1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 * Copyright 2023 Oxide Computer Company 27 */ 28 29 /* 30 * DTrace - Dynamic Tracing for Solaris 31 * 32 * This is the implementation of the Solaris Dynamic Tracing framework 33 * (DTrace). The user-visible interface to DTrace is described at length in 34 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 35 * library, the in-kernel DTrace framework, and the DTrace providers are 36 * described in the block comments in the <sys/dtrace.h> header file. The 37 * internal architecture of DTrace is described in the block comments in the 38 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 39 * implementation very much assume mastery of all of these sources; if one has 40 * an unanswered question about the implementation, one should consult them 41 * first. 42 * 43 * The functions here are ordered roughly as follows: 44 * 45 * - Probe context functions 46 * - Probe hashing functions 47 * - Non-probe context utility functions 48 * - Matching functions 49 * - Provider-to-Framework API functions 50 * - Probe management functions 51 * - DIF object functions 52 * - Format functions 53 * - Predicate functions 54 * - ECB functions 55 * - Buffer functions 56 * - Enabling functions 57 * - DOF functions 58 * - Anonymous enabling functions 59 * - Consumer state functions 60 * - Helper functions 61 * - Hook functions 62 * - Driver cookbook functions 63 * 64 * Each group of functions begins with a block comment labelled the "DTrace 65 * [Group] Functions", allowing one to find each block by searching forward 66 * on capital-f functions. 67 */ 68 #include <sys/errno.h> 69 #include <sys/stat.h> 70 #include <sys/modctl.h> 71 #include <sys/conf.h> 72 #include <sys/systm.h> 73 #include <sys/ddi.h> 74 #include <sys/sunddi.h> 75 #include <sys/cpuvar.h> 76 #include <sys/kmem.h> 77 #include <sys/strsubr.h> 78 #include <sys/sysmacros.h> 79 #include <sys/dtrace_impl.h> 80 #include <sys/atomic.h> 81 #include <sys/cmn_err.h> 82 #include <sys/mutex_impl.h> 83 #include <sys/rwlock_impl.h> 84 #include <sys/ctf_api.h> 85 #include <sys/panic.h> 86 #include <sys/priv_impl.h> 87 #include <sys/policy.h> 88 #include <sys/cred_impl.h> 89 #include <sys/procfs_isa.h> 90 #include <sys/taskq.h> 91 #include <sys/mkdev.h> 92 #include <sys/kdi.h> 93 #include <sys/zone.h> 94 #include <sys/socket.h> 95 #include <netinet/in.h> 96 #include "strtolctype.h" 97 98 /* 99 * DTrace Tunable Variables 100 * 101 * The following variables may be tuned by adding a line to /etc/system that 102 * includes both the name of the DTrace module ("dtrace") and the name of the 103 * variable. For example: 104 * 105 * set dtrace:dtrace_destructive_disallow = 1 106 * 107 * In general, the only variables that one should be tuning this way are those 108 * that affect system-wide DTrace behavior, and for which the default behavior 109 * is undesirable. Most of these variables are tunable on a per-consumer 110 * basis using DTrace options, and need not be tuned on a system-wide basis. 111 * When tuning these variables, avoid pathological values; while some attempt 112 * is made to verify the integrity of these variables, they are not considered 113 * part of the supported interface to DTrace, and they are therefore not 114 * checked comprehensively. Further, these variables should not be tuned 115 * dynamically via "mdb -kw" or other means; they should only be tuned via 116 * /etc/system. 117 */ 118 int dtrace_destructive_disallow = 0; 119 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 120 size_t dtrace_difo_maxsize = (256 * 1024); 121 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 122 size_t dtrace_statvar_maxsize = (16 * 1024); 123 size_t dtrace_actions_max = (16 * 1024); 124 size_t dtrace_retain_max = 1024; 125 dtrace_optval_t dtrace_helper_actions_max = 1024; 126 dtrace_optval_t dtrace_helper_providers_max = 32; 127 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 128 size_t dtrace_strsize_default = 256; 129 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 130 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 131 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 132 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 134 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 135 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 136 dtrace_optval_t dtrace_nspec_default = 1; 137 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 138 dtrace_optval_t dtrace_stackframes_default = 20; 139 dtrace_optval_t dtrace_ustackframes_default = 20; 140 dtrace_optval_t dtrace_jstackframes_default = 50; 141 dtrace_optval_t dtrace_jstackstrsize_default = 512; 142 int dtrace_msgdsize_max = 128; 143 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */ 144 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 145 int dtrace_devdepth_max = 32; 146 int dtrace_err_verbose; 147 hrtime_t dtrace_deadman_interval = NANOSEC; 148 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 149 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 150 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 151 152 /* 153 * DTrace External Variables 154 * 155 * As dtrace(4D) is a kernel module, any DTrace variables are obviously 156 * available to DTrace consumers via the backtick (`) syntax. One of these, 157 * dtrace_zero, is made deliberately so: it is provided as a source of 158 * well-known, zero-filled memory. While this variable is not documented, 159 * it is used by some translators as an implementation detail. 160 */ 161 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 162 163 /* 164 * DTrace Internal Variables 165 */ 166 static dev_info_t *dtrace_devi; /* device info */ 167 static vmem_t *dtrace_arena; /* probe ID arena */ 168 static vmem_t *dtrace_minor; /* minor number arena */ 169 static taskq_t *dtrace_taskq; /* task queue */ 170 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 171 static int dtrace_nprobes; /* number of probes */ 172 static dtrace_provider_t *dtrace_provider; /* provider list */ 173 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 174 static int dtrace_opens; /* number of opens */ 175 static int dtrace_helpers; /* number of helpers */ 176 static int dtrace_getf; /* number of unpriv getf()s */ 177 static void *dtrace_softstate; /* softstate pointer */ 178 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 179 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 180 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 181 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 182 static int dtrace_toxranges; /* number of toxic ranges */ 183 static int dtrace_toxranges_max; /* size of toxic range array */ 184 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 185 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 186 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 187 static kthread_t *dtrace_panicked; /* panicking thread */ 188 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 189 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 190 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 191 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 192 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 193 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 194 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 195 196 /* 197 * DTrace Locking 198 * DTrace is protected by three (relatively coarse-grained) locks: 199 * 200 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 201 * including enabling state, probes, ECBs, consumer state, helper state, 202 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 203 * probe context is lock-free -- synchronization is handled via the 204 * dtrace_sync() cross call mechanism. 205 * 206 * (2) dtrace_provider_lock is required when manipulating provider state, or 207 * when provider state must be held constant. 208 * 209 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 210 * when meta provider state must be held constant. 211 * 212 * The lock ordering between these three locks is dtrace_meta_lock before 213 * dtrace_provider_lock before dtrace_lock. (In particular, there are 214 * several places where dtrace_provider_lock is held by the framework as it 215 * calls into the providers -- which then call back into the framework, 216 * grabbing dtrace_lock.) 217 * 218 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 219 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 220 * role as a coarse-grained lock; it is acquired before both of these locks. 221 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 222 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 223 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 224 * acquired _between_ dtrace_provider_lock and dtrace_lock. 225 */ 226 static kmutex_t dtrace_lock; /* probe state lock */ 227 static kmutex_t dtrace_provider_lock; /* provider state lock */ 228 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 229 230 /* 231 * DTrace Provider Variables 232 * 233 * These are the variables relating to DTrace as a provider (that is, the 234 * provider of the BEGIN, END, and ERROR probes). 235 */ 236 static dtrace_pattr_t dtrace_provider_attr = { 237 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 242 }; 243 244 static void 245 dtrace_nullop_provide(void *arg __unused, 246 const dtrace_probedesc_t *spec __unused) 247 { 248 } 249 250 static void 251 dtrace_nullop_module(void *arg __unused, struct modctl *mp __unused) 252 { 253 } 254 255 static void 256 dtrace_nullop(void *arg __unused, dtrace_id_t id __unused, void *parg __unused) 257 { 258 } 259 260 static int 261 dtrace_enable_nullop(void *arg __unused, dtrace_id_t id __unused, 262 void *parg __unused) 263 { 264 return (0); 265 } 266 267 static dtrace_pops_t dtrace_provider_ops = { 268 .dtps_provide = dtrace_nullop_provide, 269 .dtps_provide_module = dtrace_nullop_module, 270 .dtps_enable = dtrace_enable_nullop, 271 .dtps_disable = dtrace_nullop, 272 .dtps_suspend = dtrace_nullop, 273 .dtps_resume = dtrace_nullop, 274 .dtps_getargdesc = NULL, 275 .dtps_getargval = NULL, 276 .dtps_mode = NULL, 277 .dtps_destroy = dtrace_nullop 278 }; 279 280 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 281 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 282 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 283 284 /* 285 * DTrace Helper Tracing Variables 286 * 287 * These variables should be set dynamically to enable helper tracing. The 288 * only variables that should be set are dtrace_helptrace_enable (which should 289 * be set to a non-zero value to allocate helper tracing buffers on the next 290 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 291 * non-zero value to deallocate helper tracing buffers on the next close of 292 * /dev/dtrace). When (and only when) helper tracing is disabled, the 293 * buffer size may also be set via dtrace_helptrace_bufsize. 294 */ 295 int dtrace_helptrace_enable = 0; 296 int dtrace_helptrace_disable = 0; 297 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 298 uint32_t dtrace_helptrace_nlocals; 299 static dtrace_helptrace_t *dtrace_helptrace_buffer; 300 static uint32_t dtrace_helptrace_next = 0; 301 static int dtrace_helptrace_wrapped = 0; 302 303 /* 304 * DTrace Error Hashing 305 * 306 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 307 * table. This is very useful for checking coverage of tests that are 308 * expected to induce DIF or DOF processing errors, and may be useful for 309 * debugging problems in the DIF code generator or in DOF generation . The 310 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 311 */ 312 #ifdef DEBUG 313 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 314 static const char *dtrace_errlast; 315 static kthread_t *dtrace_errthread; 316 static kmutex_t dtrace_errlock; 317 #endif 318 319 /* 320 * DTrace Macros and Constants 321 * 322 * These are various macros that are useful in various spots in the 323 * implementation, along with a few random constants that have no meaning 324 * outside of the implementation. There is no real structure to this cpp 325 * mishmash -- but is there ever? 326 */ 327 #define DTRACE_HASHSTR(hash, probe) \ 328 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 329 330 #define DTRACE_HASHNEXT(hash, probe) \ 331 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 332 333 #define DTRACE_HASHPREV(hash, probe) \ 334 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 335 336 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 337 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 338 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 339 340 #define DTRACE_AGGHASHSIZE_SLEW 17 341 342 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 343 344 /* 345 * The key for a thread-local variable consists of the lower 61 bits of the 346 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 347 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 348 * equal to a variable identifier. This is necessary (but not sufficient) to 349 * assure that global associative arrays never collide with thread-local 350 * variables. To guarantee that they cannot collide, we must also define the 351 * order for keying dynamic variables. That order is: 352 * 353 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 354 * 355 * Because the variable-key and the tls-key are in orthogonal spaces, there is 356 * no way for a global variable key signature to match a thread-local key 357 * signature. 358 */ 359 #define DTRACE_TLS_THRKEY(where) { \ 360 uint_t intr = 0; \ 361 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 362 for (; actv; actv >>= 1) \ 363 intr++; \ 364 ASSERT(intr < (1 << 3)); \ 365 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 366 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 367 } 368 369 #define DT_BSWAP_8(x) ((x) & 0xff) 370 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 371 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 372 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 373 374 #define DT_MASK_LO 0x00000000FFFFFFFFULL 375 376 #define DTRACE_STORE(type, tomax, offset, what) \ 377 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 378 379 #ifndef __x86 380 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 381 if (addr & (size - 1)) { \ 382 *flags |= CPU_DTRACE_BADALIGN; \ 383 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 384 return (0); \ 385 } 386 #else 387 #define DTRACE_ALIGNCHECK(addr, size, flags) 388 #endif 389 390 /* 391 * Test whether a range of memory starting at testaddr of size testsz falls 392 * within the range of memory described by addr, sz. We take care to avoid 393 * problems with overflow and underflow of the unsigned quantities, and 394 * disallow all negative sizes. Ranges of size 0 are allowed. 395 */ 396 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 397 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 398 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 399 (testaddr) + (testsz) >= (testaddr)) 400 401 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ 402 do { \ 403 if ((remp) != NULL) { \ 404 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ 405 } \ 406 _NOTE(CONSTCOND) } while (0) 407 408 409 /* 410 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 411 * alloc_sz on the righthand side of the comparison in order to avoid overflow 412 * or underflow in the comparison with it. This is simpler than the INRANGE 413 * check above, because we know that the dtms_scratch_ptr is valid in the 414 * range. Allocations of size zero are allowed. 415 */ 416 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 417 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 418 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 419 420 #define DTRACE_LOADFUNC(bits) \ 421 /*CSTYLED*/ \ 422 uint##bits##_t \ 423 dtrace_load##bits(uintptr_t addr) \ 424 { \ 425 size_t size = bits / NBBY; \ 426 /*CSTYLED*/ \ 427 uint##bits##_t rval; \ 428 int i; \ 429 volatile uint16_t *flags = (volatile uint16_t *) \ 430 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 431 \ 432 DTRACE_ALIGNCHECK(addr, size, flags); \ 433 \ 434 for (i = 0; i < dtrace_toxranges; i++) { \ 435 if (addr >= dtrace_toxrange[i].dtt_limit) \ 436 continue; \ 437 \ 438 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 439 continue; \ 440 \ 441 /* \ 442 * This address falls within a toxic region; return 0. \ 443 */ \ 444 *flags |= CPU_DTRACE_BADADDR; \ 445 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 446 return (0); \ 447 } \ 448 \ 449 *flags |= CPU_DTRACE_NOFAULT; \ 450 /*CSTYLED*/ \ 451 rval = *((volatile uint##bits##_t *)addr); \ 452 *flags &= ~CPU_DTRACE_NOFAULT; \ 453 \ 454 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 455 } 456 457 #ifdef _LP64 458 #define dtrace_loadptr dtrace_load64 459 #else 460 #define dtrace_loadptr dtrace_load32 461 #endif 462 463 #define DTRACE_DYNHASH_FREE 0 464 #define DTRACE_DYNHASH_SINK 1 465 #define DTRACE_DYNHASH_VALID 2 466 467 #define DTRACE_MATCH_FAIL -1 468 #define DTRACE_MATCH_NEXT 0 469 #define DTRACE_MATCH_DONE 1 470 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 471 #define DTRACE_STATE_ALIGN 64 472 473 #define DTRACE_FLAGS2FLT(flags) \ 474 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 475 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 476 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 477 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 478 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 479 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 480 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 481 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 482 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 483 DTRACEFLT_UNKNOWN) 484 485 #define DTRACEACT_ISSTRING(act) \ 486 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 487 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 488 489 static size_t dtrace_strlen(const char *, size_t); 490 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 491 static void dtrace_enabling_provide(dtrace_provider_t *); 492 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 493 static void dtrace_enabling_matchall(void); 494 static void dtrace_enabling_reap(void); 495 static dtrace_state_t *dtrace_anon_grab(void); 496 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 497 dtrace_state_t *, uint64_t, uint64_t); 498 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 499 static void dtrace_buffer_drop(dtrace_buffer_t *); 500 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 501 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 502 dtrace_state_t *, dtrace_mstate_t *); 503 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 504 dtrace_optval_t); 505 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 506 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 507 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 508 static void dtrace_getf_barrier(void); 509 static int dtrace_canload_remains(uint64_t, size_t, size_t *, 510 dtrace_mstate_t *, dtrace_vstate_t *); 511 static int dtrace_canstore_remains(uint64_t, size_t, size_t *, 512 dtrace_mstate_t *, dtrace_vstate_t *); 513 514 /* 515 * DTrace Probe Context Functions 516 * 517 * These functions are called from probe context. Because probe context is 518 * any context in which C may be called, arbitrarily locks may be held, 519 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 520 * As a result, functions called from probe context may only call other DTrace 521 * support functions -- they may not interact at all with the system at large. 522 * (Note that the ASSERT macro is made probe-context safe by redefining it in 523 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 524 * loads are to be performed from probe context, they _must_ be in terms of 525 * the safe dtrace_load*() variants. 526 * 527 * Some functions in this block are not actually called from probe context; 528 * for these functions, there will be a comment above the function reading 529 * "Note: not called from probe context." 530 */ 531 void 532 dtrace_panic(const char *format, ...) 533 { 534 va_list alist; 535 536 va_start(alist, format); 537 dtrace_vpanic(format, alist); 538 va_end(alist); 539 } 540 541 int 542 dtrace_assfail(const char *a, const char *f, int l) 543 { 544 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 545 546 /* 547 * We just need something here that even the most clever compiler 548 * cannot optimize away. 549 */ 550 return (a[(uintptr_t)f]); 551 } 552 553 /* 554 * Atomically increment a specified error counter from probe context. 555 */ 556 static void 557 dtrace_error(uint32_t *counter) 558 { 559 /* 560 * Most counters stored to in probe context are per-CPU counters. 561 * However, there are some error conditions that are sufficiently 562 * arcane that they don't merit per-CPU storage. If these counters 563 * are incremented concurrently on different CPUs, scalability will be 564 * adversely affected -- but we don't expect them to be white-hot in a 565 * correctly constructed enabling... 566 */ 567 uint32_t oval, nval; 568 569 do { 570 oval = *counter; 571 572 if ((nval = oval + 1) == 0) { 573 /* 574 * If the counter would wrap, set it to 1 -- assuring 575 * that the counter is never zero when we have seen 576 * errors. (The counter must be 32-bits because we 577 * aren't guaranteed a 64-bit compare&swap operation.) 578 * To save this code both the infamy of being fingered 579 * by a priggish news story and the indignity of being 580 * the target of a neo-puritan witch trial, we're 581 * carefully avoiding any colorful description of the 582 * likelihood of this condition -- but suffice it to 583 * say that it is only slightly more likely than the 584 * overflow of predicate cache IDs, as discussed in 585 * dtrace_predicate_create(). 586 */ 587 nval = 1; 588 } 589 } while (dtrace_cas32(counter, oval, nval) != oval); 590 } 591 592 /* 593 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 594 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 595 */ 596 /* BEGIN CSTYLED */ 597 DTRACE_LOADFUNC(8) 598 DTRACE_LOADFUNC(16) 599 DTRACE_LOADFUNC(32) 600 DTRACE_LOADFUNC(64) 601 /* END CSTYLED */ 602 603 static int 604 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 605 { 606 if (dest < mstate->dtms_scratch_base) 607 return (0); 608 609 if (dest + size < dest) 610 return (0); 611 612 if (dest + size > mstate->dtms_scratch_ptr) 613 return (0); 614 615 return (1); 616 } 617 618 static int 619 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, 620 dtrace_statvar_t **svars, int nsvars) 621 { 622 int i; 623 size_t maxglobalsize, maxlocalsize; 624 625 if (nsvars == 0) 626 return (0); 627 628 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); 629 maxlocalsize = maxglobalsize * NCPU; 630 631 for (i = 0; i < nsvars; i++) { 632 dtrace_statvar_t *svar = svars[i]; 633 uint8_t scope; 634 size_t size; 635 636 if (svar == NULL || (size = svar->dtsv_size) == 0) 637 continue; 638 639 scope = svar->dtsv_var.dtdv_scope; 640 641 /* 642 * We verify that our size is valid in the spirit of providing 643 * defense in depth: we want to prevent attackers from using 644 * DTrace to escalate an orthogonal kernel heap corruption bug 645 * into the ability to store to arbitrary locations in memory. 646 */ 647 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || 648 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); 649 650 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, 651 svar->dtsv_size)) { 652 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, 653 svar->dtsv_size); 654 return (1); 655 } 656 } 657 658 return (0); 659 } 660 661 /* 662 * Check to see if the address is within a memory region to which a store may 663 * be issued. This includes the DTrace scratch areas, and any DTrace variable 664 * region. The caller of dtrace_canstore() is responsible for performing any 665 * alignment checks that are needed before stores are actually executed. 666 */ 667 static int 668 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 669 dtrace_vstate_t *vstate) 670 { 671 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); 672 } 673 674 /* 675 * Implementation of dtrace_canstore which communicates the upper bound of the 676 * allowed memory region. 677 */ 678 static int 679 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, 680 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 681 { 682 /* 683 * First, check to see if the address is in scratch space... 684 */ 685 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 686 mstate->dtms_scratch_size)) { 687 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, 688 mstate->dtms_scratch_size); 689 return (1); 690 } 691 692 /* 693 * Now check to see if it's a dynamic variable. This check will pick 694 * up both thread-local variables and any global dynamically-allocated 695 * variables. 696 */ 697 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 698 vstate->dtvs_dynvars.dtds_size)) { 699 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 700 uintptr_t base = (uintptr_t)dstate->dtds_base + 701 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 702 uintptr_t chunkoffs; 703 dtrace_dynvar_t *dvar; 704 705 /* 706 * Before we assume that we can store here, we need to make 707 * sure that it isn't in our metadata -- storing to our 708 * dynamic variable metadata would corrupt our state. For 709 * the range to not include any dynamic variable metadata, 710 * it must: 711 * 712 * (1) Start above the hash table that is at the base of 713 * the dynamic variable space 714 * 715 * (2) Have a starting chunk offset that is beyond the 716 * dtrace_dynvar_t that is at the base of every chunk 717 * 718 * (3) Not span a chunk boundary 719 * 720 * (4) Not be in the tuple space of a dynamic variable 721 * 722 */ 723 if (addr < base) 724 return (0); 725 726 chunkoffs = (addr - base) % dstate->dtds_chunksize; 727 728 if (chunkoffs < sizeof (dtrace_dynvar_t)) 729 return (0); 730 731 if (chunkoffs + sz > dstate->dtds_chunksize) 732 return (0); 733 734 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); 735 736 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) 737 return (0); 738 739 if (chunkoffs < sizeof (dtrace_dynvar_t) + 740 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) 741 return (0); 742 743 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize); 744 return (1); 745 } 746 747 /* 748 * Finally, check the static local and global variables. These checks 749 * take the longest, so we perform them last. 750 */ 751 if (dtrace_canstore_statvar(addr, sz, remain, 752 vstate->dtvs_locals, vstate->dtvs_nlocals)) 753 return (1); 754 755 if (dtrace_canstore_statvar(addr, sz, remain, 756 vstate->dtvs_globals, vstate->dtvs_nglobals)) 757 return (1); 758 759 return (0); 760 } 761 762 763 /* 764 * Convenience routine to check to see if the address is within a memory 765 * region in which a load may be issued given the user's privilege level; 766 * if not, it sets the appropriate error flags and loads 'addr' into the 767 * illegal value slot. 768 * 769 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 770 * appropriate memory access protection. 771 */ 772 static int 773 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 774 dtrace_vstate_t *vstate) 775 { 776 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); 777 } 778 779 /* 780 * Implementation of dtrace_canload which communicates the upper bound of the 781 * allowed memory region. 782 */ 783 static int 784 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, 785 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 786 { 787 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 788 file_t *fp; 789 790 /* 791 * If we hold the privilege to read from kernel memory, then 792 * everything is readable. 793 */ 794 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 795 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 796 return (1); 797 } 798 799 /* 800 * You can obviously read that which you can store. 801 */ 802 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) 803 return (1); 804 805 /* 806 * We're allowed to read from our own string table. 807 */ 808 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 809 mstate->dtms_difo->dtdo_strlen)) { 810 DTRACE_RANGE_REMAIN(remain, addr, 811 mstate->dtms_difo->dtdo_strtab, 812 mstate->dtms_difo->dtdo_strlen); 813 return (1); 814 } 815 816 if (vstate->dtvs_state != NULL && 817 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 818 proc_t *p; 819 820 /* 821 * When we have privileges to the current process, there are 822 * several context-related kernel structures that are safe to 823 * read, even absent the privilege to read from kernel memory. 824 * These reads are safe because these structures contain only 825 * state that (1) we're permitted to read, (2) is harmless or 826 * (3) contains pointers to additional kernel state that we're 827 * not permitted to read (and as such, do not present an 828 * opportunity for privilege escalation). Finally (and 829 * critically), because of the nature of their relation with 830 * the current thread context, the memory associated with these 831 * structures cannot change over the duration of probe context, 832 * and it is therefore impossible for this memory to be 833 * deallocated and reallocated as something else while it's 834 * being operated upon. 835 */ 836 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) { 837 DTRACE_RANGE_REMAIN(remain, addr, curthread, 838 sizeof (kthread_t)); 839 return (1); 840 } 841 842 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 843 sz, curthread->t_procp, sizeof (proc_t))) { 844 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp, 845 sizeof (proc_t)); 846 return (1); 847 } 848 849 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 850 curthread->t_cred, sizeof (cred_t))) { 851 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred, 852 sizeof (cred_t)); 853 return (1); 854 } 855 856 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 857 &(p->p_pidp->pid_id), sizeof (pid_t))) { 858 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id), 859 sizeof (pid_t)); 860 return (1); 861 } 862 863 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 864 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 865 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu, 866 offsetof(cpu_t, cpu_pause_thread)); 867 return (1); 868 } 869 } 870 871 if ((fp = mstate->dtms_getf) != NULL) { 872 uintptr_t psz = sizeof (void *); 873 vnode_t *vp; 874 vnodeops_t *op; 875 876 /* 877 * When getf() returns a file_t, the enabling is implicitly 878 * granted the (transient) right to read the returned file_t 879 * as well as the v_path and v_op->vnop_name of the underlying 880 * vnode. These accesses are allowed after a successful 881 * getf() because the members that they refer to cannot change 882 * once set -- and the barrier logic in the kernel's closef() 883 * path assures that the file_t and its referenced vode_t 884 * cannot themselves be stale (that is, it impossible for 885 * either dtms_getf itself or its f_vnode member to reference 886 * freed memory). 887 */ 888 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) { 889 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t)); 890 return (1); 891 } 892 893 if ((vp = fp->f_vnode) != NULL) { 894 size_t slen; 895 896 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) { 897 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path, 898 psz); 899 return (1); 900 } 901 902 slen = strlen(vp->v_path) + 1; 903 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) { 904 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path, 905 slen); 906 return (1); 907 } 908 909 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) { 910 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op, 911 psz); 912 return (1); 913 } 914 915 if ((op = vp->v_op) != NULL && 916 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 917 DTRACE_RANGE_REMAIN(remain, addr, 918 &op->vnop_name, psz); 919 return (1); 920 } 921 922 if (op != NULL && op->vnop_name != NULL && 923 DTRACE_INRANGE(addr, sz, op->vnop_name, 924 (slen = strlen(op->vnop_name) + 1))) { 925 DTRACE_RANGE_REMAIN(remain, addr, 926 op->vnop_name, slen); 927 return (1); 928 } 929 } 930 } 931 932 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 933 *illval = addr; 934 return (0); 935 } 936 937 /* 938 * Convenience routine to check to see if a given string is within a memory 939 * region in which a load may be issued given the user's privilege level; 940 * this exists so that we don't need to issue unnecessary dtrace_strlen() 941 * calls in the event that the user has all privileges. 942 */ 943 static int 944 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, 945 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 946 { 947 size_t rsize; 948 949 /* 950 * If we hold the privilege to read from kernel memory, then 951 * everything is readable. 952 */ 953 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 954 DTRACE_RANGE_REMAIN(remain, addr, addr, sz); 955 return (1); 956 } 957 958 /* 959 * Even if the caller is uninterested in querying the remaining valid 960 * range, it is required to ensure that the access is allowed. 961 */ 962 if (remain == NULL) { 963 remain = &rsize; 964 } 965 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) { 966 size_t strsz; 967 /* 968 * Perform the strlen after determining the length of the 969 * memory region which is accessible. This prevents timing 970 * information from being used to find NULs in memory which is 971 * not accessible to the caller. 972 */ 973 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, 974 MIN(sz, *remain)); 975 if (strsz <= *remain) { 976 return (1); 977 } 978 } 979 980 return (0); 981 } 982 983 /* 984 * Convenience routine to check to see if a given variable is within a memory 985 * region in which a load may be issued given the user's privilege level. 986 */ 987 static int 988 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, 989 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 990 { 991 size_t sz; 992 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 993 994 /* 995 * Calculate the max size before performing any checks since even 996 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function 997 * return the max length via 'remain'. 998 */ 999 if (type->dtdt_kind == DIF_TYPE_STRING) { 1000 dtrace_state_t *state = vstate->dtvs_state; 1001 1002 if (state != NULL) { 1003 sz = state->dts_options[DTRACEOPT_STRSIZE]; 1004 } else { 1005 /* 1006 * In helper context, we have a NULL state; fall back 1007 * to using the system-wide default for the string size 1008 * in this case. 1009 */ 1010 sz = dtrace_strsize_default; 1011 } 1012 } else { 1013 sz = type->dtdt_size; 1014 } 1015 1016 /* 1017 * If we hold the privilege to read from kernel memory, then 1018 * everything is readable. 1019 */ 1020 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { 1021 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); 1022 return (1); 1023 } 1024 1025 if (type->dtdt_kind == DIF_TYPE_STRING) { 1026 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate, 1027 vstate)); 1028 } 1029 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate, 1030 vstate)); 1031 } 1032 1033 /* 1034 * Convert a string to a signed integer using safe loads. 1035 * 1036 * NOTE: This function uses various macros from strtolctype.h to manipulate 1037 * digit values, etc -- these have all been checked to ensure they make 1038 * no additional function calls. 1039 */ 1040 static int64_t 1041 dtrace_strtoll(char *input, int base, size_t limit) 1042 { 1043 uintptr_t pos = (uintptr_t)input; 1044 int64_t val = 0; 1045 int x; 1046 boolean_t neg = B_FALSE; 1047 char c, cc, ccc; 1048 uintptr_t end = pos + limit; 1049 1050 /* 1051 * Consume any whitespace preceding digits. 1052 */ 1053 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 1054 pos++; 1055 1056 /* 1057 * Handle an explicit sign if one is present. 1058 */ 1059 if (c == '-' || c == '+') { 1060 if (c == '-') 1061 neg = B_TRUE; 1062 c = dtrace_load8(++pos); 1063 } 1064 1065 /* 1066 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 1067 * if present. 1068 */ 1069 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 1070 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 1071 pos += 2; 1072 c = ccc; 1073 } 1074 1075 /* 1076 * Read in contiguous digits until the first non-digit character. 1077 */ 1078 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 1079 c = dtrace_load8(++pos)) 1080 val = val * base + x; 1081 1082 return (neg ? -val : val); 1083 } 1084 1085 /* 1086 * Compare two strings using safe loads. 1087 */ 1088 static int 1089 dtrace_strncmp(char *s1, char *s2, size_t limit) 1090 { 1091 uint8_t c1, c2; 1092 volatile uint16_t *flags; 1093 1094 if (s1 == s2 || limit == 0) 1095 return (0); 1096 1097 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1098 1099 do { 1100 if (s1 == NULL) { 1101 c1 = '\0'; 1102 } else { 1103 c1 = dtrace_load8((uintptr_t)s1++); 1104 } 1105 1106 if (s2 == NULL) { 1107 c2 = '\0'; 1108 } else { 1109 c2 = dtrace_load8((uintptr_t)s2++); 1110 } 1111 1112 if (c1 != c2) 1113 return (c1 - c2); 1114 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 1115 1116 return (0); 1117 } 1118 1119 /* 1120 * Compute strlen(s) for a string using safe memory accesses. The additional 1121 * len parameter is used to specify a maximum length to ensure completion. 1122 */ 1123 static size_t 1124 dtrace_strlen(const char *s, size_t lim) 1125 { 1126 uint_t len; 1127 1128 for (len = 0; len != lim; len++) { 1129 if (dtrace_load8((uintptr_t)s++) == '\0') 1130 break; 1131 } 1132 1133 return (len); 1134 } 1135 1136 /* 1137 * Check if an address falls within a toxic region. 1138 */ 1139 static int 1140 dtrace_istoxic(uintptr_t kaddr, size_t size) 1141 { 1142 uintptr_t taddr, tsize; 1143 int i; 1144 1145 for (i = 0; i < dtrace_toxranges; i++) { 1146 taddr = dtrace_toxrange[i].dtt_base; 1147 tsize = dtrace_toxrange[i].dtt_limit - taddr; 1148 1149 if (kaddr - taddr < tsize) { 1150 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1151 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 1152 return (1); 1153 } 1154 1155 if (taddr - kaddr < size) { 1156 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 1157 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 1158 return (1); 1159 } 1160 } 1161 1162 return (0); 1163 } 1164 1165 /* 1166 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1167 * memory specified by the DIF program. The dst is assumed to be safe memory 1168 * that we can store to directly because it is managed by DTrace. As with 1169 * standard bcopy, overlapping copies are handled properly. 1170 */ 1171 static void 1172 dtrace_bcopy(const void *src, void *dst, size_t len) 1173 { 1174 if (len != 0) { 1175 uint8_t *s1 = dst; 1176 const uint8_t *s2 = src; 1177 1178 if (s1 <= s2) { 1179 do { 1180 *s1++ = dtrace_load8((uintptr_t)s2++); 1181 } while (--len != 0); 1182 } else { 1183 s2 += len; 1184 s1 += len; 1185 1186 do { 1187 *--s1 = dtrace_load8((uintptr_t)--s2); 1188 } while (--len != 0); 1189 } 1190 } 1191 } 1192 1193 /* 1194 * Copy src to dst using safe memory accesses, up to either the specified 1195 * length, or the point that a nul byte is encountered. The src is assumed to 1196 * be unsafe memory specified by the DIF program. The dst is assumed to be 1197 * safe memory that we can store to directly because it is managed by DTrace. 1198 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1199 */ 1200 static void 1201 dtrace_strcpy(const void *src, void *dst, size_t len) 1202 { 1203 if (len != 0) { 1204 uint8_t *s1 = dst, c; 1205 const uint8_t *s2 = src; 1206 1207 do { 1208 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1209 } while (--len != 0 && c != '\0'); 1210 } 1211 } 1212 1213 /* 1214 * Copy src to dst, deriving the size and type from the specified (BYREF) 1215 * variable type. The src is assumed to be unsafe memory specified by the DIF 1216 * program. The dst is assumed to be DTrace variable memory that is of the 1217 * specified type; we assume that we can store to directly. 1218 */ 1219 static void 1220 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) 1221 { 1222 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1223 1224 if (type->dtdt_kind == DIF_TYPE_STRING) { 1225 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); 1226 } else { 1227 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); 1228 } 1229 } 1230 1231 /* 1232 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1233 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1234 * safe memory that we can access directly because it is managed by DTrace. 1235 */ 1236 static int 1237 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1238 { 1239 volatile uint16_t *flags; 1240 1241 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1242 1243 if (s1 == s2) 1244 return (0); 1245 1246 if (s1 == NULL || s2 == NULL) 1247 return (1); 1248 1249 if (s1 != s2 && len != 0) { 1250 const uint8_t *ps1 = s1; 1251 const uint8_t *ps2 = s2; 1252 1253 do { 1254 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1255 return (1); 1256 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1257 } 1258 return (0); 1259 } 1260 1261 /* 1262 * Zero the specified region using a simple byte-by-byte loop. Note that this 1263 * is for safe DTrace-managed memory only. 1264 */ 1265 static void 1266 dtrace_bzero(void *dst, size_t len) 1267 { 1268 uchar_t *cp; 1269 1270 for (cp = dst; len != 0; len--) 1271 *cp++ = 0; 1272 } 1273 1274 static void 1275 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1276 { 1277 uint64_t result[2]; 1278 1279 result[0] = addend1[0] + addend2[0]; 1280 result[1] = addend1[1] + addend2[1] + 1281 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1282 1283 sum[0] = result[0]; 1284 sum[1] = result[1]; 1285 } 1286 1287 /* 1288 * Shift the 128-bit value in a by b. If b is positive, shift left. 1289 * If b is negative, shift right. 1290 */ 1291 static void 1292 dtrace_shift_128(uint64_t *a, int b) 1293 { 1294 uint64_t mask; 1295 1296 if (b == 0) 1297 return; 1298 1299 if (b < 0) { 1300 b = -b; 1301 if (b >= 64) { 1302 a[0] = a[1] >> (b - 64); 1303 a[1] = 0; 1304 } else { 1305 a[0] >>= b; 1306 mask = 1LL << (64 - b); 1307 mask -= 1; 1308 a[0] |= ((a[1] & mask) << (64 - b)); 1309 a[1] >>= b; 1310 } 1311 } else { 1312 if (b >= 64) { 1313 a[1] = a[0] << (b - 64); 1314 a[0] = 0; 1315 } else { 1316 a[1] <<= b; 1317 mask = a[0] >> (64 - b); 1318 a[1] |= mask; 1319 a[0] <<= b; 1320 } 1321 } 1322 } 1323 1324 /* 1325 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1326 * use native multiplication on those, and then re-combine into the 1327 * resulting 128-bit value. 1328 * 1329 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1330 * hi1 * hi2 << 64 + 1331 * hi1 * lo2 << 32 + 1332 * hi2 * lo1 << 32 + 1333 * lo1 * lo2 1334 */ 1335 static void 1336 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1337 { 1338 uint64_t hi1, hi2, lo1, lo2; 1339 uint64_t tmp[2]; 1340 1341 hi1 = factor1 >> 32; 1342 hi2 = factor2 >> 32; 1343 1344 lo1 = factor1 & DT_MASK_LO; 1345 lo2 = factor2 & DT_MASK_LO; 1346 1347 product[0] = lo1 * lo2; 1348 product[1] = hi1 * hi2; 1349 1350 tmp[0] = hi1 * lo2; 1351 tmp[1] = 0; 1352 dtrace_shift_128(tmp, 32); 1353 dtrace_add_128(product, tmp, product); 1354 1355 tmp[0] = hi2 * lo1; 1356 tmp[1] = 0; 1357 dtrace_shift_128(tmp, 32); 1358 dtrace_add_128(product, tmp, product); 1359 } 1360 1361 /* 1362 * This privilege check should be used by actions and subroutines to 1363 * verify that the user credentials of the process that enabled the 1364 * invoking ECB match the target credentials 1365 */ 1366 static int 1367 dtrace_priv_proc_common_user(dtrace_state_t *state) 1368 { 1369 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1370 1371 /* 1372 * We should always have a non-NULL state cred here, since if cred 1373 * is null (anonymous tracing), we fast-path bypass this routine. 1374 */ 1375 ASSERT(s_cr != NULL); 1376 1377 if ((cr = CRED()) != NULL && 1378 s_cr->cr_uid == cr->cr_uid && 1379 s_cr->cr_uid == cr->cr_ruid && 1380 s_cr->cr_uid == cr->cr_suid && 1381 s_cr->cr_gid == cr->cr_gid && 1382 s_cr->cr_gid == cr->cr_rgid && 1383 s_cr->cr_gid == cr->cr_sgid) 1384 return (1); 1385 1386 return (0); 1387 } 1388 1389 /* 1390 * This privilege check should be used by actions and subroutines to 1391 * verify that the zone of the process that enabled the invoking ECB 1392 * matches the target credentials 1393 */ 1394 static int 1395 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1396 { 1397 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1398 1399 /* 1400 * We should always have a non-NULL state cred here, since if cred 1401 * is null (anonymous tracing), we fast-path bypass this routine. 1402 */ 1403 ASSERT(s_cr != NULL); 1404 1405 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1406 return (1); 1407 1408 return (0); 1409 } 1410 1411 /* 1412 * This privilege check should be used by actions and subroutines to 1413 * verify that the process has not setuid or changed credentials. 1414 */ 1415 static int 1416 dtrace_priv_proc_common_nocd() 1417 { 1418 proc_t *proc; 1419 1420 if ((proc = ttoproc(curthread)) != NULL && 1421 !(proc->p_flag & SNOCD)) 1422 return (1); 1423 1424 return (0); 1425 } 1426 1427 static int 1428 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1429 { 1430 int action = state->dts_cred.dcr_action; 1431 1432 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1433 goto bad; 1434 1435 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1436 dtrace_priv_proc_common_zone(state) == 0) 1437 goto bad; 1438 1439 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1440 dtrace_priv_proc_common_user(state) == 0) 1441 goto bad; 1442 1443 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1444 dtrace_priv_proc_common_nocd() == 0) 1445 goto bad; 1446 1447 return (1); 1448 1449 bad: 1450 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1451 1452 return (0); 1453 } 1454 1455 static int 1456 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1457 { 1458 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1459 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1460 return (1); 1461 1462 if (dtrace_priv_proc_common_zone(state) && 1463 dtrace_priv_proc_common_user(state) && 1464 dtrace_priv_proc_common_nocd()) 1465 return (1); 1466 } 1467 1468 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1469 1470 return (0); 1471 } 1472 1473 static int 1474 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1475 { 1476 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1477 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1478 return (1); 1479 1480 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1481 1482 return (0); 1483 } 1484 1485 static int 1486 dtrace_priv_kernel(dtrace_state_t *state) 1487 { 1488 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1489 return (1); 1490 1491 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1492 1493 return (0); 1494 } 1495 1496 static int 1497 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1498 { 1499 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1500 return (1); 1501 1502 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1503 1504 return (0); 1505 } 1506 1507 /* 1508 * Determine if the dte_cond of the specified ECB allows for processing of 1509 * the current probe to continue. Note that this routine may allow continued 1510 * processing, but with access(es) stripped from the mstate's dtms_access 1511 * field. 1512 */ 1513 static int 1514 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1515 dtrace_ecb_t *ecb) 1516 { 1517 dtrace_probe_t *probe = ecb->dte_probe; 1518 dtrace_provider_t *prov = probe->dtpr_provider; 1519 dtrace_pops_t *pops = &prov->dtpv_pops; 1520 int mode = DTRACE_MODE_NOPRIV_DROP; 1521 1522 ASSERT(ecb->dte_cond); 1523 1524 if (pops->dtps_mode != NULL) { 1525 mode = pops->dtps_mode(prov->dtpv_arg, 1526 probe->dtpr_id, probe->dtpr_arg); 1527 1528 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1529 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1530 DTRACE_MODE_NOPRIV_DROP)); 1531 } 1532 1533 /* 1534 * If the dte_cond bits indicate that this consumer is only allowed to 1535 * see user-mode firings of this probe, check that the probe was fired 1536 * while in a user context. If that's not the case, use the policy 1537 * specified by the provider to determine if we drop the probe or 1538 * merely restrict operation. 1539 */ 1540 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1541 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1542 1543 if (!(mode & DTRACE_MODE_USER)) { 1544 if (mode & DTRACE_MODE_NOPRIV_DROP) 1545 return (0); 1546 1547 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1548 } 1549 } 1550 1551 /* 1552 * This is more subtle than it looks. We have to be absolutely certain 1553 * that CRED() isn't going to change out from under us so it's only 1554 * legit to examine that structure if we're in constrained situations. 1555 * Currently, the only times we'll this check is if a non-super-user 1556 * has enabled the profile or syscall providers -- providers that 1557 * allow visibility of all processes. For the profile case, the check 1558 * above will ensure that we're examining a user context. 1559 */ 1560 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1561 cred_t *cr; 1562 cred_t *s_cr = state->dts_cred.dcr_cred; 1563 proc_t *proc; 1564 1565 ASSERT(s_cr != NULL); 1566 1567 if ((cr = CRED()) == NULL || 1568 s_cr->cr_uid != cr->cr_uid || 1569 s_cr->cr_uid != cr->cr_ruid || 1570 s_cr->cr_uid != cr->cr_suid || 1571 s_cr->cr_gid != cr->cr_gid || 1572 s_cr->cr_gid != cr->cr_rgid || 1573 s_cr->cr_gid != cr->cr_sgid || 1574 (proc = ttoproc(curthread)) == NULL || 1575 (proc->p_flag & SNOCD)) { 1576 if (mode & DTRACE_MODE_NOPRIV_DROP) 1577 return (0); 1578 1579 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1580 } 1581 } 1582 1583 /* 1584 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1585 * in our zone, check to see if our mode policy is to restrict rather 1586 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1587 * and DTRACE_ACCESS_ARGS 1588 */ 1589 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1590 cred_t *cr; 1591 cred_t *s_cr = state->dts_cred.dcr_cred; 1592 1593 ASSERT(s_cr != NULL); 1594 1595 if ((cr = CRED()) == NULL || 1596 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1597 if (mode & DTRACE_MODE_NOPRIV_DROP) 1598 return (0); 1599 1600 mstate->dtms_access &= 1601 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1602 } 1603 } 1604 1605 /* 1606 * By merits of being in this code path at all, we have limited 1607 * privileges. If the provider has indicated that limited privileges 1608 * are to denote restricted operation, strip off the ability to access 1609 * arguments. 1610 */ 1611 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1612 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1613 1614 return (1); 1615 } 1616 1617 /* 1618 * Note: not called from probe context. This function is called 1619 * asynchronously (and at a regular interval) from outside of probe context to 1620 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1621 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1622 */ 1623 void 1624 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1625 { 1626 dtrace_dynvar_t *dirty; 1627 dtrace_dstate_percpu_t *dcpu; 1628 dtrace_dynvar_t **rinsep; 1629 int i, j, work = 0; 1630 1631 for (i = 0; i < NCPU; i++) { 1632 dcpu = &dstate->dtds_percpu[i]; 1633 rinsep = &dcpu->dtdsc_rinsing; 1634 1635 /* 1636 * If the dirty list is NULL, there is no dirty work to do. 1637 */ 1638 if (dcpu->dtdsc_dirty == NULL) 1639 continue; 1640 1641 if (dcpu->dtdsc_rinsing != NULL) { 1642 /* 1643 * If the rinsing list is non-NULL, then it is because 1644 * this CPU was selected to accept another CPU's 1645 * dirty list -- and since that time, dirty buffers 1646 * have accumulated. This is a highly unlikely 1647 * condition, but we choose to ignore the dirty 1648 * buffers -- they'll be picked up a future cleanse. 1649 */ 1650 continue; 1651 } 1652 1653 if (dcpu->dtdsc_clean != NULL) { 1654 /* 1655 * If the clean list is non-NULL, then we're in a 1656 * situation where a CPU has done deallocations (we 1657 * have a non-NULL dirty list) but no allocations (we 1658 * also have a non-NULL clean list). We can't simply 1659 * move the dirty list into the clean list on this 1660 * CPU, yet we also don't want to allow this condition 1661 * to persist, lest a short clean list prevent a 1662 * massive dirty list from being cleaned (which in 1663 * turn could lead to otherwise avoidable dynamic 1664 * drops). To deal with this, we look for some CPU 1665 * with a NULL clean list, NULL dirty list, and NULL 1666 * rinsing list -- and then we borrow this CPU to 1667 * rinse our dirty list. 1668 */ 1669 for (j = 0; j < NCPU; j++) { 1670 dtrace_dstate_percpu_t *rinser; 1671 1672 rinser = &dstate->dtds_percpu[j]; 1673 1674 if (rinser->dtdsc_rinsing != NULL) 1675 continue; 1676 1677 if (rinser->dtdsc_dirty != NULL) 1678 continue; 1679 1680 if (rinser->dtdsc_clean != NULL) 1681 continue; 1682 1683 rinsep = &rinser->dtdsc_rinsing; 1684 break; 1685 } 1686 1687 if (j == NCPU) { 1688 /* 1689 * We were unable to find another CPU that 1690 * could accept this dirty list -- we are 1691 * therefore unable to clean it now. 1692 */ 1693 dtrace_dynvar_failclean++; 1694 continue; 1695 } 1696 } 1697 1698 work = 1; 1699 1700 /* 1701 * Atomically move the dirty list aside. 1702 */ 1703 do { 1704 dirty = dcpu->dtdsc_dirty; 1705 1706 /* 1707 * Before we zap the dirty list, set the rinsing list. 1708 * (This allows for a potential assertion in 1709 * dtrace_dynvar(): if a free dynamic variable appears 1710 * on a hash chain, either the dirty list or the 1711 * rinsing list for some CPU must be non-NULL.) 1712 */ 1713 *rinsep = dirty; 1714 dtrace_membar_producer(); 1715 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1716 dirty, NULL) != dirty); 1717 } 1718 1719 if (!work) { 1720 /* 1721 * We have no work to do; we can simply return. 1722 */ 1723 return; 1724 } 1725 1726 dtrace_sync(); 1727 1728 for (i = 0; i < NCPU; i++) { 1729 dcpu = &dstate->dtds_percpu[i]; 1730 1731 if (dcpu->dtdsc_rinsing == NULL) 1732 continue; 1733 1734 /* 1735 * We are now guaranteed that no hash chain contains a pointer 1736 * into this dirty list; we can make it clean. 1737 */ 1738 ASSERT(dcpu->dtdsc_clean == NULL); 1739 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1740 dcpu->dtdsc_rinsing = NULL; 1741 } 1742 1743 /* 1744 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1745 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1746 * This prevents a race whereby a CPU incorrectly decides that 1747 * the state should be something other than DTRACE_DSTATE_CLEAN 1748 * after dtrace_dynvar_clean() has completed. 1749 */ 1750 dtrace_sync(); 1751 1752 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1753 } 1754 1755 /* 1756 * Depending on the value of the op parameter, this function looks-up, 1757 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1758 * allocation is requested, this function will return a pointer to a 1759 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1760 * variable can be allocated. If NULL is returned, the appropriate counter 1761 * will be incremented. 1762 */ 1763 dtrace_dynvar_t * 1764 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1765 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1766 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1767 { 1768 uint64_t hashval = DTRACE_DYNHASH_VALID; 1769 dtrace_dynhash_t *hash = dstate->dtds_hash; 1770 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1771 processorid_t me = CPU->cpu_id, cpu = me; 1772 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1773 size_t bucket, ksize; 1774 size_t chunksize = dstate->dtds_chunksize; 1775 uintptr_t kdata, lock, nstate; 1776 uint_t i; 1777 1778 ASSERT(nkeys != 0); 1779 1780 /* 1781 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1782 * algorithm. For the by-value portions, we perform the algorithm in 1783 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1784 * bit, and seems to have only a minute effect on distribution. For 1785 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1786 * over each referenced byte. It's painful to do this, but it's much 1787 * better than pathological hash distribution. The efficacy of the 1788 * hashing algorithm (and a comparison with other algorithms) may be 1789 * found by running the ::dtrace_dynstat MDB dcmd. 1790 */ 1791 for (i = 0; i < nkeys; i++) { 1792 if (key[i].dttk_size == 0) { 1793 uint64_t val = key[i].dttk_value; 1794 1795 hashval += (val >> 48) & 0xffff; 1796 hashval += (hashval << 10); 1797 hashval ^= (hashval >> 6); 1798 1799 hashval += (val >> 32) & 0xffff; 1800 hashval += (hashval << 10); 1801 hashval ^= (hashval >> 6); 1802 1803 hashval += (val >> 16) & 0xffff; 1804 hashval += (hashval << 10); 1805 hashval ^= (hashval >> 6); 1806 1807 hashval += val & 0xffff; 1808 hashval += (hashval << 10); 1809 hashval ^= (hashval >> 6); 1810 } else { 1811 /* 1812 * This is incredibly painful, but it beats the hell 1813 * out of the alternative. 1814 */ 1815 uint64_t j, size = key[i].dttk_size; 1816 uintptr_t base = (uintptr_t)key[i].dttk_value; 1817 1818 if (!dtrace_canload(base, size, mstate, vstate)) 1819 break; 1820 1821 for (j = 0; j < size; j++) { 1822 hashval += dtrace_load8(base + j); 1823 hashval += (hashval << 10); 1824 hashval ^= (hashval >> 6); 1825 } 1826 } 1827 } 1828 1829 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1830 return (NULL); 1831 1832 hashval += (hashval << 3); 1833 hashval ^= (hashval >> 11); 1834 hashval += (hashval << 15); 1835 1836 /* 1837 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1838 * comes out to be one of our two sentinel hash values. If this 1839 * actually happens, we set the hashval to be a value known to be a 1840 * non-sentinel value. 1841 */ 1842 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1843 hashval = DTRACE_DYNHASH_VALID; 1844 1845 /* 1846 * Yes, it's painful to do a divide here. If the cycle count becomes 1847 * important here, tricks can be pulled to reduce it. (However, it's 1848 * critical that hash collisions be kept to an absolute minimum; 1849 * they're much more painful than a divide.) It's better to have a 1850 * solution that generates few collisions and still keeps things 1851 * relatively simple. 1852 */ 1853 bucket = hashval % dstate->dtds_hashsize; 1854 1855 if (op == DTRACE_DYNVAR_DEALLOC) { 1856 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1857 1858 for (;;) { 1859 while ((lock = *lockp) & 1) 1860 continue; 1861 1862 if (dtrace_casptr((void *)lockp, 1863 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1864 break; 1865 } 1866 1867 dtrace_membar_producer(); 1868 } 1869 1870 top: 1871 prev = NULL; 1872 lock = hash[bucket].dtdh_lock; 1873 1874 dtrace_membar_consumer(); 1875 1876 start = hash[bucket].dtdh_chain; 1877 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1878 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1879 op != DTRACE_DYNVAR_DEALLOC)); 1880 1881 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1882 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1883 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1884 1885 if (dvar->dtdv_hashval != hashval) { 1886 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1887 /* 1888 * We've reached the sink, and therefore the 1889 * end of the hash chain; we can kick out of 1890 * the loop knowing that we have seen a valid 1891 * snapshot of state. 1892 */ 1893 ASSERT(dvar->dtdv_next == NULL); 1894 ASSERT(dvar == &dtrace_dynhash_sink); 1895 break; 1896 } 1897 1898 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1899 /* 1900 * We've gone off the rails: somewhere along 1901 * the line, one of the members of this hash 1902 * chain was deleted. Note that we could also 1903 * detect this by simply letting this loop run 1904 * to completion, as we would eventually hit 1905 * the end of the dirty list. However, we 1906 * want to avoid running the length of the 1907 * dirty list unnecessarily (it might be quite 1908 * long), so we catch this as early as 1909 * possible by detecting the hash marker. In 1910 * this case, we simply set dvar to NULL and 1911 * break; the conditional after the loop will 1912 * send us back to top. 1913 */ 1914 dvar = NULL; 1915 break; 1916 } 1917 1918 goto next; 1919 } 1920 1921 if (dtuple->dtt_nkeys != nkeys) 1922 goto next; 1923 1924 for (i = 0; i < nkeys; i++, dkey++) { 1925 if (dkey->dttk_size != key[i].dttk_size) 1926 goto next; /* size or type mismatch */ 1927 1928 if (dkey->dttk_size != 0) { 1929 if (dtrace_bcmp( 1930 (void *)(uintptr_t)key[i].dttk_value, 1931 (void *)(uintptr_t)dkey->dttk_value, 1932 dkey->dttk_size)) 1933 goto next; 1934 } else { 1935 if (dkey->dttk_value != key[i].dttk_value) 1936 goto next; 1937 } 1938 } 1939 1940 if (op != DTRACE_DYNVAR_DEALLOC) 1941 return (dvar); 1942 1943 ASSERT(dvar->dtdv_next == NULL || 1944 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1945 1946 if (prev != NULL) { 1947 ASSERT(hash[bucket].dtdh_chain != dvar); 1948 ASSERT(start != dvar); 1949 ASSERT(prev->dtdv_next == dvar); 1950 prev->dtdv_next = dvar->dtdv_next; 1951 } else { 1952 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1953 start, dvar->dtdv_next) != start) { 1954 /* 1955 * We have failed to atomically swing the 1956 * hash table head pointer, presumably because 1957 * of a conflicting allocation on another CPU. 1958 * We need to reread the hash chain and try 1959 * again. 1960 */ 1961 goto top; 1962 } 1963 } 1964 1965 dtrace_membar_producer(); 1966 1967 /* 1968 * Now set the hash value to indicate that it's free. 1969 */ 1970 ASSERT(hash[bucket].dtdh_chain != dvar); 1971 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1972 1973 dtrace_membar_producer(); 1974 1975 /* 1976 * Set the next pointer to point at the dirty list, and 1977 * atomically swing the dirty pointer to the newly freed dvar. 1978 */ 1979 do { 1980 next = dcpu->dtdsc_dirty; 1981 dvar->dtdv_next = next; 1982 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1983 1984 /* 1985 * Finally, unlock this hash bucket. 1986 */ 1987 ASSERT(hash[bucket].dtdh_lock == lock); 1988 ASSERT(lock & 1); 1989 hash[bucket].dtdh_lock++; 1990 1991 return (NULL); 1992 next: 1993 prev = dvar; 1994 continue; 1995 } 1996 1997 if (dvar == NULL) { 1998 /* 1999 * If dvar is NULL, it is because we went off the rails: 2000 * one of the elements that we traversed in the hash chain 2001 * was deleted while we were traversing it. In this case, 2002 * we assert that we aren't doing a dealloc (deallocs lock 2003 * the hash bucket to prevent themselves from racing with 2004 * one another), and retry the hash chain traversal. 2005 */ 2006 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 2007 goto top; 2008 } 2009 2010 if (op != DTRACE_DYNVAR_ALLOC) { 2011 /* 2012 * If we are not to allocate a new variable, we want to 2013 * return NULL now. Before we return, check that the value 2014 * of the lock word hasn't changed. If it has, we may have 2015 * seen an inconsistent snapshot. 2016 */ 2017 if (op == DTRACE_DYNVAR_NOALLOC) { 2018 if (hash[bucket].dtdh_lock != lock) 2019 goto top; 2020 } else { 2021 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 2022 ASSERT(hash[bucket].dtdh_lock == lock); 2023 ASSERT(lock & 1); 2024 hash[bucket].dtdh_lock++; 2025 } 2026 2027 return (NULL); 2028 } 2029 2030 /* 2031 * We need to allocate a new dynamic variable. The size we need is the 2032 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 2033 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 2034 * the size of any referred-to data (dsize). We then round the final 2035 * size up to the chunksize for allocation. 2036 */ 2037 for (ksize = 0, i = 0; i < nkeys; i++) 2038 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 2039 2040 /* 2041 * This should be pretty much impossible, but could happen if, say, 2042 * strange DIF specified the tuple. Ideally, this should be an 2043 * assertion and not an error condition -- but that requires that the 2044 * chunksize calculation in dtrace_difo_chunksize() be absolutely 2045 * bullet-proof. (That is, it must not be able to be fooled by 2046 * malicious DIF.) Given the lack of backwards branches in DIF, 2047 * solving this would presumably not amount to solving the Halting 2048 * Problem -- but it still seems awfully hard. 2049 */ 2050 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 2051 ksize + dsize > chunksize) { 2052 dcpu->dtdsc_drops++; 2053 return (NULL); 2054 } 2055 2056 nstate = DTRACE_DSTATE_EMPTY; 2057 2058 do { 2059 retry: 2060 free = dcpu->dtdsc_free; 2061 2062 if (free == NULL) { 2063 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 2064 void *rval; 2065 2066 if (clean == NULL) { 2067 /* 2068 * We're out of dynamic variable space on 2069 * this CPU. Unless we have tried all CPUs, 2070 * we'll try to allocate from a different 2071 * CPU. 2072 */ 2073 switch (dstate->dtds_state) { 2074 case DTRACE_DSTATE_CLEAN: { 2075 void *sp = &dstate->dtds_state; 2076 2077 if (++cpu >= NCPU) 2078 cpu = 0; 2079 2080 if (dcpu->dtdsc_dirty != NULL && 2081 nstate == DTRACE_DSTATE_EMPTY) 2082 nstate = DTRACE_DSTATE_DIRTY; 2083 2084 if (dcpu->dtdsc_rinsing != NULL) 2085 nstate = DTRACE_DSTATE_RINSING; 2086 2087 dcpu = &dstate->dtds_percpu[cpu]; 2088 2089 if (cpu != me) 2090 goto retry; 2091 2092 (void) dtrace_cas32(sp, 2093 DTRACE_DSTATE_CLEAN, nstate); 2094 2095 /* 2096 * To increment the correct bean 2097 * counter, take another lap. 2098 */ 2099 goto retry; 2100 } 2101 2102 case DTRACE_DSTATE_DIRTY: 2103 dcpu->dtdsc_dirty_drops++; 2104 break; 2105 2106 case DTRACE_DSTATE_RINSING: 2107 dcpu->dtdsc_rinsing_drops++; 2108 break; 2109 2110 case DTRACE_DSTATE_EMPTY: 2111 dcpu->dtdsc_drops++; 2112 break; 2113 } 2114 2115 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 2116 return (NULL); 2117 } 2118 2119 /* 2120 * The clean list appears to be non-empty. We want to 2121 * move the clean list to the free list; we start by 2122 * moving the clean pointer aside. 2123 */ 2124 if (dtrace_casptr(&dcpu->dtdsc_clean, 2125 clean, NULL) != clean) { 2126 /* 2127 * We are in one of two situations: 2128 * 2129 * (a) The clean list was switched to the 2130 * free list by another CPU. 2131 * 2132 * (b) The clean list was added to by the 2133 * cleansing cyclic. 2134 * 2135 * In either of these situations, we can 2136 * just reattempt the free list allocation. 2137 */ 2138 goto retry; 2139 } 2140 2141 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 2142 2143 /* 2144 * Now we'll move the clean list to our free list. 2145 * It's impossible for this to fail: the only way 2146 * the free list can be updated is through this 2147 * code path, and only one CPU can own the clean list. 2148 * Thus, it would only be possible for this to fail if 2149 * this code were racing with dtrace_dynvar_clean(). 2150 * (That is, if dtrace_dynvar_clean() updated the clean 2151 * list, and we ended up racing to update the free 2152 * list.) This race is prevented by the dtrace_sync() 2153 * in dtrace_dynvar_clean() -- which flushes the 2154 * owners of the clean lists out before resetting 2155 * the clean lists. 2156 */ 2157 dcpu = &dstate->dtds_percpu[me]; 2158 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 2159 ASSERT(rval == NULL); 2160 goto retry; 2161 } 2162 2163 dvar = free; 2164 new_free = dvar->dtdv_next; 2165 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2166 2167 /* 2168 * We have now allocated a new chunk. We copy the tuple keys into the 2169 * tuple array and copy any referenced key data into the data space 2170 * following the tuple array. As we do this, we relocate dttk_value 2171 * in the final tuple to point to the key data address in the chunk. 2172 */ 2173 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2174 dvar->dtdv_data = (void *)(kdata + ksize); 2175 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2176 2177 for (i = 0; i < nkeys; i++) { 2178 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2179 size_t kesize = key[i].dttk_size; 2180 2181 if (kesize != 0) { 2182 dtrace_bcopy( 2183 (const void *)(uintptr_t)key[i].dttk_value, 2184 (void *)kdata, kesize); 2185 dkey->dttk_value = kdata; 2186 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2187 } else { 2188 dkey->dttk_value = key[i].dttk_value; 2189 } 2190 2191 dkey->dttk_size = kesize; 2192 } 2193 2194 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2195 dvar->dtdv_hashval = hashval; 2196 dvar->dtdv_next = start; 2197 2198 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2199 return (dvar); 2200 2201 /* 2202 * The cas has failed. Either another CPU is adding an element to 2203 * this hash chain, or another CPU is deleting an element from this 2204 * hash chain. The simplest way to deal with both of these cases 2205 * (though not necessarily the most efficient) is to free our 2206 * allocated block and re-attempt it all. Note that the free is 2207 * to the dirty list and _not_ to the free list. This is to prevent 2208 * races with allocators, above. 2209 */ 2210 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2211 2212 dtrace_membar_producer(); 2213 2214 do { 2215 free = dcpu->dtdsc_dirty; 2216 dvar->dtdv_next = free; 2217 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2218 2219 goto top; 2220 } 2221 2222 /*ARGSUSED*/ 2223 static void 2224 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2225 { 2226 if ((int64_t)nval < (int64_t)*oval) 2227 *oval = nval; 2228 } 2229 2230 /*ARGSUSED*/ 2231 static void 2232 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2233 { 2234 if ((int64_t)nval > (int64_t)*oval) 2235 *oval = nval; 2236 } 2237 2238 static void 2239 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2240 { 2241 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2242 int64_t val = (int64_t)nval; 2243 2244 if (val < 0) { 2245 for (i = 0; i < zero; i++) { 2246 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2247 quanta[i] += incr; 2248 return; 2249 } 2250 } 2251 } else { 2252 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2253 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2254 quanta[i - 1] += incr; 2255 return; 2256 } 2257 } 2258 2259 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2260 return; 2261 } 2262 2263 ASSERT(0); 2264 } 2265 2266 static void 2267 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2268 { 2269 uint64_t arg = *lquanta++; 2270 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2271 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2272 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2273 int32_t val = (int32_t)nval, level; 2274 2275 ASSERT(step != 0); 2276 ASSERT(levels != 0); 2277 2278 if (val < base) { 2279 /* 2280 * This is an underflow. 2281 */ 2282 lquanta[0] += incr; 2283 return; 2284 } 2285 2286 level = (val - base) / step; 2287 2288 if (level < levels) { 2289 lquanta[level + 1] += incr; 2290 return; 2291 } 2292 2293 /* 2294 * This is an overflow. 2295 */ 2296 lquanta[levels + 1] += incr; 2297 } 2298 2299 static int 2300 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2301 uint16_t high, uint16_t nsteps, int64_t value) 2302 { 2303 int64_t this = 1, last, next; 2304 int base = 1, order; 2305 2306 ASSERT(factor <= nsteps); 2307 ASSERT(nsteps % factor == 0); 2308 2309 for (order = 0; order < low; order++) 2310 this *= factor; 2311 2312 /* 2313 * If our value is less than our factor taken to the power of the 2314 * low order of magnitude, it goes into the zeroth bucket. 2315 */ 2316 if (value < (last = this)) 2317 return (0); 2318 2319 for (this *= factor; order <= high; order++) { 2320 int nbuckets = this > nsteps ? nsteps : this; 2321 2322 if ((next = this * factor) < this) { 2323 /* 2324 * We should not generally get log/linear quantizations 2325 * with a high magnitude that allows 64-bits to 2326 * overflow, but we nonetheless protect against this 2327 * by explicitly checking for overflow, and clamping 2328 * our value accordingly. 2329 */ 2330 value = this - 1; 2331 } 2332 2333 if (value < this) { 2334 /* 2335 * If our value lies within this order of magnitude, 2336 * determine its position by taking the offset within 2337 * the order of magnitude, dividing by the bucket 2338 * width, and adding to our (accumulated) base. 2339 */ 2340 return (base + (value - last) / (this / nbuckets)); 2341 } 2342 2343 base += nbuckets - (nbuckets / factor); 2344 last = this; 2345 this = next; 2346 } 2347 2348 /* 2349 * Our value is greater than or equal to our factor taken to the 2350 * power of one plus the high magnitude -- return the top bucket. 2351 */ 2352 return (base); 2353 } 2354 2355 static void 2356 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2357 { 2358 uint64_t arg = *llquanta++; 2359 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2360 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2361 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2362 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2363 2364 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2365 low, high, nsteps, nval)] += incr; 2366 } 2367 2368 /*ARGSUSED*/ 2369 static void 2370 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2371 { 2372 data[0]++; 2373 data[1] += nval; 2374 } 2375 2376 /*ARGSUSED*/ 2377 static void 2378 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2379 { 2380 int64_t snval = (int64_t)nval; 2381 uint64_t tmp[2]; 2382 2383 data[0]++; 2384 data[1] += nval; 2385 2386 /* 2387 * What we want to say here is: 2388 * 2389 * data[2] += nval * nval; 2390 * 2391 * But given that nval is 64-bit, we could easily overflow, so 2392 * we do this as 128-bit arithmetic. 2393 */ 2394 if (snval < 0) 2395 snval = -snval; 2396 2397 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2398 dtrace_add_128(data + 2, tmp, data + 2); 2399 } 2400 2401 /*ARGSUSED*/ 2402 static void 2403 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2404 { 2405 *oval = *oval + 1; 2406 } 2407 2408 /*ARGSUSED*/ 2409 static void 2410 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2411 { 2412 *oval += nval; 2413 } 2414 2415 /* 2416 * Aggregate given the tuple in the principal data buffer, and the aggregating 2417 * action denoted by the specified dtrace_aggregation_t. The aggregation 2418 * buffer is specified as the buf parameter. This routine does not return 2419 * failure; if there is no space in the aggregation buffer, the data will be 2420 * dropped, and a corresponding counter incremented. 2421 */ 2422 static void 2423 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2424 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2425 { 2426 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2427 uint32_t i, ndx, size, fsize; 2428 uint32_t align = sizeof (uint64_t) - 1; 2429 dtrace_aggbuffer_t *agb; 2430 dtrace_aggkey_t *key; 2431 uint32_t hashval = 0, limit, isstr; 2432 caddr_t tomax, data, kdata; 2433 dtrace_actkind_t action; 2434 dtrace_action_t *act; 2435 uintptr_t offs; 2436 2437 if (buf == NULL) 2438 return; 2439 2440 if (!agg->dtag_hasarg) { 2441 /* 2442 * Currently, only quantize() and lquantize() take additional 2443 * arguments, and they have the same semantics: an increment 2444 * value that defaults to 1 when not present. If additional 2445 * aggregating actions take arguments, the setting of the 2446 * default argument value will presumably have to become more 2447 * sophisticated... 2448 */ 2449 arg = 1; 2450 } 2451 2452 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2453 size = rec->dtrd_offset - agg->dtag_base; 2454 fsize = size + rec->dtrd_size; 2455 2456 ASSERT(dbuf->dtb_tomax != NULL); 2457 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2458 2459 if ((tomax = buf->dtb_tomax) == NULL) { 2460 dtrace_buffer_drop(buf); 2461 return; 2462 } 2463 2464 /* 2465 * The metastructure is always at the bottom of the buffer. 2466 */ 2467 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2468 sizeof (dtrace_aggbuffer_t)); 2469 2470 if (buf->dtb_offset == 0) { 2471 /* 2472 * We just kludge up approximately 1/8th of the size to be 2473 * buckets. If this guess ends up being routinely 2474 * off-the-mark, we may need to dynamically readjust this 2475 * based on past performance. 2476 */ 2477 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2478 2479 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2480 (uintptr_t)tomax || hashsize == 0) { 2481 /* 2482 * We've been given a ludicrously small buffer; 2483 * increment our drop count and leave. 2484 */ 2485 dtrace_buffer_drop(buf); 2486 return; 2487 } 2488 2489 /* 2490 * And now, a pathetic attempt to try to get a an odd (or 2491 * perchance, a prime) hash size for better hash distribution. 2492 */ 2493 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2494 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2495 2496 agb->dtagb_hashsize = hashsize; 2497 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2498 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2499 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2500 2501 for (i = 0; i < agb->dtagb_hashsize; i++) 2502 agb->dtagb_hash[i] = NULL; 2503 } 2504 2505 ASSERT(agg->dtag_first != NULL); 2506 ASSERT(agg->dtag_first->dta_intuple); 2507 2508 /* 2509 * Calculate the hash value based on the key. Note that we _don't_ 2510 * include the aggid in the hashing (but we will store it as part of 2511 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2512 * algorithm: a simple, quick algorithm that has no known funnels, and 2513 * gets good distribution in practice. The efficacy of the hashing 2514 * algorithm (and a comparison with other algorithms) may be found by 2515 * running the ::dtrace_aggstat MDB dcmd. 2516 */ 2517 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2518 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2519 limit = i + act->dta_rec.dtrd_size; 2520 ASSERT(limit <= size); 2521 isstr = DTRACEACT_ISSTRING(act); 2522 2523 for (; i < limit; i++) { 2524 hashval += data[i]; 2525 hashval += (hashval << 10); 2526 hashval ^= (hashval >> 6); 2527 2528 if (isstr && data[i] == '\0') 2529 break; 2530 } 2531 } 2532 2533 hashval += (hashval << 3); 2534 hashval ^= (hashval >> 11); 2535 hashval += (hashval << 15); 2536 2537 /* 2538 * Yes, the divide here is expensive -- but it's generally the least 2539 * of the performance issues given the amount of data that we iterate 2540 * over to compute hash values, compare data, etc. 2541 */ 2542 ndx = hashval % agb->dtagb_hashsize; 2543 2544 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2545 ASSERT((caddr_t)key >= tomax); 2546 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2547 2548 if (hashval != key->dtak_hashval || key->dtak_size != size) 2549 continue; 2550 2551 kdata = key->dtak_data; 2552 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2553 2554 for (act = agg->dtag_first; act->dta_intuple; 2555 act = act->dta_next) { 2556 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2557 limit = i + act->dta_rec.dtrd_size; 2558 ASSERT(limit <= size); 2559 isstr = DTRACEACT_ISSTRING(act); 2560 2561 for (; i < limit; i++) { 2562 if (kdata[i] != data[i]) 2563 goto next; 2564 2565 if (isstr && data[i] == '\0') 2566 break; 2567 } 2568 } 2569 2570 if (action != key->dtak_action) { 2571 /* 2572 * We are aggregating on the same value in the same 2573 * aggregation with two different aggregating actions. 2574 * (This should have been picked up in the compiler, 2575 * so we may be dealing with errant or devious DIF.) 2576 * This is an error condition; we indicate as much, 2577 * and return. 2578 */ 2579 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2580 return; 2581 } 2582 2583 /* 2584 * This is a hit: we need to apply the aggregator to 2585 * the value at this key. 2586 */ 2587 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2588 return; 2589 next: 2590 continue; 2591 } 2592 2593 /* 2594 * We didn't find it. We need to allocate some zero-filled space, 2595 * link it into the hash table appropriately, and apply the aggregator 2596 * to the (zero-filled) value. 2597 */ 2598 offs = buf->dtb_offset; 2599 while (offs & (align - 1)) 2600 offs += sizeof (uint32_t); 2601 2602 /* 2603 * If we don't have enough room to both allocate a new key _and_ 2604 * its associated data, increment the drop count and return. 2605 */ 2606 if ((uintptr_t)tomax + offs + fsize > 2607 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2608 dtrace_buffer_drop(buf); 2609 return; 2610 } 2611 2612 /*CONSTCOND*/ 2613 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2614 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2615 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2616 2617 key->dtak_data = kdata = tomax + offs; 2618 buf->dtb_offset = offs + fsize; 2619 2620 /* 2621 * Now copy the data across. 2622 */ 2623 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2624 2625 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2626 kdata[i] = data[i]; 2627 2628 /* 2629 * Because strings are not zeroed out by default, we need to iterate 2630 * looking for actions that store strings, and we need to explicitly 2631 * pad these strings out with zeroes. 2632 */ 2633 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2634 int nul; 2635 2636 if (!DTRACEACT_ISSTRING(act)) 2637 continue; 2638 2639 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2640 limit = i + act->dta_rec.dtrd_size; 2641 ASSERT(limit <= size); 2642 2643 for (nul = 0; i < limit; i++) { 2644 if (nul) { 2645 kdata[i] = '\0'; 2646 continue; 2647 } 2648 2649 if (data[i] != '\0') 2650 continue; 2651 2652 nul = 1; 2653 } 2654 } 2655 2656 for (i = size; i < fsize; i++) 2657 kdata[i] = 0; 2658 2659 key->dtak_hashval = hashval; 2660 key->dtak_size = size; 2661 key->dtak_action = action; 2662 key->dtak_next = agb->dtagb_hash[ndx]; 2663 agb->dtagb_hash[ndx] = key; 2664 2665 /* 2666 * Finally, apply the aggregator. 2667 */ 2668 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2669 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2670 } 2671 2672 /* 2673 * Given consumer state, this routine finds a speculation in the INACTIVE 2674 * state and transitions it into the ACTIVE state. If there is no speculation 2675 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2676 * incremented -- it is up to the caller to take appropriate action. 2677 */ 2678 static int 2679 dtrace_speculation(dtrace_state_t *state) 2680 { 2681 int i = 0; 2682 dtrace_speculation_state_t current; 2683 uint32_t *stat = &state->dts_speculations_unavail, count; 2684 2685 while (i < state->dts_nspeculations) { 2686 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2687 2688 current = spec->dtsp_state; 2689 2690 if (current != DTRACESPEC_INACTIVE) { 2691 if (current == DTRACESPEC_COMMITTINGMANY || 2692 current == DTRACESPEC_COMMITTING || 2693 current == DTRACESPEC_DISCARDING) 2694 stat = &state->dts_speculations_busy; 2695 i++; 2696 continue; 2697 } 2698 2699 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2700 current, DTRACESPEC_ACTIVE) == current) 2701 return (i + 1); 2702 } 2703 2704 /* 2705 * We couldn't find a speculation. If we found as much as a single 2706 * busy speculation buffer, we'll attribute this failure as "busy" 2707 * instead of "unavail". 2708 */ 2709 do { 2710 count = *stat; 2711 } while (dtrace_cas32(stat, count, count + 1) != count); 2712 2713 return (0); 2714 } 2715 2716 /* 2717 * This routine commits an active speculation. If the specified speculation 2718 * is not in a valid state to perform a commit(), this routine will silently do 2719 * nothing. The state of the specified speculation is transitioned according 2720 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2721 */ 2722 static void 2723 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2724 dtrace_specid_t which) 2725 { 2726 dtrace_speculation_t *spec; 2727 dtrace_buffer_t *src, *dest; 2728 uintptr_t daddr, saddr, dlimit, slimit; 2729 dtrace_speculation_state_t current, new; 2730 intptr_t offs; 2731 uint64_t timestamp; 2732 2733 if (which == 0) 2734 return; 2735 2736 if (which > state->dts_nspeculations) { 2737 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2738 return; 2739 } 2740 2741 spec = &state->dts_speculations[which - 1]; 2742 src = &spec->dtsp_buffer[cpu]; 2743 dest = &state->dts_buffer[cpu]; 2744 2745 do { 2746 current = spec->dtsp_state; 2747 2748 if (current == DTRACESPEC_COMMITTINGMANY) 2749 break; 2750 2751 switch (current) { 2752 case DTRACESPEC_INACTIVE: 2753 case DTRACESPEC_DISCARDING: 2754 return; 2755 2756 case DTRACESPEC_COMMITTING: 2757 /* 2758 * This is only possible if we are (a) commit()'ing 2759 * without having done a prior speculate() on this CPU 2760 * and (b) racing with another commit() on a different 2761 * CPU. There's nothing to do -- we just assert that 2762 * our offset is 0. 2763 */ 2764 ASSERT(src->dtb_offset == 0); 2765 return; 2766 2767 case DTRACESPEC_ACTIVE: 2768 new = DTRACESPEC_COMMITTING; 2769 break; 2770 2771 case DTRACESPEC_ACTIVEONE: 2772 /* 2773 * This speculation is active on one CPU. If our 2774 * buffer offset is non-zero, we know that the one CPU 2775 * must be us. Otherwise, we are committing on a 2776 * different CPU from the speculate(), and we must 2777 * rely on being asynchronously cleaned. 2778 */ 2779 if (src->dtb_offset != 0) { 2780 new = DTRACESPEC_COMMITTING; 2781 break; 2782 } 2783 /*FALLTHROUGH*/ 2784 2785 case DTRACESPEC_ACTIVEMANY: 2786 new = DTRACESPEC_COMMITTINGMANY; 2787 break; 2788 2789 default: 2790 ASSERT(0); 2791 } 2792 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2793 current, new) != current); 2794 2795 /* 2796 * We have set the state to indicate that we are committing this 2797 * speculation. Now reserve the necessary space in the destination 2798 * buffer. 2799 */ 2800 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2801 sizeof (uint64_t), state, NULL)) < 0) { 2802 dtrace_buffer_drop(dest); 2803 goto out; 2804 } 2805 2806 /* 2807 * We have sufficient space to copy the speculative buffer into the 2808 * primary buffer. First, modify the speculative buffer, filling 2809 * in the timestamp of all entries with the current time. The data 2810 * must have the commit() time rather than the time it was traced, 2811 * so that all entries in the primary buffer are in timestamp order. 2812 */ 2813 timestamp = dtrace_gethrtime(); 2814 saddr = (uintptr_t)src->dtb_tomax; 2815 slimit = saddr + src->dtb_offset; 2816 while (saddr < slimit) { 2817 size_t size; 2818 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2819 2820 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2821 saddr += sizeof (dtrace_epid_t); 2822 continue; 2823 } 2824 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2825 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2826 2827 ASSERT3U(saddr + size, <=, slimit); 2828 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2829 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2830 2831 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2832 2833 saddr += size; 2834 } 2835 2836 /* 2837 * Copy the buffer across. (Note that this is a 2838 * highly subobtimal bcopy(); in the unlikely event that this becomes 2839 * a serious performance issue, a high-performance DTrace-specific 2840 * bcopy() should obviously be invented.) 2841 */ 2842 daddr = (uintptr_t)dest->dtb_tomax + offs; 2843 dlimit = daddr + src->dtb_offset; 2844 saddr = (uintptr_t)src->dtb_tomax; 2845 2846 /* 2847 * First, the aligned portion. 2848 */ 2849 while (dlimit - daddr >= sizeof (uint64_t)) { 2850 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2851 2852 daddr += sizeof (uint64_t); 2853 saddr += sizeof (uint64_t); 2854 } 2855 2856 /* 2857 * Now any left-over bit... 2858 */ 2859 while (dlimit - daddr) 2860 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2861 2862 /* 2863 * Finally, commit the reserved space in the destination buffer. 2864 */ 2865 dest->dtb_offset = offs + src->dtb_offset; 2866 2867 out: 2868 /* 2869 * If we're lucky enough to be the only active CPU on this speculation 2870 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2871 */ 2872 if (current == DTRACESPEC_ACTIVE || 2873 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2874 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2875 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2876 2877 ASSERT(rval == DTRACESPEC_COMMITTING); 2878 } 2879 2880 src->dtb_offset = 0; 2881 src->dtb_xamot_drops += src->dtb_drops; 2882 src->dtb_drops = 0; 2883 } 2884 2885 /* 2886 * This routine discards an active speculation. If the specified speculation 2887 * is not in a valid state to perform a discard(), this routine will silently 2888 * do nothing. The state of the specified speculation is transitioned 2889 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2890 */ 2891 static void 2892 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2893 dtrace_specid_t which) 2894 { 2895 dtrace_speculation_t *spec; 2896 dtrace_speculation_state_t current, new; 2897 dtrace_buffer_t *buf; 2898 2899 if (which == 0) 2900 return; 2901 2902 if (which > state->dts_nspeculations) { 2903 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2904 return; 2905 } 2906 2907 spec = &state->dts_speculations[which - 1]; 2908 buf = &spec->dtsp_buffer[cpu]; 2909 2910 do { 2911 current = spec->dtsp_state; 2912 2913 switch (current) { 2914 case DTRACESPEC_INACTIVE: 2915 case DTRACESPEC_COMMITTINGMANY: 2916 case DTRACESPEC_COMMITTING: 2917 case DTRACESPEC_DISCARDING: 2918 return; 2919 2920 case DTRACESPEC_ACTIVE: 2921 case DTRACESPEC_ACTIVEMANY: 2922 new = DTRACESPEC_DISCARDING; 2923 break; 2924 2925 case DTRACESPEC_ACTIVEONE: 2926 if (buf->dtb_offset != 0) { 2927 new = DTRACESPEC_INACTIVE; 2928 } else { 2929 new = DTRACESPEC_DISCARDING; 2930 } 2931 break; 2932 2933 default: 2934 ASSERT(0); 2935 } 2936 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2937 current, new) != current); 2938 2939 buf->dtb_offset = 0; 2940 buf->dtb_drops = 0; 2941 } 2942 2943 /* 2944 * Note: not called from probe context. This function is called 2945 * asynchronously from cross call context to clean any speculations that are 2946 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2947 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2948 * speculation. 2949 */ 2950 static void 2951 dtrace_speculation_clean_here(dtrace_state_t *state) 2952 { 2953 dtrace_icookie_t cookie; 2954 processorid_t cpu = CPU->cpu_id; 2955 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2956 dtrace_specid_t i; 2957 2958 cookie = dtrace_interrupt_disable(); 2959 2960 if (dest->dtb_tomax == NULL) { 2961 dtrace_interrupt_enable(cookie); 2962 return; 2963 } 2964 2965 for (i = 0; i < state->dts_nspeculations; i++) { 2966 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2967 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2968 2969 if (src->dtb_tomax == NULL) 2970 continue; 2971 2972 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2973 src->dtb_offset = 0; 2974 continue; 2975 } 2976 2977 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2978 continue; 2979 2980 if (src->dtb_offset == 0) 2981 continue; 2982 2983 dtrace_speculation_commit(state, cpu, i + 1); 2984 } 2985 2986 dtrace_interrupt_enable(cookie); 2987 } 2988 2989 /* 2990 * Note: not called from probe context. This function is called 2991 * asynchronously (and at a regular interval) to clean any speculations that 2992 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2993 * is work to be done, it cross calls all CPUs to perform that work; 2994 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2995 * INACTIVE state until they have been cleaned by all CPUs. 2996 */ 2997 static void 2998 dtrace_speculation_clean(dtrace_state_t *state) 2999 { 3000 int work = 0, rv; 3001 dtrace_specid_t i; 3002 3003 for (i = 0; i < state->dts_nspeculations; i++) { 3004 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3005 3006 ASSERT(!spec->dtsp_cleaning); 3007 3008 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 3009 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 3010 continue; 3011 3012 work++; 3013 spec->dtsp_cleaning = 1; 3014 } 3015 3016 if (!work) 3017 return; 3018 3019 dtrace_xcall(DTRACE_CPUALL, 3020 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 3021 3022 /* 3023 * We now know that all CPUs have committed or discarded their 3024 * speculation buffers, as appropriate. We can now set the state 3025 * to inactive. 3026 */ 3027 for (i = 0; i < state->dts_nspeculations; i++) { 3028 dtrace_speculation_t *spec = &state->dts_speculations[i]; 3029 dtrace_speculation_state_t current, new; 3030 3031 if (!spec->dtsp_cleaning) 3032 continue; 3033 3034 current = spec->dtsp_state; 3035 ASSERT(current == DTRACESPEC_DISCARDING || 3036 current == DTRACESPEC_COMMITTINGMANY); 3037 3038 new = DTRACESPEC_INACTIVE; 3039 3040 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 3041 ASSERT(rv == current); 3042 spec->dtsp_cleaning = 0; 3043 } 3044 } 3045 3046 /* 3047 * Called as part of a speculate() to get the speculative buffer associated 3048 * with a given speculation. Returns NULL if the specified speculation is not 3049 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 3050 * the active CPU is not the specified CPU -- the speculation will be 3051 * atomically transitioned into the ACTIVEMANY state. 3052 */ 3053 static dtrace_buffer_t * 3054 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 3055 dtrace_specid_t which) 3056 { 3057 dtrace_speculation_t *spec; 3058 dtrace_speculation_state_t current, new; 3059 dtrace_buffer_t *buf; 3060 3061 if (which == 0) 3062 return (NULL); 3063 3064 if (which > state->dts_nspeculations) { 3065 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 3066 return (NULL); 3067 } 3068 3069 spec = &state->dts_speculations[which - 1]; 3070 buf = &spec->dtsp_buffer[cpuid]; 3071 3072 do { 3073 current = spec->dtsp_state; 3074 3075 switch (current) { 3076 case DTRACESPEC_INACTIVE: 3077 case DTRACESPEC_COMMITTINGMANY: 3078 case DTRACESPEC_DISCARDING: 3079 return (NULL); 3080 3081 case DTRACESPEC_COMMITTING: 3082 ASSERT(buf->dtb_offset == 0); 3083 return (NULL); 3084 3085 case DTRACESPEC_ACTIVEONE: 3086 /* 3087 * This speculation is currently active on one CPU. 3088 * Check the offset in the buffer; if it's non-zero, 3089 * that CPU must be us (and we leave the state alone). 3090 * If it's zero, assume that we're starting on a new 3091 * CPU -- and change the state to indicate that the 3092 * speculation is active on more than one CPU. 3093 */ 3094 if (buf->dtb_offset != 0) 3095 return (buf); 3096 3097 new = DTRACESPEC_ACTIVEMANY; 3098 break; 3099 3100 case DTRACESPEC_ACTIVEMANY: 3101 return (buf); 3102 3103 case DTRACESPEC_ACTIVE: 3104 new = DTRACESPEC_ACTIVEONE; 3105 break; 3106 3107 default: 3108 ASSERT(0); 3109 } 3110 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 3111 current, new) != current); 3112 3113 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 3114 return (buf); 3115 } 3116 3117 /* 3118 * Return a string. In the event that the user lacks the privilege to access 3119 * arbitrary kernel memory, we copy the string out to scratch memory so that we 3120 * don't fail access checking. 3121 * 3122 * dtrace_dif_variable() uses this routine as a helper for various 3123 * builtin values such as 'execname' and 'probefunc.' 3124 */ 3125 uintptr_t 3126 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 3127 dtrace_mstate_t *mstate) 3128 { 3129 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3130 uintptr_t ret; 3131 size_t strsz; 3132 3133 /* 3134 * The easy case: this probe is allowed to read all of memory, so 3135 * we can just return this as a vanilla pointer. 3136 */ 3137 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 3138 return (addr); 3139 3140 /* 3141 * This is the tougher case: we copy the string in question from 3142 * kernel memory into scratch memory and return it that way: this 3143 * ensures that we won't trip up when access checking tests the 3144 * BYREF return value. 3145 */ 3146 strsz = dtrace_strlen((char *)addr, size) + 1; 3147 3148 if (mstate->dtms_scratch_ptr + strsz > 3149 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 3150 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3151 return (0); 3152 } 3153 3154 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 3155 strsz); 3156 ret = mstate->dtms_scratch_ptr; 3157 mstate->dtms_scratch_ptr += strsz; 3158 return (ret); 3159 } 3160 3161 /* 3162 * This function implements the DIF emulator's variable lookups. The emulator 3163 * passes a reserved variable identifier and optional built-in array index. 3164 */ 3165 static uint64_t 3166 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3167 uint64_t ndx) 3168 { 3169 /* 3170 * If we're accessing one of the uncached arguments, we'll turn this 3171 * into a reference in the args array. 3172 */ 3173 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3174 ndx = v - DIF_VAR_ARG0; 3175 v = DIF_VAR_ARGS; 3176 } 3177 3178 switch (v) { 3179 case DIF_VAR_ARGS: 3180 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3181 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3182 CPU_DTRACE_KPRIV; 3183 return (0); 3184 } 3185 3186 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3187 if (ndx >= sizeof (mstate->dtms_arg) / 3188 sizeof (mstate->dtms_arg[0])) { 3189 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3190 dtrace_provider_t *pv; 3191 uint64_t val; 3192 3193 pv = mstate->dtms_probe->dtpr_provider; 3194 if (pv->dtpv_pops.dtps_getargval != NULL) 3195 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3196 mstate->dtms_probe->dtpr_id, 3197 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3198 else 3199 val = dtrace_getarg(ndx, aframes); 3200 3201 /* 3202 * This is regrettably required to keep the compiler 3203 * from tail-optimizing the call to dtrace_getarg(). 3204 * The condition always evaluates to true, but the 3205 * compiler has no way of figuring that out a priori. 3206 * (None of this would be necessary if the compiler 3207 * could be relied upon to _always_ tail-optimize 3208 * the call to dtrace_getarg() -- but it can't.) 3209 */ 3210 if (mstate->dtms_probe != NULL) 3211 return (val); 3212 3213 ASSERT(0); 3214 } 3215 3216 return (mstate->dtms_arg[ndx]); 3217 3218 case DIF_VAR_UREGS: { 3219 klwp_t *lwp; 3220 3221 if (!dtrace_priv_proc(state, mstate)) 3222 return (0); 3223 3224 if ((lwp = curthread->t_lwp) == NULL) { 3225 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3226 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0; 3227 return (0); 3228 } 3229 3230 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3231 } 3232 3233 case DIF_VAR_VMREGS: { 3234 uint64_t rval; 3235 3236 if (!dtrace_priv_kernel(state)) 3237 return (0); 3238 3239 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3240 3241 rval = dtrace_getvmreg(ndx, 3242 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3243 3244 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3245 3246 return (rval); 3247 } 3248 3249 case DIF_VAR_CURTHREAD: 3250 if (!dtrace_priv_proc(state, mstate)) 3251 return (0); 3252 return ((uint64_t)(uintptr_t)curthread); 3253 3254 case DIF_VAR_TIMESTAMP: 3255 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3256 mstate->dtms_timestamp = dtrace_gethrtime(); 3257 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3258 } 3259 return (mstate->dtms_timestamp); 3260 3261 case DIF_VAR_VTIMESTAMP: 3262 ASSERT(dtrace_vtime_references != 0); 3263 return (curthread->t_dtrace_vtime); 3264 3265 case DIF_VAR_WALLTIMESTAMP: 3266 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3267 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3268 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3269 } 3270 return (mstate->dtms_walltimestamp); 3271 3272 case DIF_VAR_IPL: 3273 if (!dtrace_priv_kernel(state)) 3274 return (0); 3275 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3276 mstate->dtms_ipl = dtrace_getipl(); 3277 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3278 } 3279 return (mstate->dtms_ipl); 3280 3281 case DIF_VAR_EPID: 3282 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3283 return (mstate->dtms_epid); 3284 3285 case DIF_VAR_ID: 3286 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3287 return (mstate->dtms_probe->dtpr_id); 3288 3289 case DIF_VAR_STACKDEPTH: 3290 if (!dtrace_priv_kernel(state)) 3291 return (0); 3292 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3293 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3294 3295 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3296 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3297 } 3298 return (mstate->dtms_stackdepth); 3299 3300 case DIF_VAR_USTACKDEPTH: 3301 if (!dtrace_priv_proc(state, mstate)) 3302 return (0); 3303 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3304 /* 3305 * See comment in DIF_VAR_PID. 3306 */ 3307 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3308 CPU_ON_INTR(CPU)) { 3309 mstate->dtms_ustackdepth = 0; 3310 } else { 3311 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3312 mstate->dtms_ustackdepth = 3313 dtrace_getustackdepth(); 3314 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3315 } 3316 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3317 } 3318 return (mstate->dtms_ustackdepth); 3319 3320 case DIF_VAR_CALLER: 3321 if (!dtrace_priv_kernel(state)) 3322 return (0); 3323 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3324 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3325 3326 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3327 /* 3328 * If this is an unanchored probe, we are 3329 * required to go through the slow path: 3330 * dtrace_caller() only guarantees correct 3331 * results for anchored probes. 3332 */ 3333 pc_t caller[2]; 3334 3335 dtrace_getpcstack(caller, 2, aframes, 3336 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3337 mstate->dtms_caller = caller[1]; 3338 } else if ((mstate->dtms_caller = 3339 dtrace_caller(aframes)) == -1) { 3340 /* 3341 * We have failed to do this the quick way; 3342 * we must resort to the slower approach of 3343 * calling dtrace_getpcstack(). 3344 */ 3345 pc_t caller; 3346 3347 dtrace_getpcstack(&caller, 1, aframes, NULL); 3348 mstate->dtms_caller = caller; 3349 } 3350 3351 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3352 } 3353 return (mstate->dtms_caller); 3354 3355 case DIF_VAR_UCALLER: 3356 if (!dtrace_priv_proc(state, mstate)) 3357 return (0); 3358 3359 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3360 uint64_t ustack[3]; 3361 3362 /* 3363 * dtrace_getupcstack() fills in the first uint64_t 3364 * with the current PID. The second uint64_t will 3365 * be the program counter at user-level. The third 3366 * uint64_t will contain the caller, which is what 3367 * we're after. 3368 */ 3369 ustack[2] = 0; 3370 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3371 dtrace_getupcstack(ustack, 3); 3372 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3373 mstate->dtms_ucaller = ustack[2]; 3374 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3375 } 3376 3377 return (mstate->dtms_ucaller); 3378 3379 case DIF_VAR_PROBEPROV: 3380 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3381 return (dtrace_dif_varstr( 3382 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3383 state, mstate)); 3384 3385 case DIF_VAR_PROBEMOD: 3386 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3387 return (dtrace_dif_varstr( 3388 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3389 state, mstate)); 3390 3391 case DIF_VAR_PROBEFUNC: 3392 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3393 return (dtrace_dif_varstr( 3394 (uintptr_t)mstate->dtms_probe->dtpr_func, 3395 state, mstate)); 3396 3397 case DIF_VAR_PROBENAME: 3398 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3399 return (dtrace_dif_varstr( 3400 (uintptr_t)mstate->dtms_probe->dtpr_name, 3401 state, mstate)); 3402 3403 case DIF_VAR_PID: 3404 if (!dtrace_priv_proc(state, mstate)) 3405 return (0); 3406 3407 /* 3408 * Note that we are assuming that an unanchored probe is 3409 * always due to a high-level interrupt. (And we're assuming 3410 * that there is only a single high level interrupt.) 3411 */ 3412 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3413 return (pid0.pid_id); 3414 3415 /* 3416 * It is always safe to dereference one's own t_procp pointer: 3417 * it always points to a valid, allocated proc structure. 3418 * Further, it is always safe to dereference the p_pidp member 3419 * of one's own proc structure. (These are truisms becuase 3420 * threads and processes don't clean up their own state -- 3421 * they leave that task to whomever reaps them.) 3422 */ 3423 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3424 3425 case DIF_VAR_PPID: 3426 if (!dtrace_priv_proc(state, mstate)) 3427 return (0); 3428 3429 /* 3430 * See comment in DIF_VAR_PID. 3431 */ 3432 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3433 return (pid0.pid_id); 3434 3435 /* 3436 * It is always safe to dereference one's own t_procp pointer: 3437 * it always points to a valid, allocated proc structure. 3438 * (This is true because threads don't clean up their own 3439 * state -- they leave that task to whomever reaps them.) 3440 */ 3441 return ((uint64_t)curthread->t_procp->p_ppid); 3442 3443 case DIF_VAR_TID: 3444 /* 3445 * See comment in DIF_VAR_PID. 3446 */ 3447 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3448 return (0); 3449 3450 return ((uint64_t)curthread->t_tid); 3451 3452 case DIF_VAR_EXECNAME: 3453 if (!dtrace_priv_proc(state, mstate)) 3454 return (0); 3455 3456 /* 3457 * See comment in DIF_VAR_PID. 3458 */ 3459 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3460 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3461 3462 /* 3463 * It is always safe to dereference one's own t_procp pointer: 3464 * it always points to a valid, allocated proc structure. 3465 * (This is true because threads don't clean up their own 3466 * state -- they leave that task to whomever reaps them.) 3467 */ 3468 return (dtrace_dif_varstr( 3469 (uintptr_t)curthread->t_procp->p_user.u_comm, 3470 state, mstate)); 3471 3472 case DIF_VAR_ZONENAME: 3473 if (!dtrace_priv_proc(state, mstate)) 3474 return (0); 3475 3476 /* 3477 * See comment in DIF_VAR_PID. 3478 */ 3479 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3480 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3481 3482 /* 3483 * It is always safe to dereference one's own t_procp pointer: 3484 * it always points to a valid, allocated proc structure. 3485 * (This is true because threads don't clean up their own 3486 * state -- they leave that task to whomever reaps them.) 3487 */ 3488 return (dtrace_dif_varstr( 3489 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3490 state, mstate)); 3491 3492 case DIF_VAR_UID: 3493 if (!dtrace_priv_proc(state, mstate)) 3494 return (0); 3495 3496 /* 3497 * See comment in DIF_VAR_PID. 3498 */ 3499 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3500 return ((uint64_t)p0.p_cred->cr_uid); 3501 3502 /* 3503 * It is always safe to dereference one's own t_procp pointer: 3504 * it always points to a valid, allocated proc structure. 3505 * (This is true because threads don't clean up their own 3506 * state -- they leave that task to whomever reaps them.) 3507 * 3508 * Additionally, it is safe to dereference one's own process 3509 * credential, since this is never NULL after process birth. 3510 */ 3511 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3512 3513 case DIF_VAR_GID: 3514 if (!dtrace_priv_proc(state, mstate)) 3515 return (0); 3516 3517 /* 3518 * See comment in DIF_VAR_PID. 3519 */ 3520 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3521 return ((uint64_t)p0.p_cred->cr_gid); 3522 3523 /* 3524 * It is always safe to dereference one's own t_procp pointer: 3525 * it always points to a valid, allocated proc structure. 3526 * (This is true because threads don't clean up their own 3527 * state -- they leave that task to whomever reaps them.) 3528 * 3529 * Additionally, it is safe to dereference one's own process 3530 * credential, since this is never NULL after process birth. 3531 */ 3532 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3533 3534 case DIF_VAR_ERRNO: { 3535 klwp_t *lwp; 3536 if (!dtrace_priv_proc(state, mstate)) 3537 return (0); 3538 3539 /* 3540 * See comment in DIF_VAR_PID. 3541 */ 3542 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3543 return (0); 3544 3545 /* 3546 * It is always safe to dereference one's own t_lwp pointer in 3547 * the event that this pointer is non-NULL. (This is true 3548 * because threads and lwps don't clean up their own state -- 3549 * they leave that task to whomever reaps them.) 3550 */ 3551 if ((lwp = curthread->t_lwp) == NULL) 3552 return (0); 3553 3554 return ((uint64_t)lwp->lwp_errno); 3555 } 3556 3557 case DIF_VAR_THREADNAME: 3558 /* 3559 * See comment in DIF_VAR_PID. 3560 */ 3561 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3562 return (0); 3563 3564 if (curthread->t_name == NULL) 3565 return (0); 3566 3567 /* 3568 * Once set, ->t_name itself is never changed: any updates are 3569 * made to the same buffer that we are pointing out. So we are 3570 * safe to dereference it here. 3571 */ 3572 return (dtrace_dif_varstr((uintptr_t)curthread->t_name, 3573 state, mstate)); 3574 3575 default: 3576 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3577 return (0); 3578 } 3579 } 3580 3581 static void 3582 dtrace_dif_variable_write(dtrace_mstate_t *mstate, dtrace_state_t *state, 3583 uint64_t v, uint64_t ndx, uint64_t data) 3584 { 3585 switch (v) { 3586 case DIF_VAR_UREGS: { 3587 klwp_t *lwp; 3588 3589 if (dtrace_destructive_disallow || 3590 !dtrace_priv_proc_control(state, mstate)) { 3591 return; 3592 } 3593 3594 if ((lwp = curthread->t_lwp) == NULL) { 3595 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3596 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0; 3597 return; 3598 } 3599 3600 dtrace_setreg(lwp->lwp_regs, ndx, data); 3601 return; 3602 } 3603 3604 default: 3605 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3606 return; 3607 } 3608 } 3609 3610 typedef enum dtrace_json_state { 3611 DTRACE_JSON_REST = 1, 3612 DTRACE_JSON_OBJECT, 3613 DTRACE_JSON_STRING, 3614 DTRACE_JSON_STRING_ESCAPE, 3615 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3616 DTRACE_JSON_COLON, 3617 DTRACE_JSON_COMMA, 3618 DTRACE_JSON_VALUE, 3619 DTRACE_JSON_IDENTIFIER, 3620 DTRACE_JSON_NUMBER, 3621 DTRACE_JSON_NUMBER_FRAC, 3622 DTRACE_JSON_NUMBER_EXP, 3623 DTRACE_JSON_COLLECT_OBJECT 3624 } dtrace_json_state_t; 3625 3626 /* 3627 * This function possesses just enough knowledge about JSON to extract a single 3628 * value from a JSON string and store it in the scratch buffer. It is able 3629 * to extract nested object values, and members of arrays by index. 3630 * 3631 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3632 * be looked up as we descend into the object tree. e.g. 3633 * 3634 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3635 * with nelems = 5. 3636 * 3637 * The run time of this function must be bounded above by strsize to limit the 3638 * amount of work done in probe context. As such, it is implemented as a 3639 * simple state machine, reading one character at a time using safe loads 3640 * until we find the requested element, hit a parsing error or run off the 3641 * end of the object or string. 3642 * 3643 * As there is no way for a subroutine to return an error without interrupting 3644 * clause execution, we simply return NULL in the event of a missing key or any 3645 * other error condition. Each NULL return in this function is commented with 3646 * the error condition it represents -- parsing or otherwise. 3647 * 3648 * The set of states for the state machine closely matches the JSON 3649 * specification (http://json.org/). Briefly: 3650 * 3651 * DTRACE_JSON_REST: 3652 * Skip whitespace until we find either a top-level Object, moving 3653 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3654 * 3655 * DTRACE_JSON_OBJECT: 3656 * Locate the next key String in an Object. Sets a flag to denote 3657 * the next String as a key string and moves to DTRACE_JSON_STRING. 3658 * 3659 * DTRACE_JSON_COLON: 3660 * Skip whitespace until we find the colon that separates key Strings 3661 * from their values. Once found, move to DTRACE_JSON_VALUE. 3662 * 3663 * DTRACE_JSON_VALUE: 3664 * Detects the type of the next value (String, Number, Identifier, Object 3665 * or Array) and routes to the states that process that type. Here we also 3666 * deal with the element selector list if we are requested to traverse down 3667 * into the object tree. 3668 * 3669 * DTRACE_JSON_COMMA: 3670 * Skip whitespace until we find the comma that separates key-value pairs 3671 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3672 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3673 * states return to this state at the end of their value, unless otherwise 3674 * noted. 3675 * 3676 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3677 * Processes a Number literal from the JSON, including any exponent 3678 * component that may be present. Numbers are returned as strings, which 3679 * may be passed to strtoll() if an integer is required. 3680 * 3681 * DTRACE_JSON_IDENTIFIER: 3682 * Processes a "true", "false" or "null" literal in the JSON. 3683 * 3684 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3685 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3686 * Processes a String literal from the JSON, whether the String denotes 3687 * a key, a value or part of a larger Object. Handles all escape sequences 3688 * present in the specification, including four-digit unicode characters, 3689 * but merely includes the escape sequence without converting it to the 3690 * actual escaped character. If the String is flagged as a key, we 3691 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3692 * 3693 * DTRACE_JSON_COLLECT_OBJECT: 3694 * This state collects an entire Object (or Array), correctly handling 3695 * embedded strings. If the full element selector list matches this nested 3696 * object, we return the Object in full as a string. If not, we use this 3697 * state to skip to the next value at this level and continue processing. 3698 * 3699 * NOTE: This function uses various macros from strtolctype.h to manipulate 3700 * digit values, etc -- these have all been checked to ensure they make 3701 * no additional function calls. 3702 */ 3703 static char * 3704 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3705 char *dest) 3706 { 3707 dtrace_json_state_t state = DTRACE_JSON_REST; 3708 int64_t array_elem = INT64_MIN; 3709 int64_t array_pos = 0; 3710 uint8_t escape_unicount = 0; 3711 boolean_t string_is_key = B_FALSE; 3712 boolean_t collect_object = B_FALSE; 3713 boolean_t found_key = B_FALSE; 3714 boolean_t in_array = B_FALSE; 3715 uint32_t braces = 0, brackets = 0; 3716 char *elem = elemlist; 3717 char *dd = dest; 3718 uintptr_t cur; 3719 3720 for (cur = json; cur < json + size; cur++) { 3721 char cc = dtrace_load8(cur); 3722 if (cc == '\0') 3723 return (NULL); 3724 3725 switch (state) { 3726 case DTRACE_JSON_REST: 3727 if (isspace(cc)) 3728 break; 3729 3730 if (cc == '{') { 3731 state = DTRACE_JSON_OBJECT; 3732 break; 3733 } 3734 3735 if (cc == '[') { 3736 in_array = B_TRUE; 3737 array_pos = 0; 3738 array_elem = dtrace_strtoll(elem, 10, size); 3739 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3740 state = DTRACE_JSON_VALUE; 3741 break; 3742 } 3743 3744 /* 3745 * ERROR: expected to find a top-level object or array. 3746 */ 3747 return (NULL); 3748 case DTRACE_JSON_OBJECT: 3749 if (isspace(cc)) 3750 break; 3751 3752 if (cc == '"') { 3753 state = DTRACE_JSON_STRING; 3754 string_is_key = B_TRUE; 3755 break; 3756 } 3757 3758 /* 3759 * ERROR: either the object did not start with a key 3760 * string, or we've run off the end of the object 3761 * without finding the requested key. 3762 */ 3763 return (NULL); 3764 case DTRACE_JSON_STRING: 3765 if (cc == '\\') { 3766 *dd++ = '\\'; 3767 state = DTRACE_JSON_STRING_ESCAPE; 3768 break; 3769 } 3770 3771 if (cc == '"') { 3772 if (collect_object) { 3773 /* 3774 * We don't reset the dest here, as 3775 * the string is part of a larger 3776 * object being collected. 3777 */ 3778 *dd++ = cc; 3779 collect_object = B_FALSE; 3780 state = DTRACE_JSON_COLLECT_OBJECT; 3781 break; 3782 } 3783 *dd = '\0'; 3784 dd = dest; /* reset string buffer */ 3785 if (string_is_key) { 3786 if (dtrace_strncmp(dest, elem, 3787 size) == 0) 3788 found_key = B_TRUE; 3789 } else if (found_key) { 3790 if (nelems > 1) { 3791 /* 3792 * We expected an object, not 3793 * this string. 3794 */ 3795 return (NULL); 3796 } 3797 return (dest); 3798 } 3799 state = string_is_key ? DTRACE_JSON_COLON : 3800 DTRACE_JSON_COMMA; 3801 string_is_key = B_FALSE; 3802 break; 3803 } 3804 3805 *dd++ = cc; 3806 break; 3807 case DTRACE_JSON_STRING_ESCAPE: 3808 *dd++ = cc; 3809 if (cc == 'u') { 3810 escape_unicount = 0; 3811 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3812 } else { 3813 state = DTRACE_JSON_STRING; 3814 } 3815 break; 3816 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3817 if (!isxdigit(cc)) { 3818 /* 3819 * ERROR: invalid unicode escape, expected 3820 * four valid hexidecimal digits. 3821 */ 3822 return (NULL); 3823 } 3824 3825 *dd++ = cc; 3826 if (++escape_unicount == 4) 3827 state = DTRACE_JSON_STRING; 3828 break; 3829 case DTRACE_JSON_COLON: 3830 if (isspace(cc)) 3831 break; 3832 3833 if (cc == ':') { 3834 state = DTRACE_JSON_VALUE; 3835 break; 3836 } 3837 3838 /* 3839 * ERROR: expected a colon. 3840 */ 3841 return (NULL); 3842 case DTRACE_JSON_COMMA: 3843 if (isspace(cc)) 3844 break; 3845 3846 if (cc == ',') { 3847 if (in_array) { 3848 state = DTRACE_JSON_VALUE; 3849 if (++array_pos == array_elem) 3850 found_key = B_TRUE; 3851 } else { 3852 state = DTRACE_JSON_OBJECT; 3853 } 3854 break; 3855 } 3856 3857 /* 3858 * ERROR: either we hit an unexpected character, or 3859 * we reached the end of the object or array without 3860 * finding the requested key. 3861 */ 3862 return (NULL); 3863 case DTRACE_JSON_IDENTIFIER: 3864 if (islower(cc)) { 3865 *dd++ = cc; 3866 break; 3867 } 3868 3869 *dd = '\0'; 3870 dd = dest; /* reset string buffer */ 3871 3872 if (dtrace_strncmp(dest, "true", 5) == 0 || 3873 dtrace_strncmp(dest, "false", 6) == 0 || 3874 dtrace_strncmp(dest, "null", 5) == 0) { 3875 if (found_key) { 3876 if (nelems > 1) { 3877 /* 3878 * ERROR: We expected an object, 3879 * not this identifier. 3880 */ 3881 return (NULL); 3882 } 3883 return (dest); 3884 } else { 3885 cur--; 3886 state = DTRACE_JSON_COMMA; 3887 break; 3888 } 3889 } 3890 3891 /* 3892 * ERROR: we did not recognise the identifier as one 3893 * of those in the JSON specification. 3894 */ 3895 return (NULL); 3896 case DTRACE_JSON_NUMBER: 3897 if (cc == '.') { 3898 *dd++ = cc; 3899 state = DTRACE_JSON_NUMBER_FRAC; 3900 break; 3901 } 3902 3903 if (cc == 'x' || cc == 'X') { 3904 /* 3905 * ERROR: specification explicitly excludes 3906 * hexidecimal or octal numbers. 3907 */ 3908 return (NULL); 3909 } 3910 3911 /* FALLTHRU */ 3912 case DTRACE_JSON_NUMBER_FRAC: 3913 if (cc == 'e' || cc == 'E') { 3914 *dd++ = cc; 3915 state = DTRACE_JSON_NUMBER_EXP; 3916 break; 3917 } 3918 3919 if (cc == '+' || cc == '-') { 3920 /* 3921 * ERROR: expect sign as part of exponent only. 3922 */ 3923 return (NULL); 3924 } 3925 /* FALLTHRU */ 3926 case DTRACE_JSON_NUMBER_EXP: 3927 if (isdigit(cc) || cc == '+' || cc == '-') { 3928 *dd++ = cc; 3929 break; 3930 } 3931 3932 *dd = '\0'; 3933 dd = dest; /* reset string buffer */ 3934 if (found_key) { 3935 if (nelems > 1) { 3936 /* 3937 * ERROR: We expected an object, not 3938 * this number. 3939 */ 3940 return (NULL); 3941 } 3942 return (dest); 3943 } 3944 3945 cur--; 3946 state = DTRACE_JSON_COMMA; 3947 break; 3948 case DTRACE_JSON_VALUE: 3949 if (isspace(cc)) 3950 break; 3951 3952 if (cc == '{' || cc == '[') { 3953 if (nelems > 1 && found_key) { 3954 in_array = cc == '[' ? B_TRUE : B_FALSE; 3955 /* 3956 * If our element selector directs us 3957 * to descend into this nested object, 3958 * then move to the next selector 3959 * element in the list and restart the 3960 * state machine. 3961 */ 3962 while (*elem != '\0') 3963 elem++; 3964 elem++; /* skip the inter-element NUL */ 3965 nelems--; 3966 dd = dest; 3967 if (in_array) { 3968 state = DTRACE_JSON_VALUE; 3969 array_pos = 0; 3970 array_elem = dtrace_strtoll( 3971 elem, 10, size); 3972 found_key = array_elem == 0 ? 3973 B_TRUE : B_FALSE; 3974 } else { 3975 found_key = B_FALSE; 3976 state = DTRACE_JSON_OBJECT; 3977 } 3978 break; 3979 } 3980 3981 /* 3982 * Otherwise, we wish to either skip this 3983 * nested object or return it in full. 3984 */ 3985 if (cc == '[') 3986 brackets = 1; 3987 else 3988 braces = 1; 3989 *dd++ = cc; 3990 state = DTRACE_JSON_COLLECT_OBJECT; 3991 break; 3992 } 3993 3994 if (cc == '"') { 3995 state = DTRACE_JSON_STRING; 3996 break; 3997 } 3998 3999 if (islower(cc)) { 4000 /* 4001 * Here we deal with true, false and null. 4002 */ 4003 *dd++ = cc; 4004 state = DTRACE_JSON_IDENTIFIER; 4005 break; 4006 } 4007 4008 if (cc == '-' || isdigit(cc)) { 4009 *dd++ = cc; 4010 state = DTRACE_JSON_NUMBER; 4011 break; 4012 } 4013 4014 /* 4015 * ERROR: unexpected character at start of value. 4016 */ 4017 return (NULL); 4018 case DTRACE_JSON_COLLECT_OBJECT: 4019 if (cc == '\0') 4020 /* 4021 * ERROR: unexpected end of input. 4022 */ 4023 return (NULL); 4024 4025 *dd++ = cc; 4026 if (cc == '"') { 4027 collect_object = B_TRUE; 4028 state = DTRACE_JSON_STRING; 4029 break; 4030 } 4031 4032 if (cc == ']') { 4033 if (brackets-- == 0) { 4034 /* 4035 * ERROR: unbalanced brackets. 4036 */ 4037 return (NULL); 4038 } 4039 } else if (cc == '}') { 4040 if (braces-- == 0) { 4041 /* 4042 * ERROR: unbalanced braces. 4043 */ 4044 return (NULL); 4045 } 4046 } else if (cc == '{') { 4047 braces++; 4048 } else if (cc == '[') { 4049 brackets++; 4050 } 4051 4052 if (brackets == 0 && braces == 0) { 4053 if (found_key) { 4054 *dd = '\0'; 4055 return (dest); 4056 } 4057 dd = dest; /* reset string buffer */ 4058 state = DTRACE_JSON_COMMA; 4059 } 4060 break; 4061 } 4062 } 4063 return (NULL); 4064 } 4065 4066 /* 4067 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 4068 * Notice that we don't bother validating the proper number of arguments or 4069 * their types in the tuple stack. This isn't needed because all argument 4070 * interpretation is safe because of our load safety -- the worst that can 4071 * happen is that a bogus program can obtain bogus results. 4072 */ 4073 static void 4074 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 4075 dtrace_key_t *tupregs, int nargs, 4076 dtrace_mstate_t *mstate, dtrace_state_t *state) 4077 { 4078 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4079 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4080 dtrace_vstate_t *vstate = &state->dts_vstate; 4081 4082 union { 4083 mutex_impl_t mi; 4084 uint64_t mx; 4085 } m; 4086 4087 union { 4088 krwlock_t ri; 4089 uintptr_t rw; 4090 } r; 4091 4092 switch (subr) { 4093 case DIF_SUBR_RAND: 4094 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 4095 break; 4096 4097 case DIF_SUBR_MUTEX_OWNED: 4098 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4099 mstate, vstate)) { 4100 regs[rd] = 0; 4101 break; 4102 } 4103 4104 m.mx = dtrace_load64(tupregs[0].dttk_value); 4105 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 4106 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 4107 else 4108 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 4109 break; 4110 4111 case DIF_SUBR_MUTEX_OWNER: 4112 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4113 mstate, vstate)) { 4114 regs[rd] = 0; 4115 break; 4116 } 4117 4118 m.mx = dtrace_load64(tupregs[0].dttk_value); 4119 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 4120 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 4121 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 4122 else 4123 regs[rd] = 0; 4124 break; 4125 4126 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 4127 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4128 mstate, vstate)) { 4129 regs[rd] = 0; 4130 break; 4131 } 4132 4133 m.mx = dtrace_load64(tupregs[0].dttk_value); 4134 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 4135 break; 4136 4137 case DIF_SUBR_MUTEX_TYPE_SPIN: 4138 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 4139 mstate, vstate)) { 4140 regs[rd] = 0; 4141 break; 4142 } 4143 4144 m.mx = dtrace_load64(tupregs[0].dttk_value); 4145 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 4146 break; 4147 4148 case DIF_SUBR_RW_READ_HELD: { 4149 uintptr_t tmp; 4150 4151 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 4152 mstate, vstate)) { 4153 regs[rd] = 0; 4154 break; 4155 } 4156 4157 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4158 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 4159 break; 4160 } 4161 4162 case DIF_SUBR_RW_WRITE_HELD: 4163 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4164 mstate, vstate)) { 4165 regs[rd] = 0; 4166 break; 4167 } 4168 4169 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4170 regs[rd] = _RW_WRITE_HELD(&r.ri); 4171 break; 4172 4173 case DIF_SUBR_RW_ISWRITER: 4174 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 4175 mstate, vstate)) { 4176 regs[rd] = 0; 4177 break; 4178 } 4179 4180 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 4181 regs[rd] = _RW_ISWRITER(&r.ri); 4182 break; 4183 4184 case DIF_SUBR_BCOPY: { 4185 /* 4186 * We need to be sure that the destination is in the scratch 4187 * region -- no other region is allowed. 4188 */ 4189 uintptr_t src = tupregs[0].dttk_value; 4190 uintptr_t dest = tupregs[1].dttk_value; 4191 size_t size = tupregs[2].dttk_value; 4192 4193 if (!dtrace_inscratch(dest, size, mstate)) { 4194 *flags |= CPU_DTRACE_BADADDR; 4195 *illval = regs[rd]; 4196 break; 4197 } 4198 4199 if (!dtrace_canload(src, size, mstate, vstate)) { 4200 regs[rd] = 0; 4201 break; 4202 } 4203 4204 dtrace_bcopy((void *)src, (void *)dest, size); 4205 break; 4206 } 4207 4208 case DIF_SUBR_ALLOCA: 4209 case DIF_SUBR_COPYIN: { 4210 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 4211 uint64_t size = 4212 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4213 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4214 4215 /* 4216 * This action doesn't require any credential checks since 4217 * probes will not activate in user contexts to which the 4218 * enabling user does not have permissions. 4219 */ 4220 4221 /* 4222 * Rounding up the user allocation size could have overflowed 4223 * a large, bogus allocation (like -1ULL) to 0. 4224 */ 4225 if (scratch_size < size || 4226 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4227 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4228 regs[rd] = 0; 4229 break; 4230 } 4231 4232 if (subr == DIF_SUBR_COPYIN) { 4233 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4234 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4235 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4236 } 4237 4238 mstate->dtms_scratch_ptr += scratch_size; 4239 regs[rd] = dest; 4240 break; 4241 } 4242 4243 case DIF_SUBR_COPYINTO: { 4244 uint64_t size = tupregs[1].dttk_value; 4245 uintptr_t dest = tupregs[2].dttk_value; 4246 4247 /* 4248 * This action doesn't require any credential checks since 4249 * probes will not activate in user contexts to which the 4250 * enabling user does not have permissions. 4251 */ 4252 if (!dtrace_inscratch(dest, size, mstate)) { 4253 *flags |= CPU_DTRACE_BADADDR; 4254 *illval = regs[rd]; 4255 break; 4256 } 4257 4258 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4259 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4260 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4261 break; 4262 } 4263 4264 case DIF_SUBR_COPYINSTR: { 4265 uintptr_t dest = mstate->dtms_scratch_ptr; 4266 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4267 4268 if (nargs > 1 && tupregs[1].dttk_value < size) 4269 size = tupregs[1].dttk_value + 1; 4270 4271 /* 4272 * This action doesn't require any credential checks since 4273 * probes will not activate in user contexts to which the 4274 * enabling user does not have permissions. 4275 */ 4276 if (!DTRACE_INSCRATCH(mstate, size)) { 4277 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4278 regs[rd] = 0; 4279 break; 4280 } 4281 4282 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4283 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4284 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4285 4286 ((char *)dest)[size - 1] = '\0'; 4287 mstate->dtms_scratch_ptr += size; 4288 regs[rd] = dest; 4289 break; 4290 } 4291 4292 case DIF_SUBR_MSGSIZE: 4293 case DIF_SUBR_MSGDSIZE: { 4294 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4295 uintptr_t wptr, rptr; 4296 size_t count = 0; 4297 int cont = 0; 4298 4299 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4300 4301 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4302 vstate)) { 4303 regs[rd] = 0; 4304 break; 4305 } 4306 4307 wptr = dtrace_loadptr(baddr + 4308 offsetof(mblk_t, b_wptr)); 4309 4310 rptr = dtrace_loadptr(baddr + 4311 offsetof(mblk_t, b_rptr)); 4312 4313 if (wptr < rptr) { 4314 *flags |= CPU_DTRACE_BADADDR; 4315 *illval = tupregs[0].dttk_value; 4316 break; 4317 } 4318 4319 daddr = dtrace_loadptr(baddr + 4320 offsetof(mblk_t, b_datap)); 4321 4322 baddr = dtrace_loadptr(baddr + 4323 offsetof(mblk_t, b_cont)); 4324 4325 /* 4326 * We want to prevent against denial-of-service here, 4327 * so we're only going to search the list for 4328 * dtrace_msgdsize_max mblks. 4329 */ 4330 if (cont++ > dtrace_msgdsize_max) { 4331 *flags |= CPU_DTRACE_ILLOP; 4332 break; 4333 } 4334 4335 if (subr == DIF_SUBR_MSGDSIZE) { 4336 if (dtrace_load8(daddr + 4337 offsetof(dblk_t, db_type)) != M_DATA) 4338 continue; 4339 } 4340 4341 count += wptr - rptr; 4342 } 4343 4344 if (!(*flags & CPU_DTRACE_FAULT)) 4345 regs[rd] = count; 4346 4347 break; 4348 } 4349 4350 case DIF_SUBR_PROGENYOF: { 4351 pid_t pid = tupregs[0].dttk_value; 4352 proc_t *p; 4353 int rval = 0; 4354 4355 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4356 4357 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4358 if (p->p_pidp->pid_id == pid) { 4359 rval = 1; 4360 break; 4361 } 4362 } 4363 4364 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4365 4366 regs[rd] = rval; 4367 break; 4368 } 4369 4370 case DIF_SUBR_SPECULATION: 4371 regs[rd] = dtrace_speculation(state); 4372 break; 4373 4374 case DIF_SUBR_COPYOUT: { 4375 uintptr_t kaddr = tupregs[0].dttk_value; 4376 uintptr_t uaddr = tupregs[1].dttk_value; 4377 uint64_t size = tupregs[2].dttk_value; 4378 4379 if (!dtrace_destructive_disallow && 4380 dtrace_priv_proc_control(state, mstate) && 4381 !dtrace_istoxic(kaddr, size) && 4382 dtrace_canload(kaddr, size, mstate, vstate)) { 4383 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4384 dtrace_copyout(kaddr, uaddr, size, flags); 4385 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4386 } 4387 break; 4388 } 4389 4390 case DIF_SUBR_COPYOUTSTR: { 4391 uintptr_t kaddr = tupregs[0].dttk_value; 4392 uintptr_t uaddr = tupregs[1].dttk_value; 4393 uint64_t size = tupregs[2].dttk_value; 4394 size_t lim; 4395 4396 if (!dtrace_destructive_disallow && 4397 dtrace_priv_proc_control(state, mstate) && 4398 !dtrace_istoxic(kaddr, size) && 4399 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) { 4400 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4401 dtrace_copyoutstr(kaddr, uaddr, lim, flags); 4402 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4403 } 4404 break; 4405 } 4406 4407 case DIF_SUBR_STRLEN: { 4408 size_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4409 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4410 size_t lim; 4411 4412 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4413 regs[rd] = 0; 4414 break; 4415 } 4416 regs[rd] = dtrace_strlen((char *)addr, lim); 4417 4418 break; 4419 } 4420 4421 case DIF_SUBR_STRCHR: 4422 case DIF_SUBR_STRRCHR: { 4423 /* 4424 * We're going to iterate over the string looking for the 4425 * specified character. We will iterate until we have reached 4426 * the string length or we have found the character. If this 4427 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4428 * of the specified character instead of the first. 4429 */ 4430 uintptr_t addr = tupregs[0].dttk_value; 4431 uintptr_t addr_limit; 4432 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4433 size_t lim; 4434 char c, target = (char)tupregs[1].dttk_value; 4435 4436 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) { 4437 regs[rd] = 0; 4438 break; 4439 } 4440 addr_limit = addr + lim; 4441 4442 for (regs[rd] = 0; addr < addr_limit; addr++) { 4443 if ((c = dtrace_load8(addr)) == target) { 4444 regs[rd] = addr; 4445 4446 if (subr == DIF_SUBR_STRCHR) 4447 break; 4448 } 4449 if (c == '\0') 4450 break; 4451 } 4452 4453 break; 4454 } 4455 4456 case DIF_SUBR_STRSTR: 4457 case DIF_SUBR_INDEX: 4458 case DIF_SUBR_RINDEX: { 4459 /* 4460 * We're going to iterate over the string looking for the 4461 * specified string. We will iterate until we have reached 4462 * the string length or we have found the string. (Yes, this 4463 * is done in the most naive way possible -- but considering 4464 * that the string we're searching for is likely to be 4465 * relatively short, the complexity of Rabin-Karp or similar 4466 * hardly seems merited.) 4467 */ 4468 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4469 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4470 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4471 size_t len = dtrace_strlen(addr, size); 4472 size_t sublen = dtrace_strlen(substr, size); 4473 char *limit = addr + len, *orig = addr; 4474 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4475 int inc = 1; 4476 4477 regs[rd] = notfound; 4478 4479 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4480 regs[rd] = 0; 4481 break; 4482 } 4483 4484 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4485 vstate)) { 4486 regs[rd] = 0; 4487 break; 4488 } 4489 4490 /* 4491 * strstr() and index()/rindex() have similar semantics if 4492 * both strings are the empty string: strstr() returns a 4493 * pointer to the (empty) string, and index() and rindex() 4494 * both return index 0 (regardless of any position argument). 4495 */ 4496 if (sublen == 0 && len == 0) { 4497 if (subr == DIF_SUBR_STRSTR) 4498 regs[rd] = (uintptr_t)addr; 4499 else 4500 regs[rd] = 0; 4501 break; 4502 } 4503 4504 if (subr != DIF_SUBR_STRSTR) { 4505 if (subr == DIF_SUBR_RINDEX) { 4506 limit = orig - 1; 4507 addr += len; 4508 inc = -1; 4509 } 4510 4511 /* 4512 * Both index() and rindex() take an optional position 4513 * argument that denotes the starting position. 4514 */ 4515 if (nargs == 3) { 4516 int64_t pos = (int64_t)tupregs[2].dttk_value; 4517 4518 /* 4519 * If the position argument to index() is 4520 * negative, Perl implicitly clamps it at 4521 * zero. This semantic is a little surprising 4522 * given the special meaning of negative 4523 * positions to similar Perl functions like 4524 * substr(), but it appears to reflect a 4525 * notion that index() can start from a 4526 * negative index and increment its way up to 4527 * the string. Given this notion, Perl's 4528 * rindex() is at least self-consistent in 4529 * that it implicitly clamps positions greater 4530 * than the string length to be the string 4531 * length. Where Perl completely loses 4532 * coherence, however, is when the specified 4533 * substring is the empty string (""). In 4534 * this case, even if the position is 4535 * negative, rindex() returns 0 -- and even if 4536 * the position is greater than the length, 4537 * index() returns the string length. These 4538 * semantics violate the notion that index() 4539 * should never return a value less than the 4540 * specified position and that rindex() should 4541 * never return a value greater than the 4542 * specified position. (One assumes that 4543 * these semantics are artifacts of Perl's 4544 * implementation and not the results of 4545 * deliberate design -- it beggars belief that 4546 * even Larry Wall could desire such oddness.) 4547 * While in the abstract one would wish for 4548 * consistent position semantics across 4549 * substr(), index() and rindex() -- or at the 4550 * very least self-consistent position 4551 * semantics for index() and rindex() -- we 4552 * instead opt to keep with the extant Perl 4553 * semantics, in all their broken glory. (Do 4554 * we have more desire to maintain Perl's 4555 * semantics than Perl does? Probably.) 4556 */ 4557 if (subr == DIF_SUBR_RINDEX) { 4558 if (pos < 0) { 4559 if (sublen == 0) 4560 regs[rd] = 0; 4561 break; 4562 } 4563 4564 if (pos > len) 4565 pos = len; 4566 } else { 4567 if (pos < 0) 4568 pos = 0; 4569 4570 if (pos >= len) { 4571 if (sublen == 0) 4572 regs[rd] = len; 4573 break; 4574 } 4575 } 4576 4577 addr = orig + pos; 4578 } 4579 } 4580 4581 for (regs[rd] = notfound; addr != limit; addr += inc) { 4582 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4583 if (subr != DIF_SUBR_STRSTR) { 4584 /* 4585 * As D index() and rindex() are 4586 * modeled on Perl (and not on awk), 4587 * we return a zero-based (and not a 4588 * one-based) index. (For you Perl 4589 * weenies: no, we're not going to add 4590 * $[ -- and shouldn't you be at a con 4591 * or something?) 4592 */ 4593 regs[rd] = (uintptr_t)(addr - orig); 4594 break; 4595 } 4596 4597 ASSERT(subr == DIF_SUBR_STRSTR); 4598 regs[rd] = (uintptr_t)addr; 4599 break; 4600 } 4601 } 4602 4603 break; 4604 } 4605 4606 case DIF_SUBR_STRTOK: { 4607 uintptr_t addr = tupregs[0].dttk_value; 4608 uintptr_t tokaddr = tupregs[1].dttk_value; 4609 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4610 uintptr_t limit, toklimit; 4611 size_t clim; 4612 uint8_t c, tokmap[32]; /* 256 / 8 */ 4613 char *dest = (char *)mstate->dtms_scratch_ptr; 4614 int i; 4615 4616 /* 4617 * Check both the token buffer and (later) the input buffer, 4618 * since both could be non-scratch addresses. 4619 */ 4620 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) { 4621 regs[rd] = 0; 4622 break; 4623 } 4624 toklimit = tokaddr + clim; 4625 4626 if (!DTRACE_INSCRATCH(mstate, size)) { 4627 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4628 regs[rd] = 0; 4629 break; 4630 } 4631 4632 if (addr == 0) { 4633 /* 4634 * If the address specified is NULL, we use our saved 4635 * strtok pointer from the mstate. Note that this 4636 * means that the saved strtok pointer is _only_ 4637 * valid within multiple enablings of the same probe -- 4638 * it behaves like an implicit clause-local variable. 4639 */ 4640 addr = mstate->dtms_strtok; 4641 limit = mstate->dtms_strtok_limit; 4642 } else { 4643 /* 4644 * If the user-specified address is non-NULL we must 4645 * access check it. This is the only time we have 4646 * a chance to do so, since this address may reside 4647 * in the string table of this clause-- future calls 4648 * (when we fetch addr from mstate->dtms_strtok) 4649 * would fail this access check. 4650 */ 4651 if (!dtrace_strcanload(addr, size, &clim, mstate, 4652 vstate)) { 4653 regs[rd] = 0; 4654 break; 4655 } 4656 limit = addr + clim; 4657 } 4658 4659 /* 4660 * First, zero the token map, and then process the token 4661 * string -- setting a bit in the map for every character 4662 * found in the token string. 4663 */ 4664 for (i = 0; i < sizeof (tokmap); i++) 4665 tokmap[i] = 0; 4666 4667 for (; tokaddr < toklimit; tokaddr++) { 4668 if ((c = dtrace_load8(tokaddr)) == '\0') 4669 break; 4670 4671 ASSERT((c >> 3) < sizeof (tokmap)); 4672 tokmap[c >> 3] |= (1 << (c & 0x7)); 4673 } 4674 4675 for (; addr < limit; addr++) { 4676 /* 4677 * We're looking for a character that is _not_ 4678 * contained in the token string. 4679 */ 4680 if ((c = dtrace_load8(addr)) == '\0') 4681 break; 4682 4683 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4684 break; 4685 } 4686 4687 if (c == '\0') { 4688 /* 4689 * We reached the end of the string without finding 4690 * any character that was not in the token string. 4691 * We return NULL in this case, and we set the saved 4692 * address to NULL as well. 4693 */ 4694 regs[rd] = 0; 4695 mstate->dtms_strtok = 0; 4696 mstate->dtms_strtok_limit = 0; 4697 break; 4698 } 4699 4700 /* 4701 * From here on, we're copying into the destination string. 4702 */ 4703 for (i = 0; addr < limit && i < size - 1; addr++) { 4704 if ((c = dtrace_load8(addr)) == '\0') 4705 break; 4706 4707 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4708 break; 4709 4710 ASSERT(i < size); 4711 dest[i++] = c; 4712 } 4713 4714 ASSERT(i < size); 4715 dest[i] = '\0'; 4716 regs[rd] = (uintptr_t)dest; 4717 mstate->dtms_scratch_ptr += size; 4718 mstate->dtms_strtok = addr; 4719 mstate->dtms_strtok_limit = limit; 4720 break; 4721 } 4722 4723 case DIF_SUBR_SUBSTR: { 4724 uintptr_t s = tupregs[0].dttk_value; 4725 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4726 char *d = (char *)mstate->dtms_scratch_ptr; 4727 int64_t index = (int64_t)tupregs[1].dttk_value; 4728 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4729 size_t len = dtrace_strlen((char *)s, size); 4730 int64_t i; 4731 4732 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4733 regs[rd] = 0; 4734 break; 4735 } 4736 4737 if (!DTRACE_INSCRATCH(mstate, size)) { 4738 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4739 regs[rd] = 0; 4740 break; 4741 } 4742 4743 if (nargs <= 2) 4744 remaining = (int64_t)size; 4745 4746 if (index < 0) { 4747 index += len; 4748 4749 if (index < 0 && index + remaining > 0) { 4750 remaining += index; 4751 index = 0; 4752 } 4753 } 4754 4755 if (index >= len || index < 0) { 4756 remaining = 0; 4757 } else if (remaining < 0) { 4758 remaining += len - index; 4759 } else if (index + remaining > size) { 4760 remaining = size - index; 4761 } 4762 4763 for (i = 0; i < remaining; i++) { 4764 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4765 break; 4766 } 4767 4768 d[i] = '\0'; 4769 4770 mstate->dtms_scratch_ptr += size; 4771 regs[rd] = (uintptr_t)d; 4772 break; 4773 } 4774 4775 case DIF_SUBR_JSON: { 4776 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4777 uintptr_t json = tupregs[0].dttk_value; 4778 size_t jsonlen = dtrace_strlen((char *)json, size); 4779 uintptr_t elem = tupregs[1].dttk_value; 4780 size_t elemlen = dtrace_strlen((char *)elem, size); 4781 4782 char *dest = (char *)mstate->dtms_scratch_ptr; 4783 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4784 char *ee = elemlist; 4785 int nelems = 1; 4786 uintptr_t cur; 4787 4788 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4789 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4790 regs[rd] = 0; 4791 break; 4792 } 4793 4794 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4795 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4796 regs[rd] = 0; 4797 break; 4798 } 4799 4800 /* 4801 * Read the element selector and split it up into a packed list 4802 * of strings. 4803 */ 4804 for (cur = elem; cur < elem + elemlen; cur++) { 4805 char cc = dtrace_load8(cur); 4806 4807 if (cur == elem && cc == '[') { 4808 /* 4809 * If the first element selector key is 4810 * actually an array index then ignore the 4811 * bracket. 4812 */ 4813 continue; 4814 } 4815 4816 if (cc == ']') 4817 continue; 4818 4819 if (cc == '.' || cc == '[') { 4820 nelems++; 4821 cc = '\0'; 4822 } 4823 4824 *ee++ = cc; 4825 } 4826 *ee++ = '\0'; 4827 4828 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4829 nelems, dest)) != 0) 4830 mstate->dtms_scratch_ptr += jsonlen + 1; 4831 break; 4832 } 4833 4834 case DIF_SUBR_TOUPPER: 4835 case DIF_SUBR_TOLOWER: { 4836 uintptr_t s = tupregs[0].dttk_value; 4837 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4838 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4839 size_t len = dtrace_strlen((char *)s, size); 4840 char lower, upper, convert; 4841 int64_t i; 4842 4843 if (subr == DIF_SUBR_TOUPPER) { 4844 lower = 'a'; 4845 upper = 'z'; 4846 convert = 'A'; 4847 } else { 4848 lower = 'A'; 4849 upper = 'Z'; 4850 convert = 'a'; 4851 } 4852 4853 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4854 regs[rd] = 0; 4855 break; 4856 } 4857 4858 if (!DTRACE_INSCRATCH(mstate, size)) { 4859 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4860 regs[rd] = 0; 4861 break; 4862 } 4863 4864 for (i = 0; i < size - 1; i++) { 4865 if ((c = dtrace_load8(s + i)) == '\0') 4866 break; 4867 4868 if (c >= lower && c <= upper) 4869 c = convert + (c - lower); 4870 4871 dest[i] = c; 4872 } 4873 4874 ASSERT(i < size); 4875 dest[i] = '\0'; 4876 regs[rd] = (uintptr_t)dest; 4877 mstate->dtms_scratch_ptr += size; 4878 break; 4879 } 4880 4881 case DIF_SUBR_GETMAJOR: 4882 #ifdef _LP64 4883 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4884 #else 4885 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4886 #endif 4887 break; 4888 4889 case DIF_SUBR_GETMINOR: 4890 #ifdef _LP64 4891 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4892 #else 4893 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4894 #endif 4895 break; 4896 4897 case DIF_SUBR_DDI_PATHNAME: { 4898 /* 4899 * This one is a galactic mess. We are going to roughly 4900 * emulate ddi_pathname(), but it's made more complicated 4901 * by the fact that we (a) want to include the minor name and 4902 * (b) must proceed iteratively instead of recursively. 4903 */ 4904 uintptr_t dest = mstate->dtms_scratch_ptr; 4905 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4906 char *start = (char *)dest, *end = start + size - 1; 4907 uintptr_t daddr = tupregs[0].dttk_value; 4908 int64_t minor = (int64_t)tupregs[1].dttk_value; 4909 char *s; 4910 int i, len, depth = 0; 4911 4912 /* 4913 * Due to all the pointer jumping we do and context we must 4914 * rely upon, we just mandate that the user must have kernel 4915 * read privileges to use this routine. 4916 */ 4917 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4918 *flags |= CPU_DTRACE_KPRIV; 4919 *illval = daddr; 4920 regs[rd] = 0; 4921 } 4922 4923 if (!DTRACE_INSCRATCH(mstate, size)) { 4924 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4925 regs[rd] = 0; 4926 break; 4927 } 4928 4929 *end = '\0'; 4930 4931 /* 4932 * We want to have a name for the minor. In order to do this, 4933 * we need to walk the minor list from the devinfo. We want 4934 * to be sure that we don't infinitely walk a circular list, 4935 * so we check for circularity by sending a scout pointer 4936 * ahead two elements for every element that we iterate over; 4937 * if the list is circular, these will ultimately point to the 4938 * same element. You may recognize this little trick as the 4939 * answer to a stupid interview question -- one that always 4940 * seems to be asked by those who had to have it laboriously 4941 * explained to them, and who can't even concisely describe 4942 * the conditions under which one would be forced to resort to 4943 * this technique. Needless to say, those conditions are 4944 * found here -- and probably only here. Is this the only use 4945 * of this infamous trick in shipping, production code? If it 4946 * isn't, it probably should be... 4947 */ 4948 if (minor != -1) { 4949 uintptr_t maddr = dtrace_loadptr(daddr + 4950 offsetof(struct dev_info, devi_minor)); 4951 4952 uintptr_t next = offsetof(struct ddi_minor_data, next); 4953 uintptr_t name = offsetof(struct ddi_minor_data, 4954 d_minor) + offsetof(struct ddi_minor, name); 4955 uintptr_t dev = offsetof(struct ddi_minor_data, 4956 d_minor) + offsetof(struct ddi_minor, dev); 4957 uintptr_t scout; 4958 4959 if (maddr != 0) 4960 scout = dtrace_loadptr(maddr + next); 4961 4962 while (maddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 4963 uint64_t m; 4964 #ifdef _LP64 4965 m = dtrace_load64(maddr + dev) & MAXMIN64; 4966 #else 4967 m = dtrace_load32(maddr + dev) & MAXMIN; 4968 #endif 4969 if (m != minor) { 4970 maddr = dtrace_loadptr(maddr + next); 4971 4972 if (scout == 0) 4973 continue; 4974 4975 scout = dtrace_loadptr(scout + next); 4976 4977 if (scout == 0) 4978 continue; 4979 4980 scout = dtrace_loadptr(scout + next); 4981 4982 if (scout == 0) 4983 continue; 4984 4985 if (scout == maddr) { 4986 *flags |= CPU_DTRACE_ILLOP; 4987 break; 4988 } 4989 4990 continue; 4991 } 4992 4993 /* 4994 * We have the minor data. Now we need to 4995 * copy the minor's name into the end of the 4996 * pathname. 4997 */ 4998 s = (char *)dtrace_loadptr(maddr + name); 4999 len = dtrace_strlen(s, size); 5000 5001 if (*flags & CPU_DTRACE_FAULT) 5002 break; 5003 5004 if (len != 0) { 5005 if ((end -= (len + 1)) < start) 5006 break; 5007 5008 *end = ':'; 5009 } 5010 5011 for (i = 1; i <= len; i++) 5012 end[i] = dtrace_load8((uintptr_t)s++); 5013 break; 5014 } 5015 } 5016 5017 while (daddr != 0 && !(*flags & CPU_DTRACE_FAULT)) { 5018 ddi_node_state_t devi_state; 5019 5020 devi_state = dtrace_load32(daddr + 5021 offsetof(struct dev_info, devi_node_state)); 5022 5023 if (*flags & CPU_DTRACE_FAULT) 5024 break; 5025 5026 if (devi_state >= DS_INITIALIZED) { 5027 s = (char *)dtrace_loadptr(daddr + 5028 offsetof(struct dev_info, devi_addr)); 5029 len = dtrace_strlen(s, size); 5030 5031 if (*flags & CPU_DTRACE_FAULT) 5032 break; 5033 5034 if (len != 0) { 5035 if ((end -= (len + 1)) < start) 5036 break; 5037 5038 *end = '@'; 5039 } 5040 5041 for (i = 1; i <= len; i++) 5042 end[i] = dtrace_load8((uintptr_t)s++); 5043 } 5044 5045 /* 5046 * Now for the node name... 5047 */ 5048 s = (char *)dtrace_loadptr(daddr + 5049 offsetof(struct dev_info, devi_node_name)); 5050 5051 daddr = dtrace_loadptr(daddr + 5052 offsetof(struct dev_info, devi_parent)); 5053 5054 /* 5055 * If our parent is NULL (that is, if we're the root 5056 * node), we're going to use the special path 5057 * "devices". 5058 */ 5059 if (daddr == 0) 5060 s = "devices"; 5061 5062 len = dtrace_strlen(s, size); 5063 if (*flags & CPU_DTRACE_FAULT) 5064 break; 5065 5066 if ((end -= (len + 1)) < start) 5067 break; 5068 5069 for (i = 1; i <= len; i++) 5070 end[i] = dtrace_load8((uintptr_t)s++); 5071 *end = '/'; 5072 5073 if (depth++ > dtrace_devdepth_max) { 5074 *flags |= CPU_DTRACE_ILLOP; 5075 break; 5076 } 5077 } 5078 5079 if (end < start) 5080 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5081 5082 if (daddr == 0) { 5083 regs[rd] = (uintptr_t)end; 5084 mstate->dtms_scratch_ptr += size; 5085 } 5086 5087 break; 5088 } 5089 5090 case DIF_SUBR_STRJOIN: { 5091 char *d = (char *)mstate->dtms_scratch_ptr; 5092 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5093 uintptr_t s1 = tupregs[0].dttk_value; 5094 uintptr_t s2 = tupregs[1].dttk_value; 5095 int i = 0, j = 0; 5096 size_t lim1, lim2; 5097 char c; 5098 5099 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) || 5100 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) { 5101 regs[rd] = 0; 5102 break; 5103 } 5104 5105 if (!DTRACE_INSCRATCH(mstate, size)) { 5106 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5107 regs[rd] = 0; 5108 break; 5109 } 5110 5111 for (;;) { 5112 if (i >= size) { 5113 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5114 regs[rd] = 0; 5115 break; 5116 } 5117 c = (i >= lim1) ? '\0' : dtrace_load8(s1++); 5118 if ((d[i++] = c) == '\0') { 5119 i--; 5120 break; 5121 } 5122 } 5123 5124 for (;;) { 5125 if (i >= size) { 5126 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5127 regs[rd] = 0; 5128 break; 5129 } 5130 5131 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++); 5132 if ((d[i++] = c) == '\0') 5133 break; 5134 } 5135 5136 if (i < size) { 5137 mstate->dtms_scratch_ptr += i; 5138 regs[rd] = (uintptr_t)d; 5139 } 5140 5141 break; 5142 } 5143 5144 case DIF_SUBR_STRTOLL: { 5145 uintptr_t s = tupregs[0].dttk_value; 5146 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5147 size_t lim; 5148 int base = 10; 5149 5150 if (nargs > 1) { 5151 if ((base = tupregs[1].dttk_value) <= 1 || 5152 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5153 *flags |= CPU_DTRACE_ILLOP; 5154 break; 5155 } 5156 } 5157 5158 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) { 5159 regs[rd] = INT64_MIN; 5160 break; 5161 } 5162 5163 regs[rd] = dtrace_strtoll((char *)s, base, lim); 5164 break; 5165 } 5166 5167 case DIF_SUBR_LLTOSTR: { 5168 int64_t i = (int64_t)tupregs[0].dttk_value; 5169 uint64_t val, digit; 5170 uint64_t size = 65; /* enough room for 2^64 in binary */ 5171 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 5172 int base = 10; 5173 5174 if (nargs > 1) { 5175 if ((base = tupregs[1].dttk_value) <= 1 || 5176 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 5177 *flags |= CPU_DTRACE_ILLOP; 5178 break; 5179 } 5180 } 5181 5182 val = (base == 10 && i < 0) ? i * -1 : i; 5183 5184 if (!DTRACE_INSCRATCH(mstate, size)) { 5185 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5186 regs[rd] = 0; 5187 break; 5188 } 5189 5190 for (*end-- = '\0'; val; val /= base) { 5191 if ((digit = val % base) <= '9' - '0') { 5192 *end-- = '0' + digit; 5193 } else { 5194 *end-- = 'a' + (digit - ('9' - '0') - 1); 5195 } 5196 } 5197 5198 if (i == 0 && base == 16) 5199 *end-- = '0'; 5200 5201 if (base == 16) 5202 *end-- = 'x'; 5203 5204 if (i == 0 || base == 8 || base == 16) 5205 *end-- = '0'; 5206 5207 if (i < 0 && base == 10) 5208 *end-- = '-'; 5209 5210 regs[rd] = (uintptr_t)end + 1; 5211 mstate->dtms_scratch_ptr += size; 5212 break; 5213 } 5214 5215 case DIF_SUBR_HTONS: 5216 case DIF_SUBR_NTOHS: 5217 #ifdef _BIG_ENDIAN 5218 regs[rd] = (uint16_t)tupregs[0].dttk_value; 5219 #else 5220 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 5221 #endif 5222 break; 5223 5224 5225 case DIF_SUBR_HTONL: 5226 case DIF_SUBR_NTOHL: 5227 #ifdef _BIG_ENDIAN 5228 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5229 #else 5230 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5231 #endif 5232 break; 5233 5234 5235 case DIF_SUBR_HTONLL: 5236 case DIF_SUBR_NTOHLL: 5237 #ifdef _BIG_ENDIAN 5238 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5239 #else 5240 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5241 #endif 5242 break; 5243 5244 5245 case DIF_SUBR_DIRNAME: 5246 case DIF_SUBR_BASENAME: { 5247 char *dest = (char *)mstate->dtms_scratch_ptr; 5248 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5249 uintptr_t src = tupregs[0].dttk_value; 5250 int i, j, len = dtrace_strlen((char *)src, size); 5251 int lastbase = -1, firstbase = -1, lastdir = -1; 5252 int start, end; 5253 5254 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5255 regs[rd] = 0; 5256 break; 5257 } 5258 5259 if (!DTRACE_INSCRATCH(mstate, size)) { 5260 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5261 regs[rd] = 0; 5262 break; 5263 } 5264 5265 /* 5266 * The basename and dirname for a zero-length string is 5267 * defined to be "." 5268 */ 5269 if (len == 0) { 5270 len = 1; 5271 src = (uintptr_t)"."; 5272 } 5273 5274 /* 5275 * Start from the back of the string, moving back toward the 5276 * front until we see a character that isn't a slash. That 5277 * character is the last character in the basename. 5278 */ 5279 for (i = len - 1; i >= 0; i--) { 5280 if (dtrace_load8(src + i) != '/') 5281 break; 5282 } 5283 5284 if (i >= 0) 5285 lastbase = i; 5286 5287 /* 5288 * Starting from the last character in the basename, move 5289 * towards the front until we find a slash. The character 5290 * that we processed immediately before that is the first 5291 * character in the basename. 5292 */ 5293 for (; i >= 0; i--) { 5294 if (dtrace_load8(src + i) == '/') 5295 break; 5296 } 5297 5298 if (i >= 0) 5299 firstbase = i + 1; 5300 5301 /* 5302 * Now keep going until we find a non-slash character. That 5303 * character is the last character in the dirname. 5304 */ 5305 for (; i >= 0; i--) { 5306 if (dtrace_load8(src + i) != '/') 5307 break; 5308 } 5309 5310 if (i >= 0) 5311 lastdir = i; 5312 5313 ASSERT(!(lastbase == -1 && firstbase != -1)); 5314 ASSERT(!(firstbase == -1 && lastdir != -1)); 5315 5316 if (lastbase == -1) { 5317 /* 5318 * We didn't find a non-slash character. We know that 5319 * the length is non-zero, so the whole string must be 5320 * slashes. In either the dirname or the basename 5321 * case, we return '/'. 5322 */ 5323 ASSERT(firstbase == -1); 5324 firstbase = lastbase = lastdir = 0; 5325 } 5326 5327 if (firstbase == -1) { 5328 /* 5329 * The entire string consists only of a basename 5330 * component. If we're looking for dirname, we need 5331 * to change our string to be just "."; if we're 5332 * looking for a basename, we'll just set the first 5333 * character of the basename to be 0. 5334 */ 5335 if (subr == DIF_SUBR_DIRNAME) { 5336 ASSERT(lastdir == -1); 5337 src = (uintptr_t)"."; 5338 lastdir = 0; 5339 } else { 5340 firstbase = 0; 5341 } 5342 } 5343 5344 if (subr == DIF_SUBR_DIRNAME) { 5345 if (lastdir == -1) { 5346 /* 5347 * We know that we have a slash in the name -- 5348 * or lastdir would be set to 0, above. And 5349 * because lastdir is -1, we know that this 5350 * slash must be the first character. (That 5351 * is, the full string must be of the form 5352 * "/basename".) In this case, the last 5353 * character of the directory name is 0. 5354 */ 5355 lastdir = 0; 5356 } 5357 5358 start = 0; 5359 end = lastdir; 5360 } else { 5361 ASSERT(subr == DIF_SUBR_BASENAME); 5362 ASSERT(firstbase != -1 && lastbase != -1); 5363 start = firstbase; 5364 end = lastbase; 5365 } 5366 5367 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5368 dest[j] = dtrace_load8(src + i); 5369 5370 dest[j] = '\0'; 5371 regs[rd] = (uintptr_t)dest; 5372 mstate->dtms_scratch_ptr += size; 5373 break; 5374 } 5375 5376 case DIF_SUBR_GETF: { 5377 uintptr_t fd = tupregs[0].dttk_value; 5378 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5379 file_t *fp; 5380 5381 if (!dtrace_priv_proc(state, mstate)) { 5382 regs[rd] = 0; 5383 break; 5384 } 5385 5386 /* 5387 * This is safe because fi_nfiles only increases, and the 5388 * fi_list array is not freed when the array size doubles. 5389 * (See the comment in flist_grow() for details on the 5390 * management of the u_finfo structure.) 5391 */ 5392 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5393 5394 mstate->dtms_getf = fp; 5395 regs[rd] = (uintptr_t)fp; 5396 break; 5397 } 5398 5399 case DIF_SUBR_CLEANPATH: { 5400 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5401 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5402 uintptr_t src = tupregs[0].dttk_value; 5403 size_t lim; 5404 int i = 0, j = 0; 5405 zone_t *z; 5406 5407 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) { 5408 regs[rd] = 0; 5409 break; 5410 } 5411 5412 if (!DTRACE_INSCRATCH(mstate, size)) { 5413 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5414 regs[rd] = 0; 5415 break; 5416 } 5417 5418 /* 5419 * Move forward, loading each character. 5420 */ 5421 do { 5422 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5423 next: 5424 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5425 break; 5426 5427 if (c != '/') { 5428 dest[j++] = c; 5429 continue; 5430 } 5431 5432 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5433 5434 if (c == '/') { 5435 /* 5436 * We have two slashes -- we can just advance 5437 * to the next character. 5438 */ 5439 goto next; 5440 } 5441 5442 if (c != '.') { 5443 /* 5444 * This is not "." and it's not ".." -- we can 5445 * just store the "/" and this character and 5446 * drive on. 5447 */ 5448 dest[j++] = '/'; 5449 dest[j++] = c; 5450 continue; 5451 } 5452 5453 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5454 5455 if (c == '/') { 5456 /* 5457 * This is a "/./" component. We're not going 5458 * to store anything in the destination buffer; 5459 * we're just going to go to the next component. 5460 */ 5461 goto next; 5462 } 5463 5464 if (c != '.') { 5465 /* 5466 * This is not ".." -- we can just store the 5467 * "/." and this character and continue 5468 * processing. 5469 */ 5470 dest[j++] = '/'; 5471 dest[j++] = '.'; 5472 dest[j++] = c; 5473 continue; 5474 } 5475 5476 c = (i >= lim) ? '\0' : dtrace_load8(src + i++); 5477 5478 if (c != '/' && c != '\0') { 5479 /* 5480 * This is not ".." -- it's "..[mumble]". 5481 * We'll store the "/.." and this character 5482 * and continue processing. 5483 */ 5484 dest[j++] = '/'; 5485 dest[j++] = '.'; 5486 dest[j++] = '.'; 5487 dest[j++] = c; 5488 continue; 5489 } 5490 5491 /* 5492 * This is "/../" or "/..\0". We need to back up 5493 * our destination pointer until we find a "/". 5494 */ 5495 i--; 5496 while (j != 0 && dest[--j] != '/') 5497 continue; 5498 5499 if (c == '\0') 5500 dest[++j] = '/'; 5501 } while (c != '\0'); 5502 5503 dest[j] = '\0'; 5504 5505 if (mstate->dtms_getf != NULL && 5506 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5507 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5508 /* 5509 * If we've done a getf() as a part of this ECB and we 5510 * don't have kernel access (and we're not in the global 5511 * zone), check if the path we cleaned up begins with 5512 * the zone's root path, and trim it off if so. Note 5513 * that this is an output cleanliness issue, not a 5514 * security issue: knowing one's zone root path does 5515 * not enable privilege escalation. 5516 */ 5517 if (strstr(dest, z->zone_rootpath) == dest) 5518 dest += strlen(z->zone_rootpath) - 1; 5519 } 5520 5521 regs[rd] = (uintptr_t)dest; 5522 mstate->dtms_scratch_ptr += size; 5523 break; 5524 } 5525 5526 case DIF_SUBR_INET_NTOA: 5527 case DIF_SUBR_INET_NTOA6: 5528 case DIF_SUBR_INET_NTOP: { 5529 size_t size; 5530 int af, argi, i; 5531 char *base, *end; 5532 5533 if (subr == DIF_SUBR_INET_NTOP) { 5534 af = (int)tupregs[0].dttk_value; 5535 argi = 1; 5536 } else { 5537 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5538 argi = 0; 5539 } 5540 5541 if (af == AF_INET) { 5542 ipaddr_t ip4; 5543 uint8_t *ptr8, val; 5544 5545 if (!dtrace_canload(tupregs[argi].dttk_value, 5546 sizeof (ipaddr_t), mstate, vstate)) { 5547 regs[rd] = 0; 5548 break; 5549 } 5550 5551 /* 5552 * Safely load the IPv4 address. 5553 */ 5554 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5555 5556 /* 5557 * Check an IPv4 string will fit in scratch. 5558 */ 5559 size = INET_ADDRSTRLEN; 5560 if (!DTRACE_INSCRATCH(mstate, size)) { 5561 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5562 regs[rd] = 0; 5563 break; 5564 } 5565 base = (char *)mstate->dtms_scratch_ptr; 5566 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5567 5568 /* 5569 * Stringify as a dotted decimal quad. 5570 */ 5571 *end-- = '\0'; 5572 ptr8 = (uint8_t *)&ip4; 5573 for (i = 3; i >= 0; i--) { 5574 val = ptr8[i]; 5575 5576 if (val == 0) { 5577 *end-- = '0'; 5578 } else { 5579 for (; val; val /= 10) { 5580 *end-- = '0' + (val % 10); 5581 } 5582 } 5583 5584 if (i > 0) 5585 *end-- = '.'; 5586 } 5587 ASSERT(end + 1 >= base); 5588 5589 } else if (af == AF_INET6) { 5590 struct in6_addr ip6; 5591 int firstzero, tryzero, numzero, v6end; 5592 uint16_t val; 5593 const char digits[] = "0123456789abcdef"; 5594 5595 /* 5596 * Stringify using RFC 1884 convention 2 - 16 bit 5597 * hexadecimal values with a zero-run compression. 5598 * Lower case hexadecimal digits are used. 5599 * eg, fe80::214:4fff:fe0b:76c8. 5600 * The IPv4 embedded form is returned for inet_ntop, 5601 * just the IPv4 string is returned for inet_ntoa6. 5602 */ 5603 5604 if (!dtrace_canload(tupregs[argi].dttk_value, 5605 sizeof (struct in6_addr), mstate, vstate)) { 5606 regs[rd] = 0; 5607 break; 5608 } 5609 5610 /* 5611 * Safely load the IPv6 address. 5612 */ 5613 dtrace_bcopy( 5614 (void *)(uintptr_t)tupregs[argi].dttk_value, 5615 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5616 5617 /* 5618 * Check an IPv6 string will fit in scratch. 5619 */ 5620 size = INET6_ADDRSTRLEN; 5621 if (!DTRACE_INSCRATCH(mstate, size)) { 5622 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5623 regs[rd] = 0; 5624 break; 5625 } 5626 base = (char *)mstate->dtms_scratch_ptr; 5627 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5628 *end-- = '\0'; 5629 5630 /* 5631 * Find the longest run of 16 bit zero values 5632 * for the single allowed zero compression - "::". 5633 */ 5634 firstzero = -1; 5635 tryzero = -1; 5636 numzero = 1; 5637 for (i = 0; i < sizeof (struct in6_addr); i++) { 5638 if (ip6._S6_un._S6_u8[i] == 0 && 5639 tryzero == -1 && i % 2 == 0) { 5640 tryzero = i; 5641 continue; 5642 } 5643 5644 if (tryzero != -1 && 5645 (ip6._S6_un._S6_u8[i] != 0 || 5646 i == sizeof (struct in6_addr) - 1)) { 5647 5648 if (i - tryzero <= numzero) { 5649 tryzero = -1; 5650 continue; 5651 } 5652 5653 firstzero = tryzero; 5654 numzero = i - i % 2 - tryzero; 5655 tryzero = -1; 5656 5657 if (ip6._S6_un._S6_u8[i] == 0 && 5658 i == sizeof (struct in6_addr) - 1) 5659 numzero += 2; 5660 } 5661 } 5662 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5663 5664 /* 5665 * Check for an IPv4 embedded address. 5666 */ 5667 v6end = sizeof (struct in6_addr) - 2; 5668 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5669 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5670 for (i = sizeof (struct in6_addr) - 1; 5671 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5672 ASSERT(end >= base); 5673 5674 val = ip6._S6_un._S6_u8[i]; 5675 5676 if (val == 0) { 5677 *end-- = '0'; 5678 } else { 5679 for (; val; val /= 10) { 5680 *end-- = '0' + val % 10; 5681 } 5682 } 5683 5684 if (i > DTRACE_V4MAPPED_OFFSET) 5685 *end-- = '.'; 5686 } 5687 5688 if (subr == DIF_SUBR_INET_NTOA6) 5689 goto inetout; 5690 5691 /* 5692 * Set v6end to skip the IPv4 address that 5693 * we have already stringified. 5694 */ 5695 v6end = 10; 5696 } 5697 5698 /* 5699 * Build the IPv6 string by working through the 5700 * address in reverse. 5701 */ 5702 for (i = v6end; i >= 0; i -= 2) { 5703 ASSERT(end >= base); 5704 5705 if (i == firstzero + numzero - 2) { 5706 *end-- = ':'; 5707 *end-- = ':'; 5708 i -= numzero - 2; 5709 continue; 5710 } 5711 5712 if (i < 14 && i != firstzero - 2) 5713 *end-- = ':'; 5714 5715 val = (ip6._S6_un._S6_u8[i] << 8) + 5716 ip6._S6_un._S6_u8[i + 1]; 5717 5718 if (val == 0) { 5719 *end-- = '0'; 5720 } else { 5721 for (; val; val /= 16) { 5722 *end-- = digits[val % 16]; 5723 } 5724 } 5725 } 5726 ASSERT(end + 1 >= base); 5727 5728 } else { 5729 /* 5730 * The user didn't use AH_INET or AH_INET6. 5731 */ 5732 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5733 regs[rd] = 0; 5734 break; 5735 } 5736 5737 inetout: regs[rd] = (uintptr_t)end + 1; 5738 mstate->dtms_scratch_ptr += size; 5739 break; 5740 } 5741 5742 } 5743 } 5744 5745 /* 5746 * Emulate the execution of DTrace IR instructions specified by the given 5747 * DIF object. This function is deliberately void of assertions as all of 5748 * the necessary checks are handled by a call to dtrace_difo_validate(). 5749 */ 5750 static uint64_t 5751 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5752 dtrace_vstate_t *vstate, dtrace_state_t *state) 5753 { 5754 const dif_instr_t *text = difo->dtdo_buf; 5755 const uint_t textlen = difo->dtdo_len; 5756 const char *strtab = difo->dtdo_strtab; 5757 const uint64_t *inttab = difo->dtdo_inttab; 5758 5759 uint64_t rval = 0; 5760 dtrace_statvar_t *svar; 5761 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5762 dtrace_difv_t *v; 5763 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5764 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5765 5766 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5767 uint64_t regs[DIF_DIR_NREGS]; 5768 uint64_t *tmp; 5769 5770 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5771 int64_t cc_r; 5772 uint_t pc = 0, id, opc; 5773 uint8_t ttop = 0; 5774 dif_instr_t instr; 5775 uint_t r1, r2, rd; 5776 5777 /* 5778 * We stash the current DIF object into the machine state: we need it 5779 * for subsequent access checking. 5780 */ 5781 mstate->dtms_difo = difo; 5782 5783 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5784 5785 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5786 opc = pc; 5787 5788 instr = text[pc++]; 5789 r1 = DIF_INSTR_R1(instr); 5790 r2 = DIF_INSTR_R2(instr); 5791 rd = DIF_INSTR_RD(instr); 5792 5793 switch (DIF_INSTR_OP(instr)) { 5794 case DIF_OP_OR: 5795 regs[rd] = regs[r1] | regs[r2]; 5796 break; 5797 case DIF_OP_XOR: 5798 regs[rd] = regs[r1] ^ regs[r2]; 5799 break; 5800 case DIF_OP_AND: 5801 regs[rd] = regs[r1] & regs[r2]; 5802 break; 5803 case DIF_OP_SLL: 5804 regs[rd] = regs[r1] << regs[r2]; 5805 break; 5806 case DIF_OP_SRL: 5807 regs[rd] = regs[r1] >> regs[r2]; 5808 break; 5809 case DIF_OP_SUB: 5810 regs[rd] = regs[r1] - regs[r2]; 5811 break; 5812 case DIF_OP_ADD: 5813 regs[rd] = regs[r1] + regs[r2]; 5814 break; 5815 case DIF_OP_MUL: 5816 regs[rd] = regs[r1] * regs[r2]; 5817 break; 5818 case DIF_OP_SDIV: 5819 if (regs[r2] == 0) { 5820 regs[rd] = 0; 5821 *flags |= CPU_DTRACE_DIVZERO; 5822 } else { 5823 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5824 regs[rd] = (int64_t)regs[r1] / 5825 (int64_t)regs[r2]; 5826 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5827 } 5828 break; 5829 5830 case DIF_OP_UDIV: 5831 if (regs[r2] == 0) { 5832 regs[rd] = 0; 5833 *flags |= CPU_DTRACE_DIVZERO; 5834 } else { 5835 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5836 regs[rd] = regs[r1] / regs[r2]; 5837 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5838 } 5839 break; 5840 5841 case DIF_OP_SREM: 5842 if (regs[r2] == 0) { 5843 regs[rd] = 0; 5844 *flags |= CPU_DTRACE_DIVZERO; 5845 } else { 5846 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5847 regs[rd] = (int64_t)regs[r1] % 5848 (int64_t)regs[r2]; 5849 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5850 } 5851 break; 5852 5853 case DIF_OP_UREM: 5854 if (regs[r2] == 0) { 5855 regs[rd] = 0; 5856 *flags |= CPU_DTRACE_DIVZERO; 5857 } else { 5858 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5859 regs[rd] = regs[r1] % regs[r2]; 5860 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5861 } 5862 break; 5863 5864 case DIF_OP_NOT: 5865 regs[rd] = ~regs[r1]; 5866 break; 5867 case DIF_OP_MOV: 5868 regs[rd] = regs[r1]; 5869 break; 5870 case DIF_OP_CMP: 5871 cc_r = regs[r1] - regs[r2]; 5872 cc_n = cc_r < 0; 5873 cc_z = cc_r == 0; 5874 cc_v = 0; 5875 cc_c = regs[r1] < regs[r2]; 5876 break; 5877 case DIF_OP_TST: 5878 cc_n = cc_v = cc_c = 0; 5879 cc_z = regs[r1] == 0; 5880 break; 5881 case DIF_OP_BA: 5882 pc = DIF_INSTR_LABEL(instr); 5883 break; 5884 case DIF_OP_BE: 5885 if (cc_z) 5886 pc = DIF_INSTR_LABEL(instr); 5887 break; 5888 case DIF_OP_BNE: 5889 if (cc_z == 0) 5890 pc = DIF_INSTR_LABEL(instr); 5891 break; 5892 case DIF_OP_BG: 5893 if ((cc_z | (cc_n ^ cc_v)) == 0) 5894 pc = DIF_INSTR_LABEL(instr); 5895 break; 5896 case DIF_OP_BGU: 5897 if ((cc_c | cc_z) == 0) 5898 pc = DIF_INSTR_LABEL(instr); 5899 break; 5900 case DIF_OP_BGE: 5901 if ((cc_n ^ cc_v) == 0) 5902 pc = DIF_INSTR_LABEL(instr); 5903 break; 5904 case DIF_OP_BGEU: 5905 if (cc_c == 0) 5906 pc = DIF_INSTR_LABEL(instr); 5907 break; 5908 case DIF_OP_BL: 5909 if (cc_n ^ cc_v) 5910 pc = DIF_INSTR_LABEL(instr); 5911 break; 5912 case DIF_OP_BLU: 5913 if (cc_c) 5914 pc = DIF_INSTR_LABEL(instr); 5915 break; 5916 case DIF_OP_BLE: 5917 if (cc_z | (cc_n ^ cc_v)) 5918 pc = DIF_INSTR_LABEL(instr); 5919 break; 5920 case DIF_OP_BLEU: 5921 if (cc_c | cc_z) 5922 pc = DIF_INSTR_LABEL(instr); 5923 break; 5924 case DIF_OP_RLDSB: 5925 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5926 break; 5927 /*FALLTHROUGH*/ 5928 case DIF_OP_LDSB: 5929 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5930 break; 5931 case DIF_OP_RLDSH: 5932 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5933 break; 5934 /*FALLTHROUGH*/ 5935 case DIF_OP_LDSH: 5936 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5937 break; 5938 case DIF_OP_RLDSW: 5939 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5940 break; 5941 /*FALLTHROUGH*/ 5942 case DIF_OP_LDSW: 5943 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5944 break; 5945 case DIF_OP_RLDUB: 5946 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5947 break; 5948 /*FALLTHROUGH*/ 5949 case DIF_OP_LDUB: 5950 regs[rd] = dtrace_load8(regs[r1]); 5951 break; 5952 case DIF_OP_RLDUH: 5953 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5954 break; 5955 /*FALLTHROUGH*/ 5956 case DIF_OP_LDUH: 5957 regs[rd] = dtrace_load16(regs[r1]); 5958 break; 5959 case DIF_OP_RLDUW: 5960 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5961 break; 5962 /*FALLTHROUGH*/ 5963 case DIF_OP_LDUW: 5964 regs[rd] = dtrace_load32(regs[r1]); 5965 break; 5966 case DIF_OP_RLDX: 5967 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5968 break; 5969 /*FALLTHROUGH*/ 5970 case DIF_OP_LDX: 5971 regs[rd] = dtrace_load64(regs[r1]); 5972 break; 5973 case DIF_OP_ULDSB: 5974 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5975 regs[rd] = (int8_t) 5976 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5977 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5978 break; 5979 case DIF_OP_ULDSH: 5980 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5981 regs[rd] = (int16_t) 5982 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5983 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5984 break; 5985 case DIF_OP_ULDSW: 5986 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5987 regs[rd] = (int32_t) 5988 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5989 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5990 break; 5991 case DIF_OP_ULDUB: 5992 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5993 regs[rd] = 5994 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5995 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5996 break; 5997 case DIF_OP_ULDUH: 5998 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5999 regs[rd] = 6000 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 6001 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6002 break; 6003 case DIF_OP_ULDUW: 6004 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6005 regs[rd] = 6006 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 6007 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6008 break; 6009 case DIF_OP_ULDX: 6010 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6011 regs[rd] = 6012 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 6013 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6014 break; 6015 case DIF_OP_RET: 6016 rval = regs[rd]; 6017 pc = textlen; 6018 break; 6019 case DIF_OP_NOP: 6020 break; 6021 case DIF_OP_SETX: 6022 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 6023 break; 6024 case DIF_OP_SETS: 6025 regs[rd] = (uint64_t)(uintptr_t) 6026 (strtab + DIF_INSTR_STRING(instr)); 6027 break; 6028 case DIF_OP_SCMP: { 6029 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 6030 uintptr_t s1 = regs[r1]; 6031 uintptr_t s2 = regs[r2]; 6032 size_t lim1 = SIZE_MAX, lim2 = SIZE_MAX; 6033 6034 if (s1 != 0 && 6035 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate)) 6036 break; 6037 if (s2 != 0 && 6038 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate)) 6039 break; 6040 6041 /* 6042 * If s1 or s2 is NULL, we will take the limit that 6043 * corresponds with the non-NULL string. If they are 6044 * both NULL, we will pass SIZE_MAX as the limit -- 6045 * but in this case dtrace_strncmp() will return 6046 * success without examining the limit. 6047 */ 6048 cc_r = dtrace_strncmp((char *)s1, (char *)s2, 6049 MIN(lim1, lim2)); 6050 6051 cc_n = cc_r < 0; 6052 cc_z = cc_r == 0; 6053 cc_v = cc_c = 0; 6054 break; 6055 } 6056 case DIF_OP_LDGA: 6057 regs[rd] = dtrace_dif_variable(mstate, state, 6058 r1, regs[r2]); 6059 break; 6060 case DIF_OP_LDGS: 6061 id = DIF_INSTR_VAR(instr); 6062 6063 if (id >= DIF_VAR_OTHER_UBASE) { 6064 uintptr_t a; 6065 6066 id -= DIF_VAR_OTHER_UBASE; 6067 svar = vstate->dtvs_globals[id]; 6068 ASSERT(svar != NULL); 6069 v = &svar->dtsv_var; 6070 6071 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 6072 regs[rd] = svar->dtsv_data; 6073 break; 6074 } 6075 6076 a = (uintptr_t)svar->dtsv_data; 6077 6078 if (*(uint8_t *)a == UINT8_MAX) { 6079 /* 6080 * If the 0th byte is set to UINT8_MAX 6081 * then this is to be treated as a 6082 * reference to a NULL variable. 6083 */ 6084 regs[rd] = 0; 6085 } else { 6086 regs[rd] = a + sizeof (uint64_t); 6087 } 6088 6089 break; 6090 } 6091 6092 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 6093 break; 6094 6095 case DIF_OP_STGA: 6096 dtrace_dif_variable_write(mstate, state, r1, regs[r2], 6097 regs[rd]); 6098 break; 6099 6100 case DIF_OP_STGS: 6101 id = DIF_INSTR_VAR(instr); 6102 6103 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6104 id -= DIF_VAR_OTHER_UBASE; 6105 6106 VERIFY(id < vstate->dtvs_nglobals); 6107 svar = vstate->dtvs_globals[id]; 6108 ASSERT(svar != NULL); 6109 v = &svar->dtsv_var; 6110 6111 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6112 uintptr_t a = (uintptr_t)svar->dtsv_data; 6113 size_t lim; 6114 6115 ASSERT(a != (uintptr_t)NULL); 6116 ASSERT(svar->dtsv_size != 0); 6117 6118 if (regs[rd] == 0) { 6119 *(uint8_t *)a = UINT8_MAX; 6120 break; 6121 } else { 6122 *(uint8_t *)a = 0; 6123 a += sizeof (uint64_t); 6124 } 6125 if (!dtrace_vcanload( 6126 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6127 &lim, mstate, vstate)) 6128 break; 6129 6130 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6131 (void *)a, &v->dtdv_type, lim); 6132 break; 6133 } 6134 6135 svar->dtsv_data = regs[rd]; 6136 break; 6137 6138 case DIF_OP_LDTA: 6139 /* 6140 * There are no DTrace built-in thread-local arrays at 6141 * present. This opcode is saved for future work. 6142 */ 6143 *flags |= CPU_DTRACE_ILLOP; 6144 regs[rd] = 0; 6145 break; 6146 6147 case DIF_OP_LDLS: 6148 id = DIF_INSTR_VAR(instr); 6149 6150 if (id < DIF_VAR_OTHER_UBASE) { 6151 /* 6152 * For now, this has no meaning. 6153 */ 6154 regs[rd] = 0; 6155 break; 6156 } 6157 6158 id -= DIF_VAR_OTHER_UBASE; 6159 6160 ASSERT(id < vstate->dtvs_nlocals); 6161 ASSERT(vstate->dtvs_locals != NULL); 6162 6163 svar = vstate->dtvs_locals[id]; 6164 ASSERT(svar != NULL); 6165 v = &svar->dtsv_var; 6166 6167 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6168 uintptr_t a = (uintptr_t)svar->dtsv_data; 6169 size_t sz = v->dtdv_type.dtdt_size; 6170 6171 sz += sizeof (uint64_t); 6172 ASSERT(svar->dtsv_size == NCPU * sz); 6173 a += CPU->cpu_id * sz; 6174 6175 if (*(uint8_t *)a == UINT8_MAX) { 6176 /* 6177 * If the 0th byte is set to UINT8_MAX 6178 * then this is to be treated as a 6179 * reference to a NULL variable. 6180 */ 6181 regs[rd] = 0; 6182 } else { 6183 regs[rd] = a + sizeof (uint64_t); 6184 } 6185 6186 break; 6187 } 6188 6189 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6190 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6191 regs[rd] = tmp[CPU->cpu_id]; 6192 break; 6193 6194 case DIF_OP_STLS: 6195 id = DIF_INSTR_VAR(instr); 6196 6197 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6198 id -= DIF_VAR_OTHER_UBASE; 6199 VERIFY(id < vstate->dtvs_nlocals); 6200 6201 ASSERT(vstate->dtvs_locals != NULL); 6202 svar = vstate->dtvs_locals[id]; 6203 ASSERT(svar != NULL); 6204 v = &svar->dtsv_var; 6205 6206 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6207 uintptr_t a = (uintptr_t)svar->dtsv_data; 6208 size_t sz = v->dtdv_type.dtdt_size; 6209 size_t lim; 6210 6211 sz += sizeof (uint64_t); 6212 ASSERT(svar->dtsv_size == NCPU * sz); 6213 a += CPU->cpu_id * sz; 6214 6215 if (regs[rd] == 0) { 6216 *(uint8_t *)a = UINT8_MAX; 6217 break; 6218 } else { 6219 *(uint8_t *)a = 0; 6220 a += sizeof (uint64_t); 6221 } 6222 6223 if (!dtrace_vcanload( 6224 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6225 &lim, mstate, vstate)) 6226 break; 6227 6228 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6229 (void *)a, &v->dtdv_type, lim); 6230 break; 6231 } 6232 6233 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 6234 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 6235 tmp[CPU->cpu_id] = regs[rd]; 6236 break; 6237 6238 case DIF_OP_LDTS: { 6239 dtrace_dynvar_t *dvar; 6240 dtrace_key_t *key; 6241 6242 id = DIF_INSTR_VAR(instr); 6243 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6244 id -= DIF_VAR_OTHER_UBASE; 6245 v = &vstate->dtvs_tlocals[id]; 6246 6247 key = &tupregs[DIF_DTR_NREGS]; 6248 key[0].dttk_value = (uint64_t)id; 6249 key[0].dttk_size = 0; 6250 DTRACE_TLS_THRKEY(key[1].dttk_value); 6251 key[1].dttk_size = 0; 6252 6253 dvar = dtrace_dynvar(dstate, 2, key, 6254 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 6255 mstate, vstate); 6256 6257 if (dvar == NULL) { 6258 regs[rd] = 0; 6259 break; 6260 } 6261 6262 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6263 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6264 } else { 6265 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6266 } 6267 6268 break; 6269 } 6270 6271 case DIF_OP_STTS: { 6272 dtrace_dynvar_t *dvar; 6273 dtrace_key_t *key; 6274 6275 id = DIF_INSTR_VAR(instr); 6276 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6277 id -= DIF_VAR_OTHER_UBASE; 6278 VERIFY(id < vstate->dtvs_ntlocals); 6279 6280 key = &tupregs[DIF_DTR_NREGS]; 6281 key[0].dttk_value = (uint64_t)id; 6282 key[0].dttk_size = 0; 6283 DTRACE_TLS_THRKEY(key[1].dttk_value); 6284 key[1].dttk_size = 0; 6285 v = &vstate->dtvs_tlocals[id]; 6286 6287 dvar = dtrace_dynvar(dstate, 2, key, 6288 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6289 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6290 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6291 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6292 6293 /* 6294 * Given that we're storing to thread-local data, 6295 * we need to flush our predicate cache. 6296 */ 6297 curthread->t_predcache = DTRACE_CACHEIDNONE; 6298 6299 if (dvar == NULL) 6300 break; 6301 6302 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6303 size_t lim; 6304 6305 if (!dtrace_vcanload( 6306 (void *)(uintptr_t)regs[rd], 6307 &v->dtdv_type, &lim, mstate, vstate)) 6308 break; 6309 6310 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6311 dvar->dtdv_data, &v->dtdv_type, lim); 6312 } else { 6313 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6314 } 6315 6316 break; 6317 } 6318 6319 case DIF_OP_SRA: 6320 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6321 break; 6322 6323 case DIF_OP_CALL: 6324 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6325 regs, tupregs, ttop, mstate, state); 6326 break; 6327 6328 case DIF_OP_PUSHTR: 6329 if (ttop == DIF_DTR_NREGS) { 6330 *flags |= CPU_DTRACE_TUPOFLOW; 6331 break; 6332 } 6333 6334 if (r1 == DIF_TYPE_STRING) { 6335 /* 6336 * If this is a string type and the size is 0, 6337 * we'll use the system-wide default string 6338 * size. Note that we are _not_ looking at 6339 * the value of the DTRACEOPT_STRSIZE option; 6340 * had this been set, we would expect to have 6341 * a non-zero size value in the "pushtr". 6342 */ 6343 tupregs[ttop].dttk_size = 6344 dtrace_strlen((char *)(uintptr_t)regs[rd], 6345 regs[r2] ? regs[r2] : 6346 dtrace_strsize_default) + 1; 6347 } else { 6348 if (regs[r2] > LONG_MAX) { 6349 *flags |= CPU_DTRACE_ILLOP; 6350 break; 6351 } 6352 6353 tupregs[ttop].dttk_size = regs[r2]; 6354 } 6355 6356 tupregs[ttop++].dttk_value = regs[rd]; 6357 break; 6358 6359 case DIF_OP_PUSHTV: 6360 if (ttop == DIF_DTR_NREGS) { 6361 *flags |= CPU_DTRACE_TUPOFLOW; 6362 break; 6363 } 6364 6365 tupregs[ttop].dttk_value = regs[rd]; 6366 tupregs[ttop++].dttk_size = 0; 6367 break; 6368 6369 case DIF_OP_POPTS: 6370 if (ttop != 0) 6371 ttop--; 6372 break; 6373 6374 case DIF_OP_FLUSHTS: 6375 ttop = 0; 6376 break; 6377 6378 case DIF_OP_LDGAA: 6379 case DIF_OP_LDTAA: { 6380 dtrace_dynvar_t *dvar; 6381 dtrace_key_t *key = tupregs; 6382 uint_t nkeys = ttop; 6383 6384 id = DIF_INSTR_VAR(instr); 6385 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6386 id -= DIF_VAR_OTHER_UBASE; 6387 6388 key[nkeys].dttk_value = (uint64_t)id; 6389 key[nkeys++].dttk_size = 0; 6390 6391 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6392 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6393 key[nkeys++].dttk_size = 0; 6394 VERIFY(id < vstate->dtvs_ntlocals); 6395 v = &vstate->dtvs_tlocals[id]; 6396 } else { 6397 VERIFY(id < vstate->dtvs_nglobals); 6398 v = &vstate->dtvs_globals[id]->dtsv_var; 6399 } 6400 6401 dvar = dtrace_dynvar(dstate, nkeys, key, 6402 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6403 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6404 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6405 6406 if (dvar == NULL) { 6407 regs[rd] = 0; 6408 break; 6409 } 6410 6411 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6412 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6413 } else { 6414 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6415 } 6416 6417 break; 6418 } 6419 6420 case DIF_OP_STGAA: 6421 case DIF_OP_STTAA: { 6422 dtrace_dynvar_t *dvar; 6423 dtrace_key_t *key = tupregs; 6424 uint_t nkeys = ttop; 6425 6426 id = DIF_INSTR_VAR(instr); 6427 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6428 id -= DIF_VAR_OTHER_UBASE; 6429 6430 key[nkeys].dttk_value = (uint64_t)id; 6431 key[nkeys++].dttk_size = 0; 6432 6433 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6434 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6435 key[nkeys++].dttk_size = 0; 6436 VERIFY(id < vstate->dtvs_ntlocals); 6437 v = &vstate->dtvs_tlocals[id]; 6438 } else { 6439 VERIFY(id < vstate->dtvs_nglobals); 6440 v = &vstate->dtvs_globals[id]->dtsv_var; 6441 } 6442 6443 dvar = dtrace_dynvar(dstate, nkeys, key, 6444 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6445 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6446 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6447 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6448 6449 if (dvar == NULL) 6450 break; 6451 6452 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6453 size_t lim; 6454 6455 if (!dtrace_vcanload( 6456 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6457 &lim, mstate, vstate)) 6458 break; 6459 6460 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6461 dvar->dtdv_data, &v->dtdv_type, lim); 6462 } else { 6463 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6464 } 6465 6466 break; 6467 } 6468 6469 case DIF_OP_ALLOCS: { 6470 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6471 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6472 6473 /* 6474 * Rounding up the user allocation size could have 6475 * overflowed large, bogus allocations (like -1ULL) to 6476 * 0. 6477 */ 6478 if (size < regs[r1] || 6479 !DTRACE_INSCRATCH(mstate, size)) { 6480 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6481 regs[rd] = 0; 6482 break; 6483 } 6484 6485 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6486 mstate->dtms_scratch_ptr += size; 6487 regs[rd] = ptr; 6488 break; 6489 } 6490 6491 case DIF_OP_COPYS: 6492 if (!dtrace_canstore(regs[rd], regs[r2], 6493 mstate, vstate)) { 6494 *flags |= CPU_DTRACE_BADADDR; 6495 *illval = regs[rd]; 6496 break; 6497 } 6498 6499 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6500 break; 6501 6502 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6503 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6504 break; 6505 6506 case DIF_OP_STB: 6507 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6508 *flags |= CPU_DTRACE_BADADDR; 6509 *illval = regs[rd]; 6510 break; 6511 } 6512 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6513 break; 6514 6515 case DIF_OP_STH: 6516 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6517 *flags |= CPU_DTRACE_BADADDR; 6518 *illval = regs[rd]; 6519 break; 6520 } 6521 if (regs[rd] & 1) { 6522 *flags |= CPU_DTRACE_BADALIGN; 6523 *illval = regs[rd]; 6524 break; 6525 } 6526 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6527 break; 6528 6529 case DIF_OP_STW: 6530 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6531 *flags |= CPU_DTRACE_BADADDR; 6532 *illval = regs[rd]; 6533 break; 6534 } 6535 if (regs[rd] & 3) { 6536 *flags |= CPU_DTRACE_BADALIGN; 6537 *illval = regs[rd]; 6538 break; 6539 } 6540 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6541 break; 6542 6543 case DIF_OP_STX: 6544 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6545 *flags |= CPU_DTRACE_BADADDR; 6546 *illval = regs[rd]; 6547 break; 6548 } 6549 if (regs[rd] & 7) { 6550 *flags |= CPU_DTRACE_BADALIGN; 6551 *illval = regs[rd]; 6552 break; 6553 } 6554 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6555 break; 6556 } 6557 } 6558 6559 if (!(*flags & CPU_DTRACE_FAULT)) 6560 return (rval); 6561 6562 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6563 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6564 6565 return (0); 6566 } 6567 6568 static void 6569 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6570 { 6571 dtrace_probe_t *probe = ecb->dte_probe; 6572 dtrace_provider_t *prov = probe->dtpr_provider; 6573 char c[DTRACE_FULLNAMELEN + 80], *str; 6574 char *msg = "dtrace: breakpoint action at probe "; 6575 char *ecbmsg = " (ecb "; 6576 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6577 uintptr_t val = (uintptr_t)ecb; 6578 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6579 6580 if (dtrace_destructive_disallow) 6581 return; 6582 6583 /* 6584 * It's impossible to be taking action on the NULL probe. 6585 */ 6586 ASSERT(probe != NULL); 6587 6588 /* 6589 * This is a poor man's (destitute man's?) sprintf(): we want to 6590 * print the provider name, module name, function name and name of 6591 * the probe, along with the hex address of the ECB with the breakpoint 6592 * action -- all of which we must place in the character buffer by 6593 * hand. 6594 */ 6595 while (*msg != '\0') 6596 c[i++] = *msg++; 6597 6598 for (str = prov->dtpv_name; *str != '\0'; str++) 6599 c[i++] = *str; 6600 c[i++] = ':'; 6601 6602 for (str = probe->dtpr_mod; *str != '\0'; str++) 6603 c[i++] = *str; 6604 c[i++] = ':'; 6605 6606 for (str = probe->dtpr_func; *str != '\0'; str++) 6607 c[i++] = *str; 6608 c[i++] = ':'; 6609 6610 for (str = probe->dtpr_name; *str != '\0'; str++) 6611 c[i++] = *str; 6612 6613 while (*ecbmsg != '\0') 6614 c[i++] = *ecbmsg++; 6615 6616 while (shift >= 0) { 6617 mask = (uintptr_t)0xf << shift; 6618 6619 if (val >= ((uintptr_t)1 << shift)) 6620 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6621 shift -= 4; 6622 } 6623 6624 c[i++] = ')'; 6625 c[i] = '\0'; 6626 6627 debug_enter(c); 6628 } 6629 6630 static void 6631 dtrace_action_panic(dtrace_ecb_t *ecb) 6632 { 6633 dtrace_probe_t *probe = ecb->dte_probe; 6634 6635 /* 6636 * It's impossible to be taking action on the NULL probe. 6637 */ 6638 ASSERT(probe != NULL); 6639 6640 if (dtrace_destructive_disallow) 6641 return; 6642 6643 if (dtrace_panicked != NULL) 6644 return; 6645 6646 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6647 return; 6648 6649 /* 6650 * We won the right to panic. (We want to be sure that only one 6651 * thread calls panic() from dtrace_probe(), and that panic() is 6652 * called exactly once.) 6653 */ 6654 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6655 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6656 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6657 } 6658 6659 static void 6660 dtrace_action_raise(uint64_t sig) 6661 { 6662 if (dtrace_destructive_disallow) 6663 return; 6664 6665 if (sig >= NSIG) { 6666 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6667 return; 6668 } 6669 6670 /* 6671 * raise() has a queue depth of 1 -- we ignore all subsequent 6672 * invocations of the raise() action. 6673 */ 6674 if (curthread->t_dtrace_sig == 0) 6675 curthread->t_dtrace_sig = (uint8_t)sig; 6676 6677 curthread->t_sig_check = 1; 6678 aston(curthread); 6679 } 6680 6681 static void 6682 dtrace_action_stop(void) 6683 { 6684 if (dtrace_destructive_disallow) 6685 return; 6686 6687 if (!curthread->t_dtrace_stop) { 6688 curthread->t_dtrace_stop = 1; 6689 curthread->t_sig_check = 1; 6690 aston(curthread); 6691 } 6692 } 6693 6694 static void 6695 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6696 { 6697 hrtime_t now; 6698 volatile uint16_t *flags; 6699 cpu_t *cpu = CPU; 6700 6701 if (dtrace_destructive_disallow) 6702 return; 6703 6704 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6705 6706 now = dtrace_gethrtime(); 6707 6708 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6709 /* 6710 * We need to advance the mark to the current time. 6711 */ 6712 cpu->cpu_dtrace_chillmark = now; 6713 cpu->cpu_dtrace_chilled = 0; 6714 } 6715 6716 /* 6717 * Now check to see if the requested chill time would take us over 6718 * the maximum amount of time allowed in the chill interval. (Or 6719 * worse, if the calculation itself induces overflow.) 6720 */ 6721 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6722 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6723 *flags |= CPU_DTRACE_ILLOP; 6724 return; 6725 } 6726 6727 while (dtrace_gethrtime() - now < val) 6728 continue; 6729 6730 /* 6731 * Normally, we assure that the value of the variable "timestamp" does 6732 * not change within an ECB. The presence of chill() represents an 6733 * exception to this rule, however. 6734 */ 6735 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6736 cpu->cpu_dtrace_chilled += val; 6737 } 6738 6739 static void 6740 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6741 uint64_t *buf, uint64_t arg) 6742 { 6743 int nframes = DTRACE_USTACK_NFRAMES(arg); 6744 int strsize = DTRACE_USTACK_STRSIZE(arg); 6745 uint64_t *pcs = &buf[1], *fps; 6746 char *str = (char *)&pcs[nframes]; 6747 int size, offs = 0, i, j; 6748 size_t rem; 6749 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6750 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6751 char *sym; 6752 6753 /* 6754 * Should be taking a faster path if string space has not been 6755 * allocated. 6756 */ 6757 ASSERT(strsize != 0); 6758 6759 /* 6760 * We will first allocate some temporary space for the frame pointers. 6761 */ 6762 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6763 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6764 (nframes * sizeof (uint64_t)); 6765 6766 if (!DTRACE_INSCRATCH(mstate, size)) { 6767 /* 6768 * Not enough room for our frame pointers -- need to indicate 6769 * that we ran out of scratch space. 6770 */ 6771 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6772 return; 6773 } 6774 6775 mstate->dtms_scratch_ptr += size; 6776 saved = mstate->dtms_scratch_ptr; 6777 6778 /* 6779 * Now get a stack with both program counters and frame pointers. 6780 */ 6781 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6782 dtrace_getufpstack(buf, fps, nframes + 1); 6783 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6784 6785 /* 6786 * If that faulted, we're cooked. 6787 */ 6788 if (*flags & CPU_DTRACE_FAULT) 6789 goto out; 6790 6791 /* 6792 * Now we want to walk up the stack, calling the USTACK helper. For 6793 * each iteration, we restore the scratch pointer. 6794 */ 6795 for (i = 0; i < nframes; i++) { 6796 mstate->dtms_scratch_ptr = saved; 6797 6798 if (offs >= strsize) 6799 break; 6800 6801 sym = (char *)(uintptr_t)dtrace_helper( 6802 DTRACE_HELPER_ACTION_USTACK, 6803 mstate, state, pcs[i], fps[i]); 6804 6805 /* 6806 * If we faulted while running the helper, we're going to 6807 * clear the fault and null out the corresponding string. 6808 */ 6809 if (*flags & CPU_DTRACE_FAULT) { 6810 *flags &= ~CPU_DTRACE_FAULT; 6811 str[offs++] = '\0'; 6812 continue; 6813 } 6814 6815 if (sym == NULL) { 6816 str[offs++] = '\0'; 6817 continue; 6818 } 6819 6820 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate, 6821 &(state->dts_vstate))) { 6822 str[offs++] = '\0'; 6823 continue; 6824 } 6825 6826 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6827 6828 /* 6829 * Now copy in the string that the helper returned to us. 6830 */ 6831 for (j = 0; offs + j < strsize && j < rem; j++) { 6832 if ((str[offs + j] = sym[j]) == '\0') 6833 break; 6834 } 6835 6836 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6837 6838 offs += j + 1; 6839 } 6840 6841 if (offs >= strsize) { 6842 /* 6843 * If we didn't have room for all of the strings, we don't 6844 * abort processing -- this needn't be a fatal error -- but we 6845 * still want to increment a counter (dts_stkstroverflows) to 6846 * allow this condition to be warned about. (If this is from 6847 * a jstack() action, it is easily tuned via jstackstrsize.) 6848 */ 6849 dtrace_error(&state->dts_stkstroverflows); 6850 } 6851 6852 while (offs < strsize) 6853 str[offs++] = '\0'; 6854 6855 out: 6856 mstate->dtms_scratch_ptr = old; 6857 } 6858 6859 static void 6860 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6861 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6862 { 6863 volatile uint16_t *flags; 6864 uint64_t val = *valp; 6865 size_t valoffs = *valoffsp; 6866 6867 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6868 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6869 6870 /* 6871 * If this is a string, we're going to only load until we find the zero 6872 * byte -- after which we'll store zero bytes. 6873 */ 6874 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6875 char c = '\0' + 1; 6876 size_t s; 6877 6878 for (s = 0; s < size; s++) { 6879 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6880 c = dtrace_load8(val++); 6881 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6882 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6883 c = dtrace_fuword8((void *)(uintptr_t)val++); 6884 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6885 if (*flags & CPU_DTRACE_FAULT) 6886 break; 6887 } 6888 6889 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 6890 6891 if (c == '\0' && intuple) 6892 break; 6893 } 6894 } else { 6895 uint8_t c; 6896 while (valoffs < end) { 6897 if (dtkind == DIF_TF_BYREF) { 6898 c = dtrace_load8(val++); 6899 } else if (dtkind == DIF_TF_BYUREF) { 6900 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6901 c = dtrace_fuword8((void *)(uintptr_t)val++); 6902 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6903 if (*flags & CPU_DTRACE_FAULT) 6904 break; 6905 } 6906 6907 DTRACE_STORE(uint8_t, tomax, 6908 valoffs++, c); 6909 } 6910 } 6911 6912 *valp = val; 6913 *valoffsp = valoffs; 6914 } 6915 6916 /* 6917 * If you're looking for the epicenter of DTrace, you just found it. This 6918 * is the function called by the provider to fire a probe -- from which all 6919 * subsequent probe-context DTrace activity emanates. 6920 */ 6921 void 6922 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6923 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6924 { 6925 processorid_t cpuid; 6926 dtrace_icookie_t cookie; 6927 dtrace_probe_t *probe; 6928 dtrace_mstate_t mstate; 6929 dtrace_ecb_t *ecb; 6930 dtrace_action_t *act; 6931 intptr_t offs; 6932 size_t size; 6933 int vtime, onintr; 6934 volatile uint16_t *flags; 6935 hrtime_t now, end; 6936 6937 /* 6938 * Kick out immediately if this CPU is still being born (in which case 6939 * curthread will be set to -1) or the current thread can't allow 6940 * probes in its current context. 6941 */ 6942 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6943 return; 6944 6945 cookie = dtrace_interrupt_disable(); 6946 6947 /* 6948 * Also refuse to process any probe firings that might happen on a 6949 * disabled CPU. 6950 */ 6951 if (CPU->cpu_flags & CPU_DISABLED) { 6952 dtrace_interrupt_enable(cookie); 6953 return; 6954 } 6955 6956 probe = dtrace_probes[id - 1]; 6957 cpuid = CPU->cpu_id; 6958 onintr = CPU_ON_INTR(CPU); 6959 6960 CPU->cpu_dtrace_probes++; 6961 6962 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6963 probe->dtpr_predcache == curthread->t_predcache) { 6964 /* 6965 * We have hit in the predicate cache; we know that 6966 * this predicate would evaluate to be false. 6967 */ 6968 dtrace_interrupt_enable(cookie); 6969 return; 6970 } 6971 6972 if (panic_quiesce) { 6973 /* 6974 * We don't trace anything if we're panicking. 6975 */ 6976 dtrace_interrupt_enable(cookie); 6977 return; 6978 } 6979 6980 now = dtrace_gethrtime(); 6981 vtime = dtrace_vtime_references != 0; 6982 6983 if (vtime && curthread->t_dtrace_start) 6984 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6985 6986 mstate.dtms_difo = NULL; 6987 mstate.dtms_probe = probe; 6988 mstate.dtms_strtok = 0; 6989 mstate.dtms_arg[0] = arg0; 6990 mstate.dtms_arg[1] = arg1; 6991 mstate.dtms_arg[2] = arg2; 6992 mstate.dtms_arg[3] = arg3; 6993 mstate.dtms_arg[4] = arg4; 6994 6995 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6996 6997 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6998 dtrace_predicate_t *pred = ecb->dte_predicate; 6999 dtrace_state_t *state = ecb->dte_state; 7000 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 7001 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 7002 dtrace_vstate_t *vstate = &state->dts_vstate; 7003 dtrace_provider_t *prov = probe->dtpr_provider; 7004 uint64_t tracememsize = 0; 7005 int committed = 0; 7006 caddr_t tomax; 7007 7008 /* 7009 * A little subtlety with the following (seemingly innocuous) 7010 * declaration of the automatic 'val': by looking at the 7011 * code, you might think that it could be declared in the 7012 * action processing loop, below. (That is, it's only used in 7013 * the action processing loop.) However, it must be declared 7014 * out of that scope because in the case of DIF expression 7015 * arguments to aggregating actions, one iteration of the 7016 * action loop will use the last iteration's value. 7017 */ 7018 #ifdef lint 7019 uint64_t val = 0; 7020 #else 7021 uint64_t val; 7022 #endif 7023 7024 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 7025 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 7026 mstate.dtms_getf = NULL; 7027 7028 *flags &= ~CPU_DTRACE_ERROR; 7029 7030 if (prov == dtrace_provider) { 7031 /* 7032 * If dtrace itself is the provider of this probe, 7033 * we're only going to continue processing the ECB if 7034 * arg0 (the dtrace_state_t) is equal to the ECB's 7035 * creating state. (This prevents disjoint consumers 7036 * from seeing one another's metaprobes.) 7037 */ 7038 if (arg0 != (uint64_t)(uintptr_t)state) 7039 continue; 7040 } 7041 7042 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 7043 /* 7044 * We're not currently active. If our provider isn't 7045 * the dtrace pseudo provider, we're not interested. 7046 */ 7047 if (prov != dtrace_provider) 7048 continue; 7049 7050 /* 7051 * Now we must further check if we are in the BEGIN 7052 * probe. If we are, we will only continue processing 7053 * if we're still in WARMUP -- if one BEGIN enabling 7054 * has invoked the exit() action, we don't want to 7055 * evaluate subsequent BEGIN enablings. 7056 */ 7057 if (probe->dtpr_id == dtrace_probeid_begin && 7058 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 7059 ASSERT(state->dts_activity == 7060 DTRACE_ACTIVITY_DRAINING); 7061 continue; 7062 } 7063 } 7064 7065 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 7066 continue; 7067 7068 if (now - state->dts_alive > dtrace_deadman_timeout) { 7069 /* 7070 * We seem to be dead. Unless we (a) have kernel 7071 * destructive permissions (b) have explicitly enabled 7072 * destructive actions and (c) destructive actions have 7073 * not been disabled, we're going to transition into 7074 * the KILLED state, from which no further processing 7075 * on this state will be performed. 7076 */ 7077 if (!dtrace_priv_kernel_destructive(state) || 7078 !state->dts_cred.dcr_destructive || 7079 dtrace_destructive_disallow) { 7080 void *activity = &state->dts_activity; 7081 dtrace_activity_t current; 7082 7083 do { 7084 current = state->dts_activity; 7085 } while (dtrace_cas32(activity, current, 7086 DTRACE_ACTIVITY_KILLED) != current); 7087 7088 continue; 7089 } 7090 } 7091 7092 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 7093 ecb->dte_alignment, state, &mstate)) < 0) 7094 continue; 7095 7096 tomax = buf->dtb_tomax; 7097 ASSERT(tomax != NULL); 7098 7099 if (ecb->dte_size != 0) { 7100 dtrace_rechdr_t dtrh; 7101 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 7102 mstate.dtms_timestamp = dtrace_gethrtime(); 7103 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 7104 } 7105 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 7106 dtrh.dtrh_epid = ecb->dte_epid; 7107 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 7108 mstate.dtms_timestamp); 7109 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 7110 } 7111 7112 mstate.dtms_epid = ecb->dte_epid; 7113 mstate.dtms_present |= DTRACE_MSTATE_EPID; 7114 7115 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 7116 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 7117 7118 if (pred != NULL) { 7119 dtrace_difo_t *dp = pred->dtp_difo; 7120 uint64_t rval; 7121 7122 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 7123 7124 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 7125 dtrace_cacheid_t cid = probe->dtpr_predcache; 7126 7127 if (cid != DTRACE_CACHEIDNONE && !onintr) { 7128 /* 7129 * Update the predicate cache... 7130 */ 7131 ASSERT(cid == pred->dtp_cacheid); 7132 curthread->t_predcache = cid; 7133 } 7134 7135 continue; 7136 } 7137 } 7138 7139 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 7140 act != NULL; act = act->dta_next) { 7141 size_t valoffs; 7142 dtrace_difo_t *dp; 7143 dtrace_recdesc_t *rec = &act->dta_rec; 7144 7145 size = rec->dtrd_size; 7146 valoffs = offs + rec->dtrd_offset; 7147 7148 if (DTRACEACT_ISAGG(act->dta_kind)) { 7149 uint64_t v = 0xbad; 7150 dtrace_aggregation_t *agg; 7151 7152 agg = (dtrace_aggregation_t *)act; 7153 7154 if ((dp = act->dta_difo) != NULL) 7155 v = dtrace_dif_emulate(dp, 7156 &mstate, vstate, state); 7157 7158 if (*flags & CPU_DTRACE_ERROR) 7159 continue; 7160 7161 /* 7162 * Note that we always pass the expression 7163 * value from the previous iteration of the 7164 * action loop. This value will only be used 7165 * if there is an expression argument to the 7166 * aggregating action, denoted by the 7167 * dtag_hasarg field. 7168 */ 7169 dtrace_aggregate(agg, buf, 7170 offs, aggbuf, v, val); 7171 continue; 7172 } 7173 7174 switch (act->dta_kind) { 7175 case DTRACEACT_STOP: 7176 if (dtrace_priv_proc_destructive(state, 7177 &mstate)) 7178 dtrace_action_stop(); 7179 continue; 7180 7181 case DTRACEACT_BREAKPOINT: 7182 if (dtrace_priv_kernel_destructive(state)) 7183 dtrace_action_breakpoint(ecb); 7184 continue; 7185 7186 case DTRACEACT_PANIC: 7187 if (dtrace_priv_kernel_destructive(state)) 7188 dtrace_action_panic(ecb); 7189 continue; 7190 7191 case DTRACEACT_STACK: 7192 if (!dtrace_priv_kernel(state)) 7193 continue; 7194 7195 dtrace_getpcstack((pc_t *)(tomax + valoffs), 7196 size / sizeof (pc_t), probe->dtpr_aframes, 7197 DTRACE_ANCHORED(probe) ? NULL : 7198 (uint32_t *)arg0); 7199 7200 continue; 7201 7202 case DTRACEACT_JSTACK: 7203 case DTRACEACT_USTACK: 7204 if (!dtrace_priv_proc(state, &mstate)) 7205 continue; 7206 7207 /* 7208 * See comment in DIF_VAR_PID. 7209 */ 7210 if (DTRACE_ANCHORED(mstate.dtms_probe) && 7211 CPU_ON_INTR(CPU)) { 7212 int depth = DTRACE_USTACK_NFRAMES( 7213 rec->dtrd_arg) + 1; 7214 7215 dtrace_bzero((void *)(tomax + valoffs), 7216 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 7217 + depth * sizeof (uint64_t)); 7218 7219 continue; 7220 } 7221 7222 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 7223 curproc->p_dtrace_helpers != NULL) { 7224 /* 7225 * This is the slow path -- we have 7226 * allocated string space, and we're 7227 * getting the stack of a process that 7228 * has helpers. Call into a separate 7229 * routine to perform this processing. 7230 */ 7231 dtrace_action_ustack(&mstate, state, 7232 (uint64_t *)(tomax + valoffs), 7233 rec->dtrd_arg); 7234 continue; 7235 } 7236 7237 /* 7238 * Clear the string space, since there's no 7239 * helper to do it for us. 7240 */ 7241 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 7242 int depth = DTRACE_USTACK_NFRAMES( 7243 rec->dtrd_arg); 7244 size_t strsize = DTRACE_USTACK_STRSIZE( 7245 rec->dtrd_arg); 7246 uint64_t *buf = (uint64_t *)(tomax + 7247 valoffs); 7248 void *strspace = &buf[depth + 1]; 7249 7250 dtrace_bzero(strspace, 7251 MIN(depth, strsize)); 7252 } 7253 7254 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 7255 dtrace_getupcstack((uint64_t *) 7256 (tomax + valoffs), 7257 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 7258 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 7259 continue; 7260 7261 default: 7262 break; 7263 } 7264 7265 dp = act->dta_difo; 7266 ASSERT(dp != NULL); 7267 7268 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 7269 7270 if (*flags & CPU_DTRACE_ERROR) 7271 continue; 7272 7273 switch (act->dta_kind) { 7274 case DTRACEACT_SPECULATE: { 7275 dtrace_rechdr_t *dtrh; 7276 7277 ASSERT(buf == &state->dts_buffer[cpuid]); 7278 buf = dtrace_speculation_buffer(state, 7279 cpuid, val); 7280 7281 if (buf == NULL) { 7282 *flags |= CPU_DTRACE_DROP; 7283 continue; 7284 } 7285 7286 offs = dtrace_buffer_reserve(buf, 7287 ecb->dte_needed, ecb->dte_alignment, 7288 state, NULL); 7289 7290 if (offs < 0) { 7291 *flags |= CPU_DTRACE_DROP; 7292 continue; 7293 } 7294 7295 tomax = buf->dtb_tomax; 7296 ASSERT(tomax != NULL); 7297 7298 if (ecb->dte_size == 0) 7299 continue; 7300 7301 ASSERT3U(ecb->dte_size, >=, 7302 sizeof (dtrace_rechdr_t)); 7303 dtrh = ((void *)(tomax + offs)); 7304 dtrh->dtrh_epid = ecb->dte_epid; 7305 /* 7306 * When the speculation is committed, all of 7307 * the records in the speculative buffer will 7308 * have their timestamps set to the commit 7309 * time. Until then, it is set to a sentinel 7310 * value, for debugability. 7311 */ 7312 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7313 continue; 7314 } 7315 7316 case DTRACEACT_CHILL: 7317 if (dtrace_priv_kernel_destructive(state)) 7318 dtrace_action_chill(&mstate, val); 7319 continue; 7320 7321 case DTRACEACT_RAISE: 7322 if (dtrace_priv_proc_destructive(state, 7323 &mstate)) 7324 dtrace_action_raise(val); 7325 continue; 7326 7327 case DTRACEACT_COMMIT: 7328 ASSERT(!committed); 7329 7330 /* 7331 * We need to commit our buffer state. 7332 */ 7333 if (ecb->dte_size) 7334 buf->dtb_offset = offs + ecb->dte_size; 7335 buf = &state->dts_buffer[cpuid]; 7336 dtrace_speculation_commit(state, cpuid, val); 7337 committed = 1; 7338 continue; 7339 7340 case DTRACEACT_DISCARD: 7341 dtrace_speculation_discard(state, cpuid, val); 7342 continue; 7343 7344 case DTRACEACT_DIFEXPR: 7345 case DTRACEACT_LIBACT: 7346 case DTRACEACT_PRINTF: 7347 case DTRACEACT_PRINTA: 7348 case DTRACEACT_SYSTEM: 7349 case DTRACEACT_FREOPEN: 7350 case DTRACEACT_TRACEMEM: 7351 break; 7352 7353 case DTRACEACT_TRACEMEM_DYNSIZE: 7354 tracememsize = val; 7355 break; 7356 7357 case DTRACEACT_SYM: 7358 case DTRACEACT_MOD: 7359 if (!dtrace_priv_kernel(state)) 7360 continue; 7361 break; 7362 7363 case DTRACEACT_USYM: 7364 case DTRACEACT_UMOD: 7365 case DTRACEACT_UADDR: { 7366 struct pid *pid = curthread->t_procp->p_pidp; 7367 7368 if (!dtrace_priv_proc(state, &mstate)) 7369 continue; 7370 7371 DTRACE_STORE(uint64_t, tomax, 7372 valoffs, (uint64_t)pid->pid_id); 7373 DTRACE_STORE(uint64_t, tomax, 7374 valoffs + sizeof (uint64_t), val); 7375 7376 continue; 7377 } 7378 7379 case DTRACEACT_EXIT: { 7380 /* 7381 * For the exit action, we are going to attempt 7382 * to atomically set our activity to be 7383 * draining. If this fails (either because 7384 * another CPU has beat us to the exit action, 7385 * or because our current activity is something 7386 * other than ACTIVE or WARMUP), we will 7387 * continue. This assures that the exit action 7388 * can be successfully recorded at most once 7389 * when we're in the ACTIVE state. If we're 7390 * encountering the exit() action while in 7391 * COOLDOWN, however, we want to honor the new 7392 * status code. (We know that we're the only 7393 * thread in COOLDOWN, so there is no race.) 7394 */ 7395 void *activity = &state->dts_activity; 7396 dtrace_activity_t current = state->dts_activity; 7397 7398 if (current == DTRACE_ACTIVITY_COOLDOWN) 7399 break; 7400 7401 if (current != DTRACE_ACTIVITY_WARMUP) 7402 current = DTRACE_ACTIVITY_ACTIVE; 7403 7404 if (dtrace_cas32(activity, current, 7405 DTRACE_ACTIVITY_DRAINING) != current) { 7406 *flags |= CPU_DTRACE_DROP; 7407 continue; 7408 } 7409 7410 break; 7411 } 7412 7413 default: 7414 ASSERT(0); 7415 } 7416 7417 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7418 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7419 uintptr_t end = valoffs + size; 7420 7421 if (tracememsize != 0 && 7422 valoffs + tracememsize < end) { 7423 end = valoffs + tracememsize; 7424 tracememsize = 0; 7425 } 7426 7427 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7428 !dtrace_vcanload((void *)(uintptr_t)val, 7429 &dp->dtdo_rtype, NULL, &mstate, vstate)) 7430 continue; 7431 7432 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7433 &val, end, act->dta_intuple, 7434 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7435 DIF_TF_BYREF: DIF_TF_BYUREF); 7436 continue; 7437 } 7438 7439 switch (size) { 7440 case 0: 7441 break; 7442 7443 case sizeof (uint8_t): 7444 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7445 break; 7446 case sizeof (uint16_t): 7447 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7448 break; 7449 case sizeof (uint32_t): 7450 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7451 break; 7452 case sizeof (uint64_t): 7453 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7454 break; 7455 default: 7456 /* 7457 * Any other size should have been returned by 7458 * reference, not by value. 7459 */ 7460 ASSERT(0); 7461 break; 7462 } 7463 } 7464 7465 if (*flags & CPU_DTRACE_DROP) 7466 continue; 7467 7468 if (*flags & CPU_DTRACE_FAULT) { 7469 int ndx; 7470 dtrace_action_t *err; 7471 7472 buf->dtb_errors++; 7473 7474 if (probe->dtpr_id == dtrace_probeid_error) { 7475 /* 7476 * There's nothing we can do -- we had an 7477 * error on the error probe. We bump an 7478 * error counter to at least indicate that 7479 * this condition happened. 7480 */ 7481 dtrace_error(&state->dts_dblerrors); 7482 continue; 7483 } 7484 7485 if (vtime) { 7486 /* 7487 * Before recursing on dtrace_probe(), we 7488 * need to explicitly clear out our start 7489 * time to prevent it from being accumulated 7490 * into t_dtrace_vtime. 7491 */ 7492 curthread->t_dtrace_start = 0; 7493 } 7494 7495 /* 7496 * Iterate over the actions to figure out which action 7497 * we were processing when we experienced the error. 7498 * Note that act points _past_ the faulting action; if 7499 * act is ecb->dte_action, the fault was in the 7500 * predicate, if it's ecb->dte_action->dta_next it's 7501 * in action #1, and so on. 7502 */ 7503 for (err = ecb->dte_action, ndx = 0; 7504 err != act; err = err->dta_next, ndx++) 7505 continue; 7506 7507 dtrace_probe_error(state, ecb->dte_epid, ndx, 7508 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7509 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7510 cpu_core[cpuid].cpuc_dtrace_illval); 7511 7512 continue; 7513 } 7514 7515 if (!committed) 7516 buf->dtb_offset = offs + ecb->dte_size; 7517 } 7518 7519 end = dtrace_gethrtime(); 7520 if (vtime) 7521 curthread->t_dtrace_start = end; 7522 7523 CPU->cpu_dtrace_nsec += end - now; 7524 7525 dtrace_interrupt_enable(cookie); 7526 } 7527 7528 /* 7529 * DTrace Probe Hashing Functions 7530 * 7531 * The functions in this section (and indeed, the functions in remaining 7532 * sections) are not _called_ from probe context. (Any exceptions to this are 7533 * marked with a "Note:".) Rather, they are called from elsewhere in the 7534 * DTrace framework to look-up probes in, add probes to and remove probes from 7535 * the DTrace probe hashes. (Each probe is hashed by each element of the 7536 * probe tuple -- allowing for fast lookups, regardless of what was 7537 * specified.) 7538 */ 7539 static uint_t 7540 dtrace_hash_str(char *p) 7541 { 7542 unsigned int g; 7543 uint_t hval = 0; 7544 7545 while (*p) { 7546 hval = (hval << 4) + *p++; 7547 if ((g = (hval & 0xf0000000)) != 0) 7548 hval ^= g >> 24; 7549 hval &= ~g; 7550 } 7551 return (hval); 7552 } 7553 7554 static dtrace_hash_t * 7555 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7556 { 7557 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7558 7559 hash->dth_stroffs = stroffs; 7560 hash->dth_nextoffs = nextoffs; 7561 hash->dth_prevoffs = prevoffs; 7562 7563 hash->dth_size = 1; 7564 hash->dth_mask = hash->dth_size - 1; 7565 7566 hash->dth_tab = kmem_zalloc(hash->dth_size * 7567 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7568 7569 return (hash); 7570 } 7571 7572 static void 7573 dtrace_hash_destroy(dtrace_hash_t *hash) 7574 { 7575 #ifdef DEBUG 7576 int i; 7577 7578 for (i = 0; i < hash->dth_size; i++) 7579 ASSERT(hash->dth_tab[i] == NULL); 7580 #endif 7581 7582 kmem_free(hash->dth_tab, 7583 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7584 kmem_free(hash, sizeof (dtrace_hash_t)); 7585 } 7586 7587 static void 7588 dtrace_hash_resize(dtrace_hash_t *hash) 7589 { 7590 int size = hash->dth_size, i, ndx; 7591 int new_size = hash->dth_size << 1; 7592 int new_mask = new_size - 1; 7593 dtrace_hashbucket_t **new_tab, *bucket, *next; 7594 7595 ASSERT((new_size & new_mask) == 0); 7596 7597 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7598 7599 for (i = 0; i < size; i++) { 7600 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7601 dtrace_probe_t *probe = bucket->dthb_chain; 7602 7603 ASSERT(probe != NULL); 7604 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7605 7606 next = bucket->dthb_next; 7607 bucket->dthb_next = new_tab[ndx]; 7608 new_tab[ndx] = bucket; 7609 } 7610 } 7611 7612 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7613 hash->dth_tab = new_tab; 7614 hash->dth_size = new_size; 7615 hash->dth_mask = new_mask; 7616 } 7617 7618 static void 7619 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7620 { 7621 int hashval = DTRACE_HASHSTR(hash, new); 7622 int ndx = hashval & hash->dth_mask; 7623 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7624 dtrace_probe_t **nextp, **prevp; 7625 7626 for (; bucket != NULL; bucket = bucket->dthb_next) { 7627 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7628 goto add; 7629 } 7630 7631 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7632 dtrace_hash_resize(hash); 7633 dtrace_hash_add(hash, new); 7634 return; 7635 } 7636 7637 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7638 bucket->dthb_next = hash->dth_tab[ndx]; 7639 hash->dth_tab[ndx] = bucket; 7640 hash->dth_nbuckets++; 7641 7642 add: 7643 nextp = DTRACE_HASHNEXT(hash, new); 7644 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7645 *nextp = bucket->dthb_chain; 7646 7647 if (bucket->dthb_chain != NULL) { 7648 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7649 ASSERT(*prevp == NULL); 7650 *prevp = new; 7651 } 7652 7653 bucket->dthb_chain = new; 7654 bucket->dthb_len++; 7655 } 7656 7657 static dtrace_probe_t * 7658 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7659 { 7660 int hashval = DTRACE_HASHSTR(hash, template); 7661 int ndx = hashval & hash->dth_mask; 7662 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7663 7664 for (; bucket != NULL; bucket = bucket->dthb_next) { 7665 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7666 return (bucket->dthb_chain); 7667 } 7668 7669 return (NULL); 7670 } 7671 7672 static int 7673 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7674 { 7675 int hashval = DTRACE_HASHSTR(hash, template); 7676 int ndx = hashval & hash->dth_mask; 7677 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7678 7679 for (; bucket != NULL; bucket = bucket->dthb_next) { 7680 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7681 return (bucket->dthb_len); 7682 } 7683 7684 return (0); 7685 } 7686 7687 static void 7688 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7689 { 7690 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7691 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7692 7693 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7694 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7695 7696 /* 7697 * Find the bucket that we're removing this probe from. 7698 */ 7699 for (; bucket != NULL; bucket = bucket->dthb_next) { 7700 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7701 break; 7702 } 7703 7704 ASSERT(bucket != NULL); 7705 7706 if (*prevp == NULL) { 7707 if (*nextp == NULL) { 7708 /* 7709 * The removed probe was the only probe on this 7710 * bucket; we need to remove the bucket. 7711 */ 7712 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7713 7714 ASSERT(bucket->dthb_chain == probe); 7715 ASSERT(b != NULL); 7716 7717 if (b == bucket) { 7718 hash->dth_tab[ndx] = bucket->dthb_next; 7719 } else { 7720 while (b->dthb_next != bucket) 7721 b = b->dthb_next; 7722 b->dthb_next = bucket->dthb_next; 7723 } 7724 7725 ASSERT(hash->dth_nbuckets > 0); 7726 hash->dth_nbuckets--; 7727 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7728 return; 7729 } 7730 7731 bucket->dthb_chain = *nextp; 7732 } else { 7733 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7734 } 7735 7736 if (*nextp != NULL) 7737 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7738 } 7739 7740 /* 7741 * DTrace Utility Functions 7742 * 7743 * These are random utility functions that are _not_ called from probe context. 7744 */ 7745 static int 7746 dtrace_badattr(const dtrace_attribute_t *a) 7747 { 7748 return (a->dtat_name > DTRACE_STABILITY_MAX || 7749 a->dtat_data > DTRACE_STABILITY_MAX || 7750 a->dtat_class > DTRACE_CLASS_MAX); 7751 } 7752 7753 /* 7754 * Return a duplicate copy of a string. If the specified string is NULL, 7755 * this function returns a zero-length string. 7756 */ 7757 static char * 7758 dtrace_strdup(const char *str) 7759 { 7760 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7761 7762 if (str != NULL) 7763 (void) strcpy(new, str); 7764 7765 return (new); 7766 } 7767 7768 #define DTRACE_ISALPHA(c) \ 7769 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7770 7771 static int 7772 dtrace_badname(const char *s) 7773 { 7774 char c; 7775 7776 if (s == NULL || (c = *s++) == '\0') 7777 return (0); 7778 7779 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7780 return (1); 7781 7782 while ((c = *s++) != '\0') { 7783 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7784 c != '-' && c != '_' && c != '.' && c != '`') 7785 return (1); 7786 } 7787 7788 return (0); 7789 } 7790 7791 static void 7792 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7793 { 7794 uint32_t priv; 7795 7796 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7797 /* 7798 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7799 */ 7800 priv = DTRACE_PRIV_ALL; 7801 } else { 7802 *uidp = crgetuid(cr); 7803 *zoneidp = crgetzoneid(cr); 7804 7805 priv = 0; 7806 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7807 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7808 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7809 priv |= DTRACE_PRIV_USER; 7810 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7811 priv |= DTRACE_PRIV_PROC; 7812 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7813 priv |= DTRACE_PRIV_OWNER; 7814 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7815 priv |= DTRACE_PRIV_ZONEOWNER; 7816 } 7817 7818 *privp = priv; 7819 } 7820 7821 #ifdef DTRACE_ERRDEBUG 7822 static void 7823 dtrace_errdebug(const char *str) 7824 { 7825 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7826 int occupied = 0; 7827 7828 mutex_enter(&dtrace_errlock); 7829 dtrace_errlast = str; 7830 dtrace_errthread = curthread; 7831 7832 while (occupied++ < DTRACE_ERRHASHSZ) { 7833 if (dtrace_errhash[hval].dter_msg == str) { 7834 dtrace_errhash[hval].dter_count++; 7835 goto out; 7836 } 7837 7838 if (dtrace_errhash[hval].dter_msg != NULL) { 7839 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7840 continue; 7841 } 7842 7843 dtrace_errhash[hval].dter_msg = str; 7844 dtrace_errhash[hval].dter_count = 1; 7845 goto out; 7846 } 7847 7848 panic("dtrace: undersized error hash"); 7849 out: 7850 mutex_exit(&dtrace_errlock); 7851 } 7852 #endif 7853 7854 /* 7855 * DTrace Matching Functions 7856 * 7857 * These functions are used to match groups of probes, given some elements of 7858 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7859 */ 7860 static int 7861 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7862 zoneid_t zoneid) 7863 { 7864 if (priv != DTRACE_PRIV_ALL) { 7865 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7866 uint32_t match = priv & ppriv; 7867 7868 /* 7869 * No PRIV_DTRACE_* privileges... 7870 */ 7871 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7872 DTRACE_PRIV_KERNEL)) == 0) 7873 return (0); 7874 7875 /* 7876 * No matching bits, but there were bits to match... 7877 */ 7878 if (match == 0 && ppriv != 0) 7879 return (0); 7880 7881 /* 7882 * Need to have permissions to the process, but don't... 7883 */ 7884 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7885 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7886 return (0); 7887 } 7888 7889 /* 7890 * Need to be in the same zone unless we possess the 7891 * privilege to examine all zones. 7892 */ 7893 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7894 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7895 return (0); 7896 } 7897 } 7898 7899 return (1); 7900 } 7901 7902 /* 7903 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7904 * consists of input pattern strings and an ops-vector to evaluate them. 7905 * This function returns >0 for match, 0 for no match, and <0 for error. 7906 */ 7907 static int 7908 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7909 uint32_t priv, uid_t uid, zoneid_t zoneid) 7910 { 7911 dtrace_provider_t *pvp = prp->dtpr_provider; 7912 int rv; 7913 7914 if (pvp->dtpv_defunct) 7915 return (0); 7916 7917 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7918 return (rv); 7919 7920 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7921 return (rv); 7922 7923 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7924 return (rv); 7925 7926 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7927 return (rv); 7928 7929 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7930 return (0); 7931 7932 return (rv); 7933 } 7934 7935 /* 7936 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7937 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7938 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7939 * In addition, all of the recursion cases except for '*' matching have been 7940 * unwound. For '*', we still implement recursive evaluation, but a depth 7941 * counter is maintained and matching is aborted if we recurse too deep. 7942 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7943 */ 7944 static int 7945 dtrace_match_glob(const char *s, const char *p, int depth) 7946 { 7947 const char *olds; 7948 char s1, c; 7949 int gs; 7950 7951 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7952 return (-1); 7953 7954 if (s == NULL) 7955 s = ""; /* treat NULL as empty string */ 7956 7957 top: 7958 olds = s; 7959 s1 = *s++; 7960 7961 if (p == NULL) 7962 return (0); 7963 7964 if ((c = *p++) == '\0') 7965 return (s1 == '\0'); 7966 7967 switch (c) { 7968 case '[': { 7969 int ok = 0, notflag = 0; 7970 char lc = '\0'; 7971 7972 if (s1 == '\0') 7973 return (0); 7974 7975 if (*p == '!') { 7976 notflag = 1; 7977 p++; 7978 } 7979 7980 if ((c = *p++) == '\0') 7981 return (0); 7982 7983 do { 7984 if (c == '-' && lc != '\0' && *p != ']') { 7985 if ((c = *p++) == '\0') 7986 return (0); 7987 if (c == '\\' && (c = *p++) == '\0') 7988 return (0); 7989 7990 if (notflag) { 7991 if (s1 < lc || s1 > c) 7992 ok++; 7993 else 7994 return (0); 7995 } else if (lc <= s1 && s1 <= c) 7996 ok++; 7997 7998 } else if (c == '\\' && (c = *p++) == '\0') 7999 return (0); 8000 8001 lc = c; /* save left-hand 'c' for next iteration */ 8002 8003 if (notflag) { 8004 if (s1 != c) 8005 ok++; 8006 else 8007 return (0); 8008 } else if (s1 == c) 8009 ok++; 8010 8011 if ((c = *p++) == '\0') 8012 return (0); 8013 8014 } while (c != ']'); 8015 8016 if (ok) 8017 goto top; 8018 8019 return (0); 8020 } 8021 8022 case '\\': 8023 if ((c = *p++) == '\0') 8024 return (0); 8025 /*FALLTHRU*/ 8026 8027 default: 8028 if (c != s1) 8029 return (0); 8030 /*FALLTHRU*/ 8031 8032 case '?': 8033 if (s1 != '\0') 8034 goto top; 8035 return (0); 8036 8037 case '*': 8038 while (*p == '*') 8039 p++; /* consecutive *'s are identical to a single one */ 8040 8041 if (*p == '\0') 8042 return (1); 8043 8044 for (s = olds; *s != '\0'; s++) { 8045 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 8046 return (gs); 8047 } 8048 8049 return (0); 8050 } 8051 } 8052 8053 /*ARGSUSED*/ 8054 static int 8055 dtrace_match_string(const char *s, const char *p, int depth) 8056 { 8057 return (s != NULL && strcmp(s, p) == 0); 8058 } 8059 8060 /*ARGSUSED*/ 8061 static int 8062 dtrace_match_nul(const char *s, const char *p, int depth) 8063 { 8064 return (1); /* always match the empty pattern */ 8065 } 8066 8067 /*ARGSUSED*/ 8068 static int 8069 dtrace_match_nonzero(const char *s, const char *p, int depth) 8070 { 8071 return (s != NULL && s[0] != '\0'); 8072 } 8073 8074 static int 8075 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 8076 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 8077 { 8078 dtrace_probe_t template, *probe; 8079 dtrace_hash_t *hash = NULL; 8080 int len, rc, best = INT_MAX, nmatched = 0; 8081 dtrace_id_t i; 8082 8083 ASSERT(MUTEX_HELD(&dtrace_lock)); 8084 8085 /* 8086 * If the probe ID is specified in the key, just lookup by ID and 8087 * invoke the match callback once if a matching probe is found. 8088 */ 8089 if (pkp->dtpk_id != DTRACE_IDNONE) { 8090 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 8091 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 8092 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 8093 return (DTRACE_MATCH_FAIL); 8094 nmatched++; 8095 } 8096 return (nmatched); 8097 } 8098 8099 template.dtpr_mod = (char *)pkp->dtpk_mod; 8100 template.dtpr_func = (char *)pkp->dtpk_func; 8101 template.dtpr_name = (char *)pkp->dtpk_name; 8102 8103 /* 8104 * We want to find the most distinct of the module name, function 8105 * name, and name. So for each one that is not a glob pattern or 8106 * empty string, we perform a lookup in the corresponding hash and 8107 * use the hash table with the fewest collisions to do our search. 8108 */ 8109 if (pkp->dtpk_mmatch == &dtrace_match_string && 8110 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 8111 best = len; 8112 hash = dtrace_bymod; 8113 } 8114 8115 if (pkp->dtpk_fmatch == &dtrace_match_string && 8116 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 8117 best = len; 8118 hash = dtrace_byfunc; 8119 } 8120 8121 if (pkp->dtpk_nmatch == &dtrace_match_string && 8122 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 8123 best = len; 8124 hash = dtrace_byname; 8125 } 8126 8127 /* 8128 * If we did not select a hash table, iterate over every probe and 8129 * invoke our callback for each one that matches our input probe key. 8130 */ 8131 if (hash == NULL) { 8132 for (i = 0; i < dtrace_nprobes; i++) { 8133 if ((probe = dtrace_probes[i]) == NULL || 8134 dtrace_match_probe(probe, pkp, priv, uid, 8135 zoneid) <= 0) 8136 continue; 8137 8138 nmatched++; 8139 8140 if ((rc = (*matched)(probe, arg)) != 8141 DTRACE_MATCH_NEXT) { 8142 if (rc == DTRACE_MATCH_FAIL) 8143 return (DTRACE_MATCH_FAIL); 8144 break; 8145 } 8146 } 8147 8148 return (nmatched); 8149 } 8150 8151 /* 8152 * If we selected a hash table, iterate over each probe of the same key 8153 * name and invoke the callback for every probe that matches the other 8154 * attributes of our input probe key. 8155 */ 8156 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 8157 probe = *(DTRACE_HASHNEXT(hash, probe))) { 8158 8159 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 8160 continue; 8161 8162 nmatched++; 8163 8164 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 8165 if (rc == DTRACE_MATCH_FAIL) 8166 return (DTRACE_MATCH_FAIL); 8167 break; 8168 } 8169 } 8170 8171 return (nmatched); 8172 } 8173 8174 /* 8175 * Return the function pointer dtrace_probecmp() should use to compare the 8176 * specified pattern with a string. For NULL or empty patterns, we select 8177 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 8178 * For non-empty non-glob strings, we use dtrace_match_string(). 8179 */ 8180 static dtrace_probekey_f * 8181 dtrace_probekey_func(const char *p) 8182 { 8183 char c; 8184 8185 if (p == NULL || *p == '\0') 8186 return (&dtrace_match_nul); 8187 8188 while ((c = *p++) != '\0') { 8189 if (c == '[' || c == '?' || c == '*' || c == '\\') 8190 return (&dtrace_match_glob); 8191 } 8192 8193 return (&dtrace_match_string); 8194 } 8195 8196 /* 8197 * Build a probe comparison key for use with dtrace_match_probe() from the 8198 * given probe description. By convention, a null key only matches anchored 8199 * probes: if each field is the empty string, reset dtpk_fmatch to 8200 * dtrace_match_nonzero(). 8201 */ 8202 static void 8203 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 8204 { 8205 pkp->dtpk_prov = pdp->dtpd_provider; 8206 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 8207 8208 pkp->dtpk_mod = pdp->dtpd_mod; 8209 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 8210 8211 pkp->dtpk_func = pdp->dtpd_func; 8212 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 8213 8214 pkp->dtpk_name = pdp->dtpd_name; 8215 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 8216 8217 pkp->dtpk_id = pdp->dtpd_id; 8218 8219 if (pkp->dtpk_id == DTRACE_IDNONE && 8220 pkp->dtpk_pmatch == &dtrace_match_nul && 8221 pkp->dtpk_mmatch == &dtrace_match_nul && 8222 pkp->dtpk_fmatch == &dtrace_match_nul && 8223 pkp->dtpk_nmatch == &dtrace_match_nul) 8224 pkp->dtpk_fmatch = &dtrace_match_nonzero; 8225 } 8226 8227 /* 8228 * DTrace Provider-to-Framework API Functions 8229 * 8230 * These functions implement much of the Provider-to-Framework API, as 8231 * described in <sys/dtrace.h>. The parts of the API not in this section are 8232 * the functions in the API for probe management (found below), and 8233 * dtrace_probe() itself (found above). 8234 */ 8235 8236 /* 8237 * Register the calling provider with the DTrace framework. This should 8238 * generally be called by DTrace providers in their attach(9E) entry point. 8239 */ 8240 int 8241 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 8242 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 8243 { 8244 dtrace_provider_t *provider; 8245 8246 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 8247 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8248 "arguments", name ? name : "<NULL>"); 8249 return (EINVAL); 8250 } 8251 8252 if (name[0] == '\0' || dtrace_badname(name)) { 8253 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8254 "provider name", name); 8255 return (EINVAL); 8256 } 8257 8258 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 8259 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 8260 pops->dtps_destroy == NULL || 8261 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 8262 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8263 "provider ops", name); 8264 return (EINVAL); 8265 } 8266 8267 if (dtrace_badattr(&pap->dtpa_provider) || 8268 dtrace_badattr(&pap->dtpa_mod) || 8269 dtrace_badattr(&pap->dtpa_func) || 8270 dtrace_badattr(&pap->dtpa_name) || 8271 dtrace_badattr(&pap->dtpa_args)) { 8272 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8273 "provider attributes", name); 8274 return (EINVAL); 8275 } 8276 8277 if (priv & ~DTRACE_PRIV_ALL) { 8278 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 8279 "privilege attributes", name); 8280 return (EINVAL); 8281 } 8282 8283 if ((priv & DTRACE_PRIV_KERNEL) && 8284 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 8285 pops->dtps_mode == NULL) { 8286 cmn_err(CE_WARN, "failed to register provider '%s': need " 8287 "dtps_mode() op for given privilege attributes", name); 8288 return (EINVAL); 8289 } 8290 8291 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 8292 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8293 (void) strcpy(provider->dtpv_name, name); 8294 8295 provider->dtpv_attr = *pap; 8296 provider->dtpv_priv.dtpp_flags = priv; 8297 if (cr != NULL) { 8298 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8299 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8300 } 8301 provider->dtpv_pops = *pops; 8302 8303 if (pops->dtps_provide == NULL) { 8304 ASSERT(pops->dtps_provide_module != NULL); 8305 provider->dtpv_pops.dtps_provide = dtrace_nullop_provide; 8306 } 8307 8308 if (pops->dtps_provide_module == NULL) { 8309 ASSERT(pops->dtps_provide != NULL); 8310 provider->dtpv_pops.dtps_provide_module = dtrace_nullop_module; 8311 } 8312 8313 if (pops->dtps_suspend == NULL) { 8314 ASSERT(pops->dtps_resume == NULL); 8315 provider->dtpv_pops.dtps_suspend = dtrace_nullop; 8316 provider->dtpv_pops.dtps_resume = dtrace_nullop; 8317 } 8318 8319 provider->dtpv_arg = arg; 8320 *idp = (dtrace_provider_id_t)provider; 8321 8322 if (pops == &dtrace_provider_ops) { 8323 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8324 ASSERT(MUTEX_HELD(&dtrace_lock)); 8325 ASSERT(dtrace_anon.dta_enabling == NULL); 8326 8327 /* 8328 * We make sure that the DTrace provider is at the head of 8329 * the provider chain. 8330 */ 8331 provider->dtpv_next = dtrace_provider; 8332 dtrace_provider = provider; 8333 return (0); 8334 } 8335 8336 mutex_enter(&dtrace_provider_lock); 8337 mutex_enter(&dtrace_lock); 8338 8339 /* 8340 * If there is at least one provider registered, we'll add this 8341 * provider after the first provider. 8342 */ 8343 if (dtrace_provider != NULL) { 8344 provider->dtpv_next = dtrace_provider->dtpv_next; 8345 dtrace_provider->dtpv_next = provider; 8346 } else { 8347 dtrace_provider = provider; 8348 } 8349 8350 if (dtrace_retained != NULL) { 8351 dtrace_enabling_provide(provider); 8352 8353 /* 8354 * Now we need to call dtrace_enabling_matchall() -- which 8355 * will acquire cpu_lock and dtrace_lock. We therefore need 8356 * to drop all of our locks before calling into it... 8357 */ 8358 mutex_exit(&dtrace_lock); 8359 mutex_exit(&dtrace_provider_lock); 8360 dtrace_enabling_matchall(); 8361 8362 return (0); 8363 } 8364 8365 mutex_exit(&dtrace_lock); 8366 mutex_exit(&dtrace_provider_lock); 8367 8368 return (0); 8369 } 8370 8371 /* 8372 * Unregister the specified provider from the DTrace framework. This should 8373 * generally be called by DTrace providers in their detach(9E) entry point. 8374 */ 8375 int 8376 dtrace_unregister(dtrace_provider_id_t id) 8377 { 8378 dtrace_provider_t *old = (dtrace_provider_t *)id; 8379 dtrace_provider_t *prev = NULL; 8380 int i, self = 0, noreap = 0; 8381 dtrace_probe_t *probe, *first = NULL; 8382 8383 if (old->dtpv_pops.dtps_enable == dtrace_enable_nullop) { 8384 /* 8385 * If DTrace itself is the provider, we're called with locks 8386 * already held. 8387 */ 8388 ASSERT(old == dtrace_provider); 8389 ASSERT(dtrace_devi != NULL); 8390 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8391 ASSERT(MUTEX_HELD(&dtrace_lock)); 8392 self = 1; 8393 8394 if (dtrace_provider->dtpv_next != NULL) { 8395 /* 8396 * There's another provider here; return failure. 8397 */ 8398 return (EBUSY); 8399 } 8400 } else { 8401 mutex_enter(&dtrace_provider_lock); 8402 mutex_enter(&mod_lock); 8403 mutex_enter(&dtrace_lock); 8404 } 8405 8406 /* 8407 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8408 * probes, we refuse to let providers slither away, unless this 8409 * provider has already been explicitly invalidated. 8410 */ 8411 if (!old->dtpv_defunct && 8412 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8413 dtrace_anon.dta_state->dts_necbs > 0))) { 8414 if (!self) { 8415 mutex_exit(&dtrace_lock); 8416 mutex_exit(&mod_lock); 8417 mutex_exit(&dtrace_provider_lock); 8418 } 8419 return (EBUSY); 8420 } 8421 8422 /* 8423 * Attempt to destroy the probes associated with this provider. 8424 */ 8425 for (i = 0; i < dtrace_nprobes; i++) { 8426 if ((probe = dtrace_probes[i]) == NULL) 8427 continue; 8428 8429 if (probe->dtpr_provider != old) 8430 continue; 8431 8432 if (probe->dtpr_ecb == NULL) 8433 continue; 8434 8435 /* 8436 * If we are trying to unregister a defunct provider, and the 8437 * provider was made defunct within the interval dictated by 8438 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8439 * attempt to reap our enablings. To denote that the provider 8440 * should reattempt to unregister itself at some point in the 8441 * future, we will return a differentiable error code (EAGAIN 8442 * instead of EBUSY) in this case. 8443 */ 8444 if (dtrace_gethrtime() - old->dtpv_defunct > 8445 dtrace_unregister_defunct_reap) 8446 noreap = 1; 8447 8448 if (!self) { 8449 mutex_exit(&dtrace_lock); 8450 mutex_exit(&mod_lock); 8451 mutex_exit(&dtrace_provider_lock); 8452 } 8453 8454 if (noreap) 8455 return (EBUSY); 8456 8457 (void) taskq_dispatch(dtrace_taskq, 8458 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8459 8460 return (EAGAIN); 8461 } 8462 8463 /* 8464 * All of the probes for this provider are disabled; we can safely 8465 * remove all of them from their hash chains and from the probe array. 8466 */ 8467 for (i = 0; i < dtrace_nprobes; i++) { 8468 if ((probe = dtrace_probes[i]) == NULL) 8469 continue; 8470 8471 if (probe->dtpr_provider != old) 8472 continue; 8473 8474 dtrace_probes[i] = NULL; 8475 8476 dtrace_hash_remove(dtrace_bymod, probe); 8477 dtrace_hash_remove(dtrace_byfunc, probe); 8478 dtrace_hash_remove(dtrace_byname, probe); 8479 8480 if (first == NULL) { 8481 first = probe; 8482 probe->dtpr_nextmod = NULL; 8483 } else { 8484 probe->dtpr_nextmod = first; 8485 first = probe; 8486 } 8487 } 8488 8489 /* 8490 * The provider's probes have been removed from the hash chains and 8491 * from the probe array. Now issue a dtrace_sync() to be sure that 8492 * everyone has cleared out from any probe array processing. 8493 */ 8494 dtrace_sync(); 8495 8496 for (probe = first; probe != NULL; probe = first) { 8497 first = probe->dtpr_nextmod; 8498 8499 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8500 probe->dtpr_arg); 8501 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8502 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8503 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8504 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8505 kmem_free(probe, sizeof (dtrace_probe_t)); 8506 } 8507 8508 if ((prev = dtrace_provider) == old) { 8509 ASSERT(self || dtrace_devi == NULL); 8510 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8511 dtrace_provider = old->dtpv_next; 8512 } else { 8513 while (prev != NULL && prev->dtpv_next != old) 8514 prev = prev->dtpv_next; 8515 8516 if (prev == NULL) { 8517 panic("attempt to unregister non-existent " 8518 "dtrace provider %p\n", (void *)id); 8519 } 8520 8521 prev->dtpv_next = old->dtpv_next; 8522 } 8523 8524 if (!self) { 8525 mutex_exit(&dtrace_lock); 8526 mutex_exit(&mod_lock); 8527 mutex_exit(&dtrace_provider_lock); 8528 } 8529 8530 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8531 kmem_free(old, sizeof (dtrace_provider_t)); 8532 8533 return (0); 8534 } 8535 8536 /* 8537 * Invalidate the specified provider. All subsequent probe lookups for the 8538 * specified provider will fail, but its probes will not be removed. 8539 */ 8540 void 8541 dtrace_invalidate(dtrace_provider_id_t id) 8542 { 8543 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8544 8545 ASSERT(pvp->dtpv_pops.dtps_enable != dtrace_enable_nullop); 8546 8547 mutex_enter(&dtrace_provider_lock); 8548 mutex_enter(&dtrace_lock); 8549 8550 pvp->dtpv_defunct = dtrace_gethrtime(); 8551 8552 mutex_exit(&dtrace_lock); 8553 mutex_exit(&dtrace_provider_lock); 8554 } 8555 8556 /* 8557 * Indicate whether or not DTrace has attached. 8558 */ 8559 int 8560 dtrace_attached(void) 8561 { 8562 /* 8563 * dtrace_provider will be non-NULL iff the DTrace driver has 8564 * attached. (It's non-NULL because DTrace is always itself a 8565 * provider.) 8566 */ 8567 return (dtrace_provider != NULL); 8568 } 8569 8570 /* 8571 * Remove all the unenabled probes for the given provider. This function is 8572 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8573 * -- just as many of its associated probes as it can. 8574 */ 8575 int 8576 dtrace_condense(dtrace_provider_id_t id) 8577 { 8578 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8579 int i; 8580 dtrace_probe_t *probe; 8581 8582 /* 8583 * Make sure this isn't the dtrace provider itself. 8584 */ 8585 ASSERT(prov->dtpv_pops.dtps_enable != dtrace_enable_nullop); 8586 8587 mutex_enter(&dtrace_provider_lock); 8588 mutex_enter(&dtrace_lock); 8589 8590 /* 8591 * Attempt to destroy the probes associated with this provider. 8592 */ 8593 for (i = 0; i < dtrace_nprobes; i++) { 8594 if ((probe = dtrace_probes[i]) == NULL) 8595 continue; 8596 8597 if (probe->dtpr_provider != prov) 8598 continue; 8599 8600 if (probe->dtpr_ecb != NULL) 8601 continue; 8602 8603 dtrace_probes[i] = NULL; 8604 8605 dtrace_hash_remove(dtrace_bymod, probe); 8606 dtrace_hash_remove(dtrace_byfunc, probe); 8607 dtrace_hash_remove(dtrace_byname, probe); 8608 8609 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8610 probe->dtpr_arg); 8611 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8612 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8613 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8614 kmem_free(probe, sizeof (dtrace_probe_t)); 8615 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8616 } 8617 8618 mutex_exit(&dtrace_lock); 8619 mutex_exit(&dtrace_provider_lock); 8620 8621 return (0); 8622 } 8623 8624 /* 8625 * DTrace Probe Management Functions 8626 * 8627 * The functions in this section perform the DTrace probe management, 8628 * including functions to create probes, look-up probes, and call into the 8629 * providers to request that probes be provided. Some of these functions are 8630 * in the Provider-to-Framework API; these functions can be identified by the 8631 * fact that they are not declared "static". 8632 */ 8633 8634 /* 8635 * Create a probe with the specified module name, function name, and name. 8636 */ 8637 dtrace_id_t 8638 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8639 const char *func, const char *name, int aframes, void *arg) 8640 { 8641 dtrace_probe_t *probe, **probes; 8642 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8643 dtrace_id_t id; 8644 8645 if (provider == dtrace_provider) { 8646 ASSERT(MUTEX_HELD(&dtrace_lock)); 8647 } else { 8648 mutex_enter(&dtrace_lock); 8649 } 8650 8651 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8652 VM_BESTFIT | VM_SLEEP); 8653 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8654 8655 probe->dtpr_id = id; 8656 probe->dtpr_gen = dtrace_probegen++; 8657 probe->dtpr_mod = dtrace_strdup(mod); 8658 probe->dtpr_func = dtrace_strdup(func); 8659 probe->dtpr_name = dtrace_strdup(name); 8660 probe->dtpr_arg = arg; 8661 probe->dtpr_aframes = aframes; 8662 probe->dtpr_provider = provider; 8663 8664 dtrace_hash_add(dtrace_bymod, probe); 8665 dtrace_hash_add(dtrace_byfunc, probe); 8666 dtrace_hash_add(dtrace_byname, probe); 8667 8668 if (id - 1 >= dtrace_nprobes) { 8669 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8670 size_t nsize = osize << 1; 8671 8672 if (nsize == 0) { 8673 ASSERT(osize == 0); 8674 ASSERT(dtrace_probes == NULL); 8675 nsize = sizeof (dtrace_probe_t *); 8676 } 8677 8678 probes = kmem_zalloc(nsize, KM_SLEEP); 8679 8680 if (dtrace_probes == NULL) { 8681 ASSERT(osize == 0); 8682 dtrace_probes = probes; 8683 dtrace_nprobes = 1; 8684 } else { 8685 dtrace_probe_t **oprobes = dtrace_probes; 8686 8687 bcopy(oprobes, probes, osize); 8688 dtrace_membar_producer(); 8689 dtrace_probes = probes; 8690 8691 dtrace_sync(); 8692 8693 /* 8694 * All CPUs are now seeing the new probes array; we can 8695 * safely free the old array. 8696 */ 8697 kmem_free(oprobes, osize); 8698 dtrace_nprobes <<= 1; 8699 } 8700 8701 ASSERT(id - 1 < dtrace_nprobes); 8702 } 8703 8704 ASSERT(dtrace_probes[id - 1] == NULL); 8705 dtrace_probes[id - 1] = probe; 8706 8707 if (provider != dtrace_provider) 8708 mutex_exit(&dtrace_lock); 8709 8710 return (id); 8711 } 8712 8713 static dtrace_probe_t * 8714 dtrace_probe_lookup_id(dtrace_id_t id) 8715 { 8716 ASSERT(MUTEX_HELD(&dtrace_lock)); 8717 8718 if (id == 0 || id > dtrace_nprobes) 8719 return (NULL); 8720 8721 return (dtrace_probes[id - 1]); 8722 } 8723 8724 static int 8725 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8726 { 8727 *((dtrace_id_t *)arg) = probe->dtpr_id; 8728 8729 return (DTRACE_MATCH_DONE); 8730 } 8731 8732 /* 8733 * Look up a probe based on provider and one or more of module name, function 8734 * name and probe name. 8735 */ 8736 dtrace_id_t 8737 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8738 const char *func, const char *name) 8739 { 8740 dtrace_probekey_t pkey; 8741 dtrace_id_t id; 8742 int match; 8743 8744 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8745 pkey.dtpk_pmatch = &dtrace_match_string; 8746 pkey.dtpk_mod = mod; 8747 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8748 pkey.dtpk_func = func; 8749 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8750 pkey.dtpk_name = name; 8751 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8752 pkey.dtpk_id = DTRACE_IDNONE; 8753 8754 mutex_enter(&dtrace_lock); 8755 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8756 dtrace_probe_lookup_match, &id); 8757 mutex_exit(&dtrace_lock); 8758 8759 ASSERT(match == 1 || match == 0); 8760 return (match ? id : 0); 8761 } 8762 8763 /* 8764 * Returns the probe argument associated with the specified probe. 8765 */ 8766 void * 8767 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8768 { 8769 dtrace_probe_t *probe; 8770 void *rval = NULL; 8771 8772 mutex_enter(&dtrace_lock); 8773 8774 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8775 probe->dtpr_provider == (dtrace_provider_t *)id) 8776 rval = probe->dtpr_arg; 8777 8778 mutex_exit(&dtrace_lock); 8779 8780 return (rval); 8781 } 8782 8783 /* 8784 * Copy a probe into a probe description. 8785 */ 8786 static void 8787 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8788 { 8789 bzero(pdp, sizeof (dtrace_probedesc_t)); 8790 pdp->dtpd_id = prp->dtpr_id; 8791 8792 (void) strncpy(pdp->dtpd_provider, 8793 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8794 8795 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8796 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8797 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8798 } 8799 8800 /* 8801 * Called to indicate that a probe -- or probes -- should be provided by a 8802 * specfied provider. If the specified description is NULL, the provider will 8803 * be told to provide all of its probes. (This is done whenever a new 8804 * consumer comes along, or whenever a retained enabling is to be matched.) If 8805 * the specified description is non-NULL, the provider is given the 8806 * opportunity to dynamically provide the specified probe, allowing providers 8807 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8808 * probes.) If the provider is NULL, the operations will be applied to all 8809 * providers; if the provider is non-NULL the operations will only be applied 8810 * to the specified provider. The dtrace_provider_lock must be held, and the 8811 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8812 * will need to grab the dtrace_lock when it reenters the framework through 8813 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8814 */ 8815 static void 8816 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8817 { 8818 struct modctl *ctl; 8819 int all = 0; 8820 8821 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8822 8823 if (prv == NULL) { 8824 all = 1; 8825 prv = dtrace_provider; 8826 } 8827 8828 do { 8829 /* 8830 * First, call the blanket provide operation. 8831 */ 8832 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8833 8834 /* 8835 * Now call the per-module provide operation. We will grab 8836 * mod_lock to prevent the list from being modified. Note 8837 * that this also prevents the mod_busy bits from changing. 8838 * (mod_busy can only be changed with mod_lock held.) 8839 */ 8840 mutex_enter(&mod_lock); 8841 8842 ctl = &modules; 8843 do { 8844 if (ctl->mod_busy || ctl->mod_mp == NULL) 8845 continue; 8846 8847 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8848 8849 } while ((ctl = ctl->mod_next) != &modules); 8850 8851 mutex_exit(&mod_lock); 8852 } while (all && (prv = prv->dtpv_next) != NULL); 8853 } 8854 8855 /* 8856 * Iterate over each probe, and call the Framework-to-Provider API function 8857 * denoted by offs. 8858 */ 8859 static void 8860 dtrace_probe_foreach(uintptr_t offs) 8861 { 8862 dtrace_provider_t *prov; 8863 void (*func)(void *, dtrace_id_t, void *); 8864 dtrace_probe_t *probe; 8865 dtrace_icookie_t cookie; 8866 int i; 8867 8868 /* 8869 * We disable interrupts to walk through the probe array. This is 8870 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8871 * won't see stale data. 8872 */ 8873 cookie = dtrace_interrupt_disable(); 8874 8875 for (i = 0; i < dtrace_nprobes; i++) { 8876 if ((probe = dtrace_probes[i]) == NULL) 8877 continue; 8878 8879 if (probe->dtpr_ecb == NULL) { 8880 /* 8881 * This probe isn't enabled -- don't call the function. 8882 */ 8883 continue; 8884 } 8885 8886 prov = probe->dtpr_provider; 8887 func = *((void(**)(void *, dtrace_id_t, void *)) 8888 ((uintptr_t)&prov->dtpv_pops + offs)); 8889 8890 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8891 } 8892 8893 dtrace_interrupt_enable(cookie); 8894 } 8895 8896 static int 8897 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8898 { 8899 dtrace_probekey_t pkey; 8900 uint32_t priv; 8901 uid_t uid; 8902 zoneid_t zoneid; 8903 8904 ASSERT(MUTEX_HELD(&dtrace_lock)); 8905 dtrace_ecb_create_cache = NULL; 8906 8907 if (desc == NULL) { 8908 /* 8909 * If we're passed a NULL description, we're being asked to 8910 * create an ECB with a NULL probe. 8911 */ 8912 (void) dtrace_ecb_create_enable(NULL, enab); 8913 return (0); 8914 } 8915 8916 dtrace_probekey(desc, &pkey); 8917 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 8918 &priv, &uid, &zoneid); 8919 8920 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8921 enab)); 8922 } 8923 8924 /* 8925 * DTrace Helper Provider Functions 8926 */ 8927 static void 8928 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8929 { 8930 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8931 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8932 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8933 } 8934 8935 static void 8936 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8937 const dof_provider_t *dofprov, char *strtab) 8938 { 8939 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8940 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8941 dofprov->dofpv_provattr); 8942 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8943 dofprov->dofpv_modattr); 8944 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8945 dofprov->dofpv_funcattr); 8946 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8947 dofprov->dofpv_nameattr); 8948 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8949 dofprov->dofpv_argsattr); 8950 } 8951 8952 static void 8953 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8954 { 8955 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8956 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8957 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8958 dof_provider_t *provider; 8959 dof_probe_t *probe; 8960 uint32_t *off, *enoff; 8961 uint8_t *arg; 8962 char *strtab; 8963 uint_t i, nprobes; 8964 dtrace_helper_provdesc_t dhpv; 8965 dtrace_helper_probedesc_t dhpb; 8966 dtrace_meta_t *meta = dtrace_meta_pid; 8967 dtrace_mops_t *mops = &meta->dtm_mops; 8968 void *parg; 8969 8970 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8971 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8972 provider->dofpv_strtab * dof->dofh_secsize); 8973 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8974 provider->dofpv_probes * dof->dofh_secsize); 8975 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8976 provider->dofpv_prargs * dof->dofh_secsize); 8977 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8978 provider->dofpv_proffs * dof->dofh_secsize); 8979 8980 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8981 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8982 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8983 enoff = NULL; 8984 8985 /* 8986 * See dtrace_helper_provider_validate(). 8987 */ 8988 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8989 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8990 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8991 provider->dofpv_prenoffs * dof->dofh_secsize); 8992 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8993 } 8994 8995 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8996 8997 /* 8998 * Create the provider. 8999 */ 9000 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9001 9002 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 9003 return; 9004 9005 meta->dtm_count++; 9006 9007 /* 9008 * Create the probes. 9009 */ 9010 for (i = 0; i < nprobes; i++) { 9011 probe = (dof_probe_t *)(uintptr_t)(daddr + 9012 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 9013 9014 dhpb.dthpb_mod = dhp->dofhp_mod; 9015 dhpb.dthpb_func = strtab + probe->dofpr_func; 9016 dhpb.dthpb_name = strtab + probe->dofpr_name; 9017 dhpb.dthpb_base = probe->dofpr_addr; 9018 dhpb.dthpb_offs = off + probe->dofpr_offidx; 9019 dhpb.dthpb_noffs = probe->dofpr_noffs; 9020 if (enoff != NULL) { 9021 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 9022 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 9023 } else { 9024 dhpb.dthpb_enoffs = NULL; 9025 dhpb.dthpb_nenoffs = 0; 9026 } 9027 dhpb.dthpb_args = arg + probe->dofpr_argidx; 9028 dhpb.dthpb_nargc = probe->dofpr_nargc; 9029 dhpb.dthpb_xargc = probe->dofpr_xargc; 9030 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 9031 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 9032 9033 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 9034 } 9035 } 9036 9037 static void 9038 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 9039 { 9040 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9041 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9042 int i; 9043 9044 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9045 9046 for (i = 0; i < dof->dofh_secnum; i++) { 9047 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9048 dof->dofh_secoff + i * dof->dofh_secsize); 9049 9050 if (sec->dofs_type != DOF_SECT_PROVIDER) 9051 continue; 9052 9053 dtrace_helper_provide_one(dhp, sec, pid); 9054 } 9055 9056 /* 9057 * We may have just created probes, so we must now rematch against 9058 * any retained enablings. Note that this call will acquire both 9059 * cpu_lock and dtrace_lock; the fact that we are holding 9060 * dtrace_meta_lock now is what defines the ordering with respect to 9061 * these three locks. 9062 */ 9063 dtrace_enabling_matchall(); 9064 } 9065 9066 static void 9067 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 9068 { 9069 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9070 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9071 dof_sec_t *str_sec; 9072 dof_provider_t *provider; 9073 char *strtab; 9074 dtrace_helper_provdesc_t dhpv; 9075 dtrace_meta_t *meta = dtrace_meta_pid; 9076 dtrace_mops_t *mops = &meta->dtm_mops; 9077 9078 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 9079 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 9080 provider->dofpv_strtab * dof->dofh_secsize); 9081 9082 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 9083 9084 /* 9085 * Create the provider. 9086 */ 9087 dtrace_dofprov2hprov(&dhpv, provider, strtab); 9088 9089 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 9090 9091 meta->dtm_count--; 9092 } 9093 9094 static void 9095 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 9096 { 9097 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 9098 dof_hdr_t *dof = (dof_hdr_t *)daddr; 9099 int i; 9100 9101 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 9102 9103 for (i = 0; i < dof->dofh_secnum; i++) { 9104 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 9105 dof->dofh_secoff + i * dof->dofh_secsize); 9106 9107 if (sec->dofs_type != DOF_SECT_PROVIDER) 9108 continue; 9109 9110 dtrace_helper_provider_remove_one(dhp, sec, pid); 9111 } 9112 } 9113 9114 /* 9115 * DTrace Meta Provider-to-Framework API Functions 9116 * 9117 * These functions implement the Meta Provider-to-Framework API, as described 9118 * in <sys/dtrace.h>. 9119 */ 9120 int 9121 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 9122 dtrace_meta_provider_id_t *idp) 9123 { 9124 dtrace_meta_t *meta; 9125 dtrace_helpers_t *help, *next; 9126 int i; 9127 9128 *idp = DTRACE_METAPROVNONE; 9129 9130 /* 9131 * We strictly don't need the name, but we hold onto it for 9132 * debuggability. All hail error queues! 9133 */ 9134 if (name == NULL) { 9135 cmn_err(CE_WARN, "failed to register meta-provider: " 9136 "invalid name"); 9137 return (EINVAL); 9138 } 9139 9140 if (mops == NULL || 9141 mops->dtms_create_probe == NULL || 9142 mops->dtms_provide_pid == NULL || 9143 mops->dtms_remove_pid == NULL) { 9144 cmn_err(CE_WARN, "failed to register meta-register %s: " 9145 "invalid ops", name); 9146 return (EINVAL); 9147 } 9148 9149 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 9150 meta->dtm_mops = *mops; 9151 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 9152 (void) strcpy(meta->dtm_name, name); 9153 meta->dtm_arg = arg; 9154 9155 mutex_enter(&dtrace_meta_lock); 9156 mutex_enter(&dtrace_lock); 9157 9158 if (dtrace_meta_pid != NULL) { 9159 mutex_exit(&dtrace_lock); 9160 mutex_exit(&dtrace_meta_lock); 9161 cmn_err(CE_WARN, "failed to register meta-register %s: " 9162 "user-land meta-provider exists", name); 9163 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 9164 kmem_free(meta, sizeof (dtrace_meta_t)); 9165 return (EINVAL); 9166 } 9167 9168 dtrace_meta_pid = meta; 9169 *idp = (dtrace_meta_provider_id_t)meta; 9170 9171 /* 9172 * If there are providers and probes ready to go, pass them 9173 * off to the new meta provider now. 9174 */ 9175 9176 help = dtrace_deferred_pid; 9177 dtrace_deferred_pid = NULL; 9178 9179 mutex_exit(&dtrace_lock); 9180 9181 while (help != NULL) { 9182 for (i = 0; i < help->dthps_nprovs; i++) { 9183 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 9184 help->dthps_pid); 9185 } 9186 9187 next = help->dthps_next; 9188 help->dthps_next = NULL; 9189 help->dthps_prev = NULL; 9190 help->dthps_deferred = 0; 9191 help = next; 9192 } 9193 9194 mutex_exit(&dtrace_meta_lock); 9195 9196 return (0); 9197 } 9198 9199 int 9200 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 9201 { 9202 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 9203 9204 mutex_enter(&dtrace_meta_lock); 9205 mutex_enter(&dtrace_lock); 9206 9207 if (old == dtrace_meta_pid) { 9208 pp = &dtrace_meta_pid; 9209 } else { 9210 panic("attempt to unregister non-existent " 9211 "dtrace meta-provider %p\n", (void *)old); 9212 } 9213 9214 if (old->dtm_count != 0) { 9215 mutex_exit(&dtrace_lock); 9216 mutex_exit(&dtrace_meta_lock); 9217 return (EBUSY); 9218 } 9219 9220 *pp = NULL; 9221 9222 mutex_exit(&dtrace_lock); 9223 mutex_exit(&dtrace_meta_lock); 9224 9225 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 9226 kmem_free(old, sizeof (dtrace_meta_t)); 9227 9228 return (0); 9229 } 9230 9231 9232 /* 9233 * DTrace DIF Object Functions 9234 */ 9235 static int 9236 dtrace_difo_err(uint_t pc, const char *format, ...) 9237 { 9238 if (dtrace_err_verbose) { 9239 va_list alist; 9240 9241 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 9242 va_start(alist, format); 9243 (void) vuprintf(format, alist); 9244 va_end(alist); 9245 } 9246 9247 #ifdef DTRACE_ERRDEBUG 9248 dtrace_errdebug(format); 9249 #endif 9250 return (1); 9251 } 9252 9253 /* 9254 * Validate a DTrace DIF object by checking the IR instructions. The following 9255 * rules are currently enforced by dtrace_difo_validate(): 9256 * 9257 * 1. Each instruction must have a valid opcode 9258 * 2. Each register, string, variable, or subroutine reference must be valid 9259 * 3. No instruction can modify register %r0 (must be zero) 9260 * 4. All instruction reserved bits must be set to zero 9261 * 5. The last instruction must be a "ret" instruction 9262 * 6. All branch targets must reference a valid instruction _after_ the branch 9263 */ 9264 static int 9265 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 9266 cred_t *cr) 9267 { 9268 int err = 0, i; 9269 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9270 int kcheckload; 9271 uint_t pc; 9272 int maxglobal = -1, maxlocal = -1, maxtlocal = -1; 9273 9274 kcheckload = cr == NULL || 9275 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 9276 9277 dp->dtdo_destructive = 0; 9278 9279 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9280 dif_instr_t instr = dp->dtdo_buf[pc]; 9281 9282 uint_t r1 = DIF_INSTR_R1(instr); 9283 uint_t r2 = DIF_INSTR_R2(instr); 9284 uint_t rd = DIF_INSTR_RD(instr); 9285 uint_t rs = DIF_INSTR_RS(instr); 9286 uint_t label = DIF_INSTR_LABEL(instr); 9287 uint_t v = DIF_INSTR_VAR(instr); 9288 uint_t subr = DIF_INSTR_SUBR(instr); 9289 uint_t type = DIF_INSTR_TYPE(instr); 9290 uint_t op = DIF_INSTR_OP(instr); 9291 9292 switch (op) { 9293 case DIF_OP_OR: 9294 case DIF_OP_XOR: 9295 case DIF_OP_AND: 9296 case DIF_OP_SLL: 9297 case DIF_OP_SRL: 9298 case DIF_OP_SRA: 9299 case DIF_OP_SUB: 9300 case DIF_OP_ADD: 9301 case DIF_OP_MUL: 9302 case DIF_OP_SDIV: 9303 case DIF_OP_UDIV: 9304 case DIF_OP_SREM: 9305 case DIF_OP_UREM: 9306 case DIF_OP_COPYS: 9307 if (r1 >= nregs) 9308 err += efunc(pc, "invalid register %u\n", r1); 9309 if (r2 >= nregs) 9310 err += efunc(pc, "invalid register %u\n", r2); 9311 if (rd >= nregs) 9312 err += efunc(pc, "invalid register %u\n", rd); 9313 if (rd == 0) 9314 err += efunc(pc, "cannot write to %%r0\n"); 9315 break; 9316 case DIF_OP_NOT: 9317 case DIF_OP_MOV: 9318 case DIF_OP_ALLOCS: 9319 if (r1 >= nregs) 9320 err += efunc(pc, "invalid register %u\n", r1); 9321 if (r2 != 0) 9322 err += efunc(pc, "non-zero reserved bits\n"); 9323 if (rd >= nregs) 9324 err += efunc(pc, "invalid register %u\n", rd); 9325 if (rd == 0) 9326 err += efunc(pc, "cannot write to %%r0\n"); 9327 break; 9328 case DIF_OP_LDSB: 9329 case DIF_OP_LDSH: 9330 case DIF_OP_LDSW: 9331 case DIF_OP_LDUB: 9332 case DIF_OP_LDUH: 9333 case DIF_OP_LDUW: 9334 case DIF_OP_LDX: 9335 if (r1 >= nregs) 9336 err += efunc(pc, "invalid register %u\n", r1); 9337 if (r2 != 0) 9338 err += efunc(pc, "non-zero reserved bits\n"); 9339 if (rd >= nregs) 9340 err += efunc(pc, "invalid register %u\n", rd); 9341 if (rd == 0) 9342 err += efunc(pc, "cannot write to %%r0\n"); 9343 if (kcheckload) 9344 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9345 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9346 break; 9347 case DIF_OP_RLDSB: 9348 case DIF_OP_RLDSH: 9349 case DIF_OP_RLDSW: 9350 case DIF_OP_RLDUB: 9351 case DIF_OP_RLDUH: 9352 case DIF_OP_RLDUW: 9353 case DIF_OP_RLDX: 9354 if (r1 >= nregs) 9355 err += efunc(pc, "invalid register %u\n", r1); 9356 if (r2 != 0) 9357 err += efunc(pc, "non-zero reserved bits\n"); 9358 if (rd >= nregs) 9359 err += efunc(pc, "invalid register %u\n", rd); 9360 if (rd == 0) 9361 err += efunc(pc, "cannot write to %%r0\n"); 9362 break; 9363 case DIF_OP_ULDSB: 9364 case DIF_OP_ULDSH: 9365 case DIF_OP_ULDSW: 9366 case DIF_OP_ULDUB: 9367 case DIF_OP_ULDUH: 9368 case DIF_OP_ULDUW: 9369 case DIF_OP_ULDX: 9370 if (r1 >= nregs) 9371 err += efunc(pc, "invalid register %u\n", r1); 9372 if (r2 != 0) 9373 err += efunc(pc, "non-zero reserved bits\n"); 9374 if (rd >= nregs) 9375 err += efunc(pc, "invalid register %u\n", rd); 9376 if (rd == 0) 9377 err += efunc(pc, "cannot write to %%r0\n"); 9378 break; 9379 case DIF_OP_STB: 9380 case DIF_OP_STH: 9381 case DIF_OP_STW: 9382 case DIF_OP_STX: 9383 if (r1 >= nregs) 9384 err += efunc(pc, "invalid register %u\n", r1); 9385 if (r2 != 0) 9386 err += efunc(pc, "non-zero reserved bits\n"); 9387 if (rd >= nregs) 9388 err += efunc(pc, "invalid register %u\n", rd); 9389 if (rd == 0) 9390 err += efunc(pc, "cannot write to 0 address\n"); 9391 break; 9392 case DIF_OP_CMP: 9393 case DIF_OP_SCMP: 9394 if (r1 >= nregs) 9395 err += efunc(pc, "invalid register %u\n", r1); 9396 if (r2 >= nregs) 9397 err += efunc(pc, "invalid register %u\n", r2); 9398 if (rd != 0) 9399 err += efunc(pc, "non-zero reserved bits\n"); 9400 break; 9401 case DIF_OP_TST: 9402 if (r1 >= nregs) 9403 err += efunc(pc, "invalid register %u\n", r1); 9404 if (r2 != 0 || rd != 0) 9405 err += efunc(pc, "non-zero reserved bits\n"); 9406 break; 9407 case DIF_OP_BA: 9408 case DIF_OP_BE: 9409 case DIF_OP_BNE: 9410 case DIF_OP_BG: 9411 case DIF_OP_BGU: 9412 case DIF_OP_BGE: 9413 case DIF_OP_BGEU: 9414 case DIF_OP_BL: 9415 case DIF_OP_BLU: 9416 case DIF_OP_BLE: 9417 case DIF_OP_BLEU: 9418 if (label >= dp->dtdo_len) { 9419 err += efunc(pc, "invalid branch target %u\n", 9420 label); 9421 } 9422 if (label <= pc) { 9423 err += efunc(pc, "backward branch to %u\n", 9424 label); 9425 } 9426 break; 9427 case DIF_OP_RET: 9428 if (r1 != 0 || r2 != 0) 9429 err += efunc(pc, "non-zero reserved bits\n"); 9430 if (rd >= nregs) 9431 err += efunc(pc, "invalid register %u\n", rd); 9432 break; 9433 case DIF_OP_NOP: 9434 case DIF_OP_POPTS: 9435 case DIF_OP_FLUSHTS: 9436 if (r1 != 0 || r2 != 0 || rd != 0) 9437 err += efunc(pc, "non-zero reserved bits\n"); 9438 break; 9439 case DIF_OP_SETX: 9440 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9441 err += efunc(pc, "invalid integer ref %u\n", 9442 DIF_INSTR_INTEGER(instr)); 9443 } 9444 if (rd >= nregs) 9445 err += efunc(pc, "invalid register %u\n", rd); 9446 if (rd == 0) 9447 err += efunc(pc, "cannot write to %%r0\n"); 9448 break; 9449 case DIF_OP_SETS: 9450 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9451 err += efunc(pc, "invalid string ref %u\n", 9452 DIF_INSTR_STRING(instr)); 9453 } 9454 if (rd >= nregs) 9455 err += efunc(pc, "invalid register %u\n", rd); 9456 if (rd == 0) 9457 err += efunc(pc, "cannot write to %%r0\n"); 9458 break; 9459 case DIF_OP_LDGA: 9460 case DIF_OP_LDTA: 9461 if (r1 > DIF_VAR_ARRAY_MAX) 9462 err += efunc(pc, "invalid array %u\n", r1); 9463 if (r2 >= nregs) 9464 err += efunc(pc, "invalid register %u\n", r2); 9465 if (rd >= nregs) 9466 err += efunc(pc, "invalid register %u\n", rd); 9467 if (rd == 0) 9468 err += efunc(pc, "cannot write to %%r0\n"); 9469 break; 9470 case DIF_OP_STGA: 9471 if (r1 > DIF_VAR_ARRAY_MAX) 9472 err += efunc(pc, "invalid array %u\n", r1); 9473 if (r2 >= nregs) 9474 err += efunc(pc, "invalid register %u\n", r2); 9475 if (rd >= nregs) 9476 err += efunc(pc, "invalid register %u\n", rd); 9477 dp->dtdo_destructive = 1; 9478 break; 9479 case DIF_OP_LDGS: 9480 case DIF_OP_LDTS: 9481 case DIF_OP_LDLS: 9482 case DIF_OP_LDGAA: 9483 case DIF_OP_LDTAA: 9484 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9485 err += efunc(pc, "invalid variable %u\n", v); 9486 if (rd >= nregs) 9487 err += efunc(pc, "invalid register %u\n", rd); 9488 if (rd == 0) 9489 err += efunc(pc, "cannot write to %%r0\n"); 9490 break; 9491 case DIF_OP_STGS: 9492 case DIF_OP_STTS: 9493 case DIF_OP_STLS: 9494 case DIF_OP_STGAA: 9495 case DIF_OP_STTAA: 9496 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9497 err += efunc(pc, "invalid variable %u\n", v); 9498 if (rs >= nregs) 9499 err += efunc(pc, "invalid register %u\n", rd); 9500 break; 9501 case DIF_OP_CALL: 9502 if (subr > DIF_SUBR_MAX) 9503 err += efunc(pc, "invalid subr %u\n", subr); 9504 if (rd >= nregs) 9505 err += efunc(pc, "invalid register %u\n", rd); 9506 if (rd == 0) 9507 err += efunc(pc, "cannot write to %%r0\n"); 9508 9509 if (subr == DIF_SUBR_COPYOUT || 9510 subr == DIF_SUBR_COPYOUTSTR) { 9511 dp->dtdo_destructive = 1; 9512 } 9513 9514 if (subr == DIF_SUBR_GETF) { 9515 /* 9516 * If we have a getf() we need to record that 9517 * in our state. Note that our state can be 9518 * NULL if this is a helper -- but in that 9519 * case, the call to getf() is itself illegal, 9520 * and will be caught (slightly later) when 9521 * the helper is validated. 9522 */ 9523 if (vstate->dtvs_state != NULL) 9524 vstate->dtvs_state->dts_getf++; 9525 } 9526 9527 break; 9528 case DIF_OP_PUSHTR: 9529 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9530 err += efunc(pc, "invalid ref type %u\n", type); 9531 if (r2 >= nregs) 9532 err += efunc(pc, "invalid register %u\n", r2); 9533 if (rs >= nregs) 9534 err += efunc(pc, "invalid register %u\n", rs); 9535 break; 9536 case DIF_OP_PUSHTV: 9537 if (type != DIF_TYPE_CTF) 9538 err += efunc(pc, "invalid val type %u\n", type); 9539 if (r2 >= nregs) 9540 err += efunc(pc, "invalid register %u\n", r2); 9541 if (rs >= nregs) 9542 err += efunc(pc, "invalid register %u\n", rs); 9543 break; 9544 default: 9545 err += efunc(pc, "invalid opcode %u\n", 9546 DIF_INSTR_OP(instr)); 9547 } 9548 } 9549 9550 if (dp->dtdo_len != 0 && 9551 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9552 err += efunc(dp->dtdo_len - 1, 9553 "expected 'ret' as last DIF instruction\n"); 9554 } 9555 9556 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9557 /* 9558 * If we're not returning by reference, the size must be either 9559 * 0 or the size of one of the base types. 9560 */ 9561 switch (dp->dtdo_rtype.dtdt_size) { 9562 case 0: 9563 case sizeof (uint8_t): 9564 case sizeof (uint16_t): 9565 case sizeof (uint32_t): 9566 case sizeof (uint64_t): 9567 break; 9568 9569 default: 9570 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9571 } 9572 } 9573 9574 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9575 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9576 dtrace_diftype_t *vt, *et; 9577 uint_t id, ndx; 9578 9579 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9580 v->dtdv_scope != DIFV_SCOPE_THREAD && 9581 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9582 err += efunc(i, "unrecognized variable scope %d\n", 9583 v->dtdv_scope); 9584 break; 9585 } 9586 9587 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9588 v->dtdv_kind != DIFV_KIND_SCALAR) { 9589 err += efunc(i, "unrecognized variable type %d\n", 9590 v->dtdv_kind); 9591 break; 9592 } 9593 9594 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9595 err += efunc(i, "%d exceeds variable id limit\n", id); 9596 break; 9597 } 9598 9599 if (id < DIF_VAR_OTHER_UBASE) 9600 continue; 9601 9602 /* 9603 * For user-defined variables, we need to check that this 9604 * definition is identical to any previous definition that we 9605 * encountered. 9606 */ 9607 ndx = id - DIF_VAR_OTHER_UBASE; 9608 9609 switch (v->dtdv_scope) { 9610 case DIFV_SCOPE_GLOBAL: 9611 if (maxglobal == -1 || ndx > maxglobal) 9612 maxglobal = ndx; 9613 9614 if (ndx < vstate->dtvs_nglobals) { 9615 dtrace_statvar_t *svar; 9616 9617 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9618 existing = &svar->dtsv_var; 9619 } 9620 9621 break; 9622 9623 case DIFV_SCOPE_THREAD: 9624 if (maxtlocal == -1 || ndx > maxtlocal) 9625 maxtlocal = ndx; 9626 9627 if (ndx < vstate->dtvs_ntlocals) 9628 existing = &vstate->dtvs_tlocals[ndx]; 9629 break; 9630 9631 case DIFV_SCOPE_LOCAL: 9632 if (maxlocal == -1 || ndx > maxlocal) 9633 maxlocal = ndx; 9634 9635 if (ndx < vstate->dtvs_nlocals) { 9636 dtrace_statvar_t *svar; 9637 9638 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9639 existing = &svar->dtsv_var; 9640 } 9641 9642 break; 9643 } 9644 9645 vt = &v->dtdv_type; 9646 9647 if (vt->dtdt_flags & DIF_TF_BYREF) { 9648 if (vt->dtdt_size == 0) { 9649 err += efunc(i, "zero-sized variable\n"); 9650 break; 9651 } 9652 9653 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || 9654 v->dtdv_scope == DIFV_SCOPE_LOCAL) && 9655 vt->dtdt_size > dtrace_statvar_maxsize) { 9656 err += efunc(i, "oversized by-ref static\n"); 9657 break; 9658 } 9659 } 9660 9661 if (existing == NULL || existing->dtdv_id == 0) 9662 continue; 9663 9664 ASSERT(existing->dtdv_id == v->dtdv_id); 9665 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9666 9667 if (existing->dtdv_kind != v->dtdv_kind) 9668 err += efunc(i, "%d changed variable kind\n", id); 9669 9670 et = &existing->dtdv_type; 9671 9672 if (vt->dtdt_flags != et->dtdt_flags) { 9673 err += efunc(i, "%d changed variable type flags\n", id); 9674 break; 9675 } 9676 9677 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9678 err += efunc(i, "%d changed variable type size\n", id); 9679 break; 9680 } 9681 } 9682 9683 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 9684 dif_instr_t instr = dp->dtdo_buf[pc]; 9685 9686 uint_t v = DIF_INSTR_VAR(instr); 9687 uint_t op = DIF_INSTR_OP(instr); 9688 9689 switch (op) { 9690 case DIF_OP_LDGS: 9691 case DIF_OP_LDGAA: 9692 case DIF_OP_STGS: 9693 case DIF_OP_STGAA: 9694 if (v > DIF_VAR_OTHER_UBASE + maxglobal) 9695 err += efunc(pc, "invalid variable %u\n", v); 9696 break; 9697 case DIF_OP_LDTS: 9698 case DIF_OP_LDTAA: 9699 case DIF_OP_STTS: 9700 case DIF_OP_STTAA: 9701 if (v > DIF_VAR_OTHER_UBASE + maxtlocal) 9702 err += efunc(pc, "invalid variable %u\n", v); 9703 break; 9704 case DIF_OP_LDLS: 9705 case DIF_OP_STLS: 9706 if (v > DIF_VAR_OTHER_UBASE + maxlocal) 9707 err += efunc(pc, "invalid variable %u\n", v); 9708 break; 9709 default: 9710 break; 9711 } 9712 } 9713 9714 return (err); 9715 } 9716 9717 /* 9718 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9719 * are much more constrained than normal DIFOs. Specifically, they may 9720 * not: 9721 * 9722 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9723 * miscellaneous string routines 9724 * 2. Access DTrace variables other than the args[] array, and the 9725 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9726 * 3. Have thread-local variables. 9727 * 4. Have dynamic variables. 9728 */ 9729 static int 9730 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9731 { 9732 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9733 int err = 0; 9734 uint_t pc; 9735 9736 for (pc = 0; pc < dp->dtdo_len; pc++) { 9737 dif_instr_t instr = dp->dtdo_buf[pc]; 9738 9739 uint_t v = DIF_INSTR_VAR(instr); 9740 uint_t subr = DIF_INSTR_SUBR(instr); 9741 uint_t op = DIF_INSTR_OP(instr); 9742 9743 switch (op) { 9744 case DIF_OP_OR: 9745 case DIF_OP_XOR: 9746 case DIF_OP_AND: 9747 case DIF_OP_SLL: 9748 case DIF_OP_SRL: 9749 case DIF_OP_SRA: 9750 case DIF_OP_SUB: 9751 case DIF_OP_ADD: 9752 case DIF_OP_MUL: 9753 case DIF_OP_SDIV: 9754 case DIF_OP_UDIV: 9755 case DIF_OP_SREM: 9756 case DIF_OP_UREM: 9757 case DIF_OP_COPYS: 9758 case DIF_OP_NOT: 9759 case DIF_OP_MOV: 9760 case DIF_OP_RLDSB: 9761 case DIF_OP_RLDSH: 9762 case DIF_OP_RLDSW: 9763 case DIF_OP_RLDUB: 9764 case DIF_OP_RLDUH: 9765 case DIF_OP_RLDUW: 9766 case DIF_OP_RLDX: 9767 case DIF_OP_ULDSB: 9768 case DIF_OP_ULDSH: 9769 case DIF_OP_ULDSW: 9770 case DIF_OP_ULDUB: 9771 case DIF_OP_ULDUH: 9772 case DIF_OP_ULDUW: 9773 case DIF_OP_ULDX: 9774 case DIF_OP_STB: 9775 case DIF_OP_STH: 9776 case DIF_OP_STW: 9777 case DIF_OP_STX: 9778 case DIF_OP_ALLOCS: 9779 case DIF_OP_CMP: 9780 case DIF_OP_SCMP: 9781 case DIF_OP_TST: 9782 case DIF_OP_BA: 9783 case DIF_OP_BE: 9784 case DIF_OP_BNE: 9785 case DIF_OP_BG: 9786 case DIF_OP_BGU: 9787 case DIF_OP_BGE: 9788 case DIF_OP_BGEU: 9789 case DIF_OP_BL: 9790 case DIF_OP_BLU: 9791 case DIF_OP_BLE: 9792 case DIF_OP_BLEU: 9793 case DIF_OP_RET: 9794 case DIF_OP_NOP: 9795 case DIF_OP_POPTS: 9796 case DIF_OP_FLUSHTS: 9797 case DIF_OP_SETX: 9798 case DIF_OP_SETS: 9799 case DIF_OP_LDGA: 9800 case DIF_OP_LDLS: 9801 case DIF_OP_STGS: 9802 case DIF_OP_STLS: 9803 case DIF_OP_PUSHTR: 9804 case DIF_OP_PUSHTV: 9805 break; 9806 9807 case DIF_OP_LDGS: 9808 if (v >= DIF_VAR_OTHER_UBASE) 9809 break; 9810 9811 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9812 break; 9813 9814 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9815 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9816 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9817 v == DIF_VAR_UID || v == DIF_VAR_GID) 9818 break; 9819 9820 err += efunc(pc, "illegal variable %u\n", v); 9821 break; 9822 9823 case DIF_OP_LDTA: 9824 if (v < DIF_VAR_OTHER_UBASE) { 9825 err += efunc(pc, "illegal variable load\n"); 9826 break; 9827 } 9828 /* FALLTHROUGH */ 9829 case DIF_OP_LDTS: 9830 case DIF_OP_LDGAA: 9831 case DIF_OP_LDTAA: 9832 err += efunc(pc, "illegal dynamic variable load\n"); 9833 break; 9834 9835 case DIF_OP_STGA: 9836 if (v < DIF_VAR_OTHER_UBASE) { 9837 err += efunc(pc, "illegal variable store\n"); 9838 break; 9839 } 9840 /* FALLTHROUGH */ 9841 case DIF_OP_STTS: 9842 case DIF_OP_STGAA: 9843 case DIF_OP_STTAA: 9844 err += efunc(pc, "illegal dynamic variable store\n"); 9845 break; 9846 9847 case DIF_OP_CALL: 9848 if (subr == DIF_SUBR_ALLOCA || 9849 subr == DIF_SUBR_BCOPY || 9850 subr == DIF_SUBR_COPYIN || 9851 subr == DIF_SUBR_COPYINTO || 9852 subr == DIF_SUBR_COPYINSTR || 9853 subr == DIF_SUBR_INDEX || 9854 subr == DIF_SUBR_INET_NTOA || 9855 subr == DIF_SUBR_INET_NTOA6 || 9856 subr == DIF_SUBR_INET_NTOP || 9857 subr == DIF_SUBR_JSON || 9858 subr == DIF_SUBR_LLTOSTR || 9859 subr == DIF_SUBR_STRTOLL || 9860 subr == DIF_SUBR_RINDEX || 9861 subr == DIF_SUBR_STRCHR || 9862 subr == DIF_SUBR_STRJOIN || 9863 subr == DIF_SUBR_STRRCHR || 9864 subr == DIF_SUBR_STRSTR || 9865 subr == DIF_SUBR_HTONS || 9866 subr == DIF_SUBR_HTONL || 9867 subr == DIF_SUBR_HTONLL || 9868 subr == DIF_SUBR_NTOHS || 9869 subr == DIF_SUBR_NTOHL || 9870 subr == DIF_SUBR_NTOHLL) 9871 break; 9872 9873 err += efunc(pc, "invalid subr %u\n", subr); 9874 break; 9875 9876 default: 9877 err += efunc(pc, "invalid opcode %u\n", 9878 DIF_INSTR_OP(instr)); 9879 } 9880 } 9881 9882 return (err); 9883 } 9884 9885 /* 9886 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9887 * basis; 0 if not. 9888 */ 9889 static int 9890 dtrace_difo_cacheable(dtrace_difo_t *dp) 9891 { 9892 int i; 9893 9894 if (dp == NULL) 9895 return (0); 9896 9897 for (i = 0; i < dp->dtdo_varlen; i++) { 9898 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9899 9900 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9901 continue; 9902 9903 switch (v->dtdv_id) { 9904 case DIF_VAR_CURTHREAD: 9905 case DIF_VAR_PID: 9906 case DIF_VAR_TID: 9907 case DIF_VAR_EXECNAME: 9908 case DIF_VAR_ZONENAME: 9909 break; 9910 9911 default: 9912 return (0); 9913 } 9914 } 9915 9916 /* 9917 * This DIF object may be cacheable. Now we need to look for any 9918 * array loading instructions, any memory loading instructions, or 9919 * any stores to thread-local variables. 9920 */ 9921 for (i = 0; i < dp->dtdo_len; i++) { 9922 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9923 9924 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9925 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9926 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9927 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9928 return (0); 9929 } 9930 9931 return (1); 9932 } 9933 9934 static void 9935 dtrace_difo_hold(dtrace_difo_t *dp) 9936 { 9937 int i; 9938 9939 ASSERT(MUTEX_HELD(&dtrace_lock)); 9940 9941 dp->dtdo_refcnt++; 9942 ASSERT(dp->dtdo_refcnt != 0); 9943 9944 /* 9945 * We need to check this DIF object for references to the variable 9946 * DIF_VAR_VTIMESTAMP. 9947 */ 9948 for (i = 0; i < dp->dtdo_varlen; i++) { 9949 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9950 9951 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9952 continue; 9953 9954 if (dtrace_vtime_references++ == 0) 9955 dtrace_vtime_enable(); 9956 } 9957 } 9958 9959 /* 9960 * This routine calculates the dynamic variable chunksize for a given DIF 9961 * object. The calculation is not fool-proof, and can probably be tricked by 9962 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9963 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9964 * if a dynamic variable size exceeds the chunksize. 9965 */ 9966 static void 9967 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9968 { 9969 uint64_t sval; 9970 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9971 const dif_instr_t *text = dp->dtdo_buf; 9972 uint_t pc, srd = 0; 9973 uint_t ttop = 0; 9974 size_t size, ksize; 9975 uint_t id, i; 9976 9977 for (pc = 0; pc < dp->dtdo_len; pc++) { 9978 dif_instr_t instr = text[pc]; 9979 uint_t op = DIF_INSTR_OP(instr); 9980 uint_t rd = DIF_INSTR_RD(instr); 9981 uint_t r1 = DIF_INSTR_R1(instr); 9982 uint_t nkeys = 0; 9983 uchar_t scope; 9984 9985 dtrace_key_t *key = tupregs; 9986 9987 switch (op) { 9988 case DIF_OP_SETX: 9989 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9990 srd = rd; 9991 continue; 9992 9993 case DIF_OP_STTS: 9994 key = &tupregs[DIF_DTR_NREGS]; 9995 key[0].dttk_size = 0; 9996 key[1].dttk_size = 0; 9997 nkeys = 2; 9998 scope = DIFV_SCOPE_THREAD; 9999 break; 10000 10001 case DIF_OP_STGAA: 10002 case DIF_OP_STTAA: 10003 nkeys = ttop; 10004 10005 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 10006 key[nkeys++].dttk_size = 0; 10007 10008 key[nkeys++].dttk_size = 0; 10009 10010 if (op == DIF_OP_STTAA) { 10011 scope = DIFV_SCOPE_THREAD; 10012 } else { 10013 scope = DIFV_SCOPE_GLOBAL; 10014 } 10015 10016 break; 10017 10018 case DIF_OP_PUSHTR: 10019 if (ttop == DIF_DTR_NREGS) 10020 return; 10021 10022 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 10023 /* 10024 * If the register for the size of the "pushtr" 10025 * is %r0 (or the value is 0) and the type is 10026 * a string, we'll use the system-wide default 10027 * string size. 10028 */ 10029 tupregs[ttop++].dttk_size = 10030 dtrace_strsize_default; 10031 } else { 10032 if (srd == 0) 10033 return; 10034 10035 if (sval > LONG_MAX) 10036 return; 10037 10038 tupregs[ttop++].dttk_size = sval; 10039 } 10040 10041 break; 10042 10043 case DIF_OP_PUSHTV: 10044 if (ttop == DIF_DTR_NREGS) 10045 return; 10046 10047 tupregs[ttop++].dttk_size = 0; 10048 break; 10049 10050 case DIF_OP_FLUSHTS: 10051 ttop = 0; 10052 break; 10053 10054 case DIF_OP_POPTS: 10055 if (ttop != 0) 10056 ttop--; 10057 break; 10058 } 10059 10060 sval = 0; 10061 srd = 0; 10062 10063 if (nkeys == 0) 10064 continue; 10065 10066 /* 10067 * We have a dynamic variable allocation; calculate its size. 10068 */ 10069 for (ksize = 0, i = 0; i < nkeys; i++) 10070 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 10071 10072 size = sizeof (dtrace_dynvar_t); 10073 size += sizeof (dtrace_key_t) * (nkeys - 1); 10074 size += ksize; 10075 10076 /* 10077 * Now we need to determine the size of the stored data. 10078 */ 10079 id = DIF_INSTR_VAR(instr); 10080 10081 for (i = 0; i < dp->dtdo_varlen; i++) { 10082 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10083 10084 if (v->dtdv_id == id && v->dtdv_scope == scope) { 10085 size += v->dtdv_type.dtdt_size; 10086 break; 10087 } 10088 } 10089 10090 if (i == dp->dtdo_varlen) 10091 return; 10092 10093 /* 10094 * We have the size. If this is larger than the chunk size 10095 * for our dynamic variable state, reset the chunk size. 10096 */ 10097 size = P2ROUNDUP(size, sizeof (uint64_t)); 10098 10099 /* 10100 * Before setting the chunk size, check that we're not going 10101 * to set it to a negative value... 10102 */ 10103 if (size > LONG_MAX) 10104 return; 10105 10106 /* 10107 * ...and make certain that we didn't badly overflow. 10108 */ 10109 if (size < ksize || size < sizeof (dtrace_dynvar_t)) 10110 return; 10111 10112 if (size > vstate->dtvs_dynvars.dtds_chunksize) 10113 vstate->dtvs_dynvars.dtds_chunksize = size; 10114 } 10115 } 10116 10117 static void 10118 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10119 { 10120 int i, oldsvars, osz, nsz, otlocals, ntlocals; 10121 uint_t id; 10122 10123 ASSERT(MUTEX_HELD(&dtrace_lock)); 10124 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 10125 10126 for (i = 0; i < dp->dtdo_varlen; i++) { 10127 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10128 dtrace_statvar_t *svar, ***svarp; 10129 size_t dsize = 0; 10130 uint8_t scope = v->dtdv_scope; 10131 int *np; 10132 10133 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10134 continue; 10135 10136 id -= DIF_VAR_OTHER_UBASE; 10137 10138 switch (scope) { 10139 case DIFV_SCOPE_THREAD: 10140 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 10141 dtrace_difv_t *tlocals; 10142 10143 if ((ntlocals = (otlocals << 1)) == 0) 10144 ntlocals = 1; 10145 10146 osz = otlocals * sizeof (dtrace_difv_t); 10147 nsz = ntlocals * sizeof (dtrace_difv_t); 10148 10149 tlocals = kmem_zalloc(nsz, KM_SLEEP); 10150 10151 if (osz != 0) { 10152 bcopy(vstate->dtvs_tlocals, 10153 tlocals, osz); 10154 kmem_free(vstate->dtvs_tlocals, osz); 10155 } 10156 10157 vstate->dtvs_tlocals = tlocals; 10158 vstate->dtvs_ntlocals = ntlocals; 10159 } 10160 10161 vstate->dtvs_tlocals[id] = *v; 10162 continue; 10163 10164 case DIFV_SCOPE_LOCAL: 10165 np = &vstate->dtvs_nlocals; 10166 svarp = &vstate->dtvs_locals; 10167 10168 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10169 dsize = NCPU * (v->dtdv_type.dtdt_size + 10170 sizeof (uint64_t)); 10171 else 10172 dsize = NCPU * sizeof (uint64_t); 10173 10174 break; 10175 10176 case DIFV_SCOPE_GLOBAL: 10177 np = &vstate->dtvs_nglobals; 10178 svarp = &vstate->dtvs_globals; 10179 10180 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 10181 dsize = v->dtdv_type.dtdt_size + 10182 sizeof (uint64_t); 10183 10184 break; 10185 10186 default: 10187 ASSERT(0); 10188 } 10189 10190 while (id >= (oldsvars = *np)) { 10191 dtrace_statvar_t **statics; 10192 int newsvars, oldsize, newsize; 10193 10194 if ((newsvars = (oldsvars << 1)) == 0) 10195 newsvars = 1; 10196 10197 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 10198 newsize = newsvars * sizeof (dtrace_statvar_t *); 10199 10200 statics = kmem_zalloc(newsize, KM_SLEEP); 10201 10202 if (oldsize != 0) { 10203 bcopy(*svarp, statics, oldsize); 10204 kmem_free(*svarp, oldsize); 10205 } 10206 10207 *svarp = statics; 10208 *np = newsvars; 10209 } 10210 10211 if ((svar = (*svarp)[id]) == NULL) { 10212 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 10213 svar->dtsv_var = *v; 10214 10215 if ((svar->dtsv_size = dsize) != 0) { 10216 svar->dtsv_data = (uint64_t)(uintptr_t) 10217 kmem_zalloc(dsize, KM_SLEEP); 10218 } 10219 10220 (*svarp)[id] = svar; 10221 } 10222 10223 svar->dtsv_refcnt++; 10224 } 10225 10226 dtrace_difo_chunksize(dp, vstate); 10227 dtrace_difo_hold(dp); 10228 } 10229 10230 static dtrace_difo_t * 10231 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10232 { 10233 dtrace_difo_t *new; 10234 size_t sz; 10235 10236 ASSERT(dp->dtdo_buf != NULL); 10237 ASSERT(dp->dtdo_refcnt != 0); 10238 10239 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 10240 10241 ASSERT(dp->dtdo_buf != NULL); 10242 sz = dp->dtdo_len * sizeof (dif_instr_t); 10243 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 10244 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 10245 new->dtdo_len = dp->dtdo_len; 10246 10247 if (dp->dtdo_strtab != NULL) { 10248 ASSERT(dp->dtdo_strlen != 0); 10249 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 10250 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 10251 new->dtdo_strlen = dp->dtdo_strlen; 10252 } 10253 10254 if (dp->dtdo_inttab != NULL) { 10255 ASSERT(dp->dtdo_intlen != 0); 10256 sz = dp->dtdo_intlen * sizeof (uint64_t); 10257 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 10258 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 10259 new->dtdo_intlen = dp->dtdo_intlen; 10260 } 10261 10262 if (dp->dtdo_vartab != NULL) { 10263 ASSERT(dp->dtdo_varlen != 0); 10264 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 10265 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 10266 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 10267 new->dtdo_varlen = dp->dtdo_varlen; 10268 } 10269 10270 dtrace_difo_init(new, vstate); 10271 return (new); 10272 } 10273 10274 static void 10275 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10276 { 10277 int i; 10278 10279 ASSERT(dp->dtdo_refcnt == 0); 10280 10281 for (i = 0; i < dp->dtdo_varlen; i++) { 10282 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10283 dtrace_statvar_t *svar, **svarp; 10284 uint_t id; 10285 uint8_t scope = v->dtdv_scope; 10286 int *np; 10287 10288 switch (scope) { 10289 case DIFV_SCOPE_THREAD: 10290 continue; 10291 10292 case DIFV_SCOPE_LOCAL: 10293 np = &vstate->dtvs_nlocals; 10294 svarp = vstate->dtvs_locals; 10295 break; 10296 10297 case DIFV_SCOPE_GLOBAL: 10298 np = &vstate->dtvs_nglobals; 10299 svarp = vstate->dtvs_globals; 10300 break; 10301 10302 default: 10303 ASSERT(0); 10304 } 10305 10306 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 10307 continue; 10308 10309 id -= DIF_VAR_OTHER_UBASE; 10310 ASSERT(id < *np); 10311 10312 svar = svarp[id]; 10313 ASSERT(svar != NULL); 10314 ASSERT(svar->dtsv_refcnt > 0); 10315 10316 if (--svar->dtsv_refcnt > 0) 10317 continue; 10318 10319 if (svar->dtsv_size != 0) { 10320 ASSERT(svar->dtsv_data != 0); 10321 kmem_free((void *)(uintptr_t)svar->dtsv_data, 10322 svar->dtsv_size); 10323 } 10324 10325 kmem_free(svar, sizeof (dtrace_statvar_t)); 10326 svarp[id] = NULL; 10327 } 10328 10329 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 10330 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 10331 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 10332 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 10333 10334 kmem_free(dp, sizeof (dtrace_difo_t)); 10335 } 10336 10337 static void 10338 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 10339 { 10340 int i; 10341 10342 ASSERT(MUTEX_HELD(&dtrace_lock)); 10343 ASSERT(dp->dtdo_refcnt != 0); 10344 10345 for (i = 0; i < dp->dtdo_varlen; i++) { 10346 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 10347 10348 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 10349 continue; 10350 10351 ASSERT(dtrace_vtime_references > 0); 10352 if (--dtrace_vtime_references == 0) 10353 dtrace_vtime_disable(); 10354 } 10355 10356 if (--dp->dtdo_refcnt == 0) 10357 dtrace_difo_destroy(dp, vstate); 10358 } 10359 10360 /* 10361 * DTrace Format Functions 10362 */ 10363 static uint16_t 10364 dtrace_format_add(dtrace_state_t *state, char *str) 10365 { 10366 char *fmt, **new; 10367 uint16_t ndx, len = strlen(str) + 1; 10368 10369 fmt = kmem_zalloc(len, KM_SLEEP); 10370 bcopy(str, fmt, len); 10371 10372 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10373 if (state->dts_formats[ndx] == NULL) { 10374 state->dts_formats[ndx] = fmt; 10375 return (ndx + 1); 10376 } 10377 } 10378 10379 if (state->dts_nformats == USHRT_MAX) { 10380 /* 10381 * This is only likely if a denial-of-service attack is being 10382 * attempted. As such, it's okay to fail silently here. 10383 */ 10384 kmem_free(fmt, len); 10385 return (0); 10386 } 10387 10388 /* 10389 * For simplicity, we always resize the formats array to be exactly the 10390 * number of formats. 10391 */ 10392 ndx = state->dts_nformats++; 10393 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10394 10395 if (state->dts_formats != NULL) { 10396 ASSERT(ndx != 0); 10397 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10398 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10399 } 10400 10401 state->dts_formats = new; 10402 state->dts_formats[ndx] = fmt; 10403 10404 return (ndx + 1); 10405 } 10406 10407 static void 10408 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10409 { 10410 char *fmt; 10411 10412 ASSERT(state->dts_formats != NULL); 10413 ASSERT(format <= state->dts_nformats); 10414 ASSERT(state->dts_formats[format - 1] != NULL); 10415 10416 fmt = state->dts_formats[format - 1]; 10417 kmem_free(fmt, strlen(fmt) + 1); 10418 state->dts_formats[format - 1] = NULL; 10419 } 10420 10421 static void 10422 dtrace_format_destroy(dtrace_state_t *state) 10423 { 10424 int i; 10425 10426 if (state->dts_nformats == 0) { 10427 ASSERT(state->dts_formats == NULL); 10428 return; 10429 } 10430 10431 ASSERT(state->dts_formats != NULL); 10432 10433 for (i = 0; i < state->dts_nformats; i++) { 10434 char *fmt = state->dts_formats[i]; 10435 10436 if (fmt == NULL) 10437 continue; 10438 10439 kmem_free(fmt, strlen(fmt) + 1); 10440 } 10441 10442 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10443 state->dts_nformats = 0; 10444 state->dts_formats = NULL; 10445 } 10446 10447 /* 10448 * DTrace Predicate Functions 10449 */ 10450 static dtrace_predicate_t * 10451 dtrace_predicate_create(dtrace_difo_t *dp) 10452 { 10453 dtrace_predicate_t *pred; 10454 10455 ASSERT(MUTEX_HELD(&dtrace_lock)); 10456 ASSERT(dp->dtdo_refcnt != 0); 10457 10458 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10459 pred->dtp_difo = dp; 10460 pred->dtp_refcnt = 1; 10461 10462 if (!dtrace_difo_cacheable(dp)) 10463 return (pred); 10464 10465 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10466 /* 10467 * This is only theoretically possible -- we have had 2^32 10468 * cacheable predicates on this machine. We cannot allow any 10469 * more predicates to become cacheable: as unlikely as it is, 10470 * there may be a thread caching a (now stale) predicate cache 10471 * ID. (N.B.: the temptation is being successfully resisted to 10472 * have this cmn_err() "Holy shit -- we executed this code!") 10473 */ 10474 return (pred); 10475 } 10476 10477 pred->dtp_cacheid = dtrace_predcache_id++; 10478 10479 return (pred); 10480 } 10481 10482 static void 10483 dtrace_predicate_hold(dtrace_predicate_t *pred) 10484 { 10485 ASSERT(MUTEX_HELD(&dtrace_lock)); 10486 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10487 ASSERT(pred->dtp_refcnt > 0); 10488 10489 pred->dtp_refcnt++; 10490 } 10491 10492 static void 10493 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10494 { 10495 dtrace_difo_t *dp = pred->dtp_difo; 10496 10497 ASSERT(MUTEX_HELD(&dtrace_lock)); 10498 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10499 ASSERT(pred->dtp_refcnt > 0); 10500 10501 if (--pred->dtp_refcnt == 0) { 10502 dtrace_difo_release(pred->dtp_difo, vstate); 10503 kmem_free(pred, sizeof (dtrace_predicate_t)); 10504 } 10505 } 10506 10507 /* 10508 * DTrace Action Description Functions 10509 */ 10510 static dtrace_actdesc_t * 10511 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10512 uint64_t uarg, uint64_t arg) 10513 { 10514 dtrace_actdesc_t *act; 10515 10516 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != 0 && 10517 arg >= KERNELBASE) || (arg == 0 && kind == DTRACEACT_PRINTA)); 10518 10519 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10520 act->dtad_kind = kind; 10521 act->dtad_ntuple = ntuple; 10522 act->dtad_uarg = uarg; 10523 act->dtad_arg = arg; 10524 act->dtad_refcnt = 1; 10525 10526 return (act); 10527 } 10528 10529 static void 10530 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10531 { 10532 ASSERT(act->dtad_refcnt >= 1); 10533 act->dtad_refcnt++; 10534 } 10535 10536 static void 10537 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10538 { 10539 dtrace_actkind_t kind = act->dtad_kind; 10540 dtrace_difo_t *dp; 10541 10542 ASSERT(act->dtad_refcnt >= 1); 10543 10544 if (--act->dtad_refcnt != 0) 10545 return; 10546 10547 if ((dp = act->dtad_difo) != NULL) 10548 dtrace_difo_release(dp, vstate); 10549 10550 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10551 char *str = (char *)(uintptr_t)act->dtad_arg; 10552 10553 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10554 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10555 10556 if (str != NULL) 10557 kmem_free(str, strlen(str) + 1); 10558 } 10559 10560 kmem_free(act, sizeof (dtrace_actdesc_t)); 10561 } 10562 10563 /* 10564 * DTrace ECB Functions 10565 */ 10566 static dtrace_ecb_t * 10567 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10568 { 10569 dtrace_ecb_t *ecb; 10570 dtrace_epid_t epid; 10571 10572 ASSERT(MUTEX_HELD(&dtrace_lock)); 10573 10574 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10575 ecb->dte_predicate = NULL; 10576 ecb->dte_probe = probe; 10577 10578 /* 10579 * The default size is the size of the default action: recording 10580 * the header. 10581 */ 10582 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10583 ecb->dte_alignment = sizeof (dtrace_epid_t); 10584 10585 epid = state->dts_epid++; 10586 10587 if (epid - 1 >= state->dts_necbs) { 10588 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10589 int necbs = state->dts_necbs << 1; 10590 10591 ASSERT(epid == state->dts_necbs + 1); 10592 10593 if (necbs == 0) { 10594 ASSERT(oecbs == NULL); 10595 necbs = 1; 10596 } 10597 10598 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10599 10600 if (oecbs != NULL) 10601 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10602 10603 dtrace_membar_producer(); 10604 state->dts_ecbs = ecbs; 10605 10606 if (oecbs != NULL) { 10607 /* 10608 * If this state is active, we must dtrace_sync() 10609 * before we can free the old dts_ecbs array: we're 10610 * coming in hot, and there may be active ring 10611 * buffer processing (which indexes into the dts_ecbs 10612 * array) on another CPU. 10613 */ 10614 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10615 dtrace_sync(); 10616 10617 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10618 } 10619 10620 dtrace_membar_producer(); 10621 state->dts_necbs = necbs; 10622 } 10623 10624 ecb->dte_state = state; 10625 10626 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10627 dtrace_membar_producer(); 10628 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10629 10630 return (ecb); 10631 } 10632 10633 static int 10634 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10635 { 10636 dtrace_probe_t *probe = ecb->dte_probe; 10637 10638 ASSERT(MUTEX_HELD(&cpu_lock)); 10639 ASSERT(MUTEX_HELD(&dtrace_lock)); 10640 ASSERT(ecb->dte_next == NULL); 10641 10642 if (probe == NULL) { 10643 /* 10644 * This is the NULL probe -- there's nothing to do. 10645 */ 10646 return (0); 10647 } 10648 10649 if (probe->dtpr_ecb == NULL) { 10650 dtrace_provider_t *prov = probe->dtpr_provider; 10651 10652 /* 10653 * We're the first ECB on this probe. 10654 */ 10655 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10656 10657 if (ecb->dte_predicate != NULL) 10658 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10659 10660 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10661 probe->dtpr_id, probe->dtpr_arg)); 10662 } else { 10663 /* 10664 * This probe is already active. Swing the last pointer to 10665 * point to the new ECB and invalidate the predicate cache. 10666 * (It will be up to the caller to call dtrace_sync() to 10667 * assure that all CPUs have seen the change.) 10668 */ 10669 ASSERT(probe->dtpr_ecb_last != NULL); 10670 probe->dtpr_ecb_last->dte_next = ecb; 10671 probe->dtpr_ecb_last = ecb; 10672 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10673 return (0); 10674 } 10675 } 10676 10677 static int 10678 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10679 { 10680 dtrace_action_t *act; 10681 uint32_t curneeded = UINT32_MAX; 10682 uint32_t aggbase = UINT32_MAX; 10683 10684 /* 10685 * If we record anything, we always record the dtrace_rechdr_t. (And 10686 * we always record it first.) 10687 */ 10688 ecb->dte_size = sizeof (dtrace_rechdr_t); 10689 ecb->dte_alignment = sizeof (dtrace_epid_t); 10690 10691 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10692 dtrace_recdesc_t *rec = &act->dta_rec; 10693 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10694 10695 ecb->dte_alignment = MAX(ecb->dte_alignment, 10696 rec->dtrd_alignment); 10697 10698 if (DTRACEACT_ISAGG(act->dta_kind)) { 10699 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10700 10701 ASSERT(rec->dtrd_size != 0); 10702 ASSERT(agg->dtag_first != NULL); 10703 ASSERT(act->dta_prev->dta_intuple); 10704 ASSERT(aggbase != UINT32_MAX); 10705 ASSERT(curneeded != UINT32_MAX); 10706 10707 agg->dtag_base = aggbase; 10708 10709 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10710 rec->dtrd_offset = curneeded; 10711 if (curneeded + rec->dtrd_size < curneeded) 10712 return (EINVAL); 10713 curneeded += rec->dtrd_size; 10714 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10715 10716 aggbase = UINT32_MAX; 10717 curneeded = UINT32_MAX; 10718 } else if (act->dta_intuple) { 10719 if (curneeded == UINT32_MAX) { 10720 /* 10721 * This is the first record in a tuple. Align 10722 * curneeded to be at offset 4 in an 8-byte 10723 * aligned block. 10724 */ 10725 ASSERT(act->dta_prev == NULL || 10726 !act->dta_prev->dta_intuple); 10727 ASSERT3U(aggbase, ==, UINT32_MAX); 10728 curneeded = P2PHASEUP(ecb->dte_size, 10729 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10730 10731 aggbase = curneeded - sizeof (dtrace_aggid_t); 10732 ASSERT(IS_P2ALIGNED(aggbase, 10733 sizeof (uint64_t))); 10734 } 10735 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10736 rec->dtrd_offset = curneeded; 10737 if (curneeded + rec->dtrd_size < curneeded) 10738 return (EINVAL); 10739 curneeded += rec->dtrd_size; 10740 } else { 10741 /* tuples must be followed by an aggregation */ 10742 ASSERT(act->dta_prev == NULL || 10743 !act->dta_prev->dta_intuple); 10744 10745 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10746 rec->dtrd_alignment); 10747 rec->dtrd_offset = ecb->dte_size; 10748 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) 10749 return (EINVAL); 10750 ecb->dte_size += rec->dtrd_size; 10751 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10752 } 10753 } 10754 10755 if ((act = ecb->dte_action) != NULL && 10756 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10757 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10758 /* 10759 * If the size is still sizeof (dtrace_rechdr_t), then all 10760 * actions store no data; set the size to 0. 10761 */ 10762 ecb->dte_size = 0; 10763 } 10764 10765 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10766 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10767 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10768 ecb->dte_needed); 10769 return (0); 10770 } 10771 10772 static dtrace_action_t * 10773 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10774 { 10775 dtrace_aggregation_t *agg; 10776 size_t size = sizeof (uint64_t); 10777 int ntuple = desc->dtad_ntuple; 10778 dtrace_action_t *act; 10779 dtrace_recdesc_t *frec; 10780 dtrace_aggid_t aggid; 10781 dtrace_state_t *state = ecb->dte_state; 10782 10783 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10784 agg->dtag_ecb = ecb; 10785 10786 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10787 10788 switch (desc->dtad_kind) { 10789 case DTRACEAGG_MIN: 10790 agg->dtag_initial = INT64_MAX; 10791 agg->dtag_aggregate = dtrace_aggregate_min; 10792 break; 10793 10794 case DTRACEAGG_MAX: 10795 agg->dtag_initial = INT64_MIN; 10796 agg->dtag_aggregate = dtrace_aggregate_max; 10797 break; 10798 10799 case DTRACEAGG_COUNT: 10800 agg->dtag_aggregate = dtrace_aggregate_count; 10801 break; 10802 10803 case DTRACEAGG_QUANTIZE: 10804 agg->dtag_aggregate = dtrace_aggregate_quantize; 10805 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10806 sizeof (uint64_t); 10807 break; 10808 10809 case DTRACEAGG_LQUANTIZE: { 10810 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10811 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10812 10813 agg->dtag_initial = desc->dtad_arg; 10814 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10815 10816 if (step == 0 || levels == 0) 10817 goto err; 10818 10819 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10820 break; 10821 } 10822 10823 case DTRACEAGG_LLQUANTIZE: { 10824 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10825 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10826 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10827 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10828 int64_t v; 10829 10830 agg->dtag_initial = desc->dtad_arg; 10831 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10832 10833 if (factor < 2 || low >= high || nsteps < factor) 10834 goto err; 10835 10836 /* 10837 * Now check that the number of steps evenly divides a power 10838 * of the factor. (This assures both integer bucket size and 10839 * linearity within each magnitude.) 10840 */ 10841 for (v = factor; v < nsteps; v *= factor) 10842 continue; 10843 10844 if ((v % nsteps) || (nsteps % factor)) 10845 goto err; 10846 10847 size = (dtrace_aggregate_llquantize_bucket(factor, 10848 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10849 break; 10850 } 10851 10852 case DTRACEAGG_AVG: 10853 agg->dtag_aggregate = dtrace_aggregate_avg; 10854 size = sizeof (uint64_t) * 2; 10855 break; 10856 10857 case DTRACEAGG_STDDEV: 10858 agg->dtag_aggregate = dtrace_aggregate_stddev; 10859 size = sizeof (uint64_t) * 4; 10860 break; 10861 10862 case DTRACEAGG_SUM: 10863 agg->dtag_aggregate = dtrace_aggregate_sum; 10864 break; 10865 10866 default: 10867 goto err; 10868 } 10869 10870 agg->dtag_action.dta_rec.dtrd_size = size; 10871 10872 if (ntuple == 0) 10873 goto err; 10874 10875 /* 10876 * We must make sure that we have enough actions for the n-tuple. 10877 */ 10878 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10879 if (DTRACEACT_ISAGG(act->dta_kind)) 10880 break; 10881 10882 if (--ntuple == 0) { 10883 /* 10884 * This is the action with which our n-tuple begins. 10885 */ 10886 agg->dtag_first = act; 10887 goto success; 10888 } 10889 } 10890 10891 /* 10892 * This n-tuple is short by ntuple elements. Return failure. 10893 */ 10894 ASSERT(ntuple != 0); 10895 err: 10896 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10897 return (NULL); 10898 10899 success: 10900 /* 10901 * If the last action in the tuple has a size of zero, it's actually 10902 * an expression argument for the aggregating action. 10903 */ 10904 ASSERT(ecb->dte_action_last != NULL); 10905 act = ecb->dte_action_last; 10906 10907 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10908 ASSERT(act->dta_difo != NULL); 10909 10910 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10911 agg->dtag_hasarg = 1; 10912 } 10913 10914 /* 10915 * We need to allocate an id for this aggregation. 10916 */ 10917 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10918 VM_BESTFIT | VM_SLEEP); 10919 10920 if (aggid - 1 >= state->dts_naggregations) { 10921 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10922 dtrace_aggregation_t **aggs; 10923 int naggs = state->dts_naggregations << 1; 10924 int onaggs = state->dts_naggregations; 10925 10926 ASSERT(aggid == state->dts_naggregations + 1); 10927 10928 if (naggs == 0) { 10929 ASSERT(oaggs == NULL); 10930 naggs = 1; 10931 } 10932 10933 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10934 10935 if (oaggs != NULL) { 10936 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10937 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10938 } 10939 10940 state->dts_aggregations = aggs; 10941 state->dts_naggregations = naggs; 10942 } 10943 10944 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10945 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10946 10947 frec = &agg->dtag_first->dta_rec; 10948 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10949 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10950 10951 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10952 ASSERT(!act->dta_intuple); 10953 act->dta_intuple = 1; 10954 } 10955 10956 return (&agg->dtag_action); 10957 } 10958 10959 static void 10960 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10961 { 10962 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10963 dtrace_state_t *state = ecb->dte_state; 10964 dtrace_aggid_t aggid = agg->dtag_id; 10965 10966 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10967 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10968 10969 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10970 state->dts_aggregations[aggid - 1] = NULL; 10971 10972 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10973 } 10974 10975 static int 10976 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10977 { 10978 dtrace_action_t *action, *last; 10979 dtrace_difo_t *dp = desc->dtad_difo; 10980 uint32_t size = 0, align = sizeof (uint8_t), mask; 10981 uint16_t format = 0; 10982 dtrace_recdesc_t *rec; 10983 dtrace_state_t *state = ecb->dte_state; 10984 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10985 uint64_t arg = desc->dtad_arg; 10986 10987 ASSERT(MUTEX_HELD(&dtrace_lock)); 10988 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10989 10990 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10991 /* 10992 * If this is an aggregating action, there must be neither 10993 * a speculate nor a commit on the action chain. 10994 */ 10995 dtrace_action_t *act; 10996 10997 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10998 if (act->dta_kind == DTRACEACT_COMMIT) 10999 return (EINVAL); 11000 11001 if (act->dta_kind == DTRACEACT_SPECULATE) 11002 return (EINVAL); 11003 } 11004 11005 action = dtrace_ecb_aggregation_create(ecb, desc); 11006 11007 if (action == NULL) 11008 return (EINVAL); 11009 } else { 11010 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 11011 (desc->dtad_kind == DTRACEACT_DIFEXPR && 11012 dp != NULL && dp->dtdo_destructive)) { 11013 state->dts_destructive = 1; 11014 } 11015 11016 switch (desc->dtad_kind) { 11017 case DTRACEACT_PRINTF: 11018 case DTRACEACT_PRINTA: 11019 case DTRACEACT_SYSTEM: 11020 case DTRACEACT_FREOPEN: 11021 case DTRACEACT_DIFEXPR: 11022 /* 11023 * We know that our arg is a string -- turn it into a 11024 * format. 11025 */ 11026 if (arg == 0) { 11027 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 11028 desc->dtad_kind == DTRACEACT_DIFEXPR); 11029 format = 0; 11030 } else { 11031 ASSERT(arg != 0); 11032 ASSERT(arg > KERNELBASE); 11033 format = dtrace_format_add(state, 11034 (char *)(uintptr_t)arg); 11035 } 11036 11037 /*FALLTHROUGH*/ 11038 case DTRACEACT_LIBACT: 11039 case DTRACEACT_TRACEMEM: 11040 case DTRACEACT_TRACEMEM_DYNSIZE: 11041 if (dp == NULL) 11042 return (EINVAL); 11043 11044 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 11045 break; 11046 11047 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 11048 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11049 return (EINVAL); 11050 11051 size = opt[DTRACEOPT_STRSIZE]; 11052 } 11053 11054 break; 11055 11056 case DTRACEACT_STACK: 11057 if ((nframes = arg) == 0) { 11058 nframes = opt[DTRACEOPT_STACKFRAMES]; 11059 ASSERT(nframes > 0); 11060 arg = nframes; 11061 } 11062 11063 size = nframes * sizeof (pc_t); 11064 break; 11065 11066 case DTRACEACT_JSTACK: 11067 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 11068 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 11069 11070 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 11071 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 11072 11073 arg = DTRACE_USTACK_ARG(nframes, strsize); 11074 11075 /*FALLTHROUGH*/ 11076 case DTRACEACT_USTACK: 11077 if (desc->dtad_kind != DTRACEACT_JSTACK && 11078 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 11079 strsize = DTRACE_USTACK_STRSIZE(arg); 11080 nframes = opt[DTRACEOPT_USTACKFRAMES]; 11081 ASSERT(nframes > 0); 11082 arg = DTRACE_USTACK_ARG(nframes, strsize); 11083 } 11084 11085 /* 11086 * Save a slot for the pid. 11087 */ 11088 size = (nframes + 1) * sizeof (uint64_t); 11089 size += DTRACE_USTACK_STRSIZE(arg); 11090 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 11091 11092 break; 11093 11094 case DTRACEACT_SYM: 11095 case DTRACEACT_MOD: 11096 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 11097 sizeof (uint64_t)) || 11098 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11099 return (EINVAL); 11100 break; 11101 11102 case DTRACEACT_USYM: 11103 case DTRACEACT_UMOD: 11104 case DTRACEACT_UADDR: 11105 if (dp == NULL || 11106 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 11107 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11108 return (EINVAL); 11109 11110 /* 11111 * We have a slot for the pid, plus a slot for the 11112 * argument. To keep things simple (aligned with 11113 * bitness-neutral sizing), we store each as a 64-bit 11114 * quantity. 11115 */ 11116 size = 2 * sizeof (uint64_t); 11117 break; 11118 11119 case DTRACEACT_STOP: 11120 case DTRACEACT_BREAKPOINT: 11121 case DTRACEACT_PANIC: 11122 break; 11123 11124 case DTRACEACT_CHILL: 11125 case DTRACEACT_DISCARD: 11126 case DTRACEACT_RAISE: 11127 if (dp == NULL) 11128 return (EINVAL); 11129 break; 11130 11131 case DTRACEACT_EXIT: 11132 if (dp == NULL || 11133 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 11134 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 11135 return (EINVAL); 11136 break; 11137 11138 case DTRACEACT_SPECULATE: 11139 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 11140 return (EINVAL); 11141 11142 if (dp == NULL) 11143 return (EINVAL); 11144 11145 state->dts_speculates = 1; 11146 break; 11147 11148 case DTRACEACT_COMMIT: { 11149 dtrace_action_t *act = ecb->dte_action; 11150 11151 for (; act != NULL; act = act->dta_next) { 11152 if (act->dta_kind == DTRACEACT_COMMIT) 11153 return (EINVAL); 11154 } 11155 11156 if (dp == NULL) 11157 return (EINVAL); 11158 break; 11159 } 11160 11161 default: 11162 return (EINVAL); 11163 } 11164 11165 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 11166 /* 11167 * If this is a data-storing action or a speculate, 11168 * we must be sure that there isn't a commit on the 11169 * action chain. 11170 */ 11171 dtrace_action_t *act = ecb->dte_action; 11172 11173 for (; act != NULL; act = act->dta_next) { 11174 if (act->dta_kind == DTRACEACT_COMMIT) 11175 return (EINVAL); 11176 } 11177 } 11178 11179 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 11180 action->dta_rec.dtrd_size = size; 11181 } 11182 11183 action->dta_refcnt = 1; 11184 rec = &action->dta_rec; 11185 size = rec->dtrd_size; 11186 11187 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 11188 if (!(size & mask)) { 11189 align = mask + 1; 11190 break; 11191 } 11192 } 11193 11194 action->dta_kind = desc->dtad_kind; 11195 11196 if ((action->dta_difo = dp) != NULL) 11197 dtrace_difo_hold(dp); 11198 11199 rec->dtrd_action = action->dta_kind; 11200 rec->dtrd_arg = arg; 11201 rec->dtrd_uarg = desc->dtad_uarg; 11202 rec->dtrd_alignment = (uint16_t)align; 11203 rec->dtrd_format = format; 11204 11205 if ((last = ecb->dte_action_last) != NULL) { 11206 ASSERT(ecb->dte_action != NULL); 11207 action->dta_prev = last; 11208 last->dta_next = action; 11209 } else { 11210 ASSERT(ecb->dte_action == NULL); 11211 ecb->dte_action = action; 11212 } 11213 11214 ecb->dte_action_last = action; 11215 11216 return (0); 11217 } 11218 11219 static void 11220 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 11221 { 11222 dtrace_action_t *act = ecb->dte_action, *next; 11223 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 11224 dtrace_difo_t *dp; 11225 uint16_t format; 11226 11227 if (act != NULL && act->dta_refcnt > 1) { 11228 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 11229 act->dta_refcnt--; 11230 } else { 11231 for (; act != NULL; act = next) { 11232 next = act->dta_next; 11233 ASSERT(next != NULL || act == ecb->dte_action_last); 11234 ASSERT(act->dta_refcnt == 1); 11235 11236 if ((format = act->dta_rec.dtrd_format) != 0) 11237 dtrace_format_remove(ecb->dte_state, format); 11238 11239 if ((dp = act->dta_difo) != NULL) 11240 dtrace_difo_release(dp, vstate); 11241 11242 if (DTRACEACT_ISAGG(act->dta_kind)) { 11243 dtrace_ecb_aggregation_destroy(ecb, act); 11244 } else { 11245 kmem_free(act, sizeof (dtrace_action_t)); 11246 } 11247 } 11248 } 11249 11250 ecb->dte_action = NULL; 11251 ecb->dte_action_last = NULL; 11252 ecb->dte_size = 0; 11253 } 11254 11255 static void 11256 dtrace_ecb_disable(dtrace_ecb_t *ecb) 11257 { 11258 /* 11259 * We disable the ECB by removing it from its probe. 11260 */ 11261 dtrace_ecb_t *pecb, *prev = NULL; 11262 dtrace_probe_t *probe = ecb->dte_probe; 11263 11264 ASSERT(MUTEX_HELD(&dtrace_lock)); 11265 11266 if (probe == NULL) { 11267 /* 11268 * This is the NULL probe; there is nothing to disable. 11269 */ 11270 return; 11271 } 11272 11273 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 11274 if (pecb == ecb) 11275 break; 11276 prev = pecb; 11277 } 11278 11279 if (pecb == NULL) { 11280 /* 11281 * This is okay: it means that this ECB was never actually 11282 * enabled (that is, we are in the process of ripping our 11283 * state down sometime after creating ECBs but before enabling 11284 * them); we have nothing to do, so just return. 11285 */ 11286 return; 11287 } 11288 11289 if (prev == NULL) { 11290 probe->dtpr_ecb = ecb->dte_next; 11291 } else { 11292 prev->dte_next = ecb->dte_next; 11293 } 11294 11295 if (ecb == probe->dtpr_ecb_last) { 11296 ASSERT(ecb->dte_next == NULL); 11297 probe->dtpr_ecb_last = prev; 11298 } 11299 11300 if (probe->dtpr_ecb == NULL) { 11301 /* 11302 * That was the last ECB on the probe; clear the predicate 11303 * cache ID for the probe and disable it. 11304 */ 11305 dtrace_provider_t *prov = probe->dtpr_provider; 11306 11307 ASSERT(ecb->dte_next == NULL); 11308 ASSERT(probe->dtpr_ecb_last == NULL); 11309 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 11310 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 11311 probe->dtpr_id, probe->dtpr_arg); 11312 } else { 11313 /* 11314 * There is at least one ECB remaining on the probe. If there 11315 * is _exactly_ one, set the probe's predicate cache ID to be 11316 * the predicate cache ID of the remaining ECB. 11317 */ 11318 ASSERT(probe->dtpr_ecb_last != NULL); 11319 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 11320 11321 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 11322 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 11323 11324 ASSERT(probe->dtpr_ecb->dte_next == NULL); 11325 11326 if (p != NULL) 11327 probe->dtpr_predcache = p->dtp_cacheid; 11328 } 11329 11330 ecb->dte_next = NULL; 11331 } 11332 } 11333 11334 /* 11335 * Destroy an ECB. It's up to the caller to be sure that no CPU is still 11336 * seeing this ECB (i.e., by having issued a dtrace_sync() after having 11337 * disabled it). 11338 */ 11339 static void 11340 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 11341 { 11342 dtrace_state_t *state = ecb->dte_state; 11343 dtrace_vstate_t *vstate = &state->dts_vstate; 11344 dtrace_predicate_t *pred; 11345 dtrace_epid_t epid = ecb->dte_epid; 11346 11347 ASSERT(MUTEX_HELD(&dtrace_lock)); 11348 ASSERT(ecb->dte_next == NULL); 11349 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 11350 11351 if ((pred = ecb->dte_predicate) != NULL) 11352 dtrace_predicate_release(pred, vstate); 11353 11354 dtrace_ecb_action_remove(ecb); 11355 11356 ASSERT(state->dts_ecbs[epid - 1] == ecb); 11357 state->dts_ecbs[epid - 1] = NULL; 11358 11359 kmem_free(ecb, sizeof (dtrace_ecb_t)); 11360 } 11361 11362 static dtrace_ecb_t * 11363 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 11364 dtrace_enabling_t *enab) 11365 { 11366 dtrace_ecb_t *ecb; 11367 dtrace_predicate_t *pred; 11368 dtrace_actdesc_t *act; 11369 dtrace_provider_t *prov; 11370 dtrace_ecbdesc_t *desc = enab->dten_current; 11371 11372 ASSERT(MUTEX_HELD(&dtrace_lock)); 11373 ASSERT(state != NULL); 11374 11375 ecb = dtrace_ecb_add(state, probe); 11376 ecb->dte_uarg = desc->dted_uarg; 11377 11378 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11379 dtrace_predicate_hold(pred); 11380 ecb->dte_predicate = pred; 11381 } 11382 11383 if (probe != NULL) { 11384 /* 11385 * If the provider shows more leg than the consumer is old 11386 * enough to see, we need to enable the appropriate implicit 11387 * predicate bits to prevent the ecb from activating at 11388 * revealing times. 11389 * 11390 * Providers specifying DTRACE_PRIV_USER at register time 11391 * are stating that they need the /proc-style privilege 11392 * model to be enforced, and this is what DTRACE_COND_OWNER 11393 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11394 */ 11395 prov = probe->dtpr_provider; 11396 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11397 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11398 ecb->dte_cond |= DTRACE_COND_OWNER; 11399 11400 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11401 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11402 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11403 11404 /* 11405 * If the provider shows us kernel innards and the user 11406 * is lacking sufficient privilege, enable the 11407 * DTRACE_COND_USERMODE implicit predicate. 11408 */ 11409 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11410 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11411 ecb->dte_cond |= DTRACE_COND_USERMODE; 11412 } 11413 11414 if (dtrace_ecb_create_cache != NULL) { 11415 /* 11416 * If we have a cached ecb, we'll use its action list instead 11417 * of creating our own (saving both time and space). 11418 */ 11419 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11420 dtrace_action_t *act = cached->dte_action; 11421 11422 if (act != NULL) { 11423 ASSERT(act->dta_refcnt > 0); 11424 act->dta_refcnt++; 11425 ecb->dte_action = act; 11426 ecb->dte_action_last = cached->dte_action_last; 11427 ecb->dte_needed = cached->dte_needed; 11428 ecb->dte_size = cached->dte_size; 11429 ecb->dte_alignment = cached->dte_alignment; 11430 } 11431 11432 return (ecb); 11433 } 11434 11435 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11436 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11437 dtrace_ecb_destroy(ecb); 11438 return (NULL); 11439 } 11440 } 11441 11442 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { 11443 dtrace_ecb_destroy(ecb); 11444 return (NULL); 11445 } 11446 11447 return (dtrace_ecb_create_cache = ecb); 11448 } 11449 11450 static int 11451 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11452 { 11453 dtrace_ecb_t *ecb; 11454 dtrace_enabling_t *enab = arg; 11455 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11456 11457 ASSERT(state != NULL); 11458 11459 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11460 /* 11461 * This probe was created in a generation for which this 11462 * enabling has previously created ECBs; we don't want to 11463 * enable it again, so just kick out. 11464 */ 11465 return (DTRACE_MATCH_NEXT); 11466 } 11467 11468 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11469 return (DTRACE_MATCH_DONE); 11470 11471 /* 11472 * If we can, we want to defer actually enabling the probe until 11473 * immediately before transitioning the state to be active: there is 11474 * still a lot of work to do before then (e.g., all per-state buffer 11475 * allocation), and for enablings with a heavy probe effect (e.g., 11476 * enabling every FBT probe), that work can become debilitatingly slow 11477 * (and pointlessly so because the state isn't even active). 11478 * 11479 * So we default to not enabling our newly created ECB, with two 11480 * exceptions: 11481 * 11482 * (1) If the state is currently active, we need to enable the ECB 11483 * immediately 11484 * 11485 * (2) If the probe is provided by DTrace itself, we choose to enable 11486 * the ECB now to assure that we can easily determine our 11487 * dts_reserve before allocating buffers. 11488 */ 11489 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE || 11490 (probe != NULL && probe->dtpr_provider == dtrace_provider)) { 11491 if (dtrace_ecb_enable(ecb) < 0) { 11492 return (DTRACE_MATCH_FAIL); 11493 } 11494 11495 /* 11496 * As we have changed ECB state on potentially an active 11497 * consumer, issue a dtrace_sync() to assure that all CPUs 11498 * have seen it. 11499 */ 11500 dtrace_sync(); 11501 } 11502 11503 return (DTRACE_MATCH_NEXT); 11504 } 11505 11506 static dtrace_ecb_t * 11507 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11508 { 11509 dtrace_ecb_t *ecb; 11510 11511 ASSERT(MUTEX_HELD(&dtrace_lock)); 11512 11513 if (id == 0 || id > state->dts_necbs) 11514 return (NULL); 11515 11516 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11517 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11518 11519 return (state->dts_ecbs[id - 1]); 11520 } 11521 11522 static dtrace_aggregation_t * 11523 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11524 { 11525 dtrace_aggregation_t *agg; 11526 11527 ASSERT(MUTEX_HELD(&dtrace_lock)); 11528 11529 if (id == 0 || id > state->dts_naggregations) 11530 return (NULL); 11531 11532 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11533 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11534 agg->dtag_id == id); 11535 11536 return (state->dts_aggregations[id - 1]); 11537 } 11538 11539 /* 11540 * DTrace Buffer Functions 11541 * 11542 * The following functions manipulate DTrace buffers. Most of these functions 11543 * are called in the context of establishing or processing consumer state; 11544 * exceptions are explicitly noted. 11545 */ 11546 11547 /* 11548 * Note: called from cross call context. This function switches the two 11549 * buffers on a given CPU. The atomicity of this operation is assured by 11550 * disabling interrupts while the actual switch takes place; the disabling of 11551 * interrupts serializes the execution with any execution of dtrace_probe() on 11552 * the same CPU. 11553 */ 11554 static void 11555 dtrace_buffer_switch(dtrace_buffer_t *buf) 11556 { 11557 caddr_t tomax = buf->dtb_tomax; 11558 caddr_t xamot = buf->dtb_xamot; 11559 dtrace_icookie_t cookie; 11560 hrtime_t now; 11561 11562 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11563 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11564 11565 cookie = dtrace_interrupt_disable(); 11566 now = dtrace_gethrtime(); 11567 buf->dtb_tomax = xamot; 11568 buf->dtb_xamot = tomax; 11569 buf->dtb_xamot_drops = buf->dtb_drops; 11570 buf->dtb_xamot_offset = buf->dtb_offset; 11571 buf->dtb_xamot_errors = buf->dtb_errors; 11572 buf->dtb_xamot_flags = buf->dtb_flags; 11573 buf->dtb_offset = 0; 11574 buf->dtb_drops = 0; 11575 buf->dtb_errors = 0; 11576 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11577 buf->dtb_interval = now - buf->dtb_switched; 11578 buf->dtb_switched = now; 11579 dtrace_interrupt_enable(cookie); 11580 } 11581 11582 /* 11583 * Note: called from cross call context. This function activates a buffer 11584 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11585 * is guaranteed by the disabling of interrupts. 11586 */ 11587 static void 11588 dtrace_buffer_activate(dtrace_state_t *state) 11589 { 11590 dtrace_buffer_t *buf; 11591 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11592 11593 buf = &state->dts_buffer[CPU->cpu_id]; 11594 11595 if (buf->dtb_tomax != NULL) { 11596 /* 11597 * We might like to assert that the buffer is marked inactive, 11598 * but this isn't necessarily true: the buffer for the CPU 11599 * that processes the BEGIN probe has its buffer activated 11600 * manually. In this case, we take the (harmless) action 11601 * re-clearing the bit INACTIVE bit. 11602 */ 11603 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11604 } 11605 11606 dtrace_interrupt_enable(cookie); 11607 } 11608 11609 static int 11610 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11611 processorid_t cpu, int *factor) 11612 { 11613 cpu_t *cp; 11614 dtrace_buffer_t *buf; 11615 int allocated = 0, desired = 0; 11616 11617 ASSERT(MUTEX_HELD(&cpu_lock)); 11618 ASSERT(MUTEX_HELD(&dtrace_lock)); 11619 11620 *factor = 1; 11621 11622 if (size > dtrace_nonroot_maxsize && 11623 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11624 return (EFBIG); 11625 11626 cp = cpu_list; 11627 11628 do { 11629 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11630 continue; 11631 11632 buf = &bufs[cp->cpu_id]; 11633 11634 /* 11635 * If there is already a buffer allocated for this CPU, it 11636 * is only possible that this is a DR event. In this case, 11637 * the buffer size must match our specified size. 11638 */ 11639 if (buf->dtb_tomax != NULL) { 11640 ASSERT(buf->dtb_size == size); 11641 continue; 11642 } 11643 11644 ASSERT(buf->dtb_xamot == NULL); 11645 11646 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP_LAZY)) == 11647 NULL) 11648 goto err; 11649 11650 buf->dtb_size = size; 11651 buf->dtb_flags = flags; 11652 buf->dtb_offset = 0; 11653 buf->dtb_drops = 0; 11654 11655 if (flags & DTRACEBUF_NOSWITCH) 11656 continue; 11657 11658 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP_LAZY)) == 11659 NULL) 11660 goto err; 11661 } while ((cp = cp->cpu_next) != cpu_list); 11662 11663 return (0); 11664 11665 err: 11666 cp = cpu_list; 11667 11668 do { 11669 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11670 continue; 11671 11672 buf = &bufs[cp->cpu_id]; 11673 desired += 2; 11674 11675 if (buf->dtb_xamot != NULL) { 11676 ASSERT(buf->dtb_tomax != NULL); 11677 ASSERT(buf->dtb_size == size); 11678 kmem_free(buf->dtb_xamot, size); 11679 allocated++; 11680 } 11681 11682 if (buf->dtb_tomax != NULL) { 11683 ASSERT(buf->dtb_size == size); 11684 kmem_free(buf->dtb_tomax, size); 11685 allocated++; 11686 } 11687 11688 buf->dtb_tomax = NULL; 11689 buf->dtb_xamot = NULL; 11690 buf->dtb_size = 0; 11691 } while ((cp = cp->cpu_next) != cpu_list); 11692 11693 *factor = desired / (allocated > 0 ? allocated : 1); 11694 11695 return (ENOMEM); 11696 } 11697 11698 /* 11699 * Note: called from probe context. This function just increments the drop 11700 * count on a buffer. It has been made a function to allow for the 11701 * possibility of understanding the source of mysterious drop counts. (A 11702 * problem for which one may be particularly disappointed that DTrace cannot 11703 * be used to understand DTrace.) 11704 */ 11705 static void 11706 dtrace_buffer_drop(dtrace_buffer_t *buf) 11707 { 11708 buf->dtb_drops++; 11709 } 11710 11711 /* 11712 * Note: called from probe context. This function is called to reserve space 11713 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11714 * mstate. Returns the new offset in the buffer, or a negative value if an 11715 * error has occurred. 11716 */ 11717 static intptr_t 11718 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11719 dtrace_state_t *state, dtrace_mstate_t *mstate) 11720 { 11721 intptr_t offs = buf->dtb_offset, soffs; 11722 intptr_t woffs; 11723 caddr_t tomax; 11724 size_t total; 11725 11726 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11727 return (-1); 11728 11729 if ((tomax = buf->dtb_tomax) == NULL) { 11730 dtrace_buffer_drop(buf); 11731 return (-1); 11732 } 11733 11734 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11735 while (offs & (align - 1)) { 11736 /* 11737 * Assert that our alignment is off by a number which 11738 * is itself sizeof (uint32_t) aligned. 11739 */ 11740 ASSERT(!((align - (offs & (align - 1))) & 11741 (sizeof (uint32_t) - 1))); 11742 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11743 offs += sizeof (uint32_t); 11744 } 11745 11746 if ((soffs = offs + needed) > buf->dtb_size) { 11747 dtrace_buffer_drop(buf); 11748 return (-1); 11749 } 11750 11751 if (mstate == NULL) 11752 return (offs); 11753 11754 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11755 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11756 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11757 11758 return (offs); 11759 } 11760 11761 if (buf->dtb_flags & DTRACEBUF_FILL) { 11762 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11763 (buf->dtb_flags & DTRACEBUF_FULL)) 11764 return (-1); 11765 goto out; 11766 } 11767 11768 total = needed + (offs & (align - 1)); 11769 11770 /* 11771 * For a ring buffer, life is quite a bit more complicated. Before 11772 * we can store any padding, we need to adjust our wrapping offset. 11773 * (If we've never before wrapped or we're not about to, no adjustment 11774 * is required.) 11775 */ 11776 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11777 offs + total > buf->dtb_size) { 11778 woffs = buf->dtb_xamot_offset; 11779 11780 if (offs + total > buf->dtb_size) { 11781 /* 11782 * We can't fit in the end of the buffer. First, a 11783 * sanity check that we can fit in the buffer at all. 11784 */ 11785 if (total > buf->dtb_size) { 11786 dtrace_buffer_drop(buf); 11787 return (-1); 11788 } 11789 11790 /* 11791 * We're going to be storing at the top of the buffer, 11792 * so now we need to deal with the wrapped offset. We 11793 * only reset our wrapped offset to 0 if it is 11794 * currently greater than the current offset. If it 11795 * is less than the current offset, it is because a 11796 * previous allocation induced a wrap -- but the 11797 * allocation didn't subsequently take the space due 11798 * to an error or false predicate evaluation. In this 11799 * case, we'll just leave the wrapped offset alone: if 11800 * the wrapped offset hasn't been advanced far enough 11801 * for this allocation, it will be adjusted in the 11802 * lower loop. 11803 */ 11804 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11805 if (woffs >= offs) 11806 woffs = 0; 11807 } else { 11808 woffs = 0; 11809 } 11810 11811 /* 11812 * Now we know that we're going to be storing to the 11813 * top of the buffer and that there is room for us 11814 * there. We need to clear the buffer from the current 11815 * offset to the end (there may be old gunk there). 11816 */ 11817 while (offs < buf->dtb_size) 11818 tomax[offs++] = 0; 11819 11820 /* 11821 * We need to set our offset to zero. And because we 11822 * are wrapping, we need to set the bit indicating as 11823 * much. We can also adjust our needed space back 11824 * down to the space required by the ECB -- we know 11825 * that the top of the buffer is aligned. 11826 */ 11827 offs = 0; 11828 total = needed; 11829 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11830 } else { 11831 /* 11832 * There is room for us in the buffer, so we simply 11833 * need to check the wrapped offset. 11834 */ 11835 if (woffs < offs) { 11836 /* 11837 * The wrapped offset is less than the offset. 11838 * This can happen if we allocated buffer space 11839 * that induced a wrap, but then we didn't 11840 * subsequently take the space due to an error 11841 * or false predicate evaluation. This is 11842 * okay; we know that _this_ allocation isn't 11843 * going to induce a wrap. We still can't 11844 * reset the wrapped offset to be zero, 11845 * however: the space may have been trashed in 11846 * the previous failed probe attempt. But at 11847 * least the wrapped offset doesn't need to 11848 * be adjusted at all... 11849 */ 11850 goto out; 11851 } 11852 } 11853 11854 while (offs + total > woffs) { 11855 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11856 size_t size; 11857 11858 if (epid == DTRACE_EPIDNONE) { 11859 size = sizeof (uint32_t); 11860 } else { 11861 ASSERT3U(epid, <=, state->dts_necbs); 11862 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11863 11864 size = state->dts_ecbs[epid - 1]->dte_size; 11865 } 11866 11867 ASSERT(woffs + size <= buf->dtb_size); 11868 ASSERT(size != 0); 11869 11870 if (woffs + size == buf->dtb_size) { 11871 /* 11872 * We've reached the end of the buffer; we want 11873 * to set the wrapped offset to 0 and break 11874 * out. However, if the offs is 0, then we're 11875 * in a strange edge-condition: the amount of 11876 * space that we want to reserve plus the size 11877 * of the record that we're overwriting is 11878 * greater than the size of the buffer. This 11879 * is problematic because if we reserve the 11880 * space but subsequently don't consume it (due 11881 * to a failed predicate or error) the wrapped 11882 * offset will be 0 -- yet the EPID at offset 0 11883 * will not be committed. This situation is 11884 * relatively easy to deal with: if we're in 11885 * this case, the buffer is indistinguishable 11886 * from one that hasn't wrapped; we need only 11887 * finish the job by clearing the wrapped bit, 11888 * explicitly setting the offset to be 0, and 11889 * zero'ing out the old data in the buffer. 11890 */ 11891 if (offs == 0) { 11892 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11893 buf->dtb_offset = 0; 11894 woffs = total; 11895 11896 while (woffs < buf->dtb_size) 11897 tomax[woffs++] = 0; 11898 } 11899 11900 woffs = 0; 11901 break; 11902 } 11903 11904 woffs += size; 11905 } 11906 11907 /* 11908 * We have a wrapped offset. It may be that the wrapped offset 11909 * has become zero -- that's okay. 11910 */ 11911 buf->dtb_xamot_offset = woffs; 11912 } 11913 11914 out: 11915 /* 11916 * Now we can plow the buffer with any necessary padding. 11917 */ 11918 while (offs & (align - 1)) { 11919 /* 11920 * Assert that our alignment is off by a number which 11921 * is itself sizeof (uint32_t) aligned. 11922 */ 11923 ASSERT(!((align - (offs & (align - 1))) & 11924 (sizeof (uint32_t) - 1))); 11925 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11926 offs += sizeof (uint32_t); 11927 } 11928 11929 if (buf->dtb_flags & DTRACEBUF_FILL) { 11930 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11931 buf->dtb_flags |= DTRACEBUF_FULL; 11932 return (-1); 11933 } 11934 } 11935 11936 if (mstate == NULL) 11937 return (offs); 11938 11939 /* 11940 * For ring buffers and fill buffers, the scratch space is always 11941 * the inactive buffer. 11942 */ 11943 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11944 mstate->dtms_scratch_size = buf->dtb_size; 11945 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11946 11947 return (offs); 11948 } 11949 11950 static void 11951 dtrace_buffer_polish(dtrace_buffer_t *buf) 11952 { 11953 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11954 ASSERT(MUTEX_HELD(&dtrace_lock)); 11955 11956 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11957 return; 11958 11959 /* 11960 * We need to polish the ring buffer. There are three cases: 11961 * 11962 * - The first (and presumably most common) is that there is no gap 11963 * between the buffer offset and the wrapped offset. In this case, 11964 * there is nothing in the buffer that isn't valid data; we can 11965 * mark the buffer as polished and return. 11966 * 11967 * - The second (less common than the first but still more common 11968 * than the third) is that there is a gap between the buffer offset 11969 * and the wrapped offset, and the wrapped offset is larger than the 11970 * buffer offset. This can happen because of an alignment issue, or 11971 * can happen because of a call to dtrace_buffer_reserve() that 11972 * didn't subsequently consume the buffer space. In this case, 11973 * we need to zero the data from the buffer offset to the wrapped 11974 * offset. 11975 * 11976 * - The third (and least common) is that there is a gap between the 11977 * buffer offset and the wrapped offset, but the wrapped offset is 11978 * _less_ than the buffer offset. This can only happen because a 11979 * call to dtrace_buffer_reserve() induced a wrap, but the space 11980 * was not subsequently consumed. In this case, we need to zero the 11981 * space from the offset to the end of the buffer _and_ from the 11982 * top of the buffer to the wrapped offset. 11983 */ 11984 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11985 bzero(buf->dtb_tomax + buf->dtb_offset, 11986 buf->dtb_xamot_offset - buf->dtb_offset); 11987 } 11988 11989 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11990 bzero(buf->dtb_tomax + buf->dtb_offset, 11991 buf->dtb_size - buf->dtb_offset); 11992 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11993 } 11994 } 11995 11996 /* 11997 * This routine determines if data generated at the specified time has likely 11998 * been entirely consumed at user-level. This routine is called to determine 11999 * if an ECB on a defunct probe (but for an active enabling) can be safely 12000 * disabled and destroyed. 12001 */ 12002 static int 12003 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 12004 { 12005 int i; 12006 12007 for (i = 0; i < NCPU; i++) { 12008 dtrace_buffer_t *buf = &bufs[i]; 12009 12010 if (buf->dtb_size == 0) 12011 continue; 12012 12013 if (buf->dtb_flags & DTRACEBUF_RING) 12014 return (0); 12015 12016 if (!buf->dtb_switched && buf->dtb_offset != 0) 12017 return (0); 12018 12019 if (buf->dtb_switched - buf->dtb_interval < when) 12020 return (0); 12021 } 12022 12023 return (1); 12024 } 12025 12026 static void 12027 dtrace_buffer_free(dtrace_buffer_t *bufs) 12028 { 12029 int i; 12030 12031 for (i = 0; i < NCPU; i++) { 12032 dtrace_buffer_t *buf = &bufs[i]; 12033 12034 if (buf->dtb_tomax == NULL) { 12035 ASSERT(buf->dtb_xamot == NULL); 12036 ASSERT(buf->dtb_size == 0); 12037 continue; 12038 } 12039 12040 if (buf->dtb_xamot != NULL) { 12041 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 12042 kmem_free(buf->dtb_xamot, buf->dtb_size); 12043 } 12044 12045 kmem_free(buf->dtb_tomax, buf->dtb_size); 12046 buf->dtb_size = 0; 12047 buf->dtb_tomax = NULL; 12048 buf->dtb_xamot = NULL; 12049 } 12050 } 12051 12052 /* 12053 * DTrace Enabling Functions 12054 */ 12055 static dtrace_enabling_t * 12056 dtrace_enabling_create(dtrace_vstate_t *vstate) 12057 { 12058 dtrace_enabling_t *enab; 12059 12060 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 12061 enab->dten_vstate = vstate; 12062 12063 return (enab); 12064 } 12065 12066 static void 12067 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 12068 { 12069 dtrace_ecbdesc_t **ndesc; 12070 size_t osize, nsize; 12071 12072 /* 12073 * We can't add to enablings after we've enabled them, or after we've 12074 * retained them. 12075 */ 12076 ASSERT(enab->dten_probegen == 0); 12077 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12078 12079 if (enab->dten_ndesc < enab->dten_maxdesc) { 12080 enab->dten_desc[enab->dten_ndesc++] = ecb; 12081 return; 12082 } 12083 12084 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12085 12086 if (enab->dten_maxdesc == 0) { 12087 enab->dten_maxdesc = 1; 12088 } else { 12089 enab->dten_maxdesc <<= 1; 12090 } 12091 12092 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 12093 12094 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 12095 ndesc = kmem_zalloc(nsize, KM_SLEEP); 12096 bcopy(enab->dten_desc, ndesc, osize); 12097 kmem_free(enab->dten_desc, osize); 12098 12099 enab->dten_desc = ndesc; 12100 enab->dten_desc[enab->dten_ndesc++] = ecb; 12101 } 12102 12103 static void 12104 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 12105 dtrace_probedesc_t *pd) 12106 { 12107 dtrace_ecbdesc_t *new; 12108 dtrace_predicate_t *pred; 12109 dtrace_actdesc_t *act; 12110 12111 /* 12112 * We're going to create a new ECB description that matches the 12113 * specified ECB in every way, but has the specified probe description. 12114 */ 12115 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12116 12117 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 12118 dtrace_predicate_hold(pred); 12119 12120 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 12121 dtrace_actdesc_hold(act); 12122 12123 new->dted_action = ecb->dted_action; 12124 new->dted_pred = ecb->dted_pred; 12125 new->dted_probe = *pd; 12126 new->dted_uarg = ecb->dted_uarg; 12127 12128 dtrace_enabling_add(enab, new); 12129 } 12130 12131 static void 12132 dtrace_enabling_dump(dtrace_enabling_t *enab) 12133 { 12134 int i; 12135 12136 for (i = 0; i < enab->dten_ndesc; i++) { 12137 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 12138 12139 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 12140 desc->dtpd_provider, desc->dtpd_mod, 12141 desc->dtpd_func, desc->dtpd_name); 12142 } 12143 } 12144 12145 static void 12146 dtrace_enabling_destroy(dtrace_enabling_t *enab) 12147 { 12148 int i; 12149 dtrace_ecbdesc_t *ep; 12150 dtrace_vstate_t *vstate = enab->dten_vstate; 12151 12152 ASSERT(MUTEX_HELD(&dtrace_lock)); 12153 12154 for (i = 0; i < enab->dten_ndesc; i++) { 12155 dtrace_actdesc_t *act, *next; 12156 dtrace_predicate_t *pred; 12157 12158 ep = enab->dten_desc[i]; 12159 12160 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 12161 dtrace_predicate_release(pred, vstate); 12162 12163 for (act = ep->dted_action; act != NULL; act = next) { 12164 next = act->dtad_next; 12165 dtrace_actdesc_release(act, vstate); 12166 } 12167 12168 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12169 } 12170 12171 kmem_free(enab->dten_desc, 12172 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 12173 12174 /* 12175 * If this was a retained enabling, decrement the dts_nretained count 12176 * and take it off of the dtrace_retained list. 12177 */ 12178 if (enab->dten_prev != NULL || enab->dten_next != NULL || 12179 dtrace_retained == enab) { 12180 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12181 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 12182 enab->dten_vstate->dtvs_state->dts_nretained--; 12183 dtrace_retained_gen++; 12184 } 12185 12186 if (enab->dten_prev == NULL) { 12187 if (dtrace_retained == enab) { 12188 dtrace_retained = enab->dten_next; 12189 12190 if (dtrace_retained != NULL) 12191 dtrace_retained->dten_prev = NULL; 12192 } 12193 } else { 12194 ASSERT(enab != dtrace_retained); 12195 ASSERT(dtrace_retained != NULL); 12196 enab->dten_prev->dten_next = enab->dten_next; 12197 } 12198 12199 if (enab->dten_next != NULL) { 12200 ASSERT(dtrace_retained != NULL); 12201 enab->dten_next->dten_prev = enab->dten_prev; 12202 } 12203 12204 kmem_free(enab, sizeof (dtrace_enabling_t)); 12205 } 12206 12207 static int 12208 dtrace_enabling_retain(dtrace_enabling_t *enab) 12209 { 12210 dtrace_state_t *state; 12211 12212 ASSERT(MUTEX_HELD(&dtrace_lock)); 12213 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 12214 ASSERT(enab->dten_vstate != NULL); 12215 12216 state = enab->dten_vstate->dtvs_state; 12217 ASSERT(state != NULL); 12218 12219 /* 12220 * We only allow each state to retain dtrace_retain_max enablings. 12221 */ 12222 if (state->dts_nretained >= dtrace_retain_max) 12223 return (ENOSPC); 12224 12225 state->dts_nretained++; 12226 dtrace_retained_gen++; 12227 12228 if (dtrace_retained == NULL) { 12229 dtrace_retained = enab; 12230 return (0); 12231 } 12232 12233 enab->dten_next = dtrace_retained; 12234 dtrace_retained->dten_prev = enab; 12235 dtrace_retained = enab; 12236 12237 return (0); 12238 } 12239 12240 static int 12241 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 12242 dtrace_probedesc_t *create) 12243 { 12244 dtrace_enabling_t *new, *enab; 12245 int found = 0, err = ENOENT; 12246 12247 ASSERT(MUTEX_HELD(&dtrace_lock)); 12248 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 12249 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 12250 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 12251 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 12252 12253 new = dtrace_enabling_create(&state->dts_vstate); 12254 12255 /* 12256 * Iterate over all retained enablings, looking for enablings that 12257 * match the specified state. 12258 */ 12259 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12260 int i; 12261 12262 /* 12263 * dtvs_state can only be NULL for helper enablings -- and 12264 * helper enablings can't be retained. 12265 */ 12266 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12267 12268 if (enab->dten_vstate->dtvs_state != state) 12269 continue; 12270 12271 /* 12272 * Now iterate over each probe description; we're looking for 12273 * an exact match to the specified probe description. 12274 */ 12275 for (i = 0; i < enab->dten_ndesc; i++) { 12276 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12277 dtrace_probedesc_t *pd = &ep->dted_probe; 12278 12279 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 12280 continue; 12281 12282 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 12283 continue; 12284 12285 if (strcmp(pd->dtpd_func, match->dtpd_func)) 12286 continue; 12287 12288 if (strcmp(pd->dtpd_name, match->dtpd_name)) 12289 continue; 12290 12291 /* 12292 * We have a winning probe! Add it to our growing 12293 * enabling. 12294 */ 12295 found = 1; 12296 dtrace_enabling_addlike(new, ep, create); 12297 } 12298 } 12299 12300 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 12301 dtrace_enabling_destroy(new); 12302 return (err); 12303 } 12304 12305 return (0); 12306 } 12307 12308 static void 12309 dtrace_enabling_retract(dtrace_state_t *state) 12310 { 12311 dtrace_enabling_t *enab, *next; 12312 12313 ASSERT(MUTEX_HELD(&dtrace_lock)); 12314 12315 /* 12316 * Iterate over all retained enablings, destroy the enablings retained 12317 * for the specified state. 12318 */ 12319 for (enab = dtrace_retained; enab != NULL; enab = next) { 12320 next = enab->dten_next; 12321 12322 /* 12323 * dtvs_state can only be NULL for helper enablings -- and 12324 * helper enablings can't be retained. 12325 */ 12326 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12327 12328 if (enab->dten_vstate->dtvs_state == state) { 12329 ASSERT(state->dts_nretained > 0); 12330 dtrace_enabling_destroy(enab); 12331 } 12332 } 12333 12334 ASSERT(state->dts_nretained == 0); 12335 } 12336 12337 static int 12338 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 12339 { 12340 int i = 0; 12341 int total_matched = 0, matched = 0; 12342 12343 ASSERT(MUTEX_HELD(&cpu_lock)); 12344 ASSERT(MUTEX_HELD(&dtrace_lock)); 12345 12346 for (i = 0; i < enab->dten_ndesc; i++) { 12347 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 12348 12349 enab->dten_current = ep; 12350 enab->dten_error = 0; 12351 12352 /* 12353 * If a provider failed to enable a probe then get out and 12354 * let the consumer know we failed. 12355 */ 12356 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 12357 return (EBUSY); 12358 12359 total_matched += matched; 12360 12361 if (enab->dten_error != 0) { 12362 /* 12363 * If we get an error half-way through enabling the 12364 * probes, we kick out -- perhaps with some number of 12365 * them enabled. Leaving enabled probes enabled may 12366 * be slightly confusing for user-level, but we expect 12367 * that no one will attempt to actually drive on in 12368 * the face of such errors. If this is an anonymous 12369 * enabling (indicated with a NULL nmatched pointer), 12370 * we cmn_err() a message. We aren't expecting to 12371 * get such an error -- such as it can exist at all, 12372 * it would be a result of corrupted DOF in the driver 12373 * properties. 12374 */ 12375 if (nmatched == NULL) { 12376 cmn_err(CE_WARN, "dtrace_enabling_match() " 12377 "error on %p: %d", (void *)ep, 12378 enab->dten_error); 12379 } 12380 12381 return (enab->dten_error); 12382 } 12383 } 12384 12385 enab->dten_probegen = dtrace_probegen; 12386 if (nmatched != NULL) 12387 *nmatched = total_matched; 12388 12389 return (0); 12390 } 12391 12392 static void 12393 dtrace_enabling_matchall(void) 12394 { 12395 dtrace_enabling_t *enab; 12396 12397 mutex_enter(&cpu_lock); 12398 mutex_enter(&dtrace_lock); 12399 12400 /* 12401 * Iterate over all retained enablings to see if any probes match 12402 * against them. We only perform this operation on enablings for which 12403 * we have sufficient permissions by virtue of being in the global zone 12404 * or in the same zone as the DTrace client. Because we can be called 12405 * after dtrace_detach() has been called, we cannot assert that there 12406 * are retained enablings. We can safely load from dtrace_retained, 12407 * however: the taskq_destroy() at the end of dtrace_detach() will 12408 * block pending our completion. 12409 */ 12410 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12411 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 12412 cred_t *cr = dcr->dcr_cred; 12413 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 12414 12415 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 12416 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 12417 (void) dtrace_enabling_match(enab, NULL); 12418 } 12419 12420 mutex_exit(&dtrace_lock); 12421 mutex_exit(&cpu_lock); 12422 } 12423 12424 /* 12425 * If an enabling is to be enabled without having matched probes (that is, if 12426 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12427 * enabling must be _primed_ by creating an ECB for every ECB description. 12428 * This must be done to assure that we know the number of speculations, the 12429 * number of aggregations, the minimum buffer size needed, etc. before we 12430 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12431 * enabling any probes, we create ECBs for every ECB decription, but with a 12432 * NULL probe -- which is exactly what this function does. 12433 */ 12434 static void 12435 dtrace_enabling_prime(dtrace_state_t *state) 12436 { 12437 dtrace_enabling_t *enab; 12438 int i; 12439 12440 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12441 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12442 12443 if (enab->dten_vstate->dtvs_state != state) 12444 continue; 12445 12446 /* 12447 * We don't want to prime an enabling more than once, lest 12448 * we allow a malicious user to induce resource exhaustion. 12449 * (The ECBs that result from priming an enabling aren't 12450 * leaked -- but they also aren't deallocated until the 12451 * consumer state is destroyed.) 12452 */ 12453 if (enab->dten_primed) 12454 continue; 12455 12456 for (i = 0; i < enab->dten_ndesc; i++) { 12457 enab->dten_current = enab->dten_desc[i]; 12458 (void) dtrace_probe_enable(NULL, enab); 12459 } 12460 12461 enab->dten_primed = 1; 12462 } 12463 } 12464 12465 /* 12466 * Called to indicate that probes should be provided due to retained 12467 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12468 * must take an initial lap through the enabling calling the dtps_provide() 12469 * entry point explicitly to allow for autocreated probes. 12470 */ 12471 static void 12472 dtrace_enabling_provide(dtrace_provider_t *prv) 12473 { 12474 int i, all = 0; 12475 dtrace_probedesc_t desc; 12476 dtrace_genid_t gen; 12477 12478 ASSERT(MUTEX_HELD(&dtrace_lock)); 12479 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12480 12481 if (prv == NULL) { 12482 all = 1; 12483 prv = dtrace_provider; 12484 } 12485 12486 do { 12487 dtrace_enabling_t *enab; 12488 void *parg = prv->dtpv_arg; 12489 12490 retry: 12491 gen = dtrace_retained_gen; 12492 for (enab = dtrace_retained; enab != NULL; 12493 enab = enab->dten_next) { 12494 for (i = 0; i < enab->dten_ndesc; i++) { 12495 desc = enab->dten_desc[i]->dted_probe; 12496 mutex_exit(&dtrace_lock); 12497 prv->dtpv_pops.dtps_provide(parg, &desc); 12498 mutex_enter(&dtrace_lock); 12499 /* 12500 * Process the retained enablings again if 12501 * they have changed while we weren't holding 12502 * dtrace_lock. 12503 */ 12504 if (gen != dtrace_retained_gen) 12505 goto retry; 12506 } 12507 } 12508 } while (all && (prv = prv->dtpv_next) != NULL); 12509 12510 mutex_exit(&dtrace_lock); 12511 dtrace_probe_provide(NULL, all ? NULL : prv); 12512 mutex_enter(&dtrace_lock); 12513 } 12514 12515 /* 12516 * Called to reap ECBs that are attached to probes from defunct providers. 12517 */ 12518 static void 12519 dtrace_enabling_reap(void) 12520 { 12521 dtrace_provider_t *prov; 12522 dtrace_probe_t *probe; 12523 dtrace_ecb_t *ecb; 12524 hrtime_t when; 12525 int i; 12526 12527 mutex_enter(&cpu_lock); 12528 mutex_enter(&dtrace_lock); 12529 12530 for (i = 0; i < dtrace_nprobes; i++) { 12531 if ((probe = dtrace_probes[i]) == NULL) 12532 continue; 12533 12534 if (probe->dtpr_ecb == NULL) 12535 continue; 12536 12537 prov = probe->dtpr_provider; 12538 12539 if ((when = prov->dtpv_defunct) == 0) 12540 continue; 12541 12542 /* 12543 * We have ECBs on a defunct provider: we want to reap these 12544 * ECBs to allow the provider to unregister. The destruction 12545 * of these ECBs must be done carefully: if we destroy the ECB 12546 * and the consumer later wishes to consume an EPID that 12547 * corresponds to the destroyed ECB (and if the EPID metadata 12548 * has not been previously consumed), the consumer will abort 12549 * processing on the unknown EPID. To reduce (but not, sadly, 12550 * eliminate) the possibility of this, we will only destroy an 12551 * ECB for a defunct provider if, for the state that 12552 * corresponds to the ECB: 12553 * 12554 * (a) There is no speculative tracing (which can effectively 12555 * cache an EPID for an arbitrary amount of time). 12556 * 12557 * (b) The principal buffers have been switched twice since the 12558 * provider became defunct. 12559 * 12560 * (c) The aggregation buffers are of zero size or have been 12561 * switched twice since the provider became defunct. 12562 * 12563 * We use dts_speculates to determine (a) and call a function 12564 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12565 * that as soon as we've been unable to destroy one of the ECBs 12566 * associated with the probe, we quit trying -- reaping is only 12567 * fruitful in as much as we can destroy all ECBs associated 12568 * with the defunct provider's probes. 12569 */ 12570 while ((ecb = probe->dtpr_ecb) != NULL) { 12571 dtrace_state_t *state = ecb->dte_state; 12572 dtrace_buffer_t *buf = state->dts_buffer; 12573 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12574 12575 if (state->dts_speculates) 12576 break; 12577 12578 if (!dtrace_buffer_consumed(buf, when)) 12579 break; 12580 12581 if (!dtrace_buffer_consumed(aggbuf, when)) 12582 break; 12583 12584 dtrace_ecb_disable(ecb); 12585 ASSERT(probe->dtpr_ecb != ecb); 12586 12587 /* 12588 * Before we can destroy the ECB, we need to issue a 12589 * sync to assure that no CPU is processing it. 12590 */ 12591 dtrace_sync(); 12592 dtrace_ecb_destroy(ecb); 12593 } 12594 } 12595 12596 mutex_exit(&dtrace_lock); 12597 mutex_exit(&cpu_lock); 12598 } 12599 12600 /* 12601 * DTrace DOF Functions 12602 */ 12603 /*ARGSUSED*/ 12604 static void 12605 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12606 { 12607 if (dtrace_err_verbose) 12608 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12609 12610 #ifdef DTRACE_ERRDEBUG 12611 dtrace_errdebug(str); 12612 #endif 12613 } 12614 12615 /* 12616 * Create DOF out of a currently enabled state. Right now, we only create 12617 * DOF containing the run-time options -- but this could be expanded to create 12618 * complete DOF representing the enabled state. 12619 */ 12620 static dof_hdr_t * 12621 dtrace_dof_create(dtrace_state_t *state) 12622 { 12623 dof_hdr_t *dof; 12624 dof_sec_t *sec; 12625 dof_optdesc_t *opt; 12626 int i, len = sizeof (dof_hdr_t) + 12627 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12628 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12629 12630 ASSERT(MUTEX_HELD(&dtrace_lock)); 12631 12632 dof = kmem_zalloc(len, KM_SLEEP); 12633 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12634 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12635 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12636 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12637 12638 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12639 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12640 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12641 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12642 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12643 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12644 12645 dof->dofh_flags = 0; 12646 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12647 dof->dofh_secsize = sizeof (dof_sec_t); 12648 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12649 dof->dofh_secoff = sizeof (dof_hdr_t); 12650 dof->dofh_loadsz = len; 12651 dof->dofh_filesz = len; 12652 dof->dofh_pad = 0; 12653 12654 /* 12655 * Fill in the option section header... 12656 */ 12657 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12658 sec->dofs_type = DOF_SECT_OPTDESC; 12659 sec->dofs_align = sizeof (uint64_t); 12660 sec->dofs_flags = DOF_SECF_LOAD; 12661 sec->dofs_entsize = sizeof (dof_optdesc_t); 12662 12663 opt = (dof_optdesc_t *)((uintptr_t)sec + 12664 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12665 12666 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12667 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12668 12669 for (i = 0; i < DTRACEOPT_MAX; i++) { 12670 opt[i].dofo_option = i; 12671 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12672 opt[i].dofo_value = state->dts_options[i]; 12673 } 12674 12675 return (dof); 12676 } 12677 12678 static dof_hdr_t * 12679 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12680 { 12681 dof_hdr_t hdr, *dof; 12682 12683 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12684 12685 /* 12686 * First, we're going to copyin() the sizeof (dof_hdr_t). 12687 */ 12688 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12689 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12690 *errp = EFAULT; 12691 return (NULL); 12692 } 12693 12694 /* 12695 * Now we'll allocate the entire DOF and copy it in -- provided 12696 * that the length isn't outrageous. 12697 */ 12698 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12699 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12700 *errp = E2BIG; 12701 return (NULL); 12702 } 12703 12704 if (hdr.dofh_loadsz < sizeof (hdr)) { 12705 dtrace_dof_error(&hdr, "invalid load size"); 12706 *errp = EINVAL; 12707 return (NULL); 12708 } 12709 12710 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12711 12712 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12713 dof->dofh_loadsz != hdr.dofh_loadsz) { 12714 kmem_free(dof, hdr.dofh_loadsz); 12715 *errp = EFAULT; 12716 return (NULL); 12717 } 12718 12719 return (dof); 12720 } 12721 12722 static dof_hdr_t * 12723 dtrace_dof_property(const char *name) 12724 { 12725 uchar_t *buf; 12726 uint64_t loadsz; 12727 unsigned int len, i; 12728 dof_hdr_t *dof; 12729 12730 /* 12731 * Unfortunately, array of values in .conf files are always (and 12732 * only) interpreted to be integer arrays. We must read our DOF 12733 * as an integer array, and then squeeze it into a byte array. 12734 */ 12735 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12736 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12737 return (NULL); 12738 12739 for (i = 0; i < len; i++) 12740 buf[i] = (uchar_t)(((int *)buf)[i]); 12741 12742 if (len < sizeof (dof_hdr_t)) { 12743 ddi_prop_free(buf); 12744 dtrace_dof_error(NULL, "truncated header"); 12745 return (NULL); 12746 } 12747 12748 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12749 ddi_prop_free(buf); 12750 dtrace_dof_error(NULL, "truncated DOF"); 12751 return (NULL); 12752 } 12753 12754 if (loadsz >= dtrace_dof_maxsize) { 12755 ddi_prop_free(buf); 12756 dtrace_dof_error(NULL, "oversized DOF"); 12757 return (NULL); 12758 } 12759 12760 dof = kmem_alloc(loadsz, KM_SLEEP); 12761 bcopy(buf, dof, loadsz); 12762 ddi_prop_free(buf); 12763 12764 return (dof); 12765 } 12766 12767 static void 12768 dtrace_dof_destroy(dof_hdr_t *dof) 12769 { 12770 kmem_free(dof, dof->dofh_loadsz); 12771 } 12772 12773 /* 12774 * Return the dof_sec_t pointer corresponding to a given section index. If the 12775 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12776 * a type other than DOF_SECT_NONE is specified, the header is checked against 12777 * this type and NULL is returned if the types do not match. 12778 */ 12779 static dof_sec_t * 12780 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12781 { 12782 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12783 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12784 12785 if (i >= dof->dofh_secnum) { 12786 dtrace_dof_error(dof, "referenced section index is invalid"); 12787 return (NULL); 12788 } 12789 12790 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12791 dtrace_dof_error(dof, "referenced section is not loadable"); 12792 return (NULL); 12793 } 12794 12795 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12796 dtrace_dof_error(dof, "referenced section is the wrong type"); 12797 return (NULL); 12798 } 12799 12800 return (sec); 12801 } 12802 12803 static dtrace_probedesc_t * 12804 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12805 { 12806 dof_probedesc_t *probe; 12807 dof_sec_t *strtab; 12808 uintptr_t daddr = (uintptr_t)dof; 12809 uintptr_t str; 12810 size_t size; 12811 12812 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12813 dtrace_dof_error(dof, "invalid probe section"); 12814 return (NULL); 12815 } 12816 12817 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12818 dtrace_dof_error(dof, "bad alignment in probe description"); 12819 return (NULL); 12820 } 12821 12822 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12823 dtrace_dof_error(dof, "truncated probe description"); 12824 return (NULL); 12825 } 12826 12827 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12828 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12829 12830 if (strtab == NULL) 12831 return (NULL); 12832 12833 str = daddr + strtab->dofs_offset; 12834 size = strtab->dofs_size; 12835 12836 if (probe->dofp_provider >= strtab->dofs_size) { 12837 dtrace_dof_error(dof, "corrupt probe provider"); 12838 return (NULL); 12839 } 12840 12841 (void) strncpy(desc->dtpd_provider, 12842 (char *)(str + probe->dofp_provider), 12843 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12844 12845 if (probe->dofp_mod >= strtab->dofs_size) { 12846 dtrace_dof_error(dof, "corrupt probe module"); 12847 return (NULL); 12848 } 12849 12850 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12851 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12852 12853 if (probe->dofp_func >= strtab->dofs_size) { 12854 dtrace_dof_error(dof, "corrupt probe function"); 12855 return (NULL); 12856 } 12857 12858 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12859 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12860 12861 if (probe->dofp_name >= strtab->dofs_size) { 12862 dtrace_dof_error(dof, "corrupt probe name"); 12863 return (NULL); 12864 } 12865 12866 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12867 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12868 12869 return (desc); 12870 } 12871 12872 static dtrace_difo_t * 12873 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12874 cred_t *cr) 12875 { 12876 dtrace_difo_t *dp; 12877 size_t ttl = 0; 12878 dof_difohdr_t *dofd; 12879 uintptr_t daddr = (uintptr_t)dof; 12880 size_t max = dtrace_difo_maxsize; 12881 int i, l, n; 12882 12883 static const struct { 12884 int section; 12885 int bufoffs; 12886 int lenoffs; 12887 int entsize; 12888 int align; 12889 const char *msg; 12890 } difo[] = { 12891 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12892 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12893 sizeof (dif_instr_t), "multiple DIF sections" }, 12894 12895 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12896 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12897 sizeof (uint64_t), "multiple integer tables" }, 12898 12899 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12900 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12901 sizeof (char), "multiple string tables" }, 12902 12903 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12904 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12905 sizeof (uint_t), "multiple variable tables" }, 12906 12907 { DOF_SECT_NONE, 0, 0, 0, 0, NULL } 12908 }; 12909 12910 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12911 dtrace_dof_error(dof, "invalid DIFO header section"); 12912 return (NULL); 12913 } 12914 12915 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12916 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12917 return (NULL); 12918 } 12919 12920 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12921 sec->dofs_size % sizeof (dof_secidx_t)) { 12922 dtrace_dof_error(dof, "bad size in DIFO header"); 12923 return (NULL); 12924 } 12925 12926 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12927 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12928 12929 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12930 dp->dtdo_rtype = dofd->dofd_rtype; 12931 12932 for (l = 0; l < n; l++) { 12933 dof_sec_t *subsec; 12934 void **bufp; 12935 uint32_t *lenp; 12936 12937 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12938 dofd->dofd_links[l])) == NULL) 12939 goto err; /* invalid section link */ 12940 12941 if (ttl + subsec->dofs_size > max) { 12942 dtrace_dof_error(dof, "exceeds maximum size"); 12943 goto err; 12944 } 12945 12946 ttl += subsec->dofs_size; 12947 12948 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12949 if (subsec->dofs_type != difo[i].section) 12950 continue; 12951 12952 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12953 dtrace_dof_error(dof, "section not loaded"); 12954 goto err; 12955 } 12956 12957 if (subsec->dofs_align != difo[i].align) { 12958 dtrace_dof_error(dof, "bad alignment"); 12959 goto err; 12960 } 12961 12962 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12963 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12964 12965 if (*bufp != NULL) { 12966 dtrace_dof_error(dof, difo[i].msg); 12967 goto err; 12968 } 12969 12970 if (difo[i].entsize != subsec->dofs_entsize) { 12971 dtrace_dof_error(dof, "entry size mismatch"); 12972 goto err; 12973 } 12974 12975 if (subsec->dofs_entsize != 0 && 12976 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12977 dtrace_dof_error(dof, "corrupt entry size"); 12978 goto err; 12979 } 12980 12981 *lenp = subsec->dofs_size; 12982 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12983 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12984 *bufp, subsec->dofs_size); 12985 12986 if (subsec->dofs_entsize != 0) 12987 *lenp /= subsec->dofs_entsize; 12988 12989 break; 12990 } 12991 12992 /* 12993 * If we encounter a loadable DIFO sub-section that is not 12994 * known to us, assume this is a broken program and fail. 12995 */ 12996 if (difo[i].section == DOF_SECT_NONE && 12997 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12998 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12999 goto err; 13000 } 13001 } 13002 13003 if (dp->dtdo_buf == NULL) { 13004 /* 13005 * We can't have a DIF object without DIF text. 13006 */ 13007 dtrace_dof_error(dof, "missing DIF text"); 13008 goto err; 13009 } 13010 13011 /* 13012 * Before we validate the DIF object, run through the variable table 13013 * looking for the strings -- if any of their size are under, we'll set 13014 * their size to be the system-wide default string size. Note that 13015 * this should _not_ happen if the "strsize" option has been set -- 13016 * in this case, the compiler should have set the size to reflect the 13017 * setting of the option. 13018 */ 13019 for (i = 0; i < dp->dtdo_varlen; i++) { 13020 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 13021 dtrace_diftype_t *t = &v->dtdv_type; 13022 13023 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 13024 continue; 13025 13026 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 13027 t->dtdt_size = dtrace_strsize_default; 13028 } 13029 13030 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 13031 goto err; 13032 13033 dtrace_difo_init(dp, vstate); 13034 return (dp); 13035 13036 err: 13037 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 13038 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 13039 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 13040 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 13041 13042 kmem_free(dp, sizeof (dtrace_difo_t)); 13043 return (NULL); 13044 } 13045 13046 static dtrace_predicate_t * 13047 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13048 cred_t *cr) 13049 { 13050 dtrace_difo_t *dp; 13051 13052 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 13053 return (NULL); 13054 13055 return (dtrace_predicate_create(dp)); 13056 } 13057 13058 static dtrace_actdesc_t * 13059 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13060 cred_t *cr) 13061 { 13062 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 13063 dof_actdesc_t *desc; 13064 dof_sec_t *difosec; 13065 size_t offs; 13066 uintptr_t daddr = (uintptr_t)dof; 13067 uint64_t arg; 13068 dtrace_actkind_t kind; 13069 13070 if (sec->dofs_type != DOF_SECT_ACTDESC) { 13071 dtrace_dof_error(dof, "invalid action section"); 13072 return (NULL); 13073 } 13074 13075 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 13076 dtrace_dof_error(dof, "truncated action description"); 13077 return (NULL); 13078 } 13079 13080 if (sec->dofs_align != sizeof (uint64_t)) { 13081 dtrace_dof_error(dof, "bad alignment in action description"); 13082 return (NULL); 13083 } 13084 13085 if (sec->dofs_size < sec->dofs_entsize) { 13086 dtrace_dof_error(dof, "section entry size exceeds total size"); 13087 return (NULL); 13088 } 13089 13090 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 13091 dtrace_dof_error(dof, "bad entry size in action description"); 13092 return (NULL); 13093 } 13094 13095 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 13096 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 13097 return (NULL); 13098 } 13099 13100 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 13101 desc = (dof_actdesc_t *)(daddr + 13102 (uintptr_t)sec->dofs_offset + offs); 13103 kind = (dtrace_actkind_t)desc->dofa_kind; 13104 13105 if ((DTRACEACT_ISPRINTFLIKE(kind) && 13106 (kind != DTRACEACT_PRINTA || 13107 desc->dofa_strtab != DOF_SECIDX_NONE)) || 13108 (kind == DTRACEACT_DIFEXPR && 13109 desc->dofa_strtab != DOF_SECIDX_NONE)) { 13110 dof_sec_t *strtab; 13111 char *str, *fmt; 13112 uint64_t i; 13113 13114 /* 13115 * The argument to these actions is an index into the 13116 * DOF string table. For printf()-like actions, this 13117 * is the format string. For print(), this is the 13118 * CTF type of the expression result. 13119 */ 13120 if ((strtab = dtrace_dof_sect(dof, 13121 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 13122 goto err; 13123 13124 str = (char *)((uintptr_t)dof + 13125 (uintptr_t)strtab->dofs_offset); 13126 13127 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 13128 if (str[i] == '\0') 13129 break; 13130 } 13131 13132 if (i >= strtab->dofs_size) { 13133 dtrace_dof_error(dof, "bogus format string"); 13134 goto err; 13135 } 13136 13137 if (i == desc->dofa_arg) { 13138 dtrace_dof_error(dof, "empty format string"); 13139 goto err; 13140 } 13141 13142 i -= desc->dofa_arg; 13143 fmt = kmem_alloc(i + 1, KM_SLEEP); 13144 bcopy(&str[desc->dofa_arg], fmt, i + 1); 13145 arg = (uint64_t)(uintptr_t)fmt; 13146 } else { 13147 if (kind == DTRACEACT_PRINTA) { 13148 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 13149 arg = 0; 13150 } else { 13151 arg = desc->dofa_arg; 13152 } 13153 } 13154 13155 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 13156 desc->dofa_uarg, arg); 13157 13158 if (last != NULL) { 13159 last->dtad_next = act; 13160 } else { 13161 first = act; 13162 } 13163 13164 last = act; 13165 13166 if (desc->dofa_difo == DOF_SECIDX_NONE) 13167 continue; 13168 13169 if ((difosec = dtrace_dof_sect(dof, 13170 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 13171 goto err; 13172 13173 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 13174 13175 if (act->dtad_difo == NULL) 13176 goto err; 13177 } 13178 13179 ASSERT(first != NULL); 13180 return (first); 13181 13182 err: 13183 for (act = first; act != NULL; act = next) { 13184 next = act->dtad_next; 13185 dtrace_actdesc_release(act, vstate); 13186 } 13187 13188 return (NULL); 13189 } 13190 13191 static dtrace_ecbdesc_t * 13192 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 13193 cred_t *cr) 13194 { 13195 dtrace_ecbdesc_t *ep; 13196 dof_ecbdesc_t *ecb; 13197 dtrace_probedesc_t *desc; 13198 dtrace_predicate_t *pred = NULL; 13199 13200 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 13201 dtrace_dof_error(dof, "truncated ECB description"); 13202 return (NULL); 13203 } 13204 13205 if (sec->dofs_align != sizeof (uint64_t)) { 13206 dtrace_dof_error(dof, "bad alignment in ECB description"); 13207 return (NULL); 13208 } 13209 13210 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 13211 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 13212 13213 if (sec == NULL) 13214 return (NULL); 13215 13216 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 13217 ep->dted_uarg = ecb->dofe_uarg; 13218 desc = &ep->dted_probe; 13219 13220 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 13221 goto err; 13222 13223 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 13224 if ((sec = dtrace_dof_sect(dof, 13225 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 13226 goto err; 13227 13228 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 13229 goto err; 13230 13231 ep->dted_pred.dtpdd_predicate = pred; 13232 } 13233 13234 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 13235 if ((sec = dtrace_dof_sect(dof, 13236 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 13237 goto err; 13238 13239 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 13240 13241 if (ep->dted_action == NULL) 13242 goto err; 13243 } 13244 13245 return (ep); 13246 13247 err: 13248 if (pred != NULL) 13249 dtrace_predicate_release(pred, vstate); 13250 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 13251 return (NULL); 13252 } 13253 13254 /* 13255 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 13256 * specified DOF. At present, this amounts to simply adding 'ubase' to the 13257 * site of any user SETX relocations to account for load object base address. 13258 * In the future, if we need other relocations, this function can be extended. 13259 */ 13260 static int 13261 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 13262 { 13263 uintptr_t daddr = (uintptr_t)dof; 13264 uintptr_t ts_end; 13265 dof_relohdr_t *dofr = 13266 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 13267 dof_sec_t *ss, *rs, *ts; 13268 dof_relodesc_t *r; 13269 uint_t i, n; 13270 13271 if (sec->dofs_size < sizeof (dof_relohdr_t) || 13272 sec->dofs_align != sizeof (dof_secidx_t)) { 13273 dtrace_dof_error(dof, "invalid relocation header"); 13274 return (-1); 13275 } 13276 13277 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 13278 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 13279 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 13280 ts_end = (uintptr_t)ts + sizeof (dof_sec_t); 13281 13282 if (ss == NULL || rs == NULL || ts == NULL) 13283 return (-1); /* dtrace_dof_error() has been called already */ 13284 13285 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 13286 rs->dofs_align != sizeof (uint64_t)) { 13287 dtrace_dof_error(dof, "invalid relocation section"); 13288 return (-1); 13289 } 13290 13291 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 13292 n = rs->dofs_size / rs->dofs_entsize; 13293 13294 for (i = 0; i < n; i++) { 13295 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 13296 13297 switch (r->dofr_type) { 13298 case DOF_RELO_NONE: 13299 break; 13300 case DOF_RELO_SETX: 13301 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 13302 sizeof (uint64_t) > ts->dofs_size) { 13303 dtrace_dof_error(dof, "bad relocation offset"); 13304 return (-1); 13305 } 13306 13307 if (taddr >= (uintptr_t)ts && taddr < ts_end) { 13308 dtrace_dof_error(dof, "bad relocation offset"); 13309 return (-1); 13310 } 13311 13312 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 13313 dtrace_dof_error(dof, "misaligned setx relo"); 13314 return (-1); 13315 } 13316 13317 *(uint64_t *)taddr += ubase; 13318 break; 13319 default: 13320 dtrace_dof_error(dof, "invalid relocation type"); 13321 return (-1); 13322 } 13323 13324 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 13325 } 13326 13327 return (0); 13328 } 13329 13330 /* 13331 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 13332 * header: it should be at the front of a memory region that is at least 13333 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 13334 * size. It need not be validated in any other way. 13335 */ 13336 static int 13337 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 13338 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 13339 { 13340 uint64_t len = dof->dofh_loadsz, seclen; 13341 uintptr_t daddr = (uintptr_t)dof; 13342 dtrace_ecbdesc_t *ep; 13343 dtrace_enabling_t *enab; 13344 uint_t i; 13345 13346 ASSERT(MUTEX_HELD(&dtrace_lock)); 13347 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 13348 13349 /* 13350 * Check the DOF header identification bytes. In addition to checking 13351 * valid settings, we also verify that unused bits/bytes are zeroed so 13352 * we can use them later without fear of regressing existing binaries. 13353 */ 13354 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 13355 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 13356 dtrace_dof_error(dof, "DOF magic string mismatch"); 13357 return (-1); 13358 } 13359 13360 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 13361 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 13362 dtrace_dof_error(dof, "DOF has invalid data model"); 13363 return (-1); 13364 } 13365 13366 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 13367 dtrace_dof_error(dof, "DOF encoding mismatch"); 13368 return (-1); 13369 } 13370 13371 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 13372 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 13373 dtrace_dof_error(dof, "DOF version mismatch"); 13374 return (-1); 13375 } 13376 13377 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 13378 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 13379 return (-1); 13380 } 13381 13382 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 13383 dtrace_dof_error(dof, "DOF uses too many integer registers"); 13384 return (-1); 13385 } 13386 13387 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 13388 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 13389 return (-1); 13390 } 13391 13392 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 13393 if (dof->dofh_ident[i] != 0) { 13394 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 13395 return (-1); 13396 } 13397 } 13398 13399 if (dof->dofh_flags & ~DOF_FL_VALID) { 13400 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 13401 return (-1); 13402 } 13403 13404 if (dof->dofh_secsize == 0) { 13405 dtrace_dof_error(dof, "zero section header size"); 13406 return (-1); 13407 } 13408 13409 /* 13410 * Check that the section headers don't exceed the amount of DOF 13411 * data. Note that we cast the section size and number of sections 13412 * to uint64_t's to prevent possible overflow in the multiplication. 13413 */ 13414 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 13415 13416 if (dof->dofh_secoff > len || seclen > len || 13417 dof->dofh_secoff + seclen > len) { 13418 dtrace_dof_error(dof, "truncated section headers"); 13419 return (-1); 13420 } 13421 13422 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 13423 dtrace_dof_error(dof, "misaligned section headers"); 13424 return (-1); 13425 } 13426 13427 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13428 dtrace_dof_error(dof, "misaligned section size"); 13429 return (-1); 13430 } 13431 13432 /* 13433 * Take an initial pass through the section headers to be sure that 13434 * the headers don't have stray offsets. If the 'noprobes' flag is 13435 * set, do not permit sections relating to providers, probes, or args. 13436 */ 13437 for (i = 0; i < dof->dofh_secnum; i++) { 13438 dof_sec_t *sec = (dof_sec_t *)(daddr + 13439 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13440 13441 if (noprobes) { 13442 switch (sec->dofs_type) { 13443 case DOF_SECT_PROVIDER: 13444 case DOF_SECT_PROBES: 13445 case DOF_SECT_PRARGS: 13446 case DOF_SECT_PROFFS: 13447 dtrace_dof_error(dof, "illegal sections " 13448 "for enabling"); 13449 return (-1); 13450 } 13451 } 13452 13453 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13454 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13455 dtrace_dof_error(dof, "loadable section with load " 13456 "flag unset"); 13457 return (-1); 13458 } 13459 13460 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13461 continue; /* just ignore non-loadable sections */ 13462 13463 if (!ISP2(sec->dofs_align)) { 13464 dtrace_dof_error(dof, "bad section alignment"); 13465 return (-1); 13466 } 13467 13468 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13469 dtrace_dof_error(dof, "misaligned section"); 13470 return (-1); 13471 } 13472 13473 if (sec->dofs_offset > len || sec->dofs_size > len || 13474 sec->dofs_offset + sec->dofs_size > len) { 13475 dtrace_dof_error(dof, "corrupt section header"); 13476 return (-1); 13477 } 13478 13479 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13480 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13481 dtrace_dof_error(dof, "non-terminating string table"); 13482 return (-1); 13483 } 13484 } 13485 13486 /* 13487 * Take a second pass through the sections and locate and perform any 13488 * relocations that are present. We do this after the first pass to 13489 * be sure that all sections have had their headers validated. 13490 */ 13491 for (i = 0; i < dof->dofh_secnum; i++) { 13492 dof_sec_t *sec = (dof_sec_t *)(daddr + 13493 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13494 13495 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13496 continue; /* skip sections that are not loadable */ 13497 13498 switch (sec->dofs_type) { 13499 case DOF_SECT_URELHDR: 13500 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13501 return (-1); 13502 break; 13503 } 13504 } 13505 13506 if ((enab = *enabp) == NULL) 13507 enab = *enabp = dtrace_enabling_create(vstate); 13508 13509 for (i = 0; i < dof->dofh_secnum; i++) { 13510 dof_sec_t *sec = (dof_sec_t *)(daddr + 13511 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13512 13513 if (sec->dofs_type != DOF_SECT_ECBDESC) 13514 continue; 13515 13516 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13517 dtrace_enabling_destroy(enab); 13518 *enabp = NULL; 13519 return (-1); 13520 } 13521 13522 dtrace_enabling_add(enab, ep); 13523 } 13524 13525 return (0); 13526 } 13527 13528 /* 13529 * Process DOF for any options. This routine assumes that the DOF has been 13530 * at least processed by dtrace_dof_slurp(). 13531 */ 13532 static int 13533 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13534 { 13535 int i, rval; 13536 uint32_t entsize; 13537 size_t offs; 13538 dof_optdesc_t *desc; 13539 13540 for (i = 0; i < dof->dofh_secnum; i++) { 13541 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13542 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13543 13544 if (sec->dofs_type != DOF_SECT_OPTDESC) 13545 continue; 13546 13547 if (sec->dofs_align != sizeof (uint64_t)) { 13548 dtrace_dof_error(dof, "bad alignment in " 13549 "option description"); 13550 return (EINVAL); 13551 } 13552 13553 if ((entsize = sec->dofs_entsize) == 0) { 13554 dtrace_dof_error(dof, "zeroed option entry size"); 13555 return (EINVAL); 13556 } 13557 13558 if (entsize < sizeof (dof_optdesc_t)) { 13559 dtrace_dof_error(dof, "bad option entry size"); 13560 return (EINVAL); 13561 } 13562 13563 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13564 desc = (dof_optdesc_t *)((uintptr_t)dof + 13565 (uintptr_t)sec->dofs_offset + offs); 13566 13567 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13568 dtrace_dof_error(dof, "non-zero option string"); 13569 return (EINVAL); 13570 } 13571 13572 if (desc->dofo_value == DTRACEOPT_UNSET) { 13573 dtrace_dof_error(dof, "unset option"); 13574 return (EINVAL); 13575 } 13576 13577 if ((rval = dtrace_state_option(state, 13578 desc->dofo_option, desc->dofo_value)) != 0) { 13579 dtrace_dof_error(dof, "rejected option"); 13580 return (rval); 13581 } 13582 } 13583 } 13584 13585 return (0); 13586 } 13587 13588 /* 13589 * DTrace Consumer State Functions 13590 */ 13591 int 13592 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13593 { 13594 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13595 void *base; 13596 uintptr_t limit; 13597 dtrace_dynvar_t *dvar, *next, *start; 13598 int i; 13599 13600 ASSERT(MUTEX_HELD(&dtrace_lock)); 13601 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13602 13603 bzero(dstate, sizeof (dtrace_dstate_t)); 13604 13605 if ((dstate->dtds_chunksize = chunksize) == 0) 13606 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13607 13608 VERIFY(dstate->dtds_chunksize < LONG_MAX); 13609 13610 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13611 size = min; 13612 13613 if ((base = kmem_zalloc(size, KM_NOSLEEP_LAZY)) == NULL) 13614 return (ENOMEM); 13615 13616 dstate->dtds_size = size; 13617 dstate->dtds_base = base; 13618 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13619 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13620 13621 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13622 13623 if (hashsize != 1 && (hashsize & 1)) 13624 hashsize--; 13625 13626 dstate->dtds_hashsize = hashsize; 13627 dstate->dtds_hash = dstate->dtds_base; 13628 13629 /* 13630 * Set all of our hash buckets to point to the single sink, and (if 13631 * it hasn't already been set), set the sink's hash value to be the 13632 * sink sentinel value. The sink is needed for dynamic variable 13633 * lookups to know that they have iterated over an entire, valid hash 13634 * chain. 13635 */ 13636 for (i = 0; i < hashsize; i++) 13637 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13638 13639 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13640 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13641 13642 /* 13643 * Determine number of active CPUs. Divide free list evenly among 13644 * active CPUs. 13645 */ 13646 start = (dtrace_dynvar_t *) 13647 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13648 limit = (uintptr_t)base + size; 13649 13650 VERIFY((uintptr_t)start < limit); 13651 VERIFY((uintptr_t)start >= (uintptr_t)base); 13652 13653 maxper = (limit - (uintptr_t)start) / NCPU; 13654 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13655 13656 for (i = 0; i < NCPU; i++) { 13657 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13658 13659 /* 13660 * If we don't even have enough chunks to make it once through 13661 * NCPUs, we're just going to allocate everything to the first 13662 * CPU. And if we're on the last CPU, we're going to allocate 13663 * whatever is left over. In either case, we set the limit to 13664 * be the limit of the dynamic variable space. 13665 */ 13666 if (maxper == 0 || i == NCPU - 1) { 13667 limit = (uintptr_t)base + size; 13668 start = NULL; 13669 } else { 13670 limit = (uintptr_t)start + maxper; 13671 start = (dtrace_dynvar_t *)limit; 13672 } 13673 13674 VERIFY(limit <= (uintptr_t)base + size); 13675 13676 for (;;) { 13677 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13678 dstate->dtds_chunksize); 13679 13680 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13681 break; 13682 13683 VERIFY((uintptr_t)dvar >= (uintptr_t)base && 13684 (uintptr_t)dvar <= (uintptr_t)base + size); 13685 dvar->dtdv_next = next; 13686 dvar = next; 13687 } 13688 13689 if (maxper == 0) 13690 break; 13691 } 13692 13693 return (0); 13694 } 13695 13696 void 13697 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13698 { 13699 ASSERT(MUTEX_HELD(&cpu_lock)); 13700 13701 if (dstate->dtds_base == NULL) 13702 return; 13703 13704 kmem_free(dstate->dtds_base, dstate->dtds_size); 13705 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13706 } 13707 13708 static void 13709 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13710 { 13711 /* 13712 * Logical XOR, where are you? 13713 */ 13714 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13715 13716 if (vstate->dtvs_nglobals > 0) { 13717 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13718 sizeof (dtrace_statvar_t *)); 13719 } 13720 13721 if (vstate->dtvs_ntlocals > 0) { 13722 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13723 sizeof (dtrace_difv_t)); 13724 } 13725 13726 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13727 13728 if (vstate->dtvs_nlocals > 0) { 13729 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13730 sizeof (dtrace_statvar_t *)); 13731 } 13732 } 13733 13734 static void 13735 dtrace_state_clean(dtrace_state_t *state) 13736 { 13737 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13738 return; 13739 13740 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13741 dtrace_speculation_clean(state); 13742 } 13743 13744 static void 13745 dtrace_state_deadman(dtrace_state_t *state) 13746 { 13747 hrtime_t now; 13748 13749 dtrace_sync(); 13750 13751 now = dtrace_gethrtime(); 13752 13753 if (state != dtrace_anon.dta_state && 13754 now - state->dts_laststatus >= dtrace_deadman_user) 13755 return; 13756 13757 /* 13758 * We must be sure that dts_alive never appears to be less than the 13759 * value upon entry to dtrace_state_deadman(), and because we lack a 13760 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13761 * store INT64_MAX to it, followed by a memory barrier, followed by 13762 * the new value. This assures that dts_alive never appears to be 13763 * less than its true value, regardless of the order in which the 13764 * stores to the underlying storage are issued. 13765 */ 13766 state->dts_alive = INT64_MAX; 13767 dtrace_membar_producer(); 13768 state->dts_alive = now; 13769 } 13770 13771 dtrace_state_t * 13772 dtrace_state_create(dev_t *devp, cred_t *cr) 13773 { 13774 minor_t minor; 13775 major_t major; 13776 char c[30]; 13777 dtrace_state_t *state; 13778 dtrace_optval_t *opt; 13779 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13780 13781 ASSERT(MUTEX_HELD(&dtrace_lock)); 13782 ASSERT(MUTEX_HELD(&cpu_lock)); 13783 13784 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13785 VM_BESTFIT | VM_SLEEP); 13786 13787 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13788 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13789 return (NULL); 13790 } 13791 13792 state = ddi_get_soft_state(dtrace_softstate, minor); 13793 state->dts_epid = DTRACE_EPIDNONE + 1; 13794 13795 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13796 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13797 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13798 13799 if (devp != NULL) { 13800 major = getemajor(*devp); 13801 } else { 13802 major = ddi_driver_major(dtrace_devi); 13803 } 13804 13805 state->dts_dev = makedevice(major, minor); 13806 13807 if (devp != NULL) 13808 *devp = state->dts_dev; 13809 13810 /* 13811 * We allocate NCPU buffers. On the one hand, this can be quite 13812 * a bit of memory per instance (nearly 36K on a Starcat). On the 13813 * other hand, it saves an additional memory reference in the probe 13814 * path. 13815 */ 13816 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13817 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13818 state->dts_cleaner = CYCLIC_NONE; 13819 state->dts_deadman = CYCLIC_NONE; 13820 state->dts_vstate.dtvs_state = state; 13821 13822 for (i = 0; i < DTRACEOPT_MAX; i++) 13823 state->dts_options[i] = DTRACEOPT_UNSET; 13824 13825 /* 13826 * Set the default options. 13827 */ 13828 opt = state->dts_options; 13829 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13830 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13831 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13832 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13833 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13834 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13835 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13836 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13837 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13838 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13839 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13840 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13841 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13842 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13843 13844 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13845 13846 /* 13847 * Depending on the user credentials, we set flag bits which alter probe 13848 * visibility or the amount of destructiveness allowed. In the case of 13849 * actual anonymous tracing, or the possession of all privileges, all of 13850 * the normal checks are bypassed. 13851 */ 13852 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13853 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13854 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13855 } else { 13856 /* 13857 * Set up the credentials for this instantiation. We take a 13858 * hold on the credential to prevent it from disappearing on 13859 * us; this in turn prevents the zone_t referenced by this 13860 * credential from disappearing. This means that we can 13861 * examine the credential and the zone from probe context. 13862 */ 13863 crhold(cr); 13864 state->dts_cred.dcr_cred = cr; 13865 13866 /* 13867 * CRA_PROC means "we have *some* privilege for dtrace" and 13868 * unlocks the use of variables like pid, zonename, etc. 13869 */ 13870 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13871 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13872 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13873 } 13874 13875 /* 13876 * dtrace_user allows use of syscall and profile providers. 13877 * If the user also has proc_owner and/or proc_zone, we 13878 * extend the scope to include additional visibility and 13879 * destructive power. 13880 */ 13881 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13882 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13883 state->dts_cred.dcr_visible |= 13884 DTRACE_CRV_ALLPROC; 13885 13886 state->dts_cred.dcr_action |= 13887 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13888 } 13889 13890 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13891 state->dts_cred.dcr_visible |= 13892 DTRACE_CRV_ALLZONE; 13893 13894 state->dts_cred.dcr_action |= 13895 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13896 } 13897 13898 /* 13899 * If we have all privs in whatever zone this is, 13900 * we can do destructive things to processes which 13901 * have altered credentials. 13902 */ 13903 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13904 cr->cr_zone->zone_privset)) { 13905 state->dts_cred.dcr_action |= 13906 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13907 } 13908 } 13909 13910 /* 13911 * Holding the dtrace_kernel privilege also implies that 13912 * the user has the dtrace_user privilege from a visibility 13913 * perspective. But without further privileges, some 13914 * destructive actions are not available. 13915 */ 13916 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13917 /* 13918 * Make all probes in all zones visible. However, 13919 * this doesn't mean that all actions become available 13920 * to all zones. 13921 */ 13922 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13923 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13924 13925 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13926 DTRACE_CRA_PROC; 13927 /* 13928 * Holding proc_owner means that destructive actions 13929 * for *this* zone are allowed. 13930 */ 13931 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13932 state->dts_cred.dcr_action |= 13933 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13934 13935 /* 13936 * Holding proc_zone means that destructive actions 13937 * for this user/group ID in all zones is allowed. 13938 */ 13939 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13940 state->dts_cred.dcr_action |= 13941 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13942 13943 /* 13944 * If we have all privs in whatever zone this is, 13945 * we can do destructive things to processes which 13946 * have altered credentials. 13947 */ 13948 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13949 cr->cr_zone->zone_privset)) { 13950 state->dts_cred.dcr_action |= 13951 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13952 } 13953 } 13954 13955 /* 13956 * Holding the dtrace_proc privilege gives control over fasttrap 13957 * and pid providers. We need to grant wider destructive 13958 * privileges in the event that the user has proc_owner and/or 13959 * proc_zone. 13960 */ 13961 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13962 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13963 state->dts_cred.dcr_action |= 13964 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13965 13966 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13967 state->dts_cred.dcr_action |= 13968 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13969 } 13970 } 13971 13972 return (state); 13973 } 13974 13975 static int 13976 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13977 { 13978 dtrace_optval_t *opt = state->dts_options, size; 13979 processorid_t cpu; 13980 int flags = 0, rval, factor, divisor = 1; 13981 13982 ASSERT(MUTEX_HELD(&dtrace_lock)); 13983 ASSERT(MUTEX_HELD(&cpu_lock)); 13984 ASSERT(which < DTRACEOPT_MAX); 13985 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13986 (state == dtrace_anon.dta_state && 13987 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13988 13989 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13990 return (0); 13991 13992 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13993 cpu = opt[DTRACEOPT_CPU]; 13994 13995 if (which == DTRACEOPT_SPECSIZE) 13996 flags |= DTRACEBUF_NOSWITCH; 13997 13998 if (which == DTRACEOPT_BUFSIZE) { 13999 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 14000 flags |= DTRACEBUF_RING; 14001 14002 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 14003 flags |= DTRACEBUF_FILL; 14004 14005 if (state != dtrace_anon.dta_state || 14006 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14007 flags |= DTRACEBUF_INACTIVE; 14008 } 14009 14010 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 14011 /* 14012 * The size must be 8-byte aligned. If the size is not 8-byte 14013 * aligned, drop it down by the difference. 14014 */ 14015 if (size & (sizeof (uint64_t) - 1)) 14016 size -= size & (sizeof (uint64_t) - 1); 14017 14018 if (size < state->dts_reserve) { 14019 /* 14020 * Buffers always must be large enough to accommodate 14021 * their prereserved space. We return E2BIG instead 14022 * of ENOMEM in this case to allow for user-level 14023 * software to differentiate the cases. 14024 */ 14025 return (E2BIG); 14026 } 14027 14028 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 14029 14030 if (rval != ENOMEM) { 14031 opt[which] = size; 14032 return (rval); 14033 } 14034 14035 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14036 return (rval); 14037 14038 for (divisor = 2; divisor < factor; divisor <<= 1) 14039 continue; 14040 } 14041 14042 return (ENOMEM); 14043 } 14044 14045 static int 14046 dtrace_state_buffers(dtrace_state_t *state) 14047 { 14048 dtrace_speculation_t *spec = state->dts_speculations; 14049 int rval, i; 14050 14051 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 14052 DTRACEOPT_BUFSIZE)) != 0) 14053 return (rval); 14054 14055 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 14056 DTRACEOPT_AGGSIZE)) != 0) 14057 return (rval); 14058 14059 for (i = 0; i < state->dts_nspeculations; i++) { 14060 if ((rval = dtrace_state_buffer(state, 14061 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 14062 return (rval); 14063 } 14064 14065 return (0); 14066 } 14067 14068 static void 14069 dtrace_state_prereserve(dtrace_state_t *state) 14070 { 14071 dtrace_ecb_t *ecb; 14072 dtrace_probe_t *probe; 14073 14074 state->dts_reserve = 0; 14075 14076 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 14077 return; 14078 14079 /* 14080 * If our buffer policy is a "fill" buffer policy, we need to set the 14081 * prereserved space to be the space required by the END probes. 14082 */ 14083 probe = dtrace_probes[dtrace_probeid_end - 1]; 14084 ASSERT(probe != NULL); 14085 14086 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 14087 if (ecb->dte_state != state) 14088 continue; 14089 14090 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 14091 } 14092 } 14093 14094 static int 14095 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 14096 { 14097 dtrace_optval_t *opt = state->dts_options, sz, nspec; 14098 dtrace_speculation_t *spec; 14099 dtrace_buffer_t *buf; 14100 cyc_handler_t hdlr; 14101 cyc_time_t when; 14102 int rval = 0, i, j, bufsize = NCPU * sizeof (dtrace_buffer_t); 14103 dtrace_icookie_t cookie; 14104 14105 mutex_enter(&cpu_lock); 14106 mutex_enter(&dtrace_lock); 14107 14108 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 14109 rval = EBUSY; 14110 goto out; 14111 } 14112 14113 /* 14114 * Before we can perform any checks, we must prime all of the 14115 * retained enablings that correspond to this state. 14116 */ 14117 dtrace_enabling_prime(state); 14118 14119 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 14120 rval = EACCES; 14121 goto out; 14122 } 14123 14124 dtrace_state_prereserve(state); 14125 14126 /* 14127 * Now we want to do is try to allocate our speculations. 14128 * We do not automatically resize the number of speculations; if 14129 * this fails, we will fail the operation. 14130 */ 14131 nspec = opt[DTRACEOPT_NSPEC]; 14132 ASSERT(nspec != DTRACEOPT_UNSET); 14133 14134 if (nspec > INT_MAX) { 14135 rval = ENOMEM; 14136 goto out; 14137 } 14138 14139 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 14140 KM_NOSLEEP_LAZY); 14141 14142 if (spec == NULL) { 14143 rval = ENOMEM; 14144 goto out; 14145 } 14146 14147 state->dts_speculations = spec; 14148 state->dts_nspeculations = (int)nspec; 14149 14150 for (i = 0; i < nspec; i++) { 14151 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP_LAZY)) == NULL) { 14152 rval = ENOMEM; 14153 goto err; 14154 } 14155 14156 spec[i].dtsp_buffer = buf; 14157 } 14158 14159 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 14160 if (dtrace_anon.dta_state == NULL) { 14161 rval = ENOENT; 14162 goto out; 14163 } 14164 14165 if (state->dts_necbs != 0) { 14166 rval = EALREADY; 14167 goto out; 14168 } 14169 14170 state->dts_anon = dtrace_anon_grab(); 14171 ASSERT(state->dts_anon != NULL); 14172 state = state->dts_anon; 14173 14174 /* 14175 * We want "grabanon" to be set in the grabbed state, so we'll 14176 * copy that option value from the grabbing state into the 14177 * grabbed state. 14178 */ 14179 state->dts_options[DTRACEOPT_GRABANON] = 14180 opt[DTRACEOPT_GRABANON]; 14181 14182 *cpu = dtrace_anon.dta_beganon; 14183 14184 /* 14185 * If the anonymous state is active (as it almost certainly 14186 * is if the anonymous enabling ultimately matched anything), 14187 * we don't allow any further option processing -- but we 14188 * don't return failure. 14189 */ 14190 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14191 goto out; 14192 } 14193 14194 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 14195 opt[DTRACEOPT_AGGSIZE] != 0) { 14196 if (state->dts_aggregations == NULL) { 14197 /* 14198 * We're not going to create an aggregation buffer 14199 * because we don't have any ECBs that contain 14200 * aggregations -- set this option to 0. 14201 */ 14202 opt[DTRACEOPT_AGGSIZE] = 0; 14203 } else { 14204 /* 14205 * If we have an aggregation buffer, we must also have 14206 * a buffer to use as scratch. 14207 */ 14208 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 14209 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 14210 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 14211 } 14212 } 14213 } 14214 14215 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 14216 opt[DTRACEOPT_SPECSIZE] != 0) { 14217 if (!state->dts_speculates) { 14218 /* 14219 * We're not going to create speculation buffers 14220 * because we don't have any ECBs that actually 14221 * speculate -- set the speculation size to 0. 14222 */ 14223 opt[DTRACEOPT_SPECSIZE] = 0; 14224 } 14225 } 14226 14227 /* 14228 * The bare minimum size for any buffer that we're actually going to 14229 * do anything to is sizeof (uint64_t). 14230 */ 14231 sz = sizeof (uint64_t); 14232 14233 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 14234 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 14235 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 14236 /* 14237 * A buffer size has been explicitly set to 0 (or to a size 14238 * that will be adjusted to 0) and we need the space -- we 14239 * need to return failure. We return ENOSPC to differentiate 14240 * it from failing to allocate a buffer due to failure to meet 14241 * the reserve (for which we return E2BIG). 14242 */ 14243 rval = ENOSPC; 14244 goto out; 14245 } 14246 14247 if ((rval = dtrace_state_buffers(state)) != 0) 14248 goto err; 14249 14250 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 14251 sz = dtrace_dstate_defsize; 14252 14253 do { 14254 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 14255 14256 if (rval == 0) 14257 break; 14258 14259 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 14260 goto err; 14261 } while (sz >>= 1); 14262 14263 opt[DTRACEOPT_DYNVARSIZE] = sz; 14264 14265 if (rval != 0) 14266 goto err; 14267 14268 /* 14269 * We are almost ready to go! As a final step, we are going to 14270 * actually enable our ECBs. (We wait to do this until now to 14271 * minimize the amount of DTrace itself that we run through with 14272 * potentially many probes enabled.) Once everything is enabled, we 14273 * are at the point of no return: our state will be made active. 14274 */ 14275 for (i = 0; i < state->dts_necbs; i++) { 14276 dtrace_ecb_t *ecb; 14277 dtrace_probe_t *probe; 14278 14279 if ((ecb = state->dts_ecbs[i]) == NULL) 14280 continue; 14281 14282 /* 14283 * Any ECB on a DTrace-provided probe has already been 14284 * enabled; skip over it. 14285 */ 14286 if ((probe = ecb->dte_probe) != NULL && 14287 probe->dtpr_provider == dtrace_provider) { 14288 continue; 14289 } 14290 14291 if (dtrace_ecb_enable(ecb) < 0) { 14292 /* 14293 * In the unlikely event that a provider is failing to 14294 * enable the probe, disable all of the ECBs that we 14295 * have enabled and kick out with a distinctive error 14296 * code. 14297 */ 14298 for (j = i - 1; j >= 0; j--) { 14299 if ((ecb = state->dts_ecbs[j]) == NULL) 14300 continue; 14301 14302 /* 14303 * And skip back over any ECB that corresponds 14304 * to a DTrace-provided probe... 14305 */ 14306 if ((probe = ecb->dte_probe) != NULL && 14307 probe->dtpr_provider == dtrace_provider) { 14308 continue; 14309 } 14310 14311 dtrace_ecb_disable(ecb); 14312 } 14313 14314 rval = EIO; 14315 goto err; 14316 } 14317 } 14318 14319 /* 14320 * We have just enabled a bunch of ECBs; make sure that all CPUs 14321 * have seen it before progressing. 14322 */ 14323 dtrace_sync(); 14324 14325 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 14326 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 14327 14328 if (opt[DTRACEOPT_CLEANRATE] == 0) 14329 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14330 14331 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 14332 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 14333 14334 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 14335 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 14336 14337 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 14338 hdlr.cyh_arg = state; 14339 hdlr.cyh_level = CY_LOW_LEVEL; 14340 14341 when.cyt_when = 0; 14342 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 14343 14344 state->dts_cleaner = cyclic_add(&hdlr, &when); 14345 14346 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 14347 hdlr.cyh_arg = state; 14348 hdlr.cyh_level = CY_LOW_LEVEL; 14349 14350 when.cyt_when = 0; 14351 when.cyt_interval = dtrace_deadman_interval; 14352 14353 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 14354 state->dts_deadman = cyclic_add(&hdlr, &when); 14355 14356 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 14357 14358 if (state->dts_getf != 0 && 14359 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14360 /* 14361 * We don't have kernel privs but we have at least one call 14362 * to getf(); we need to bump our zone's count, and (if 14363 * this is the first enabling to have an unprivileged call 14364 * to getf()) we need to hook into closef(). 14365 */ 14366 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 14367 14368 if (dtrace_getf++ == 0) { 14369 ASSERT(dtrace_closef == NULL); 14370 dtrace_closef = dtrace_getf_barrier; 14371 } 14372 } 14373 14374 /* 14375 * Now it's time to actually fire the BEGIN probe. We need to disable 14376 * interrupts here both to record the CPU on which we fired the BEGIN 14377 * probe (the data from this CPU will be processed first at user 14378 * level) and to manually activate the buffer for this CPU. 14379 */ 14380 cookie = dtrace_interrupt_disable(); 14381 *cpu = CPU->cpu_id; 14382 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 14383 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 14384 14385 dtrace_probe(dtrace_probeid_begin, 14386 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14387 dtrace_interrupt_enable(cookie); 14388 /* 14389 * We may have had an exit action from a BEGIN probe; only change our 14390 * state to ACTIVE if we're still in WARMUP. 14391 */ 14392 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 14393 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 14394 14395 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 14396 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 14397 14398 /* 14399 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 14400 * want each CPU to transition its principal buffer out of the 14401 * INACTIVE state. Doing this assures that no CPU will suddenly begin 14402 * processing an ECB halfway down a probe's ECB chain; all CPUs will 14403 * atomically transition from processing none of a state's ECBs to 14404 * processing all of them. 14405 */ 14406 dtrace_xcall(DTRACE_CPUALL, 14407 (dtrace_xcall_t)dtrace_buffer_activate, state); 14408 goto out; 14409 14410 err: 14411 dtrace_buffer_free(state->dts_buffer); 14412 dtrace_buffer_free(state->dts_aggbuffer); 14413 14414 if ((nspec = state->dts_nspeculations) == 0) { 14415 ASSERT(state->dts_speculations == NULL); 14416 goto out; 14417 } 14418 14419 spec = state->dts_speculations; 14420 ASSERT(spec != NULL); 14421 14422 for (i = 0; i < state->dts_nspeculations; i++) { 14423 if ((buf = spec[i].dtsp_buffer) == NULL) 14424 break; 14425 14426 dtrace_buffer_free(buf); 14427 kmem_free(buf, bufsize); 14428 } 14429 14430 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14431 state->dts_nspeculations = 0; 14432 state->dts_speculations = NULL; 14433 14434 out: 14435 mutex_exit(&dtrace_lock); 14436 mutex_exit(&cpu_lock); 14437 14438 return (rval); 14439 } 14440 14441 static int 14442 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 14443 { 14444 dtrace_icookie_t cookie; 14445 14446 ASSERT(MUTEX_HELD(&dtrace_lock)); 14447 14448 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 14449 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 14450 return (EINVAL); 14451 14452 /* 14453 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 14454 * to be sure that every CPU has seen it. See below for the details 14455 * on why this is done. 14456 */ 14457 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 14458 dtrace_sync(); 14459 14460 /* 14461 * By this point, it is impossible for any CPU to be still processing 14462 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 14463 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 14464 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 14465 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 14466 * iff we're in the END probe. 14467 */ 14468 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 14469 dtrace_sync(); 14470 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 14471 14472 /* 14473 * Finally, we can release the reserve and call the END probe. We 14474 * disable interrupts across calling the END probe to allow us to 14475 * return the CPU on which we actually called the END probe. This 14476 * allows user-land to be sure that this CPU's principal buffer is 14477 * processed last. 14478 */ 14479 state->dts_reserve = 0; 14480 14481 cookie = dtrace_interrupt_disable(); 14482 *cpu = CPU->cpu_id; 14483 dtrace_probe(dtrace_probeid_end, 14484 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14485 dtrace_interrupt_enable(cookie); 14486 14487 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 14488 dtrace_sync(); 14489 14490 if (state->dts_getf != 0 && 14491 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14492 /* 14493 * We don't have kernel privs but we have at least one call 14494 * to getf(); we need to lower our zone's count, and (if 14495 * this is the last enabling to have an unprivileged call 14496 * to getf()) we need to clear the closef() hook. 14497 */ 14498 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14499 ASSERT(dtrace_closef == dtrace_getf_barrier); 14500 ASSERT(dtrace_getf > 0); 14501 14502 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14503 14504 if (--dtrace_getf == 0) 14505 dtrace_closef = NULL; 14506 } 14507 14508 return (0); 14509 } 14510 14511 static int 14512 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14513 dtrace_optval_t val) 14514 { 14515 ASSERT(MUTEX_HELD(&dtrace_lock)); 14516 14517 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14518 return (EBUSY); 14519 14520 if (option >= DTRACEOPT_MAX) 14521 return (EINVAL); 14522 14523 if (option != DTRACEOPT_CPU && val < 0) 14524 return (EINVAL); 14525 14526 switch (option) { 14527 case DTRACEOPT_DESTRUCTIVE: 14528 if (dtrace_destructive_disallow) 14529 return (EACCES); 14530 14531 state->dts_cred.dcr_destructive = 1; 14532 break; 14533 14534 case DTRACEOPT_BUFSIZE: 14535 case DTRACEOPT_DYNVARSIZE: 14536 case DTRACEOPT_AGGSIZE: 14537 case DTRACEOPT_SPECSIZE: 14538 case DTRACEOPT_STRSIZE: 14539 if (val < 0) 14540 return (EINVAL); 14541 14542 if (val >= LONG_MAX) { 14543 /* 14544 * If this is an otherwise negative value, set it to 14545 * the highest multiple of 128m less than LONG_MAX. 14546 * Technically, we're adjusting the size without 14547 * regard to the buffer resizing policy, but in fact, 14548 * this has no effect -- if we set the buffer size to 14549 * ~LONG_MAX and the buffer policy is ultimately set to 14550 * be "manual", the buffer allocation is guaranteed to 14551 * fail, if only because the allocation requires two 14552 * buffers. (We set the the size to the highest 14553 * multiple of 128m because it ensures that the size 14554 * will remain a multiple of a megabyte when 14555 * repeatedly halved -- all the way down to 15m.) 14556 */ 14557 val = LONG_MAX - (1 << 27) + 1; 14558 } 14559 } 14560 14561 state->dts_options[option] = val; 14562 14563 return (0); 14564 } 14565 14566 static void 14567 dtrace_state_destroy(dtrace_state_t *state) 14568 { 14569 dtrace_ecb_t *ecb; 14570 dtrace_vstate_t *vstate = &state->dts_vstate; 14571 minor_t minor = getminor(state->dts_dev); 14572 int i, pass, bufsize = NCPU * sizeof (dtrace_buffer_t); 14573 dtrace_speculation_t *spec = state->dts_speculations; 14574 int nspec = state->dts_nspeculations; 14575 14576 ASSERT(MUTEX_HELD(&dtrace_lock)); 14577 ASSERT(MUTEX_HELD(&cpu_lock)); 14578 14579 /* 14580 * First, retract any retained enablings for this state. 14581 */ 14582 dtrace_enabling_retract(state); 14583 ASSERT(state->dts_nretained == 0); 14584 14585 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14586 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14587 /* 14588 * We have managed to come into dtrace_state_destroy() on a 14589 * hot enabling -- almost certainly because of a disorderly 14590 * shutdown of a consumer. (That is, a consumer that is 14591 * exiting without having called dtrace_stop().) In this case, 14592 * we're going to set our activity to be KILLED, and then 14593 * issue a sync to be sure that everyone is out of probe 14594 * context before we start blowing away ECBs. 14595 */ 14596 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14597 dtrace_sync(); 14598 } 14599 14600 /* 14601 * Release the credential hold we took in dtrace_state_create(). 14602 */ 14603 if (state->dts_cred.dcr_cred != NULL) 14604 crfree(state->dts_cred.dcr_cred); 14605 14606 /* 14607 * Now we can safely disable and destroy any enabled probes. We want 14608 * to optimize for system performance here, which paradoxically is 14609 * going to result in more work: the enabled probe effect of kernel 14610 * probes can be high, and if we have any of those enabled, we want 14611 * to get them out of the way first. In addition, we want to minimize 14612 * calls to dtrace_sync() while there remain any kernel probes 14613 * enabled: that code path requires cross calling all CPUs, and -- if 14614 * instrumented -- can result in debilitatingly slow execution times on 14615 * high CPU machines. So we take four passes through the ECBs here: 14616 * 14617 * 1. Disable ECBs on DTRACE_PRIV_KERNEL probes 14618 * 2. Destroy ECBs on DTRACE_PRIV_KERNEL probes 14619 * 3. Disable ECBs on non-DTRACE_PRIV_KERNEL probes 14620 * 4. Destroy ECBs on non-DTRACE_PRIV_KERNEL probes 14621 * 14622 * (Channeling the benevolent spirits of Aho, Weinberger, and Kernighan, 14623 * we number our passes from 1 rather than 0.) 14624 */ 14625 for (pass = 1; pass <= 4; pass++) { 14626 boolean_t only_kernel = (pass == 1 || pass == 2); 14627 boolean_t destroy = (pass == 2 || pass == 4); 14628 14629 if (destroy) { 14630 dtrace_sync(); 14631 } 14632 14633 for (i = 0; i < state->dts_necbs; i++) { 14634 if ((ecb = state->dts_ecbs[i]) == NULL) 14635 continue; 14636 14637 if (only_kernel && ecb->dte_probe != NULL) { 14638 dtrace_probe_t *probe = ecb->dte_probe; 14639 dtrace_provider_t *prov = probe->dtpr_provider; 14640 const uint32_t match = DTRACE_PRIV_KERNEL; 14641 14642 if (!(prov->dtpv_priv.dtpp_flags & match)) 14643 continue; 14644 } 14645 14646 if (!destroy) { 14647 dtrace_ecb_disable(ecb); 14648 } else { 14649 dtrace_ecb_destroy(ecb); 14650 } 14651 } 14652 } 14653 14654 /* 14655 * Before we free the buffers, perform one more sync to assure that 14656 * every CPU is out of probe context. 14657 */ 14658 dtrace_sync(); 14659 14660 dtrace_buffer_free(state->dts_buffer); 14661 dtrace_buffer_free(state->dts_aggbuffer); 14662 14663 for (i = 0; i < nspec; i++) 14664 dtrace_buffer_free(spec[i].dtsp_buffer); 14665 14666 if (state->dts_cleaner != CYCLIC_NONE) 14667 cyclic_remove(state->dts_cleaner); 14668 14669 if (state->dts_deadman != CYCLIC_NONE) 14670 cyclic_remove(state->dts_deadman); 14671 14672 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14673 dtrace_vstate_fini(vstate); 14674 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14675 14676 if (state->dts_aggregations != NULL) { 14677 #ifdef DEBUG 14678 for (i = 0; i < state->dts_naggregations; i++) 14679 ASSERT(state->dts_aggregations[i] == NULL); 14680 #endif 14681 ASSERT(state->dts_naggregations > 0); 14682 kmem_free(state->dts_aggregations, 14683 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14684 } 14685 14686 kmem_free(state->dts_buffer, bufsize); 14687 kmem_free(state->dts_aggbuffer, bufsize); 14688 14689 for (i = 0; i < nspec; i++) 14690 kmem_free(spec[i].dtsp_buffer, bufsize); 14691 14692 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14693 14694 dtrace_format_destroy(state); 14695 14696 vmem_destroy(state->dts_aggid_arena); 14697 ddi_soft_state_free(dtrace_softstate, minor); 14698 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14699 } 14700 14701 /* 14702 * DTrace Anonymous Enabling Functions 14703 */ 14704 static dtrace_state_t * 14705 dtrace_anon_grab(void) 14706 { 14707 dtrace_state_t *state; 14708 14709 ASSERT(MUTEX_HELD(&dtrace_lock)); 14710 14711 if ((state = dtrace_anon.dta_state) == NULL) { 14712 ASSERT(dtrace_anon.dta_enabling == NULL); 14713 return (NULL); 14714 } 14715 14716 ASSERT(dtrace_anon.dta_enabling != NULL); 14717 ASSERT(dtrace_retained != NULL); 14718 14719 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14720 dtrace_anon.dta_enabling = NULL; 14721 dtrace_anon.dta_state = NULL; 14722 14723 return (state); 14724 } 14725 14726 static void 14727 dtrace_anon_property(void) 14728 { 14729 int i, rv; 14730 dtrace_state_t *state; 14731 dof_hdr_t *dof; 14732 char c[32]; /* enough for "dof-data-" + digits */ 14733 14734 ASSERT(MUTEX_HELD(&dtrace_lock)); 14735 ASSERT(MUTEX_HELD(&cpu_lock)); 14736 14737 for (i = 0; ; i++) { 14738 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14739 14740 dtrace_err_verbose = 1; 14741 14742 if ((dof = dtrace_dof_property(c)) == NULL) { 14743 dtrace_err_verbose = 0; 14744 break; 14745 } 14746 14747 /* 14748 * We want to create anonymous state, so we need to transition 14749 * the kernel debugger to indicate that DTrace is active. If 14750 * this fails (e.g. because the debugger has modified text in 14751 * some way), we won't continue with the processing. 14752 */ 14753 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14754 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14755 "enabling ignored."); 14756 dtrace_dof_destroy(dof); 14757 break; 14758 } 14759 14760 /* 14761 * If we haven't allocated an anonymous state, we'll do so now. 14762 */ 14763 if ((state = dtrace_anon.dta_state) == NULL) { 14764 state = dtrace_state_create(NULL, NULL); 14765 dtrace_anon.dta_state = state; 14766 14767 if (state == NULL) { 14768 /* 14769 * This basically shouldn't happen: the only 14770 * failure mode from dtrace_state_create() is a 14771 * failure of ddi_soft_state_zalloc() that 14772 * itself should never happen. Still, the 14773 * interface allows for a failure mode, and 14774 * we want to fail as gracefully as possible: 14775 * we'll emit an error message and cease 14776 * processing anonymous state in this case. 14777 */ 14778 cmn_err(CE_WARN, "failed to create " 14779 "anonymous state"); 14780 dtrace_dof_destroy(dof); 14781 break; 14782 } 14783 } 14784 14785 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14786 &dtrace_anon.dta_enabling, 0, B_TRUE); 14787 14788 if (rv == 0) 14789 rv = dtrace_dof_options(dof, state); 14790 14791 dtrace_err_verbose = 0; 14792 dtrace_dof_destroy(dof); 14793 14794 if (rv != 0) { 14795 /* 14796 * This is malformed DOF; chuck any anonymous state 14797 * that we created. 14798 */ 14799 ASSERT(dtrace_anon.dta_enabling == NULL); 14800 dtrace_state_destroy(state); 14801 dtrace_anon.dta_state = NULL; 14802 break; 14803 } 14804 14805 ASSERT(dtrace_anon.dta_enabling != NULL); 14806 } 14807 14808 if (dtrace_anon.dta_enabling != NULL) { 14809 int rval; 14810 14811 /* 14812 * dtrace_enabling_retain() can only fail because we are 14813 * trying to retain more enablings than are allowed -- but 14814 * we only have one anonymous enabling, and we are guaranteed 14815 * to be allowed at least one retained enabling; we assert 14816 * that dtrace_enabling_retain() returns success. 14817 */ 14818 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14819 ASSERT(rval == 0); 14820 14821 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14822 } 14823 } 14824 14825 /* 14826 * DTrace Helper Functions 14827 */ 14828 static void 14829 dtrace_helper_trace(dtrace_helper_action_t *helper, 14830 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14831 { 14832 uint32_t size, next, nnext, i; 14833 dtrace_helptrace_t *ent, *buffer; 14834 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14835 14836 if ((buffer = dtrace_helptrace_buffer) == NULL) 14837 return; 14838 14839 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14840 14841 /* 14842 * What would a tracing framework be without its own tracing 14843 * framework? (Well, a hell of a lot simpler, for starters...) 14844 */ 14845 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14846 sizeof (uint64_t) - sizeof (uint64_t); 14847 14848 /* 14849 * Iterate until we can allocate a slot in the trace buffer. 14850 */ 14851 do { 14852 next = dtrace_helptrace_next; 14853 14854 if (next + size < dtrace_helptrace_bufsize) { 14855 nnext = next + size; 14856 } else { 14857 nnext = size; 14858 } 14859 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14860 14861 /* 14862 * We have our slot; fill it in. 14863 */ 14864 if (nnext == size) { 14865 dtrace_helptrace_wrapped++; 14866 next = 0; 14867 } 14868 14869 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 14870 ent->dtht_helper = helper; 14871 ent->dtht_where = where; 14872 ent->dtht_nlocals = vstate->dtvs_nlocals; 14873 14874 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14875 mstate->dtms_fltoffs : -1; 14876 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14877 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14878 14879 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14880 dtrace_statvar_t *svar; 14881 14882 if ((svar = vstate->dtvs_locals[i]) == NULL) 14883 continue; 14884 14885 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14886 ent->dtht_locals[i] = 14887 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14888 } 14889 } 14890 14891 static uint64_t 14892 dtrace_helper(int which, dtrace_mstate_t *mstate, 14893 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14894 { 14895 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14896 uint64_t sarg0 = mstate->dtms_arg[0]; 14897 uint64_t sarg1 = mstate->dtms_arg[1]; 14898 uint64_t rval; 14899 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14900 dtrace_helper_action_t *helper; 14901 dtrace_vstate_t *vstate; 14902 dtrace_difo_t *pred; 14903 int i, trace = dtrace_helptrace_buffer != NULL; 14904 14905 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14906 14907 if (helpers == NULL) 14908 return (0); 14909 14910 if ((helper = helpers->dthps_actions[which]) == NULL) 14911 return (0); 14912 14913 vstate = &helpers->dthps_vstate; 14914 mstate->dtms_arg[0] = arg0; 14915 mstate->dtms_arg[1] = arg1; 14916 14917 /* 14918 * Now iterate over each helper. If its predicate evaluates to 'true', 14919 * we'll call the corresponding actions. Note that the below calls 14920 * to dtrace_dif_emulate() may set faults in machine state. This is 14921 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14922 * the stored DIF offset with its own (which is the desired behavior). 14923 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14924 * from machine state; this is okay, too. 14925 */ 14926 for (; helper != NULL; helper = helper->dtha_next) { 14927 if ((pred = helper->dtha_predicate) != NULL) { 14928 if (trace) 14929 dtrace_helper_trace(helper, mstate, vstate, 0); 14930 14931 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14932 goto next; 14933 14934 if (*flags & CPU_DTRACE_FAULT) 14935 goto err; 14936 } 14937 14938 for (i = 0; i < helper->dtha_nactions; i++) { 14939 if (trace) 14940 dtrace_helper_trace(helper, 14941 mstate, vstate, i + 1); 14942 14943 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14944 mstate, vstate, state); 14945 14946 if (*flags & CPU_DTRACE_FAULT) 14947 goto err; 14948 } 14949 14950 next: 14951 if (trace) 14952 dtrace_helper_trace(helper, mstate, vstate, 14953 DTRACE_HELPTRACE_NEXT); 14954 } 14955 14956 if (trace) 14957 dtrace_helper_trace(helper, mstate, vstate, 14958 DTRACE_HELPTRACE_DONE); 14959 14960 /* 14961 * Restore the arg0 that we saved upon entry. 14962 */ 14963 mstate->dtms_arg[0] = sarg0; 14964 mstate->dtms_arg[1] = sarg1; 14965 14966 return (rval); 14967 14968 err: 14969 if (trace) 14970 dtrace_helper_trace(helper, mstate, vstate, 14971 DTRACE_HELPTRACE_ERR); 14972 14973 /* 14974 * Restore the arg0 that we saved upon entry. 14975 */ 14976 mstate->dtms_arg[0] = sarg0; 14977 mstate->dtms_arg[1] = sarg1; 14978 14979 return (0); 14980 } 14981 14982 static void 14983 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14984 dtrace_vstate_t *vstate) 14985 { 14986 int i; 14987 14988 if (helper->dtha_predicate != NULL) 14989 dtrace_difo_release(helper->dtha_predicate, vstate); 14990 14991 for (i = 0; i < helper->dtha_nactions; i++) { 14992 ASSERT(helper->dtha_actions[i] != NULL); 14993 dtrace_difo_release(helper->dtha_actions[i], vstate); 14994 } 14995 14996 kmem_free(helper->dtha_actions, 14997 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14998 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14999 } 15000 15001 static int 15002 dtrace_helper_destroygen(int gen) 15003 { 15004 proc_t *p = curproc; 15005 dtrace_helpers_t *help = p->p_dtrace_helpers; 15006 dtrace_vstate_t *vstate; 15007 int i; 15008 15009 ASSERT(MUTEX_HELD(&dtrace_lock)); 15010 15011 if (help == NULL || gen > help->dthps_generation) 15012 return (EINVAL); 15013 15014 vstate = &help->dthps_vstate; 15015 15016 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15017 dtrace_helper_action_t *last = NULL, *h, *next; 15018 15019 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15020 next = h->dtha_next; 15021 15022 if (h->dtha_generation == gen) { 15023 if (last != NULL) { 15024 last->dtha_next = next; 15025 } else { 15026 help->dthps_actions[i] = next; 15027 } 15028 15029 dtrace_helper_action_destroy(h, vstate); 15030 } else { 15031 last = h; 15032 } 15033 } 15034 } 15035 15036 /* 15037 * Interate until we've cleared out all helper providers with the 15038 * given generation number. 15039 */ 15040 for (;;) { 15041 dtrace_helper_provider_t *prov; 15042 15043 /* 15044 * Look for a helper provider with the right generation. We 15045 * have to start back at the beginning of the list each time 15046 * because we drop dtrace_lock. It's unlikely that we'll make 15047 * more than two passes. 15048 */ 15049 for (i = 0; i < help->dthps_nprovs; i++) { 15050 prov = help->dthps_provs[i]; 15051 15052 if (prov->dthp_generation == gen) 15053 break; 15054 } 15055 15056 /* 15057 * If there were no matches, we're done. 15058 */ 15059 if (i == help->dthps_nprovs) 15060 break; 15061 15062 /* 15063 * Move the last helper provider into this slot. 15064 */ 15065 help->dthps_nprovs--; 15066 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 15067 help->dthps_provs[help->dthps_nprovs] = NULL; 15068 15069 mutex_exit(&dtrace_lock); 15070 15071 /* 15072 * If we have a meta provider, remove this helper provider. 15073 */ 15074 mutex_enter(&dtrace_meta_lock); 15075 if (dtrace_meta_pid != NULL) { 15076 ASSERT(dtrace_deferred_pid == NULL); 15077 dtrace_helper_provider_remove(&prov->dthp_prov, 15078 p->p_pid); 15079 } 15080 mutex_exit(&dtrace_meta_lock); 15081 15082 dtrace_helper_provider_destroy(prov); 15083 15084 mutex_enter(&dtrace_lock); 15085 } 15086 15087 return (0); 15088 } 15089 15090 static int 15091 dtrace_helper_validate(dtrace_helper_action_t *helper) 15092 { 15093 int err = 0, i; 15094 dtrace_difo_t *dp; 15095 15096 if ((dp = helper->dtha_predicate) != NULL) 15097 err += dtrace_difo_validate_helper(dp); 15098 15099 for (i = 0; i < helper->dtha_nactions; i++) 15100 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 15101 15102 return (err == 0); 15103 } 15104 15105 static int 15106 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 15107 { 15108 dtrace_helpers_t *help; 15109 dtrace_helper_action_t *helper, *last; 15110 dtrace_actdesc_t *act; 15111 dtrace_vstate_t *vstate; 15112 dtrace_predicate_t *pred; 15113 int count = 0, nactions = 0, i; 15114 15115 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 15116 return (EINVAL); 15117 15118 help = curproc->p_dtrace_helpers; 15119 last = help->dthps_actions[which]; 15120 vstate = &help->dthps_vstate; 15121 15122 for (count = 0; last != NULL; last = last->dtha_next) { 15123 count++; 15124 if (last->dtha_next == NULL) 15125 break; 15126 } 15127 15128 /* 15129 * If we already have dtrace_helper_actions_max helper actions for this 15130 * helper action type, we'll refuse to add a new one. 15131 */ 15132 if (count >= dtrace_helper_actions_max) 15133 return (ENOSPC); 15134 15135 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 15136 helper->dtha_generation = help->dthps_generation; 15137 15138 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 15139 ASSERT(pred->dtp_difo != NULL); 15140 dtrace_difo_hold(pred->dtp_difo); 15141 helper->dtha_predicate = pred->dtp_difo; 15142 } 15143 15144 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 15145 if (act->dtad_kind != DTRACEACT_DIFEXPR) 15146 goto err; 15147 15148 if (act->dtad_difo == NULL) 15149 goto err; 15150 15151 nactions++; 15152 } 15153 15154 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 15155 (helper->dtha_nactions = nactions), KM_SLEEP); 15156 15157 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 15158 dtrace_difo_hold(act->dtad_difo); 15159 helper->dtha_actions[i++] = act->dtad_difo; 15160 } 15161 15162 if (!dtrace_helper_validate(helper)) 15163 goto err; 15164 15165 if (last == NULL) { 15166 help->dthps_actions[which] = helper; 15167 } else { 15168 last->dtha_next = helper; 15169 } 15170 15171 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 15172 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 15173 dtrace_helptrace_next = 0; 15174 } 15175 15176 return (0); 15177 err: 15178 dtrace_helper_action_destroy(helper, vstate); 15179 return (EINVAL); 15180 } 15181 15182 static void 15183 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 15184 dof_helper_t *dofhp) 15185 { 15186 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 15187 15188 mutex_enter(&dtrace_meta_lock); 15189 mutex_enter(&dtrace_lock); 15190 15191 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 15192 /* 15193 * If the dtrace module is loaded but not attached, or if 15194 * there aren't isn't a meta provider registered to deal with 15195 * these provider descriptions, we need to postpone creating 15196 * the actual providers until later. 15197 */ 15198 15199 if (help->dthps_next == NULL && help->dthps_prev == NULL && 15200 dtrace_deferred_pid != help) { 15201 help->dthps_deferred = 1; 15202 help->dthps_pid = p->p_pid; 15203 help->dthps_next = dtrace_deferred_pid; 15204 help->dthps_prev = NULL; 15205 if (dtrace_deferred_pid != NULL) 15206 dtrace_deferred_pid->dthps_prev = help; 15207 dtrace_deferred_pid = help; 15208 } 15209 15210 mutex_exit(&dtrace_lock); 15211 15212 } else if (dofhp != NULL) { 15213 /* 15214 * If the dtrace module is loaded and we have a particular 15215 * helper provider description, pass that off to the 15216 * meta provider. 15217 */ 15218 15219 mutex_exit(&dtrace_lock); 15220 15221 dtrace_helper_provide(dofhp, p->p_pid); 15222 15223 } else { 15224 /* 15225 * Otherwise, just pass all the helper provider descriptions 15226 * off to the meta provider. 15227 */ 15228 15229 int i; 15230 mutex_exit(&dtrace_lock); 15231 15232 for (i = 0; i < help->dthps_nprovs; i++) { 15233 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 15234 p->p_pid); 15235 } 15236 } 15237 15238 mutex_exit(&dtrace_meta_lock); 15239 } 15240 15241 static int 15242 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 15243 { 15244 dtrace_helpers_t *help; 15245 dtrace_helper_provider_t *hprov, **tmp_provs; 15246 uint_t tmp_maxprovs, i; 15247 15248 ASSERT(MUTEX_HELD(&dtrace_lock)); 15249 15250 help = curproc->p_dtrace_helpers; 15251 ASSERT(help != NULL); 15252 15253 /* 15254 * If we already have dtrace_helper_providers_max helper providers, 15255 * we're refuse to add a new one. 15256 */ 15257 if (help->dthps_nprovs >= dtrace_helper_providers_max) 15258 return (ENOSPC); 15259 15260 /* 15261 * Check to make sure this isn't a duplicate. 15262 */ 15263 for (i = 0; i < help->dthps_nprovs; i++) { 15264 if (dofhp->dofhp_addr == 15265 help->dthps_provs[i]->dthp_prov.dofhp_addr) 15266 return (EALREADY); 15267 } 15268 15269 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 15270 hprov->dthp_prov = *dofhp; 15271 hprov->dthp_ref = 1; 15272 hprov->dthp_generation = gen; 15273 15274 /* 15275 * Allocate a bigger table for helper providers if it's already full. 15276 */ 15277 if (help->dthps_maxprovs == help->dthps_nprovs) { 15278 tmp_maxprovs = help->dthps_maxprovs; 15279 tmp_provs = help->dthps_provs; 15280 15281 if (help->dthps_maxprovs == 0) 15282 help->dthps_maxprovs = 2; 15283 else 15284 help->dthps_maxprovs *= 2; 15285 if (help->dthps_maxprovs > dtrace_helper_providers_max) 15286 help->dthps_maxprovs = dtrace_helper_providers_max; 15287 15288 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 15289 15290 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 15291 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15292 15293 if (tmp_provs != NULL) { 15294 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 15295 sizeof (dtrace_helper_provider_t *)); 15296 kmem_free(tmp_provs, tmp_maxprovs * 15297 sizeof (dtrace_helper_provider_t *)); 15298 } 15299 } 15300 15301 help->dthps_provs[help->dthps_nprovs] = hprov; 15302 help->dthps_nprovs++; 15303 15304 return (0); 15305 } 15306 15307 static void 15308 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 15309 { 15310 mutex_enter(&dtrace_lock); 15311 15312 if (--hprov->dthp_ref == 0) { 15313 dof_hdr_t *dof; 15314 mutex_exit(&dtrace_lock); 15315 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 15316 dtrace_dof_destroy(dof); 15317 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 15318 } else { 15319 mutex_exit(&dtrace_lock); 15320 } 15321 } 15322 15323 static int 15324 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 15325 { 15326 uintptr_t daddr = (uintptr_t)dof; 15327 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 15328 dof_provider_t *provider; 15329 dof_probe_t *probe; 15330 uint8_t *arg; 15331 char *strtab, *typestr; 15332 dof_stridx_t typeidx; 15333 size_t typesz; 15334 uint_t nprobes, j, k; 15335 15336 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 15337 15338 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 15339 dtrace_dof_error(dof, "misaligned section offset"); 15340 return (-1); 15341 } 15342 15343 /* 15344 * The section needs to be large enough to contain the DOF provider 15345 * structure appropriate for the given version. 15346 */ 15347 if (sec->dofs_size < 15348 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 15349 offsetof(dof_provider_t, dofpv_prenoffs) : 15350 sizeof (dof_provider_t))) { 15351 dtrace_dof_error(dof, "provider section too small"); 15352 return (-1); 15353 } 15354 15355 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 15356 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 15357 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 15358 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 15359 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 15360 15361 if (str_sec == NULL || prb_sec == NULL || 15362 arg_sec == NULL || off_sec == NULL) 15363 return (-1); 15364 15365 enoff_sec = NULL; 15366 15367 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 15368 provider->dofpv_prenoffs != DOF_SECT_NONE && 15369 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 15370 provider->dofpv_prenoffs)) == NULL) 15371 return (-1); 15372 15373 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 15374 15375 if (provider->dofpv_name >= str_sec->dofs_size || 15376 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 15377 dtrace_dof_error(dof, "invalid provider name"); 15378 return (-1); 15379 } 15380 15381 if (prb_sec->dofs_entsize == 0 || 15382 prb_sec->dofs_entsize > prb_sec->dofs_size) { 15383 dtrace_dof_error(dof, "invalid entry size"); 15384 return (-1); 15385 } 15386 15387 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 15388 dtrace_dof_error(dof, "misaligned entry size"); 15389 return (-1); 15390 } 15391 15392 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 15393 dtrace_dof_error(dof, "invalid entry size"); 15394 return (-1); 15395 } 15396 15397 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 15398 dtrace_dof_error(dof, "misaligned section offset"); 15399 return (-1); 15400 } 15401 15402 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 15403 dtrace_dof_error(dof, "invalid entry size"); 15404 return (-1); 15405 } 15406 15407 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 15408 15409 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 15410 15411 /* 15412 * Take a pass through the probes to check for errors. 15413 */ 15414 for (j = 0; j < nprobes; j++) { 15415 probe = (dof_probe_t *)(uintptr_t)(daddr + 15416 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 15417 15418 if (probe->dofpr_func >= str_sec->dofs_size) { 15419 dtrace_dof_error(dof, "invalid function name"); 15420 return (-1); 15421 } 15422 15423 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 15424 dtrace_dof_error(dof, "function name too long"); 15425 return (-1); 15426 } 15427 15428 if (probe->dofpr_name >= str_sec->dofs_size || 15429 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 15430 dtrace_dof_error(dof, "invalid probe name"); 15431 return (-1); 15432 } 15433 15434 /* 15435 * The offset count must not wrap the index, and the offsets 15436 * must also not overflow the section's data. 15437 */ 15438 if (probe->dofpr_offidx + probe->dofpr_noffs < 15439 probe->dofpr_offidx || 15440 (probe->dofpr_offidx + probe->dofpr_noffs) * 15441 off_sec->dofs_entsize > off_sec->dofs_size) { 15442 dtrace_dof_error(dof, "invalid probe offset"); 15443 return (-1); 15444 } 15445 15446 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 15447 /* 15448 * If there's no is-enabled offset section, make sure 15449 * there aren't any is-enabled offsets. Otherwise 15450 * perform the same checks as for probe offsets 15451 * (immediately above). 15452 */ 15453 if (enoff_sec == NULL) { 15454 if (probe->dofpr_enoffidx != 0 || 15455 probe->dofpr_nenoffs != 0) { 15456 dtrace_dof_error(dof, "is-enabled " 15457 "offsets with null section"); 15458 return (-1); 15459 } 15460 } else if (probe->dofpr_enoffidx + 15461 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 15462 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 15463 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 15464 dtrace_dof_error(dof, "invalid is-enabled " 15465 "offset"); 15466 return (-1); 15467 } 15468 15469 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 15470 dtrace_dof_error(dof, "zero probe and " 15471 "is-enabled offsets"); 15472 return (-1); 15473 } 15474 } else if (probe->dofpr_noffs == 0) { 15475 dtrace_dof_error(dof, "zero probe offsets"); 15476 return (-1); 15477 } 15478 15479 if (probe->dofpr_argidx + probe->dofpr_xargc < 15480 probe->dofpr_argidx || 15481 (probe->dofpr_argidx + probe->dofpr_xargc) * 15482 arg_sec->dofs_entsize > arg_sec->dofs_size) { 15483 dtrace_dof_error(dof, "invalid args"); 15484 return (-1); 15485 } 15486 15487 typeidx = probe->dofpr_nargv; 15488 typestr = strtab + probe->dofpr_nargv; 15489 for (k = 0; k < probe->dofpr_nargc; k++) { 15490 if (typeidx >= str_sec->dofs_size) { 15491 dtrace_dof_error(dof, "bad " 15492 "native argument type"); 15493 return (-1); 15494 } 15495 15496 typesz = strlen(typestr) + 1; 15497 if (typesz > DTRACE_ARGTYPELEN) { 15498 dtrace_dof_error(dof, "native " 15499 "argument type too long"); 15500 return (-1); 15501 } 15502 typeidx += typesz; 15503 typestr += typesz; 15504 } 15505 15506 typeidx = probe->dofpr_xargv; 15507 typestr = strtab + probe->dofpr_xargv; 15508 for (k = 0; k < probe->dofpr_xargc; k++) { 15509 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 15510 dtrace_dof_error(dof, "bad " 15511 "native argument index"); 15512 return (-1); 15513 } 15514 15515 if (typeidx >= str_sec->dofs_size) { 15516 dtrace_dof_error(dof, "bad " 15517 "translated argument type"); 15518 return (-1); 15519 } 15520 15521 typesz = strlen(typestr) + 1; 15522 if (typesz > DTRACE_ARGTYPELEN) { 15523 dtrace_dof_error(dof, "translated argument " 15524 "type too long"); 15525 return (-1); 15526 } 15527 15528 typeidx += typesz; 15529 typestr += typesz; 15530 } 15531 } 15532 15533 return (0); 15534 } 15535 15536 static int 15537 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15538 { 15539 dtrace_helpers_t *help; 15540 dtrace_vstate_t *vstate; 15541 dtrace_enabling_t *enab = NULL; 15542 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15543 uintptr_t daddr = (uintptr_t)dof; 15544 15545 ASSERT(MUTEX_HELD(&dtrace_lock)); 15546 15547 if ((help = curproc->p_dtrace_helpers) == NULL) 15548 help = dtrace_helpers_create(curproc); 15549 15550 vstate = &help->dthps_vstate; 15551 15552 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15553 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15554 dtrace_dof_destroy(dof); 15555 return (rv); 15556 } 15557 15558 /* 15559 * Look for helper providers and validate their descriptions. 15560 */ 15561 if (dhp != NULL) { 15562 for (i = 0; i < dof->dofh_secnum; i++) { 15563 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15564 dof->dofh_secoff + i * dof->dofh_secsize); 15565 15566 if (sec->dofs_type != DOF_SECT_PROVIDER) 15567 continue; 15568 15569 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15570 dtrace_enabling_destroy(enab); 15571 dtrace_dof_destroy(dof); 15572 return (-1); 15573 } 15574 15575 nprovs++; 15576 } 15577 } 15578 15579 /* 15580 * Now we need to walk through the ECB descriptions in the enabling. 15581 */ 15582 for (i = 0; i < enab->dten_ndesc; i++) { 15583 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15584 dtrace_probedesc_t *desc = &ep->dted_probe; 15585 15586 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15587 continue; 15588 15589 if (strcmp(desc->dtpd_mod, "helper") != 0) 15590 continue; 15591 15592 if (strcmp(desc->dtpd_func, "ustack") != 0) 15593 continue; 15594 15595 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15596 ep)) != 0) { 15597 /* 15598 * Adding this helper action failed -- we are now going 15599 * to rip out the entire generation and return failure. 15600 */ 15601 (void) dtrace_helper_destroygen(help->dthps_generation); 15602 dtrace_enabling_destroy(enab); 15603 dtrace_dof_destroy(dof); 15604 return (-1); 15605 } 15606 15607 nhelpers++; 15608 } 15609 15610 if (nhelpers < enab->dten_ndesc) 15611 dtrace_dof_error(dof, "unmatched helpers"); 15612 15613 gen = help->dthps_generation++; 15614 dtrace_enabling_destroy(enab); 15615 15616 if (dhp != NULL && nprovs > 0) { 15617 /* 15618 * Now that this is in-kernel, we change the sense of the 15619 * members: dofhp_dof denotes the in-kernel copy of the DOF 15620 * and dofhp_addr denotes the address at user-level. 15621 */ 15622 dhp->dofhp_addr = dhp->dofhp_dof; 15623 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15624 15625 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15626 mutex_exit(&dtrace_lock); 15627 dtrace_helper_provider_register(curproc, help, dhp); 15628 mutex_enter(&dtrace_lock); 15629 15630 destroy = 0; 15631 } 15632 } 15633 15634 if (destroy) 15635 dtrace_dof_destroy(dof); 15636 15637 return (gen); 15638 } 15639 15640 static dtrace_helpers_t * 15641 dtrace_helpers_create(proc_t *p) 15642 { 15643 dtrace_helpers_t *help; 15644 15645 ASSERT(MUTEX_HELD(&dtrace_lock)); 15646 ASSERT(p->p_dtrace_helpers == NULL); 15647 15648 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15649 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15650 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15651 15652 p->p_dtrace_helpers = help; 15653 dtrace_helpers++; 15654 15655 return (help); 15656 } 15657 15658 static void 15659 dtrace_helpers_destroy(proc_t *p) 15660 { 15661 dtrace_helpers_t *help; 15662 dtrace_vstate_t *vstate; 15663 int i; 15664 15665 mutex_enter(&dtrace_lock); 15666 15667 ASSERT(p->p_dtrace_helpers != NULL); 15668 ASSERT(dtrace_helpers > 0); 15669 15670 help = p->p_dtrace_helpers; 15671 vstate = &help->dthps_vstate; 15672 15673 /* 15674 * We're now going to lose the help from this process. 15675 */ 15676 p->p_dtrace_helpers = NULL; 15677 if (p == curproc) { 15678 dtrace_sync(); 15679 } else { 15680 /* 15681 * It is sometimes necessary to clean up dtrace helpers from a 15682 * an incomplete child process as part of a failed fork 15683 * operation. In such situations, a dtrace_sync() call should 15684 * be unnecessary as the process should be devoid of threads, 15685 * much less any in probe context. 15686 */ 15687 VERIFY(p->p_stat == SIDL); 15688 } 15689 15690 /* 15691 * Destroy the helper actions. 15692 */ 15693 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15694 dtrace_helper_action_t *h, *next; 15695 15696 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15697 next = h->dtha_next; 15698 dtrace_helper_action_destroy(h, vstate); 15699 h = next; 15700 } 15701 } 15702 15703 mutex_exit(&dtrace_lock); 15704 15705 /* 15706 * Destroy the helper providers. 15707 */ 15708 if (help->dthps_maxprovs > 0) { 15709 mutex_enter(&dtrace_meta_lock); 15710 if (dtrace_meta_pid != NULL) { 15711 ASSERT(dtrace_deferred_pid == NULL); 15712 15713 for (i = 0; i < help->dthps_nprovs; i++) { 15714 dtrace_helper_provider_remove( 15715 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15716 } 15717 } else { 15718 mutex_enter(&dtrace_lock); 15719 ASSERT(help->dthps_deferred == 0 || 15720 help->dthps_next != NULL || 15721 help->dthps_prev != NULL || 15722 help == dtrace_deferred_pid); 15723 15724 /* 15725 * Remove the helper from the deferred list. 15726 */ 15727 if (help->dthps_next != NULL) 15728 help->dthps_next->dthps_prev = help->dthps_prev; 15729 if (help->dthps_prev != NULL) 15730 help->dthps_prev->dthps_next = help->dthps_next; 15731 if (dtrace_deferred_pid == help) { 15732 dtrace_deferred_pid = help->dthps_next; 15733 ASSERT(help->dthps_prev == NULL); 15734 } 15735 15736 mutex_exit(&dtrace_lock); 15737 } 15738 15739 mutex_exit(&dtrace_meta_lock); 15740 15741 for (i = 0; i < help->dthps_nprovs; i++) { 15742 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15743 } 15744 15745 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15746 sizeof (dtrace_helper_provider_t *)); 15747 } 15748 15749 mutex_enter(&dtrace_lock); 15750 15751 dtrace_vstate_fini(&help->dthps_vstate); 15752 kmem_free(help->dthps_actions, 15753 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15754 kmem_free(help, sizeof (dtrace_helpers_t)); 15755 15756 --dtrace_helpers; 15757 mutex_exit(&dtrace_lock); 15758 } 15759 15760 static void 15761 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15762 { 15763 dtrace_helpers_t *help, *newhelp; 15764 dtrace_helper_action_t *helper, *new, *last; 15765 dtrace_difo_t *dp; 15766 dtrace_vstate_t *vstate; 15767 int i, j, sz, hasprovs = 0; 15768 15769 mutex_enter(&dtrace_lock); 15770 ASSERT(from->p_dtrace_helpers != NULL); 15771 ASSERT(dtrace_helpers > 0); 15772 15773 help = from->p_dtrace_helpers; 15774 newhelp = dtrace_helpers_create(to); 15775 ASSERT(to->p_dtrace_helpers != NULL); 15776 15777 newhelp->dthps_generation = help->dthps_generation; 15778 vstate = &newhelp->dthps_vstate; 15779 15780 /* 15781 * Duplicate the helper actions. 15782 */ 15783 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15784 if ((helper = help->dthps_actions[i]) == NULL) 15785 continue; 15786 15787 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15788 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15789 KM_SLEEP); 15790 new->dtha_generation = helper->dtha_generation; 15791 15792 if ((dp = helper->dtha_predicate) != NULL) { 15793 dp = dtrace_difo_duplicate(dp, vstate); 15794 new->dtha_predicate = dp; 15795 } 15796 15797 new->dtha_nactions = helper->dtha_nactions; 15798 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15799 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15800 15801 for (j = 0; j < new->dtha_nactions; j++) { 15802 dtrace_difo_t *dp = helper->dtha_actions[j]; 15803 15804 ASSERT(dp != NULL); 15805 dp = dtrace_difo_duplicate(dp, vstate); 15806 new->dtha_actions[j] = dp; 15807 } 15808 15809 if (last != NULL) { 15810 last->dtha_next = new; 15811 } else { 15812 newhelp->dthps_actions[i] = new; 15813 } 15814 15815 last = new; 15816 } 15817 } 15818 15819 /* 15820 * Duplicate the helper providers and register them with the 15821 * DTrace framework. 15822 */ 15823 if (help->dthps_nprovs > 0) { 15824 newhelp->dthps_nprovs = help->dthps_nprovs; 15825 newhelp->dthps_maxprovs = help->dthps_nprovs; 15826 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15827 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15828 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15829 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15830 newhelp->dthps_provs[i]->dthp_ref++; 15831 } 15832 15833 hasprovs = 1; 15834 } 15835 15836 mutex_exit(&dtrace_lock); 15837 15838 if (hasprovs) 15839 dtrace_helper_provider_register(to, newhelp, NULL); 15840 } 15841 15842 /* 15843 * DTrace Hook Functions 15844 */ 15845 static void 15846 dtrace_module_loaded(struct modctl *ctl) 15847 { 15848 dtrace_provider_t *prv; 15849 15850 mutex_enter(&dtrace_provider_lock); 15851 mutex_enter(&mod_lock); 15852 15853 ASSERT(ctl->mod_busy); 15854 15855 /* 15856 * We're going to call each providers per-module provide operation 15857 * specifying only this module. 15858 */ 15859 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15860 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15861 15862 mutex_exit(&mod_lock); 15863 mutex_exit(&dtrace_provider_lock); 15864 15865 /* 15866 * If we have any retained enablings, we need to match against them. 15867 * Enabling probes requires that cpu_lock be held, and we cannot hold 15868 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15869 * module. (In particular, this happens when loading scheduling 15870 * classes.) So if we have any retained enablings, we need to dispatch 15871 * our task queue to do the match for us. 15872 */ 15873 mutex_enter(&dtrace_lock); 15874 15875 if (dtrace_retained == NULL) { 15876 mutex_exit(&dtrace_lock); 15877 return; 15878 } 15879 15880 (void) taskq_dispatch(dtrace_taskq, 15881 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15882 15883 mutex_exit(&dtrace_lock); 15884 15885 /* 15886 * And now, for a little heuristic sleaze: in general, we want to 15887 * match modules as soon as they load. However, we cannot guarantee 15888 * this, because it would lead us to the lock ordering violation 15889 * outlined above. The common case, of course, is that cpu_lock is 15890 * _not_ held -- so we delay here for a clock tick, hoping that that's 15891 * long enough for the task queue to do its work. If it's not, it's 15892 * not a serious problem -- it just means that the module that we 15893 * just loaded may not be immediately instrumentable. 15894 */ 15895 delay(1); 15896 } 15897 15898 static void 15899 dtrace_module_unloaded(struct modctl *ctl) 15900 { 15901 dtrace_probe_t template, *probe, *first, *next; 15902 dtrace_provider_t *prov; 15903 15904 template.dtpr_mod = ctl->mod_modname; 15905 15906 mutex_enter(&dtrace_provider_lock); 15907 mutex_enter(&mod_lock); 15908 mutex_enter(&dtrace_lock); 15909 15910 if (dtrace_bymod == NULL) { 15911 /* 15912 * The DTrace module is loaded (obviously) but not attached; 15913 * we don't have any work to do. 15914 */ 15915 mutex_exit(&dtrace_provider_lock); 15916 mutex_exit(&mod_lock); 15917 mutex_exit(&dtrace_lock); 15918 return; 15919 } 15920 15921 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15922 probe != NULL; probe = probe->dtpr_nextmod) { 15923 if (probe->dtpr_ecb != NULL) { 15924 mutex_exit(&dtrace_provider_lock); 15925 mutex_exit(&mod_lock); 15926 mutex_exit(&dtrace_lock); 15927 15928 /* 15929 * This shouldn't _actually_ be possible -- we're 15930 * unloading a module that has an enabled probe in it. 15931 * (It's normally up to the provider to make sure that 15932 * this can't happen.) However, because dtps_enable() 15933 * doesn't have a failure mode, there can be an 15934 * enable/unload race. Upshot: we don't want to 15935 * assert, but we're not going to disable the 15936 * probe, either. 15937 */ 15938 if (dtrace_err_verbose) { 15939 cmn_err(CE_WARN, "unloaded module '%s' had " 15940 "enabled probes", ctl->mod_modname); 15941 } 15942 15943 return; 15944 } 15945 } 15946 15947 probe = first; 15948 15949 for (first = NULL; probe != NULL; probe = next) { 15950 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15951 15952 dtrace_probes[probe->dtpr_id - 1] = NULL; 15953 15954 next = probe->dtpr_nextmod; 15955 dtrace_hash_remove(dtrace_bymod, probe); 15956 dtrace_hash_remove(dtrace_byfunc, probe); 15957 dtrace_hash_remove(dtrace_byname, probe); 15958 15959 if (first == NULL) { 15960 first = probe; 15961 probe->dtpr_nextmod = NULL; 15962 } else { 15963 probe->dtpr_nextmod = first; 15964 first = probe; 15965 } 15966 } 15967 15968 /* 15969 * We've removed all of the module's probes from the hash chains and 15970 * from the probe array. Now issue a dtrace_sync() to be sure that 15971 * everyone has cleared out from any probe array processing. 15972 */ 15973 dtrace_sync(); 15974 15975 for (probe = first; probe != NULL; probe = first) { 15976 first = probe->dtpr_nextmod; 15977 prov = probe->dtpr_provider; 15978 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15979 probe->dtpr_arg); 15980 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15981 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15982 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15983 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15984 kmem_free(probe, sizeof (dtrace_probe_t)); 15985 } 15986 15987 mutex_exit(&dtrace_lock); 15988 mutex_exit(&mod_lock); 15989 mutex_exit(&dtrace_provider_lock); 15990 } 15991 15992 void 15993 dtrace_suspend(void) 15994 { 15995 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15996 } 15997 15998 void 15999 dtrace_resume(void) 16000 { 16001 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 16002 } 16003 16004 static int 16005 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu, void *ptr __unused) 16006 { 16007 ASSERT(MUTEX_HELD(&cpu_lock)); 16008 mutex_enter(&dtrace_lock); 16009 16010 switch (what) { 16011 case CPU_CONFIG: { 16012 dtrace_state_t *state; 16013 dtrace_optval_t *opt, rs, c; 16014 16015 /* 16016 * For now, we only allocate a new buffer for anonymous state. 16017 */ 16018 if ((state = dtrace_anon.dta_state) == NULL) 16019 break; 16020 16021 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 16022 break; 16023 16024 opt = state->dts_options; 16025 c = opt[DTRACEOPT_CPU]; 16026 16027 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 16028 break; 16029 16030 /* 16031 * Regardless of what the actual policy is, we're going to 16032 * temporarily set our resize policy to be manual. We're 16033 * also going to temporarily set our CPU option to denote 16034 * the newly configured CPU. 16035 */ 16036 rs = opt[DTRACEOPT_BUFRESIZE]; 16037 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 16038 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 16039 16040 (void) dtrace_state_buffers(state); 16041 16042 opt[DTRACEOPT_BUFRESIZE] = rs; 16043 opt[DTRACEOPT_CPU] = c; 16044 16045 break; 16046 } 16047 16048 case CPU_UNCONFIG: 16049 /* 16050 * We don't free the buffer in the CPU_UNCONFIG case. (The 16051 * buffer will be freed when the consumer exits.) 16052 */ 16053 break; 16054 16055 default: 16056 break; 16057 } 16058 16059 mutex_exit(&dtrace_lock); 16060 return (0); 16061 } 16062 16063 static void 16064 dtrace_cpu_setup_initial(processorid_t cpu) 16065 { 16066 (void) dtrace_cpu_setup(CPU_CONFIG, cpu, NULL); 16067 } 16068 16069 static void 16070 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 16071 { 16072 if (dtrace_toxranges >= dtrace_toxranges_max) { 16073 int osize, nsize; 16074 dtrace_toxrange_t *range; 16075 16076 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16077 16078 if (osize == 0) { 16079 ASSERT(dtrace_toxrange == NULL); 16080 ASSERT(dtrace_toxranges_max == 0); 16081 dtrace_toxranges_max = 1; 16082 } else { 16083 dtrace_toxranges_max <<= 1; 16084 } 16085 16086 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 16087 range = kmem_zalloc(nsize, KM_SLEEP); 16088 16089 if (dtrace_toxrange != NULL) { 16090 ASSERT(osize != 0); 16091 bcopy(dtrace_toxrange, range, osize); 16092 kmem_free(dtrace_toxrange, osize); 16093 } 16094 16095 dtrace_toxrange = range; 16096 } 16097 16098 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == (uintptr_t)NULL); 16099 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == (uintptr_t)NULL); 16100 16101 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 16102 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 16103 dtrace_toxranges++; 16104 } 16105 16106 static void 16107 dtrace_getf_barrier() 16108 { 16109 /* 16110 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 16111 * that contain calls to getf(), this routine will be called on every 16112 * closef() before either the underlying vnode is released or the 16113 * file_t itself is freed. By the time we are here, it is essential 16114 * that the file_t can no longer be accessed from a call to getf() 16115 * in probe context -- that assures that a dtrace_sync() can be used 16116 * to clear out any enablings referring to the old structures. 16117 */ 16118 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 16119 kcred->cr_zone->zone_dtrace_getf != 0) 16120 dtrace_sync(); 16121 } 16122 16123 /* 16124 * DTrace Driver Cookbook Functions 16125 */ 16126 /*ARGSUSED*/ 16127 static int 16128 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 16129 { 16130 dtrace_provider_id_t id; 16131 dtrace_state_t *state = NULL; 16132 dtrace_enabling_t *enab; 16133 16134 mutex_enter(&cpu_lock); 16135 mutex_enter(&dtrace_provider_lock); 16136 mutex_enter(&dtrace_lock); 16137 16138 if (ddi_soft_state_init(&dtrace_softstate, 16139 sizeof (dtrace_state_t), 0) != 0) { 16140 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 16141 mutex_exit(&cpu_lock); 16142 mutex_exit(&dtrace_provider_lock); 16143 mutex_exit(&dtrace_lock); 16144 return (DDI_FAILURE); 16145 } 16146 16147 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 16148 DTRACEMNRN_DTRACE, DDI_PSEUDO, 0) == DDI_FAILURE || 16149 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 16150 DTRACEMNRN_HELPER, DDI_PSEUDO, 0) == DDI_FAILURE) { 16151 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 16152 ddi_remove_minor_node(devi, NULL); 16153 ddi_soft_state_fini(&dtrace_softstate); 16154 mutex_exit(&cpu_lock); 16155 mutex_exit(&dtrace_provider_lock); 16156 mutex_exit(&dtrace_lock); 16157 return (DDI_FAILURE); 16158 } 16159 16160 ddi_report_dev(devi); 16161 dtrace_devi = devi; 16162 16163 dtrace_modload = dtrace_module_loaded; 16164 dtrace_modunload = dtrace_module_unloaded; 16165 dtrace_cpu_init = dtrace_cpu_setup_initial; 16166 dtrace_helpers_cleanup = dtrace_helpers_destroy; 16167 dtrace_helpers_fork = dtrace_helpers_duplicate; 16168 dtrace_cpustart_init = dtrace_suspend; 16169 dtrace_cpustart_fini = dtrace_resume; 16170 dtrace_debugger_init = dtrace_suspend; 16171 dtrace_debugger_fini = dtrace_resume; 16172 16173 register_cpu_setup_func(dtrace_cpu_setup, NULL); 16174 16175 ASSERT(MUTEX_HELD(&cpu_lock)); 16176 16177 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 16178 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 16179 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 16180 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 16181 VM_SLEEP | VMC_IDENTIFIER); 16182 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 16183 1, INT_MAX, 0); 16184 16185 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 16186 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 16187 NULL, NULL, NULL, NULL, NULL, 0); 16188 16189 ASSERT(MUTEX_HELD(&cpu_lock)); 16190 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 16191 offsetof(dtrace_probe_t, dtpr_nextmod), 16192 offsetof(dtrace_probe_t, dtpr_prevmod)); 16193 16194 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 16195 offsetof(dtrace_probe_t, dtpr_nextfunc), 16196 offsetof(dtrace_probe_t, dtpr_prevfunc)); 16197 16198 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 16199 offsetof(dtrace_probe_t, dtpr_nextname), 16200 offsetof(dtrace_probe_t, dtpr_prevname)); 16201 16202 if (dtrace_retain_max < 1) { 16203 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 16204 "setting to 1", dtrace_retain_max); 16205 dtrace_retain_max = 1; 16206 } 16207 16208 /* 16209 * Now discover our toxic ranges. 16210 */ 16211 dtrace_toxic_ranges(dtrace_toxrange_add); 16212 16213 /* 16214 * Before we register ourselves as a provider to our own framework, 16215 * we would like to assert that dtrace_provider is NULL -- but that's 16216 * not true if we were loaded as a dependency of a DTrace provider. 16217 * Once we've registered, we can assert that dtrace_provider is our 16218 * pseudo provider. 16219 */ 16220 (void) dtrace_register("dtrace", &dtrace_provider_attr, 16221 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 16222 16223 ASSERT(dtrace_provider != NULL); 16224 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 16225 16226 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 16227 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 16228 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 16229 dtrace_provider, NULL, NULL, "END", 0, NULL); 16230 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 16231 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 16232 16233 dtrace_anon_property(); 16234 mutex_exit(&cpu_lock); 16235 16236 /* 16237 * If there are already providers, we must ask them to provide their 16238 * probes, and then match any anonymous enabling against them. Note 16239 * that there should be no other retained enablings at this time: 16240 * the only retained enablings at this time should be the anonymous 16241 * enabling. 16242 */ 16243 if (dtrace_anon.dta_enabling != NULL) { 16244 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 16245 16246 dtrace_enabling_provide(NULL); 16247 state = dtrace_anon.dta_state; 16248 16249 /* 16250 * We couldn't hold cpu_lock across the above call to 16251 * dtrace_enabling_provide(), but we must hold it to actually 16252 * enable the probes. We have to drop all of our locks, pick 16253 * up cpu_lock, and regain our locks before matching the 16254 * retained anonymous enabling. 16255 */ 16256 mutex_exit(&dtrace_lock); 16257 mutex_exit(&dtrace_provider_lock); 16258 16259 mutex_enter(&cpu_lock); 16260 mutex_enter(&dtrace_provider_lock); 16261 mutex_enter(&dtrace_lock); 16262 16263 if ((enab = dtrace_anon.dta_enabling) != NULL) 16264 (void) dtrace_enabling_match(enab, NULL); 16265 16266 mutex_exit(&cpu_lock); 16267 } 16268 16269 mutex_exit(&dtrace_lock); 16270 mutex_exit(&dtrace_provider_lock); 16271 16272 if (state != NULL) { 16273 /* 16274 * If we created any anonymous state, set it going now. 16275 */ 16276 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 16277 } 16278 16279 return (DDI_SUCCESS); 16280 } 16281 16282 /*ARGSUSED*/ 16283 static int 16284 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 16285 { 16286 dtrace_state_t *state; 16287 uint32_t priv; 16288 uid_t uid; 16289 zoneid_t zoneid; 16290 16291 if (getminor(*devp) == DTRACEMNRN_HELPER) 16292 return (0); 16293 16294 /* 16295 * If this wasn't an open with the "helper" minor, then it must be 16296 * the "dtrace" minor. 16297 */ 16298 if (getminor(*devp) != DTRACEMNRN_DTRACE) 16299 return (ENXIO); 16300 16301 /* 16302 * If no DTRACE_PRIV_* bits are set in the credential, then the 16303 * caller lacks sufficient permission to do anything with DTrace. 16304 */ 16305 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 16306 if (priv == DTRACE_PRIV_NONE) 16307 return (EACCES); 16308 16309 /* 16310 * Ask all providers to provide all their probes. 16311 */ 16312 mutex_enter(&dtrace_provider_lock); 16313 dtrace_probe_provide(NULL, NULL); 16314 mutex_exit(&dtrace_provider_lock); 16315 16316 mutex_enter(&cpu_lock); 16317 mutex_enter(&dtrace_lock); 16318 dtrace_opens++; 16319 dtrace_membar_producer(); 16320 16321 /* 16322 * If the kernel debugger is active (that is, if the kernel debugger 16323 * modified text in some way), we won't allow the open. 16324 */ 16325 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 16326 dtrace_opens--; 16327 mutex_exit(&cpu_lock); 16328 mutex_exit(&dtrace_lock); 16329 return (EBUSY); 16330 } 16331 16332 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 16333 /* 16334 * If DTrace helper tracing is enabled, we need to allocate the 16335 * trace buffer and initialize the values. 16336 */ 16337 dtrace_helptrace_buffer = 16338 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 16339 dtrace_helptrace_next = 0; 16340 dtrace_helptrace_wrapped = 0; 16341 dtrace_helptrace_enable = 0; 16342 } 16343 16344 state = dtrace_state_create(devp, cred_p); 16345 mutex_exit(&cpu_lock); 16346 16347 if (state == NULL) { 16348 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16349 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16350 mutex_exit(&dtrace_lock); 16351 return (EAGAIN); 16352 } 16353 16354 mutex_exit(&dtrace_lock); 16355 16356 return (0); 16357 } 16358 16359 /*ARGSUSED*/ 16360 static int 16361 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 16362 { 16363 minor_t minor = getminor(dev); 16364 dtrace_state_t *state; 16365 dtrace_helptrace_t *buf = NULL; 16366 16367 if (minor == DTRACEMNRN_HELPER) 16368 return (0); 16369 16370 state = ddi_get_soft_state(dtrace_softstate, minor); 16371 16372 mutex_enter(&cpu_lock); 16373 mutex_enter(&dtrace_lock); 16374 16375 if (state->dts_anon) { 16376 /* 16377 * There is anonymous state. Destroy that first. 16378 */ 16379 ASSERT(dtrace_anon.dta_state == NULL); 16380 dtrace_state_destroy(state->dts_anon); 16381 } 16382 16383 if (dtrace_helptrace_disable) { 16384 /* 16385 * If we have been told to disable helper tracing, set the 16386 * buffer to NULL before calling into dtrace_state_destroy(); 16387 * we take advantage of its dtrace_sync() to know that no 16388 * CPU is in probe context with enabled helper tracing 16389 * after it returns. 16390 */ 16391 buf = dtrace_helptrace_buffer; 16392 dtrace_helptrace_buffer = NULL; 16393 } 16394 16395 dtrace_state_destroy(state); 16396 ASSERT(dtrace_opens > 0); 16397 16398 /* 16399 * Only relinquish control of the kernel debugger interface when there 16400 * are no consumers and no anonymous enablings. 16401 */ 16402 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 16403 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16404 16405 if (buf != NULL) { 16406 kmem_free(buf, dtrace_helptrace_bufsize); 16407 dtrace_helptrace_disable = 0; 16408 } 16409 16410 mutex_exit(&dtrace_lock); 16411 mutex_exit(&cpu_lock); 16412 16413 return (0); 16414 } 16415 16416 /*ARGSUSED*/ 16417 static int 16418 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 16419 { 16420 int rval; 16421 dof_helper_t help, *dhp = NULL; 16422 16423 switch (cmd) { 16424 case DTRACEHIOC_ADDDOF: 16425 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 16426 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 16427 return (EFAULT); 16428 } 16429 16430 dhp = &help; 16431 arg = (intptr_t)help.dofhp_dof; 16432 /*FALLTHROUGH*/ 16433 16434 case DTRACEHIOC_ADD: { 16435 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 16436 16437 if (dof == NULL) 16438 return (rval); 16439 16440 mutex_enter(&dtrace_lock); 16441 16442 /* 16443 * dtrace_helper_slurp() takes responsibility for the dof -- 16444 * it may free it now or it may save it and free it later. 16445 */ 16446 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 16447 *rv = rval; 16448 rval = 0; 16449 } else { 16450 rval = EINVAL; 16451 } 16452 16453 mutex_exit(&dtrace_lock); 16454 return (rval); 16455 } 16456 16457 case DTRACEHIOC_REMOVE: { 16458 mutex_enter(&dtrace_lock); 16459 rval = dtrace_helper_destroygen(arg); 16460 mutex_exit(&dtrace_lock); 16461 16462 return (rval); 16463 } 16464 16465 default: 16466 break; 16467 } 16468 16469 return (ENOTTY); 16470 } 16471 16472 /*ARGSUSED*/ 16473 static int 16474 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 16475 { 16476 minor_t minor = getminor(dev); 16477 dtrace_state_t *state; 16478 int rval; 16479 16480 if (minor == DTRACEMNRN_HELPER) 16481 return (dtrace_ioctl_helper(cmd, arg, rv)); 16482 16483 state = ddi_get_soft_state(dtrace_softstate, minor); 16484 16485 if (state->dts_anon) { 16486 ASSERT(dtrace_anon.dta_state == NULL); 16487 state = state->dts_anon; 16488 } 16489 16490 switch (cmd) { 16491 case DTRACEIOC_PROVIDER: { 16492 dtrace_providerdesc_t pvd; 16493 dtrace_provider_t *pvp; 16494 16495 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 16496 return (EFAULT); 16497 16498 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 16499 mutex_enter(&dtrace_provider_lock); 16500 16501 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 16502 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 16503 break; 16504 } 16505 16506 mutex_exit(&dtrace_provider_lock); 16507 16508 if (pvp == NULL) 16509 return (ESRCH); 16510 16511 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 16512 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 16513 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 16514 return (EFAULT); 16515 16516 return (0); 16517 } 16518 16519 case DTRACEIOC_EPROBE: { 16520 dtrace_eprobedesc_t epdesc; 16521 dtrace_ecb_t *ecb; 16522 dtrace_action_t *act; 16523 void *buf; 16524 size_t size; 16525 uintptr_t dest; 16526 int nrecs; 16527 16528 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 16529 return (EFAULT); 16530 16531 mutex_enter(&dtrace_lock); 16532 16533 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 16534 mutex_exit(&dtrace_lock); 16535 return (EINVAL); 16536 } 16537 16538 if (ecb->dte_probe == NULL) { 16539 mutex_exit(&dtrace_lock); 16540 return (EINVAL); 16541 } 16542 16543 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 16544 epdesc.dtepd_uarg = ecb->dte_uarg; 16545 epdesc.dtepd_size = ecb->dte_size; 16546 16547 nrecs = epdesc.dtepd_nrecs; 16548 epdesc.dtepd_nrecs = 0; 16549 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16550 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16551 continue; 16552 16553 epdesc.dtepd_nrecs++; 16554 } 16555 16556 /* 16557 * Now that we have the size, we need to allocate a temporary 16558 * buffer in which to store the complete description. We need 16559 * the temporary buffer to be able to drop dtrace_lock() 16560 * across the copyout(), below. 16561 */ 16562 size = sizeof (dtrace_eprobedesc_t) + 16563 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 16564 16565 buf = kmem_alloc(size, KM_SLEEP); 16566 dest = (uintptr_t)buf; 16567 16568 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 16569 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 16570 16571 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16572 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16573 continue; 16574 16575 if (nrecs-- == 0) 16576 break; 16577 16578 bcopy(&act->dta_rec, (void *)dest, 16579 sizeof (dtrace_recdesc_t)); 16580 dest += sizeof (dtrace_recdesc_t); 16581 } 16582 16583 mutex_exit(&dtrace_lock); 16584 16585 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16586 kmem_free(buf, size); 16587 return (EFAULT); 16588 } 16589 16590 kmem_free(buf, size); 16591 return (0); 16592 } 16593 16594 case DTRACEIOC_AGGDESC: { 16595 dtrace_aggdesc_t aggdesc; 16596 dtrace_action_t *act; 16597 dtrace_aggregation_t *agg; 16598 int nrecs; 16599 uint32_t offs; 16600 dtrace_recdesc_t *lrec; 16601 void *buf; 16602 size_t size; 16603 uintptr_t dest; 16604 16605 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16606 return (EFAULT); 16607 16608 mutex_enter(&dtrace_lock); 16609 16610 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16611 mutex_exit(&dtrace_lock); 16612 return (EINVAL); 16613 } 16614 16615 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16616 16617 nrecs = aggdesc.dtagd_nrecs; 16618 aggdesc.dtagd_nrecs = 0; 16619 16620 offs = agg->dtag_base; 16621 lrec = &agg->dtag_action.dta_rec; 16622 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16623 16624 for (act = agg->dtag_first; ; act = act->dta_next) { 16625 ASSERT(act->dta_intuple || 16626 DTRACEACT_ISAGG(act->dta_kind)); 16627 16628 /* 16629 * If this action has a record size of zero, it 16630 * denotes an argument to the aggregating action. 16631 * Because the presence of this record doesn't (or 16632 * shouldn't) affect the way the data is interpreted, 16633 * we don't copy it out to save user-level the 16634 * confusion of dealing with a zero-length record. 16635 */ 16636 if (act->dta_rec.dtrd_size == 0) { 16637 ASSERT(agg->dtag_hasarg); 16638 continue; 16639 } 16640 16641 aggdesc.dtagd_nrecs++; 16642 16643 if (act == &agg->dtag_action) 16644 break; 16645 } 16646 16647 /* 16648 * Now that we have the size, we need to allocate a temporary 16649 * buffer in which to store the complete description. We need 16650 * the temporary buffer to be able to drop dtrace_lock() 16651 * across the copyout(), below. 16652 */ 16653 size = sizeof (dtrace_aggdesc_t) + 16654 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16655 16656 buf = kmem_alloc(size, KM_SLEEP); 16657 dest = (uintptr_t)buf; 16658 16659 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16660 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16661 16662 for (act = agg->dtag_first; ; act = act->dta_next) { 16663 dtrace_recdesc_t rec = act->dta_rec; 16664 16665 /* 16666 * See the comment in the above loop for why we pass 16667 * over zero-length records. 16668 */ 16669 if (rec.dtrd_size == 0) { 16670 ASSERT(agg->dtag_hasarg); 16671 continue; 16672 } 16673 16674 if (nrecs-- == 0) 16675 break; 16676 16677 rec.dtrd_offset -= offs; 16678 bcopy(&rec, (void *)dest, sizeof (rec)); 16679 dest += sizeof (dtrace_recdesc_t); 16680 16681 if (act == &agg->dtag_action) 16682 break; 16683 } 16684 16685 mutex_exit(&dtrace_lock); 16686 16687 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16688 kmem_free(buf, size); 16689 return (EFAULT); 16690 } 16691 16692 kmem_free(buf, size); 16693 return (0); 16694 } 16695 16696 case DTRACEIOC_ENABLE: { 16697 dof_hdr_t *dof; 16698 dtrace_enabling_t *enab = NULL; 16699 dtrace_vstate_t *vstate; 16700 int err = 0; 16701 16702 *rv = 0; 16703 16704 /* 16705 * If a NULL argument has been passed, we take this as our 16706 * cue to reevaluate our enablings. 16707 */ 16708 if (arg == 0) { 16709 dtrace_enabling_matchall(); 16710 16711 return (0); 16712 } 16713 16714 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16715 return (rval); 16716 16717 mutex_enter(&cpu_lock); 16718 mutex_enter(&dtrace_lock); 16719 vstate = &state->dts_vstate; 16720 16721 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16722 mutex_exit(&dtrace_lock); 16723 mutex_exit(&cpu_lock); 16724 dtrace_dof_destroy(dof); 16725 return (EBUSY); 16726 } 16727 16728 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16729 mutex_exit(&dtrace_lock); 16730 mutex_exit(&cpu_lock); 16731 dtrace_dof_destroy(dof); 16732 return (EINVAL); 16733 } 16734 16735 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16736 dtrace_enabling_destroy(enab); 16737 mutex_exit(&dtrace_lock); 16738 mutex_exit(&cpu_lock); 16739 dtrace_dof_destroy(dof); 16740 return (rval); 16741 } 16742 16743 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16744 err = dtrace_enabling_retain(enab); 16745 } else { 16746 dtrace_enabling_destroy(enab); 16747 } 16748 16749 mutex_exit(&cpu_lock); 16750 mutex_exit(&dtrace_lock); 16751 dtrace_dof_destroy(dof); 16752 16753 return (err); 16754 } 16755 16756 case DTRACEIOC_REPLICATE: { 16757 dtrace_repldesc_t desc; 16758 dtrace_probedesc_t *match = &desc.dtrpd_match; 16759 dtrace_probedesc_t *create = &desc.dtrpd_create; 16760 int err; 16761 16762 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16763 return (EFAULT); 16764 16765 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16766 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16767 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16768 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16769 16770 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16771 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16772 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16773 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16774 16775 mutex_enter(&dtrace_lock); 16776 err = dtrace_enabling_replicate(state, match, create); 16777 mutex_exit(&dtrace_lock); 16778 16779 return (err); 16780 } 16781 16782 case DTRACEIOC_PROBEMATCH: 16783 case DTRACEIOC_PROBES: { 16784 dtrace_probe_t *probe = NULL; 16785 dtrace_probedesc_t desc; 16786 dtrace_probekey_t pkey; 16787 dtrace_id_t i; 16788 int m = 0; 16789 uint32_t priv; 16790 uid_t uid; 16791 zoneid_t zoneid; 16792 16793 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16794 return (EFAULT); 16795 16796 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16797 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16798 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16799 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16800 16801 /* 16802 * Before we attempt to match this probe, we want to give 16803 * all providers the opportunity to provide it. 16804 */ 16805 if (desc.dtpd_id == DTRACE_IDNONE) { 16806 mutex_enter(&dtrace_provider_lock); 16807 dtrace_probe_provide(&desc, NULL); 16808 mutex_exit(&dtrace_provider_lock); 16809 desc.dtpd_id++; 16810 } 16811 16812 if (cmd == DTRACEIOC_PROBEMATCH) { 16813 dtrace_probekey(&desc, &pkey); 16814 pkey.dtpk_id = DTRACE_IDNONE; 16815 } 16816 16817 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16818 16819 mutex_enter(&dtrace_lock); 16820 16821 if (cmd == DTRACEIOC_PROBEMATCH) { 16822 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16823 if ((probe = dtrace_probes[i - 1]) != NULL && 16824 (m = dtrace_match_probe(probe, &pkey, 16825 priv, uid, zoneid)) != 0) 16826 break; 16827 } 16828 16829 if (m < 0) { 16830 mutex_exit(&dtrace_lock); 16831 return (EINVAL); 16832 } 16833 16834 } else { 16835 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16836 if ((probe = dtrace_probes[i - 1]) != NULL && 16837 dtrace_match_priv(probe, priv, uid, zoneid)) 16838 break; 16839 } 16840 } 16841 16842 if (probe == NULL) { 16843 mutex_exit(&dtrace_lock); 16844 return (ESRCH); 16845 } 16846 16847 dtrace_probe_description(probe, &desc); 16848 mutex_exit(&dtrace_lock); 16849 16850 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16851 return (EFAULT); 16852 16853 return (0); 16854 } 16855 16856 case DTRACEIOC_PROBEARG: { 16857 dtrace_argdesc_t desc; 16858 dtrace_probe_t *probe; 16859 dtrace_provider_t *prov; 16860 16861 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16862 return (EFAULT); 16863 16864 if (desc.dtargd_id == DTRACE_IDNONE) 16865 return (EINVAL); 16866 16867 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16868 return (EINVAL); 16869 16870 mutex_enter(&dtrace_provider_lock); 16871 mutex_enter(&mod_lock); 16872 mutex_enter(&dtrace_lock); 16873 16874 if (desc.dtargd_id > dtrace_nprobes) { 16875 mutex_exit(&dtrace_lock); 16876 mutex_exit(&mod_lock); 16877 mutex_exit(&dtrace_provider_lock); 16878 return (EINVAL); 16879 } 16880 16881 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16882 mutex_exit(&dtrace_lock); 16883 mutex_exit(&mod_lock); 16884 mutex_exit(&dtrace_provider_lock); 16885 return (EINVAL); 16886 } 16887 16888 mutex_exit(&dtrace_lock); 16889 16890 prov = probe->dtpr_provider; 16891 16892 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16893 /* 16894 * There isn't any typed information for this probe. 16895 * Set the argument number to DTRACE_ARGNONE. 16896 */ 16897 desc.dtargd_ndx = DTRACE_ARGNONE; 16898 } else { 16899 desc.dtargd_native[0] = '\0'; 16900 desc.dtargd_xlate[0] = '\0'; 16901 desc.dtargd_mapping = desc.dtargd_ndx; 16902 16903 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16904 probe->dtpr_id, probe->dtpr_arg, &desc); 16905 } 16906 16907 mutex_exit(&mod_lock); 16908 mutex_exit(&dtrace_provider_lock); 16909 16910 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16911 return (EFAULT); 16912 16913 return (0); 16914 } 16915 16916 case DTRACEIOC_GO: { 16917 processorid_t cpuid; 16918 rval = dtrace_state_go(state, &cpuid); 16919 16920 if (rval != 0) 16921 return (rval); 16922 16923 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16924 return (EFAULT); 16925 16926 return (0); 16927 } 16928 16929 case DTRACEIOC_STOP: { 16930 processorid_t cpuid; 16931 16932 mutex_enter(&dtrace_lock); 16933 rval = dtrace_state_stop(state, &cpuid); 16934 mutex_exit(&dtrace_lock); 16935 16936 if (rval != 0) 16937 return (rval); 16938 16939 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16940 return (EFAULT); 16941 16942 return (0); 16943 } 16944 16945 case DTRACEIOC_DOFGET: { 16946 dof_hdr_t hdr, *dof; 16947 uint64_t len; 16948 16949 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16950 return (EFAULT); 16951 16952 mutex_enter(&dtrace_lock); 16953 dof = dtrace_dof_create(state); 16954 mutex_exit(&dtrace_lock); 16955 16956 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16957 rval = copyout(dof, (void *)arg, len); 16958 dtrace_dof_destroy(dof); 16959 16960 return (rval == 0 ? 0 : EFAULT); 16961 } 16962 16963 case DTRACEIOC_AGGSNAP: 16964 case DTRACEIOC_BUFSNAP: { 16965 dtrace_bufdesc_t desc; 16966 caddr_t cached; 16967 dtrace_buffer_t *buf; 16968 16969 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16970 return (EFAULT); 16971 16972 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16973 return (EINVAL); 16974 16975 mutex_enter(&dtrace_lock); 16976 16977 if (cmd == DTRACEIOC_BUFSNAP) { 16978 buf = &state->dts_buffer[desc.dtbd_cpu]; 16979 } else { 16980 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16981 } 16982 16983 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16984 size_t sz = buf->dtb_offset; 16985 16986 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16987 mutex_exit(&dtrace_lock); 16988 return (EBUSY); 16989 } 16990 16991 /* 16992 * If this buffer has already been consumed, we're 16993 * going to indicate that there's nothing left here 16994 * to consume. 16995 */ 16996 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16997 mutex_exit(&dtrace_lock); 16998 16999 desc.dtbd_size = 0; 17000 desc.dtbd_drops = 0; 17001 desc.dtbd_errors = 0; 17002 desc.dtbd_oldest = 0; 17003 sz = sizeof (desc); 17004 17005 if (copyout(&desc, (void *)arg, sz) != 0) 17006 return (EFAULT); 17007 17008 return (0); 17009 } 17010 17011 /* 17012 * If this is a ring buffer that has wrapped, we want 17013 * to copy the whole thing out. 17014 */ 17015 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 17016 dtrace_buffer_polish(buf); 17017 sz = buf->dtb_size; 17018 } 17019 17020 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 17021 mutex_exit(&dtrace_lock); 17022 return (EFAULT); 17023 } 17024 17025 desc.dtbd_size = sz; 17026 desc.dtbd_drops = buf->dtb_drops; 17027 desc.dtbd_errors = buf->dtb_errors; 17028 desc.dtbd_oldest = buf->dtb_xamot_offset; 17029 desc.dtbd_timestamp = dtrace_gethrtime(); 17030 17031 mutex_exit(&dtrace_lock); 17032 17033 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17034 return (EFAULT); 17035 17036 buf->dtb_flags |= DTRACEBUF_CONSUMED; 17037 17038 return (0); 17039 } 17040 17041 if (buf->dtb_tomax == NULL) { 17042 ASSERT(buf->dtb_xamot == NULL); 17043 mutex_exit(&dtrace_lock); 17044 return (ENOENT); 17045 } 17046 17047 cached = buf->dtb_tomax; 17048 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 17049 17050 dtrace_xcall(desc.dtbd_cpu, 17051 (dtrace_xcall_t)dtrace_buffer_switch, buf); 17052 17053 state->dts_errors += buf->dtb_xamot_errors; 17054 17055 /* 17056 * If the buffers did not actually switch, then the cross call 17057 * did not take place -- presumably because the given CPU is 17058 * not in the ready set. If this is the case, we'll return 17059 * ENOENT. 17060 */ 17061 if (buf->dtb_tomax == cached) { 17062 ASSERT(buf->dtb_xamot != cached); 17063 mutex_exit(&dtrace_lock); 17064 return (ENOENT); 17065 } 17066 17067 ASSERT(cached == buf->dtb_xamot); 17068 17069 /* 17070 * We have our snapshot; now copy it out. 17071 */ 17072 if (copyout(buf->dtb_xamot, desc.dtbd_data, 17073 buf->dtb_xamot_offset) != 0) { 17074 mutex_exit(&dtrace_lock); 17075 return (EFAULT); 17076 } 17077 17078 desc.dtbd_size = buf->dtb_xamot_offset; 17079 desc.dtbd_drops = buf->dtb_xamot_drops; 17080 desc.dtbd_errors = buf->dtb_xamot_errors; 17081 desc.dtbd_oldest = 0; 17082 desc.dtbd_timestamp = buf->dtb_switched; 17083 17084 mutex_exit(&dtrace_lock); 17085 17086 /* 17087 * Finally, copy out the buffer description. 17088 */ 17089 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 17090 return (EFAULT); 17091 17092 return (0); 17093 } 17094 17095 case DTRACEIOC_CONF: { 17096 dtrace_conf_t conf; 17097 17098 bzero(&conf, sizeof (conf)); 17099 conf.dtc_difversion = DIF_VERSION; 17100 conf.dtc_difintregs = DIF_DIR_NREGS; 17101 conf.dtc_diftupregs = DIF_DTR_NREGS; 17102 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 17103 17104 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 17105 return (EFAULT); 17106 17107 return (0); 17108 } 17109 17110 case DTRACEIOC_STATUS: { 17111 dtrace_status_t stat; 17112 dtrace_dstate_t *dstate; 17113 int i, j; 17114 uint64_t nerrs; 17115 17116 /* 17117 * See the comment in dtrace_state_deadman() for the reason 17118 * for setting dts_laststatus to INT64_MAX before setting 17119 * it to the correct value. 17120 */ 17121 state->dts_laststatus = INT64_MAX; 17122 dtrace_membar_producer(); 17123 state->dts_laststatus = dtrace_gethrtime(); 17124 17125 bzero(&stat, sizeof (stat)); 17126 17127 mutex_enter(&dtrace_lock); 17128 17129 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 17130 mutex_exit(&dtrace_lock); 17131 return (ENOENT); 17132 } 17133 17134 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 17135 stat.dtst_exiting = 1; 17136 17137 nerrs = state->dts_errors; 17138 dstate = &state->dts_vstate.dtvs_dynvars; 17139 17140 for (i = 0; i < NCPU; i++) { 17141 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 17142 17143 stat.dtst_dyndrops += dcpu->dtdsc_drops; 17144 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 17145 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 17146 17147 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 17148 stat.dtst_filled++; 17149 17150 nerrs += state->dts_buffer[i].dtb_errors; 17151 17152 for (j = 0; j < state->dts_nspeculations; j++) { 17153 dtrace_speculation_t *spec; 17154 dtrace_buffer_t *buf; 17155 17156 spec = &state->dts_speculations[j]; 17157 buf = &spec->dtsp_buffer[i]; 17158 stat.dtst_specdrops += buf->dtb_xamot_drops; 17159 } 17160 } 17161 17162 stat.dtst_specdrops_busy = state->dts_speculations_busy; 17163 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 17164 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 17165 stat.dtst_dblerrors = state->dts_dblerrors; 17166 stat.dtst_killed = 17167 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 17168 stat.dtst_errors = nerrs; 17169 17170 mutex_exit(&dtrace_lock); 17171 17172 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 17173 return (EFAULT); 17174 17175 return (0); 17176 } 17177 17178 case DTRACEIOC_FORMAT: { 17179 dtrace_fmtdesc_t fmt; 17180 char *str; 17181 int len; 17182 17183 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 17184 return (EFAULT); 17185 17186 mutex_enter(&dtrace_lock); 17187 17188 if (fmt.dtfd_format == 0 || 17189 fmt.dtfd_format > state->dts_nformats) { 17190 mutex_exit(&dtrace_lock); 17191 return (EINVAL); 17192 } 17193 17194 /* 17195 * Format strings are allocated contiguously and they are 17196 * never freed; if a format index is less than the number 17197 * of formats, we can assert that the format map is non-NULL 17198 * and that the format for the specified index is non-NULL. 17199 */ 17200 ASSERT(state->dts_formats != NULL); 17201 str = state->dts_formats[fmt.dtfd_format - 1]; 17202 ASSERT(str != NULL); 17203 17204 len = strlen(str) + 1; 17205 17206 if (len > fmt.dtfd_length) { 17207 fmt.dtfd_length = len; 17208 17209 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 17210 mutex_exit(&dtrace_lock); 17211 return (EINVAL); 17212 } 17213 } else { 17214 if (copyout(str, fmt.dtfd_string, len) != 0) { 17215 mutex_exit(&dtrace_lock); 17216 return (EINVAL); 17217 } 17218 } 17219 17220 mutex_exit(&dtrace_lock); 17221 return (0); 17222 } 17223 17224 default: 17225 break; 17226 } 17227 17228 return (ENOTTY); 17229 } 17230 17231 /*ARGSUSED*/ 17232 static int 17233 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 17234 { 17235 dtrace_state_t *state; 17236 17237 switch (cmd) { 17238 case DDI_DETACH: 17239 break; 17240 17241 case DDI_SUSPEND: 17242 return (DDI_SUCCESS); 17243 17244 default: 17245 return (DDI_FAILURE); 17246 } 17247 17248 mutex_enter(&cpu_lock); 17249 mutex_enter(&dtrace_provider_lock); 17250 mutex_enter(&dtrace_lock); 17251 17252 ASSERT(dtrace_opens == 0); 17253 17254 if (dtrace_helpers > 0) { 17255 mutex_exit(&dtrace_provider_lock); 17256 mutex_exit(&dtrace_lock); 17257 mutex_exit(&cpu_lock); 17258 return (DDI_FAILURE); 17259 } 17260 17261 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 17262 mutex_exit(&dtrace_provider_lock); 17263 mutex_exit(&dtrace_lock); 17264 mutex_exit(&cpu_lock); 17265 return (DDI_FAILURE); 17266 } 17267 17268 dtrace_provider = NULL; 17269 17270 if ((state = dtrace_anon_grab()) != NULL) { 17271 /* 17272 * If there were ECBs on this state, the provider should 17273 * have not been allowed to detach; assert that there is 17274 * none. 17275 */ 17276 ASSERT(state->dts_necbs == 0); 17277 dtrace_state_destroy(state); 17278 17279 /* 17280 * If we're being detached with anonymous state, we need to 17281 * indicate to the kernel debugger that DTrace is now inactive. 17282 */ 17283 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 17284 } 17285 17286 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 17287 unregister_cpu_setup_func(dtrace_cpu_setup, NULL); 17288 dtrace_cpu_init = NULL; 17289 dtrace_helpers_cleanup = NULL; 17290 dtrace_helpers_fork = NULL; 17291 dtrace_cpustart_init = NULL; 17292 dtrace_cpustart_fini = NULL; 17293 dtrace_debugger_init = NULL; 17294 dtrace_debugger_fini = NULL; 17295 dtrace_modload = NULL; 17296 dtrace_modunload = NULL; 17297 17298 ASSERT(dtrace_getf == 0); 17299 ASSERT(dtrace_closef == NULL); 17300 17301 mutex_exit(&cpu_lock); 17302 17303 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 17304 dtrace_probes = NULL; 17305 dtrace_nprobes = 0; 17306 17307 dtrace_hash_destroy(dtrace_bymod); 17308 dtrace_hash_destroy(dtrace_byfunc); 17309 dtrace_hash_destroy(dtrace_byname); 17310 dtrace_bymod = NULL; 17311 dtrace_byfunc = NULL; 17312 dtrace_byname = NULL; 17313 17314 kmem_cache_destroy(dtrace_state_cache); 17315 vmem_destroy(dtrace_minor); 17316 vmem_destroy(dtrace_arena); 17317 17318 if (dtrace_toxrange != NULL) { 17319 kmem_free(dtrace_toxrange, 17320 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 17321 dtrace_toxrange = NULL; 17322 dtrace_toxranges = 0; 17323 dtrace_toxranges_max = 0; 17324 } 17325 17326 ddi_remove_minor_node(dtrace_devi, NULL); 17327 dtrace_devi = NULL; 17328 17329 ddi_soft_state_fini(&dtrace_softstate); 17330 17331 ASSERT(dtrace_vtime_references == 0); 17332 ASSERT(dtrace_opens == 0); 17333 ASSERT(dtrace_retained == NULL); 17334 17335 mutex_exit(&dtrace_lock); 17336 mutex_exit(&dtrace_provider_lock); 17337 17338 /* 17339 * We don't destroy the task queue until after we have dropped our 17340 * locks (taskq_destroy() may block on running tasks). To prevent 17341 * attempting to do work after we have effectively detached but before 17342 * the task queue has been destroyed, all tasks dispatched via the 17343 * task queue must check that DTrace is still attached before 17344 * performing any operation. 17345 */ 17346 taskq_destroy(dtrace_taskq); 17347 dtrace_taskq = NULL; 17348 17349 return (DDI_SUCCESS); 17350 } 17351 17352 /*ARGSUSED*/ 17353 static int 17354 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 17355 { 17356 int error; 17357 17358 switch (infocmd) { 17359 case DDI_INFO_DEVT2DEVINFO: 17360 *result = (void *)dtrace_devi; 17361 error = DDI_SUCCESS; 17362 break; 17363 case DDI_INFO_DEVT2INSTANCE: 17364 *result = (void *)0; 17365 error = DDI_SUCCESS; 17366 break; 17367 default: 17368 error = DDI_FAILURE; 17369 } 17370 return (error); 17371 } 17372 17373 static struct cb_ops dtrace_cb_ops = { 17374 dtrace_open, /* open */ 17375 dtrace_close, /* close */ 17376 nulldev, /* strategy */ 17377 nulldev, /* print */ 17378 nodev, /* dump */ 17379 nodev, /* read */ 17380 nodev, /* write */ 17381 dtrace_ioctl, /* ioctl */ 17382 nodev, /* devmap */ 17383 nodev, /* mmap */ 17384 nodev, /* segmap */ 17385 nochpoll, /* poll */ 17386 ddi_prop_op, /* cb_prop_op */ 17387 0, /* streamtab */ 17388 D_NEW | D_MP /* Driver compatibility flag */ 17389 }; 17390 17391 static struct dev_ops dtrace_ops = { 17392 DEVO_REV, /* devo_rev */ 17393 0, /* refcnt */ 17394 dtrace_info, /* get_dev_info */ 17395 nulldev, /* identify */ 17396 nulldev, /* probe */ 17397 dtrace_attach, /* attach */ 17398 dtrace_detach, /* detach */ 17399 nodev, /* reset */ 17400 &dtrace_cb_ops, /* driver operations */ 17401 NULL, /* bus operations */ 17402 nodev, /* dev power */ 17403 ddi_quiesce_not_needed, /* quiesce */ 17404 }; 17405 17406 static struct modldrv modldrv = { 17407 &mod_driverops, /* module type (this is a pseudo driver) */ 17408 "Dynamic Tracing", /* name of module */ 17409 &dtrace_ops, /* driver ops */ 17410 }; 17411 17412 static struct modlinkage modlinkage = { 17413 MODREV_1, 17414 (void *)&modldrv, 17415 NULL 17416 }; 17417 17418 int 17419 _init(void) 17420 { 17421 return (mod_install(&modlinkage)); 17422 } 17423 17424 int 17425 _info(struct modinfo *modinfop) 17426 { 17427 return (mod_info(&modlinkage, modinfop)); 17428 } 17429 17430 int 17431 _fini(void) 17432 { 17433 return (mod_remove(&modlinkage)); 17434 } 17435