directly because it is managed by DTrace. As with 1155 * standard bcopy, overlapping copies are handled properly. 1156 */ 1157 static void 1158 dtrace_bcopy(const void *src, void *dst, size_t len) 1159 { 1160 if (len != 0) { 1161 uint8_t *s1 = dst; 1162 const uint8_t *s2 = src; 1163 1164 if (s1 <= s2) { 1165 do { 1166 *s1++ = dtrace_load8((uintptr_t)s2++); 1167 } while (--len != 0); 1168 } else { 1169 s2 += len; 1170 s1 += len; 1171 1172 do { 1173 *--s1 = dtrace_load8((uintptr_t)--s2); 1174 } while (--len != 0); 1175 } 1176 } 1177 } 1178 1179 /* 1180 * Copy src to dst using safe memory accesses, up to either the specified 1181 * length, or the point that a nul byte is encountered. The src is assumed to 1182 * be unsafe memory specified by the DIF program. The dst is assumed to be 1183 * safe memory that we can store to directly because it is managed by DTrace. 1184 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1185 */ 1186 static void 1187 dtrace_strcpy(const void *src, void *dst, size_t len) 1188 { 1189 if (len != 0) { 1190 uint8_t *s1 = dst, c; 1191 const uint8_t *s2 = src; 1192 1193 do { 1194 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1195 } while (--len != 0 && c != '\0'); 1196 } 1197 } 1198 1199 /* 1200 * Copy src to dst, deriving the size and type from the specified (BYREF) 1201 * variable type. The src is assumed to be unsafe memory specified by the DIF 1202 * program. The dst is assumed to be DTrace variable memory that is of the 1203 * specified type; we assume that we can store to directly. 1204 */ 1205 static void 1206 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1207 { 1208 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1209 1210 if (type->dtdt_kind == DIF_TYPE_STRING) { 1211 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1212 } else { 1213 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1214 } 1215 } 1216 1217 /* 1218 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1219 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1220 * safe memory that we can access directly because it is managed by DTrace. 1221 */ 1222 static int 1223 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1224 { 1225 volatile uint16_t *flags; 1226 1227 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1228 1229 if (s1 == s2) 1230 return (0); 1231 1232 if (s1 == NULL || s2 == NULL) 1233 return (1); 1234 1235 if (s1 != s2 && len != 0) { 1236 const uint8_t *ps1 = s1; 1237 const uint8_t *ps2 = s2; 1238 1239 do { 1240 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1241 return (1); 1242 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1243 } 1244 return (0); 1245 } 1246 1247 /* 1248 * Zero the specified region using a simple byte-by-byte loop. Note that this 1249 * is for safe DTrace-managed memory only. 1250 */ 1251 static void 1252 dtrace_bzero(void *dst, size_t len) 1253 { 1254 uchar_t *cp; 1255 1256 for (cp = dst; len != 0; len--) 1257 *cp++ = 0; 1258 } 1259 1260 static void 1261 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1262 { 1263 uint64_t result[2]; 1264 1265 result[0] = addend1[0] + addend2[0]; 1266 result[1] = addend1[1] + addend2[1] + 1267 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1268 1269 sum[0] = result[0]; 1270 sum[1] = result[1]; 1271 } 1272 1273 /* 1274 * Shift the 128-bit value in a by b. If b is positive, shift left. 1275 * If b is negative, shift right. 1276 */ 1277 static void 1278 dtrace_shift_128(uint64_t *a, int b) 1279 { 1280 uint64_t mask; 1281 1282 if (b == 0) 1283 return; 1284 1285 if (b < 0) { 1286 b = -b; 1287 if (b >= 64) { 1288 a[0] = a[1] >> (b - 64); 1289 a[1] = 0; 1290 } else { 1291 a[0] >>= b; 1292 mask = 1LL << (64 - b); 1293 mask -= 1; 1294 a[0] |= ((a[1] & mask) << (64 - b)); 1295 a[1] >>= b; 1296 } 1297 } else { 1298 if (b >= 64) { 1299 a[1] = a[0] << (b - 64); 1300 a[0] = 0; 1301 } else { 1302 a[1] <<= b; 1303 mask = a[0] >> (64 - b); 1304 a[1] |= mask; 1305 a[0] <<= b; 1306 } 1307 } 1308 } 1309 1310 /* 1311 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1312 * use native multiplication on those, and then re-combine into the 1313 * resulting 128-bit value. 1314 * 1315 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1316 * hi1 * hi2 << 64 + 1317 * hi1 * lo2 << 32 + 1318 * hi2 * lo1 << 32 + 1319 * lo1 * lo2 1320 */ 1321 static void 1322 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1323 { 1324 uint64_t hi1, hi2, lo1, lo2; 1325 uint64_t tmp[2]; 1326 1327 hi1 = factor1 >> 32; 1328 hi2 = factor2 >> 32; 1329 1330 lo1 = factor1 & DT_MASK_LO; 1331 lo2 = factor2 & DT_MASK_LO; 1332 1333 product[0] = lo1 * lo2; 1334 product[1] = hi1 * hi2; 1335 1336 tmp[0] = hi1 * lo2; 1337 tmp[1] = 0; 1338 dtrace_shift_128(tmp, 32); 1339 dtrace_add_128(product, tmp, product); 1340 1341 tmp[0] = hi2 * lo1; 1342 tmp[1] = 0; 1343 dtrace_shift_128(tmp, 32); 1344 dtrace_add_128(product, tmp, product); 1345 } 1346 1347 /* 1348 * This privilege check should be used by actions and subroutines to 1349 * verify that the user credentials of the process that enabled the 1350 * invoking ECB match the target credentials 1351 */ 1352 static int 1353 dtrace_priv_proc_common_user(dtrace_state_t *state) 1354 { 1355 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1356 1357 /* 1358 * We should always have a non-NULL state cred here, since if cred 1359 * is null (anonymous tracing), we fast-path bypass this routine. 1360 */ 1361 ASSERT(s_cr != NULL); 1362 1363 if ((cr = CRED()) != NULL && 1364 s_cr->cr_uid == cr->cr_uid && 1365 s_cr->cr_uid == cr->cr_ruid && 1366 s_cr->cr_uid == cr->cr_suid && 1367 s_cr->cr_gid == cr->cr_gid && 1368 s_cr->cr_gid == cr->cr_rgid && 1369 s_cr->cr_gid == cr->cr_sgid) 1370 return (1); 1371 1372 return (0); 1373 } 1374 1375 /* 1376 * This privilege check should be used by actions and subroutines to 1377 * verify that the zone of the process that enabled the invoking ECB 1378 * matches the target credentials 1379 */ 1380 static int 1381 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1382 { 1383 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1384 1385 /* 1386 * We should always have a non-NULL state cred here, since if cred 1387 * is null (anonymous tracing), we fast-path bypass this routine. 1388 */ 1389 ASSERT(s_cr != NULL); 1390 1391 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1392 return (1); 1393 1394 return (0); 1395 } 1396 1397 /* 1398 * This privilege check should be used by actions and subroutines to 1399 * verify that the process has not setuid or changed credentials. 1400 */ 1401 static int 1402 dtrace_priv_proc_common_nocd() 1403 { 1404 proc_t *proc; 1405 1406 if ((proc = ttoproc(curthread)) != NULL && 1407 !(proc->p_flag & SNOCD)) 1408 return (1); 1409 1410 return (0); 1411 } 1412 1413 static int 1414 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1415 { 1416 int action = state->dts_cred.dcr_action; 1417 1418 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1419 goto bad; 1420 1421 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1422 dtrace_priv_proc_common_zone(state) == 0) 1423 goto bad; 1424 1425 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1426 dtrace_priv_proc_common_user(state) == 0) 1427 goto bad; 1428 1429 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1430 dtrace_priv_proc_common_nocd() == 0) 1431 goto bad; 1432 1433 return (1); 1434 1435 bad: 1436 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1437 1438 return (0); 1439 } 1440 1441 static int 1442 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1443 { 1444 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1445 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1446 return (1); 1447 1448 if (dtrace_priv_proc_common_zone(state) && 1449 dtrace_priv_proc_common_user(state) && 1450 dtrace_priv_proc_common_nocd()) 1451 return (1); 1452 } 1453 1454 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1455 1456 return (0); 1457 } 1458 1459 static int 1460 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1461 { 1462 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1463 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1464 return (1); 1465 1466 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1467 1468 return (0); 1469 } 1470 1471 static int 1472 dtrace_priv_kernel(dtrace_state_t *state) 1473 { 1474 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1475 return (1); 1476 1477 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1478 1479 return (0); 1480 } 1481 1482 static int 1483 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1484 { 1485 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1486 return (1); 1487 1488 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1489 1490 return (0); 1491 } 1492 1493 /* 1494 * Determine if the dte_cond of the specified ECB allows for processing of 1495 * the current probe to continue. Note that this routine may allow continued 1496 * processing, but with access(es) stripped from the mstate's dtms_access 1497 * field. 1498 */ 1499 static int 1500 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1501 dtrace_ecb_t *ecb) 1502 { 1503 dtrace_probe_t *probe = ecb->dte_probe; 1504 dtrace_provider_t *prov = probe->dtpr_provider; 1505 dtrace_pops_t *pops = &prov->dtpv_pops; 1506 int mode = DTRACE_MODE_NOPRIV_DROP; 1507 1508 ASSERT(ecb->dte_cond); 1509 1510 if (pops->dtps_mode != NULL) { 1511 mode = pops->dtps_mode(prov->dtpv_arg, 1512 probe->dtpr_id, probe->dtpr_arg); 1513 1514 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1515 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1516 DTRACE_MODE_NOPRIV_DROP)); 1517 } 1518 1519 /* 1520 * If the dte_cond bits indicate that this consumer is only allowed to 1521 * see user-mode firings of this probe, check that the probe was fired 1522 * while in a user context. If that's not the case, use the policy 1523 * specified by the provider to determine if we drop the probe or 1524 * merely restrict operation. 1525 */ 1526 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1527 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1528 1529 if (!(mode & DTRACE_MODE_USER)) { 1530 if (mode & DTRACE_MODE_NOPRIV_DROP) 1531 return (0); 1532 1533 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1534 } 1535 } 1536 1537 /* 1538 * This is more subtle than it looks. We have to be absolutely certain 1539 * that CRED() isn't going to change out from under us so it's only 1540 * legit to examine that structure if we're in constrained situations. 1541 * Currently, the only times we'll this check is if a non-super-user 1542 * has enabled the profile or syscall providers -- providers that 1543 * allow visibility of all processes. For the profile case, the check 1544 * above will ensure that we're examining a user context. 1545 */ 1546 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1547 cred_t *cr; 1548 cred_t *s_cr = state->dts_cred.dcr_cred; 1549 proc_t *proc; 1550 1551 ASSERT(s_cr != NULL); 1552 1553 if ((cr = CRED()) == NULL || 1554 s_cr->cr_uid != cr->cr_uid || 1555 s_cr->cr_uid != cr->cr_ruid || 1556 s_cr->cr_uid != cr->cr_suid || 1557 s_cr->cr_gid != cr->cr_gid || 1558 s_cr->cr_gid != cr->cr_rgid || 1559 s_cr->cr_gid != cr->cr_sgid || 1560 (proc = ttoproc(curthread)) == NULL || 1561 (proc->p_flag & SNOCD)) { 1562 if (mode & DTRACE_MODE_NOPRIV_DROP) 1563 return (0); 1564 1565 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1566 } 1567 } 1568 1569 /* 1570 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1571 * in our zone, check to see if our mode policy is to restrict rather 1572 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1573 * and DTRACE_ACCESS_ARGS 1574 */ 1575 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1576 cred_t *cr; 1577 cred_t *s_cr = state->dts_cred.dcr_cred; 1578 1579 ASSERT(s_cr != NULL); 1580 1581 if ((cr = CRED()) == NULL || 1582 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1583 if (mode & DTRACE_MODE_NOPRIV_DROP) 1584 return (0); 1585 1586 mstate->dtms_access &= 1587 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1588 } 1589 } 1590 1591 /* 1592 * By merits of being in this code path at all, we have limited 1593 * privileges. If the provider has indicated that limited privileges 1594 * are to denote restricted operation, strip off the ability to access 1595 * arguments. 1596 */ 1597 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1598 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1599 1600 return (1); 1601 } 1602 1603 /* 1604 * Note: not called from probe context. This function is called 1605 * asynchronously (and at a regular interval) from outside of probe context to 1606 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1607 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1608 */ 1609 void 1610 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1611 { 1612 dtrace_dynvar_t *dirty; 1613 dtrace_dstate_percpu_t *dcpu; 1614 dtrace_dynvar_t **rinsep; 1615 int i, j, work = 0; 1616 1617 for (i = 0; i < NCPU; i++) { 1618 dcpu = &dstate->dtds_percpu[i]; 1619 rinsep = &dcpu->dtdsc_rinsing; 1620 1621 /* 1622 * If the dirty list is NULL, there is no dirty work to do. 1623 */ 1624 if (dcpu->dtdsc_dirty == NULL) 1625 continue; 1626 1627 if (dcpu->dtdsc_rinsing != NULL) { 1628 /* 1629 * If the rinsing list is non-NULL, then it is because 1630 * this CPU was selected to accept another CPU's 1631 * dirty list -- and since that time, dirty buffers 1632 * have accumulated. This is a highly unlikely 1633 * condition, but we choose to ignore the dirty 1634 * buffers -- they'll be picked up a future cleanse. 1635 */ 1636 continue; 1637 } 1638 1639 if (dcpu->dtdsc_clean != NULL) { 1640 /* 1641 * If the clean list is non-NULL, then we're in a 1642 * situation where a CPU has done deallocations (we 1643 * have a non-NULL dirty list) but no allocations (we 1644 * also have a non-NULL clean list). We can't simply 1645 * move the dirty list into the clean list on this 1646 * CPU, yet we also don't want to allow this condition 1647 * to persist, lest a short clean list prevent a 1648 * massive dirty list from being cleaned (which in 1649 * turn could lead to otherwise avoidable dynamic 1650 * drops). To deal with this, we look for some CPU 1651 * with a NULL clean list, NULL dirty list, and NULL 1652 * rinsing list -- and then we borrow this CPU to 1653 * rinse our dirty list. 1654 */ 1655 for (j = 0; j < NCPU; j++) { 1656 dtrace_dstate_percpu_t *rinser; 1657 1658 rinser = &dstate->dtds_percpu[j]; 1659 1660 if (rinser->dtdsc_rinsing != NULL) 1661 continue; 1662 1663 if (rinser->dtdsc_dirty != NULL) 1664 continue; 1665 1666 if (rinser->dtdsc_clean != NULL) 1667 continue; 1668 1669 rinsep = &rinser->dtdsc_rinsing; 1670 break; 1671 } 1672 1673 if (j == NCPU) { 1674 /* 1675 * We were unable to find another CPU that 1676 * could accept this dirty list -- we are 1677 * therefore unable to clean it now. 1678 */ 1679 dtrace_dynvar_failclean++; 1680 continue; 1681 } 1682 } 1683 1684 work = 1; 1685 1686 /* 1687 * Atomically move the dirty list aside. 1688 */ 1689 do { 1690 dirty = dcpu->dtdsc_dirty; 1691 1692 /* 1693 * Before we zap the dirty list, set the rinsing list. 1694 * (This allows for a potential assertion in 1695 * dtrace_dynvar(): if a free dynamic variable appears 1696 * on a hash chain, either the dirty list or the 1697 * rinsing list for some CPU must be non-NULL.) 1698 */ 1699 *rinsep = dirty; 1700 dtrace_membar_producer(); 1701 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1702 dirty, NULL) != dirty); 1703 } 1704 1705 if (!work) { 1706 /* 1707 * We have no work to do; we can simply return. 1708 */ 1709 return; 1710 } 1711 1712 dtrace_sync(); 1713 1714 for (i = 0; i < NCPU; i++) { 1715 dcpu = &dstate->dtds_percpu[i]; 1716 1717 if (dcpu->dtdsc_rinsing == NULL) 1718 continue; 1719 1720 /* 1721 * We are now guaranteed that no hash chain contains a pointer 1722 * into this dirty list; we can make it clean. 1723 */ 1724 ASSERT(dcpu->dtdsc_clean == NULL); 1725 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1726 dcpu->dtdsc_rinsing = NULL; 1727 } 1728 1729 /* 1730 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1731 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1732 * This prevents a race whereby a CPU incorrectly decides that 1733 * the state should be something other than DTRACE_DSTATE_CLEAN 1734 * after dtrace_dynvar_clean() has completed. 1735 */ 1736 dtrace_sync(); 1737 1738 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1739 } 1740 1741 /* 1742 * Depending on the value of the op parameter, this function looks-up, 1743 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1744 * allocation is requested, this function will return a pointer to a 1745 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1746 * variable can be allocated. If NULL is returned, the appropriate counter 1747 * will be incremented. 1748 */ 1749 dtrace_dynvar_t * 1750 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1751 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1752 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1753 { 1754 uint64_t hashval = DTRACE_DYNHASH_VALID; 1755 dtrace_dynhash_t *hash = dstate->dtds_hash; 1756 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1757 processorid_t me = CPU->cpu_id, cpu = me; 1758 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1759 size_t bucket, ksize; 1760 size_t chunksize = dstate->dtds_chunksize; 1761 uintptr_t kdata, lock, nstate; 1762 uint_t i; 1763 1764 ASSERT(nkeys != 0); 1765 1766 /* 1767 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1768 * algorithm. For the by-value portions, we perform the algorithm in 1769 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1770 * bit, and seems to have only a minute effect on distribution. For 1771 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1772 * over each referenced byte. It's painful to do this, but it's much 1773 * better than pathological hash distribution. The efficacy of the 1774 * hashing algorithm (and a comparison with other algorithms) may be 1775 * found by running the ::dtrace_dynstat MDB dcmd. 1776 */ 1777 for (i = 0; i < nkeys; i++) { 1778 if (key[i].dttk_size == 0) { 1779 uint64_t val = key[i].dttk_value; 1780 1781 hashval += (val >> 48) & 0xffff; 1782 hashval += (hashval << 10); 1783 hashval ^= (hashval >> 6); 1784 1785 hashval += (val >> 32) & 0xffff; 1786 hashval += (hashval << 10); 1787 hashval ^= (hashval >> 6); 1788 1789 hashval += (val >> 16) & 0xffff; 1790 hashval += (hashval << 10); 1791 hashval ^= (hashval >> 6); 1792 1793 hashval += val & 0xffff; 1794 hashval += (hashval << 10); 1795 hashval ^= (hashval >> 6); 1796 } else { 1797 /* 1798 * This is incredibly painful, but it beats the hell 1799 * out of the alternative. 1800 */ 1801 uint64_t j, size = key[i].dttk_size; 1802 uintptr_t base = (uintptr_t)key[i].dttk_value; 1803 1804 if (!dtrace_canload(base, size, mstate, vstate)) 1805 break; 1806 1807 for (j = 0; j < size; j++) { 1808 hashval += dtrace_load8(base + j); 1809 hashval += (hashval << 10); 1810 hashval ^= (hashval >> 6); 1811 } 1812 } 1813 } 1814 1815 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1816 return (NULL); 1817 1818 hashval += (hashval << 3); 1819 hashval ^= (hashval >> 11); 1820 hashval += (hashval << 15); 1821 1822 /* 1823 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1824 * comes out to be one of our two sentinel hash values. If this 1825 * actually happens, we set the hashval to be a value known to be a 1826 * non-sentinel value. 1827 */ 1828 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1829 hashval = DTRACE_DYNHASH_VALID; 1830 1831 /* 1832 * Yes, it's painful to do a divide here. If the cycle count becomes 1833 * important here, tricks can be pulled to reduce it. (However, it's 1834 * critical that hash collisions be kept to an absolute minimum; 1835 * they're much more painful than a divide.) It's better to have a 1836 * solution that generates few collisions and still keeps things 1837 * relatively simple. 1838 */ 1839 bucket = hashval % dstate->dtds_hashsize; 1840 1841 if (op == DTRACE_DYNVAR_DEALLOC) { 1842 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1843 1844 for (;;) { 1845 while ((lock = *lockp) & 1) 1846 continue; 1847 1848 if (dtrace_casptr((void *)lockp, 1849 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1850 break; 1851 } 1852 1853 dtrace_membar_producer(); 1854 } 1855 1856 top: 1857 prev = NULL; 1858 lock = hash[bucket].dtdh_lock; 1859 1860 dtrace_membar_consumer(); 1861 1862 start = hash[bucket].dtdh_chain; 1863 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1864 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1865 op != DTRACE_DYNVAR_DEALLOC)); 1866 1867 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1868 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1869 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1870 1871 if (dvar->dtdv_hashval != hashval) { 1872 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1873 /* 1874 * We've reached the sink, and therefore the 1875 * end of the hash chain; we can kick out of 1876 * the loop knowing that we have seen a valid 1877 * snapshot of state. 1878 */ 1879 ASSERT(dvar->dtdv_next == NULL); 1880 ASSERT(dvar == &dtrace_dynhash_sink); 1881 break; 1882 } 1883 1884 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1885 /* 1886 * We've gone off the rails: somewhere along 1887 * the line, one of the members of this hash 1888 * chain was deleted. Note that we could also 1889 * detect this by simply letting this loop run 1890 * to completion, as we would eventually hit 1891 * the end of the dirty list. However, we 1892 * want to avoid running the length of the 1893 * dirty list unnecessarily (it might be quite 1894 * long), so we catch this as early as 1895 * possible by detecting the hash marker. In 1896 * this case, we simply set dvar to NULL and 1897 * break; the conditional after the loop will 1898 * send us back to top. 1899 */ 1900 dvar = NULL; 1901 break; 1902 } 1903 1904 goto next; 1905 } 1906 1907 if (dtuple->dtt_nkeys != nkeys) 1908 goto next; 1909 1910 for (i = 0; i < nkeys; i++, dkey++) { 1911 if (dkey->dttk_size != key[i].dttk_size) 1912 goto next; /* size or type mismatch */ 1913 1914 if (dkey->dttk_size != 0) { 1915 if (dtrace_bcmp( 1916 (void *)(uintptr_t)key[i].dttk_value, 1917 (void *)(uintptr_t)dkey->dttk_value, 1918 dkey->dttk_size)) 1919 goto next; 1920 } else { 1921 if (dkey->dttk_value != key[i].dttk_value) 1922 goto next; 1923 } 1924 } 1925 1926 if (op != DTRACE_DYNVAR_DEALLOC) 1927 return (dvar); 1928 1929 ASSERT(dvar->dtdv_next == NULL || 1930 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1931 1932 if (prev != NULL) { 1933 ASSERT(hash[bucket].dtdh_chain != dvar); 1934 ASSERT(start != dvar); 1935 ASSERT(prev->dtdv_next == dvar); 1936 prev->dtdv_next = dvar->dtdv_next; 1937 } else { 1938 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1939 start, dvar->dtdv_next) != start) { 1940 /* 1941 * We have failed to atomically swing the 1942 * hash table head pointer, presumably because 1943 * of a conflicting allocation on another CPU. 1944 * We need to reread the hash chain and try 1945 * again. 1946 */ 1947 goto top; 1948 } 1949 } 1950 1951 dtrace_membar_producer(); 1952 1953 /* 1954 * Now set the hash value to indicate that it's free. 1955 */ 1956 ASSERT(hash[bucket].dtdh_chain != dvar); 1957 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1958 1959 dtrace_membar_producer(); 1960 1961 /* 1962 * Set the next pointer to point at the dirty list, and 1963 * atomically swing the dirty pointer to the newly freed dvar. 1964 */ 1965 do { 1966 next = dcpu->dtdsc_dirty; 1967 dvar->dtdv_next = next; 1968 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1969 1970 /* 1971 * Finally, unlock this hash bucket. 1972 */ 1973 ASSERT(hash[bucket].dtdh_lock == lock); 1974 ASSERT(lock & 1); 1975 hash[bucket].dtdh_lock++; 1976 1977 return (NULL); 1978 next: 1979 prev = dvar; 1980 continue; 1981 } 1982 1983 if (dvar == NULL) { 1984 /* 1985 * If dvar is NULL, it is because we went off the rails: 1986 * one of the elements that we traversed in the hash chain 1987 * was deleted while we were traversing it. In this case, 1988 * we assert that we aren't doing a dealloc (deallocs lock 1989 * the hash bucket to prevent themselves from racing with 1990 * one another), and retry the hash chain traversal. 1991 */ 1992 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1993 goto top; 1994 } 1995 1996 if (op != DTRACE_DYNVAR_ALLOC) { 1997 /* 1998 * If we are not to allocate a new variable, we want to 1999 * return NULL now. Before we return, check that the value 2000 * of the lock word hasn't changed. If it has, we may have 2001 * seen an inconsistent snapshot. 2002 */ 2003 if (op == DTRACE_DYNVAR_NOALLOC) { 2004 if (hash[bucket].dtdh_lock != lock) 2005 goto top; 2006 } else { 2007 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2008 ASSERT(hash[bucket].dtdh_lock == lock); 2009 ASSERT(lock & 1); 2010 hash[bucket].dtdh_lock++; 2011 } 2012 2013 return (NULL); 2014 } 2015 2016 /* 2017 * We need to allocate a new dynamic variable. The size we need is the 2018 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2019 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2020 * the size of any referred-to data (dsize). We then round the final 2021 * size up to the chunksize for allocation. 2022 */ 2023 for (ksize = 0, i = 0; i < nkeys; i++) 2024 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2025 2026 /* 2027 * This should be pretty much impossible, but could happen if, say, 2028 * strange DIF specified the tuple. Ideally, this should be an 2029 * assertion and not an error condition -- but that requires that the 2030 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2031 * bullet-proof. (That is, it must not be able to be fooled by 2032 * malicious DIF.) Given the lack of backwards branches in DIF, 2033 * solving this would presumably not amount to solving the Halting 2034 * Problem -- but it still seems awfully hard. 2035 */ 2036 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2037 ksize + dsize > chunksize) { 2038 dcpu->dtdsc_drops++; 2039 return (NULL); 2040 } 2041 2042 nstate = DTRACE_DSTATE_EMPTY; 2043 2044 do { 2045 retry: 2046 free = dcpu->dtdsc_free; 2047 2048 if (free == NULL) { 2049 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2050 void *rval; 2051 2052 if (clean == NULL) { 2053 /* 2054 * We're out of dynamic variable space on 2055 * this CPU. Unless we have tried all CPUs, 2056 * we'll try to allocate from a different 2057 * CPU. 2058 */ 2059 switch (dstate->dtds_state) { 2060 case DTRACE_DSTATE_CLEAN: { 2061 void *sp = &dstate->dtds_state; 2062 2063 if (++cpu >= NCPU) 2064 cpu = 0; 2065 2066 if (dcpu->dtdsc_dirty != NULL && 2067 nstate == DTRACE_DSTATE_EMPTY) 2068 nstate = DTRACE_DSTATE_DIRTY; 2069 2070 if (dcpu->dtdsc_rinsing != NULL) 2071 nstate = DTRACE_DSTATE_RINSING; 2072 2073 dcpu = &dstate->dtds_percpu[cpu]; 2074 2075 if (cpu != me) 2076 goto retry; 2077 2078 (void) dtrace_cas32(sp, 2079 DTRACE_DSTATE_CLEAN, nstate); 2080 2081 /* 2082 * To increment the correct bean 2083 * counter, take another lap. 2084 */ 2085 goto retry; 2086 } 2087 2088 case DTRACE_DSTATE_DIRTY: 2089 dcpu->dtdsc_dirty_drops++; 2090 break; 2091 2092 case DTRACE_DSTATE_RINSING: 2093 dcpu->dtdsc_rinsing_drops++; 2094 break; 2095 2096 case DTRACE_DSTATE_EMPTY: 2097 dcpu->dtdsc_drops++; 2098 break; 2099 } 2100 2101 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2102 return (NULL); 2103 } 2104 2105 /* 2106 * The clean list appears to be non-empty. We want to 2107 * move the clean list to the free list; we start by 2108 * moving the clean pointer aside. 2109 */ 2110 if (dtrace_casptr(&dcpu->dtdsc_clean, 2111 clean, NULL) != clean) { 2112 /* 2113 * We are in one of two situations: 2114 * 2115 * (a) The clean list was switched to the 2116 * free list by another CPU. 2117 * 2118 * (b) The clean list was added to by the 2119 * cleansing cyclic. 2120 * 2121 * In either of these situations, we can 2122 * just reattempt the free list allocation. 2123 */ 2124 goto retry; 2125 } 2126 2127 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2128 2129 /* 2130 * Now we'll move the clean list to our free list. 2131 * It's impossible for this to fail: the only way 2132 * the free list can be updated is through this 2133 * code path, and only one CPU can own the clean list. 2134 * Thus, it would only be possible for this to fail if 2135 * this code were racing with dtrace_dynvar_clean(). 2136 * (That is, if dtrace_dynvar_clean() updated the clean 2137 * list, and we ended up racing to update the free 2138 * list.) This race is prevented by the dtrace_sync() 2139 * in dtrace_dynvar_clean() -- which flushes the 2140 * owners of the clean lists out before resetting 2141 * the clean lists. 2142 */ 2143 dcpu = &dstate->dtds_percpu[me]; 2144 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2145 ASSERT(rval == NULL); 2146 goto retry; 2147 } 2148 2149 dvar = free; 2150 new_free = dvar->dtdv_next; 2151 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2152 2153 /* 2154 * We have now allocated a new chunk. We copy the tuple keys into the 2155 * tuple array and copy any referenced key data into the data space 2156 * following the tuple array. As we do this, we relocate dttk_value 2157 * in the final tuple to point to the key data address in the chunk. 2158 */ 2159 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2160 dvar->dtdv_data = (void *)(kdata + ksize); 2161 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2162 2163 for (i = 0; i < nkeys; i++) { 2164 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2165 size_t kesize = key[i].dttk_size; 2166 2167 if (kesize != 0) { 2168 dtrace_bcopy( 2169 (const void *)(uintptr_t)key[i].dttk_value, 2170 (void *)kdata, kesize); 2171 dkey->dttk_value = kdata; 2172 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2173 } else { 2174 dkey->dttk_value = key[i].dttk_value; 2175 } 2176 2177 dkey->dttk_size = kesize; 2178 } 2179 2180 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2181 dvar->dtdv_hashval = hashval; 2182 dvar->dtdv_next = start; 2183 2184 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2185 return (dvar); 2186 2187 /* 2188 * The cas has failed. Either another CPU is adding an element to 2189 * this hash chain, or another CPU is deleting an element from this 2190 * hash chain. The simplest way to deal with both of these cases 2191 * (though not necessarily the most efficient) is to free our 2192 * allocated block and re-attempt it all. Note that the free is 2193 * to the dirty list and _not_ to the free list. This is to prevent 2194 * races with allocators, above. 2195 */ 2196 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2197 2198 dtrace_membar_producer(); 2199 2200 do { 2201 free = dcpu->dtdsc_dirty; 2202 dvar->dtdv_next = free; 2203 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2204 2205 goto top; 2206 } 2207 2208 /*ARGSUSED*/ 2209 static void 2210 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2211 { 2212 if ((int64_t)nval < (int64_t)*oval) 2213 *oval = nval; 2214 } 2215 2216 /*ARGSUSED*/ 2217 static void 2218 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2219 { 2220 if ((int64_t)nval > (int64_t)*oval) 2221 *oval = nval; 2222 } 2223 2224 static void 2225 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2226 { 2227 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2228 int64_t val = (int64_t)nval; 2229 2230 if (val < 0) { 2231 for (i = 0; i < zero; i++) { 2232 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2233 quanta[i] += incr; 2234 return; 2235 } 2236 } 2237 } else { 2238 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2239 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2240 quanta[i - 1] += incr; 2241 return; 2242 } 2243 } 2244 2245 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2246 return; 2247 } 2248 2249 ASSERT(0); 2250 } 2251 2252 static void 2253 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2254 { 2255 uint64_t arg = *lquanta++; 2256 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2257 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2258 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2259 int32_t val = (int32_t)nval, level; 2260 2261 ASSERT(step != 0); 2262 ASSERT(levels != 0); 2263 2264 if (val < base) { 2265 /* 2266 * This is an underflow. 2267 */ 2268 lquanta[0] += incr; 2269 return; 2270 } 2271 2272 level = (val - base) / step; 2273 2274 if (level < levels) { 2275 lquanta[level + 1] += incr; 2276 return; 2277 } 2278 2279 /* 2280 * This is an overflow. 2281 */ 2282 lquanta[levels + 1] += incr; 2283 } 2284 2285 static int 2286 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2287 uint16_t high, uint16_t nsteps, int64_t value) 2288 { 2289 int64_t this = 1, last, next; 2290 int base = 1, order; 2291 2292 ASSERT(factor <= nsteps); 2293 ASSERT(nsteps % factor == 0); 2294 2295 for (order = 0; order < low; order++) 2296 this *= factor; 2297 2298 /* 2299 * If our value is less than our factor taken to the power of the 2300 * low order of magnitude, it goes into the zeroth bucket. 2301 */ 2302 if (value < (last = this)) 2303 return (0); 2304 2305 for (this *= factor; order <= high; order++) { 2306 int nbuckets = this > nsteps ? nsteps : this; 2307 2308 if ((next = this * factor) < this) { 2309 /* 2310 * We should not generally get log/linear quantizations 2311 * with a high magnitude that allows 64-bits to 2312 * overflow, but we nonetheless protect against this 2313 * by explicitly checking for overflow, and clamping 2314 * our value accordingly. 2315 */ 2316 value = this - 1; 2317 } 2318 2319 if (value < this) { 2320 /* 2321 * If our value lies within this order of magnitude, 2322 * determine its position by taking the offset within 2323 * the order of magnitude, dividing by the bucket 2324 * width, and adding to our (accumulated) base. 2325 */ 2326 return (base + (value - last) / (this / nbuckets)); 2327 } 2328 2329 base += nbuckets - (nbuckets / factor); 2330 last = this; 2331 this = next; 2332 } 2333 2334 /* 2335 * Our value is greater than or equal to our factor taken to the 2336 * power of one plus the high magnitude -- return the top bucket. 2337 */ 2338 return (base); 2339 } 2340 2341 static void 2342 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2343 { 2344 uint64_t arg = *llquanta++; 2345 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2346 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2347 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2348 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2349 2350 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2351 low, high, nsteps, nval)] += incr; 2352 } 2353 2354 /*ARGSUSED*/ 2355 static void 2356 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2357 { 2358 data[0]++; 2359 data[1] += nval; 2360 } 2361 2362 /*ARGSUSED*/ 2363 static void 2364 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2365 { 2366 int64_t snval = (int64_t)nval; 2367 uint64_t tmp[2]; 2368 2369 data[0]++; 2370 data[1] += nval; 2371 2372 /* 2373 * What we want to say here is: 2374 * 2375 * data[2] += nval * nval; 2376 * 2377 * But given that nval is 64-bit, we could easily overflow, so 2378 * we do this as 128-bit arithmetic. 2379 */ 2380 if (snval < 0) 2381 snval = -snval; 2382 2383 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2384 dtrace_add_128(data + 2, tmp, data + 2); 2385 } 2386 2387 /*ARGSUSED*/ 2388 static void 2389 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2390 { 2391 *oval = *oval + 1; 2392 } 2393 2394 /*ARGSUSED*/ 2395 static void 2396 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2397 { 2398 *oval += nval; 2399 } 2400 2401 /* 2402 * Aggregate given the tuple in the principal data buffer, and the aggregating 2403 * action denoted by the specified dtrace_aggregation_t. The aggregation 2404 * buffer is specified as the buf parameter. This routine does not return 2405 * failure; if there is no space in the aggregation buffer, the data will be 2406 * dropped, and a corresponding counter incremented. 2407 */ 2408 static void 2409 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2410 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2411 { 2412 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2413 uint32_t i, ndx, size, fsize; 2414 uint32_t align = sizeof (uint64_t) - 1; 2415 dtrace_aggbuffer_t *agb; 2416 dtrace_aggkey_t *key; 2417 uint32_t hashval = 0, limit, isstr; 2418 caddr_t tomax, data, kdata; 2419 dtrace_actkind_t action; 2420 dtrace_action_t *act; 2421 uintptr_t offs; 2422 2423 if (buf == NULL) 2424 return; 2425 2426 if (!agg->dtag_hasarg) { 2427 /* 2428 * Currently, only quantize() and lquantize() take additional 2429 * arguments, and they have the same semantics: an increment 2430 * value that defaults to 1 when not present. If additional 2431 * aggregating actions take arguments, the setting of the 2432 * default argument value will presumably have to become more 2433 * sophisticated... 2434 */ 2435 arg = 1; 2436 } 2437 2438 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2439 size = rec->dtrd_offset - agg->dtag_base; 2440 fsize = size + rec->dtrd_size; 2441 2442 ASSERT(dbuf->dtb_tomax != NULL); 2443 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2444 2445 if ((tomax = buf->dtb_tomax) == NULL) { 2446 dtrace_buffer_drop(buf); 2447 return; 2448 } 2449 2450 /* 2451 * The metastructure is always at the bottom of the buffer. 2452 */ 2453 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2454 sizeof (dtrace_aggbuffer_t)); 2455 2456 if (buf->dtb_offset == 0) { 2457 /* 2458 * We just kludge up approximately 1/8th of the size to be 2459 * buckets. If this guess ends up being routinely 2460 * off-the-mark, we may need to dynamically readjust this 2461 * based on past performance. 2462 */ 2463 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2464 2465 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2466 (uintptr_t)tomax || hashsize == 0) { 2467 /* 2468 * We've been given a ludicrously small buffer; 2469 * increment our drop count and leave. 2470 */ 2471 dtrace_buffer_drop(buf); 2472 return; 2473 } 2474 2475 /* 2476 * And now, a pathetic attempt to try to get a an odd (or 2477 * perchance, a prime) hash size for better hash distribution. 2478 */ 2479 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2480 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2481 2482 agb->dtagb_hashsize = hashsize; 2483 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2484 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2485 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2486 2487 for (i = 0; i < agb->dtagb_hashsize; i++) 2488 agb->dtagb_hash[i] = NULL; 2489 } 2490 2491 ASSERT(agg->dtag_first != NULL); 2492 ASSERT(agg->dtag_first->dta_intuple); 2493 2494 /* 2495 * Calculate the hash value based on the key. Note that we _don't_ 2496 * include the aggid in the hashing (but we will store it as part of 2497 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2498 * algorithm: a simple, quick algorithm that has no known funnels, and 2499 * gets good distribution in practice. The efficacy of the hashing 2500 * algorithm (and a comparison with other algorithms) may be found by 2501 * running the ::dtrace_aggstat MDB dcmd. 2502 */ 2503 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2504 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2505 limit = i + act->dta_rec.dtrd_size; 2506 ASSERT(limit <= size); 2507 isstr = DTRACEACT_ISSTRING(act); 2508 2509 for (; i < limit; i++) { 2510 hashval += data[i]; 2511 hashval += (hashval << 10); 2512 hashval ^= (hashval >> 6); 2513 2514 if (isstr && data[i] == '\0') 2515 break; 2516 } 2517 } 2518 2519 hashval += (hashval << 3); 2520 hashval ^= (hashval >> 11); 2521 hashval += (hashval << 15); 2522 2523 /* 2524 * Yes, the divide here is expensive -- but it's generally the least 2525 * of the performance issues given the amount of data that we iterate 2526 * over to compute hash values, compare data, etc. 2527 */ 2528 ndx = hashval % agb->dtagb_hashsize; 2529 2530 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2531 ASSERT((caddr_t)key >= tomax); 2532 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2533 2534 if (hashval != key->dtak_hashval || key->dtak_size != size) 2535 continue; 2536 2537 kdata = key->dtak_data; 2538 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2539 2540 for (act = agg->dtag_first; act->dta_intuple; 2541 act = act->dta_next) { 2542 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2543 limit = i + act->dta_rec.dtrd_size; 2544 ASSERT(limit <= size); 2545 isstr = DTRACEACT_ISSTRING(act); 2546 2547 for (; i < limit; i++) { 2548 if (kdata[i] != data[i]) 2549 goto next; 2550 2551 if (isstr && data[i] == '\0') 2552 break; 2553 } 2554 } 2555 2556 if (action != key->dtak_action) { 2557 /* 2558 * We are aggregating on the same value in the same 2559 * aggregation with two different aggregating actions. 2560 * (This should have been picked up in the compiler, 2561 * so we may be dealing with errant or devious DIF.) 2562 * This is an error condition; we indicate as much, 2563 * and return. 2564 */ 2565 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2566 return; 2567 } 2568 2569 /* 2570 * This is a hit: we need to apply the aggregator to 2571 * the value at this key. 2572 */ 2573 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2574 return; 2575 next: 2576 continue; 2577 } 2578 2579 /* 2580 * We didn't find it. We need to allocate some zero-filled space, 2581 * link it into the hash table appropriately, and apply the aggregator 2582 * to the (zero-filled) value. 2583 */ 2584 offs = buf->dtb_offset; 2585 while (offs & (align - 1)) 2586 offs += sizeof (uint32_t); 2587 2588 /* 2589 * If we don't have enough room to both allocate a new key _and_ 2590 * its associated data, increment the drop count and return. 2591 */ 2592 if ((uintptr_t)tomax + offs + fsize > 2593 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2594 dtrace_buffer_drop(buf); 2595 return; 2596 } 2597 2598 /*CONSTCOND*/ 2599 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2600 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2601 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2602 2603 key->dtak_data = kdata = tomax + offs; 2604 buf->dtb_offset = offs + fsize; 2605 2606 /* 2607 * Now copy the data across. 2608 */ 2609 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2610 2611 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2612 kdata[i] = data[i]; 2613 2614 /* 2615 * Because strings are not zeroed out by default, we need to iterate 2616 * looking for actions that store strings, and we need to explicitly 2617 * pad these strings out with zeroes. 2618 */ 2619 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2620 int nul; 2621 2622 if (!DTRACEACT_ISSTRING(act)) 2623 continue; 2624 2625 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2626 limit = i + act->dta_rec.dtrd_size; 2627 ASSERT(limit <= size); 2628 2629 for (nul = 0; i < limit; i++) { 2630 if (nul) { 2631 kdata[i] = '\0'; 2632 continue; 2633 } 2634 2635 if (data[i] != '\0') 2636 continue; 2637 2638 nul = 1; 2639 } 2640 } 2641 2642 for (i = size; i < fsize; i++) 2643 kdata[i] = 0; 2644 2645 key->dtak_hashval = hashval; 2646 key->dtak_size = size; 2647 key->dtak_action = action; 2648 key->dtak_next = agb->dtagb_hash[ndx]; 2649 agb->dtagb_hash[ndx] = key; 2650 2651 /* 2652 * Finally, apply the aggregator. 2653 */ 2654 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2655 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2656 } 2657 2658 /* 2659 * Given consumer state, this routine finds a speculation in the INACTIVE 2660 * state and transitions it into the ACTIVE state. If there is no speculation 2661 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2662 * incremented -- it is up to the caller to take appropriate action. 2663 */ 2664 static int 2665 dtrace_speculation(dtrace_state_t *state) 2666 { 2667 int i = 0; 2668 dtrace_speculation_state_t current; 2669 uint32_t *stat = &state->dts_speculations_unavail, count; 2670 2671 while (i < state->dts_nspeculations) { 2672 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2673 2674 current = spec->dtsp_state; 2675 2676 if (current != DTRACESPEC_INACTIVE) { 2677 if (current == DTRACESPEC_COMMITTINGMANY || 2678 current == DTRACESPEC_COMMITTING || 2679 current == DTRACESPEC_DISCARDING) 2680 stat = &state->dts_speculations_busy; 2681 i++; 2682 continue; 2683 } 2684 2685 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2686 current, DTRACESPEC_ACTIVE) == current) 2687 return (i + 1); 2688 } 2689 2690 /* 2691 * We couldn't find a speculation. If we found as much as a single 2692 * busy speculation buffer, we'll attribute this failure as "busy" 2693 * instead of "unavail". 2694 */ 2695 do { 2696 count = *stat; 2697 } while (dtrace_cas32(stat, count, count + 1) != count); 2698 2699 return (0); 2700 } 2701 2702 /* 2703 * This routine commits an active speculation. If the specified speculation 2704 * is not in a valid state to perform a commit(), this routine will silently do 2705 * nothing. The state of the specified speculation is transitioned according 2706 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2707 */ 2708 static void 2709 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2710 dtrace_specid_t which) 2711 { 2712 dtrace_speculation_t *spec; 2713 dtrace_buffer_t *src, *dest; 2714 uintptr_t daddr, saddr, dlimit, slimit; 2715 dtrace_speculation_state_t current, new; 2716 intptr_t offs; 2717 uint64_t timestamp; 2718 2719 if (which == 0) 2720 return; 2721 2722 if (which > state->dts_nspeculations) { 2723 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2724 return; 2725 } 2726 2727 spec = &state->dts_speculations[which - 1]; 2728 src = &spec->dtsp_buffer[cpu]; 2729 dest = &state->dts_buffer[cpu]; 2730 2731 do { 2732 current = spec->dtsp_state; 2733 2734 if (current == DTRACESPEC_COMMITTINGMANY) 2735 break; 2736 2737 switch (current) { 2738 case DTRACESPEC_INACTIVE: 2739 case DTRACESPEC_DISCARDING: 2740 return; 2741 2742 case DTRACESPEC_COMMITTING: 2743 /* 2744 * This is only possible if we are (a) commit()'ing 2745 * without having done a prior speculate() on this CPU 2746 * and (b) racing with another commit() on a different 2747 * CPU. There's nothing to do -- we just assert that 2748 * our offset is 0. 2749 */ 2750 ASSERT(src->dtb_offset == 0); 2751 return; 2752 2753 case DTRACESPEC_ACTIVE: 2754 new = DTRACESPEC_COMMITTING; 2755 break; 2756 2757 case DTRACESPEC_ACTIVEONE: 2758 /* 2759 * This speculation is active on one CPU. If our 2760 * buffer offset is non-zero, we know that the one CPU 2761 * must be us. Otherwise, we are committing on a 2762 * different CPU from the speculate(), and we must 2763 * rely on being asynchronously cleaned. 2764 */ 2765 if (src->dtb_offset != 0) { 2766 new = DTRACESPEC_COMMITTING; 2767 break; 2768 } 2769 /*FALLTHROUGH*/ 2770 2771 case DTRACESPEC_ACTIVEMANY: 2772 new = DTRACESPEC_COMMITTINGMANY; 2773 break; 2774 2775 default: 2776 ASSERT(0); 2777 } 2778 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2779 current, new) != current); 2780 2781 /* 2782 * We have set the state to indicate that we are committing this 2783 * speculation. Now reserve the necessary space in the destination 2784 * buffer. 2785 */ 2786 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2787 sizeof (uint64_t), state, NULL)) < 0) { 2788 dtrace_buffer_drop(dest); 2789 goto out; 2790 } 2791 2792 /* 2793 * We have sufficient space to copy the speculative buffer into the 2794 * primary buffer. First, modify the speculative buffer, filling 2795 * in the timestamp of all entries with the current time. The data 2796 * must have the commit() time rather than the time it was traced, 2797 * so that all entries in the primary buffer are in timestamp order. 2798 */ 2799 timestamp = dtrace_gethrtime(); 2800 saddr = (uintptr_t)src->dtb_tomax; 2801 slimit = saddr + src->dtb_offset; 2802 while (saddr < slimit) { 2803 size_t size; 2804 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2805 2806 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2807 saddr += sizeof (dtrace_epid_t); 2808 continue; 2809 } 2810 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2811 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2812 2813 ASSERT3U(saddr + size, <=, slimit); 2814 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2815 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2816 2817 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2818 2819 saddr += size; 2820 } 2821 2822 /* 2823 * Copy the buffer across. (Note that this is a 2824 * highly subobtimal bcopy(); in the unlikely event that this becomes 2825 * a serious performance issue, a high-performance DTrace-specific 2826 * bcopy() should obviously be invented.) 2827 */ 2828 daddr = (uintptr_t)dest->dtb_tomax + offs; 2829 dlimit = daddr + src->dtb_offset; 2830 saddr = (uintptr_t)src->dtb_tomax; 2831 2832 /* 2833 * First, the aligned portion. 2834 */ 2835 while (dlimit - daddr >= sizeof (uint64_t)) { 2836 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2837 2838 daddr += sizeof (uint64_t); 2839 saddr += sizeof (uint64_t); 2840 } 2841 2842 /* 2843 * Now any left-over bit... 2844 */ 2845 while (dlimit - daddr) 2846 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2847 2848 /* 2849 * Finally, commit the reserved space in the destination buffer. 2850 */ 2851 dest->dtb_offset = offs + src->dtb_offset; 2852 2853 out: 2854 /* 2855 * If we're lucky enough to be the only active CPU on this speculation 2856 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2857 */ 2858 if (current == DTRACESPEC_ACTIVE || 2859 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2860 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2861 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2862 2863 ASSERT(rval == DTRACESPEC_COMMITTING); 2864 } 2865 2866 src->dtb_offset = 0; 2867 src->dtb_xamot_drops += src->dtb_drops; 2868 src->dtb_drops = 0; 2869 } 2870 2871 /* 2872 * This routine discards an active speculation. If the specified speculation 2873 * is not in a valid state to perform a discard(), this routine will silently 2874 * do nothing. The state of the specified speculation is transitioned 2875 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2876 */ 2877 static void 2878 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2879 dtrace_specid_t which) 2880 { 2881 dtrace_speculation_t *spec; 2882 dtrace_speculation_state_t current, new; 2883 dtrace_buffer_t *buf; 2884 2885 if (which == 0) 2886 return; 2887 2888 if (which > state->dts_nspeculations) { 2889 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2890 return; 2891 } 2892 2893 spec = &state->dts_speculations[which - 1]; 2894 buf = &spec->dtsp_buffer[cpu]; 2895 2896 do { 2897 current = spec->dtsp_state; 2898 2899 switch (current) { 2900 case DTRACESPEC_INACTIVE: 2901 case DTRACESPEC_COMMITTINGMANY: 2902 case DTRACESPEC_COMMITTING: 2903 case DTRACESPEC_DISCARDING: 2904 return; 2905 2906 case DTRACESPEC_ACTIVE: 2907 case DTRACESPEC_ACTIVEMANY: 2908 new = DTRACESPEC_DISCARDING; 2909 break; 2910 2911 case DTRACESPEC_ACTIVEONE: 2912 if (buf->dtb_offset != 0) { 2913 new = DTRACESPEC_INACTIVE; 2914 } else { 2915 new = DTRACESPEC_DISCARDING; 2916 } 2917 break; 2918 2919 default: 2920 ASSERT(0); 2921 } 2922 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2923 current, new) != current); 2924 2925 buf->dtb_offset = 0; 2926 buf->dtb_drops = 0; 2927 } 2928 2929 /* 2930 * Note: not called from probe context. This function is called 2931 * asynchronously from cross call context to clean any speculations that are 2932 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2933 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2934 * speculation. 2935 */ 2936 static void 2937 dtrace_speculation_clean_here(dtrace_state_t *state) 2938 { 2939 dtrace_icookie_t cookie; 2940 processorid_t cpu = CPU->cpu_id; 2941 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2942 dtrace_specid_t i; 2943 2944 cookie = dtrace_interrupt_disable(); 2945 2946 if (dest->dtb_tomax == NULL) { 2947 dtrace_interrupt_enable(cookie); 2948 return; 2949 } 2950 2951 for (i = 0; i < state->dts_nspeculations; i++) { 2952 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2953 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2954 2955 if (src->dtb_tomax == NULL) 2956 continue; 2957 2958 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2959 src->dtb_offset = 0; 2960 continue; 2961 } 2962 2963 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2964 continue; 2965 2966 if (src->dtb_offset == 0) 2967 continue; 2968 2969 dtrace_speculation_commit(state, cpu, i + 1); 2970 } 2971 2972 dtrace_interrupt_enable(cookie); 2973 } 2974 2975 /* 2976 * Note: not called from probe context. This function is called 2977 * asynchronously (and at a regular interval) to clean any speculations that 2978 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2979 * is work to be done, it cross calls all CPUs to perform that work; 2980 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2981 * INACTIVE state until they have been cleaned by all CPUs. 2982 */ 2983 static void 2984 dtrace_speculation_clean(dtrace_state_t *state) 2985 { 2986 int work = 0, rv; 2987 dtrace_specid_t i; 2988 2989 for (i = 0; i < state->dts_nspeculations; i++) { 2990 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2991 2992 ASSERT(!spec->dtsp_cleaning); 2993 2994 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2995 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2996 continue; 2997 2998 work++; 2999 spec->dtsp_cleaning = 1; 3000 } 3001 3002 if (!work) 3003 return; 3004 3005 dtrace_xcall(DTRACE_CPUALL, 3006 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3007 3008 /* 3009 * We now know that all CPUs have committed or discarded their 3010 * speculation buffers, as appropriate. We can now set the state 3011 * to inactive. 3012 */ 3013 for (i = 0; i < state->dts_nspeculations; i++) { 3014 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3015 dtrace_speculation_state_t current, new; 3016 3017 if (!spec->dtsp_cleaning) 3018 continue; 3019 3020 current = spec->dtsp_state; 3021 ASSERT(current == DTRACESPEC_DISCARDING || 3022 current == DTRACESPEC_COMMITTINGMANY); 3023 3024 new = DTRACESPEC_INACTIVE; 3025 3026 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 3027 ASSERT(rv == current); 3028 spec->dtsp_cleaning = 0; 3029 } 3030 } 3031 3032 /* 3033 * Called as part of a speculate() to get the speculative buffer associated 3034 * with a given speculation. Returns NULL if the specified speculation is not 3035 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3036 * the active CPU is not the specified CPU -- the speculation will be 3037 * atomically transitioned into the ACTIVEMANY state. 3038 */ 3039 static dtrace_buffer_t * 3040 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3041 dtrace_specid_t which) 3042 { 3043 dtrace_speculation_t *spec; 3044 dtrace_speculation_state_t current, new; 3045 dtrace_buffer_t *buf; 3046 3047 if (which == 0) 3048 return (NULL); 3049 3050 if (which > state->dts_nspeculations) { 3051 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3052 return (NULL); 3053 } 3054 3055 spec = &state->dts_speculations[which - 1]; 3056 buf = &spec->dtsp_buffer[cpuid]; 3057 3058 do { 3059 current = spec->dtsp_state; 3060 3061 switch (current) { 3062 case DTRACESPEC_INACTIVE: 3063 case DTRACESPEC_COMMITTINGMANY: 3064 case DTRACESPEC_DISCARDING: 3065 return (NULL); 3066 3067 case DTRACESPEC_COMMITTING: 3068 ASSERT(buf->dtb_offset == 0); 3069 return (NULL); 3070 3071 case DTRACESPEC_ACTIVEONE: 3072 /* 3073 * This speculation is currently active on one CPU. 3074 * Check the offset in the buffer; if it's non-zero, 3075 * that CPU must be us (and we leave the state alone). 3076 * If it's zero, assume that we're starting on a new 3077 * CPU -- and change the state to indicate that the 3078 * speculation is active on more than one CPU. 3079 */ 3080 if (buf->dtb_offset != 0) 3081 return (buf); 3082 3083 new = DTRACESPEC_ACTIVEMANY; 3084 break; 3085 3086 case DTRACESPEC_ACTIVEMANY: 3087 return (buf); 3088 3089 case DTRACESPEC_ACTIVE: 3090 new = DTRACESPEC_ACTIVEONE; 3091 break; 3092 3093 default: 3094 ASSERT(0); 3095 } 3096 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3097 current, new) != current); 3098 3099 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3100 return (buf); 3101 } 3102 3103 /* 3104 * Return a string. In the event that the user lacks the privilege to access 3105 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3106 * don't fail access checking. 3107 * 3108 * dtrace_dif_variable() uses this routine as a helper for various 3109 * builtin values such as 'execname' and 'probefunc.' 3110 */ 3111 uintptr_t 3112 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3113 dtrace_mstate_t *mstate) 3114 { 3115 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3116 uintptr_t ret; 3117 size_t strsz; 3118 3119 /* 3120 * The easy case: this probe is allowed to read all of memory, so 3121 * we can just return this as a vanilla pointer. 3122 */ 3123 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3124 return (addr); 3125 3126 /* 3127 * This is the tougher case: we copy the string in question from 3128 * kernel memory into scratch memory and return it that way: this 3129 * ensures that we won't trip up when access checking tests the 3130 * BYREF return value. 3131 */ 3132 strsz = dtrace_strlen((char *)addr, size) + 1; 3133 3134 if (mstate->dtms_scratch_ptr + strsz > 3135 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3136 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3137 return (NULL); 3138 } 3139 3140 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3141 strsz); 3142 ret = mstate->dtms_scratch_ptr; 3143 mstate->dtms_scratch_ptr += strsz; 3144 return (ret); 3145 } 3146 3147 /* 3148 * This function implements the DIF emulator's variable lookups. The emulator 3149 * passes a reserved variable identifier and optional built-in array index. 3150 */ 3151 static uint64_t 3152 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3153 uint64_t ndx) 3154 { 3155 /* 3156 * If we're accessing one of the uncached arguments, we'll turn this 3157 * into a reference in the args array. 3158 */ 3159 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3160 ndx = v - DIF_VAR_ARG0; 3161 v = DIF_VAR_ARGS; 3162 } 3163 3164 switch (v) { 3165 case DIF_VAR_ARGS: 3166 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3167 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3168 CPU_DTRACE_KPRIV; 3169 return (0); 3170 } 3171 3172 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3173 if (ndx >= sizeof (mstate->dtms_arg) / 3174 sizeof (mstate->dtms_arg[0])) { 3175 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3176 dtrace_provider_t *pv; 3177 uint64_t val; 3178 3179 pv = mstate->dtms_probe->dtpr_provider; 3180 if (pv->dtpv_pops.dtps_getargval != NULL) 3181 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3182 mstate->dtms_probe->dtpr_id, 3183 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3184 else 3185 val = dtrace_getarg(ndx, aframes); 3186 3187 /* 3188 * This is regrettably required to keep the compiler 3189 * from tail-optimizing the call to dtrace_getarg(). 3190 * The condition always evaluates to true, but the 3191 * compiler has no way of figuring that out a priori. 3192 * (None of this would be necessary if the compiler 3193 * could be relied upon to _always_ tail-optimize 3194 * the call to dtrace_getarg() -- but it can't.) 3195 */ 3196 if (mstate->dtms_probe != NULL) 3197 return (val); 3198 3199 ASSERT(0); 3200 } 3201 3202 return (mstate->dtms_arg[ndx]); 3203 3204 case DIF_VAR_UREGS: { 3205 klwp_t *lwp; 3206 3207 if (!dtrace_priv_proc(state, mstate)) 3208 return (0); 3209 3210 if ((lwp = curthread->t_lwp) == NULL) { 3211 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3212 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3213 return (0); 3214 } 3215 3216 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3217 } 3218 3219 case DIF_VAR_VMREGS: { 3220 uint64_t rval; 3221 3222 if (!dtrace_priv_kernel(state)) 3223 return (0); 3224 3225 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3226 3227 rval = dtrace_getvmreg(ndx, 3228 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3229 3230 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3231 3232 return (rval); 3233 } 3234 3235 case DIF_VAR_CURTHREAD: 3236 if (!dtrace_priv_proc(state, mstate)) 3237 return (0); 3238 return ((uint64_t)(uintptr_t)curthread); 3239 3240 case DIF_VAR_TIMESTAMP: 3241 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3242 mstate->dtms_timestamp = dtrace_gethrtime(); 3243 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3244 } 3245 return (mstate->dtms_timestamp); 3246 3247 case DIF_VAR_VTIMESTAMP: 3248 ASSERT(dtrace_vtime_references != 0); 3249 return (curthread->t_dtrace_vtime); 3250 3251 case DIF_VAR_WALLTIMESTAMP: 3252 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3253 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3254 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3255 } 3256 return (mstate->dtms_walltimestamp); 3257 3258 case DIF_VAR_IPL: 3259 if (!dtrace_priv_kernel(state)) 3260 return (0); 3261 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3262 mstate->dtms_ipl = dtrace_getipl(); 3263 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3264 } 3265 return (mstate->dtms_ipl); 3266 3267 case DIF_VAR_EPID: 3268 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3269 return (mstate->dtms_epid); 3270 3271 case DIF_VAR_ID: 3272 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3273 return (mstate->dtms_probe->dtpr_id); 3274 3275 case DIF_VAR_STACKDEPTH: 3276 if (!dtrace_priv_kernel(state)) 3277 return (0); 3278 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3279 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3280 3281 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3282 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3283 } 3284 return (mstate->dtms_stackdepth); 3285 3286 case DIF_VAR_USTACKDEPTH: 3287 if (!dtrace_priv_proc(state, mstate)) 3288 return (0); 3289 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3290 /* 3291 * See comment in DIF_VAR_PID. 3292 */ 3293 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3294 CPU_ON_INTR(CPU)) { 3295 mstate->dtms_ustackdepth = 0; 3296 } else { 3297 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3298 mstate->dtms_ustackdepth = 3299 dtrace_getustackdepth(); 3300 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3301 } 3302 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3303 } 3304 return (mstate->dtms_ustackdepth); 3305 3306 case DIF_VAR_CALLER: 3307 if (!dtrace_priv_kernel(state)) 3308 return (0); 3309 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3310 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3311 3312 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3313 /* 3314 * If this is an unanchored probe, we are 3315 * required to go through the slow path: 3316 * dtrace_caller() only guarantees correct 3317 * results for anchored probes. 3318 */ 3319 pc_t caller[2]; 3320 3321 dtrace_getpcstack(caller, 2, aframes, 3322 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3323 mstate->dtms_caller = caller[1]; 3324 } else if ((mstate->dtms_caller = 3325 dtrace_caller(aframes)) == -1) { 3326 /* 3327 * We have failed to do this the quick way; 3328 * we must resort to the slower approach of 3329 * calling dtrace_getpcstack(). 3330 */ 3331 pc_t caller; 3332 3333 dtrace_getpcstack(&caller, 1, aframes, NULL); 3334 mstate->dtms_caller = caller; 3335 } 3336 3337 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3338 } 3339 return (mstate->dtms_caller); 3340 3341 case DIF_VAR_UCALLER: 3342 if (!dtrace_priv_proc(state, mstate)) 3343 return (0); 3344 3345 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3346 uint64_t ustack[3]; 3347 3348 /* 3349 * dtrace_getupcstack() fills in the first uint64_t 3350 * with the current PID. The second uint64_t will 3351 * be the program counter at user-level. The third 3352 * uint64_t will contain the caller, which is what 3353 * we're after. 3354 */ 3355 ustack[2] = NULL; 3356 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3357 dtrace_getupcstack(ustack, 3); 3358 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3359 mstate->dtms_ucaller = ustack[2]; 3360 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3361 } 3362 3363 return (mstate->dtms_ucaller); 3364 3365 case DIF_VAR_PROBEPROV: 3366 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3367 return (dtrace_dif_varstr( 3368 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3369 state, mstate)); 3370 3371 case DIF_VAR_PROBEMOD: 3372 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3373 return (dtrace_dif_varstr( 3374 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3375 state, mstate)); 3376 3377 case DIF_VAR_PROBEFUNC: 3378 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3379 return (dtrace_dif_varstr( 3380 (uintptr_t)mstate->dtms_probe->dtpr_func, 3381 state, mstate)); 3382 3383 case DIF_VAR_PROBENAME: 3384 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3385 return (dtrace_dif_varstr( 3386 (uintptr_t)mstate->dtms_probe->dtpr_name, 3387 state, mstate)); 3388 3389 case DIF_VAR_PID: 3390 if (!dtrace_priv_proc(state, mstate)) 3391 return (0); 3392 3393 /* 3394 * Note that we are assuming that an unanchored probe is 3395 * always due to a high-level interrupt. (And we're assuming 3396 * that there is only a single high level interrupt.) 3397 */ 3398 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3399 return (pid0.pid_id); 3400 3401 /* 3402 * It is always safe to dereference one's own t_procp pointer: 3403 * it always points to a valid, allocated proc structure. 3404 * Further, it is always safe to dereference the p_pidp member 3405 * of one's own proc structure. (These are truisms becuase 3406 * threads and processes don't clean up their own state -- 3407 * they leave that task to whomever reaps them.) 3408 */ 3409 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3410 3411 case DIF_VAR_PPID: 3412 if (!dtrace_priv_proc(state, mstate)) 3413 return (0); 3414 3415 /* 3416 * See comment in DIF_VAR_PID. 3417 */ 3418 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3419 return (pid0.pid_id); 3420 3421 /* 3422 * It is always safe to dereference one's own t_procp pointer: 3423 * it always points to a valid, allocated proc structure. 3424 * (This is true because threads don't clean up their own 3425 * state -- they leave that task to whomever reaps them.) 3426 */ 3427 return ((uint64_t)curthread->t_procp->p_ppid); 3428 3429 case DIF_VAR_TID: 3430 /* 3431 * See comment in DIF_VAR_PID. 3432 */ 3433 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3434 return (0); 3435 3436 return ((uint64_t)curthread->t_tid); 3437 3438 case DIF_VAR_EXECNAME: 3439 if (!dtrace_priv_proc(state, mstate)) 3440 return (0); 3441 3442 /* 3443 * See comment in DIF_VAR_PID. 3444 */ 3445 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3446 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3447 3448 /* 3449 * It is always safe to dereference one's own t_procp pointer: 3450 * it always points to a valid, allocated proc structure. 3451 * (This is true because threads don't clean up their own 3452 * state -- they leave that task to whomever reaps them.) 3453 */ 3454 return (dtrace_dif_varstr( 3455 (uintptr_t)curthread->t_procp->p_user.u_comm, 3456 state, mstate)); 3457 3458 case DIF_VAR_ZONENAME: 3459 if (!dtrace_priv_proc(state, mstate)) 3460 return (0); 3461 3462 /* 3463 * See comment in DIF_VAR_PID. 3464 */ 3465 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3466 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3467 3468 /* 3469 * It is always safe to dereference one's own t_procp pointer: 3470 * it always points to a valid, allocated proc structure. 3471 * (This is true because threads don't clean up their own 3472 * state -- they leave that task to whomever reaps them.) 3473 */ 3474 return (dtrace_dif_varstr( 3475 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3476 state, mstate)); 3477 3478 case DIF_VAR_UID: 3479 if (!dtrace_priv_proc(state, mstate)) 3480 return (0); 3481 3482 /* 3483 * See comment in DIF_VAR_PID. 3484 */ 3485 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3486 return ((uint64_t)p0.p_cred->cr_uid); 3487 3488 /* 3489 * It is always safe to dereference one's own t_procp pointer: 3490 * it always points to a valid, allocated proc structure. 3491 * (This is true because threads don't clean up their own 3492 * state -- they leave that task to whomever reaps them.) 3493 * 3494 * Additionally, it is safe to dereference one's own process 3495 * credential, since this is never NULL after process birth. 3496 */ 3497 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3498 3499 case DIF_VAR_GID: 3500 if (!dtrace_priv_proc(state, mstate)) 3501 return (0); 3502 3503 /* 3504 * See comment in DIF_VAR_PID. 3505 */ 3506 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3507 return ((uint64_t)p0.p_cred->cr_gid); 3508 3509 /* 3510 * It is always safe to dereference one's own t_procp pointer: 3511 * it always points to a valid, allocated proc structure. 3512 * (This is true because threads don't clean up their own 3513 * state -- they leave that task to whomever reaps them.) 3514 * 3515 * Additionally, it is safe to dereference one's own process 3516 * credential, since this is never NULL after process birth. 3517 */ 3518 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3519 3520 case DIF_VAR_ERRNO: { 3521 klwp_t *lwp; 3522 if (!dtrace_priv_proc(state, mstate)) 3523 return (0); 3524 3525 /* 3526 * See comment in DIF_VAR_PID. 3527 */ 3528 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3529 return (0); 3530 3531 /* 3532 * It is always safe to dereference one's own t_lwp pointer in 3533 * the event that this pointer is non-NULL. (This is true 3534 * because threads and lwps don't clean up their own state -- 3535 * they leave that task to whomever reaps them.) 3536 */ 3537 if ((lwp = curthread->t_lwp) == NULL) 3538 return (0); 3539 3540 return ((uint64_t)lwp->lwp_errno); 3541 } 3542 default: 3543 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3544 return (0); 3545 } 3546 } 3547 3548 3549 typedef enum dtrace_json_state { 3550 DTRACE_JSON_REST = 1, 3551 DTRACE_JSON_OBJECT, 3552 DTRACE_JSON_STRING, 3553 DTRACE_JSON_STRING_ESCAPE, 3554 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3555 DTRACE_JSON_COLON, 3556 DTRACE_JSON_COMMA, 3557 DTRACE_JSON_VALUE, 3558 DTRACE_JSON_IDENTIFIER, 3559 DTRACE_JSON_NUMBER, 3560 DTRACE_JSON_NUMBER_FRAC, 3561 DTRACE_JSON_NUMBER_EXP, 3562 DTRACE_JSON_COLLECT_OBJECT 3563 } dtrace_json_state_t; 3564 3565 /* 3566 * This function possesses just enough knowledge about JSON to extract a single 3567 * value from a JSON string and store it in the scratch buffer. It is able 3568 * to extract nested object values, and members of arrays by index. 3569 * 3570 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3571 * be looked up as we descend into the object tree. e.g. 3572 * 3573 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3574 * with nelems = 5. 3575 * 3576 * The run time of this function must be bounded above by strsize to limit the 3577 * amount of work done in probe context. As such, it is implemented as a 3578 * simple state machine, reading one character at a time using safe loads 3579 * until we find the requested element, hit a parsing error or run off the 3580 * end of the object or string. 3581 * 3582 * As there is no way for a subroutine to return an error without interrupting 3583 * clause execution, we simply return NULL in the event of a missing key or any 3584 * other error condition. Each NULL return in this function is commented with 3585 * the error condition it represents -- parsing or otherwise. 3586 * 3587 * The set of states for the state machine closely matches the JSON 3588 * specification (http://json.org/). Briefly: 3589 * 3590 * DTRACE_JSON_REST: 3591 * Skip whitespace until we find either a top-level Object, moving 3592 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3593 * 3594 * DTRACE_JSON_OBJECT: 3595 * Locate the next key String in an Object. Sets a flag to denote 3596 * the next String as a key string and moves to DTRACE_JSON_STRING. 3597 * 3598 * DTRACE_JSON_COLON: 3599 * Skip whitespace until we find the colon that separates key Strings 3600 * from their values. Once found, move to DTRACE_JSON_VALUE. 3601 * 3602 * DTRACE_JSON_VALUE: 3603 * Detects the type of the next value (String, Number, Identifier, Object 3604 * or Array) and routes to the states that process that type. Here we also 3605 * deal with the element selector list if we are requested to traverse down 3606 * into the object tree. 3607 * 3608 * DTRACE_JSON_COMMA: 3609 * Skip whitespace until we find the comma that separates key-value pairs 3610 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3611 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3612 * states return to this state at the end of their value, unless otherwise 3613 * noted. 3614 * 3615 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3616 * Processes a Number literal from the JSON, including any exponent 3617 * component that may be present. Numbers are returned as strings, which 3618 * may be passed to strtoll() if an integer is required. 3619 * 3620 * DTRACE_JSON_IDENTIFIER: 3621 * Processes a "true", "false" or "null" literal in the JSON. 3622 * 3623 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3624 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3625 * Processes a String literal from the JSON, whether the String denotes 3626 * a key, a value or part of a larger Object. Handles all escape sequences 3627 * present in the specification, including four-digit unicode characters, 3628 * but merely includes the escape sequence without converting it to the 3629 * actual escaped character. If the String is flagged as a key, we 3630 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3631 * 3632 * DTRACE_JSON_COLLECT_OBJECT: 3633 * This state collects an entire Object (or Array), correctly handling 3634 * embedded strings. If the full element selector list matches this nested 3635 * object, we return the Object in full as a string. If not, we use this 3636 * state to skip to the next value at this level and continue processing. 3637 * 3638 * NOTE: This function uses various macros from strtolctype.h to manipulate 3639 * digit values, etc -- these have all been checked to ensure they make 3640 * no additional function calls. 3641 */ 3642 static char * 3643 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3644 char *dest) 3645 { 3646 dtrace_json_state_t state = DTRACE_JSON_REST; 3647 int64_t array_elem = INT64_MIN; 3648 int64_t array_pos = 0; 3649 uint8_t escape_unicount = 0; 3650 boolean_t string_is_key = B_FALSE; 3651 boolean_t collect_object = B_FALSE; 3652 boolean_t found_key = B_FALSE; 3653 boolean_t in_array = B_FALSE; 3654 uint32_t braces = 0, brackets = 0; 3655 char *elem = elemlist; 3656 char *dd = dest; 3657 uintptr_t cur; 3658 3659 for (cur = json; cur < json + size; cur++) { 3660 char cc = dtrace_load8(cur); 3661 if (cc == '\0') 3662 return (NULL); 3663 3664 switch (state) { 3665 case DTRACE_JSON_REST: 3666 if (isspace(cc)) 3667 break; 3668 3669 if (cc == '{') { 3670 state = DTRACE_JSON_OBJECT; 3671 break; 3672 } 3673 3674 if (cc == '[') { 3675 in_array = B_TRUE; 3676 array_pos = 0; 3677 array_elem = dtrace_strtoll(elem, 10, size); 3678 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3679 state = DTRACE_JSON_VALUE; 3680 break; 3681 } 3682 3683 /* 3684 * ERROR: expected to find a top-level object or array. 3685 */ 3686 return (NULL); 3687 case DTRACE_JSON_OBJECT: 3688 if (isspace(cc)) 3689 break; 3690 3691 if (cc == '"') { 3692 state = DTRACE_JSON_STRING; 3693 string_is_key = B_TRUE; 3694 break; 3695 } 3696 3697 /* 3698 * ERROR: either the object did not start with a key 3699 * string, or we've run off the end of the object 3700 * without finding the requested key. 3701 */ 3702 return (NULL); 3703 case DTRACE_JSON_STRING: 3704 if (cc == '\\') { 3705 *dd++ = '\\'; 3706 state = DTRACE_JSON_STRING_ESCAPE; 3707 break; 3708 } 3709 3710 if (cc == '"') { 3711 if (collect_object) { 3712 /* 3713 * We don't reset the dest here, as 3714 * the string is part of a larger 3715 * object being collected. 3716 */ 3717 *dd++ = cc; 3718 collect_object = B_FALSE; 3719 state = DTRACE_JSON_COLLECT_OBJECT; 3720 break; 3721 } 3722 *dd = '\0'; 3723 dd = dest; /* reset string buffer */ 3724 if (string_is_key) { 3725 if (dtrace_strncmp(dest, elem, 3726 size) == 0) 3727 found_key = B_TRUE; 3728 } else if (found_key) { 3729 if (nelems > 1) { 3730 /* 3731 * We expected an object, not 3732 * this string. 3733 */ 3734 return (NULL); 3735 } 3736 return (dest); 3737 } 3738 state = string_is_key ? DTRACE_JSON_COLON : 3739 DTRACE_JSON_COMMA; 3740 string_is_key = B_FALSE; 3741 break; 3742 } 3743 3744 *dd++ = cc; 3745 break; 3746 case DTRACE_JSON_STRING_ESCAPE: 3747 *dd++ = cc; 3748 if (cc == 'u') { 3749 escape_unicount = 0; 3750 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3751 } else { 3752 state = DTRACE_JSON_STRING; 3753 } 3754 break; 3755 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3756 if (!isxdigit(cc)) { 3757 /* 3758 * ERROR: invalid unicode escape, expected 3759 * four valid hexidecimal digits. 3760 */ 3761 return (NULL); 3762 } 3763 3764 *dd++ = cc; 3765 if (++escape_unicount == 4) 3766 state = DTRACE_JSON_STRING; 3767 break; 3768 case DTRACE_JSON_COLON: 3769 if (isspace(cc)) 3770 break; 3771 3772 if (cc == ':') { 3773 state = DTRACE_JSON_VALUE; 3774 break; 3775 } 3776 3777 /* 3778 * ERROR: expected a colon. 3779 */ 3780 return (NULL); 3781 case DTRACE_JSON_COMMA: 3782 if (isspace(cc)) 3783 break; 3784 3785 if (cc == ',') { 3786 if (in_array) { 3787 state = DTRACE_JSON_VALUE; 3788 if (++array_pos == array_elem) 3789 found_key = B_TRUE; 3790 } else { 3791 state = DTRACE_JSON_OBJECT; 3792 } 3793 break; 3794 } 3795 3796 /* 3797 * ERROR: either we hit an unexpected character, or 3798 * we reached the end of the object or array without 3799 * finding the requested key. 3800 */ 3801 return (NULL); 3802 case DTRACE_JSON_IDENTIFIER: 3803 if (islower(cc)) { 3804 *dd++ = cc; 3805 break; 3806 } 3807 3808 *dd = '\0'; 3809 dd = dest; /* reset string buffer */ 3810 3811 if (dtrace_strncmp(dest, "true", 5) == 0 || 3812 dtrace_strncmp(dest, "false", 6) == 0 || 3813 dtrace_strncmp(dest, "null", 5) == 0) { 3814 if (found_key) { 3815 if (nelems > 1) { 3816 /* 3817 * ERROR: We expected an object, 3818 * not this identifier. 3819 */ 3820 return (NULL); 3821 } 3822 return (dest); 3823 } else { 3824 cur--; 3825 state = DTRACE_JSON_COMMA; 3826 break; 3827 } 3828 } 3829 3830 /* 3831 * ERROR: we did not recognise the identifier as one 3832 * of those in the JSON specification. 3833 */ 3834 return (NULL); 3835 case DTRACE_JSON_NUMBER: 3836 if (cc == '.') { 3837 *dd++ = cc; 3838 state = DTRACE_JSON_NUMBER_FRAC; 3839 break; 3840 } 3841 3842 if (cc == 'x' || cc == 'X') { 3843 /* 3844 * ERROR: specification explicitly excludes 3845 * hexidecimal or octal numbers. 3846 */ 3847 return (NULL); 3848 } 3849 3850 /* FALLTHRU */ 3851 case DTRACE_JSON_NUMBER_FRAC: 3852 if (cc == 'e' || cc == 'E') { 3853 *dd++ = cc; 3854 state = DTRACE_JSON_NUMBER_EXP; 3855 break; 3856 } 3857 3858 if (cc == '+' || cc == '-') { 3859 /* 3860 * ERROR: expect sign as part of exponent only. 3861 */ 3862 return (NULL); 3863 } 3864 /* FALLTHRU */ 3865 case DTRACE_JSON_NUMBER_EXP: 3866 if (isdigit(cc) || cc == '+' || cc == '-') { 3867 *dd++ = cc; 3868 break; 3869 } 3870 3871 *dd = '\0'; 3872 dd = dest; /* reset string buffer */ 3873 if (found_key) { 3874 if (nelems > 1) { 3875 /* 3876 * ERROR: We expected an object, not 3877 * this number. 3878 */ 3879 return (NULL); 3880 } 3881 return (dest); 3882 } 3883 3884 cur--; 3885 state = DTRACE_JSON_COMMA; 3886 break; 3887 case DTRACE_JSON_VALUE: 3888 if (isspace(cc)) 3889 break; 3890 3891 if (cc == '{' || cc == '[') { 3892 if (nelems > 1 && found_key) { 3893 in_array = cc == '[' ? B_TRUE : B_FALSE; 3894 /* 3895 * If our element selector directs us 3896 * to descend into this nested object, 3897 * then move to the next selector 3898 * element in the list and restart the 3899 * state machine. 3900 */ 3901 while (*elem != '\0') 3902 elem++; 3903 elem++; /* skip the inter-element NUL */ 3904 nelems--; 3905 dd = dest; 3906 if (in_array) { 3907 state = DTRACE_JSON_VALUE; 3908 array_pos = 0; 3909 array_elem = dtrace_strtoll( 3910 elem, 10, size); 3911 found_key = array_elem == 0 ? 3912 B_TRUE : B_FALSE; 3913 } else { 3914 found_key = B_FALSE; 3915 state = DTRACE_JSON_OBJECT; 3916 } 3917 break; 3918 } 3919 3920 /* 3921 * Otherwise, we wish to either skip this 3922 * nested object or return it in full. 3923 */ 3924 if (cc == '[') 3925 brackets = 1; 3926 else 3927 braces = 1; 3928 *dd++ = cc; 3929 state = DTRACE_JSON_COLLECT_OBJECT; 3930 break; 3931 } 3932 3933 if (cc == '"') { 3934 state = DTRACE_JSON_STRING; 3935 break; 3936 } 3937 3938 if (islower(cc)) { 3939 /* 3940 * Here we deal with true, false and null. 3941 */ 3942 *dd++ = cc; 3943 state = DTRACE_JSON_IDENTIFIER; 3944 break; 3945 } 3946 3947 if (cc == '-' || isdigit(cc)) { 3948 *dd++ = cc; 3949 state = DTRACE_JSON_NUMBER; 3950 break; 3951 } 3952 3953 /* 3954 * ERROR: unexpected character at start of value. 3955 */ 3956 return (NULL); 3957 case DTRACE_JSON_COLLECT_OBJECT: 3958 if (cc == '\0') 3959 /* 3960 * ERROR: unexpected end of input. 3961 */ 3962 return (NULL); 3963 3964 *dd++ = cc; 3965 if (cc == '"') { 3966 collect_object = B_TRUE; 3967 state = DTRACE_JSON_STRING; 3968 break; 3969 } 3970 3971 if (cc == ']') { 3972 if (brackets-- == 0) { 3973 /* 3974 * ERROR: unbalanced brackets. 3975 */ 3976 return (NULL); 3977 } 3978 } else if (cc == '}') { 3979 if (braces-- == 0) { 3980 /* 3981 * ERROR: unbalanced braces. 3982 */ 3983 return (NULL); 3984 } 3985 } else if (cc == '{') { 3986 braces++; 3987 } else if (cc == '[') { 3988 brackets++; 3989 } 3990 3991 if (brackets == 0 && braces == 0) { 3992 if (found_key) { 3993 *dd = '\0'; 3994 return (dest); 3995 } 3996 dd = dest; /* reset string buffer */ 3997 state = DTRACE_JSON_COMMA; 3998 } 3999 break; 4000 } 4001 } 4002 return (NULL); 4003 } 4004 4005 /* 4006 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4007 * Notice that we don't bother validating the proper number of arguments or 4008 * their types in the tuple stack. This isn't needed because all argument 4009 * interpretation is safe because of our load safety -- the worst that can 4010 * happen is that a bogus program can obtain bogus results. 4011 */ 4012 static void 4013 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4014 dtrace_key_t *tupregs, int nargs, 4015 dtrace_mstate_t *mstate, dtrace_state_t *state) 4016 { 4017 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4018 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4019 dtrace_vstate_t *vstate = &state->dts_vstate; 4020 4021 union { 4022 mutex_impl_t mi; 4023 uint64_t mx; 4024 } m; 4025 4026 union { 4027 krwlock_t ri; 4028 uintptr_t rw; 4029 } r; 4030 4031 switch (subr) { 4032 case DIF_SUBR_RAND: 4033 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 4034 break; 4035 4036 case DIF_SUBR_MUTEX_OWNED: 4037 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4038 mstate, vstate)) { 4039 regs[rd] = NULL; 4040 break; 4041 } 4042 4043 m.mx = dtrace_load64(tupregs[0].dttk_value); 4044 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4045 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4046 else 4047 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4048 break; 4049 4050 case DIF_SUBR_MUTEX_OWNER: 4051 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4052 mstate, vstate)) { 4053 regs[rd] = NULL; 4054 break; 4055 } 4056 4057 m.mx = dtrace_load64(tupregs[0].dttk_value); 4058 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4059 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4060 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4061 else 4062 regs[rd] = 0; 4063 break; 4064 4065 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4066 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4067 mstate, vstate)) { 4068 regs[rd] = NULL; 4069 break; 4070 } 4071 4072 m.mx = dtrace_load64(tupregs[0].dttk_value); 4073 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4074 break; 4075 4076 case DIF_SUBR_MUTEX_TYPE_SPIN: 4077 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4078 mstate, vstate)) { 4079 regs[rd] = NULL; 4080 break; 4081 } 4082 4083 m.mx = dtrace_load64(tupregs[0].dttk_value); 4084 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4085 break; 4086 4087 case DIF_SUBR_RW_READ_HELD: { 4088 uintptr_t tmp; 4089 4090 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4091 mstate, vstate)) { 4092 regs[rd] = NULL; 4093 break; 4094 } 4095 4096 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4097 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4098 break; 4099 } 4100 4101 case DIF_SUBR_RW_WRITE_HELD: 4102 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4103 mstate, vstate)) { 4104 regs[rd] = NULL; 4105 break; 4106 } 4107 4108 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4109 regs[rd] = _RW_WRITE_HELD(&r.ri); 4110 break; 4111 4112 case DIF_SUBR_RW_ISWRITER: 4113 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4114 mstate, vstate)) { 4115 regs[rd] = NULL; 4116 break; 4117 } 4118 4119 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4120 regs[rd] = _RW_ISWRITER(&r.ri); 4121 break; 4122 4123 case DIF_SUBR_BCOPY: { 4124 /* 4125 * We need to be sure that the destination is in the scratch 4126 * region -- no other region is allowed. 4127 */ 4128 uintptr_t src = tupregs[0].dttk_value; 4129 uintptr_t dest = tupregs[1].dttk_value; 4130 size_t size = tupregs[2].dttk_value; 4131 4132 if (!dtrace_inscratch(dest, size, mstate)) { 4133 *flags |= CPU_DTRACE_BADADDR; 4134 *illval = regs[rd]; 4135 break; 4136 } 4137 4138 if (!dtrace_canload(src, size, mstate, vstate)) { 4139 regs[rd] = NULL; 4140 break; 4141 } 4142 4143 dtrace_bcopy((void *)src, (void *)dest, size); 4144 break; 4145 } 4146 4147 case DIF_SUBR_ALLOCA: 4148 case DIF_SUBR_COPYIN: { 4149 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4150 uint64_t size = 4151 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4152 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4153 4154 /* 4155 * This action doesn't require any credential checks since 4156 * probes will not activate in user contexts to which the 4157 * enabling user does not have permissions. 4158 */ 4159 4160 /* 4161 * Rounding up the user allocation size could have overflowed 4162 * a large, bogus allocation (like -1ULL) to 0. 4163 */ 4164 if (scratch_size < size || 4165 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4166 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4167 regs[rd] = NULL; 4168 break; 4169 } 4170 4171 if (subr == DIF_SUBR_COPYIN) { 4172 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4173 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4174 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4175 } 4176 4177 mstate->dtms_scratch_ptr += scratch_size; 4178 regs[rd] = dest; 4179 break; 4180 } 4181 4182 case DIF_SUBR_COPYINTO: { 4183 uint64_t size = tupregs[1].dttk_value; 4184 uintptr_t dest = tupregs[2].dttk_value; 4185 4186 /* 4187 * This action doesn't require any credential checks since 4188 * probes will not activate in user contexts to which the 4189 * enabling user does not have permissions. 4190 */ 4191 if (!dtrace_inscratch(dest, size, mstate)) { 4192 *flags |= CPU_DTRACE_BADADDR; 4193 *illval = regs[rd]; 4194 break; 4195 } 4196 4197 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4198 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4199 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4200 break; 4201 } 4202 4203 case DIF_SUBR_COPYINSTR: { 4204 uintptr_t dest = mstate->dtms_scratch_ptr; 4205 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4206 4207 if (nargs > 1 && tupregs[1].dttk_value < size) 4208 size = tupregs[1].dttk_value + 1; 4209 4210 /* 4211 * This action doesn't require any credential checks since 4212 * probes will not activate in user contexts to which the 4213 * enabling user does not have permissions. 4214 */ 4215 if (!DTRACE_INSCRATCH(mstate, size)) { 4216 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4217 regs[rd] = NULL; 4218 break; 4219 } 4220 4221 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4222 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4223 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4224 4225 ((char *)dest)[size - 1] = '\0'; 4226 mstate->dtms_scratch_ptr += size; 4227 regs[rd] = dest; 4228 break; 4229 } 4230 4231 case DIF_SUBR_MSGSIZE: 4232 case DIF_SUBR_MSGDSIZE: { 4233 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4234 uintptr_t wptr, rptr; 4235 size_t count = 0; 4236 int cont = 0; 4237 4238 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4239 4240 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4241 vstate)) { 4242 regs[rd] = NULL; 4243 break; 4244 } 4245 4246 wptr = dtrace_loadptr(baddr + 4247 offsetof(mblk_t, b_wptr)); 4248 4249 rptr = dtrace_loadptr(baddr + 4250 offsetof(mblk_t, b_rptr)); 4251 4252 if (wptr < rptr) { 4253 *flags |= CPU_DTRACE_BADADDR; 4254 *illval = tupregs[0].dttk_value; 4255 break; 4256 } 4257 4258 daddr = dtrace_loadptr(baddr + 4259 offsetof(mblk_t, b_datap)); 4260 4261 baddr = dtrace_loadptr(baddr + 4262 offsetof(mblk_t, b_cont)); 4263 4264 /* 4265 * We want to prevent against denial-of-service here, 4266 * so we're only going to search the list for 4267 * dtrace_msgdsize_max mblks. 4268 */ 4269 if (cont++ > dtrace_msgdsize_max) { 4270 *flags |= CPU_DTRACE_ILLOP; 4271 break; 4272 } 4273 4274 if (subr == DIF_SUBR_MSGDSIZE) { 4275 if (dtrace_load8(daddr + 4276 offsetof(dblk_t, db_type)) != M_DATA) 4277 continue; 4278 } 4279 4280 count += wptr - rptr; 4281 } 4282 4283 if (!(*flags & CPU_DTRACE_FAULT)) 4284 regs[rd] = count; 4285 4286 break; 4287 } 4288 4289 case DIF_SUBR_PROGENYOF: { 4290 pid_t pid = tupregs[0].dttk_value; 4291 proc_t *p; 4292 int rval = 0; 4293 4294 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4295 4296 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4297 if (p->p_pidp->pid_id == pid) { 4298 rval = 1; 4299 break; 4300 } 4301 } 4302 4303 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4304 4305 regs[rd] = rval; 4306 break; 4307 } 4308 4309 case DIF_SUBR_SPECULATION: 4310 regs[rd] = dtrace_speculation(state); 4311 break; 4312 4313 case DIF_SUBR_COPYOUT: { 4314 uintptr_t kaddr = tupregs[0].dttk_value; 4315 uintptr_t uaddr = tupregs[1].dttk_value; 4316 uint64_t size = tupregs[2].dttk_value; 4317 4318 if (!dtrace_destructive_disallow && 4319 dtrace_priv_proc_control(state, mstate) && 4320 !dtrace_istoxic(kaddr, size) && 4321 dtrace_canload(kaddr, size, mstate, vstate)) { 4322 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4323 dtrace_copyout(kaddr, uaddr, size, flags); 4324 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4325 } 4326 break; 4327 } 4328 4329 case DIF_SUBR_COPYOUTSTR: { 4330 uintptr_t kaddr = tupregs[0].dttk_value; 4331 uintptr_t uaddr = tupregs[1].dttk_value; 4332 uint64_t size = tupregs[2].dttk_value; 4333 size_t lim; 4334 4335 if (!dtrace_destructive_disallow && 4336 dtrace_priv_proc_control(state, mstate) && 4337 !dtrace_istoxic(kaddr, size) && 4338 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4339 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4340 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4341 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4342 } 4343 break; 4344 } 4345 4346 case DIF_SUBR_STRLEN: { 4347 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4348 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4349 size_t lim; 4350 4351 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4352 regs[rd] = NULL; 4353 break; 4354 } 4355 regs[rd] = dtrace_strlen((char *)addr, lim); 4356 4357 break; 4358 } 4359 4360 case DIF_SUBR_STRCHR: 4361 case DIF_SUBR_STRRCHR: { 4362 /* 4363 * We're going to iterate over the string looking for the 4364 * specified character. We will iterate until we have reached 4365 * the string length or we have found the character. If this 4366 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4367 * of the specified character instead of the first. 4368 */ 4369 uintptr_t addr = tupregs[0].dttk_value; 4370 uintptr_t addr_limit; 4371 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4372 size_t lim; 4373 char c, target = (char)tupregs[1].dttk_value; 4374 4375 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4376 regs[rd] = NULL; 4377 break; 4378 } 4379 addr_limit = addr + lim; 4380 4381 for (regs[rd] = NULL; addr < addr_limit; addr++) { 4382 if ((c = dtrace_load8(addr)) == target) { 4383 regs[rd] = addr; 4384 4385 if (subr == DIF_SUBR_STRCHR) 4386 break; 4387 } 4388 if (c == '\0') 4389 break; 4390 } 4391 4392 break; 4393 } 4394 4395 case DIF_SUBR_STRSTR: 4396 case DIF_SUBR_INDEX: 4397 case DIF_SUBR_RINDEX: { 4398 /* 4399 * We're going to iterate over the string looking for the 4400 * specified string. We will iterate until we have reached 4401 * the string length or we have found the string. (Yes, this 4402 * is done in the most naive way possible -- but considering 4403 * that the string we're searching for is likely to be 4404 * relatively short, the complexity of Rabin-Karp or similar 4405 * hardly seems merited.) 4406 */ 4407 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4408 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4409 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4410 size_t len = dtrace_strlen(addr, size); 4411 size_t sublen = dtrace_strlen(substr, size); 4412 char *limit = addr + len, *orig = addr; 4413 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4414 int inc = 1; 4415 4416 regs[rd] = notfound; 4417 4418 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4419 regs[rd] = NULL; 4420 break; 4421 } 4422 4423 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4424 vstate)) { 4425 regs[rd] = NULL; 4426 break; 4427 } 4428 4429 /* 4430 * strstr() and index()/rindex() have similar semantics if 4431 * both strings are the empty string: strstr() returns a 4432 * pointer to the (empty) string, and index() and rindex() 4433 * both return index 0 (regardless of any position argument). 4434 */ 4435 if (sublen == 0 && len == 0) { 4436 if (subr == DIF_SUBR_STRSTR) 4437 regs[rd] = (uintptr_t)addr; 4438 else 4439 regs[rd] = 0; 4440 break; 4441 } 4442 4443 if (subr != DIF_SUBR_STRSTR) { 4444 if (subr == DIF_SUBR_RINDEX) { 4445 limit = orig - 1; 4446 addr += len; 4447 inc = -1; 4448 } 4449 4450 /* 4451 * Both index() and rindex() take an optional position 4452 * argument that denotes the starting position. 4453 */ 4454 if (nargs == 3) { 4455 int64_t pos = (int64_t)tupregs[2].dttk_value; 4456 4457 /* 4458 * If the position argument to index() is 4459 * negative, Perl implicitly clamps it at 4460 * zero. This semantic is a little surprising 4461 * given the special meaning of negative 4462 * positions to similar Perl functions like 4463 * substr(), but it appears to reflect a 4464 * notion that index() can start from a 4465 * negative index and increment its way up to 4466 * the string. Given this notion, Perl's 4467 * rindex() is at least self-consistent in 4468 * that it implicitly clamps positions greater 4469 * than the string length to be the string 4470 * length. Where Perl completely loses 4471 * coherence, however, is when the specified 4472 * substring is the empty string (""). In 4473 * this case, even if the position is 4474 * negative, rindex() returns 0 -- and even if 4475 * the position is greater than the length, 4476 * index() returns the string length. These 4477 * semantics violate the notion that index() 4478 * should never return a value less than the 4479 * specified position and that rindex() should 4480 * never return a value greater than the 4481 * specified position. (One assumes that 4482 * these semantics are artifacts of Perl's 4483 * implementation and not the results of 4484 * deliberate design -- it beggars belief that 4485 * even Larry Wall could desire such oddness.) 4486 * While in the abstract one would wish for 4487 * consistent position semantics across 4488 * substr(), index() and rindex() -- or at the 4489 * very least self-consistent position 4490 * semantics for index() and rindex() -- we 4491 * instead opt to keep with the extant Perl 4492 * semantics, in all their broken glory. (Do 4493 * we have more desire to maintain Perl's 4494 * semantics than Perl does? Probably.) 4495 */ 4496 if (subr == DIF_SUBR_RINDEX) { 4497 if (pos < 0) { 4498 if (sublen == 0) 4499 regs[rd] = 0; 4500 break; 4501 } 4502 4503 if (pos > len) 4504 pos = len; 4505 } else { 4506 if (pos < 0) 4507 pos = 0; 4508 4509 if (pos >= len) { 4510 if (sublen == 0) 4511 regs[rd] = len; 4512 break; 4513 } 4514 } 4515 4516 addr = orig + pos; 4517 } 4518 } 4519 4520 for (regs[rd] = notfound; addr != limit; addr += inc) { 4521 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4522 if (subr != DIF_SUBR_STRSTR) { 4523 /* 4524 * As D index() and rindex() are 4525 * modeled on Perl (and not on awk), 4526 * we return a zero-based (and not a 4527 * one-based) index. (For you Perl 4528 * weenies: no, we're not going to add 4529 * $[ -- and shouldn't you be at a con 4530 * or something?) 4531 */ 4532 regs[rd] = (uintptr_t)(addr - orig); 4533 break; 4534 } 4535 4536 ASSERT(subr == DIF_SUBR_STRSTR); 4537 regs[rd] = (uintptr_t)addr; 4538 break; 4539 } 4540 } 4541 4542 break; 4543 } 4544 4545 case DIF_SUBR_STRTOK: { 4546 uintptr_t addr = tupregs[0].dttk_value; 4547 uintptr_t tokaddr = tupregs[1].dttk_value; 4548 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4549 uintptr_t limit, toklimit; 4550 size_t clim; 4551 uint8_t c, tokmap[32]; /* 256 / 8 */ 4552 char *dest = (char *)mstate->dtms_scratch_ptr; 4553 int i; 4554 4555 /* 4556 * Check both the token buffer and (later) the input buffer, 4557 * since both could be non-scratch addresses. 4558 */ 4559 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4560 regs[rd] = NULL; 4561 break; 4562 } 4563 toklimit = tokaddr + clim; 4564 4565 if (!DTRACE_INSCRATCH(mstate, size)) { 4566 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4567 regs[rd] = NULL; 4568 break; 4569 } 4570 4571 if (addr == NULL) { 4572 /* 4573 * If the address specified is NULL, we use our saved 4574 * strtok pointer from the mstate. Note that this 4575 * means that the saved strtok pointer is _only_ 4576 * valid within multiple enablings of the same probe -- 4577 * it behaves like an implicit clause-local variable. 4578 */ 4579 addr = mstate->dtms_strtok; 4580 limit = mstate->dtms_strtok_limit; 4581 } else { 4582 /* 4583 * If the user-specified address is non-NULL we must 4584 * access check it. This is the only time we have 4585 * a chance to do so, since this address may reside 4586 * in the string table of this clause-- future calls 4587 * (when we fetch addr from mstate->dtms_strtok) 4588 * would fail this access check. 4589 */ 4590 if (!dtrace_strcanload(addr, size, &clim, mstate, 4591 vstate)) { 4592 regs[rd] = NULL; 4593 break; 4594 } 4595 limit = addr + clim; 4596 } 4597 4598 /* 4599 * First, zero the token map, and then process the token 4600 * string -- setting a bit in the map for every character 4601 * found in the token string. 4602 */ 4603 for (i = 0; i < sizeof (tokmap); i++) 4604 tokmap[i] = 0; 4605 4606 for (; tokaddr < toklimit; tokaddr++) { 4607 if ((c = dtrace_load8(tokaddr)) == '\0') 4608 break; 4609 4610 ASSERT((c >> 3) < sizeof (tokmap)); 4611 tokmap[c >> 3] |= (1 << (c & 0x7)); 4612 } 4613 4614 for (; addr < limit; addr++) { 4615 /* 4616 * We're looking for a character that is _not_ 4617 * contained in the token string. 4618 */ 4619 if ((c = dtrace_load8(addr)) == '\0') 4620 break; 4621 4622 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4623 break; 4624 } 4625 4626 if (c == '\0') { 4627 /* 4628 * We reached the end of the string without finding 4629 * any character that was not in the token string. 4630 * We return NULL in this case, and we set the saved 4631 * address to NULL as well. 4632 */ 4633 regs[rd] = NULL; 4634 mstate->dtms_strtok = NULL; 4635 mstate->dtms_strtok_limit = NULL; 4636 break; 4637 } 4638 4639 /* 4640 * From here on, we're copying into the destination string. 4641 */ 4642 for (i = 0; addr < limit && i < size - 1; addr++) { 4643 if ((c = dtrace_load8(addr)) == '\0') 4644 break; 4645 4646 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4647 break; 4648 4649 ASSERT(i < size); 4650 dest[i++] = c; 4651 } 4652 4653 ASSERT(i < size); 4654 dest[i] = '\0'; 4655 regs[rd] = (uintptr_t)dest; 4656 mstate->dtms_scratch_ptr += size; 4657 mstate->dtms_strtok = addr; 4658 mstate->dtms_strtok_limit = limit; 4659 break; 4660 } 4661 4662 case DIF_SUBR_SUBSTR: { 4663 uintptr_t s = tupregs[0].dttk_value; 4664 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4665 char *d = (char *)mstate->dtms_scratch_ptr; 4666 int64_t index = (int64_t)tupregs[1].dttk_value; 4667 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4668 size_t len = dtrace_strlen((char *)s, size); 4669 int64_t i; 4670 4671 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4672 regs[rd] = NULL; 4673 break; 4674 } 4675 4676 if (!DTRACE_INSCRATCH(mstate, size)) { 4677 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4678 regs[rd] = NULL; 4679 break; 4680 } 4681 4682 if (nargs <= 2) 4683 remaining = (int64_t)size; 4684 4685 if (index < 0) { 4686 index += len; 4687 4688 if (index < 0 && index + remaining > 0) { 4689 remaining += index; 4690 index = 0; 4691 } 4692 } 4693 4694 if (index >= len || index < 0) { 4695 remaining = 0; 4696 } else if (remaining < 0) { 4697 remaining += len - index; 4698 } else if (index + remaining > size) { 4699 remaining = size - index; 4700 } 4701 4702 for (i = 0; i < remaining; i++) { 4703 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4704 break; 4705 } 4706 4707 d[i] = '\0'; 4708 4709 mstate->dtms_scratch_ptr += size; 4710 regs[rd] = (uintptr_t)d; 4711 break; 4712 } 4713 4714 case DIF_SUBR_JSON: { 4715 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4716 uintptr_t json = tupregs[0].dttk_value; 4717 size_t jsonlen = dtrace_strlen((char *)json, size); 4718 uintptr_t elem = tupregs[1].dttk_value; 4719 size_t elemlen = dtrace_strlen((char *)elem, size); 4720 4721 char *dest = (char *)mstate->dtms_scratch_ptr; 4722 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4723 char *ee = elemlist; 4724 int nelems = 1; 4725 uintptr_t cur; 4726 4727 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4728 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4729 regs[rd] = NULL; 4730 break; 4731 } 4732 4733 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4734 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4735 regs[rd] = NULL; 4736 break; 4737 } 4738 4739 /* 4740 * Read the element selector and split it up into a packed list 4741 * of strings. 4742 */ 4743 for (cur = elem; cur < elem + elemlen; cur++) { 4744 char cc = dtrace_load8(cur); 4745 4746 if (cur == elem && cc == '[') { 4747 /* 4748 * If the first element selector key is 4749 * actually an array index then ignore the 4750 * bracket. 4751 */ 4752 continue; 4753 } 4754 4755 if (cc == ']') 4756 continue; 4757 4758 if (cc == '.' || cc == '[') { 4759 nelems++; 4760 cc = '\0'; 4761 } 4762 4763 *ee++ = cc; 4764 } 4765 *ee++ = '\0'; 4766 4767 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4768 nelems, dest)) != NULL) 4769 mstate->dtms_scratch_ptr += jsonlen + 1; 4770 break; 4771 } 4772 4773 case DIF_SUBR_TOUPPER: 4774 case DIF_SUBR_TOLOWER: { 4775 uintptr_t s = tupregs[0].dttk_value; 4776 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4777 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4778 size_t len = dtrace_strlen((char *)s, size); 4779 char lower, upper, convert; 4780 int64_t i; 4781 4782 if (subr == DIF_SUBR_TOUPPER) { 4783 lower = 'a'; 4784 upper = 'z'; 4785 convert = 'A'; 4786 } else { 4787 lower = 'A'; 4788 upper = 'Z'; 4789 convert = 'a'; 4790 } 4791 4792 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4793 regs[rd] = NULL; 4794 break; 4795 } 4796 4797 if (!DTRACE_INSCRATCH(mstate, size)) { 4798 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4799 regs[rd] = NULL; 4800 break; 4801 } 4802 4803 for (i = 0; i < size - 1; i++) { 4804 if ((c = dtrace_load8(s + i)) == '\0') 4805 break; 4806 4807 if (c >= lower && c <= upper) 4808 c = convert + (c - lower); 4809 4810 dest[i] = c; 4811 } 4812 4813 ASSERT(i < size); 4814 dest[i] = '\0'; 4815 regs[rd] = (uintptr_t)dest; 4816 mstate->dtms_scratch_ptr += size; 4817 break; 4818 } 4819 4820 case DIF_SUBR_GETMAJOR: 4821 #ifdef _LP64 4822 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4823 #else 4824 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4825 #endif 4826 break; 4827 4828 case DIF_SUBR_GETMINOR: 4829 #ifdef _LP64 4830 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4831 #else 4832 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4833 #endif 4834 break; 4835 4836 case DIF_SUBR_DDI_PATHNAME: { 4837 /* 4838 * This one is a galactic mess. We are going to roughly 4839 * emulate ddi_pathname(), but it's made more complicated 4840 * by the fact that we (a) want to include the minor name and 4841 * (b) must proceed iteratively instead of recursively. 4842 */ 4843 uintptr_t dest = mstate->dtms_scratch_ptr; 4844 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4845 char *start = (char *)dest, *end = start + size - 1; 4846 uintptr_t daddr = tupregs[0].dttk_value; 4847 int64_t minor = (int64_t)tupregs[1].dttk_value; 4848 char *s; 4849 int i, len, depth = 0; 4850 4851 /* 4852 * Due to all the pointer jumping we do and context we must 4853 * rely upon, we just mandate that the user must have kernel 4854 * read privileges to use this routine. 4855 */ 4856 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4857 *flags |= CPU_DTRACE_KPRIV; 4858 *illval = daddr; 4859 regs[rd] = NULL; 4860 } 4861 4862 if (!DTRACE_INSCRATCH(mstate, size)) { 4863 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4864 regs[rd] = NULL; 4865 break; 4866 } 4867 4868 *end = '\0'; 4869 4870 /* 4871 * We want to have a name for the minor. In order to do this, 4872 * we need to walk the minor list from the devinfo. We want 4873 * to be sure that we don't infinitely walk a circular list, 4874 * so we check for circularity by sending a scout pointer 4875 * ahead two elements for every element that we iterate over; 4876 * if the list is circular, these will ultimately point to the 4877 * same element. You may recognize this little trick as the 4878 * answer to a stupid interview question -- one that always 4879 * seems to be asked by those who had to have it laboriously 4880 * explained to them, and who can't even concisely describe 4881 * the conditions under which one would be forced to resort to 4882 * this technique. Needless to say, those conditions are 4883 * found here -- and probably only here. Is this the only use 4884 * of this infamous trick in shipping, production code? If it 4885 * isn't, it probably should be... 4886 */ 4887 if (minor != -1) { 4888 uintptr_t maddr = dtrace_loadptr(daddr + 4889 offsetof(struct dev_info, devi_minor)); 4890 4891 uintptr_t next = offsetof(struct ddi_minor_data, next); 4892 uintptr_t name = offsetof(struct ddi_minor_data, 4893 d_minor) + offsetof(struct ddi_minor, name); 4894 uintptr_t dev = offsetof(struct ddi_minor_data, 4895 d_minor) + offsetof(struct ddi_minor, dev); 4896 uintptr_t scout; 4897 4898 if (maddr != NULL) 4899 scout = dtrace_loadptr(maddr + next); 4900 4901 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4902 uint64_t m; 4903 #ifdef _LP64 4904 m = dtrace_load64(maddr + dev) & MAXMIN64; 4905 #else 4906 m = dtrace_load32(maddr + dev) & MAXMIN; 4907 #endif 4908 if (m != minor) { 4909 maddr = dtrace_loadptr(maddr + next); 4910 4911 if (scout == NULL) 4912 continue; 4913 4914 scout = dtrace_loadptr(scout + next); 4915 4916 if (scout == NULL) 4917 continue; 4918 4919 scout = dtrace_loadptr(scout + next); 4920 4921 if (scout == NULL) 4922 continue; 4923 4924 if (scout == maddr) { 4925 *flags |= CPU_DTRACE_ILLOP; 4926 break; 4927 } 4928 4929 continue; 4930 } 4931 4932 /* 4933 * We have the minor data. Now we need to 4934 * copy the minor's name into the end of the 4935 * pathname. 4936 */ 4937 s = (char *)dtrace_loadptr(maddr + name); 4938 len = dtrace_strlen(s, size); 4939 4940 if (*flags & CPU_DTRACE_FAULT) 4941 break; 4942 4943 if (len != 0) { 4944 if ((end -= (len + 1)) < start) 4945 break; 4946 4947 *end = ':'; 4948 } 4949 4950 for (i = 1; i <= len; i++) 4951 end[i] = dtrace_load8((uintptr_t)s++); 4952 break; 4953 } 4954 } 4955 4956 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4957 ddi_node_state_t devi_state; 4958 4959 devi_state = dtrace_load32(daddr + 4960 offsetof(struct dev_info, devi_node_state)); 4961 4962 if (*flags & CPU_DTRACE_FAULT) 4963 break; 4964 4965 if (devi_state >= DS_INITIALIZED) { 4966 s = (char *)dtrace_loadptr(daddr + 4967 offsetof(struct dev_info, devi_addr)); 4968 len = dtrace_strlen(s, size); 4969 4970 if (*flags & CPU_DTRACE_FAULT) 4971 break; 4972 4973 if (len != 0) { 4974 if ((end -= (len + 1)) < start) 4975 break; 4976 4977 *end = '@'; 4978 } 4979 4980 for (i = 1; i <= len; i++) 4981 end[i] = dtrace_load8((uintptr_t)s++); 4982 } 4983 4984 /* 4985 * Now for the node name... 4986 */ 4987 s = (char *)dtrace_loadptr(daddr + 4988 offsetof(struct dev_info, devi_node_name)); 4989 4990 daddr = dtrace_loadptr(daddr + 4991 offsetof(struct dev_info, devi_parent)); 4992 4993 /* 4994 * If our parent is NULL (that is, if we're the root 4995 * node), we're going to use the special path 4996 * "devices". 4997 */ 4998 if (daddr == NULL) 4999 s = "devices"; 5000 5001 len = dtrace_strlen(s, size); 5002 if (*flags & CPU_DTRACE_FAULT) 5003 break; 5004 5005 if ((end -= (len + 1)) < start) 5006 break; 5007 5008 for (i = 1; i <= len; i++) 5009 end[i] = dtrace_load8((uintptr_t)s++); 5010 *end = '/'; 5011 5012 if (depth++ > dtrace_devdepth_max) { 5013 *flags |= CPU_DTRACE_ILLOP; 5014 break; 5015 } 5016 } 5017 5018 if (end < start) 5019 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5020 5021 if (daddr == NULL) { 5022 regs[rd] = (uintptr_t)end; 5023 mstate->dtms_scratch_ptr += size; 5024 } 5025 5026 break; 5027 } 5028 5029 case DIF_SUBR_STRJOIN: { 5030 char *d = (char *)mstate->dtms_scratch_ptr; 5031 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5032 uintptr_t s1 = tupregs[0].dttk_value; 5033 uintptr_t s2 = tupregs[1].dttk_value; 5034 int i = 0, j = 0; 5035 size_t lim1, lim2; 5036 char c; 5037 5038 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5039 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5040 regs[rd] = NULL; 5041 break; 5042 } 5043 5044 if (!DTRACE_INSCRATCH(mstate, size)) { 5045 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5046 regs[rd] = NULL; 5047 break; 5048 } 5049 5050 for (;;) { 5051 if (i >= size) { 5052 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5053 regs[rd] = NULL; 5054 break; 5055 } 5056 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5057 if ((d[i++] = c) == '\0') { 5058 i--; 5059 break; 5060 } 5061 } 5062 5063 for (;;) { 5064 if (i >= size) { 5065 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5066 regs[rd] = NULL; 5067 break; 5068 } 5069 5070 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5071 if ((d[i++] = c) == '\0') 5072 break; 5073 } 5074 5075 if (i < size) { 5076 mstate->dtms_scratch_ptr += i; 5077 regs[rd] = (uintptr_t)d; 5078 } 5079 5080 break; 5081 } 5082 5083 case DIF_SUBR_STRTOLL: { 5084 uintptr_t s = tupregs[0].dttk_value; 5085 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5086 size_t lim; 5087 int base = 10; 5088 5089 if (nargs > 1) { 5090 if ((base = tupregs[1].dttk_value) <= 1 || 5091 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5092 *flags |= CPU_DTRACE_ILLOP; 5093 break; 5094 } 5095 } 5096 5097 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5098 regs[rd] = INT64_MIN; 5099 break; 5100 } 5101 5102 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5103 break; 5104 } 5105 5106 case DIF_SUBR_LLTOSTR: { 5107 int64_t i = (int64_t)tupregs[0].dttk_value; 5108 uint64_t val, digit; 5109 uint64_t size = 65; /* enough room for 2^64 in binary */ 5110 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5111 int base = 10; 5112 5113 if (nargs > 1) { 5114 if ((base = tupregs[1].dttk_value) <= 1 || 5115 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5116 *flags |= CPU_DTRACE_ILLOP; 5117 break; 5118 } 5119 } 5120 5121 val = (base == 10 && i < 0) ? i * -1 : i; 5122 5123 if (!DTRACE_INSCRATCH(mstate, size)) { 5124 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5125 regs[rd] = NULL; 5126 break; 5127 } 5128 5129 for (*end-- = '\0'; val; val /= base) { 5130 if ((digit = val % base) <= '9' - '0') { 5131 *end-- = '0' + digit; 5132 } else { 5133 *end-- = 'a' + (digit - ('9' - '0') - 1); 5134 } 5135 } 5136 5137 if (i == 0 && base == 16) 5138 *end-- = '0'; 5139 5140 if (base == 16) 5141 *end-- = 'x'; 5142 5143 if (i == 0 || base == 8 || base == 16) 5144 *end-- = '0'; 5145 5146 if (i < 0 && base == 10) 5147 *end-- = '-'; 5148 5149 regs[rd] = (uintptr_t)end + 1; 5150 mstate->dtms_scratch_ptr += size; 5151 break; 5152 } 5153 5154 case DIF_SUBR_HTONS: 5155 case DIF_SUBR_NTOHS: 5156 #ifdef _BIG_ENDIAN 5157 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5158 #else 5159 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5160 #endif 5161 break; 5162 5163 5164 case DIF_SUBR_HTONL: 5165 case DIF_SUBR_NTOHL: 5166 #ifdef _BIG_ENDIAN 5167 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5168 #else 5169 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5170 #endif 5171 break; 5172 5173 5174 case DIF_SUBR_HTONLL: 5175 case DIF_SUBR_NTOHLL: 5176 #ifdef _BIG_ENDIAN 5177 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5178 #else 5179 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5180 #endif 5181 break; 5182 5183 5184 case DIF_SUBR_DIRNAME: 5185 case DIF_SUBR_BASENAME: { 5186 char *dest = (char *)mstate->dtms_scratch_ptr; 5187 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5188 uintptr_t src = tupregs[0].dttk_value; 5189 int i, j, len = dtrace_strlen((char *)src, size); 5190 int lastbase = -1, firstbase = -1, lastdir = -1; 5191 int start, end; 5192 5193 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5194 regs[rd] = NULL; 5195 break; 5196 } 5197 5198 if (!DTRACE_INSCRATCH(mstate, size)) { 5199 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5200 regs[rd] = NULL; 5201 break; 5202 } 5203 5204 /* 5205 * The basename and dirname for a zero-length string is 5206 * defined to be "." 5207 */ 5208 if (len == 0) { 5209 len = 1; 5210 src = (uintptr_t)"."; 5211 } 5212 5213 /* 5214 * Start from the back of the string, moving back toward the 5215 * front until we see a character that isn't a slash. That 5216 * character is the last character in the basename. 5217 */ 5218 for (i = len - 1; i >= 0; i--) { 5219 if (dtrace_load8(src + i) != '/') 5220 break; 5221 } 5222 5223 if (i >= 0) 5224 lastbase = i; 5225 5226 /* 5227 * Starting from the last character in the basename, move 5228 * towards the front until we find a slash. The character 5229 * that we processed immediately before that is the first 5230 * character in the basename. 5231 */ 5232 for (; i >= 0; i--) { 5233 if (dtrace_load8(src + i) == '/') 5234 break; 5235 } 5236 5237 if (i >= 0) 5238 firstbase = i + 1; 5239 5240 /* 5241 * Now keep going until we find a non-slash character. That 5242 * character is the last character in the dirname. 5243 */ 5244 for (; i >= 0; i--) { 5245 if (dtrace_load8(src + i) != '/') 5246 break; 5247 } 5248 5249 if (i >= 0) 5250 lastdir = i; 5251 5252 ASSERT(!(lastbase == -1 && firstbase != -1)); 5253 ASSERT(!(firstbase == -1 && lastdir != -1)); 5254 5255 if (lastbase == -1) { 5256 /* 5257 * We didn't find a non-slash character. We know that 5258 * the length is non-zero, so the whole string must be 5259 * slashes. In either the dirname or the basename 5260 * case, we return '/'. 5261 */ 5262 ASSERT(firstbase == -1); 5263 firstbase = lastbase = lastdir = 0; 5264 } 5265 5266 if (firstbase == -1) { 5267 /* 5268 * The entire string consists only of a basename 5269 * component. If we're looking for dirname, we need 5270 * to change our string to be just "."; if we're 5271 * looking for a basename, we'll just set the first 5272 * character of the basename to be 0. 5273 */ 5274 if (subr == DIF_SUBR_DIRNAME) { 5275 ASSERT(lastdir == -1); 5276 src = (uintptr_t)"."; 5277 lastdir = 0; 5278 } else { 5279 firstbase = 0; 5280 } 5281 } 5282 5283 if (subr == DIF_SUBR_DIRNAME) { 5284 if (lastdir == -1) { 5285 /* 5286 * We know that we have a slash in the name -- 5287 * or lastdir would be set to 0, above. And 5288 * because lastdir is -1, we know that this 5289 * slash must be the first character. (That 5290 * is, the full string must be of the form 5291 * "/basename".) In this case, the last 5292 * character of the directory name is 0. 5293 */ 5294 lastdir = 0; 5295 } 5296 5297 start = 0; 5298 end = lastdir; 5299 } else { 5300 ASSERT(subr == DIF_SUBR_BASENAME); 5301 ASSERT(firstbase != -1 && lastbase != -1); 5302 start = firstbase; 5303 end = lastbase; 5304 } 5305 5306 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5307 dest[j] = dtrace_load8(src + i); 5308 5309 dest[j] = '\0'; 5310 regs[rd] = (uintptr_t)dest; 5311 mstate->dtms_scratch_ptr += size; 5312 break; 5313 } 5314 5315 case DIF_SUBR_GETF: { 5316 uintptr_t fd = tupregs[0].dttk_value; 5317 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5318 file_t *fp; 5319 5320 if (!dtrace_priv_proc(state, mstate)) { 5321 regs[rd] = NULL; 5322 break; 5323 } 5324 5325 /* 5326 * This is safe because fi_nfiles only increases, and the 5327 * fi_list array is not freed when the array size doubles. 5328 * (See the comment in flist_grow() for details on the 5329 * management of the u_finfo structure.) 5330 */ 5331 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5332 5333 mstate->dtms_getf = fp; 5334 regs[rd] = (uintptr_t)fp; 5335 break; 5336 } 5337 5338 case DIF_SUBR_CLEANPATH: { 5339 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5340 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5341 uintptr_t src = tupregs[0].dttk_value; 5342 size_t lim; 5343 int i = 0, j = 0; 5344 zone_t *z; 5345 5346 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5347 regs[rd] = NULL; 5348 break; 5349 } 5350 5351 if (!DTRACE_INSCRATCH(mstate, size)) { 5352 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5353 regs[rd] = NULL; 5354 break; 5355 } 5356 5357 /* 5358 * Move forward, loading each character. 5359 */ 5360 do { 5361 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5362 next: 5363 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5364 break; 5365 5366 if (c != '/') { 5367 dest[j++] = c; 5368 continue; 5369 } 5370 5371 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5372 5373 if (c == '/') { 5374 /* 5375 * We have two slashes -- we can just advance 5376 * to the next character. 5377 */ 5378 goto next; 5379 } 5380 5381 if (c != '.') { 5382 /* 5383 * This is not "." and it's not ".." -- we can 5384 * just store the "/" and this character and 5385 * drive on. 5386 */ 5387 dest[j++] = '/'; 5388 dest[j++] = c; 5389 continue; 5390 } 5391 5392 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5393 5394 if (c == '/') { 5395 /* 5396 * This is a "/./" component. We're not going 5397 * to store anything in the destination buffer; 5398 * we're just going to go to the next component. 5399 */ 5400 goto next; 5401 } 5402 5403 if (c != '.') { 5404 /* 5405 * This is not ".." -- we can just store the 5406 * "/." and this character and continue 5407 * processing. 5408 */ 5409 dest[j++] = '/'; 5410 dest[j++] = '.'; 5411 dest[j++] = c; 5412 continue; 5413 } 5414 5415 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5416 5417 if (c != '/' && c != '\0') { 5418 /* 5419 * This is not ".." -- it's "..[mumble]". 5420 * We'll store the "/.." and this character 5421 * and continue processing. 5422 */ 5423 dest[j++] = '/'; 5424 dest[j++] = '.'; 5425 dest[j++] = '.'; 5426 dest[j++] = c; 5427 continue; 5428 } 5429 5430 /* 5431 * This is "/../" or "/..\0". We need to back up 5432 * our destination pointer until we find a "/". 5433 */ 5434 i--; 5435 while (j != 0 && dest[--j] != '/') 5436 continue; 5437 5438 if (c == '\0') 5439 dest[++j] = '/'; 5440 } while (c != '\0'); 5441 5442 dest[j] = '\0'; 5443 5444 if (mstate->dtms_getf != NULL && 5445 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5446 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5447 /* 5448 * If we've done a getf() as a part of this ECB and we 5449 * don't have kernel access (and we're not in the global 5450 * zone), check if the path we cleaned up begins with 5451 * the zone's root path, and trim it off if so. Note 5452 * that this is an output cleanliness issue, not a 5453 * security issue: knowing one's zone root path does 5454 * not enable privilege escalation. 5455 */ 5456 if (strstr(dest, z->zone_rootpath) == dest) 5457 dest += strlen(z->zone_rootpath) - 1; 5458 } 5459 5460 regs[rd] = (uintptr_t)dest; 5461 mstate->dtms_scratch_ptr += size; 5462 break; 5463 } 5464 5465 case DIF_SUBR_INET_NTOA: 5466 case DIF_SUBR_INET_NTOA6: 5467 case DIF_SUBR_INET_NTOP: { 5468 size_t size; 5469 int af, argi, i; 5470 char *base, *end; 5471 5472 if (subr == DIF_SUBR_INET_NTOP) { 5473 af = (int)tupregs[0].dttk_value; 5474 argi = 1; 5475 } else { 5476 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5477 argi = 0; 5478 } 5479 5480 if (af == AF_INET) { 5481 ipaddr_t ip4; 5482 uint8_t *ptr8, val; 5483 5484 if (!dtrace_canload(tupregs[argi].dttk_value, 5485 sizeof (ipaddr_t), mstate, vstate)) { 5486 regs[rd] = NULL; 5487 break; 5488 } 5489 5490 /* 5491 * Safely load the IPv4 address. 5492 */ 5493 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5494 5495 /* 5496 * Check an IPv4 string will fit in scratch. 5497 */ 5498 size = INET_ADDRSTRLEN; 5499 if (!DTRACE_INSCRATCH(mstate, size)) { 5500 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5501 regs[rd] = NULL; 5502 break; 5503 } 5504 base = (char *)mstate->dtms_scratch_ptr; 5505 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5506 5507 /* 5508 * Stringify as a dotted decimal quad. 5509 */ 5510 *end-- = '\0'; 5511 ptr8 = (uint8_t *)&ip4; 5512 for (i = 3; i >= 0; i--) { 5513 val = ptr8[i]; 5514 5515 if (val == 0) { 5516 *end-- = '0'; 5517 } else { 5518 for (; val; val /= 10) { 5519 *end-- = '0' + (val % 10); 5520 } 5521 } 5522 5523 if (i > 0) 5524 *end-- = '.'; 5525 } 5526 ASSERT(end + 1 >= base); 5527 5528 } else if (af == AF_INET6) { 5529 struct in6_addr ip6; 5530 int firstzero, tryzero, numzero, v6end; 5531 uint16_t val; 5532 const char digits[] = "0123456789abcdef"; 5533 5534 /* 5535 * Stringify using RFC 1884 convention 2 - 16 bit 5536 * hexadecimal values with a zero-run compression. 5537 * Lower case hexadecimal digits are used. 5538 * eg, fe80::214:4fff:fe0b:76c8. 5539 * The IPv4 embedded form is returned for inet_ntop, 5540 * just the IPv4 string is returned for inet_ntoa6. 5541 */ 5542 5543 if (!dtrace_canload(tupregs[argi].dttk_value, 5544 sizeof (struct in6_addr), mstate, vstate)) { 5545 regs[rd] = NULL; 5546 break; 5547 } 5548 5549 /* 5550 * Safely load the IPv6 address. 5551 */ 5552 dtrace_bcopy( 5553 (void *)(uintptr_t)tupregs[argi].dttk_value, 5554 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5555 5556 /* 5557 * Check an IPv6 string will fit in scratch. 5558 */ 5559 size = INET6_ADDRSTRLEN; 5560 if (!DTRACE_INSCRATCH(mstate, size)) { 5561 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5562 regs[rd] = NULL; 5563 break; 5564 } 5565 base = (char *)mstate->dtms_scratch_ptr; 5566 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5567 *end-- = '\0'; 5568 5569 /* 5570 * Find the longest run of 16 bit zero values 5571 * for the single allowed zero compression - "::". 5572 */ 5573 firstzero = -1; 5574 tryzero = -1; 5575 numzero = 1; 5576 for (i = 0; i < sizeof (struct in6_addr); i++) { 5577 if (ip6._S6_un._S6_u8[i] == 0 && 5578 tryzero == -1 && i % 2 == 0) { 5579 tryzero = i; 5580 continue; 5581 } 5582 5583 if (tryzero != -1 && 5584 (ip6._S6_un._S6_u8[i] != 0 || 5585 i == sizeof (struct in6_addr) - 1)) { 5586 5587 if (i - tryzero <= numzero) { 5588 tryzero = -1; 5589 continue; 5590 } 5591 5592 firstzero = tryzero; 5593 numzero = i - i % 2 - tryzero; 5594 tryzero = -1; 5595 5596 if (ip6._S6_un._S6_u8[i] == 0 && 5597 i == sizeof (struct in6_addr) - 1) 5598 numzero += 2; 5599 } 5600 } 5601 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5602 5603 /* 5604 * Check for an IPv4 embedded address. 5605 */ 5606 v6end = sizeof (struct in6_addr) - 2; 5607 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5608 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5609 for (i = sizeof (struct in6_addr) - 1; 5610 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5611 ASSERT(end >= base); 5612 5613 val = ip6._S6_un._S6_u8[i]; 5614 5615 if (val == 0) { 5616 *end-- = '0'; 5617 } else { 5618 for (; val; val /= 10) { 5619 *end-- = '0' + val % 10; 5620 } 5621 } 5622 5623 if (i > DTRACE_V4MAPPED_OFFSET) 5624 *end-- = '.'; 5625 } 5626 5627 if (subr == DIF_SUBR_INET_NTOA6) 5628 goto inetout; 5629 5630 /* 5631 * Set v6end to skip the IPv4 address that 5632 * we have already stringified. 5633 */ 5634 v6end = 10; 5635 } 5636 5637 /* 5638 * Build the IPv6 string by working through the 5639 * address in reverse. 5640 */ 5641 for (i = v6end; i >= 0; i -= 2) { 5642 ASSERT(end >= base); 5643 5644 if (i == firstzero + numzero - 2) { 5645 *end-- = ':'; 5646 *end-- = ':'; 5647 i -= numzero - 2; 5648 continue; 5649 } 5650 5651 if (i < 14 && i != firstzero - 2) 5652 *end-- = ':'; 5653 5654 val = (ip6._S6_un._S6_u8[i] << 8) + 5655 ip6._S6_un._S6_u8[i + 1]; 5656 5657 if (val == 0) { 5658 *end-- = '0'; 5659 } else { 5660 for (; val; val /= 16) { 5661 *end-- = digits[val % 16]; 5662 } 5663 } 5664 } 5665 ASSERT(end + 1 >= base); 5666 5667 } else { 5668 /* 5669 * The user didn't use AH_INET or AH_INET6. 5670 */ 5671 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5672 regs[rd] = NULL; 5673 break; 5674 } 5675 5676 inetout: regs[rd] = (uintptr_t)end + 1; 5677 mstate->dtms_scratch_ptr += size; 5678 break; 5679 } 5680 5681 } 5682 } 5683 5684 /* 5685 * Emulate the execution of DTrace IR instructions specified by the given 5686 * DIF object. This function is deliberately void of assertions as all of 5687 * the necessary checks are handled by a call to dtrace_difo_validate(). 5688 */ 5689 static uint64_t 5690 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5691 dtrace_vstate_t *vstate, dtrace_state_t *state) 5692 { 5693 const dif_instr_t *text = difo->dtdo_buf; 5694 const uint_t textlen = difo->dtdo_len; 5695 const char *strtab = difo->dtdo_strtab; 5696 const uint64_t *inttab = difo->dtdo_inttab; 5697 5698 uint64_t rval = 0; 5699 dtrace_statvar_t *svar; 5700 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5701 dtrace_difv_t *v; 5702 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5703 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5704 5705 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5706 uint64_t regs[DIF_DIR_NREGS]; 5707 uint64_t *tmp; 5708 5709 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5710 int64_t cc_r; 5711 uint_t pc = 0, id, opc; 5712 uint8_t ttop = 0; 5713 dif_instr_t instr; 5714 uint_t r1, r2, rd; 5715 5716 /* 5717 * We stash the current DIF object into the machine state: we need it 5718 * for subsequent access checking. 5719 */ 5720 mstate->dtms_difo = difo; 5721 5722 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5723 5724 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5725 opc = pc; 5726 5727 instr = text[pc++]; 5728 r1 = DIF_INSTR_R1(instr); 5729 r2 = DIF_INSTR_R2(instr); 5730 rd = DIF_INSTR_RD(instr); 5731 5732 switch (DIF_INSTR_OP(instr)) { 5733 case DIF_OP_OR: 5734 regs[rd] = regs[r1] | regs[r2]; 5735 break; 5736 case DIF_OP_XOR: 5737 regs[rd] = regs[r1] ^ regs[r2]; 5738 break; 5739 case DIF_OP_AND: 5740 regs[rd] = regs[r1] & regs[r2]; 5741 break; 5742 case DIF_OP_SLL: 5743 regs[rd] = regs[r1] << regs[r2]; 5744 break; 5745 case DIF_OP_SRL: 5746 regs[rd] = regs[r1] >> regs[r2]; 5747 break; 5748 case DIF_OP_SUB: 5749 regs[rd] = regs[r1] - regs[r2]; 5750 break; 5751 case DIF_OP_ADD: 5752 regs[rd] = regs[r1] + regs[r2]; 5753 break; 5754 case DIF_OP_MUL: 5755 regs[rd] = regs[r1] * regs[r2]; 5756 break; 5757 case DIF_OP_SDIV: 5758 if (regs[r2] == 0) { 5759 regs[rd] = 0; 5760 *flags |= CPU_DTRACE_DIVZERO; 5761 } else { 5762 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5763 regs[rd] = (int64_t)regs[r1] / 5764 (int64_t)regs[r2]; 5765 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5766 } 5767 break; 5768 5769 case DIF_OP_UDIV: 5770 if (regs[r2] == 0) { 5771 regs[rd] = 0; 5772 *flags |= CPU_DTRACE_DIVZERO; 5773 } else { 5774 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5775 regs[rd] = regs[r1] / regs[r2]; 5776 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5777 } 5778 break; 5779 5780 case DIF_OP_SREM: 5781 if (regs[r2] == 0) { 5782 regs[rd] = 0; 5783 *flags |= CPU_DTRACE_DIVZERO; 5784 } else { 5785 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5786 regs[rd] = (int64_t)regs[r1] % 5787 (int64_t)regs[r2]; 5788 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5789 } 5790 break; 5791 5792 case DIF_OP_UREM: 5793 if (regs[r2] == 0) { 5794 regs[rd] = 0; 5795 *flags |= CPU_DTRACE_DIVZERO; 5796 } else { 5797 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5798 regs[rd] = regs[r1] % regs[r2]; 5799 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5800 } 5801 break; 5802 5803 case DIF_OP_NOT: 5804 regs[rd] = ~regs[r1]; 5805 break; 5806 case DIF_OP_MOV: 5807 regs[rd] = regs[r1]; 5808 break; 5809 case DIF_OP_CMP: 5810 cc_r = regs[r1] - regs[r2]; 5811 cc_n = cc_r < 0; 5812 cc_z = cc_r == 0; 5813 cc_v = 0; 5814 cc_c = regs[r1] < regs[r2]; 5815 break; 5816 case DIF_OP_TST: 5817 cc_n = cc_v = cc_c = 0; 5818 cc_z = regs[r1] == 0; 5819 break; 5820 case DIF_OP_BA: 5821 pc = DIF_INSTR_LABEL(instr); 5822 break; 5823 case DIF_OP_BE: 5824 if (cc_z) 5825 pc = DIF_INSTR_LABEL(instr); 5826 break; 5827 case DIF_OP_BNE: 5828 if (cc_z == 0) 5829 pc = DIF_INSTR_LABEL(instr); 5830 break; 5831 case DIF_OP_BG: 5832 if ((cc_z | (cc_n ^ cc_v)) == 0) 5833 pc = DIF_INSTR_LABEL(instr); 5834 break; 5835 case DIF_OP_BGU: 5836 if ((cc_c | cc_z) == 0) 5837 pc = DIF_INSTR_LABEL(instr); 5838 break; 5839 case DIF_OP_BGE: 5840 if ((cc_n ^ cc_v) == 0) 5841 pc = DIF_INSTR_LABEL(instr); 5842 break; 5843 case DIF_OP_BGEU: 5844 if (cc_c == 0) 5845 pc = DIF_INSTR_LABEL(instr); 5846 break; 5847 case DIF_OP_BL: 5848 if (cc_n ^ cc_v) 5849 pc = DIF_INSTR_LABEL(instr); 5850 break; 5851 case DIF_OP_BLU: 5852 if (cc_c) 5853 pc = DIF_INSTR_LABEL(instr); 5854 break; 5855 case DIF_OP_BLE: 5856 if (cc_z | (cc_n ^ cc_v)) 5857 pc = DIF_INSTR_LABEL(instr); 5858 break; 5859 case DIF_OP_BLEU: 5860 if (cc_c | cc_z) 5861 pc = DIF_INSTR_LABEL(instr); 5862 break; 5863 case DIF_OP_RLDSB: 5864 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5865 break; 5866 /*FALLTHROUGH*/ 5867 case DIF_OP_LDSB: 5868 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5869 break; 5870 case DIF_OP_RLDSH: 5871 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5872 break; 5873 /*FALLTHROUGH*/ 5874 case DIF_OP_LDSH: 5875 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5876 break; 5877 case DIF_OP_RLDSW: 5878 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5879 break; 5880 /*FALLTHROUGH*/ 5881 case DIF_OP_LDSW: 5882 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5883 break; 5884 case DIF_OP_RLDUB: 5885 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5886 break; 5887 /*FALLTHROUGH*/ 5888 case DIF_OP_LDUB: 5889 regs[rd] = dtrace_load8(regs[r1]); 5890 break; 5891 case DIF_OP_RLDUH: 5892 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5893 break; 5894 /*FALLTHROUGH*/ 5895 case DIF_OP_LDUH: 5896 regs[rd] = dtrace_load16(regs[r1]); 5897 break; 5898 case DIF_OP_RLDUW: 5899 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5900 break; 5901 /*FALLTHROUGH*/ 5902 case DIF_OP_LDUW: 5903 regs[rd] = dtrace_load32(regs[r1]); 5904 break; 5905 case DIF_OP_RLDX: 5906 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5907 break; 5908 /*FALLTHROUGH*/ 5909 case DIF_OP_LDX: 5910 regs[rd] = dtrace_load64(regs[r1]); 5911 break; 5912 case DIF_OP_ULDSB: 5913 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5914 regs[rd] = (int8_t) 5915 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5916 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5917 break; 5918 case DIF_OP_ULDSH: 5919 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5920 regs[rd] = (int16_t) 5921 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5922 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5923 break; 5924 case DIF_OP_ULDSW: 5925 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5926 regs[rd] = (int32_t) 5927 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5928 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5929 break; 5930 case DIF_OP_ULDUB: 5931 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5932 regs[rd] = 5933 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5934 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5935 break; 5936 case DIF_OP_ULDUH: 5937 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5938 regs[rd] = 5939 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5940 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5941 break; 5942 case DIF_OP_ULDUW: 5943 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5944 regs[rd] = 5945 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5946 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5947 break; 5948 case DIF_OP_ULDX: 5949 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5950 regs[rd] = 5951 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5952 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5953 break; 5954 case DIF_OP_RET: 5955 rval = regs[rd]; 5956 pc = textlen; 5957 break; 5958 case DIF_OP_NOP: 5959 break; 5960 case DIF_OP_SETX: 5961 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5962 break; 5963 case DIF_OP_SETS: 5964 regs[rd] = (uint64_t)(uintptr_t) 5965 (strtab + DIF_INSTR_STRING(instr)); 5966 break; 5967 case DIF_OP_SCMP: { 5968 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5969 uintptr_t s1 = regs[r1]; 5970 uintptr_t s2 = regs[r2]; 5971 size_t lim1, lim2; 5972 5973 if (s1 != NULL && 5974 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 5975 break; 5976 if (s2 != NULL && 5977 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 5978 break; 5979 5980 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 5981 MIN(lim1, lim2)); 5982 5983 cc_n = cc_r < 0; 5984 cc_z = cc_r == 0; 5985 cc_v = cc_c = 0; 5986 break; 5987 } 5988 case DIF_OP_LDGA: 5989 regs[rd] = dtrace_dif_variable(mstate, state, 5990 r1, regs[r2]); 5991 break; 5992 case DIF_OP_LDGS: 5993 id = DIF_INSTR_VAR(instr); 5994 5995 if (id >= DIF_VAR_OTHER_UBASE) { 5996 uintptr_t a; 5997 5998 id -= DIF_VAR_OTHER_UBASE; 5999 svar = vstate->dtvs_globals[id]; 6000 ASSERT(svar != NULL); 6001 v = &svar->dtsv_var; 6002 6003 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6004 regs[rd] = svar->dtsv_data; 6005 break; 6006 } 6007 6008 a = (uintptr_t)svar->dtsv_data; 6009 6010 if (*(uint8_t *)a == UINT8_MAX) { 6011 /* 6012 * If the 0th byte is set to UINT8_MAX 6013 * then this is to be treated as a 6014 * reference to a NULL variable. 6015 */ 6016 regs[rd] = NULL; 6017 } else { 6018 regs[rd] = a + sizeof (uint64_t); 6019 } 6020 6021 break; 6022 } 6023 6024 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6025 break; 6026 6027 case DIF_OP_STGS: 6028 id = DIF_INSTR_VAR(instr); 6029 6030 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6031 id -= DIF_VAR_OTHER_UBASE; 6032 6033 VERIFY(id < vstate->dtvs_nglobals); 6034 svar = vstate->dtvs_globals[id]; 6035 ASSERT(svar != NULL); 6036 v = &svar->dtsv_var; 6037 6038 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6039 uintptr_t a = (uintptr_t)svar->dtsv_data; 6040 size_t lim; 6041 6042 ASSERT(a != NULL); 6043 ASSERT(svar->dtsv_size != 0); 6044 6045 if (regs[rd] == NULL) { 6046 *(uint8_t *)a = UINT8_MAX; 6047 break; 6048 } else { 6049 *(uint8_t *)a = 0; 6050 a += sizeof (uint64_t); 6051 } 6052 if (!dtrace_vcanload( 6053 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6054 &lim, mstate, vstate)) 6055 break; 6056 6057 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6058 (void *)a, &v->dtdv_type, lim); 6059 break; 6060 } 6061 6062 svar->dtsv_data = regs[rd]; 6063 break; 6064 6065 case DIF_OP_LDTA: 6066 /* 6067 * There are no DTrace built-in thread-local arrays at 6068 * present. This opcode is saved for future work. 6069 */ 6070 *flags |= CPU_DTRACE_ILLOP; 6071 regs[rd] = 0; 6072 break; 6073 6074 case DIF_OP_LDLS: 6075 id = DIF_INSTR_VAR(instr); 6076 6077 if (id < DIF_VAR_OTHER_UBASE) { 6078 /* 6079 * For now, this has no meaning. 6080 */ 6081 regs[rd] = 0; 6082 break; 6083 } 6084 6085 id -= DIF_VAR_OTHER_UBASE; 6086 6087 ASSERT(id < vstate->dtvs_nlocals); 6088 ASSERT(vstate->dtvs_locals != NULL); 6089 6090 svar = vstate->dtvs_locals[id]; 6091 ASSERT(svar != NULL); 6092 v = &svar->dtsv_var; 6093 6094 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6095 uintptr_t a = (uintptr_t)svar->dtsv_data; 6096 size_t sz = v->dtdv_type.dtdt_size; 6097 6098 sz += sizeof (uint64_t); 6099 ASSERT(svar->dtsv_size == NCPU * sz); 6100 a += CPU->cpu_id * sz; 6101 6102 if (*(uint8_t *)a == UINT8_MAX) { 6103 /* 6104 * If the 0th byte is set to UINT8_MAX 6105 * then this is to be treated as a 6106 * reference to a NULL variable. 6107 */ 6108 regs[rd] = NULL; 6109 } else { 6110 regs[rd] = a + sizeof (uint64_t); 6111 } 6112 6113 break; 6114 } 6115 6116 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6117 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6118 regs[rd] = tmp[CPU->cpu_id]; 6119 break; 6120 6121 case DIF_OP_STLS: 6122 id = DIF_INSTR_VAR(instr); 6123 6124 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6125 id -= DIF_VAR_OTHER_UBASE; 6126 VERIFY(id < vstate->dtvs_nlocals); 6127 6128 ASSERT(vstate->dtvs_locals != NULL); 6129 svar = vstate->dtvs_locals[id]; 6130 ASSERT(svar != NULL); 6131 v = &svar->dtsv_var; 6132 6133 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6134 uintptr_t a = (uintptr_t)svar->dtsv_data; 6135 size_t sz = v->dtdv_type.dtdt_size; 6136 size_t lim; 6137 6138 sz += sizeof (uint64_t); 6139 ASSERT(svar->dtsv_size == NCPU * sz); 6140 a += CPU->cpu_id * sz; 6141 6142 if (regs[rd] == NULL) { 6143 *(uint8_t *)a = UINT8_MAX; 6144 break; 6145 } else { 6146 *(uint8_t *)a = 0; 6147 a += sizeof (uint64_t); 6148 } 6149 6150 if (!dtrace_vcanload( 6151 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6152 &lim, mstate, vstate)) 6153 break; 6154 6155 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6156 (void *)a, &v->dtdv_type, lim); 6157 break; 6158 } 6159 6160 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6161 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6162 tmp[CPU->cpu_id] = regs[rd]; 6163 break; 6164 6165 case DIF_OP_LDTS: { 6166 dtrace_dynvar_t *dvar; 6167 dtrace_key_t *key; 6168 6169 id = DIF_INSTR_VAR(instr); 6170 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6171 id -= DIF_VAR_OTHER_UBASE; 6172 v = &vstate->dtvs_tlocals[id]; 6173 6174 key = &tupregs[DIF_DTR_NREGS]; 6175 key[0].dttk_value = (uint64_t)id; 6176 key[0].dttk_size = 0; 6177 DTRACE_TLS_THRKEY(key[1].dttk_value); 6178 key[1].dttk_size = 0; 6179 6180 dvar = dtrace_dynvar(dstate, 2, key, 6181 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6182 mstate, vstate); 6183 6184 if (dvar == NULL) { 6185 regs[rd] = 0; 6186 break; 6187 } 6188 6189 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6190 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6191 } else { 6192 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6193 } 6194 6195 break; 6196 } 6197 6198 case DIF_OP_STTS: { 6199 dtrace_dynvar_t *dvar; 6200 dtrace_key_t *key; 6201 6202 id = DIF_INSTR_VAR(instr); 6203 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6204 id -= DIF_VAR_OTHER_UBASE; 6205 VERIFY(id < vstate->dtvs_ntlocals); 6206 6207 key = &tupregs[DIF_DTR_NREGS]; 6208 key[0].dttk_value = (uint64_t)id; 6209 key[0].dttk_size = 0; 6210 DTRACE_TLS_THRKEY(key[1].dttk_value); 6211 key[1].dttk_size = 0; 6212 v = &vstate->dtvs_tlocals[id]; 6213 6214 dvar = dtrace_dynvar(dstate, 2, key, 6215 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6216 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6217 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6218 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6219 6220 /* 6221 * Given that we're storing to thread-local data, 6222 * we need to flush our predicate cache. 6223 */ 6224 curthread->t_predcache = NULL; 6225 6226 if (dvar == NULL) 6227 break; 6228 6229 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6230 size_t lim; 6231 6232 if (!dtrace_vcanload( 6233 (void *)(uintptr_t)regs[rd], 6234 &v->dtdv_type, &lim, mstate, vstate)) 6235 break; 6236 6237 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6238 dvar->dtdv_data, &v->dtdv_type, lim); 6239 } else { 6240 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6241 } 6242 6243 break; 6244 } 6245 6246 case DIF_OP_SRA: 6247 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6248 break; 6249 6250 case DIF_OP_CALL: 6251 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6252 regs, tupregs, ttop, mstate, state); 6253 break; 6254 6255 case DIF_OP_PUSHTR: 6256 if (ttop == DIF_DTR_NREGS) { 6257 *flags |= CPU_DTRACE_TUPOFLOW; 6258 break; 6259 } 6260 6261 if (r1 == DIF_TYPE_STRING) { 6262 /* 6263 * If this is a string type and the size is 0, 6264 * we'll use the system-wide default string 6265 * size. Note that we are _not_ looking at 6266 * the value of the DTRACEOPT_STRSIZE option; 6267 * had this been set, we would expect to have 6268 * a non-zero size value in the "pushtr". 6269 */ 6270 tupregs[ttop].dttk_size = 6271 dtrace_strlen((char *)(uintptr_t)regs[rd], 6272 regs[r2] ? regs[r2] : 6273 dtrace_strsize_default) + 1; 6274 } else { 6275 if (regs[r2] > LONG_MAX) { 6276 *flags |= CPU_DTRACE_ILLOP; 6277 break; 6278 } 6279 6280 tupregs[ttop].dttk_size = regs[r2]; 6281 } 6282 6283 tupregs[ttop++].dttk_value = regs[rd]; 6284 break; 6285 6286 case DIF_OP_PUSHTV: 6287 if (ttop == DIF_DTR_NREGS) { 6288 *flags |= CPU_DTRACE_TUPOFLOW; 6289 break; 6290 } 6291 6292 tupregs[ttop].dttk_value = regs[rd]; 6293 tupregs[ttop++].dttk_size = 0; 6294 break; 6295 6296 case DIF_OP_POPTS: 6297 if (ttop != 0) 6298 ttop--; 6299 break; 6300 6301 case DIF_OP_FLUSHTS: 6302 ttop = 0; 6303 break; 6304 6305 case DIF_OP_LDGAA: 6306 case DIF_OP_LDTAA: { 6307 dtrace_dynvar_t *dvar; 6308 dtrace_key_t *key = tupregs; 6309 uint_t nkeys = ttop; 6310 6311 id = DIF_INSTR_VAR(instr); 6312 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6313 id -= DIF_VAR_OTHER_UBASE; 6314 6315 key[nkeys].dttk_value = (uint64_t)id; 6316 key[nkeys++].dttk_size = 0; 6317 6318 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6319 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6320 key[nkeys++].dttk_size = 0; 6321 VERIFY(id < vstate->dtvs_ntlocals); 6322 v = &vstate->dtvs_tlocals[id]; 6323 } else { 6324 VERIFY(id < vstate->dtvs_nglobals); 6325 v = &vstate->dtvs_globals[id]->dtsv_var; 6326 } 6327 6328 dvar = dtrace_dynvar(dstate, nkeys, key, 6329 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6330 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6331 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6332 6333 if (dvar == NULL) { 6334 regs[rd] = 0; 6335 break; 6336 } 6337 6338 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6339 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6340 } else { 6341 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6342 } 6343 6344 break; 6345 } 6346 6347 case DIF_OP_STGAA: 6348 case DIF_OP_STTAA: { 6349 dtrace_dynvar_t *dvar; 6350 dtrace_key_t *key = tupregs; 6351 uint_t nkeys = ttop; 6352 6353 id = DIF_INSTR_VAR(instr); 6354 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6355 id -= DIF_VAR_OTHER_UBASE; 6356 6357 key[nkeys].dttk_value = (uint64_t)id; 6358 key[nkeys++].dttk_size = 0; 6359 6360 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6361 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6362 key[nkeys++].dttk_size = 0; 6363 VERIFY(id < vstate->dtvs_ntlocals); 6364 v = &vstate->dtvs_tlocals[id]; 6365 } else { 6366 VERIFY(id < vstate->dtvs_nglobals); 6367 v = &vstate->dtvs_globals[id]->dtsv_var; 6368 } 6369 6370 dvar = dtrace_dynvar(dstate, nkeys, key, 6371 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6372 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6373 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6374 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6375 6376 if (dvar == NULL) 6377 break; 6378 6379 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6380 size_t lim; 6381 6382 if (!dtrace_vcanload( 6383 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6384 &lim, mstate, vstate)) 6385 break; 6386 6387 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6388 dvar->dtdv_data, &v->dtdv_type, lim); 6389 } else { 6390 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6391 } 6392 6393 break; 6394 } 6395 6396 case DIF_OP_ALLOCS: { 6397 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6398 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6399 6400 /* 6401 * Rounding up the user allocation size could have 6402 * overflowed large, bogus allocations (like -1ULL) to 6403 * 0. 6404 */ 6405 if (size < regs[r1] || 6406 !DTRACE_INSCRATCH(mstate, size)) { 6407 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6408 regs[rd] = NULL; 6409 break; 6410 } 6411 6412 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6413 mstate->dtms_scratch_ptr += size; 6414 regs[rd] = ptr; 6415 break; 6416 } 6417 6418 case DIF_OP_COPYS: 6419 if (!dtrace_canstore(regs[rd], regs[r2], 6420 mstate, vstate)) { 6421 *flags |= CPU_DTRACE_BADADDR; 6422 *illval = regs[rd]; 6423 break; 6424 } 6425 6426 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6427 break; 6428 6429 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6430 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6431 break; 6432 6433 case DIF_OP_STB: 6434 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6435 *flags |= CPU_DTRACE_BADADDR; 6436 *illval = regs[rd]; 6437 break; 6438 } 6439 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6440 break; 6441 6442 case DIF_OP_STH: 6443 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6444 *flags |= CPU_DTRACE_BADADDR; 6445 *illval = regs[rd]; 6446 break; 6447 } 6448 if (regs[rd] & 1) { 6449 *flags |= CPU_DTRACE_BADALIGN; 6450 *illval = regs[rd]; 6451 break; 6452 } 6453 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6454 break; 6455 6456 case DIF_OP_STW: 6457 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6458 *flags |= CPU_DTRACE_BADADDR; 6459 *illval = regs[rd]; 6460 break; 6461 } 6462 if (regs[rd] & 3) { 6463 *flags |= CPU_DTRACE_BADALIGN; 6464 *illval = regs[rd]; 6465 break; 6466 } 6467 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6468 break; 6469 6470 case DIF_OP_STX: 6471 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6472 *flags |= CPU_DTRACE_BADADDR; 6473 *illval = regs[rd]; 6474 break; 6475 } 6476 if (regs[rd] & 7) { 6477 *flags |= CPU_DTRACE_BADALIGN; 6478 *illval = regs[rd]; 6479 break; 6480 } 6481 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6482 break; 6483 } 6484 } 6485 6486 if (!(*flags & CPU_DTRACE_FAULT)) 6487 return (rval); 6488 6489 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6490 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6491 6492 return (0); 6493 } 6494 6495 static void 6496 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6497 { 6498 dtrace_probe_t *probe = ecb->dte_probe; 6499 dtrace_provider_t *prov = probe->dtpr_provider; 6500 char c[DTRACE_FULLNAMELEN + 80], *str; 6501 char *msg = "dtrace: breakpoint action at probe "; 6502 char *ecbmsg = " (ecb "; 6503 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6504 uintptr_t val = (uintptr_t)ecb; 6505 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6506 6507 if (dtrace_destructive_disallow) 6508 return; 6509 6510 /* 6511 * It's impossible to be taking action on the NULL probe. 6512 */ 6513 ASSERT(probe != NULL); 6514 6515 /* 6516 * This is a poor man's (destitute man's?) sprintf(): we want to 6517 * print the provider name, module name, function name and name of 6518 * the probe, along with the hex address of the ECB with the breakpoint 6519 * action -- all of which we must place in the character buffer by 6520 * hand. 6521 */ 6522 while (*msg != '\0') 6523 c[i++] = *msg++; 6524 6525 for (str = prov->dtpv_name; *str != '\0'; str++) 6526 c[i++] = *str; 6527 c[i++] = ':'; 6528 6529 for (str = probe->dtpr_mod; *str != '\0'; str++) 6530 c[i++] = *str; 6531 c[i++] = ':'; 6532 6533 for (str = probe->dtpr_func; *str != '\0'; str++) 6534 c[i++] = *str; 6535 c[i++] = ':'; 6536 6537 for (str = probe->dtpr_name; *str != '\0'; str++) 6538 c[i++] = *str; 6539 6540 while (*ecbmsg != '\0') 6541 c[i++] = *ecbmsg++; 6542 6543 while (shift >= 0) { 6544 mask = (uintptr_t)0xf << shift; 6545 6546 if (val >= ((uintptr_t)1 << shift)) 6547 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6548 shift -= 4; 6549 } 6550 6551 c[i++] = ')'; 6552 c[i] = '\0'; 6553 6554 debug_enter(c); 6555 } 6556 6557 static void 6558 dtrace_action_panic(dtrace_ecb_t *ecb) 6559 { 6560 dtrace_probe_t *probe = ecb->dte_probe; 6561 6562 /* 6563 * It's impossible to be taking action on the NULL probe. 6564 */ 6565 ASSERT(probe != NULL); 6566 6567 if (dtrace_destructive_disallow) 6568 return; 6569 6570 if (dtrace_panicked != NULL) 6571 return; 6572 6573 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6574 return; 6575 6576 /* 6577 * We won the right to panic. (We want to be sure that only one 6578 * thread calls panic() from dtrace_probe(), and that panic() is 6579 * called exactly once.) 6580 */ 6581 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6582 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6583 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6584 } 6585 6586 static void 6587 dtrace_action_raise(uint64_t sig) 6588 { 6589 if (dtrace_destructive_disallow) 6590 return; 6591 6592 if (sig >= NSIG) { 6593 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6594 return; 6595 } 6596 6597 /* 6598 * raise() has a queue depth of 1 -- we ignore all subsequent 6599 * invocations of the raise() action. 6600 */ 6601 if (curthread->t_dtrace_sig == 0) 6602 curthread->t_dtrace_sig = (uint8_t)sig; 6603 6604 curthread->t_sig_check = 1; 6605 aston(curthread); 6606 } 6607 6608 static void 6609 dtrace_action_stop(void) 6610 { 6611 if (dtrace_destructive_disallow) 6612 return; 6613 6614 if (!curthread->t_dtrace_stop) { 6615 curthread->t_dtrace_stop = 1; 6616 curthread->t_sig_check = 1; 6617 aston(curthread); 6618 } 6619 } 6620 6621 static void 6622 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6623 { 6624 hrtime_t now; 6625 volatile uint16_t *flags; 6626 cpu_t *cpu = CPU; 6627 6628 if (dtrace_destructive_disallow) 6629 return; 6630 6631 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6632 6633 now = dtrace_gethrtime(); 6634 6635 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6636 /* 6637 * We need to advance the mark to the current time. 6638 */ 6639 cpu->cpu_dtrace_chillmark = now; 6640 cpu->cpu_dtrace_chilled = 0; 6641 } 6642 6643 /* 6644 * Now check to see if the requested chill time would take us over 6645 * the maximum amount of time allowed in the chill interval. (Or 6646 * worse, if the calculation itself induces overflow.) 6647 */ 6648 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6649 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6650 *flags |= CPU_DTRACE_ILLOP; 6651 return; 6652 } 6653 6654 while (dtrace_gethrtime() - now < val) 6655 continue; 6656 6657 /* 6658 * Normally, we assure that the value of the variable "timestamp" does 6659 * not change within an ECB. The presence of chill() represents an 6660 * exception to this rule, however. 6661 */ 6662 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6663 cpu->cpu_dtrace_chilled += val; 6664 } 6665 6666 static void 6667 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6668 uint64_t *buf, uint64_t arg) 6669 { 6670 int nframes = DTRACE_USTACK_NFRAMES(arg); 6671 int strsize = DTRACE_USTACK_STRSIZE(arg); 6672 uint64_t *pcs = &buf[1], *fps; 6673 char *str = (char *)&pcs[nframes]; 6674 int size, offs = 0, i, j; 6675 size_t rem; 6676 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6677 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6678 char *sym; 6679 6680 /* 6681 * Should be taking a faster path if string space has not been 6682 * allocated. 6683 */ 6684 ASSERT(strsize != 0); 6685 6686 /* 6687 * We will first allocate some temporary space for the frame pointers. 6688 */ 6689 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6690 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6691 (nframes * sizeof (uint64_t)); 6692 6693 if (!DTRACE_INSCRATCH(mstate, size)) { 6694 /* 6695 * Not enough room for our frame pointers -- need to indicate 6696 * that we ran out of scratch space. 6697 */ 6698 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6699 return; 6700 } 6701 6702 mstate->dtms_scratch_ptr += size; 6703 saved = mstate->dtms_scratch_ptr; 6704 6705 /* 6706 * Now get a stack with both program counters and frame pointers. 6707 */ 6708 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6709 dtrace_getufpstack(buf, fps, nframes + 1); 6710 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6711 6712 /* 6713 * If that faulted, we're cooked. 6714 */ 6715 if (*flags & CPU_DTRACE_FAULT) 6716 goto out; 6717 6718 /* 6719 * Now we want to walk up the stack, calling the USTACK helper. For 6720 * each iteration, we restore the scratch pointer. 6721 */ 6722 for (i = 0; i < nframes; i++) { 6723 mstate->dtms_scratch_ptr = saved; 6724 6725 if (offs >= strsize) 6726 break; 6727 6728 sym = (char *)(uintptr_t)dtrace_helper( 6729 DTRACE_HELPER_ACTION_USTACK, 6730 mstate, state, pcs[i], fps[i]); 6731 6732 /* 6733 * If we faulted while running the helper, we're going to 6734 * clear the fault and null out the corresponding string. 6735 */ 6736 if (*flags & CPU_DTRACE_FAULT) { 6737 *flags &= ~CPU_DTRACE_FAULT; 6738 str[offs++] = '\0'; 6739 continue; 6740 } 6741 6742 if (sym == NULL) { 6743 str[offs++] = '\0'; 6744 continue; 6745 } 6746 6747 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 6748 &(state->dts_vstate))) { 6749 str[offs++] = '\0'; 6750 continue; 6751 } 6752 6753 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6754 6755 /* 6756 * Now copy in the string that the helper returned to us. 6757 */ 6758 for (j = 0; offs + j < strsize && j < rem; j++) { 6759 if ((str[offs + j] = sym[j]) == '\0') 6760 break; 6761 } 6762 6763 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6764 6765 offs += j + 1; 6766 } 6767 6768 if (offs >= strsize) { 6769 /* 6770 * If we didn't have room for all of the strings, we don't 6771 * abort processing -- this needn't be a fatal error -- but we 6772 * still want to increment a counter (dts_stkstroverflows) to 6773 * allow this condition to be warned about. (If this is from 6774 * a jstack() action, it is easily tuned via jstackstrsize.) 6775 */ 6776 dtrace_error(&state->dts_stkstroverflows); 6777 } 6778 6779 while (offs < strsize) 6780 str[offs++] = '\0'; 6781 6782 out: 6783 mstate->dtms_scratch_ptr = old; 6784 } 6785 6786 static void 6787 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6788 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6789 { 6790 volatile uint16_t *flags; 6791 uint64_t val = *valp; 6792 size_t valoffs = *valoffsp; 6793 6794 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6795 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6796 6797 /* 6798 * If this is a string, we're going to only load until we find the zero 6799 * byte -- after which we'll store zero bytes. 6800 */ 6801 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6802 char c = '\0' + 1; 6803 size_t s; 6804 6805 for (s = 0; s < size; s++) { 6806 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6807 c = dtrace_load8(val++); 6808 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6809 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6810 c = dtrace_fuword8((void *)(uintptr_t)val++); 6811 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6812 if (*flags & CPU_DTRACE_FAULT) 6813 break; 6814 } 6815 6816 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 6817 6818 if (c == '\0' && intuple) 6819 break; 6820 } 6821 } else { 6822 uint8_t c; 6823 while (valoffs < end) { 6824 if (dtkind == DIF_TF_BYREF) { 6825 c = dtrace_load8(val++); 6826 } else if (dtkind == DIF_TF_BYUREF) { 6827 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6828 c = dtrace_fuword8((void *)(uintptr_t)val++); 6829 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6830 if (*flags & CPU_DTRACE_FAULT) 6831 break; 6832 } 6833 6834 DTRACE_STORE(uint8_t, tomax, 6835 valoffs++, c); 6836 } 6837 } 6838 6839 *valp = val; 6840 *valoffsp = valoffs; 6841 } 6842 6843 /* 6844 * If you're looking for the epicenter of DTrace, you just found it. This 6845 * is the function called by the provider to fire a probe -- from which all 6846 * subsequent probe-context DTrace activity emanates. 6847 */ 6848 void 6849 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6850 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6851 { 6852 processorid_t cpuid; 6853 dtrace_icookie_t cookie; 6854 dtrace_probe_t *probe; 6855 dtrace_mstate_t mstate; 6856 dtrace_ecb_t *ecb; 6857 dtrace_action_t *act; 6858 intptr_t offs; 6859 size_t size; 6860 int vtime, onintr; 6861 volatile uint16_t *flags; 6862 hrtime_t now, end; 6863 6864 /* 6865 * Kick out immediately if this CPU is still being born (in which case 6866 * curthread will be set to -1) or the current thread can't allow 6867 * probes in its current context. 6868 */ 6869 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6870 return; 6871 6872 cookie = dtrace_interrupt_disable(); 6873 probe = dtrace_probes[id - 1]; 6874 cpuid = CPU->cpu_id; 6875 onintr = CPU_ON_INTR(CPU); 6876 6877 CPU->cpu_dtrace_probes++; 6878 6879 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6880 probe->dtpr_predcache == curthread->t_predcache) { 6881 /* 6882 * We have hit in the predicate cache; we know that 6883 * this predicate would evaluate to be false. 6884 */ 6885 dtrace_interrupt_enable(cookie); 6886 return; 6887 } 6888 6889 if (panic_quiesce) { 6890 /* 6891 * We don't trace anything if we're panicking. 6892 */ 6893 dtrace_interrupt_enable(cookie); 6894 return; 6895 } 6896 6897 now = mstate.dtms_timestamp = dtrace_gethrtime(); 6898 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6899 vtime = dtrace_vtime_references != 0; 6900 6901 if (vtime && curthread->t_dtrace_start) 6902 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6903 6904 mstate.dtms_difo = NULL; 6905 mstate.dtms_probe = probe; 6906 mstate.dtms_strtok = NULL; 6907 mstate.dtms_arg[0] = arg0; 6908 mstate.dtms_arg[1] = arg1; 6909 mstate.dtms_arg[2] = arg2; 6910 mstate.dtms_arg[3] = arg3; 6911 mstate.dtms_arg[4] = arg4; 6912 6913 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6914 6915 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6916 dtrace_predicate_t *pred = ecb->dte_predicate; 6917 dtrace_state_t *state = ecb->dte_state; 6918 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6919 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6920 dtrace_vstate_t *vstate = &state->dts_vstate; 6921 dtrace_provider_t *prov = probe->dtpr_provider; 6922 uint64_t tracememsize = 0; 6923 int committed = 0; 6924 caddr_t tomax; 6925 6926 /* 6927 * A little subtlety with the following (seemingly innocuous) 6928 * declaration of the automatic 'val': by looking at the 6929 * code, you might think that it could be declared in the 6930 * action processing loop, below. (That is, it's only used in 6931 * the action processing loop.) However, it must be declared 6932 * out of that scope because in the case of DIF expression 6933 * arguments to aggregating actions, one iteration of the 6934 * action loop will use the last iteration's value. 6935 */ 6936 #ifdef lint 6937 uint64_t val = 0; 6938 #else 6939 uint64_t val; 6940 #endif 6941 6942 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 6943 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 6944 mstate.dtms_getf = NULL; 6945 6946 *flags &= ~CPU_DTRACE_ERROR; 6947 6948 if (prov == dtrace_provider) { 6949 /* 6950 * If dtrace itself is the provider of this probe, 6951 * we're only going to continue processing the ECB if 6952 * arg0 (the dtrace_state_t) is equal to the ECB's 6953 * creating state. (This prevents disjoint consumers 6954 * from seeing one another's metaprobes.) 6955 */ 6956 if (arg0 != (uint64_t)(uintptr_t)state) 6957 continue; 6958 } 6959 6960 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 6961 /* 6962 * We're not currently active. If our provider isn't 6963 * the dtrace pseudo provider, we're not interested. 6964 */ 6965 if (prov != dtrace_provider) 6966 continue; 6967 6968 /* 6969 * Now we must further check if we are in the BEGIN 6970 * probe. If we are, we will only continue processing 6971 * if we're still in WARMUP -- if one BEGIN enabling 6972 * has invoked the exit() action, we don't want to 6973 * evaluate subsequent BEGIN enablings. 6974 */ 6975 if (probe->dtpr_id == dtrace_probeid_begin && 6976 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 6977 ASSERT(state->dts_activity == 6978 DTRACE_ACTIVITY_DRAINING); 6979 continue; 6980 } 6981 } 6982 6983 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 6984 continue; 6985 6986 if (now - state->dts_alive > dtrace_deadman_timeout) { 6987 /* 6988 * We seem to be dead. Unless we (a) have kernel 6989 * destructive permissions (b) have explicitly enabled 6990 * destructive actions and (c) destructive actions have 6991 * not been disabled, we're going to transition into 6992 * the KILLED state, from which no further processing 6993 * on this state will be performed. 6994 */ 6995 if (!dtrace_priv_kernel_destructive(state) || 6996 !state->dts_cred.dcr_destructive || 6997 dtrace_destructive_disallow) { 6998 void *activity = &state->dts_activity; 6999 dtrace_activity_t current; 7000 7001 do { 7002 current = state->dts_activity; 7003 } while (dtrace_cas32(activity, current, 7004 DTRACE_ACTIVITY_KILLED) != current); 7005 7006 continue; 7007 } 7008 } 7009 7010 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7011 ecb->dte_alignment, state, &mstate)) < 0) 7012 continue; 7013 7014 tomax = buf->dtb_tomax; 7015 ASSERT(tomax != NULL); 7016 7017 if (ecb->dte_size != 0) { 7018 dtrace_rechdr_t dtrh; 7019 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7020 mstate.dtms_timestamp = dtrace_gethrtime(); 7021 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7022 } 7023 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7024 dtrh.dtrh_epid = ecb->dte_epid; 7025 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7026 mstate.dtms_timestamp); 7027 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7028 } 7029 7030 mstate.dtms_epid = ecb->dte_epid; 7031 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7032 7033 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7034 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 7035 7036 if (pred != NULL) { 7037 dtrace_difo_t *dp = pred->dtp_difo; 7038 int rval; 7039 7040 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7041 7042 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7043 dtrace_cacheid_t cid = probe->dtpr_predcache; 7044 7045 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7046 /* 7047 * Update the predicate cache... 7048 */ 7049 ASSERT(cid == pred->dtp_cacheid); 7050 curthread->t_predcache = cid; 7051 } 7052 7053 continue; 7054 } 7055 } 7056 7057 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7058 act != NULL; act = act->dta_next) { 7059 size_t valoffs; 7060 dtrace_difo_t *dp; 7061 dtrace_recdesc_t *rec = &act->dta_rec; 7062 7063 size = rec->dtrd_size; 7064 valoffs = offs + rec->dtrd_offset; 7065 7066 if (DTRACEACT_ISAGG(act->dta_kind)) { 7067 uint64_t v = 0xbad; 7068 dtrace_aggregation_t *agg; 7069 7070 agg = (dtrace_aggregation_t *)act; 7071 7072 if ((dp = act->dta_difo) != NULL) 7073 v = dtrace_dif_emulate(dp, 7074 &mstate, vstate, state); 7075 7076 if (*flags & CPU_DTRACE_ERROR) 7077 continue; 7078 7079 /* 7080 * Note that we always pass the expression 7081 * value from the previous iteration of the 7082 * action loop. This value will only be used 7083 * if there is an expression argument to the 7084 * aggregating action, denoted by the 7085 * dtag_hasarg field. 7086 */ 7087 dtrace_aggregate(agg, buf, 7088 offs, aggbuf, v, val); 7089 continue; 7090 } 7091 7092 switch (act->dta_kind) { 7093 case DTRACEACT_STOP: 7094 if (dtrace_priv_proc_destructive(state, 7095 &mstate)) 7096 dtrace_action_stop(); 7097 continue; 7098 7099 case DTRACEACT_BREAKPOINT: 7100 if (dtrace_priv_kernel_destructive(state)) 7101 dtrace_action_breakpoint(ecb); 7102 continue; 7103 7104 case DTRACEACT_PANIC: 7105 if (dtrace_priv_kernel_destructive(state)) 7106 dtrace_action_panic(ecb); 7107 continue; 7108 7109 case DTRACEACT_STACK: 7110 if (!dtrace_priv_kernel(state)) 7111 continue; 7112 7113 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7114 size / sizeof (pc_t), probe->dtpr_aframes, 7115 DTRACE_ANCHORED(probe) ? NULL : 7116 (uint32_t *)arg0); 7117 7118 continue; 7119 7120 case DTRACEACT_JSTACK: 7121 case DTRACEACT_USTACK: 7122 if (!dtrace_priv_proc(state, &mstate)) 7123 continue; 7124 7125 /* 7126 * See comment in DIF_VAR_PID. 7127 */ 7128 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7129 CPU_ON_INTR(CPU)) { 7130 int depth = DTRACE_USTACK_NFRAMES( 7131 rec->dtrd_arg) + 1; 7132 7133 dtrace_bzero((void *)(tomax + valoffs), 7134 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7135 + depth * sizeof (uint64_t)); 7136 7137 continue; 7138 } 7139 7140 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7141 curproc->p_dtrace_helpers != NULL) { 7142 /* 7143 * This is the slow path -- we have 7144 * allocated string space, and we're 7145 * getting the stack of a process that 7146 * has helpers. Call into a separate 7147 * routine to perform this processing. 7148 */ 7149 dtrace_action_ustack(&mstate, state, 7150 (uint64_t *)(tomax + valoffs), 7151 rec->dtrd_arg); 7152 continue; 7153 } 7154 7155 /* 7156 * Clear the string space, since there's no 7157 * helper to do it for us. 7158 */ 7159 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 7160 int depth = DTRACE_USTACK_NFRAMES( 7161 rec->dtrd_arg); 7162 size_t strsize = DTRACE_USTACK_STRSIZE( 7163 rec->dtrd_arg); 7164 uint64_t *buf = (uint64_t *)(tomax + 7165 valoffs); 7166 void *strspace = &buf[depth + 1]; 7167 7168 dtrace_bzero(strspace, 7169 MIN(depth, strsize)); 7170 } 7171 7172 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7173 dtrace_getupcstack((uint64_t *) 7174 (tomax + valoffs), 7175 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7176 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7177 continue; 7178 7179 default: 7180 break; 7181 } 7182 7183 dp = act->dta_difo; 7184 ASSERT(dp != NULL); 7185 7186 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7187 7188 if (*flags & CPU_DTRACE_ERROR) 7189 continue; 7190 7191 switch (act->dta_kind) { 7192 case DTRACEACT_SPECULATE: { 7193 dtrace_rechdr_t *dtrh; 7194 7195 ASSERT(buf == &state->dts_buffer[cpuid]); 7196 buf = dtrace_speculation_buffer(state, 7197 cpuid, val); 7198 7199 if (buf == NULL) { 7200 *flags |= CPU_DTRACE_DROP; 7201 continue; 7202 } 7203 7204 offs = dtrace_buffer_reserve(buf, 7205 ecb->dte_needed, ecb->dte_alignment, 7206 state, NULL); 7207 7208 if (offs < 0) { 7209 *flags |= CPU_DTRACE_DROP; 7210 continue; 7211 } 7212 7213 tomax = buf->dtb_tomax; 7214 ASSERT(tomax != NULL); 7215 7216 if (ecb->dte_size == 0) 7217 continue; 7218 7219 ASSERT3U(ecb->dte_size, >=, 7220 sizeof (dtrace_rechdr_t)); 7221 dtrh = ((void *)(tomax + offs)); 7222 dtrh->dtrh_epid = ecb->dte_epid; 7223 /* 7224 * When the speculation is committed, all of 7225 * the records in the speculative buffer will 7226 * have their timestamps set to the commit 7227 * time. Until then, it is set to a sentinel 7228 * value, for debugability. 7229 */ 7230 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7231 continue; 7232 } 7233 7234 case DTRACEACT_CHILL: 7235 if (dtrace_priv_kernel_destructive(state)) 7236 dtrace_action_chill(&mstate, val); 7237 continue; 7238 7239 case DTRACEACT_RAISE: 7240 if (dtrace_priv_proc_destructive(state, 7241 &mstate)) 7242 dtrace_action_raise(val); 7243 continue; 7244 7245 case DTRACEACT_COMMIT: 7246 ASSERT(!committed); 7247 7248 /* 7249 * We need to commit our buffer state. 7250 */ 7251 if (ecb->dte_size) 7252 buf->dtb_offset = offs + ecb->dte_size; 7253 buf = &state->dts_buffer[cpuid]; 7254 dtrace_speculation_commit(state, cpuid, val); 7255 committed = 1; 7256 continue; 7257 7258 case DTRACEACT_DISCARD: 7259 dtrace_speculation_discard(state, cpuid, val); 7260 continue; 7261 7262 case DTRACEACT_DIFEXPR: 7263 case DTRACEACT_LIBACT: 7264 case DTRACEACT_PRINTF: 7265 case DTRACEACT_PRINTA: 7266 case DTRACEACT_SYSTEM: 7267 case DTRACEACT_FREOPEN: 7268 case DTRACEACT_TRACEMEM: 7269 break; 7270 7271 case DTRACEACT_TRACEMEM_DYNSIZE: 7272 tracememsize = val; 7273 break; 7274 7275 case DTRACEACT_SYM: 7276 case DTRACEACT_MOD: 7277 if (!dtrace_priv_kernel(state)) 7278 continue; 7279 break; 7280 7281 case DTRACEACT_USYM: 7282 case DTRACEACT_UMOD: 7283 case DTRACEACT_UADDR: { 7284 struct pid *pid = curthread->t_procp->p_pidp; 7285 7286 if (!dtrace_priv_proc(state, &mstate)) 7287 continue; 7288 7289 DTRACE_STORE(uint64_t, tomax, 7290 valoffs, (uint64_t)pid->pid_id); 7291 DTRACE_STORE(uint64_t, tomax, 7292 valoffs + sizeof (uint64_t), val); 7293 7294 continue; 7295 } 7296 7297 case DTRACEACT_EXIT: { 7298 /* 7299 * For the exit action, we are going to attempt 7300 * to atomically set our activity to be 7301 * draining. If this fails (either because 7302 * another CPU has beat us to the exit action, 7303 * or because our current activity is something 7304 * other than ACTIVE or WARMUP), we will 7305 * continue. This assures that the exit action 7306 * can be successfully recorded at most once 7307 * when we're in the ACTIVE state. If we're 7308 * encountering the exit() action while in 7309 * COOLDOWN, however, we want to honor the new 7310 * status code. (We know that we're the only 7311 * thread in COOLDOWN, so there is no race.) 7312 */ 7313 void *activity = &state->dts_activity; 7314 dtrace_activity_t current = state->dts_activity; 7315 7316 if (current == DTRACE_ACTIVITY_COOLDOWN) 7317 break; 7318 7319 if (current != DTRACE_ACTIVITY_WARMUP) 7320 current = DTRACE_ACTIVITY_ACTIVE; 7321 7322 if (dtrace_cas32(activity, current, 7323 DTRACE_ACTIVITY_DRAINING) != current) { 7324 *flags |= CPU_DTRACE_DROP; 7325 continue; 7326 } 7327 7328 break; 7329 } 7330 7331 default: 7332 ASSERT(0); 7333 } 7334 7335 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7336 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7337 uintptr_t end = valoffs + size; 7338 7339 if (tracememsize != 0 && 7340 valoffs + tracememsize < end) { 7341 end = valoffs + tracememsize; 7342 tracememsize = 0; 7343 } 7344 7345 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7346 !dtrace_vcanload((void *)(uintptr_t)val, 7347 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7348 continue; 7349 7350 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7351 &val, end, act->dta_intuple, 7352 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7353 DIF_TF_BYREF: DIF_TF_BYUREF); 7354 continue; 7355 } 7356 7357 switch (size) { 7358 case 0: 7359 break; 7360 7361 case sizeof (uint8_t): 7362 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7363 break; 7364 case sizeof (uint16_t): 7365 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7366 break; 7367 case sizeof (uint32_t): 7368 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7369 break; 7370 case sizeof (uint64_t): 7371 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7372 break; 7373 default: 7374 /* 7375 * Any other size should have been returned by 7376 * reference, not by value. 7377 */ 7378 ASSERT(0); 7379 break; 7380 } 7381 } 7382 7383 if (*flags & CPU_DTRACE_DROP) 7384 continue; 7385 7386 if (*flags & CPU_DTRACE_FAULT) { 7387 int ndx; 7388 dtrace_action_t *err; 7389 7390 buf->dtb_errors++; 7391 7392 if (probe->dtpr_id == dtrace_probeid_error) { 7393 /* 7394 * There's nothing we can do -- we had an 7395 * error on the error probe. We bump an 7396 * error counter to at least indicate that 7397 * this condition happened. 7398 */ 7399 dtrace_error(&state->dts_dblerrors); 7400 continue; 7401 } 7402 7403 if (vtime) { 7404 /* 7405 * Before recursing on dtrace_probe(), we 7406 * need to explicitly clear out our start 7407 * time to prevent it from being accumulated 7408 * into t_dtrace_vtime. 7409 */ 7410 curthread->t_dtrace_start = 0; 7411 } 7412 7413 /* 7414 * Iterate over the actions to figure out which action 7415 * we were processing when we experienced the error. 7416 * Note that act points _past_ the faulting action; if 7417 * act is ecb->dte_action, the fault was in the 7418 * predicate, if it's ecb->dte_action->dta_next it's 7419 * in action #1, and so on. 7420 */ 7421 for (err = ecb->dte_action, ndx = 0; 7422 err != act; err = err->dta_next, ndx++) 7423 continue; 7424 7425 dtrace_probe_error(state, ecb->dte_epid, ndx, 7426 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7427 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7428 cpu_core[cpuid].cpuc_dtrace_illval); 7429 7430 continue; 7431 } 7432 7433 if (!committed) 7434 buf->dtb_offset = offs + ecb->dte_size; 7435 } 7436 7437 end = dtrace_gethrtime(); 7438 if (vtime) 7439 curthread->t_dtrace_start = end; 7440 7441 CPU->cpu_dtrace_nsec += end - now; 7442 7443 dtrace_interrupt_enable(cookie); 7444 } 7445 7446 /* 7447 * DTrace Probe Hashing Functions 7448 * 7449 * The functions in this section (and indeed, the functions in remaining 7450 * sections) are not _called_ from probe context. (Any exceptions to this are 7451 * marked with a "Note:".) Rather, they are called from elsewhere in the 7452 * DTrace framework to look-up probes in, add probes to and remove probes from 7453 * the DTrace probe hashes. (Each probe is hashed by each element of the 7454 * probe tuple -- allowing for fast lookups, regardless of what was 7455 * specified.) 7456 */ 7457 static uint_t 7458 dtrace_hash_str(char *p) 7459 { 7460 unsigned int g; 7461 uint_t hval = 0; 7462 7463 while (*p) { 7464 hval = (hval << 4) + *p++; 7465 if ((g = (hval & 0xf0000000)) != 0) 7466 hval ^= g >> 24; 7467 hval &= ~g; 7468 } 7469 return (hval); 7470 } 7471 7472 static dtrace_hash_t * 7473 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7474 { 7475 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7476 7477 hash->dth_stroffs = stroffs; 7478 hash->dth_nextoffs = nextoffs; 7479 hash->dth_prevoffs = prevoffs; 7480 7481 hash->dth_size = 1; 7482 hash->dth_mask = hash->dth_size - 1; 7483 7484 hash->dth_tab = kmem_zalloc(hash->dth_size * 7485 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7486 7487 return (hash); 7488 } 7489 7490 static void 7491 dtrace_hash_destroy(dtrace_hash_t *hash) 7492 { 7493 #ifdef DEBUG 7494 int i; 7495 7496 for (i = 0; i < hash->dth_size; i++) 7497 ASSERT(hash->dth_tab[i] == NULL); 7498 #endif 7499 7500 kmem_free(hash->dth_tab, 7501 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7502 kmem_free(hash, sizeof (dtrace_hash_t)); 7503 } 7504 7505 static void 7506 dtrace_hash_resize(dtrace_hash_t *hash) 7507 { 7508 int size = hash->dth_size, i, ndx; 7509 int new_size = hash->dth_size << 1; 7510 int new_mask = new_size - 1; 7511 dtrace_hashbucket_t **new_tab, *bucket, *next; 7512 7513 ASSERT((new_size & new_mask) == 0); 7514 7515 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7516 7517 for (i = 0; i < size; i++) { 7518 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7519 dtrace_probe_t *probe = bucket->dthb_chain; 7520 7521 ASSERT(probe != NULL); 7522 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7523 7524 next = bucket->dthb_next; 7525 bucket->dthb_next = new_tab[ndx]; 7526 new_tab[ndx] = bucket; 7527 } 7528 } 7529 7530 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7531 hash->dth_tab = new_tab; 7532 hash->dth_size = new_size; 7533 hash->dth_mask = new_mask; 7534 } 7535 7536 static void 7537 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7538 { 7539 int hashval = DTRACE_HASHSTR(hash, new); 7540 int ndx = hashval & hash->dth_mask; 7541 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7542 dtrace_probe_t **nextp, **prevp; 7543 7544 for (; bucket != NULL; bucket = bucket->dthb_next) { 7545 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7546 goto add; 7547 } 7548 7549 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7550 dtrace_hash_resize(hash); 7551 dtrace_hash_add(hash, new); 7552 return; 7553 } 7554 7555 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7556 bucket->dthb_next = hash->dth_tab[ndx]; 7557 hash->dth_tab[ndx] = bucket; 7558 hash->dth_nbuckets++; 7559 7560 add: 7561 nextp = DTRACE_HASHNEXT(hash, new); 7562 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7563 *nextp = bucket->dthb_chain; 7564 7565 if (bucket->dthb_chain != NULL) { 7566 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7567 ASSERT(*prevp == NULL); 7568 *prevp = new; 7569 } 7570 7571 bucket->dthb_chain = new; 7572 bucket->dthb_len++; 7573 } 7574 7575 static dtrace_probe_t * 7576 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7577 { 7578 int hashval = DTRACE_HASHSTR(hash, template); 7579 int ndx = hashval & hash->dth_mask; 7580 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7581 7582 for (; bucket != NULL; bucket = bucket->dthb_next) { 7583 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7584 return (bucket->dthb_chain); 7585 } 7586 7587 return (NULL); 7588 } 7589 7590 static int 7591 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7592 { 7593 int hashval = DTRACE_HASHSTR(hash, template); 7594 int ndx = hashval & hash->dth_mask; 7595 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7596 7597 for (; bucket != NULL; bucket = bucket->dthb_next) { 7598 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7599 return (bucket->dthb_len); 7600 } 7601 7602 return (NULL); 7603 } 7604 7605 static void 7606 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7607 { 7608 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7609 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7610 7611 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7612 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7613 7614 /* 7615 * Find the bucket that we're removing this probe from. 7616 */ 7617 for (; bucket != NULL; bucket = bucket->dthb_next) { 7618 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7619 break; 7620 } 7621 7622 ASSERT(bucket != NULL); 7623 7624 if (*prevp == NULL) { 7625 if (*nextp == NULL) { 7626 /* 7627 * The removed probe was the only probe on this 7628 * bucket; we need to remove the bucket. 7629 */ 7630 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7631 7632 ASSERT(bucket->dthb_chain == probe); 7633 ASSERT(b != NULL); 7634 7635 if (b == bucket) { 7636 hash->dth_tab[ndx] = bucket->dthb_next; 7637 } else { 7638 while (b->dthb_next != bucket) 7639 b = b->dthb_next; 7640 b->dthb_next = bucket->dthb_next; 7641 } 7642 7643 ASSERT(hash->dth_nbuckets > 0); 7644 hash->dth_nbuckets--; 7645 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7646 return; 7647 } 7648 7649 bucket->dthb_chain = *nextp; 7650 } else { 7651 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7652 } 7653 7654 if (*nextp != NULL) 7655 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7656 } 7657 7658 /* 7659 * DTrace Utility Functions 7660 * 7661 * These are random utility functions that are _not_ called from probe context. 7662 */ 7663 static int 7664 dtrace_badattr(const dtrace_attribute_t *a) 7665 { 7666 return (a->dtat_name > DTRACE_STABILITY_MAX || 7667 a->dtat_data > DTRACE_STABILITY_MAX || 7668 a->dtat_class > DTRACE_CLASS_MAX); 7669 } 7670 7671 /* 7672 * Return a duplicate copy of a string. If the specified string is NULL, 7673 * this function returns a zero-length string. 7674 */ 7675 static char * 7676 dtrace_strdup(const char *str) 7677 { 7678 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7679 7680 if (str != NULL) 7681 (void) strcpy(new, str); 7682 7683 return (new); 7684 } 7685 7686 #define DTRACE_ISALPHA(c) \ 7687 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7688 7689 static int 7690 dtrace_badname(const char *s) 7691 { 7692 char c; 7693 7694 if (s == NULL || (c = *s++) == '\0') 7695 return (0); 7696 7697 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7698 return (1); 7699 7700 while ((c = *s++) != '\0') { 7701 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7702 c != '-' && c != '_' && c != '.' && c != '`') 7703 return (1); 7704 } 7705 7706 return (0); 7707 } 7708 7709 static void 7710 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7711 { 7712 uint32_t priv; 7713 7714 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7715 /* 7716 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7717 */ 7718 priv = DTRACE_PRIV_ALL; 7719 } else { 7720 *uidp = crgetuid(cr); 7721 *zoneidp = crgetzoneid(cr); 7722 7723 priv = 0; 7724 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7725 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7726 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7727 priv |= DTRACE_PRIV_USER; 7728 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7729 priv |= DTRACE_PRIV_PROC; 7730 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7731 priv |= DTRACE_PRIV_OWNER; 7732 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7733 priv |= DTRACE_PRIV_ZONEOWNER; 7734 } 7735 7736 *privp = priv; 7737 } 7738 7739 #ifdef DTRACE_ERRDEBUG 7740 static void 7741 dtrace_errdebug(const char *str) 7742 { 7743 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7744 int occupied = 0; 7745 7746 mutex_enter(&dtrace_errlock); 7747 dtrace_errlast = str; 7748 dtrace_errthread = curthread; 7749 7750 while (occupied++ < DTRACE_ERRHASHSZ) { 7751 if (dtrace_errhash[hval].dter_msg == str) { 7752 dtrace_errhash[hval].dter_count++; 7753 goto out; 7754 } 7755 7756 if (dtrace_errhash[hval].dter_msg != NULL) { 7757 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7758 continue; 7759 } 7760 7761 dtrace_errhash[hval].dter_msg = str; 7762 dtrace_errhash[hval].dter_count = 1; 7763 goto out; 7764 } 7765 7766 panic("dtrace: undersized error hash"); 7767 out: 7768 mutex_exit(&dtrace_errlock); 7769 } 7770 #endif 7771 7772 /* 7773 * DTrace Matching Functions 7774 * 7775 * These functions are used to match groups of probes, given some elements of 7776 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7777 */ 7778 static int 7779 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7780 zoneid_t zoneid) 7781 { 7782 if (priv != DTRACE_PRIV_ALL) { 7783 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7784 uint32_t match = priv & ppriv; 7785 7786 /* 7787 * No PRIV_DTRACE_* privileges... 7788 */ 7789 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7790 DTRACE_PRIV_KERNEL)) == 0) 7791 return (0); 7792 7793 /* 7794 * No matching bits, but there were bits to match... 7795 */ 7796 if (match == 0 && ppriv != 0) 7797 return (0); 7798 7799 /* 7800 * Need to have permissions to the process, but don't... 7801 */ 7802 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7803 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7804 return (0); 7805 } 7806 7807 /* 7808 * Need to be in the same zone unless we possess the 7809 * privilege to examine all zones. 7810 */ 7811 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7812 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7813 return (0); 7814 } 7815 } 7816 7817 return (1); 7818 } 7819 7820 /* 7821 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7822 * consists of input pattern strings and an ops-vector to evaluate them. 7823 * This function returns >0 for match, 0 for no match, and <0 for error. 7824 */ 7825 static int 7826 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7827 uint32_t priv, uid_t uid, zoneid_t zoneid) 7828 { 7829 dtrace_provider_t *pvp = prp->dtpr_provider; 7830 int rv; 7831 7832 if (pvp->dtpv_defunct) 7833 return (0); 7834 7835 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7836 return (rv); 7837 7838 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7839 return (rv); 7840 7841 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7842 return (rv); 7843 7844 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7845 return (rv); 7846 7847 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7848 return (0); 7849 7850 return (rv); 7851 } 7852 7853 /* 7854 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7855 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7856 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7857 * In addition, all of the recursion cases except for '*' matching have been 7858 * unwound. For '*', we still implement recursive evaluation, but a depth 7859 * counter is maintained and matching is aborted if we recurse too deep. 7860 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7861 */ 7862 static int 7863 dtrace_match_glob(const char *s, const char *p, int depth) 7864 { 7865 const char *olds; 7866 char s1, c; 7867 int gs; 7868 7869 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7870 return (-1); 7871 7872 if (s == NULL) 7873 s = ""; /* treat NULL as empty string */ 7874 7875 top: 7876 olds = s; 7877 s1 = *s++; 7878 7879 if (p == NULL) 7880 return (0); 7881 7882 if ((c = *p++) == '\0') 7883 return (s1 == '\0'); 7884 7885 switch (c) { 7886 case '[': { 7887 int ok = 0, notflag = 0; 7888 char lc = '\0'; 7889 7890 if (s1 == '\0') 7891 return (0); 7892 7893 if (*p == '!') { 7894 notflag = 1; 7895 p++; 7896 } 7897 7898 if ((c = *p++) == '\0') 7899 return (0); 7900 7901 do { 7902 if (c == '-' && lc != '\0' && *p != ']') { 7903 if ((c = *p++) == '\0') 7904 return (0); 7905 if (c == '\\' && (c = *p++) == '\0') 7906 return (0); 7907 7908 if (notflag) { 7909 if (s1 < lc || s1 > c) 7910 ok++; 7911 else 7912 return (0); 7913 } else if (lc <= s1 && s1 <= c) 7914 ok++; 7915 7916 } else if (c == '\\' && (c = *p++) == '\0') 7917 return (0); 7918 7919 lc = c; /* save left-hand 'c' for next iteration */ 7920 7921 if (notflag) { 7922 if (s1 != c) 7923 ok++; 7924 else 7925 return (0); 7926 } else if (s1 == c) 7927 ok++; 7928 7929 if ((c = *p++) == '\0') 7930 return (0); 7931 7932 } while (c != ']'); 7933 7934 if (ok) 7935 goto top; 7936 7937 return (0); 7938 } 7939 7940 case '\\': 7941 if ((c = *p++) == '\0') 7942 return (0); 7943 /*FALLTHRU*/ 7944 7945 default: 7946 if (c != s1) 7947 return (0); 7948 /*FALLTHRU*/ 7949 7950 case '?': 7951 if (s1 != '\0') 7952 goto top; 7953 return (0); 7954 7955 case '*': 7956 while (*p == '*') 7957 p++; /* consecutive *'s are identical to a single one */ 7958 7959 if (*p == '\0') 7960 return (1); 7961 7962 for (s = olds; *s != '\0'; s++) { 7963 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7964 return (gs); 7965 } 7966 7967 return (0); 7968 } 7969 } 7970 7971 /*ARGSUSED*/ 7972 static int 7973 dtrace_match_string(const char *s, const char *p, int depth) 7974 { 7975 return (s != NULL && strcmp(s, p) == 0); 7976 } 7977 7978 /*ARGSUSED*/ 7979 static int 7980 dtrace_match_nul(const char *s, const char *p, int depth) 7981 { 7982 return (1); /* always match the empty pattern */ 7983 } 7984 7985 /*ARGSUSED*/ 7986 static int 7987 dtrace_match_nonzero(const char *s, const char *p, int depth) 7988 { 7989 return (s != NULL && s[0] != '\0'); 7990 } 7991 7992 static int 7993 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 7994 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 7995 { 7996 dtrace_probe_t template, *probe; 7997 dtrace_hash_t *hash = NULL; 7998 int len, rc, best = INT_MAX, nmatched = 0; 7999 dtrace_id_t i; 8000 8001 ASSERT(MUTEX_HELD(&dtrace_lock)); 8002 8003 /* 8004 * If the probe ID is specified in the key, just lookup by ID and 8005 * invoke the match callback once if a matching probe is found. 8006 */ 8007 if (pkp->dtpk_id != DTRACE_IDNONE) { 8008 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8009 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8010 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 8011 return (DTRACE_MATCH_FAIL); 8012 nmatched++; 8013 } 8014 return (nmatched); 8015 } 8016 8017 template.dtpr_mod = (char *)pkp->dtpk_mod; 8018 template.dtpr_func = (char *)pkp->dtpk_func; 8019 template.dtpr_name = (char *)pkp->dtpk_name; 8020 8021 /* 8022 * We want to find the most distinct of the module name, function 8023 * name, and name. So for each one that is not a glob pattern or 8024 * empty string, we perform a lookup in the corresponding hash and 8025 * use the hash table with the fewest collisions to do our search. 8026 */ 8027 if (pkp->dtpk_mmatch == &dtrace_match_string && 8028 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8029 best = len; 8030 hash = dtrace_bymod; 8031 } 8032 8033 if (pkp->dtpk_fmatch == &dtrace_match_string && 8034 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8035 best = len; 8036 hash = dtrace_byfunc; 8037 } 8038 8039 if (pkp->dtpk_nmatch == &dtrace_match_string && 8040 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8041 best = len; 8042 hash = dtrace_byname; 8043 } 8044 8045 /* 8046 * If we did not select a hash table, iterate over every probe and 8047 * invoke our callback for each one that matches our input probe key. 8048 */ 8049 if (hash == NULL) { 8050 for (i = 0; i < dtrace_nprobes; i++) { 8051 if ((probe = dtrace_probes[i]) == NULL || 8052 dtrace_match_probe(probe, pkp, priv, uid, 8053 zoneid) <= 0) 8054 continue; 8055 8056 nmatched++; 8057 8058 if ((rc = (*matched)(probe, arg)) != 8059 DTRACE_MATCH_NEXT) { 8060 if (rc == DTRACE_MATCH_FAIL) 8061 return (DTRACE_MATCH_FAIL); 8062 break; 8063 } 8064 } 8065 8066 return (nmatched); 8067 } 8068 8069 /* 8070 * If we selected a hash table, iterate over each probe of the same key 8071 * name and invoke the callback for every probe that matches the other 8072 * attributes of our input probe key. 8073 */ 8074 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8075 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8076 8077 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8078 continue; 8079 8080 nmatched++; 8081 8082 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 8083 if (rc == DTRACE_MATCH_FAIL) 8084 return (DTRACE_MATCH_FAIL); 8085 break; 8086 } 8087 } 8088 8089 return (nmatched); 8090 } 8091 8092 /* 8093 * Return the function pointer dtrace_probecmp() should use to compare the 8094 * specified pattern with a string. For NULL or empty patterns, we select 8095 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8096 * For non-empty non-glob strings, we use dtrace_match_string(). 8097 */ 8098 static dtrace_probekey_f * 8099 dtrace_probekey_func(const char *p) 8100 { 8101 char c; 8102 8103 if (p == NULL || *p == '\0') 8104 return (&dtrace_match_nul); 8105 8106 while ((c = *p++) != '\0') { 8107 if (c == '[' || c == '?' || c == '*' || c == '\\') 8108 return (&dtrace_match_glob); 8109 } 8110 8111 return (&dtrace_match_string); 8112 } 8113 8114 /* 8115 * Build a probe comparison key for use with dtrace_match_probe() from the 8116 * given probe description. By convention, a null key only matches anchored 8117 * probes: if each field is the empty string, reset dtpk_fmatch to 8118 * dtrace_match_nonzero(). 8119 */ 8120 static void 8121 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8122 { 8123 pkp->dtpk_prov = pdp->dtpd_provider; 8124 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8125 8126 pkp->dtpk_mod = pdp->dtpd_mod; 8127 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8128 8129 pkp->dtpk_func = pdp->dtpd_func; 8130 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8131 8132 pkp->dtpk_name = pdp->dtpd_name; 8133 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8134 8135 pkp->dtpk_id = pdp->dtpd_id; 8136 8137 if (pkp->dtpk_id == DTRACE_IDNONE && 8138 pkp->dtpk_pmatch == &dtrace_match_nul && 8139 pkp->dtpk_mmatch == &dtrace_match_nul && 8140 pkp->dtpk_fmatch == &dtrace_match_nul && 8141 pkp->dtpk_nmatch == &dtrace_match_nul) 8142 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8143 } 8144 8145 /* 8146 * DTrace Provider-to-Framework API Functions 8147 * 8148 * These functions implement much of the Provider-to-Framework API, as 8149 * described in <sys/dtrace.h>. The parts of the API not in this section are 8150 * the functions in the API for probe management (found below), and 8151 * dtrace_probe() itself (found above). 8152 */ 8153 8154 /* 8155 * Register the calling provider with the DTrace framework. This should 8156 * generally be called by DTrace providers in their attach(9E) entry point. 8157 */ 8158 int 8159 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8160 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8161 { 8162 dtrace_provider_t *provider; 8163 8164 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8165 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8166 "arguments", name ? name : "<NULL>"); 8167 return (EINVAL); 8168 } 8169 8170 if (name[0] == '\0' || dtrace_badname(name)) { 8171 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8172 "provider name", name); 8173 return (EINVAL); 8174 } 8175 8176 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8177 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8178 pops->dtps_destroy == NULL || 8179 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8180 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8181 "provider ops", name); 8182 return (EINVAL); 8183 } 8184 8185 if (dtrace_badattr(&pap->dtpa_provider) || 8186 dtrace_badattr(&pap->dtpa_mod) || 8187 dtrace_badattr(&pap->dtpa_func) || 8188 dtrace_badattr(&pap->dtpa_name) || 8189 dtrace_badattr(&pap->dtpa_args)) { 8190 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8191 "provider attributes", name); 8192 return (EINVAL); 8193 } 8194 8195 if (priv & ~DTRACE_PRIV_ALL) { 8196 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8197 "privilege attributes", name); 8198 return (EINVAL); 8199 } 8200 8201 if ((priv & DTRACE_PRIV_KERNEL) && 8202 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8203 pops->dtps_mode == NULL) { 8204 cmn_err(CE_WARN, "failed to register provider '%s': need " 8205 "dtps_mode() op for given privilege attributes", name); 8206 return (EINVAL); 8207 } 8208 8209 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8210 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8211 (void) strcpy(provider->dtpv_name, name); 8212 8213 provider->dtpv_attr = *pap; 8214 provider->dtpv_priv.dtpp_flags = priv; 8215 if (cr != NULL) { 8216 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8217 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8218 } 8219 provider->dtpv_pops = *pops; 8220 8221 if (pops->dtps_provide == NULL) { 8222 ASSERT(pops->dtps_provide_module != NULL); 8223 provider->dtpv_pops.dtps_provide = 8224 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 8225 } 8226 8227 if (pops->dtps_provide_module == NULL) { 8228 ASSERT(pops->dtps_provide != NULL); 8229 provider->dtpv_pops.dtps_provide_module = 8230 (void (*)(void *, struct modctl *))dtrace_nullop; 8231 } 8232 8233 if (pops->dtps_suspend == NULL) { 8234 ASSERT(pops->dtps_resume == NULL); 8235 provider->dtpv_pops.dtps_suspend = 8236 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8237 provider->dtpv_pops.dtps_resume = 8238 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8239 } 8240 8241 provider->dtpv_arg = arg; 8242 *idp = (dtrace_provider_id_t)provider; 8243 8244 if (pops == &dtrace_provider_ops) { 8245 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8246 ASSERT(MUTEX_HELD(&dtrace_lock)); 8247 ASSERT(dtrace_anon.dta_enabling == NULL); 8248 8249 /* 8250 * We make sure that the DTrace provider is at the head of 8251 * the provider chain. 8252 */ 8253 provider->dtpv_next = dtrace_provider; 8254 dtrace_provider = provider; 8255 return (0); 8256 } 8257 8258 mutex_enter(&dtrace_provider_lock); 8259 mutex_enter(&dtrace_lock); 8260 8261 /* 8262 * If there is at least one provider registered, we'll add this 8263 * provider after the first provider. 8264 */ 8265 if (dtrace_provider != NULL) { 8266 provider->dtpv_next = dtrace_provider->dtpv_next; 8267 dtrace_provider->dtpv_next = provider; 8268 } else { 8269 dtrace_provider = provider; 8270 } 8271 8272 if (dtrace_retained != NULL) { 8273 dtrace_enabling_provide(provider); 8274 8275 /* 8276 * Now we need to call dtrace_enabling_matchall() -- which 8277 * will acquire cpu_lock and dtrace_lock. We therefore need 8278 * to drop all of our locks before calling into it... 8279 */ 8280 mutex_exit(&dtrace_lock); 8281 mutex_exit(&dtrace_provider_lock); 8282 dtrace_enabling_matchall(); 8283 8284 return (0); 8285 } 8286 8287 mutex_exit(&dtrace_lock); 8288 mutex_exit(&dtrace_provider_lock); 8289 8290 return (0); 8291 } 8292 8293 /* 8294 * Unregister the specified provider from the DTrace framework. This should 8295 * generally be called by DTrace providers in their detach(9E) entry point. 8296 */ 8297 int 8298 dtrace_unregister(dtrace_provider_id_t id) 8299 { 8300 dtrace_provider_t *old = (dtrace_provider_t *)id; 8301 dtrace_provider_t *prev = NULL; 8302 int i, self = 0, noreap = 0; 8303 dtrace_probe_t *probe, *first = NULL; 8304 8305 if (old->dtpv_pops.dtps_enable == 8306 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 8307 /* 8308 * If DTrace itself is the provider, we're called with locks 8309 * already held. 8310 */ 8311 ASSERT(old == dtrace_provider); 8312 ASSERT(dtrace_devi != NULL); 8313 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8314 ASSERT(MUTEX_HELD(&dtrace_lock)); 8315 self = 1; 8316 8317 if (dtrace_provider->dtpv_next != NULL) { 8318 /* 8319 * There's another provider here; return failure. 8320 */ 8321 return (EBUSY); 8322 } 8323 } else { 8324 mutex_enter(&dtrace_provider_lock); 8325 mutex_enter(&mod_lock); 8326 mutex_enter(&dtrace_lock); 8327 } 8328 8329 /* 8330 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8331 * probes, we refuse to let providers slither away, unless this 8332 * provider has already been explicitly invalidated. 8333 */ 8334 if (!old->dtpv_defunct && 8335 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8336 dtrace_anon.dta_state->dts_necbs > 0))) { 8337 if (!self) { 8338 mutex_exit(&dtrace_lock); 8339 mutex_exit(&mod_lock); 8340 mutex_exit(&dtrace_provider_lock); 8341 } 8342 return (EBUSY); 8343 } 8344 8345 /* 8346 * Attempt to destroy the probes associated with this provider. 8347 */ 8348 for (i = 0; i < dtrace_nprobes; i++) { 8349 if ((probe = dtrace_probes[i]) == NULL) 8350 continue; 8351 8352 if (probe->dtpr_provider != old) 8353 continue; 8354 8355 if (probe->dtpr_ecb == NULL) 8356 continue; 8357 8358 /* 8359 * If we are trying to unregister a defunct provider, and the 8360 * provider was made defunct within the interval dictated by 8361 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8362 * attempt to reap our enablings. To denote that the provider 8363 * should reattempt to unregister itself at some point in the 8364 * future, we will return a differentiable error code (EAGAIN 8365 * instead of EBUSY) in this case. 8366 */ 8367 if (dtrace_gethrtime() - old->dtpv_defunct > 8368 dtrace_unregister_defunct_reap) 8369 noreap = 1; 8370 8371 if (!self) { 8372 mutex_exit(&dtrace_lock); 8373 mutex_exit(&mod_lock); 8374 mutex_exit(&dtrace_provider_lock); 8375 } 8376 8377 if (noreap) 8378 return (EBUSY); 8379 8380 (void) taskq_dispatch(dtrace_taskq, 8381 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8382 8383 return (EAGAIN); 8384 } 8385 8386 /* 8387 * All of the probes for this provider are disabled; we can safely 8388 * remove all of them from their hash chains and from the probe array. 8389 */ 8390 for (i = 0; i < dtrace_nprobes; i++) { 8391 if ((probe = dtrace_probes[i]) == NULL) 8392 continue; 8393 8394 if (probe->dtpr_provider != old) 8395 continue; 8396 8397 dtrace_probes[i] = NULL; 8398 8399 dtrace_hash_remove(dtrace_bymod, probe); 8400 dtrace_hash_remove(dtrace_byfunc, probe); 8401 dtrace_hash_remove(dtrace_byname, probe); 8402 8403 if (first == NULL) { 8404 first = probe; 8405 probe->dtpr_nextmod = NULL; 8406 } else { 8407 probe->dtpr_nextmod = first; 8408 first = probe; 8409 } 8410 } 8411 8412 /* 8413 * The provider's probes have been removed from the hash chains and 8414 * from the probe array. Now issue a dtrace_sync() to be sure that 8415 * everyone has cleared out from any probe array processing. 8416 */ 8417 dtrace_sync(); 8418 8419 for (probe = first; probe != NULL; probe = first) { 8420 first = probe->dtpr_nextmod; 8421 8422 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8423 probe->dtpr_arg); 8424 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8425 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8426 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8427 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8428 kmem_free(probe, sizeof (dtrace_probe_t)); 8429 } 8430 8431 if ((prev = dtrace_provider) == old) { 8432 ASSERT(self || dtrace_devi == NULL); 8433 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8434 dtrace_provider = old->dtpv_next; 8435 } else { 8436 while (prev != NULL && prev->dtpv_next != old) 8437 prev = prev->dtpv_next; 8438 8439 if (prev == NULL) { 8440 panic("attempt to unregister non-existent " 8441 "dtrace provider %p\n", (void *)id); 8442 } 8443 8444 prev->dtpv_next = old->dtpv_next; 8445 } 8446 8447 if (!self) { 8448 mutex_exit(&dtrace_lock); 8449 mutex_exit(&mod_lock); 8450 mutex_exit(&dtrace_provider_lock); 8451 } 8452 8453 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8454 kmem_free(old, sizeof (dtrace_provider_t)); 8455 8456 return (0); 8457 } 8458 8459 /* 8460 * Invalidate the specified provider. All subsequent probe lookups for the 8461 * specified provider will fail, but its probes will not be removed. 8462 */ 8463 void 8464 dtrace_invalidate(dtrace_provider_id_t id) 8465 { 8466 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8467 8468 ASSERT(pvp->dtpv_pops.dtps_enable != 8469 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8470 8471 mutex_enter(&dtrace_provider_lock); 8472 mutex_enter(&dtrace_lock); 8473 8474 pvp->dtpv_defunct = dtrace_gethrtime(); 8475 8476 mutex_exit(&dtrace_lock); 8477 mutex_exit(&dtrace_provider_lock); 8478 } 8479 8480 /* 8481 * Indicate whether or not DTrace has attached. 8482 */ 8483 int 8484 dtrace_attached(void) 8485 { 8486 /* 8487 * dtrace_provider will be non-NULL iff the DTrace driver has 8488 * attached. (It's non-NULL because DTrace is always itself a 8489 * provider.) 8490 */ 8491 return (dtrace_provider != NULL); 8492 } 8493 8494 /* 8495 * Remove all the unenabled probes for the given provider. This function is 8496 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8497 * -- just as many of its associated probes as it can. 8498 */ 8499 int 8500 dtrace_condense(dtrace_provider_id_t id) 8501 { 8502 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8503 int i; 8504 dtrace_probe_t *probe; 8505 8506 /* 8507 * Make sure this isn't the dtrace provider itself. 8508 */ 8509 ASSERT(prov->dtpv_pops.dtps_enable != 8510 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8511 8512 mutex_enter(&dtrace_provider_lock); 8513 mutex_enter(&dtrace_lock); 8514 8515 /* 8516 * Attempt to destroy the probes associated with this provider. 8517 */ 8518 for (i = 0; i < dtrace_nprobes; i++) { 8519 if ((probe = dtrace_probes[i]) == NULL) 8520 continue; 8521 8522 if (probe->dtpr_provider != prov) 8523 continue; 8524 8525 if (probe->dtpr_ecb != NULL) 8526 continue; 8527 8528 dtrace_probes[i] = NULL; 8529 8530 dtrace_hash_remove(dtrace_bymod, probe); 8531 dtrace_hash_remove(dtrace_byfunc, probe); 8532 dtrace_hash_remove(dtrace_byname, probe); 8533 8534 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8535 probe->dtpr_arg); 8536 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8537 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8538 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8539 kmem_free(probe, sizeof (dtrace_probe_t)); 8540 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8541 } 8542 8543 mutex_exit(&dtrace_lock); 8544 mutex_exit(&dtrace_provider_lock); 8545 8546 return (0); 8547 } 8548 8549 /* 8550 * DTrace Probe Management Functions 8551 * 8552 * The functions in this section perform the DTrace probe management, 8553 * including functions to create probes, look-up probes, and call into the 8554 * providers to request that probes be provided. Some of these functions are 8555 * in the Provider-to-Framework API; these functions can be identified by the 8556 * fact that they are not declared "static". 8557 */ 8558 8559 /* 8560 * Create a probe with the specified module name, function name, and name. 8561 */ 8562 dtrace_id_t 8563 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8564 const char *func, const char *name, int aframes, void *arg) 8565 { 8566 dtrace_probe_t *probe, **probes; 8567 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8568 dtrace_id_t id; 8569 8570 if (provider == dtrace_provider) { 8571 ASSERT(MUTEX_HELD(&dtrace_lock)); 8572 } else { 8573 mutex_enter(&dtrace_lock); 8574 } 8575 8576 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8577 VM_BESTFIT | VM_SLEEP); 8578 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8579 8580 probe->dtpr_id = id; 8581 probe->dtpr_gen = dtrace_probegen++; 8582 probe->dtpr_mod = dtrace_strdup(mod); 8583 probe->dtpr_func = dtrace_strdup(func); 8584 probe->dtpr_name = dtrace_strdup(name); 8585 probe->dtpr_arg = arg; 8586 probe->dtpr_aframes = aframes; 8587 probe->dtpr_provider = provider; 8588 8589 dtrace_hash_add(dtrace_bymod, probe); 8590 dtrace_hash_add(dtrace_byfunc, probe); 8591 dtrace_hash_add(dtrace_byname, probe); 8592 8593 if (id - 1 >= dtrace_nprobes) { 8594 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8595 size_t nsize = osize << 1; 8596 8597 if (nsize == 0) { 8598 ASSERT(osize == 0); 8599 ASSERT(dtrace_probes == NULL); 8600 nsize = sizeof (dtrace_probe_t *); 8601 } 8602 8603 probes = kmem_zalloc(nsize, KM_SLEEP); 8604 8605 if (dtrace_probes == NULL) { 8606 ASSERT(osize == 0); 8607 dtrace_probes = probes; 8608 dtrace_nprobes = 1; 8609 } else { 8610 dtrace_probe_t **oprobes = dtrace_probes; 8611 8612 bcopy(oprobes, probes, osize); 8613 dtrace_membar_producer(); 8614 dtrace_probes = probes; 8615 8616 dtrace_sync(); 8617 8618 /* 8619 * All CPUs are now seeing the new probes array; we can 8620 * safely free the old array. 8621 */ 8622 kmem_free(oprobes, osize); 8623 dtrace_nprobes <<= 1; 8624 } 8625 8626 ASSERT(id - 1 < dtrace_nprobes); 8627 } 8628 8629 ASSERT(dtrace_probes[id - 1] == NULL); 8630 dtrace_probes[id - 1] = probe; 8631 8632 if (provider != dtrace_provider) 8633 mutex_exit(&dtrace_lock); 8634 8635 return (id); 8636 } 8637 8638 static dtrace_probe_t * 8639 dtrace_probe_lookup_id(dtrace_id_t id) 8640 { 8641 ASSERT(MUTEX_HELD(&dtrace_lock)); 8642 8643 if (id == 0 || id > dtrace_nprobes) 8644 return (NULL); 8645 8646 return (dtrace_probes[id - 1]); 8647 } 8648 8649 static int 8650 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8651 { 8652 *((dtrace_id_t *)arg) = probe->dtpr_id; 8653 8654 return (DTRACE_MATCH_DONE); 8655 } 8656 8657 /* 8658 * Look up a probe based on provider and one or more of module name, function 8659 * name and probe name. 8660 */ 8661 dtrace_id_t 8662 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8663 const char *func, const char *name) 8664 { 8665 dtrace_probekey_t pkey; 8666 dtrace_id_t id; 8667 int match; 8668 8669 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8670 pkey.dtpk_pmatch = &dtrace_match_string; 8671 pkey.dtpk_mod = mod; 8672 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8673 pkey.dtpk_func = func; 8674 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8675 pkey.dtpk_name = name; 8676 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8677 pkey.dtpk_id = DTRACE_IDNONE; 8678 8679 mutex_enter(&dtrace_lock); 8680 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8681 dtrace_probe_lookup_match, &id); 8682 mutex_exit(&dtrace_lock); 8683 8684 ASSERT(match == 1 || match == 0); 8685 return (match ? id : 0); 8686 } 8687 8688 /* 8689 * Returns the probe argument associated with the specified probe. 8690 */ 8691 void * 8692 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8693 { 8694 dtrace_probe_t *probe; 8695 void *rval = NULL; 8696 8697 mutex_enter(&dtrace_lock); 8698 8699 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8700 probe->dtpr_provider == (dtrace_provider_t *)id) 8701 rval = probe->dtpr_arg; 8702 8703 mutex_exit(&dtrace_lock); 8704 8705 return (rval); 8706 } 8707 8708 /* 8709 * Copy a probe into a probe description. 8710 */ 8711 static void 8712 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8713 { 8714 bzero(pdp, sizeof (dtrace_probedesc_t)); 8715 pdp->dtpd_id = prp->dtpr_id; 8716 8717 (void) strncpy(pdp->dtpd_provider, 8718 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8719 8720 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8721 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8722 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8723 } 8724 8725 /* 8726 * Called to indicate that a probe -- or probes -- should be provided by a 8727 * specfied provider. If the specified description is NULL, the provider will 8728 * be told to provide all of its probes. (This is done whenever a new 8729 * consumer comes along, or whenever a retained enabling is to be matched.) If 8730 * the specified description is non-NULL, the provider is given the 8731 * opportunity to dynamically provide the specified probe, allowing providers 8732 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8733 * probes.) If the provider is NULL, the operations will be applied to all 8734 * providers; if the provider is non-NULL the operations will only be applied 8735 * to the specified provider. The dtrace_provider_lock must be held, and the 8736 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8737 * will need to grab the dtrace_lock when it reenters the framework through 8738 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8739 */ 8740 static void 8741 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8742 { 8743 struct modctl *ctl; 8744 int all = 0; 8745 8746 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8747 8748 if (prv == NULL) { 8749 all = 1; 8750 prv = dtrace_provider; 8751 } 8752 8753 do { 8754 /* 8755 * First, call the blanket provide operation. 8756 */ 8757 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8758 8759 /* 8760 * Now call the per-module provide operation. We will grab 8761 * mod_lock to prevent the list from being modified. Note 8762 * that this also prevents the mod_busy bits from changing. 8763 * (mod_busy can only be changed with mod_lock held.) 8764 */ 8765 mutex_enter(&mod_lock); 8766 8767 ctl = &modules; 8768 do { 8769 if (ctl->mod_busy || ctl->mod_mp == NULL) 8770 continue; 8771 8772 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8773 8774 } while ((ctl = ctl->mod_next) != &modules); 8775 8776 mutex_exit(&mod_lock); 8777 } while (all && (prv = prv->dtpv_next) != NULL); 8778 } 8779 8780 /* 8781 * Iterate over each probe, and call the Framework-to-Provider API function 8782 * denoted by offs. 8783 */ 8784 static void 8785 dtrace_probe_foreach(uintptr_t offs) 8786 { 8787 dtrace_provider_t *prov; 8788 void (*func)(void *, dtrace_id_t, void *); 8789 dtrace_probe_t *probe; 8790 dtrace_icookie_t cookie; 8791 int i; 8792 8793 /* 8794 * We disable interrupts to walk through the probe array. This is 8795 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8796 * won't see stale data. 8797 */ 8798 cookie = dtrace_interrupt_disable(); 8799 8800 for (i = 0; i < dtrace_nprobes; i++) { 8801 if ((probe = dtrace_probes[i]) == NULL) 8802 continue; 8803 8804 if (probe->dtpr_ecb == NULL) { 8805 /* 8806 * This probe isn't enabled -- don't call the function. 8807 */ 8808 continue; 8809 } 8810 8811 prov = probe->dtpr_provider; 8812 func = *((void(**)(void *, dtrace_id_t, void *)) 8813 ((uintptr_t)&prov->dtpv_pops + offs)); 8814 8815 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8816 } 8817 8818 dtrace_interrupt_enable(cookie); 8819 } 8820 8821 static int 8822 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8823 { 8824 dtrace_probekey_t pkey; 8825 uint32_t priv; 8826 uid_t uid; 8827 zoneid_t zoneid; 8828 8829 ASSERT(MUTEX_HELD(&dtrace_lock)); 8830 dtrace_ecb_create_cache = NULL; 8831 8832 if (desc == NULL) { 8833 /* 8834 * If we're passed a NULL description, we're being asked to 8835 * create an ECB with a NULL probe. 8836 */ 8837 (void) dtrace_ecb_create_enable(NULL, enab); 8838 return (0); 8839 } 8840 8841 dtrace_probekey(desc, &pkey); 8842 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 8843 &priv, &uid, &zoneid); 8844 8845 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8846 enab)); 8847 } 8848 8849 /* 8850 * DTrace Helper Provider Functions 8851 */ 8852 static void 8853 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8854 { 8855 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8856 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8857 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8858 } 8859 8860 static void 8861 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8862 const dof_provider_t *dofprov, char *strtab) 8863 { 8864 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8865 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8866 dofprov->dofpv_provattr); 8867 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8868 dofprov->dofpv_modattr); 8869 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8870 dofprov->dofpv_funcattr); 8871 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8872 dofprov->dofpv_nameattr); 8873 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8874 dofprov->dofpv_argsattr); 8875 } 8876 8877 static void 8878 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8879 { 8880 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8881 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8882 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8883 dof_provider_t *provider; 8884 dof_probe_t *probe; 8885 uint32_t *off, *enoff; 8886 uint8_t *arg; 8887 char *strtab; 8888 uint_t i, nprobes; 8889 dtrace_helper_provdesc_t dhpv; 8890 dtrace_helper_probedesc_t dhpb; 8891 dtrace_meta_t *meta = dtrace_meta_pid; 8892 dtrace_mops_t *mops = &meta->dtm_mops; 8893 void *parg; 8894 8895 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8896 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8897 provider->dofpv_strtab * dof->dofh_secsize); 8898 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8899 provider->dofpv_probes * dof->dofh_secsize); 8900 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8901 provider->dofpv_prargs * dof->dofh_secsize); 8902 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8903 provider->dofpv_proffs * dof->dofh_secsize); 8904 8905 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8906 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8907 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8908 enoff = NULL; 8909 8910 /* 8911 * See dtrace_helper_provider_validate(). 8912 */ 8913 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8914 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8915 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8916 provider->dofpv_prenoffs * dof->dofh_secsize); 8917 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8918 } 8919 8920 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8921 8922 /* 8923 * Create the provider. 8924 */ 8925 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8926 8927 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8928 return; 8929 8930 meta->dtm_count++; 8931 8932 /* 8933 * Create the probes. 8934 */ 8935 for (i = 0; i < nprobes; i++) { 8936 probe = (dof_probe_t *)(uintptr_t)(daddr + 8937 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8938 8939 dhpb.dthpb_mod = dhp->dofhp_mod; 8940 dhpb.dthpb_func = strtab + probe->dofpr_func; 8941 dhpb.dthpb_name = strtab + probe->dofpr_name; 8942 dhpb.dthpb_base = probe->dofpr_addr; 8943 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8944 dhpb.dthpb_noffs = probe->dofpr_noffs; 8945 if (enoff != NULL) { 8946 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8947 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 8948 } else { 8949 dhpb.dthpb_enoffs = NULL; 8950 dhpb.dthpb_nenoffs = 0; 8951 } 8952 dhpb.dthpb_args = arg + probe->dofpr_argidx; 8953 dhpb.dthpb_nargc = probe->dofpr_nargc; 8954 dhpb.dthpb_xargc = probe->dofpr_xargc; 8955 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 8956 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 8957 8958 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 8959 } 8960 } 8961 8962 static void 8963 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 8964 { 8965 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8966 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8967 int i; 8968 8969 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8970 8971 for (i = 0; i < dof->dofh_secnum; i++) { 8972 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8973 dof->dofh_secoff + i * dof->dofh_secsize); 8974 8975 if (sec->dofs_type != DOF_SECT_PROVIDER) 8976 continue; 8977 8978 dtrace_helper_provide_one(dhp, sec, pid); 8979 } 8980 8981 /* 8982 * We may have just created probes, so we must now rematch against 8983 * any retained enablings. Note that this call will acquire both 8984 * cpu_lock and dtrace_lock; the fact that we are holding 8985 * dtrace_meta_lock now is what defines the ordering with respect to 8986 * these three locks. 8987 */ 8988 dtrace_enabling_matchall(); 8989 } 8990 8991 static void 8992 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8993 { 8994 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8995 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8996 dof_sec_t *str_sec; 8997 dof_provider_t *provider; 8998 char *strtab; 8999 dtrace_helper_provdesc_t dhpv; 9000 dtrace_meta_t *meta = dtrace_meta_pid; 9001 dtrace_mops_t *mops = &meta->dtm_mops; 9002 9003 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9004 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9005 provider->dofpv_strtab * dof->dofh_secsize); 9006 9007 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9008 9009 /* 9010 * Create the provider. 9011 */ 9012 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9013 9014 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9015 9016 meta->dtm_count--; 9017 } 9018 9019 static void 9020 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9021 { 9022 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9023 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9024 int i; 9025 9026 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9027 9028 for (i = 0; i < dof->dofh_secnum; i++) { 9029 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9030 dof->dofh_secoff + i * dof->dofh_secsize); 9031 9032 if (sec->dofs_type != DOF_SECT_PROVIDER) 9033 continue; 9034 9035 dtrace_helper_provider_remove_one(dhp, sec, pid); 9036 } 9037 } 9038 9039 /* 9040 * DTrace Meta Provider-to-Framework API Functions 9041 * 9042 * These functions implement the Meta Provider-to-Framework API, as described 9043 * in <sys/dtrace.h>. 9044 */ 9045 int 9046 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9047 dtrace_meta_provider_id_t *idp) 9048 { 9049 dtrace_meta_t *meta; 9050 dtrace_helpers_t *help, *next; 9051 int i; 9052 9053 *idp = DTRACE_METAPROVNONE; 9054 9055 /* 9056 * We strictly don't need the name, but we hold onto it for 9057 * debuggability. All hail error queues! 9058 */ 9059 if (name == NULL) { 9060 cmn_err(CE_WARN, "failed to register meta-provider: " 9061 "invalid name"); 9062 return (EINVAL); 9063 } 9064 9065 if (mops == NULL || 9066 mops->dtms_create_probe == NULL || 9067 mops->dtms_provide_pid == NULL || 9068 mops->dtms_remove_pid == NULL) { 9069 cmn_err(CE_WARN, "failed to register meta-register %s: " 9070 "invalid ops", name); 9071 return (EINVAL); 9072 } 9073 9074 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9075 meta->dtm_mops = *mops; 9076 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9077 (void) strcpy(meta->dtm_name, name); 9078 meta->dtm_arg = arg; 9079 9080 mutex_enter(&dtrace_meta_lock); 9081 mutex_enter(&dtrace_lock); 9082 9083 if (dtrace_meta_pid != NULL) { 9084 mutex_exit(&dtrace_lock); 9085 mutex_exit(&dtrace_meta_lock); 9086 cmn_err(CE_WARN, "failed to register meta-register %s: " 9087 "user-land meta-provider exists", name); 9088 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9089 kmem_free(meta, sizeof (dtrace_meta_t)); 9090 return (EINVAL); 9091 } 9092 9093 dtrace_meta_pid = meta; 9094 *idp = (dtrace_meta_provider_id_t)meta; 9095 9096 /* 9097 * If there are providers and probes ready to go, pass them 9098 * off to the new meta provider now. 9099 */ 9100 9101 help = dtrace_deferred_pid; 9102 dtrace_deferred_pid = NULL; 9103 9104 mutex_exit(&dtrace_lock); 9105 9106 while (help != NULL) { 9107 for (i = 0; i < help->dthps_nprovs; i++) { 9108 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9109 help->dthps_pid); 9110 } 9111 9112 next = help->dthps_next; 9113 help->dthps_next = NULL; 9114 help->dthps_prev = NULL; 9115 help->dthps_deferred = 0; 9116 help = next; 9117 } 9118 9119 mutex_exit(&dtrace_meta_lock); 9120 9121 return (0); 9122 } 9123 9124 int 9125 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9126 { 9127 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9128 9129 mutex_enter(&dtrace_meta_lock); 9130 mutex_enter(&dtrace_lock); 9131 9132 if (old == dtrace_meta_pid) { 9133 pp = &dtrace_meta_pid; 9134 } else { 9135 panic("attempt to unregister non-existent " 9136 "dtrace meta-provider %p\n", (void *)old); 9137 } 9138 9139 if (old->dtm_count != 0) { 9140 mutex_exit(&dtrace_lock); 9141 mutex_exit(&dtrace_meta_lock); 9142 return (EBUSY); 9143 } 9144 9145 *pp = NULL; 9146 9147 mutex_exit(&dtrace_lock); 9148 mutex_exit(&dtrace_meta_lock); 9149 9150 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9151 kmem_free(old, sizeof (dtrace_meta_t)); 9152 9153 return (0); 9154 } 9155 9156 9157 /* 9158 * DTrace DIF Object Functions 9159 */ 9160 static int 9161 dtrace_difo_err(uint_t pc, const char *format, ...) 9162 { 9163 if (dtrace_err_verbose) { 9164 va_list alist; 9165 9166 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9167 va_start(alist, format); 9168 (void) vuprintf(format, alist); 9169 va_end(alist); 9170 } 9171 9172 #ifdef DTRACE_ERRDEBUG 9173 dtrace_errdebug(format); 9174 #endif 9175 return (1); 9176 } 9177 9178 /* 9179 * Validate a DTrace DIF object by checking the IR instructions. The following 9180 * rules are currently enforced by dtrace_difo_validate(): 9181 * 9182 * 1. Each instruction must have a valid opcode 9183 * 2. Each register, string, variable, or subroutine reference must be valid 9184 * 3. No instruction can modify register %r0 (must be zero) 9185 * 4. All instruction reserved bits must be set to zero 9186 * 5. The last instruction must be a "ret" instruction 9187 * 6. All branch targets must reference a valid instruction _after_ the branch 9188 */ 9189 static int 9190 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9191 cred_t *cr) 9192 { 9193 int err = 0, i; 9194 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9195 int kcheckload; 9196 uint_t pc; 9197 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9198 9199 kcheckload = cr == NULL || 9200 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9201 9202 dp->dtdo_destructive = 0; 9203 9204 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9205 dif_instr_t instr = dp->dtdo_buf[pc]; 9206 9207 uint_t r1 = DIF_INSTR_R1(instr); 9208 uint_t r2 = DIF_INSTR_R2(instr); 9209 uint_t rd = DIF_INSTR_RD(instr); 9210 uint_t rs = DIF_INSTR_RS(instr); 9211 uint_t label = DIF_INSTR_LABEL(instr); 9212 uint_t v = DIF_INSTR_VAR(instr); 9213 uint_t subr = DIF_INSTR_SUBR(instr); 9214 uint_t type = DIF_INSTR_TYPE(instr); 9215 uint_t op = DIF_INSTR_OP(instr); 9216 9217 switch (op) { 9218 case DIF_OP_OR: 9219 case DIF_OP_XOR: 9220 case DIF_OP_AND: 9221 case DIF_OP_SLL: 9222 case DIF_OP_SRL: 9223 case DIF_OP_SRA: 9224 case DIF_OP_SUB: 9225 case DIF_OP_ADD: 9226 case DIF_OP_MUL: 9227 case DIF_OP_SDIV: 9228 case DIF_OP_UDIV: 9229 case DIF_OP_SREM: 9230 case DIF_OP_UREM: 9231 case DIF_OP_COPYS: 9232 if (r1 >= nregs) 9233 err += efunc(pc, "invalid register %u\n", r1); 9234 if (r2 >= nregs) 9235 err += efunc(pc, "invalid register %u\n", r2); 9236 if (rd >= nregs) 9237 err += efunc(pc, "invalid register %u\n", rd); 9238 if (rd == 0) 9239 err += efunc(pc, "cannot write to %r0\n"); 9240 break; 9241 case DIF_OP_NOT: 9242 case DIF_OP_MOV: 9243 case DIF_OP_ALLOCS: 9244 if (r1 >= nregs) 9245 err += efunc(pc, "invalid register %u\n", r1); 9246 if (r2 != 0) 9247 err += efunc(pc, "non-zero reserved bits\n"); 9248 if (rd >= nregs) 9249 err += efunc(pc, "invalid register %u\n", rd); 9250 if (rd == 0) 9251 err += efunc(pc, "cannot write to %r0\n"); 9252 break; 9253 case DIF_OP_LDSB: 9254 case DIF_OP_LDSH: 9255 case DIF_OP_LDSW: 9256 case DIF_OP_LDUB: 9257 case DIF_OP_LDUH: 9258 case DIF_OP_LDUW: 9259 case DIF_OP_LDX: 9260 if (r1 >= nregs) 9261 err += efunc(pc, "invalid register %u\n", r1); 9262 if (r2 != 0) 9263 err += efunc(pc, "non-zero reserved bits\n"); 9264 if (rd >= nregs) 9265 err += efunc(pc, "invalid register %u\n", rd); 9266 if (rd == 0) 9267 err += efunc(pc, "cannot write to %r0\n"); 9268 if (kcheckload) 9269 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9270 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9271 break; 9272 case DIF_OP_RLDSB: 9273 case DIF_OP_RLDSH: 9274 case DIF_OP_RLDSW: 9275 case DIF_OP_RLDUB: 9276 case DIF_OP_RLDUH: 9277 case DIF_OP_RLDUW: 9278 case DIF_OP_RLDX: 9279 if (r1 >= nregs) 9280 err += efunc(pc, "invalid register %u\n", r1); 9281 if (r2 != 0) 9282 err += efunc(pc, "non-zero reserved bits\n"); 9283 if (rd >= nregs) 9284 err += efunc(pc, "invalid register %u\n", rd); 9285 if (rd == 0) 9286 err += efunc(pc, "cannot write to %r0\n"); 9287 break; 9288 case DIF_OP_ULDSB: 9289 case DIF_OP_ULDSH: 9290 case DIF_OP_ULDSW: 9291 case DIF_OP_ULDUB: 9292 case DIF_OP_ULDUH: 9293 case DIF_OP_ULDUW: 9294 case DIF_OP_ULDX: 9295 if (r1 >= nregs) 9296 err += efunc(pc, "invalid register %u\n", r1); 9297 if (r2 != 0) 9298 err += efunc(pc, "non-zero reserved bits\n"); 9299 if (rd >= nregs) 9300 err += efunc(pc, "invalid register %u\n", rd); 9301 if (rd == 0) 9302 err += efunc(pc, "cannot write to %r0\n"); 9303 break; 9304 case DIF_OP_STB: 9305 case DIF_OP_STH: 9306 case DIF_OP_STW: 9307 case DIF_OP_STX: 9308 if (r1 >= nregs) 9309 err += efunc(pc, "invalid register %u\n", r1); 9310 if (r2 != 0) 9311 err += efunc(pc, "non-zero reserved bits\n"); 9312 if (rd >= nregs) 9313 err += efunc(pc, "invalid register %u\n", rd); 9314 if (rd == 0) 9315 err += efunc(pc, "cannot write to 0 address\n"); 9316 break; 9317 case DIF_OP_CMP: 9318 case DIF_OP_SCMP: 9319 if (r1 >= nregs) 9320 err += efunc(pc, "invalid register %u\n", r1); 9321 if (r2 >= nregs) 9322 err += efunc(pc, "invalid register %u\n", r2); 9323 if (rd != 0) 9324 err += efunc(pc, "non-zero reserved bits\n"); 9325 break; 9326 case DIF_OP_TST: 9327 if (r1 >= nregs) 9328 err += efunc(pc, "invalid register %u\n", r1); 9329 if (r2 != 0 || rd != 0) 9330 err += efunc(pc, "non-zero reserved bits\n"); 9331 break; 9332 case DIF_OP_BA: 9333 case DIF_OP_BE: 9334 case DIF_OP_BNE: 9335 case DIF_OP_BG: 9336 case DIF_OP_BGU: 9337 case DIF_OP_BGE: 9338 case DIF_OP_BGEU: 9339 case DIF_OP_BL: 9340 case DIF_OP_BLU: 9341 case DIF_OP_BLE: 9342 case DIF_OP_BLEU: 9343 if (label >= dp->dtdo_len) { 9344 err += efunc(pc, "invalid branch target %u\n", 9345 label); 9346 } 9347 if (label <= pc) { 9348 err += efunc(pc, "backward branch to %u\n", 9349 label); 9350 } 9351 break; 9352 case DIF_OP_RET: 9353 if (r1 != 0 || r2 != 0) 9354 err += efunc(pc, "non-zero reserved bits\n"); 9355 if (rd >= nregs) 9356 err += efunc(pc, "invalid register %u\n", rd); 9357 break; 9358 case DIF_OP_NOP: 9359 case DIF_OP_POPTS: 9360 case DIF_OP_FLUSHTS: 9361 if (r1 != 0 || r2 != 0 || rd != 0) 9362 err += efunc(pc, "non-zero reserved bits\n"); 9363 break; 9364 case DIF_OP_SETX: 9365 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9366 err += efunc(pc, "invalid integer ref %u\n", 9367 DIF_INSTR_INTEGER(instr)); 9368 } 9369 if (rd >= nregs) 9370 err += efunc(pc, "invalid register %u\n", rd); 9371 if (rd == 0) 9372 err += efunc(pc, "cannot write to %r0\n"); 9373 break; 9374 case DIF_OP_SETS: 9375 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9376 err += efunc(pc, "invalid string ref %u\n", 9377 DIF_INSTR_STRING(instr)); 9378 } 9379 if (rd >= nregs) 9380 err += efunc(pc, "invalid register %u\n", rd); 9381 if (rd == 0) 9382 err += efunc(pc, "cannot write to %r0\n"); 9383 break; 9384 case DIF_OP_LDGA: 9385 case DIF_OP_LDTA: 9386 if (r1 > DIF_VAR_ARRAY_MAX) 9387 err += efunc(pc, "invalid array %u\n", r1); 9388 if (r2 >= nregs) 9389 err += efunc(pc, "invalid register %u\n", r2); 9390 if (rd >= nregs) 9391 err += efunc(pc, "invalid register %u\n", rd); 9392 if (rd == 0) 9393 err += efunc(pc, "cannot write to %r0\n"); 9394 break; 9395 case DIF_OP_LDGS: 9396 case DIF_OP_LDTS: 9397 case DIF_OP_LDLS: 9398 case DIF_OP_LDGAA: 9399 case DIF_OP_LDTAA: 9400 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9401 err += efunc(pc, "invalid variable %u\n", v); 9402 if (rd >= nregs) 9403 err += efunc(pc, "invalid register %u\n", rd); 9404 if (rd == 0) 9405 err += efunc(pc, "cannot write to %r0\n"); 9406 break; 9407 case DIF_OP_STGS: 9408 case DIF_OP_STTS: 9409 case DIF_OP_STLS: 9410 case DIF_OP_STGAA: 9411 case DIF_OP_STTAA: 9412 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9413 err += efunc(pc, "invalid variable %u\n", v); 9414 if (rs >= nregs) 9415 err += efunc(pc, "invalid register %u\n", rd); 9416 break; 9417 case DIF_OP_CALL: 9418 if (subr > DIF_SUBR_MAX) 9419 err += efunc(pc, "invalid subr %u\n", subr); 9420 if (rd >= nregs) 9421 err += efunc(pc, "invalid register %u\n", rd); 9422 if (rd == 0) 9423 err += efunc(pc, "cannot write to %r0\n"); 9424 9425 if (subr == DIF_SUBR_COPYOUT || 9426 subr == DIF_SUBR_COPYOUTSTR) { 9427 dp->dtdo_destructive = 1; 9428 } 9429 9430 if (subr == DIF_SUBR_GETF) { 9431 /* 9432 * If we have a getf() we need to record that 9433 * in our state. Note that our state can be 9434 * NULL if this is a helper -- but in that 9435 * case, the call to getf() is itself illegal, 9436 * and will be caught (slightly later) when 9437 * the helper is validated. 9438 */ 9439 if (vstate->dtvs_state != NULL) 9440 vstate->dtvs_state->dts_getf++; 9441 } 9442 9443 break; 9444 case DIF_OP_PUSHTR: 9445 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9446 err += efunc(pc, "invalid ref type %u\n", type); 9447 if (r2 >= nregs) 9448 err += efunc(pc, "invalid register %u\n", r2); 9449 if (rs >= nregs) 9450 err += efunc(pc, "invalid register %u\n", rs); 9451 break; 9452 case DIF_OP_PUSHTV: 9453 if (type != DIF_TYPE_CTF) 9454 err += efunc(pc, "invalid val type %u\n", type); 9455 if (r2 >= nregs) 9456 err += efunc(pc, "invalid register %u\n", r2); 9457 if (rs >= nregs) 9458 err += efunc(pc, "invalid register %u\n", rs); 9459 break; 9460 default: 9461 err += efunc(pc, "invalid opcode %u\n", 9462 DIF_INSTR_OP(instr)); 9463 } 9464 } 9465 9466 if (dp->dtdo_len != 0 && 9467 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9468 err += efunc(dp->dtdo_len - 1, 9469 "expected 'ret' as last DIF instruction\n"); 9470 } 9471 9472 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9473 /* 9474 * If we're not returning by reference, the size must be either 9475 * 0 or the size of one of the base types. 9476 */ 9477 switch (dp->dtdo_rtype.dtdt_size) { 9478 case 0: 9479 case sizeof (uint8_t): 9480 case sizeof (uint16_t): 9481 case sizeof (uint32_t): 9482 case sizeof (uint64_t): 9483 break; 9484 9485 default: 9486 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9487 } 9488 } 9489 9490 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9491 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9492 dtrace_diftype_t *vt, *et; 9493 uint_t id, ndx; 9494 9495 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9496 v->dtdv_scope != DIFV_SCOPE_THREAD && 9497 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9498 err += efunc(i, "unrecognized variable scope %d\n", 9499 v->dtdv_scope); 9500 break; 9501 } 9502 9503 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9504 v->dtdv_kind != DIFV_KIND_SCALAR) { 9505 err += efunc(i, "unrecognized variable type %d\n", 9506 v->dtdv_kind); 9507 break; 9508 } 9509 9510 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9511 err += efunc(i, "%d exceeds variable id limit\n", id); 9512 break; 9513 } 9514 9515 if (id < DIF_VAR_OTHER_UBASE) 9516 continue; 9517 9518 /* 9519 * For user-defined variables, we need to check that this 9520 * definition is identical to any previous definition that we 9521 * encountered. 9522 */ 9523 ndx = id - DIF_VAR_OTHER_UBASE; 9524 9525 switch (v->dtdv_scope) { 9526 case DIFV_SCOPE_GLOBAL: 9527 if (maxglobal == -1 || ndx > maxglobal) 9528 maxglobal = ndx; 9529 9530 if (ndx < vstate->dtvs_nglobals) { 9531 dtrace_statvar_t *svar; 9532 9533 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9534 existing = &svar->dtsv_var; 9535 } 9536 9537 break; 9538 9539 case DIFV_SCOPE_THREAD: 9540 if (maxtlocal == -1 || ndx > maxtlocal) 9541 maxtlocal = ndx; 9542 9543 if (ndx < vstate->dtvs_ntlocals) 9544 existing = &vstate->dtvs_tlocals[ndx]; 9545 break; 9546 9547 case DIFV_SCOPE_LOCAL: 9548 if (maxlocal == -1 || ndx > maxlocal) 9549 maxlocal = ndx; 9550 9551 if (ndx < vstate->dtvs_nlocals) { 9552 dtrace_statvar_t *svar; 9553 9554 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9555 existing = &svar->dtsv_var; 9556 } 9557 9558 break; 9559 } 9560 9561 vt = &v->dtdv_type; 9562 9563 if (vt->dtdt_flags & DIF_TF_BYREF) { 9564 if (vt->dtdt_size == 0) { 9565 err += efunc(i, "zero-sized variable\n"); 9566 break; 9567 } 9568 9569 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 9570 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 9571 vt->dtdt_size > dtrace_statvar_maxsize) { 9572 err += efunc(i, "oversized by-ref static\n"); 9573 break; 9574 } 9575 } 9576 9577 if (existing == NULL || existing->dtdv_id == 0) 9578 continue; 9579 9580 ASSERT(existing->dtdv_id == v->dtdv_id); 9581 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9582 9583 if (existing->dtdv_kind != v->dtdv_kind) 9584 err += efunc(i, "%d changed variable kind\n", id); 9585 9586 et = &existing->dtdv_type; 9587 9588 if (vt->dtdt_flags != et->dtdt_flags) { 9589 err += efunc(i, "%d changed variable type flags\n", id); 9590 break; 9591 } 9592 9593 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9594 err += efunc(i, "%d changed variable type size\n", id); 9595 break; 9596 } 9597 } 9598 9599 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9600 dif_instr_t instr = dp->dtdo_buf[pc]; 9601 9602 uint_t v = DIF_INSTR_VAR(instr); 9603 uint_t op = DIF_INSTR_OP(instr); 9604 9605 switch (op) { 9606 case DIF_OP_LDGS: 9607 case DIF_OP_LDGAA: 9608 case DIF_OP_STGS: 9609 case DIF_OP_STGAA: 9610 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 9611 err += efunc(pc, "invalid variable %u\n", v); 9612 break; 9613 case DIF_OP_LDTS: 9614 case DIF_OP_LDTAA: 9615 case DIF_OP_STTS: 9616 case DIF_OP_STTAA: 9617 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 9618 err += efunc(pc, "invalid variable %u\n", v); 9619 break; 9620 case DIF_OP_LDLS: 9621 case DIF_OP_STLS: 9622 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 9623 err += efunc(pc, "invalid variable %u\n", v); 9624 break; 9625 default: 9626 break; 9627 } 9628 } 9629 9630 return (err); 9631 } 9632 9633 /* 9634 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9635 * are much more constrained than normal DIFOs. Specifically, they may 9636 * not: 9637 * 9638 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9639 * miscellaneous string routines 9640 * 2. Access DTrace variables other than the args[] array, and the 9641 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9642 * 3. Have thread-local variables. 9643 * 4. Have dynamic variables. 9644 */ 9645 static int 9646 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9647 { 9648 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9649 int err = 0; 9650 uint_t pc; 9651 9652 for (pc = 0; pc < dp->dtdo_len; pc++) { 9653 dif_instr_t instr = dp->dtdo_buf[pc]; 9654 9655 uint_t v = DIF_INSTR_VAR(instr); 9656 uint_t subr = DIF_INSTR_SUBR(instr); 9657 uint_t op = DIF_INSTR_OP(instr); 9658 9659 switch (op) { 9660 case DIF_OP_OR: 9661 case DIF_OP_XOR: 9662 case DIF_OP_AND: 9663 case DIF_OP_SLL: 9664 case DIF_OP_SRL: 9665 case DIF_OP_SRA: 9666 case DIF_OP_SUB: 9667 case DIF_OP_ADD: 9668 case DIF_OP_MUL: 9669 case DIF_OP_SDIV: 9670 case DIF_OP_UDIV: 9671 case DIF_OP_SREM: 9672 case DIF_OP_UREM: 9673 case DIF_OP_COPYS: 9674 case DIF_OP_NOT: 9675 case DIF_OP_MOV: 9676 case DIF_OP_RLDSB: 9677 case DIF_OP_RLDSH: 9678 case DIF_OP_RLDSW: 9679 case DIF_OP_RLDUB: 9680 case DIF_OP_RLDUH: 9681 case DIF_OP_RLDUW: 9682 case DIF_OP_RLDX: 9683 case DIF_OP_ULDSB: 9684 case DIF_OP_ULDSH: 9685 case DIF_OP_ULDSW: 9686 case DIF_OP_ULDUB: 9687 case DIF_OP_ULDUH: 9688 case DIF_OP_ULDUW: 9689 case DIF_OP_ULDX: 9690 case DIF_OP_STB: 9691 case DIF_OP_STH: 9692 case DIF_OP_STW: 9693 case DIF_OP_STX: 9694 case DIF_OP_ALLOCS: 9695 case DIF_OP_CMP: 9696 case DIF_OP_SCMP: 9697 case DIF_OP_TST: 9698 case DIF_OP_BA: 9699 case DIF_OP_BE: 9700 case DIF_OP_BNE: 9701 case DIF_OP_BG: 9702 case DIF_OP_BGU: 9703 case DIF_OP_BGE: 9704 case DIF_OP_BGEU: 9705 case DIF_OP_BL: 9706 case DIF_OP_BLU: 9707 case DIF_OP_BLE: 9708 case DIF_OP_BLEU: 9709 case DIF_OP_RET: 9710 case DIF_OP_NOP: 9711 case DIF_OP_POPTS: 9712 case DIF_OP_FLUSHTS: 9713 case DIF_OP_SETX: 9714 case DIF_OP_SETS: 9715 case DIF_OP_LDGA: 9716 case DIF_OP_LDLS: 9717 case DIF_OP_STGS: 9718 case DIF_OP_STLS: 9719 case DIF_OP_PUSHTR: 9720 case DIF_OP_PUSHTV: 9721 break; 9722 9723 case DIF_OP_LDGS: 9724 if (v >= DIF_VAR_OTHER_UBASE) 9725 break; 9726 9727 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9728 break; 9729 9730 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9731 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9732 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9733 v == DIF_VAR_UID || v == DIF_VAR_GID) 9734 break; 9735 9736 err += efunc(pc, "illegal variable %u\n", v); 9737 break; 9738 9739 case DIF_OP_LDTA: 9740 case DIF_OP_LDTS: 9741 case DIF_OP_LDGAA: 9742 case DIF_OP_LDTAA: 9743 err += efunc(pc, "illegal dynamic variable load\n"); 9744 break; 9745 9746 case DIF_OP_STTS: 9747 case DIF_OP_STGAA: 9748 case DIF_OP_STTAA: 9749 err += efunc(pc, "illegal dynamic variable store\n"); 9750 break; 9751 9752 case DIF_OP_CALL: 9753 if (subr == DIF_SUBR_ALLOCA || 9754 subr == DIF_SUBR_BCOPY || 9755 subr == DIF_SUBR_COPYIN || 9756 subr == DIF_SUBR_COPYINTO || 9757 subr == DIF_SUBR_COPYINSTR || 9758 subr == DIF_SUBR_INDEX || 9759 subr == DIF_SUBR_INET_NTOA || 9760 subr == DIF_SUBR_INET_NTOA6 || 9761 subr == DIF_SUBR_INET_NTOP || 9762 subr == DIF_SUBR_JSON || 9763 subr == DIF_SUBR_LLTOSTR || 9764 subr == DIF_SUBR_STRTOLL || 9765 subr == DIF_SUBR_RINDEX || 9766 subr == DIF_SUBR_STRCHR || 9767 subr == DIF_SUBR_STRJOIN || 9768 subr == DIF_SUBR_STRRCHR || 9769 subr == DIF_SUBR_STRSTR || 9770 subr == DIF_SUBR_HTONS || 9771 subr == DIF_SUBR_HTONL || 9772 subr == DIF_SUBR_HTONLL || 9773 subr == DIF_SUBR_NTOHS || 9774 subr == DIF_SUBR_NTOHL || 9775 subr == DIF_SUBR_NTOHLL) 9776 break; 9777 9778 err += efunc(pc, "invalid subr %u\n", subr); 9779 break; 9780 9781 default: 9782 err += efunc(pc, "invalid opcode %u\n", 9783 DIF_INSTR_OP(instr)); 9784 } 9785 } 9786 9787 return (err); 9788 } 9789 9790 /* 9791 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9792 * basis; 0 if not. 9793 */ 9794 static int 9795 dtrace_difo_cacheable(dtrace_difo_t *dp) 9796 { 9797 int i; 9798 9799 if (dp == NULL) 9800 return (0); 9801 9802 for (i = 0; i < dp->dtdo_varlen; i++) { 9803 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9804 9805 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9806 continue; 9807 9808 switch (v->dtdv_id) { 9809 case DIF_VAR_CURTHREAD: 9810 case DIF_VAR_PID: 9811 case DIF_VAR_TID: 9812 case DIF_VAR_EXECNAME: 9813 case DIF_VAR_ZONENAME: 9814 break; 9815 9816 default: 9817 return (0); 9818 } 9819 } 9820 9821 /* 9822 * This DIF object may be cacheable. Now we need to look for any 9823 * array loading instructions, any memory loading instructions, or 9824 * any stores to thread-local variables. 9825 */ 9826 for (i = 0; i < dp->dtdo_len; i++) { 9827 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9828 9829 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9830 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9831 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9832 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9833 return (0); 9834 } 9835 9836 return (1); 9837 } 9838 9839 static void 9840 dtrace_difo_hold(dtrace_difo_t *dp) 9841 { 9842 int i; 9843 9844 ASSERT(MUTEX_HELD(&dtrace_lock)); 9845 9846 dp->dtdo_refcnt++; 9847 ASSERT(dp->dtdo_refcnt != 0); 9848 9849 /* 9850 * We need to check this DIF object for references to the variable 9851 * DIF_VAR_VTIMESTAMP. 9852 */ 9853 for (i = 0; i < dp->dtdo_varlen; i++) { 9854 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9855 9856 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9857 continue; 9858 9859 if (dtrace_vtime_references++ == 0) 9860 dtrace_vtime_enable(); 9861 } 9862 } 9863 9864 /* 9865 * This routine calculates the dynamic variable chunksize for a given DIF 9866 * object. The calculation is not fool-proof, and can probably be tricked by 9867 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9868 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9869 * if a dynamic variable size exceeds the chunksize. 9870 */ 9871 static void 9872 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9873 { 9874 uint64_t sval; 9875 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9876 const dif_instr_t *text = dp->dtdo_buf; 9877 uint_t pc, srd = 0; 9878 uint_t ttop = 0; 9879 size_t size, ksize; 9880 uint_t id, i; 9881 9882 for (pc = 0; pc < dp->dtdo_len; pc++) { 9883 dif_instr_t instr = text[pc]; 9884 uint_t op = DIF_INSTR_OP(instr); 9885 uint_t rd = DIF_INSTR_RD(instr); 9886 uint_t r1 = DIF_INSTR_R1(instr); 9887 uint_t nkeys = 0; 9888 uchar_t scope; 9889 9890 dtrace_key_t *key = tupregs; 9891 9892 switch (op) { 9893 case DIF_OP_SETX: 9894 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9895 srd = rd; 9896 continue; 9897 9898 case DIF_OP_STTS: 9899 key = &tupregs[DIF_DTR_NREGS]; 9900 key[0].dttk_size = 0; 9901 key[1].dttk_size = 0; 9902 nkeys = 2; 9903 scope = DIFV_SCOPE_THREAD; 9904 break; 9905 9906 case DIF_OP_STGAA: 9907 case DIF_OP_STTAA: 9908 nkeys = ttop; 9909 9910 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9911 key[nkeys++].dttk_size = 0; 9912 9913 key[nkeys++].dttk_size = 0; 9914 9915 if (op == DIF_OP_STTAA) { 9916 scope = DIFV_SCOPE_THREAD; 9917 } else { 9918 scope = DIFV_SCOPE_GLOBAL; 9919 } 9920 9921 break; 9922 9923 case DIF_OP_PUSHTR: 9924 if (ttop == DIF_DTR_NREGS) 9925 return; 9926 9927 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 9928 /* 9929 * If the register for the size of the "pushtr" 9930 * is %r0 (or the value is 0) and the type is 9931 * a string, we'll use the system-wide default 9932 * string size. 9933 */ 9934 tupregs[ttop++].dttk_size = 9935 dtrace_strsize_default; 9936 } else { 9937 if (srd == 0) 9938 return; 9939 9940 if (sval > LONG_MAX) 9941 return; 9942 9943 tupregs[ttop++].dttk_size = sval; 9944 } 9945 9946 break; 9947 9948 case DIF_OP_PUSHTV: 9949 if (ttop == DIF_DTR_NREGS) 9950 return; 9951 9952 tupregs[ttop++].dttk_size = 0; 9953 break; 9954 9955 case DIF_OP_FLUSHTS: 9956 ttop = 0; 9957 break; 9958 9959 case DIF_OP_POPTS: 9960 if (ttop != 0) 9961 ttop--; 9962 break; 9963 } 9964 9965 sval = 0; 9966 srd = 0; 9967 9968 if (nkeys == 0) 9969 continue; 9970 9971 /* 9972 * We have a dynamic variable allocation; calculate its size. 9973 */ 9974 for (ksize = 0, i = 0; i < nkeys; i++) 9975 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9976 9977 size = sizeof (dtrace_dynvar_t); 9978 size += sizeof (dtrace_key_t) * (nkeys - 1); 9979 size += ksize; 9980 9981 /* 9982 * Now we need to determine the size of the stored data. 9983 */ 9984 id = DIF_INSTR_VAR(instr); 9985 9986 for (i = 0; i < dp->dtdo_varlen; i++) { 9987 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9988 9989 if (v->dtdv_id == id && v->dtdv_scope == scope) { 9990 size += v->dtdv_type.dtdt_size; 9991 break; 9992 } 9993 } 9994 9995 if (i == dp->dtdo_varlen) 9996 return; 9997 9998 /* 9999 * We have the size. If this is larger than the chunk size 10000 * for our dynamic variable state, reset the chunk size. 10001 */ 10002 size = P2ROUNDUP(size, sizeof (uint64_t)); 10003 10004 /* 10005 * Before setting the chunk size, check that we're not going 10006 * to set it to a negative value... 10007 */ 10008 if (size > LONG_MAX) 10009 return; 10010 10011 /* 10012 * ...and make certain that we didn't badly overflow. 10013 */ 10014 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10015 return; 10016 10017 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10018 vstate->dtvs_dynvars.dtds_chunksize = size; 10019 } 10020 } 10021 10022 static void 10023 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10024 { 10025 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10026 uint_t id; 10027 10028 ASSERT(MUTEX_HELD(&dtrace_lock)); 10029 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10030 10031 for (i = 0; i < dp->dtdo_varlen; i++) { 10032 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10033 dtrace_statvar_t *svar, ***svarp; 10034 size_t dsize = 0; 10035 uint8_t scope = v->dtdv_scope; 10036 int *np; 10037 10038 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10039 continue; 10040 10041 id -= DIF_VAR_OTHER_UBASE; 10042 10043 switch (scope) { 10044 case DIFV_SCOPE_THREAD: 10045 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10046 dtrace_difv_t *tlocals; 10047 10048 if ((ntlocals = (otlocals << 1)) == 0) 10049 ntlocals = 1; 10050 10051 osz = otlocals * sizeof (dtrace_difv_t); 10052 nsz = ntlocals * sizeof (dtrace_difv_t); 10053 10054 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10055 10056 if (osz != 0) { 10057 bcopy(vstate->dtvs_tlocals, 10058 tlocals, osz); 10059 kmem_free(vstate->dtvs_tlocals, osz); 10060 } 10061 10062 vstate->dtvs_tlocals = tlocals; 10063 vstate->dtvs_ntlocals = ntlocals; 10064 } 10065 10066 vstate->dtvs_tlocals[id] = *v; 10067 continue; 10068 10069 case DIFV_SCOPE_LOCAL: 10070 np = &vstate->dtvs_nlocals; 10071 svarp = &vstate->dtvs_locals; 10072 10073 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10074 dsize = NCPU * (v->dtdv_type.dtdt_size + 10075 sizeof (uint64_t)); 10076 else 10077 dsize = NCPU * sizeof (uint64_t); 10078 10079 break; 10080 10081 case DIFV_SCOPE_GLOBAL: 10082 np = &vstate->dtvs_nglobals; 10083 svarp = &vstate->dtvs_globals; 10084 10085 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10086 dsize = v->dtdv_type.dtdt_size + 10087 sizeof (uint64_t); 10088 10089 break; 10090 10091 default: 10092 ASSERT(0); 10093 } 10094 10095 while (id >= (oldsvars = *np)) { 10096 dtrace_statvar_t **statics; 10097 int newsvars, oldsize, newsize; 10098 10099 if ((newsvars = (oldsvars << 1)) == 0) 10100 newsvars = 1; 10101 10102 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10103 newsize = newsvars * sizeof (dtrace_statvar_t *); 10104 10105 statics = kmem_zalloc(newsize, KM_SLEEP); 10106 10107 if (oldsize != 0) { 10108 bcopy(*svarp, statics, oldsize); 10109 kmem_free(*svarp, oldsize); 10110 } 10111 10112 *svarp = statics; 10113 *np = newsvars; 10114 } 10115 10116 if ((svar = (*svarp)[id]) == NULL) { 10117 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10118 svar->dtsv_var = *v; 10119 10120 if ((svar->dtsv_size = dsize) != 0) { 10121 svar->dtsv_data = (uint64_t)(uintptr_t) 10122 kmem_zalloc(dsize, KM_SLEEP); 10123 } 10124 10125 (*svarp)[id] = svar; 10126 } 10127 10128 svar->dtsv_refcnt++; 10129 } 10130 10131 dtrace_difo_chunksize(dp, vstate); 10132 dtrace_difo_hold(dp); 10133 } 10134 10135 static dtrace_difo_t * 10136 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10137 { 10138 dtrace_difo_t *new; 10139 size_t sz; 10140 10141 ASSERT(dp->dtdo_buf != NULL); 10142 ASSERT(dp->dtdo_refcnt != 0); 10143 10144 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10145 10146 ASSERT(dp->dtdo_buf != NULL); 10147 sz = dp->dtdo_len * sizeof (dif_instr_t); 10148 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10149 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10150 new->dtdo_len = dp->dtdo_len; 10151 10152 if (dp->dtdo_strtab != NULL) { 10153 ASSERT(dp->dtdo_strlen != 0); 10154 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10155 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10156 new->dtdo_strlen = dp->dtdo_strlen; 10157 } 10158 10159 if (dp->dtdo_inttab != NULL) { 10160 ASSERT(dp->dtdo_intlen != 0); 10161 sz = dp->dtdo_intlen * sizeof (uint64_t); 10162 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10163 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10164 new->dtdo_intlen = dp->dtdo_intlen; 10165 } 10166 10167 if (dp->dtdo_vartab != NULL) { 10168 ASSERT(dp->dtdo_varlen != 0); 10169 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10170 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10171 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10172 new->dtdo_varlen = dp->dtdo_varlen; 10173 } 10174 10175 dtrace_difo_init(new, vstate); 10176 return (new); 10177 } 10178 10179 static void 10180 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10181 { 10182 int i; 10183 10184 ASSERT(dp->dtdo_refcnt == 0); 10185 10186 for (i = 0; i < dp->dtdo_varlen; i++) { 10187 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10188 dtrace_statvar_t *svar, **svarp; 10189 uint_t id; 10190 uint8_t scope = v->dtdv_scope; 10191 int *np; 10192 10193 switch (scope) { 10194 case DIFV_SCOPE_THREAD: 10195 continue; 10196 10197 case DIFV_SCOPE_LOCAL: 10198 np = &vstate->dtvs_nlocals; 10199 svarp = vstate->dtvs_locals; 10200 break; 10201 10202 case DIFV_SCOPE_GLOBAL: 10203 np = &vstate->dtvs_nglobals; 10204 svarp = vstate->dtvs_globals; 10205 break; 10206 10207 default: 10208 ASSERT(0); 10209 } 10210 10211 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10212 continue; 10213 10214 id -= DIF_VAR_OTHER_UBASE; 10215 ASSERT(id < *np); 10216 10217 svar = svarp[id]; 10218 ASSERT(svar != NULL); 10219 ASSERT(svar->dtsv_refcnt > 0); 10220 10221 if (--svar->dtsv_refcnt > 0) 10222 continue; 10223 10224 if (svar->dtsv_size != 0) { 10225 ASSERT(svar->dtsv_data != NULL); 10226 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10227 svar->dtsv_size); 10228 } 10229 10230 kmem_free(svar, sizeof (dtrace_statvar_t)); 10231 svarp[id] = NULL; 10232 } 10233 10234 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10235 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10236 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10237 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10238 10239 kmem_free(dp, sizeof (dtrace_difo_t)); 10240 } 10241 10242 static void 10243 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10244 { 10245 int i; 10246 10247 ASSERT(MUTEX_HELD(&dtrace_lock)); 10248 ASSERT(dp->dtdo_refcnt != 0); 10249 10250 for (i = 0; i < dp->dtdo_varlen; i++) { 10251 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10252 10253 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10254 continue; 10255 10256 ASSERT(dtrace_vtime_references > 0); 10257 if (--dtrace_vtime_references == 0) 10258 dtrace_vtime_disable(); 10259 } 10260 10261 if (--dp->dtdo_refcnt == 0) 10262 dtrace_difo_destroy(dp, vstate); 10263 } 10264 10265 /* 10266 * DTrace Format Functions 10267 */ 10268 static uint16_t 10269 dtrace_format_add(dtrace_state_t *state, char *str) 10270 { 10271 char *fmt, **new; 10272 uint16_t ndx, len = strlen(str) + 1; 10273 10274 fmt = kmem_zalloc(len, KM_SLEEP); 10275 bcopy(str, fmt, len); 10276 10277 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10278 if (state->dts_formats[ndx] == NULL) { 10279 state->dts_formats[ndx] = fmt; 10280 return (ndx + 1); 10281 } 10282 } 10283 10284 if (state->dts_nformats == USHRT_MAX) { 10285 /* 10286 * This is only likely if a denial-of-service attack is being 10287 * attempted. As such, it's okay to fail silently here. 10288 */ 10289 kmem_free(fmt, len); 10290 return (0); 10291 } 10292 10293 /* 10294 * For simplicity, we always resize the formats array to be exactly the 10295 * number of formats. 10296 */ 10297 ndx = state->dts_nformats++; 10298 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10299 10300 if (state->dts_formats != NULL) { 10301 ASSERT(ndx != 0); 10302 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10303 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10304 } 10305 10306 state->dts_formats = new; 10307 state->dts_formats[ndx] = fmt; 10308 10309 return (ndx + 1); 10310 } 10311 10312 static void 10313 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10314 { 10315 char *fmt; 10316 10317 ASSERT(state->dts_formats != NULL); 10318 ASSERT(format <= state->dts_nformats); 10319 ASSERT(state->dts_formats[format - 1] != NULL); 10320 10321 fmt = state->dts_formats[format - 1]; 10322 kmem_free(fmt, strlen(fmt) + 1); 10323 state->dts_formats[format - 1] = NULL; 10324 } 10325 10326 static void 10327 dtrace_format_destroy(dtrace_state_t *state) 10328 { 10329 int i; 10330 10331 if (state->dts_nformats == 0) { 10332 ASSERT(state->dts_formats == NULL); 10333 return; 10334 } 10335 10336 ASSERT(state->dts_formats != NULL); 10337 10338 for (i = 0; i < state->dts_nformats; i++) { 10339 char *fmt = state->dts_formats[i]; 10340 10341 if (fmt == NULL) 10342 continue; 10343 10344 kmem_free(fmt, strlen(fmt) + 1); 10345 } 10346 10347 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10348 state->dts_nformats = 0; 10349 state->dts_formats = NULL; 10350 } 10351 10352 /* 10353 * DTrace Predicate Functions 10354 */ 10355 static dtrace_predicate_t * 10356 dtrace_predicate_create(dtrace_difo_t *dp) 10357 { 10358 dtrace_predicate_t *pred; 10359 10360 ASSERT(MUTEX_HELD(&dtrace_lock)); 10361 ASSERT(dp->dtdo_refcnt != 0); 10362 10363 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10364 pred->dtp_difo = dp; 10365 pred->dtp_refcnt = 1; 10366 10367 if (!dtrace_difo_cacheable(dp)) 10368 return (pred); 10369 10370 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10371 /* 10372 * This is only theoretically possible -- we have had 2^32 10373 * cacheable predicates on this machine. We cannot allow any 10374 * more predicates to become cacheable: as unlikely as it is, 10375 * there may be a thread caching a (now stale) predicate cache 10376 * ID. (N.B.: the temptation is being successfully resisted to 10377 * have this cmn_err() "Holy shit -- we executed this code!") 10378 */ 10379 return (pred); 10380 } 10381 10382 pred->dtp_cacheid = dtrace_predcache_id++; 10383 10384 return (pred); 10385 } 10386 10387 static void 10388 dtrace_predicate_hold(dtrace_predicate_t *pred) 10389 { 10390 ASSERT(MUTEX_HELD(&dtrace_lock)); 10391 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10392 ASSERT(pred->dtp_refcnt > 0); 10393 10394 pred->dtp_refcnt++; 10395 } 10396 10397 static void 10398 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10399 { 10400 dtrace_difo_t *dp = pred->dtp_difo; 10401 10402 ASSERT(MUTEX_HELD(&dtrace_lock)); 10403 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10404 ASSERT(pred->dtp_refcnt > 0); 10405 10406 if (--pred->dtp_refcnt == 0) { 10407 dtrace_difo_release(pred->dtp_difo, vstate); 10408 kmem_free(pred, sizeof (dtrace_predicate_t)); 10409 } 10410 } 10411 10412 /* 10413 * DTrace Action Description Functions 10414 */ 10415 static dtrace_actdesc_t * 10416 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10417 uint64_t uarg, uint64_t arg) 10418 { 10419 dtrace_actdesc_t *act; 10420 10421 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10422 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10423 10424 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10425 act->dtad_kind = kind; 10426 act->dtad_ntuple = ntuple; 10427 act->dtad_uarg = uarg; 10428 act->dtad_arg = arg; 10429 act->dtad_refcnt = 1; 10430 10431 return (act); 10432 } 10433 10434 static void 10435 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10436 { 10437 ASSERT(act->dtad_refcnt >= 1); 10438 act->dtad_refcnt++; 10439 } 10440 10441 static void 10442 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10443 { 10444 dtrace_actkind_t kind = act->dtad_kind; 10445 dtrace_difo_t *dp; 10446 10447 ASSERT(act->dtad_refcnt >= 1); 10448 10449 if (--act->dtad_refcnt != 0) 10450 return; 10451 10452 if ((dp = act->dtad_difo) != NULL) 10453 dtrace_difo_release(dp, vstate); 10454 10455 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10456 char *str = (char *)(uintptr_t)act->dtad_arg; 10457 10458 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10459 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10460 10461 if (str != NULL) 10462 kmem_free(str, strlen(str) + 1); 10463 } 10464 10465 kmem_free(act, sizeof (dtrace_actdesc_t)); 10466 } 10467 10468 /* 10469 * DTrace ECB Functions 10470 */ 10471 static dtrace_ecb_t * 10472 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10473 { 10474 dtrace_ecb_t *ecb; 10475 dtrace_epid_t epid; 10476 10477 ASSERT(MUTEX_HELD(&dtrace_lock)); 10478 10479 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10480 ecb->dte_predicate = NULL; 10481 ecb->dte_probe = probe; 10482 10483 /* 10484 * The default size is the size of the default action: recording 10485 * the header. 10486 */ 10487 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10488 ecb->dte_alignment = sizeof (dtrace_epid_t); 10489 10490 epid = state->dts_epid++; 10491 10492 if (epid - 1 >= state->dts_necbs) { 10493 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10494 int necbs = state->dts_necbs << 1; 10495 10496 ASSERT(epid == state->dts_necbs + 1); 10497 10498 if (necbs == 0) { 10499 ASSERT(oecbs == NULL); 10500 necbs = 1; 10501 } 10502 10503 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10504 10505 if (oecbs != NULL) 10506 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10507 10508 dtrace_membar_producer(); 10509 state->dts_ecbs = ecbs; 10510 10511 if (oecbs != NULL) { 10512 /* 10513 * If this state is active, we must dtrace_sync() 10514 * before we can free the old dts_ecbs array: we're 10515 * coming in hot, and there may be active ring 10516 * buffer processing (which indexes into the dts_ecbs 10517 * array) on another CPU. 10518 */ 10519 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10520 dtrace_sync(); 10521 10522 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10523 } 10524 10525 dtrace_membar_producer(); 10526 state->dts_necbs = necbs; 10527 } 10528 10529 ecb->dte_state = state; 10530 10531 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10532 dtrace_membar_producer(); 10533 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10534 10535 return (ecb); 10536 } 10537 10538 static int 10539 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10540 { 10541 dtrace_probe_t *probe = ecb->dte_probe; 10542 10543 ASSERT(MUTEX_HELD(&cpu_lock)); 10544 ASSERT(MUTEX_HELD(&dtrace_lock)); 10545 ASSERT(ecb->dte_next == NULL); 10546 10547 if (probe == NULL) { 10548 /* 10549 * This is the NULL probe -- there's nothing to do. 10550 */ 10551 return (0); 10552 } 10553 10554 if (probe->dtpr_ecb == NULL) { 10555 dtrace_provider_t *prov = probe->dtpr_provider; 10556 10557 /* 10558 * We're the first ECB on this probe. 10559 */ 10560 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10561 10562 if (ecb->dte_predicate != NULL) 10563 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10564 10565 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10566 probe->dtpr_id, probe->dtpr_arg)); 10567 } else { 10568 /* 10569 * This probe is already active. Swing the last pointer to 10570 * point to the new ECB, and issue a dtrace_sync() to assure 10571 * that all CPUs have seen the change. 10572 */ 10573 ASSERT(probe->dtpr_ecb_last != NULL); 10574 probe->dtpr_ecb_last->dte_next = ecb; 10575 probe->dtpr_ecb_last = ecb; 10576 probe->dtpr_predcache = 0; 10577 10578 dtrace_sync(); 10579 return (0); 10580 } 10581 } 10582 10583 static int 10584 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10585 { 10586 dtrace_action_t *act; 10587 uint32_t curneeded = UINT32_MAX; 10588 uint32_t aggbase = UINT32_MAX; 10589 10590 /* 10591 * If we record anything, we always record the dtrace_rechdr_t. (And 10592 * we always record it first.) 10593 */ 10594 ecb->dte_size = sizeof (dtrace_rechdr_t); 10595 ecb->dte_alignment = sizeof (dtrace_epid_t); 10596 10597 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10598 dtrace_recdesc_t *rec = &act->dta_rec; 10599 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10600 10601 ecb->dte_alignment = MAX(ecb->dte_alignment, 10602 rec->dtrd_alignment); 10603 10604 if (DTRACEACT_ISAGG(act->dta_kind)) { 10605 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10606 10607 ASSERT(rec->dtrd_size != 0); 10608 ASSERT(agg->dtag_first != NULL); 10609 ASSERT(act->dta_prev->dta_intuple); 10610 ASSERT(aggbase != UINT32_MAX); 10611 ASSERT(curneeded != UINT32_MAX); 10612 10613 agg->dtag_base = aggbase; 10614 10615 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10616 rec->dtrd_offset = curneeded; 10617 if (curneeded + rec->dtrd_size < curneeded) 10618 return (EINVAL); 10619 curneeded += rec->dtrd_size; 10620 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10621 10622 aggbase = UINT32_MAX; 10623 curneeded = UINT32_MAX; 10624 } else if (act->dta_intuple) { 10625 if (curneeded == UINT32_MAX) { 10626 /* 10627 * This is the first record in a tuple. Align 10628 * curneeded to be at offset 4 in an 8-byte 10629 * aligned block. 10630 */ 10631 ASSERT(act->dta_prev == NULL || 10632 !act->dta_prev->dta_intuple); 10633 ASSERT3U(aggbase, ==, UINT32_MAX); 10634 curneeded = P2PHASEUP(ecb->dte_size, 10635 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10636 10637 aggbase = curneeded - sizeof (dtrace_aggid_t); 10638 ASSERT(IS_P2ALIGNED(aggbase, 10639 sizeof (uint64_t))); 10640 } 10641 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10642 rec->dtrd_offset = curneeded; 10643 if (curneeded + rec->dtrd_size < curneeded) 10644 return (EINVAL); 10645 curneeded += rec->dtrd_size; 10646 } else { 10647 /* tuples must be followed by an aggregation */ 10648 ASSERT(act->dta_prev == NULL || 10649 !act->dta_prev->dta_intuple); 10650 10651 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10652 rec->dtrd_alignment); 10653 rec->dtrd_offset = ecb->dte_size; 10654 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 10655 return (EINVAL); 10656 ecb->dte_size += rec->dtrd_size; 10657 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10658 } 10659 } 10660 10661 if ((act = ecb->dte_action) != NULL && 10662 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10663 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10664 /* 10665 * If the size is still sizeof (dtrace_rechdr_t), then all 10666 * actions store no data; set the size to 0. 10667 */ 10668 ecb->dte_size = 0; 10669 } 10670 10671 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10672 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10673 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10674 ecb->dte_needed); 10675 return (0); 10676 } 10677 10678 static dtrace_action_t * 10679 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10680 { 10681 dtrace_aggregation_t *agg; 10682 size_t size = sizeof (uint64_t); 10683 int ntuple = desc->dtad_ntuple; 10684 dtrace_action_t *act; 10685 dtrace_recdesc_t *frec; 10686 dtrace_aggid_t aggid; 10687 dtrace_state_t *state = ecb->dte_state; 10688 10689 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10690 agg->dtag_ecb = ecb; 10691 10692 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10693 10694 switch (desc->dtad_kind) { 10695 case DTRACEAGG_MIN: 10696 agg->dtag_initial = INT64_MAX; 10697 agg->dtag_aggregate = dtrace_aggregate_min; 10698 break; 10699 10700 case DTRACEAGG_MAX: 10701 agg->dtag_initial = INT64_MIN; 10702 agg->dtag_aggregate = dtrace_aggregate_max; 10703 break; 10704 10705 case DTRACEAGG_COUNT: 10706 agg->dtag_aggregate = dtrace_aggregate_count; 10707 break; 10708 10709 case DTRACEAGG_QUANTIZE: 10710 agg->dtag_aggregate = dtrace_aggregate_quantize; 10711 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10712 sizeof (uint64_t); 10713 break; 10714 10715 case DTRACEAGG_LQUANTIZE: { 10716 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10717 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10718 10719 agg->dtag_initial = desc->dtad_arg; 10720 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10721 10722 if (step == 0 || levels == 0) 10723 goto err; 10724 10725 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10726 break; 10727 } 10728 10729 case DTRACEAGG_LLQUANTIZE: { 10730 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10731 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10732 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10733 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10734 int64_t v; 10735 10736 agg->dtag_initial = desc->dtad_arg; 10737 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10738 10739 if (factor < 2 || low >= high || nsteps < factor) 10740 goto err; 10741 10742 /* 10743 * Now check that the number of steps evenly divides a power 10744 * of the factor. (This assures both integer bucket size and 10745 * linearity within each magnitude.) 10746 */ 10747 for (v = factor; v < nsteps; v *= factor) 10748 continue; 10749 10750 if ((v % nsteps) || (nsteps % factor)) 10751 goto err; 10752 10753 size = (dtrace_aggregate_llquantize_bucket(factor, 10754 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10755 break; 10756 } 10757 10758 case DTRACEAGG_AVG: 10759 agg->dtag_aggregate = dtrace_aggregate_avg; 10760 size = sizeof (uint64_t) * 2; 10761 break; 10762 10763 case DTRACEAGG_STDDEV: 10764 agg->dtag_aggregate = dtrace_aggregate_stddev; 10765 size = sizeof (uint64_t) * 4; 10766 break; 10767 10768 case DTRACEAGG_SUM: 10769 agg->dtag_aggregate = dtrace_aggregate_sum; 10770 break; 10771 10772 default: 10773 goto err; 10774 } 10775 10776 agg->dtag_action.dta_rec.dtrd_size = size; 10777 10778 if (ntuple == 0) 10779 goto err; 10780 10781 /* 10782 * We must make sure that we have enough actions for the n-tuple. 10783 */ 10784 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10785 if (DTRACEACT_ISAGG(act->dta_kind)) 10786 break; 10787 10788 if (--ntuple == 0) { 10789 /* 10790 * This is the action with which our n-tuple begins. 10791 */ 10792 agg->dtag_first = act; 10793 goto success; 10794 } 10795 } 10796 10797 /* 10798 * This n-tuple is short by ntuple elements. Return failure. 10799 */ 10800 ASSERT(ntuple != 0); 10801 err: 10802 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10803 return (NULL); 10804 10805 success: 10806 /* 10807 * If the last action in the tuple has a size of zero, it's actually 10808 * an expression argument for the aggregating action. 10809 */ 10810 ASSERT(ecb->dte_action_last != NULL); 10811 act = ecb->dte_action_last; 10812 10813 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10814 ASSERT(act->dta_difo != NULL); 10815 10816 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10817 agg->dtag_hasarg = 1; 10818 } 10819 10820 /* 10821 * We need to allocate an id for this aggregation. 10822 */ 10823 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10824 VM_BESTFIT | VM_SLEEP); 10825 10826 if (aggid - 1 >= state->dts_naggregations) { 10827 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10828 dtrace_aggregation_t **aggs; 10829 int naggs = state->dts_naggregations << 1; 10830 int onaggs = state->dts_naggregations; 10831 10832 ASSERT(aggid == state->dts_naggregations + 1); 10833 10834 if (naggs == 0) { 10835 ASSERT(oaggs == NULL); 10836 naggs = 1; 10837 } 10838 10839 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10840 10841 if (oaggs != NULL) { 10842 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10843 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10844 } 10845 10846 state->dts_aggregations = aggs; 10847 state->dts_naggregations = naggs; 10848 } 10849 10850 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10851 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10852 10853 frec = &agg->dtag_first->dta_rec; 10854 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10855 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10856 10857 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10858 ASSERT(!act->dta_intuple); 10859 act->dta_intuple = 1; 10860 } 10861 10862 return (&agg->dtag_action); 10863 } 10864 10865 static void 10866 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10867 { 10868 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10869 dtrace_state_t *state = ecb->dte_state; 10870 dtrace_aggid_t aggid = agg->dtag_id; 10871 10872 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10873 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10874 10875 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10876 state->dts_aggregations[aggid - 1] = NULL; 10877 10878 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10879 } 10880 10881 static int 10882 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10883 { 10884 dtrace_action_t *action, *last; 10885 dtrace_difo_t *dp = desc->dtad_difo; 10886 uint32_t size = 0, align = sizeof (uint8_t), mask; 10887 uint16_t format = 0; 10888 dtrace_recdesc_t *rec; 10889 dtrace_state_t *state = ecb->dte_state; 10890 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10891 uint64_t arg = desc->dtad_arg; 10892 10893 ASSERT(MUTEX_HELD(&dtrace_lock)); 10894 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10895 10896 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10897 /* 10898 * If this is an aggregating action, there must be neither 10899 * a speculate nor a commit on the action chain. 10900 */ 10901 dtrace_action_t *act; 10902 10903 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10904 if (act->dta_kind == DTRACEACT_COMMIT) 10905 return (EINVAL); 10906 10907 if (act->dta_kind == DTRACEACT_SPECULATE) 10908 return (EINVAL); 10909 } 10910 10911 action = dtrace_ecb_aggregation_create(ecb, desc); 10912 10913 if (action == NULL) 10914 return (EINVAL); 10915 } else { 10916 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10917 (desc->dtad_kind == DTRACEACT_DIFEXPR && 10918 dp != NULL && dp->dtdo_destructive)) { 10919 state->dts_destructive = 1; 10920 } 10921 10922 switch (desc->dtad_kind) { 10923 case DTRACEACT_PRINTF: 10924 case DTRACEACT_PRINTA: 10925 case DTRACEACT_SYSTEM: 10926 case DTRACEACT_FREOPEN: 10927 case DTRACEACT_DIFEXPR: 10928 /* 10929 * We know that our arg is a string -- turn it into a 10930 * format. 10931 */ 10932 if (arg == NULL) { 10933 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 10934 desc->dtad_kind == DTRACEACT_DIFEXPR); 10935 format = 0; 10936 } else { 10937 ASSERT(arg != NULL); 10938 ASSERT(arg > KERNELBASE); 10939 format = dtrace_format_add(state, 10940 (char *)(uintptr_t)arg); 10941 } 10942 10943 /*FALLTHROUGH*/ 10944 case DTRACEACT_LIBACT: 10945 case DTRACEACT_TRACEMEM: 10946 case DTRACEACT_TRACEMEM_DYNSIZE: 10947 if (dp == NULL) 10948 return (EINVAL); 10949 10950 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 10951 break; 10952 10953 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 10954 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10955 return (EINVAL); 10956 10957 size = opt[DTRACEOPT_STRSIZE]; 10958 } 10959 10960 break; 10961 10962 case DTRACEACT_STACK: 10963 if ((nframes = arg) == 0) { 10964 nframes = opt[DTRACEOPT_STACKFRAMES]; 10965 ASSERT(nframes > 0); 10966 arg = nframes; 10967 } 10968 10969 size = nframes * sizeof (pc_t); 10970 break; 10971 10972 case DTRACEACT_JSTACK: 10973 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 10974 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 10975 10976 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 10977 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 10978 10979 arg = DTRACE_USTACK_ARG(nframes, strsize); 10980 10981 /*FALLTHROUGH*/ 10982 case DTRACEACT_USTACK: 10983 if (desc->dtad_kind != DTRACEACT_JSTACK && 10984 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 10985 strsize = DTRACE_USTACK_STRSIZE(arg); 10986 nframes = opt[DTRACEOPT_USTACKFRAMES]; 10987 ASSERT(nframes > 0); 10988 arg = DTRACE_USTACK_ARG(nframes, strsize); 10989 } 10990 10991 /* 10992 * Save a slot for the pid. 10993 */ 10994 size = (nframes + 1) * sizeof (uint64_t); 10995 size += DTRACE_USTACK_STRSIZE(arg); 10996 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 10997 10998 break; 10999 11000 case DTRACEACT_SYM: 11001 case DTRACEACT_MOD: 11002 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11003 sizeof (uint64_t)) || 11004 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11005 return (EINVAL); 11006 break; 11007 11008 case DTRACEACT_USYM: 11009 case DTRACEACT_UMOD: 11010 case DTRACEACT_UADDR: 11011 if (dp == NULL || 11012 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11013 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11014 return (EINVAL); 11015 11016 /* 11017 * We have a slot for the pid, plus a slot for the 11018 * argument. To keep things simple (aligned with 11019 * bitness-neutral sizing), we store each as a 64-bit 11020 * quantity. 11021 */ 11022 size = 2 * sizeof (uint64_t); 11023 break; 11024 11025 case DTRACEACT_STOP: 11026 case DTRACEACT_BREAKPOINT: 11027 case DTRACEACT_PANIC: 11028 break; 11029 11030 case DTRACEACT_CHILL: 11031 case DTRACEACT_DISCARD: 11032 case DTRACEACT_RAISE: 11033 if (dp == NULL) 11034 return (EINVAL); 11035 break; 11036 11037 case DTRACEACT_EXIT: 11038 if (dp == NULL || 11039 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11040 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11041 return (EINVAL); 11042 break; 11043 11044 case DTRACEACT_SPECULATE: 11045 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11046 return (EINVAL); 11047 11048 if (dp == NULL) 11049 return (EINVAL); 11050 11051 state->dts_speculates = 1; 11052 break; 11053 11054 case DTRACEACT_COMMIT: { 11055 dtrace_action_t *act = ecb->dte_action; 11056 11057 for (; act != NULL; act = act->dta_next) { 11058 if (act->dta_kind == DTRACEACT_COMMIT) 11059 return (EINVAL); 11060 } 11061 11062 if (dp == NULL) 11063 return (EINVAL); 11064 break; 11065 } 11066 11067 default: 11068 return (EINVAL); 11069 } 11070 11071 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11072 /* 11073 * If this is a data-storing action or a speculate, 11074 * we must be sure that there isn't a commit on the 11075 * action chain. 11076 */ 11077 dtrace_action_t *act = ecb->dte_action; 11078 11079 for (; act != NULL; act = act->dta_next) { 11080 if (act->dta_kind == DTRACEACT_COMMIT) 11081 return (EINVAL); 11082 } 11083 } 11084 11085 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11086 action->dta_rec.dtrd_size = size; 11087 } 11088 11089 action->dta_refcnt = 1; 11090 rec = &action->dta_rec; 11091 size = rec->dtrd_size; 11092 11093 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11094 if (!(size & mask)) { 11095 align = mask + 1; 11096 break; 11097 } 11098 } 11099 11100 action->dta_kind = desc->dtad_kind; 11101 11102 if ((action->dta_difo = dp) != NULL) 11103 dtrace_difo_hold(dp); 11104 11105 rec->dtrd_action = action->dta_kind; 11106 rec->dtrd_arg = arg; 11107 rec->dtrd_uarg = desc->dtad_uarg; 11108 rec->dtrd_alignment = (uint16_t)align; 11109 rec->dtrd_format = format; 11110 11111 if ((last = ecb->dte_action_last) != NULL) { 11112 ASSERT(ecb->dte_action != NULL); 11113 action->dta_prev = last; 11114 last->dta_next = action; 11115 } else { 11116 ASSERT(ecb->dte_action == NULL); 11117 ecb->dte_action = action; 11118 } 11119 11120 ecb->dte_action_last = action; 11121 11122 return (0); 11123 } 11124 11125 static void 11126 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11127 { 11128 dtrace_action_t *act = ecb->dte_action, *next; 11129 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11130 dtrace_difo_t *dp; 11131 uint16_t format; 11132 11133 if (act != NULL && act->dta_refcnt > 1) { 11134 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11135 act->dta_refcnt--; 11136 } else { 11137 for (; act != NULL; act = next) { 11138 next = act->dta_next; 11139 ASSERT(next != NULL || act == ecb->dte_action_last); 11140 ASSERT(act->dta_refcnt == 1); 11141 11142 if ((format = act->dta_rec.dtrd_format) != 0) 11143 dtrace_format_remove(ecb->dte_state, format); 11144 11145 if ((dp = act->dta_difo) != NULL) 11146 dtrace_difo_release(dp, vstate); 11147 11148 if (DTRACEACT_ISAGG(act->dta_kind)) { 11149 dtrace_ecb_aggregation_destroy(ecb, act); 11150 } else { 11151 kmem_free(act, sizeof (dtrace_action_t)); 11152 } 11153 } 11154 } 11155 11156 ecb->dte_action = NULL; 11157 ecb->dte_action_last = NULL; 11158 ecb->dte_size = 0; 11159 } 11160 11161 static void 11162 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11163 { 11164 /* 11165 * We disable the ECB by removing it from its probe. 11166 */ 11167 dtrace_ecb_t *pecb, *prev = NULL; 11168 dtrace_probe_t *probe = ecb->dte_probe; 11169 11170 ASSERT(MUTEX_HELD(&dtrace_lock)); 11171 11172 if (probe == NULL) { 11173 /* 11174 * This is the NULL probe; there is nothing to disable. 11175 */ 11176 return; 11177 } 11178 11179 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11180 if (pecb == ecb) 11181 break; 11182 prev = pecb; 11183 } 11184 11185 ASSERT(pecb != NULL); 11186 11187 if (prev == NULL) { 11188 probe->dtpr_ecb = ecb->dte_next; 11189 } else { 11190 prev->dte_next = ecb->dte_next; 11191 } 11192 11193 if (ecb == probe->dtpr_ecb_last) { 11194 ASSERT(ecb->dte_next == NULL); 11195 probe->dtpr_ecb_last = prev; 11196 } 11197 11198 /* 11199 * The ECB has been disconnected from the probe; now sync to assure 11200 * that all CPUs have seen the change before returning. 11201 */ 11202 dtrace_sync(); 11203 11204 if (probe->dtpr_ecb == NULL) { 11205 /* 11206 * That was the last ECB on the probe; clear the predicate 11207 * cache ID for the probe, disable it and sync one more time 11208 * to assure that we'll never hit it again. 11209 */ 11210 dtrace_provider_t *prov = probe->dtpr_provider; 11211 11212 ASSERT(ecb->dte_next == NULL); 11213 ASSERT(probe->dtpr_ecb_last == NULL); 11214 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11215 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11216 probe->dtpr_id, probe->dtpr_arg); 11217 dtrace_sync(); 11218 } else { 11219 /* 11220 * There is at least one ECB remaining on the probe. If there 11221 * is _exactly_ one, set the probe's predicate cache ID to be 11222 * the predicate cache ID of the remaining ECB. 11223 */ 11224 ASSERT(probe->dtpr_ecb_last != NULL); 11225 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11226 11227 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11228 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11229 11230 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11231 11232 if (p != NULL) 11233 probe->dtpr_predcache = p->dtp_cacheid; 11234 } 11235 11236 ecb->dte_next = NULL; 11237 } 11238 } 11239 11240 static void 11241 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11242 { 11243 dtrace_state_t *state = ecb->dte_state; 11244 dtrace_vstate_t *vstate = &state->dts_vstate; 11245 dtrace_predicate_t *pred; 11246 dtrace_epid_t epid = ecb->dte_epid; 11247 11248 ASSERT(MUTEX_HELD(&dtrace_lock)); 11249 ASSERT(ecb->dte_next == NULL); 11250 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11251 11252 if ((pred = ecb->dte_predicate) != NULL) 11253 dtrace_predicate_release(pred, vstate); 11254 11255 dtrace_ecb_action_remove(ecb); 11256 11257 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11258 state->dts_ecbs[epid - 1] = NULL; 11259 11260 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11261 } 11262 11263 static dtrace_ecb_t * 11264 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11265 dtrace_enabling_t *enab) 11266 { 11267 dtrace_ecb_t *ecb; 11268 dtrace_predicate_t *pred; 11269 dtrace_actdesc_t *act; 11270 dtrace_provider_t *prov; 11271 dtrace_ecbdesc_t *desc = enab->dten_current; 11272 11273 ASSERT(MUTEX_HELD(&dtrace_lock)); 11274 ASSERT(state != NULL); 11275 11276 ecb = dtrace_ecb_add(state, probe); 11277 ecb->dte_uarg = desc->dted_uarg; 11278 11279 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11280 dtrace_predicate_hold(pred); 11281 ecb->dte_predicate = pred; 11282 } 11283 11284 if (probe != NULL) { 11285 /* 11286 * If the provider shows more leg than the consumer is old 11287 * enough to see, we need to enable the appropriate implicit 11288 * predicate bits to prevent the ecb from activating at 11289 * revealing times. 11290 * 11291 * Providers specifying DTRACE_PRIV_USER at register time 11292 * are stating that they need the /proc-style privilege 11293 * model to be enforced, and this is what DTRACE_COND_OWNER 11294 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11295 */ 11296 prov = probe->dtpr_provider; 11297 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11298 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11299 ecb->dte_cond |= DTRACE_COND_OWNER; 11300 11301 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11302 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11303 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11304 11305 /* 11306 * If the provider shows us kernel innards and the user 11307 * is lacking sufficient privilege, enable the 11308 * DTRACE_COND_USERMODE implicit predicate. 11309 */ 11310 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11311 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11312 ecb->dte_cond |= DTRACE_COND_USERMODE; 11313 } 11314 11315 if (dtrace_ecb_create_cache != NULL) { 11316 /* 11317 * If we have a cached ecb, we'll use its action list instead 11318 * of creating our own (saving both time and space). 11319 */ 11320 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11321 dtrace_action_t *act = cached->dte_action; 11322 11323 if (act != NULL) { 11324 ASSERT(act->dta_refcnt > 0); 11325 act->dta_refcnt++; 11326 ecb->dte_action = act; 11327 ecb->dte_action_last = cached->dte_action_last; 11328 ecb->dte_needed = cached->dte_needed; 11329 ecb->dte_size = cached->dte_size; 11330 ecb->dte_alignment = cached->dte_alignment; 11331 } 11332 11333 return (ecb); 11334 } 11335 11336 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11337 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11338 dtrace_ecb_destroy(ecb); 11339 return (NULL); 11340 } 11341 } 11342 11343 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11344 dtrace_ecb_destroy(ecb); 11345 return (NULL); 11346 } 11347 11348 return (dtrace_ecb_create_cache = ecb); 11349 } 11350 11351 static int 11352 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11353 { 11354 dtrace_ecb_t *ecb; 11355 dtrace_enabling_t *enab = arg; 11356 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11357 11358 ASSERT(state != NULL); 11359 11360 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11361 /* 11362 * This probe was created in a generation for which this 11363 * enabling has previously created ECBs; we don't want to 11364 * enable it again, so just kick out. 11365 */ 11366 return (DTRACE_MATCH_NEXT); 11367 } 11368 11369 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11370 return (DTRACE_MATCH_DONE); 11371 11372 if (dtrace_ecb_enable(ecb) < 0) 11373 return (DTRACE_MATCH_FAIL); 11374 11375 return (DTRACE_MATCH_NEXT); 11376 } 11377 11378 static dtrace_ecb_t * 11379 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11380 { 11381 dtrace_ecb_t *ecb; 11382 11383 ASSERT(MUTEX_HELD(&dtrace_lock)); 11384 11385 if (id == 0 || id > state->dts_necbs) 11386 return (NULL); 11387 11388 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11389 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11390 11391 return (state->dts_ecbs[id - 1]); 11392 } 11393 11394 static dtrace_aggregation_t * 11395 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11396 { 11397 dtrace_aggregation_t *agg; 11398 11399 ASSERT(MUTEX_HELD(&dtrace_lock)); 11400 11401 if (id == 0 || id > state->dts_naggregations) 11402 return (NULL); 11403 11404 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11405 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11406 agg->dtag_id == id); 11407 11408 return (state->dts_aggregations[id - 1]); 11409 } 11410 11411 /* 11412 * DTrace Buffer Functions 11413 * 11414 * The following functions manipulate DTrace buffers. Most of these functions 11415 * are called in the context of establishing or processing consumer state; 11416 * exceptions are explicitly noted. 11417 */ 11418 11419 /* 11420 * Note: called from cross call context. This function switches the two 11421 * buffers on a given CPU. The atomicity of this operation is assured by 11422 * disabling interrupts while the actual switch takes place; the disabling of 11423 * interrupts serializes the execution with any execution of dtrace_probe() on 11424 * the same CPU. 11425 */ 11426 static void 11427 dtrace_buffer_switch(dtrace_buffer_t *buf) 11428 { 11429 caddr_t tomax = buf->dtb_tomax; 11430 caddr_t xamot = buf->dtb_xamot; 11431 dtrace_icookie_t cookie; 11432 hrtime_t now; 11433 11434 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11435 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11436 11437 cookie = dtrace_interrupt_disable(); 11438 now = dtrace_gethrtime(); 11439 buf->dtb_tomax = xamot; 11440 buf->dtb_xamot = tomax; 11441 buf->dtb_xamot_drops = buf->dtb_drops; 11442 buf->dtb_xamot_offset = buf->dtb_offset; 11443 buf->dtb_xamot_errors = buf->dtb_errors; 11444 buf->dtb_xamot_flags = buf->dtb_flags; 11445 buf->dtb_offset = 0; 11446 buf->dtb_drops = 0; 11447 buf->dtb_errors = 0; 11448 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11449 buf->dtb_interval = now - buf->dtb_switched; 11450 buf->dtb_switched = now; 11451 dtrace_interrupt_enable(cookie); 11452 } 11453 11454 /* 11455 * Note: called from cross call context. This function activates a buffer 11456 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11457 * is guaranteed by the disabling of interrupts. 11458 */ 11459 static void 11460 dtrace_buffer_activate(dtrace_state_t *state) 11461 { 11462 dtrace_buffer_t *buf; 11463 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11464 11465 buf = &state->dts_buffer[CPU->cpu_id]; 11466 11467 if (buf->dtb_tomax != NULL) { 11468 /* 11469 * We might like to assert that the buffer is marked inactive, 11470 * but this isn't necessarily true: the buffer for the CPU 11471 * that processes the BEGIN probe has its buffer activated 11472 * manually. In this case, we take the (harmless) action 11473 * re-clearing the bit INACTIVE bit. 11474 */ 11475 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11476 } 11477 11478 dtrace_interrupt_enable(cookie); 11479 } 11480 11481 static int 11482 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11483 processorid_t cpu, int *factor) 11484 { 11485 cpu_t *cp; 11486 dtrace_buffer_t *buf; 11487 int allocated = 0, desired = 0; 11488 11489 ASSERT(MUTEX_HELD(&cpu_lock)); 11490 ASSERT(MUTEX_HELD(&dtrace_lock)); 11491 11492 *factor = 1; 11493 11494 if (size > dtrace_nonroot_maxsize && 11495 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11496 return (EFBIG); 11497 11498 cp = cpu_list; 11499 11500 do { 11501 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11502 continue; 11503 11504 buf = &bufs[cp->cpu_id]; 11505 11506 /* 11507 * If there is already a buffer allocated for this CPU, it 11508 * is only possible that this is a DR event. In this case, 11509 * the buffer size must match our specified size. 11510 */ 11511 if (buf->dtb_tomax != NULL) { 11512 ASSERT(buf->dtb_size == size); 11513 continue; 11514 } 11515 11516 ASSERT(buf->dtb_xamot == NULL); 11517 11518 if ((buf->dtb_tomax = kmem_zalloc(size, 11519 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11520 goto err; 11521 11522 buf->dtb_size = size; 11523 buf->dtb_flags = flags; 11524 buf->dtb_offset = 0; 11525 buf->dtb_drops = 0; 11526 11527 if (flags & DTRACEBUF_NOSWITCH) 11528 continue; 11529 11530 if ((buf->dtb_xamot = kmem_zalloc(size, 11531 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11532 goto err; 11533 } while ((cp = cp->cpu_next) != cpu_list); 11534 11535 return (0); 11536 11537 err: 11538 cp = cpu_list; 11539 11540 do { 11541 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11542 continue; 11543 11544 buf = &bufs[cp->cpu_id]; 11545 desired += 2; 11546 11547 if (buf->dtb_xamot != NULL) { 11548 ASSERT(buf->dtb_tomax != NULL); 11549 ASSERT(buf->dtb_size == size); 11550 kmem_free(buf->dtb_xamot, size); 11551 allocated++; 11552 } 11553 11554 if (buf->dtb_tomax != NULL) { 11555 ASSERT(buf->dtb_size == size); 11556 kmem_free(buf->dtb_tomax, size); 11557 allocated++; 11558 } 11559 11560 buf->dtb_tomax = NULL; 11561 buf->dtb_xamot = NULL; 11562 buf->dtb_size = 0; 11563 } while ((cp = cp->cpu_next) != cpu_list); 11564 11565 *factor = desired / (allocated > 0 ? allocated : 1); 11566 11567 return (ENOMEM); 11568 } 11569 11570 /* 11571 * Note: called from probe context. This function just increments the drop 11572 * count on a buffer. It has been made a function to allow for the 11573 * possibility of understanding the source of mysterious drop counts. (A 11574 * problem for which one may be particularly disappointed that DTrace cannot 11575 * be used to understand DTrace.) 11576 */ 11577 static void 11578 dtrace_buffer_drop(dtrace_buffer_t *buf) 11579 { 11580 buf->dtb_drops++; 11581 } 11582 11583 /* 11584 * Note: called from probe context. This function is called to reserve space 11585 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11586 * mstate. Returns the new offset in the buffer, or a negative value if an 11587 * error has occurred. 11588 */ 11589 static intptr_t 11590 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11591 dtrace_state_t *state, dtrace_mstate_t *mstate) 11592 { 11593 intptr_t offs = buf->dtb_offset, soffs; 11594 intptr_t woffs; 11595 caddr_t tomax; 11596 size_t total; 11597 11598 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11599 return (-1); 11600 11601 if ((tomax = buf->dtb_tomax) == NULL) { 11602 dtrace_buffer_drop(buf); 11603 return (-1); 11604 } 11605 11606 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11607 while (offs & (align - 1)) { 11608 /* 11609 * Assert that our alignment is off by a number which 11610 * is itself sizeof (uint32_t) aligned. 11611 */ 11612 ASSERT(!((align - (offs & (align - 1))) & 11613 (sizeof (uint32_t) - 1))); 11614 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11615 offs += sizeof (uint32_t); 11616 } 11617 11618 if ((soffs = offs + needed) > buf->dtb_size) { 11619 dtrace_buffer_drop(buf); 11620 return (-1); 11621 } 11622 11623 if (mstate == NULL) 11624 return (offs); 11625 11626 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11627 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11628 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11629 11630 return (offs); 11631 } 11632 11633 if (buf->dtb_flags & DTRACEBUF_FILL) { 11634 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11635 (buf->dtb_flags & DTRACEBUF_FULL)) 11636 return (-1); 11637 goto out; 11638 } 11639 11640 total = needed + (offs & (align - 1)); 11641 11642 /* 11643 * For a ring buffer, life is quite a bit more complicated. Before 11644 * we can store any padding, we need to adjust our wrapping offset. 11645 * (If we've never before wrapped or we're not about to, no adjustment 11646 * is required.) 11647 */ 11648 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11649 offs + total > buf->dtb_size) { 11650 woffs = buf->dtb_xamot_offset; 11651 11652 if (offs + total > buf->dtb_size) { 11653 /* 11654 * We can't fit in the end of the buffer. First, a 11655 * sanity check that we can fit in the buffer at all. 11656 */ 11657 if (total > buf->dtb_size) { 11658 dtrace_buffer_drop(buf); 11659 return (-1); 11660 } 11661 11662 /* 11663 * We're going to be storing at the top of the buffer, 11664 * so now we need to deal with the wrapped offset. We 11665 * only reset our wrapped offset to 0 if it is 11666 * currently greater than the current offset. If it 11667 * is less than the current offset, it is because a 11668 * previous allocation induced a wrap -- but the 11669 * allocation didn't subsequently take the space due 11670 * to an error or false predicate evaluation. In this 11671 * case, we'll just leave the wrapped offset alone: if 11672 * the wrapped offset hasn't been advanced far enough 11673 * for this allocation, it will be adjusted in the 11674 * lower loop. 11675 */ 11676 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11677 if (woffs >= offs) 11678 woffs = 0; 11679 } else { 11680 woffs = 0; 11681 } 11682 11683 /* 11684 * Now we know that we're going to be storing to the 11685 * top of the buffer and that there is room for us 11686 * there. We need to clear the buffer from the current 11687 * offset to the end (there may be old gunk there). 11688 */ 11689 while (offs < buf->dtb_size) 11690 tomax[offs++] = 0; 11691 11692 /* 11693 * We need to set our offset to zero. And because we 11694 * are wrapping, we need to set the bit indicating as 11695 * much. We can also adjust our needed space back 11696 * down to the space required by the ECB -- we know 11697 * that the top of the buffer is aligned. 11698 */ 11699 offs = 0; 11700 total = needed; 11701 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11702 } else { 11703 /* 11704 * There is room for us in the buffer, so we simply 11705 * need to check the wrapped offset. 11706 */ 11707 if (woffs < offs) { 11708 /* 11709 * The wrapped offset is less than the offset. 11710 * This can happen if we allocated buffer space 11711 * that induced a wrap, but then we didn't 11712 * subsequently take the space due to an error 11713 * or false predicate evaluation. This is 11714 * okay; we know that _this_ allocation isn't 11715 * going to induce a wrap. We still can't 11716 * reset the wrapped offset to be zero, 11717 * however: the space may have been trashed in 11718 * the previous failed probe attempt. But at 11719 * least the wrapped offset doesn't need to 11720 * be adjusted at all... 11721 */ 11722 goto out; 11723 } 11724 } 11725 11726 while (offs + total > woffs) { 11727 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11728 size_t size; 11729 11730 if (epid == DTRACE_EPIDNONE) { 11731 size = sizeof (uint32_t); 11732 } else { 11733 ASSERT3U(epid, <=, state->dts_necbs); 11734 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11735 11736 size = state->dts_ecbs[epid - 1]->dte_size; 11737 } 11738 11739 ASSERT(woffs + size <= buf->dtb_size); 11740 ASSERT(size != 0); 11741 11742 if (woffs + size == buf->dtb_size) { 11743 /* 11744 * We've reached the end of the buffer; we want 11745 * to set the wrapped offset to 0 and break 11746 * out. However, if the offs is 0, then we're 11747 * in a strange edge-condition: the amount of 11748 * space that we want to reserve plus the size 11749 * of the record that we're overwriting is 11750 * greater than the size of the buffer. This 11751 * is problematic because if we reserve the 11752 * space but subsequently don't consume it (due 11753 * to a failed predicate or error) the wrapped 11754 * offset will be 0 -- yet the EPID at offset 0 11755 * will not be committed. This situation is 11756 * relatively easy to deal with: if we're in 11757 * this case, the buffer is indistinguishable 11758 * from one that hasn't wrapped; we need only 11759 * finish the job by clearing the wrapped bit, 11760 * explicitly setting the offset to be 0, and 11761 * zero'ing out the old data in the buffer. 11762 */ 11763 if (offs == 0) { 11764 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11765 buf->dtb_offset = 0; 11766 woffs = total; 11767 11768 while (woffs < buf->dtb_size) 11769 tomax[woffs++] = 0; 11770 } 11771 11772 woffs = 0; 11773 break; 11774 } 11775 11776 woffs += size; 11777 } 11778 11779 /* 11780 * We have a wrapped offset. It may be that the wrapped offset 11781 * has become zero -- that's okay. 11782 */ 11783 buf->dtb_xamot_offset = woffs; 11784 } 11785 11786 out: 11787 /* 11788 * Now we can plow the buffer with any necessary padding. 11789 */ 11790 while (offs & (align - 1)) { 11791 /* 11792 * Assert that our alignment is off by a number which 11793 * is itself sizeof (uint32_t) aligned. 11794 */ 11795 ASSERT(!((align - (offs & (align - 1))) & 11796 (sizeof (uint32_t) - 1))); 11797 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11798 offs += sizeof (uint32_t); 11799 } 11800 11801 if (buf->dtb_flags & DTRACEBUF_FILL) { 11802 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11803 buf->dtb_flags |= DTRACEBUF_FULL; 11804 return (-1); 11805 } 11806 } 11807 11808 if (mstate == NULL) 11809 return (offs); 11810 11811 /* 11812 * For ring buffers and fill buffers, the scratch space is always 11813 * the inactive buffer. 11814 */ 11815 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11816 mstate->dtms_scratch_size = buf->dtb_size; 11817 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11818 11819 return (offs); 11820 } 11821 11822 static void 11823 dtrace_buffer_polish(dtrace_buffer_t *buf) 11824 { 11825 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11826 ASSERT(MUTEX_HELD(&dtrace_lock)); 11827 11828 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11829 return; 11830 11831 /* 11832 * We need to polish the ring buffer. There are three cases: 11833 * 11834 * - The first (and presumably most common) is that there is no gap 11835 * between the buffer offset and the wrapped offset. In this case, 11836 * there is nothing in the buffer that isn't valid data; we can 11837 * mark the buffer as polished and return. 11838 * 11839 * - The second (less common than the first but still more common 11840 * than the third) is that there is a gap between the buffer offset 11841 * and the wrapped offset, and the wrapped offset is larger than the 11842 * buffer offset. This can happen because of an alignment issue, or 11843 * can happen because of a call to dtrace_buffer_reserve() that 11844 * didn't subsequently consume the buffer space. In this case, 11845 * we need to zero the data from the buffer offset to the wrapped 11846 * offset. 11847 * 11848 * - The third (and least common) is that there is a gap between the 11849 * buffer offset and the wrapped offset, but the wrapped offset is 11850 * _less_ than the buffer offset. This can only happen because a 11851 * call to dtrace_buffer_reserve() induced a wrap, but the space 11852 * was not subsequently consumed. In this case, we need to zero the 11853 * space from the offset to the end of the buffer _and_ from the 11854 * top of the buffer to the wrapped offset. 11855 */ 11856 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11857 bzero(buf->dtb_tomax + buf->dtb_offset, 11858 buf->dtb_xamot_offset - buf->dtb_offset); 11859 } 11860 11861 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11862 bzero(buf->dtb_tomax + buf->dtb_offset, 11863 buf->dtb_size - buf->dtb_offset); 11864 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11865 } 11866 } 11867 11868 /* 11869 * This routine determines if data generated at the specified time has likely 11870 * been entirely consumed at user-level. This routine is called to determine 11871 * if an ECB on a defunct probe (but for an active enabling) can be safely 11872 * disabled and destroyed. 11873 */ 11874 static int 11875 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11876 { 11877 int i; 11878 11879 for (i = 0; i < NCPU; i++) { 11880 dtrace_buffer_t *buf = &bufs[i]; 11881 11882 if (buf->dtb_size == 0) 11883 continue; 11884 11885 if (buf->dtb_flags & DTRACEBUF_RING) 11886 return (0); 11887 11888 if (!buf->dtb_switched && buf->dtb_offset != 0) 11889 return (0); 11890 11891 if (buf->dtb_switched - buf->dtb_interval < when) 11892 return (0); 11893 } 11894 11895 return (1); 11896 } 11897 11898 static void 11899 dtrace_buffer_free(dtrace_buffer_t *bufs) 11900 { 11901 int i; 11902 11903 for (i = 0; i < NCPU; i++) { 11904 dtrace_buffer_t *buf = &bufs[i]; 11905 11906 if (buf->dtb_tomax == NULL) { 11907 ASSERT(buf->dtb_xamot == NULL); 11908 ASSERT(buf->dtb_size == 0); 11909 continue; 11910 } 11911 11912 if (buf->dtb_xamot != NULL) { 11913 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11914 kmem_free(buf->dtb_xamot, buf->dtb_size); 11915 } 11916 11917 kmem_free(buf->dtb_tomax, buf->dtb_size); 11918 buf->dtb_size = 0; 11919 buf->dtb_tomax = NULL; 11920 buf->dtb_xamot = NULL; 11921 } 11922 } 11923 11924 /* 11925 * DTrace Enabling Functions 11926 */ 11927 static dtrace_enabling_t * 11928 dtrace_enabling_create(dtrace_vstate_t *vstate) 11929 { 11930 dtrace_enabling_t *enab; 11931 11932 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 11933 enab->dten_vstate = vstate; 11934 11935 return (enab); 11936 } 11937 11938 static void 11939 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 11940 { 11941 dtrace_ecbdesc_t **ndesc; 11942 size_t osize, nsize; 11943 11944 /* 11945 * We can't add to enablings after we've enabled them, or after we've 11946 * retained them. 11947 */ 11948 ASSERT(enab->dten_probegen == 0); 11949 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11950 11951 if (enab->dten_ndesc < enab->dten_maxdesc) { 11952 enab->dten_desc[enab->dten_ndesc++] = ecb; 11953 return; 11954 } 11955 11956 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11957 11958 if (enab->dten_maxdesc == 0) { 11959 enab->dten_maxdesc = 1; 11960 } else { 11961 enab->dten_maxdesc <<= 1; 11962 } 11963 11964 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 11965 11966 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11967 ndesc = kmem_zalloc(nsize, KM_SLEEP); 11968 bcopy(enab->dten_desc, ndesc, osize); 11969 kmem_free(enab->dten_desc, osize); 11970 11971 enab->dten_desc = ndesc; 11972 enab->dten_desc[enab->dten_ndesc++] = ecb; 11973 } 11974 11975 static void 11976 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 11977 dtrace_probedesc_t *pd) 11978 { 11979 dtrace_ecbdesc_t *new; 11980 dtrace_predicate_t *pred; 11981 dtrace_actdesc_t *act; 11982 11983 /* 11984 * We're going to create a new ECB description that matches the 11985 * specified ECB in every way, but has the specified probe description. 11986 */ 11987 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11988 11989 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 11990 dtrace_predicate_hold(pred); 11991 11992 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 11993 dtrace_actdesc_hold(act); 11994 11995 new->dted_action = ecb->dted_action; 11996 new->dted_pred = ecb->dted_pred; 11997 new->dted_probe = *pd; 11998 new->dted_uarg = ecb->dted_uarg; 11999 12000 dtrace_enabling_add(enab, new); 12001 } 12002 12003 static void 12004 dtrace_enabling_dump(dtrace_enabling_t *enab) 12005 { 12006 int i; 12007 12008 for (i = 0; i < enab->dten_ndesc; i++) { 12009 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12010 12011 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12012 desc->dtpd_provider, desc->dtpd_mod, 12013 desc->dtpd_func, desc->dtpd_name); 12014 } 12015 } 12016 12017 static void 12018 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12019 { 12020 int i; 12021 dtrace_ecbdesc_t *ep; 12022 dtrace_vstate_t *vstate = enab->dten_vstate; 12023 12024 ASSERT(MUTEX_HELD(&dtrace_lock)); 12025 12026 for (i = 0; i < enab->dten_ndesc; i++) { 12027 dtrace_actdesc_t *act, *next; 12028 dtrace_predicate_t *pred; 12029 12030 ep = enab->dten_desc[i]; 12031 12032 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12033 dtrace_predicate_release(pred, vstate); 12034 12035 for (act = ep->dted_action; act != NULL; act = next) { 12036 next = act->dtad_next; 12037 dtrace_actdesc_release(act, vstate); 12038 } 12039 12040 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12041 } 12042 12043 kmem_free(enab->dten_desc, 12044 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12045 12046 /* 12047 * If this was a retained enabling, decrement the dts_nretained count 12048 * and take it off of the dtrace_retained list. 12049 */ 12050 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12051 dtrace_retained == enab) { 12052 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12053 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12054 enab->dten_vstate->dtvs_state->dts_nretained--; 12055 dtrace_retained_gen++; 12056 } 12057 12058 if (enab->dten_prev == NULL) { 12059 if (dtrace_retained == enab) { 12060 dtrace_retained = enab->dten_next; 12061 12062 if (dtrace_retained != NULL) 12063 dtrace_retained->dten_prev = NULL; 12064 } 12065 } else { 12066 ASSERT(enab != dtrace_retained); 12067 ASSERT(dtrace_retained != NULL); 12068 enab->dten_prev->dten_next = enab->dten_next; 12069 } 12070 12071 if (enab->dten_next != NULL) { 12072 ASSERT(dtrace_retained != NULL); 12073 enab->dten_next->dten_prev = enab->dten_prev; 12074 } 12075 12076 kmem_free(enab, sizeof (dtrace_enabling_t)); 12077 } 12078 12079 static int 12080 dtrace_enabling_retain(dtrace_enabling_t *enab) 12081 { 12082 dtrace_state_t *state; 12083 12084 ASSERT(MUTEX_HELD(&dtrace_lock)); 12085 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12086 ASSERT(enab->dten_vstate != NULL); 12087 12088 state = enab->dten_vstate->dtvs_state; 12089 ASSERT(state != NULL); 12090 12091 /* 12092 * We only allow each state to retain dtrace_retain_max enablings. 12093 */ 12094 if (state->dts_nretained >= dtrace_retain_max) 12095 return (ENOSPC); 12096 12097 state->dts_nretained++; 12098 dtrace_retained_gen++; 12099 12100 if (dtrace_retained == NULL) { 12101 dtrace_retained = enab; 12102 return (0); 12103 } 12104 12105 enab->dten_next = dtrace_retained; 12106 dtrace_retained->dten_prev = enab; 12107 dtrace_retained = enab; 12108 12109 return (0); 12110 } 12111 12112 static int 12113 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12114 dtrace_probedesc_t *create) 12115 { 12116 dtrace_enabling_t *new, *enab; 12117 int found = 0, err = ENOENT; 12118 12119 ASSERT(MUTEX_HELD(&dtrace_lock)); 12120 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12121 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12122 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12123 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12124 12125 new = dtrace_enabling_create(&state->dts_vstate); 12126 12127 /* 12128 * Iterate over all retained enablings, looking for enablings that 12129 * match the specified state. 12130 */ 12131 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12132 int i; 12133 12134 /* 12135 * dtvs_state can only be NULL for helper enablings -- and 12136 * helper enablings can't be retained. 12137 */ 12138 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12139 12140 if (enab->dten_vstate->dtvs_state != state) 12141 continue; 12142 12143 /* 12144 * Now iterate over each probe description; we're looking for 12145 * an exact match to the specified probe description. 12146 */ 12147 for (i = 0; i < enab->dten_ndesc; i++) { 12148 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12149 dtrace_probedesc_t *pd = &ep->dted_probe; 12150 12151 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12152 continue; 12153 12154 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12155 continue; 12156 12157 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12158 continue; 12159 12160 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12161 continue; 12162 12163 /* 12164 * We have a winning probe! Add it to our growing 12165 * enabling. 12166 */ 12167 found = 1; 12168 dtrace_enabling_addlike(new, ep, create); 12169 } 12170 } 12171 12172 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12173 dtrace_enabling_destroy(new); 12174 return (err); 12175 } 12176 12177 return (0); 12178 } 12179 12180 static void 12181 dtrace_enabling_retract(dtrace_state_t *state) 12182 { 12183 dtrace_enabling_t *enab, *next; 12184 12185 ASSERT(MUTEX_HELD(&dtrace_lock)); 12186 12187 /* 12188 * Iterate over all retained enablings, destroy the enablings retained 12189 * for the specified state. 12190 */ 12191 for (enab = dtrace_retained; enab != NULL; enab = next) { 12192 next = enab->dten_next; 12193 12194 /* 12195 * dtvs_state can only be NULL for helper enablings -- and 12196 * helper enablings can't be retained. 12197 */ 12198 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12199 12200 if (enab->dten_vstate->dtvs_state == state) { 12201 ASSERT(state->dts_nretained > 0); 12202 dtrace_enabling_destroy(enab); 12203 } 12204 } 12205 12206 ASSERT(state->dts_nretained == 0); 12207 } 12208 12209 static int 12210 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12211 { 12212 int i = 0; 12213 int total_matched = 0, matched = 0; 12214 12215 ASSERT(MUTEX_HELD(&cpu_lock)); 12216 ASSERT(MUTEX_HELD(&dtrace_lock)); 12217 12218 for (i = 0; i < enab->dten_ndesc; i++) { 12219 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12220 12221 enab->dten_current = ep; 12222 enab->dten_error = 0; 12223 12224 /* 12225 * If a provider failed to enable a probe then get out and 12226 * let the consumer know we failed. 12227 */ 12228 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 12229 return (EBUSY); 12230 12231 total_matched += matched; 12232 12233 if (enab->dten_error != 0) { 12234 /* 12235 * If we get an error half-way through enabling the 12236 * probes, we kick out -- perhaps with some number of 12237 * them enabled. Leaving enabled probes enabled may 12238 * be slightly confusing for user-level, but we expect 12239 * that no one will attempt to actually drive on in 12240 * the face of such errors. If this is an anonymous 12241 * enabling (indicated with a NULL nmatched pointer), 12242 * we cmn_err() a message. We aren't expecting to 12243 * get such an error -- such as it can exist at all, 12244 * it would be a result of corrupted DOF in the driver 12245 * properties. 12246 */ 12247 if (nmatched == NULL) { 12248 cmn_err(CE_WARN, "dtrace_enabling_match() " 12249 "error on %p: %d", (void *)ep, 12250 enab->dten_error); 12251 } 12252 12253 return (enab->dten_error); 12254 } 12255 } 12256 12257 enab->dten_probegen = dtrace_probegen; 12258 if (nmatched != NULL) 12259 *nmatched = total_matched; 12260 12261 return (0); 12262 } 12263 12264 static void 12265 dtrace_enabling_matchall(void) 12266 { 12267 dtrace_enabling_t *enab; 12268 12269 mutex_enter(&cpu_lock); 12270 mutex_enter(&dtrace_lock); 12271 12272 /* 12273 * Iterate over all retained enablings to see if any probes match 12274 * against them. We only perform this operation on enablings for which 12275 * we have sufficient permissions by virtue of being in the global zone 12276 * or in the same zone as the DTrace client. Because we can be called 12277 * after dtrace_detach() has been called, we cannot assert that there 12278 * are retained enablings. We can safely load from dtrace_retained, 12279 * however: the taskq_destroy() at the end of dtrace_detach() will 12280 * block pending our completion. 12281 */ 12282 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12283 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 12284 cred_t *cr = dcr->dcr_cred; 12285 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 12286 12287 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 12288 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 12289 (void) dtrace_enabling_match(enab, NULL); 12290 } 12291 12292 mutex_exit(&dtrace_lock); 12293 mutex_exit(&cpu_lock); 12294 } 12295 12296 /* 12297 * If an enabling is to be enabled without having matched probes (that is, if 12298 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12299 * enabling must be _primed_ by creating an ECB for every ECB description. 12300 * This must be done to assure that we know the number of speculations, the 12301 * number of aggregations, the minimum buffer size needed, etc. before we 12302 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12303 * enabling any probes, we create ECBs for every ECB decription, but with a 12304 * NULL probe -- which is exactly what this function does. 12305 */ 12306 static void 12307 dtrace_enabling_prime(dtrace_state_t *state) 12308 { 12309 dtrace_enabling_t *enab; 12310 int i; 12311 12312 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12313 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12314 12315 if (enab->dten_vstate->dtvs_state != state) 12316 continue; 12317 12318 /* 12319 * We don't want to prime an enabling more than once, lest 12320 * we allow a malicious user to induce resource exhaustion. 12321 * (The ECBs that result from priming an enabling aren't 12322 * leaked -- but they also aren't deallocated until the 12323 * consumer state is destroyed.) 12324 */ 12325 if (enab->dten_primed) 12326 continue; 12327 12328 for (i = 0; i < enab->dten_ndesc; i++) { 12329 enab->dten_current = enab->dten_desc[i]; 12330 (void) dtrace_probe_enable(NULL, enab); 12331 } 12332 12333 enab->dten_primed = 1; 12334 } 12335 } 12336 12337 /* 12338 * Called to indicate that probes should be provided due to retained 12339 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12340 * must take an initial lap through the enabling calling the dtps_provide() 12341 * entry point explicitly to allow for autocreated probes. 12342 */ 12343 static void 12344 dtrace_enabling_provide(dtrace_provider_t *prv) 12345 { 12346 int i, all = 0; 12347 dtrace_probedesc_t desc; 12348 dtrace_genid_t gen; 12349 12350 ASSERT(MUTEX_HELD(&dtrace_lock)); 12351 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12352 12353 if (prv == NULL) { 12354 all = 1; 12355 prv = dtrace_provider; 12356 } 12357 12358 do { 12359 dtrace_enabling_t *enab; 12360 void *parg = prv->dtpv_arg; 12361 12362 retry: 12363 gen = dtrace_retained_gen; 12364 for (enab = dtrace_retained; enab != NULL; 12365 enab = enab->dten_next) { 12366 for (i = 0; i < enab->dten_ndesc; i++) { 12367 desc = enab->dten_desc[i]->dted_probe; 12368 mutex_exit(&dtrace_lock); 12369 prv->dtpv_pops.dtps_provide(parg, &desc); 12370 mutex_enter(&dtrace_lock); 12371 /* 12372 * Process the retained enablings again if 12373 * they have changed while we weren't holding 12374 * dtrace_lock. 12375 */ 12376 if (gen != dtrace_retained_gen) 12377 goto retry; 12378 } 12379 } 12380 } while (all && (prv = prv->dtpv_next) != NULL); 12381 12382 mutex_exit(&dtrace_lock); 12383 dtrace_probe_provide(NULL, all ? NULL : prv); 12384 mutex_enter(&dtrace_lock); 12385 } 12386 12387 /* 12388 * Called to reap ECBs that are attached to probes from defunct providers. 12389 */ 12390 static void 12391 dtrace_enabling_reap(void) 12392 { 12393 dtrace_provider_t *prov; 12394 dtrace_probe_t *probe; 12395 dtrace_ecb_t *ecb; 12396 hrtime_t when; 12397 int i; 12398 12399 mutex_enter(&cpu_lock); 12400 mutex_enter(&dtrace_lock); 12401 12402 for (i = 0; i < dtrace_nprobes; i++) { 12403 if ((probe = dtrace_probes[i]) == NULL) 12404 continue; 12405 12406 if (probe->dtpr_ecb == NULL) 12407 continue; 12408 12409 prov = probe->dtpr_provider; 12410 12411 if ((when = prov->dtpv_defunct) == 0) 12412 continue; 12413 12414 /* 12415 * We have ECBs on a defunct provider: we want to reap these 12416 * ECBs to allow the provider to unregister. The destruction 12417 * of these ECBs must be done carefully: if we destroy the ECB 12418 * and the consumer later wishes to consume an EPID that 12419 * corresponds to the destroyed ECB (and if the EPID metadata 12420 * has not been previously consumed), the consumer will abort 12421 * processing on the unknown EPID. To reduce (but not, sadly, 12422 * eliminate) the possibility of this, we will only destroy an 12423 * ECB for a defunct provider if, for the state that 12424 * corresponds to the ECB: 12425 * 12426 * (a) There is no speculative tracing (which can effectively 12427 * cache an EPID for an arbitrary amount of time). 12428 * 12429 * (b) The principal buffers have been switched twice since the 12430 * provider became defunct. 12431 * 12432 * (c) The aggregation buffers are of zero size or have been 12433 * switched twice since the provider became defunct. 12434 * 12435 * We use dts_speculates to determine (a) and call a function 12436 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12437 * that as soon as we've been unable to destroy one of the ECBs 12438 * associated with the probe, we quit trying -- reaping is only 12439 * fruitful in as much as we can destroy all ECBs associated 12440 * with the defunct provider's probes. 12441 */ 12442 while ((ecb = probe->dtpr_ecb) != NULL) { 12443 dtrace_state_t *state = ecb->dte_state; 12444 dtrace_buffer_t *buf = state->dts_buffer; 12445 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12446 12447 if (state->dts_speculates) 12448 break; 12449 12450 if (!dtrace_buffer_consumed(buf, when)) 12451 break; 12452 12453 if (!dtrace_buffer_consumed(aggbuf, when)) 12454 break; 12455 12456 dtrace_ecb_disable(ecb); 12457 ASSERT(probe->dtpr_ecb != ecb); 12458 dtrace_ecb_destroy(ecb); 12459 } 12460 } 12461 12462 mutex_exit(&dtrace_lock); 12463 mutex_exit(&cpu_lock); 12464 } 12465 12466 /* 12467 * DTrace DOF Functions 12468 */ 12469 /*ARGSUSED*/ 12470 static void 12471 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12472 { 12473 if (dtrace_err_verbose) 12474 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12475 12476 #ifdef DTRACE_ERRDEBUG 12477 dtrace_errdebug(str); 12478 #endif 12479 } 12480 12481 /* 12482 * Create DOF out of a currently enabled state. Right now, we only create 12483 * DOF containing the run-time options -- but this could be expanded to create 12484 * complete DOF representing the enabled state. 12485 */ 12486 static dof_hdr_t * 12487 dtrace_dof_create(dtrace_state_t *state) 12488 { 12489 dof_hdr_t *dof; 12490 dof_sec_t *sec; 12491 dof_optdesc_t *opt; 12492 int i, len = sizeof (dof_hdr_t) + 12493 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12494 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12495 12496 ASSERT(MUTEX_HELD(&dtrace_lock)); 12497 12498 dof = kmem_zalloc(len, KM_SLEEP); 12499 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12500 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12501 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12502 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12503 12504 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12505 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12506 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12507 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12508 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12509 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12510 12511 dof->dofh_flags = 0; 12512 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12513 dof->dofh_secsize = sizeof (dof_sec_t); 12514 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12515 dof->dofh_secoff = sizeof (dof_hdr_t); 12516 dof->dofh_loadsz = len; 12517 dof->dofh_filesz = len; 12518 dof->dofh_pad = 0; 12519 12520 /* 12521 * Fill in the option section header... 12522 */ 12523 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12524 sec->dofs_type = DOF_SECT_OPTDESC; 12525 sec->dofs_align = sizeof (uint64_t); 12526 sec->dofs_flags = DOF_SECF_LOAD; 12527 sec->dofs_entsize = sizeof (dof_optdesc_t); 12528 12529 opt = (dof_optdesc_t *)((uintptr_t)sec + 12530 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12531 12532 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12533 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12534 12535 for (i = 0; i < DTRACEOPT_MAX; i++) { 12536 opt[i].dofo_option = i; 12537 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12538 opt[i].dofo_value = state->dts_options[i]; 12539 } 12540 12541 return (dof); 12542 } 12543 12544 static dof_hdr_t * 12545 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12546 { 12547 dof_hdr_t hdr, *dof; 12548 12549 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12550 12551 /* 12552 * First, we're going to copyin() the sizeof (dof_hdr_t). 12553 */ 12554 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12555 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12556 *errp = EFAULT; 12557 return (NULL); 12558 } 12559 12560 /* 12561 * Now we'll allocate the entire DOF and copy it in -- provided 12562 * that the length isn't outrageous. 12563 */ 12564 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12565 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12566 *errp = E2BIG; 12567 return (NULL); 12568 } 12569 12570 if (hdr.dofh_loadsz < sizeof (hdr)) { 12571 dtrace_dof_error(&hdr, "invalid load size"); 12572 *errp = EINVAL; 12573 return (NULL); 12574 } 12575 12576 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12577 12578 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12579 dof->dofh_loadsz != hdr.dofh_loadsz) { 12580 kmem_free(dof, hdr.dofh_loadsz); 12581 *errp = EFAULT; 12582 return (NULL); 12583 } 12584 12585 return (dof); 12586 } 12587 12588 static dof_hdr_t * 12589 dtrace_dof_property(const char *name) 12590 { 12591 uchar_t *buf; 12592 uint64_t loadsz; 12593 unsigned int len, i; 12594 dof_hdr_t *dof; 12595 12596 /* 12597 * Unfortunately, array of values in .conf files are always (and 12598 * only) interpreted to be integer arrays. We must read our DOF 12599 * as an integer array, and then squeeze it into a byte array. 12600 */ 12601 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12602 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12603 return (NULL); 12604 12605 for (i = 0; i < len; i++) 12606 buf[i] = (uchar_t)(((int *)buf)[i]); 12607 12608 if (len < sizeof (dof_hdr_t)) { 12609 ddi_prop_free(buf); 12610 dtrace_dof_error(NULL, "truncated header"); 12611 return (NULL); 12612 } 12613 12614 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12615 ddi_prop_free(buf); 12616 dtrace_dof_error(NULL, "truncated DOF"); 12617 return (NULL); 12618 } 12619 12620 if (loadsz >= dtrace_dof_maxsize) { 12621 ddi_prop_free(buf); 12622 dtrace_dof_error(NULL, "oversized DOF"); 12623 return (NULL); 12624 } 12625 12626 dof = kmem_alloc(loadsz, KM_SLEEP); 12627 bcopy(buf, dof, loadsz); 12628 ddi_prop_free(buf); 12629 12630 return (dof); 12631 } 12632 12633 static void 12634 dtrace_dof_destroy(dof_hdr_t *dof) 12635 { 12636 kmem_free(dof, dof->dofh_loadsz); 12637 } 12638 12639 /* 12640 * Return the dof_sec_t pointer corresponding to a given section index. If the 12641 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12642 * a type other than DOF_SECT_NONE is specified, the header is checked against 12643 * this type and NULL is returned if the types do not match. 12644 */ 12645 static dof_sec_t * 12646 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12647 { 12648 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12649 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12650 12651 if (i >= dof->dofh_secnum) { 12652 dtrace_dof_error(dof, "referenced section index is invalid"); 12653 return (NULL); 12654 } 12655 12656 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12657 dtrace_dof_error(dof, "referenced section is not loadable"); 12658 return (NULL); 12659 } 12660 12661 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12662 dtrace_dof_error(dof, "referenced section is the wrong type"); 12663 return (NULL); 12664 } 12665 12666 return (sec); 12667 } 12668 12669 static dtrace_probedesc_t * 12670 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12671 { 12672 dof_probedesc_t *probe; 12673 dof_sec_t *strtab; 12674 uintptr_t daddr = (uintptr_t)dof; 12675 uintptr_t str; 12676 size_t size; 12677 12678 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12679 dtrace_dof_error(dof, "invalid probe section"); 12680 return (NULL); 12681 } 12682 12683 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12684 dtrace_dof_error(dof, "bad alignment in probe description"); 12685 return (NULL); 12686 } 12687 12688 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12689 dtrace_dof_error(dof, "truncated probe description"); 12690 return (NULL); 12691 } 12692 12693 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12694 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12695 12696 if (strtab == NULL) 12697 return (NULL); 12698 12699 str = daddr + strtab->dofs_offset; 12700 size = strtab->dofs_size; 12701 12702 if (probe->dofp_provider >= strtab->dofs_size) { 12703 dtrace_dof_error(dof, "corrupt probe provider"); 12704 return (NULL); 12705 } 12706 12707 (void) strncpy(desc->dtpd_provider, 12708 (char *)(str + probe->dofp_provider), 12709 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12710 12711 if (probe->dofp_mod >= strtab->dofs_size) { 12712 dtrace_dof_error(dof, "corrupt probe module"); 12713 return (NULL); 12714 } 12715 12716 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12717 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12718 12719 if (probe->dofp_func >= strtab->dofs_size) { 12720 dtrace_dof_error(dof, "corrupt probe function"); 12721 return (NULL); 12722 } 12723 12724 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12725 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12726 12727 if (probe->dofp_name >= strtab->dofs_size) { 12728 dtrace_dof_error(dof, "corrupt probe name"); 12729 return (NULL); 12730 } 12731 12732 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12733 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12734 12735 return (desc); 12736 } 12737 12738 static dtrace_difo_t * 12739 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12740 cred_t *cr) 12741 { 12742 dtrace_difo_t *dp; 12743 size_t ttl = 0; 12744 dof_difohdr_t *dofd; 12745 uintptr_t daddr = (uintptr_t)dof; 12746 size_t max = dtrace_difo_maxsize; 12747 int i, l, n; 12748 12749 static const struct { 12750 int section; 12751 int bufoffs; 12752 int lenoffs; 12753 int entsize; 12754 int align; 12755 const char *msg; 12756 } difo[] = { 12757 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12758 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12759 sizeof (dif_instr_t), "multiple DIF sections" }, 12760 12761 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12762 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12763 sizeof (uint64_t), "multiple integer tables" }, 12764 12765 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12766 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12767 sizeof (char), "multiple string tables" }, 12768 12769 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12770 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12771 sizeof (uint_t), "multiple variable tables" }, 12772 12773 { DOF_SECT_NONE, 0, 0, 0, NULL } 12774 }; 12775 12776 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12777 dtrace_dof_error(dof, "invalid DIFO header section"); 12778 return (NULL); 12779 } 12780 12781 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12782 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12783 return (NULL); 12784 } 12785 12786 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12787 sec->dofs_size % sizeof (dof_secidx_t)) { 12788 dtrace_dof_error(dof, "bad size in DIFO header"); 12789 return (NULL); 12790 } 12791 12792 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12793 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12794 12795 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12796 dp->dtdo_rtype = dofd->dofd_rtype; 12797 12798 for (l = 0; l < n; l++) { 12799 dof_sec_t *subsec; 12800 void **bufp; 12801 uint32_t *lenp; 12802 12803 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12804 dofd->dofd_links[l])) == NULL) 12805 goto err; /* invalid section link */ 12806 12807 if (ttl + subsec->dofs_size > max) { 12808 dtrace_dof_error(dof, "exceeds maximum size"); 12809 goto err; 12810 } 12811 12812 ttl += subsec->dofs_size; 12813 12814 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12815 if (subsec->dofs_type != difo[i].section) 12816 continue; 12817 12818 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12819 dtrace_dof_error(dof, "section not loaded"); 12820 goto err; 12821 } 12822 12823 if (subsec->dofs_align != difo[i].align) { 12824 dtrace_dof_error(dof, "bad alignment"); 12825 goto err; 12826 } 12827 12828 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12829 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12830 12831 if (*bufp != NULL) { 12832 dtrace_dof_error(dof, difo[i].msg); 12833 goto err; 12834 } 12835 12836 if (difo[i].entsize != subsec->dofs_entsize) { 12837 dtrace_dof_error(dof, "entry size mismatch"); 12838 goto err; 12839 } 12840 12841 if (subsec->dofs_entsize != 0 && 12842 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12843 dtrace_dof_error(dof, "corrupt entry size"); 12844 goto err; 12845 } 12846 12847 *lenp = subsec->dofs_size; 12848 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12849 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12850 *bufp, subsec->dofs_size); 12851 12852 if (subsec->dofs_entsize != 0) 12853 *lenp /= subsec->dofs_entsize; 12854 12855 break; 12856 } 12857 12858 /* 12859 * If we encounter a loadable DIFO sub-section that is not 12860 * known to us, assume this is a broken program and fail. 12861 */ 12862 if (difo[i].section == DOF_SECT_NONE && 12863 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12864 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12865 goto err; 12866 } 12867 } 12868 12869 if (dp->dtdo_buf == NULL) { 12870 /* 12871 * We can't have a DIF object without DIF text. 12872 */ 12873 dtrace_dof_error(dof, "missing DIF text"); 12874 goto err; 12875 } 12876 12877 /* 12878 * Before we validate the DIF object, run through the variable table 12879 * looking for the strings -- if any of their size are under, we'll set 12880 * their size to be the system-wide default string size. Note that 12881 * this should _not_ happen if the "strsize" option has been set -- 12882 * in this case, the compiler should have set the size to reflect the 12883 * setting of the option. 12884 */ 12885 for (i = 0; i < dp->dtdo_varlen; i++) { 12886 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12887 dtrace_diftype_t *t = &v->dtdv_type; 12888 12889 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12890 continue; 12891 12892 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12893 t->dtdt_size = dtrace_strsize_default; 12894 } 12895 12896 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12897 goto err; 12898 12899 dtrace_difo_init(dp, vstate); 12900 return (dp); 12901 12902 err: 12903 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12904 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12905 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12906 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12907 12908 kmem_free(dp, sizeof (dtrace_difo_t)); 12909 return (NULL); 12910 } 12911 12912 static dtrace_predicate_t * 12913 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12914 cred_t *cr) 12915 { 12916 dtrace_difo_t *dp; 12917 12918 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 12919 return (NULL); 12920 12921 return (dtrace_predicate_create(dp)); 12922 } 12923 12924 static dtrace_actdesc_t * 12925 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12926 cred_t *cr) 12927 { 12928 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 12929 dof_actdesc_t *desc; 12930 dof_sec_t *difosec; 12931 size_t offs; 12932 uintptr_t daddr = (uintptr_t)dof; 12933 uint64_t arg; 12934 dtrace_actkind_t kind; 12935 12936 if (sec->dofs_type != DOF_SECT_ACTDESC) { 12937 dtrace_dof_error(dof, "invalid action section"); 12938 return (NULL); 12939 } 12940 12941 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 12942 dtrace_dof_error(dof, "truncated action description"); 12943 return (NULL); 12944 } 12945 12946 if (sec->dofs_align != sizeof (uint64_t)) { 12947 dtrace_dof_error(dof, "bad alignment in action description"); 12948 return (NULL); 12949 } 12950 12951 if (sec->dofs_size < sec->dofs_entsize) { 12952 dtrace_dof_error(dof, "section entry size exceeds total size"); 12953 return (NULL); 12954 } 12955 12956 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 12957 dtrace_dof_error(dof, "bad entry size in action description"); 12958 return (NULL); 12959 } 12960 12961 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 12962 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 12963 return (NULL); 12964 } 12965 12966 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 12967 desc = (dof_actdesc_t *)(daddr + 12968 (uintptr_t)sec->dofs_offset + offs); 12969 kind = (dtrace_actkind_t)desc->dofa_kind; 12970 12971 if ((DTRACEACT_ISPRINTFLIKE(kind) && 12972 (kind != DTRACEACT_PRINTA || 12973 desc->dofa_strtab != DOF_SECIDX_NONE)) || 12974 (kind == DTRACEACT_DIFEXPR && 12975 desc->dofa_strtab != DOF_SECIDX_NONE)) { 12976 dof_sec_t *strtab; 12977 char *str, *fmt; 12978 uint64_t i; 12979 12980 /* 12981 * The argument to these actions is an index into the 12982 * DOF string table. For printf()-like actions, this 12983 * is the format string. For print(), this is the 12984 * CTF type of the expression result. 12985 */ 12986 if ((strtab = dtrace_dof_sect(dof, 12987 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 12988 goto err; 12989 12990 str = (char *)((uintptr_t)dof + 12991 (uintptr_t)strtab->dofs_offset); 12992 12993 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 12994 if (str[i] == '\0') 12995 break; 12996 } 12997 12998 if (i >= strtab->dofs_size) { 12999 dtrace_dof_error(dof, "bogus format string"); 13000 goto err; 13001 } 13002 13003 if (i == desc->dofa_arg) { 13004 dtrace_dof_error(dof, "empty format string"); 13005 goto err; 13006 } 13007 13008 i -= desc->dofa_arg; 13009 fmt = kmem_alloc(i + 1, KM_SLEEP); 13010 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13011 arg = (uint64_t)(uintptr_t)fmt; 13012 } else { 13013 if (kind == DTRACEACT_PRINTA) { 13014 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13015 arg = 0; 13016 } else { 13017 arg = desc->dofa_arg; 13018 } 13019 } 13020 13021 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13022 desc->dofa_uarg, arg); 13023 13024 if (last != NULL) { 13025 last->dtad_next = act; 13026 } else { 13027 first = act; 13028 } 13029 13030 last = act; 13031 13032 if (desc->dofa_difo == DOF_SECIDX_NONE) 13033 continue; 13034 13035 if ((difosec = dtrace_dof_sect(dof, 13036 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13037 goto err; 13038 13039 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13040 13041 if (act->dtad_difo == NULL) 13042 goto err; 13043 } 13044 13045 ASSERT(first != NULL); 13046 return (first); 13047 13048 err: 13049 for (act = first; act != NULL; act = next) { 13050 next = act->dtad_next; 13051 dtrace_actdesc_release(act, vstate); 13052 } 13053 13054 return (NULL); 13055 } 13056 13057 static dtrace_ecbdesc_t * 13058 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13059 cred_t *cr) 13060 { 13061 dtrace_ecbdesc_t *ep; 13062 dof_ecbdesc_t *ecb; 13063 dtrace_probedesc_t *desc; 13064 dtrace_predicate_t *pred = NULL; 13065 13066 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13067 dtrace_dof_error(dof, "truncated ECB description"); 13068 return (NULL); 13069 } 13070 13071 if (sec->dofs_align != sizeof (uint64_t)) { 13072 dtrace_dof_error(dof, "bad alignment in ECB description"); 13073 return (NULL); 13074 } 13075 13076 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13077 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13078 13079 if (sec == NULL) 13080 return (NULL); 13081 13082 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13083 ep->dted_uarg = ecb->dofe_uarg; 13084 desc = &ep->dted_probe; 13085 13086 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13087 goto err; 13088 13089 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13090 if ((sec = dtrace_dof_sect(dof, 13091 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13092 goto err; 13093 13094 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13095 goto err; 13096 13097 ep->dted_pred.dtpdd_predicate = pred; 13098 } 13099 13100 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13101 if ((sec = dtrace_dof_sect(dof, 13102 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13103 goto err; 13104 13105 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13106 13107 if (ep->dted_action == NULL) 13108 goto err; 13109 } 13110 13111 return (ep); 13112 13113 err: 13114 if (pred != NULL) 13115 dtrace_predicate_release(pred, vstate); 13116 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 13117 return (NULL); 13118 } 13119 13120 /* 13121 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 13122 * specified DOF. At present, this amounts to simply adding 'ubase' to the 13123 * site of any user SETX relocations to account for load object base address. 13124 * In the future, if we need other relocations, this function can be extended. 13125 */ 13126 static int 13127 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 13128 { 13129 uintptr_t daddr = (uintptr_t)dof; 13130 dof_relohdr_t *dofr = 13131 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13132 dof_sec_t *ss, *rs, *ts; 13133 dof_relodesc_t *r; 13134 uint_t i, n; 13135 13136 if (sec->dofs_size < sizeof (dof_relohdr_t) || 13137 sec->dofs_align != sizeof (dof_secidx_t)) { 13138 dtrace_dof_error(dof, "invalid relocation header"); 13139 return (-1); 13140 } 13141 13142 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 13143 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 13144 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 13145 13146 if (ss == NULL || rs == NULL || ts == NULL) 13147 return (-1); /* dtrace_dof_error() has been called already */ 13148 13149 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 13150 rs->dofs_align != sizeof (uint64_t)) { 13151 dtrace_dof_error(dof, "invalid relocation section"); 13152 return (-1); 13153 } 13154 13155 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 13156 n = rs->dofs_size / rs->dofs_entsize; 13157 13158 for (i = 0; i < n; i++) { 13159 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 13160 13161 switch (r->dofr_type) { 13162 case DOF_RELO_NONE: 13163 break; 13164 case DOF_RELO_SETX: 13165 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 13166 sizeof (uint64_t) > ts->dofs_size) { 13167 dtrace_dof_error(dof, "bad relocation offset"); 13168 return (-1); 13169 } 13170 13171 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 13172 dtrace_dof_error(dof, "misaligned setx relo"); 13173 return (-1); 13174 } 13175 13176 *(uint64_t *)taddr += ubase; 13177 break; 13178 default: 13179 dtrace_dof_error(dof, "invalid relocation type"); 13180 return (-1); 13181 } 13182 13183 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 13184 } 13185 13186 return (0); 13187 } 13188 13189 /* 13190 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 13191 * header: it should be at the front of a memory region that is at least 13192 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 13193 * size. It need not be validated in any other way. 13194 */ 13195 static int 13196 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 13197 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 13198 { 13199 uint64_t len = dof->dofh_loadsz, seclen; 13200 uintptr_t daddr = (uintptr_t)dof; 13201 dtrace_ecbdesc_t *ep; 13202 dtrace_enabling_t *enab; 13203 uint_t i; 13204 13205 ASSERT(MUTEX_HELD(&dtrace_lock)); 13206 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 13207 13208 /* 13209 * Check the DOF header identification bytes. In addition to checking 13210 * valid settings, we also verify that unused bits/bytes are zeroed so 13211 * we can use them later without fear of regressing existing binaries. 13212 */ 13213 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 13214 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 13215 dtrace_dof_error(dof, "DOF magic string mismatch"); 13216 return (-1); 13217 } 13218 13219 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 13220 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 13221 dtrace_dof_error(dof, "DOF has invalid data model"); 13222 return (-1); 13223 } 13224 13225 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 13226 dtrace_dof_error(dof, "DOF encoding mismatch"); 13227 return (-1); 13228 } 13229 13230 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13231 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 13232 dtrace_dof_error(dof, "DOF version mismatch"); 13233 return (-1); 13234 } 13235 13236 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 13237 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 13238 return (-1); 13239 } 13240 13241 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 13242 dtrace_dof_error(dof, "DOF uses too many integer registers"); 13243 return (-1); 13244 } 13245 13246 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 13247 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 13248 return (-1); 13249 } 13250 13251 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 13252 if (dof->dofh_ident[i] != 0) { 13253 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 13254 return (-1); 13255 } 13256 } 13257 13258 if (dof->dofh_flags & ~DOF_FL_VALID) { 13259 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 13260 return (-1); 13261 } 13262 13263 if (dof->dofh_secsize == 0) { 13264 dtrace_dof_error(dof, "zero section header size"); 13265 return (-1); 13266 } 13267 13268 /* 13269 * Check that the section headers don't exceed the amount of DOF 13270 * data. Note that we cast the section size and number of sections 13271 * to uint64_t's to prevent possible overflow in the multiplication. 13272 */ 13273 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 13274 13275 if (dof->dofh_secoff > len || seclen > len || 13276 dof->dofh_secoff + seclen > len) { 13277 dtrace_dof_error(dof, "truncated section headers"); 13278 return (-1); 13279 } 13280 13281 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 13282 dtrace_dof_error(dof, "misaligned section headers"); 13283 return (-1); 13284 } 13285 13286 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13287 dtrace_dof_error(dof, "misaligned section size"); 13288 return (-1); 13289 } 13290 13291 /* 13292 * Take an initial pass through the section headers to be sure that 13293 * the headers don't have stray offsets. If the 'noprobes' flag is 13294 * set, do not permit sections relating to providers, probes, or args. 13295 */ 13296 for (i = 0; i < dof->dofh_secnum; i++) { 13297 dof_sec_t *sec = (dof_sec_t *)(daddr + 13298 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13299 13300 if (noprobes) { 13301 switch (sec->dofs_type) { 13302 case DOF_SECT_PROVIDER: 13303 case DOF_SECT_PROBES: 13304 case DOF_SECT_PRARGS: 13305 case DOF_SECT_PROFFS: 13306 dtrace_dof_error(dof, "illegal sections " 13307 "for enabling"); 13308 return (-1); 13309 } 13310 } 13311 13312 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13313 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13314 dtrace_dof_error(dof, "loadable section with load " 13315 "flag unset"); 13316 return (-1); 13317 } 13318 13319 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13320 continue; /* just ignore non-loadable sections */ 13321 13322 if (!ISP2(sec->dofs_align)) { 13323 dtrace_dof_error(dof, "bad section alignment"); 13324 return (-1); 13325 } 13326 13327 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13328 dtrace_dof_error(dof, "misaligned section"); 13329 return (-1); 13330 } 13331 13332 if (sec->dofs_offset > len || sec->dofs_size > len || 13333 sec->dofs_offset + sec->dofs_size > len) { 13334 dtrace_dof_error(dof, "corrupt section header"); 13335 return (-1); 13336 } 13337 13338 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13339 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13340 dtrace_dof_error(dof, "non-terminating string table"); 13341 return (-1); 13342 } 13343 } 13344 13345 /* 13346 * Take a second pass through the sections and locate and perform any 13347 * relocations that are present. We do this after the first pass to 13348 * be sure that all sections have had their headers validated. 13349 */ 13350 for (i = 0; i < dof->dofh_secnum; i++) { 13351 dof_sec_t *sec = (dof_sec_t *)(daddr + 13352 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13353 13354 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13355 continue; /* skip sections that are not loadable */ 13356 13357 switch (sec->dofs_type) { 13358 case DOF_SECT_URELHDR: 13359 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13360 return (-1); 13361 break; 13362 } 13363 } 13364 13365 if ((enab = *enabp) == NULL) 13366 enab = *enabp = dtrace_enabling_create(vstate); 13367 13368 for (i = 0; i < dof->dofh_secnum; i++) { 13369 dof_sec_t *sec = (dof_sec_t *)(daddr + 13370 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13371 13372 if (sec->dofs_type != DOF_SECT_ECBDESC) 13373 continue; 13374 13375 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13376 dtrace_enabling_destroy(enab); 13377 *enabp = NULL; 13378 return (-1); 13379 } 13380 13381 dtrace_enabling_add(enab, ep); 13382 } 13383 13384 return (0); 13385 } 13386 13387 /* 13388 * Process DOF for any options. This routine assumes that the DOF has been 13389 * at least processed by dtrace_dof_slurp(). 13390 */ 13391 static int 13392 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13393 { 13394 int i, rval; 13395 uint32_t entsize; 13396 size_t offs; 13397 dof_optdesc_t *desc; 13398 13399 for (i = 0; i < dof->dofh_secnum; i++) { 13400 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13401 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13402 13403 if (sec->dofs_type != DOF_SECT_OPTDESC) 13404 continue; 13405 13406 if (sec->dofs_align != sizeof (uint64_t)) { 13407 dtrace_dof_error(dof, "bad alignment in " 13408 "option description"); 13409 return (EINVAL); 13410 } 13411 13412 if ((entsize = sec->dofs_entsize) == 0) { 13413 dtrace_dof_error(dof, "zeroed option entry size"); 13414 return (EINVAL); 13415 } 13416 13417 if (entsize < sizeof (dof_optdesc_t)) { 13418 dtrace_dof_error(dof, "bad option entry size"); 13419 return (EINVAL); 13420 } 13421 13422 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13423 desc = (dof_optdesc_t *)((uintptr_t)dof + 13424 (uintptr_t)sec->dofs_offset + offs); 13425 13426 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13427 dtrace_dof_error(dof, "non-zero option string"); 13428 return (EINVAL); 13429 } 13430 13431 if (desc->dofo_value == DTRACEOPT_UNSET) { 13432 dtrace_dof_error(dof, "unset option"); 13433 return (EINVAL); 13434 } 13435 13436 if ((rval = dtrace_state_option(state, 13437 desc->dofo_option, desc->dofo_value)) != 0) { 13438 dtrace_dof_error(dof, "rejected option"); 13439 return (rval); 13440 } 13441 } 13442 } 13443 13444 return (0); 13445 } 13446 13447 /* 13448 * DTrace Consumer State Functions 13449 */ 13450 int 13451 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13452 { 13453 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13454 void *base; 13455 uintptr_t limit; 13456 dtrace_dynvar_t *dvar, *next, *start; 13457 int i; 13458 13459 ASSERT(MUTEX_HELD(&dtrace_lock)); 13460 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13461 13462 bzero(dstate, sizeof (dtrace_dstate_t)); 13463 13464 if ((dstate->dtds_chunksize = chunksize) == 0) 13465 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13466 13467 VERIFY(dstate->dtds_chunksize < LONG_MAX); 13468 13469 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13470 size = min; 13471 13472 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13473 return (ENOMEM); 13474 13475 dstate->dtds_size = size; 13476 dstate->dtds_base = base; 13477 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13478 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13479 13480 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13481 13482 if (hashsize != 1 && (hashsize & 1)) 13483 hashsize--; 13484 13485 dstate->dtds_hashsize = hashsize; 13486 dstate->dtds_hash = dstate->dtds_base; 13487 13488 /* 13489 * Set all of our hash buckets to point to the single sink, and (if 13490 * it hasn't already been set), set the sink's hash value to be the 13491 * sink sentinel value. The sink is needed for dynamic variable 13492 * lookups to know that they have iterated over an entire, valid hash 13493 * chain. 13494 */ 13495 for (i = 0; i < hashsize; i++) 13496 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13497 13498 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13499 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13500 13501 /* 13502 * Determine number of active CPUs. Divide free list evenly among 13503 * active CPUs. 13504 */ 13505 start = (dtrace_dynvar_t *) 13506 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13507 limit = (uintptr_t)base + size; 13508 13509 VERIFY((uintptr_t)start < limit); 13510 VERIFY((uintptr_t)start >= (uintptr_t)base); 13511 13512 maxper = (limit - (uintptr_t)start) / NCPU; 13513 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13514 13515 for (i = 0; i < NCPU; i++) { 13516 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13517 13518 /* 13519 * If we don't even have enough chunks to make it once through 13520 * NCPUs, we're just going to allocate everything to the first 13521 * CPU. And if we're on the last CPU, we're going to allocate 13522 * whatever is left over. In either case, we set the limit to 13523 * be the limit of the dynamic variable space. 13524 */ 13525 if (maxper == 0 || i == NCPU - 1) { 13526 limit = (uintptr_t)base + size; 13527 start = NULL; 13528 } else { 13529 limit = (uintptr_t)start + maxper; 13530 start = (dtrace_dynvar_t *)limit; 13531 } 13532 13533 VERIFY(limit <= (uintptr_t)base + size); 13534 13535 for (;;) { 13536 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13537 dstate->dtds_chunksize); 13538 13539 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13540 break; 13541 13542 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 13543 (uintptr_t)dvar <= (uintptr_t)base + size); 13544 dvar->dtdv_next = next; 13545 dvar = next; 13546 } 13547 13548 if (maxper == 0) 13549 break; 13550 } 13551 13552 return (0); 13553 } 13554 13555 void 13556 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13557 { 13558 ASSERT(MUTEX_HELD(&cpu_lock)); 13559 13560 if (dstate->dtds_base == NULL) 13561 return; 13562 13563 kmem_free(dstate->dtds_base, dstate->dtds_size); 13564 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13565 } 13566 13567 static void 13568 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13569 { 13570 /* 13571 * Logical XOR, where are you? 13572 */ 13573 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13574 13575 if (vstate->dtvs_nglobals > 0) { 13576 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13577 sizeof (dtrace_statvar_t *)); 13578 } 13579 13580 if (vstate->dtvs_ntlocals > 0) { 13581 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13582 sizeof (dtrace_difv_t)); 13583 } 13584 13585 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13586 13587 if (vstate->dtvs_nlocals > 0) { 13588 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13589 sizeof (dtrace_statvar_t *)); 13590 } 13591 } 13592 13593 static void 13594 dtrace_state_clean(dtrace_state_t *state) 13595 { 13596 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13597 return; 13598 13599 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13600 dtrace_speculation_clean(state); 13601 } 13602 13603 static void 13604 dtrace_state_deadman(dtrace_state_t *state) 13605 { 13606 hrtime_t now; 13607 13608 dtrace_sync(); 13609 13610 now = dtrace_gethrtime(); 13611 13612 if (state != dtrace_anon.dta_state && 13613 now - state->dts_laststatus >= dtrace_deadman_user) 13614 return; 13615 13616 /* 13617 * We must be sure that dts_alive never appears to be less than the 13618 * value upon entry to dtrace_state_deadman(), and because we lack a 13619 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13620 * store INT64_MAX to it, followed by a memory barrier, followed by 13621 * the new value. This assures that dts_alive never appears to be 13622 * less than its true value, regardless of the order in which the 13623 * stores to the underlying storage are issued. 13624 */ 13625 state->dts_alive = INT64_MAX; 13626 dtrace_membar_producer(); 13627 state->dts_alive = now; 13628 } 13629 13630 dtrace_state_t * 13631 dtrace_state_create(dev_t *devp, cred_t *cr) 13632 { 13633 minor_t minor; 13634 major_t major; 13635 char c[30]; 13636 dtrace_state_t *state; 13637 dtrace_optval_t *opt; 13638 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13639 13640 ASSERT(MUTEX_HELD(&dtrace_lock)); 13641 ASSERT(MUTEX_HELD(&cpu_lock)); 13642 13643 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13644 VM_BESTFIT | VM_SLEEP); 13645 13646 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13647 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13648 return (NULL); 13649 } 13650 13651 state = ddi_get_soft_state(dtrace_softstate, minor); 13652 state->dts_epid = DTRACE_EPIDNONE + 1; 13653 13654 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13655 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13656 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13657 13658 if (devp != NULL) { 13659 major = getemajor(*devp); 13660 } else { 13661 major = ddi_driver_major(dtrace_devi); 13662 } 13663 13664 state->dts_dev = makedevice(major, minor); 13665 13666 if (devp != NULL) 13667 *devp = state->dts_dev; 13668 13669 /* 13670 * We allocate NCPU buffers. On the one hand, this can be quite 13671 * a bit of memory per instance (nearly 36K on a Starcat). On the 13672 * other hand, it saves an additional memory reference in the probe 13673 * path. 13674 */ 13675 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13676 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13677 state->dts_cleaner = CYCLIC_NONE; 13678 state->dts_deadman = CYCLIC_NONE; 13679 state->dts_vstate.dtvs_state = state; 13680 13681 for (i = 0; i < DTRACEOPT_MAX; i++) 13682 state->dts_options[i] = DTRACEOPT_UNSET; 13683 13684 /* 13685 * Set the default options. 13686 */ 13687 opt = state->dts_options; 13688 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13689 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13690 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13691 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13692 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13693 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13694 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13695 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13696 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13697 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13698 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13699 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13700 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13701 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13702 13703 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13704 13705 /* 13706 * Depending on the user credentials, we set flag bits which alter probe 13707 * visibility or the amount of destructiveness allowed. In the case of 13708 * actual anonymous tracing, or the possession of all privileges, all of 13709 * the normal checks are bypassed. 13710 */ 13711 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13712 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13713 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13714 } else { 13715 /* 13716 * Set up the credentials for this instantiation. We take a 13717 * hold on the credential to prevent it from disappearing on 13718 * us; this in turn prevents the zone_t referenced by this 13719 * credential from disappearing. This means that we can 13720 * examine the credential and the zone from probe context. 13721 */ 13722 crhold(cr); 13723 state->dts_cred.dcr_cred = cr; 13724 13725 /* 13726 * CRA_PROC means "we have *some* privilege for dtrace" and 13727 * unlocks the use of variables like pid, zonename, etc. 13728 */ 13729 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13730 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13731 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13732 } 13733 13734 /* 13735 * dtrace_user allows use of syscall and profile providers. 13736 * If the user also has proc_owner and/or proc_zone, we 13737 * extend the scope to include additional visibility and 13738 * destructive power. 13739 */ 13740 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13741 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13742 state->dts_cred.dcr_visible |= 13743 DTRACE_CRV_ALLPROC; 13744 13745 state->dts_cred.dcr_action |= 13746 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13747 } 13748 13749 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13750 state->dts_cred.dcr_visible |= 13751 DTRACE_CRV_ALLZONE; 13752 13753 state->dts_cred.dcr_action |= 13754 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13755 } 13756 13757 /* 13758 * If we have all privs in whatever zone this is, 13759 * we can do destructive things to processes which 13760 * have altered credentials. 13761 */ 13762 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13763 cr->cr_zone->zone_privset)) { 13764 state->dts_cred.dcr_action |= 13765 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13766 } 13767 } 13768 13769 /* 13770 * Holding the dtrace_kernel privilege also implies that 13771 * the user has the dtrace_user privilege from a visibility 13772 * perspective. But without further privileges, some 13773 * destructive actions are not available. 13774 */ 13775 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13776 /* 13777 * Make all probes in all zones visible. However, 13778 * this doesn't mean that all actions become available 13779 * to all zones. 13780 */ 13781 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13782 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13783 13784 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13785 DTRACE_CRA_PROC; 13786 /* 13787 * Holding proc_owner means that destructive actions 13788 * for *this* zone are allowed. 13789 */ 13790 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13791 state->dts_cred.dcr_action |= 13792 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13793 13794 /* 13795 * Holding proc_zone means that destructive actions 13796 * for this user/group ID in all zones is allowed. 13797 */ 13798 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13799 state->dts_cred.dcr_action |= 13800 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13801 13802 /* 13803 * If we have all privs in whatever zone this is, 13804 * we can do destructive things to processes which 13805 * have altered credentials. 13806 */ 13807 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13808 cr->cr_zone->zone_privset)) { 13809 state->dts_cred.dcr_action |= 13810 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13811 } 13812 } 13813 13814 /* 13815 * Holding the dtrace_proc privilege gives control over fasttrap 13816 * and pid providers. We need to grant wider destructive 13817 * privileges in the event that the user has proc_owner and/or 13818 * proc_zone. 13819 */ 13820 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13821 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13822 state->dts_cred.dcr_action |= 13823 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13824 13825 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13826 state->dts_cred.dcr_action |= 13827 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13828 } 13829 } 13830 13831 return (state); 13832 } 13833 13834 static int 13835 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13836 { 13837 dtrace_optval_t *opt = state->dts_options, size; 13838 processorid_t cpu; 13839 int flags = 0, rval, factor, divisor = 1; 13840 13841 ASSERT(MUTEX_HELD(&dtrace_lock)); 13842 ASSERT(MUTEX_HELD(&cpu_lock)); 13843 ASSERT(which < DTRACEOPT_MAX); 13844 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13845 (state == dtrace_anon.dta_state && 13846 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13847 13848 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13849 return (0); 13850 13851 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13852 cpu = opt[DTRACEOPT_CPU]; 13853 13854 if (which == DTRACEOPT_SPECSIZE) 13855 flags |= DTRACEBUF_NOSWITCH; 13856 13857 if (which == DTRACEOPT_BUFSIZE) { 13858 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13859 flags |= DTRACEBUF_RING; 13860 13861 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13862 flags |= DTRACEBUF_FILL; 13863 13864 if (state != dtrace_anon.dta_state || 13865 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13866 flags |= DTRACEBUF_INACTIVE; 13867 } 13868 13869 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13870 /* 13871 * The size must be 8-byte aligned. If the size is not 8-byte 13872 * aligned, drop it down by the difference. 13873 */ 13874 if (size & (sizeof (uint64_t) - 1)) 13875 size -= size & (sizeof (uint64_t) - 1); 13876 13877 if (size < state->dts_reserve) { 13878 /* 13879 * Buffers always must be large enough to accommodate 13880 * their prereserved space. We return E2BIG instead 13881 * of ENOMEM in this case to allow for user-level 13882 * software to differentiate the cases. 13883 */ 13884 return (E2BIG); 13885 } 13886 13887 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13888 13889 if (rval != ENOMEM) { 13890 opt[which] = size; 13891 return (rval); 13892 } 13893 13894 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13895 return (rval); 13896 13897 for (divisor = 2; divisor < factor; divisor <<= 1) 13898 continue; 13899 } 13900 13901 return (ENOMEM); 13902 } 13903 13904 static int 13905 dtrace_state_buffers(dtrace_state_t *state) 13906 { 13907 dtrace_speculation_t *spec = state->dts_speculations; 13908 int rval, i; 13909 13910 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 13911 DTRACEOPT_BUFSIZE)) != 0) 13912 return (rval); 13913 13914 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 13915 DTRACEOPT_AGGSIZE)) != 0) 13916 return (rval); 13917 13918 for (i = 0; i < state->dts_nspeculations; i++) { 13919 if ((rval = dtrace_state_buffer(state, 13920 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 13921 return (rval); 13922 } 13923 13924 return (0); 13925 } 13926 13927 static void 13928 dtrace_state_prereserve(dtrace_state_t *state) 13929 { 13930 dtrace_ecb_t *ecb; 13931 dtrace_probe_t *probe; 13932 13933 state->dts_reserve = 0; 13934 13935 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 13936 return; 13937 13938 /* 13939 * If our buffer policy is a "fill" buffer policy, we need to set the 13940 * prereserved space to be the space required by the END probes. 13941 */ 13942 probe = dtrace_probes[dtrace_probeid_end - 1]; 13943 ASSERT(probe != NULL); 13944 13945 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 13946 if (ecb->dte_state != state) 13947 continue; 13948 13949 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 13950 } 13951 } 13952 13953 static int 13954 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 13955 { 13956 dtrace_optval_t *opt = state->dts_options, sz, nspec; 13957 dtrace_speculation_t *spec; 13958 dtrace_buffer_t *buf; 13959 cyc_handler_t hdlr; 13960 cyc_time_t when; 13961 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13962 dtrace_icookie_t cookie; 13963 13964 mutex_enter(&cpu_lock); 13965 mutex_enter(&dtrace_lock); 13966 13967 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13968 rval = EBUSY; 13969 goto out; 13970 } 13971 13972 /* 13973 * Before we can perform any checks, we must prime all of the 13974 * retained enablings that correspond to this state. 13975 */ 13976 dtrace_enabling_prime(state); 13977 13978 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 13979 rval = EACCES; 13980 goto out; 13981 } 13982 13983 dtrace_state_prereserve(state); 13984 13985 /* 13986 * Now we want to do is try to allocate our speculations. 13987 * We do not automatically resize the number of speculations; if 13988 * this fails, we will fail the operation. 13989 */ 13990 nspec = opt[DTRACEOPT_NSPEC]; 13991 ASSERT(nspec != DTRACEOPT_UNSET); 13992 13993 if (nspec > INT_MAX) { 13994 rval = ENOMEM; 13995 goto out; 13996 } 13997 13998 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 13999 KM_NOSLEEP | KM_NORMALPRI); 14000 14001 if (spec == NULL) { 14002 rval = ENOMEM; 14003 goto out; 14004 } 14005 14006 state->dts_speculations = spec; 14007 state->dts_nspeculations = (int)nspec; 14008 14009 for (i = 0; i < nspec; i++) { 14010 if ((buf = kmem_zalloc(bufsize, 14011 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 14012 rval = ENOMEM; 14013 goto err; 14014 } 14015 14016 spec[i].dtsp_buffer = buf; 14017 } 14018 14019 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 14020 if (dtrace_anon.dta_state == NULL) { 14021 rval = ENOENT; 14022 goto out; 14023 } 14024 14025 if (state->dts_necbs != 0) { 14026 rval = EALREADY; 14027 goto out; 14028 } 14029 14030 state->dts_anon = dtrace_anon_grab(); 14031 ASSERT(state->dts_anon != NULL); 14032 state = state->dts_anon; 14033 14034 /* 14035 * We want "grabanon" to be set in the grabbed state, so we'll 14036 * copy that option value from the grabbing state into the 14037 * grabbed state. 14038 */ 14039 state->dts_options[DTRACEOPT_GRABANON] = 14040 opt[DTRACEOPT_GRABANON]; 14041 14042 *cpu = dtrace_anon.dta_beganon; 14043 14044 /* 14045 * If the anonymous state is active (as it almost certainly 14046 * is if the anonymous enabling ultimately matched anything), 14047 * we don't allow any further option processing -- but we 14048 * don't return failure. 14049 */ 14050 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14051 goto out; 14052 } 14053 14054 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 14055 opt[DTRACEOPT_AGGSIZE] != 0) { 14056 if (state->dts_aggregations == NULL) { 14057 /* 14058 * We're not going to create an aggregation buffer 14059 * because we don't have any ECBs that contain 14060 * aggregations -- set this option to 0. 14061 */ 14062 opt[DTRACEOPT_AGGSIZE] = 0; 14063 } else { 14064 /* 14065 * If we have an aggregation buffer, we must also have 14066 * a buffer to use as scratch. 14067 */ 14068 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 14069 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 14070 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 14071 } 14072 } 14073 } 14074 14075 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 14076 opt[DTRACEOPT_SPECSIZE] != 0) { 14077 if (!state->dts_speculates) { 14078 /* 14079 * We're not going to create speculation buffers 14080 * because we don't have any ECBs that actually 14081 * speculate -- set the speculation size to 0. 14082 */ 14083 opt[DTRACEOPT_SPECSIZE] = 0; 14084 } 14085 } 14086 14087 /* 14088 * The bare minimum size for any buffer that we're actually going to 14089 * do anything to is sizeof (uint64_t). 14090 */ 14091 sz = sizeof (uint64_t); 14092 14093 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 14094 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 14095 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 14096 /* 14097 * A buffer size has been explicitly set to 0 (or to a size 14098 * that will be adjusted to 0) and we need the space -- we 14099 * need to return failure. We return ENOSPC to differentiate 14100 * it from failing to allocate a buffer due to failure to meet 14101 * the reserve (for which we return E2BIG). 14102 */ 14103 rval = ENOSPC; 14104 goto out; 14105 } 14106 14107 if ((rval = dtrace_state_buffers(state)) != 0) 14108 goto err; 14109 14110 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 14111 sz = dtrace_dstate_defsize; 14112 14113 do { 14114 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 14115 14116 if (rval == 0) 14117 break; 14118 14119 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14120 goto err; 14121 } while (sz >>= 1); 14122 14123 opt[DTRACEOPT_DYNVARSIZE] = sz; 14124 14125 if (rval != 0) 14126 goto err; 14127 14128 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 14129 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 14130 14131 if (opt[DTRACEOPT_CLEANRATE] == 0) 14132 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14133 14134 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 14135 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 14136 14137 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 14138 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14139 14140 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 14141 hdlr.cyh_arg = state; 14142 hdlr.cyh_level = CY_LOW_LEVEL; 14143 14144 when.cyt_when = 0; 14145 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 14146 14147 state->dts_cleaner = cyclic_add(&hdlr, &when); 14148 14149 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 14150 hdlr.cyh_arg = state; 14151 hdlr.cyh_level = CY_LOW_LEVEL; 14152 14153 when.cyt_when = 0; 14154 when.cyt_interval = dtrace_deadman_interval; 14155 14156 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 14157 state->dts_deadman = cyclic_add(&hdlr, &when); 14158 14159 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 14160 14161 if (state->dts_getf != 0 && 14162 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14163 /* 14164 * We don't have kernel privs but we have at least one call 14165 * to getf(); we need to bump our zone's count, and (if 14166 * this is the first enabling to have an unprivileged call 14167 * to getf()) we need to hook into closef(). 14168 */ 14169 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 14170 14171 if (dtrace_getf++ == 0) { 14172 ASSERT(dtrace_closef == NULL); 14173 dtrace_closef = dtrace_getf_barrier; 14174 } 14175 } 14176 14177 /* 14178 * Now it's time to actually fire the BEGIN probe. We need to disable 14179 * interrupts here both to record the CPU on which we fired the BEGIN 14180 * probe (the data from this CPU will be processed first at user 14181 * level) and to manually activate the buffer for this CPU. 14182 */ 14183 cookie = dtrace_interrupt_disable(); 14184 *cpu = CPU->cpu_id; 14185 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 14186 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 14187 14188 dtrace_probe(dtrace_probeid_begin, 14189 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14190 dtrace_interrupt_enable(cookie); 14191 /* 14192 * We may have had an exit action from a BEGIN probe; only change our 14193 * state to ACTIVE if we're still in WARMUP. 14194 */ 14195 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 14196 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 14197 14198 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 14199 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 14200 14201 /* 14202 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 14203 * want each CPU to transition its principal buffer out of the 14204 * INACTIVE state. Doing this assures that no CPU will suddenly begin 14205 * processing an ECB halfway down a probe's ECB chain; all CPUs will 14206 * atomically transition from processing none of a state's ECBs to 14207 * processing all of them. 14208 */ 14209 dtrace_xcall(DTRACE_CPUALL, 14210 (dtrace_xcall_t)dtrace_buffer_activate, state); 14211 goto out; 14212 14213 err: 14214 dtrace_buffer_free(state->dts_buffer); 14215 dtrace_buffer_free(state->dts_aggbuffer); 14216 14217 if ((nspec = state->dts_nspeculations) == 0) { 14218 ASSERT(state->dts_speculations == NULL); 14219 goto out; 14220 } 14221 14222 spec = state->dts_speculations; 14223 ASSERT(spec != NULL); 14224 14225 for (i = 0; i < state->dts_nspeculations; i++) { 14226 if ((buf = spec[i].dtsp_buffer) == NULL) 14227 break; 14228 14229 dtrace_buffer_free(buf); 14230 kmem_free(buf, bufsize); 14231 } 14232 14233 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14234 state->dts_nspeculations = 0; 14235 state->dts_speculations = NULL; 14236 14237 out: 14238 mutex_exit(&dtrace_lock); 14239 mutex_exit(&cpu_lock); 14240 14241 return (rval); 14242 } 14243 14244 static int 14245 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 14246 { 14247 dtrace_icookie_t cookie; 14248 14249 ASSERT(MUTEX_HELD(&dtrace_lock)); 14250 14251 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 14252 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 14253 return (EINVAL); 14254 14255 /* 14256 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 14257 * to be sure that every CPU has seen it. See below for the details 14258 * on why this is done. 14259 */ 14260 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 14261 dtrace_sync(); 14262 14263 /* 14264 * By this point, it is impossible for any CPU to be still processing 14265 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 14266 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 14267 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 14268 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 14269 * iff we're in the END probe. 14270 */ 14271 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 14272 dtrace_sync(); 14273 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 14274 14275 /* 14276 * Finally, we can release the reserve and call the END probe. We 14277 * disable interrupts across calling the END probe to allow us to 14278 * return the CPU on which we actually called the END probe. This 14279 * allows user-land to be sure that this CPU's principal buffer is 14280 * processed last. 14281 */ 14282 state->dts_reserve = 0; 14283 14284 cookie = dtrace_interrupt_disable(); 14285 *cpu = CPU->cpu_id; 14286 dtrace_probe(dtrace_probeid_end, 14287 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14288 dtrace_interrupt_enable(cookie); 14289 14290 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 14291 dtrace_sync(); 14292 14293 if (state->dts_getf != 0 && 14294 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14295 /* 14296 * We don't have kernel privs but we have at least one call 14297 * to getf(); we need to lower our zone's count, and (if 14298 * this is the last enabling to have an unprivileged call 14299 * to getf()) we need to clear the closef() hook. 14300 */ 14301 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14302 ASSERT(dtrace_closef == dtrace_getf_barrier); 14303 ASSERT(dtrace_getf > 0); 14304 14305 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14306 14307 if (--dtrace_getf == 0) 14308 dtrace_closef = NULL; 14309 } 14310 14311 return (0); 14312 } 14313 14314 static int 14315 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14316 dtrace_optval_t val) 14317 { 14318 ASSERT(MUTEX_HELD(&dtrace_lock)); 14319 14320 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14321 return (EBUSY); 14322 14323 if (option >= DTRACEOPT_MAX) 14324 return (EINVAL); 14325 14326 if (option != DTRACEOPT_CPU && val < 0) 14327 return (EINVAL); 14328 14329 switch (option) { 14330 case DTRACEOPT_DESTRUCTIVE: 14331 if (dtrace_destructive_disallow) 14332 return (EACCES); 14333 14334 state->dts_cred.dcr_destructive = 1; 14335 break; 14336 14337 case DTRACEOPT_BUFSIZE: 14338 case DTRACEOPT_DYNVARSIZE: 14339 case DTRACEOPT_AGGSIZE: 14340 case DTRACEOPT_SPECSIZE: 14341 case DTRACEOPT_STRSIZE: 14342 if (val < 0) 14343 return (EINVAL); 14344 14345 if (val >= LONG_MAX) { 14346 /* 14347 * If this is an otherwise negative value, set it to 14348 * the highest multiple of 128m less than LONG_MAX. 14349 * Technically, we're adjusting the size without 14350 * regard to the buffer resizing policy, but in fact, 14351 * this has no effect -- if we set the buffer size to 14352 * ~LONG_MAX and the buffer policy is ultimately set to 14353 * be "manual", the buffer allocation is guaranteed to 14354 * fail, if only because the allocation requires two 14355 * buffers. (We set the the size to the highest 14356 * multiple of 128m because it ensures that the size 14357 * will remain a multiple of a megabyte when 14358 * repeatedly halved -- all the way down to 15m.) 14359 */ 14360 val = LONG_MAX - (1 << 27) + 1; 14361 } 14362 } 14363 14364 state->dts_options[option] = val; 14365 14366 return (0); 14367 } 14368 14369 static void 14370 dtrace_state_destroy(dtrace_state_t *state) 14371 { 14372 dtrace_ecb_t *ecb; 14373 dtrace_vstate_t *vstate = &state->dts_vstate; 14374 minor_t minor = getminor(state->dts_dev); 14375 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14376 dtrace_speculation_t *spec = state->dts_speculations; 14377 int nspec = state->dts_nspeculations; 14378 uint32_t match; 14379 14380 ASSERT(MUTEX_HELD(&dtrace_lock)); 14381 ASSERT(MUTEX_HELD(&cpu_lock)); 14382 14383 /* 14384 * First, retract any retained enablings for this state. 14385 */ 14386 dtrace_enabling_retract(state); 14387 ASSERT(state->dts_nretained == 0); 14388 14389 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14390 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14391 /* 14392 * We have managed to come into dtrace_state_destroy() on a 14393 * hot enabling -- almost certainly because of a disorderly 14394 * shutdown of a consumer. (That is, a consumer that is 14395 * exiting without having called dtrace_stop().) In this case, 14396 * we're going to set our activity to be KILLED, and then 14397 * issue a sync to be sure that everyone is out of probe 14398 * context before we start blowing away ECBs. 14399 */ 14400 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14401 dtrace_sync(); 14402 } 14403 14404 /* 14405 * Release the credential hold we took in dtrace_state_create(). 14406 */ 14407 if (state->dts_cred.dcr_cred != NULL) 14408 crfree(state->dts_cred.dcr_cred); 14409 14410 /* 14411 * Now we can safely disable and destroy any enabled probes. Because 14412 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14413 * (especially if they're all enabled), we take two passes through the 14414 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14415 * in the second we disable whatever is left over. 14416 */ 14417 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14418 for (i = 0; i < state->dts_necbs; i++) { 14419 if ((ecb = state->dts_ecbs[i]) == NULL) 14420 continue; 14421 14422 if (match && ecb->dte_probe != NULL) { 14423 dtrace_probe_t *probe = ecb->dte_probe; 14424 dtrace_provider_t *prov = probe->dtpr_provider; 14425 14426 if (!(prov->dtpv_priv.dtpp_flags & match)) 14427 continue; 14428 } 14429 14430 dtrace_ecb_disable(ecb); 14431 dtrace_ecb_destroy(ecb); 14432 } 14433 14434 if (!match) 14435 break; 14436 } 14437 14438 /* 14439 * Before we free the buffers, perform one more sync to assure that 14440 * every CPU is out of probe context. 14441 */ 14442 dtrace_sync(); 14443 14444 dtrace_buffer_free(state->dts_buffer); 14445 dtrace_buffer_free(state->dts_aggbuffer); 14446 14447 for (i = 0; i < nspec; i++) 14448 dtrace_buffer_free(spec[i].dtsp_buffer); 14449 14450 if (state->dts_cleaner != CYCLIC_NONE) 14451 cyclic_remove(state->dts_cleaner); 14452 14453 if (state->dts_deadman != CYCLIC_NONE) 14454 cyclic_remove(state->dts_deadman); 14455 14456 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14457 dtrace_vstate_fini(vstate); 14458 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14459 14460 if (state->dts_aggregations != NULL) { 14461 #ifdef DEBUG 14462 for (i = 0; i < state->dts_naggregations; i++) 14463 ASSERT(state->dts_aggregations[i] == NULL); 14464 #endif 14465 ASSERT(state->dts_naggregations > 0); 14466 kmem_free(state->dts_aggregations, 14467 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14468 } 14469 14470 kmem_free(state->dts_buffer, bufsize); 14471 kmem_free(state->dts_aggbuffer, bufsize); 14472 14473 for (i = 0; i < nspec; i++) 14474 kmem_free(spec[i].dtsp_buffer, bufsize); 14475 14476 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14477 14478 dtrace_format_destroy(state); 14479 14480 vmem_destroy(state->dts_aggid_arena); 14481 ddi_soft_state_free(dtrace_softstate, minor); 14482 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14483 } 14484 14485 /* 14486 * DTrace Anonymous Enabling Functions 14487 */ 14488 static dtrace_state_t * 14489 dtrace_anon_grab(void) 14490 { 14491 dtrace_state_t *state; 14492 14493 ASSERT(MUTEX_HELD(&dtrace_lock)); 14494 14495 if ((state = dtrace_anon.dta_state) == NULL) { 14496 ASSERT(dtrace_anon.dta_enabling == NULL); 14497 return (NULL); 14498 } 14499 14500 ASSERT(dtrace_anon.dta_enabling != NULL); 14501 ASSERT(dtrace_retained != NULL); 14502 14503 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14504 dtrace_anon.dta_enabling = NULL; 14505 dtrace_anon.dta_state = NULL; 14506 14507 return (state); 14508 } 14509 14510 static void 14511 dtrace_anon_property(void) 14512 { 14513 int i, rv; 14514 dtrace_state_t *state; 14515 dof_hdr_t *dof; 14516 char c[32]; /* enough for "dof-data-" + digits */ 14517 14518 ASSERT(MUTEX_HELD(&dtrace_lock)); 14519 ASSERT(MUTEX_HELD(&cpu_lock)); 14520 14521 for (i = 0; ; i++) { 14522 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14523 14524 dtrace_err_verbose = 1; 14525 14526 if ((dof = dtrace_dof_property(c)) == NULL) { 14527 dtrace_err_verbose = 0; 14528 break; 14529 } 14530 14531 /* 14532 * We want to create anonymous state, so we need to transition 14533 * the kernel debugger to indicate that DTrace is active. If 14534 * this fails (e.g. because the debugger has modified text in 14535 * some way), we won't continue with the processing. 14536 */ 14537 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14538 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14539 "enabling ignored."); 14540 dtrace_dof_destroy(dof); 14541 break; 14542 } 14543 14544 /* 14545 * If we haven't allocated an anonymous state, we'll do so now. 14546 */ 14547 if ((state = dtrace_anon.dta_state) == NULL) { 14548 state = dtrace_state_create(NULL, NULL); 14549 dtrace_anon.dta_state = state; 14550 14551 if (state == NULL) { 14552 /* 14553 * This basically shouldn't happen: the only 14554 * failure mode from dtrace_state_create() is a 14555 * failure of ddi_soft_state_zalloc() that 14556 * itself should never happen. Still, the 14557 * interface allows for a failure mode, and 14558 * we want to fail as gracefully as possible: 14559 * we'll emit an error message and cease 14560 * processing anonymous state in this case. 14561 */ 14562 cmn_err(CE_WARN, "failed to create " 14563 "anonymous state"); 14564 dtrace_dof_destroy(dof); 14565 break; 14566 } 14567 } 14568 14569 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14570 &dtrace_anon.dta_enabling, 0, B_TRUE); 14571 14572 if (rv == 0) 14573 rv = dtrace_dof_options(dof, state); 14574 14575 dtrace_err_verbose = 0; 14576 dtrace_dof_destroy(dof); 14577 14578 if (rv != 0) { 14579 /* 14580 * This is malformed DOF; chuck any anonymous state 14581 * that we created. 14582 */ 14583 ASSERT(dtrace_anon.dta_enabling == NULL); 14584 dtrace_state_destroy(state); 14585 dtrace_anon.dta_state = NULL; 14586 break; 14587 } 14588 14589 ASSERT(dtrace_anon.dta_enabling != NULL); 14590 } 14591 14592 if (dtrace_anon.dta_enabling != NULL) { 14593 int rval; 14594 14595 /* 14596 * dtrace_enabling_retain() can only fail because we are 14597 * trying to retain more enablings than are allowed -- but 14598 * we only have one anonymous enabling, and we are guaranteed 14599 * to be allowed at least one retained enabling; we assert 14600 * that dtrace_enabling_retain() returns success. 14601 */ 14602 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14603 ASSERT(rval == 0); 14604 14605 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14606 } 14607 } 14608 14609 /* 14610 * DTrace Helper Functions 14611 */ 14612 static void 14613 dtrace_helper_trace(dtrace_helper_action_t *helper, 14614 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14615 { 14616 uint32_t size, next, nnext, i; 14617 dtrace_helptrace_t *ent, *buffer; 14618 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14619 14620 if ((buffer = dtrace_helptrace_buffer) == NULL) 14621 return; 14622 14623 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14624 14625 /* 14626 * What would a tracing framework be without its own tracing 14627 * framework? (Well, a hell of a lot simpler, for starters...) 14628 */ 14629 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14630 sizeof (uint64_t) - sizeof (uint64_t); 14631 14632 /* 14633 * Iterate until we can allocate a slot in the trace buffer. 14634 */ 14635 do { 14636 next = dtrace_helptrace_next; 14637 14638 if (next + size < dtrace_helptrace_bufsize) { 14639 nnext = next + size; 14640 } else { 14641 nnext = size; 14642 } 14643 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14644 14645 /* 14646 * We have our slot; fill it in. 14647 */ 14648 if (nnext == size) { 14649 dtrace_helptrace_wrapped++; 14650 next = 0; 14651 } 14652 14653 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 14654 ent->dtht_helper = helper; 14655 ent->dtht_where = where; 14656 ent->dtht_nlocals = vstate->dtvs_nlocals; 14657 14658 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14659 mstate->dtms_fltoffs : -1; 14660 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14661 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14662 14663 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14664 dtrace_statvar_t *svar; 14665 14666 if ((svar = vstate->dtvs_locals[i]) == NULL) 14667 continue; 14668 14669 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14670 ent->dtht_locals[i] = 14671 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14672 } 14673 } 14674 14675 static uint64_t 14676 dtrace_helper(int which, dtrace_mstate_t *mstate, 14677 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14678 { 14679 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14680 uint64_t sarg0 = mstate->dtms_arg[0]; 14681 uint64_t sarg1 = mstate->dtms_arg[1]; 14682 uint64_t rval; 14683 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14684 dtrace_helper_action_t *helper; 14685 dtrace_vstate_t *vstate; 14686 dtrace_difo_t *pred; 14687 int i, trace = dtrace_helptrace_buffer != NULL; 14688 14689 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14690 14691 if (helpers == NULL) 14692 return (0); 14693 14694 if ((helper = helpers->dthps_actions[which]) == NULL) 14695 return (0); 14696 14697 vstate = &helpers->dthps_vstate; 14698 mstate->dtms_arg[0] = arg0; 14699 mstate->dtms_arg[1] = arg1; 14700 14701 /* 14702 * Now iterate over each helper. If its predicate evaluates to 'true', 14703 * we'll call the corresponding actions. Note that the below calls 14704 * to dtrace_dif_emulate() may set faults in machine state. This is 14705 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14706 * the stored DIF offset with its own (which is the desired behavior). 14707 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14708 * from machine state; this is okay, too. 14709 */ 14710 for (; helper != NULL; helper = helper->dtha_next) { 14711 if ((pred = helper->dtha_predicate) != NULL) { 14712 if (trace) 14713 dtrace_helper_trace(helper, mstate, vstate, 0); 14714 14715 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14716 goto next; 14717 14718 if (*flags & CPU_DTRACE_FAULT) 14719 goto err; 14720 } 14721 14722 for (i = 0; i < helper->dtha_nactions; i++) { 14723 if (trace) 14724 dtrace_helper_trace(helper, 14725 mstate, vstate, i + 1); 14726 14727 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14728 mstate, vstate, state); 14729 14730 if (*flags & CPU_DTRACE_FAULT) 14731 goto err; 14732 } 14733 14734 next: 14735 if (trace) 14736 dtrace_helper_trace(helper, mstate, vstate, 14737 DTRACE_HELPTRACE_NEXT); 14738 } 14739 14740 if (trace) 14741 dtrace_helper_trace(helper, mstate, vstate, 14742 DTRACE_HELPTRACE_DONE); 14743 14744 /* 14745 * Restore the arg0 that we saved upon entry. 14746 */ 14747 mstate->dtms_arg[0] = sarg0; 14748 mstate->dtms_arg[1] = sarg1; 14749 14750 return (rval); 14751 14752 err: 14753 if (trace) 14754 dtrace_helper_trace(helper, mstate, vstate, 14755 DTRACE_HELPTRACE_ERR); 14756 14757 /* 14758 * Restore the arg0 that we saved upon entry. 14759 */ 14760 mstate->dtms_arg[0] = sarg0; 14761 mstate->dtms_arg[1] = sarg1; 14762 14763 return (NULL); 14764 } 14765 14766 static void 14767 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14768 dtrace_vstate_t *vstate) 14769 { 14770 int i; 14771 14772 if (helper->dtha_predicate != NULL) 14773 dtrace_difo_release(helper->dtha_predicate, vstate); 14774 14775 for (i = 0; i < helper->dtha_nactions; i++) { 14776 ASSERT(helper->dtha_actions[i] != NULL); 14777 dtrace_difo_release(helper->dtha_actions[i], vstate); 14778 } 14779 14780 kmem_free(helper->dtha_actions, 14781 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14782 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14783 } 14784 14785 static int 14786 dtrace_helper_destroygen(int gen) 14787 { 14788 proc_t *p = curproc; 14789 dtrace_helpers_t *help = p->p_dtrace_helpers; 14790 dtrace_vstate_t *vstate; 14791 int i; 14792 14793 ASSERT(MUTEX_HELD(&dtrace_lock)); 14794 14795 if (help == NULL || gen > help->dthps_generation) 14796 return (EINVAL); 14797 14798 vstate = &help->dthps_vstate; 14799 14800 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14801 dtrace_helper_action_t *last = NULL, *h, *next; 14802 14803 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14804 next = h->dtha_next; 14805 14806 if (h->dtha_generation == gen) { 14807 if (last != NULL) { 14808 last->dtha_next = next; 14809 } else { 14810 help->dthps_actions[i] = next; 14811 } 14812 14813 dtrace_helper_action_destroy(h, vstate); 14814 } else { 14815 last = h; 14816 } 14817 } 14818 } 14819 14820 /* 14821 * Interate until we've cleared out all helper providers with the 14822 * given generation number. 14823 */ 14824 for (;;) { 14825 dtrace_helper_provider_t *prov; 14826 14827 /* 14828 * Look for a helper provider with the right generation. We 14829 * have to start back at the beginning of the list each time 14830 * because we drop dtrace_lock. It's unlikely that we'll make 14831 * more than two passes. 14832 */ 14833 for (i = 0; i < help->dthps_nprovs; i++) { 14834 prov = help->dthps_provs[i]; 14835 14836 if (prov->dthp_generation == gen) 14837 break; 14838 } 14839 14840 /* 14841 * If there were no matches, we're done. 14842 */ 14843 if (i == help->dthps_nprovs) 14844 break; 14845 14846 /* 14847 * Move the last helper provider into this slot. 14848 */ 14849 help->dthps_nprovs--; 14850 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14851 help->dthps_provs[help->dthps_nprovs] = NULL; 14852 14853 mutex_exit(&dtrace_lock); 14854 14855 /* 14856 * If we have a meta provider, remove this helper provider. 14857 */ 14858 mutex_enter(&dtrace_meta_lock); 14859 if (dtrace_meta_pid != NULL) { 14860 ASSERT(dtrace_deferred_pid == NULL); 14861 dtrace_helper_provider_remove(&prov->dthp_prov, 14862 p->p_pid); 14863 } 14864 mutex_exit(&dtrace_meta_lock); 14865 14866 dtrace_helper_provider_destroy(prov); 14867 14868 mutex_enter(&dtrace_lock); 14869 } 14870 14871 return (0); 14872 } 14873 14874 static int 14875 dtrace_helper_validate(dtrace_helper_action_t *helper) 14876 { 14877 int err = 0, i; 14878 dtrace_difo_t *dp; 14879 14880 if ((dp = helper->dtha_predicate) != NULL) 14881 err += dtrace_difo_validate_helper(dp); 14882 14883 for (i = 0; i < helper->dtha_nactions; i++) 14884 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14885 14886 return (err == 0); 14887 } 14888 14889 static int 14890 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14891 { 14892 dtrace_helpers_t *help; 14893 dtrace_helper_action_t *helper, *last; 14894 dtrace_actdesc_t *act; 14895 dtrace_vstate_t *vstate; 14896 dtrace_predicate_t *pred; 14897 int count = 0, nactions = 0, i; 14898 14899 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14900 return (EINVAL); 14901 14902 help = curproc->p_dtrace_helpers; 14903 last = help->dthps_actions[which]; 14904 vstate = &help->dthps_vstate; 14905 14906 for (count = 0; last != NULL; last = last->dtha_next) { 14907 count++; 14908 if (last->dtha_next == NULL) 14909 break; 14910 } 14911 14912 /* 14913 * If we already have dtrace_helper_actions_max helper actions for this 14914 * helper action type, we'll refuse to add a new one. 14915 */ 14916 if (count >= dtrace_helper_actions_max) 14917 return (ENOSPC); 14918 14919 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 14920 helper->dtha_generation = help->dthps_generation; 14921 14922 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 14923 ASSERT(pred->dtp_difo != NULL); 14924 dtrace_difo_hold(pred->dtp_difo); 14925 helper->dtha_predicate = pred->dtp_difo; 14926 } 14927 14928 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 14929 if (act->dtad_kind != DTRACEACT_DIFEXPR) 14930 goto err; 14931 14932 if (act->dtad_difo == NULL) 14933 goto err; 14934 14935 nactions++; 14936 } 14937 14938 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 14939 (helper->dtha_nactions = nactions), KM_SLEEP); 14940 14941 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 14942 dtrace_difo_hold(act->dtad_difo); 14943 helper->dtha_actions[i++] = act->dtad_difo; 14944 } 14945 14946 if (!dtrace_helper_validate(helper)) 14947 goto err; 14948 14949 if (last == NULL) { 14950 help->dthps_actions[which] = helper; 14951 } else { 14952 last->dtha_next = helper; 14953 } 14954 14955 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 14956 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 14957 dtrace_helptrace_next = 0; 14958 } 14959 14960 return (0); 14961 err: 14962 dtrace_helper_action_destroy(helper, vstate); 14963 return (EINVAL); 14964 } 14965 14966 static void 14967 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 14968 dof_helper_t *dofhp) 14969 { 14970 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 14971 14972 mutex_enter(&dtrace_meta_lock); 14973 mutex_enter(&dtrace_lock); 14974 14975 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 14976 /* 14977 * If the dtrace module is loaded but not attached, or if 14978 * there aren't isn't a meta provider registered to deal with 14979 * these provider descriptions, we need to postpone creating 14980 * the actual providers until later. 14981 */ 14982 14983 if (help->dthps_next == NULL && help->dthps_prev == NULL && 14984 dtrace_deferred_pid != help) { 14985 help->dthps_deferred = 1; 14986 help->dthps_pid = p->p_pid; 14987 help->dthps_next = dtrace_deferred_pid; 14988 help->dthps_prev = NULL; 14989 if (dtrace_deferred_pid != NULL) 14990 dtrace_deferred_pid->dthps_prev = help; 14991 dtrace_deferred_pid = help; 14992 } 14993 14994 mutex_exit(&dtrace_lock); 14995 14996 } else if (dofhp != NULL) { 14997 /* 14998 * If the dtrace module is loaded and we have a particular 14999 * helper provider description, pass that off to the 15000 * meta provider. 15001 */ 15002 15003 mutex_exit(&dtrace_lock); 15004 15005 dtrace_helper_provide(dofhp, p->p_pid); 15006 15007 } else { 15008 /* 15009 * Otherwise, just pass all the helper provider descriptions 15010 * off to the meta provider. 15011 */ 15012 15013 int i; 15014 mutex_exit(&dtrace_lock); 15015 15016 for (i = 0; i < help->dthps_nprovs; i++) { 15017 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 15018 p->p_pid); 15019 } 15020 } 15021 15022 mutex_exit(&dtrace_meta_lock); 15023 } 15024 15025 static int 15026 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 15027 { 15028 dtrace_helpers_t *help; 15029 dtrace_helper_provider_t *hprov, **tmp_provs; 15030 uint_t tmp_maxprovs, i; 15031 15032 ASSERT(MUTEX_HELD(&dtrace_lock)); 15033 15034 help = curproc->p_dtrace_helpers; 15035 ASSERT(help != NULL); 15036 15037 /* 15038 * If we already have dtrace_helper_providers_max helper providers, 15039 * we're refuse to add a new one. 15040 */ 15041 if (help->dthps_nprovs >= dtrace_helper_providers_max) 15042 return (ENOSPC); 15043 15044 /* 15045 * Check to make sure this isn't a duplicate. 15046 */ 15047 for (i = 0; i < help->dthps_nprovs; i++) { 15048 if (dofhp->dofhp_addr == 15049 help->dthps_provs[i]->dthp_prov.dofhp_addr) 15050 return (EALREADY); 15051 } 15052 15053 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 15054 hprov->dthp_prov = *dofhp; 15055 hprov->dthp_ref = 1; 15056 hprov->dthp_generation = gen; 15057 15058 /* 15059 * Allocate a bigger table for helper providers if it's already full. 15060 */ 15061 if (help->dthps_maxprovs == help->dthps_nprovs) { 15062 tmp_maxprovs = help->dthps_maxprovs; 15063 tmp_provs = help->dthps_provs; 15064 15065 if (help->dthps_maxprovs == 0) 15066 help->dthps_maxprovs = 2; 15067 else 15068 help->dthps_maxprovs *= 2; 15069 if (help->dthps_maxprovs > dtrace_helper_providers_max) 15070 help->dthps_maxprovs = dtrace_helper_providers_max; 15071 15072 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 15073 15074 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 15075 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15076 15077 if (tmp_provs != NULL) { 15078 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 15079 sizeof (dtrace_helper_provider_t *)); 15080 kmem_free(tmp_provs, tmp_maxprovs * 15081 sizeof (dtrace_helper_provider_t *)); 15082 } 15083 } 15084 15085 help->dthps_provs[help->dthps_nprovs] = hprov; 15086 help->dthps_nprovs++; 15087 15088 return (0); 15089 } 15090 15091 static void 15092 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 15093 { 15094 mutex_enter(&dtrace_lock); 15095 15096 if (--hprov->dthp_ref == 0) { 15097 dof_hdr_t *dof; 15098 mutex_exit(&dtrace_lock); 15099 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 15100 dtrace_dof_destroy(dof); 15101 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 15102 } else { 15103 mutex_exit(&dtrace_lock); 15104 } 15105 } 15106 15107 static int 15108 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 15109 { 15110 uintptr_t daddr = (uintptr_t)dof; 15111 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 15112 dof_provider_t *provider; 15113 dof_probe_t *probe; 15114 uint8_t *arg; 15115 char *strtab, *typestr; 15116 dof_stridx_t typeidx; 15117 size_t typesz; 15118 uint_t nprobes, j, k; 15119 15120 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 15121 15122 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 15123 dtrace_dof_error(dof, "misaligned section offset"); 15124 return (-1); 15125 } 15126 15127 /* 15128 * The section needs to be large enough to contain the DOF provider 15129 * structure appropriate for the given version. 15130 */ 15131 if (sec->dofs_size < 15132 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 15133 offsetof(dof_provider_t, dofpv_prenoffs) : 15134 sizeof (dof_provider_t))) { 15135 dtrace_dof_error(dof, "provider section too small"); 15136 return (-1); 15137 } 15138 15139 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 15140 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 15141 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 15142 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 15143 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 15144 15145 if (str_sec == NULL || prb_sec == NULL || 15146 arg_sec == NULL || off_sec == NULL) 15147 return (-1); 15148 15149 enoff_sec = NULL; 15150 15151 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 15152 provider->dofpv_prenoffs != DOF_SECT_NONE && 15153 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 15154 provider->dofpv_prenoffs)) == NULL) 15155 return (-1); 15156 15157 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 15158 15159 if (provider->dofpv_name >= str_sec->dofs_size || 15160 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 15161 dtrace_dof_error(dof, "invalid provider name"); 15162 return (-1); 15163 } 15164 15165 if (prb_sec->dofs_entsize == 0 || 15166 prb_sec->dofs_entsize > prb_sec->dofs_size) { 15167 dtrace_dof_error(dof, "invalid entry size"); 15168 return (-1); 15169 } 15170 15171 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 15172 dtrace_dof_error(dof, "misaligned entry size"); 15173 return (-1); 15174 } 15175 15176 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 15177 dtrace_dof_error(dof, "invalid entry size"); 15178 return (-1); 15179 } 15180 15181 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 15182 dtrace_dof_error(dof, "misaligned section offset"); 15183 return (-1); 15184 } 15185 15186 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 15187 dtrace_dof_error(dof, "invalid entry size"); 15188 return (-1); 15189 } 15190 15191 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 15192 15193 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 15194 15195 /* 15196 * Take a pass through the probes to check for errors. 15197 */ 15198 for (j = 0; j < nprobes; j++) { 15199 probe = (dof_probe_t *)(uintptr_t)(daddr + 15200 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 15201 15202 if (probe->dofpr_func >= str_sec->dofs_size) { 15203 dtrace_dof_error(dof, "invalid function name"); 15204 return (-1); 15205 } 15206 15207 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 15208 dtrace_dof_error(dof, "function name too long"); 15209 return (-1); 15210 } 15211 15212 if (probe->dofpr_name >= str_sec->dofs_size || 15213 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 15214 dtrace_dof_error(dof, "invalid probe name"); 15215 return (-1); 15216 } 15217 15218 /* 15219 * The offset count must not wrap the index, and the offsets 15220 * must also not overflow the section's data. 15221 */ 15222 if (probe->dofpr_offidx + probe->dofpr_noffs < 15223 probe->dofpr_offidx || 15224 (probe->dofpr_offidx + probe->dofpr_noffs) * 15225 off_sec->dofs_entsize > off_sec->dofs_size) { 15226 dtrace_dof_error(dof, "invalid probe offset"); 15227 return (-1); 15228 } 15229 15230 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 15231 /* 15232 * If there's no is-enabled offset section, make sure 15233 * there aren't any is-enabled offsets. Otherwise 15234 * perform the same checks as for probe offsets 15235 * (immediately above). 15236 */ 15237 if (enoff_sec == NULL) { 15238 if (probe->dofpr_enoffidx != 0 || 15239 probe->dofpr_nenoffs != 0) { 15240 dtrace_dof_error(dof, "is-enabled " 15241 "offsets with null section"); 15242 return (-1); 15243 } 15244 } else if (probe->dofpr_enoffidx + 15245 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 15246 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 15247 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 15248 dtrace_dof_error(dof, "invalid is-enabled " 15249 "offset"); 15250 return (-1); 15251 } 15252 15253 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 15254 dtrace_dof_error(dof, "zero probe and " 15255 "is-enabled offsets"); 15256 return (-1); 15257 } 15258 } else if (probe->dofpr_noffs == 0) { 15259 dtrace_dof_error(dof, "zero probe offsets"); 15260 return (-1); 15261 } 15262 15263 if (probe->dofpr_argidx + probe->dofpr_xargc < 15264 probe->dofpr_argidx || 15265 (probe->dofpr_argidx + probe->dofpr_xargc) * 15266 arg_sec->dofs_entsize > arg_sec->dofs_size) { 15267 dtrace_dof_error(dof, "invalid args"); 15268 return (-1); 15269 } 15270 15271 typeidx = probe->dofpr_nargv; 15272 typestr = strtab + probe->dofpr_nargv; 15273 for (k = 0; k < probe->dofpr_nargc; k++) { 15274 if (typeidx >= str_sec->dofs_size) { 15275 dtrace_dof_error(dof, "bad " 15276 "native argument type"); 15277 return (-1); 15278 } 15279 15280 typesz = strlen(typestr) + 1; 15281 if (typesz > DTRACE_ARGTYPELEN) { 15282 dtrace_dof_error(dof, "native " 15283 "argument type too long"); 15284 return (-1); 15285 } 15286 typeidx += typesz; 15287 typestr += typesz; 15288 } 15289 15290 typeidx = probe->dofpr_xargv; 15291 typestr = strtab + probe->dofpr_xargv; 15292 for (k = 0; k < probe->dofpr_xargc; k++) { 15293 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 15294 dtrace_dof_error(dof, "bad " 15295 "native argument index"); 15296 return (-1); 15297 } 15298 15299 if (typeidx >= str_sec->dofs_size) { 15300 dtrace_dof_error(dof, "bad " 15301 "translated argument type"); 15302 return (-1); 15303 } 15304 15305 typesz = strlen(typestr) + 1; 15306 if (typesz > DTRACE_ARGTYPELEN) { 15307 dtrace_dof_error(dof, "translated argument " 15308 "type too long"); 15309 return (-1); 15310 } 15311 15312 typeidx += typesz; 15313 typestr += typesz; 15314 } 15315 } 15316 15317 return (0); 15318 } 15319 15320 static int 15321 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15322 { 15323 dtrace_helpers_t *help; 15324 dtrace_vstate_t *vstate; 15325 dtrace_enabling_t *enab = NULL; 15326 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15327 uintptr_t daddr = (uintptr_t)dof; 15328 15329 ASSERT(MUTEX_HELD(&dtrace_lock)); 15330 15331 if ((help = curproc->p_dtrace_helpers) == NULL) 15332 help = dtrace_helpers_create(curproc); 15333 15334 vstate = &help->dthps_vstate; 15335 15336 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15337 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15338 dtrace_dof_destroy(dof); 15339 return (rv); 15340 } 15341 15342 /* 15343 * Look for helper providers and validate their descriptions. 15344 */ 15345 if (dhp != NULL) { 15346 for (i = 0; i < dof->dofh_secnum; i++) { 15347 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15348 dof->dofh_secoff + i * dof->dofh_secsize); 15349 15350 if (sec->dofs_type != DOF_SECT_PROVIDER) 15351 continue; 15352 15353 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15354 dtrace_enabling_destroy(enab); 15355 dtrace_dof_destroy(dof); 15356 return (-1); 15357 } 15358 15359 nprovs++; 15360 } 15361 } 15362 15363 /* 15364 * Now we need to walk through the ECB descriptions in the enabling. 15365 */ 15366 for (i = 0; i < enab->dten_ndesc; i++) { 15367 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15368 dtrace_probedesc_t *desc = &ep->dted_probe; 15369 15370 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15371 continue; 15372 15373 if (strcmp(desc->dtpd_mod, "helper") != 0) 15374 continue; 15375 15376 if (strcmp(desc->dtpd_func, "ustack") != 0) 15377 continue; 15378 15379 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15380 ep)) != 0) { 15381 /* 15382 * Adding this helper action failed -- we are now going 15383 * to rip out the entire generation and return failure. 15384 */ 15385 (void) dtrace_helper_destroygen(help->dthps_generation); 15386 dtrace_enabling_destroy(enab); 15387 dtrace_dof_destroy(dof); 15388 return (-1); 15389 } 15390 15391 nhelpers++; 15392 } 15393 15394 if (nhelpers < enab->dten_ndesc) 15395 dtrace_dof_error(dof, "unmatched helpers"); 15396 15397 gen = help->dthps_generation++; 15398 dtrace_enabling_destroy(enab); 15399 15400 if (dhp != NULL && nprovs > 0) { 15401 /* 15402 * Now that this is in-kernel, we change the sense of the 15403 * members: dofhp_dof denotes the in-kernel copy of the DOF 15404 * and dofhp_addr denotes the address at user-level. 15405 */ 15406 dhp->dofhp_addr = dhp->dofhp_dof; 15407 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15408 15409 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15410 mutex_exit(&dtrace_lock); 15411 dtrace_helper_provider_register(curproc, help, dhp); 15412 mutex_enter(&dtrace_lock); 15413 15414 destroy = 0; 15415 } 15416 } 15417 15418 if (destroy) 15419 dtrace_dof_destroy(dof); 15420 15421 return (gen); 15422 } 15423 15424 static dtrace_helpers_t * 15425 dtrace_helpers_create(proc_t *p) 15426 { 15427 dtrace_helpers_t *help; 15428 15429 ASSERT(MUTEX_HELD(&dtrace_lock)); 15430 ASSERT(p->p_dtrace_helpers == NULL); 15431 15432 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15433 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15434 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15435 15436 p->p_dtrace_helpers = help; 15437 dtrace_helpers++; 15438 15439 return (help); 15440 } 15441 15442 static void 15443 dtrace_helpers_destroy(proc_t *p) 15444 { 15445 dtrace_helpers_t *help; 15446 dtrace_vstate_t *vstate; 15447 int i; 15448 15449 mutex_enter(&dtrace_lock); 15450 15451 ASSERT(p->p_dtrace_helpers != NULL); 15452 ASSERT(dtrace_helpers > 0); 15453 15454 help = p->p_dtrace_helpers; 15455 vstate = &help->dthps_vstate; 15456 15457 /* 15458 * We're now going to lose the help from this process. 15459 */ 15460 p->p_dtrace_helpers = NULL; 15461 if (p == curproc) { 15462 dtrace_sync(); 15463 } else { 15464 /* 15465 * It is sometimes necessary to clean up dtrace helpers from a 15466 * an incomplete child process as part of a failed fork 15467 * operation. In such situations, a dtrace_sync() call should 15468 * be unnecessary as the process should be devoid of threads, 15469 * much less any in probe context. 15470 */ 15471 VERIFY(p->p_stat == SIDL); 15472 } 15473 15474 /* 15475 * Destroy the helper actions. 15476 */ 15477 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15478 dtrace_helper_action_t *h, *next; 15479 15480 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15481 next = h->dtha_next; 15482 dtrace_helper_action_destroy(h, vstate); 15483 h = next; 15484 } 15485 } 15486 15487 mutex_exit(&dtrace_lock); 15488 15489 /* 15490 * Destroy the helper providers. 15491 */ 15492 if (help->dthps_maxprovs > 0) { 15493 mutex_enter(&dtrace_meta_lock); 15494 if (dtrace_meta_pid != NULL) { 15495 ASSERT(dtrace_deferred_pid == NULL); 15496 15497 for (i = 0; i < help->dthps_nprovs; i++) { 15498 dtrace_helper_provider_remove( 15499 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15500 } 15501 } else { 15502 mutex_enter(&dtrace_lock); 15503 ASSERT(help->dthps_deferred == 0 || 15504 help->dthps_next != NULL || 15505 help->dthps_prev != NULL || 15506 help == dtrace_deferred_pid); 15507 15508 /* 15509 * Remove the helper from the deferred list. 15510 */ 15511 if (help->dthps_next != NULL) 15512 help->dthps_next->dthps_prev = help->dthps_prev; 15513 if (help->dthps_prev != NULL) 15514 help->dthps_prev->dthps_next = help->dthps_next; 15515 if (dtrace_deferred_pid == help) { 15516 dtrace_deferred_pid = help->dthps_next; 15517 ASSERT(help->dthps_prev == NULL); 15518 } 15519 15520 mutex_exit(&dtrace_lock); 15521 } 15522 15523 mutex_exit(&dtrace_meta_lock); 15524 15525 for (i = 0; i < help->dthps_nprovs; i++) { 15526 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15527 } 15528 15529 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15530 sizeof (dtrace_helper_provider_t *)); 15531 } 15532 15533 mutex_enter(&dtrace_lock); 15534 15535 dtrace_vstate_fini(&help->dthps_vstate); 15536 kmem_free(help->dthps_actions, 15537 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15538 kmem_free(help, sizeof (dtrace_helpers_t)); 15539 15540 --dtrace_helpers; 15541 mutex_exit(&dtrace_lock); 15542 } 15543 15544 static void 15545 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15546 { 15547 dtrace_helpers_t *help, *newhelp; 15548 dtrace_helper_action_t *helper, *new, *last; 15549 dtrace_difo_t *dp; 15550 dtrace_vstate_t *vstate; 15551 int i, j, sz, hasprovs = 0; 15552 15553 mutex_enter(&dtrace_lock); 15554 ASSERT(from->p_dtrace_helpers != NULL); 15555 ASSERT(dtrace_helpers > 0); 15556 15557 help = from->p_dtrace_helpers; 15558 newhelp = dtrace_helpers_create(to); 15559 ASSERT(to->p_dtrace_helpers != NULL); 15560 15561 newhelp->dthps_generation = help->dthps_generation; 15562 vstate = &newhelp->dthps_vstate; 15563 15564 /* 15565 * Duplicate the helper actions. 15566 */ 15567 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15568 if ((helper = help->dthps_actions[i]) == NULL) 15569 continue; 15570 15571 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15572 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15573 KM_SLEEP); 15574 new->dtha_generation = helper->dtha_generation; 15575 15576 if ((dp = helper->dtha_predicate) != NULL) { 15577 dp = dtrace_difo_duplicate(dp, vstate); 15578 new->dtha_predicate = dp; 15579 } 15580 15581 new->dtha_nactions = helper->dtha_nactions; 15582 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15583 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15584 15585 for (j = 0; j < new->dtha_nactions; j++) { 15586 dtrace_difo_t *dp = helper->dtha_actions[j]; 15587 15588 ASSERT(dp != NULL); 15589 dp = dtrace_difo_duplicate(dp, vstate); 15590 new->dtha_actions[j] = dp; 15591 } 15592 15593 if (last != NULL) { 15594 last->dtha_next = new; 15595 } else { 15596 newhelp->dthps_actions[i] = new; 15597 } 15598 15599 last = new; 15600 } 15601 } 15602 15603 /* 15604 * Duplicate the helper providers and register them with the 15605 * DTrace framework. 15606 */ 15607 if (help->dthps_nprovs > 0) { 15608 newhelp->dthps_nprovs = help->dthps_nprovs; 15609 newhelp->dthps_maxprovs = help->dthps_nprovs; 15610 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15611 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15612 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15613 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15614 newhelp->dthps_provs[i]->dthp_ref++; 15615 } 15616 15617 hasprovs = 1; 15618 } 15619 15620 mutex_exit(&dtrace_lock); 15621 15622 if (hasprovs) 15623 dtrace_helper_provider_register(to, newhelp, NULL); 15624 } 15625 15626 /* 15627 * DTrace Hook Functions 15628 */ 15629 static void 15630 dtrace_module_loaded(struct modctl *ctl) 15631 { 15632 dtrace_provider_t *prv; 15633 15634 mutex_enter(&dtrace_provider_lock); 15635 mutex_enter(&mod_lock); 15636 15637 ASSERT(ctl->mod_busy); 15638 15639 /* 15640 * We're going to call each providers per-module provide operation 15641 * specifying only this module. 15642 */ 15643 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15644 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15645 15646 mutex_exit(&mod_lock); 15647 mutex_exit(&dtrace_provider_lock); 15648 15649 /* 15650 * If we have any retained enablings, we need to match against them. 15651 * Enabling probes requires that cpu_lock be held, and we cannot hold 15652 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15653 * module. (In particular, this happens when loading scheduling 15654 * classes.) So if we have any retained enablings, we need to dispatch 15655 * our task queue to do the match for us. 15656 */ 15657 mutex_enter(&dtrace_lock); 15658 15659 if (dtrace_retained == NULL) { 15660 mutex_exit(&dtrace_lock); 15661 return; 15662 } 15663 15664 (void) taskq_dispatch(dtrace_taskq, 15665 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15666 15667 mutex_exit(&dtrace_lock); 15668 15669 /* 15670 * And now, for a little heuristic sleaze: in general, we want to 15671 * match modules as soon as they load. However, we cannot guarantee 15672 * this, because it would lead us to the lock ordering violation 15673 * outlined above. The common case, of course, is that cpu_lock is 15674 * _not_ held -- so we delay here for a clock tick, hoping that that's 15675 * long enough for the task queue to do its work. If it's not, it's 15676 * not a serious problem -- it just means that the module that we 15677 * just loaded may not be immediately instrumentable. 15678 */ 15679 delay(1); 15680 } 15681 15682 static void 15683 dtrace_module_unloaded(struct modctl *ctl) 15684 { 15685 dtrace_probe_t template, *probe, *first, *next; 15686 dtrace_provider_t *prov; 15687 15688 template.dtpr_mod = ctl->mod_modname; 15689 15690 mutex_enter(&dtrace_provider_lock); 15691 mutex_enter(&mod_lock); 15692 mutex_enter(&dtrace_lock); 15693 15694 if (dtrace_bymod == NULL) { 15695 /* 15696 * The DTrace module is loaded (obviously) but not attached; 15697 * we don't have any work to do. 15698 */ 15699 mutex_exit(&dtrace_provider_lock); 15700 mutex_exit(&mod_lock); 15701 mutex_exit(&dtrace_lock); 15702 return; 15703 } 15704 15705 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15706 probe != NULL; probe = probe->dtpr_nextmod) { 15707 if (probe->dtpr_ecb != NULL) { 15708 mutex_exit(&dtrace_provider_lock); 15709 mutex_exit(&mod_lock); 15710 mutex_exit(&dtrace_lock); 15711 15712 /* 15713 * This shouldn't _actually_ be possible -- we're 15714 * unloading a module that has an enabled probe in it. 15715 * (It's normally up to the provider to make sure that 15716 * this can't happen.) However, because dtps_enable() 15717 * doesn't have a failure mode, there can be an 15718 * enable/unload race. Upshot: we don't want to 15719 * assert, but we're not going to disable the 15720 * probe, either. 15721 */ 15722 if (dtrace_err_verbose) { 15723 cmn_err(CE_WARN, "unloaded module '%s' had " 15724 "enabled probes", ctl->mod_modname); 15725 } 15726 15727 return; 15728 } 15729 } 15730 15731 probe = first; 15732 15733 for (first = NULL; probe != NULL; probe = next) { 15734 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15735 15736 dtrace_probes[probe->dtpr_id - 1] = NULL; 15737 15738 next = probe->dtpr_nextmod; 15739 dtrace_hash_remove(dtrace_bymod, probe); 15740 dtrace_hash_remove(dtrace_byfunc, probe); 15741 dtrace_hash_remove(dtrace_byname, probe); 15742 15743 if (first == NULL) { 15744 first = probe; 15745 probe->dtpr_nextmod = NULL; 15746 } else { 15747 probe->dtpr_nextmod = first; 15748 first = probe; 15749 } 15750 } 15751 15752 /* 15753 * We've removed all of the module's probes from the hash chains and 15754 * from the probe array. Now issue a dtrace_sync() to be sure that 15755 * everyone has cleared out from any probe array processing. 15756 */ 15757 dtrace_sync(); 15758 15759 for (probe = first; probe != NULL; probe = first) { 15760 first = probe->dtpr_nextmod; 15761 prov = probe->dtpr_provider; 15762 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15763 probe->dtpr_arg); 15764 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15765 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15766 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15767 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15768 kmem_free(probe, sizeof (dtrace_probe_t)); 15769 } 15770 15771 mutex_exit(&dtrace_lock); 15772 mutex_exit(&mod_lock); 15773 mutex_exit(&dtrace_provider_lock); 15774 } 15775 15776 void 15777 dtrace_suspend(void) 15778 { 15779 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15780 } 15781 15782 void 15783 dtrace_resume(void) 15784 { 15785 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15786 } 15787 15788 static int 15789 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 15790 { 15791 ASSERT(MUTEX_HELD(&cpu_lock)); 15792 mutex_enter(&dtrace_lock); 15793 15794 switch (what) { 15795 case CPU_CONFIG: { 15796 dtrace_state_t *state; 15797 dtrace_optval_t *opt, rs, c; 15798 15799 /* 15800 * For now, we only allocate a new buffer for anonymous state. 15801 */ 15802 if ((state = dtrace_anon.dta_state) == NULL) 15803 break; 15804 15805 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15806 break; 15807 15808 opt = state->dts_options; 15809 c = opt[DTRACEOPT_CPU]; 15810 15811 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15812 break; 15813 15814 /* 15815 * Regardless of what the actual policy is, we're going to 15816 * temporarily set our resize policy to be manual. We're 15817 * also going to temporarily set our CPU option to denote 15818 * the newly configured CPU. 15819 */ 15820 rs = opt[DTRACEOPT_BUFRESIZE]; 15821 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15822 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15823 15824 (void) dtrace_state_buffers(state); 15825 15826 opt[DTRACEOPT_BUFRESIZE] = rs; 15827 opt[DTRACEOPT_CPU] = c; 15828 15829 break; 15830 } 15831 15832 case CPU_UNCONFIG: 15833 /* 15834 * We don't free the buffer in the CPU_UNCONFIG case. (The 15835 * buffer will be freed when the consumer exits.) 15836 */ 15837 break; 15838 15839 default: 15840 break; 15841 } 15842 15843 mutex_exit(&dtrace_lock); 15844 return (0); 15845 } 15846 15847 static void 15848 dtrace_cpu_setup_initial(processorid_t cpu) 15849 { 15850 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15851 } 15852 15853 static void 15854 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15855 { 15856 if (dtrace_toxranges >= dtrace_toxranges_max) { 15857 int osize, nsize; 15858 dtrace_toxrange_t *range; 15859 15860 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15861 15862 if (osize == 0) { 15863 ASSERT(dtrace_toxrange == NULL); 15864 ASSERT(dtrace_toxranges_max == 0); 15865 dtrace_toxranges_max = 1; 15866 } else { 15867 dtrace_toxranges_max <<= 1; 15868 } 15869 15870 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15871 range = kmem_zalloc(nsize, KM_SLEEP); 15872 15873 if (dtrace_toxrange != NULL) { 15874 ASSERT(osize != 0); 15875 bcopy(dtrace_toxrange, range, osize); 15876 kmem_free(dtrace_toxrange, osize); 15877 } 15878 15879 dtrace_toxrange = range; 15880 } 15881 15882 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 15883 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 15884 15885 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15886 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15887 dtrace_toxranges++; 15888 } 15889 15890 static void 15891 dtrace_getf_barrier() 15892 { 15893 /* 15894 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 15895 * that contain calls to getf(), this routine will be called on every 15896 * closef() before either the underlying vnode is released or the 15897 * file_t itself is freed. By the time we are here, it is essential 15898 * that the file_t can no longer be accessed from a call to getf() 15899 * in probe context -- that assures that a dtrace_sync() can be used 15900 * to clear out any enablings referring to the old structures. 15901 */ 15902 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 15903 kcred->cr_zone->zone_dtrace_getf != 0) 15904 dtrace_sync(); 15905 } 15906 15907 /* 15908 * DTrace Driver Cookbook Functions 15909 */ 15910 /*ARGSUSED*/ 15911 static int 15912 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 15913 { 15914 dtrace_provider_id_t id; 15915 dtrace_state_t *state = NULL; 15916 dtrace_enabling_t *enab; 15917 15918 mutex_enter(&cpu_lock); 15919 mutex_enter(&dtrace_provider_lock); 15920 mutex_enter(&dtrace_lock); 15921 15922 if (ddi_soft_state_init(&dtrace_softstate, 15923 sizeof (dtrace_state_t), 0) != 0) { 15924 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 15925 mutex_exit(&cpu_lock); 15926 mutex_exit(&dtrace_provider_lock); 15927 mutex_exit(&dtrace_lock); 15928 return (DDI_FAILURE); 15929 } 15930 15931 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 15932 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 15933 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 15934 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 15935 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 15936 ddi_remove_minor_node(devi, NULL); 15937 ddi_soft_state_fini(&dtrace_softstate); 15938 mutex_exit(&cpu_lock); 15939 mutex_exit(&dtrace_provider_lock); 15940 mutex_exit(&dtrace_lock); 15941 return (DDI_FAILURE); 15942 } 15943 15944 ddi_report_dev(devi); 15945 dtrace_devi = devi; 15946 15947 dtrace_modload = dtrace_module_loaded; 15948 dtrace_modunload = dtrace_module_unloaded; 15949 dtrace_cpu_init = dtrace_cpu_setup_initial; 15950 dtrace_helpers_cleanup = dtrace_helpers_destroy; 15951 dtrace_helpers_fork = dtrace_helpers_duplicate; 15952 dtrace_cpustart_init = dtrace_suspend; 15953 dtrace_cpustart_fini = dtrace_resume; 15954 dtrace_debugger_init = dtrace_suspend; 15955 dtrace_debugger_fini = dtrace_resume; 15956 15957 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15958 15959 ASSERT(MUTEX_HELD(&cpu_lock)); 15960 15961 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 15962 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 15963 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 15964 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 15965 VM_SLEEP | VMC_IDENTIFIER); 15966 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 15967 1, INT_MAX, 0); 15968 15969 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 15970 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 15971 NULL, NULL, NULL, NULL, NULL, 0); 15972 15973 ASSERT(MUTEX_HELD(&cpu_lock)); 15974 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 15975 offsetof(dtrace_probe_t, dtpr_nextmod), 15976 offsetof(dtrace_probe_t, dtpr_prevmod)); 15977 15978 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 15979 offsetof(dtrace_probe_t, dtpr_nextfunc), 15980 offsetof(dtrace_probe_t, dtpr_prevfunc)); 15981 15982 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 15983 offsetof(dtrace_probe_t, dtpr_nextname), 15984 offsetof(dtrace_probe_t, dtpr_prevname)); 15985 15986 if (dtrace_retain_max < 1) { 15987 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 15988 "setting to 1", dtrace_retain_max); 15989 dtrace_retain_max = 1; 15990 } 15991 15992 /* 15993 * Now discover our toxic ranges. 15994 */ 15995 dtrace_toxic_ranges(dtrace_toxrange_add); 15996 15997 /* 15998 * Before we register ourselves as a provider to our own framework, 15999 * we would like to assert that dtrace_provider is NULL -- but that's 16000 * not true if we were loaded as a dependency of a DTrace provider. 16001 * Once we've registered, we can assert that dtrace_provider is our 16002 * pseudo provider. 16003 */ 16004 (void) dtrace_register("dtrace", &dtrace_provider_attr, 16005 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 16006 16007 ASSERT(dtrace_provider != NULL); 16008 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 16009 16010 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 16011 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 16012 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 16013 dtrace_provider, NULL, NULL, "END", 0, NULL); 16014 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 16015 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 16016 16017 dtrace_anon_property(); 16018 mutex_exit(&cpu_lock); 16019 16020 /* 16021 * If there are already providers, we must ask them to provide their 16022 * probes, and then match any anonymous enabling against them. Note 16023 * that there should be no other retained enablings at this time: 16024 * the only retained enablings at this time should be the anonymous 16025 * enabling. 16026 */ 16027 if (dtrace_anon.dta_enabling != NULL) { 16028 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 16029 16030 dtrace_enabling_provide(NULL); 16031 state = dtrace_anon.dta_state; 16032 16033 /* 16034 * We couldn't hold cpu_lock across the above call to 16035 * dtrace_enabling_provide(), but we must hold it to actually 16036 * enable the probes. We have to drop all of our locks, pick 16037 * up cpu_lock, and regain our locks before matching the 16038 * retained anonymous enabling. 16039 */ 16040 mutex_exit(&dtrace_lock); 16041 mutex_exit(&dtrace_provider_lock); 16042 16043 mutex_enter(&cpu_lock); 16044 mutex_enter(&dtrace_provider_lock); 16045 mutex_enter(&dtrace_lock); 16046 16047 if ((enab = dtrace_anon.dta_enabling) != NULL) 16048 (void) dtrace_enabling_match(enab, NULL); 16049 16050 mutex_exit(&cpu_lock); 16051 } 16052 16053 mutex_exit(&dtrace_lock); 16054 mutex_exit(&dtrace_provider_lock); 16055 16056 if (state != NULL) { 16057 /* 16058 * If we created any anonymous state, set it going now. 16059 */ 16060 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 16061 } 16062 16063 return (DDI_SUCCESS); 16064 } 16065 16066 /*ARGSUSED*/ 16067 static int 16068 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 16069 { 16070 dtrace_state_t *state; 16071 uint32_t priv; 16072 uid_t uid; 16073 zoneid_t zoneid; 16074 16075 if (getminor(*devp) == DTRACEMNRN_HELPER) 16076 return (0); 16077 16078 /* 16079 * If this wasn't an open with the "helper" minor, then it must be 16080 * the "dtrace" minor. 16081 */ 16082 if (getminor(*devp) != DTRACEMNRN_DTRACE) 16083 return (ENXIO); 16084 16085 /* 16086 * If no DTRACE_PRIV_* bits are set in the credential, then the 16087 * caller lacks sufficient permission to do anything with DTrace. 16088 */ 16089 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 16090 if (priv == DTRACE_PRIV_NONE) 16091 return (EACCES); 16092 16093 /* 16094 * Ask all providers to provide all their probes. 16095 */ 16096 mutex_enter(&dtrace_provider_lock); 16097 dtrace_probe_provide(NULL, NULL); 16098 mutex_exit(&dtrace_provider_lock); 16099 16100 mutex_enter(&cpu_lock); 16101 mutex_enter(&dtrace_lock); 16102 dtrace_opens++; 16103 dtrace_membar_producer(); 16104 16105 /* 16106 * If the kernel debugger is active (that is, if the kernel debugger 16107 * modified text in some way), we won't allow the open. 16108 */ 16109 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 16110 dtrace_opens--; 16111 mutex_exit(&cpu_lock); 16112 mutex_exit(&dtrace_lock); 16113 return (EBUSY); 16114 } 16115 16116 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 16117 /* 16118 * If DTrace helper tracing is enabled, we need to allocate the 16119 * trace buffer and initialize the values. 16120 */ 16121 dtrace_helptrace_buffer = 16122 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 16123 dtrace_helptrace_next = 0; 16124 dtrace_helptrace_wrapped = 0; 16125 dtrace_helptrace_enable = 0; 16126 } 16127 16128 state = dtrace_state_create(devp, cred_p); 16129 mutex_exit(&cpu_lock); 16130 16131 if (state == NULL) { 16132 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16133 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16134 mutex_exit(&dtrace_lock); 16135 return (EAGAIN); 16136 } 16137 16138 mutex_exit(&dtrace_lock); 16139 16140 return (0); 16141 } 16142 16143 /*ARGSUSED*/ 16144 static int 16145 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 16146 { 16147 minor_t minor = getminor(dev); 16148 dtrace_state_t *state; 16149 dtrace_helptrace_t *buf = NULL; 16150 16151 if (minor == DTRACEMNRN_HELPER) 16152 return (0); 16153 16154 state = ddi_get_soft_state(dtrace_softstate, minor); 16155 16156 mutex_enter(&cpu_lock); 16157 mutex_enter(&dtrace_lock); 16158 16159 if (state->dts_anon) { 16160 /* 16161 * There is anonymous state. Destroy that first. 16162 */ 16163 ASSERT(dtrace_anon.dta_state == NULL); 16164 dtrace_state_destroy(state->dts_anon); 16165 } 16166 16167 if (dtrace_helptrace_disable) { 16168 /* 16169 * If we have been told to disable helper tracing, set the 16170 * buffer to NULL before calling into dtrace_state_destroy(); 16171 * we take advantage of its dtrace_sync() to know that no 16172 * CPU is in probe context with enabled helper tracing 16173 * after it returns. 16174 */ 16175 buf = dtrace_helptrace_buffer; 16176 dtrace_helptrace_buffer = NULL; 16177 } 16178 16179 dtrace_state_destroy(state); 16180 ASSERT(dtrace_opens > 0); 16181 16182 /* 16183 * Only relinquish control of the kernel debugger interface when there 16184 * are no consumers and no anonymous enablings. 16185 */ 16186 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16187 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16188 16189 if (buf != NULL) { 16190 kmem_free(buf, dtrace_helptrace_bufsize); 16191 dtrace_helptrace_disable = 0; 16192 } 16193 16194 mutex_exit(&dtrace_lock); 16195 mutex_exit(&cpu_lock); 16196 16197 return (0); 16198 } 16199 16200 /*ARGSUSED*/ 16201 static int 16202 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 16203 { 16204 int rval; 16205 dof_helper_t help, *dhp = NULL; 16206 16207 switch (cmd) { 16208 case DTRACEHIOC_ADDDOF: 16209 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 16210 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 16211 return (EFAULT); 16212 } 16213 16214 dhp = &help; 16215 arg = (intptr_t)help.dofhp_dof; 16216 /*FALLTHROUGH*/ 16217 16218 case DTRACEHIOC_ADD: { 16219 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 16220 16221 if (dof == NULL) 16222 return (rval); 16223 16224 mutex_enter(&dtrace_lock); 16225 16226 /* 16227 * dtrace_helper_slurp() takes responsibility for the dof -- 16228 * it may free it now or it may save it and free it later. 16229 */ 16230 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 16231 *rv = rval; 16232 rval = 0; 16233 } else { 16234 rval = EINVAL; 16235 } 16236 16237 mutex_exit(&dtrace_lock); 16238 return (rval); 16239 } 16240 16241 case DTRACEHIOC_REMOVE: { 16242 mutex_enter(&dtrace_lock); 16243 rval = dtrace_helper_destroygen(arg); 16244 mutex_exit(&dtrace_lock); 16245 16246 return (rval); 16247 } 16248 16249 default: 16250 break; 16251 } 16252 16253 return (ENOTTY); 16254 } 16255 16256 /*ARGSUSED*/ 16257 static int 16258 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 16259 { 16260 minor_t minor = getminor(dev); 16261 dtrace_state_t *state; 16262 int rval; 16263 16264 if (minor == DTRACEMNRN_HELPER) 16265 return (dtrace_ioctl_helper(cmd, arg, rv)); 16266 16267 state = ddi_get_soft_state(dtrace_softstate, minor); 16268 16269 if (state->dts_anon) { 16270 ASSERT(dtrace_anon.dta_state == NULL); 16271 state = state->dts_anon; 16272 } 16273 16274 switch (cmd) { 16275 case DTRACEIOC_PROVIDER: { 16276 dtrace_providerdesc_t pvd; 16277 dtrace_provider_t *pvp; 16278 16279 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 16280 return (EFAULT); 16281 16282 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 16283 mutex_enter(&dtrace_provider_lock); 16284 16285 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 16286 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 16287 break; 16288 } 16289 16290 mutex_exit(&dtrace_provider_lock); 16291 16292 if (pvp == NULL) 16293 return (ESRCH); 16294 16295 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 16296 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 16297 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 16298 return (EFAULT); 16299 16300 return (0); 16301 } 16302 16303 case DTRACEIOC_EPROBE: { 16304 dtrace_eprobedesc_t epdesc; 16305 dtrace_ecb_t *ecb; 16306 dtrace_action_t *act; 16307 void *buf; 16308 size_t size; 16309 uintptr_t dest; 16310 int nrecs; 16311 16312 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 16313 return (EFAULT); 16314 16315 mutex_enter(&dtrace_lock); 16316 16317 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 16318 mutex_exit(&dtrace_lock); 16319 return (EINVAL); 16320 } 16321 16322 if (ecb->dte_probe == NULL) { 16323 mutex_exit(&dtrace_lock); 16324 return (EINVAL); 16325 } 16326 16327 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 16328 epdesc.dtepd_uarg = ecb->dte_uarg; 16329 epdesc.dtepd_size = ecb->dte_size; 16330 16331 nrecs = epdesc.dtepd_nrecs; 16332 epdesc.dtepd_nrecs = 0; 16333 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16334 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16335 continue; 16336 16337 epdesc.dtepd_nrecs++; 16338 } 16339 16340 /* 16341 * Now that we have the size, we need to allocate a temporary 16342 * buffer in which to store the complete description. We need 16343 * the temporary buffer to be able to drop dtrace_lock() 16344 * across the copyout(), below. 16345 */ 16346 size = sizeof (dtrace_eprobedesc_t) + 16347 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 16348 16349 buf = kmem_alloc(size, KM_SLEEP); 16350 dest = (uintptr_t)buf; 16351 16352 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 16353 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 16354 16355 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16356 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16357 continue; 16358 16359 if (nrecs-- == 0) 16360 break; 16361 16362 bcopy(&act->dta_rec, (void *)dest, 16363 sizeof (dtrace_recdesc_t)); 16364 dest += sizeof (dtrace_recdesc_t); 16365 } 16366 16367 mutex_exit(&dtrace_lock); 16368 16369 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16370 kmem_free(buf, size); 16371 return (EFAULT); 16372 } 16373 16374 kmem_free(buf, size); 16375 return (0); 16376 } 16377 16378 case DTRACEIOC_AGGDESC: { 16379 dtrace_aggdesc_t aggdesc; 16380 dtrace_action_t *act; 16381 dtrace_aggregation_t *agg; 16382 int nrecs; 16383 uint32_t offs; 16384 dtrace_recdesc_t *lrec; 16385 void *buf; 16386 size_t size; 16387 uintptr_t dest; 16388 16389 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16390 return (EFAULT); 16391 16392 mutex_enter(&dtrace_lock); 16393 16394 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16395 mutex_exit(&dtrace_lock); 16396 return (EINVAL); 16397 } 16398 16399 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16400 16401 nrecs = aggdesc.dtagd_nrecs; 16402 aggdesc.dtagd_nrecs = 0; 16403 16404 offs = agg->dtag_base; 16405 lrec = &agg->dtag_action.dta_rec; 16406 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16407 16408 for (act = agg->dtag_first; ; act = act->dta_next) { 16409 ASSERT(act->dta_intuple || 16410 DTRACEACT_ISAGG(act->dta_kind)); 16411 16412 /* 16413 * If this action has a record size of zero, it 16414 * denotes an argument to the aggregating action. 16415 * Because the presence of this record doesn't (or 16416 * shouldn't) affect the way the data is interpreted, 16417 * we don't copy it out to save user-level the 16418 * confusion of dealing with a zero-length record. 16419 */ 16420 if (act->dta_rec.dtrd_size == 0) { 16421 ASSERT(agg->dtag_hasarg); 16422 continue; 16423 } 16424 16425 aggdesc.dtagd_nrecs++; 16426 16427 if (act == &agg->dtag_action) 16428 break; 16429 } 16430 16431 /* 16432 * Now that we have the size, we need to allocate a temporary 16433 * buffer in which to store the complete description. We need 16434 * the temporary buffer to be able to drop dtrace_lock() 16435 * across the copyout(), below. 16436 */ 16437 size = sizeof (dtrace_aggdesc_t) + 16438 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16439 16440 buf = kmem_alloc(size, KM_SLEEP); 16441 dest = (uintptr_t)buf; 16442 16443 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16444 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16445 16446 for (act = agg->dtag_first; ; act = act->dta_next) { 16447 dtrace_recdesc_t rec = act->dta_rec; 16448 16449 /* 16450 * See the comment in the above loop for why we pass 16451 * over zero-length records. 16452 */ 16453 if (rec.dtrd_size == 0) { 16454 ASSERT(agg->dtag_hasarg); 16455 continue; 16456 } 16457 16458 if (nrecs-- == 0) 16459 break; 16460 16461 rec.dtrd_offset -= offs; 16462 bcopy(&rec, (void *)dest, sizeof (rec)); 16463 dest += sizeof (dtrace_recdesc_t); 16464 16465 if (act == &agg->dtag_action) 16466 break; 16467 } 16468 16469 mutex_exit(&dtrace_lock); 16470 16471 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16472 kmem_free(buf, size); 16473 return (EFAULT); 16474 } 16475 16476 kmem_free(buf, size); 16477 return (0); 16478 } 16479 16480 case DTRACEIOC_ENABLE: { 16481 dof_hdr_t *dof; 16482 dtrace_enabling_t *enab = NULL; 16483 dtrace_vstate_t *vstate; 16484 int err = 0; 16485 16486 *rv = 0; 16487 16488 /* 16489 * If a NULL argument has been passed, we take this as our 16490 * cue to reevaluate our enablings. 16491 */ 16492 if (arg == NULL) { 16493 dtrace_enabling_matchall(); 16494 16495 return (0); 16496 } 16497 16498 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16499 return (rval); 16500 16501 mutex_enter(&cpu_lock); 16502 mutex_enter(&dtrace_lock); 16503 vstate = &state->dts_vstate; 16504 16505 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16506 mutex_exit(&dtrace_lock); 16507 mutex_exit(&cpu_lock); 16508 dtrace_dof_destroy(dof); 16509 return (EBUSY); 16510 } 16511 16512 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16513 mutex_exit(&dtrace_lock); 16514 mutex_exit(&cpu_lock); 16515 dtrace_dof_destroy(dof); 16516 return (EINVAL); 16517 } 16518 16519 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16520 dtrace_enabling_destroy(enab); 16521 mutex_exit(&dtrace_lock); 16522 mutex_exit(&cpu_lock); 16523 dtrace_dof_destroy(dof); 16524 return (rval); 16525 } 16526 16527 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16528 err = dtrace_enabling_retain(enab); 16529 } else { 16530 dtrace_enabling_destroy(enab); 16531 } 16532 16533 mutex_exit(&cpu_lock); 16534 mutex_exit(&dtrace_lock); 16535 dtrace_dof_destroy(dof); 16536 16537 return (err); 16538 } 16539 16540 case DTRACEIOC_REPLICATE: { 16541 dtrace_repldesc_t desc; 16542 dtrace_probedesc_t *match = &desc.dtrpd_match; 16543 dtrace_probedesc_t *create = &desc.dtrpd_create; 16544 int err; 16545 16546 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16547 return (EFAULT); 16548 16549 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16550 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16551 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16552 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16553 16554 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16555 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16556 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16557 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16558 16559 mutex_enter(&dtrace_lock); 16560 err = dtrace_enabling_replicate(state, match, create); 16561 mutex_exit(&dtrace_lock); 16562 16563 return (err); 16564 } 16565 16566 case DTRACEIOC_PROBEMATCH: 16567 case DTRACEIOC_PROBES: { 16568 dtrace_probe_t *probe = NULL; 16569 dtrace_probedesc_t desc; 16570 dtrace_probekey_t pkey; 16571 dtrace_id_t i; 16572 int m = 0; 16573 uint32_t priv; 16574 uid_t uid; 16575 zoneid_t zoneid; 16576 16577 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16578 return (EFAULT); 16579 16580 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16581 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16582 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16583 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16584 16585 /* 16586 * Before we attempt to match this probe, we want to give 16587 * all providers the opportunity to provide it. 16588 */ 16589 if (desc.dtpd_id == DTRACE_IDNONE) { 16590 mutex_enter(&dtrace_provider_lock); 16591 dtrace_probe_provide(&desc, NULL); 16592 mutex_exit(&dtrace_provider_lock); 16593 desc.dtpd_id++; 16594 } 16595 16596 if (cmd == DTRACEIOC_PROBEMATCH) { 16597 dtrace_probekey(&desc, &pkey); 16598 pkey.dtpk_id = DTRACE_IDNONE; 16599 } 16600 16601 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16602 16603 mutex_enter(&dtrace_lock); 16604 16605 if (cmd == DTRACEIOC_PROBEMATCH) { 16606 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16607 if ((probe = dtrace_probes[i - 1]) != NULL && 16608 (m = dtrace_match_probe(probe, &pkey, 16609 priv, uid, zoneid)) != 0) 16610 break; 16611 } 16612 16613 if (m < 0) { 16614 mutex_exit(&dtrace_lock); 16615 return (EINVAL); 16616 } 16617 16618 } else { 16619 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16620 if ((probe = dtrace_probes[i - 1]) != NULL && 16621 dtrace_match_priv(probe, priv, uid, zoneid)) 16622 break; 16623 } 16624 } 16625 16626 if (probe == NULL) { 16627 mutex_exit(&dtrace_lock); 16628 return (ESRCH); 16629 } 16630 16631 dtrace_probe_description(probe, &desc); 16632 mutex_exit(&dtrace_lock); 16633 16634 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16635 return (EFAULT); 16636 16637 return (0); 16638 } 16639 16640 case DTRACEIOC_PROBEARG: { 16641 dtrace_argdesc_t desc; 16642 dtrace_probe_t *probe; 16643 dtrace_provider_t *prov; 16644 16645 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16646 return (EFAULT); 16647 16648 if (desc.dtargd_id == DTRACE_IDNONE) 16649 return (EINVAL); 16650 16651 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16652 return (EINVAL); 16653 16654 mutex_enter(&dtrace_provider_lock); 16655 mutex_enter(&mod_lock); 16656 mutex_enter(&dtrace_lock); 16657 16658 if (desc.dtargd_id > dtrace_nprobes) { 16659 mutex_exit(&dtrace_lock); 16660 mutex_exit(&mod_lock); 16661 mutex_exit(&dtrace_provider_lock); 16662 return (EINVAL); 16663 } 16664 16665 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16666 mutex_exit(&dtrace_lock); 16667 mutex_exit(&mod_lock); 16668 mutex_exit(&dtrace_provider_lock); 16669 return (EINVAL); 16670 } 16671 16672 mutex_exit(&dtrace_lock); 16673 16674 prov = probe->dtpr_provider; 16675 16676 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16677 /* 16678 * There isn't any typed information for this probe. 16679 * Set the argument number to DTRACE_ARGNONE. 16680 */ 16681 desc.dtargd_ndx = DTRACE_ARGNONE; 16682 } else { 16683 desc.dtargd_native[0] = '\0'; 16684 desc.dtargd_xlate[0] = '\0'; 16685 desc.dtargd_mapping = desc.dtargd_ndx; 16686 16687 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16688 probe->dtpr_id, probe->dtpr_arg, &desc); 16689 } 16690 16691 mutex_exit(&mod_lock); 16692 mutex_exit(&dtrace_provider_lock); 16693 16694 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16695 return (EFAULT); 16696 16697 return (0); 16698 } 16699 16700 case DTRACEIOC_GO: { 16701 processorid_t cpuid; 16702 rval = dtrace_state_go(state, &cpuid); 16703 16704 if (rval != 0) 16705 return (rval); 16706 16707 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16708 return (EFAULT); 16709 16710 return (0); 16711 } 16712 16713 case DTRACEIOC_STOP: { 16714 processorid_t cpuid; 16715 16716 mutex_enter(&dtrace_lock); 16717 rval = dtrace_state_stop(state, &cpuid); 16718 mutex_exit(&dtrace_lock); 16719 16720 if (rval != 0) 16721 return (rval); 16722 16723 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16724 return (EFAULT); 16725 16726 return (0); 16727 } 16728 16729 case DTRACEIOC_DOFGET: { 16730 dof_hdr_t hdr, *dof; 16731 uint64_t len; 16732 16733 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16734 return (EFAULT); 16735 16736 mutex_enter(&dtrace_lock); 16737 dof = dtrace_dof_create(state); 16738 mutex_exit(&dtrace_lock); 16739 16740 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16741 rval = copyout(dof, (void *)arg, len); 16742 dtrace_dof_destroy(dof); 16743 16744 return (rval == 0 ? 0 : EFAULT); 16745 } 16746 16747 case DTRACEIOC_AGGSNAP: 16748 case DTRACEIOC_BUFSNAP: { 16749 dtrace_bufdesc_t desc; 16750 caddr_t cached; 16751 dtrace_buffer_t *buf; 16752 16753 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16754 return (EFAULT); 16755 16756 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16757 return (EINVAL); 16758 16759 mutex_enter(&dtrace_lock); 16760 16761 if (cmd == DTRACEIOC_BUFSNAP) { 16762 buf = &state->dts_buffer[desc.dtbd_cpu]; 16763 } else { 16764 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16765 } 16766 16767 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16768 size_t sz = buf->dtb_offset; 16769 16770 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16771 mutex_exit(&dtrace_lock); 16772 return (EBUSY); 16773 } 16774 16775 /* 16776 * If this buffer has already been consumed, we're 16777 * going to indicate that there's nothing left here 16778 * to consume. 16779 */ 16780 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16781 mutex_exit(&dtrace_lock); 16782 16783 desc.dtbd_size = 0; 16784 desc.dtbd_drops = 0; 16785 desc.dtbd_errors = 0; 16786 desc.dtbd_oldest = 0; 16787 sz = sizeof (desc); 16788 16789 if (copyout(&desc, (void *)arg, sz) != 0) 16790 return (EFAULT); 16791 16792 return (0); 16793 } 16794 16795 /* 16796 * If this is a ring buffer that has wrapped, we want 16797 * to copy the whole thing out. 16798 */ 16799 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16800 dtrace_buffer_polish(buf); 16801 sz = buf->dtb_size; 16802 } 16803 16804 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16805 mutex_exit(&dtrace_lock); 16806 return (EFAULT); 16807 } 16808 16809 desc.dtbd_size = sz; 16810 desc.dtbd_drops = buf->dtb_drops; 16811 desc.dtbd_errors = buf->dtb_errors; 16812 desc.dtbd_oldest = buf->dtb_xamot_offset; 16813 desc.dtbd_timestamp = dtrace_gethrtime(); 16814 16815 mutex_exit(&dtrace_lock); 16816 16817 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16818 return (EFAULT); 16819 16820 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16821 16822 return (0); 16823 } 16824 16825 if (buf->dtb_tomax == NULL) { 16826 ASSERT(buf->dtb_xamot == NULL); 16827 mutex_exit(&dtrace_lock); 16828 return (ENOENT); 16829 } 16830 16831 cached = buf->dtb_tomax; 16832 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16833 16834 dtrace_xcall(desc.dtbd_cpu, 16835 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16836 16837 state->dts_errors += buf->dtb_xamot_errors; 16838 16839 /* 16840 * If the buffers did not actually switch, then the cross call 16841 * did not take place -- presumably because the given CPU is 16842 * not in the ready set. If this is the case, we'll return 16843 * ENOENT. 16844 */ 16845 if (buf->dtb_tomax == cached) { 16846 ASSERT(buf->dtb_xamot != cached); 16847 mutex_exit(&dtrace_lock); 16848 return (ENOENT); 16849 } 16850 16851 ASSERT(cached == buf->dtb_xamot); 16852 16853 /* 16854 * We have our snapshot; now copy it out. 16855 */ 16856 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16857 buf->dtb_xamot_offset) != 0) { 16858 mutex_exit(&dtrace_lock); 16859 return (EFAULT); 16860 } 16861 16862 desc.dtbd_size = buf->dtb_xamot_offset; 16863 desc.dtbd_drops = buf->dtb_xamot_drops; 16864 desc.dtbd_errors = buf->dtb_xamot_errors; 16865 desc.dtbd_oldest = 0; 16866 desc.dtbd_timestamp = buf->dtb_switched; 16867 16868 mutex_exit(&dtrace_lock); 16869 16870 /* 16871 * Finally, copy out the buffer description. 16872 */ 16873 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16874 return (EFAULT); 16875 16876 return (0); 16877 } 16878 16879 case DTRACEIOC_CONF: { 16880 dtrace_conf_t conf; 16881 16882 bzero(&conf, sizeof (conf)); 16883 conf.dtc_difversion = DIF_VERSION; 16884 conf.dtc_difintregs = DIF_DIR_NREGS; 16885 conf.dtc_diftupregs = DIF_DTR_NREGS; 16886 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16887 16888 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16889 return (EFAULT); 16890 16891 return (0); 16892 } 16893 16894 case DTRACEIOC_STATUS: { 16895 dtrace_status_t stat; 16896 dtrace_dstate_t *dstate; 16897 int i, j; 16898 uint64_t nerrs; 16899 16900 /* 16901 * See the comment in dtrace_state_deadman() for the reason 16902 * for setting dts_laststatus to INT64_MAX before setting 16903 * it to the correct value. 16904 */ 16905 state->dts_laststatus = INT64_MAX; 16906 dtrace_membar_producer(); 16907 state->dts_laststatus = dtrace_gethrtime(); 16908 16909 bzero(&stat, sizeof (stat)); 16910 16911 mutex_enter(&dtrace_lock); 16912 16913 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 16914 mutex_exit(&dtrace_lock); 16915 return (ENOENT); 16916 } 16917 16918 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 16919 stat.dtst_exiting = 1; 16920 16921 nerrs = state->dts_errors; 16922 dstate = &state->dts_vstate.dtvs_dynvars; 16923 16924 for (i = 0; i < NCPU; i++) { 16925 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 16926 16927 stat.dtst_dyndrops += dcpu->dtdsc_drops; 16928 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 16929 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 16930 16931 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 16932 stat.dtst_filled++; 16933 16934 nerrs += state->dts_buffer[i].dtb_errors; 16935 16936 for (j = 0; j < state->dts_nspeculations; j++) { 16937 dtrace_speculation_t *spec; 16938 dtrace_buffer_t *buf; 16939 16940 spec = &state->dts_speculations[j]; 16941 buf = &spec->dtsp_buffer[i]; 16942 stat.dtst_specdrops += buf->dtb_xamot_drops; 16943 } 16944 } 16945 16946 stat.dtst_specdrops_busy = state->dts_speculations_busy; 16947 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 16948 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 16949 stat.dtst_dblerrors = state->dts_dblerrors; 16950 stat.dtst_killed = 16951 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 16952 stat.dtst_errors = nerrs; 16953 16954 mutex_exit(&dtrace_lock); 16955 16956 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 16957 return (EFAULT); 16958 16959 return (0); 16960 } 16961 16962 case DTRACEIOC_FORMAT: { 16963 dtrace_fmtdesc_t fmt; 16964 char *str; 16965 int len; 16966 16967 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 16968 return (EFAULT); 16969 16970 mutex_enter(&dtrace_lock); 16971 16972 if (fmt.dtfd_format == 0 || 16973 fmt.dtfd_format > state->dts_nformats) { 16974 mutex_exit(&dtrace_lock); 16975 return (EINVAL); 16976 } 16977 16978 /* 16979 * Format strings are allocated contiguously and they are 16980 * never freed; if a format index is less than the number 16981 * of formats, we can assert that the format map is non-NULL 16982 * and that the format for the specified index is non-NULL. 16983 */ 16984 ASSERT(state->dts_formats != NULL); 16985 str = state->dts_formats[fmt.dtfd_format - 1]; 16986 ASSERT(str != NULL); 16987 16988 len = strlen(str) + 1; 16989 16990 if (len > fmt.dtfd_length) { 16991 fmt.dtfd_length = len; 16992 16993 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 16994 mutex_exit(&dtrace_lock); 16995 return (EINVAL); 16996 } 16997 } else { 16998 if (copyout(str, fmt.dtfd_string, len) != 0) { 16999 mutex_exit(&dtrace_lock); 17000 return (EINVAL); 17001 } 17002 } 17003 17004 mutex_exit(&dtrace_lock); 17005 return (0); 17006 } 17007 17008 default: 17009 break; 17010 } 17011 17012 return (ENOTTY); 17013 } 17014 17015 /*ARGSUSED*/ 17016 static int 17017 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 17018 { 17019 dtrace_state_t *state; 17020 17021 switch (cmd) { 17022 case DDI_DETACH: 17023 break; 17024 17025 case DDI_SUSPEND: 17026 return (DDI_SUCCESS); 17027 17028 default: 17029 return (DDI_FAILURE); 17030 } 17031 17032 mutex_enter(&cpu_lock); 17033 mutex_enter(&dtrace_provider_lock); 17034 mutex_enter(&dtrace_lock); 17035 17036 ASSERT(dtrace_opens == 0); 17037 17038 if (dtrace_helpers > 0) { 17039 mutex_exit(&dtrace_provider_lock); 17040 mutex_exit(&dtrace_lock); 17041 mutex_exit(&cpu_lock); 17042 return (DDI_FAILURE); 17043 } 17044 17045 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 17046 mutex_exit(&dtrace_provider_lock); 17047 mutex_exit(&dtrace_lock); 17048 mutex_exit(&cpu_lock); 17049 return (DDI_FAILURE); 17050 } 17051 17052 dtrace_provider = NULL; 17053 17054 if ((state = dtrace_anon_grab()) != NULL) { 17055 /* 17056 * If there were ECBs on this state, the provider should 17057 * have not been allowed to detach; assert that there is 17058 * none. 17059 */ 17060 ASSERT(state->dts_necbs == 0); 17061 dtrace_state_destroy(state); 17062 17063 /* 17064 * If we're being detached with anonymous state, we need to 17065 * indicate to the kernel debugger that DTrace is now inactive. 17066 */ 17067 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17068 } 17069 17070 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 17071 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 17072 dtrace_cpu_init = NULL; 17073 dtrace_helpers_cleanup = NULL; 17074 dtrace_helpers_fork = NULL; 17075 dtrace_cpustart_init = NULL; 17076 dtrace_cpustart_fini = NULL; 17077 dtrace_debugger_init = NULL; 17078 dtrace_debugger_fini = NULL; 17079 dtrace_modload = NULL; 17080 dtrace_modunload = NULL; 17081 17082 ASSERT(dtrace_getf == 0); 17083 ASSERT(dtrace_closef == NULL); 17084 17085 mutex_exit(&cpu_lock); 17086 17087 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 17088 dtrace_probes = NULL; 17089 dtrace_nprobes = 0; 17090 17091 dtrace_hash_destroy(dtrace_bymod); 17092 dtrace_hash_destroy(dtrace_byfunc); 17093 dtrace_hash_destroy(dtrace_byname); 17094 dtrace_bymod = NULL; 17095 dtrace_byfunc = NULL; 17096 dtrace_byname = NULL; 17097 17098 kmem_cache_destroy(dtrace_state_cache); 17099 vmem_destroy(dtrace_minor); 17100 vmem_destroy(dtrace_arena); 17101 17102 if (dtrace_toxrange != NULL) { 17103 kmem_free(dtrace_toxrange, 17104 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 17105 dtrace_toxrange = NULL; 17106 dtrace_toxranges = 0; 17107 dtrace_toxranges_max = 0; 17108 } 17109 17110 ddi_remove_minor_node(dtrace_devi, NULL); 17111 dtrace_devi = NULL; 17112 17113 ddi_soft_state_fini(&dtrace_softstate); 17114 17115 ASSERT(dtrace_vtime_references == 0); 17116 ASSERT(dtrace_opens == 0); 17117 ASSERT(dtrace_retained == NULL); 17118 17119 mutex_exit(&dtrace_lock); 17120 mutex_exit(&dtrace_provider_lock); 17121 17122 /* 17123 * We don't destroy the task queue until after we have dropped our 17124 * locks (taskq_destroy() may block on running tasks). To prevent 17125 * attempting to do work after we have effectively detached but before 17126 * the task queue has been destroyed, all tasks dispatched via the 17127 * task queue must check that DTrace is still attached before 17128 * performing any operation. 17129 */ 17130 taskq_destroy(dtrace_taskq); 17131 dtrace_taskq = NULL; 17132 17133 return (DDI_SUCCESS); 17134 } 17135 17136 /*ARGSUSED*/ 17137 static int 17138 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 17139 { 17140 int error; 17141 17142 switch (infocmd) { 17143 case DDI_INFO_DEVT2DEVINFO: 17144 *result = (void *)dtrace_devi; 17145 error = DDI_SUCCESS; 17146 break; 17147 case DDI_INFO_DEVT2INSTANCE: 17148 *result = (void *)0; 17149 error = DDI_SUCCESS; 17150 break; 17151 default: 17152 error = DDI_FAILURE; 17153 } 17154 return (error); 17155 } 17156 17157 static struct cb_ops dtrace_cb_ops = { 17158 dtrace_open, /* open */ 17159 dtrace_close, /* close */ 17160 nulldev, /* strategy */ 17161 nulldev, /* print */ 17162 nodev, /* dump */ 17163 nodev, /* read */ 17164 nodev, /* write */ 17165 dtrace_ioctl, /* ioctl */ 17166 nodev, /* devmap */ 17167 nodev, /* mmap */ 17168 nodev, /* segmap */ 17169 nochpoll, /* poll */ 17170 ddi_prop_op, /* cb_prop_op */ 17171 0, /* streamtab */ 17172 D_NEW | D_MP /* Driver compatibility flag */ 17173 }; 17174 17175 static struct dev_ops dtrace_ops = { 17176 DEVO_REV, /* devo_rev */ 17177 0, /* refcnt */ 17178 dtrace_info, /* get_dev_info */ 17179 nulldev, /* identify */ 17180 nulldev, /* probe */ 17181 dtrace_attach, /* attach */ 17182 dtrace_detach, /* detach */ 17183 nodev, /* reset */ 17184 &dtrace_cb_ops, /* driver operations */ 17185 NULL, /* bus operations */ 17186 nodev, /* dev power */ 17187 ddi_quiesce_not_needed, /* quiesce */ 17188 }; 17189 17190 static struct modldrv modldrv = { 17191 &mod_driverops, /* module type (this is a pseudo driver) */ 17192 "Dynamic Tracing", /* name of module */ 17193 &dtrace_ops, /* driver ops */ 17194 }; 17195 17196 static struct modlinkage modlinkage = { 17197 MODREV_1, 17198 (void *)&modldrv, 17199 NULL 17200 }; 17201 17202 int 17203 _init(void) 17204 { 17205 return (mod_install(&modlinkage)); 17206 } 17207 17208 int 17209 _info(struct modinfo *modinfop) 17210 { 17211 return (mod_info(&modlinkage, modinfop)); 17212 } 17213 17214 int 17215 _fini(void) 17216 { 17217 return (mod_remove(&modlinkage)); 17218 } 17219